
Università degli Studi di Napoli Federico II
Ph.D. Program in

Information Technology and Electrical Engineering
XXXVII Cycle

Thesis for the Degree of Doctor of Philosophy

Enhancing Software Development
Processes for Industrial Software

Systems
by

Marco De Luca

Advisor: Prof. Anna Rita Fasolino

Co-advisor: Pasquale Cimmino

Scuola Politecnica e delle Scienze di Base

Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione

Do or do not. There is no try.

Enhancing Software Development
Processes for Industrial Software

Systems

Ph.D. Thesis presented
for the fulfillment of the Degree of Doctor of Philosophy
in Information Technology and Electrical Engineering

by

Marco De Luca

October 2024

Approved as to style and content by

Prof. Anna Rita Fasolino, Advisor

Pasquale Cimmino, Co-advisor

Università degli Studi di Napoli Federico II
Ph.D. Program in Information Technology and Electrical Engineering
XXXVII cycle - Chairman: Prof. Stefano Russo

http://itee.dieti.unina.it

Candidate’s declaration

I hereby declare that this thesis submitted to obtain the academic degree
of Philosophiæ Doctor (Ph.D.) in Information Technology and Electrical
Engineering is my own unaided work, that I have not used other than the
sources indicated, and that all direct and indirect sources are
acknowledged as references.
Parts of this dissertation have been published in international journals
and/or conference articles (see list of the author’s publications at the end
of the thesis).

Napoli, December 10, 2024

Marco De Luca

Abstract

The automotive industry is transforming as software becomes more in-
tegrated into vehicles, now containing millions of lines of code and multiple
Electronic Control Units (ECUs). Software is now central to vehicle func-
tion and innovation, but it also brings challenges in development, quality
assurance, and compliance with safety standards.

This thesis addresses these challenges by improving the software de-
velopment process in the automotive domain, focusing on software doc-
umentation and adherence to industry regulations. It presents several
contributions, including a community detection methodology within de-
veloper networks to improve team formation by identifying experts with
the right skills. In addition, the thesis introduces a new software archi-
tecture documentation model for safety-critical domains, compliant with
ISO 26262, to improve traceability and maintainability. This template has
been validated through industrial case studies, enhancing long-term soft-
ware reliability. To bridge the gap between design and implementation,
the thesis also proposes a software architecture recovery (SAR) tool to
automate the generation of architectural documentation from code bases,
improving system understanding and ensuring accurate documentation.
Finally, a framework for software architecture metrics is introduced to
support continuous compliance processes. By identifying suitable metrics,
this framework helps integrate compliance into industrial practices, ensur-
ing adherence to safety standards and internal policies.

In conclusion, this research improves software development tackling key
challenges in team collaboration, documentation and compliance, enabling
innovation and maintaining high standards of safety and reliability.

Keywords: Documenting Software Architecture, Software Architecture
Design, Software Architecture Recovery, Community Detection, Automo-
tive Domain

Sintesi in lingua italiana

L’industria automobilistica si sta trasformando a causa della crescente
integrazione del software nei veicoli, che ora contengono milioni di righe di
codice e diverse Unità di Controllo Elettronico (ECU). Il software è sempre
più centrale per il funzionamento e l’innovazione dei veicoli, ma pone sfide
nello sviluppo, nella qualità e nella conformità agli standard di sicurezza.

Questa tesi affronta queste sfide migliorando il processo di sviluppo
software nel settore automobilistico, concentrandosi sulla documentazione
del software e sull’aderenza alle normative del settore. Presenta diversi con-
tributi, tra cui una metodologia di rilevamento delle comunità all’interno
delle reti di sviluppatori per migliorare la formazione dei team, identifi-
cando esperti con le giuste competenze. Inoltre, viene introdotto un nuovo
modello di documentazione dell’architettura software per domini critici
per la sicurezza, conforme alla norma ISO 26262, per migliorare la trac-
ciabilità e la manutenibilità. Questo modello è stato validato attraverso
casi di studio industriali, migliorando l’affidabilità del software. Per col-
mare il divario tra progettazione e implementazione, la tesi propone uno
strumento di recupero dell’architettura software (SAR) per automatizzare
la generazione della documentazione architetturale a partire dal codice
sorgente, migliorando la comprensione del sistema e garantendo una doc-
umentazione accurata. Infine, viene introdotto un framework di metriche
per l’architettura software a supporto dei processi di conformità continua.
Identificando metriche adeguate, questo framework aiuta a integrare la
conformità nelle pratiche industriali, garantendo l’adesione agli standard
di sicurezza e alle politiche interne.

In conclusione, questa ricerca migliora lo sviluppo del software af-
frontando sfide cruciali nella collaborazione dei team, nella documentazione
e nella conformità, permettendo l’innovazione e mantenendo elevati stan-
dard di sicurezza e affidabilità.

iv

Parole chiave: Documentazione dell’architettura del software, proget-
tazione dell’architettura del software, recupero dell’architettura del soft-
ware, rilevamento della comunità, automotive

Acknowledgements

The author’s work has been supported by the PhD scholarship funded
by Micron Semiconductor Italy, as part of the collaboration with the Uni-
versity of Naples "Federico II" and the DIETI department. The research
activities were conducted in collaboration with the "FW Development for
managed NAND" team of Massimo Iaculo, Pasquale Cimmino, Paolo Papa
and Salvatore Del Prete.

v

Contents

Abstract . i
Sintesi in lingua italiana . iii
Acknowledgements . v
List of Acronyms . xi
List of Figures . xv
List of Tables . xviii
List of Symbols . 1

1 Introduction 1

2 Challenges in Automotive Software Development 7

2.0.1 Multidisciplinary Software Development 9
2.0.2 Software Documentation in Automotive Systems De-

velopment . 11
2.0.3 Industry Standards and Frameworks 13

3 A Community Detection Approach Based on Network Rep-
resentation Learning for Repository Mining 21

3.1 Introduction . 21
3.2 Related Work . 24

3.2.1 GitHub Information Models 24

vii

3.2.2 Developer Social Networks 25
3.2.3 Community Detection on Developer Social Networks 25

3.3 Framework . 26
3.3.1 Task Definition . 27
3.3.2 Modeling GitHub as a DSN 28
3.3.3 Community Detection process 31
3.3.4 Running Example 34

3.4 Experimental analysis . 36
3.4.1 Goals . 36
3.4.2 Research Questions 37
3.4.3 Variables and Metrics 37
3.4.4 Objects . 40
3.4.5 Design of Experiments 41
3.4.6 Results . 42
3.4.7 Example . 49
3.4.8 Threats to Validity 50

3.5 Conclusions . 52

4 Documenting Software Architecture Design in Compliance
with the ISO 26262: a Practical Experience in Industry 55
4.1 Introduction . 56
4.2 Related Works . 58

4.2.1 SAD issues and challenges in industry 58
4.2.2 SAD issues and challenges in automotive domains . . 59

4.3 Industrial survey . 60
4.4 Proposed Template . 62

4.4.1 The documentation template 64
4.4.2 Implementation of the proposed SAD template . . . 68
4.4.3 Mapping between challenges and solutions 73

4.5 Industrial Case Study . 74

viii

4.6 Conclusion and Future Work 80

5 Automated Architecture Recovery for Embedded Software
Systems: An Industrial Case Study 83
5.1 Introduction . 84
5.2 Related Studies . 85

