
� via Claudio, 21- I-80125 Napoli - � [#39] (0)81 768 3813 - � [#39] (0)81 768 3816

UNIVERSITA' DEGLI STUDI DI NAPOLI FEDERICO II
Dottorato di Ricerca in Ingegneria Informatica ed Automatica

THE DESIGN AND DEVELOPMENT OF A NOMADIC COMPUTING
MIDDLEWARE: THE ESPERANTO BROKER

ARMANDO MIGLIACCIO

Tesi di Dottorato di Ricerca

Novembre 2006

Dipartimento di Informatica e Sistemistica

 Comunità Europea
Fondo Sociale Europeo A. D. MCCXXIV

� via Claudio, 21- I-80125 Napoli - � [#39] (0)81 768 3813 - � [#39] (0)81 768 3816

UNIVERSITA' DEGLI STUDI DI NAPOLI FEDERICO II
Dottorato di Ricerca in Ingegneria Informatica ed Automatica

THE DESIGN AND DEVELOPMENT OF A NOMADIC COMPUTING
MIDDLEWARE: THE ESPERANTO BROKER

ARMANDO MIGLIACCIO

Tesi di Dottorato di Ricerca

(XIX Ciclo)

Novembre 2006

Dipartimento di Informatica e Sistemistica

 Comunità Europea
Fondo Sociale Europeo

Il Tutore Il Coordinatore del Dottorato

Prof. Stefano Russo Prof. Luigi P. Cordella

A. D. MCCXXIV

THE DESIGN AND DEVELOPMENT

OF A NOMADIC COMPUTING MIDDLEWARE:

THE ESPERANTO BROKER

By

Armando Migliaccio

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

AT

“FEDERICO II” UNIVERSITY OF NAPLES

VIA CLAUDIO 21, 80125 - NAPOLI, ITALY

NOVEMBER 2006

c© Copyright by Armando Migliaccio, 2006

“FEDERICO II” UNIVERSITY OF NAPLES

DEPARTMENT OF

COMPUTER AND SYSTEM ENGINEERING DEPARTMENT

The undersigned hereby certify that they have read and recommend

to the Faculty of Graduate Studies for acceptance a thesis entitled “The

design and development of a Nomadic Computing middleware:

The Esperanto Broker” by Armando Migliaccio in partial

fulfillment of the requirements for the degree of Doctor of Philosophy.

Dated: November 2006

External Examiner:
Prof. Stefano Russo

Research Supervisor:
Prof. Stefano Russo

Examing Committee:

ii

“Alcuni si ritengono perfetti

unicamente perché sono meno esigenti nei propri confronti.”

(Hermann Hesse, “Aforismi”)

iv

Table of Contents

Table of Contents v

List of Tables ix

List of Figures x

Acknowledgements i

Introduction 1

1 Nomadic computing 6

1.1 The nomadic computing paradigm . 6

1.1.1 Nomadic computing systems 6

1.1.2 Nomadic computing scenarios 7

1.2 Nomadic computing and middleware 10

1.2.1 Challenges in nomadic computing 10

1.2.2 Non-functional requirements 13

1.2.3 Limitations of traditional middleware 13

1.3 Nomadic computing middleware . 16

1.3.1 Functional requirements . 16

1.3.2 Systems constraints . 17

1.4 Contribution . 18

1.5 Communication paradigms . 19

1.5.1 Properties . 19

1.5.2 Models . 21

1.5.3 A standard approach . 24

2 Nomadic computing platforms 26

2.1 Extending traditional middleware . 27

v

2.1.1 Wireless CORBA . 27

2.1.2 Dolmen . 29

2.1.3 Alice . 31

2.1.4 The proxy platform Π2 . 34

2.2 Mobile-enabled middleware proposals 36

2.2.1 Rover . 36

2.2.2 Xmiddle . 38

2.2.3 Lime . 40

2.2.4 L2imbo . 43

2.3 Comparison framework . 45

3 The Esperanto Broker 52

3.1 Assumptions and Definitions . 52

3.2 Dealing with nomadic computing challenges 53

3.3 The Esperanto distributed computing model 56

3.3.1 Esperanto Peers and Esperanto programming model 58

3.3.2 ESERV: The Esperanto Service Descriptor 60

3.4 The Esperanto tuple space model . 60

3.5 The Esperanto mobility management 63

3.5.1 The Esperanto holistic support 63

3.5.2 The data-link mobility management 63

3.5.3 The network mobility management 64

3.5.4 The transport mobility management 64

3.5.5 The middleware mobility management 65

3.6 The Esperanto Broker Core . 65

3.6.1 The Esperanto cross-layer approach 65

3.6.2 The Connection and Location Manager 66

3.6.3 The Nomadic Computing Sockets 66

3.7 Summary of the Esperanto Broker features 67

4 Design and implementation strategies 71

4.1 The Architecture of the Esperanto Broker 71

4.2 The Mobile-side mobility management 72

4.2.1 Middleware Mobility Manager 73

4.2.2 Connection and Location Manager 75

4.2.3 Achieving availability: the proposed handoff scheme 77

4.3 Nomadic Computing Sockets . 79

4.3.1 The classes framework . 79

4.3.2 Implementation strategies . 80

vi

4.3.3 Mobile-aware facilities . 81

4.4 The Esperanto Broker tuple space . 82

4.4.1 The tuple data structure . 83

4.4.2 Tuple space access primitives 83

4.4.3 Implementation strategies . 84

4.4.4 Cross-layer approach . 85

4.5 The Esperanto Interface Definition Language 85

4.5.1 The life-cycle of an Esperanto application 87

4.5.2 Mapping the Esperanto Interfaces 88

4.5.3 Mapping WSDL to Esperanto 89

4.6 The Esperanto DOC abstraction . 90

4.6.1 The Esperanto Peers . 90

4.6.2 Client-side mapping . 90

4.6.3 Server-side mapping . 91

4.6.4 Implementation strategies . 94

4.7 The Esperanto Mediator . 95

4.7.1 Implementation strategies . 95

4.7.2 Tuple space access primitives 97

4.7.3 The shared space distribution 99

4.8 The Mediator-side mobility management 100

4.9 Bridges for interoperability with Web Services 102

4.9.1 Mapping SOAP messages to Esperanto RMIs 103

4.9.2 Mapping Esperanto RMIs to SOAP messages 104

5 Developing Esperanto applications 106

5.1 Requirements issues . 106

5.1.1 Mobility-related issues . 106

5.1.2 Application-related issues . 108

5.1.3 The Esperanto approach . 109

5.2 Design issues . 110

5.2.1 Architecture design . 110

5.2.2 Interfaces design . 111

5.3 Development issues . 112

5.3.1 Drawing interfaces . 112

5.3.2 Code Generation . 112

5.3.3 Building Esperanto Peers . 114

5.4 Deployment issues . 117

5.4.1 Description of Esperanto domains 117

vii

5.4.2 Description of the Nomadic Computing infrastructure 118

5.4.3 Tuning configuration parameters 119

5.5 Conclusions . 121

6 Experimental results 123

6.1 Experiment design . 123

6.1.1 Experiments aims . 123

6.1.2 Comparing Esperanto Broker and MIWCO 124

6.1.3 Testbed and experimental scenarios 125

6.1.4 Performance metrics . 126

6.2 Experiment setup . 127

6.3 Empirical results . 127

6.3.1 Latencies comparison . 127

6.3.2 Throughput . 128

6.3.3 Latency . 129

6.3.4 Mobility impact . 129

6.4 Analysis of results . 130

7 Conclusions 132

7.1 Conclusions . 132

Bibliography 136

viii

List of Tables

1.1 Communication paradigms and their attributes according to proposed di-

mensions . 24

6.1 Latency at different layers of EB compared to MIWCO latency 128

6.2 Throughput respect as function of connected objects 128

6.3 Latency respect as function of connected objects 129

6.4 Latency of data-link and domain handoffs 129

6.5 Invocation’s latency with and without data-link handoffs 130

6.6 Invocation’s latency with and without domain handoffs 130

ix

List of Figures

2.1 Comparison framework among nomadic computing solutions 51

3.1 The Esperanto Broker: architectural overview 53

3.2 Simple implementation of the Esperanto RMIs via tuple space primitives 58

3.3 A screen shot of the Esperanto Service Descriptor 61

3.4 Nomadic Computing domains and Mediators allocation 62

3.5 Features of the Esperanto Broker compared to features of related no-

madic computing platforms . 70

4.1 The Esperanto Broker Architecture 72

4.2 Connection and Location Manager class diagram 76

4.3 NCSOCKS class diagram . 82

4.4 The life-cycle of Esperanto applications 87

4.5 The class hierarchy produced by the E-IDL compilation process . . . 88

4.6 The implementation of reqres RMIs: (a) client-side mapping; (b) server-

side mapping . 91

4.7 UML CORBA component diagram of the Tuple Space layer 96

4.8 Mediator components involved in the middleware mobility management 101

5.1 Partitioning of a hypothetical shopping mall 109

5.2 Conceptual diagram for the SmartMall scenario 110

5.3 Screen shot of the ESERV tool to design Esperanto interfaces 113

5.4 α-count parameters tuning . 121

x

Acknowledgements

Solo tre anni mi separano dalla volta in cui mi sono trovato di fronte ad una pagina

di ringraziamenti, la mia. Allora, la volontà di esperimere la gratitudine e l’amore

verso chi mi ha aiutato, supportato, incoraggiato, guidato, aveva sprigionato in me

una forte emozione che ancora oggi non riesco a contenere.

Tante cose sono cambiate, tante altre immutate, molti dubbi dissolti, alcune in-

certezze da sciogliere, diversi equilibri mutati, tanti desideri ancora da soddisfare. Ma

di certo c’è che questa pagina sarà per tutti quelli che nel proprio modo di esprimere

il loro affetto per me, mi sono stati vicino.

La scelta di scrivere questa pagina in italiano è per dedicarla principalmente a

loro, alla mia famiglia, la cosa che ho più cara al mondo e per la quale nessun gesto di

affetto vale l’espressione dell’amore che provo. Nonostante a volte sia in disarmonia

con i loro modi di esternare le passioni, buone o cattive che siano, la mia comprensione

di ciò è assoluta, ed il più profondo modo di esprimerlo non riuscirà mai ad essere

racchiuso in queste righe. Grazie per tutto quello che sono, il tempo è ora dalla mia

parte, sarà mio il compito di guidarvi ed esservi vicino qualsiasi distanza ci separi.

Alle persone care che nel corso di questi anni si sono avvicendate nella sfera dei

miei affetti. Nonostante gli eventi passati e futuri, sono e rimarranno sempre nel mio

cuore, come uno scrigno chiuso e nascosto nei luoghi ignoti del mio animo. Grazie.

Le persone con cui ho diviso la maggior parte delle mie giornate, colleghi, mentori

ed amici. Grazie per avermi dato la possibilità di essere quello che sono, buono o

i

ii

cattivo che sia, non importa. Il mio ringraziamento è di profonda riconoscenza per

quanto mi è stato insegnato con ostinazione e perseveranza. Grazie.

Per aver vissuto anche questa esperienza insieme, grazie Marcello. In tutti questi

anni sei stato per me allo stesso tempo amico, fratello, collega, guida, allievo, tutto.

Non dimenticherò mai ciò che è stato tra noi, nonostante i nostri cammini possano

prendere percorsi differenti e perdersi in orizzonti lontani.

Per quello che il tuo amore mi ha dato e quello che potrà darmi ancora, grazie

Cristina. Sei ciò che in questi ultimi anni ha rappresentato uno scopo per i miei sforzi

ad essere migliore, in tutto.

Naples, Italy Armando

November 30, 2006

Introduction

Recent advantages achieved in wireless and in low power consumer electronics have

been leading to new computing paradigms, which are generally described as mobile

computing. Nomadic Computing is a form of mobile computing where the commu-

nication may take place during users movements between different service locations

such as their office, home, hotel, airport, car and so on [1, 2, 3]. Nowadays the inter-

est in middleware for Nomadic Computing environments is still growing since such

infrastructures are becoming wider and wider: suffice to say, telecom operators are

competing to quickly interconnect different wireless networks (such as GSM, UMTS

and Wi-Fi) to make the Wireless Internet the cutting-edge market where new services

can be provided at a huge profit.

Most generally, middleware are set of abstractions, services and mechanisms to

help applications use networked resources and services. They have emerged as a

critical second level of the enterprise IT infrastructure, between the network and

application levels. The need for middleware stems from the increasing growth in the

number of applications, in the customizations within those applications, and in the

number of locations in our environments. This provision of services eases application

development, increases robustness, assists data management, and provides overall

operating efficiencies.

1

2

When developing distributed applications, designers do not have to deal explicitly

with problems related to distribution since middleware provide them with a higher

level of abstraction. Existing middleware, such as object-oriented middleware, have

been built trying to ease the development of distributed applications as much as

possible [14]. To support designers building nomadic applications, research in the

field of middleware systems has proliferated. Nomadic computing middleware aim at

facilitating communication and coordination of distributed components, concealing

complexity raised by mobility from application engineers as much as possible.

Focusing on distributed communication, nomadic computing middleware must

deal with new challenging issues that are mainly due to inherent characteristics of

wireless networks and mobile devices [4, 5]. Weak connectivity or battery power con-

straints may lead users to experience short periods of service unavailability. Moreover,

users may interact with a service just before a travel from office to home. Even if the

network connection is available both outdoor and indoor (by example, via GSM and

Wi-Fi) switching from a technology to another may cause disconnections. Therefore

temporary unavailability of counterparts is a rule rather than an exception. If tradi-

tional communication mechanisms required both counterparts to be available during

the interaction, mobile computing requires mechanisms to let users communicate in

a loosely coupled fashion.

From the software development perspective, developing next-generation mobile

computing applications needs to rely on high-level abstractions and advanced services.

Mobile infrastructures make possible new challenging scenarios: meeting people and

exchanging information with them, receiving dynamic content or let the computa-

tion be location-aware are only some of the possible applications whose design and

3

implementation should be simplified by nomadic computing middleware.

It is widely recognized that traditional middleware (such as CORBA [6], DCOM

[7], and JavaRMI [8]) appear inadequate to be used for nomadic computing environ-

ments [9, 10]. They do not provide any support in terms of both mobility management

(i.e. handoff procedures for handling device mobility), and mobile-enabled paradigms

(i.e. paradigms that are decoupled in space, time, and synchronism [11]). However,

they offer a high-level computing model and a powerful programming interface which

help developers to reduce the time to market.

In order to provide new solutions, during the last decade the research deal has

been progressed along two distinct directions: i) extending traditional middleware

implementations with primitive mobile-enabled capabilities (e.g. Wireless-CORBA

[12]), and ii) proposing middleware which adopt mobile-enabled computing models

(e.g. Lime [13]). While we recognize that these approaches have been leading to

important results, both of them have drawbacks: the former adopts a more effec-

tive computing model [14], but does not effectively overcome the intrinsic limitation

of the synchronous remote procedure call; the latter adopts decoupled interaction

mechanisms, but fails in providing a high level and well understood computing model

abstraction. We claim that a unified approach, both of adopting a powerful comput-

ing model and mobile-enabled communication mechanisms, should be adopted.

This thesis proposes the Esperanto Broker, a communication platform for no-

madic computing environments which takes advantages of both the above mentioned

approaches. The Esperanto Broker adopts the distributed objects computing model

and enhances it to achieve the realization of new application scenarios. At the same

4

time, it adopts mobile-enabled interaction paradigms as the underlying infrastruc-

ture which applications will rely on. More precisely, the Esperanto Broker has the

following features: i) it addresses mobility issues via a unified approach, i.e. both at

data-link, network and middleware levels; ii) it adopts a tuple space as the underly-

ing communication infrastructure; and iii) it provides Distributed Object Computing

(i.e. DOC) model which is enhanced according to the communication paradigms

standardized by the W3C [15].

The Esperanto Broker core is built using mobility aware mechanisms (such as

hand-off procedures) to guarantee that communications successfully take place de-

spite temporary disconnections due to device mobility. As for transport facilities,

RMIs, used by Esperanto objects to interact, are built using the tuple space infras-

tructure. The Esperanto computing model provides both request/response-oneway,

and solicit/response-notify paradigms which are consistent with the ones proposed

by Web Services specification.

Using the Esperanto Broker, developers can model application components as a

set of objects that can interact via pull and push models, in both one-to-one and

one-to-many multiplicity. Built-in mechanisms to achieve group communication keep

objects unaware of implementation details, and may greatly simplify the development

and deployment of next-generation mobile computing application scenarios.

To test the effectiveness of the Esperanto Broker approach, we have employed it

in educational projects of the basic distributed programming courses at the Univer-

sity of Naples, where several mobile applications have been successfully developed.

Empirical experiments have been also conducted, proving the attractiveness of the

proposed platform. Although our first prototype has a cost in terms of performance, it

5

shows a predictable behavior in presence of device mobility and high load situations.

Invocation’s latency remains basically stable despite how many objects are connected

to the platform, whereas handoff procedures introduce predictable overhead.

Chapter 1

Nomadic computing

This chapter sheds some light on nomadic computing systems. Firstly, it provides

the background of nomadic computing systems, describing scenarios, challenges, and

limitations of traditional middleware in supporting nomadic computing applications.

Secondly, it defines requirements and constraints that a nomadic computing middle-

ware should deal with to represent an effective solution for such systems.

1.1 The nomadic computing paradigm

1.1.1 Nomadic computing systems

Nomadic computing systems are a compromise between totally fixed and totally mo-

bile systems. Nomadic computing environments are usually composed of a set of

mobile devices and a core infrastructure with permanent and wired nodes. In such

systems mobile devices move among different locations, while maintaining a connec-

tion to the fixed network. Usually, the wireless network connects the edges of a fixed

infrastructure to the mobile devices. Although nomadic computing and traditional

distributed systems share a lot of similarities, functional requirements and systems

6

7

constraints greatly vary, thus demanding the design of suitable middleware solutions.

In the following sections, motivating scenarios will lead the reader to understand why

these environments are very challenging, and why the traditional approach in propos-

ing middleware for distributed systems is nearly inadequate to let nomadic computing

applications be a reality nowadays.

1.1.2 Nomadic computing scenarios

Lots of people require to be constantly on the move, by example, workers who oversee

geographically dispersed operations, or other workers whose jobs simply require them

to be on the go. Students are another type of user with demanding mobility needs.

Constantly moving from class to class, meeting with professors and other students,

and often working from various locations such as the classroom, library, hallway, or

home. Nowadays, everyone may consider himself/herself a nomadic user, everyone

needs, regardless of his/her specific job, to spend countless hours away from his/her

desks, whether he/she is in meetings, talking to colleagues in hallways, working at

other locations, or in transit. To support the user with the Anytime, Anywhere

Access stated by Kleinrock in [16], lots of IT companies and Telecom operators have

been struggling to deploy nomadic computing infrastructures, mixture of fixed and

wireless network infrastructure where mobile and fixed devices may cooperate to

provide/require services. Such infrastructures open up scenarios which have been

unfeasible so far. Some of the scenarios detailed in [17, 18] are presented in the

following:

• The notebook PC User: Liz is a notebook PC user. With a work schedule

that typically consumes 70 to 80 hours a week, Liz has to be extremely efficient

8

in time management. From her office, Liz has to leave for a meeting at the

company’s research lab, located several miles across town. With grab-and-go

hot docking, she is able to grab her notebook from the docking station at her

desk and run without having to initiate a standby or hibernate sequence.

On the company shuttle bus, Liz opens her notebook and starts sending three

urgent e-mail messages, one from the CEO and two from her peers. At the

research lab, Liz spends about 90 minutes in a meeting with a new product

team. With her PC, Liz takes extensive notes on the product, information that

she wants to transfer to her sales and marketing division’s headquarter.

At the meeting’s close, Liz connects her Tablet PC to a network hub in the

conference room. The notes she drafted are synchronized instantly when she

connects to the company network. Her administrative assistant, located across

town at headquarters, took Liz’s notes, while she distributed the memos to the

sales and marketing team leads.

• The corridor warrior: Garrett is a product development manager for a 300

person company that makes portable ultrasound devices for the medical in-

dustry. Garrett spends at least three or four hours away from his desk each

day in meetings. Using his mobile personal digital assistant Garrett Garrett

can spend even more time out of the office circulating among several different

product teams, still maintaining seamless communication with wireless e-mail

access, and taking advantage of the ability to work wherever he might be.

• The student: today’s students are corridor warriors in training. They move

9

from class to class, from libraries to coffee shops, taking notes, and preparing pa-

pers, while constantly communicating with friends, faculty, and other students.

Armed with productivity tools for capturing text, or Web content, preparing

papers and reviewing documents, students are ready to take on their busy day.

With support of wireless networks, a lightweight size, and a long battery life, a

mobile device is the ideal solution for students who work from the classroom,

hallway, library, or lab for to cooperating, sharing information with friends, or

synchronizing their documents with their home PC.

• The shopping mall warrior: a smart mall is a special scenario made feasible

by the nomadic computing systems: costumers are provided with enhanced ser-

vices while they are walking among the courts. The shops and the mall itself are

part of a fixed infrastructure backbone, while customers with personal mobile

devices move around, interacting freely with a variety of shops and retailers.

The mall scenario sees the following actors : the mall management, shops, and

customers. These are all network capable entities. To offer their customers a

greater level of service, the mall provides a network access throughout the entire

mall. The mall has different logical regions with different network coverage. Any

customer carrying an appropriate mobile device may connect to them. Shops

may communicate to costumers to send them commercial advertisements and

promotions, the mall management may suggest walking paths which depend on

the current shopping areas where customers are located, and costumers may

send inquiries to the mall management (e.g. mall maps, bus schedules, product

information, etc.) or make reservations at food courts.

10

1.2 Nomadic computing and middleware

1.2.1 Challenges in nomadic computing

Nomadicity refers to the system support needed to provide a rich set of computing

and communications capabilities and services, in a transparent and convenient form,

to the nomad moving from place to place. This new paradigm is manifesting itself

as users travel to many different locations with laptops, personal digital assistants,

cellular telephones, pagers, and so on [16]. This section discusses some of the chal-

lenging issues arisen int the context of nomadic computing systems. Such issues may

be classified in two main categories: mobility-related issues, and application-related

issues:

• mobility-related issues: these issues are mainly due to inherent character-

istics of wireless networks and mobile devices [4, 5]. Weak connectivity or

battery power constraints may lead users to experience short periods of ser-

vice unavailability. Moreover, users may initiate a communication just before

a travel from office to home. Even if the network connection is available both

outdoor and indoor (by example, via GSM and Wi-Fi) switching from a technol-

ogy to another may cause disconnections. Therefore temporary unavailability

of counterparts is a rule rather than an exception. If traditional communication

paradigms required both counterparts to be available during the interaction,

mobile computing requires mechanisms to let users communicate in a loosely

coupled fashion. Such issues may be stated as follows:

11

– disconnectedness : changes in network access points due to user’s move-

ments as well as mobile device’s power constraints may cause disconnec-

tions;

– variable connectivity : either voluntary changes (one travels, for example)

or unpredictable changes (a noisy wireless connection) may cause changes

in bandwidth, latency, reliability, error rate and delay of the network link.

