
�  via Claudio, 21- I-80125 Napoli - �  [#39]  (0)81 768 3813 - �    [#39]  (0)81 768 3816  

 

UNIVERSITA' DEGLI STUDI DI NAPOLI FEDERICO II 
Dottorato di Ricerca in Ingegneria Informatica ed Automatica 

 
 

 
 

 

 

DEPENDABILITY EVALUATION OF MOBILE DISTRIBUTED  
SYSTEMS VIA FIELD FAILURE DATA ANALYSIS 

 

MARCELLO CINQUE 

 

 

Tesi di Dottorato di Ricerca 

Novembre  2006 

 

 

 

 

 

 

Dipartimento di Informatica e Sistemistica 

  Comunità Europea 
Fondo Sociale Europeo A. D. MCCXXIV 



�  via Claudio, 21- I-80125 Napoli - �  [#39]  (0)81 768 3813 - �    [#39]  (0)81 768 3816  

 

  UNIVERSITA' DEGLI STUDI DI NAPOLI FEDERICO II 
 Dottorato di Ricerca in Ingegneria Informatica ed Automatica 

 
 

 
 

 

 

DEPENDABILITY EVALUATION OF MOBILE DISTRIBUTED  
SYSTEMS VIA FIELD FAILURE DATA ANALYSIS 

 

MARCELLO CINQUE 

 

 

Tesi di Dottorato di Ricerca 

(XIX Ciclo) 

Novembre  2006 

 

 

 

Il Tutore         Il Coordinatore del Dottorato 

Prof. Domenico Cotroneo       Prof. Luigi P. Cordella 

 

 

 

 

Dipartimento di Informatica e Sistemistica 

  
Comunità Europea 

Fondo Sociale Europeo 
A. D. MCCXXIV 



DEPENDABILITY EVALUATION OF MOBILE DISTRIBUTED

SYSTEMS VIA FIELD FAILURE DATA ANALYSIS

By

Marcello Cinque

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

AT

“FEDERICO II” UNIVERSITY OF NAPLES

VIA CLAUDIO 21, 80125 – NAPOLI, ITALY

NOVEMBER 2006

c© Copyright by Marcello Cinque, 2006



“The important thing is not to stop questioning”

Albert Einstein

ii



Table of Contents

Table of Contents iii

List of Tables vi

List of Figures viii

Acknowledgements xi

Introduction 1

1 Dependability of Mobile Distributed Systems 6

1.1 Mobile Distributed Systems, and Mobile Computing . . . . . . . . . . . . . 6

1.2 Basic Notions of Dependability . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.1 Threats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.2 Formalization and Measures . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.3 Means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3 Experiences on Mobile Distributed Systems’ Dependability . . . . . . . . . 19

1.3.1 Failure modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.3.2 Fault tolerance techniques . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3.3 Dependability improvement . . . . . . . . . . . . . . . . . . . . . . . 22

1.3.4 Dependability Modeling . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.3.5 Dependability Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 24

1.4 The Need for FFDA on Mobile Distributed Systems . . . . . . . . . . . . . 25

2 Field Failure Data Analysis: Methodology and Related Work 26

2.1 FFDA Objectives and Applicability . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 The FFDA Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.1 Data Logging and Collection . . . . . . . . . . . . . . . . . . . . . . 28

2.2.2 Data Filtering and Manipulation . . . . . . . . . . . . . . . . . . . . 31

2.2.3 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2.4 Tools for FFDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

iii



2.3 Comparison Framework of FFDA Studies . . . . . . . . . . . . . . . . . . . 38

2.3.1 Descriptive Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3.2 Quantitative Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3.3 Methodology-related Dimensions . . . . . . . . . . . . . . . . . . . . 41

2.4 Analysis of Related Research . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.4.1 Fundamental Research . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.4.2 FFDA Relevant Studies . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.5 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.5.1 Purposes and Target Systems . . . . . . . . . . . . . . . . . . . . . . 63

2.5.2 Academic vs Industrial Works . . . . . . . . . . . . . . . . . . . . . . 65

2.5.3 Methodological Considerations . . . . . . . . . . . . . . . . . . . . . 66

2.5.4 Quality of Conducted Campaigns . . . . . . . . . . . . . . . . . . . . 70

2.6 FFDA of MDSs: Issues and Challenges . . . . . . . . . . . . . . . . . . . . . 72

3 FFDA of Bluetooth Personal Area Networks 75

3.1 Rationale and Characterization of the FDDA Campaign . . . . . . . . . . . 75

3.2 Bluetooth Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.3 Data Collection Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.3.1 Testbed and Workload Description. . . . . . . . . . . . . . . . . . . 83

3.3.2 Failure Data Logging and Collection . . . . . . . . . . . . . . . . . . 87

3.3.3 Data Filtering and Manipulation . . . . . . . . . . . . . . . . . . . . 91

3.4 Key Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.4.1 Bluetooth PAN Failure Model. . . . . . . . . . . . . . . . . . . . . . 93

3.4.2 Baseband Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.4.3 Propagation Phenomena . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.4.4 Further Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.5 Masking Strategies and SIRAs . . . . . . . . . . . . . . . . . . . . . . . . . 110

3.5.1 Error Masking Strategies . . . . . . . . . . . . . . . . . . . . . . . . 110

3.5.2 SW Implemented Recovery Actions . . . . . . . . . . . . . . . . . . . 112

3.6 Dependability Improvement of Bluetooth PANs . . . . . . . . . . . . . . . . 117

4 FFDA of Mobile Phones 121

4.1 Rationale and Characterization of the FFDA campaign . . . . . . . . . . . 121

4.2 Background on Smart Phones and the Symbian OS . . . . . . . . . . . . . . 123

4.2.1 The Evolution of Mobile Phones . . . . . . . . . . . . . . . . . . . . 123

4.2.2 Mobile Phone Architectural Model . . . . . . . . . . . . . . . . . . . 125

4.2.3 Symbian OS fundamentals . . . . . . . . . . . . . . . . . . . . . . . . 126

4.3 Starting Point: Web Forums-based analysis . . . . . . . . . . . . . . . . . . 130

4.3.1 Classifying Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.3.2 Results from the Reports’ analysis . . . . . . . . . . . . . . . . . . . 135

4.4 Data Collection Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 141

iv



4.4.1 Smart phones Under Test . . . . . . . . . . . . . . . . . . . . . . . . 142

4.4.2 Failure Data Logging and Collection . . . . . . . . . . . . . . . . . . 142

4.4.3 Data Filtering and Manipulation . . . . . . . . . . . . . . . . . . . . 150

4.5 Key Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

4.5.1 Freeze and Self-shutdown Measurements . . . . . . . . . . . . . . . . 152

4.5.2 Captured Panics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

4.5.3 Panics and High Level Events . . . . . . . . . . . . . . . . . . . . . . 155

4.5.4 Phone Activity at Panic Time . . . . . . . . . . . . . . . . . . . . . 157

Conclusions 160

Lessons Learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

On the Use of a Multi-source Approach . . . . . . . . . . . . . . . . . . . . 161

On the Use of Multiple Automated Workloads . . . . . . . . . . . . . . . . 162

Bluetooth Campaign Specific Considerations . . . . . . . . . . . . . . . . . 163

Mobile Phones Campaign Specific Considerations . . . . . . . . . . . . . . . 164

FFDA: Towards a Unified View . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

Bibliography 168

v



List of Tables

2.1 FFDA Research trends: targets and milestones . . . . . . . . . . . . . . . . . . 44

2.2 Adopted failure data level as a percentage of the total number of analyzed FFDA

studies; percentages do not add to 100, since there are studies using data from more

than one level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

2.3 Percentages of usage of FFDA filtering and manipulation strategies . . . . . . . . 69

2.4 Percentages of types of conducted data analysis . . . . . . . . . . . . . . . . . . 70

2.5 Percentiles of the Density of FFDA studies . . . . . . . . . . . . . . . . . . . . . 71

3.1 Characterization of the study conducted on Bluetooth PANs . . . . . . . . . . . 79

3.2 Error-Failure Relationship: System Failures are regarded as errors for User Failures 98

3.3 Spatial coalescence of failures among nodes . . . . . . . . . . . . . . . . . . . . 103

3.4 Goodness of Fit Tests for Bind Failed on Azzurro and Connect Failed on Verde . . 105

3.5 Fitting summary of every User Level Failure on each node. Each cell contains the

fitted distribution, the MTTF, and the coefficient of variation. Data comes from the

Random WL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

3.6 Fitting summary for every User Level Failure on each node. Each cell contains the

fitted distribution, the MTTF, and the coefficient of variation. Data comes from the

Realistic WL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

3.7 User failures-SIRAs relationship . . . . . . . . . . . . . . . . . . . . . . . . . . 114

3.8 Fitting summary for each Recovery Action on every node. Each cell contains the

fitted distribution, the MTTR, and the coefficient of variation . . . . . . . . . . . 116

3.9 Dependability Improvement of Bluetooth PANs . . . . . . . . . . . . . . . . . . 118

4.1 Characterization of conducted studies on mobile phones . . . . . . . . . . . . . . 123

vi



4.2 Failure frequency distribution with respect to failure types and recovery actions; the

numbers are percentages of the total number of failures . . . . . . . . . . . . . . 137

4.3 Failure frequency distribution with respect to: a) running application, b) failure

type and number of running applications; the numbers in the table are percentage

of total number of failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.4 Collected panics typologies, descriptions, and frequencies . . . . . . . . . . . . . 153

4.5 Relationship between panics and the phone activity . . . . . . . . . . . . . . . . 157

4.6 Relationship between panics ans running applications . . . . . . . . . . . . . . . 158

vii



List of Figures

1.1 Distributed systems evolution with respect to time, mobility, and integration

with the physical world (embeddedness) . . . . . . . . . . . . . . . . . . . . 8

1.2 The chain of threats of faults, errors, and failures (adapted from [1]) . . . . 12

1.3 TTF, TTR and TBF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1 The FFDA methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 Multiple event reporting phenomenon (adapted from [46]) . . . . . . . . . . . . . 32

2.3 FFDA purposes a) break-up, b) distribution over the years . . . . . . . . . . . . 63

2.4 FDDA Target Systems: a) break-up, b) distribution over the years . . . . . . . . 64

2.5 Academy and Industry FFDA works break-up . . . . . . . . . . . . . . . . . . . 65

2.6 Number of adopted FFDA manipulation strategies, per actor; the percentages are

normalized for each actor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.7 FFDA Data sources: a) type break-up, b) number of levels break-up . . . . . . . 66

2.8 Average number of failure data levels considered by FFDA studies, over the years . 67

2.9 FFDA studies density-length relationship . . . . . . . . . . . . . . . . . . . . . 71

3.1 The Bluetooth Protocol Stack and the PAN profile . . . . . . . . . . . . . . 82

3.2 The topology of both the Bluetooth testbeds, along with the technical details of

their machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.3 State-chart Diagram of the Bluetooth Workload . . . . . . . . . . . . . . . . . . 85

3.4 Bluetooth multi-level failure data collection . . . . . . . . . . . . . . . . . . . . 88

3.5 Reletionship between User Level, System Level, and Channel Level Failures . . . . 88

3.6 Bluetooth Failure Data Collection Architecture . . . . . . . . . . . . . . . . . . 89

3.7 The “merge and coalesce” scheme adopted to pinpoint error-failure relationships . 91

viii



3.8 The Bluetooth PAN Failure Model . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.9 Propagation diagram of Hard Payload Corruptions to User and System Level Failures

on a single node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.10 Hard Payload Corruptions consequences with respect to the packet’s structure; one

of the indicated errors/failures manifest, depending on the position of the corruption

within the packet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.11 Example of clusters of failures. . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.12 Examples of TTF fittings. (a) Histogram and fittings for “Bind Failed” failures on

Azzurro, (b) probability plot of Azzurro’s “Bind Failed” TTF values for the Lognor-

mal distribution, (c) Histogram and fittings for “Connect Failed” failures on Verde,

(d) probability plot of Verde’s “Connect Failed” TTF values for the Lognormal

distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.13 Workload influence on failures’ manifestation . . . . . . . . . . . . . . . . . . . 107

3.14 a) “Packet loss” failure distribution as a function of the networked application used

by the Realistic WL. b) Failures distribution as a function of the distance from

PANUs to the NAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

3.15 Probability plot of Miseno’s Multiple System Reboot TTR values for the exponential

distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.1 Mobile phones’ market growth . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.2 Mobile phones’ architectural model . . . . . . . . . . . . . . . . . . . . . . . 126

4.3 Symbian OS multitasking model . . . . . . . . . . . . . . . . . . . . . . . . 128

4.4 Mobile phones’ failure reports examples: a) a user reported problem; b) a

known issue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.5 Mobile phones Failure types and severity . . . . . . . . . . . . . . . . . . . . 135

4.6 User initiated recovery: a) break-up including unreported recovery actions

and b) break-up without unreported recovery actions; the numbers are per-

centages of the total number of failures . . . . . . . . . . . . . . . . . . . . . 136

4.7 Break-up of failures per component; the numbers are percentages of the total

number of failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.8 Overall architecture of the Logger for Symbian OS smart phones . . . . . . 143

4.9 Write delay ∆w as a function of fh, stand-by workload . . . . . . . . . . . . 148

ix



4.10 Write delay ∆w as a function of fh, other workloads . . . . . . . . . . . . . 149

4.11 Distributed Data Collection Architecture . . . . . . . . . . . . . . . . . . . 149

4.12 Distribution of reboot durations. The right-side histogram zooms the left-

side one for durations less than 500 seconds. . . . . . . . . . . . . . . . . . . 150

4.13 Panics and HL events coalescence scheme . . . . . . . . . . . . . . . . . . . 151

4.14 Distribution of panics registered as a cascade . . . . . . . . . . . . . . . . . 154

4.15 Panics and HL events: a) overall summary, b) details with respect to freeze

and self-shutdown events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

4.16 Distribution of the number of running applications at panic time . . . . . . 158

x



Acknowledgements

“Proprio alla fine degli studi mi trovai sperduto tra infiniti dubbi ed errori. Mi sembrava di

aver studiato solo per scoprire quanto fossi ignorante”

E se Cartesio aveva questa sensazione, figuriamoci io! E’ proprio vero. Più si conosce e

più ci si rende conto che c’è ancora molto da conoscere. Ma forse il bello è proprio questo.

Se avessimo già tutte le risposte, la nostra esistenza sarebbe quanto meno noiosa.

E’ con questo spirito che si conclude un altro importante capitolo della mia vita.

E ora, nell’attesa di precipitarmi nell’ignoto di una nuova avventura, non mi resta che

ringraziare tutti coloro che hanno creduto in questa mia folle corsa verso la consapevolezza

dell’ignoranza. O meglio, la conoscenza. E’ a tutti voi che dedico il frutto dei miei sforzi.

L’elenco è lungo, e se dimentico qualcuno, non abbiatene. In fondo sono sempre stato un

pò distratto.

Alla mia famiglia. Per altri tre lunghi anni avete sopportato la mia assenza e i miei

malumori. Ma avete reso grande la mia soddisfazione. Grazie a voi, alla vostra fiducia, al

vostro sostegno, ogni mio più piccolo passo è diventato un successo. Grazie ed infinitamente

grazie. Per sempre.

Ad Armando. Allo specchio della mia coscienza. All’altra faccia della mia stessa

medaglia. Al fratello che non ho mai avuto. Quello che sono lo devo a te. Quindi non

prendertela se qualche volta sbaglio, in fondo è anche un pò colpa tua! E’ vero, questi anni

ci hanno allontanato un pò. Abbiamo dovuto imparare a camminare da soli, a perderci e

a ritrovarci. Ma ci ha sorretto l’esperienza di una vita trascorsa insieme. E sono sicuro

che allo stesso modo sapremo sorreggerci nelle incognite degli anni a venire. Grazie Arma,

soprattutto per quello che diventeremo.

Ai miei amici di sempre, alle persone care. Ancora una volta avete dovuto sopportare

la mia deliberata “volontà di stressarmi”. Rassegnatevi, sarà sempre cos̀ı. E’ un morbo

inguaribile. Grazie a Maxone, a Luxone, a Zio Brin (con Vittoria e la piccola Erika), a

Stepon, Andrea il nano, Massimo capikki... grazie ragazzi. Grazie anche a Roby, persona

xi



xii

speciale, mio angelo custode (ma anche diavolo tentatore) nell’esperienza d’oltreoceano, e

non solo. E un grazie enorme a te, Milù. Come te, nessuna è riuscita a sostenermi, a

comprendermi, a farmi sentire importante. Grazie.

A tutta la famiglia “allargata”. Grazie ai cugini, agli zii, alle zie. Siete delle persone

eccezionali. La vostra stima è davvero importante per me, e cos̀ı come mi ha aiutato finora,

mi aiuterà a tenere duro e andare dritto per la mia strada.

A Domenico. In un’unica persona mio tutor, “padrone”, e amico. La tua fiducia e il

tuo sostegno sono stati fondamentali. Cos̀ı come i tuoi insegnamenti, le belle serate passate

insieme, e le lunghe giornate in treno a lavorare... fino ad arrivare alla stesura di questa

tesi, che riassume anche i tuoi di sforzi. Infinite grazie a te, e al prof. Stefano Russo per

avermi fatto vivere un’esperienza davvero indimenticabile. Irripetibile.

Ai ragazzi del laboratorio. Alla vostra compagnia, alle innumerevoli ore di fatica e risate

trascorse assieme. A Gene, o generazio, o generaptor, o generantropo... grande compagno

di viaggi, e nostro unico rettore. Con immenso rispetto. A Tatore, amico di sventure pre e

post laurea, impareggiabile faticatore ma allo stesso tempo fautore di risate e coffee break.

Devo ammettere che quando non ci sei, il laboratorio si intristisce un pò. A Pavelo, Gabry,

Hulio, Fabio il biondo, Carmine. Grazie ragazzi. Senza il vostro aiuto, molto di quanto è

riassunto qui di seguito non sarebbe stato possibile.

Napoli, Italy Marcello

November 30, 2006



Introduction

Recent decades have been characterized by an explosive growth in the deployment of small,

mobile devices, ranging from personal digital assistant to smart phones and wireless sensors.

At the same time, more and more wireless communication technologies have been delivered,

such as the IEEE 802.11, Bluetooth, and cellular networks. This scenario has led to the

definition of the mobile computing paradigm, enabled by the so-called Mobile Distributed

Systems (MDSs).

As these systems become increasingly complex, their reliability begins to decrease due

to complex interactions between software modules and multiple applications. The sophis-

ticated software that is taking on more duties, can contain bugs, can be difficult to com-

prehend and analyze, and ages in quality over time. As a consequence, consumer tolerance

for application crashes and malfunctions is decreasing, and many consumers may consider

switching brands if their current device does not perform to expectations. Hence, the de-

pendability of these devices is directly related with the business opportunity. At the same

time, more and more critical-data-driven applications have been introduced on the mobile

computing market. Phone-based banking, ticket booking, and e-trading are examples of

applications where the user expects correct behavior despite accidental errors and/or ma-

licious tampering with the device. Dependability will become even more critical as new

applications emerge for mobile distributed systems, e.g., robot control [91, 62, 57], traffic

control [4], telemedicine [7, 9], and video-surveillance [73]. In such scenarios, a failure af-

fecting the application could result in a significant loss or hazard, e.g., a robot performing

1



2

uncontrolled actions.

A significant research quest is to evaluate the dependability levels that can be achieved by

these system in order to i) assess whether today’s mobile distributed systems are adequate

enough to satisfy the requirements of highly dependable wireless-based systems, and ii)

evaluate how these systems meet dependability needs for the consumer-electronic mass-

market, such as, achieving reasonably low failure rates at a reasonable cost [93].

Despite these concerns, very few studies have looked into the dependability of mobile

distributed systems. As a result, there is little understanding of how and why these systems

fail or the methods/techniques needed to meet consumer expectations of device robustness

and reliability. The need to comprehend how these system fail cannot be understated. To-

day, no real numbers are available, neither published nor communicated by manufacturers,

able to give an order of magnitude estimate of failure rate experienced by mobile distributed

systems’ users. It becomes thus hard to propose novel solutions for fault tolerance or new

models for fault forecasting if one has no notion of the actual failure behavior of these

systems.

Learning about the real failure behavior of these systems would be a major step forward.

A well established methodology to evaluate the dependability of operational systems and to

identify their dependability bottlenecks is represented by field failure data analysis (FFDA).

The effort profused in this dissertation deals with the field failure data analysis of mobile

distributed systems. To simplify the work, such analysis addresses separately the two main

components that build a MDS, i.e., mobile devices and wireless communication means,

trying to face the new issues which arise when applying the FFDA methodology to this

new class of systems. These issues are mainly related to the specificity of mobile devices,

to the absence of publicly available data sources, and to the lack of previous experiences.

In particular, for wireless communication means, it is needed to deal with the following

challenging questions:



3

• Which data source can be adopted? Or, in other terms, which resources need to be

monitored to gain the needed understanding on wireless technologies failures?

• Can we use idle workloads? Wireless communications are used in a spot way. Hence,

the mere adoption of idle workloads (i.e., the normal load under which the system

operates) may not guarantee that continuous time dependability measures can be

properly estimated.

The situation gets even worse in the case of mobile devices. In particular, the following

open issues arise:

• Where do we have to start from? There is no prior experience on the FFDA of mobile

devices. In particular, the failure modes are still unknown. This knowledge is a

prerequisite to understand what type of information is to be gathered.

• How to collect the failure data? Differently from traditional systems, no standard

techniques have been defined so far to perform an on-line logging of the activity of

mobile devices.

This dissertation tries to give answers to the above mentioned questions, by proposing

two FFDA campaigns on MDSs, one addressing a wireless communication technology, and

another related to mobile devices. Specifically, the former proposes a detailed FFDA on

Bluetooth Personal Area Networks (PANs), whereas the second addresses smart phone

devices equipped with the Symbian OS. Both Bluetooth and the Symbian had been chosen

for their widespread use in today’s MDSs, hence they are representative of a wide class

of today’s MDSs. The proposed findings are the result of a three years experience, and

partially extend previously published results, as [27][29][3].

As far as the Bluetooth campaign is concerned, multiple failure data sources and au-

tomated workloads are adopted. The use of multiple data sources enables to monitor the



4

behavior of the thorough set of components which build the Bluetooth protocol stack. On

the other hand, the adoption of automated workload is needed to measure continuous time

dependability attributes and to gather a richer set of information in a relatively short period

of time. The experiments provide useful insights which are then used to characterize failures

distribution and to improve the dependability level of Bluetooth PANs. More specifically,

the novel contribution of the work is threefold. First, a detailed failure model of Bluetooth

PANs is defined. Second, the self-robustness of Bluetooth wireless channels with respect

to faults affecting the radio channels is characterized. Third, failure masking and recovery

actions are proposes, able to improve the dependability level of Bluetooth PANs by orders

of magnitude.

As for the smart phone campaign, the starting point of the study has been an analysis of

failure reports submitted by mobile phones’ users on publicly available web forums. Based

on this experience, a failure logger has been developed and deployed on actual smart phones,

which is able to capture all the failure information of interest. Results from the experimen-

tal campaign are totally new to the FFDA research community and allow to quantify the

dependability of today’s commercial smart phones, and to put the evidence on the more

common causes lying behind the failures.

The rest of the dissertation is organized as follows.

Chapter 1 provides the needed background on mobile distributed systems and on the de-

pendability of computer systems, then it reviews the state of art of mobile distributed

systems’ dependability.

A description of the field failure data analysis methodology is given in chapter 2. The

chapter also proposes a framework to analyze and confront the related work in the area,



5

and concludes with a detailed comparison of the most significant FFDA campaigns which

have been conducted over the last three decades.

Chapter 3 is dedicated to the FFDA study of Bluetooth PANs. After giving the necessary

background on the Bluetooth technology, the chapter outlines the data collection method-

ology which has been adopted, included the description of the workloads that have been

used to exercise the network. The details on the key findings, along with the evaluation of

the obtained dependability improvement is given at the end of the chapter.

The Symbian smart phones FFDA is discussed in chapter 4. Similarly to chapter 4, it

first provides the needed background on the Symbian OS, then it discussed the preliminary

results gained from the analysis of freely available failure reports posted by mobile phones

users. Moved from these results, the chapter describes the used data collection methodology,

discusses the design of the failure logger, and details the results of the analysis performed

by means of the logger.

The dissertation concludes with final remarks and the indication of the lessons learned.

It is also evidenced the need for a unified methodology of FFDA studies, able to overcome

the diversity problems arising from the conduction of several different studies from differ-

ent actors. Such a methodology could facilitate the communication between the FFDA

research community, enabling a simpler comparison between future studies and enriching

their credibility.



Since we cannot know all that there is
to be known about anything, we ought
to know a little about everything.

Blaise Pascal

Chapter 1

Dependability of Mobile

Distributed Systems

Today’s advantages in mobile computing hardware, as well as wireless networking, deliver more and
more complex mobile computing platforms, which today encompass a variety of systems, each one
characterized by specific kinds of mobile terminals and communication protocols. The wide spread
use of these mobile computing platforms is leading to a growing interest of dependability issues.
This chapter introduces separately the notions of mobile distributed systems and computer systems
dependability. Then it reviews the recent experience on Mobile Distributed Systems dependability,
motivating the need for more experimental research.

1.1 Mobile Distributed Systems, and Mobile Computing

The recent evolution in device miniaturization and wireless communication technologies

makes it possible to integrate small and portable computing devices into distributed systems,

leading to the notion of Mobile Distributed Systems (MDSs). Mobile devices include laptop

computers, handheld devices such as personal digital assistants (PDAs) and mobile phones,

wearable devices, and wireless sensors. The word “mobile” derives from the ability of

these devices to connect conveniently to networks in different places, making the mobile

computing paradigm possible. Mobile computing, is the performance of computing tasks

while the user is on the move, or visiting places other than their usual environment [33].

6



Chapter 1. Dependability of Mobile Distributed Systems 7

In mobile computing, users who are away from their home intranet are still provided with

access to resources via the devices they carry with them. For this reason, is crucial for these

devices to be connected trough some form of wireless media. To this purpose, several wireless

technologies have been proposed recently. Examples are Bluetooth [12], IEEE 802.11 (Wi-

Fi [49]) and IrDA (Infrared Data Association [77]) for short ranges communication, and

2.5G, 3G cellular for wider coverages.

A MDS can thus be defined as a computer system which enables the mobile computing

paradigm and that is composed by two essential elements:

• a set of mobile devices;

• one or more wireless communication means.

Several instances of MDSs exist, that can be differentiated with respect to the wire-

less means they adopt. Generally speaking, we can distinguish infrastructure-based MDSs,

where the connectivity is assured by means of special-purpose devices, called access points

(APs), and infrastructure-less MDSs, where the communication takes place via only multi-

hop wireless links between mobile devices. Infrastructure-based MDSs adhere to the no-

madic computing paradigm [59], i.e., a special typology of mobile computing where mobile

devices are nomads in wireless domains served by means of APs. Examples are IEEE 802.11

networks, Bluetooth Personal Area Networks [11], and cellular networks. On the other

hand, examples of infrastructure-less MDSs are mobile-ad-hoc networks (MANETs) [92],

and wireless sensor networks (WSNs) [2].



Chapter 1. Dependability of Mobile Distributed Systems 8

time

M
o
b
ili

ty
, 

E
m

b
e

d
d
e
d

n
e
s
s

traditional

mobile

ubiquitous

1990s 2000s 2010s

Figure 1.1: Distributed systems evolution with respect to time, mobility, and integration
with the physical world (embeddedness)

Mobile computing is slightly evolving towards the ubiquitous computing vision. Ubiq-

uitous computing [111] is the harnessing of many small, cheap computational devices that

are present in users’ physical environments, including the home, office, and elsewhere. They

will be embedded in walls, chairs, clothing, light switches, cars - in everything. The term

“ubiquitous” is intended to suggest that such small devices will be so pervasive in everyday

objects that they will eventually become transparent to the user, and completely integrated

in the environment. The presence of computers everywhere only becomes useful when they

can communicate with one other. Hence, even in this case, it is essential to provide these

devices with wireless communication potentialities.

Figure 1.1 envision a graphic representation of the present and possible future evolu-

tion of distributed systems, from traditional fixed systems and mobile systems to future

ubiquitous systems.

The race towards such innovation, pushes more and more mobile and embedded devices

on the market, with novel hardware platforms, communication technologies, and operating



Chapter 1. Dependability of Mobile Distributed Systems 9

systems. Under tremendous market pressure and continuously shrinking time to market,

manufactures often cannot afford long comprehensive testing of the devices. As a result,

new (or enhanced) devices are often tested by the consumers, who start to be more con-

cerned about dependability issues. This may represent an issue for the fulfillment of the

so-called “everyday dependability” requirements (meeting consumers needs with reasonable

low failure rates at a reasonable cost [93]). More importantly, failure events may become un-

acceptable as the use of MDSs is more often hypothesized into business- and mission-critical

scenarios.

Despite these concerns, very few studies have looked into the dependability of mobile

distributed systems. As a consequence, there is little understanding of how and why mo-

bile devices and/or wireless communication infrastructures fail or the methods/techniques

needed to meet consumer expectations of robustness and reliability.

1.2 Basic Notions of Dependability

The effort on the definition of the basic concepts and terminology for computer systems

dependability dates back to 1980, when a joint committee on “Fundamental Concepts and

Terminology” was formed by the Technical Committee on Fault-Tolerant Computing of the

IEEE Computer Society and the IFIP Working Group 10.4 “Dependable Computing and

Fault Tolerance”. A synthesis of this work was presented at FTCS-15 in 1985 [65], where

computer system dependability was defined as the quality of the delivered service such that

reliance can justifiably be placed on this service. This notion has evolved over the years.



Chapter 1. Dependability of Mobile Distributed Systems 10

Recent efforts from the same community define the dependability as the ability to avoid

service failures that are more frequent and more severe than is acceptable [1]. This last

definition has been introduced since it does not stress the need for justification of reliance.

The dependability is a composed quality attribute, that encompasses the following sub-

attributes:

• Availability: readiness for correct service;

• Reliability: continuity of correct service;

• Safety: absence of catastrophic consequences on the user(s) and the environment;

• Confidentiality: absence of improper system alterations;

• Maintainability: ability to undergo modifications and repairs.

Recently, the notion of everyday dependability [93] has emerged as a new challenge for the

computer system dependability community. While this community has traditionally faced

important research problems related to business- and mission-critical systems, which risk

catastrophic failures, the widespread use of consumer electronics and resource-constrained

mobile devices poses new dependability requirements even for commercial applications.

Everyday systems must be sufficiently dependable for the needs of everyday people.

They must thus provide cost-effective service with reasonable amounts of human attention.

Dependability for these everyday needs arises from matching dependability levels to actual

needs, achieving reasonably low failure rates at reasonable cost, providing understandable

mechanisms to recognize and deal with failure, and enabling creation of individually-tailored



Chapter 1. Dependability of Mobile Distributed Systems 11

systems and configurations from available resources.

1.2.1 Threats

The causes that lead a system to deliver an incorrect service, i.e., a service deviating from

its function, are manifold and can manifest at any phase of its life-cycle. Hardware faults

and design errors are just an example of the possible sources of failure.

These causes, along with the manifestation of incorrect service, are recognized in the

literature as dependability threats, and are commonly categorized as failures, errors, and

faults [1].

A failure is an event that occurs when the delivered service deviates from correct service.

A service fails either because it does not comply with the functional specification, or because

this specification did not adequately describe the system function. A service failure is a

transition from correct service to incorrect service, i.e., to not implementing the system

function. The period of delivery of incorrect service is a service outage. The transition

from incorrect service to correct service is a service recovery or repair. The deviation from

correct service may assume different forms that are called service failure modes and are

ranked according to failure severities.

An error can be regarded as the part of a system’s total state that may lead to a failure.

In other words, a failure occurs when the error causes the delivered service to deviate from

correct service. The adjudged or hypothesized cause of an error is called a fault. Faults

can be either internal or external of a system. Depending on their nature, faults can be



Chapter 1. Dependability of Mobile Distributed Systems 12

Fault Error Failure Fault

activation propagation causation

Dormant

Fault

Not 

activated
Latent

Error

Not 

propagated

Fault Error Failure Fault

activation propagation causation

Dormant

Fault

Not 

activated
Latent

Error

Not 

propagated

Figure 1.2: The chain of threats of faults, errors, and failures (adapted from [1])

classified as:

• Development faults: include all the internal faults which originate during the devel-

opment phase of a system’s hardware and software.

• Physical faults: include all the internal faults due to physical hardware damages or

misbehaviors.

• Interaction faults: include all the external faults deriving from the interaction of a

system with the external environment.

Failures, errors, and faults are related each other in the form of a chain of threats [1], as

sketched in figure 1.2. A fault is active when it produces an error; otherwise, it is dormant.

An active fault is either i) an internal fault that was previously dormant and that has been

activated, or ii) an external fault. A failure occurs when an error is propagated to the service

interface and causes the service delivered by the system to deviate from correct service. An

error which does not lead the system to failure is said to be a latent error. A failure of a

system component causes an internal fault of the system that contains such a component,

or causes an external fault for the other system(s) that receive service from the given system.



Chapter 1. Dependability of Mobile Distributed Systems 13

1.2.2 Formalization and Measures

This section provides a more formal characterization of the dependability attributes of in-

terest for this dissertation, along with the basic measures which are commonly used to

quantify them.

Reliability

The reliability R(t) of a system is the conditional probability of delivering a correct service

in the interval [0, t], given that the service was correct at the reference time 0 [100]:

R(0 , t) = P(no failures in [0 , t ]|correct service in 0 ) (1.1)

Let us call F (t) the unreliability function, i.e., the cumulative distribution function of the

failure time. The reliability function can thus be written as:

R(t)=1-F(t) (1.2)

The reliability was the only dependability measure of interest to early designers of depend-

able computer systems. Since reliability is a function of the mission duration T , mean time

to failure (MTTF) is often used as a single numeric indicator of system reliability [82]. In

particular, the time to failure (TTF) of a system is defined as the interval of time between

a system recovery and the consecutive failure, as evidenced in figure 1.3.

Another widely adopted measure of reliability is the failure rate, that is, the frequency

with which a system fails. Failure rates can be expressed using any measure of time, but

hours is the most common unit in practice. The Failures In Time (FIT) rate of a device is



Chapter 1. Dependability of Mobile Distributed Systems 14

the number of failures that can be expected in one billion (109) hours of operation. This

term is used particularly by the semiconductor industry. Usually, the failure rate of a sys-

tem is not constant during all the system life-time, but it follows the so-called bath-tube

form, i.e., a system experiences a decreasing failure rate when it is firstly deployed, due

to infant-mortality failures, then it follows a rather constant failure rate during the opera-

tional life, and, finally, it experiences an increasing failure rate at the end of its life, due to

wear-out failures.

Maintainability

The maintainability, M(t), is generally referred as the ability of a system to be easily

repaired after the occurrence of a failure. A commonly adopted indicator for the maintain-

ability is the mean time to recover (MTTR). In particular, the time to recover (TTR) can

be defined as the time needed to perform a repair, that is, the interval of time between a

failure and its consequent recovery, as shown in figure 1.3.

Availability

A system is said to be available at a the time t if it is able to provide a correct service at

that instant of time. The availability can thus be thought as the expected value E(A(t)) of

the following A(t) function:

A(t) =

{

1 if proper service at t

0 otherwise
(1.3)



Chapter 1. Dependability of Mobile Distributed Systems 15

failure recovery failure

proper
operation

time

TBF

TTFTTR

failure recovery failure

proper
operation

time

TBF

TTFTTR

Figure 1.3: TTF, TTR and TBF

In other terms, the availability is the fraction of time that the system is operational. The

measuring of the availability became important with the advent of time-sharing systems.

These systems brought with it an issue for the continuity of computer service and thus

minimizing the “down time” became a prime concern. Availability is a function not only

of how rarely a system fails but also of how soon it can be repaired upon failure. Clearly,

a synthetic availability indicator can be computed as:

Av =
MTTF

MTTF + MTTR
=

MTTF

MTBF
(1.4)

where MTBF = MTTF + MTTR is the mean time between failures. As evidenced in figure

1.3, the time between failures (TBF) is the time interval between two consecutive failures.

Obviously, this measure makes sense only for the so-called repairable systems.

When measuring MTTF and MTTR, it is important to characterize their variability, in

terms of the standard deviation or in terms of the coefficient of variation. The coefficient

of variation Cv is defined as the standard deviation divided by the mean. The advantage

of using the Cv as a measure of variability, rather than the standard deviation, is that

it is normalized by the expected value, and hence allows comparison of variability across

distributions with different expected values.