5.2.1 Software Architecture Recovery (SAR) 86
5.2.2 Reverse Engineering of State Chart Diagrams 87

5.3 The proposed reverse engineering process 87
5.4 Implementation Details . 90
5.5 Experimental evaluation . 96
5.6 Conclusion and Future Works 102

6 Characterizing Software Architectural Metrics for Contin-
uous Compliance in the Automotive Domain 103
6.1 Introduction . 104
6.2 Background and Related Studies 105

6.2.1 Continuous Compliance 106
6.2.2 Metrics for Architecture 108

6.3 Research methodology . 108
6.3.1 Step 1: Metrics gathering and description 110
6.3.2 Step 2: Framework definition 113
6.3.3 Step 3: Metrics characterization and evaluation . . 118

6.4 Results and Discussion . 119
6.4.1 RQ1: Which are the architectural metrics proposed

in the literature that can be used in the Continuous
Compliance of automotive software architectures? . . 119

6.4.2 RQ2: How can these metrics be characterized? . . . 121
6.5 Threats to validity . 127

6.5.1 External validity threats 128
6.5.2 Internal validity threats 129

ix

6.6 Conclusion and Future Works 129

7 Conclusions 131

Bibliography 135

Author’s publications 157

x

List of Acronyms

The following acronyms are used throughout the thesis.

ML Machine Learning

RQ Research Question

SAD Software Architecture Design

SAR Software Architecture Recovery

ECUs Electronic Control Units

AUTOSAR AUTomotive Open System ARchitecture

DSNs Developer Social Networks

SNA Social Network Analysis

BERTO emBEdding gRaph communiTy detectiOn

E/E Electric and Electronic

ASIL Automotive Safety Integrity Level

HARA Hazard analysis and risk assessment

QM Quality Management

xi

SW Software

CI/CD Continuous Integration/Continuous Deployment

EA Enterprise Architect

AST Abstract Syntax Trees

IR Intermediate Representation

OTA over-the-air

CCA Continuous Compliance Assurance

KPI Key Performance Indicator

SPI Safety Perormance Indicator

xii

List of Figures

2.1 V-Model with a distinction between the OEM and supplier
contributions . 14

2.2 ISO 26262 structure [175] 16
2.3 AUTOSAR architecture [1] 19

3.1 Framework overview . 27
3.2 Conceptual Model of a Collaborator Software Repository . . 28
3.3 Developer Social Network Model 31
3.4 DSN representation for the Running Example. The hetero-

geneous graph is composed by 11 nodes and 12 edges. . . . 35
3.5 Running times by varying the embedding size in BERTO . 48
3.6 Running times by varying K value in BERTO 49

4.1 Model of the Software Architecture Design Documentation
Template . 66

4.2 Details on the Software Component Architecture Design
Documentation . 67

4.3 Documentation Structure of the proposed template inside EA 69
4.4 Example of High-Level Hierarchical View 70
4.5 Detailed Component Diagram 71
4.6 Component-and-Connector (C&C) View 72

xiii

4.7 High-level modeling of the interruptions flow 72
4.8 Interruptions Level Sequence Diagram 73
4.9 Sequence Diagram for Scheduling Properties 74
4.10 Usage example in Enterprise Architect 75
4.11 xml file exported from EA 76
4.12 Box plot showing the results of the survey for answering RQ2 78

5.1 The proposed SAR process 89
5.2 Package Diagram browser view 91
5.3 Reconstructed Package Diagram 91
5.4 Class Diagram reconstructed by Enterprise Architect 93
5.5 Component Diagram reconstructed by the tool 93
5.6 C&C Diagram reconstructed by the tool 94
5.7 Task Code Example . 96
5.8 Reconstructed Task State Chart Diagram 96
5.9 Box plot showing the accuracy distribution of diagrams re-

constructed automatically by the tool 98
5.10 Identified categories of missing information and their rela-

tive keyword . 100
5.11 Distribution of the missing information categories 100
5.12 Pie chart on the closed-ended question: “Based on my ex-

perience in using the tool, I find it useful in supporting the
comprehension of the system.” 101

5.13 Pie chart on the closed-ended question: “Which reconstructed
models, whether generated automatically or manually, do
you find most useful for understanding the system?” 101

6.1 Overview of the research methodology 109
6.2 Distribution of the selected primary studies per publication

year . 113
6.3 The proposed Framework 118

xiv

6.4 Distribution of the metrics over the Continuous Compliance
Evaluation Score . 120

6.5 Distribution of the metrics over the Assessment Approach
domain of the Framework 122

6.6 Distribution of the metrics over the Input Artifact Type do-
main of the Framework . 123

6.7 Distribution of the metrics over the Metric Description Type
domain of the Framework 124

6.8 Distribution of the metrics over the Experimental Setting
domain of the Framework 124

6.9 Distribution of the metrics over the Experimental Objects
Type domain of the Framework 125

6.10 Distribution of the metrics over the Measured Property do-
main of the Framework . 126

6.11 Distribution of the metrics over the Output Category do-
main of the Framework . 127

6.12 Distribution of the metrics over the Application Field do-
main of the Framework . 128

xv

List of Tables

1.1 Thesis structure . 6

2.1 Methods for the verification of the software architectural
design outlined in the ISO 26262 15

3.1 Distance matrix . 36

3.2 Dataset characterization . 41

3.3 Design of Experiments: Phase 1 involves the determina-
tion of the most effective embedding technique in terms of
modularity, from among the three options available. This
process is carried out for each of the three embedding tech-
niques. Phase 2 involves fixing the embedding technique
selected in Phase 1 and considering the information model
as the independent variable. Phase 3 involves changing the
analyzed sample while keeping the information model and
clustering technique constant, and observing the variations
in modularity that occur across different values of cluster
and embedding size. Phase 4, the execution time is estab-
lished as the dependent variable, and the impact of sample
size and clustering and embedding dimensions is evaluated. 43

xvii

3.4 (RQ1) - Results of BERTO algorithm in terms of modularity
by varying technique and embedding size 44

3.5 (RQ2) - Comparison of the average modularity, varying K,
for BERTO and ABDCI [90] 44

3.6 (RQ2) - Comparison of the Median and Standard Deviation
(STD) of community members, varying K, for BERTO and
ABDCI [90] . 46

3.7 (RQ3) - Evaluation of Modularity for the four considered
repository samples (Full, Python, Java, Android) 47

4.1 Challenges in developing software architecture design emerged
from the Industrial Survey and the Literature Study 63

4.2 Traceability Matrix between Challenges and Solutions . . . 75

6.1 Selected Primary Studies . 112
6.2 Example of metrics description and evaluation according to

the proposed Framework . 115
6.3 Continuous compliance Metrics Evaluation 121

xviii

Chapter 1
Introduction

The automotive industry is experiencing a paradigm shift, driven by the
rapid and extensive integration of software into modern vehicles. Today’s
vehicles rely on software not only to optimize traditional functionalities
such as engine performance and fuel efficiency but also to enable cutting-
edge technologies, including advanced driver assistance systems (ADAS),
autonomous driving capabilities, and vehicle-to-everything (V2X) commu-
nication. These innovations mark a significant departure from the me-
chanical focus of traditional automotive engineering, positioning software
as the core enabler of modern automotive advancements. As a result, ve-
hicles are rapidly evolving into software-centric systems, with millions of
lines of code distributed across dozens of interconnected Electronic Control
Units (ECUs), sensors, and embedded systems.