– processing power : network algorithms to support wireless access are far

more complex than for the wired case. For instance, the details of tracking

a user while moving in a nomadic environment add complexity and require

rules for handover, roaming, etc;

– heterogeneity : some terminals will also be able to use different access tech-

nologies either simultaneously or one at a time.

These are the usual concerns for any computer communication environment,

but what makes them of special interest for us is that the values of these pa-

rameters change dramatically (and sometimes suddenly) as the nomad moves

from location to location.

Furthermore, the pervasiveness of mobility is another crucial factor which makes

it very challenging. With pervasiveness we mean that mobility affects all the

layers of the ISO/OSI protocols stack, from the physical to the application layer.

• application-related issues: these issues are mainly due to the fact that

nomadic computing systems are opening new application scenarios. Next-

generation mobile computing applications will need to rely on high-level ab-

stractions and advanced services. For instance, meeting people and exchanging

12

information with them, receiving dynamic content or let the computation be

location-aware are only some of the possible applications whose design and im-

plementation should be simplified by built-in mechanisms provided by nomadic

computing middleware. More precisely, such issues may be stated as follows:

– programming abstractions : the most successful middleware solutions are

usually based on object oriented programming and method invocations.

The invocations are based on strongly typed interfaces that provide both

compile and run time error checking. They also hide many implementation

details. However, due to the violation of synchronization assumptions, the

mobility may impact on communication paradigms on which programming

abstractions rely on.

– mobile-enabled middleware services : the presence of mobility requires, for

instance, the environment to become aware of the presence and location of

nomads, as well as, the need for the user to become aware of the changing

environment. Besides, the mobility itself allows users to rendezvous easily.

This may impact the applicability of traditional communication paradigms

that have typically one-to-one multiplicity.

– tools for software design and development : middleware should support

fast service development and deployment. Designers have to worry about

mobility issues if they rely on traditional service platforms. This represents

an unsustainable burden without tools which help developers in designing

and developing mobile computing applications.

– interoperability : it is highly unlikely that there will be, in a near future, a

13

single dominant middleware platform which would be good enough for dif-

ferent devices and purposes. This is especially true in nomadic computing

environments due to diversity of network technologies and devices. The in-

creasing diversity of devices terminals, network elements, and application

needs imply that different middleware solutions will be in use.

1.2.2 Non-functional requirements

There are also other important systems issues. For instance, a primary issues is the

security, which involves privacy as well as authentication. Yet another one is the

interoperability of different service discovery and delivery solutions. Such matters

are especially difficult in a nomadic environment since the nomad often finds that his

computing and communication devices are outside the careful security walls of his

home organization, or that he/she cannot exploit computing resources since they do

not speak the same language of his/her mobile devices. Although this thesis partially

deals with interoperability issues, interesting readings may be found in [19, 20]. This

thesis is primarily focused on the above presented issues.

1.2.3 Limitations of traditional middleware

When developing distributed applications, designers do not have to explicitly deal

with problems related to distribution, such as heterogeneity, scalability, resource shar-

ing and fault tolerance. Middleware developed upon network operating systems pro-

vides application designers with a higher level of abstraction, hiding the complexity

introduced by distribution. Existing middleware technologies have been built try-

ing to hide distribution as much as possible, so that the system appears as a single

14

integrated computing facility. In other words, distribution becomes transparent.

These technologies have been designed and are successfully used for traditional

distributed systems. However, as stated in the previous subsection, nomadic comput-

ing systems exacerbate issues and constraints of traditional distributed systems and

pose new challenges. It is clear that some of the requirements introduced by nomadic

computing systems, cannot be fulfilled by these existing traditional middleware.

As far as mobility-related issues are concerned, low-level mechanisms to implement

traditional communication models (i.e. RPC) assume a stable, high bandwidth and

constant connection between components. Furthermore, synchronous one-to-one com-

munication supported by object-oriented middleware systems requires a rendezvous

between the client asking for a service, and the server delivering that service.

On the contrary, in mobile systems unreachability is not exceptional and the

connection may be unstable. Moreover, it is quite likely that client and server hosts

are not connected at the same time, because of voluntary disconnections (e.g., to save

battery power) or forced disconnection (e.g., loss of network coverage).

Moreover, mobility introduces higher degrees of heterogeneity in processing power

and computing facilities than traditional distributed systems. Traditional middleware

assume their components to run on powerful (and homogeneous in characteristics)

devices. This may no longer be possible in nomadic computing systems. Finally,

mobile hosts might have to support different communication protocols, according to

the wireless links they are exploiting and require. Traditional middleware usually rely

on the TCP/IP stack which provides complete transparency to upper layers.

As far as the software design and development is concerned, traditional middle-

ware offer a high-level computing model and a powerful programming interface, which

15

help developers to reduce the product time to market. Due to different technologies

and requirements, several middleware may be of use in nomadic computing systems.

Traditional middleware lack in standard and proved mechanisms to achieve interop-

erability in such systems.

Besides, they lack in adequate tools to deal with mobility issues, such as tools

to redistribute and reconfigure applications components. They also lack in internal

mechanisms to adapt to changes in the execution and communication capabilities, as

well as, strategies to use available communication resources efficiently.

Furthermore, traditional middleware usually do not provide high-level tools to

help the designer to focus only on application-logic requirements, for instance by

means of visual tools. This would be of help since design next-generation mobile

computing application is more challenging due to novelty of scenarios.

The programming abstractions are of concern as well. Traditional middleware

provide a powerful and high expressive set of programming abstractions (i.e. remote

method invocations). However, such abstraction are not flexible enough to meet the

need of mobile computing developers. If the developer wants to exploit different

communication paradigms (e.g. using the pull- instead of the push- model), he/she

has to implement all the abstractions by himself/herself.

Finally, traditional middleware lack in providing advanced services for mobile

computing applications. Such services may be classified into three groups. First

there are services designed to overcome common restrictions of mobile computing,

which arise mainly from the slowness and instability of wireless lines utilized by the

mobile user. Examples are connection management, caching or encryption services.

16

The second group of services handles the management and administration of mo-

bile users moving around and connecting their portables to networks at different

places. These mobility management services include tasks such as accounting and de-

vice’s positioning. The last group of services are needed to adapt existing applications

to mobile settings.

1.3 Nomadic computing middleware

From insights stated in section 1.2, it is clear that a nomadic computing middleware

should be designed in accordance with the following subset of functional requirements

as well as should be dealing with the following subset systems constraints:

1.3.1 Functional requirements

The design of a nomadic computing middleware has to face mobility-related issues,

which mostly affect the adopted communication paradigm, and the mobile manage-

ment procedures. Basically, to deal with such issues, a middleware designer should

aim to answer these questions:

• how to accomplish the communication even in presence of possible disconnec-

tions due to users’ travels? Users may start a communication just before a travel

from office to home. Even if the network connection is available both outdoor

and indoor (by example, via GPS and Wi-Fi), there might ever be a change

of disconnections due to intrinsic limits of these technologies. Moreover, the

technology migration (by example, when the user gets inside a building after

being outside) needs efficient procedures to preserve the communication during

the hand off.

17

• how to let users communicate even in presence of the counterpart unavailabil-

ity? Users may experience temporary unavailability of counterparts. In mobile

computing environments this represents the rule rather than the exception. If

traditional communication mechanisms required both counterparts to be avail-

able during the interaction, mobile computing environments requires commu-

nication mechanisms which allow users to communicate in a loosely coupled

fashion.

1.3.2 Systems constraints

Any solution to such issues has to take into account the following application-related

issues, which mostly affect the provided abstractions and advanced services:

• the need of a proper solution (in terms of computational requirements) due to

the presence of different kinds of mobile devices. Users can carry computers and

communication devices which may have very different characteristics in terms

of both computational, memory and power resources. Therefore, any solution

to the above mentioned communication issues should take advantage of such

variety letting powerful elements of the NC infrastructure accomplish complex

tasks, while letting embedded devices accomplish their duties with moderate

effort.

• the need by developers to rely on a high-level and powerful abstraction in the

design of next-generation mobile computing applications. New scenarios are

now made possible thanks to the mobility. For instance, the mobility makes

possible users to physically join a group of persons and share information such

as documents, music tracks, and so on. Group communication is rather difficult

18

to implement via traditional distributed communication mechanisms although

they are pretty easy to use. A solution which proposes new communication

mechanisms to easily achieve these scenarios without loosing the strength of

the traditional ones will be a useful tool in developers’ hands.

Other requirements and constraints should be taken into account as well (e.g. to

design fully comprehensive context-aware infrastructure, or fully reconfigurable re-

flective infrastructure), however the proposed requirements and constraints are those

which any middleware for nomadic computing must face in order to be an effective

instrument’s toolbox of mobile computing developers.

1.4 Contribution

During the last decade a great research deal has been done to propose middleware

solutions for nomadic computing systems. Much effort has been striven along two dis-

tinct directions: i) extending traditional middleware implementations with primitive

mobile-enabled capabilities (e.g. Wireless-CORBA [12]), and ii) proposing middle-

ware which adopt mobile-enabled computing models (e.g. Lime [13]).

While we recognize that these approaches have been leading to important results,

both of them have drawbacks: the former adopts a more effective computing model

[14], but does not effectively overcome the intrinsic limitation of the synchronous

remote procedure call; the latter adopts decoupled interaction mechanisms, but fails

in providing a high level and well understood computing model abstraction. We

claim that a unified approach, both of adopting a powerful computing model and

mobile-enabled communication mechanisms, should be adopted.

This thesis proposes the Esperanto Broker (EB), a communication platform for

19

nomadic computing systems which take advantages of both the above mentioned ap-

proaches. EB adopts the distributed objects computing model and enhances it to

achieve the realization of new application scenarios. At the same time, it adopts

mobile-enabled interaction paradigms as the underlying infrastructure which appli-

cations will rely on. More precisely, EB has the following features: i) it addresses

mobility issues via a unified approach, i.e. both at data-link, network and middleware

levels; ii) it adopts a tuple space as the underlying communication infrastructure; and

iii) it provides Distributed Object Computing (i.e. DOC) model which is enhanced

according to the communication paradigms standardized by the W3C [15].

1.5 Communication paradigms

This section is meant to provide some background terminology and classification

of communication paradigms adopted by distributed communication middleware to

better clarify motivations behind the proposed approach and relate the Esperanto

Broker with the state of art in the area of nomadic computing.

1.5.1 Properties

Depending upon how entities interact, exchange data, and synchronize themselves,

several communication paradigms may be distinguished. In order to classify such

paradigms, [21, 22] identify the following dimensions:

• Decoupling: it represents the strength that keeps client and server either

tightly or loosely coupled to each other. Decoupling may be in space, time

and synchronization: i) space: the interacting parties do not need to know

each other. The clients do not usually hold references to their servers, neither

20

do they know how many of these clients are participating in the interaction.

Similarly, clients do not usually hold references to the servers, neither do they

know how many of these servers are participating in the interaction; ii) time:

the interacting parties do not need to be actively participating in the interaction

at the same time. In particular, the server might provide some services while

the client is disconnected, and conversely, the client might get notified about the

occurrence of some event while the original service provider is disconnected; iii)

synchronization: servers are not blocked while providing service, and clients can

get asynchronously notified (through a callback) of the occurrence of the service

provision while performing some concurrent activity. The service delivery does

not happen in the main flow of control of the servers and clients, and do not

therefore happen in a synchronous manner.

• Initiative: the interaction may begin on both sides of the service delivery, either

at the server-side or the client-side. Initiative may be pull-based or push-based:

i) client-pull : the transfer of information from servers to clients is initiated by

a client request. The pull-based interaction may be either two-way or one-

way, that is, the client may either wait for a reply from the server or not; ii)

push-based : data delivery involves sending information to a client population

in advance of any specific request. With push-based delivery, the server initi-

ates the transfer. The push-based interaction may be either solicit/response or

notify, namely, the server may either wait for a reply from the client or not.

• Multiplicity: service delivery may occur between two or more parties, whether

it is based on one-to-one or one-to-many communication: i) one-to-one com-

munication: service is provided by one server to one client; ii) one-to-many

21

communication: it allows multiple clients to receive the service sent by one the

server. It is worth noting that the communication may be also many-to-many,

where more than one server provides the service to more than one client.

1.5.2 Models

According to the above mentioned dimensions, the following fundamental communi-

cation paradigms may be distinguished:

• Remote Procedure Call: One of the most widely used forms of distributed

interaction is the remote invocation, an extension of the notion of ”operation

invocation” to a distributed context. This type of interaction was first proposed

in the form of a remote procedure call (RPC) for procedural languages, and has

been straightforwardly applied to object-oriented contexts in the form of re-

mote method invocations. By making remote interactions appear the same way

as local interactions, the RPC model and its derivatives make distributed pro-

gramming very easy. This explains their tremendous popularity in distributed

computing. Distribution cannot, however, be made completely transparent to

the application, because it gives rise to further types of potential failures (e.g.,

communication failures) that have to be dealt with explicitly. The synchronous

nature of RPC introduces a strong time, synchronization, and also space cou-

pling (since an invoking object holds a remote reference to each of its invokees).

Several attempts have been made to remove synchronization coupling in remote

and avoid blocking the caller thread while waiting for the reply of a remote invo-

cation. A first variant consists in providing a special flavor of asynchronous in-

vocation for remote methods that have no return values. For instance, CORBA

22

provides a special one-way modifier that can be used to specify such methods.

Obviously the multiplicity allowed by the remote procedure call is one-to-one.

• Tuple Space: The tuple space (also known as distributed shared memory)

paradigm provides hosts in a distributed system with the view of a common

shared space across disjoint address spaces, in which synchronization and com-

munication between participants take place through operations on shared data.

The notion of tuple space was originally integrated at the language level in

Linda [23], and provides a simple and powerful abstraction for accessing shared

memory. A tuple space is composed of a collection of ordered tuples, equally

accessible to all hosts of a distributed system. Communication between hosts

takes place through the insertion/removal of tuples into/from the tuple space.

Three main operations can be performed: write() to export a tuple into a tuple

space, take() to import (and remove) a tuple from the tuple space, and read()

to read (without removing) a tuple from the tuple space. The interaction model

provides time and space decoupling, in that tuple producers and consumers re-

main anonymous with respect to each other. The creator of a tuple needs no

knowledge about the future use of that tuple or its destination. An in-based

interaction implements one-to-one semantics (only one consumer reads a given

tuple) whereas read-based interaction can be used to implement one-to-many

message delivery (a given tuple can be read by all such consumers). The tuple

space paradigm proposed by Gelernter et al. does not provides synchronous

decoupling because consumers pull new tuples from the space in a synchronous

style (read() and take() are blocking primitives). However available implemen-

tations (e.g. JavaSpace [8] , TSpaces [24]), do provide non-blocking primitives

23

so that providing complete synchronous decoupling.

• Message Passing: Message oriented is often used to refer to a family of mod-

els rather than to a specific interaction scheme. Message queuing and pub-

lish/subscribe are tightly intertwined: message queuing systems usually inte-

grate some form of publish/subscribe like interaction. Such message-centric

approaches are often referred to as message-oriented middleware (MOM). At

the interaction level, message queues recall much of tuple spaces: queues can

be seen as global spaces, which are fed with messages from producers. From a

functional point of view, message queuing systems additionally provide trans-

actional, timing, and ordering guarantees not necessarily considered by tuple

spaces. In message queuing systems, messages are concurrently pulled by con-

sumers with one-of-n semantics. These interaction model is often also referred

to as point-to-point (PTP) queuing. Which element is retrieved by a consumer

is not defined by the element’s structure, but by the order in which the elements

are stored in the queue (generally first-in first-out (FIFO) or priority-based or-

der). Similarly to tuple spaces, producers and consumers are decoupled in both

time and space. As consumers synchronously pull messages, message queues

do not provide synchronization decoupling. Some message queuing systems of-

fer limited support for asynchronous message delivery, but these asynchronous

mechanisms do not scale well to large populations of consumers because of the

additional interactions needed to maintain transactional, timing, and ordering

guarantees.

Table 1.1 summarizes the decoupling, initiative, and multiplicity properties of

the afore-mentioned communication paradigms. The tuple space model is the most

24

Table 1.1: Communication paradigms and their attributes

according to proposed dimensions

RPC MOM PS TS
decoupling all none none none
initiative pull-based pull-based push-based both
multeplicity 1-1 1-1 both both

flexible communication model.

1.5.3 A standard approach

The WSDL [15] is an XML vocabulary for describing network services as a set of

endpoints exchanging messages about each others capabilities. The messages may

contain document-oriented (i.e. messages or tuples) or procedure-oriented information

(i.e. method signatures).

A WSDL document defines services as collections of network endpoints (or ports).

In WSDL, the abstract definition of endpoints and messages is separated from their

concrete network deployment or data format bindings. This allows the reuse of ab-

stract definitions: messages, which are abstract descriptions of the data being ex-

changed, and port types, which are abstract collections of operations. The concrete

protocol and data format specifications for a particular portType constitute a reusable

binding. A port is defined by associating a network address with a reusable binding.

A collection of ports defines a service.

A portType is a named set of abstract operations and the abstract messages in-

volved. The portType name attribute provides a unique name among all portTypes

defined within the enclosing WSDL document. An operation is specified by the in-

volved messages. WSDL defines four primitive types of operations that an endpoint

can support:

25

• One-way: The endpoint receives a message. The data exchange only occurs

in one direction. The service only gets an input, without having to provide an

output. Hence, the portType only consists of an input message.

• Request-Response: The endpoint receives a message, processes it, and sends

a correlated message to the requestor. This is the most common scenario, as

known from HTML pages.

• Solicit-Response: The endpoint sends a message and receives a correlated

message. This is the complementary operation type to Request-Response.

• Notification: The endpoint sends a message, but it does not expect a response.

This type of operation is complementary to the One-way operation.

SOAP [15] is an XML-based protocol for messaging and remote procedure calls.

At its core, a SOAP message has a very simple structure: an XML element (the

Envelope) with two child elements, one of which contains the optional Header and

the other the Body. For Web Services, SOAP offers basic communication, while

WSDL does inform about what messages must be exchanged to successfully interact

with a service.

It is noteworthy that both WSDL and SOAP are highly expressive and allow the

user to specify whichever communication primitives and communication paradigms

he needs.

Chapter 2

Nomadic computing platforms

Several works addressed the issue of supporting mobile computing applications since

the end of ’90s. Focusing on distributed computing middleware, research effort has

been mainly progressed along the following directions: i) extending traditional mid-

dleware implementations with primitive mobile-enabled capabilities, and ii) proposing

middleware which adopt mobile-enabled computing models.

The former aimed at preserving the distributed computing model and to let legacy

applications run transparently in mobile computing settings, whereas the latter aimed

at proposing suitable computing models for mobile computing environments. Solu-

tions belonging to the first approach include [25, 26, 27, 28, 29, 30, 31]. Solutions

belonging to the second approach include [11, 9, 10, 32, 13, 33, 34].

In the following, detailed description of these middleware solutions are provided.

Finally, according to what stated in sections 1.2.1, 1.3.1, 1.3.2, a comparison frame-

work is provided.

26

27

2.1 Extending traditional middleware

2.1.1 Wireless CORBA

The Telecommunications Domain Task Force (DTF) of the OMG issued a Request for

Proposals (RFP) onWireless Access and Terminal Mobility in CORBA [30], which re-

quested a standardized solution to wireless and mobile communication in the CORBA

framework. The overall system architecture is divided into three separate domains,

each of which contains a central component: i) Home Domain: it is the mobile

terminal’s administrative home. This is presumably connected to the organization

administering the terminal. The Home Location Agent in the Home Domain is re-

sponsible for tracking the location of each terminal owned by its domain. The Home

Domain may also contain CORBA services that may be treated specially by mobile

terminals; ii) Terminal Domain: it consists of everything on the mobile terminal.

As is proper with a CORBA specification, the internal structure of a domain is not

specified at all, only its outside interfaces. The outside interface of the Terminal

Domain is the Terminal Bridge. All CORBA invocations whose one endpoint is on

the mobile terminal go through the Terminal Bridge, which communicates using a

specified protocol with its counterpart on the network side; iii) Visited Domain: the

counterpart of the Terminal Bridge on the fixed network is called the Access Bridge.

In the connection between the two Bridges the Access Bridge is the passive side, which

is contacted by the Terminal Bridge. The domain containing the Access Bridge is

called the Visited Domain.

When a CORBA object is on a mobile terminal, invocations intended for it need

to be routed somehow to the terminal’s current Access Bridge. This is accomplished

28

with Mobile IORs. Mobile IOR contains the address and port number of the mobile

terminal’s Home Location Agent, instead of the address and port number of the

actual object on the terminal. When a Home Location Agent receives an invocation

intended for an object on a mobile terminal under its administration, it reads the

Mobile Terminal Profile contained in the target IOR of the invocation and send a

LOCATION_FORWARD response to redirect the invocation to the current Access Bridge

of the terminal identified in the Mobile Terminal Profile. The Access Bridge can

determine the target terminal in the same way as the Home Location Agent and

tunnel the invocation to it. If the terminal has already left the Access Bridge, it can

either respond with a LOCATION_FORWARD (if it knows the terminal’s current location)

or OBJECT_NOT_EXIST (which should cause the client to retry the invocation at the

Home Location Agent, if such existed).

The Bridges communicate with each other using theGIOP Tunneling Protocol (i.e.

GTP). The GIOP connection logically is directly between the object on the terminal

and the object on the fixed network. The Access Bridge is responsible for translating

between the IIOP used by the network object and the GTP used by the terminal.

GTP messages over the wireless link are transferred by the adaptation layer that

guarantees reliability and ordered delivery of messages. The actual transport layer

can be any transport used over wireless links; if the transport layer does not provide

sufficient reliability, it is the responsibility of the adaptation layer to provide this on

top of it.

When a mobile terminal migrates from a domain to another, handoff procedure are

needed to be performed. There are backward handoff, where an existing connection

is switched to go through a new access point, and forward handoff, where a lost

29

connection is re-established after a sudden loss. When a terminal performs a handoff,

its old Access Bridge and its Home Location Agent need to know about terminal

location. For this purpose the Wireless CORBA specification defines Mobility Events

that may be generated whenever the terminal moves. Both the Terminal Bridge and

Access Bridge generate these events when a terminal performs a handoff or loses its

current connection. These mobility events are specified to pass through a Notification

Channel, though there is no specified procedure for outside applications to discover

this channel. Moreover, the Wireless CORBA specification does not describe how

such procedures are triggered.

2.1.2 Dolmen

Dolmen project [31] has the objective to study the impact of terminal mobility on

client server interaction mechanisms over a wireless access and how this can be sup-

ported by a CORBA compliant environment. The mechanism used by a client to

invoke an operation offered by a server comprises two steps: i) retrieval of a reference

to an instance of the interface that gives access to the desired operation; ii) invocation

of the operation across the interface, using the obtained reference, provided that a

valid reference has been obtained. In that respect, terminal mobility implicitly means

frequent changes of object references; in particular those of nomadic objects because

the mobile terminal and the objects contained therein are continuously on the move.

Dolmen proposes a solution in which the impact of terminal mobility on the basic

client server interaction mechanism is tackled by using CORBA bridging techniques.