Chapter 1. Dependability of Mobile Distributed Systems 16

1.2.3 Means

Over the course of the past 50 years many means have been developed to attain the various

attributes of dependability. These means can be grouped into four major categories [1]:

• Fault prevention, to prevent the occurrence or introduction of faults. Fault pre-

vention is enforced during the design phase of a system, both for software (e.g., in-

formation hiding, modularization, use of strongly-typed programming languages) and

hardware (e.g., design rules).

• Fault tolerance, to avoid service failures in the presence of faults. It takes place

during the operational life of the system. A widely used method of achieving fault

tolerance is redundancy, either temporal or spatial. Temporal redundancy attempts

to reestablish proper operation by bringing the system in a error-free state and by

repeating the operation which caused the failure, while spatial redundancy exploits

the computation performed by multiple system’s replicas. The former is adequate for

transient faults, whereas the latter can be effective only under the assumption that

the replicas are not affected by the same permanent faults. This can be achieved

through design diversity [5].

Both temporal and spatial redundancy requires error detection and recovery tech-

niques to be in place: upon error detection (i.e., the ability to identify that an error

occurred in the system), a recovery action is performed. Such a recovery can assume

the form of rollback (the system is brought back to a saved state that existed prior the



Chapter 1. Dependability of Mobile Distributed Systems 17

occurrence of the error; it needs to periodically save the system state, via checkpoint-

ing techniques [109]), rollforward (the system is brought to a new, error-free state),

and compensation (a deep knowledge of the erroneous state is available to enable error

to be masked). Fault masking, or simply masking, results from the systematic usage

of compensation. Such masking will prevent completely failures from occurring.

The measure of effectiveness of any given fault tolerance technique is called its cover-

age, i.e, the percentage of the total number of failures that are successfully recovered

by the fault tolerance mean.

• Fault removal, to reduce the number and severity of faults. The removal activity

is usually performed during the verification and validation phases of the system de-

velopment, by means of testing and/or fault injection [6]. However, fault removal

can also be done during the operational phase, in terms of corrective and perfective

maintenance.

• Fault forecasting, to estimate the present number, the future incidence, and the

likely consequences of faults. Fault forecasting is conducted by performing an evalua-

tion of the system behavior with respect to fault occurrence or activation. Evaluation

has two aspects: qualitative, or ordinal, evaluation, that aims at identifying, classify-

ing, and ranking the failure modes that would lead to system failures; and quantitative,

or probabilistic, evaluation, that aims to evaluate in terms of probabilities the extent

to which some of the attributes are satisfied; those attributes are then viewed as mea-

sures.



Chapter 1. Dependability of Mobile Distributed Systems 18

The quantitative evaluation can be performed at different phases of the system’s life

cycle: the design phase, the prototype phase and the operational phase [50]. In the de-

sign phase, the dependability can be evaluated via modeling and simulation, including

simulated fault injection. The simulation can give immediate feedback to the design-

ers who can timely improve the design. Simulation parameters are however based on

past experiences on same systems, and these parameters can be often invalidated by

changes in the technology. During the prototype phase, a prototype version of the

system runs under controlled conditions. This activity can only study the effects of

induced faults. Important measures, such as the mean time to failure, cannot be de-

rived. It is carried out via controlled fault injection experiments, in order to evaluate

the system resilience to software and/or hardware faults, including the coverage and

recovery capabilities of the system. Finally, during the operational phase, field failure

data analysis (FFDA) can be performed, aiming at measuring the dependability at-

tributes of a system according to the failures that naturally manifest during system

operation. As FFDA is the central topic of this dissertation, it is widely described in

chapter 2.



Chapter 1. Dependability of Mobile Distributed Systems 19

1.3 Experiences on Mobile Distributed Systems’ Depend-

ability

Recent research efforts on MDSs have mainly addressed architectural and technological

issues, such as the definition of ad-hoc routing protocols, mobility management middle-

ware/architectures, and wireless communication protocols. However, as MDSs increase in

popularity, more attention is being devoted to dependability issues. In the early 90s, typ-

ical failure modes for a wireless system were already clear [61], while at the beginning of

this century has been recognized that “as wireless and mobile services grow, weaknesses in

network infrastructures become clearer. Providers must now consider ways to decrease the

number of network failures and to cope with failures when they do occur” [97].

In the following, exemplary experiences which have been recently matured on MDS’s

dependability are reported.

1.3.1 Failure modes

The typical failure modes of a MDS are known since many years. In [61], Vaidya et al.

proposed the following three failure modes:

• node failures, i.e., a node of the MDS stops running;

• connectivity failures, that is, a node looses its connectivity to the wireless network or

it is not able to connect to the network;

• packet losses, due to weak wireless links.



Chapter 1. Dependability of Mobile Distributed Systems 20

Since the focus in [61] was on cellular networks, connectivity failures were referred to

as the unavailability of the connection to the access point. With the advent of MANETs

and WSNs, connectivity failures broaden their scope, leading to isolation or partitioning

failures, i.e., one or more nodes loosing their connectivity to the rest of the network due

to failures of the nodes in the proximity. Examples of works dealing with isolation failures

are [10], [81], and [17].

1.3.2 Fault tolerance techniques

MDSs’ fault tolerance techniques can be regarded with respect to the failure class they

address. Here, experiences on the tolerance of connectivity failures, access point failures,

and node failures are reported.

As for connectivity failures, the contribution in [22] proposes an apporach of tolerating

connectivity problems due to the existence of “shadow regions”, in IEEE 802.11g wireless

networks. Simply, a redundant access point (AP) is placed in the shadow region to serve the

mobile stations which roam into that region. With numerical examples, authors show that

the redundancy schemes demonstrate significant improvement in connection dependability

over the scheme with no redundancy. Zandy et al. [114] present two systems, reliable

sockets (rocks) and reliable packets (racks), that provide transparent network connection

mobility using only user-level mechanisms. Each system can detect a connectivity failure

within seconds of its occurrence, preserve the endpoint of a failed connection in a suspended

state for an arbitrary period of time, and automatically reconnect, with correct recovery of



Chapter 1. Dependability of Mobile Distributed Systems 21

in-flight data.

A mean to address partitioning problems in MANETs is described in [81]. In particular,

the approach tries to recover the disconnected portion of the MANET by deploying for-

warding nodes. The forwarding nodes can automatically move to appropriate locations for

interconnecting network partitions. The mechanism is distributed and self-organized and

can be integrated with other routing protocols. Connectivity failures for nomadic wireless

networks are also addressed by triggering handoff procedures as soon as a broken link event

is recognized [8, 105].

Access point failures can be considered as more severe than connectivity failures, be-

cause, when an access point fails, all of the mobile stations connected to a wired network

via the access point loose connectivity. A new fault-detection approach for access point

failures is presented in [43], with reference to IEEE 802.11 wireless networks. The approach

is based on the signal-to-noise ratio, and promises to be more effective than traditional

heartbeats. Moreover, authors describe and compare three techniques to recover from

access-point failures in 802.11 wireless networks, namely access point redundancy (simi-

larly as [22]), overlapped coverage, and multiplexed links (multiple wireless links for each

mobile device).

The tolerance of node failures have been in part addressed by means of checkpointing

techniques. The scheme proposed in [83] adopts optimistic logging for checkpointing, since

it exhibit lower failure-free operation and failure recovery costs compared to other logging

schemes. In the proposed scheme, the task of logging is assigned to the APs to reduce the

message overhead. A similar approach is suggested in [113], which is also able to tolerate



Chapter 1. Dependability of Mobile Distributed Systems 22

access point failures.

The problem of node failures becomes particularly significant in the context of infrastructure-

less MDSs, since node failures may lead to partitioning failures. In particular, there is a

need for fault tolerance in WSNs, due to the harsh environmental conditions in which such

networks can be deployed. The work in [30] focuses on finding algorithms for collaborative

target detection with wireless sensor networks that are efficient in terms of communication

cost, precision, accuracy, and number of faulty sensors tolerable in the network. Strategies

for node failures tolerance have also been proposed in [61], with particular emphasis on data

management.

1.3.3 Dependability improvement

As a response to the solicitation given in [97] about the need to decrease the number

of failures, there have been several attempts for improving the dependability of different

aspects of MDSs.

Intelligent, goal-directed mobility algorithms for achieving desired topological charac-

teristics is introduced in [17], with reference to MANETs. These algorithms can improve

the connectivity, coverage, and diameter of a MANET, even when faults affect the nodes

of the network. In [38] authors propose an adaptive hybrid ARQ/FEC scheme to enhance

the data throughput over Bluetooth networks based on observed error rates. The scheme

is demonstrated to outperform the standard Bluetooth schemes, in the presence of errors.



Chapter 1. Dependability of Mobile Distributed Systems 23

[60] is concerned with the choice of Cyclic redundancy codes (CRCs) suitable for resource-

constrained embedded systems, equipped with 8-bit micro-controllers. Authors evaluate the

options for speeding up CRC computations on such processors, and evaluate classes of CRC

generator polynomials which have the same computational cost as 24- or 16-bit CRCs, but

provide 32-bit CRC levels of error detection. Finally, they recommend good polynomials

within those classes for data word lengths typical of embedded networking applications.

A mobility management solution that improves the connection availability is presented

in [28]. In particular, a Last Second Soft Handoff scheme is proposed, able to minimize

connection unavailabilities in spite of transient signal degradations and access point over-

loads. The scheme has been integrated into a mobility management architecture, which

provides connection awareness by means of an API, named Nomadic Computing Sockets

(NCSOCKS), which handles temporary disconnections similarly to the reliable sockets ap-

proach [114].

1.3.4 Dependability Modeling

The modeling approach has been adopted to address several dependability aspects of MDSs.

The work in [10] investigates the connectivity of MANETs in a log-normal shadow fad-

ing environment. Assuming a spatial Poisson distribution of the network nodes, authors

derive a closed-form expression for the probability that a node is isolated. The same issue

is addressed in [89], where authors also consider the mobile version of the problem, in which

nodes are allowed to move during a time interval. In [86] the Stochastic Activity Network



Chapter 1. Dependability of Mobile Distributed Systems 24

modeling approach is adopted for evaluating the dependability of a General Packet Radio

Service (GPRS) network under outage conditions. Stochastic Activity Networks have also

been adopted in [14], where authors introduce a general framework that encompasses perfor-

mance, dependability and mobility of software systems and that supports the specification

and estimate of dependability measures.

1.3.5 Dependability Evaluation

Fault forecasting of MDSs is generally undertaken by means of modeling and simulation

activities. Examples are all the works considered in the previous subsection. As a further

example, Trivedi et al. [23] propose models to evaluate the survivability of a wireless network.

Network survivability reflects the ability of a network to continue to function during and

after failures. Authors perceive the network survivability as a composite measure consisting

of both network failure duration and failure impact on the network. Assuming Markovian

property for the system, this measure is obtained by solving a set of Markov models.

Limited experience has been matured on the field dependability evaluation of opera-

tional MDSs. This is in part due to the relative youth of these systems, but it is also a

consequence of the difficulties which arise when applying the FFDA methodology to MDSs

(see section 2.6). Some preliminary effort in this direction is represented by works such

as [74] and [39]. The former proposes a FFDA for the base stations of a wireless telecom-

munication system, whereas the latter reports on a collection of user-perceived failure data

from Bluetooth piconets. Further effort is represented by the material presented in this



Chapter 1. Dependability of Mobile Distributed Systems 25

dissertation, as described in chapters 3 and 4.

1.4 The Need for FFDA on Mobile Distributed Systems

The lack of experiences on the FFDA of MDSs motivates the need for more research provid-

ing deep understanding on MDSs’ failure dynamics, measures, and underlying causes. Such

understanding is useful to drive the design, and it is one of the key issues in the discussions

of architecture and system structure of a product [25]. Hence, it cannot be understated.

Today, if we were to ask for an order of magnitude estimate of failure rate experienced by

MDSs users, we do not have any real numbers, neither published nor made available by

manufacturers.

At the same time there is an increasing need for everyday dependability in the com-

mercial arena. However, it is hard to realize a system or solution for fault tolerance, or to

propose new models for fault forecasting if one has no notion of the actual failure behavior

of these systems.

Learning about the real failure behavior of these system would be a major step forward.

This task can be accomplished by proposing FFDA studies on MDSs. To simplify the work,

such studies can address separately the two components that build a MDS, i.e., mobile

devices and wireless communication means. Indeed, the two components are inherently

different and may require different measurement strategies.



If you steal from one author it’s
plagiarism; if you steal from many it’s
research.

Wilson Mizner

Chapter 2

Field Failure Data Analysis:

Methodology and Related Work

Field Failure Data Analysis (FFDA in the following) provide information that allows the effect of
errors on system behavior to be understood. It provides accurate information on the system being
observed, for the elaboration and validation of analytical models, and for the improvement of the
development process. The collected data helps to explain and to characterize the system under study.
Qualitative analysis of the failure, error and fault types observed in the field yields feedback to the
development process and can thus contribute to improving the production process [26]. As stated
in [50], “there is no better way to understand dependability characteristics of computer systems than
by direct measurements and analysis”.

This chapter discusses the principles of the FFDA methodology and provide a useful framework
to evaluate and classify FFDA studies. Based on this framework, the related literature of the latest
three decades is examined and compared. Finally, a discussion about open issues and challenges
about the FFDA of MDSs concludes the chapter.

2.1 FFDA Objectives and Applicability

The Field Failure Data Analysis of a computer system embraces all fault forecasting tech-

niques which are performed in the operational phase of the system’s life time. This analysis

aim at measuring dependability attributes of the actual and deployed system, under real

workload conditions. By measuring it is meant to monitor and record natural occurring

errors and failures while the normal system operation. In other words, the failing behavior

is not forced or induced in the systems. The objective of a FFDA campaign mainly concerns

26



Chapter 2. Field Failure Data Analysis: Methodology and Related Work 27

the detailed characterization of the actual dependability behavior of the operational system.

More in detail, FFDA studies main objectives can be summarized as the following:

• identification of the classes of errors/failures as they manifest in the field, along with

their relative severity and correlation among them. In other terms, FFDA is useful

to derive the actual failure model of an operational system;

• analysis of failure and recovery times statistical distributions;

• correlation between failures and system workload;

• modeling of the failing behavior and recovery mechanisms, if any;

• identification of the root causes of outages, and indication of dependability bottle-

necks;

• provision of figures useful to validate or to populate simulated failure models;

• derivation of general results which a crucial to guide research and development.

Although FFDA studies are useful for evaluating the real system, they are limited to

manifested failures, such as the ones that can be traced. In addition, the particular con-

ditions under which the system is observed can vary from an installation to another, thus

casting doubts on the statistical validity of the results. It is worth noting that the analysis

of data collected on a given system is hardly beneficial to the current version of the system.

It can be instead useful for the successive generations of systems. Finally, FFDA studies

may require a long period of observation of the target system, especially when the system

is robust and failure events are rare.



Chapter 2. Field Failure Data Analysis: Methodology and Related Work 28

Operational

System

Operational

System
data logging &

collection

data logging &

collection
data filtering & 

manipulation

data filtering & 

manipulation data analysisdata analysis

I II III

Operational

System

Operational

System
data logging &

collection

data logging &

collection
data filtering & 

manipulation

data filtering & 

manipulation data analysisdata analysis

I II III

Figure 2.1: The FFDA methodology

To achieve statistical validity and to shorten the observation period, these studies should

be carried out on more than one deployed system, each of them under different environ-

mental conditions.

2.2 The FFDA Methodology

FFDA studies usually account three consecutive steps, as shown in figure 2.1: i) data log-

ging and collection, where data are gathered from the actual system, ii) data filtering and

manipulation, concerning the extraction of the information which are useful for the analysis,

and iii) data analysis, that is the derivation of the intended results from the manipulated

data. In this section, details about the best practice on each of these steps are presented.

2.2.1 Data Logging and Collection

Data logging and collection consists in the definition of what to collect and how to collect

it. This require a preliminary study of the system, and its environment, in order to identify

the technique that can be successfully used, or to decide whether it is necessary to develop

an ad-hoc monitoring system. The choice of the appropriate technique also depends on the



Chapter 2. Field Failure Data Analysis: Methodology and Related Work 29

purposes of the analysis.

Common techniques for data logging and collection are failure reports and event logging.

Failure reports are generated by human operators, typically users or specialized maintenance

staff. A report usually contains information such as the date and hour when the failure has

occurred, a description of the observed failing behavior, the action taken by the operator

to restore proper operation, the hardware/software module pinpointed as responsible of the

failure, and, if possible, the root cause of the failure. The problem with this technique is

that human operators are responsible for the detection of the failure, hence some failure may

remain undetected. Moreover, the information contained in the report can vary from one

operator to another, depending on his experiences and opinions. Recently, automated failure

report systems have been proposed. An example is represented by the Microsoft’s Corporate

Error Reporting software. It creates a detailed report every time that an application crashes

or hangs, or when the OS crashes. The report contains a snapshot of the computer’s state

during the crash. This information includes a list containing the name and time-stamp of

binaries that were loaded in the computer’s memory at the time of crash, as well as a brief

stack trace. This information allows for a quick identification of the routine that caused

the failure as well as the reason and cause for the failure.

Event logs are machine-generated. Data are logged by user and system applications

and modules running on the machine, and contains information either about the regular

execution or about erroneous behaviors. Hence, from these logs, it is possible to extract

useful information about failures which occur on the system. An event log entry typically

contains a time-stamp of the event and a description, along with the application/system



Chapter 2. Field Failure Data Analysis: Methodology and Related Work 30

module that signaled the event. A limit of event logging is that the detection of a fail-

ure event depends on whether or not the application/system module logs that particular

event. In other terms, not all the possible erroneous conditions are logged. Thus, with this

technique it might be hard to pinpoint root causes of each failure event.

An example of an event logging system is the syslogd daemon for Unix operating sys-

tems. This background process records events generated by different local sources: kernel,

system components (disk, network interfaces, memory), daemons and application processes

that are configured to communicate with syslogd. Different event types with different

severity levels are generally recorded. Severity levels are: 1) emergency, 2) alert, 3) critical,

4) error, 5) warning, 6) notice, 7) info, and 8) debug. Events are composed by a time-

stamp, the host, the user, the process name and id, and the event description itself. The

configuration file /etc/syslog.conf specifies the destination file of each event received by

syslogd, depending on its severity level and its origin. A file of severity level X will contain

entries which severity ranges from level 1 to level X. Hence, a debug log file holds all kinds

of information, whereas an emergency log file only keeps panic information.

The same principles apply to the MS Windows operating systems. For NT and 2K,

the event logger is implemented as a system service that runs in the background and waits

for processes running on the local (or a remote) system to send it reports of events. Each

event report is stored in a specific event log file. Three event log files are defined: the

security log, for security information and auditing, the system log, for events logged by

system modules, and the application log, for application related information. Events are

composed by an event type (information, error, warning), a time-stamp, the source of the



Chapter 2. Field Failure Data Analysis: Methodology and Related Work 31

event, the category, the event ID, the user, and the computer.

In some cases failure reports and event logs cannot be used, and ad-hoc monitoring

systems need to be developed. First, these techniques are not available for any class of

system. Examples are the Java virtual machine [32], and the Symbian OS (see chapter 4)

where the native monitoring systems are neither present nor sufficient to conduct proper

analysis. Second, these techniques may result inadequate for a certain class of studies. For

instance, the work in [35] aims at characterizing the security behavior of a system under

attack. Thus, the monitoring system had to take into account and collect the network traffic

affecting the machines under attack.

Usually, FFDA studies adopt idle workloads, i.e., the normal load under which the

system operates. However, there are cases where the system is solicited under automated

workloads, i.e, applications running on the system to emulate the potential use of the sys-

tem. Automated workloads are required in those cases where the system load is sporadic or

highly intermittent and thus the analysis under the idle workload is not feasible. They may

also be useful for interactive systems, which require human operators to use the system.

The workload can in this case emulate the behavior of a human operator.

2.2.2 Data Filtering and Manipulation

Data filtering and manipulation consist in analyzing the collected data for correctness,

consistency, and completeness. This concerns the filtering of invalid data and the coalescence

of redundant or equivalent data. This is especially true when event logs are used. Logs,



Chapter 2. Field Failure Data Analysis: Methodology and Related Work 32

Faults Errors Error Detectors Event LogFaults Errors Error Detectors Event Log

Figure 2.2: Multiple event reporting phenomenon (adapted from [46])

indeed, contain many information which are not related to failure events. In addition, events

which are close in time may be representative of one single failure events. They thus need

to be coalesced into one failure event.

Filtering is used to reduce the amount of information to be stored, and to concentrate

the attention only on a significant set of data, thus simplifying the analysis process. Two

basic filtering strategies can be adopted: blacklist and whitelist strategies. The blacklist

can be thought as a list of all the terms that surely identify an event which is not of interest

for the analysis. The blacklist filtering discards all those events which description message

contains at least one of the blacklist terms. On the contrary, the whitelist is the list of all

permitted terms, hence only events which contain these terms are not rejected.

Coalescence techniques can be distinguished into temporal, spatial, and content-based.

Temporal coalescence, or tupling [46], exploits the heuristic of the tuple, i.e., a collection of

events which are close in time. The heuristic is based on the observation that often more

than one failure events are reported together, due to the same underlying fault. Indeed, as

the effects of the fault propagate through a system, hardware and software detectors are

triggered resulting in multiple events. Moreover, the same fault may persist or repeat often

over time. Figure 2.2 shows the multiple reporting of events. When a fault occurs, many



Chapter 2. Field Failure Data Analysis: Methodology and Related Work 33

errors can be generated. Some of these errors are detected by error detectors, which in turn

may or not report an event into the log file.

To explain how the tupling scheme works, let us represent with Xi the i-th entry in the

log, and with t(Xi) the timestamp of the entry Xi. The tupling algorithm, respects the

following rule:

IF t(Xi+1) − t(Xi) < W THEN

Add Xi+1 to the tuple

where W is a configurable time window. The window size is a crucial parameter which

need to be carefully tuned in order to minimize collapses (events related to two different

faults are grouped into the same tuple) and truncations (events related to the same fault

are grouped into more than one tuple).

Spatial coalescence is used to relate events which occur close in time but on different

nodes of the system under study. It allows to identify failure propagations among nodes,

resulting particularly useful when targeting distributed systems. The techniques adopted

for spatial coalescence are usually the same as the ones used for temporal coalescence.

Finally, content-based coalescence groups several events into one event by looking at

the specific content of the events into the event log. For example, in [95] this technique

is adopted to identify machine reboots: when a the system is restarted, a sequence of ini-

tialization events is generated by the system. By looking at the specific contents of these

events, it is possible to develop proper algorithms to identify machine reboots sequences

and group them into one “reboot” event. Also, content-based coalescence can be used to



Chapter 2. Field Failure Data Analysis: Methodology and Related Work 34

group events belonging to the same type [15].

2.2.3 Data Analysis

“Even when the data are available, the challenge is to be able to use it, which is no simple

task” [25].

This challenge is addressed in the data analysis step, which consists in performing sta-

tistical analysis on the manipulated data to identify trends and to evaluate quantitative

measures. Failure classification is a first analysis step, which aims at categorizing all the

observed failures on the basis of their nature and/or location. In addition, descriptive statis-

tics can be derived from the data to analyze the location of faults, errors and failures among

system components, the severity of failures, the time to failure or time to repair distribu-

tions, the impact of the workload on the system behavior, the coverage of error detection

and recovery mechanisms, etc. Commonly used statistical measures in the analysis include

frequency, percentage, and probability distribution [40]. They are often used to quantify

the reliability, the availability, and the maintainability. Their summary characterization

can be obtained by the direct measurement of the MTTF and MTTR, as already observed

in section 1.2.2.

More detailed analysis try to determine the probability distribution of the “time to fail-

ure” variable, and, in some cases, of the “time to repair”. This permits to detail the failure

model of the system under study. To this aim, the real data are fitted with theoretical, con-

tinuous time distributions. The most adopted distributions in this field are the exponential,



Chapter 2. Field Failure Data Analysis: Methodology and Related Work 35

the hyper-exponential, the lognormal, and the weibull. The exponential distribution was

firstly adopted to model the time to failure and time to repair of electronic components.

However, it has been often shown that this distribution does not fit real data, especially

when the data involves multiple underlying causes or software failures. This is due to the

simplistic memoryless property of the exponential distribution. If a process consists of

alternate phases, that is, during any single experiment, the process experiences one and

only one of many alternate phases, and these phases have exponential distributions, then

the overall distribution is hyper-exponential [106]. This distribution can be used to model

failure times of failures which are the manifestation of different, independent and alternate

underlying causes.

Recently, the lognormal distribution has been recognized as a proper distribution for

software failure rates [78]. Many successful analytical models of software behavior share

assumptions that suggest that the distribution of software event rates will asymptotically

approach lognormal. The lognormal distribution has its origin in the complexity, that is the

depth of conditionals, of software systems and the fact that event rates are determined by

an essentially multiplicative process. The central limit theorem links these properties to the

lognormal: just as the normal distribution arises when summing many random terms, the

lognormal distribution arises when the value of a variable is determined by the multiplication

of many random factors.

The weibull distribution has been used to describe fatigue failures and electronic com-

ponents failures. At present, it is perhaps the most widely used parametric family of failure

distributions. The reason is that by a proper choice of its shape parameter, an increasing,



Chapter 2. Field Failure Data Analysis: Methodology and Related Work 36

a decreasing, or a constant failure rate distribution can be obtained. Therefore, it can be

used for all the phases of the bath-tube mortality curve [106].

In practice, the family of the distribution and its associated parameters have to be

estimated from the collected data. Usually, a family of distribution is chosen and the fitting

is conducted via a parameter estimation, e.g., maximum likelihood estimation. Goodness-

of-fit tests can be conducted to determine whether the data can reasonably be declared to

belong to the chosen family.

Other types of analysis are concerned with the correlation between failure distributions.

The correlation can uncover possible links between failures in different hardware and soft-

ware modules or in different nodes constituting the system under study. This analysis can

also conduct to the discovery of trends among failure data on event logs. From a theoretical

perspective, the trend analysis of event logs is based on the common observation that a

module exhibits a period of (potentially) increasing unreliability before final failure. By

discovering these unreliability trends, it can be possible to predict the occurrence of certain

failures. To this aim, principal component analysis, cluster analysis, and tupling can be

adopted [94].

Finally, the analysis activity often conducts to the development of simulation models of

the dependability behavior. Models often adopted in the literature are state-machines, fault

trees, Markov chains, and Petri nets. The understanding gathered from field data allows to

define these models and to populate their parameters with realistic figures, e.g., failure and

recovery rates.



Chapter 2. Field Failure Data Analysis: Methodology and Related Work 37

2.2.4 Tools for FFDA

Although FFDA has evolved significantly over the last decades, the data analysis work is

normally done manually with ad hoc techniques, using programming languages or statistical

packages. However, these statistical packages provide only standard procedures, not a

complete methodology in the context of dependability analysis for computer systems. It

has thus emerged the need to have software packages which integrate a wide range of the

state-of-the-art techniques in FFDA (e.g., data collecting, data coalescing, and modeling)

and which can generate appropriate dependability models and measures from field data in

an automatic fashion. A first example toward this direction was the MEASURE+ tool [103].

Given measured data from real systems in a specified format MEASURE+ can generate

appropriate dependability models and measures including Markov and semi-Markov models,

k-out-of-n availability models, failure distribution and hazard functions, and correlation

parameters.

A more recent and user-friendly tool for critical systems is represented by MEADEP

[101]. It consists of 4 software modules: a data preprocessor for converting data in various

formats to the MEADEP format, a data analyzer for graphical data-presentation and pa-

rameter estimation, a graphical modeling interface for building block diagrams (including

the exponential block, Weibull block, and k-out-of-n block) and Markov reward chains, and

a model-solution module for availability/reliability calculations with graphical parametric

analysis.

Analyze NOW [104] is a set of tools specifically tailored for the FFDA of networks of



Chapter 2. Field Failure Data Analysis: Methodology and Related Work 38

workstations. It embodies tools for the automated data collection from all the workstations,

and tools for the analysis of such data. Basic analysis tools are: i) the Filter, that filters

out all non essential messages, ii) the Analyzer, which performs the tasks of extracting

all possible information about each failure, of correlating failures collected from different

workstations, and of classifying failures, and iii) tabulator and graph TBF, which are tools

for the presentation of the results, either in a tabular or graphical form.

2.3 Comparison Framework of FFDA Studies

Several FFDA studies have been proposed in the literature over the past three decades,

each of them addressing different systems, collecting data from different data sources, and

proposing different results. Hence, it is not simple to catch all similarities and differences

among different studies, and to draw common conclusions. What the FFDA research has

achieved so far, what is still missing, and if in the future we will be able to conduct FFDA

studies even more efficiently and effectively are key research questions that need to be

answered.

This section proposes several classifying dimensions of FFDA studies. These dimensions

represent a common framework useful to compare and to analyze these studies.

In the following subsections, the dimensions are described, then, the related work on

FFDA over the last three decades is examined according to them.



Chapter 2. Field Failure Data Analysis: Methodology and Related Work 39

2.3.1 Descriptive Dimensions

Six are the proposed descriptive dimensions.

Date: The date when the study was conducted. The time framework is important to

contextualize the study.

Purpose: The reasons and goals that are at the basis of the work. In the following, three

coarse grained purposes are indicated:

• FFDA Methodology : works providing contributions to the FFDA community

itself, that is, definition of new techniques and methodologies for FFDA (such

as, novel collection/filtering/coalescing techniques), evaluation and comparison

of different specific FFDA techniques/methodologies, explicit evidences of FFDA

effectiveness.

• Dependability Study : traditional works on the failure classification, on the eval-

uation of dependability measures, such as MTTF, availability, MTTR, coverage,

on the identification on statistical/simulation models, such as statistical distri-

butions, markov-chains, finite state machines, and on correlation analysis such

as trend analysis.

• Comparison: works which compare two or more FFDA studies trying to identify

common trends and conclusions.

Actor: Indicates whether the work is performed by academy, industry, or by a collaboration

of both the academia and the industry.



Chapter 2. Field Failure Data Analysis: Methodology and Related Work 40

Source: Indicates whether the analyzed failure data is provided by third party organiza-

tions or if it is internal (e.g., laboratory testbeds, university facilities, etc.).

Target System: The actual computer system under study.

Achieved results: The most interesting results obtained by the study. Examples are the

identification of statistical distributions, the percentage of failures classes (e.g., the

percentage of software failures), or particular uncoverings, such as the pinpointing of

dependability bottlenecks.

2.3.2 Quantitative Dimensions

Quantitative dimensions characterize the physical size of the study, in terms of the time

length and the amount of collected failure data items. In particular, the considered dimen-

sions are:

Length (l): the temporal length (measured in months) of the experiment, that is, for how

long the system under study has been observed.

Data items (Nd): the number of failure data items used for the study.

When considered together, the length and the data items provide the measure of the density

of events which are used for the study. In particular:

d =
Nd

l
(2.1)

where d is the density measured as [items/month]. The bigger the density, the more items

can be collected in a time unit. The density gives an indication of the length a study should



Chapter 2. Field Failure Data Analysis: Methodology and Related Work 41

be performed in order to be statistically significant. For instance, if the density is low, it is

necessary to run the experiment for a long period, in order to gather a significant amount

of data points. A useful practice would be to observe the density for a short period, and,

depending on its value, decide i) whether to increase/decrease the number of system’s units

to include in the analysis (the more the units, the bigger Nd), and ii) how long the experi-

ment should take.

2.3.3 Methodology-related Dimensions

These dimensions are related to the steps of the FFDA methodology that has been discussed

in section 2.2. The following dimensions are defined:

Data source: the source from where field failure data are gathered, e.g. event logs or

failure reports.

Levels: the levels at which the data source are considered. They correspond to the ab-

stract machine levels (from hardware to human operators) the gathered failure events

correspond to. Examples are: hardware, network, operating system, middleware,

application, and human operator.

Workload: whether the workload is idle or automated.

Manipulation: the set of techniques, if any, adopted to filter and/or process the gathered

data.



Chapter 2. Field Failure Data Analysis: Methodology and Related Work 42

Analysis: the particular statistical analysis performed on the filtered data. The performed

analysis can be grouped according to the following classes:

• Classification: derivation of the classes of failures/errors along with their causes,

if available. In other words, classification consists in the definition of the exper-

imental failure/error model;

• Dependability measurements: MTTF, MTTR, FIT, availability, coverage, up-

time, downtime;

• Modeling : definition of a statistical/simulation model from the real data. Exam-

ples are statistical distributions (weibull, lognormal, hyperexponential), markov

chains, and finite state machines.

• Correlation: identification of either temporal trends among subsequent failures,

or spatial correlation among different system’s nodes. Examples of the adopted

analysis techniques are trend analysis, cluster analysis, factor analysis.

• Other : particular analysis which do not fall in any of the above mentioned classes,

such as the sensitivity analysis of tupling schemes.

Often, FFDA studies fall into more than one analysis class. For example, it is common

that works proposing dependability measurements also perform a classification.

Confidence: It is indicated whether the study provides any measure for the confidence or

variability of the data (e.g., standard deviation, coefficient of variation, etc.).



Chapter 2. Field Failure Data Analysis: Methodology and Related Work 43

The defined dimensions allow to have a quick survey on the methods and techniques

adopted by a particular study to gather and process data, along with the type of conducted

analysis.

2.4 Analysis of Related Research

The importance of FFDA studies of computer systems has been recognized since many

years. The first seminal contributions date back to the 70s with studies on the Chi/OS

for the Univac [72], and CRAY-1 systems [58]. The research has then broadened its scope

over the years addressing a wide set of systems and pursuing several objectives. The 80s

and the 90s have been characterized by FFDA studies on mainframe and multicomputer

systems, such as the IBM 370 with the MVS OS [108] [53] [98] [99] [48] [51] [52], the DEC

VAX [16] [15] [102] [110], and Tandem systems [45] [46] [66]. In the second half of 90s the

research slightly moved its attention to end-user and interactive operating systems, such as

the various flavors of MS Windows [79] [96] [42] [55] and UNIX-based [63] [95] operating

systems. At the same time, as the Internet increased in popularity, many studies emerged,

trying to assess the dependability of the network of networks [56] [75] [80] [85]. The present

decade has witnessed an even broader spectrum of research, adding contributions on virtual

machines [32], applications [88] [25], embedded systems [18] [64], large-scale and parallel

systems [87] [69] [68] [90] and mobile distributed systems [74] [29]. Over the years, many

objectives have been pursued, from the mere statistical classification and modeling of failure

events, to the identification of trends and correlations, and the experimental evaluation of



Chapter 2. Field Failure Data Analysis: Methodology and Related Work 44

Table 2.1: FFDA Research trends: targets and milestones

FFDA Feasibility; evidences 
of load-failure relationship

Operating Systems;
Applications

1980s

Use of FFDA for correlation 
analysis and diagnosis; 

manipulation techniques for 
event logs; uncovering of the 

preeminence of software 
failures; studies on user-
perceived dependability

Operating Systems, 
Applications; Internet; 
Networked Systems

1990s 2000sDecade

Broader spectrum for the 
FFDA research; FFDA used 

to characterize security; 
manipulation techniques for 

novel, complex systems.

Research 
Milestones

Operating Systems; 
Applications; Internet; 
Networked Systems;
Large-scale Systems;

Virtual Machines; Embedded 
and Mobile Systems

Target 

Systems

FFDA Feasibility; evidences 
of load-failure relationship

Operating Systems;
Applications

1980s

Use of FFDA for correlation 
analysis and diagnosis; 

manipulation techniques for 
event logs; uncovering of the 

preeminence of software 
failures; studies on user-
perceived dependability

Operating Systems, 
Applications; Internet; 
Networked Systems

1990s 2000sDecade

Broader spectrum for the 
FFDA research; FFDA used 

to characterize security; 
manipulation techniques for 

novel, complex systems.

Research 
Milestones

Operating Systems; 
Applications; Internet; 
Networked Systems;
Large-scale Systems;

Virtual Machines; Embedded 
and Mobile Systems

Target 

Systems

malicious attacks, such as [37] [35] [24]. Table 2.1 summarizes the trend of the FFDA

research, in terms of targeted systems and milestones. These milestones are then detailed

in sections 2.4.1 and 2.4.2.

About fifty high level technical papers, either published by IEEE or ACM journals and

conference proceedings1 over the last three decades, have been taken under consideration.

Fundamental milestones which provoked a significant shift in the research are analyzed first.