This shift towards software-driven vehicles has brought with it an ex-
ponential increase in complexity, with challenges that extend beyond the
technical realm. Automotive software development now requires coordina-
tion across large, multidisciplinary teams, often spread across different ge-
ographic locations and working under tight timelines. Team collaboration
has become a critical factor in ensuring the success of software projects, as
misalignment or inefficiencies in team structures can lead to costly delays
or errors [161, 168, 67]. Furthermore, the intricate nature of modern au-
tomotive software demands meticulous documentation practices to ensure
that system designs, architectural decisions, and implementation details
are comprehensively captured and maintained. Such documentation is es-

2 Chapter 1. Introduction

sential not only for facilitating ongoing development and maintenance but
also for meeting regulatory and industry standards [88, 167, 36, 174].

Safety and compliance further compound these challenges, particularly
in the context of safety-critical systems such as those governed by ISO
26262 [92]. This international standard emphasizes the importance of
functional safety in automotive systems, requiring rigorous adherence to
processes that guarantee the reliability and safety of software components.
The need to consistently align with these standards places additional chal-
lenges on developers and organizations, as they must ensure traceability,
auditability, and compliance across all phases of the software development
lifecycle [28].

Addressing these multifaceted challenges requires more than isolated
technical solutions. A holistic, multidisciplinary approach is essential to
combine innovative technical tools and methods with robust organiza-
tional strategies. On the technical side, advancements in automation, tools
for software architecture recovery, and frameworks for continuous compli-
ance can help streamline processes and reduce the likelihood of errors.
On the organizational front, fostering effective collaboration among di-
verse teams, implementing clear documentation standards, and establish-
ing practices for continuous improvement are equally critical. Together,
these approaches can enable the automotive industry to navigate the com-
plexity of modern software systems while maintaining the highest stan-
dards of safety, reliability, and innovation.

To tackle these challenges, this thesis is guided by the following Re-
search Goal (RG):

Research Goal: To enhance software development processes in the au-
tomotive domain by improving team formation, maintaining high-quality
documentation, and ensuring continuous compliance with safety standards
such as ISO 26262.

This Research Goal is broken down into three specific Research Objec-
tives (ROs):

RO1. To improve team formation and collaboration in software develop-
ment projects.

RO2. To design a standardized software architecture documentation tem-

3

plate and a tool-based Software Architecture Recovery (SAR) to sup-
port documentation practices and compliance with the ISO 26262
standard.

RO3. To establish a framework for evaluating architectural metrics that
support continuous compliance with safety standards.

By addressing these objectives, this thesis seeks to bridge critical gaps
in software development practices within the automotive industry, enabling
better alignment between design, implementation, and compliance pro-
cesses and providing valuable insights for both researchers and practition-
ers in this field.

Thesis Contributions

To tackle the outlined challenges and achieve the Research Goal, this
thesis presents several key contributions. Each contribution is directly
mapped to a specific Research Objective, ensuring a clear and focused
alignment between the research efforts and the identified objectives:

• A community detection technique and tool for identifying developer
communities within developer social networks to facilitate team for-
mation (RO1): this contribution focuses on addressing the challenges
of forming effective software development teams. It introduces a
novel community detection technique that leverages social network
analysis to identify groups of developers who naturally collaborate or
have complementary skills. By detecting these communities within
developer social networks, the technique helps project managers and
team leaders assemble teams that are more cohesive and effective.

• A software architectural documentation template that complies with
the requirements set by ISO 26262 (RO2): this contribution involves
the definition of a template for documenting software architectures,
specifically tailored to meet the requirements of the ISO 26262 func-
tional safety standard. The template provides a structured approach
to document elements of software architectures in a way that aligns
with safety-critical guidelines. By doing so, it facilitates clear, con-
sistent, traceable, and compliant documentation of the software sys-
tems. This template ensures that the architectural documentation

4 Chapter 1. Introduction

not only supports the development and maintenance of safety-critical
systems but also enhances traceability, auditability, and compliance
with ISO 26262.

• A tool-based Software Architecture Recovery (SAR) technique to sup-
port documentation practices in industrial settings (RO2): the pro-
posed tool-based Software Architecture Recovery (SAR) technique
is designed for the recovery of architectural documentation for exist-
ing industrial software systems. The SAR technique helps reverse-
engineer the software architecture from the existing codebase, au-
tomatically generating updated architectural documentation. This
approach aims to make easier for software teams in industrial envi-
ronments to maintain accurate and up-to-date documentation, ulti-
mately improving the quality and sustainability of complex software
systems.

• A framework to characterize architectural metrics in support of con-
tinuous compliance processes in the industrial domain with respect to
safety standards and guidelines (RO3): this contribution introduces
a comprehensive framework designed to evaluate architectural met-
rics that are critical for ensuring continuous compliance with safety
standards and guidelines in industrial software development. The
framework allows to systematically assess various architectural at-
tributes, such as modularity, coupling, cohesion, and maintainabil-
ity, which are essential for ensuring long-term system reliability and
safety.

This thesis includes material from the following research papers already
published in peer-reviewed journals or conferences:

• M. De Luca, A. R. Fasolino, A. Ferraro, V. Moscato, G. Sperlí, P.
Tramontana. A community detection approach based on network
representation learning for repository mining. Expert Systems with
Applications, Volume 231, 2023, DOI: 10.1016/j.eswa.2023.120597.
[59]

• D. Amalfitano, M. De Luca, A. R. Fasolino. Documenting Software
Architecture Design in Compliance with the ISO 26262: a Practical

5

Experience in Industry, IEEE 20th International Conference on Soft-
ware Architecture Companion (ICSA-C), 2023, DOI: 10.1109/ICSA-
C57050.2023.00022. [16]

• D. Amalfitano, M. De Luca, D. F. De Angelis, A. R. Fasolino. Au-
tomated Architecture Recovery for Embedded Software Systems: An
Industrial Case Study, 18th European Conference on Software Ar-
chitecture (ECSA), 2024, DOI: 10.1007/978-3-031-70797-1_4. [18]

• D. Amalfitano, M. De Luca, A. R. Fasolino, P. Pelliccione and T.
Santilli. Characterizing Software Architectural Metrics for Continu-
ous Compliance in the Automotive Domain, IEEE 21st International
Conference on Software Architecture (ICSA), 2024, DOI: 10.1109/ICSA59870
.2024.00025. [15]

Thesis Outline

Table 1.1 presents an overview of the thesis structure, showing how
each proposed contribution maps to a specific Research Objective (RO),
the chapter where it is detailed, and the reference to the paper on which
the chapter is based.

The remainder of the thesis is organized as follows.
Chapter 2 provides an overview of the evolution of software in the

automotive domain and the emerging challenges that have come with this
shift. It sets the context for the rest of the thesis, highlighting how software
has grown to become central to vehicle functionality and what this means
for future development.

Chapter 3 introduces our proposed solution for community detection
within developer social networks. This solution helps to identify the right
experts within teams, which is critical for tackling the increasing complex-
ity of automotive software.

Chapter 4 presents a new documentation template designed to improve
the software documentation process, especially in cases where compliance
with safety standards like ISO 26262 is required. This template addresses
the need for thorough, high-quality documentation in safety-critical sys-
tems.

Chapter 5 introduces our software architecture recovery tool, which is
aimed at addressing the common problem of keeping software documenta-

6 Chapter 1. Introduction

tion aligned with the actual code. In many industrial settings, documen-
tation often falls behind due to time and budget constraints, and this tool
helps ensure that documentation remains up-to-date and accurate.

Chapter 6 outlines a framework we propose for characterizing software
architecture metrics in industrial settings. This framework is designed to
enhance the compliance process, ensuring that software systems meet both
industry standards and internal quality requirements.