In the CORBA architecture, bridging is one of the cornerstones of building inter-

operability support between different communication environments. A common use

30

for an interoperability bridge is to act as a gateway between a CORBA domain and

a non-CORBA environment, and translate between IIOP and a particular ESIOP

designed for that environment. More precisely, a bridge resides between two domains

and translates each message related to an object invocation across the domain border

into a format understood by the destination domain.

The concept of bridging is exploited to interconnect mobile terminals to the fixed

network. Implementing two half-bridges, one residing in a mobile terminal and the

other in a well-known access point within each mobility domain in the fixed network,

allows to introduce an efficient light-weight Inter-ORB protocol for use over the wire-

less access network. The wireless access domain and part of the core network domain

is divided into mobility domains. The core network part of each mobility domain in-

stantiates a set of mobile-specific support services, including one or more Fixed DPE

Bridges (FDBRs) that serve as access points to the fixed network. The rest of the

core network domain serves fixed terminals and acts as a backbone network. Each

mobile terminal has its own ORB that provides object services to the applications

running on the terminal.

Invocations of objects outside the local access domain are directed to the Mobile

DPE Bridge (MDBR) on the mobile terminal. The MDBR forwards the invocation to

the FDBR, which then invokes the desired object. The FDBR acts as the represen-

tative of the mobile terminal within the fixed network, invoking operations in other

objects on behalf of the mobile terminal. The FDBR also accepts invocation requests

for objects located on the mobile terminal from objects within the core network. The

FDBR forwards an invocation request to the MDBR, which then invokes the actual

object and returns the response through the FDBR

31

When a mobile terminal is in contact with the core network, a physical signaling

connection (a dedicated signaling channel) exists between the two bridges. When

the terminal moves to another mobility domain, this signaling connection must be

released, a new FDBR within the new domain must be contacted, and a new signaling

connection must be created. This procedure is referred to as a bridge handoff.

Object invocations that are in progress during a bridge handoff are reliably and

correctly completed despite the momentary break in connectivity via buffering invo-

cation related messages in the old FDBR until the mobile terminal has successfully

connected to a new FDBR. The bridges must also perform recovery after an unex-

pected loss and subsequent re-establishment of the signaling connection.

The LWIOP protocol provides the means for such a recovery: each LWIOP mes-

sage must be acknowledged by the receiver before it can be discarded by the sender.

In the event of a communication error, any unacknowledged messages can be re-sent

after the communication channel has been re-established. Recovery from a loss of

signaling connection also often entails a bridge handover, since the new connection

may be established through a different base station.

2.1.3 Alice

Alice [26] allows CORBA applications running on mobile devices to communicate

transparently with standard CORBA applications using IIOP. The architecture al-

lows server as well as client objects to reside on mobile hosts without relying on a

centralised location register to keep track of their whereabouts. IIOP clients and

servers residing on mobile hosts are able to interact with IIOP servers and clients on

the wired network using standard IPv4 and without requiring the wired clients and

32

servers to know that they are interacting with clients and servers on a mobile host.

In particular, no support for Mobile IP is required.

To address mobility issues, Alice uses a session layer type approach in conjunc-

tion with application support without relying on other approaches. Mobile hosts are

connected to mobility gateways via wireless links. The mobility gateway has several

roles, one of which is to act as a proxy for a mobile host, relaying incoming and out-

going communications over wired connections as shown with the solid lines. Another

role is to perform address translation and redirection for the higher layers.

A mobile host can change mobility gateway as it moves, causing a handoff from

the old to the new mobility gateway. This involves transferring state information

from the old to the new mobility gateway and tunneling open connections for the

remainder of their lifetime. The Alice’s architecture consists of three layers: i) the

Mobility Layer (ML) provides mobility support that is independent of both CORBA

and IIOP and that can also be used to support other protocols such as HTTP; ii) the

IIOP Layer implements the IIOP protocol independently of mobility; iii) the S/IIOP

layer, used when both client and server objects are to be hosted on mobile devices.

The Swizzling or S/IIOP Layer provides the IIOP support that is required specifically

in mobile environments where server objects are to be hosted on mobile devices.

The ML plays several roles in the architecture. First, it hides broken TCP connec-

tions from the layer above it by performing transparent reconnection attempts. In an

IIOP context, this assures at-most-once invocation semantics even in the presence of

broken wireless connections. Second, the ML on the mobile host lets the layer above

it allocate TCP/IP ports on the mobility gateway for incoming connection attempts.

This is necessary to allow clients on the wired network to create TCP connections to

33

the mobile device. Such connection attempts are sent to the mobility gateway which

creates corresponding logical connections to the mobile device. Third, it performs

handoff between mobility gateways, in case the mobile host moves from one gateway

to another. Finally, it can (optionally) notify higher layers about the current net-

work connection point. In particular, this information is used by the S/IIOP layer to

perform the object reference translation described below.

The S/IIOP layer is the mobility-aware component of the IIOP implementation

and is used in tandem with the IIOP layer to support server objects on the mobile

host. The S/IIOP layer is used by the IIOP layer to perform operations which are

affected by mobility, especially publication and encoding of object references. In

CORBA, each server object has its own object refer reference, called an Interoperable

Object Reference (IOR), that uniquely identifies and locates the object. At least one

(hostname, port number) pair is part of the IOR. When an IOR is created on a mobile

host, the (hostname, port number) pair of the mobile host is replaced by that of the

mobility gateway. Such an IOR is said to be swizzled. S/IIOP on the mobile host

uses the underlying ML to obtain information about the current network connection

point in order to perform this swizzling of IORs.

This allows a client on the fixed network to contact the mobility gateway instead

of the mobile host. S/IIOP on the mobility gateway is in turn configured to forward

incoming requests to the server object on the mobile host. S/IIOP exports a tra-

ditional sockets-like interface to the layer above as well as operations to create and

destroy object references. The IIOP layer allows the layer above it to communicate

with other CORBA applications, such as those supported by CORBA 2.0 compliant

34

ORBs or other IIOP implementations. The implementation expects a standard sock-

ets interface from the layer below and can be supported directly above TCP/IP, the

ML or S/IIOP layer as required.

2.1.4 The proxy platform Π2

The proxy platform Π2 [27] is based on special equipment on the borders between wire-

less and wired domains, where proxies act on behalf of the mobile users. Such proxies

help to reduce the communication requirements for the wireless link and, therefore,

integrate mobile users into distributed applications. They bridge the protocols used in

the wired domain and in the wireless domain, hence dealing with address and format

translation. Furthermore, these proxies may be enhanced by components allowing

value-added services to support context- and location-aware applications.

Basically, the platform defines a sort of specially tailored Environment-Specific

Inter-ORB Protocol ESIOP to cope with the difficulties on the wireless link. Fur-

thermore, to handle legacy applications, special gateways are designed bridging this

ESIOP and IIOP. Gateways also deal with addressing and filtering aspects.

To transfer the proxy concept onto CORBA, Π2 uses a protocol proxy to overcome

the shortcomings of TCP along with filtering and compressing data strategies to

improve the transmission quality. Content-specific proxy may apply context- and

location-specific information to achieve value-added services. The current location of

the mobile user, the user’s profile and information on the actual situation the user is

in may be considered when relaying data to the mobile end system.

The proxy platform Π2 acts as a mediator between a CORBA client and a CORBA

server. It works similarly to a generic request level bridge, but allows a more common

35

solution for problems often occurring in mobile and heterogeneous environments and

the integration of further functionality to provide additional services.

To provide the desired functionality the proxy platform Π2 modifies the imple-

mentation of the ORB. The client ORB and the proxy ORB are changed in the same

way. These modifications imply that both client and server applications and the

server ORB do not have to be changed. On call processing, it is necessary to forward

all requests from the client to the appropriate proxy. This is done by setting up a

”‘tunnel”’ between the client and a proxy and between the proxy and the server. In

a scenario with several proxies between the client and the server the proxies are also

connected via ”tunnels”.

Transport connection set-up is done in the ORB with the information found in

the object reference. Because the object reference of the server object is changed

to the object reference of the proxy the ORB creates a transport connection to the

proxy and sends the request to the proxy. To enable forwarding of CORBA requests

on the proxy it is necessary to get type information of the current invocation. Such

information is used to analyze the request for further processing like filtering, caching

of parameter values, etc.

Π2 can be integrated in an existing distributed system in several ways. The

integration is determined by the number of installed proxies, the location of the

proxies and the functionality of each proxy. The integration has implications on

manageability, the round-trip time or latency and the functionality of the system.

In the simplest integration scenario, one proxy is located on the access node of the

wireless network. No other proxy is used in the system.

A more useful integration scenario supplies an additional proxy located on the

36

mobile node. This approach gains much more flexibility and transparency. The

protocol that is used on the wireless link can be changed transparently to the client

application or client ORB. Connection disruption and reconnection can be hidden to

the client and the server and can be handled by the proxies on the endpoints of the

wireless link. The proxy on the mobile node also allows transparent integration of

additional services on the client.

2.2 Mobile-enabled middleware proposals

2.2.1 Rover

The Rover Toolkit [34] offers applications a distributed object system based on a

client-server architecture. Clients are Rover applications that typically run on mobile

hosts, but can also run on stationary hosts as well. Servers, which may be replicated,

typically run on stationary hosts and hold the long-term state of the system. Commu-

nication between clients is limited to peer-to-peer interactions within a mobile host

(using the local object cache for sharing) and mobile hosts server interactions; there

is no support for peer-to-peer, mobile host to mobile host interactions.

The Rover toolkit provides mobile communication support based on two ideas:

relocatable dynamic object (RDO) and queued remote procedure call (QRPC). A

relocatable dynamic object is an object (code and data) with a well-defined interface

that can be dynamically loaded into a client computer from a server computer, or

vice versa, to reduce client-server communication requirements. Queued remote pro-

cedure call is a communication system that permits applications to continue to make

non blocking remote procedure calls even when a host is disconnected- requests and

37

responses are exchanged upon network reconnection. Rover gives applications control

over the location where the computation will be performed. In an intermittently con-

nected environment, the network often separates an application from the data upon

which it is dependent.

By moving RDOs across the network, applications can move data and/or compu-

tation from the client to the server and vice versa. Use of RDOs allows mobile-aware

applications to migrate functionality dynamically to either side of a slow network con-

nection to minimize the amount of data communicated across the network. Caching

RDOs reduces latency and bandwidth consumption. Interface functionality can run

at full speed on a mobile host while large data manipulations may be performed on

the well-connected server. All application code and all application-touched data are

written as RDOs. RDOs may execute at either the client or the server. Each RDO

has a ”home” server that maintains the primary, canonical copy. Clients import sec-

ondary copies of RDOs into their local caches and export tentatively updated RDOs

back to their home servers.

RDOs may vary in complexity from simple calendar items with a small set of

operations to modules that encapsulate a significant part of an application (e.g., the

graphical user interface for an email browser). Complex RDOs may create a thread of

control when they are imported. with the object cache. When a client side application

issues an import or export operation, the Toolkit satisfies the request depending on

whether the object is found in a local cache and on the consistency option specified

for the object. Once an object has been imported into the client-side application’s

local address space, method invocations without side effects are serviced locally by

the object. At the application’s discretion, method invocations with side effects may

38

also be processed locally, inserting tentative data into the object cache.

Operations with side effects also insert a QRPC into a stable operation log located

at the client. Each insert is a synchronous action. Support for intermittent network

connectivity is accomplished by allowing the log to be incrementally flushed back

to the server. Thus, as network connectivity comes and goes, the client will make

progress towards reaching a consistent state. The network scheduler contributes to

log transmission optimization by grouping operations destined to the same server

for transmission and selecting the appropriate transport protocol and medium over

which to send them. Rover is capable of using a variety of network transports. Rover

supports both connection- based protocols (e.g., HTTP over TCP/IP networks) and

connection-less protocols (e.g., SMTP over IP or non-IP networks). The network

scheduler leverages the queuing of QRPCs performed.

2.2.2 Xmiddle

Xmiddle [10] allows mobile to communicate and sharing information with other hosts.

Mobile peers may come and go, allowing complicated ad-hoc network configurations.

In order to allow mobile devices to store their data in a structured and useful way, each

device stores its data in a tree structure, a sort of expressive tuple representation.

Trees allow sophisticated manipulations due to the different node levels, hierarchy

among the nodes, and the relationships among the different elements which could be

defined. Xmiddle defines a set of primitives for tree manipulation, which applications

can use to access and modify the data, basically a set of primitives to access a tuple

space.

39

Xmiddle provides an approach to sharing that allows on-line collaboration, off-

line data manipulation, synchronization and application dependent reconciliation.

On each device, a set of possible access points for the private tree are defined so that

other devices can link to these points to gain access to this information; essentially,

the access points address branches of trees that can be modified and read by peers. In

order to share data, a host needs to explicitly link to another host’s tree. Access points

to a host’s tree are a set that are called ExportLink. Xmiddle allows mobile hosts to

share data when they are connected or replicate the data and perform operations on

them off-line; reconciliation of data takes place once the hosts reconnect.

A host also records the branches that it links from other remote hosts in the set

LinkedFrom, and the hosts linking to branches of the owned tree in the set LinkedBy.

These sets contain lists of tuples (host; branch) that define the host that is linking

to a branch, and from whom a branch is linked, respectively. When two hosts are

connected they can share and modify the information on each other’s linked data

trees. Each host has full control over its own tree, however it is obliged to notify

other connected hosts that link to the modified part (branch) of its tree about the

changes introduced.

Hosts may explicitly disconnect from other hosts using the disconnect primitive.

Xmiddle supports explicit disconnection to enable, for instance, a host to save battery

power, to perform changes in isolation from other hosts and to not receive updates

that other hosts broadcast. Disconnection may also occur due to movement of a host

into an out of reach area, or to a fault. In both cases, the disconnected host retains

replicas of the last version of the trees it was sharing with other hosts while connected

and continues to be able to access and modify the data; a versioning system is in place

40

to allow consistent sharing and data reconciliation.

Xmiddle implements its services on top of standard network protocols, such as

UDP or TCP, that are provided in mobile networks on top of, for instance, a Bluetooth

data-link layer, and MAC and physical layer. The current prototype is however based

on UDP upon Wireless Lan, which is an other possible option. The protocol stack

consists of the following layers: i) the presentation layer implementation maps XML

documents to DOM trees and provides the mobile application layer with the primitives

to link, unlink and manipulate its own DOM tree, as well as replicas of remote trees;

ii) the session layer implementation manages connection and disconnection.

These two layers consist of a Xmiddle Controller, which is a concurrent thread that

communicates with the underlying network protocol and handles new connections and

disconnections, triggers the reconciliation procedures and handles reconciliation con-

flicts according to application specific policies. The Xmiddle Primitives API provides

mobile applications with operations implementing the XMIDDLE primitives, such as

link, unlink, connect and disconnect. The ability to link to trees from other devices

introduces a client/server dependency between mobile hosts.

2.2.3 Lime

Lime [13] is a middleware supporting the development of applications that exhibit

physical mobility of hosts, logical mobility of agents, or both. LIME adopts a co-

ordination perspective inspired by the Linda model. The context for computation,

represented in Linda by a globally accessible, persistent tuple space, is represented in

LIME by transient sharing of the tuple spaces carried by each individual mobile unit.

41

In Linda, processes communicate through a shared tuple space that acts as a repos-

itory of elementary data structures, or tuples. A tuple space is a multiset of tuples

that can be accessed concurrently by several processes. Each tuple is a sequence of

typed parameters, and contains the actual information being communicated.

Tuples are added to a tuple space by performing out operation, and can be removed

by executing a in operation. Tuples are anonymous, thus their selection takes place

through pattern matching on the tuple content. The argument is often called a

template, and its fields contain either actuals or formals. Actuals are values, formals

act like ”wild cards”, and are matched against actuals when selecting a tuple from

the tuple space. If multiple tuples match a template, the one returned by in is

selected nondeterministically. Tuples can also be read from the tuple space using the

rd operation. Both in and rd are blocking, i.e., the process performing the operation

blocks until a matching tuple is found in the tuple space. A typical extension to this

synchronous model is the provision of a pair of asynchronous primitives inp and rdp,

called probes, that allow non-blocking access to the tuple space.

Linda characteristics resonate with the mobile setting. In particular, communica-

tion in Linda is decoupled in time and space, i.e., senders and receivers do not need

to be available at the same time, and mutual knowledge of their location is not neces-

sary for data exchange. The global context for operations is defined by the transient

community of mobile units that are currently present. Since these communities are

dynamically changing according to connectivity and migration, the context changes

as well.

In the model underlying LIME, the shift from a fixed context to a dynamically

changing one is accomplished by breaking up the Linda tuple space into many tuple

42

spaces, each permanently associated to a mobile unit, and by introducing rules for

transient sharing of the individual tuple spaces based on connectivity. From the

perspective of a mobile unit, the only way to access the global context is through a

so-called interface tuple space (ITS), which is permanently and exclusively attached

to the unit itself. The ITS contains tuples the mobile unit is willing to make available

to other units, and that are concretely co-located with the unit itself. This represents

the only context accessible to the unit when it is alone. Access to the ITS takes place

using the Linda primitives already mentioned, whose semantics is basically unaffected.

Nevertheless, this tuple space is also transiently shared with the ITSs belonging

to the mobile units that are currently part of the community. Hence, the content

perceived through the ITS changes dynamically in response to changes in the set of

co-located mobile units. Upon arrival of a new mobile unit, tuples in the ITS of the

new unit are merged with those, already shared, belonging to the other mobile units,

and the result is made accessible through the ITS of each of the units. This sequence

of operations, called engagement, is performed as a single atomic operation. Similar

considerations hold for the departure of a mobile unit, resulting in the disengagement

of the corresponding tuple space and the removal of data perceived by the remaining

units through their ITSs.

Transient sharing of the ITS constitutes a very powerful abstraction, as it provides

a mobile unit with the illusion of a local tuple space that contains all the tuples coming

from all the units belonging to the community, without any need to know them

explicitly. In an ad hoc network, LIME mobile hosts are connected when distance

between them allows communication.

43

2.2.4 L2imbo

L2imbo [32] is based on the Linda model but includes a number of significant ex-

tensions which address the specific requirements necessary for operation in mobile

environments. In particular, the system incorporates the following key extensions: i)

multiple tuple spaces which may be specialized to meet application level requirements,

e.g. for consistency, security or performance; ii) an explicit tuple type hierarchy with

support for dynamic sub-typing; iii) tuples with QoS attributes including delivery

deadlines; iv) a number of system agents that provide services for QoS monitoring,

the creation of new tuple spaces and the propagation of tuples between tuple spaces.

In addition to general purpose tuple spaces L2imbo allows the creation of tuple

spaces with support of non-functional requirements, such as security (user authenti-

cation), persistence and tuple logging (for accountability in safety critical systems).

Crucially, it is also possible to create a range of QoS-aware tuple spaces. In order

to create a new tuple space clients communicate with the appropriate system agents

via a universal tuple space (UTS). Clients specify the characteristics of the desired

tuple space and place it into a common tuple space. The appropriate system agent

accesses this tuple, creates a tuple space with the required characteristics and then

places it into the common tuple space.

The fields in this tuple denote the actual characteristics of the new tuple space

(which may be different to those requested in best-effort systems) and a handle

through which clients can access the new space. Clients can make use of the new

tuple space by means of a use primitive which provides access to a previously cre-

ated tuple space. This primitive communicates with a membership agent through

the universal tuple space and returns a handle if the tuple space exists and certain

44

other criteria are met. The precise criteria vary from tuple space to tuple space and

can include checks on authentication and access control functions or relevant QoS

management functions.

At a later time, handles can be discarded by an agent using a discard primitive. An

appropriate tuple is then placed in the universal tuple space so that the membership

agent can take appropriate steps. Tuple spaces are destroyed by placing a tuple of

type terminate into the tuple space. These tuples are picked up by system agents

within the tuple spaces themselves and invoke a system function to gracefully shut-

down the tuple space.

This model can be applied recursively. It is possible to access a tuple space through

the universal tuple space and then find that this tuple space has system agents sup-

porting the creation and subsequent access to tuple spaces. This recursive structure

provides a means of creating private worlds offering finer grain access control. Ev-

ery site in L2imbo has an associated local management tuple space together with a

number of QoS monitoring agents. These monitoring agents monitor key aspects of

the system and inject tuples representing the current state of that part of the sys-

tem into the management tuple space. Some typical forms of QoS monitoring agent

are: i) connectivity monitors, which watch over the characteristics of the underlying

communications infrastructure and make available information such as the current

throughput between hosts; ii) power monitors, which review the availability and con-

sumption of power on a particular host. In particular, applications can obtain power

information on host peripherals and may utilize hardware power saving functional-

ity as appropriate; iii) cost monitors, which determine the cost associated with the

current communications links between hosts.

45

2.3 Comparison framework

Figure 2.1 summarizes the comparison among related work in the area of nomadic

computing middleware. As the Figure shows none of the proposed solutions adopts

a pervasive approach in dealing with mobility-related issues. Mobility affects all the

layers of the ISO/OSI protocols stack, thus requiring integrated mechanisms to be

adopted at all layers, or in other words, a cross-layer approach. This means that

mechanisms and solutions to be provided by a nomadic computing middleware need

to be tightly designed in order to be an effective response to mobility challenges [35].

All the analyzed solutions rely on services offered by the underlying layers, namely,

network and transport layers, such as MobileIP, TCP and/or UDP, thus adopting the

classical layered approach.

To better clarifies motivations behind the work of this thesis, drawbacks, and

weaknesses of the considered solutions, every dimension of the framework reported in

Figure 2.1 is carefully considered:

• disconnectedness : every solution tries to deal with disconnectedness proposing

sorts of decoupled interaction mechanisms. For instance, Wireless CORBA

introduces Terminal Bridges, Access Bridges and Home Location Agents, and

let them communicate with each other via a tunneling protocol. This helps to

make parties space-decoupled, however, remote methods invocations they use

to interact are still synchronously tight, since their implementation relies on

GTP which is a connection-oriented protocol. Dolmen, Alice, Π2, adopt similar

mechanisms. Xmiddle, Lime and L2imbo adopt a decoupled communication

paradigm, however, Xmiddle, Lime do not rely on another entity to let the

communication be space decoupled. The same issue affects Rover.

46

Dealing with disconnectedness means that middleware should adopt a fully de-

coupled communication paradigm, which allows both the middleware to handle

device disconnections and reconnections and the application to go further in the

computation even if the counterpart is not available.

• variable connectivity : Wireless CORBA, XMiddle and Lime aside, every solu-

tion provides mechanisms to deal with unpredictability of wireless connections.

Dolmen, Alice and Π2, L2imbo provide smart proxies that embed strategies to

cope with bandwidth variability. Rover introduces the concept of Relocatable

Dynamic Objects (i.e. RDOs) to be downloaded from an entity to another in

order to cope with bandwidth drops and disconnection. Although this may be

an effective mean, is useless without any sort of network status prediction and

adaptation.

Dealing with variable connectivity means that middleware should adopt strate-

gies that are aware or the connectivity status and let its behavior change during

its operational phase to improve the efficiency in its usage as well as the avail-

ability perceived by the application. Such strategies should not introduce high

overhead and deal with power constraints of mobile devices.

• processing power : almost none of the analyzed solutions deal with processing

power constraints of mobile devices. Rover and L2imbo provide respectively

RDOs and Monitoring Agents. RDOs are used to shift a computation on a

more powerful node while Monitoring Agents are used to know the status of the

mobile device’s battery. None of the considered solutions deploy middleware

component according to power constraints, but let the application developer do

47

it.