Relevant FFDA studies, which provided the community with interesting results, are con-

sidered as well. Section 2.5 reports a critical comparison of all considered studies.

1As main sources of our study, we considered the following technical journals: IEEE Transactions on
Computers, IEEE Transactions on Reliability, IEEE Transactions on Software Engineering, IEEE/ACM
Transactions on Networking, ACM Transactions on Computer Systems; and the proceedings of the following
international conferences: the International IEEE Conference on Dependable Systems and Networks (DSN),
the International IEEE Symposium on Fault Tolerant Computing (FTCS), the IEEE Symposium on Reliable
Distributed Systems (SRDS), the Pacific Rim International Symposium on Dependable Computing (PRDC),
the IEEE International Symposium on Software Reliability Engineering (ISSRE), the ACM SIGMETRICS
Conference on Measurement and Modeling of Computer Systems.



Chapter 2. Field Failure Data Analysis: Methodology and Related Work 45

2.4.1 Fundamental Research

Over the last three decades, the FFDA research community devoted its efforts to define

methods, strategies, and techniques for failure data gathering, processing, and analysis.

Several uncoverings and lessons learned are reported in this section. These experiences

traced the path which has then been exploited by other researchers to conduct their studies.

Event Logs Effectiveness, and their Manipulation

Event logs are one of the most adopted failure sources. This is true since the beginning of

eighties, when a pioneer FFDA study [108] achieved a relevant echo for the dependability

research community. It was one of the first works to demonstrate that FFDA campaigns

based on event logs are a viable approach to derive quantitative measures for system fault

tolerance and recovery management. The gathered information reveals quite efficient for

pinpointing major problem areas where further work could be directed.

An important methodological achievement for event log-based analysis has been the

definition of tuple, as an heuristic for temporal-based coalescence [46]. Other than giving

the fundamentals of tupling, the study in [46] also proposes an experimental sensitivity

analysis, based on event logs from Tandem systems. In addition, authors deeply study the

problem of collisions (different errors grouped in the same tuple), proposing a statistical

model of collision probability versus clustering time.

A shift in the research is represented by the work in [16], addressing the analysis of

event logs from 193 DEC VAX/VMS nodes. For the first time authors propose a critique



Chapter 2. Field Failure Data Analysis: Methodology and Related Work 46

digression on the quality of the logs and how it affects the results, besides the mere analysis

of data. For example, they show that the incorrect handling of bogus timestamps affects

MTTF measures by one order of magnitude. Their conclusions are supported by statisti-

cal analysis performed on one of the largest set of failure data, composed by 2.35 million

events. The same data set is adopted by a subsequent study from the same authors [15]

that, following the wave of its predecessor, does not propose an analysis of failure data, but

it rather discusses ways to improve the analysis of event logs. In particular, the comparative

analysis of different tupling schemes has been conducted, by adopting these schemes on real

data. In particular it demonstrates the usefulness of tupling, and evaluates new heuristic

rules by means of sensitivity analysis.

Evidences of the System Load-Failure Relationship

The relationship between failure behavior and system load is clear since the first FFDA

works. At the beginning of 80s, during a performance measurement campaign for a large

DEC-1OA time-sharing system, it was found that the simplistic assumption of a constant

system failure rate did not agree with measured data [20]. Subsequent research by the

same authors [21] involves use of a doubly stochastic Poisson process to model failures.

The model relates the instantaneous failure rate of a system resource to the usage of the

resource considered. Moved by this research, [51] proposed an approach to evaluate the

relationship between system load and failure behavior that presumes no model a priori, but

rather starts from a substantial body of empirical data. The study was conducted on three



Chapter 2. Field Failure Data Analysis: Methodology and Related Work 47

IBM 370 mainframes, and both failure data (maintenance failure reports) and performance

counters (via a proprietary IBM system) were gathered. A regression analysis of failure

and performance data evidenced the strong correlation between failure manifestation and

system load. A similar approach was followed in [52] on two IBM 370 machines. The anal-

ysis concentrated on CPU failures. In particular, approximately 17 percent of all failures

affecting the CPU were estimated to be permanent. The manifestation of a permanent

failure was found to be strongly correlated with the level and the type of the workload. The

increase in the probability of a failure was found to be most sensitive to a change in the

interactive workload (as measured by the non batch CPU usage, the IO rate and the SVC

rate). Although, in strict terms, the results only relate to the manifestation of permanent

failures and not to their occurrence, there were strong indications that permanent failures

are both caused and discovered by increased activity. This experimental evidence was sup-

ported by more recent studies, such as [36], by means of a fault injection campaign.

Using FFDA for Correlation Analysis, Failure Prediction, and Diagnosis

The information gathered from field data has been widely recognized as an enabler for cor-

relation and failure prediction, which in turn leads to the possibility of failure diagnosis.

The work in [53] represents a first effort in this direction, evidencing the feasibility of on-line

diagnosis approaches based on trend analysis and real data. Specifically, it concentrates on

the recognition of intermittent failures and defines a methodology to distinguish between



Chapter 2. Field Failure Data Analysis: Methodology and Related Work 48

transient, permanent, and intermittent failures by looking at the correlation between con-

secutive failure events. About 500 groups of failures are identified over a 14 months time

span.

During the same period, [71] proposed a novel failure prediction technique, called

the Dispersion Frame Technique (DFT). The technique is defined by starting from the

statistical characterization of real data observed on a 13 SUN 2/170 nodes, running the

VICE file system, over a 22 months period. By gathering data by both event logs (regarded

as errors) and from operator’s failure reports (regarded as failures), authors concentrate of

the identification of error trends which lead to failures. Interestingly, this is the first FFDA

work which takes into account two different data sources at two different levels and which

tries to relate them to identify failures root causes and underlying trends. The effectiveness

of the DFT is shown via direct experiments on actual data. In particular, it is shown that

the DFT uses only one fifth of the error log entry points required by statistical methods for

failure prediction. Also, the DFT achieves a 93.7% success rate in failure prediction.

Another important work suggests that failure correlation cannot be underestimated.

In other terms this work demonstrates that the common assumption made in dependabil-

ity analysis: “failures in different components are independent” is not valid in general

terms [102]. The study analyzes the dependability of 7 DEC VAX machines in a VAX-

cluster. Particular attention is given to the error/failure relationship, and both TBE (time

between errors) and TBF empirical distributions are given. As main results, shared re-

sources are identified as a main dependability bottleneck, and both errors and failures are

shown to occur in bursts. Although the failure correlation is low, it significantly affects the



Chapter 2. Field Failure Data Analysis: Methodology and Related Work 49

system unavailability estimation.

Software Failures as New Protagonists

In the early 90s, field failure studies evidenced the preeminence of software failures as main

responsible of system outages. An important study on Tandem systems [45] took a census

of six years of failure data, showing a clear improvement in the reliability of hardware and

maintenance, while indicating the trend of software as the major source of reported outages

(62% in 1990 versus 34% in 1985 whereas hardware-induced outages decreased from 29%

in 1985 down to 7% in 1990). The conclusion was clear: hardware faults and hardware

maintenance were no longer a major source of outages, whereas software related faults

needed to be tolerated. This motivated future research towards software fault tolerance.

Subsequent works emerged in the same period, putting the accent on software failures.

Examples are two studies on the IBM MVS OS, [98] [99].

The first study considered software failure data collected from the IBM RETAIN (RE-

mote Technical Assistance Information Network) database from 1985 to 1989. However,

since the analysis was performed manually, the total number of reports was sampled down

to 241 reports. The analysis concentrate on a detailed classification and related frequen-

cies of errors (programming mistakes) and triggers (errors circumstances). Results pinpoint

overlay errors, e.g., those related to memory management, to be more severe in terms of

impact than other regular errors. The second work extends the first one by proposing a



Chapter 2. Field Failure Data Analysis: Methodology and Related Work 50

comparison between OS errors and IMB DB2 and IMS database management systems’ er-

rors. Data are collected the same way as the previous study and the same classification

approach is adopted. It’s the first time application related data (e.g., DBMS data) are

considered in an FFDA study.

Lessons Learned on User-Perceived Dependability

An important contribution of FFDA was the recognition of the difference between the mea-

sured and the user-perceived dependability. Specifically, it has been shown how field studies

may overestimate some dependability figures, resulting into numbers that may mislead the

expectations.

An interesting study in this direction was published in 1999 [55]. The work focuses on

a LAN of Windows NT machines and tries to identify reboot causes by looking at what

authors call “prominent events”, i.e., events that preceded the current reboot by no more

than an hour. Authors indicate that while the measured availability of the system was 99

percent, the user-perceived availability was only 92 percent, i.e., the system often can be

alive but not able to provide a required service. The work in [96] reports similar figures (99

percent) on system availability of Windows NT and 2K workstation and servers. The need

to account for the user’s perception of system dependability is also stressed in the analysis

of Windows 2000 dependability [79]. The previously mentioned work [55] also proposes a

FSM modeling of error behavior and reports several suggestions to improve the Windows

NT logging system. For example, authors suggest to add a Windows NT shutdown event



Chapter 2. Field Failure Data Analysis: Methodology and Related Work 51

to improve the accuracy in identifying the causes of reboots. This event has actually been

introduced into subsequent versions of the Windows logging systems. Other results are the

evidence that often more than one reboot are needed to restore proper operation (the 60%

of the cases) and that the main responsible for reboots is software (the 90% of the cases).

Using Past Experiences to Improve Next-Generation Products

The essential of field studies is the possibility of building on the results of the analysis to

propose precise directions of improvement for the next waves of technologies. An exemplary

study was conducted jointly by academy and Microsoft Research on the MS Windows NT

operating system [79]. After reviewing a FFDA conducted on Windows NT 4, authors

move towards the definition of the new features to be added to the next version of the OS,

namely Windows 2000. Just to mention few examples, since the majority of system failures

on Windows NT were due to the core NT system and device drivers, Windows 2000 designers

and developers decided to place as many new features as possible into the user mode, and

to improve the verification of software that resides in the kernel mode, by adopting a new

testing and verification process. Also, OS hangs and the well known “blue screens” due to

application failures were reduced in Windows 2000 through Kernel memory isolation: the

kernel memory space is marked as read-only to user mode applications providing the kernel

greater isolation from errant applications.

The work in [96] confirms the availability improvement of Windows 2000 with respect

to Windows NT. Interestingly, Windows 2000 decreases the number of failures due to the



Chapter 2. Field Failure Data Analysis: Methodology and Related Work 52

core system, and increases application related failures, thus demonstrating the effectiveness

of the kernel memory isolation technique.

2.4.2 FFDA Relevant Studies

FFDA studies had pertained a substantial variety of IT systems and concerns, from Oper-

ating Systems to embedded systems and security, demonstrating the wide recognition for

this kind of research activities. This section summarizes a relevant set of these efforts, with

respect to the system or concern they refer to.

Works on Operating Systems

FFDA’s first steps mainly concerned the evaluation and modeling of Operating Systems

dependability. At the end of eighties, the majority of works were concerned on three popular

operating system families: the IBM MVS, Tandem sytems, and the DEC VAX.

A study dated 1988 addressed the MVS operating system, aiming at building a semi-

markov model of the system from real data by taking into account both normal and error

behavior [48]. A key result of the work was that errors distribution was not simple expo-

nentials. Also, the work was one of the first to use semi-markov chains for the modeling of

the error behavior. Building on FFDA fundamentals, data were gathered from the operat-

ing system’s event logs, and both temporal and content-based coalescence was adopted to

manipulate them. Percentage of failures by failure class also shown a significant incidence

of software errors: the 36% of errors were due to software, while the rest were hardware



Chapter 2. Field Failure Data Analysis: Methodology and Related Work 53

related (CPU, memory, I/O channels, disk). This result was coherent with the trend of

increasing relevance of software failures, evidenced by Gray two years afterwards [45].

As an example for the Tandem system, [66] defined an analysis methodology for its

event logs through multivariate techniques, such as factor and cluster analysis. The event

logs were gathered from three Tandem systems over a 7 months period. A 2-phase hyper-

exponential distribution was adopted to model the error temporal behavior, according to

the two error behaviors exhibited by the three systems: error bursts and isolated faults.

[110] reports on the validation of an availability model developed for DEC VAX machines

in a VAXcluster. Direct availability measurement of system interruptions from the actual

systems were used to validate the previously defined model. The interesting contribution

is the description of model assumptions that are not supported by the data. In particular,

analysis of the data revealed interruption dependencies across devices (of the same and

different type) which were not taken under consideration in the model. Moreover, while

the model assumes exponentially distributed failures, real failure data results to be non-

exponentially distributed.

As a summary of a decade of research, the study in [67] performs a comparison of FFDA

analysis on the three operating systems: the Tandem GUARDIAN fault-tolerant system,

the VAX/VMS distributed system, and the IBM/MVS system. The relevant results are the

following: software errors tend to occur in bursts on both IBM and VAX machines. This is

less pronounced in the Tandem system, which can be attributed to its fault-tolerant design.

The Tandem-system fault-tolerance reduces the service loss due to software failures by a

factor of 10.



Chapter 2. Field Failure Data Analysis: Methodology and Related Work 54

Following the wave of their predecessors, more recent works concerned recent Operating

Systems, such as Unix and Microsoft Windows. The work in [63] propose an interesting and

well conducted FFDA study on a server machine with the Sun SPARC UNIX OS. Starting

from event logs, the work performs a classification of failures and identify the potential

trends of errors which lead to failures. Summary statistics, such as MTBF and availability,

are evaluated.

[42] confirmed the trend of improvement of the Windows OS family, already mentioned

in section 2.4.1. The study address Windows XP SP1, and shows how the percentage of OS

failures decreases from 12% for Windows 2K to the 5% of Windows XP, thus demonstrating

that system crashes are often due to applications and third party software. Differently from

previous work, this study exploits the Microsoft’s Corporate Error Reporting software to

gather failure reports.

Networked Systems Dependability

A natural shift in the FFDA research was represented by the study of networked systems.

As compared to operating systems studies, networked systems studies basically add one

more dimension for the analysis, i.e., the correlation of failures among the system’s nodes.

The work in [95] analyzes a LAN of 298 Unix workstations. The analysis concentrates

on the identification of system reboots, via content-based coalescence, on their potential

causes, and on their statistical characteristics, such as uptime, downtime and availability



Chapter 2. Field Failure Data Analysis: Methodology and Related Work 55

statistics. Also, a correlation analysis among logs belonging to different machines is per-

formed. The analysis however evidences that there is no high correlation between client and

server failures, as one could expect. This can be explained in part by the fact that errors

affecting the servers persist for a short period of time and thus only clients accessing the

servers when errors occur might be affected.

[112] proposes the analysis of a networked Windows NT system, composed of 503 server

nodes. The study focuses on machine reboots and presents several interesting statistics.

First, the time to failure distribution fits a Weibull distribution. Second, often several re-

boots are needed to restore normal operation. Third, although the availability of individual

server is high (99%), there is a strong indication of correlation between failures in different

machines. The correlation was identified through the temporal coalescence of merged event

log files.

Internet Dependability

As the Internet increased in popularity, several studies attempted to characterize its de-

pendability.

The study in [56] presents the results of a 40-days reliability study on a set of 97 popular

Web sites done from an end user’s perspective. The interesting aspect of the work is that

it is one of the first studies where an automated workload is used to acquire the data. In

particular the workload periodically attempts to fetch an HTML file from each Web site

and records the outcome of such attempts. The need for the workload lyes in the spot usage



Chapter 2. Field Failure Data Analysis: Methodology and Related Work 56

of the Internet. Some interesting results of the study are that connectivity problems seem

to play a major role in determining the accessibility of the hosts and that the majority

(70.5%) of the failures are short in time (less than 15 minutes).

[75] attempts to discover and discuss Ethernet anomalies from the Carnegie Mellon

University network using an ethological approach. Traces of network traffic are collected

by means of a hardware monitor deployed on the network. The major result is the ability

to classify the network behavior as normal and anomalous.

An interesting study attempts to characterize the pathological behavior of end-to-end

Internet routing [85]. The study reports on an analysis of 40,000 end-to-end route mea-

surements conducted by means of automated workload (repeated “traceroutes” between 37

Internet sites). Authors analyze the routing behavior for pathological conditions, uncovering

the prevalence of routing loops, erroneous routing, infrastructure failures, and temporary

outages. Coherently with the increasing complexity of the Internet, the likelihood of en-

countering a major routing pathology resulted more than doubled between the end of 1994

and the end of 1995, rising from 1.5% to 3.4%.

From a study of 62 user-visible failures in three largescale Internet services, [80] observes

that front-ends are a more significant problem than is commonly believed. In particular,

operator error and network problems are shown to be leading contributors to user-visible

failures.



Chapter 2. Field Failure Data Analysis: Methodology and Related Work 57

Large Scale Systems

Recent studies attempted to study large scale server environments and complex parallel

machines [87] [68]. Analysis of event logs from about 400 parallel server machines with the

AIX operating system [87] demonstrates that although improvements in system robustness

continue to limit the number of actual failures to a very small fraction of the recorded

errors, the failure rates are still significant and highly variable. A subsequent work from

the same authors deeply studies the logs from a production IBM BlueGene/L system and

proposes empirical failure prediction methods which can predict around 80% of the memory

and network failures, and 47% of the application I/O failures [68]. Prediction is very useful

to on-line system diagnosis: with these prediction schemes deployed online, one is able to

effectively predict failures in the future, and possibly take remedial actions to mitigate the

adverse impacts that these failures would cause.

A very recent study analyzes failure data recently made publicly available by one of the

largest high-performance computing (HPC) sites [90]. The data has been collected over

the past 9 years at Los Alamos National Laboratory and includes 23000 failures recorded

on more than 20 different systems, mostly large clusters of SMP and NUMA nodes. To

date, this is the largest set of failure data studied in the literature, both in terms of the

time-period it spans, and the number of systems and processors it covers. This underline

the importance of having public failure data repositories available to researches for analysis.

We hope this example encourages efforts at other sites to collect and clear data for public

release. Specifically, the study classifies failures occurrences and models failure times (with



Chapter 2. Field Failure Data Analysis: Methodology and Related Work 58

weibull and gamma distributions) and recovery times (with the lognormal distribution). It

is shown that failure and recovery rates vary widely across systems. Moreover, it results

that the curve of the failure rate over the lifetime of an HPC system is often very different

from the traditional bath-tube curve.

Over the last few years, it has been recognized how FFDA studies can be significant for

a wider set of systems and concerns. The three following sections report on FFDA stud-

ies on applications, virtual machines, embedded systems, and measurement-based security

characterization.

Applications and Virtual Machines

In [25] Chillarege et al concentrate on failure reports from two widely distributed IBM

software products. The analysis did not target event logs, rather it started from the service

calls made by customers. Once evaluated by an experts team, the calls may result in

new APARs (Authorized Failure Analysis Report) which are then analyzed by the software

maintenance staff. As an interesting result, author define and evaluate two novel metrics,

the fault weight and the failure window, which are demonstrated to be proportional to the

qualitative fault severity and that can be used to control the failure reporting process at a

costumer base.

A very recent study characterizes the dependability of the Java Virtual Machine starting

from Bug Databases, the only public available failure data source for the JVM to date [32].



Chapter 2. Field Failure Data Analysis: Methodology and Related Work 59

The study proposes a detailed classification and analysis of bug reports. In particular, key

results are: JVM built-in error detection mechanisms are not capable of detect a consider-

able amount of failures (45.03%); a non-negligible percentage of reported failures indicate

the presence of aging-related bugs inside the JVM; and the JVM is not expected to achieve

the same level of dependability on different platforms.

Works on Embedded Systems

The work in [18] analyzes the dependability of mobile robots, based on failure reports

gathered on 673 hours of actual usage by 13 robots and three manufacturers. It appears

that mobile robots, in a given hour, have a 5.5% probability of failure. The reliability is

very low, with an average MTBF of about 8 hours and an availability lower than 50%.

As expected, field robots have higher failure rates and overall lower reliability than indoor

robots, possibly because of the demands of the outdoor terrains and the relative newness

of the platforms. The effectors, or platform itself, was the source of most failures for field

robots whereas the biggest failure in indoor robots was with the wireless communication

link.

A analysis of data on 11 years operating experience of safety critical software for nuclear

reactors is presented in [64]. The study is conducted by Technicatome, a French company

specialized in the design of nuclear reactors of the submarines and aircraft carriers for the

French Navy. Several conclusions can be drawn from the study. In particular authors state



Chapter 2. Field Failure Data Analysis: Methodology and Related Work 60

that the analysis of data on operating experience is an efficient mean to improve the devel-

opment processes, and emergent methods, such as formal methods, would have been of little

help to prevent the errors actually encountered in operation, since they concern HW/SW

interactions and real-time issues extremely difficult to model. In fact, as it is very difficult

to reproduce the real load and asynchronous situations in a laboratory environment, some

very particular situations can only be encountered in a life-size trial.

Using Field Data to Characterize Security

As the scope of FFDA campaigns reached the security community, several works appeared

which attempted to characterize and to model system vulnerabilities and attacks starting

from field data. An outstanding example is represented by the Honeynet project [76]. A

honeypot can be regarded as an information system resource whose value lies in unautho-

rized or illicit use of that resource. By placing honeypots on the Internet and by gathering

data on the malicious activity affecting them, one can study the characteristics of attacks

and system vulnerabilities. As an example, the study in [37] aimed at using data collected

by honeypots to validate fault assumptions required when designing intrusion-tolerant sys-

tems. Authors set up three machines equipped with different operating systems (Windows

NT and 2K, and Red Hat Linux) and collected network-related data (via tcpdump) for four

months to analyze the source of attacker and the attacked ports. The work evidenced that,

in most cases, attackers know in advance which ports are open on each machine, without

performing any port scan. Moreover, there were no substantial differences in the attacks



Chapter 2. Field Failure Data Analysis: Methodology and Related Work 61

made on different operating systems.

A similar study analyzes malicious activity collected from a testbed, consisting of two

Windows 2K target computers dedicated solely to the purpose of being attacked, over a

109 day time period [35]. The objective was to determine the characteristics of collected

attacks data that most efficiently separate attacks, allowing their statistical classification.

Ethereal was used to collect the data, and filtering techniques were adopted. Clustering

is then used to identify the most accurate characteristics for separating attacks. Results

show that these characteristics are the number of bytes constituting the attack, the mean

of the distribution of bytes as a function of the number of packets, and the mean of the

distribution of message lengths as a function of the number of packets. This work hence

demonstrate how field data represent an useful mean to recognize attacks.

The work in [24] exploits data from the Bugtraq database and proposes a classification of

vulnerabilities. In particular, vulnerabilities are dominated by five categories: input valida-

tion errors (23%), boundary condition errors (21%), design errors (18%), failure to handle

exceptional conditions (11%), and access validation errors (10%). The primary reason for

the domination of these categories is that they include the most prevalent vulnerabilities,

such as buffer overflow and format string vulnerabilities. Starting from this data and helped

by code ispections, authors propose finite state machine models for vulnerabilities, which

help to better understand their behavior and/or to uncover new ones.



Chapter 2. Field Failure Data Analysis: Methodology and Related Work 62

Recent Contributions on Filtering and Manipulation

Over the last two years, we witnessed some effort in the direction of defining new techniques

for processing field failure data. This is mainly due to the new difficulties which arise with

emerging systems.

[69] defines a new and effective filtering method for the IBM BlueGene/L event logs.

Effective filtering is a very desirable characteristic for these large-scale complex systems,

since many log entries are produced and stored. Authors demonstrated how their filtering

strategy can remove over the 99.96% of entries from a event log gathered from a IBM

BlueGene/L prototype. This represents a valid shift with respect to the previous methods,

where a 91.82% filtering effectiveness were reached.

The work proposed in [88] defines a novel failure prediction method, called Similar Events

Prediction (SEP), which is based on the recognition of failure-prone patterns utilizing a

semi-Markov chain in combination with clustering. Differently from previous approaches,

SEP takes into account more information about the current system state. In addition, SEP

investigates properties of the error event itself such as the type of error message, the soft-

ware component that reported the event or the depth of the stack trace. The technique is

compared to a straightforward prediction method based on a well-known reliability model

and to the Dispersion Frame Technique (DFT) by Lin and Siewiorek. All three models have

been applied to data of a complex commercial telecommunication system. Predictive power

of the approaches is compared in terms of precision, recall, F-measure and accumulated

runtime costs. SEP outperformed the other failure prediction techniques in all measures.



Chapter 2. Field Failure Data Analysis: Methodology and Related Work 63

FFDA 

Methodology

26%

Dependability 

Study

66%

Comparison

8%

0

2

4

6

8

10

12

14

80s 90s 2000s

Decade

N
u

m
b

e
r 

o
f 

w
o

rk
s

FFDA Methodology

Dependability Studies

Comparison

(a) (b)

Figure 2.3: FFDA purposes a) break-up, b) distribution over the years

2.5 Comparison

In this section the wide body of research previously presented is compared with respect to

the evaluation means for FFDA defined in section 2.3.

2.5.1 Purposes and Target Systems

Figure 2.3a reports a break-up of the purposes followed by the analyzed FFDA studies. As

one can expect, the majority of works (66%) performs mere practical studies, addressing

a particular system and presenting failure classification, stochastic model, statistical distri-

butions, and dependability measures. A significant amount of works (26%) are devoted to

the definition of new methods and techniques for improving FFDA campaigns. It should be

noted, however, that, while the number of dependability studies have been increasing over

the years, the number of theoretical efforts greatly decreased, if compared with the practical

ones (see figure 2.3b). This indicates that the methodological results achieved in the past

are still used to conduct today’s studies. However, this may not be the case of emerging



Chapter 2. Field Failure Data Analysis: Methodology and Related Work 64

Operating 

Systems

55%Applications

16%

Internet 

Services

13%

Large-scale and 

Networked 

Systems

16%

(a) (b)

0

2

4

6

8

10

12

14

80s 90s 2000s

Decade

N
u

m
b

e
r 

o
f 

w
o

rk
s

Operating Systems

Applications

Internet Systems

Large-scale and

Networked Systems

Figure 2.4: FDDA Target Systems: a) break-up, b) distribution over the years

technologies, where the specific constraints and the complexity of the architectures requires

new research efforts. For instance, this applies to mobile distributed systems, due to their

specificity and resource-constrained characteristics, and to COTS-based software, where

the complexity of the interactions along with the absence of any built-in, standard logging

scheme, makes it hard to collect the proper data and to generalize the results. Finally,

a reduced fraction of works (8%) presents comparisons among various studies, evidencing

similarities and differences in the results.

Comparisons are the proof of a certain level of maturity achieved in a particular field. So

far, comparisons have been proposed only for studies addressing Operating Systems, which

are the most studied target system, as figure 2.4a evidences. Operating Systems account

indeed for the 55% of the analyzed systems. The 16% are applications, including virtual

machines, and embedded systems, whereas the 13% characterized Internet services, also

from a security point of view. Finally, the 16% of works addressed large scale systems and

networked systems. As a matter of fact, there are no significant studies so far in the litera-

ture addressing MDSs2. Figure 2.4b shows how the variety of FFDA targets increased over

2Works [27][29][3] are excluded from the comparison, since, although they address MDSs, they are from



Chapter 2. Field Failure Data Analysis: Methodology and Related Work 65

Academy

66%

Industry

21%

Collaboration

13%

Figure 2.5: Academy and Industry FFDA works break-up

the years: from works mainly addressing Operating Systems in the eighties, to works also

concerning applications, Internet servics, large-scale and networked systems in the present

decade.

2.5.2 Academic vs Industrial Works

Figure 2.5 reports the break-up of industrial and academic works. Although the academy

played an important role for the FFDA research (66% of works), a significant effort has been

also profused from industry (21%), as a confirmation that FFDA is a valuable instrument

for industries to improve their businesses. Collaborative works from academy and industry

are still a little slice of the total number of works (13%). However, more sinergy between the

two actors would improve the overall quality of FFDA works, which could benefit from the

academy experience and methods from a side, and industry’s real data from another side.

This is also confirmed by figure 2.6, where it can be noticed how industry works scarcely

adopt the manipulation strategies defined in the literature (e.g., filtering, coalescence and

so on), differently from what the academia does.On the other hand, collaborative works

usually exploit more the existing techniques.

the same author of the present dissertation. Actually, their development also arised from the consideration
that there are no FFDA experiences on MDSs in the literature.



Chapter 2. Field Failure Data Analysis: Methodology and Related Work 66

Number of data manipulation strategies per actor

P
e
rc

e
n
ta

g
e

o
f 

w
o

rk
s

Figure 2.6: Number of adopted FFDA manipulation strategies, per actor; the percentages are
normalized for each actor

network 

monitoring

10%

Mixed

5%

Failure Reports

33%

Event Logs

52% 1

60%

2

28%

3

10%

5

2%

(a) (b)

Figure 2.7: FFDA Data sources: a) type break-up, b) number of levels break-up

2.5.3 Methodological Considerations

In this section, a comparison of the related work is conducted according to the FFDA

methodology introduced in 2.2. The purpose is to summarize trends and best practices

emerged from three decades of FFDA research.



Chapter 2. Field Failure Data Analysis: Methodology and Related Work 67

1,4

1,45

1,5

1,55

1,6

1,65

1,7

80s 90s 2000s

Decade

A
v
e
ra

g
e
 n

u
m

b
e
r 

o
f 

L
e
v
e
ls

Figure 2.8: Average number of failure data levels considered by FFDA studies, over the years

Data Logging and Collection

The pie chart in figure 2.7a shows a break-up of the data sources adopted by the considered

FFDA studies. In particular, the adopted sources are, in a descending order: event logs

(52%), failure reports (33%), and network monitoring (10%), i.e., the sniffing of the network

traffic. Only a small fraction of the related work (5%) uses data coming from more than one

source, hence the common practice is to use a single data source. Another consideration

is that the considered failure data often come from internal sources (70% of cases). Only

the 30% of studies adopts data provided by third party organizations or companies. This

indicates the difficulty of finding publicly available data sources.

As shown in figure 2.7b, the 60% of works uses data captured at a single level, even if a

single data source (i.e., one event log) can be sufficient to capture failure data at different

machine levels (hardware, operating system, network, middleware, application software,

and human interface). The trend of using failure data belonging to more than one level is

increasing over the years (see figure 2.8). This is basically due the increased complexity



Chapter 2. Field Failure Data Analysis: Methodology and Related Work 68

Table 2.2: Adopted failure data level as a percentage of the total number of analyzed FFDA studies;
percentages do not add to 100, since there are studies using data from more than one level

23%Network

PercentageLevel

5%Middleware, human

35%Hardware

26%Application

69%Operating System

of systems which in turn requires more data to be captured at different levels to build a

thorough understanding of system’s faulty behavior. As for the type of level these failure

data account for, table 2.2 reports on the frequency of each level, with respect to the total

number of analyzed studies. For example, the 69% of studies uses data coming from the

Operating System level. This is coherent with the fact that the majority of studies adopts

event logs, and targets Operating Systems.

Finally, it is important to note that almost all the considered studies (the 95%) con-

sider failure data captured from systems with idle workloads. Hence, the common FFDA

practice suggests to use idle workloads. Not surprisingly, the studies that adopt automated

workloads are concerned with the Internet, which spot usage does not always permit to use

idle workloads.

Data Filtering and Manipulation

Data manipulation is an important step of FFDA studies. However, as evidenced in table

2.3, a significant fraction of the analyzed studies (38%) do not perform any manipulation

on the gathered data. This specially applies to industry works, as previulsly mentioned.



Chapter 2. Field Failure Data Analysis: Methodology and Related Work 69

Table 2.3: Percentages of usage of FFDA filtering and manipulation strategies

7.69Temporal coalescence, Content-based coalescence

7.69Filtering, Temporal coalescence

5.13Temporal coalescence (merged logs from more nodes)

10.26Content-based coalescence

12.82Temporal coalescence

38.46Not performed

PercentageManipulation Straregies

2.56Filtering, Temporal coalescence, Content-based coalescence

15.38Filtering

7.69Temporal coalescence, Content-based coalescence

7.69Filtering, Temporal coalescence

5.13Temporal coalescence (merged logs from more nodes)

10.26Content-based coalescence

12.82Temporal coalescence

38.46Not performed

PercentageManipulation Straregies

2.56Filtering, Temporal coalescence, Content-based coalescence

15.38Filtering

Data filtering and temporal coalescence are the most common practices, adopted by more

of the 30% of works. The table also indicates that there are works performing the temporal

coalescence on merged log files from different nodes. This is the case of studies of networked

systems, to discover failure propagation phenomena among nodes. Finally, only the 18%

of works performs more than one manipulation on the same data, such as filtering and

coalescence.

Data Analysis

To have an understanding on the nature of performed studies, table 2.4 reports a summary

of the type of conducted analysis per study. The crosses signed on each row evidences

the types of analysis, and the percentage of works conducting such analysis. A significant

amount of works (33%) performs only the classification of the failures which emerge from

the field data. This is especially true for investigation works, i.e., the first works address-

ing a particular class of system or pursuing a particular objective. Almost one half of the

studies produces more than one type of analysis on the data. Among them, about the 10%



Chapter 2. Field Failure Data Analysis: Methodology and Related Work 70

Table 2.4: Percentages of types of conducted data analysis

7.69XX

7.69X

P
e
rc

e
n

ta
g

e

O
th

e
r

D
e
p

e
n

d
a
b

ility
M

e
a
s
u

re
m

e
n

t

C
o

rre
la

tio
n

M
o

d
e
lin

g

C
la

s
s
ific

a
tio

n
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

10.26

5.13

5.13

2.56

2.56

2.56

5.13

2.56

7.69

7.69

33.33

7.69XX

7.69X

P
e
rc

e
n

ta
g

e

O
th

e
r

D
e
p

e
n

d
a
b

ility
M

e
a
s
u

re
m

e
n

t

C
o

rre
la

tio
n

M
o

d
e
lin

g

C
la

s
s
ific

a
tio

n
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

10.26

5.13

5.13

2.56

2.56

2.56

5.13

2.56

7.69

7.69

33.33

performs the classification of failures, their modeling, and correlation analysis. These three

types of analysis are inherently correlated: the classification is often needed to produce

models (note that the majority of modeling works also perform classifications), and the

models are then used for correlation analysis, such as trend analysis.

2.5.4 Quality of Conducted Campaigns

The quantitative dimension defined in section 2.3.2, along with the indication of the confi-

dence on collected data, give us a mean to evaluate the quality of conducted FFDA cam-

paigns.

From the considered studies, it results that the average density is 1665 items/month,

against an average length of the experiments of 25 months. This means that the experiments

are conducted on about 40000 data items, on average. Although these figures seem to be



Chapter 2. Field Failure Data Analysis: Methodology and Related Work 71

Table 2.5: Percentiles of the Density of FFDA studies

ValuePercentile

2.750%

2.751%

4.015%

11.7510%

27.0725%

106.66550%

329.0275%

250190%

3304.7295%

33417.599%

33417.5100%

ValuePercentile

2.750%

2.751%

4.015%

11.7510%

27.0725%

106.66550%

329.0275%

250190%

3304.7295%

33417.599%

33417.5100%

Length (months)

D
e
n
s
it
y
 (

it
e
m

s
/m

o
n
th

)

48%

Figure 2.9: FFDA studies density-length relationship

reasonable, a look at the density’s percentiles (see table 2.5) evidences that the 50% of

works exhibit densities which are lower than 106 items/month. In other terms, several

works are concerned with systems which experience a little amount of failures in time. For

these systems, longer experiments should be performed. However, this is not always the

case, as shown in figure 2.9. Even if the trend is to perform short experiments for high

densities and long experiments for low densities, there is still a significant amount of works

(48%) exhibiting low densities and short lengths, as indicated in the figure.



Chapter 2. Field Failure Data Analysis: Methodology and Related Work 72

For the 31% of works it has not been possible to evaluate the density at all, either because

the lenght of the experiment, or the number of data items have not been made available by

authors. As for the confidence measures, only the 26% of the considered studies explicitly

provides its indication, whereas the 13% furnishes a partial indication, i.e., only on a fraction

of the considered data. However, this does not represent an issue for classification studies.

Overall, the quality of conducted experiments can be rated as acceptable. However,

the considerations given in this section can be taken into account when conducting future

studies, hence improving the quality of future FFDA research.

2.6 FFDA of MDSs: Issues and Challenges

The seek for answers on the dependabilty of MDSs, and the lack of field data on them,

as evidenced in section 2.5.1, call for the conduction of FFDA studies on these systems.