Table 1.1. Thesis structure

Contribution Addressed RO Chapter Reference
Community
Detection Technique RO1 Chapter 3 [59]

ISO 26262-Compliant
Documentation
Template

RO2 Chapter 4 [16]

Software Architecture
Recovery (SAR) Tool RO2 Chapter 5 [18]

Framework for
Architectural Metrics RO3 Chapter 6 [15]

Chapter 2
Challenges in Automotive
Software Development

Embedded software systems play a crucial role in today’s technology
landscape, but their development poses unique challenges [68, 75, 12, 22].
These systems, which are tightly integrated with hardware components,
are designed to perform very specific functions, often under real-time con-
straints. The complexity comes from the need for the software to work
in hardware environments that have limited processing power, memory,
and energy, making performance optimization critical. Additionally, safety
and reliability are key concerns, especially in domains like automotive,
aerospace, or healthcare where failure can have severe consequences [101,
171, 149].

In particular, over time in the automotive domain, software has increas-
ingly become the core of vehicle control [82, 53, 85]. Initially introduced
to optimize engine performance, software now plays a pivotal role in vir-
tually every function of a modern vehicle, from infotainment systems to
advanced driver assistance systems (ADAS). Modern cars are highly depen-
dent on electronics, and consumers increasingly view vehicles as platforms
for software-driven innovation [32]. Today’s vehicles are highly dependent
on software, containing over 100 million lines of code (LOC) distributed
across more than 100 Electronic Control Units (ECUs). Each ECU func-
tions as a specialized computer, responsible for a specific vehicle subsystem
[177, 35]. A decade ago, the number of lines of code in a car was much

8 Chapter 2. Challenges in Automotive Software Development

smaller, but the rapid rate of technological innovation has significantly
increased both the volume and complexity of automotive software. This
trend is expected to continue, with future vehicles incorporating even more
complex software systems as the industry moves towards fully autonomous
driving [174].

While the growing role of software presents great opportunities for
innovation, it also introduces significant challenges that threaten to un-
dercut the industry’s ability to scale and adapt. Managing the complexity
of modern software systems is one of the most pressing challenges. One
key issue arises from the growing complexity of software development pro-
cesses. Managing this complexity requires improving both the effectiveness
and efficiency of these processes. However, achieving this is no simple task
and involves tackling several critical issues.

One key challenge is the increasing difficulty of forming effective de-
velopment teams. Assembling the right team is a complex process that
demands careful attention to skills, communication, and collaboration.
Poorly structured teams can result in misaligned efforts and communica-
tion breakdowns compromising the quality of the final product. Effective
team formation is particularly crucial in the multidisciplinary environ-
ment of automotive software development, where mechanical, electrical,
and software engineers must collaborate seamlessly.

Another critical aspect is ensuring adherence to industry standards
and frameworks. Compliance with standards like ISO 26262 is essential
in the automotive sector, as these guidelines ensure the safety, reliability,
and interoperability of software systems. However, meeting these require-
ments involves maintaining high levels of traceability, consistency, and rig-
orous documentation practices throughout the development lifecycle. This
creates additional challenges, particularly in managing the complexity of
modern automotive software systems, which require the production of nu-
merous artifacts to document compliance.

Addressing these challenges is essential for the continued advancement
of the automotive industry as vehicles become increasingly software-driven.
By adopting industry standards, improving team collaboration, and en-
hancing documentation practices, the automotive sector can not only over-
come current hurdles but also unlock new opportunities for innovation. A
focused effort on multidisciplinary collaboration, safety standards, and ro-

9

bust software architecture documentation will ensure that the industry can
maintain the high levels of safety and reliability required while driving for-
ward innovation in today’s complex and competitive environment.

In the following sections, we will provide an analysis of these challenges,
and throughout the rest of the thesis, we will discuss potential solutions
to enhance the overall software development process in the automotive
industry

2.0.1 Multidisciplinary Software Development

Software development is inherently a team-based activity. The success
and quality of the final software product depend significantly on how well
the development team is structured [211, 21]. However, forming an ef-
fective team is not a straightforward task. It involves considering several
factors, such as the compatibility of team members in terms of skills, com-
munication, and collaboration. The selection of the right team members is
crucial activity, especially in industrial software systems, as it directly im-
pacts the outcome of the project [84, 81]. Despite the importance of team
composition, manually selecting and arranging team members is a chal-
lenging task. This responsibility often falls on experienced project leaders
or managers, who must evaluate numerous factors, including individual
technical expertise, specific roles within the team, and how well the team
members will collaborate.

While modern team formation tools have been developed to support
collaboration, challenges still persist [161, 168]. Issues such as delays, in-
terruptions, and the need to reopen tasks are common. These disruptions
can be symptoms of an ineffective team configuration, which may result
from a lack of essential skills or poor communication among team mem-
bers [20]. Such problems underscore the need for a decision support system
that can assist in the selection of team members, taking into account their
relevant experience, technical skills, and compatibility for teamwork. A
system like this would improve the ability to form high-functioning teams,
thereby reducing the risks associated with incompatible team setups. In-
compatible team structures, such as teams composed of individuals who
have never worked together before, can lead to significant project risks.
Research by Fagerholm et al. [67] has shown that team-related factors, in-
cluding communication abilities, flexibility, and compatibility among team

10 Chapter 2. Challenges in Automotive Software Development

members, play a crucial role in the success of software projects. Poor team
dynamics can result in inefficiencies and even project failure.

In the context of the automotive industry, the complexity of software
development has increased dramatically. As modern vehicles become more
advanced, the reliance on software and electronics in automotive systems
has grown. These systems are no longer built using only traditional me-
chanical engineering techniques. Instead, modern vehicle design requires
the integration of mechanical, electrical, and software components. This
shift has led to the necessity for a multidisciplinary approach, where ex-
perts from different fields, such as mechanical, electrical, and software
engineering, must collaborate closely throughout the development process
[155]. The increasing complexity of automotive systems requires diverse ex-
pertise, making teamwork and collaboration more critical than ever [175].
Automotive projects frequently require tight integration between these dif-
ferent areas, adding to the complexity of project management. This means
that project managers must not only oversee the technical aspects of soft-
ware development but also coordinate across various disciplines, ensuring
that all elements are integrated smoothly.

Due to the complexity of these projects, new approaches are required
for building teams and promoting effective collaboration. A major chal-
lenge lies in identifying experts with the appropriate skill sets to address
specific problems. Finding the right group of experts for complex tasks has
broad applications across various fields, including industry and education.
This challenge is commonly known as "Expert Finding" or forming teams
of experts within social networks [44, 108]. This process is essential for
ensuring that teams have the necessary expertise to address the growing
software demands in modern vehicles. Expert finding goes beyond merely
identifying individuals with relevant technical skills. It also involves assess-
ing how well these individuals can collaborate within a team [14]. Having
the right mix of skills in a team is vital for solving the technical challenges
associated with the increasing complexity of automotive systems.

Forming effective teams for software development in the automotive
industry requires careful consideration of many factors, including technical
skills, communication abilities, and compatibility among team members.
As software continues to play a central role in vehicle design and operation,
new methods for selecting and organizing teams will become increasingly

11

important. Addressing these challenges is crucial for improving the overall
process of developing industrial software systems.