Dealing with processing power means that middleware should be deployed ac-

cording mobile device’s power constraints. Heavy computational tasks such

as handoff procedures, data storage, synchronization etc. should be left to

middleware component that run of powerful hosts of the nomadic computing

infrastructure.

• heterogeneity : heterogeneity is strictly related with the pervasiveness of the pro-

posed approach. Most of the considered solutions adopt a transparent approach

where the heterogeneity is hided to the middleware by means of underlying

standard network protocols stack. Although, this is an effective approach to

adopt, none of the analyzed solutions provide mechanisms to switch seamlessly

from a network technology to another, and keeping the application developer

from the low-level details.

Dealing with heterogeneity means that middleware should implement mech-

anisms to exploit the flexibility offered by mobile devices, which mostly are

equipped with more than one wireless interface. This may impact on the need

of handoff procedures when a device has to switch either from a technology to

another or from a wireless access point to another.

• programming abstractions : although all the considered solutions provide the de-

veloper with an object-oriented application programming interface, only Wire-

less CORBA, Dolmen, Alice, Π2 and Rover adopt a Distributed Object Com-

puting (i.e. DOC) model, while XMiddle, Lime and L2imbo adopt a Tuple

Space model. Remote method invocations are far more successful than tuple

48

space write/read/take primitives since they are easier to understand and more

effective to apply. However, space-, time-, and synchrony- decoupling of tuple

space make them suitable to use in nomadic computing environments.

Dealing with programming abstractions means that middleware should provide

a powerful programming abstraction, directly related to a powerful communi-

cation model, which is also suitable to be applied in the context of nomadic

computing environments.

• advanced middleware services : while Wireless Corba, Dolmen, Alice, Xmid-

dle and Lime do not provide any advanced middleware service, Π2, XMiddle,

and Lime can be distinguished since they provide some sorts of built-in mech-

anisms to respectively let the computation be location-aware, the data sharing

be proximity-aware and the application be physical mobile. Rover and L2imbo,

instead, provide explicit services to adapt the behavior of the application to the

surrounding context.

Dealing with advanced middleware services means that middleware should pro-

vide building blocks and services to make nomadic computing scenario easy to

be realized, without much effort from the designer.

• tools for design and development : any of the considered platforms provides

advanced tools for supporting design and development of nomadic computing

application, such as visual tools, code generators etc.

Dealing with such issue means that middleware should provide such tools in

order to let the designer focus on the real needs of the application and leave the

middleware do the rest of the job.

49

• interoperability : basically, any of the considered platforms care about interop-

erability. Only CORBA-based solutions may benefit of some sort of interoper-

ability due to OMG effort. However, middleware are supposed to be software

systems that make distributed applications interoperable, this is one of their

major goals. This is especially true in nomadic computing environments, where

the diversity is the rules rather than the exception.

Dealing with this issue means that middleware should provide mechanisms to

be interoperable with other middleware. This could be achieved via the im-

plementation of technologies and middleware bridges. However, the approach

should be scalable with regard to the number of middleware solutions that will

be proposed. It is not feasible to make middleware interoperable via a multitude

of bridges.

Finally, Wireless Corba, Dolmen, Alice and Π2 all share a crucial drawback: the

adoption of the rpc mechanism: rpc is inadequate in mobile computing environments

due to tightly coupling in space, time and synchronization [11]. Xmiddle, L2imbo and

Lime propose different computing models according to a tuple oriented approach.

Although such approaches provide mobile computing applications with time, space

and synchronism decoupling, they are poorly structured and typed. DOC middleware

have been successful in promoting high quality and reusable distributed software [14],

and providing applications with such computing models is a step backwards.

Rover provides a distributed object model while adopting a sort of decoupled

communication paradigm, but it has some weaknesses; firstly, authors are concerned

about the burden of implementing application-specific adaptation strategies defin-

ing methods to update objects, to detect and to resolve conflicts. Secondly, Rover

50

does not provide any mobility management in terms of both handoff procedures and

decoupled mechanisms.

Rover does not deal with device movements, which may lead to inconsistency

of network-level connections, and it does not let client and server interact via an

intermediate counterpart. This is the basic assumption to provide time and space

decoupling.

51

disconnectedness
variable

connectivity

processing

power
heterogeneity

programming

abstractions

advanced

middleware

services

tools for

design and

development

interoperability

WIRELESS CORBA U NPWT+RMI U U PD-GTP DOC N U OMG

DOLMEN U NPWT+RMI RASM U NAL DOC N N OMG

ALICE U NPWT+RMI SP U U DOC N N OMG

P
�

U NPWT+RMI FMA U PD-GTP DOC LAP N OMG

ROVER U QRPC RDOs RDOs NAL DOC CCMN N N

XMIDDLE U DTS-SYN N U U TS N N N

LIME U DTS-ASY N U U TS N N N

L
2
IMBO U QOS-TS FMA FMA NAL TS QMAA N N

standard interface

U = Unspecified, left either to the specific implementation, or to particular extensions, or yet to underlying layers

N = None

NPWT+RMI = Normal proxy approach with tunnelling, the interaction mechanism is still remote method invocation

QRPC = Queued Remote Procedure Call

DTS-SYN = Distributed Tuple Space, synchronous access primitives

DTS-ASY = Distributed Tuple Space, asynchronous access primitives

QOS-TS = Possibility to specify Tuple space with QoS attributes

SP = Adoption of smart proxies to handle variability of connection

RDOs = relocatable dynamic objects

FMA = Filter Manager or Agents to manipulate requests and responses or data structures in general

RASM = Resource Adapters in Service Machine approach

PD-GTP = Design of a new protocol, particularly GIOP Tunnelling Protocol, and rely on underlying network stack

NAL = Network Abstraction Layer

TS = Tuple space computing programming

DOC = Traditional Distributed Object Computing programming

LAS = Proxies may be aware of mobile user's locations

CPMN = Objects Caching, Prefetching, Migration, and Notification

QMAA = QoS Monitoring and Adaptation

OMG = Interoperability between ORBs and other middleware, if the specification is implemented

p
e
rv

a
s
iv

e
n

e
s
s

PLATFORMS

application-related

REQUIREMENTS

SOLUTIONS

rich computing model and API

easy to use in NCdecoupled communication paradigm

efficient mobility management

technology transparence

mobility-relatedF
igu

re
2.1:

C
om

p
arison

fram
ew

ork
am

on
g
n
om

ad
ic

com
p
u
tin

g
solu

tion
s

Chapter 3

The Esperanto Broker

This chapter describes assumptions and terminology used in this thesis. It also pro-

vides an overview of the proposed platform and how the above mentioned issues have

been addressed. The Figure 3.1 illustrates the architectural view of the Esperanto

Broker.

3.1 Assumptions and Definitions

Wireless access points of Nomadic Computing infrastructures may be clustered based

on several criteria (such as their geographic location or the ownership). In the fol-

lowing sections we refer to such clusters as Domains, and to the permanent infras-

tructure interconnecting these Domains as the Core Network. The Core Network can

be characterized by a certain level of performance. Wired networks parameters (i.e.

bandwidth, latency, and transmission reliability) are an order of magnitude higher

than the parameters of wireless networks. Permanent hosts are more powerful than

mobile devices. These considerations let the use of the Core Network to provide

mobile devices with a support for mobility management and/or middleware services.

52

53

E-S T U B E-S K EL ET O N

C L I EN T S ER V ER

Enhanced
D OC m o del

T U P L E S P A CE

BROKER CORE

Mediator’s
T u p l e sp ac e

T u p l e S p ac es
A c c ess P rim itiv es

C on n ec tion
Man ag er

N C S O C K S

N o m adi c Co m p u t i ng
I nf r as t r u ct u r e

Figure 3.1: The Esperanto Broker: architectural overview

3.2 Dealing with nomadic computing challenges

In the following we present how the Esperanto Broker deals with challenges high-

lighted in section 1.2.1.

• mobility-related issues:

– disconnectedness : changes in network access points due to user’s move-

ments as well as mobile device’s power constraints may cause device’s dis-

connections, which prevent application objects from communicating with

their counterparts. To improve the availability of device connectivity the

Esperanto Broker provides integrated mechanisms at any layer of the soft-

ware stack to let devices handoff between two adjacent wireless access

points and two wireless domains. To achieve disconnected interactions,

54

the Esperanto Broker provides applications with a decoupled communica-

tion paradigm (i.e. tuple space).

– variable connectivity : either voluntary or unpredictable changes may cause

variations in bandwidth, latency, reliability, error rate and delay of the net-

work link. The Esperanto Broker adopts internal communication primi-

tives (i.e. NCSOCKS) whose implementation strategies address dinamicity

of network link, providing applications and middleware components with

awareness of network performances.

– processing power : mobility management procedures like handoffs, as well

as mobility-aware strategies to deal with variable connectivity may be

computational intensive. The Esperanto Broker takes into account re-

source limitations of mobile devices and adopts an approach where high-

computational middleware components run on the fixed-side of the no-

madic computing infrastructure, where permanent and powerful nodes are

located.

– heterogeneity : some terminals are able to use different access technologies

either simultaneously or one at a time. The Esperanto Broker allows both

vertical and horizontal data-link layer handoff. The former are handoffs

among access points of the same technology, while the latter are handoffs

among access points of different technologies. This to achieve a higher

availability of device connectivity.

• application-related issues:

– programming abstractions : the Esperanto Broker provides an object-oriented

55

Application Program Interface (i.e. API) as well as a computation model

which is coherent with the remote method invocations. It has also a

plethora of features that makes it suitable for mobile computing settings.

More precisely, the Esperanto Broker i) decouples method invocations in-

terposing a tuple space between clients and servers; ii) introduces the way

to specify both client-initiated and server-initiated remote method invo-

cations; iii) provides one-to-many remote methods invocations.

– mobile-enabled services : several mobile-enabled services and mechanisms

should be provided in a nomadic computing middleware. The Esperanto

Broker provides two of the most obvious ones: i) a location aware service,

which allow the application to be aware of the user’s current location;

and ii) a group communication mechanism, which allows the application

components to easily make rendezvous.

– tools for software design and development : middleware should support

fast service development and deployment. The Esperanto Broker provides

a visual tool, namely ESERV, that allows the developer to literally draw

object’s interfaces. The development process is made much easier since

most of the application code is automatically generated.

– interoperability : the Esperanto Broker does not have the ambition to be the

nomadic computing middleware. It lacks in some other important issues

(like those of security), hence it is reasonable that other middleware could

be adopted in developing nomadic computing applications. However, any

middleware should manifest some sort of interoperability facilities. The

Esperanto Broker is interoperable with Web Services. Esperanto clients

56

may invokes web services transparently, and vice versa, web clients may

invoke Esperanto servers transparently. The interoperability between the

Esperanto Broker with any other middleware A is achieved providing a

mapping from A toward the Web Services architecture.

3.3 The Esperanto distributed computing model

Distributed object systems built on the EB are systems in which all entities are mod-

eled as Esperanto objects. We decided to adopt such a computing model since, as

compared to the event-based and the tuple-based, it has many advantages: it is very

popular, it is well understood and proficiently applied, it aids to reduce the design

and development effort. Each Esperanto object implements interfaces defined in Es-

peranto’s Interface Definition Language (E-IDL), which consists of simple extensions

to the standard OMG IDL. E-IDL is introduced to further improve the effective-

ness of the distributed computing model and to aid developers to easily implement

next-generation application scenarios.

By means of E-IDL, developers can specify how Esperanto objects interact accord-

ing to the communication paradigms proposed by the Web Services Description Lan-

guage (WSDL) specification. Four are the standardized communication paradigms:

i) request/response; ii) one-way ; iii) solicit/response; and iv) notify [15]. The so-

licit/response and the notify paradigms may involve one or more service requesters.

The one-to-many communication paradigm is provided by the EB as a built-in mecha-

nism. The idea to extend the IDL instead of providing developers with direct mapping

to the WSDL language has two main reasons: i) using a high-level language improves

57

the portability among different programming languages; and ii) IDL is a pretty com-

mon language, developers who are familiar with it would not regret to understand

few extensions to the standard language. As further explained in the section 4.5.1,

the E-IDL compilation generates intermediate files that can be used to achieve inter-

operability between Web Services and Esperanto applications.

Client objects access the methods in the E-IDL interfaces via RMIs. Esperanto

RMIs are built upon a tuple space (i.e. using write, read and take, plus asynchronous

delivery primitives) since objects need to operate in completely decoupled fashion

[11, 21]. Such primitives make also the group communication simple to realize. Fig-

ure 3.2 shows how to build Esperanto RMIs. Client and server objects are space-

decoupled since they interact only via well-known tuple space access points; they are

time-decoupled, since the tuple space is carried out by permanent nodes which are

always active; they can be synchrony-decoupled since the tuple space provides prim-

itives which let them to asynchronously communicate to one another. This approach

overcomes the intrinsic limitations of the rpc that forces objects to communicate in

a tightly coupled fashion, in that i) it needs to locate the server object, ii) it needs

the server to be active to connect to it, iii) it blocks the client, and iv) it can operate

only via a pull model in one-to-one multiplicity.

As far as RMIs semantic is concerned, it is worth noting that the request/response

paradigm’s semantic (and of its dual paradigm, solicit/response) remains unchanged.

Once a client issues a request (i.e. it writes a tuple in the space), it will remain

blocked until the server pushes back the reply (i.e. waiting to take the response

from the space). Whenever clients and servers need to communicate in asynchronous

fashion, they must recur to the asynchronous oneway (and its dual notify). This

58

4. take 2. take

b) request/response

1. write 3. write

Server
Tuple

SpaceClient
2. take

a) (asynchronous) one-way

1. write
Server

Tuple

SpaceClient

3. write

2. read

4. take

1. write
Tuple

Space
ServerClient

Client

Client

c) solicit/response 1-N

2. read 1. write
Tuple

Space
ServerClient

Client

Client

d) notify 1-N

Figure 3.2: Simple implementation of the Esperanto RMIs via tuple space primitives

approach has the main advantage to provide developers with the flexibility to choose

the most suitable communication paradigm to application’s needs, preserving them

from being confused by esoteric semantics.

3.3.1 Esperanto Peers and Esperanto programming model

The Esperanto Broker (i.e. EB) provides programming interfaces and models for

distributed object-oriented computing applications. Like all technologies, EB has

unique terminology associated with it. Although some of the concepts and terms

are borrowed from similar technologies such as CORBA, others are new or different.

Understanding these terms and the concepts behind them is key to having a firm

grasp of EB itself. The most important terms in EB are explained in the following:

• Esperanto Peer: an Esperanto Peer is a ”virtual” entity capable of being

located by the Esperanto Broker and having requests invoked on it. It is vir-

tual in the sense that it does not really exist unless it is made concrete by

an implementation written in a programming language. The Esperanto Peer

59

reference is used by the Broker to direct requests to concrete objects. An Es-

peranto Peer may be located on both sides of the computation, i.e. client-side or

server-side. For instance, if a E-IDL interface contains both client-initiated and

server-initiated paradigms, it will require the implementation of two Esperanto

Peers, one client-side and the other one on the server-side.

• server-side and client-side paradigms: the programming model of an object-

oriented middleware, such as CORBA, provides client objects with the method

invocation abstraction via the implementation of the stub/skeleton pattern. A

client may invoke a method on a server object via the stub, which makes the

remote invocation as it were local, and the server replies to the clients via skele-

ton, which dispatches the method coherently. This way to exchange messages

is so-called client-initiated. The Esperanto broker programming model allows

server objects to invoke methods on client objects as client and server roles were

on the other way around. Therefore, server objects (i.e. objects that implement

skeleton classes) may use stubs and vice versa, client objects (i.e. objects that

instantiate stubs) may implement skeleton classes. This is done to implement

server-initiated paradigms.

• multiple method invocations: classical remote method invocations are one-

to-one paradigms, a client may communicate with one server at time and vice-

versa. This is reasonable since the method invocations are basically client-

initiated primitives. This is still true for the Esperanto client-initiated primi-

tives (i.e. oneway and reqres). However, server-initiated primitives allows the

server to contact more than one client at time, both to send a notification, and

to require responses.

60

3.3.2 ESERV: The Esperanto Service Descriptor

The ESERV is a graphic tool that allows developer to draw Esperanto interfaces, and

generate code automatically. To specify an Esperanto interface the developer has to

submit the following information: i) interaction primitives (i.e. reqres, oneway, solres,

notify); ii) methods signature; iii) parameter directions (i.e. in, out, inout). Once

the developer has prepared the service he is interest in, he can decide to generate the

application code. He can: i) generate the client-side code; ii) generate the server-side

code; iii) generate both; iv) generate the WSDL description of the Esperanto interface;

v) generate the bridge to make an Esperanto server interoperable with a web client;

vi) generate the bridge to make a web service interoperable with an Esperanto client.

Figure 3.3 shows a screen shot of the ESERV tool.

3.4 The Esperanto tuple space model

The Esperanto tuple space is distributed throughout special network nodes that are

located on the Core Network. Conversely to other approaches such as Lime and

Xmiddle [13, 10], the EB core running on mobile devices acts as proxy to the dis-

tributed space, i.e. it implements the primitives for writing/reading tuples in/from

the remote shared memory. This to achieve small memory footprint and low compu-

tational overhead, and allow resource constrained devices to run Esperanto objects.

Permanent nodes which carry out the shared memory are named Mediators. A single

Mediator is dedicated on each Domain of the Nomadic Computing infrastructure.

Objects running on mobile devices exchange remote method invocations’ parameters

(i.e. method signature along with remote object reference) via the Mediator of the

61

Figure 3.3: A screen shot of the Esperanto Service Descriptor

62

Figure 3.4: Nomadic Computing domains and Mediators allocation

Domain where mobile devices are currently located. Mediators cooperate to allow

objects to interact when mobile devices are in distinct Domains.

The Figure 3.4 exemplifies how the network infrastructure of a hypothetic airport

can be decomposed in several Domains and how Mediators may be assigned to them.

Each Domain may have several wireless access points that provide mobile devices

with connectivity to the Core network: a mobile device located in the terminal T1

may communicate with a mobile device located in the terminal T2 being unaware

of the tuple space distribution. This has several advantages: i) it simplifies the EB

design on the mobile device’s side; ii) it may improve infrastructure scalability; iii)

it avoids single point of failures. Therefore, the EB results in two different modules:

i) the Mobile-side, which encompasses the components carried out by mobile devices;

and ii) the Mediator-side, which encompasses the components carried out by nodes

of the Core Network, where Mediators are running on.

Mediators’s crucial tasks pose several design issues: Mediators need to be reliable

and need to have reliable network connectivity. This can easily achieved if Medi-

ators run on permanent nodes of the Core network, as already stated. However,

the side-effect of the proposed approach lies in the fact that mobile devices cannot

63

communicate to one another if no Core network connectivity is provided. Ad-hoc

scenarios are beyond the scope of the Esperanto Broker.

3.5 The Esperanto mobility management

3.5.1 The Esperanto holistic support

Mobility affects all the software layers of a computer system stack. To be successful in

addressing the mobility challenges of nomadic computing systems, one must provide

a holistic support in mobility management, tackling the challenge at all layers: data-

link layer, network layer, transport layer, and middleware layer. This can be done

either by means of a layered-approach or a cross-layer approach. Esperanto takes a

cross-layer approach in providing a holistic support.

3.5.2 The data-link mobility management

The Connection and Location Manager (i.e. CLM) layer aims to provide mobile

devices with the Anytime, Anywhere Access to the Core Network. CLM provides

the built-in mechanisms (i.e. hand-off procedures) to guarantee the continuity of

data-link level communications despite disconnections (i.e. no coverage area, drops in

bandwidth, etc.). Such hand-off procedures are both horizontal and vertical, which

means that the CLM is able to connect a mobile device to wireless access points of

the same or different technologies. Addressing heterogeneity at the data-link level

represents an important step for pursuing the realization of the Next-Generation

Wireless Internet scenarios [36].

64

3.5.3 The network mobility management

There are several approaches to deal with mobility at the network layer. MobileIP [37]

is one of the most common. The most important issue that has motivated the IETF

to adopt the MobileIP approach was to prevent connection oriented communications

(such as those atop of TCP) from being corrupted. However, it is widely recognized

that TCP has poor performances in mobile settings [38]. For this reason, the Es-

peranto Broker refuses entirely the adoption of connection-oriented communication

at transport layer. This allows to not have any mobility management at the network

layer, except for a small service which reconfigures the network interface, every time

a mobile device connect to a new access point. The network interface may change

address, subnet and default gateway. The counterpart service on the core network

will take care of any request and reply coming from and directed to it.

3.5.4 The transport mobility management

The transport layer of the Esperanto Broker consists of connectionless communication

primitives like those of datagram sockets (they are called NCSOCKS). Issue related to

corruption, duplication or out of order packet delivery is carried out by the upper tuple

space layer. In some sort, the tuple space layer actually represents the transport layer

for the Esperanto Broker, since stubs and skeletons are built atop of it. However, these

primitives can still represent the transport layer for legacy applications, which want

to use them directly. Such primitives take care of channel variability and provides

mechanisms to notify applications about the status of the connectivity. Since the

above mentioned network may reconfigure the network interface during a data-link

handoff, mechanisms are implemented to guarantee that sockets identifiers are still

65

valid when applications try to use them.

3.5.5 The middleware mobility management

The EB provides mobility management at each layer of the infrastructure. Beyond

the facilities provided by the CLM, the Esperanto Broker has its crucial mobility

management activities at the middleware layer. These procedures are required for

the following reasons: i) the Esperanto Mobile-side platform accesses only to the

shared memory of the Mediator which the mobile device is currently connected to;

ii) if the user migrates from a Domain to another, the Mobile-side platform will

need a reference to the new Mediator.The GSM architectural model has inspired the

middleware layer handoff procedure: i) each mobile device has a home agent (i.e. the

Mediator) which stores accounting information and tracks its Domain migrations;

and ii) a particular Mobile-side component (i.e. the Middleware Mobility Manager),

is in charge of triggering the handoff procedure during Domain migrations.

3.6 The Esperanto Broker Core

3.6.1 The Esperanto cross-layer approach

A cross-layer design approach is a design technique where layers in a software stack

are designed tightly, that is, data and status about a layer are passed to the higher

layers and vice-versa without having firm boundaries that currently exist in modular

software stacks. Adopting a cross-layer approach in designing mobile-enabled plat-

forms has two significant advantages over traditional layered implementations that

preserve the modularity of a sofware stack.

66

Firstly, it can result in better application performance and better resource uti-

lization, since the implementation is closely coupled to underlying mechanisms and

exploit them efficiently. Secondly, it allows the implementation of effective adaptation

mechanisms at higher levels. By knowing low level information, and more generally,

global system state information, the way to abstract and synthesize at higher levels

is far more effective. Such an approach is adopted to design mostly of the Esperanto

Broker and especially the Esperanto Broker Core.