Recently, some first effort has been conducted towards this direction. The work in [74],

proposes a FFDA for a wireless telecommunication system, along with the analysis of failure

and recovery rates is discussed. However, the failure data are relative to the fixed core

entities (base stations) of a cellular telephone system. [39] reports on a collection of

user-perceived failure data from Bluetooth piconets, in order to give a qualitative failures

characterization of Bluetooth-enabled devices. The work defines a set of different test-cases

which have been applied to a variety of Bleutooth devices. Nevertheless, as also authors

stated, the results are not purely scientific in that they have no statistical significance. More

effort is thus needed. Anyway, new issues and challenges arise when applying the FFDA



Chapter 2. Field Failure Data Analysis: Methodology and Related Work 73

methodology to MDSs.

As a MDS is composed of a set of mobile devices linked together via wireless communi-

cation means, partial FFDA studies should at least address either the wireless technology

or the mobile devices. The following challenging questions are related to the former:

• Which data source can be adopted? Failure reports are to be discarder, since there

are no publicly available field data on wireless infrastructure, to our knowledge. A

possible solution can be event logs, but are we sure that they are able to capture the

overall failing behavior of a communication technology? Perhaps, some failure causes

lye at the channel level, which cannot be captured by the Operating System’s logging

facilities. These data can however be gathered via network monitoring. Hence, a

mixed approach is needed, able to gather and correlate data from multiple sources.

Nevertheless, little experience has been matured on FFDA with mixed sources (the

5% of studied works).

• Can we use idle workloads? Wireless channels are generally used in a spot way: the

mobility of users and the limited capacity of radio links harden the task of measuring

dependability parameters. Dependability continuous-time measures, such as MTBF

and MTTR, require the system to be active 24/7 to be properly estimated. Hence,

automated workloads should be deployed on actual nodes, to force a 24/7 utilization of

the infrastructure. Once again, there poor experience has been achieved about FFDA

with automated workloads (the 5% of related work), thus more effort is required in

this direction.



Chapter 2. Field Failure Data Analysis: Methodology and Related Work 74

The situation gets even worse in the case of mobile devices. In particular, the following

open issues arise:

• How to collect the failure data? Due to their specificity constraints, mobile devices

generally do not provide any built-in logging facility. Even if some instrument is

defined, they are used by manufacturers during the development process. As an

example, the Symbian OS for smartphones offers a particular server (the flogger)

allowing an application to log its information. Yet, to access the logged data of a

generic X system/application module it is necessary to create a particular directory,

with a well defined name (e.g. Xdir). The problem is that the names of such directories

are not made publicly available. It is indeed undesirable for manufacturers to publish

their sensible failure data. Hence, ad-hoc logging mechanisms have to be designed,

dealing with mobile devices constraints and specificities.

• Where do we have to start from? Failure modes of a typical wireless communication

mean have already been hypothesized. Examples are connectivity failures, packet

losses, and network partitions. Unfortunately, this is not the case for mobile devices,

where there is no substantial knowledge on the failure nature. This knowledge cannot

be underestimated because, if a logging mechanism is to be built, one should at least

know when and how to register a failure event.

The following two chapters try to answer the above mentioned questions, with reference

to Bluetooth PANs and Symbian OS smart phones. These chapters are the result of a three

years experience, and partially extend previously published results, as [27][29][3].



You always admire what you really
don’t understand.

Blaise Pascal

Chapter 3

FFDA of Bluetooth Personal Area

Networks

The Bluetooth wireless technology is nowadays widespread adopted in a variety of portable devices.
In particular, the Bluetooth Personal Area Network (PAN) feature offers IP support over Bluetooth,
thus expanding the model of personal communications to provide connectivity and Internet access to
and between heterogeneous devices. However, the dependability level of this widely used technology
is still unknown.
This chapter presents a failure data analysis campaign on Bluetooth Personal Area Networks (PANs)
conducted on two kinds of heterogeneous testbeds (working for more than one year). The obtained
results reveal how failures distributions are characterized and suggest how to improve the dependabil-
ity of Bluetooth PANs.

3.1 Rationale and Characterization of the FDDA Campaign

As demonstrated in recent works, the utilization of Bluetooth as a “last meter” access net-

work, represents an opportunistic and cost-effective way to improve the connection avail-

ability of the wide-spread existing 802.11 networks [44, 54]. A significant research quest

is to assess whether the Bluetooth technology represents a good candidate for develop-

ing mission- or business-critical wireless-based systems. Another interesting quest is to

evaluate how Bluetooth meets everyday dependability needs for the consumer-electronic

mass-market. To this aim, it is necessary to quantitatively evaluate dependability figures

75



Chapter 3. FFDA of Bluetooth Personal Area Networks 76

and to investigate possible fault tolerance means for improving the overall dependability

level.

However, the conduction of a FFDA campaign on a wireless communication infrastruc-

ture cannot be performed notwithstanding the specificity of the technology and its different

scope, as compared to operating systems and applications. Hence, as just mentioned in

previous chapter, two challenging questions arise when targeting wireless communication

technologies:

• Which data source can be adopted?

• Can we use idle workloads?

As regarded to first question, it has been previously argued that there are no publicly

available failure reports for this kind of systems, while event logs alone cannot assure that

all the relevant information is gathered. Most of the failure causes lyes indeed in the volatile

nature of the wireless channel, those behavior can hardly be captured by operating system’s

event logs only. For this reason, a mixed approach is preferred, capable to collect failure-

related information from more than one source. Specifically, the analysis on Bluetooth

PANs presented in this chapter, is based on failure data collected at three levels: application

level (via application logs), operating system level (via OS event logs), and channel level (by

means of a Bluetooth channel sniffer). The relationships between data at the different levels

allows for a deep understanding of the failure phenomenology, failure causes, and vertical

failure propagation, from the channel, up to applications. More in detail, the collected

multi-level data permits to obtain the following results:



Chapter 3. FFDA of Bluetooth Personal Area Networks 77

• The definition of a detailed failure model of Bluetooth PANs, in terms of i) the classifi-

cation of the failures affecting the applications, ii) the identification of their statistical

distributions, which are lognormal for the majority of failure classes, iii) the investiga-

tion of possible low level causes of the failures, and iv) the study of failures distribution

as Bluetooth channel utilization changes, in order to identify usage patterns that have

to be avoided to develop more robust applications.

• The characterization of the self-robustness of Bluetooth wireless channels with respect

to faults affecting the radio channels. Low level communication faults are classified,

and measures of the coverage of the Bluetooth low level protocols, in terms of the

percentage of errors which are detected and corrected, are performed. In particular,

a four nine coverage is discovered, demonstrating a good level of self-robustness.

• The improvement of the dependability level of Bluetooth PANs. To this extent, the

failure model is used, that is, for each observed failure, we infer its sources. Then, we

try to identify the most effective recovery action and, in some cases, we are able to

apply error masking strategies by completely eliminating some failures from occurring.

As for the second question, it is desirable to adopt 24/7 automated workloads for several

reasons. First, dependability continuous-time measures, such as the Time Between Failures

(MTBF) and the Time To Recover (MTTR), require the system to be active 24/7 to be

properly estimated. Second, due to the intrinsic characteristics of mobile infrastructures,

mobile terminals are generally used in a spot way, differently from server farms or net-

worked systems for which an idle workload is sufficient, as observed in section 2.5. Third, a



Chapter 3. FFDA of Bluetooth Personal Area Networks 78

continuously operating workload well represents all those critical scenarios where the wire-

less infrastructure is required to operate continuously, such as remote control of robots, or

video-surveillance.

The design of such a 24/7 automated workload plays a crucial role in our analysis, since,

as evidenced in section 2.4.1, there is a strong correlation between workloads and failure

behavior. To this aim, two classes of workloads have been realized. The first class stimu-

lates Bluetooth channels via completely random workloads in order to study the Bluetooth

Channel behavior irrespective of the specific networked application being used. This let us

identify good/bad usage patterns that should be adopted/avoided to realize more robust

applications. The second class uses more realistic workloads of traditional IP-based appli-

cation (i.e., Web, streaming, and Peer-to-peer), adopting the traffic models as published in

recent works on this research field. This workload allows to characterize the dependability

of traditional networked applications using Bluetooth PAN as a last-meter access network.

Table 3.1 summarizes the characteristics of the FFDA campaign, according to the frame-

work introduced in section 2.3. As can be observed from the table, the study is significant

from several perspectives: it achieves a variety of interesting results, it benefits from an

high density, and it performs a significant amount of analysis.

The rest of the chapter deeply describes the data collection methodology and the re-

sults obtained from the FFDA campaign. Such results complete our previous effort in this

direction [27][29].



Chapter 3. FFDA of Bluetooth Personal Area Networks 79

Table 3.1: Characterization of the study conducted on Bluetooth PANs

Analysis of Bluetooth PANs

ValueDimension

Filtering, spatial coalescence, temporal 

coalescence (from merged log files)
Manipulation

Automated (random and realistic)Workload

Channel, OS, ApplicationLevels

Application logs, System logs, network monitoringData Source

Classification, Dependability measurements, 

Modeling, Correlation
Analysis

YesConficence

20967 items/monthDensity

377405Data Items

18 monthsLength

Definition of a failure model, Failure propagation 
and causes,  Bluetooth self-robustness, definition 

of masking and recovery strategies.

Achieved Results

Bluetooth PANsTarget System

InternalSource

AcademyActor

Dependability StudyPurpose

2006Date

Analysis of Bluetooth PANs

ValueDimension

Filtering, spatial coalescence, temporal 

coalescence (from merged log files)
Manipulation

Automated (random and realistic)Workload

Channel, OS, ApplicationLevels

Application logs, System logs, network monitoringData Source

Classification, Dependability measurements, 

Modeling, Correlation
Analysis

YesConficence

20967 items/monthDensity

377405Data Items

18 monthsLength

Definition of a failure model, Failure propagation 
and causes,  Bluetooth self-robustness, definition 

of masking and recovery strategies.

Achieved Results

Bluetooth PANsTarget System

InternalSource

AcademyActor

Dependability StudyPurpose

2006Date

3.2 Bluetooth Background

Bluetooth [12], BT in the following, is a short-range wireless technology operating in the

2.4 GHz ISM band. The BT system provides both point-to-point and point-to-multipoint

wireless connections. Two or more units sharing the same channel form a piconet. One BT

unit acts as the master of the piconet, whereas the other unit(s) acts as slave(s). Up to

seven slaves can be active in the piconet.

Applications running on BT-enabled devices use a common set of data-link protocols, the

BT core protocols, which are described in the following.

• Baseband : this layer enables the physical RF link between BT units forming a piconet.

It provides two different physical links, Synchronous Connection-Oriented (SCO) and



Chapter 3. FFDA of Bluetooth Personal Area Networks 80

Asynchronous Connectionless (ACL). The channel is divided into time slots, each 625

µs in length. A BT ACL data packet may occupy 1, 3, or 5 consecutive time slots.

Packets consist of a 72-bit access code for piconet identification and synchronization, a

18 bit header, and a variable length payload. The header contains a header error check

(HEC) to check the header integrity. If the HEC does not check, the entire packet

is disregarded. The payload consists of three segments: a payload header, a payload

and a Cyclic Redundancy Code (CRC) for error detection. The 16 bits CRC-CCITT

polynomial g(x) = x16 + x12 + x5 + 1 is adopted, irrespective of the payload size (i.e.,

from 1 up to 5 slots), which is able to catch all single and double errors, all errors with

an odd number of bits, and all burst errors of length 16 bits or less. It however may

fail to detect burst errors which are longer than 16 bits in length, such as 17 bits bursts

(with 99.997% coverage) and 18 bits or longer bursts (with 99.998% coverage). In DMx

packets (where x is the number of consecutive slots, i.e. 1, 3, and 5), the payload is also

coded with shortened Hamming code, in order to perform Forward Error Correction

(FEC). DHx packets are instead uncoded. Baseband performs error correction via an

ARQ (Automatic Repeat Request) retransmission method. According to this scheme,

packets with invalid CRC are retransmitted until an acknowledgment is received or a

certain timeout expires.

• Link Manager Protocol (LMP): the LMP is responsible for connection establishment

between BT devices, including security aspects, such as authentication and encryption.

It also provides BT devices with the inquiry/scan procedure.



Chapter 3. FFDA of Bluetooth Personal Area Networks 81

• Logical Link Control and Adaptation Protocol (L2CAP): this layer provides connection-

oriented and connectionless data services, including multiplexing capabilities, seg-

mentation/reassembly operations, and group abstractions. Error correction and flow

control are not performed at this layer since the Baseband channel is assumed, by

Bluetooth designers, to be reliable.

• Service Discovery Protocol (SDP): using SDP, device information, services, and char-

acteristics of services can be retrieved.

The BT specification also defines a Host Controller Interface (HCI), which provides devel-

opers with an API to access the hardware and to control registers of baseband controller

and link manager.

The communication between a BT Host and a Host Controller takes place via either

UART or RS232 protocols over serial channels, such as the Universal Serial Bus (USB).

Recently, the BlueCore Serial Protocol (BCSP) has been adopted on some devices, such

as Personal Digital Assistants (PDAs). It provides a more sophisticated option than its

predecessors. BCSP carries a set of parallel information flows between the host and the

controller, multiplexing them over a single UART link, and it adds error checking and

retransmission.

BT piconets are highly dynamic, with devices appearing and disappearing. For this

reason, the BT core specification provides automatic discovery and configuration. Several

stages must be completed before BT service can be used: i) Find the device (Inquiry);

ii) Connect to the device (Page); iii) Discover what services the device supports (Service



Chapter 3. FFDA of Bluetooth Personal Area Networks 82

RF

Baseband

Audio
LMP

L2CAP

BNEP

SDP IP

C
o

n
tr

o
l 
(H

C
I)

Applications

RF

Baseband

Audio
LMP

L2CAP

BNEP

SDP IP

C
o

n
tr

o
l 
(H

C
I)

Applications

Figure 3.1: The Bluetooth Protocol Stack and the PAN profile

Discovery Protocol- SDP); iv) Decide what service to connect to and find out how to connect

to it (SDP); and v) connect to the service.

The focus of this study is on the use of IP over a BT piconet. The BT Special Interest

Group defined the PAN profile, that provides support for common networking protocols

such as IPv4 and IPv6. The PAN profile exploits the BT Network Encapsulation Protocol

(BNEP) to encapsulate IP packets into L2CAP packets and to provide the Ethernet ab-

straction. BNEP does not provide any integrity check mechanism for its header. When the

PAN profile is used, the master/slave switch role operation assumes a key role. A PAN User

(PANU) willing to connect to a Network Access Point (NAP) becomes the master since it

initiates the connection. As soon as the connection is established at L2CAP level, a switch

is performed, because it is important that the NAP remains the master of the piconet in

order to handle up to seven PANUs.

Figure 3.1 gives an overall picture of the described protocols.



Chapter 3. FFDA of Bluetooth Personal Area Networks 83

3.3 Data Collection Methodology

This section provides the needed insight into the data collection methodology adopted for

the Bluetooth FFDA campaign, according to the typical steps of the FFDA methodology,

defined in 2.2.

3.3.1 Testbed and Workload Description.

Two testbeds are deployed, composed of actual machines equipped with BT antennas. In

order to directly face the intrinsic nature of mobile infrastructure, emulation workloads

run on every node of the testbeds. As already introduced, two types of workloads are

considered: a totally random workload, so as to stimulate Bluetooth protocols and channels

in a uniform way and to identify good/bad usage patterns, and a realistic workload, in

order to characterize the dependability behavior of common networked applications when

used over BT radio links. Testbeds’ topology is shown in figure 3.2. According to the PAN

profile, the master node (Giallo) is configured as a NAP to accept incoming connections from

slaves, running PANU applications. The workload, called BlueTest, runs on all the nodes, in

particular BlueTest clients on PANUs, and a BlueTest server on the NAP. Both the actual

testbeds obey to the same hardware and software configurations, i.e. they are composed of

7 devices, 1 master (the NAP) and 6 slaves (the PANUs). To let results be independent on

specific hardware platforms or operating systems, the testbed is composed of heterogeneous

nodes, ranging from several commodity PCs, with different hardware configurations and

OSs, to PDAs. Table 3.2 summarizes technical characteristics of the adopted machines.



Chapter 3. FFDA of Bluetooth Personal Area Networks 84

on boardBlueZ 2.10XScale 400Mhz/32Mb Zaurus SL-5600

2.4.18-rmk7-pxa3-embedixOpen Zaurus 3.5.2 LinuxZaurus SL-5600

Anycom CC3030BlueZ 2.10P4 1.60GHz/128Mb Giallo 

3COM 3CREB96BBlueZ 2.10P3 350Mhz/256Mb Verde

Belkin F8T003BlueZ 2.10Celeron 700Mhz/128Mb Miseno

Digicom PalladioBlueZ 2.10P3 350MHz/256Mb Azzurro

Sitecom CN-500BroadcommP4 1.80Ghz/512Mb Win

on boardBlueZ 2.10StrongARM 206 MHz/64Mb Ipaq H3870 

BT HardwareBT StackCPU/RAMHost

Service Pack 2MS Windows XPWin

2.4.19-rmk6-pxa1-hh37Familiar 0.8.1LinuxIpaq H3870 

Service Pack 2MS Windows XPSniffer

2.4.21-0.13mdkMandrakeLinuxGiallo 

2.4.21-0.13mdkMandrakeLinuxVerde

2.6.5-1-386DebianLinuxMiseno

2.6.9-1-667FedoraLinuxAzzurro

2 proprietary BT probesSP2 BT StackP4 1.80 Ghz/512MbSniffer

Kernel VersionDistributionO.S.Host

��� �����	�

�� ����������������
�	� ����� ��!�"$#%� & �('%"

)�*	+-,

	� (�������.�$�����
�	� ����� ��!�"$#/� & �('�"

01��2 3��
	� (�������.�$�����
�	� ����� ��!�"$#%� & �('%"

4�+�5�2�5��

�� ����������������
�	� ����� ��!�"$#%� & �/'%" 6 � +�7 7 �

8 /9�: ��;����	���(�
��� ����� ��!�"-<��(= > �/=

?A@(@%5�2B2 �

	� ����C�D���������
��� ����� ��!�"1#/� & �('�"

EF� �

�� ����������������
�	� ����� ��!�"$#%� & �('%"

G�H

GCH
I�H

I�H

J	K I�H
J	K I�H

L ��� M MD��2
��/9B9.N �(�PO�Q/R%�

Figure 3.2: The topology of both the Bluetooth testbeds, along with the technical details of their
machines

Linux machines use the standard BlueZ stack1, whereas the Windows ones are equipped

with Service Pack 2 and use the BroadCom stack2. Note that the native Windows BT Stack

could not be used because it does not offer any API for the PAN profile (in Windows XP, IP

facilities over Bluetooth are provided only via point-to-point RFCOMM3 connection). All

the machines are equipped with Class 2 BT devices, i.e., up to 10 meters communication

range. Other than active nodes running the BlueTest, also a passive Sniffer node is present.

The sniffer is equipped with two BT dongles, and with a commercial software for sniffing BT

packets over the air. The Sniffer is equipped with Windows XP and it uses the Windows’

SP2 Bluetooth stack. In order to reduce hardware aging phenomena, the two testbed have

been totally replaced by new ones (having the same configuration), in the middle of the

testing period. The PANUs’ BT antennas have been placed at several different distances

from the NAP’s antenna (e.g. 0.5m, 5m, and 7m, see figure 3.2), in order to evaluate the

1The Official Linux Bluetooth protocol stack, http://www.bluez.org
2Broadcom is a commercial implementation of the BT Stack for Windows, http://www.broadcom.com
3Serial Cable Emulation Protocol



Chapter 3. FFDA of Bluetooth Personal Area Networks 85

SCANNING

event S/ scanning

event SDP/ SDP search

S, SDP

CONNECTION

do/ L2CAP connect

do/ PAN connect

USE

entry/ switch role

do/ send/receive

DISCONNECTION

do/ disconnect

WAIT

do/ sleep

B N, LS

TW

BlueTest Client

ACCEPT

do/ accept

USE

do/ send/receive

LR

BlueTest Server

SCANNING

event S/ scanning

event SDP/ SDP search

SCANNING

event S/ scanning

event SDP/ SDP search

S, SDP

CONNECTION

do/ L2CAP connect

do/ PAN connect

CONNECTION

do/ L2CAP connect

do/ PAN connect

USE

entry/ switch role

do/ send/receive

USE

entry/ switch role

do/ send/receive

DISCONNECTION

do/ disconnect

DISCONNECTION

do/ disconnect

WAIT

do/ sleep

WAIT

do/ sleep

B N, LS

TW

BlueTest Client

ACCEPT

do/ accept

ACCEPT

do/ accept

USE

do/ send/receive

USE

do/ send/receive

LR

BlueTest Server

Figure 3.3: State-chart Diagram of the Bluetooth Workload

failure distribution as a function of the distance. Antenna positions are fixed, hence we

collect data about fixed PAN topologies. However, this is representative of real cases in

which PANs are built among computers on a desk.

The BlueTest workload (WL) emulates the operations that can be made by a real BT

user utilizing PAN applications. Each BlueTest cycle consists of common BT utilization

phases, as summarized in the state-chart diagram of figure 3.3. It first executes an in-

quiry/scan procedure to discover devices in the environment, then it searches the Network

Access Point (NAP) service via a SDP Search operation. Once the NAP has been found,

the Bluetest client connects to it (by creating a BNEP channel on top of a L2CAP con-

nection), switches the role to slave (to let the NAP to be the master of the piconet), uses

the wireless link by transfering data to its counterpart (the Bluetest server), and finally

it disconnects. Before starting a new cycle, the BlueTest client waits for a random time,

which can be thought as a user passive off time, modeled according to a Pareto distribution,

coherently to previous work [34]. To add uncertainty to the piconet evolution, each WL

cycle is characterized by several random variables: i) S, scan flag, if true, an inquiry/scan

operation is performed; ii) SDP , service discovery flag, if true, a SDP search is performed;



Chapter 3. FFDA of Bluetooth Personal Area Networks 86

iii) B, the Baseband packet type; iv) N , the number of packets to be sent/received; v)

LS/LR, the size of sent/received packets; and vi) TW , the passive off waiting time. S and

SDP are introduced since real BT applications do not perform inquiry/scan procedures or

SDP searches every time they run. It is possible to exploit caching of the recently discov-

ered devices or services. For each WL cycle, values for S and SDP are chosen according

to the uniform distribution, since the lack of publicly available information about the real

utilization pattern of inquiry/scan procedures and SDP searches for a typical PANU appli-

cation. B, N , LS , and LR parameters depend on the channel utilization, as described in

the following.

Random WL. It generates totally random values for B, N , LS , and LR. In particular,

B is randomly chosen among the six BT packet types (i.e. DMx or DHx), according to a

binomial distribution. This helps to ‘stimulate’ the channel with every packet types. N ,

LS , and LR are generated following uniform distributions, for the same reasons. To let us

analyze the integrity state of packets as they are received by PANUs and the NAP, the

random WL uses the User Datagram Protocol (UDP). More details on this WL can be

found in our previous work [27].

Realistic WL. It generates values for the parameters according to the random processes

which are used to model actual Internet traffic [34, 41]. In particular, the choice for B is left

to the BT Stack, whereas N follows power law distributions (e.g. the Pareto distribution)

related to the dimension of the resource that have to be transferred. The parameters of the

distributions are set with respect to the application being emulated (e.g. Web browsing,

file transfer , e-mail, peer to peer, video and audio streaming). Values for LS and LR are



Chapter 3. FFDA of Bluetooth Personal Area Networks 87

set according to the actual Protocol Data Unit, commonly adopted for the various trans-

port protocols over the Internet [41] (e.g. 572 or 1500 bytes for the Transmission Control

Protocol - TCP, 825 bytes for the Real-time Transport Protocol - RTP, 40 bytes for ac-

knowledgment packets [41]). Hence the WL adopts TCP, except from streaming traffic,

where UDP is used. Finally, since a user can run more applications in sequence over the

same connection, the WL runs from 1 up to 20 consecutive cycles over the same connection.

Finally, the behavior of the WL may slightly change from an application to another. For

example, streaming applications only receive data (that is, LS = 0), whereas the other

applications, which use TCP, require a continuous data down stream and acknowledgments

upstream and vice versa. Further details on the Realistic WL can be found in our technical

report [19].

3.3.2 Failure Data Logging and Collection

Failures might manifest during the normal WL execution. When a failure occurs, the work-

load is instrumented to register a failure report. Three levels of failure data are produced,

as in the following.

User Level Failures: failure reports about the failure as it manifests to a real user, using a

PANU device. The report also contains details about the BT node status during the failure

(e.g. the WL type, the packet type, the number of sent/received packets);

System Level Failures: failure data registered by system software on the OS system log file,

including BT APIs and OS drivers.



Chapter 3. FFDA of Bluetooth Personal Area Networks 88

RF

Baseband

Audio
LMP

L2CAP

BNEP

SDP IP

C
o

n
tr

o
l 
(H

C
I)

Applications

User E v ent L ogs

S y stem  E v ent L ogs

N etw ork  Monitoring

Figure 3.4: Bluetooth multi-level failure data collection

System Level
Failures

User Level 

Failures

Channel Level

Failures

System Level
Failures

User Level 

Failures

Channel Level

Failures

Figure 3.5: Reletionship between User Level, System Level, and Channel Level Failures

Channel Level Failures: failure data gathered by a Bluetooth air sniffer directly over the

wireless media.

It is worth to note how this multi-level approach permits to gather failure data at all

the Bluetooth layers, as evidenced in figure 3.4. As highlighted in figure 3.5, System Level

Failures can be seen as errors for User Level Failures. In other terms, when a User Level

Failure manifests, one or more System Level Failures are registered in the same period

of time. This helps to understand causes behind the high level manifestation. The same

consideration applies for Channel Level Data and both User Level Failures and System

Level Failures. In particular, User Level and System Level Failures may also be due to

problems at the channel level, such as electromagnetic interference and multipath fading



Chapter 3. FFDA of Bluetooth Personal Area Networks 89

LOG SERVER

DB

DB Server

Collection 

log Server

network 

interface

PANU

BlueTest

Client

Test 

Log

System 

Log

LogAnalyzer network 

interface

Bluetooth 

interface 

Bluetooth 

interface 

network 

interface

System 

Log

LogAnalyzer

BlueTest

Server

NAP
network 

interface

Bluetooth

Probe 1

Sniff

Log
Sniffer

SNIFFER

Bluetooth

Probe 2

LOG SERVER

DB

DB Server

Collection 

log Server

network 

interface

PANU

BlueTest

Client

Test 

Log

System 

Log

LogAnalyzer network 

interface

Bluetooth 

interface 

Bluetooth 

interface 

network 

interface

System 

Log

LogAnalyzer

BlueTest

Server

NAP
network 

interface

Bluetooth

Probe 1

Sniff

Log
Sniffer

SNIFFER

Bluetooth

Probe 2

Figure 3.6: Bluetooth Failure Data Collection Architecture

which may cause some corrupted packets to elude the Baseband’s error control schemes

and to propagate to upper layers. The effects of propagation are discussed in section 3.4.3,

whereas the level of self-robustness of the Baseband level with respect to Channel Level

Failures is discussed in section 3.4.2.

The collection architecture we adopted is summarized in figure 3.6. User and System

Level Failure data on PANUs and the NAP is collected by a LogAnalyzer daemon, which

sends it to a central repository, the Log Server, where data are then analyzed by means of

a statistical analysis software. We used the SAS analyzer suite4.

On each PANU, both User Level and System Level failure data is stored in two files:

the Test Log file, which contains User Level failures reports, and the System Log file,

containing all the error information registered by the applications and system daemons

running on the BT host machine (on the NAP, only System Level failures are gathered).

The LogAnalyzer periodically extracts failure data from both the logs, and sends them to

the Log Server.

4SAS is an integrated software platform for business intelligence which includes several tools for statistical
analysis; it is produced by SAS Institute Inc., http://www.sas.com



Chapter 3. FFDA of Bluetooth Personal Area Networks 90

As for Channel Level Failures data, we use a commercial Bluetooth air sniffer tool

in charge of capturing BT traffic and of organizing data in different structured decoding

formats, from frame level to bit level. The sniffer is able to collect all the information

we need, such as, failure reports at both the Baseband layer, and the L2CAP, storing

data into a Sniff Log file. To let sniffing operation not interfere with node activities, the

sniffer has been installed on a machine that does not join the piconet (the Sniffer node in

figures 3.6 and 3.2). Due to their passive nature, all current air sniffers cannot request the

retransmission of a missed packet. For this reason, data has been sniffed by installing two

redundant Bluetooth antennas (also called probes, and provided with sniffer kit). Probes

placement plays a key role to obtain good data. Let us indicate with r the ratio between the

number of frames retransmitted by the nodes and the frames the sniffer marks as erroneous.

The probes have been placed so as to achieve r ∼= 1. This simple heuristic metric assures

that the sniffed data is not influenced by probes location.

Both testbeds have run for more than one year, from June 2004 to November 2005, with

356551 failure data items being collected. In particular, there were 20854 User Level failure

reports from Test Logs and 335697 System level failure entries from System Logs. The

most of the failures (84%) comes from the random workload. Data from the sniffer have

been captured during a period of 2 months over a testbed running the random WL, with

over 26.5 millions of failure entries from the Sniff Log.



Chapter 3. FFDA of Bluetooth Personal Area Networks 91

HCI command for invalid handle

HCI command timeout

Connect failed

Coalescence window

1. Time-based

merging

2. Tupling 3. Relationship

evidences

finding HCI-Connect evidence

Test

Log

System

Log 2. Sensitivity Analysis
Coalescence window (s.)

N
u
m

b
e
r 

o
f 
T

u
p
le

s
(%

)

330 seconds,

chosen value

Coalescence window tuning

knee

Merged

file

Coalesced 

file

Figure 3.7: The “merge and coalesce” scheme adopted to pinpoint error-failure relationships

3.3.3 Data Filtering and Manipulation

The System Log contains data from all applications and daemons running on the host

machine; it is thus needed to filter the log in order to capture only BT related information.

This helps to reduce the amount of data which have to be stored and simplifies the analysis

process.

We also need to manipulate the data in order to i) gain more insights into error-failure

relationship on each machine, by relating User Level with System Level and Channel Level

failures (via temporal coalescence), and ii) evaluate if and how often the failures manifest

together on different machines, by analyzing the User Level Failures correlation among

machines (via spatial coalescence).

The huge amount of data does not allow us to perform these manipulation operations

manually. Hence, we define a “merge and coalesce” semi-automatic scheme. Let us envision

the scheme with reference to the relationship between System Level and User Level failures.

Scheme’s steps are summarized in figure 3.7. First, for each node a log file is produced by

merging its Test Log and System Log files, on a time-based criteria (entries are ordered

according to their timestamps). Second, the merged file is analyzed using the tupling



Chapter 3. FFDA of Bluetooth Personal Area Networks 92

coalescence scheme [15], i.e., if two or more events are clustered in time, they are grouped

into a tuple, according to a coalescence window. The window size has been determined by

conducting a sensitivity analysis, as shown in the plot in figure 3.7. The number of obtained

tuples (reported as percentage of entries on the vertical axis) is plotted as a function of

the window size. A critical “knee” is highlighted in the plot. Choosing a point on the

curve before the knee causes the number of tuples to drastically increase, thus generating

truncations, i.e., events related to the same error are grouped into more than one tuple. On

the other hand, choosing a point after the knee generates collapses because events related

to different errors are grouped into the same tuple, due to a decreasing number of tuples.

For these reasons, a window size equals to 330 seconds, that is, exactly at the beginning

of the knee, is chosen. Third, the error-failure relationship is inferred by analyzing tuples’

contents. For instance, if a tuple contains both a “Connect Failed” user level message, and

HCI system level messages, an evidence of a HCI-connect relationship is found. Counting

all the HCI-connect evidences gives a mean to weight the relationship.

This scheme can easily be adopted in the other cases of our interest. For example, to

infer the Channel Level - User Level relationship, the scheme is adopted with reference to

the Test Log and the Sniff Log. In the case of the correlation among User Level failures

from different machines, the scheme is adopted by using the Test Logs from all the ma-

chines.



Chapter 3. FFDA of Bluetooth Personal Area Networks 93

3.4 Key Findings

3.4.1 Bluetooth PAN Failure Model.

Failures are classified by analyzing their spontaneous manifestation, as recorded in Test,

System, and Sniff Logs. The failure model described here is general, in the sense that it

considers all failure reports and events gathered from both testbeds and all the machines.

Failure manifestations are workload independent, i.e., the same failure types have been

observed, regardless of the workload being run. Differences are in the failure rates, as will

be detailed in section 3.4.4.

Figure 3.8 gives an overall picture of the Bluetooth PAN failure model. This considers

three levels of failures: user, system, and channel level, according to the collection method-

ology previously described. The reported failure types are the result of an accurate clas-

sification of the collected failures’ reports. Messages related to the same failure have been

classified into one failure type. This gives the model simplicity and understandability. The

table at the top in figure 3.8 describes user level failures, the table at the center is dedicated

to system level failures, and the table at the bottom reports channel level failures. User level

failures can be grouped into three classes, in accordance with the utilization phase where

they manifest, i.e., searching for devices and services, connecting, and transferring data.

Each group contains one or more failure types. For each failure type, a brief description of

its phenomenology is given in the table. Failures during the connection (Connect group)

can occur during all the steps that are needed to create a PAN channel, such as the L2CAP

and PAN connections setup, the role switch from master to slave, and the binding of the IP



Chapter 3. FFDA of Bluetooth Personal Area Networks 94

Observed errorsTypeLocation

Channel Level Failures

The receiver endpoint receives a packet that differs in length from the length 
stated in the header. The error is detected by Baseband.

Length mismatch

The Baseband packet header is corrupted. The corruption is detected by the 
Baseband’s HEC.

Corruption

Header

The Baseband packet payload is corrupted. The corruption is detected by the 
Baseband’s CRC.

Soft Corruption

Payload

The Hardware Abstraction Layer (HAL) daemon times out waiting an hotplug

event.
Hotplug timeout

The Baseband packet payload is corrupted. The corruption is not detected by 
the Baseband’s CRC.

Hard Corruption

Out of order or missing BCSP packets.BCSP 

Unexpected start or continuation frames received. L2CAP

Connection with the SDP server refused or timed out, AP unavailable or not 

implementing the required service, even if it implements it.
SDP

Command for unknown connection handle, timeout in the transmission of the 
command to the BT firmware.

HCI

BT Stack 
related

Observed errorsTypeLocation

Failed to add a connection, can’t locate module bnep0, bnep occupiedBNEP

System Level Failures

The USB device does not accept new addresses to communicate with the BT 
hardware.

USB
OS,

Drivers 
related

The packet is received correctly, but the data content is corrupted.Data mismatch

Data 

Transfer

The request succeeds, but the command completes abnormally.Switch role command failed

The switch role request does not reach the master. Switch role request failed

The IP socket cannot bind the Bluetooh BNEP interface.Bind failed

The PANU fails to establish the PAN connection with the NAP.PAN connect failed

The SDP Search procedure terminates abnormally.SDP Search failed

The SDP procedure does not find the NAP, even if it is present.NAP not found

An expected packet is lost, since a timeout (set to 30 secs) expires.

The device fails to establish the L2CAP connection with the NAP.

The inquiry procedure terminates abnormally.

Phenomenology

Packet loss

Connect failed

Inquiry/Scan failed

Type

Connect

SDP Search

Group

User Level Failures
p
ro

p
a
g
a
te

s
p
ro

p
a
g
a
te

s

p
ro

p
a
g
a
te

s

Figure 3.8: The Bluetooth PAN Failure Model

socket over the BNEP interface. Unexpectedly, failures during data transfer (Data Transfer

group) encompass “Packet Loss” and “Data Mismatch” failures, despite Baseband’s error

control mechanisms, such as CRCs, FEC, and HEC schemes. However, as discussed in [84],

the weakness of integrity checks is the assumption of having memoryless channels with

uncorrelated errors from bit to bit. In our case, correlated errors (e.g. bursts) can occur

due to the nature of the wireless media, affected by multi-path fading and electromagnetic

interferences. The failure of the integrity checks is further investigated in next subsections.



Chapter 3. FFDA of Bluetooth Personal Area Networks 95

System level failures are grouped with respect to their location, i.e., BT software stack

and OS/Drivers. Failure types have been defined according to the component which sig-

naled the failure. For each failure type, a brief description is given. For instance, the

L2CAP module logs the presence of unexpected received frames, that is a start frame when

a continuation frame is expected, and vice-versa. This is probably due to interferences,

causing either frames or the synchronization with the piconet’s clock, to be lost.