2.0.2 Software Documentation in Automotive Systems De-
velopment

The development of high-quality automotive software introduces sev-
eral critical challenges, particularly in terms of quality assurance and long-
term maintenance. As modern vehicles increasingly rely on software to
manage key functionalities, the importance of ensuring the reliability and
safety of this software has grown exponentially [98, 56]. Unlike traditional
mechanical systems, software can fail in ways that are difficult to detect
during the design phase but can have severe consequences once deployed
in real-world conditions. Software defects in automotive systems can re-
sult in significant financial costs, including recalls, warranty claims, and
production delays. In more severe cases, these defects can lead to safety
issues that may endanger lives [150, 165].

A prime example of the growing concerns surrounding automotive soft-
ware was the 2014 incident involving Honda Motor Co., which marked a
pivotal moment in the industry. For the first time, the company identified
that a malfunction in the Electronic Control Units (ECUs) caused vehi-
cles to accelerate unexpectedly without driver input, leading to dangerous
situations on the road [3]. This incident underscored the critical need for
rigorous software testing and validation processes, as even a small defect
in the software can trigger unpredictable and hazardous behavior in the
vehicle. The increasing dependence on software in vehicles has also con-
tributed to a significant rise in vehicle recalls related to software glitches or
electronic defects. Over the past decade, several major automotive man-
ufacturers have faced high-profile recalls due to such issues [5, 24, 142].
These recalls, often prompted by software failures in key systems such as
braking, steering, and engine management, highlight the growing complex-
ity of modern automotive software.

Given these challenges, it is imperative that quality assurance (QA)
practices be implemented earlier and more rigorously in the software de-
velopment lifecycle. Traditional testing methods, which are often applied
at the end stages of development, may no longer be sufficient to catch all
potential issues. Instead, there is a growing consensus within the auto-

12 Chapter 2. Challenges in Automotive Software Development

motive industry that QA must begin in the architectural design phase of
software development, where the fundamental structure of the software is
defined [79, 37]. By addressing potential flaws at this stage, engineers can
reduce the likelihood of defects making their way into production mod-
els. Keeping accurate and up-to-date the architectural documentation can
benefit the software quality of the whole system [207, 197, 80, 116]. The ar-
chitectural documentation serves as the blueprint for the software system,
detailing how different components interact and outlining the overall struc-
ture of the software. Maintaining the desired qualities of a software system
as it evolves requires a well-defined software architecture. The architecture
must be clearly understood by all developers, ensuring that any modifica-
tions to the system are aligned with its structure. A suitable architecture
is not driven solely by functional requirements; it is heavily influenced by
various quality attributes such as performance, security, and maintainabil-
ity [180, 38]. Despite this understanding, creating an architecture that
effectively supports these attributes remains a challenging task. In their
work Souza et al. [121] identified poor or outdated documentation as the
major contributor to software defects, particularly those uncovered during
the testing phases of development. Software architecture documentation is
a critical resource not only for the development team but also for quality
assurance processes, as it enables engineers and testers to understand the
software’s design and potential failure points. Software architecture serves
as the crucial link between an organization’s business objectives and the
underlying software system. Designing and selecting an architecture that
meets both functional needs and quality attributes, such as reliability, se-
curity, and performance, is essential for the system’s success [140].

The importance of software documentation, particularly architectural
documentation, cannot be overstated in the development of high-quality
automotive software systems. As vehicles become increasingly software-
dependent, maintaining clear, accurate, and up-to-date architectural doc-
umentation is essential for ensuring both the functionality and long-term
sustainability of the system. Proper documentation serves as the founda-
tion for effective quality assurance processes, allowing engineers to identify
potential defects early in the development lifecycle and adapt the system as
new requirements arise. Ultimately, the success of automotive software de-
pends not only on robust architectural design but also on the practices that

13

support its evolution, making documentation a critical factor in achieving
reliability, security, and performance.

2.0.3 Industry Standards and Frameworks

In response to these challenges, the automotive industry has adopted
several standards to ensure that software systems are fault-tolerant and
meet stringent safety requirements. One of the most important of these
is ISO 26262 [92], a functional safety standard designed specifically for
automotive systems. Another widely adopted solution is AUTOSAR (AU-
Tomotive Open System ARchitecture) [176], which provides a standardized
software architecture for the development of automotive control units. AU-
TOSAR ensures the interoperability and scalability of automotive systems
while supporting the integration of various software components from mul-
tiple suppliers. Similarly, the MISRA C [123] standard is widely used to
enforce safe coding practices in automotive software development. These
standards, along with static analysis tools and other quality assurance
methods, are essential for ensuring the safety and reliability of modern
automotive systems. The use of such standards and guidelines is crucial
in industrial software development. These standards provide a structured
framework that minimizes the risks associated with software and hardware
failures. By adhering to these well-established guidelines, developers can
ensure consistency, reliability, and safety across all stages of development,
from design to testing and implementation.

ISO 26262

ISO 26262 is a key safety standard designed for Electrical and Elec-
tronic (E/E) systems in the automotive domain, addressing the challenges
associated with the development of safety-critical software. The standard
applies to both hardware and software components, covering the entire
system lifecycle. The main objective of ISO 26262 is to minimize risks as-
sociated with the failure of critical vehicle systems, particularly those that
could result in injury or loss of life. Moreover, ISO 26262 aims to facili-
tate the reuse of both hardware and software components across different
platforms and among different suppliers [69]. However, while the reuse of
components can enhance efficiency, it also presents significant challenges.

14 Chapter 2. Challenges in Automotive Software Development

For instance, testing becomes increasingly complex, and it is estimated
that testing alone constitutes nearly 50% of the total development cost of
automotive software [33].

ISO 26262 is built upon the "V" process model, a widely accepted
system development methodology within the automotive industry. This
model emphasizes a structured approach where system design, develop-
ment, and testing are systematically aligned. In this model, OEMs are
responsible for requirement specifications, system design, and final integra-
tion, while suppliers focus on actual software development for electronic
control units (ECUs). Although suppliers perform initial unit testing, the
responsibility for integration and acceptance testing falls to the OEMs, en-
suring that the software implementation meets both functional and safety
requirements. The challenge of this approach is that testing activities are
often concentrated in the latter stages of development. As a result, many
software defects may not be identified until late in the process, which in-
creases the cost and complexity of addressing these issues [120].

Requirements

System Design

Component
Design

Implementation

Unit Testing

Integration
Testing

System Testing

Suppliers

OEMs

Figure 2.1. V-Model with a distinction between the OEM and supplier
contributions

ISO 26262 introduces the concept of Automotive Safety Integrity Levels
(ASILs), which classify systems based on the level of risk they pose to
vehicle safety. These levels, ranging from ASIL A (the lowest) to ASIL D

15

(the highest), guide the methods and techniques used in development and
testing. Systems classified under higher ASILs, such as ASIL C or ASIL D,
are subject to more stringent safety measures, including the use of formal
verification methods to ensure software safety. An example of the methods
required for the verification of the software architectural design based on
their ASIL level is shown in Table 2.1.