3.6.2 The Connection and Location Manager

The cross-layer approach has been adopted in designing the CLM in order to let ap-

plications know about low-level network connection status information. By means of

the information flow to/from the CLM, an application can set its QoS requirements

in terms of bandwidth, delay, link cost, and location precision. Besides, it can re-

quest, or be notified, about connection status changes. The status consists of several

information: i) the availability (coded in connected, disconnected, and handoff), ii)

the wireless technology being used and its cost, iii) the bandwidth level, iv) the de-

lay level, and v) the mobile device location (in terms of its coarse grained symbolic

location, such as the room name).

3.6.3 The Nomadic Computing Sockets

The Esperanto Broker Core consists of CLM, and of the Nomadic Computing SOCK-

etS (NCSOCKS) layers. Upon the CLM services, NCSOCKS provide a transport level

object-oriented API that enables developers to be aware of mobility and of wireless

network conditions. Such information encompasses current connection status (e.g.,

67

whether the mobile device is connected, disconnected, or it is performing a handoff)

and the connection characteristics (e.g. the available bandwidth, the current delay,

the link cost, etc). The NCSOCKS transport is used to implement the proxy on the

mobile-side EB. Implementation strategies of the primitives to access the tuple space

are enhanced taking advantages of information about the connection status provided

by the CLM via the NCSOCKS layer. For instance, strategies to implement retrans-

mission and/or synchronization depends on the network status and have the objective

to cope with temporary disconnections.

3.7 Summary of the Esperanto Broker features

Figure 3.5 summarizes the Esperanto Broker’s features and compares them with those

of the related nomadic computing platforms. The Esperanto Broker does not have

lacks in dealing with any of the crucial challenge of nomadic computing environments.

To better compare the Esperanto Broker to the other solutions, let us consider the

following dimensions:

• efficient mobility management: mobility issues like disconnections, varia-

tions in network performances and mobile device constraints are needed to be

dealt with mobility management procedures and strategies. Such procedures

should aim at improving the availability of the device connectivity. Almost all

platforms analyzed in Chapter 2 have most of the above mentioned issues not

addressed via any effective solution.

• decoupled communication paradigm: device disconnections and degrada-

tions in network performances affect the ability of an application object to

68

be available for communicating with counterparts. To improve such an avail-

ability, objects should be provided with decoupled communication paradigms.

Although any solution analyzed in Figure 3.5 provides a decoupled communi-

cation paradigm, either it looses expressiveness of the computing model, or it

still adopts sort of synchronous interaction primitives.

• technology transparency: the ability to use different access technologies ei-

ther simultaneously or one at a time should be exploited by any mobile-enabled

middleware. The Esperanto Broker implements handoff strategies that allow

the device to be connected to the core network seamlessly despite the wireless

technology. None of the solutions detailed in Figure 3.5 addresses the hetero-

geneity in the same way that the Esperanto Broker does. The common approach

(adopted by those that face this issue) is to provide an abstraction layer, which

hides the underlying technologies and deal with them separately.

• rich computing model and API: to be widely adopted a nomadic computing

middleware should provide a powerful computing model, and advanced services

to aid the designer/developer to build applications. The Esperanto Broker joins

remote method invocations and tuple space together to exploit advantages of

both. It also provides mobile-enabled services such location-aware and group-

aware services. None of the considered alternatives proposes such a computing

model.

• easy to use in Nomadic Computing: none of the considered solution pro-

vides tools for design and development similar to ESERV. It simplifies the pro-

cess of designing object interfaces and make the code generation faster.

69

• standard interface: as far as mechanisms to allow interoperability are con-

cerned, CORBA-based solutions rely on theGeneral Inter ORB Protocol, whereas

other solutions are not concerned with interoperability at all. The Esperanto

Broker is interoperable with the Web Service standard. By means of bridges,

Esperanto clients may invoke web services and vice versa, web client may invoke

Esperanto servers. Since Web Services are becoming the standard de facto in

developing and deploying distributed services, our decision to allow interoper-

ability with the Esperanto Broker and any other middleware solution seemed a

good way to achieve it. Eventually any middleware solution shall be interoper-

able with Web Services.

70

disconnectedness
variable

connectivity

processing

power
heterogeneity

programming

abstractions

advanced

middleware

services

tools for

design and

development

interoperability

WIRELESS CORBA U NPWT+RMI U U PD-GTP DOC N U OMG

DOLMEN U NPWT+RMI RASM U NAL DOC N N OMG

ALICE U NPWT+RMI SP U U DOC N N OMG

P
π

U NPWT+RMI FMA U PD-GTP DOC LAP N OMG

ROVER U QRPC RDOs RDOs NAL DOC CCMN N N

XMIDDLE U DTS-SYN N U U TS N N N

LIME U DTS-ASY N U U TS N N N

L
2
IMBO U QOS-TS FMA FMA NAL TS QMAA N N

EB S MM-DDOC CAPMAS MFC VHH EDOC LASGAM ESERV WS

standard interface

S = Specified, mobility aspects are taken into account pervasively on each layer of the ISO-OSI stack

MM-DDOC = Mobility management on each layer of the ISO-OSI stack, and decoupled remote method invocations

MFC = Both mobile and fixed side middleware components to distributed the overhead

VHH = Both vertical and horizontal handoff procedures

EDOC = Enhanced Distributed Object Computing model

LASGAM = Location aware service, and group communication mechanisms

ESERV = Esperanto Service Description tool

WS = Interoperability with the web services

technology transparence

mobility-related

p
e
rv

a
s
iv

e
n

e
s
s

PLATFORMS

application-related

REQUIREMENTS

SOLUTIONS

rich computing model and API

easy to use in NCdecoupled communication paradigm

efficient mobility management

F
igu

re
3.5:

F
eatu

res
of

th
e
E
sp

eran
to

B
roker

com
p
ared

to
featu

res
of

related
n
om

ad
ic

com
p
u
tin

g
p
latform

s

Chapter 4

Design and implementation

strategies

4.1 The Architecture of the Esperanto Broker

The EB layered architecture is depicted in Figure 4.1 1. According to the Esperanto

DOC model, the EB Mobile-side module allows Esperanto objects to interact via

RMIs, despite device movements and/or disconnections. Interactions among Es-

peranto objects take place via stubs and skeletons objects, which are in charge of

performing remote method invocations via Tuple-oriented Primitives. These provide

decoupled access to the shared memory located on Mediators. Moreover, capabilities

for dealing with device mobility are provided by the NCSOCKS, the CLM, and the

Middleware Mobility Manager.

The Tuple Space infrastructure is distributed among Mediators: each Mediator

provides its own connected mobile devices with access primitives to the shared space.

Mediators cooperate with EB Mobile side to carry out middleware layer handoff

procedures. The Mobile-side EB deployment consists of two daemon processes and

of a run-time library. The Mediator-side EB deployment consists of several CORBA

1More details and source code are available at http://www.mobilab.unina.it/Prototypes.htm

71

72

Connection
Manager

wireless network
Interface # 1

wireless network
Interface # n

…

IP channel

Nomadic Computing SOCKets

Tuple Space Access Primitives

Esperanto Distributed Object Computing

Core Network

Nomadic Computing

SOCKets

Tuple Space

Mw

Mobility

Manager

Mw

Mobility

Manager

Mw

Mobility
Manager

CORBA

Mediator 1

Mediator N
Mediator 2

Figure 4.1: The Esperanto Broker Architecture

servers. In the following, we describe the crucial design and implementation details

of all the layers the Esperanto Broker consists of.

4.2 The Mobile-side mobility management

As already stated, Domains of the NC infrastructure may be clusters of both het-

erogeneous wireless access points and access points of the same technology. During

user’s movements, a mobile device needs to connect with an access point which can be

either in the same Domain the user is already in, or in a different one. It is thus clear

that procedures to manage handoff has to be provided at both data-link and network

layers (i.e. when device migrates between two access points within the same Domain)

and at middleware layer (i.e. when device migrates between two access points which

belong to different Domains).

As for the Esperanto mobile-side is concerned, how we dealt with this issue is

73

briefly described in the following: i) data-link level: the Connection and Location

Manager provides procedures when handoff takes place between two access points

whether they belong to the same Domain or not; ii) network level: no procedure has

been actually provided, since the broker is built upon connectionless communication

channels to overcome connection-oriented channels drawbacks [29, 38]; iii) middleware

level: theMiddleware Mobility Manager provides procedures only if data-link handoffs

take place between two access points belonging to different Domains.

4.2.1 Middleware Mobility Manager

The Middleware Mobility Manager is a daemon running on each mobile device, which

is in charge of detecting the device migration, and of triggering the domain handoff

(i.e. middleware handoff) on both sides of the EB. To this aim, the daemon uses the

following map:

<domains>

<domain>

<domainId> the Esperanto domain identifier </domainId>

<mediator>

<id> the Mediator identifier </id>

<address> Mediator IP address </address>

<port> Mediator UDP port </port>

</mediator>

<WirelessAccessPoints>

<address> MAC address </address>

</WirelessAccessPoints>

</domain>

</domains>

The map describes how wireless access points are organized in Domains and which

mediators are assigned to each Domain. Whenever the connected access point is not

in the list of the current Domain, a domain handoff is triggered. More precisely, the

74

daemon’s activities are depicted in the following loop:

this->init();

while(true) {

this->waitEvents(); // CLM notifies WAPs handoff

this->lookup(); // look the map up

switch(this->event) {

case AP_HANDOFF:

this->notifyTDL(); // notifies the tuple space proxy

break;

case DOMAIN_HANDOFF:

this->updateMediatorRef(); // updates the Mediator’s reference

this->notifyTDL();

this->sendGreetings(); // triggers the Mediator-side handoff

} // switch

} // while

The daemon performs an initialization phase first: it identifies the current Domain

location (i.e. it identifies the Mediator to communicate with), and sends the first

Greetings message (to advertise the device’s presence to it). During the loop phase

the daemon passively waits for handoffs, at both data-link layer (i.e. transitions

between two Wireless Access Points, WAPs) and middleware layer (i.e. transitions

between two Mediators). On the data-link handoff, the daemon sends the event to

the tuple space proxy, otherwise it triggers the domain handoff via the Greetings

message to the new Mediator. To accomplish the handoff, the new Mediator needs to

know the mobile device identity, the Domain where the device is coming from, and

the Mediator that stores the device’s accounting information. How the Mediator-side

handoff works and which information are transferred between them are illustrated in

section 4.8.

75

4.2.2 Connection and Location Manager

The Connection and Location Manager2 handles handoffs between wireless access

points of different technologies (i.e. vertical handoff) and between access points of

the same technology (i.e. horizontal handoff). The handoff procedure consists of the

following phases: i) Initiation (the network status is monitored to decide when to

start a migration); ii) Decision (once the need for handoff is triggered, a new access

point has to be selected); and iii) Execution (the connection to the selected access

point is established).

The CLM layer, which is implemented as a daemon running on mobile devices,

is in charge of: i) making the handoff transparent to technologies being used; and

ii) pursuing the objective of high connection availability. Since mobile devices might

move around different areas with no coverage or high interference, the CLM has to

avoid a sudden drop in network bandwidth or a loss of connection entirely trying to

perform handoff toward a more reliable or a less overloaded access point. To this

aim, it keeps a map of the neighboring access points. During the Decision phase, the

daemon decides to migrate toward the closest available access point. Other decision

criteria may be implemented as well (e.g. the least overloaded access point, the fastest

access point, etc).

As for the CLM implementation, we dealt with Bluetooth and Wi-Fi wireless

short-range access networks. Thanks to the object-oriented design benefits, the

adopted approach can be applied to other wireless technologies. In fact, as Figure

4.2 shows, the CLM is designed according the strategy pattern [39]. Such a pattern

basically consists of decoupling an algorithm from its host, and encapsulating the

2further details about the CLM can be found in our previous work [36]

76

CLM

REAL
CONNECTION A

REAL
CONNECTION B

Location

- name
- techonolgy
- address

0..n

1

+neighborong location0..n
confine with

+current location

1

CONNECTION

- Connection State

+ connect()
+ disconnect()
+ search()
+ buildIP()

<<abstract>> SHARED
MEMORY

+ read()
+ write()

Requirement

- type
- value

CONNECTION MANAGER

- actualTech
- actualPosition

decision()
execution()
getMap()
initiation()

1

1

1

1
is in

1..n 11..n 1

manage

wr/rd

1

0..n
has

1

0..n

Figure 4.2: Connection and Location Manager class diagram

algorithm into a separate class. In other words, an object and its behavior are sepa-

rated and put into two different classes. Changes in the algorithms won’t affect the

class interface.

As for implementation details, we have started using Linux. As for Wi-Fi, the im-

plementation was straightforward, inasmuch the IP abstraction is already provided by

Wi-Fi adapters. This is not the case of Bluetooth technology, where a more deep study

of BlueZ (http://bluez.sourceforge.net), the official Linux Bluetooth stack, has been

needed. In particular, since Bluetooth does not support IP natively, the Personal Area

Network (PAN) profile and the Bluetooth Network Encapsulation Protocol (BNEP)

have been used. On the access point side, we have experienced the implementation

of Bluetooth wireless access points by using simple Bluetooth USB dongles attached

to PCs. Behind the access point we enable a Network Address Translation Server

(NAT), allowing Bluetooth-enabled devices to use private IP network addresses.

77

4.2.3 Achieving availability: the proposed handoff scheme

The focus of the proposed handoff scheme is to minimize connection unavailability.

Starting from the assumption that the device is in a zone covered by access points,

otherwise, no connections can be established, connection unavailability can be caused

by two kind of events: i) handoff occurrence, and ii) cell overload during an handoff,

that can occur whenever a device tries to connect to an AP which cannot manage

more connections.

We explicitly note that the connection unavailability for the event i) is negligible

as compared to the time spent for the event ii). Furthermore, event i) does not

occur if a soft handoff scheme is adopted. For this reason, we assume a soft handoff

strategy. This means that we are only concerned with the event ii). Under the above

mentioned assumptions, the availability, i.e. the probability that the connection is

available during system operations, can be expressed as:

aval = 1− unav = 1− Pr(O ·H) = 1− Pr(O) · Pr(H) (4.2.1)

where Pr(H) is the probability that a handoff occurs and Pr(O) is the APs overload

probability. Thus, our goal is to minimize both Pr(H) and Pr(O).

Although we assumed to use a soft handoff strategy, it is should be noted that,

in order to minimize the Pr(O) term, soft handoff schemes are not the best choice.

In fact, as previous studies stated [40], the overload probability often increases with

respect to hard handoff as the number of channels used by mobile terminals grows.

However, we are concerned with soft handoff schemes as they help in minimizing the

unavailability period due to the handoff per se. Thus, a trade-off between soft and

hard handoff should be adopted.

78

Our proposal consists of using a Last Second Soft Handoff (LSSH) scheme, in

which the initiation phase takes place using only the information about the AP cur-

rently in use, as in hard handoff, and only in the decision phase multiple connections

are established, as in soft handoff. Hence, the LSSH scheme presents the characteris-

tic of using a wireless interface at time during the initiation phase. This also results

in i) better energy efficiency due to low power consumption, and ii) interference re-

duction, indeed using for instance Bluetooth and Wi-Fi simultaneously may produce

significant interference [41].

As far as the probability of a handoff Pr(H) is concerned, it should be noted

that the initiation phase can be performed using diverse sets of information and

techniques, such as broken link recognition and AP monitoring through RSSI. The

solution implemented in CLM is RSSI based, for several reasons: i) it allows the

handoff to be proactive, ii) the RSSI parameter is already provided by the wireless

interface, without performing intrusive measures needed to obtain other parameters,

such as throughput or delay; this also reduces the power consumption, and iii) RSSI

is an indication of the device position with respect to APs; this helps to achieve load

balancing on APs depending on device distribution in the environment.

According to the LSSH scheme, the probability Pr(H) is minimized if the initia-

tion phase is performed only when RSSI permanently goes below a certain threshold.

Indeed, transient signal degradations can trigger unnecessary handoff procedures,

increasing the probability Pr(H). The mechanism adopted to keep the handoff prob-

ability low is the α-count. The α-count function α(L) is a count and threshold mech-

anism. It takes the L-th measured RSSI as an input, then α(L) is incremented by 1

as the current RSSI falls below the threshold SRSSI . Similarly, α(L) is decremented

79

by a positive quantity dec if the L-th measured RSSI is greater than the SRSSI . A

handoff is triggered as soon as α(L) becomes greater than a certain threshold αT . The

function α(L) is thus defined as follows:

α
(L) =

α(L−1) + 1 if RSSI(L) < SRSSI

α(L−1) − dec if RSSI(L) ≥ SRSSI

and α(L−1) − dec > 0

0 if RSSI(L) ≥ SRSSI

and α(L−1) − dec ≤ 0

The α-count mechanism avoids to trigger handoffs procedures due to transient

RSSI degradations. Indeed, a handoff is triggered if the degradation becomes perma-

nent, i.e. α(L) reaches αT . Obviously, the values of αT , dec and SRSSI parameters

have to be accurately tuned in order to achieve a trade-off between early and late

handoffs. Further details on how to tune such parameters can be found in [36].

4.3 Nomadic Computing Sockets

4.3.1 The classes framework

The NCSOCKS provides a C++ API to access an IP-based communication channel.

The API provides the UDP communication abstraction, since the TCP is rather

inadequate for mobile computing systems [29, 38]. DatagramPacket, and UDPSocket

are the classes provided to send and to receive UDP datagrams: the former represents

a packet used for the payload delivery, whereas, the latter is the socket used for

sending and receiving datagram packets over the network. These classes implement

mobility-aware strategies to cope with issues related to the device mobility (rapid

80

disconnections/reconnections or handoff periods) during data transmission. Such

strategies are driven by the network status provided by the CLM.

4.3.2 Implementation strategies

In order to illustrate the above mentioned strategies, let us consider send and receive

primitives:

int UDPSocket::Send(DatagramPacket &packet, int t, int m)

int UDPSocket::Receive(DatagramPacket &packet, int timeout)

The send primitive provides a data transport service and return the number of

delivered bytes. It works as follows: if the channel is established, it will send packets to

the IP destination; if the connection establishment is in progress, it will wait for a time

t ; then it will try to send packets (up to a certain value m) only if the channel reaches

the connected status within the timeout. In the other cases, an exception is raised.

The receive primitive provides a blocking data acceptance service (with timeout), and

return the number of received bytes. It will receive packets only if the connection

is established, otherwise an exception is raised. However, applications can specify a

timeout in order to wait for the reconnection. In order to implement mobility-aware

transmission, the NCSOCKS layer implements special primitives which interact with

the CLM layer:

Event UDPSocket::WaitConnection(const int timeout,

const int slots, const Event& tr)

Status UDPSocket::senseConnection()

81

4.3.3 Mobile-aware facilities

The WaitConnection primitive allows upper layer to wait for a particular event tr,

until the timeout expires. The tr represents the device status transition, for instance,

from the status DISCONNECTED to the status CONNECTED. As the name sug-

gests, the senseConnection returns information about the device and network status,

such as the device state (i.e. connected, disconnected, or handoff), the location (i.e.

which access point the device is connected to), the quality of the connection (i.e. the

receiver signal strength indicator), the network bandwidth etc.

Applications may also require to be notified in connection status changes. As

Figure 4.3 shows, applications are provided by the NCSOCKS with a class, the Con-

nection Monitor, which is used by them to set their requirements and to read or

register their interest in some connection status information. The monitor provides

a set of setRequirement()-like methods to set application level requirements.

Since different mobile-enabled applications on the same device may ask for con-

trasting requirements, exception are raised in order to let the application (or the user)

to relax such requirements, if any, or abort the execution. Unspecified values for some

connection attributes are automatically set to non-conflicting default values. In this

way, all applications running on the same mobile device are forced to agree with the

same non-conflicting requirement set.

On the other hand, the monitor allows applications to read connection status

information, and to register a callback with it to be executed when specified changes

occur in some connection status information. In this way, applications can adapt

their behavior accordingly. Finally, applications can also force a handoff triggering,

if the expected requirements are not satisfied.

82

NCSOCKS

DatagramPacket

- Data
- Length
- Address
- Port

UDPSocket

+ Bind()
+ Send()
+ Receive()
+ WaitConnection()

uses

Connection Monitor

+ getConnectionStatus()
+ notifyStatusChanges()
+ setRequirement()
+ handoff()

Exception

- message

+ get_message()

throws

throws

SHARED
MEMORY

+ read()
+ write()

rd

rd /wr

UDPClient

+ Connect()
+ Disconnect()
+ Send()
+ Receive()
+ WaitConnection()

throws
rd

CallBack

+ handle()

uses

Figure 4.3: NCSOCKS class diagram

4.4 The Esperanto Broker tuple space

The primitives provided by this layer are the following:

void write(const Tuple& tuple)

Tuple read(const Tuple& template, Time timeout)

Tuple take(const Tuple& template, Time timeout)

int subscribe(const PeerId& receiver, const ParamList& pl,

const CallBcakRef callback)

void unsubscribe(const int subscriptionId)

Event detect(const unsigned int timeout)

The write accepts a tuple, containing application-level information (e.g. either

the signature of a method to invoke or the method’s return value). The read (take)

accepts a tuple template (i.e. a tuple with wildcards), containing parameters needed

to retrieve (to remove) a tuple from the space, and returns the matched tuple, if

any. The requester will wait to get the tuple until the timeout expires. The sub-

scribe/unsubscribe are used for the asynchronous tuple notification. The application

has to provide the template of the tuple it is interested in, and the callback reference

83

to invoke when the tuple is available. The detect is used to know the current status

about the device connectivity.

4.4.1 The tuple data structure

The tuple structure is illustrated below:

<tuple>

<sender> who writes the tuple </sender>

<receiver> who needs the tuple </receiver>

<parameters>

<parameter>

<name> the parameter semantic </name>

<type> the type </type>

<value> the value </value>

<parameter>

</parameters>

<lease> time to the removal from the space </lease>

</tuple>

The schema has been designed to achieve efficiency of the template matching

algorithm. Since this layer underlies stubs and skeletons, the matching algorithm is

especially computed when a server object needs to retrieve the pendent invocation

requests to its methods. It is thus important to have low latency in such an operation.

To this aim, sender and receiver are kept separated from the parameters list and they

are used as indexes for accessing the shared space.

4.4.2 Tuple space access primitives

Write, read/take and subscribe/unsubscribe are the building blocks for the implemen-

tation of Esperanto RMIs. We implemented RMI strategies taking into account the

efficiency as primary requirement. To this aim, server objects subscribe themselves

84

to the reception of any tuple they are interest in. Whenever a client object writes a

tuple in the space, this is immediately notified to the server, if connected. Otherwise,

the tuple remains in the space and can be obtained via a pro-active tuple retrieval.

The interaction may take place with success even though objects are not active at

the same time (i.e. time decoupling), in fact the space itself is in charge to store

requests and replies. They do not need to know the counterpart location (i.e. space

decoupling), since the space itself is in charge to keep their references. They can in-

teract asynchronously, since oneway and notify directly map onto write and subscribe

primitives.

4.4.3 Implementation strategies

Tuple space access primitives are implemented through NCSOCKS. Similarly to the

send/receive primitive, tuple transmission has been implemented using mobility-aware

strategies. For instance, the write primitive does not try to send the tuple if the device

is performing an handoff or is disconnected. The algorithm passively waits for the

device re-connection (via the waitConnection) and then delivers the tuple. If the

disconnection is permanent it will raise an exception. Such a strategy is crucial for

saving computational cycles and battery’s energy. In fact, whether the device is

disconnected or not, underlying sockets are still valid and the algorithm would try

to deliver packets since no feedbacks on the nature of the failure are provided by the

operating system.