Finally, channel level failures are classified into two classes, header related and payload

related, according to the portion of the packet that results to be corrupted. The “Hard Pay-

load Corruption” deserves more attention, since it is the only one that propagates to upper

layers. The other failures are indeed successfully detected and masked by the Baseband’s

FEC, HEC and CRC detection and retransmission schemes, as shown in the next subsection.

3.4.2 Baseband Coverage

Failure data from the air sniffer evidenced a very high failure rate at the Baseband layer.

The average failure rate resulted to be 6.822 failures per second. If we consider that 596

frames on average are transmitted every second, this means that about one frame out of

100 frames is delivered with errors. This faulty behavior of the wireless media is well bal-

anced by Baseband’s error check and retransmission mechanisms. All “Header Corruptions”

(which represent the 88.42 % of channel failures), “Length Mismatches” (1.806%), and “Soft

Payload Corruptions” (9.77%) are indeed detected and successfully masked. The remaining

0.004% of the failures, i.e., “Hard Payload Corruptions”, are not detected by baseband and



Chapter 3. FFDA of Bluetooth Personal Area Networks 96

hence they propagate to upper layers (the consequences of this propagation are investigated

in next subsection). This leads to an overall coverage of the Baseband layer of 0.99996.

The causes of the propagation can be found in the bursty nature of the corruptions. As

known, the CRC-CCITT polynomial used by Baseband’s CRC cannot always detect error

bursts, and, in fact, it detects 18 bits or longer bursts with 0.99998 coverage probability.

We analyzed the corrupted packets, discovering that error bursts have an average size of

512 bits.

The time between propagations, that is, the time between “Hard Payload Corruptions”,

follows an exponential probability distribution, whit a shape parameter λ = 2.73 · 10−4 s−1,

and mean equals to 3665 seconds. In other terms, about one propagation per hour oc-

curs, and consecutive propagations are uncorrelated with each other. The fitting has been

conducted using the SAS analyzer. We tried to fit the data with exponential, lognormal,

and weibull distributions, using the Maximum Likelihood Estimators provided by SAS.

The goodness of fit is proved by means of three well-known tests: Kolmogorov-Smirnov,

Cameron-Von Mises, and Anderson-Darling. The tests confirmed the exponential fitting.

3.4.3 Propagation Phenomena

This section reports the results of a propagation analysis between User Level, System Level,

and Channel Level failures, in order to discover the low level causes behind high level failure

manifestations. First, we investigate the User Level - System Level failures relationship,

then we complete the analysis with the Channel level causes.



Chapter 3. FFDA of Bluetooth Personal Area Networks 97

Table 3.2 illustrates the results obtained by applying the merge and coalesce approach

to the Test and System Log files, with a coalescence window equals to 330 seconds. The

interpretation of the table is simple: the greater is the percentage reported in a cell, the

stronger is the relationship between the user level failure (on the row) and the system

level failure (on the column). Percentages on each row sum to 100 (except from the “tot”

column), so as to have a clear indication of user level failure causes. The “total” row and

the “tot” column report the total percentages, e.g., the 49.9% of the user failures are due to

HCI system failures. In order to discover error propagation phenomena from the NAP to

PANUs, the user level data have also been related with the NAP’s system log file (i.e., the

server), with the same merge and coalesce approach. Hence, for each system level failure

column, the table reports the figures obtained by relating the Test log with both the local

System Log and the NAP’s System Log, for each machine. The table contains very useful

information about the error-failure relationship, and NAP-PANU propagation phenomena.

For example, failures during the L2CAP connection (row “Connect failed” in the table) are

mostly due to timeout problems in the HCI module, either from the local machine or from

the NAP. This occurs when a connection request (or accept) is issued on a busy device. PAN

connection failures are instead frequently related to failures reported by the SDP daemon

(the 96.5% of the cases). Interestingly, we observed that exactly the 96.5% of PAN connect

failures manifests when the SDP Search is not performed by the workload (in other terms,

when the SDP flag is false). This is a clear indication that avoiding caching and performing

the SDP search before a PAN connection is a good practice to reduce PAN connect failures

occurrence. In the remaining cases in which the SDP search is performed (the 3.5% of the



Chapter 3. FFDA of Bluetooth Personal Area Networks 98

Table 3.2: Error-Failure Relationship: System Failures are regarded as errors for User Failures

User Level Failures

From  NAP

3.9

4.4

3.6

4.9

NAP

2.5

2.4

1.8

2.3

NAP NAP

0.7

33.9

0.8

19.4

38.6

0.5

5.7

0.1

0.2

0.1

TOT

2.6

2

3.6

1.5

9.1

NAPNAPNAP locallocallocallocallocallocallocal

8.991.1Sw role request failed

32.10.917.215.40.921.82.7Packet loss

Data mismatch

21.11.111.48.5749.91Total

2.7

1

USB

18.8

3.5

BNEP

35.5

HOTPLUG

20.26118.8Nap not found

2050.920SDP search failed

5.285.1Connect failed

96.5PAN connect failed

55.5Bind failed

49.78.210.90.9Sw role command failed

Inquiry/scan failed

BCSPSDPHCIL2CAP

System Level Failures

cases), the PAN connection fails due to errors in the BNEP module (see table 3.2). In

particular it fails to add the requested connection on the L2CAP connection. One more

interesting relationship is between “Switch role request failed” and command transmission

timeouts signaled by the HCI module (the 91.1% of switch role request failures). This

suggests that increasing the timeout in the API helps to reduce the switcth role request

failure occurrence. For some failures, such as “Inquiry/Scan failed” and “Data Mismatch”,

no relationships have been found. Table 3.2 also permits to define masking strategies, as

detailed in section 3.5.1.

The same methodology has been applied to discover the relationship between Channel Level

and User/System level failures. In this case, a coalescence window equals to 280 seconds had

been chosen. Figure 3.9 summarizes the results5, emphasizing the propagation phenomena

from “Hard Payload Corruptions” to User Level and System level failures. Data are gathered

5Figure 3.9 only reports the propagation of “Hard Payload Corruptions” to upper layers, and, for a
matter of space, it does not evidence all the System level causes of User Level Failures, such as “Packet
Loss” failures due to HCI errors, since they are already summarized in table 3.2.



Chapter 3. FFDA of Bluetooth Personal Area Networks 99

BNEP

L2CAP

Data

Mismatch

Packet 

Loss

PAN Connect
Failed

Switch Role

Comm. Failed

0.43

0.211

0.189

0.17

0.019

0.578

0.403

Hard Payload
Corruption

Channel

Level

User Level

System Level

0.839

0.161

BNEP

L2CAP

Data

Mismatch

Packet 

Loss

PAN Connect
Failed

Switch Role

Comm. Failed

0.43

0.211

0.189

0.17

0.019

0.578

0.403

Hard Payload
Corruption

Channel

Level

User Level

System Level

0.839

0.161

Figure 3.9: Propagation diagram of Hard Payload Corruptions to User and System Level Failures
on a single node

from a two months experiment with the random WL on every node. In the figure, the ellipses

represent failures (at the various levels) and the arrows represent propagations. The number

on each arrow is the average propagation probability; for instance, when a “Hard Payload

Corruption” occurs, it generates a “Data Mismatch” failure with a 0.189 probability. The

probabilities for the arrows from System to User Level failures are inferred from Table 3.2,

whereas the remaining have been obtained by merging and coalescing the Sniff Log with

the Test and System Log files, for each node. Note that the diagram only takes into account

local propagations, i.e., propagations on the same node.

The diagram shows several interesting points. “Hard Payload Corruptions” directly

cause “Data Mismatches” (18.9% of the cases), L2CAP errors (21.1%), BNEP errors (43%),

and “Packet Losses” (17%). This is easily justifiable if we look at the structure of the packets

that are transmitted among nodes, when the random WL is adopted6. As figure 3.10 points

out, a burst corruption may affect the L2CAP header, the BNEP header, the IP and UDP

6We recall that the sniffer has been used in conjuction with the random WL



Chapter 3. FFDA of Bluetooth Personal Area Networks 100

Baseband

Header

L2CAP

Header

BNEP

Header

IP

Header

UDP

Header
Payload

Baseband Payload

Packet affected by a Hard Payload Corruption

L2CAP

error

BNEP 

error

Data 

Mismatch
Packet

Loss

Baseband

Header

L2CAP

Header

BNEP

Header

IP

Header

UDP

Header
Payload

Baseband Payload

Packet affected by a Hard Payload Corruption

L2CAP

error

BNEP 

error

Data 

Mismatch
Packet

Loss

Figure 3.10: Hard Payload Corruptions consequences with respect to the packet’s structure; one of
the indicated errors/failures manifest, depending on the position of the corruption within the packet

headers, or, finally, the data itself. Hence, one of the above mentioned failures manifests

depending on the position of the burst in the packet.

More specifically, if the burst affects L2CAP or BNEP headers, L2CAP or BNEP error

manifests. We recall that L2CAP and BNEP are not covered by any error check mechanism,

because they assume the Baseband level to be highly reliable. However, we observed that

Baseband propagates about one failure per hour, causing L2CAP or BNEP to fail in the

64.1% of the cases. Furthermore, as we will discuss later in section 3.5.2, these failures

may also be higly severe, since they can sometimes require a reboot of the machine in

order to reestabish proper operation. This cannot be ignored, especially when considering

critical wireless systems which have to operate continuosly. The possibility of protecting

L2CAP and BNEP headers should thus be considered in the next releases of the Bluetooth

specifications.

Once the IP header gets corrupted, the IP module detects the error (the IP header is

protected with a CRC) and discards the packet, causing a “Packet Loss” to be manifested

at the application. Actually, we had no evidences of these phenomena in the system logs,



Chapter 3. FFDA of Bluetooth Personal Area Networks 101

since the IP module does not log any information when packets are discarded. However, we

found that the 17% of “Hard Payload Corruptions” directly cause “Packet Losses”, thus we

hypothesize that these losses are due to the corruption of the IP header. This is depicted

with a dashed arrow in figure 3.9. Finally, if the corruption affects the UDP header or the

payload, a Data Mismatch failure manifests7. One could question this last statement by

observing that UDP has its own checksum which is computed on the payload also. However,

this ckecksum is usually ignored by real UDP implementations.

Surprisingly, Baseband’s payload corruptions can also cause the failure of either switch

role or PAN Connection operation, other than packet losses or data mismatches. This is

because switch role or PAN Connection operations are performed by sending commands

over the air between two end-points. If one of this commands is delivered with errors, the

whole operation fails. To be clearer, let us envision an exemplary situation. Verde wants

to establish a PAN connection with Giallo, hence it sends BNEP commands to Giallo.

Unfortunately Giallo’s answers are delivered with errors, so the Verde’s BNEP module

ignores them. When a timeout expires, BNEP registers a “Failed to add a connection”

message on the System log, and consecutively the application (the Bluetest) records on the

Test log that the PAN connection operation has failed. This explains the “Hard Payload

Corruption - BNEP - PAN Connect Failed” chain.

As a last result, we evaluate the spatial correlation of failures among nodes. The analysis

has been conducted with the merge and coalesce approach applied to the Test Logs of all

the slave nodes, i.e., six nodes, for both workloads, with a coalescence window of 120 seconds.

7Note that some UDP header corruptions may cause packet losses in the case that the corruption affects
the server port



Chapter 3. FFDA of Bluetooth Personal Area Networks 102

P
a

c
k
e

t 
L
o

s
s

o
n

 I
p
a

q

C
o
n
n

e
c
t 

F
a
ile

d
o
n

 V
e

rd
e

P
a

c
k
e

t 
L
o

s
s

o
n

 A
z
z
u

rr
o

B
in

d
 F

a
ile

d

o
n

 W
in

P
a

c
k
e

t 
L
o

s
s

o
n

 M
is

e
n
o

P
a

c
k
e

t 
L
o

s
s

o
n

 V
e

rd
e

P
a

c
k
e

t 
L
o

s
s

o
n

 V
e

rd
e

P
a

c
k
e

t 
L
o

s
s

o
n

 Z
a
u

ru
s

timewindow
Packet Loss – Connect Failed

Cluster on 3 nodes
Packet Loss – Packet Loss

Cluster on 3 nodes

P
a

c
k
e

t 
L
o

s
s

o
n

 I
p
a

q

C
o
n
n

e
c
t 

F
a
ile

d
o
n

 V
e

rd
e

P
a

c
k
e

t 
L
o

s
s

o
n

 A
z
z
u

rr
o

B
in

d
 F

a
ile

d

o
n

 W
in

P
a

c
k
e

t 
L
o

s
s

o
n

 M
is

e
n
o

P
a

c
k
e

t 
L
o

s
s

o
n

 V
e

rd
e

P
a

c
k
e

t 
L
o

s
s

o
n

 V
e

rd
e

P
a

c
k
e

t 
L
o

s
s

o
n

 Z
a
u

ru
s

timewindow
Packet Loss – Connect Failed

Cluster on 3 nodes
Packet Loss – Packet Loss

Cluster on 3 nodes

Figure 3.11: Example of clusters of failures.

To simplify the analysis, we only consider failures that cannot be masked. In other terms,

we do not consider “Bind Failed”, “Switch Role Command Failed”, and “NAP not found”,

for which we defined proper masking strategies that prevent these failures from occurring

(see section 3.5.1). As a macroscopic figure, the 10.82% of the total number of failures

resulted to manifest as a cluster.

By cluster of failures we mean two or more User Level Failures that manifest within the

coalescence window onto two or more distinct nodes. Figure 3.11 exemplifies the concept of

cluster of failures. The figure shows two clusters. The one on the left is a 3-nodes cluster on

Ipaq, Azzurro, and Verde. The one on the right is a 3-nodes cluster as well because, even

if it contains four instances of failures, two of them come from the same node (i.e., Verde).

A summary of the results is given in table 3.3. Columns represent the clusters of fail-

ures we observed, the rows are the number of nodes, and the figures are the percentage of

failures with respect to the total number of clustered failures. For example, the 51.01% of

the clusters are composed by two “Packet Loss” instances (on two distinct nodes). From

the table, it is clear that “Packet Loss” failures are likely to manifest together on more than

one node. Moreover, the 38.98% of the total number of “Packet Loss” failures manifests as



Chapter 3. FFDA of Bluetooth Personal Area Networks 103

Table 3.3: Spatial coalescence of failures among nodes

0.10

P
A

N
 C

o
n

n
e
c
t F

a
ile

d

C
o

n
n

e
c
t F

a
ile

d

0.101.676

0.101.885

0.100.210.427.334

0.101.052.0921.063

0.9410.171.6751.012

P
a
c
k
e
t L

o
s
s

C
o

n
n

e
c
t F

a
ile

d

P
A

N
 C

o
n

n
e
c
t F

a
ile

d

P
a
c
k
e
t L

o
s
s

P
A

N
 C

o
n

n
e
c
t F

a
ile

d

P
a
c
k
e
t L

o
s
s

C
o

n
n

e
c
t F

a
ile

d

C
o

n
n

e
c
t F

a
ile

d

C
o

n
n

e
c
t F

a
ile

d

P
a
c
k
e
t L

o
s
s

P
a
c
k
e
t L

o
s
s

Clusters

of

Failures

number

of nodes 

0.10

P
A

N
 C

o
n

n
e
c
t F

a
ile

d

C
o

n
n

e
c
t F

a
ile

d

0.101.676

0.101.885

0.100.210.427.334

0.101.052.0921.063

0.9410.171.6751.012

P
a
c
k
e
t L

o
s
s

C
o

n
n

e
c
t F

a
ile

d

P
A

N
 C

o
n

n
e
c
t F

a
ile

d

P
a
c
k
e
t L

o
s
s

P
A

N
 C

o
n

n
e
c
t F

a
ile

d

P
a
c
k
e
t L

o
s
s

C
o

n
n

e
c
t F

a
ile

d

C
o

n
n

e
c
t F

a
ile

d

C
o

n
n

e
c
t F

a
ile

d

P
a
c
k
e
t L

o
s
s

P
a
c
k
e
t L

o
s
s

Clusters

of

Failures

number

of nodes 

clusters. This indicates that “Packet Losses” are often due to causes affecting whole parts

of the piconet, such as wide-band interference phenomena or temporary unavailabilities of

the master node.

3.4.4 Further Results

Figure 3.12 reports the results of the fitting for the time to failure (TTF) of two User

Level failures. Failure data comes from two nodes, “Bind Failed” failures on Azzurro, and

“Connect Failed” failures on Verde (data are from the random WL). We tried to fit the

data with exponential, lognormal, and weibull distribution, using the SAS analyzer. Both

the probability plots, and the results from the goodness of fit tests in table 3.4, indicate

that these failures follow the lognormal distribution. The probability plots show that real

data lies on the line of lognormal percentiles, at least until the 99 and 95 percentile for the

“Bind Failed” case and the “Connect Failed” case, respectively. Data points which does not

follow the line indicates that real data presents a shorter tail as compared to the lognormal



Chapter 3. FFDA of Bluetooth Personal Area Networks 104

Time to Failure (s)

P
e
rc

e
n
ta

g
e
 o

f 
F

a
ilu

re
s

(a)

Lognormal percentiles (shape = 0.8254)

T
im

e
 t
o
 F

a
ilu

re
 (

s
)

(b)

Time to Failure (s)

P
e
rc

e
n
ta

g
e
 o

f 
F

a
ilu

re
s

(c)

Lognormal percentiles (shape = 1.5216)

(d)

T
im

e
 t
o
 F

a
ilu

re
 (

s
)

Time to Failure (s)

P
e
rc

e
n
ta

g
e
 o

f 
F

a
ilu

re
s

(a)

Lognormal percentiles (shape = 0.8254)

T
im

e
 t
o
 F

a
ilu

re
 (

s
)

(b)

Time to Failure (s)

P
e
rc

e
n
ta

g
e
 o

f 
F

a
ilu

re
s

(c)

Lognormal percentiles (shape = 1.5216)

(d)

T
im

e
 t
o
 F

a
ilu

re
 (

s
)

Figure 3.12: Examples of TTF fittings. (a) Histogram and fittings for “Bind Failed” failures on
Azzurro, (b) probability plot of Azzurro’s “Bind Failed” TTF values for the Lognormal distribution,
(c) Histogram and fittings for “Connect Failed” failures on Verde, (d) probability plot of Verde’s
“Connect Failed” TTF values for the Lognormal distribution.

one. As for the goodness of fit tests (table 3.4), the p-values obtained for the lognormal

fitting are the best ones, for both cases.

The same analysis has been conducted for each User Level Failure on each node, and

the results are summarized in table 3.5. Failure data are gathered from the Random WL.

Giallo is not present, since the NAP only records system level data. Each cell in the table

contains the fitted distribution and its parameters, the MTTF evaluated in seconds, and

the coefficient of variation, evaluated as the standard deviation divided by the MTTF. In



Chapter 3. FFDA of Bluetooth Personal Area Networks 105

Table 3.4: Goodness of Fit Tests for Bind Failed on Azzurro and Connect Failed on Verde

Results for Bind Failed failures on Azzurro

Weibull fittingExponential fittingLognormal fitting

0.136

> 0.25

0.156

p-value

A2 = 1.699

W2 = 0.191

D = 0.014

Result

< 0.001

< 0.001

< 0.001

p-value

A2 = 157.5

W2 = 22.76

D = 0.116

Result p-valueResultTest

< 0.001A2 = 76.84Anderson-Darling

< 0.001W2 = 11.23Cramer-von Mises

< 0.001D = 0.075Kolmogorov-Smirnov

Results for Connect Failed failures on Verde

Weibull fittingExponential fittingLognormal fitting

> 0.25

> 0.25

> 0.25

p-value

A2 = 0.921

W2 = 0.077

D = 0.032

Result

< 0.001

< 0.001

< 0.001

p-value

A2 = 39.31

W2 = 6.941

D = 0.192

Result p-valueResultTest

0.007A2 = 4.301Anderson-Darling

0.016W2 = 0.682Cramer-von Mises

0.007D = 0.076Kolmogorov-Smirnov

particular, Logn(σ, µ) indicates a lognormal distribution, with shape parameter σ and scale

parameter µ, whereas Exp(λ) indicates an exponential distribution with shape parameter

λ. A minus symbol in a cell x,y means that no data are available for failure x on node

y, whereas the acronym n.e.d. stands for not enough data, meaning that the number of

available data items were not enough to conduct a significant fitting. The coefficient of

variation resulted to be low for most of the failures, confirming a good consistency of the

data.

As can be noticed from the table, almost all the failures on each node are distributed

as lognormal. The lognormal distribution is used extensively in reliability applications to

model failure times. A random variable can be modeled as log-normal if it can be thought

of as the multiplicative product of many small independent factors. In our case, this means

that User Level Failures are the product of many small faults at a lower level. These faults

can be both software faults, e.g., heisenbugs (i.e., design faults which conditions of activation

occur rarely or are not easily reproducible [107]) at the various level of the Bluetooth stack,

and channel faults, as the “Hard Payload Corruption” case. As for software faults, this is



Chapter 3. FFDA of Bluetooth Personal Area Networks 106

Table 3.5: Fitting summary of every User Level Failure on each node. Each cell contains the fitted
distribution, the MTTF, and the coefficient of variation. Data comes from the Random WL

Logn (0.84,10.06)

44506 ; 1.25
--

Logn (0.83,5.73)

436 ; 0.96
--Bind Failed

Exp(51578)
51578 ; 1.09

Exp(46892)
46891 ; 1.01

Exp(48726)
48726 ; 0.96

Exp(47526)
47526 ; 0.98

Exp(50384)
50384 ; 1.12

Exp(46978)

46978 ; 1.03

Data 
Mismatch

Logn (1.81,9.63)

30976 ; 0.74

Logn (1.83,7.74)
7784 ; 1.55

Logn (1.89,8.01)

9973 ; 1.47

Logn (1.66,6.97)
3386 ; 2.00

Logn (1.60,7.40)

5256 ; 2.11

Logn (1.80,8.33)
11682 ; 1.25

Packet loss

-
Logn(1.11,9.89)

29660 ; 0.67

Logn(1.13,10.15)

50839 ; 0.90

Logn(1.13,10.12)

48201 ; 0.93

Logn (1.10,10.02)

41931 ; 1.12
n.e.d.

Switch Role
Req. Failed

-
Logn (1.72,8.41)

12234 ; 1.27

Logn (1.32,7.00)

2695 ; 2.17

Logn (1.39,9.50)

25134 ; 0.84

Logn (1.37,9.40)

22648 ; 0.88

Logn (1.34,10.07)

45218 ; 1.19

Switch Role
Com. Failed

-
Logn (1.51,10.23)

53789 ; 1.21

Logn (1.45,10.32)

54812 ; 1.16

Logn (1.62,10.30)

54561 ; 0.93

Logn (1.39,10.28)

54248 ; 1.05 

Logn (1.48,10.33)

54851 ; 0.79

Pan Connect

Failed

-
Logn (1.12,10.05)

36876 ; 0.85

Logn (1.86,9.69)

36862 ; 1.18

Logn (1.39,10.02)

42408 ; 0.86

Logn (1.36,9.36)

21899 ; 1.19

Logn (1.52,8.25)

10035 ; 1.42

Connect

Failed

n.e.d.-n.e.d.n.e.d.-n.e.d.
SDP Search 

Failed

Logn(1.23,10.93)

56148 ; 0.82

Logn(1.16,10.62)

54615 ; 0.75

Logn(1.19,11.03)

60085 ; 0.92

Logn(1.19,10.61)

54348 ; 1.10

Logn (1.39,10.73)

54812 ; 0.83

Logn(1.11,10.98)

58154 ; 0.70

Nap Not

Found

--n.e.d.--n.e.d.
Inquiry/Scan

Failed

WinZaurus (2.4)Ipaq (2.4)Azzurro (2.6)Miseno (2.6)Verde (2.4)

Logn (0.84,10.06)

44506 ; 1.25
--

Logn (0.83,5.73)

436 ; 0.96
--Bind Failed

Exp(51578)
51578 ; 1.09

Exp(46892)
46891 ; 1.01

Exp(48726)
48726 ; 0.96

Exp(47526)
47526 ; 0.98

Exp(50384)
50384 ; 1.12

Exp(46978)

46978 ; 1.03

Data 
Mismatch

Logn (1.81,9.63)

30976 ; 0.74

Logn (1.83,7.74)
7784 ; 1.55

Logn (1.89,8.01)

9973 ; 1.47

Logn (1.66,6.97)
3386 ; 2.00

Logn (1.60,7.40)

5256 ; 2.11

Logn (1.80,8.33)
11682 ; 1.25

Packet loss

-
Logn(1.11,9.89)

29660 ; 0.67

Logn(1.13,10.15)

50839 ; 0.90

Logn(1.13,10.12)

48201 ; 0.93

Logn (1.10,10.02)

41931 ; 1.12
n.e.d.

Switch Role
Req. Failed

-
Logn (1.72,8.41)

12234 ; 1.27

Logn (1.32,7.00)

2695 ; 2.17

Logn (1.39,9.50)

25134 ; 0.84

Logn (1.37,9.40)

22648 ; 0.88

Logn (1.34,10.07)

45218 ; 1.19

Switch Role
Com. Failed

-
Logn (1.51,10.23)

53789 ; 1.21

Logn (1.45,10.32)

54812 ; 1.16

Logn (1.62,10.30)

54561 ; 0.93

Logn (1.39,10.28)

54248 ; 1.05 

Logn (1.48,10.33)

54851 ; 0.79

Pan Connect

Failed

-
Logn (1.12,10.05)

36876 ; 0.85

Logn (1.86,9.69)

36862 ; 1.18

Logn (1.39,10.02)

42408 ; 0.86

Logn (1.36,9.36)

21899 ; 1.19

Logn (1.52,8.25)

10035 ; 1.42

Connect

Failed

n.e.d.-n.e.d.n.e.d.-n.e.d.
SDP Search 

Failed

Logn(1.23,10.93)

56148 ; 0.82

Logn(1.16,10.62)

54615 ; 0.75

Logn(1.19,11.03)

60085 ; 0.92

Logn(1.19,10.61)

54348 ; 1.10

Logn (1.39,10.73)

54812 ; 0.83

Logn(1.11,10.98)

58154 ; 0.70

Nap Not

Found

--n.e.d.--n.e.d.
Inquiry/Scan

Failed

WinZaurus (2.4)Ipaq (2.4)Azzurro (2.6)Miseno (2.6)Verde (2.4)

coherent with recent results arguing that they can be successfully modeled as lognormal [78].

From table 3.5 it can be noticed that the failures follows the same distribution regard-

less of the particular node’s characteristics. For example, Packet Losses are lognormal on

every node. This confirms that the underlying nature of the failure is the same. What

changes are the parameters of the distributions, since failure dynamics depend on the dif-

ferent software and hardware architectures. For example “Switch Role Command Failed”

failures are more frequent on PDAs (Ipaq and Zaurus), due to the complexity introduced

by the BCSP. “Bind Failed” failures only appeared on Azzurro and Win. On Azzurro, that

runs a Fedora Core distribution, the problem remained even after upgrading the hardware

to a Pentium 4 1.8 GHz with 512 Gb RAM. The problem is hence probably due to the new



Chapter 3. FFDA of Bluetooth Personal Area Networks 107

Figure 3.13: Workload influence on failures’ manifestation

version of the Hardware Abstraction Layer (HAL), firstly deployed on fedora core distribu-

tions, and responsible for the network interfaces hotplug mechanism. As will be discussed

in section 3.5.1, “Bind Failed” are indeed mostly due to the hotplug mechanism, which

appeared to be extremely slow on Fedora Core and Windows.

Besides these examples, no significant differences have been observed with respect to

different versions of the Linux Kernel (2.4 and 2.6). On the other hand, it is evident the

difference between Linux machines and the Windows one. In general, the Windows node,

running the Broadcomm stack, exhibits better reliability, in that failures are rarer if com-

pared with Linux nodes (Win’s MTTF values are in general higher than other nodes MTTF

values). Moreover, some failures do not occur at all on Windows nodes, such as “Connect

Failed”, “PAN Connect Failed”, “Switch Role Request Failed”, and “Switch Role Command

Failed”. This can be explained by looking at the implementation of the correspondent API,

which are asynchronous and robust with respect to problems during the request.

Interestingly, only “Data Mismatch” failures are distributed as exponential. This is

coherent with the fact that the only cause for “Data Mismatches” are “Hard Payload Cor-

ruptions”, which also resulted to be exponentially distributed.



Chapter 3. FFDA of Bluetooth Personal Area Networks 108

Let us now investigate how these results change if we consider the failure data obtained

with the realistic WL. The histogram in figure 3.13 gives a quick idea of the differences8,

that is, the realistic WL causes in general less failures than the random one. This result

is coherent with the major difference between the two WLs, i.e., the random WL is char-

acterized by short data transfer sessions (about 1.5 mins on average); the realistic WL has

instead longer data transfer sessions (about 5 mins of average). Hence, the random WL

spends most of the time creating and destroying connections, whereas the realistic WL

stresses more the established connections. The result is that the random WL causes more

failures, since it continuously stimulates the piconet with new connections. Another evi-

dence is that, in the case of realistic WL, most of the failures are “Packet Losses” (which

occur during data transfer), whereas the most frequent is the “Bind Failed” in the case of

random WL (which occurs during the connection setup).

Even if the realistic WL causes less failures, the nature of them is the same as the ones

caused by the random WL. An evidence of this statement is provided by table 3.6, where

the results of the fitting are proposed for failure data obtained with the realistic WL. The

table shows that the distributions are the same, although we observe a slight change in

their parameters. In particular, the “NAP not Found” failure seems to be more frequent

in the case of realistic WL. This can be explained considering that when the realistic WL

is used, the NAP is often overloaded with data transfers, hence causing the SDP server to

fail to answer requests for the NAP service on time. Other failures, such as “Bind Failed”

and “Packet Loss”, manifest slightly less often than in the case of random WL. This can be

8For better readability, we reported only the most frequent failures in the histogram



Chapter 3. FFDA of Bluetooth Personal Area Networks 109

Table 3.6: Fitting summary for every User Level Failure on each node. Each cell contains the fitted
distribution, the MTTF, and the coefficient of variation. Data comes from the Realistic WL

Logn(1.65,11.67)

61451 ; 1.52
--

Logn(1.69,7.65)

7016 ; 1.85
--Bind Failed

Exp(50984)

50984 ; 1.05

Exp(48104)

48104 ; 0.96

Exp(50025)

50025 ; 1.01

Exp(49486)

49486 ; 0.92

Exp(50548)

50547 ; 1.03

Exp(48875)

48875; 1.05

Data 

Mismatch

Logn(2.19,10.32)

50146 ; 0.83

Logn(2.31,9.01)

17851 ; 1.56

Logn(2.18,8.98)

17048 ; 0.98

Logn(2.34,7.75)

11883 ; 1.38

Logn(2.21,8.23)

15273 ; 1.26

Logn(2.23,8.55)

16401 ; 2.15
Packet loss

-n.e.d.n.e.d.n.e.d.n.e.d.n.e.d.
Switch Role

Req. Failed

-
Logn(1.69,9.01)

18174 ; 1.52

Logn(1.64,7.29)

4659 ; 2.01

Logn(1.51,9.56)

31910 ; 0.89

Logn(1.38,9.31)

21154 ; 0.94

Logn(1.41,10.16)

48202 ; 1.95

Switch Role

Com. Failed

-n.e.dn.e.dn.e.dn.e.dn.e.d
Pan Connect

Failed

-
Logn(1.14,10.45)

50509 ; 1.53

Logn(1.85,9.65)

31450 ; 1.04

Logn(1.32,9.92)

41174 ; 0.92

Logn(1.42,9.29)

20457 ; 0.84

Logn(1.26,9.29)

19165 ; 0.91

Connect

Failed

n.e.d..-n.e.d..n.e.d.-n.e.d.
SDP Search 

Failed

Logn(1.21,10.12)

47681 ; 0.92

Logn(1.19,10.03)

45176 ; 1.59

Logn(1.15,10.52)

54846 ; 1.18

Logn(1.24,10.39)

52608 ; 0.89 

Logn(1.21,10.43)

53178 ; 1.81

Logn (1.17,10.57)

53915 ; 1.12

Nap Not

Found

--n.e.d..--n.e.d.
Inquiry/Scan

Failed

WinZaurus (2.4)Ipaq (2.4)Azzurro (2.6)Miseno (2.6)Verde (2.4)

Logn(1.65,11.67)

61451 ; 1.52
--

Logn(1.69,7.65)

7016 ; 1.85
--Bind Failed

Exp(50984)

50984 ; 1.05

Exp(48104)

48104 ; 0.96

Exp(50025)

50025 ; 1.01

Exp(49486)

49486 ; 0.92

Exp(50548)

50547 ; 1.03

Exp(48875)

48875; 1.05

Data 

Mismatch

Logn(2.19,10.32)

50146 ; 0.83

Logn(2.31,9.01)

17851 ; 1.56

Logn(2.18,8.98)

17048 ; 0.98

Logn(2.34,7.75)

11883 ; 1.38

Logn(2.21,8.23)

15273 ; 1.26

Logn(2.23,8.55)

16401 ; 2.15
Packet loss

-n.e.d.n.e.d.n.e.d.n.e.d.n.e.d.
Switch Role

Req. Failed

-
Logn(1.69,9.01)

18174 ; 1.52

Logn(1.64,7.29)

4659 ; 2.01

Logn(1.51,9.56)

31910 ; 0.89

Logn(1.38,9.31)

21154 ; 0.94

Logn(1.41,10.16)

48202 ; 1.95

Switch Role

Com. Failed

-n.e.dn.e.dn.e.dn.e.dn.e.d
Pan Connect

Failed

-
Logn(1.14,10.45)

50509 ; 1.53

Logn(1.85,9.65)

31450 ; 1.04

Logn(1.32,9.92)

41174 ; 0.92

Logn(1.42,9.29)

20457 ; 0.84

Logn(1.26,9.29)

19165 ; 0.91

Connect

Failed

n.e.d..-n.e.d..n.e.d.-n.e.d.
SDP Search 

Failed

Logn(1.21,10.12)

47681 ; 0.92

Logn(1.19,10.03)

45176 ; 1.59

Logn(1.15,10.52)

54846 ; 1.18

Logn(1.24,10.39)

52608 ; 0.89 

Logn(1.21,10.43)

53178 ; 1.81

Logn (1.17,10.57)

53915 ; 1.12

Nap Not

Found

--n.e.d..--n.e.d.
Inquiry/Scan

Failed

WinZaurus (2.4)Ipaq (2.4)Azzurro (2.6)Miseno (2.6)Verde (2.4)

due to the less stressful nature of the realistic WL.

Figure 3.14a shows the “Packet loss” distribution as a function of the networked ap-

plication that was run by the Realistic WL during the failure. Results pinpoint Peer to

Peer (P2P) and Streaming applications as the most critical for BT PANs. They are indeed

characterized by long sessions with continuous data transfer, which overload the channel

and stress its time-based synchronization mechanism. At a first glance, this may surprise,

since P2P protocols are TCP-based. However, the most of the packet losses are due to

broken BT links, which cause the TCP end-to-end channel to brake as well. Streaming

causes less failures than P2P due to its isochronous nature, which better fits the BT time-

based nature. Less failures are experienced with Web, Mail, and File Transfer Protocol

(FTP) applications, which are characterized by intermittent transfers. This indicates that



Chapter 3. FFDA of Bluetooth Personal Area Networks 110

Percentage of “Packet loss” failures

Networked Application Distance (m)

(a) (b)

Percentage of “Packet loss” failures

Networked Application Distance (m)

(a) (b)

Figure 3.14: a) “Packet loss” failure distribution as a function of the networked application used
by the Realistic WL. b) Failures distribution as a function of the distance from PANUs to the NAP

Bluetooth ACL channels are less failure prone when used in an intermittent manner.

Finally, it is interesting to notice that the failure distribution is not significantly influ-

enced by the distance between the BT antennas. From data relative to the Realistic WL

we measured that the 33.33%, 37.14%, and 29.63% of failures occur with a distance 0.5 m,

5 m, and 7 m, respectively, as summarized in figure 3.14b. Bind failures are not taken into

account in the count. They would have biased the measure, since they only manifest on

two hosts.

3.5 Masking Strategies and SIRAs

3.5.1 Error Masking Strategies

A deeper investigation on obtained results led us to the definition of three error masking

strategies. These strategies have been defined for the following user level failures.