ASIL
Methods A B C D
1a Walk-through of the design + + o o
1b Inspection of the design + + + +
1c Simulation of dynamic behaviour of the design o + + +
1d Prototype generation - o + +
1e Formal verification - - o +
1f Control flow analysis - - o +
1g Data flow analysis - - o +

Table 2.1. Methods for the verification of the software architectural design
outlined in the ISO 26262

ISO 26262 is divided into 12 parts, as shown in Figure 2.2, covering var-
ious aspects of functional safety in automotive systems. This thesis focuses
specifically on Part 6, which deals with software development, and more
particularly, on clause 7 (ISO 26262 §6.7) regarding software architectural
design (SAD). This section of the standard outlines guidelines for prevent-
ing systematic software failures by promoting best practices in software
architecture. According to ISO 26262, a well-structured software architec-
ture should possess key properties such as modularity, encapsulation, and
simplicity. These characteristics are essential for ensuring that software
components can be effectively tested, maintained, and updated, reducing
the likelihood of introducing errors. To make sure the SAD meets these
characteristics the ISO presents principles to be followed during the devel-
opment of the SAD. For example, among the various recommendations of
the standard we can find: a restricted size of the interfaces, strong cohe-
sion and low coupling between components, and appropriate hierarchical
structure of the software components. ISO 26262 provides a structured
framework, that ensures that both OEMs and suppliers adhere to strin-
gent safety requirements throughout the development process. While the
standard helps to improve the safety and reliability of modern vehicles, it

16 Chapter 2. Challenges in Automotive Software Development

Figure 2.2. ISO 26262 structure [175]

also presents significant challenges in terms of cost and complexity, partic-
ularly concerning software testing and safety assurance.

AUTOSAR

In addition to functional safety standards, the automotive industry
has adopted the AUTomotive Open System ARchitecture (AUTOSAR)
[176] to manage the growing complexity of automotive software systems.
AUTOSAR is a standardized framework designed to provide a common
platform for the development and integration of electronic control units
(ECUs) within vehicles. Introduced in 2003, AUTOSAR was established
through a collaborative partnership of major automotive original equip-
ment manufacturers (OEMs) and their software and hardware suppliers.
Today, it includes over 200 global partners and is widely regarded as the
de facto standard for automotive software development [2].

The adoption of AUTOSAR addresses the automotive industry’s need
for standardization in two key areas: methodology and architecture. As
the responsibility for system design and verification primarily falls with
original equipment manufacturers (OEMs), while implementation is often
distributed across multiple suppliers, there was a clear need for a consistent
and standardized methodology to guide the entire automotive software de-

17

velopment process. Similarly, a standardized reference architecture became
essential to improve the reusability of software components developed by
suppliers across different OEMs, ultimately reducing costs and improving
efficiency [118]. To meet these needs, AUTOSAR established several key
objectives to facilitate distributed design and development of automotive
software systems:

• Standardization of ECU Architecture: by introducing a reference ar-
chitecture, AUTOSAR enables reusable software components across
different vehicle platforms, reducing redundancy, and enhancing ef-
ficiency.

• Standardization of Development Methodology : by providing a unified
development process, AUTOSAR promotes collaboration between
OEMs and suppliers, ensuring consistent ECU development and in-
tegration.

• Standardization of Architectural Models: AUTOSAR defines a com-
mon language for system models that facilitates seamless exchange
of systems and ECU models between different modeling tools. This
improves communication and efficiency across the development pro-
cess, ensuring that all parties involved in the development process
can work with compatible architectural representations.

AUTOSAR introduces a reference architecture based on software compo-
nents that operate at the electrical/electronic (E/E) architectural level.
A software reference architecture is a generalized framework for a specific
category of systems, serving as the basis for designing more specific sys-
tem architectures within that category. [19]. AUTOSAR defines both the
architecture and the interfaces of the software as a meta-model, as well
as the file formats required for data exchange. Furthermore, the standard
establishes its own development methodology, guiding the entire software
development process [199].

AUTOSAR Architecture AUTOSAR adopts a layered software ar-
chitecture that adheres to model-driven architecture (MDA) principles,
an engineering method that separates software applications from the un-
derlying hardware platform [191]. MDA focuses on the creation of mod-

18 Chapter 2. Challenges in Automotive Software Development

els, including those for defining software applications, the computing plat-
form, and the mapping of software components to computing nodes. This
approach is particularly well-suited for embedded systems because it al-
lows for easy adaptation of models as hardware and software requirements
evolve. AUTOSAR provides a meta-model specifically tailored to the au-
tomotive domain to facilitate this process. To support the MDA approach
in practice, AUTOSAR introduces a layered software structure for ECU
development, composed of an application layer, a platform-dependent soft-
ware layer (including OS services, communication drivers, etc.), and a mid-
dleware layer known as the Runtime Environment (RTE) [130]:.

• Application Layer : This top layer contains the core controller soft-
ware, which primarily consists of control algorithms within the au-
tomotive domain. The software in this layer is organized using a
component-based architecture, with components modeled to com-
municate through defined ports and connections.

• Runtime Environment (RTE) Layer : The RTE handles communica-
tion between software components as well as between software com-
ponents and the basic software below. It provides a standardized in-
terface at the application level, abstracting access to the computing
platform’s services. Vendors can supply different RTE implementa-
tions, offering middleware with standardized interfaces and services.

• Basic Software Layer : This layer supports the fundamental func-
tions of ECUs and is divided into three sublayers: the Service Layer,
which manages essential ECU services such as the operating system,
state management, diagnostics, memory, and communication; the
ECU Abstraction Layer, which isolates hardware for the upper lay-
ers and provides access to hardware peripherals; and the Microcon-
troller Abstraction Layer (MCAL), which includes low-level drivers
that interact directly with the hardware.

19

Figure 2.3. AUTOSAR architecture [1]

Chapter 3
A Community Detection
Approach Based on Network
Representation Learning for
Repository Mining
Abstract In this paper, we propose a novel heterogeneous graph-based
model for capturing and handling all the complex and strongly-correlated
information of a software Developer Social Network (DSN) to support sev-
eral analytic tasks. In particular, we challenge the problem of automati-
cally discovering communities of software developers sharing interests for
similar projects by relying on Social Network Analysis (SNA) findings. To
overcome the huge graph-size issue, we leverage different graph embedding
techniques. Eventually, we evaluate the proposed approach with respect
to state-of-the-art approaches from an efficiency and an effectiveness point
of view by carrying out an experiment involving the GitHub dataset.

3.1 Introduction

In the last two decades, the git control version system has been adopted
by millions of software developers for efficiently managing their projects

22
Chapter 3. A Community Detection Approach Based on Network Representation

Learning for Repository Mining

and easily disseminating their work. GitHub1 is one of the most diffused
version control systems that further provides online open-access to git
repositories. It has emerged as a leading choice for developers and re-
searchers seeking to collaborate and share projects using git. GitHub pro-
vides query mechanisms and APIs for browsing, searching, and extracting
relevant information from its repositories. Based on such mechanisms,
several techniques and approaches have been proposed for efficiently and
effectively mining data from git repositories, to satisfy different informa-
tion needs and support several advanced analytics.

In this context, Developer Social Networks (DSNs) have recently emerged
as an effective tool for the analysis of community structures and collab-
orations among developers in software projects and software ecosystems
[87]. A DSN can be considered a Social Network in all respects and all the
potentialities, and Social Network Analysis (SNA) facilities can be used
to infer useful knowledge from these environments for different aims. The
classical SNA techniques can be easily adopted on these information net-
works – usually modeled as graphs – to support a plethora of interesting
tasks (leveraging the related topological properties, or based on statistic
or bio-inspired approaches): community detection to find the community
of developers that share interests in similar projects, influence analysis to
discover the most important developers within a given community, team
formation to detect the group of developers w.r.t. a given technology
within several communities in order to start more quickly a new project
in according to agile paradigm, recommendation to automatically suggest
the most appropriate developers to solve an issue, etc. Thus, community
detection in DSNs represents a very challenging issue and the first pre-
liminary step in order to realize the other SNA tasks. At the best of our
knowledge, most approaches proposed in the literature for community de-
tection in DSNs employ homogeneous graphs that are characterized by
single relevant entities as nodes (i.e., developers) and by a single type of
edge and they are often used to model social networks. One example is
represented by the homogeneous graph exploited in [90] that includes a
single type of node (representing the developers) and a single type of edge
(representing the commit relationship). In turn, nodes of an heteroge-
neous graph can have different types (i.e., developers, repositories, issues)

1https://github.com

https://github.com

3.1. Introduction 23

and be connected by different types of edges. Due to the multitude of
data types represented, they turn out to have a more complex topological
structure, which makes them both more information-rich, but also compu-
tationally more onerous. However, according to the most recent literature
[96, 210, 202]) heterogeneous graphs seem to be the best candidates for
capturing and managing the intrinsic complexity and wide range of rela-
tions that can be established among modern information networks such as
DSNs.