85

4.4.4 Cross-layer approach

The detect primitive is used to collect information about the device connectivity.

Such information is presented in the form of an event: an event may be the device’s

migration between two Domains or the device’s migration between two WAPs. The

detect primitive can collect only local events, which means that it cannot know if

any other device has migrated toward a different Domain. If no event occurs, it will

block the caller until timeout expires, otherwise it notifies the particular occurred

event. Such a primitive is crucial to let Esperanto stub and skeleton classes be

able to implement mobility-aware strategies during the phases of tuple retrieval and

dispatching. In fact, when a handoff occurs, objects get disconnected, and thus

unable to interact. This may affect method invocations (at client-side), or dispatching

operations (at server-side). As shown in the following paragraph, stubs and skeletons

implement proper strategies in order to deal with these crucial issues.

4.5 The Esperanto Interface Definition Language

The Esperanto IDL extends the OMG IDL in order to provide the following communi-

cation paradigms: i) request/response; ii) one-way ; iii) notify ; and iv) solicit/response.

The notify is the one-way paradigm that allows a server object to send messages to

one or more clients, while the solicit/response is comparable to the request/response,

except that the request message is initiated by the server and the response is sent by

one or more clients. To illustrate the use of the IDL extensions, consider the following

IDL, which defines an interface named MyService:

interface MyService {

oneway void fooA(in int op);

86

reqres bool fooB(in long op1, out string op2, inout long op3);

solres void fooC(in string op1, out string op2, out double op3);

notify void fooD(in float op);

};

The Esperanto IDL adopts a service-centric approach. This means that E-IDL

describes interactions between objects rather than describing just methods to be

invoked on the remote server. The oneway and reqres qualifiers describe that client

and server objects can communicate according to the pull model, while the solres and

notify qualifiers describe that a client and server objects can communicate according

to the push model. As for the former interactions, client objects must invoke fooA

and fooB methods on server-side, whereas for the latter interactions, server objects

must invoke fooC and fooD methods on client-side. Due to these considerations,

for oneway and reqres methods, in parameters are passed from the client to the

invoked server object, whereas out parameters are passed back from the invoked

server object to the client object (only for reqres methods). Conversely, for solres

and notify methods, in parameters are passed from the server to the invoked client

objects, while out parameters are passed back from invoked client objects to the

server object. Parameters labeled as inout are allowed only in reqres methods and

their values may be passed in both directions. It should be noted that oneway and

reqres methods must be implemented on server-side, while solres and notify methods

must be implemented on client-side.

87

MyService.eidl

MyService_i.h Makefile

ESERV

StubC

SkelC

SkelS

StubS

make

Client

Server

executables
Client-side

Server-side

MyService.xml
MyService.wsdl

WS-EB Bridge EB-WS Bridge

Figure 4.4: The life-cycle of Esperanto applications

4.5.1 The life-cycle of an Esperanto application

Developing an Esperanto application is a CORBA-like process, composed of two main

steps: i) the E-IDL files compilation; ii) the application and stub/skeleton files compi-

lation. The Figure 4.4 depicts such a process for the interface MyService. The E-IDL

compilation process is supported by a GUI editor3, ESERV (i.e. Esperanto SERVice

descriptors), which allows the developer to design Esperanto interfaces and to compile

them. As Figure 4.4 shows, ESERV produces two sets of files: i) helper files (i.e. to

compile stub/skeleton classes, and to provide the WSDL mapping); ii) stub/skeleton

implementation files. More precisely, the E-IDL compilation produces four names-

paces : stubC/skelC used for building the client-side application, and stubS/skelS

used for building the server-side application. In the further discussion we present the

E-IDL mapping to stub/skeleton classes and the underlying tuple space infrastructure

considering the example interface MyService.

3More details and source code are available at http://www.mobilab.unina.it/Esperantodwnd.htm

88

Tuple

TupleSpaceLayer

<< interface >>
TupleSpaceCallBack

SkelS::MyService

<< implements >>

<< implements >>

MyServiceServerClass

<< implements >>

<< implements >>

<< implements >>

StubC::MyService_ptr

<< uses >>

<< uses >>

StubS::MyService

<< implements >> << implements >>

SkelC::MyService_callBack

<< implements >> << implements >>

SkelS::MyService_callBack

StubS::MyService_ptr

<< remote >> << remote >>

StubC::MyService

MyServiceClientClass

SkelC::MyService

<< interface >>
MyService

<< interface >>
solresNotifyMyService

<< interface >>
reqresOnewayMyService

Figure 4.5: The class hierarchy produced by the E-IDL compilation process

4.5.2 Mapping the Esperanto Interfaces

The Figure 4.5 shows the hierarchy that ESERV produces when it translates E-IDL

MyService into C++ classes. There are two couples of stub and skeleton classes.

StubC::Myservice and SkelS::MyService implement the pattern for all reqres and

oneway methods via implementing the abstract class:

class ReqresOnewayMyService {

public:

virtual void fooA(const int op) = 0;

virtual bool fooB(const long op1, string &op2, long &op3) = 0;

...

}

StubS::Myservice and SkelC::MyService implement the pattern for all solres and

notify methods via implementing the abstract class:

class SolresNotifyMyService {

protected:

89

virtual void _c_fooC(const string &op1, string &op2, double &op3) = 0;

virtual void _s_fooC(const string &op1, fooCGroup &fCg) = 0;

public:

virtual void fooD(const float op1) = 0;

...

}

Stubs and skeletons provides also helper methods to aid the developer writing the

code.

4.5.3 Mapping WSDL to Esperanto

ESERV produces the WSDL description of the Esperanto interfaces. Building such

a mapping is very straightforward. ESERV generates an intermediary file where it

describes the Esperanto interface according to the xml syntax. The following fragment

shows how the E-IDL representation of the fooA method has been translated into the

xml representation:

<?xml version="1.0" encoding="UTF-8"?>

<!--File automatically generated by ESERV 0.1-->

<services>

<service name="MyService">

<function TTEreq="25" TTEres="" name="fooA"

return_type="bool" type="reqres">

<operand flow="IN" name="op1" type="long"/>

<operand flow="OUT" name="op2" type="string"/>

<operand flow="INOUT" name="op3" type="long"/>

</function>

</service>

</services>

Once such a translation is performed, the mapping to PortTypes (i.e. the opera-

tions performed by the web service), messages (i.e. the messages exchanged), types

(i.e. the data types used) and bindings (i.e. the communication protocols adopted)

is achieved by parsing the xml tags, i.e. service, function and operand.

90

4.6 The Esperanto DOC abstraction

4.6.1 The Esperanto Peers

Stubs need a reference to skeletons. An Esperanto reference, named a PeerId, is

a triple of attributes: i) a Peer Reference to identify the object running on the

mobile device; ii) a Device Reference to identify the device among the others being

connected to the Nomadic Computing infrastructure; and iii) a Domain Reference

which is the identifier of the Mediator whose Domain hosts the device. This reference

does represent the remote object and it is used by the EB in order to deliver tuples

to the object.

4.6.2 Client-side mapping

As stated, the client-side mapping entails two namespaces:

• StubC : it contains the stub-side of reqres and oneway methods. Stubs make

RMIs transparent to invokers by behaving like a local object. The Figure 4.6

(a) shows how the client-side reqres RMIs map to the underlying tuple space

(oneway RMI mapping is pretty similar). When a client object invokes the

foo() method, the stub marshals the request into a tuple and writes it to the

remote shared memory. Afterward, it takes the response from the remote shared

memory, and unmarshals the tuple returning the results to the invoker. Reqres

RMIs behave like regular synchronous remote invocations, but client and server

objects are time and space decoupled by means of the Mediator. If the stub

gets disconnected after requesting the invocation, the Mediator stores the reply

that can be retrieved later, without raising any communication exceptions.

91

client

1. marshaling

6. unmarshaling

Mediator

2. write

3. write

foo()

5. take

4. take

server
T1.4 dispatching

T1.5 unmarshaling

T1.6 upcalling

T1.8 marshaling

TSAPMediator T1.1 subscribe

T1.9 write

T1.7. foo()

T1.3 push

T1.10 write

T1.2 push

T2.1 take

T2.2 take

T2.3 push

(a) (b)

SkelS::
MyService

TSAP

StubC::
MyService

T1T2

Figure 4.6: The implementation of reqres RMIs: (a) client-side mapping; (b)
server-side mapping

• SkelC : it contains the skeleton-side of solres and notify methods. SkelC skeleton

behaves similarly to SkelS skeleton, however they differ in functionalities they

provide to the developer. Main difference lies in the possibility to disable server’s

solicits and/or notifications. Such a feature may be useful to save cpu cycles

and/or device’s battery. Solicits and notifications are enabled via a helper

method named bind. The lease may be set to a specific value. When the lease

expires, the client object has to reinvoke the bind method if it is still interested

in server messages. A lease equal to 0 corresponds to an unbind operation.

4.6.3 Server-side mapping

As stated, the server-side mapping entails two namespaces:

• SkelS : skelS defines classes used for implementing the skeleton-side of reqres

and oneway methods. The skeleton is in charge of retrieving requests from the

tuple space, dispatching them and up-calling the relative functions. If a reqres

is involved in the process, the skeleton must also push back the response. The

Figure 4.6 (b) shows how the server-side reqres RMIs map to the underlying

92

tuple space. The requests retrieval is implemented by means of two strategies: i)

via an asynchronous delivery, which takes place in two phases (first, the skeleton

subscribes a callback to be invoked whenever tuples match the template it is

interested in, and then, waits passively for them); and ii) via a pro-active search,

where the skeleton periodically takes all the tuples from the space that for some

reasons could not have been notified to it. The skeleton implements both the

TupleSpaceCallBack and ReqresOnewayMyService. The former is the callback

invoked by the the tuple space for the asynchronous delivery, whereas the latter

provides the pure virtual methods that the server class must implement, so to

let skeleton up-call them.

• StubS : it contains classes used for implementing the stub-side of solres and notify

methods. StubS stub behaves similarly to StubC stub, however they differ in

the implementation: the former allows the server to solicit and/or notify one or

more clients at the same time. To handle this situation, server invokes methods

passing a special-purpose data structure, fooCGroup, which stores client object

PeerIds and (for each of them) parameters being exchanged. If the server wants

to send solicits/notifications to every listener, the data structure will empty. If

it does not, the data structure will contain only entries for clients that are

interest in the solicits/notifications. When the control has been passed back to

the invoker, the fooCGroup contains responses of client objects which are bound

and achievable. In the following, we illustrate a partial implementation of the

solres fooC method:

... // MARSHALLING

this->_tuple = _fooC_request_tuple_;

this->_tuple.setSender(this->_this);

93

this->_tuple[_TUPLE_REQ_ID_INDEX_].value =

ulong2string(this->_request_id++);

this->_tuple[_fooC_REQ_TUPLE_PARAM_OP1_INDEX_].value = op1;

if (fCg.size() == 0) { // to every client object

...

} else { // only to the selected client objects

fooCGroup::iterator pos;

for (pos = fCg.begin(); pos != fCg.end(); pos++)

try { // WRITE

this->_tuple.setReceiver(pos->first);

this->_tsl.write(this->_tuple);

this->_tuple = _fooC_reply_tuple_; // TAKE

this->_tuple.setReceiver(this->_this);

this->_tuple = this->_tsl.take(this->_tuple, TIMEOUT);

if (!this->_tuple.isEmpty()) { // UNMARSHALLING

pos->second->op2 = _tuple[_fooC_REP_TUPLE_PARAM_OP2_IDX_].value;

pos->second->op3 =

string2double(_tuple[_fooC_REP_TUPLE_PARAM_OP3_IDX_].value);

} else {

delete pos->second;

pos->second = NULL; // Peer unavailable: delete the PeerID

}

} catch (const Exception& e) { ... } // catch

} // else

Before writing the request tuple in the remote shared memory, the stub checks

which kind of solicit the invoker has been requested: in the case of a solicit to

every client, fooCGroup is empty, and the stub writes the request tuple setting

for it the shared group identifier. The tuple retrieval consists of several take

operations until it returns an empty tuple. In the case of a selective solicit,

the fooCGroup contains the list of PeerIds which the invoker wants to solicit.

The stub writes the request tuple setting the specific PeerId and waiting for

the response tuple via a take operation.

94

4.6.4 Implementation strategies

In previous sections we stated that skeletons retrieve tuples periodically. This is to

cope with device disconnections which inhibit the asynchronous delivery of tuples. In

fact, if an object is temporarily disconnected (due to either a Domain handoff or an

access point handoff), tuples remain in the shared memory and no notifications can

be delivered to the interested object. Skeletons may be aware of such an event via the

detect method, thus retrieving tuples issuing a take operation. This mobility-aware

tuple retrieval strategy is illustrated in the following code fragment:

...

Tuple retrieved, tmplt;

tmplt.setReceiver(this->_service);

Time idleTime = MAX_TIME;

while (true) {

trigger = this->_tsl.detect(idleTime);

switch (trigger.id) {

case DOMAIN_HANDOFF: idleTime /= 4; break;

case WAP_HANDOFF: idleTime /= 2; break;

case DETECT_TIMEOUT_EXPIRED: idleTime += idleTime/2;

} // switch

if (trigger != DETECT_TIMEOUT_EXPIRED)

do {

retrieved = this->_tsl.take(tmplt, TIMEOUT);

if (!retrieved.isEmpty()) this->push(PUSHING_DONE, retrieved);

else break;

} while (true);

} // while

The time between each retrieval is set according to mobile device status. The

possible events and the actions taken are: i) a timeout expiration means that the

device is steadily located in a Domain. Then the asynchronous tuple notification

works fine. The skeleton may slow the pro-active tuple retrieval down, saving compu-

tational cycles and battery; ii) a WAP handoff means that the most of the time the

95

device is disconnected or performing the transition. Most likely the skeleton has not

been notified of some requests (which are stored in the tuple space, though). There

is a need to speed up the pro-active tuples retrieval from the space; iii) a Domain

handoff means that the device might have been disconnected recently. Most likely,

some undelivered tuples might still be on the space. There is a need to shorten the

time to the next pro-active tuples retrieval.

4.7 The Esperanto Mediator

Each Mediator performs two tasks: i) it implements the tuple space, providing client

and server objects with the distribution transparency; and ii) it is charge of device

mobility management. To accomplish these tasks a Mediator collaborate with other

Mediators. This collaboration is achieved by means of CORBA middleware, namely,

to send/receive tuples to/from remote shared spaces, and to update device location

references. The Mediator itself is a distributed component, implemented as a set of

distributed CORBA objects. We used TAO [42] as the CORBA platform for the

implementation of our prototype.

4.7.1 Implementation strategies

The Figure 4.7 shows a detailed UML CORBA component diagram of the Tuple

Space Layer. As figure shows, this layer consists of four CORBA servers: the Bridge,

which carries out the mapping between the corresponding Mobile-side layer and the

Mediator-side tuple space layer, the Tuple Dispatcher, which hides the distribution

of the shared memory, the Tuple Manager, which implements the access primitives

96

*

*

+ update()
+ load()
+ cancel()

TupleDMTupleList

+ getEmptyTuples(int): TupleList
+ getRestoredTuples(): TupleList
+ destroyTuples(TupleList)

TupleFactory

+ sender: PeerId
+ receiver: PeerId
+ pList: ParamList
+ tte: Time

TupleStruct

+ set()
+ get()

Tuple

WrittenTupleMap SubscriberMapFreeTuplePool

+ read(TupleStruct, Time): Tuple
+ take(TupleStruct, Time): Tuple
+ write(TupleStruct)
+ subscribe(PeerId, PList, CallBack)
+ unsubscribe(PeerId,PList, CallBack)
+ scan(DeviceId): TupleList

TupleManager

<<uses>><<uses>>

Bridge

TupleDispatcher

<<uses>>

To remote Dispatchers

Figure 4.7: UML CORBA component diagram of the Tuple Space layer

to the local tuple space, and the Tuple Factory, which acts as a factory of tuples.

The idea behind the Esperanto tuple space implementation is to achieve tuples per-

sistence preserving the transparency of a specific database technology. To this aim,

we encapsulate the persistence strategy (e.g. XML-native DB, RDBMS, file system)

in CORBA servants, i.e. Tuple servants. More precisely, the persistence strategy is

encapsulated in the TupleDM skeleton class, which currently implements a serializa-

tion of the tuple attributes into a XML file. The IDL representation of the tuple

structure is the following:

struct DeviceId {

DeviceIndex idx;

DomainId homeId;

};

struct PeerId {

PeerIndex pI;

DeviceId dI;

};

97

struct Param {

string type, name, value;

};

typedef sequence<Param> ParamList;

struct TupleStruct {

PeerId sender, receiver;

ParamList pList;

Time lease;

};

interface Tuple {

attribute TupleStruct ts;

};

Thus, the Mediator’s tuple space consists of a set of Tuple servants which are

ready to serve write, read or take requests. To keep the incoming request’s latency

low, Tuple servants are created at initialization time via the Tuple Factory and are

accommodated in a pool of available servants.

4.7.2 Tuple space access primitives

The Tuple Manager is the component in charge of implementing the tuple space

primitives :

1. write: Whenever a tuple is requested to be written, the Tuple Manager first

checks if any callback is subscribed to its reception. In this case, it pushes the

tuple to the skeleton via the registered callback. If the no callbacks are available

or they are temporarily disconnected or unable to receive tuples, it stores the

tuple by setting the Tuple servant and marking it as busy.

2. read/take: Whenever a read/take request is issued, the Tuple Manager performs

a matching algorithm between the template provided in input and the tuples

stored by busy Tuple servants. A template matches a tuple if the following

98

conditions hold: i) tuple and template XML schemes are the same (the empty

parameters list works like a wildcard); ii) tuple and template receivers are the

same; iii) tuple and template senders are the same (if specified); and iv) tuple

and template parameters list are the same, i.e. each parameter has the same

name, type, and value (if any).

3. subscribe/unsubscribe: by issuing subscribe requests, objects ask for tuples to be

delivered as soon as they are available in the local space. In this way, they are

not charge of pro-active retrieval saving cpu cycles and battery energy. Listener

are implemented via the following callback interface:

interface CallBack {

void push(in TupleStruct ts) raises (EsperantoException);

};

4. scan: a scan request is issued by other Mediators. The method provides a

mechanism to retrieve tuples whose receiver objects are running on a specific

mobile device. A scan request is issued when a mobile device migrate from a

domain to another. During such a migration, it is most likely that some tuples

cannot be asynchronously delivered and will remain in the old Mediator tuple

space. As soon as the device becomes connected again and the handoff succeeds,

tuples need to migrate to the new Mediator tuple space, so that object running

on the mobile device can retrieve them pro-actively.

99

4.7.3 The shared space distribution

The Tuple Dispatcher hides the distribution of the tuple space by wrapping the local

Tuple Manager and cooperating with remote Tuple Dispatchers. Interfaces imple-

mented by the Dispatcher are the following:

interface ToBridge { // implements delivery protocols among Mediators

oneway void write(in TupleStruct ts);

Tuple read(in TupleStruct tTemplate, in Time timeOut);

Tuple take(in TupleStruct tTemplate, in Time timeOut);

oneway void subscribe(in PeerId pId, in ParamList pl, in CallBack pT);

oneway void unsubscribe(in PeerId pId, in ParamList pl, in CallBack pT);

};

interface ToRemoteDispatcher {

void write(in TupleStruct ts) raises (EsperantoException);

ToRemoteDispatcher whereis(in DeviceId dev) raises (EsperantoException);

};

More precisely, as far as write operation is concerned, the Tuple Dispatcher works

as follows:

1. if the tuple receiver is running on a mobile device located in the Domain where

the request is coming from, the Dispatcher writes the tuple locally (i.e. by

invoking the write method on the Tuple Manager).

2. if the tuple receiver is running on a mobile device located in a different Domain,

it forwards the tuple to the Mediator where the device is currently located (i.e.

by invoking a remote write method on the remote Dispatcher reference). Due

to device mobility, this reference may be obsolete, therefore the Dispatcher

first inquires the Mediator which tracks device migrations (by invoking the

whereis method on the relevant Dispatcher), and afterward forwards the tuple

by invoking the remote write method on the up to date Dispatcher ’s reference.

100

Finally, the remote Dispatcher invokes a write operation on the local Tuple

Manager.

3. if the tuple receiver refers to a group of Esperanto objects, the Dispatcher

forwards the tuple to each remote Dispatcher available.

As for the read/take operation, thanks to the above mentioned write strategy,

read requests are always processed as tuple retrieval on the local Tuple Manager.

Also subscribe and unsubscribe primitives work on the local Tuple Manager.

4.8 The Mediator-side mobility management

Since the tuple space access primitives on the EB Mobile-side are implemented by us-

ing the NCSOCKS communication layer, and in particular by using the UDP protocol,

the Mediator provides a component, i.e. the Bridge, which carries out requested oper-

ations as CORBA RMIs and gives the results back to theMobile-side EB. The Bridge,

which is a multithreading UDP server, carries out the following operations: i) it ac-

cepts and interprets requests coming from the Mobile-side when Tuple Space Access

Primitive are invoked; ii) it translates parameters contained in the NCSOCKS data-

grams into CORBA-compliant parameters; iii) it invokes the correspondent method

on the Tuple Dispatcher CORBA servant; and iv) it makes the inverse translation,

and gives back the result (if any).

The Figure 4.8 shows the Mediator-side components which are involved in the

middleware layer handoff procedure. Each Esperanto mobile device has a Mediator

(called Home Mediator) which stores information about it and its migrations among

the Nomadic Computing Domains. The Device Manager is the component which has

101

*

HomeDeviceInfo

+ dId: DeviceId

+ host: DispatcherRef

DeviceManager

+ find(DeviceId):DeviceInfo

+ add(DeviceInfo)

+ remove(DeviceInfo)

+ update(DeviceId, HostRef)

<<uses>>

Bridge

TupleDispatcher

IP
NETWORK

*

ForeignDeviceInfo

+ dId: DeviceId

+ home: DispatcherRef

+ host: DispatcherRef

Figure 4.8: Mediator components involved in the middleware mobility management

such a responsibility. As stated in the Section 4.2, the handoff procedure has been

triggered by the Mobility Manager daemon, when it sends the Greetings message to

the Bridge. Once the handoff has been triggered, these are the steps to complete the

procedure:

1. the new Mediator’s Dispatcher notifies the Home Mediator that the Host Me-

diator ha been changed (i.e. by invoking the notify method on the Home Me-

diator’s Dispatcher)

2. it transfers all the tuples concerning objects running on the mobile device,

from the old shared memory to the local shared space (i.e. by invoking the

moveTuples method on the old Host Mediator’s Dispatcher).

The accounting information needed to do the above mentioned steps are: i) the

identifier of the mobile device (i.e. DeviceId), ii) the reference to the current Domain,

which is the current Mediator the device is being connected to (called Host). The

latter information is used by the Dispatcher in order to correctly forward tuples

through the distributed shared space. Beyond such information, the Device Manager

102

caches Host Mediator’s references of foreign Esperanto devices, so that avoiding the

Host ’s reference resolution each time a tuple needs to be forwarded.