Chapter 3. FFDA of Bluetooth Personal Area Networks 111

• Bind failed : it is mostly related to problems in the host OS hotplug interface or to

errors when invoking HCI commands (see table 3.2). Our investigation on source code

on BT Kernel modules has led to the following considerations. The creation process

of an IP network interface over BT requires: i) a time interval (TC) for the creation of

the L2CAP connection; and ii) a time interval (TH) needed by the BT stack to build

the BNEP virtual network interface over L2CAP, and by the OS hotplug interface to

configure the interface. The problem is that the Pan Connect API is not synchronous

with TC and TH , even in the Broadcomm case, hence, a “Bind Failed” failure occurs

whenever the application attempts to bind a socket on the supposed existing BNEP

interface before TC and TH . In particular, if the bind request is issued before TC , a

HCI command failure (i.e., command for invalid handle) occurs, because the L2CAP

connection is not present. If the request is instead issued after TC but before TH ,

a failure occurs, either because the interface is not present or it does not have been

configured yet by the hotplug mechanism. To prevent the failure from occurring,

it is sufficient to wait for TC and TH to elapse. TC elapses as soon as the L2CAP

connection has a valid handle. This check can be easily added in the PAN connection

API. As for TH , the OS hotplug interface can be instrumented so as to notify the

application as soon as the BNEP interface is up and configured.

• Switch role command failed and NAP not found : the switch role failure is often re-

lated to out of order packets failures signaled by the BCSP module (49.7% of the

cases, see table 3.2). Also, it especially manifests on PDAs (as seen in section 3.4.4),



Chapter 3. FFDA of Bluetooth Personal Area Networks 112

since they adopt BSCP. The failure can also be related to many other causes, such

as unexpected L2CAP frames (0.9% local, 4.4% on the NAP), HCI command for in-

valid handle (10.9% local, 2.4% on the NAP), and busy BNEP device(18.8% local).

This multitude of transient causes does not isolate the symptoms of the failure, and

it does not allow to define precise maskings. Therefore we tried to simply repeat the

command when it fails. We experienced that repeating the action up to 2 times (with

1 second wait between a retry and the successive) is enough to let the underneath

transient cause disappear, and hence to make the command success. The same con-

siderations apply to the case of NAP not found. We experienced that repeating the

operation up to 1 time (with 1 second wait) is enough to make the operation success.

3.5.2 SW Implemented Recovery Actions

As soon as a failure is detected9, several Software Implemented Recovery Actions (SIRAs)

are attempted in cascade. This approach allows to pinpoint, for each failure, the most

effective recovery action, that is, the one that fixes the problem with a high probability.

Note that this is the only viable approach, since we do not have any a priori knowledge

about the best recovery to perform each time. Upon failure detection, the following recovery

actions are triggered subsequently, i.e., when the i-th action does not succeed, the (i+1)-th

action is performed.

1. IP socket reset : the socket is destroyed and then rebuilt; this action is applied only

9Failure detection is performed by simply checking the return state of each BT or IP API that is invoked
by the WL. Examples are the indication that a PAN connection cannot be created, or a timeout when
waiting for an expected packet.



Chapter 3. FFDA of Bluetooth Personal Area Networks 113

when the connection (PAN and L2CAP) is already up.

2. BT connection reset : the L2CAP and PAN connections are closed and established

again;

3. BT stack reset : the BT stack variables and data are cleaned up, by restoring the

initial states;

4. Application restart : the BlueTest is automatically closed and restarted;

5. Multiple application restart : up to 3 application restarts are attempted, consecutively;

6. System reboot : the entire system is rebooted;

7. Multiple system reboot : up to 5 system reboots are attempted. Actually, we experi-

enced a maximum of four consecutive reboots to restore normal operation.

The given recovery actions are ordered according to their increasing costs, in terms of

recovery time. The more attempts have to be done for a failure, the more the failure is

severe: if action j was successful, we can say the failure has a severity j. This gives us an

indication for failure severity.

Table 3.7 highlights the relationship between user level failures and recovery actions.

Data is relative to all the machines and come from both testbeds, and it considers only

non-masked failures. Each number in a cell represents the percentage of success of the

recovery action (on the column) with respect to the given user level failure (on the row).

Therefore, the numbers give an indication of the effectiveness of each SIRA for each failure

(which is an estimation of the probability that a certain recovery action goes through).



Chapter 3. FFDA of Bluetooth Personal Area Networks 114

Table 3.7: User failures-SIRAs relationship

1.3

1.1

3.1

M
u

ltip
le

 s
y
s
 

re
b
o
o

t

0.5

0.2

1.2

0.1

35.5
M

u
ltip

le
 

a
p

p
 re

s
ta

rt

35.2

33.1

4.9

5.4

55.8

30

A
p
p

lic
a

tio
n

 

re
s
ta

rt

7.2

7.2

28.4

46.4

0.5

40.1

B
T

 c
o

n
n
e

-

c
tio

n
re

s
e

t

4.9

5.9

IP
 s

o
c
k
e

t 

re
s
e

t

SIRAs

TOT

1.7

81.2

1.9

1.2

13.6

0.2

0.2

17.348.2Sw role request failed

26.725.8Packet loss

Data mismatch

26.124.8Total

20.139.8SDP search failed

25.614.9Connect failed

12.535.7PAN connect failed

34.5Inquiry/scan failed

S
y
s
te

m
 

re
b
o
o

t

B
T

 s
ta

c
k
 

re
s
e

tUser Level Failures

1.3

1.1

3.1

M
u

ltip
le

 s
y
s
 

re
b
o
o

t

0.5

0.2

1.2

0.1

35.5
M

u
ltip

le
 

a
p

p
 re

s
ta

rt

35.2

33.1

4.9

5.4

55.8

30

A
p
p

lic
a

tio
n

 

re
s
ta

rt

7.2

7.2

28.4

46.4

0.5

40.1

B
T

 c
o

n
n
e

-

c
tio

n
re

s
e

t

4.9

5.9

IP
 s

o
c
k
e

t 

re
s
e

t

SIRAs

TOT

1.7

81.2

1.9

1.2

13.6

0.2

0.2

17.348.2Sw role request failed

26.725.8Packet loss

Data mismatch

26.124.8Total

20.139.8SDP search failed

25.614.9Connect failed

12.535.7PAN connect failed

34.5Inquiry/scan failed

S
y
s
te

m
 

re
b
o
o

t

B
T

 s
ta

c
k
 

re
s
e

tUser Level Failures

The column “Tot” reports the total percentage with respect to unmasked failures, e.g., the

13.6% of unmasked failures are “Connect Failed”. Similarly to table 3.2, numbers on each

row sum to 100, in order to have a simple indication of which are the effective SIRAs for

each user failure. For example, a “Switch Role Request Failed” is most probably recovered

by resetting the BT stack (in the 48.2% of the cases). Hence, this should be the first action

to be attempted when the failure is detected. The table also allows to calculate failure

severity. For instance, the “Connect failure” is one of the most severe, since it is often

recovered by expensive SIRAs (the 84.6% of the cases from “Application restart” up to

“Multiple system reboot”).

Failure-recovery relationship provides further understandings of failure causes and na-

ture. As an example, packet losses recovered by an IP socket reset (the 5.9% of packet

losses) are due to “Hard Payload Corruptions” detected by the IP CRC. It is indeed not

necessary to reestablish the L2CAP and BNEP connections. The rest of the packet losses

are instead likely due to a broken link, since they at least require the connection to be



Chapter 3. FFDA of Bluetooth Personal Area Networks 115

reestabilished. These broken link failures can be caused by “Hard Payload Corruptions”

affecting the L2CAP or BNEP headers, then causing the corruption of the data structures

that maintain the link state. Hence, depending on the severity of the corruption, several

different recovery actions are needed, from the BT Connection reset to the reboot of the ma-

chine. For “Data Mismatch” failures, no recoveries are defined. “Data Mismatch” failures

are not realistically recoverable, since a real application only relies on integrity mechanisms

furnished by the communication protocols, and cannot know the actual instance of data

being transferred.

Multiple Application Restart and BT Stack Reset recoveries are the most frequent. This

indicates that the most of the failures are due to corrupted values of the state of the stack

or to the corrupted execution state of the application.

It is worth noting that some failures can be recovered only after multiple application

restarts or even after multiple reboots. Those failures are probably caused by problems in

the NAP. This is confirmed in table 3.2, which highlights such relationship between user

failures and NAP’s system failures.

In Table 3.8 we summarize the statistical distributions of the time to recover (TTR) for

each recovery action on every node. Data comes from both the workloads. This gives an

overall idea of the time that is needed to recover from failures, with respect to the different

architectures we adopted. Similarly to table 3.5, each cell in table 3.8 contains the fitted

distribution and its parameters, the MTTR, and the coefficient of variation. In this case,

the distributions are translated in time, by means of the location parameter θ. It is indeed

unlikely to find TTR values equals to 0. Specifically, Logn(θ, σ, µ) indicates a lognormal



Chapter 3. FFDA of Bluetooth Personal Area Networks 116

Table 3.8: Fitting summary for each Recovery Action on every node. Each cell contains the fitted
distribution, the MTTR, and the coefficient of variation

n.e.d.n.e.d.n.e.d.n.e.d.n.e.d.n.e.d.
Multiple appli-

cation restart

-n.e.d.n.e.d.n.e.d.n.e.d.n.e.d.
Multiple system 

reboot

Exp (612.5,10.5)

623.00 ; 0.59

Exp (102.29,17.3)

119.59 ; 0.73

Exp (98.67,21.89)

120.56 ; 0.82

Exp (231.71,37.07)

268.86 ; 0.71

Exp (269.99,21.38)

291.36 ; 0.70

Exp (370.64,33)

403.64 ; 0.85
System reboot

n.e.d.
Logn (2.82,0.61,3.52)

43.41 ; 0.58
Logn (-6.49,0.34,3.84)

42.65 ; 0.40
Logn (10.47,0.43,3.38)

43.02 ; 0.38
-

Logn (14.62,0.32,4.31)
93.33 ; 0.27

Application 
restart

Exp (58.92,4.58)

63.50 ; 0.11

Logn (6.47,0.77,2.91)

31.06 ; 0.65

Logn (7.77,0.77,3.12)

38.71 ; 0.74

Logn (10.67,0.81,2.48)

27.12 ; 0.55

Logn (8.75,0.37,1.47)

20.08 ; 0.37

Logn (11.67,0.57,4.27)

82.12 ; 0.72
BT Stack reset

-
Exp(3.97,12.47)

16.44 ; 0.79

Exp(3.99,17.00)

20.99 ; 0.75

Exp(5.97,14.60)

20.57 ; 0.60

Exp(4.89,23.49)

28.40 ; 0.61

Exp(3.81,10.4)

14.21 ; 0.71

BT Connection 

reset

Exp(9.99,0.25)

10.24 ; 0.07

Exp(1.93,2.86)

4.79 ; 0.77

Exp(1.94,1.38)

3.31 ; 0.71

Exp(1.58,5.00)

6.58 ; 0.78

Exp(1.98,2.42)

4.40 ; 0.83

Exp(1.97;2.30)

4.27 ; 1.05 
IP Socket reset

WinZaurus (2.4)Ipaq (2.4)Azzurro (2.6)Miseno (2.6)Verde (2.4)

n.e.d.n.e.d.n.e.d.n.e.d.n.e.d.n.e.d.
Multiple appli-

cation restart

-n.e.d.n.e.d.n.e.d.n.e.d.n.e.d.
Multiple system 

reboot

Exp (612.5,10.5)

623.00 ; 0.59

Exp (102.29,17.3)

119.59 ; 0.73

Exp (98.67,21.89)

120.56 ; 0.82

Exp (231.71,37.07)

268.86 ; 0.71

Exp (269.99,21.38)

291.36 ; 0.70

Exp (370.64,33)

403.64 ; 0.85
System reboot

n.e.d.
Logn (2.82,0.61,3.52)

43.41 ; 0.58
Logn (-6.49,0.34,3.84)

42.65 ; 0.40
Logn (10.47,0.43,3.38)

43.02 ; 0.38
-

Logn (14.62,0.32,4.31)
93.33 ; 0.27

Application 
restart

Exp (58.92,4.58)

63.50 ; 0.11

Logn (6.47,0.77,2.91)

31.06 ; 0.65

Logn (7.77,0.77,3.12)

38.71 ; 0.74

Logn (10.67,0.81,2.48)

27.12 ; 0.55

Logn (8.75,0.37,1.47)

20.08 ; 0.37

Logn (11.67,0.57,4.27)

82.12 ; 0.72
BT Stack reset

-
Exp(3.97,12.47)

16.44 ; 0.79

Exp(3.99,17.00)

20.99 ; 0.75

Exp(5.97,14.60)

20.57 ; 0.60

Exp(4.89,23.49)

28.40 ; 0.61

Exp(3.81,10.4)

14.21 ; 0.71

BT Connection 

reset

Exp(9.99,0.25)

10.24 ; 0.07

Exp(1.93,2.86)

4.79 ; 0.77

Exp(1.94,1.38)

3.31 ; 0.71

Exp(1.58,5.00)

6.58 ; 0.78

Exp(1.98,2.42)

4.40 ; 0.83

Exp(1.97;2.30)

4.27 ; 1.05 
IP Socket reset

WinZaurus (2.4)Ipaq (2.4)Azzurro (2.6)Miseno (2.6)Verde (2.4)

Exponential percentiles

T
im

e
 t

o
 R

e
c
o
v
e
r 

(s
)

Exponential percentiles

T
im

e
 t

o
 R

e
c
o
v
e
r 

(s
)

Figure 3.15: Probability plot of Miseno’s Multiple System Reboot TTR values for the exponential
distribution

distribution, with shape parameter σ, scale parameter µ, and location parameter θ, whereas

Exp(θ, λ) indicates an exponential distribution with shape parameter λ and location pa-

rameter θ. It is worth noting that “Multiple Application Restart” and “Multiple System

Reboot” recovery actions could be probably modeled as hyper-exponential. Indeed, from

the probability plot in figure 3.15, which reports the percentiles of “Multiple System Re-

boot” data from Miseno, it is easy to see that data points are concentrated around 600 s



Chapter 3. FFDA of Bluetooth Personal Area Networks 117

(roughly equal to the time needed for two consecutive reboots), 900 s (three reboots) and

1200 s (four reboots). This suggests that the TTR for this recovery action could be model as

a sum of three exponential random variables each of them centered around 600 s, 900 s and

1200 s, respectively. Unfortunately, we do not have enough data to confirm these hypothesis.

3.6 Dependability Improvement of Bluetooth PANs

From collected data, and from results of the previous sections, it is possible to estimate

the dependability improvement which can be obtained by integrating software implemented

recovery actions and error masking strategies into the testbeds. To this aim, we consider two

typical usage scenarios: i) each time that a failure occurs, the user performs the reboot of the

terminal (PC or a PDA); ii) the user performs the following recovery actions, subsequently,

ii.1) he/she tries to restart the application, and ii.2)in the case that the application fails

again, he/she reboots the terminal. For both scenarios we are able to evaluate Mean TTF

and TTR values (MTTF and MTTR), since we can calculate the average recovery time for

reboot and for the application restart from the collected data. In order to obtain upper

bound measures, we assume that the ‘user thinking time’ is zero, i.e. we do not encompass

it in the TTR value. Finally, we compare the two scenarios with the enhanced facilities

that we implemented in the workload, i.e. software implemented recovery actions and error

masking. Results are summarized in table 3.9, for both realistic and random WLs and for all

the nodes of the testbeds. We evaluate the dependability improvement for both workloads

because i) the random one give us indications on the dependability level of BT as used



Chapter 3. FFDA of Bluetooth Personal Area Networks 118

Table 3.9: Dependability Improvement of Bluetooth PANs

Random Workload

1.632.251.600.94C.o.V. MTTR

2.613.263.667.50C.o.V. MTTF

59.98000% Masking

73.84**57.7600% Coverage

0.8860.852< 0.736< 0.331Availability*

141.3175.34131.12331.51MTTR (s)

1097.95422.56364.78164.39MTTF (s)

SIRAs and 

masking

With only 

SIRAs

App restart 

and Reboot

Only 

Reboot

Realistic Workload

1.842.241.431.09C.o.V. MTTR

1.621.962.002.06C.o.V. MTTF

52.54000% Masking

75.42***62.1500% Coverage

0.9830.974< 0.942< 0.904Availability*

124.2989.26199.49328.49MTTR (s)

7090.183351.203240.973111.97MTTF (s)

SIRAs and 

masking

With only 

SIRAs

App restart 

and Reboot

Only 

Reboot

* = MTTF/(MTTF+MTTR)   

** = 59.98% (masking) + 13.86% (coverage of the remaining failures)

*** = 52.54% (masking) + 22.88% (coverage of the remaining failures)

in high critical scenarios; and ii) the realistic one give us indications of the dependability

level achieved form the everyday dependability perspective. For each obtained measure, we

also report the coefficient of variation as a measure of the variability. The advantage of

using such a coefficient is that it is normalized by the mean, and hence it allows comparison

among different measures.

As for the coverage, we refer to failure mode coverage as defined in [1](failure assumptions

coverage). As we have already observed, the random WL causes more failures hence it

exhibits a lower availability and reliability than the realistic WL. In both cases, SIRAs give

a good coverage, and specifically the 57.76% for the random WL, and the 62.15% for the

realistic WL. In other terms, SIRAs recover more than half of the failures, without rebooting

or restarting the application (as a typical user would have done). In the fourth column of

both tables we reported results taking also into account the error masking strategies, which

gives a coverage of 73.84% and 75.42% for the random and realistic WL, respectively. This,

in our opinion, represents a good result for the effectiveness of fault tolerance techniques



Chapter 3. FFDA of Bluetooth Personal Area Networks 119

we have assessed from the analysis of gathered data. As far as the availability is concerned,

results show that the software implemented recovery actions and the error masking strategies

actually improved the availability of BT PANs. The effectiveness is evident in the case of

the random WL: starting from 0.331 (scenario 1) and 0.736 (scenario 2), which are the upper

bound measured values of BT PAN availability, to 0.852 and 0.886, with an improvement of

20.38% (relative to scenario 2), up to 167.67% (relative to scenario 1). The error masking

strategies influence the MTTF estimation, which varied from 164 s to 1098 s. This results in

an actual reliability improvement of 569%. Similar considerations apply to the realistic WL,

even if in this case the margins of improvement are lower. The availability improvement

is of 4.35% (relative to scenario 2), up to 8.74% (relative to scenario 1). The MTTF

estimation varied from 3112 s to 7090 s, with a reliabilty improvment of 128%. It should

be noted that, even using SIRAs and masking, the MTTF values are low, i.e., each 18

minutes on average a node in the piconet fails, in the random WL case. In the realistic

WL case, this figure increases up to 118 minutes. Since our measurements are based on

a 24/7 experiment, this represents a major reliability issue in all those scenarios in which

piconets are permanently deployed and used continuosly, such as, wireless remote control

systems for robots, and aircraft maintenance system. In these critical scenarios, SIRAs and

masking are not enough, and extensive fault tolerance techniques shoud be adopted, such

as, using redundant, overlapped piconets. From an everyday dependability perspective [93],

SIRAs and masking strategies allow instead a significant improvement. If we look at the

realistic WL, a failure happens about every 54 minutes (scenario 2). This number improves

to a failure every 118 minutes when SIRAs and masking are adopted. This means that a



Chapter 3. FFDA of Bluetooth Personal Area Networks 120

user surfing the web or uploading a file via P2P over Bluetooth will experience the failure

of a node in the piconet about every two hours. Finally, as for the maintainability, with

reference to the random WL the MTTR decreases from 331.51 s to 75.34, thanks to SIRAs.

It results instead slightly longer (141.31 s) in the case with both SIRAs and masking, since

the remaining, unmasked failures (the 40.02% of the failures) are more severe, and require

costly recovery actions. Same considerations apply for the realistic WL.



If you try the best you can, the best
you can is good enough.

Radiohead - Optimistic

Chapter 4

FFDA of Mobile Phones

Modern mobile phones, or smart phones, are becoming more and more complex in order to meet
costumer demands. The complexity directly affects the reliability of mobile phones, while the user
tolerance for failures becomes to decrease, especially when the phone is used for business- or safety-
critical applications. Despite these concerns, there is still little understanding on how and why
these devices fail and no techniques have been defined to gather useful information about failures
manifestation from the phone.

This chapter addresses these problems by proposing a FFDA campaign on Mobile Phones, trying
to answer the key research questions which arise when targeting this type of devices.

4.1 Rationale and Characterization of the FFDA campaign

The measurement-based dependability characterization of smart phones is a complex task,

which is exacerbated by the lack of previous studies. At the end of chapter 2, two key

research questions have been posed in this respect:

• Where do we have to start from? And,

• How to collect the failure data?

In order to answer the first question, we believe that it is needed to gain a first under-

standing of the possible failures affecting mobile phones, in order to clearly identify what

has to be collected and how, thus leading to the answer of the second question. Following

121



Chapter 4. FFDA of Mobile Phones 122

this rationale, this chapter presents a study of mobile phones failure data gathered from

the only publicly available source: the users. Thus, we found several web forums where

mobile phone users post information on their experiences using different devices. This ac-

tivity allows to answer the first question by gaining useful insight into the nature of the

observed failure behavior, and to improve the understanding of the dynamics of typical

problems reported by cell phones customers. In particular, freezes and self-shutdown events

are reported as two of the more severe failure manifestations.

Building on this experience, a logger application is then conceived, in order to collect

failure-related information from mobile phones, thus answering the second question. The

logger has been installed on several Symbian OS smart phones, and has gathered failure data

on freezes and self-shutdowns for more than one year. We chosen the Symbian OS because

of i) its open programmability features with C++ and Java programming languages, and

ii) its wide spread use at the time of writing.

This rest of chapter gives the needed background on Smart phones and the Symbian OS,

then it presents the results from both the experimental campaigns: the preliminary study on

web forums, and the results of the data collected by means of the logger. The characteristics

of these two campaigns are summarized in table 4.1, according to the framework defined

in section 2.3. As one could expect, the first study achieves a lower density than the

second one, and it mostly produces qualitative results. On the other hand, the second

study benefits from the presence of a bigger number of data items, each one more detailed

than web forums’ reports, thus allowing for a better quantitative characterization of mobile

phones dependability. It also permits to uncover the major failure causes.



Chapter 4. FFDA of Mobile Phones 123

Table 4.1: Characterization of conducted studies on mobile phones

Analysis of failure reports from web forums

ValueDimension

FilteringManipulation

IdleWorkload

Human operatorLevels

Failure reportsData Source

ClassificationAnalysis

Not givenConficence

18 items/monthDensity

533Data Items

30 monthsLength

Definition of an high-level failure model, 

understanding of potential causes

Achieved 

Results

Mobile PhonesTarget System

Third PartySource

AcademyActor

Dependability StudyPurpose

2006Date

Analysis of failure data gathered via the logger

ValueDimension

Filtering, temporal coalescenceManipulation

IdleWorkload

OS, ApplicationLevels

Event logs (Panics and high level events)Data Source

Classification, Dependability 

Measurement, Other (root cause analysis)
Analysis

Not givenConficence

89 items/monthDensity

1246Data Items

14 monthsLength

Quantitative measures, uncovering of 

actual underlying causes 

Achieved 

Results

Symbian OS Smart PhonesTarget System

InternalSource

AcademyActor

Dependability StudyPurpose

2006Date

It is interesting to notice how the framework defined in section 2.3 allows for a quick

comparison of FFDA studies. For example, from table 4.1, we can quickly conclude that

the logger study is of higher quality if compared to the web forums study. Similarly, both

works are not deep as the one performed for Bluetooth (see table 3.1)

4.2 Background on Smart Phones and the Symbian OS

4.2.1 The Evolution of Mobile Phones

Mobile/cellular phone evolution can be described according to three waves, each one char-

acterized by a specific class of mobile terminal [47]:

• Voice-centric mobile phone (first wave): a hand-held mobile radiotelephone for use



Chapter 4. FFDA of Mobile Phones 124

Figure 4.1: Mobile phones’ market growth

in an area divided into small sections (cells), each with its own short-range trans-

mitter/receiver. These devices support a special text notification service called SMS

(Short Message Service).

• Rich-experience mobile phone (second wave): a mobile phone with numerous advanced

features, typically including the ability to handle data (web-browsing, e-mail, personal

information management, images handling, music playing) through high-resolution

color screens.

• Smart phone (third wave): a general-purpose, programmable mobile phone with en-

hanced processing and storing capabilities. It can be viewed as a combination of a

mobile phone and a Personal Digital Assistant (PDA), and it may have a PDA-like

screen and input devices.



Chapter 4. FFDA of Mobile Phones 125

Newer mobile phone models on the market feature more computing and storing capabil-

ities, new operating systems, new embedded devices (e.g., cameras, radio) and communica-

tion technologies/protocols (Bluetooth, IrDA, WAP, GPRS, UMTS), as well as new shapes

and designs. As shown in Figure 4.11, the number of units sold during the third quarter of

2005 (205 millions) doubled with respect to the third quarter of 2001 (97 millions units).

In the same period, the percentage of smart phones sold has sextupled. While innovative

features are attractive and meet customer demands, the race toward innovation increases

the risk of delivering less reliable devices, since new mobile phones are often put on the

market without comprehensive testing.

According to industry sources the time from conception to the market deployment of

a new phone model is between 4 to 6 months. Clearly the pressure to deliver a product

on-time frequently results in compromising its reliability. The hope is that any potential re-

liability problems can be fixed quickly by developing new releases of phone firmware, which

can be installed on the phone by service phone centers.

4.2.2 Mobile Phone Architectural Model

This section introduces a software layered architecture model for mobile phones. The model,

which is depicted in Figure 4.2, is based on the architecture of the current generation of

smart phones.

In the case of simpler devices, e.g., voice-centric or rich-experience mobile phones, some

layers may not be present or may be integrated in another layer. As Figure 4.2 shows, the

1sources: http://www.itfacts.biz, http://www.theregister.co.uk



Chapter 4. FFDA of Mobile Phones 126

Applications

G U I

H ar d w ar e

H W  D r iv e r s

O S

M W  (app. e n g i n e s )

F
irm

w
a

re

Applications

G U I

H ar d w ar e

H W  D r iv e r s

O S

M W  (app. e n g i n e s )

F
irm

w
a

re

Figure 4.2: Mobile phones’ architectural model

term firmware encompasses everything between Hardware and Applications. The software

layers are written onto read-only memory (ROM) and can be updated by “flashing” the

ROM. The firmware encompasses: i) device drivers supporting storage or communication

hardware, ii) the operating system kernel (OS), iii) application engines or middleware (MW)

providing a set of Application Programming Interfaces (APIs) for mobile phone program-

ming (e.g., SMS or phonebook management), and iv) the Graphical User Interface (GUI)

API. It should be noted that, on some mobile phones, the GUI layer is not implemented as

firmware, and can be upgraded without flashing the ROM.

4.2.3 Symbian OS fundamentals

Symbian [47] is a light-weight operating system specifically tailored for smart phones and

carried out by several leader mobile phone’s manufacturer companies. It is based on a hard

real-time, multithreaded kernel that is designed according to the micro-kernel approach.

Specifically, the kernel only offers basic abstractions, i.e., address spaces, thread scheduling

and message passing interprocess communication; all other system services are provided

by server applications. Clients access servers using message passing kernel’s mechanisms.



Chapter 4. FFDA of Mobile Phones 127

Examples of servers are the File Server, for files’ management, the Window Server, for user

interface drawing, and the Message Server for the Short Message Service (SMS) manage-

ment.

Since mobile phones resources are highly constrained, special care has been taken for

memory management issues, throughout the design of the Symbian OS. Specific program-

ming rules are defined so as to free unused memory and to avoid memory leaks, even in

the case of failures. In particular, the following mechanisms have been designed: the clean-

up stack, the trap-leave technique, and the two-phase construction paradigm. All these

mechanisms are tightly linked together. The clean-up stack is an OS resource storing the

references of all the objects allocated on the heap memory. As for the trap-leave technique,

it is similar to the try-catch paradigm defined for C++ and Java languages: if problems

arise during the execution of a trap block, the current method “leaves”, and the control

steps back to the caller which handles the problem. In the meanwhile, the OS is responsible

to free all the objects which have been stored in the clean-up stack during the execution of

the trap block, thus avoiding potential leaks. Finally, the two-phase construction paradigm

is defined to properly construct objects with dynamic extensions. The mechanism assures

that, when errors occur during the construction of an object, the dynamic extension is

properly freed by means of the clean-up stack.

As far as multitasking issues are concerned, the Symbian OS defines two levels of mul-

titasking: threads and Active Objects (AOs). Threads are scheduled by the OS thread

scheduler, which is a time-sharing, preemptive, priority based scheduler. At the upper



Chapter 4. FFDA of Mobile Phones 128

Kernel

space

Active ObjectThread

Non-preemtive scheduling, 

Event driven synchronization mechanisms

Thread Scheduler

Time-sharing

Preemptive

Priority based scheduler

Symbian Application (or server)

Active

Scheduler

Figure 4.3: Symbian OS multitasking model

level, multiple AOs run within a thread (see figure 4.3). They are scheduled by a non-

preemptive, event-driven scheduler, called active scheduler. In other terms, AOs multitask

cooperatively using an event-driven model: when an AO requests a service, it leaves the

execution to another AO. When the requested service completes, it generates an event that

is detected by the active scheduler, which in turn inserts the requesting AO in the queue

of the AOs to be activated. Non-preemption was chosen to meet light-weight constraints,

avoiding synchronization primitives such as mutexes or semaphores. Moreover, AOs be-

longing to the same thread all runs in the same address space, so that a switch between

AOs incurs a lower overhead than a thread context switch.

As shown in figure 4.3, a typical Symbian OS application (or server) consists of a thread

running an active scheduler which coordinates one or more AOs. Each application is in

turn scheduled by the OS thread scheduler. However, AOs non-preemption characteristics

make them not suitable for real-time tasks. On Symbian OS, real-time tasks should be

rather implemented using threads directly. The whole design constitute a good compromise

between real-time and light-weight design requirements.



Chapter 4. FFDA of Mobile Phones 129

A crucial aspect of interest for our activity is represented by panics. In the Symbian

OS world, a panic represents a non-recoverable error condition launched by either user or

system applications. Applications which are not able to treat an occurred error have to

notify a PANIC EVENT to the Kernel. The panic information associated with the event is

a record composed of its category and type. Once this event has been notified, the applica-

tion is killed by the kernel. As for panics notified by system servers, the kernel can decide

to reboot the phone to recover them, based on the severity of the panic.

Finally, as for failure logging, the Symbian OS offers a particular server (the flogger) al-

lowing an application to log its information. Yet, to access the logged data of a generic

X system/application module it is necessary to create a particular directory, with a well

defined name (e.g. Xdir) under a particular path. The problem is that the names of such

directories are not made publicly available to developers, and are used by manufacturers

during the development. Recently, a tool called D EXC2 has been proposed to register all

panic events generated on a phone. However, the tool does not relate panic events with

failure manifestations, and running applications and phone’s activity at the time of the

failure. This solicited us to build an ad-hoc failure logger for Symbian Smart Phones.

2D EXC is a Symbian project, available at http://www.symbian.com/developer/downloads/tools.html



Chapter 4. FFDA of Mobile Phones 130

The phone freezes whenever I 

try to write a text message, 

and stays frozen until I take 

the battery out.

random wallpaper disappearing 

and power cycling, due to UI 

memory leaks.

a) b)

Figure 4.4: Mobile phones’ failure reports examples: a) a user reported problem; b) a known
issue

4.3 Starting Point: Web Forums-based analysis

In this section a high level characterization of mobile phones’ failures is proposed as the

starting point of the subsequent FFDA campaign conducted via the logger. Such a char-

acterization is based on data gathered from several web forums3 where mobile phone users

post information on their experiences using different devices.

The identified failure reports have been divided in two groups:

• User-reported problems: These reports contain qualitative information and allow iden-

tifying a failure type, user activity when the failure occurred, and actions taken by

the user to recover. Figure 4.4a shows an example of a user-reported problem.

• Known issues: These reports are more accurate, since they correspond to known

design or implementation flaws confirmed by manufacturers. From these reports,

it is possible to understand an underlying failure cause and pinpoint the software

component(s) responsible for the problem. Figure 4.4b shows an example of a known

issue.

The posted information has been carefully filtered in order to consider only those posts

3We considered www.howardforums.com cellphoneforums.net, www.phonescoop.com, and
www.mobiledia.com.



Chapter 4. FFDA of Mobile Phones 131

that signal a failure of the device. The reports have then been classified along several di-

mension and then analyzed.

4.3.1 Classifying Dimensions

Failure Types

A failure is defined as an event that occurs when the behavior exhibited by the phone

deviates from the specified one. These failure categories we selected so that they represent

the bulk of the reported data. (Clearly it is possible that other categories not present in

the analyzed logs exist.) Based on the available data, five failure categories were defined:

• Freeze (lock-up or a halting failure [1]): The device’s output becomes constant, and

the device does not respond to the user’s input.

• Self-shutdown (silent failure [1]): The device shuts down itself, and no service is

delivered at the user interface.

• Unstable behavior (erratic failure [1]): The device exhibits erratic behavior without

any input inserted by the user, e.g. backlight flashing, continuous self-shutdowns, and

self-activation of applications or modes of operation.

• Output failure (value failure [13]): The device, in response to an input sequence,

delivers an output sequence that deviates from the expected one. Examples include

inaccuracy in charge indicator, ring or music volume different from the set one, event

reminders going off at wrong times, and unexpected text displayed when browsing the

Internet.



Chapter 4. FFDA of Mobile Phones 132

• Input failure (omission value failure [13]): User inputs have no effect on device behav-

ior, e.g. soft keys and/or key combinations do not work.

The failure classes defined above indicate that mobile phones exhibit the kinds of failures

observed in traditional computer systems, e.g., timing failures (freeze and self-shutdown),

value failures (output and input failures) and erratic failures (unstable behavior).

User-Initiated Recovery

User-initiated actions to recover from a device failure can be classified according to the

following categories:

• Repeat the action: Repeating the action is sometime sufficient to get the phone work-

ing properly, i.e., the problem was transient.

• Wait an amount of time: Often it is enough to wait for a certain amount of time

(the exact amount is not reported by users) to let the device stabilize and deliver the

expected service (i.e., the device simply fixed itself).

• Reboot (power cycle or reset): The user turns off the device and then turns it on to

restore the correct operation (a temporary bad state is cleaned up by the reboot).

• Remove battery : Battery removal is mainly performed when the phone freezes. In this

case, the phone often does not respond to the power on/off button. Battery removal

can clean up a permanent bad state (e.g., due to a user’s customized settings) and

enables the correct operation.



Chapter 4. FFDA of Mobile Phones 133

• Service the phone: The user has to bring the phone to a service center for assistance in

fixing the problem. Often, when the failure is firmware-related, the recovery consists

of either a master reset (all the settings are reset to the factory settings and the user’s

content is removed from the memory) or a firmware update, i.e., uploading a new

version of the firmware. Hardware problems are fixed by substituting malfunctioning

components (e.g., the screen or the keypad) or replacing the entire device with a new

one. Reports indicate that experienced users can apply master reset or update the

firmware by themselves.

It is reasonable to assume that, in the case of a failure, a user would first repeat the action

(which initially caused the failure) wait for an amount of time, and if the device still does

not work, try to reboot it. If the reboot cannot be performed, the user would remove the

battery, and as a last resort, he/she would bring the phone in for service. Note that if a

failure report does not contain any information about the recovery action taken by the user,

we classify the recovery action as unreported.

Failure Severity

In introducing failure severity, this study takes the user perspective and defines severity

levels corresponding to the difficulty of the recovery action(s) required to restore the correct

operation of the device.

• High: A failure is considered to be highly severe when recovery requires the assistance

of service personnel.



Chapter 4. FFDA of Mobile Phones 134

• Medium: A failure is considered to be of medium severity when the recovery requires

reboot or battery removal. A reboot may abruptly interrupt the action performed by

the user (call, message composing/reading, or browsing), whereas a battery removal

often causes a loss of customized phone settings, which have to be manually re-set by

the user.

• Low : A failure is considered to be of low severity if the device operation can be

reestablished by repeating the action or waiting for an amount of time.

Failure Causes

Ideally, using the insights provided by the failure data, one could attempt to determine

root causes (in terms of software and/or hardware components) of failure. Unfortunately,

user-reported problems do not usually contain enough detail to trace back to a failure cause

or to pinpoint the component that creates problems. Therefore, in many cases, we simply

indicate firmware as a cause of failure, meaning one of the layers between the hardware and

the applications. On the other hand, reports of known issues allow more accurate identifi-

cation of the component(s) responsible for the failure.

Device activity at the time of a failure

This information allows us to understand what application the device was running at the

time the failure. This way, critical applications can be pinpointed.