Unfortunately, DSN-related graphs can reach enormous sizes and thus
graph-embedding techniques may support in a more efficient manner SNA
tasks [208, 203]. In particular, thanks to graph embedding, community de-
tection problems can be effectively faced by leveraging classical clustering
algorithms.

In this paper, we decided to explore the possibility of modeling the
interactions that developers have within a project repository by a het-
erogeneous graph and to use graph embedding and community detection
techniques on the embedded graph to find relevant types of communi-
ties in the global software engineering world. To this aim, we defined a
novel DSN model that extracts relevant entities from the GitHub web-
site and relevant relationships that occur among these entities. Therefore,
we designed a framework that supports the population of the DSN and
implements the analysis tasks by exploiting graph embedding techniques.
Actually, we are interested in non-overlapped communities because we are
focused on identifying developers who can work on the same project on the
basis of similar experiences and interests and not on the basis of possessing
common skills that can obviously be shared within different projects. To
validate the proposed approach, we carried out an experiment where we
studied the effectiveness and the performance of the proposed community
detection techniques by considering different instances of DSNs and differ-
ent types of graph embedding techniques.

The remainder of the paper is structured as follows. Section 3.2 reports
the Related Work. Section 3.3 illustrates the framework we defined to
instantiate a DSN and to implement the community detection task, relying
on the social model of GitHub. Section 3.4 shows the experiment we
performed to validate the proposed approach with the related results while
Section 3.5 eventually reports conclusive remarks and future work.

24
Chapter 3. A Community Detection Approach Based on Network Representation

Learning for Repository Mining

3.2 Related Work

In this subsection, the state of the art of the literature regarding ex-
isting GitHub datasets, approaches to model Developer Social Networks,
and proposed solutions for the problem of Community Detection in the
context of Developer Social Networks will be presented.

3.2.1 GitHub Information Models

Several works in the literature have proposed information meta-models
and data models for information mining from platforms such as Github.

GHTorrent represents the Github dataset that has been most frequently
used by the scientific community. It was originally proposed in 2012 by
[78, 77]. They extracted a dataset from GitHub making it available both
in form of csv files and as a relational database. GHTorrent contains a
broad spectrum of information about Developers and Repositories, includ-
ing information about commits, issues and pull requests. This dataset and
its subsequent updates have been the basis for many scientific works. In
particular, the use of GHTorrent has been promoted by the community at
the Mining Challenge at MSR 20142 from which many examples of works
based on this dataset were presented (e.g., [151, 166, 119]). Unfortunately,
the execution of community detection algorithms on very large relational
databases or csv files is very onerous, thus different database models should
be considered.

Software Heritage3 is a graph database including information extracted
both from Github and from other similar infrastructures such as Gitlab
and Bitbucket. Software Heritage provides a web interface and a set of
APIs to browse and queries its data. Software Heritage has been used as a
dataset by many recent works, thanks to its efficiency and scalability (e.g.,
[30, 34, 146]). Software Heritage’s information meta-model focuses on the
history of projects making it suitable for studies about their temporal
evolution.

Many other studies in the scientific literature proposed graph databases
to represent the information extracted from GitHub. For example, in [112]
a graph database was proposed to model Developers, Repositories and

2http://2014.msrconf.org/challenge.php
3https://www.softwareheritage.org/

http://2014.msrconf.org/challenge.php
https://www.softwareheritage.org/

3.2. Related Work 25

a limited set of relationships including Commits, Comments and Watch
(between a Developer and a Repository) and Forks (between Repositories).
Other examples of graph based models of GitHub information have been
successively proposed [41], [91], [109], [76], [212], [139], [160], [179, 183],
[60]. Unfortunately, most of these graph databases are not updated or are
not more available, thus in this work we propose another model including
a subset of information allowing the execution of effective and efficient
Community Detection algorithms.

3.2.2 Developer Social Networks

A large set of GitHub mining activities aim at studying developers and
the relationships between them.

Many studies are focused on aspects related to the developers pop-
ularity (e.g., [27, 90, 95, 213, 55, 117, 97]). Another problem often ap-
proached by studies based on GitHub information is the Expert Find-
ing, in which techniques for the effective search of developers with spec-
ified skills are based on the analysis of their activity on GitHub (e.g.,
[27, 90, 95, 213, 55, 117, 97]). The characterization of working groups of
Developers sharing the participation to the same GitHub repositories is
the object of several other relevant works (e.g., [23, 209, 147, 204, 119]).

The studies that are most similar to ours are those related to the mod-
eling of Developer Social Networks and the consequent detection of com-
munity of developers. Recently, the systematic study by [87] has classified
255 scientific papers in the broader field of Developer Social Networks.
In most of them, these networks have been modeled as oriented graphs
in which the nodes represent the developers and the edges represent the
relationships between them that can be inferred by the analysis of infras-
tructures such as GitHub. In particular, the authors highlight that in this
specific area, there is a lack of shared datasets and that most of the works
were based on the analysis of few projects (only 50 studies analyzed at
least 100 projects)

3.2.3 Community Detection on Developer Social Networks

The specific task of Community Detection in the context of GitHub
developers has been faced by several recent works in the literature. In all

26
Chapter 3. A Community Detection Approach Based on Network Representation

Learning for Repository Mining

these works a graph is built on the basis of the information extracted from
GitHub, in which the nodes represent the developers and the edges between
two developers represent the existence of shared repositories to which both
developers have contributed in terms of commits (e.g., in [27] and [83]). In
addition, some other information such as the comments to the same issues
or pull requests are considered in [158] and [201]. All these works apply
different metrics to weigh the edges representing the collaboration between
two developers and use novel or well-known clustering algorithms to detect
Developer Communities. Unfortunately, most of these works remain at a
proposal level, without a wide experimentation or available material for
replication purposes, thus they are not able to provide evidence of the
existence of a better performing weighting model.

The work that is most similar to ours and that provides more details
about its replication is the one presented in 2021 by [90]. They propose and
validate Community Detection techniques applied to a graph whose nodes
are represented by the developers and whose edges represent the existence
of a shared repository on which both the developers commit changes. The
edges are weighted on the basis of a metric called Developer Intensity
Cooperation that takes into account the quantity of commits of the two
Developers on shared repositories. Different clustering algorithms were
proposed and compared in order to detect communities of developers. The
cohesion of such clustering was evaluated by means of topological metrics.
The authors validated their approach on the basis of information extracted
from GitHub regarding the activity of several thousand of Developers over
a two-year period, between 2017 and 2019 and on popular projects (char-
acterized by a large quantity of ’stars’ given by GitHub users)

3.3 Framework

Our framework aims to support community detection task within a
DSN environment, which has been treated by three main phases: Data
Ingestion, Data Modeling and Community Detection. In the first phase,
we crawl data from a collaborative software repository. Successively, we
process the extracted data to build the DSN graph structure, where the
nodes consist of developers, repositories and issues connected by different
kinds of edges. The last phase involves the community discovery process,

3.3. Framework 27

where we first embed the DSN in a lower dimensional space and then divide
the multidimensional points into a set of clusters (communities). Figure
3.1 provides an overview of the three phases.