4.9 Bridges for interoperability withWeb Services

There are two basic requirements a bridge generator has to meet to achieve interop-

erability with Web Services. When linking Esperanto applications with Web Services

the Esperanto interface definitions need to be translated into corresponding Web

Service descriptions. Afterward, one program for each mapping (i.e. Web Services

to Esperanto Broker and vice versa), has to be generated that transposes the Web

Service invocations into equivalent Esperanto invocations and vice versa.

Using an Esperanto-based application, the remote interfaces are defined in the

E-IDL. Web Service based applications, on the other hand, commonly specify their

interfaces using the WSDL. Therefore, an IDL file containing the Esperanto interface

definitions first needs to be translated into a corresponding WSDL file. To carry out

this task, the ESERV parses the IDL file and transforms the parse tree into a WSDL

document, as shown in section 4.5.3. Afterward, the tool generate two executable

components:

• Bridge toward Esperanto Services : such a component is in charge of mapping

SOAP messages into Esperanto RMIs. Basically, web clients are unaware of

sending SOAP messages toward an Esperanto server, since the bridge appears

as a web service, which publish itself into an UDDI registry and marshals SOAP

messages into Esperanto RMIs, sending them to the server that implements the

E-IDL specification.

103

• Bridge toward Web Services : such a component is in charge of mapping Es-

peranto RMIs into SOAP messages. Basically, Esperanto clients are unaware of

making RMIs toward a web service, since the bridge appears as an Esperanto

server, which is compliant to the E-IDL definition and marshals Esperanto RMIs

into SOAP messages specified into the WSDL document generated by ESERV,

and vice versa.

4.9.1 Mapping SOAP messages to Esperanto RMIs

Having translated the IDL interface definitions into the WSDL format, the next step

is to generate the bridge itself. Its main task is to interpret the received Web Service

messages, map them to the corresponding Esperanto method invocations and finally

return their results again as a Web Service message. Obviously, it must be ensured

that all of the bridge’s messages conform to the WSDL document.

The main component of the bridge is a multi-threaded web server, which receives

and decodes incoming HTTP/SOAP messages using the libcurl and libxml C++

libraries. Having received a message, in accordance to the ”façade” design pattern

[39], its task is to determine, which proxy is responsible for handling the message.

The bridge then invokes the corresponding substitute’s operation in the appropriate

proxy class.

Once the bridge is running within the target system, it can be reached via the

URI specified in the deployment descriptor. The first time the bridge is used, it

resolves the symbolic names of the remote Esperanto peer. The obtained references

are buffered for later access to reduce unnecessary overhead. If the bridge receives

an incoming SOAP message it will extract its content and determine the appropriate

104

proxy class and the correct method to invoke on the Esperanto server.

The message content is passed as parameter to the operation, which redirects the

invocation to its dedicated Esperanto Peer. The result of the invocation is then,

again, packaged by the proxy into a SOAP fragment and passed back to the web

server. Here, the SOAP message is terminated and sent back to the calling web

client. Should an exception be raised during this process, an error message will be

generated. If a user-defined exception is raised, the proxy takes care of constructing

the error message; internal errors or Esperanto exceptions are handled by the bridge

itself.

4.9.2 Mapping Esperanto RMIs to SOAP messages

The main task of the bridge from Esperanto clients toward web services is to interpret

the Esperanto RMIs, map them to the corresponding SOAP message invocations and

finally return their results again. To this aim, the method’s parameters list is wrapped

in a tuple to be easily parsed via libxml into a SOAP envelope.

The main component of the bridge is an Esperanto skeleton, which dispatches and

up-call incoming RMIs, while the real server parses them into SOAP messages. Since

the bridge acts as a web client, it has to be able to find the potential web service, which

should be registered itself at a UDDI registry. To overcome possible limitations, once

the bridge is running within the target system, it can reach the actual web service

via the URI specified in a configuration file, which has to be hand-edited.

Then an Esperanto server can invoke methods on the web service. Using informa-

tion from the WSDL document, the Esperanto server is able to send a request to the

actual service and has to wait for the appropriate response. As in the previous case,

105

the details of the bridge functionalities are completely transparent to the Esperanto

clients. The bridges receives the request, and, according to the received data, com-

municates with them. The response of the web service is translated into a tuple via

the skeleton services and returned to the Esperanto client.

Chapter 5

Developing Esperanto applications

To test the effectiveness of the Esperanto approach, we have employed the EB in

educational projects of the basic distributed programming courses at the University

of Naples. Several mobile applications have been successfully developed. In this

section we illustrate SmartMall, an advertisement manager application where the

scenario is an outlet mall. The manager has several aims: to suggest walking paths,

to appeal customers with promotions about goods, to ask them for feedbacks, etc.

While walking around shopping areas, customers may want to buy products, to search

for items, and make reservations at a food court’s restaurant.

5.1 Requirements issues

5.1.1 Mobility-related issues

While walking among different shopping areas, customers may experience periods of

disconnections. Moreover, the advertisement manager service may suggest walking

paths which depend on the current shopping areas where customers are located, or

send promotions which are related only to shops in the customers’s nearby and based

106

107

on costumer’s profile. On the customer side, he/she may want to reserve a table at

the nearest food court area, or restrict the search for a product only to them sold by

shops in the nearby.

Therefore the following issues need to be addressed:

• track costumers walking paths : the service infrastructure needs to know cur-

rent and past customer’s locations. To achieve this, the mobile-side service

infrastructure has to notify current device’s location, whereas the fixed-side

infrastructure has to keep tracking device movements.

• profile costumers attitudes and needs : the service infrastructure needs to know

about costumers attitudes and needs as they get into the SmartMall, i.e. they

get the mobile device. To address this, the mobile-side service infrastructure

has to query costumers on basic matters, such as shoppoing’s aim, and forward

it to the fixed-side service infrastructure.

• make costumer service provisioning aware of his/her location: the service de-

livery has to be dependent on costumer’s location. To this aim, the fixed and

mobile infrastructure has to provide services whose computations depend on

the possible shopping areas of the SmartMall.

• let costumer use services despite mobile terminal disconnections : service pro-

vision has to be feasible even if costumer is disconnected. For instance, the

costumer should be able to roll the list of products despite he/she is connected

or not. To this aim, the mobile-side service infrastructure has to implement

strategies to cache data from the fixed-side service infrastructure.

108

5.1.2 Application-related issues

The advertisement manager needs to send promotions to whoever may be interested,

or only to a set of customers that have expressed the intention to receive promotions

about products sold in a specific shopping area. Feedbacks may be requested either

on per-customer basis or to any customer. It is thus clear that promotions can be

sent to one or more customers, while feedbacks can be sent back by one or more of

them.

Therefore the following issues need to be addressed:

• pushed-based service delivery : the service infrastructure has to be able to send

both time-triggered (i.e. based on a certain period of time) and event-triggered

(i.e. based on the fact that costumers have come in a certain area) information.

Costumers do not request for such information, they are just notified by the

infrastructure asynchronously and pro-actively. To this aim the mobile-side

service infrastructure has to receive such information and show them to the

costumer.

• one-to-many service delivery : the fixed-side service infrastructure needs to in-

teract with more than one costumer at the same time. To address this, the

fixed-side service infrastructure has to rely on a broadcast mechanism to send

information out to all costumers.

• selective one-to-many service delivery : the fixed-side service infrastructure needs

to interact with more than one costumer at the same time. However, costumers

may be selected based upon their profiles and/or their location. To address

this, the fixed-side service infrastructure has to rely on a selective broadcast

109

Grocery area

Sport area

Food court area

Outfit area

Entartainment area

Shoes area

Household area

Figure 5.1: Partitioning of a hypothetical shopping mall

mechanism to send information out to the interested costumers.

5.1.3 The Esperanto approach

The aforementioned issues are easily addressed with the adoption of the EB. The

proposed platform copes with mobile devices disconnections, provides mechanisms

to cluster shops in several domains, provides both manager-initiated and customer-

initiated communication paradigms, and allows the manager to directly contact one

or more customers. By means of conventional middleware it would be very hard to

implement such a mobile computing application.

110

Mediator i

Mediator i
Mediator i

Mediator i

Mediator i

Mediator i

Mediator i

LocationService

AdvertisementService

CustomersManager

Fixed-side

Mobile-side

LocationService

AdvertisementService

CustomersManager

E-IDL

<< implements >>

<< remote >>

Figure 5.2: Conceptual diagram for the SmartMall scenario

5.2 Design issues

5.2.1 Architecture design

As far as the application architecture is concerned, we have assumed that there is a

Domain for each shopping area (e.g. food-court area, clothes and shoes area, grocery’s

area, etc.) and that each Domain requires the deployment of the following entities: i)

the location service; ii) the advertisement service; iii) the customers manager. Figure

5.1 depicts how such a partitioning of a hypothetical shopping mall may happen.

Basically, a Mediator will run in each domain, as well as the the above mentioned

entities. Therefore, the conceptual diagram that describes such a system decomposi-

tion at a very high level of abstraction is the one shown in Figure 5.2.

111

5.2.2 Interfaces design

According to issues detailed in section 5.1, the crucial interfaces needed to be imple-

mented are the following:

interface LocationService {

oneway void sendLocation(in DeviceId customer, in DomainId from);

notify void notifyLocation(in DeviceId customer, in DomainId location);

};

interface AdvertisementService {

solres void askForFeedbacks(in string question, out string feedback);

solres void suggestWalkPath(in string direction);

solres void sendPromotion(in string promotion);

};

interface CustomersManager {

reqres int makeReservation(in int howMany, inout DomainId foodCourt);

reqres bool buyProduct(in int productId, in DeviceId custumer);

reqres bool searchFor(in int productId);

};

We assume that a customer gets an Esperanto-enabled device at the mall’s en-

trance, so that he/she is able to contact a CustomersManager. The LocationService

allows both customers to send their Domain location, and advertisementServices to

be notified of their location changes. An AdvertisementService suggests walk paths,

sends promotions and ask for feedbacks to customers, as soon as they get inside the

shopping area it is in charge of.

Client-side application gets the current device location by means of a local service

implemented via the detect() primitive. The compilation process of the above men-

tioned interfaces generates the necessary stub and skeleton classes to invoke methods

on both sides of the service infrastructure.

The E-IDL and the DOC model help to easily describe and extend interactions

and entities: for instance, it may be possible to let customers communicate to one

another.

112

5.3 Development issues

The development process of any Esperanto application follows the basic steps reported

in the following:

5.3.1 Drawing interfaces

The task of drawing Esperanto interfaces consists of specifying, for all interfaces that

are needed to be implemented by Esperanto Peer, the list of methods, along with the

specification of the interaction paradigm and the list of passing parameters. Using

ESERV, such a task is not error-prone, inasmuch ESERV check for errors (for instance,

oneway methods cannot have out parameters).

Figure 5.3 shows how the specification of the above mentioned interfaces appears

in ESERV. Once the developer has done with the interfaces visual description, he/she

can generate the E-IDL file along with the stub and skeleton code.

5.3.2 Code Generation

The code generation provides stubs and skeletons to implement the application logic.

In the following, part of the code generated for the AdvertisementService interface is

shown.

class AdvertisementService: protected AdvertisementService_CallBack {

public:

AdvertisementService(const PeerId& service): AdvertisementService_CallBack(service) {}

virtual ~AdvertisementService() {}

void _bind(const Time lease) throw (EsperantoException) {

try {

AdvertisementService_CallBack::_bind(lease);

} catch(const EsperantoException& ee) { throw; }

}

bool _isBound() {

return AdvertisementService_CallBack::_isBound();

}

// Methods

113

interface LocationService {
oneway void sendLocation(in DeviceId customer, in DomainId from);
notify void notifyLocation(in DeviceId customer, in DomainId location);

};

interface AdvertisementService {
solres void askForFeedbacks(in string question, out string feedback);
solres void suggestWalkPath(in string direction);
solres void sendPromotion(in string promotion);

};

interface CustomersManager {
reqres int makeReservation(in int howMany, inout DomainId foodCourt);
reqres bool buyProduct(in int productId, in DeviceId custumer);

reqres bool searchFor(in int productId);
};

F
igu

re
5.3:

S
creen

sh
ot

of
th

e
E
S
E
R
V

to
ol

to
d
esign

E
sp

eran
to

in
terfaces

114

virtual void askForFeedbacks(const string& question, string& feedback) = 0;

virtual void suggestWalkPath(const string& direction) = 0;

virtual void sendPromotion(const string& promotion) = 0;

};

As mapping rules state, the interface compilation will generate two classes, more

precisely a stub server-side and a skeleton client-side. This is due to the fact that no

oneway and reqres methods are available in the interface definition. The C++ code

above shows the skeleton client-side that the developer needs to implement, while the

C++ below shows the server-side stub that the developer must use.

class AdvertisementService {

public:

void askForFeedbacks(const string& question, askForFeedbacksGroup& askForFeedbacks_group)

throw (EsperantoException);

void suggestWalkPath(const string& direction, suggestWalkPathGroup& suggestWalkPath_group)

throw (EsperantoException);

void sendPromotion(const string& promotion, sendPromotionGroup& sendPromotion_group)

throw (EsperantoException);

GroupIDs _activeGroup() throw (EsperantoException);

private:

AdvertisementService(const PeerId& service);

~AdvertisementService() { pthread_mutex_destroy(&_mutex); }

PeerId _this;

PeerId _group;

GroupIDs _groupIDs;

Tuple _tuple;

TupleLayer _tdl;

pthread_mutex_t _mutex;

timestamp _request_id;

int _ref_count;

friend class AdvertisementService_ptr;

};

5.3.3 Building Esperanto Peers

Once all the automatic code is generated, the developer may focus solely on the ap-

plication logic. The application logic will be embedded only into the virtual pure

methods specified by skeleton classes declaration. For instance, as far as the Ad-

vertisementService is concerned, the simplest way to implement the askForFeedbacks

method will be the following:

115

...

virtual void askForFeedbacks(const string& question, string& feedback) {

cout << "\nPlease provide a feedback to the question: " << question << endl;

cin >> feedback;

return;

}

...

Each costumer is asked to reply to the question with a particular feedback. On

the stub side, the developer needs to ask for feedback either on event-triggered base

or on time-triggered base. Let’s suppose the service sends out feedback requests when

required by the shopping mall manager. For instance, the simplest way to implement

such a logic is shown in the following piece of code:

...

string question;

while (true) {

askForFeedbacks_group feedbacksGroup;

cout << "Insert the question you wanna ask: " << flush;

cin >> question;

cout << "Please, wait for reply..." << flush << endl;

costumers->askForFeedbacks(message, feedbacksGroup);

askForFeedbacks_group::iterator pos;

for (pos = feedbacksGroup.begin(); pos != feedbacksGroup.end(); pos++) {

cout << "Feedback from costumer: " << pos->first.PeerId2str()

<< " -> : " << pos->second->feedback << flush << endl;

delete pos->second;

} // for

} // while

...

The Manager is prompted to issue the feedback to each costumer. In the code

above, feedbacks are issued to every costumer since the feedbacksGroup structure is

empty. Whenever he/she needs to ask feedbacks to only some costumers the applica-

tion logic would be the one shown below:

//

// I - asks for available costumers

//

int i = 0;

GroupIDs costumersIDs = costumers->_activeGroup();

cout << "Active costumers:" << flush;

GroupIDs::iterator pos;

vector<PeerId> peerIdVect;

for(i = 0, pos = costumersIDs.begin(); pos != costumersIDs.end(); pos++, i++) {

cout << "\n" << i << " - " << (*pos).PeerId2str() << flush;

116

peerIdVect.push_back(*pos);

} // for

bool end = false;

askForFeedbacks_group feedbacksGroup;

//

// II - selects the costumers to solicit

//

do {

cout << "\nSelects Peers to solicit (-1 to end): " << flush;

cin >> i;

end = (i == -1);

if (!end)

feedbacksGroup.insert(pair<tdl::PeerId,

askForFeedbacks_groupRef>(peerIdVect[i], new askForFeedbacks_group));

} while (!end);

//

// III - isses the questions

//

if (feedbacksGroup.size() > 0) {

cout << "Insert the question you wanna ask: " << flush;

cin >> question;

cout << "Please, wait for reply..." << flush << endl;

costumers->askForFeedbacks(message, feedbacksGroup);

} // if

//

// IV - checks for feedbacks from available costumers

//

askForFeedbacks_group::iterator posFeedbacksReply;

for (posFeedbacksReply = feedbacksGroup.begin();

posFeedbacksReply != feedbacksGroup.end(); posFeedbacksReply++) {

if (posFeedbacksReply->second != NULL) {

cout << "Feedback from costumer: " << pos->first.PeerId2str() <<

" -> : " << pos->second->feedback << flush << endl;

delete pos->second;

} else {

cout << "- " << posFeedbacksReply->first.PeerId2str() <<

" -> is no longer available" << flush << endl;

}

} // for

...

As the piece of code shows, activities being done are the following:

1. the Manager asks for available costumers;

2. he/she fills the feedbacksGroup structure up with the costumers he/she wants

to solicit;

3. he/she issues the question and sends it to interested costumers;

4. he/she checks for feedbacks provided by the costumers who have replied.

117

5.4 Deployment issues

As far as the deployment is concerned, the client-side application prototype has been

cross-compiled for the StrongArm platform (i.e. to run on PDAs), while the server-

side application has been compiled for the traditional i386 platform. Tests ran in

our laboratories, where two shopping areas were simulated and three customers were

moving around hallway and rooms. Deployment usually requires a preliminary phase

where the following activities need to be done:

• Description of the Esperanto domains : this phase requires that domains, which

the the Nomadic Computing infrastructure is decomposed in, and Mediators

needed to be allocated are described via xml syntax.

• Description of the Nomadic Computing infrastructure: this phase requires that

wireless access points, which are connected to the Nomadic Computing infras-

tructure, are described in terms of their characteristics and relate to each other.

• Tuning configuration parameters : this phase requires that parameters to control

the reaction time of the handoff strategies are setup.

5.4.1 Description of Esperanto domains

The description of the Esperanto domains is required to let the Mobile-side Esperanto

Broker be aware of the partitioning of the Nomadic Computing infrastructure. Such a

description is stored in a xml file, which contains for each domain (i.e. the outfit area,

the sport area, etc.), how many mediators are running, how to contact them, and

which are the wireless access points that cover the domain area.

In the following a fragment of such a file is reported:

118

<domains>

<domain>

<domainID>OUTFIT_AREA</domainID>

<mediator>

<bridgeAddress>10.0.0.35</bridgeAddress>

<bridgePort>10000</bridgePort>

<accessPoints>

<address>00:0E:6A:FD:DA:BD</address>

<address>00:0E:6A:FD:DA:AD</address>

<address>00:0E:6A:FD:CB:EF</address>

</accessPoints>

</mediator>

</domain>

<domain>

<domainID>SPORT_AREA</domainID>

<mediator>

<bridgeAddress>10.0.0.35</bridgeAddress>

<bridgePort>20000</bridgePort>

<accessPoints>

<address>00:0B:AC:E8:59:32</address>

<address>00:0E:6A:E9:44:23</address>

</accessPoints>

</mediator>

</domain>

...

</domains>

As the fragment shows, even if the number of the running mediators are more than

one, there is only one physical host that is involved. This can have a good impact

on deployment costs, since the number of domains and mediators do not affect the

number of physical nodes needed to let the middleware run.

5.4.2 Description of the Nomadic Computing infrastructure

The description of the Nomadic Computing infrastructure consists of the list of the

available wireless access points along with configuration parameters that are needed

by the Mobile-side Esperanto Broker, when a handoff triggers. In the following, an

xml fragment shows the description of some access points and their relationships.

<infrastructure>

<locations>

<loc>

<name>galileo</name>

<tech>blue</tech>

<address>00:0E:6A:FD:DA:BD</address>

<initstr>blue</initstr>

119

<srssi>3</srssi>

<alphathr>6</alphathr>

</loc>

<loc>

<name>mercurio</name>

<tech>blue</tech>

<address>00:0B:AC:E8:59:32</address>

<initstr>blue</initstr>

<srssi>3</srssi>

<alphathr>6</alphathr>

</loc>

...

</locations>

<neighbors>

<loc="galileo">

<neigh>mercurio</neigh>

</loc>

<loc="mercurio">

<neigh>galileo</neigh>

</loc>

...

</neighbors>

</infrastructure>

Basically, such a list is used to determine which wireless access point to contact

when device is about to be disconnected by old access points (for this, a neighbors

section describes such relationships). For each access point, parameters used by the

handoff algorithm to tune α-count behavior are also specified.

5.4.3 Tuning configuration parameters

The tuning phase is especially needed to setup the data-link handoff algorithm. Such

a tuning consists of choosing the proper values for parameters that control the α-count

scheme behavior. Basically, the proposed α-count scheme affects the reaction time

of the initiation strategy. If we define the time within which the handoff is triggered

as the reaction time Tr, once the mobile device reaches a wireless cell boundary, the

handoff toward a new access point should be triggered at most after Tr seconds. The

aim of the tuning process is to keep this time as low as possible.

Obviously, Tr is a function of α-count parameters, that is Tr = f(SRSSI , αT , dec);

120

hence, once the expected dimension of a cell is fixed, it is necessary to tune the α-

count parameters in order to achieve a certain Tr when the boundaries are reached. We

define an experimental mean to tune the α-count parameters, given the cell dimensions

and the expected Tr. For each cell, the tuning process encompasses three steps:

• Experimental evaluation of Received Signal Strength Indicator (i.e. RSSI): the

frequency distribution at the cell boundary of the RSSI is determined. To this

aim, the mobile device is located at the boundary of the cell and the RSSI

samples are recorded in order to obtain statistic information.

• Simulation of the α-count algorithm: once the RSSI distribution is determined,

it is used to run a simulation set of the α-count algorithm to estimate the Tr

as function of the triple (SRSSI , αT , dec). More precisely, triples of parameters

(SRSSI , αT , dec) are chosen arbitrarily and the expected Tr samples are collected.

• Choosing the correct parameter values which guarantee the expected Tr: once

the previous steps are done, choosing the desired Tr and the respective triples

of parameters (SRSSI , αT , dec) is quite straightforward.

To exemplify such a process, let consider the following example: according to the

first step, we capture RSSI values in several parts of the cell boundary region. As

for the second step, α-count simulation results are depicted in figure 5.4, in order to

evaluate Tr as function of αT , dec, and SRSSI parameters.

Once the desired Tr is determined (as an example Tr = 4 in the figure, which is

emphasized by a dashed line), it is possible to determine different t = (SRSSI , αT , dec)

triples that produce the expected Tr (for example both t1 = (SRSSI = 3, αT =

4.3, dec = 0.2) and t2 = (SRSSI = 3, αT = 6, dec = 0.8) triples can be used).

121

SRSSI = 3

R
e
a
c
ti

o
n

T
im

e

ααααT

t2
t1

Figure 5.4: α-count parameters tuning

By evaluating the RSSI frequency distribution in several cell boundaries, it is

possible to achieve different parameters values for different cell sizes. Then the correct

set of values can be chosen by the CLM with respect to application requirements

(e.g. for location sensitive applications, it is better to use small cells, whereas for

high bandwidth applications is better to use big cells in order to rarely change the

current good AP).