Chapter 4. FFDA of Mobile Phones 135

Failure Type

P
e
rc

e
n

ta
g

e
o

f 
F

a
il

u
re

s

Figure 4.5: Mobile phones Failure types and severity

4.3.2 Results from the Reports’ analysis

The results discussed in this section are obtained from the analysis of failure reports posted

between January 2003 and June 2005. A total of 533 problems (466 user-reported and

67 known issues) were used in this study. Phone models from all the major vendors are

present: Motorola, Nokia, Samsung, Sony-Ericcson, LG, besides Kyocera, Audiovox, HP,

Blackbarry, Handspring, and Danger. It is worth noting that 22.3% of failure reports are

from smart phones, although smart phones represent only 6.3% of the market share in 2005

(see Figure 4.1). We attribute this to the fact that smart phones (i) have more complex

architecture than voice-centric or rich-experience mobile phones and (ii) are open for users

to download and install third party applications and/or develop their own applications.



Chapter 4. FFDA of Mobile Phones 136

a) b)a) b)

Figure 4.6: User initiated recovery: a) break-up including unreported recovery actions and
b) break-up without unreported recovery actions; the numbers are percentages of the total
number of failures

Analysis of Data on User-Reported Problems

The results discussed in this section are based on user-reported problems. Figure 4.5 depicts

a bar chart of failure types and failure severity. The most frequent failure type is output fail-

ure (36.3%), followed by freeze (25.3%), self-shutdown (16.9%), unstable behavior (18.5%),

and input failure (3.0%). Despite their high occurrence, output failures are usually of low-

severity since repeating the action is often sufficient to restore a correct device operation.

On the other hand, self-shutdown and unstable behavior can be considered as high-severity

failures. The two categories contribute to 52.2% of the high-severity failures, although they

represent only 35.4% of the total number of failures. Phone freezes are usually of medium

severity, since reboot (2.4% of the total number of failures; see Table 4.2) or the battery

removal (9.0%; see Table 4.2) usually do the job and reestablish the proper operation. Only

in about 3.7% (see Table 4.2) of cases must the user seek assistance.

Figure 4.6 gives the break-up of user-initiated recovery actions. While the advance

smart phones have a watch-dog, which can perform an auto-reboot of the phone, it does



Chapter 4. FFDA of Mobile Phones 137

Table 4.2: Failure frequency distribution with respect to failure types and recovery actions; the
numbers are percentages of the total number of failures

6.87

6.65

6.87

0.64

3.65

service 

phone 

8.800.640.210.211.72unstable behavior

7.7300.432.150self-shutdown 

13.735.790.640.438.80output failure 

0.860.6400.210.64input failure 

freeze 6.0104.299.012.36

unreported 
repeat the 

action 

wait an 

amount of time

battery 

removal 
reboot 

Recovery action

Failure Type

6.87

6.65

6.87

0.64

3.65

service 

phone 

8.800.640.210.211.72unstable behavior

7.7300.432.150self-shutdown 

13.735.790.640.438.80output failure 

0.860.6400.210.64input failure 

freeze 6.0104.299.012.36

unreported 
repeat the 

action 

wait an 

amount of time

battery 

removal 
reboot 

Recovery action

Failure Type

not seem to be effective. About 37% (see Figure 4.6a) of user reports do not indicate a

recovery action. In order to better understand the distribution of recovery actions, Figure

4.6b depicts the break-up considering only entries with a reported recovery actions. This,

given a recovery is attempted, shows that in 38.23% of the cases users bring the phone to be

fixed by the service personnel. This could imply that often users are not able to reestablish

correct operation of the device. The most common recovery action is a reboot of the device

(22.53%), followed by battery removal (19.11%).

To gain an understanding of the relationship between failure types and recovery actions,

Table 4.2 reports failure distribution with respect to failure types and corresponding recov-

ery actions. From the recovery action perspective, one can see that reboots are an effective

way to recover from output failures (8.8% of the total number of failures). This indicates

that output failures are often due to a temporary bad state in the software, which is cleaned

up by the reboot. Battery removal is required to fix phone freezes. From this one can infer

that freezes are mainly due to a permanent bad state (e.g., invalid user settings) that can be

cleaned up by removing the battery. Data in Table 4.2 show also that a significant number

of freezes (4.29% of the total number of failures) are recovered by simply waiting an amount



Chapter 4. FFDA of Mobile Phones 138

Figure 4.7: Break-up of failures per component; the numbers are percentages of the total
number of failures

of time for the phone to respond. This may indicate that a certain fraction of battery re-

movals and reboots in response to freezes are due to impatient users. Furthermore, it can

be observed that self-shutdown and unstable-behavior failures usually require the phone to

be serviced by a specialist. This once again confirms the high severity of this type of failure.

Analysis of Data on Known Issues

In contrast to the user-reported problems, data on known issues provides better explanations

for failure causes and enable identifying components responsible for the failure. The break-

up of failures per component is depicted in Figure 4.7. One can see that GUI and application

engines (middleware) are serious dependability bottlenecks, together accounting for 62.5%

of failures. Failures originating in applications themselves are responsible for about 15.63%

of failures. Thus it can be desirable to provide application developers with programming

tools/frameworks for fault/error management.

The data also provide insight into failure causes, which we divided into three categories:



Chapter 4. FFDA of Mobile Phones 139

• Software errors/bugs: The most common software bugs found in the reports include

memory leaks, use of incorrect resources (such as wrongly written strings, or images

converted with an erroneous bit depth), wrong data type casting operations, bad han-

dling of indexes/pointers to objects such as phonebook entries, incorrect management

of buffer sizes, and writing incomplete data to memory. These bugs are usually discov-

ered by manufacturers (by keeping track of user complaints) and fixed by providing

new firmware to be uploaded on devices. Insufficient testing is one of the primary

reasons that these problems escape.

• Resource exhaustion or interferences: Two runtime conditions are often indicated

as leading to failures: i) full internal secondary memory - the erasable programmable

ROM used to store program binaries and ii) process interferences, e.g., race conditions

when accessing shared resources such as operating system. Figure 4.7 indicates that

OS-related problems account for 9.38% of failures. Consequently it might be beneficial

to harden OS tasks responsible for memory and resource management.

• Hardware and drivers of communication protocols: A significant percentage of failures

are caused by: (i) hardware glitches/faults (3.13%), often due to a physical damage,

such as accidental drops or knocks. [70] indicates, for example, that a mechanical

stress can cause failures of the interconnections within the phone; (ii) communica-

tion protocol errors (4.7%) due to flaws in communication drivers, e.g., Bluetooth or

CDMA/GSM protocols. Often, as discussed in the next section, these failures man-

ifest during Bluetooth utilization or during a CDMA/GSM search for the tower signal.



Chapter 4. FFDA of Mobile Phones 140

Table 4.3: Failure frequency distribution with respect to: a) running application, b) failure type
and number of running applications; the numbers in the table are percentage of total number of
failures

2.36Playing with images

1.29Wallpaper set + camera

1.29Using the phonebook

1.72mp3 listening + call 

1.50Gaming 

20.47Other

1.93Browsing

2.58SMS Receiving/reading

2.79SMS Composition

2.79Searching for signal

3.65Using Bluetooth

12.65Call

46.14No active applications

Percentage 

of Failures

Running application(s) 

during the failure

a) b)6.0147.8546.14all

0.864.7212.88unstable behavior

1.506.229.23self-shutdown 

1.7218.0316.52output failure 

01.721.29input failure 

freeze 1.9317.176.22

210

Number of running apps

Failure Type

Failure Frequency versus Mobile Device Activity

Table 4.3a reports the percentage of failures with respect to the mobile device activity

at the time of a failure. A significant fraction of failures (46.14%) manifests without any

application running on the phone aside from OS tasks. Since most phones are based on

well tested commodity hardware, we speculate that the problem is an OS and/or firmware

(most likely the drivers).

Most of failures, while running applications, occur during a call (12.65%). This should

be expected, since voice connection still remains a primary function of mobile phones. Rel-

atively few failures manifest during Bluetooth utilization (3.65%). While this percentage is

small (Bluetooth is not deployed on all phones), it may indicate a problem of potentially



Chapter 4. FFDA of Mobile Phones 141

greater significance in future phones, if we consider the results of the previous chapter.

However, we do not have data on application usage, which would enable relating applica-

tion failure rates with the application’s usage.

Table 4.3b shows that the majority of failures occur while no applications or a single appli-

cation executes on the device. As for failures that manifest while two (or more) applications

are running on the device (the third column in table 4.3b), most often one of the running

applications is either a search for the tower signal or a call (which account, respectively, for

33% and 52% of cases in which multiple applications are running during the failure). The

second application is usually a data-driven application, e.g., mp3 player, Internet browser,

or the ring tone setting. This indicates that interactions/interferences between the commu-

nication firmware and the runtime environment (for data driven applications) is one of the

most common failure causes.

4.4 Data Collection Methodology

The results presented in previous section guided the definition of a data collection method-

ology for smart phones, based on the development of an ad-hoc logger application, to be

deployed on actual phones. We concentrate on freeze and self-shutdown failures, since they

are easy to detect, yet severe failure manifestations. Some unstable behavior failures, such

as repeated self-reboots, can be captured as well. As for input and output failures, we do

not pay attention to them for their less important severity and for the fact that the au-

tomatic detection of value failures would require the implementation of a perfect observer



Chapter 4. FFDA of Mobile Phones 142

which has a complete knowledge of the system specification [13].

The main objective of the logger is to detect and record the occurrences of freezes and

self-shutdowns. Other than this, it is important to catch the status of the phone during the

failure.

In the following subsection, the methodology is described according to the FFDA steps

defined in section 2.2.

4.4.1 Smart phones Under Test

The system under test is composed of a set of 25 smart phones with different versions of the

Symbian OS, from the 6.1 to the 8.0 and 9.0. The majority of them carries out the version

8.0, which was the most released one at the time the analysis started. The targeted phones

belong to students, researchers and professors from both Italy and the USA. The phones

had the logger installed on them and were normally used from users during the collection

period (hence, an idle workload is supposed to be adopted).

4.4.2 Failure Data Logging and Collection

In this section, the architecture of the logger, and the related collection infrastructure, is

presented. The content is extracted from a previously published work, devoted to the design

of the logger [3].



Chapter 4. FFDA of Mobile Phones 143

ACTIVE SCHEDULER

Power 

Manager
HeartBeatLog

Engine

Panic

Detector

Running

App

Detector

Kernel
Appl. 

Arch.

System

Agent
FileDb Log

Logger

Application

System

Servers

Log

File runapp poweractivitybeats

Files

Figure 4.8: Overall architecture of the Logger for Symbian OS smart phones

Logger High Level Architecture

We designed a logger application as a set of AOs, each one responsible of a particular task.

The logger architecture is shown in figure 4.8. Each AO interacts with a particular OS

server to perform its task, and all AOs use File Server facilities to store their data. The

logger is conceived as a daemon application that starts at the phone start-up and that

executes in background. The AOs building the logger are detailed in the following.

• Heartbeat : it is in charge of detecting both freezes and self-shutdowns. More details

about the heartbeat technique can be found in the next subsection.

• Running Applications Detector : In order to be conscious of the phone status during

the failure, this AO periodically stores on the runapps file the list of IDs of all the

applications running on the phone. The list is obtained by requesting it to the Ap-

plication Architecture Server. This way, the applications running during a failure can

be pinpointed.



Chapter 4. FFDA of Mobile Phones 144

• Log Engine: it is responsible to collect the smart phone activity (e.g. calls, messages,

and browsing). The information is gathered from the Database Log Server, which

logs phone’s activity, and it is stored into the activity file. This allows to gather more

information on the phone status.

• Power Manager : it provides information about the battery status, in order to distin-

guish self-shutdowns due to failures from those due to low battery. The battery status

is gathered from the System Agent Server, and it is stored into the power file.

• Panic Detector : collecting panics as soon as they are launched is one of the main

objectives of the logger. It allows to identify the underlying causes of a self-shutdown

or freeze. In order to gather panics and the related information (e.g. panic category

and type), the Panic Detector exploits the services offered by the RDebug object

offered by the Symbian OS Kernel Server. In particular, the Panic Detector registers

to the RDebug’s getException API so as to be notified whit the panic information

whenever a panic occurs on the phone.

Other than collecting panics, the Panic Detector is also responsible of putting all the in-

formation produced by the other components together into one Log File. This operation is

performed either when a panic is detected or when the logger application starts (i.e., when

the phone starts). A drawback of the logger is that it cannot store data about File Server’s

failures. Nevertheless, this cannot be avoided in that there is no way to permanently store

any information when the File Server fails.



Chapter 4. FFDA of Mobile Phones 145

Detecting Freezes and self-shutdowns

The Heartbeat AO periodically writes a heartbeat item on the beats file. The item is

composed of a time-stamp and a status info, i.e. ALIVE, REBOOT, MAOFF, and LOWBT.

During normal execution, the Heartbeat writes an ALIVE item. When a shutdown is

performed either by the user or automatically undertaken by the kernel, the Heartbeat

writes a REBOOT item, since it is capable to capture the phone shutdown event. It is worth

to mention that when the phone is rebooted the OS leaves a certain time to applications to

complete their tasks. This time is sufficient for the Heartbeat to write the REBOOT item.

A user initiated turn off of the whole logger application causes instead a MAOFF (Manual

OFF) item to be written. Finally, if a shutdown is due to low battery (the information

about the battery status is requested to the Power Manager), a LOWBT (LOW BaTtery)

item is written.

When the phone is turned on and the logger starts, the Panic Detector checks the

last written item by the Heartbeat. When an ALIVE is found, the phone has been shut

down by pulling out the battery. In all other cases (i.e., a shutdown due to low battery,

user, or kernel) the Heartbeat would have written REBOOT or LOWBT. This means that

the phone was frozen, coherently with the fact that pulling out the battery is the only

reasonable user-initiated recovery action for a freeze. Therefore, a freeze is registered by

the Panic Detector, along with the information gathered by the Log Engine and the Running

Applications Detector.

On the other hand, a REBOOT can be found for three reasons. First, the phone rebooted



Chapter 4. FFDA of Mobile Phones 146

itself. Second, it was rebooted by the user to recover a failure (e.g., output failure). Third,

it was regularly shut down. Hence, the problem of distinguishing this three cases arises.

Unfortunately, we are not able to systematically distinguish phone induced reboots from

manual ones, because the generated event i.e., the one captured by the heartbeat, is the

same in both the cases. However, they can be distinguished by looking at the off time of

the phone, or reboot duration. It is reasonable to state that:

TSS < TMS (4.1)

where TSS is the duration of a self reboot and TMS is the duration of a manual shutdown.

In other terms, the duration of a shutdown (e.g., when the phone is shut down over the

night) is greater than the duration of a self-shutdown. A manual reboot requires at least

the user to press the on button, which generally requires more time than a self-shutdown.

The Panic Detector registers a self-shutdown event and its duration. This way, the reboot

duration can be analyzed a posteriori.

Choice of the Heartbeat Frequency

The hertbeat frequency fh is a logger’s crucial parameter since it determines the time gran-

ularity at which the above mentioned durations, i.e., TSS , and TMS , can be measured.

It would thus be desirable to choose an arbitrary big fh to increase the precision of the

measurements. However, this is not possible for two practical reasons: i) the battery con-

sumption induced by the logger increases as fh increases, and ii) the heartbeat precision

decreases as fh increases, as will be shown later by our experiment. The heartbeat precision



Chapter 4. FFDA of Mobile Phones 147

can be defined as:

precision =
Th

Th + ∆w

, Th =
1

fh

(4.2)

where ∆w is the write delay induced by the File Server. In other terms, once fixed a

heartbeat frequency fh, and thus a heartbeat period Th, the heartbeat items will not be

written exactly each Th, but they will be written each Th plus the time ∆w needed to

invoke the File Server, transfer to it the information to write, access the file, and actually

write it. The bigger is fh, the smaller is the precision, because as Th decreases, it becomes

comparable with ∆w. Moreover, as Th decreases, ∆w increases because the File Server

starts to be overloaded with requests. This is confirmed by our experiment.

We evaluated the average ∆w achieved as a function of fh, with different workloads

running on the phone: SMS, phone call, video call, listening of an audio clip, and Bluetooth

file transfer. We also performed measurements with a “stand-by workload”, i.e., when the

phone is in stand-by mode. The measurements were performed on two different Symbian

smart phones: Nokia 6680 and Motorola A1000. For each fixed fh, we run the heartbeat

AOs concurrently with one of the mentioned workloads. As an effect of the writing delay,

the timestamps on the beats file are written with a period Th + ∆w. Hence, from the

timestamps we can evaluate the average ∆w.

Figures 4.9 and 4.10 shows the results of the experiment. As we expect, the average ∆w

is an increasing function of fh, independently from the workload. The case of idle workload

(figure 4.9) shows that a fh = 2Hz (Th = 0.5s.) is a physical upper bound after which ∆w

starts to increase almost exponentially. For this reason, the experiments with the other



Chapter 4. FFDA of Mobile Phones 148

Heartbeat frequency (Hz)

A
v
e

ra
g

e
w

ri
te

d
e

la
y

(m
s

.)

Heartbeat frequency (Hz)

A
v
e

ra
g

e
w

ri
te

d
e

la
y

(m
s

.)

Figure 4.9: Write delay ∆w as a function of fh, stand-by workload

workloads have been run with fh ranging from 0.1 Hz to 2 Hz. Figure 4.10 shows that the

most critical application is the video call. This could be expected as the video call use a wide

range of phone’s resources. From figure 4.10 one could conclude that the best choice to meet

precision requirements would be fh = 0.1Hz or even lower. On the other hand, very low

frequencies affect the time granularity. As a compromise we chose fh = 0.33Hz (Th = 3s.),

that is, the point after which the precision becomes unacceptable if a video call is performed.

Distributed Data Collection Architecture

In order to collect the Log Files of all the monitored phones, we developed a data collection

architecture for Log Files gathering. The architecture is 3-tier and it is depicted in figure

4.11.

The first tier is the phone. In particular, we developed a Java midlet for the phone using the

Java 2 Micro Edition technology. The logger requests the user to send the Log File when it



Chapter 4. FFDA of Mobile Phones 149

Heartbeat frequency (Hz)

A
v
e

ra
g

e
w

ri
te

d
e

la
y

(m
s

.)

Heartbeat frequency (Hz)

A
v
e

ra
g

e
w

ri
te

d
e

la
y

(m
s

.)

Figure 4.10: Write delay ∆w as a function of fh, other workloads

logger, midlet GW software database

Smartphone under 
observation

Gateway
Workstation 

(GW)

Database 
Server

Figure 4.11: Distributed Data Collection Architecture

reaches a certain size. When the user is ready, the midlet can be used to send the Log File

to the tier 2, the Gateway Workstation (GW), via a Bluetooth connection. However, if the

user’s phone or GW does not provide Bluetooth connection facilities, he or she can avoid

to use the midlet and can transfer the file via the serial cable usually used to synchronize

the phone with a computer.

The GW (tier 2) is a user’s computer connected to the Internet. It runs our software to

receive the Log File via Bluetooth, and to send it to our Database node (tier 3) using the

Internet. To do so, the user must authenticate himself/herself to the Database node. Again,



Chapter 4. FFDA of Mobile Phones 150

Reboot duration (s)

P
e
rc

e
n

ta
g

e
o

f 

s
h

u
td

o
w

n
e

v
e

n
ts duration < 500 s 

Figure 4.12: Distribution of reboot durations. The right-side histogram zooms the left-side
one for durations less than 500 seconds.

if Bluetooth connections are not available, the GW allows the user to select the Log File to

send from his/her computer’s file system.

Finally, the tier 3 stores the received files on a centralized database, after checking the Log

File format. The data collected on the database can then be used to perform the analysis.

4.4.3 Data Filtering and Manipulation

As a first step to be performed, it is necessary to filter out regular shutdown events that

are normally triggered by users, thus isolating self-shutdown events, according to equation

4.1. Unfortunately, it is not possible to automatically distinguish between the two, since

the generated event i.e., the one captured by the Heartbeat AO, is the same in both cases.

However, they can be discriminated by looking at the off time of the phone, or reboot

duration, which is registered by the Panic Detector.

Figure 4.12 shows the distribution of reboot durations. The histogram on the left-side

considers all the registered shutdown events (1778 events). From the histogram, two peak

bars can be noticed: a first one close to the origin, which should contain all self-shutdown



Chapter 4. FFDA of Mobile Phones 151

time

panic

(isolated)

panicfreeze

(isolated)

self-shutdown

windowwindow
time

panic

(isolated)

panicfreeze

(isolated)

self-shutdown

windowwindow

Figure 4.13: Panics and HL events coalescence scheme

durations, and a second one around 30000 seconds (about eight hours and 20 minutes),

corresponding to the off time over the nights (users usually turn off their phones at night

time). The histogram on the right-side is a zoom on the first peak, for durations less than

500 seconds. It clearly evidences a peak around 80 seconds, which corresponds to the median

self-shutdown duration. Also, the number of events slowly approaches to 0 for durations

bigger than 360 seconds. Based on these data, we filtered-out all shutdown events with a

duration bigger than 360 seconds. The remaining events are assumed to be self-shutdown

events. In particular, 471 such events (the 24.2% of the overall sample) are identified.

From the collected data, it is possible to infer the relationship between panics and high

level (HL) events (i.e., freeze and self-shutdown). To do so, it is necessary to coalesce panic

events with freeze and self-shutdown events, similarly to the merge and coalesce scheme al-

ready defined for Bluetooth. The adopted scheme is depicted in figure 4.13. When a panic is

found in the Log File, freeze and self-shutdown events registered on the same phone after

the panic are searched, within a temporal window. The figure evidences that there can be

panics which do not relate to HL events, as well as isolated HL events. Careful attention

must be payed to the tuning of the temporal window. An analysis of the data in our possess

evidences that the number of coalesced events increase significantly for window’s sizes up

to five minutes. After this size, we must wait for relative big sizes (around one hour) to



Chapter 4. FFDA of Mobile Phones 152

appreciate a further, slight increase of this number of coalesced events, meaning that the

window starts to collapse events which are most probably uncorrelated. Hence, we choose

a window size equals to five minutes.

4.5 Key Findings

This section reports the results of a 14 months collection campaign conducted on the previ-

ously mentioned 25 Symbian smart phones. A total number of 360 freezes and 471 (filtered)

self-shutdown HL events have been collected. As for panics, the logger captured 415 panic

events, belonging to several different categories and types.

4.5.1 Freeze and Self-shutdown Measurements

The Mean Time Between Freezes (MTBFr) and the Mean Time Between Self-shutdowns

(MTBS) have been evaluated, averaged for each phone. It results: MTBFr = 313 hours,

and MTBS = 250 hours. Hence, a user experiences a Freeze about every 13 days, and a

self-shutdown about every 10 days, on average. These figures give an overall idea of today’s

mobile phones user-perceived dependability. While these values are acceptable for everyday

dependability requirements [93], they evidence the limits for the application of smart phones

in critical applications.



Chapter 4. FFDA of Mobile Phones 153

Table 4.4: Collected panics typologies, descriptions, and frequencies

4

3

70

2

5

3

11

0

70

11

10

92

91

69

47

46

33

15

3

0

Type

0.25

6.31

0.25

0.25

0.76

0.25

2.53

0.25

0.76

5.81

1.52

0.76

0.51

10.10

0.25

0.76

5.56

0.51

56.31

6.31

%

it appears when the TInt value passed to SetVolume(TInt) gets 10 or moreMMFAudioClient

Failed to write data into asynchronous call descriptor to be passed back to clientMSGS Client

Corrupt edwin state for inlining editingEIKCOCTL

Not documentedPhone.app

occurs when using a listbox object from the eikon framework and an invalid Current Item Index is specified.

occurs when using a listbox object from the eikon framework and no view is defined to display the object.EIKON-

LISTBOX

occurs when one active object’s event handler monopolizes the thread’s active scheduler loop and the application’s ViewSrv

active object cannot respond in time (the View Server monitors applications for activity/inactivity, if it thinks the application is in 

some kind of infinite loop state it will close it. Clever use of Active Objects should help overcome this).

ViewSrv

This panic is raised by the Kernel Server when it attempts to close a Kernel object in response to an RHandleBase::Close() 

request. The panic occurs when the object represented by the handle cannot be found. The panic is also raised by the Kernel 

Server when it cannot find an object in the object index for the current process or current thread using the specified object 

index number (the raw handle number). The most likely cause is a corrupt handle.

KERN-SVR

This panic is raised when attempting to complete a client/server request and the RMessagePtr is null.

This panic is raised when any operation that moves or copies data to a 16-bit variant descriptor, causes the length of that 

descriptor to exceed its maximum length. It may be caused by any of the copying, appending or formatting member functions 

and, specifically, by the Insert(), Replace(), Fill(), Fillz() and ZeroTerminate() descriptor member functions. It can also be 

caused by the SetLength() function.

This panic is raised when the position value passed to a 16-bit variant descriptor member function is out of bounds. It may be 
raised by the Left(), Right(), Mid(), Insert(), Delete() and Replace() member functions of TDes16.

USER

Not documented

Not documented

This panic is raised if no trap handler has been installed. In practice, this occurs if CTrapCleanup::New() has not been called 

before using the cleanup stack.

This panic is raised by the Error() virtual member function of an active scheduler, a CActiveScheduler. This function is called 

when an active object’s RunL() function leaves. Applications always replace the Error() function in a class derived from 

CActiveScheduler; the default behaviour provided by CActiveScheduler raises this panic.

This panic is raised by an active scheduler, a CActiveScheduler. It is caused by a stray signal.

Raised by the destructor of a CObject. It is caused, if an attempt is made to delete the CObject when the reference count is 

not zero.

E32USER-

CBase

This panic is raised when a timer event is requested from an asynchronous timer service, an RTimer, and a timer event is 

already outstanding. It is caused by calling either the At(), After() or Lock() member functions after a previous call to any of

these functions but before the timer event requested by those functions has completed.

This panic is raised when an unhandled exception occurs. Exceptions have many causes, but the most common are access 

violations caused, for example, by dreferencing NULL. Among other possible causes are: general protection faults, executing 

an invalid instruction, alignment checks, etc.

This panic is raised when the Kernel Executive cannot find an object in the object index for the current process or current 

thread using the specified object index number (the raw handle number).

KERN-EXEC

MeaningPanic

4

3

70

2

5

3

11

0

70

11

10

92

91

69

47

46

33

15

3

0

Type

0.25

6.31

0.25

0.25

0.76

0.25

2.53

0.25

0.76

5.81

1.52

0.76

0.51

10.10

0.25

0.76

5.56

0.51

56.31

6.31

%

it appears when the TInt value passed to SetVolume(TInt) gets 10 or moreMMFAudioClient

Failed to write data into asynchronous call descriptor to be passed back to clientMSGS Client

Corrupt edwin state for inlining editingEIKCOCTL

Not documentedPhone.app

occurs when using a listbox object from the eikon framework and an invalid Current Item Index is specified.

occurs when using a listbox object from the eikon framework and no view is defined to display the object.EIKON-

LISTBOX

occurs when one active object’s event handler monopolizes the thread’s active scheduler loop and the application’s ViewSrv

active object cannot respond in time (the View Server monitors applications for activity/inactivity, if it thinks the application is in 

some kind of infinite loop state it will close it. Clever use of Active Objects should help overcome this).

ViewSrv

This panic is raised by the Kernel Server when it attempts to close a Kernel object in response to an RHandleBase::Close() 

request. The panic occurs when the object represented by the handle cannot be found. The panic is also raised by the Kernel 

Server when it cannot find an object in the object index for the current process or current thread using the specified object 

index number (the raw handle number). The most likely cause is a corrupt handle.

KERN-SVR

This panic is raised when attempting to complete a client/server request and the RMessagePtr is null.

This panic is raised when any operation that moves or copies data to a 16-bit variant descriptor, causes the length of that 

descriptor to exceed its maximum length. It may be caused by any of the copying, appending or formatting member functions 

and, specifically, by the Insert(), Replace(), Fill(), Fillz() and ZeroTerminate() descriptor member functions. It can also be 

caused by the SetLength() function.

This panic is raised when the position value passed to a 16-bit variant descriptor member function is out of bounds. It may be 
raised by the Left(), Right(), Mid(), Insert(), Delete() and Replace() member functions of TDes16.

USER

Not documented

Not documented

This panic is raised if no trap handler has been installed. In practice, this occurs if CTrapCleanup::New() has not been called 

before using the cleanup stack.

This panic is raised by the Error() virtual member function of an active scheduler, a CActiveScheduler. This function is called 

when an active object’s RunL() function leaves. Applications always replace the Error() function in a class derived from 

CActiveScheduler; the default behaviour provided by CActiveScheduler raises this panic.

This panic is raised by an active scheduler, a CActiveScheduler. It is caused by a stray signal.

Raised by the destructor of a CObject. It is caused, if an attempt is made to delete the CObject when the reference count is 

not zero.

E32USER-

CBase

This panic is raised when a timer event is requested from an asynchronous timer service, an RTimer, and a timer event is 

already outstanding. It is caused by calling either the At(), After() or Lock() member functions after a previous call to any of

these functions but before the timer event requested by those functions has completed.

This panic is raised when an unhandled exception occurs. Exceptions have many causes, but the most common are access 

violations caused, for example, by dreferencing NULL. Among other possible causes are: general protection faults, executing 

an invalid instruction, alignment checks, etc.

This panic is raised when the Kernel Executive cannot find an object in the object index for the current process or current 

thread using the specified object index number (the raw handle number).

KERN-EXEC

MeaningPanic

4.5.2 Captured Panics

Table 4.4 reports the list of all the encountered panics during the observation period. The

table contains panic categories, panic types, the percentage of their occurrence with respect

to the total number of panics, and the description of the panic, mostly extracted by the

Symbian OS documentation. The meaning of all encountered panics gives an overall picture

of the software defects conducting to failures. Among them, the most frequent ones are



Chapter 4. FFDA of Mobile Phones 154

Number of subsequent Panics

P
e
rc

e
n

ta
g

e
o

f 
P

a
n

ic
s

Figure 4.14: Distribution of panics registered as a cascade

access violations caused by deferencing null, which cause the Symbian kernel executive to kill

the responsible application and to signal a KERN-EXEC type 3 panic. However this panic

type includes other causes such as general protection faults, executing an invalid instruction,

and alignment checks. Other frequent causes are invalid object indexes (KERN-EXEC type

0 panic), runtime errors related to the heap management (causing E32User-CBase panics),

and copy operations causing a descriptor to exceed its maximum length (USER type 11

panic). It is interesting to notice that these results are coherent with what was found on

web forums.

In some cases, more than one panic can be registered as a cascade, as evidenced in figure

4.14. Since panicking is the last operation an application or system module performs (just

after, the application is killed by the kernel), this proofs the existence of error propagation

phenomena in the OS, despite its micro-kernel architecture.



Chapter 4. FFDA of Mobile Phones 155

(a) (b)(a) (b)

Figure 4.15: Panics and HL events: a) overall summary, b) details with respect to freeze
and self-shutdown events

4.5.3 Panics and High Level Events

Figure 4.15 shows the results of the previously defined coalescence activity. In particular,

figure 4.15a gives an overall summary, reporting also the distribution of isolated panics, i.e.,

those panics which are not related to any HL event. Perhaps these panics cause output

failures. However, our logger is not able to intercept this kind of failures.

A first important evidence is that more than a half of the registered panics (51%) relate

to HL events. If we consider the fewness of HL events (about one every 11 days), these

relationships cannot be just a coincidence. As a further confirmation, if we include all the

shutdown events in the analysis (hence a 300% increase of the number of events, from 471

to 1778 shutdown events), the percentage of panics that relate to HL events gets only a 4%

increase, to 55%. This also reinforce the results given in section 4.4.3: the shutdown events

which are filtered out are regular user-triggered shutdowns.

From figure 4.15a, we can observe that there is a set of panic categories which is never related

to HL events, such as EIKON-LISTBOX, EIKCOCTL, MMFAudioClient, and KERN-SVR.



Chapter 4. FFDA of Mobile Phones 156

The first three panics are typical application panics, related to the view or the audio stream-

ing. This indicates a good resilience of the OS with respect to application panics. More

frequent system panics, such as KERN-EXEC, E32USER-Cbase, USER and ViewSrv, can

either cause an HL event or not. In our opinion, this depends on the component that caused

the panic: if it is an indispensable system server, its death will then cause a whole phone

crash. Otherwise, if it is an application, once it is killed by the kernel, the phone keeps

working properly. As a further observation, there have been panics, such as the Phone.app

and MSGS Client, which always cause a self-shutdown. We recall that the kernel might

decide to reboot the phone in response to some panics and to the component that provoked

them. This means that these two panics were always caused by important system modules

or applications. For example, Phone.app is an always running system application, repre-

senting the phone itself.

Figure 4.15b details the relationship between panics, freezes and self-shutdowns, by re-

porting also the panic type. As already observed, there are panics which only relate to

self-shutdown events, such as Phone.app and MSGS Client. In the same way, we can isolate

panics that are the potential symptoms of freezes, such as heap management (E32USER-

Cbase), USER, and ViewSrv, and KERN-EXEC type 0 panics. On the other hand, access

violation-related panics (KERN-EXEC type 3) can cause both the anomalous HL behaviors.



Chapter 4. FFDA of Mobile Phones 157

Table 4.5: Relationship between panics and the phone activity

act. type

Allcateg.  

54.8...9.1940.40.37.4.78unspecified

38.64.049.56..17.3.1.106.62Voice call

6.62..1.10.4.41..1.10message

11 11 2 3 3 0 47 33 

View
Srv

USER 
Phone.

app
MSGS 
Client

KERN-
EXEC 

E32USER-
CBase 

act. type

Allcateg.  

54.8...9.1940.40.37.4.78unspecified

38.64.049.56..17.3.1.106.62Voice call

6.62..1.10.4.41..1.10message

11 11 2 3 3 0 47 33 

View
Srv

USER 
Phone.

app
MSGS 
Client

KERN-
EXEC 

E32USER-
CBase 

4.5.4 Phone Activity at Panic Time

As a further result, we investigate on the phone’s activity, in terms of user activity and

running applications, at the time a panic is registered. Using the same coalescence method-

ology already mentioned in previous section, table 4.5 reports the activity that resulted to

be performed by the user at the time of the panic, in terms of voice calls and text messages

(the only ones registered on the Database Log Server). Only the panics which are related

to an HL event are considered in this analysis. Interestingly, about the 45% of panics

are registered while the user were performing real-time activities, such as a voice call, or

sending/receiving a short message. This confirms what we observed on web forums, and

evidences the presence of interferences between normal applications/system modules, and

real-time threads concurrently running on the phone. In other terms, this is a symptom

of the lack of isolation between real-time modules and time-sharing, interactive modules.

Thus, more effort should be directed to the enforcement of the isolation between the two

system modules. Also, there are panics, such as USER and ViewSrv, that show-up only

while a voice call is performed. Equally, there are panics, such as Phone.app, appearing

only while a short message is sent/received. Hence, these particular panics are more likely

than the other ones to be due to the presence of real-time operations.



Chapter 4. FFDA of Mobile Phones 158

Number of Apps at panic time

P
e
rc

e
n

ta
g

e
Figure 4.16: Distribution of the number of running applications at panic time

Table 4.6: Relationship between panics ans running applications

Application

ViewSrv

USER 

KERN-EXEC 

EIKON-LISTBOX 

EIKCOCTL 

E32USER-CBase ...0.26...0.26.....6.390.38

No HL 

event

.......0.13.......

............0.26..

0.260.380.891.281.532.561.151.02..1.281.66.0.266.78

.....0.38.3.07......

........0.13..0.13..

Panic categoryHL event

1.53

.

.

.

T
e

le
p

h
o

n
e

 

1.53

.

.

.

M
e

s
s
a

g
e
s

 
C

o
n

ta
c

ts

2.56

.

.

.

b
a

tte
ry

 

2.94

.

.

1.28

C
o

n
ta

c
ts

 

3.07

.

.

1.02

L
o

g
C

o
n

ta
c

ts

3.32

3.20

.

.

L
o

g
T

e
le

p
h

o
n

e
 

4.48

.

.

3.20

C
lo

c
k

 

5.50

.

.

3.20

L
o

g
 

6.78

6.39

.

.

C
a

m
e
ra

 L
o

g
 

T
e

le
p

h
o

n
e

 

6.91

.

.

.

M
e

s
s
a

g
e
s

L
o

g
 

8.18

.

.

0.51

M
e

s
s
a

g
e
s

1.281.281.353.07Total

....MSGS Client 

..0.18.KERN-EXEC Self-

Shutdown

1.020.900.28.KERN-EXEC Freeze

T
o

m
T

o
m

C
lo

c
k

L
o

g
 

F
E

x
p

lo
re

r

B
T

_
B

ro
w

s
e
r

L
o

g
 T

e
le

p
h

. 

Application

ViewSrv

USER 

KERN-EXEC 

EIKON-LISTBOX 

EIKCOCTL 

E32USER-CBase ...0.26...0.26.....6.390.38

No HL 

event

.......0.13.......

............0.26..

0.260.380.891.281.532.561.151.02..1.281.66.0.266.78

.....0.38.3.07......

........0.13..0.13..

Panic categoryHL event

1.53

.

.

.

T
e

le
p

h
o

n
e

 

1.53

.

.

.

M
e

s
s
a

g
e
s

 
C

o
n

ta
c

ts

2.56

.

.

.

b
a

tte
ry

 

2.94

.

.

1.28

C
o

n
ta

c
ts

 

3.07

.

.

1.02

L
o

g
C

o
n

ta
c

ts

3.32

3.20

.

.

L
o

g
T

e
le

p
h

o
n

e
 

4.48

.

.

3.20

C
lo

c
k

 

5.50

.

.

3.20

L
o

g
 

6.78

6.39

.

.

C
a

m
e
ra

 L
o

g
 

T
e

le
p

h
o

n
e

 

6.91

.

.

.

M
e

s
s
a

g
e
s

L
o

g
 

8.18

.

.

0.51

M
e

s
s
a

g
e
s

1.281.281.353.07Total

....MSGS Client 

..0.18.KERN-EXEC Self-

Shutdown

1.020.900.28.KERN-EXEC Freeze

T
o

m
T

o
m

C
lo

c
k

L
o

g
 

F
E

x
p

lo
re

r

B
T

_
B

ro
w

s
e
r

L
o

g
 T

e
le

p
h

. 

As far as applications are concerned, the Running Application Detector allowed as to

collect the set of running application at the time of the panic. It is interesting to notice that

often only one application is found to be running at panic time, other than always running

system applications, as can be observed by figure 4.16. Hence, as opposite from intuition,

running more applications at the same time does not cause more panics.

Table 4.6 gives a summary of the more frequent sets of applications that were found

in correspondence to panics. Only the sets with significant percentage were taken into

account, covering 53% of the total number of panics. The rows reports panic categories

organized with respect to the HL event they cause, in order to have an overall picture of



Chapter 4. FFDA of Mobile Phones 159

what manifestation we can expect from a certain set of applications. On the column, the

sets of applications that were coalesced with the panic events are reported. The numbers

reported into every cell of the table are percentages of the total number of panics, e.g., the

Clock application has been found in correspondence of the 3.2% of panics, and, in particular,

of KERN-EXEC panics which cause the phone to freeze.

Coherently with what was found on web forums, the Message application is one of the

main responsible of panics. Also, the Bluetoth browsing tool is present, as pointed out by

users on the forums. Other potential dependability bottlenecks are the camera, and the log

of incoming/outcoming calls. The table also give some insights on the running applications

which, even panicking, do not cause HL events. Perhaps, in these cases, only output failures

are manifested to the user.



Conclusions

This dissertation addressed dependability issues of mobile distributed systems. Due to the

spread use of these systems into our everyday life, the field failure data analysis approach has

been adopted. This approach represents indeed a viable methodology to evaluate qualitative

and quantitative dependability aspects of operational systems.

Two particular technologies had been chosen as representative of a wider class of systems.

The Bluetooth wireless technology and smart phone devices equipped with the Symbian OS.

The research activity dealt with fundamental issues which arise when conducting FFDA

studies on these kinds of systems, by proposing novel solutions or by enriching existing tech-

niques. In particular, a multi-source approach has been used for the Bluetooth campaign to

monitor the thorough behavior of the protocol stack. Such an approach enables to vertically

investigate failure causes, to the extent of providing masking strategies, thus improving the

overall dependability level. Moreover, automated workloads have been developed and de-

ployed on real systems to address the inability of studying this kind of systems under idle

workloads, i.e., the normal load at which they operate. As for the mobile phones campaign,

we started from the failure information which is available on the web. Although unstruc-

tured, this information allowed to have a first understanding on the failures phenomenology,

160



which in turn lead to the definition of a specific failure logger application. The logger has

been demonstrated to be an efficient mean to capture more structured failure data, which

permitted the measurement of failure times along with the investigation of related causes.

In both cases, it is clear how FFDA can be successfully applied to mobile distributed

systems, and how it keeps representing an effective way to gather a substantial understand-

ing on existing systems’ dependability characteristics. This understanding can thus be used

to improve future instances of mobile distributed systems, towards the goal of dependable

ubiquitous computing.

Other than providing specific considerations on both the presented case studies, this

chapter summarizes the general lessons which have been learned from this three years expe-

rience and that can be reasonably taken into account when performing future FFDA studies.

Lessons Learned

On the Use of a Multi-source Approach

Existing literature on the FFDA field mainly considered field data originated from one

source, i.e., system event logs or maintenance staff failure reports. Conversely, both the

conducted studies adopted a multi-source approach for the data collection. Such a multi-

source approach provides deep insights into the failure phenomenology. In addition, it

allows for a vertical investigation of the failure occurrences, thus enabling the identification

of the “chain of threats” from faults to errors and failures. For instance, the “bind failed”

failure on Bluetooth PANs was discovered to be an heisenbug with particular underlying

161



activation conditions. We then completely masked the failure by preventing such conditions

from occurring.

As a final remark, using more data sources enables for an higher number of failure data

items to be collected in the time unit, thus improving the density of the campaign.

On the Use of Multiple Automated Workloads

As observed in section 2.5, the majority of FFDA works adopt idle workload, since the aim

of FFDA itself is to characterize the dependability of a system under its normal conditions.

The only works adopting automated workloads are concerned with the Internet, since its

spot usage does not permit to evaluate continuous time dependability measures. The same

consideration applies to the Bluetooth campaign presented in chapter 3. However, a a

major issue to be addressed by “field data researchers” is the choose of what can be the

appropriate workload to deploy. Indeed, as observed in section 2.4.1, there is a strong

correlation between the system’s load and the failing behavior of a system.

With respect to the Bluetooth campaign, we have seen how the use of two different

workloads can provide a more thorough view of dependability aspects, thus fostering more

considerations and avoiding the risk of obtaining results which are biased from the par-

ticular adopted workload. The use of a more stressful workload, such as the random one,

permits to activate failure modes more quickly, giving statistical significance to collected

data in a shorter period. It also permits to identify usage patterns which have to be avoided

to develop more robust applications. On the other hand, the use of a realistic workload

162



cannot be neglected, since it allows to characterize the dependability behavior of the system

under study when used for everyday applications.

Bluetooth Campaign Specific Considerations

Presented results have shown how failure data provide helpful insights to design fault tol-

erance means for operational systems. Respectively, up to 168% and 569% availability and

reliabilty improvements have been demonstrated with respect to the random workload, and

up to 9% and 128% improvements in the case of the realistic workload. Several lessons

have also been learned about preferable usage patterns, from a dependability perspective.

Examples are to avoid caching by performing the SDP search before the PAN connection,

and to increase the timeout in the switch role API.

L2CAP and BNEP protocols do not perform error checks and flow controls since the

Baseband channel is assumed, by Bluetooth designers, to be reliable. However, the analysis

evidenced that often hard payload corruptions propagate to L2CAP and BNEP errors, due

to corruptions of the L2CAP or BNEP headers. A valid improvement would derive from

the use of even the simplest error check strategy, such as parity bits or low-overhaed CRC

schemes.

Based on this experience, an enhanced version of the Linux BlueZ BT protocol stack has

been successfully submitted, which includes all the findings we gathered from the analysis,

and that developers can use for building more robust BT applications.

163



Mobile Phones Campaign Specific Considerations

The conducted campaign produced several interesting results. For instance, the results show

that the majority of Kernel exceptions are due to memory access violation errors (56%), and

heap management problems (18%), despite the Symbian OS design goals, i.e., the adoption

of a micro-kernel model and the provision of advanced memory management facilities.

There is also an evidence of failure propagation between multiple applications, due to

the uncovering of cascaded panic events. It is interesting to notice how the results are often

coherent with the information gathered from publicly available web forums. The forums

indeed pinpointed memory leaks as one of the main causes of failures. In the same way,

both the forums and the logger-based analysis evidence that the majority of failures manifest

while the user is performing real-time tasks, such as a voice call or the sending/receiving of

a text message. This suggests to strength the isolation between interactive and real-time

tasks.

From the user-perceived dependability point of view, the analysis shows that users

experience a failure every 11 days, on average, which manifest in the form of freeze or self

shutdown.

Although the effort made to enforce proper heap management via trap-leave and clean-

up stack facilities, there is a non negligible amount of panics (E32User-Cbase panics, 18%)

related to the misuse of heap management mechanisms, such as the absence of a trap handler

(type 69) and the attempt to delete an object with a non-zero reference counter (type 33).

The severity of such panics cannot be understimated, since often they lead to the freeze

164



of the phone. Since this especially applies to E32User-Cbase type 33 panics, more effort

should be dedicated to strength the runtime support so as to mask the error and avoid the

panic.

KERN-EXEC type 3 panic are the more frequent ones, and are the unique panics which

may lead to both freeze and self-shutdown. This is probably due to the fact that such

a panic is pretty generic and embrace a wide set of problems, such as access violations,

general protection failures, executing an invalid instruction, alignment checks, etc. A deeper

comprehension could be derived if this panic was split into multiple types by designers.

Finally, it is worth observing that there are freezes and self-shutdowns which remain

isolated. This means that not all the anomalous phone activity is properly managed by

panicking, hence applications and system modules may be wrongly programmed in a way

that conduct them to crash without signaling any panic.

FFDA: Towards a Unified View

During this three years experience matured on FFDA issues and practice it has been recog-

nized the need for the assessment of a more comprehensive methodology for FFDA. As it

has been observed in section 2.5, the wider scope of the FFDA research, dealing with more

and more different types of systems, is not accompanied by novel methodological achieve-

ments. In fact, all the related works recently published are based on results and approaches

which have been proposed between 80s and 90s. In addition, while there are several different

studies targeting the same system, the results are difficult to generalize because both the

165



environmental conditions and the data collection methodology may differ.

The definition of a unified FFDA methodology would instead enable a consistent compar-

ison of results and conclusions from studies conducted from different actors (both academic

or industrial) or performed on different instances of the same target system. This would

in turn facilitate the communication within the FFDA research community, thus achieving

more credible results.

A valid starting point for the definition of such methodology is represented by the

framework defined in section 2.3. It provides a mean for comparing different studies and it

suggests to researches which is the relevant methodology-related and quantitative informa-

tion that they should evidence into their work. In addition, such a methodology should be

capable of drawing guidelines and best practices about i) which kind of sources of failure

data should be adopted for a given class of systems; ii) which kind of workloads should be

deployed; and iii) which type of collection infrastructure should be implemented. Finally,

a particular effort should be devoted towards the recognition of a common structure of the

collected field failure data, i.e., one of the formats adopted by already proposed tools for

FFDA (see section 2.2). This would let data be always stored in the same format, thus

letting more research teams to conduct different analysis on the same data set, and then

compare the results.

The definition of data sets conforming to a common format, along with the creation of

publicly available failure data repositories would also enable more exchange between the

academy and the industry.

166



This need is being more and more recognized within the dependability research commu-

nity. The work in [90], published in the current year, is a first example of a study conducted

on a large and publicly available failure data source. Authors conclude with the hope that

this data might serve as a first step towards a public data repository, thus encouraging ef-

forts at other sites to collect and clear data for public release. Even in this dissertation, we

recognized the importance of analyzing public failure data, i.e., the data from web forums,

although unstructured. The same approach has also been followed by other studies [32].

All this ferment has been recently discussed in the context of an interesting panel, named

“In Search of Real Data on Faults, Errors and Failures”, and held at the sixth European

Dependable Computing Conference (EDCC-6, Coimbra - Portugal, October 2006). Pan-

elists evidenced that, even if industries demonstrate great interest in the FFDA research

field, they often hide collected failure data due to strategic reasons that can compromise the

market view [31]. The new approach would instead encourage industries to publish their

data into the novel, anonymous format. Then, the adherence to the common format and

the existence of public repositories, would assure the data to be analyzed by third party

actors.

167



Bibliography

[1] A.Avizienis, J.C. Laprie, B.Randell, and C. Landwehr. Basic Concepts and Taxonomy of
Dependable and Secure Computing. IEEE Trans. on Dependable and Secure Computing,
1(1):11–33, January-March 2004.

[2] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. A Survey on Sensor Networks.
IEEE Communication Magazine, pages 102–114, August 2002.

[3] P. Ascione, M. Cinque, and D. Cotroneo. Automated Logging of Mobile Phones Failure
Data. Proc. of the 9th IEEE International Symposium on Object-oriented Real-time Distributed
Computing (ISORC 2006), April 2006.

[4] V. Astarita and M. Florian. The use of Mobile Phones in Traffic Management and Control.
Proc. of the 2001 IEEE Intelligent Transportation Systems Conference, August 2001.

[5] A. Avizienis and J.P.J. Kelly. Fault Tolerance by Design Diversity: Concepts and Experiments.
IEEE Computer, 17(8):67–80, August 1984.

[6] D. Avresky, J. Arlat, J.C. Laprie, and Y. Crouzet. Fault Injection for Formal Testing of Fault
Tolerance. IEEE Transactions on Reliability, 45(3):443–455, September 1996.

[7] A. A. Aziz and R. Besar. Application of Mobile Phone in Medical Image Transmission. Proc.
of the 4th National Conference on Telecommunication Technology, January 2003.

[8] S. Baatz, M. Frank, R. Gopffarth, D. Kassatkine, P. Martini, M. Scheteilg, and A. Vilavaara.
Handoff support for mobility with IP over Bluetooth. Proc. of the 25th Annual IEEE Conf.
on Local Computer Networks (LCN 2000), November 2000.

[9] J. E. Bardram. Applications of context-aware computing in hospital work-examples and design
principles. Proc. of the 19th ACM Symposium on Applied Computing (SAC 2004), March 2004.

[10] C. Bettstetter and C. Hartmann. Connectivity of Wireless Multihop Networks in a Shadow
Fading Environment. The Sixth ACM International Workshop on Modeling, Analysis and
Simulation of Wireless and Mobile Systems, September 2003.

[11] Bluetooth SIG. Personal Area Networking Profile, 2001.

[12] Bluetooth SIG. Specification of the Bluetooth System - core and profiles v. 1.1, 2001.

[13] A. Bondavalli and L. Simoncini. Failures Classification with Respect to Detection. Proc. of
the 2nd IEEE Workshop on Future Trends in Distributed Computing Systems, 1990.

[14] P. Bracchi and V. Cortellessa. A framework to Model and Analyze the Performability of
Mobile Software Systems. The fourth ACM SIGSOFT International Workshop on Software
and Performance, January 2004.

168



Bibliography 169

[15] M. F. Buckley and D. P. Siewiorek. A Comparative Analysis of Event Tupling Schemes. proc.
of The 26th IEEE International Symposium on Fault-Tolerant Computer Systems (FTCS ’96),
June 1996.

[16] M.F. Buckley and D.P. Siewiorek. VAX/VMS Event Monitoring and Analysis. Proceedings of
the 25th IEEE International Symposium on Fault-Tolerant Computing (FTCS-25), June 1995.

[17] S. Cabuk, N.Mahlotra, L. Lin, S. Bagchi, and N. Shroff. Analysis and Evaluation of Topological
and Application Characteristics of Unreliable Mobile Wireless Ad-hoc Network. Proc. of 10th
IEEE Pacific Rim International Symposium on Dependable Computing (PRDC’04), December
2004.

[18] J. Carlson and R.R. Murphy. Failure Classification and Analysis of the Java Virtual Machine.
Proc. of the 2003 IEEE International Conference on Robotics and Automation (ICRA’03),
September 2003.

[19] G. Carrozza, M. Cinque, F. Cornevilli, D. Cotroneo, C. Pirro, and S. Russo. Architecting a
Realistic Workload for Bluetooth PANs Stressing. TR-WEBMINDS-58, University of Naples
Federico II, web-minds.consorzio-cini.it, November 2005.

[20] X. Castillo and D. P. Siewiorek. A Performance-Reliability Model for Computing Systems.
Proceedings of the 10th IEEE Symposium on Fault Tolerant Computing (FTCS-10), October
1980.

[21] X. Castillo and D. P. Siewiorek. Workload, Performance, and Reliability of Digital Computing
Systems. Proceedings of the 11th IEEE Symposium on Fault Tolerant Computing (FTCS-11),
June 1981.

[22] D. Chen, S. Garg, C. Kintala, and K. S. Trivedi. Dependability Enhancement for IEEE 802.11
with Redundancy Techniques. proc. of IEEE 2003 International Conference on Dependable
Systems and Networks (DSN ’03), June 2003.

[23] D. Chen, S. Garg, and K.S. Trivedi. Network Survivability Performance Evaluation: A Quanti-
tative Approach with Applications in Wireless Ad hoc Networks. The Fifth ACM International
Workshop on Modeling, Analysis and Simulation of Wireless and Mobile Systems, September
2002.

[24] S. Chen, Z. Kalbarczyk, J. Xu, and R.K. Iyer. A Data-Driven Finite State Machine Model for
Analyzing Security Vulnerabilities. Proc. of the IEEE International Conference on Dependable
Systems and Networks (DSN 2003), June 2003.

[25] R. Chillarege, S. Biyani, and J. Rosenthal. Measurement of Failure Rate in Widely Distributed
Software. Proceedings of the 25st IEEE Symposium on Fault Tolerant Computing (FTCS-25),
June 1995.

[26] R. Chillarege, R. K. Iyer, J. C. Laprie, and J. D. Musa. Field Failures and Reliability in Op-
eration. Proc. of the 4th IEEE International Symposium on Software Reliability Engineering,
November 1993.

[27] M. Cinque, F. Cornevilli, D. Cotroneo, and S. Russo. An Automated Distributed Infrastructure
for Collecting Bluetooth Field Failure Data. Proc. of the 8th IEEE International Symposium
on Object-oriented Real-time distributed Computing (ISORC 2005), May 2005.

[28] M. Cinque, D. Cotroneo, and S. Russo. Achieving All the Time, Everywhere Access in Next-
Generation Mobile Networks. Mobile Networks and Applications, Special Issues on Mobility
of Systems, Users, Data and Computing, 9(2):29–39, April 2005.



Bibliography 170

[29] M. Cinque, D. Cotroneo, and S. Russo. Collecting and Analyzing Failure Data of Bluetooth
Personal Area Networks. Proc. of the 2006 International Conference on Dependable Systems
and Networks (DSN ’06), June 2006.

[30] T. Clouqueur, K.K. Saluja, and P. Ramanathan. Fault Tolerance in Collaborative Sensor
Networks for Target Detection. IEEE Transactions on Computers, 36(7):74–84, March 2004.

[31] D. Cotroneo. The Hide and Seek Field Data Game. Proc. of the sixth IEEE European De-
pendable Computing Conference, October 2006.

[32] D. Cotroneo, S. Orlando, and S. Russo. Failure Classification and Analysis of the Java Virtual
Machine. Proc. of the 26th IEEE International Conference on Distributed Computing Systems
(ICDCS’06), July 2006.

[33] G. Coulouris, J. Dollimore, and T. Kindberg. Distributed Sistems - Concepts and Design.
Addison-Wesley, 2000.

[34] M. E. Crovella and A. Bestavros. Self-similarity in World Wide Web traffic: evidence and pos-
sible causes. Proc. of the 1996 ACM SIGMETRICS international conference on Measurement
and modeling of computer systems, 1996.

[35] M. Cukier, R. Berthier, S. Panjwani, and S. Tan. A Statistical Analysis of Attack Data to
Separate Attacks. Proc. of the IEEE International Conference on Dependable Systems and
Networks (DSN 2003), June 2003.

[36] E.W. Czeck and D.P. Siewiorek. Observations on the Effects of Faults Manifestation as a
Function of Workload. IEEE Transactions on Computers, 41(5):559–566, May 1992.

[37] M. Dacier, F. Pouget, and H. Debar. Honeypots: A practical Mean to Validate Malicious
Fault Assumptions. Proceedings of the 10th IEEE Pacific Rim International Symposium on
Dependable Computing (PRDC’04), December 2004.

[38] A. Das, A. Ghose, V. Gupta, A. Razdan, H. Saran, and R. Shorey. Adaptive Link-level Error
Recovery Mechanisms in Bluetooth. The IEEE International Conference on Personal Wireless
Communications, December 2000.

[39] M. Elangovan D. D. Deavours and J. E. Dawkins. User-Perceived Interoperability of Bluetooth
Devices. Technical report, The University of Kansas 2335 Irving Hill Road,Lawrence, KS
66045-7612, June 2004.

[40] J. Arlat et. al. DBench: State of Art, Deliverable CF1. Technical report, LAAS - CNRS, 2001.

[41] C. Fraleigh, S. Moon, B. Lyles, C. Cotton, M. Khan, D. Moll, R. Rockell, T. Seely, and
S.C. Diot. Packet-level Traffic Measurements from the Sprint IP Backbone. IEEE Network,
17(6):6–16, December 2003.

[42] A. Ganapathi and D. Patterson. Crash Data Collection: A Windows Case Study. Proc. of
IEEE International Conference on Dependable Systems and Networks (DSN 2005), June 2005.

[43] R. Gandhi. Tolerance to Access-Point Failures in Dependable Wireless LAN. Proc. of the 9th
Int. Workshop on Object-Oriented Real-Time dependable Systems (WORDS’03), June 2003.

[44] M. Gerla, P. Johanssona, R. Kapoor, and F. Vatalaro. Bluetooth: “Last Meter” Technol-
ogy for Nomadic Wireless Internetting. Proc. of 12 th Tyrhennian Int. Workshop on Digital
Communications, 2000.



Bibliography 171

[45] J. Gray. A Census of Tandem System Availability Between 1985 and 1990. IEEE Transactions
on Reliability, 39(4):409–418, October 1990.

[46] J.P Hansen and D. P. Siewiorek. Models for Time Coalescence in Event Logs. Proceedings of
the 22nd IEEE Symposium on Fault Tolerant Computing (FTCS-22), June 1992.

[47] R. Harrison. Symbian OS C++ for Mobile Phones Volume 2. Symbian Press, 2004.

[48] M.C. Hsueh, R.K. Iyer, and K.S. Trivedi. Performability Modeling Based on Real Data: a
Case Study. IEEE Transactions on Computers, 37(4):478–484, April 1988.

[49] IEEE. IEEE 802.11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
specifications:, 1999.

[50] R. K. Iyer, Z. Kalbarczyk, and M. Kalyanakrishnam. Measurement-Based Analysis of Net-
worked System Availability. Performance Evaluation Origins and Directions, Ed. G. Haring,
Ch. Lindemann, M. Reiser, Lecture Notes in Computer Science, Springer Verlag, 1999.

[51] R.K. Iyer, S.E. Butner, and E.J. McCluskey. A Statistical Failure/Load Relationship: Results
of a Multicomputer Study. IEEE Transactions on Computers, C-31(7):697–706, July 1982.

[52] R.K. Iyer, D.J. Rossetti, and M.C. Hsueh. Measurement and Modeling of Computer Reliability
as Affected by System Activity. ACM Transactions on Computer Systems, 4(3):214–237,
August 1986.

[53] R.K. Iyer, L.T. Young, and P.V.K. Iyer. Automatic Recognition of Intermittent Failures : An
Experimental Study of Field Data. IEEE Transactions on Computers, 39(4):525–537, April
1990.

[54] P. Johansson, R. Kapoor, M. Kazantzidis, and M. Gerla. Personal Area Networks: Bluetooth
or IEEE 802.11? International Journal of Wireless Information Networks Special Issue on
Mobile Ad Hoc Networks, April 2002.

[55] M. Kalyanakrishnam, Z. Kalbarczyk, and R.K. Iyer. Failure Data Analysis of a LAN of Win-
dows NT Based Computers. Proceedings of the 18th IEEE Symposium on Reliable Distributed
Systems (SRDS’99), October 1999.

[56] M. Kalyanakrishnan, R. K. Iyer, and J. Patel. Reliability of Internet Hosts - A Case Study
from the End User’s Perspective. Proc. of the 6th International Conference on Computer
Communications and Networks, September 1997.

[57] D. Katic and M. Vukobratovic. Survey of Intelligent Control Techniques for Humanoid Robots.
Journal of Intelligent and Robotic Systems - Kluwer Academic Publishers, 37:117–141, 2003.

[58] T.W. Keller. CRAY-1 Evaluation Final Report. LA-6456.MS, Los Alamos Scientific Labora-
tory, Los Alamos, CA, December 1976.

[59] L. Kleinrock. Nomadicity: Anytime, Anywhere in a disconnected world. Mobile Networks and
Applications, 1(1):351 – 357, December 1996.

[60] P. Koopman and J. Ray. Efficient High Hamming Distance CRCs for Embedded Networks.
Proc. of the 2006 International Conference on Dependable Systems and Networks (DSN ’06),
June 2006.

[61] P. Krishna, N.H. Vaidya, and D.K. Pradhan. Recovery in Distributed Mobile Environments.
Proc. of the 1993 IEEE Workshop on Advances in Parallel and Distributed Systems, October
1993.



Bibliography 172

[62] T. Kubik and M. Sugisaka. Use of a Cellular Phone in mobile robot voice control. Proc. of
the 40th SICE Annual Conference, July 2001.

[63] R. Lal and G. Choi. Error and Failure Analysis of a UNIX Server. Proc. of the third IEEE
Symposium on High-Assurance Systems Engineering, 1998.

[64] J.-C. Laplace and M. Brun. Critical Software For Nuclear Reactors: 11 Years of Field Ex-
perience Analysis. Proc. of the 9th IEEE International Symposium on Software Reliability
Engineering, November 1998.

[65] J.C. Laprie. Dependable Computing and Fault Tolerance: Concepts and Terminology. Proc.
of the 15th IEEE International Symposium on Fault-Tolerant Computing (FTCS-15), June
1985.

[66] I. Lee, R.K. Iyer, and D. Tang. Error/Failure Analysis Using Event Logs from Fault Tolerant
Systems. Proceedings of the 21st IEEE Symposium on Fault Tolerant Computing (FTCS-21),
June 1991.

[67] I. Lee, R.K. Iyer, D. Tang, and M.C. Hsueh. Measurement-Based Evaluation of Operating
System Fault Tolerance. IEEE Transactions on Reliability, 42(2):238–249, June 1993.

[68] Yinglung Liang, Yanyong Zhang, Anand Sivasubramaniam, Ramendra K. Sahoo, and Morris
Jette. BlueGene/L Failure Analysis and Prediction Models. proc. of the 2006 International
Conference on Dependable Systems and Networks (DSN’06), June 2006.

[69] Yinglung Liang, Yanyong Zhang, Anand Sivasubramaniam, Ramendra K. Sahoo, Jose Moreira,
and Manish Gupta. Filtering Failure Logs for a BlueGene/L Prototype. proc. of the 2005
International Conference on Dependable Systems and Networks (DSN’05), pages 476 – 485,
June 2005.

[70] C.T. Lim. Drop Impact Study of Handheld Electronic Products. Proc. of the 5th International
Symposium on Impact Engineering, July 2004.

[71] T.T.Y. Lin and D.P. Siewiorek. Error Log Analysis: Statistical Modeling and Heuristic Trend
Analysis. IEEE Transactions on Reliability, 39(4):419–432, October 1990.

[72] W.C. lynch, W. Wagner, and M.S. Schwartz. Reliability Experience with Chi/OS. IEEE
Transactions on Software Engineering, 1(2):253–257, June 1975.

[73] L. Marchesotti, R. Singh, and C. Regazzoni. Extraction of Aligned Video and Radio In-
formation for Identity and Location Estimation in Surveillance Systems. Proc. of the 7th
International Conference on Information Fusion, pages 316–321, June 2004.

[74] S. M. Matz, L. G. Votta, and M. Malkawi. Analysis of Failure Recovery Rates in a Wireless
Telecommunication System. proc. of the 2002 International Conference on Dependable Systems
and Networks (DSN’02), 2002.

[75] R.A. Maxion and F.E. Feather. A Case Study of Ethernet Anomalies in a Distributed Com-
puting Environment. IEEE Transactions on Reliability, 39(4):433–443, October 1990.

[76] The Honeynet Research Project Members. The Honeynet Project. http://www.honeynet.org,
2004.

[77] P. J. Mogowan, D. W. Suvak, and C. D. Knutson. IrDA Infrared Communications: an
Overview. www.irda.org.



Bibliography 173

[78] R. Mullen. The Lognormal Distribution of Software Failure Rates: Origin and Evidence. Proc.
of the 9th IEEE International Symposium on Software Reliability Engineering, November 1998.

[79] B. Muprphy and B. Levidow. Windows 2000 Dependability. MSR-TR-2000-56, Microsoft
Research, Microsoft Corporation, Redmond, WA, June 2000.

[80] D. Oppenheimer and D.A. Patterson. Studying and Using Failure Data from Large-Scale
Internet Services. Proc. of the 10th workshop on ACM SIGOPS European workshop: beyond
the PC, July 2002.

[81] C.H. Ou, K.F. Ssu, and H.C. Jiau. Connecting Network Partitions with Location-Assisted
Forwarding Nodes in Mobile Ad Hoc Environments. Proceedings of the 10th IEEE Pacific
Rim International Symposium on Dependable Computing (PRDC’04), December 2004.

[82] B. Parhami. From Defects to Failures: a View of Dependable Computing. ACM SIGARCH
Computier Architecture News, 16(4):157–168, September 1988.

[83] T. Park, N. Woo, and H.Y. Yeom. An Efficient Optimistic Message Logging Scheme for
Recoverable Mobile Computing Systems. IEEE Transactions on Mobile Computing, 1(4):265–
277, October-December 2002.

[84] M. Paulitsch, J. Morris, B. Hall, K. Driscoll, E. Latronico, and P. Koopman. Coverage and
the Use of Cyclic Redundancy Codes in Ultra-Dependable Systems. Proc. of the IEEE Inter-
national Conference on Dependable Systems and Networks (DSN 2005), June 2005.

[85] V. Paxon. End-to-End Routing Behavior in the Internet. ACM Conference proceedings on
Applications, technologies, architectures, and protocols for computer communications (SIG-
COMM’96), August 1996.

[86] S. Porcarelli, F. Di Giandomenico, A. Bondavalli, M. Barbera, and I. Mura. Service-Level
Availability Estimation of GPRS. IEEE Transactions on Mobile Computing, 2(3), July-
September 2003.

[87] R. K. Sahoo, A. Sivasubramaniam, M. S. Squillante, and Y. Zhang. Failure Data Analysis of
a Large-Scale Heterogeneous Server Environment. proc. of the 2004 International Conference
on Dependable Systems and Networks (DSN’04), June 2004.

[88] F. Salfner and M. Malek. Predicting Failures of Computer Systems: A Case Study for a
Telecommunication System. Proc. of 11th IEEE Workshop on Dependable Parallel, Distributed
and Network-Centric Systems (DPDNS’06), April 2006.

[89] P. Santi and D.M. Bough. An Evaluation of Connectivity in Mobile Wireless Ad Hoc Networks.
Proc. of the 2002 IEEE International Conference on Dependable Systems and Networks (DSN
’02), June 2002.

[90] B. Schroeder and G.A. Gibson. A Large-Scale Study of Failures in High-Performance Com-
puting Systems. Proc. of the IEEE International Conference on Dependable Systems and
Networks (DSN 2006), June 2006.

[91] A. Sekman, A. B. Koku, and S. Z. Sabatto. Human Robot Interaction via Cellular Phones.
Proc. of the 2003 IEEE Int. Conf. on Systems, Man and Cybernetics, October 2003.

[92] S. Sesay, Z. Yang, and J. He. A Survey on Mobile Ad Hoc Wireless Network. Information
Technology Journal, 3(2):168–175, 2004.

[93] M. Shaw. Everyday Dependability for Everyday Needs. Proc. of the 13th IEEE International
Symposium on Software Reliability Engineering, November 2002.



Bibliography 174

[94] D.P. Siewiorek, R. Chillarege, and Z.T. Kalbarczyk. Reflections on Industry Trends and Exper-
imental Research in Dependability. IEEE Transactions on Dependable and Secure Computing,
1(2):109–127, April-June 2004.

[95] C. Simache and M. Kaaniche. Measurement-based Availability Analysis of Unix Systems in
a Distributed Environment. Proc. of the 12th IEEE International Symposium on Software
Reliability Engineering, November 2001.

[96] C. Simache, M. Kaaniche, and A. Saidane. Event Log based Dependability Analysis of Win-
dows NT and 2K Systems. Proceedings of the 8th IEEE Pacific Rim International Symposium
on Dependable Computing (PRDC’02), December 2002.

[97] A.P. Snow, U. Varshney, and A.D. Malloy. Reliability and Survivability of Wireless and Mobile
Networks. IEEE Computer, pages 49–55, July 2000.

[98] M. Sullivan and R. Chillarege. Software Defects and Their impact on System Availabilty -
A Study of Field Failures in Operating Systems. Proceedings of the 21st IEEE International
Symposium on Fault-Tolerant Computing (FTCS-21), June 1991.

[99] M. Sullivan and R. Chillarege. A Comparison of Software Defects in Database Management
Systems and Operating Systems. Proceedings of the 22nd IEEE International Symposium on
Fault-Tolerant Computing (FTCS-22), June 1992.

[100] R.S. Swarz and D.P. Siewiorek. Reliable Computr Systems (3rd ed.): Design and Evaluation.
A.K. Peters, 1998.

[101] D. Tang, M. Hecht, J. Miller, and J. Handal. MEADEP: A Dependability Evaluation Tool for
Engineers. IEEE Transactions on Reliability, 47(4):443–450, December 1998.

[102] D. Tang and R.K. Iyer. Dependability Measurment and Modeling of a Multicomputer System.
IEEE Transactions on Computers, 42(1):62–75, January 1993.

[103] D. Tang and R.K. Iyer. MEASURE+ - AMeasurement-Based Dependability Analysis Package.
Proc. of the ACM SIGMETRICS Conf. on Measurement and Modeling of Computer Systems,
1993.

[104] A Thakur and R. K. Iyer. Analyze-NOW - An Environment for Collection and Analysis of
Failures in a Networked of Workstations. IEEE Transactions on Reliability, 45(4):560–570,
1996.

[105] J. Tourrilhes and C. Carter. P-handoff: A protocol for fine grained peer-to-peer vertical
handoff. Proc. on the 13th IEEE Int. Symposium on Personal, Indoor and Mobile Radio
Communcations (PIMRC ’02), 2002.

[106] K. S. Trivedi. Probability and Statistic with Reliability, Queuing and Computer Science Ap-
plications. John Wiley and Sons, 2002.

[107] K. Vaidyanathan and K. S. Trivedi. A Comprehensive Model of Software Rejuvenation. IEEE
Transactions on Dependable and Secure Computing, 2(2):124–137, April-June 2005.

[108] P. Velardi and R.K. Iyer. A Study of Software Failures and Recovery in the MVS Operating
System. IEEE Transactions on Computers, C-33(6):564–568, June 1984.

[109] Y.M. Wang, Y. Huang, K.-P. Vo, P.Y. Chung, and C. Kintala. Checkpointing and its Ap-
plications. Proc. of the 25th IEEE Fault-Tolerant Computing Symposium (FTCS-25), June
1995.



Bibliography 175

[110] A.S. Wein and A. Sathaye. Validating Complex Computer System Availability Models. IEEE
Transactions on Reliability, 39(4):468–479, October 1990.

[111] M. Weiser. Some Computer Science Issues in Ubiquitous Computing. Communications of the
ACM, 36(7):74–84, June 1993.

[112] J. Xu, Z. Kalbarczyc, and R. K. Iyer. Networked Windows NT System Field Data Analy-
sis. Proc. of the 5th IEEE Pacific Rim International Symposium on Dependable Computing
(PRDC’99), December 1999.

[113] B. Yao and W.K. Fuchs. Message Logging Optimization for Wireless Networks. Proc. of the
20th IEEE Symposium on Reliable Distributed Systems (SRDS’01), October 2001.

[114] V. C. Zandy and B. P. Miller. Reliable Network Connections. Proc. of the 8th International
Conference on Mobile Computing and Networking (MOBICOM ’02), September 2002.