5.5 Conclusions

Tuning parameters for handoff algorithms and for mobility-aware strategy timeouts

are usually the most delicate parts of the entire development process. However, ex-

tending and modifying the Esperanto network infrastructure is easy as modifying

122

an xml document. Adding/removing domains, mediators and wireless access points

requires only to know basic information like IP and MAC addresses. A further im-

provement would be the implementation of a GUI application which actually allows

the developer to draw such an infrastructure and which generate the xml document

in automatic way.

The EB has all the building bocks to develop and deploy next-generation mobile

computing applications. The developer is shielded from low-level details, group com-

munication and mobility mechanisms, and can focus only on the application business

logic using a powerful computing model. As for the design phase, the developer is

provided with a high-level tool, i.e. ESERV, which allows to draw interfaces and

the involved communication paradigms without any effort in knowing the language’s

syntax.

As for the development phase, he/she is required to write only the business logic

code, since all the skeleton code, i.e. makefiles, and stub/skeleton classes are gener-

ated automatically. As for the deployment phase, he/she is required to configure the

particular Esperanto network infrastructure, plug in the needed access points, and

run commands to start daemons, on the mobile-side, and Mediators on the fixed-side.

Several under-graduated projects have proved that students dealt with Esperanto

as good as they did with traditional middleware like CORBA. Esperanto has a GUI

tool to generate and compile E-IDL interfaces, and other GUI tools (i.e. utilities to

configure both mediators and the esperanto network infrastructure) may be developed

to further improve its usability factor.

Chapter 6

Experimental results

An experimental campaign has been conducted to evaluate the performances of the

implemented prototype. The Esperanto Broker has been tested under different sce-

narios and load conditions, collecting several measures of latency and throughput.

Measurements to estimate the impact of mobility on remote interactions have also

been estimated. In the following, we present the experiment design and setup, and

analyze the obtained experimental results.

6.1 Experiment design

6.1.1 Experiments aims

Experiments were aimed at estimating:

• the performance penalty due to the client-server decoupling via Mediators : Es-

peranto objects communicate to one another having Mediators as their inter-

mediates; this may result in a cost on the overall interaction latency.

• the EB’s performance behavior as compared to MIWCO : the Esperanto Broker

123

124

prototype may not be optimized. Comparing it to an similar middleware may

give us clues about how to further improve it.

• the overhead of stub/skeleton layer built upon the tuple space: building a dis-

tributed object computing model over a tuple space model may have a cost in

marshaling and unmarshaling operations.

• the scalability of the infrastructure: Mediators are crucial for handling middle-

ware activities such as handoff procedures and tuple dispatching operations;

they may represent a bottleneck of the entire middleware infrastructure.

• the impact of mobility on the overall performances : a mobile device may ex-

perience disconnections during a handoff. Estimating how mobility affects the

overall performances is crucial for determining mobility-aware strategies to re-

duce such effects.

6.1.2 Comparing Esperanto Broker and MIWCO

MIWCO [12] has been chosen as the middleware to compare the Esperanto Broker

with. MIWCO is a MICO’s extension to add support for Wireless Access and Ter-

minal Mobility as specified by OMG’s Telecom Domain Task Force [30]. In such an

infrastructure mobile terminals are connected to the fixed network through General

Inter-ORB Protocol (i.e. GIOP) tunnels. The endpoints of this tunnel are called

Terminal Bridge (on the mobile side), i.e. TB, and Access Bridge (on the core side),

i.e. AB.

The bridges communicate using the GIOP Tunneling Protocol. Each terminal has

a Home Location Agent, i.e. HLA, in their home network. The HLA is responsible for

125

tracking its terminals as they move from one AB to another. In addition, the HLA

uses location forwarding to redirect invocations intended for objects on terminals to

their proper addresses. On terminals, all clients’ invocations are rerouted to the TB.

The servers on the terminals need to create Mobile IORs for their objects. Such

an IOR contains the addresses either of the HLA or of the terminal’s current AB,

instead of the server’s IOR. The AB acts as a proxy object, using the GIOP Tunneling

Protocol to handle the invocation.

MIWCO has lots of similarities to the Esperanto Broker and this is the reason

why we chose it as a middleware solution to compare the Esperanto Broker with.

In fact, the TB has responsibilities similar to the mobile Middleware Management

daemon, the HLA has similar responsibilities to the Home Mediator, whereas the AB

has similar responsibilities to the current Mediator. However, the wireless CORBA

specification does not offer built-in primitives for one-to-many communication. Be-

sides, network monitoring algorithms needed to trigger handoff procedures, are not

specified, and are assigned to external components.

6.1.3 Testbed and experimental scenarios

The experimental campaign is conducted in the context of the two following scenarios:

• Scenario I : application objects run on mobile devices which are located in the

same Domain. This means that Esperanto objects interact with the same Me-

diator, whereas CORBA objects running on MIWCO ORB (i.e. TBs) interact

with the same AB.

• Scenario II : application objects run on mobile devices which are located in

different Domains. This means that Esperanto objects interact with distinct

126

Mediators, whereas CORBA objects running on MIWCO ORB (i.e. TBs) in-

teract with different ABs.

All experiments were performed using boxes equipped with 1GB of RAM and PIV

1.8Ghz CPUs. Linux 2.6.9 has been the platform operating system. As for mobile

devices, we used Compaq IPAQ 3970 running Linux familiar v0.7.1, equipped with

Wi-Fi 802.11b and Bluetooth cards. As for the core network, we have used a switched

100 MBits Ethernet. Mediators communicate to one another via TAO 1.4. During

tests, the external load was the normal background load of active service daemons.

6.1.4 Performance metrics

We adopted the following performance metrics: i) method invocation’s latency; ii)

throughput of tuples handled by Mediators; iii) the invocation’s latency during device

handoffs, iv) data-link and domain handoff latencies. To compare latency measures

between EB and MIWCO, we let clients and servers interact via the request/response

paradigm. To this aim, we used the following IDL and E-IDL interfaces:

// OMG IDL // E-IDL

interface Measure { interface Measure {

long foo(in string op); reqres long foo(in string op);

}; };

This does not represent a limitation since the request/response latency can be used

as a fine-grained estimation for the performance evaluation of the other interaction

paradigms. As for network interconnection, we used GIOP Tunneling Protocol, GTP,

(for MIWCO) and NCSOCKS (for the EB) over Bluetooth.

127

6.2 Experiment setup

Hardware required to set up the testbed consist of two mobile devices, two fixed hosts

and two access points. As for the software is concerned, both the application and the

middleware code have been instrumented with probe points to get timestamps. Such

timestamps have been used to estimate the following entities: i) invocation’s latency

(i.e. measured on the client-side as the round-trip time of a method invocation); ii)

throughput (i.e. measured on the Mediator-side as the number of requests per second

processed by the Bridge server). They have been evaluated as function of payload

size and of number of server objects connected to Mediators.

To this aim the experimental code has been parametrized with respect to these

entities; iii) invocation’s latency during handoffs (i.e. measured as the average latency

of consecutive remote invocations when one or more handoff does occur); iv) handoff’s

latency (i.e. measured as the time the Mobility Manager from when it reveals the

need for a handoff and reconnect to the Mediator). The experiment collected all the

timestamps at the same time.

6.3 Empirical results

6.3.1 Latencies comparison

Table 6.1 shows the latency of request/response invocations as function of payload

size in both scenario I and scenario II. We measured latencies at both stub/skeleton

(i.e. E-DOC) and Tuple Space Access Primitives (i.e. TSAP) layers. Such latencies

are compared to the MIWCO’s latencies.

Table 6.1 illustrates that the EB has a performance cost respect to MIWCO.

128

Table 6.1: Latency at different layers of EB compared to MIWCO latency

invocation latency (msec)
1B 10 B 100 B 1KB 10 KB

MIWCO scenario I 73.6957 74.0677 74.8794 122.126 411.373
scenario II 74.0427 74.3985 74.9931 123.614 482.856

E-DOC scenario I 169.501 172.543 174.726 193.797 588.869
scenario II 179.161 184.147 187.065 215.9 692.236

TSAP scenario I 167.231 171.686 173.18 192.104 587.591
scenario II 171.118 176.848 178.973 195.446 596.521

Table 6.2: Throughput respect as function of connected objects

throughput (requests/sec)
1 object 25 objects 50 objects 100 objects 150 objects

scenario I 7.41 11.30 17.60 18.04 19.65
scenario II 3.30 7.32 14.50 16.25 18.08

However, as payload increases such a gap will decrease, demonstrating that our pro-

totype does not introduce unacceptable overhead. Moreover, the low ratio between

the latency using the DOC abstraction and the latency using the tuple space layer

demonstrates that building a middleware over another middleware does not get per-

formance worse.

6.3.2 Throughput

Table 6.2 shows the throughput achieved by Mediators as function of the number of

connected objects. Table 6.2 illustrates that the EB has a predictable behavior even

in presence of high load situations and that Mediators do not represent a bottleneck of

the EB infrastructure. Throughput increases as connected objects increase. However,

the small number of requests per second is basically due to Bluetooth’s bandwidth

limitations.

129

Table 6.3: Latency respect as function of connected objects

invocation’s latency (msec)
1 object 25 objects 50 objects 100 objects 150 objects

scenario I 147.66 154.48 157.29 154.24 163.34
scenario II 169.69 160.44 162.84 167.10 176.74

Table 6.4: Latency of data-link and domain

handoffs

handoff latency (sec)
min average max st.dev.

data-link 2.147 4.552 8.566 1.764
domain 10.017 10.388 13.041 0.826

6.3.3 Latency

Table 6.3 shows the latency of request/response invocations as function of the number

of connected objects. The invocation’s latency remains basically stable despite the

number of objects connected to Mediators. This is thanks to a design implementation

choice. Server objects receives their tuples via notifications to callbacks which are

stored in a Standard Template Library (i.e. STL) map. Such a map offers O(1)

access.

6.3.4 Mobility impact

Table 6.4 shows the minimum, maximum and average latencies for both data-link

and domain handoffs.

Table 6.5 compares the minimum, maximum and average values of the invocation’s

latency during a data-link handoff with the respective values of invocation’s latency

recorded in regular situations.

Table 6.6 compares the minimum, maximum and average values of the invocation’s

latency during a domain handoff with the respective values of invocation’s latency

130

Table 6.5: Invocation’s latency with and without data-

link handoffs

invocation latency (sec) - scenario I
min average max st.dev.

w/o handoff 0.156 0.229 0.763 0.087
with handoff 1.321 2.015 3.345 0.594

Table 6.6: Invocation’s latency with and without do-

main handoffs

invocation latency (sec) - scenario II
min average max st.dev.

w/o handoff 0.151 0.188 0.602 0.471
with handoff 1.426 2.977 4.780 0.831

recorded in regular situations.

Tables 6.4, 6.5, and 6.6 provides useful understandings: i) invocation’s latency

increases during handoffs due to loss of network connectivity: the burden is greater

during domain handoffs than during data-link handoffs since in the latter case no

tuples need to be moved between Mediators.

However, latencies are almost stable as the analysis of min, max and average

values suggests; ii) domain handoff’s latency is greater than the data-link handoff,

since more activities are required by the Mobility Manager to perform the device

migration. However, latencies are almost stable as the analysis of min, max and

average values suggests.

6.4 Analysis of results

Empirical experiments prove the attractiveness of the proposed platform. Although

our first prototype has a cost in terms of performance, it shows a predictable behavior

in presence of device mobility and high load situations. Invocation’s latency remains

131

basically stable despite how many objects are connected to the platform, whereas

handoff procedures introduce predictable overhead.

Chapter 7

Conclusions

7.1 Conclusions

There is an increasing demand of middleware for nomadic computing applications.

Due to the inherent characteristics of such environments, these platforms have to

address two fundamental issues: i) device disconnections and limitation of wireless

networks may force users to experience short periods of service unavailability, and ii)

the complexity to design and develop next-generation mobile computing applications.

This thesis proposed the Esperanto Broker, a communication platform for No-

madic Computing systems. The platform’s design faced major mobility issues: it

coped with disconnections due to device mobility, and it let applications be decou-

pled according to the disconnected lifestyle of mobile computing. Developers are

provided with advanced services to support their effort in designing next-generation

mobile applications.

Mobility issues like disconnections, variations in network performances and mobile

device constraints are needed to be dealt with mobility management procedures and

strategies. Almost all current platforms do not address the above mentioned issues

132

133

via any effective solution as the Esperanto Broker does. It addresses mobility issues

via an integrated approach, i.e. both at data-link, network and middleware levels.

Device disconnections and degradations in network performances affect the abil-

ity of an application object to be available for communicating with counterparts. To

improve such an availability, objects should be provided with decoupled communica-

tion paradigms. Although any solution analyzed provides a decoupled communication

paradigm, either it looses expressiveness of the computing model, or it still adopts sort

of synchronous interaction primitives. According to the Esperanto Broker approach,

decoupling interactions are achieved via a tuple-space underlying infrastructure. To

support developers with advanced services, the Esperanto Broker enhances the dis-

tributed objects computing model providing the abstraction for the communication

paradigms standardized by the W3C.

In other words, the Esperanto Broker joins remote method invocations and tu-

ple space together to exploit their advantages respectively. It also provides mobile-

enabled services such location-aware and group-aware services. Esperanto applica-

tions are modeled as sets of objects that are distributed over mobile devices which

communicate via remote method invocations (RMIs). RMIs natively implement pull

and push models, in both one-to-one and one-to-many multiplicity. None of the

considered alternatives proposes such a computing model.

A powerful computing model, and especially advanced tools, aid the designers and

developers to build applications, as ESERV does. It simplifies the process of designing

object interfaces and make the code generation faster. None of the considered solution

provides tools for design and development similar to it.

134

As far as heterogeneity of wireless technologies is concerned, the common tradi-

tional approach to deal with this is to provide an abstraction layer, which hides the

underlying technologies and deal with them separately. The Esperanto Broker imple-

ments handoff strategies that allow the device to be connected to the core network

seamlessly despite the wireless technology.

Finally, as far as mechanisms to allow interoperability are concerned, Esperanto

clients may invoke web services and, vice versa, web client may invoke Esperanto

servers. Since Web Services are becoming the standard de facto in developing and

deploying distributed services, the decision to allow interoperability with the Es-

peranto Broker and any other middleware solution seemed a good way to achieve it.

Eventually any middleware solution shall be interoperable with Web Services.

This thesis has discussed the design and the implementation of the Esperanto Bro-

ker. The thesis also focused on evaluating performances of the implemented prototype

and the effectiveness of its usability factor.

The EB has all the building bocks to develop and deploy next-generation mobile

computing applications. The developer is shielded from low-level details, group com-

munication and mobility mechanisms, and can focus only on the application business

logic using a powerful computing model. As for the design phase, the developer is

provided with a high-level tool, i.e. ESERV, which allows to draw interfaces and

the involved communication paradigms without any effort in knowing the language’s

syntax.

As for the development phase, he/she is required to write only the business logic

code, since all the skeleton code, i.e. makefiles, and stub/skeleton classes are gener-

ated automatically. As for the deployment phase, he/she is required to configure the

135

particular Esperanto network infrastructure, plug in the needed access points, and

run commands to start daemons, on the mobile-side, and Mediators on the fixed-side.

Several under-graduated projects have proved that students dealt with Esperanto

as good as they did with traditional middleware like CORBA. Esperanto has a GUI

tool to generate and compile E-IDL interfaces, and other GUI tools (i.e. utilities to

configure both mediators and the esperanto network infrastructure) may be developed

to further improve its usability factor.

From a methodological point of view, we believe that the experience brings two

important benefits to developers community: i) it has shown that the Esperanto

Broker may provide an effective mean for supporting applications running over a

Nomadic Computing environment, and ii) it has provided most of the implementa-

tion techniques we used, which can help middleware developers to understand how

to integrate mobility mechanisms in current middleware implementations. From an

experimental point of view, the performance evaluation provides an evidence of the

platform attractiveness.

Bibliography

[1] R. Bagrodia, W.W. Chu, L Kleinrock, and C. Popek. Vision, issues, and archi-

tecture for nomadic computing. IEEE Personal Communications, 2(6):14–27,

1995.

[2] L. Kleinrock. Nomadic computing and smart spaces. IEEE Internet Computing,

4(1), 2000.

[3] L. Kleinrock. On some principles of nomadic computing and multi-access com-

munications. IEEE Communications Magazine, 38(7), 2000.

[4] A. Gaddah and T. Kunz. Does modern middleware address mobile comput-

ing requirements? In Proc. of the 8th World Multi-Conference on Systemics,

Cybernetics and Informatics, 5:493–499, 2004.

[5] K. Raatikainen. Wireless Access and Terminal Mobility in CORBA. Technical

Report, December 1997. OMG Technical Meeting, University of Helsinky.

[6] OMG. The Common Object Request Broker: Architecture and Specification

3.0.3 ed., 2004.

[7] Microsoft. DCOM tecnology, 2004. www.microsoft.com/com/tech/DCOM.asp.

[8] Sun. Sun Microsystem Home Page, 2004. http://www.sun.com.

136

137

[9] A. Gaddah and T. Kunz. A Survey of Middleware Paradigms for Mobile Com-

puting. Techical Report, July 2003. Carleton University and Computing Engi-

neering.

[10] C. Mascolo, L. Capra, and W. Emmerich. An XML-based Middleware for Peer-

to-Peer Computing. In Proc. of 21st IEEE Int. Conf. on Distributed Computing

Systems, pages 69–74, 2001.

[11] C. Mascolo, L. Capra, and W. Emmerich. Mobile Computing Middleware. Lec-

ture Notes In Computer Science, advanced lectures on networking, pages 20 – 58,

2002.

[12] Jaakko Kangasharju. Implementing the Wireless CORBA Specification.

PhD thesis, Computer Science Department - University of Helsinki, 2002.

http://kotisivu.mtv3.fi/ashar/software/miwco/laudatur-jjk.pdf.

[13] A. L. Murphy, G. P. Picco, and G. C. Roman. LIME: A Middleware for Physical

and Logical Mobility. In Proc. of 21st IEEE Int. Conf. on Distributed Computing

Systems, pages 524 – 533, 2001.

[14] S.S. Yau and F. Karim. A Lightweight Middleware Protocol for Ad Hoc Dis-

tributed Object Computing in Ubiquitous Computing Environments. In Proc.

of 6th IEEE Int. Symp. on Object-Oriented Real-Time Distributed Computing,

pages 14–16, 2003.

[15] W3C. Web Services Activity, 2006. http://www.w3.org/2002/ws/.

[16] L. Kleinrock. Nomadicity: anytime, anywhere in a disconnected world. Source

Mobile Networks and Applications archive, 1(4), 1996.

[17] Microsoft. Tablet PC on the Go: Scenarios for Powerful Mobile Computing,

August 2004.

138

[18] M. Burgess and S. Fagernes. Pervasive Computer Management: A Smart Mall

Scenario Using Promise Theory. Lecture Notes on Computer Science, 3775, 2005.

[19] Cristiano di Flora. Service Discovery and Delivery in interoperable Nomadic

Computing Systems. Master’s thesis, Università degli Studi di Napoli Federico

II, 2005.

[20] Graziano Almerindo. Achieving Secure Service Provision in Nomadic Computing

Systems. Master’s thesis, Università degli Studi di Napoli Federico II, 2005.

[21] P.T. Eugster, P. Felber, R. Guerraoui, and A.M. Kermarrec. The Many Faces

of Publish/Subscribe. ACM Computer Survey, 2003.

[22] M. Franklin and S. Zdonik. A Framework for Scalable Dissemination-based

Systems. In ACM Press, editor, SIGPLAN: ACM Special Interest Group on

Programming Languages, pages 94 – 105, 1997.

[23] D. Gelernter. Generative Communication in Linda. ACM Transactions on Pro-

gramming Languages and Systems, Volume 7 Issue 1:pages 80–112, 1985.

[24] IBM. Tspace home page, 2004. www.almaden.ibm.com/cs/TSpaces/index.html.

[25] S. Adwankar. Mobile CORBA. In Proc. of 3rd IEEE Int. Symp. on Distributed

Objects and Applications (DOA ’01), pages 17–20, 2001.

[26] M. Haahr, R. Cunningham, and V. Cahill. Supporting CORBA Applications

in a Mobile environment. In Proc. of the 5th annual ACM/IEEE Int. Conf. on

Mobile Computing and Networking, 1999.

[27] ¡. Π2 A Generic Proxy Platform for Wirelss Access and Mobility in CORBA.

In Proc. of the 19th ACM Symp. on Principles of distributed computing, pages

191–198, 2000.

139

[28] S. Campadello, O. Koskimies, K. Raatikainen, and H. Helin. Wireless Java RMI.

in Proc. of 4th Int. Enterprise Distributed Object Computing Conference, 2000.

[29] V. Cahill and T. Wall. Mobile RMI: Supporting Remote Access to Java Server

Objects. in Proc. of 3rd Int. Symp. on Distributed Objects and Applications

(DOA), pages 41–51, 2001.

[30] OMG. Wireless Access and Terminal Mobility in CORBA Specification, 2001.

[31] M. Liljeberg, K. Raatikainen, M. Evans, S. Furnell, N. Maumon, E. Veldkamp,

B. Wind, and S. Trigila. Using CORBA to Support Terminal Mobility. in ACM

Proc. of the Global Convergence of Telecommunications and Distributed Object

Computing, 1997.

[32] N. Davies, A. Friday, S. P. Wade, and G. S. Blair. L2imbo: a distributed systems

platform for mobile computing. Mobile Networks and Applications, 3(2):pages

143 – 156, 1998.

[33] P. R. Pietzuch and J. M. Bacon. Hermes: A Distributed Event-Based Middle-

ware Architecture. In Proc. of 22nd IEEE Int. Conf. on Distributed Computing

Systems Workshops (ICDCSW ’02), 2002.

[34] A. D. Joseph, J. A. Tauber, and f. Kaashoek. Mobile Computing with the Rover

Toolkit. IEEE Transactions on Computers, 48(3):337 – 352, march 1997.

[35] T.S. Rappaport S. Shakkottai and P.C. Karlsson. Cross-layer design for wireless

networks. IEEE Communications Magazine, 41(10), 2003.

[36] M. Cinque, D. Cotroneo, and S. Russo. Achieving All the Time, Everywhere

Access in Next-Generation Mobile Networks. ACM SIGMOBILE Mobile Com-

puting and Communication Review (MC2R) Journal, 9(2):29–39, 2005.

[37] Network Working Group, IETF. IP mobility support, RFC 2002, 1996.

140

[38] A. Bakre and B. R. Badrinath. M-RPC: a remote procedure call service for

mobile clients. in Proc. of 1st Int. Conf. on Mobile Computing and Networking

(MobiCom), pages 97–110, 1995.

[39] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements

of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[40] Y. B. Lin and A. C. Pang. Comparing soft and hard handoffs. IEEE Trans. on

Vehicular Technology, 49(3):792–798, May 2000.

[41] J. Lansford, A. Stephens, and R. Nevo. Wi-Fi (802.11b) and Bluetooth: Enabling

coexistence. IEEE Network, pages 20 – 27, September/October 2001.

[42] Douglas C. Schmidt, D. L. Levine, and S. Mungee. The Design of the TAO Real-

Time Object Request Broker. Computer Communications, 21(4):pages 294–324,

1998.