Figure 3.1. Framework overview

3.3.1 Task Definition

Understanding user relationships within a developer social networks
can be useful for different analytic tasks (e.g., team formation or expert
finding). Despite different effort in finding overlapped communities of
developers sharing common skills, we are more interested in analyzing the
problem of identifying developers who can work on the same project on the
basis of similar interests, that is typically addressed as a non-overlapped
task (see [125, 124, 90]). For this reason, we are interested in identifying
developers’ communities, composed of users sharing the same interests in
terms of similar projects and/or applications. In more clear terms, the
goal of our task is to identify a sub-set of developers in the DSN who
share the same interests in terms of their interactions on given repositories
(commits, stars, forks, etc.).

Definition 1 (Task Definition) Our task can be modeled as a particular
function f associating to each developer di belonging to the developers’ set
D (di ∈ D) one of the K communities Cj ∈ P(D) that can be seen as non
overlapped subsets of D (∪j=1..KCj = D ∧ ∄z ̸= j : Cj ∩ Cz ̸= ∅):

f : di → Cj (3.1)

28
Chapter 3. A Community Detection Approach Based on Network Representation

Learning for Repository Mining

Figure 3.2. Conceptual Model of a Collaborator Software Repository

The number of obtained communities depends on the number of devel-
opers and on the adopted features for their characterization.

3.3.2 Modeling GitHub as a DSN

Collaborative software repositories contain heterogeneous information
about developers, repositories and issues, which, in our opinion, can be
summarized as a list of actions that a developer can perform on an object
(issue or repositories).

Figure 3.2 shows a conceptual model describing collaborative software
repositories (e.g., Github) and the main interactions in that context. The
model is depicted as a UML class diagram having three classes, namely
Developers, Repositories, and Issues, and 13 associations among them.

Developers are registered users of a collaborative software repository
system, who can create and become owners of new Repositories, i.e. collec-
tion of source code and artifacts about a given project. A new repository

3.3. Framework 29

can also be created by means of a Fork operation on an existing one, cre-
ating a clone of the original repository owned by another developer. The
owner of a repository can invite and qualify other developers as Collabo-
rators. A collaborator may manage the repository with almost the same
rights as the owner. In particular, both the owner and every collaborator
can commit changes, i.e. submit updates of any repository files. On the
other hand, a developer, even if not directly involved in a project, may
propose a contribution (for example the implementation of a new feature
or the correction of a bug) via a Pull Request : the owner of the repository
and his collaborators can approve it and apply these changes or refuse
it. When a developer wants to express his interest in all the activities
of another Developer he can decide to Follow him: in this case, he will
receive notifications of all the public activities made by the developer on
Github repositories. This is a common feature of many social networks and
represents the unique direct connection between the two developers. If a
developer is interested in the evolution of a repository (owned by another
developer), he can Watch it: in this case, he will receive notifications of
the changes of the project on his dashboard. A simpler way a developer
has to express his appreciation for an existing Repository is by flagging
it with a Star, which is a mechanism equivalent to those of many social
networks (i.e. ”like”).

Another common interaction to be considered regards Issues. An issue
is a message written by a developer (involved or not in the project) used
to communicate the existence of a problem or a bug in a project, or the
request for a new functionality, or simply a comment about the project.
Unlike pull requests, no changes are associated to Issues. An issue has its
own life cycle, which starts with its opening by a Developer and continues
with a possible dialogue between this Developer, the Repository owner
and his collaborators and possibly other external developers. During these
interactions, the issue can be approved by Owners and Assigned to one of
the developers involved in the project for its resolution. An issue may be
Closed when it is considered resolved or not relevant.

Several meta-models have been proposed with the goal of handling
the different types of entities and relationships within a collaborative soft-
ware repository (for example GHTorrent [77, 78] and Software Heritage4),

4https://www.softwareheritage.org/

https://www.softwareheritage.org/

30
Chapter 3. A Community Detection Approach Based on Network Representation

Learning for Repository Mining

but without focusing on the relevance of the examined relationships for
a specific analysis task. On the other hand, other meta-models are over-
simplified or target-focused on specific aspects of open source repositories,
such as the commit actions of developers on the same repositories (see [90]
for more details).

Our data model shown in Figure 3.2 tries to capture and handle all the
most useful information from a collaborative software repository for DSN
analytics purposes. Our model considers both information demonstrating
direct relationships between two developers (e.g., the follow and the collab-
oration relationships) and indirect relationships between developers (e.g.,
both participation in the activities on the same Repository) and demon-
strates how they can be very useful for DSN analysis. As delineated in Sec-
tion 3.1, the proposed information model relies on a heterogeneous graph
structure that accommodates diverse entities, such as developers, issues,
and repositories, as nodes, and allows the existence of multimodal relation-
ships within a Developer Social Network (DSN). It is noteworthy that the
suggested information model differs from the one proposed by [90], which
employs a homogeneous graph structure using only developer nodes and
a single edge type, i.e., collaboration intensity, to summarize information
about the joint commits performed by different developers on the same
repositories. To exploit the rich semantics present within our proposed
information models based on heterogeneous networks, graph embedding
techniques were necessary to handle analytical tasks on high-dimensional
graphs [210]. We propose to leverage data detailed in Figure 3.2 by using
a heterogeneous information network (our DSN). The aim is to fuse multi-
typed interacting components to improve semantics related to nodes and
links in order to group together developers who have shown interest in the
same repositories and/or applications (Community detection task).

Definition 2 (Developer Social Network) Let D, I and R be respec-
tively the sets of developers, issues and repositories, we define the Devel-
oper Social Network as an oriented graph G = (V,E), where V is the
heterogeneous set of vertices (V = D ∪ I ∪ R) and E is the edge set that
can be established between two nodes.

Figure 3.3 shows at a glance our idea of DSN, which is composed by
three entities: i) Repositories, ii) Developers, iii) Issues. The Figure also

3.3. Framework 31

Figure 3.3. Developer Social Network Model

summarizes the different types of actions or relations among developers,
repositories, and issues, that we will rely on in the considered community
detection tasks.

3.3.3 Community Detection process

On the basis of the introduced DSN, our goal is to detect the set of
communities whose members are developers showing some common activ-
ities on several repositories.

Despite different community detection approaches have been proposed
in the literature on heterogeneous graphs, and in particular, on those sup-
porting DSN analysis from a social perspective, the majority of them suf-
fers of computational and memory costs due to the sizes that such graph-
based structures can reach [71].

Representation learning involves automatically finding and learning a
latent representation of data that can be used as input features for su-
pervised machine learning algorithms for various prediction tasks [29]. In
particular, Graph embedding aims to represent a graph in a low dimen-

32
Chapter 3. A Community Detection Approach Based on Network Representation

Learning for Repository Mining

sion space, while preserving network topology, thus facing with the graph
large size challenge. Therefore, we propose a community detection model,
whose aim is to unveil developers’ community by relying on Graph embed-
ding techniques for representing members of a DSN in a low-dimensional
spatial representation that preserves the network topology, satisfying the
2nd order of proximity. Thus, we performed an embedding of the DSN to
a n-dimensional space through graph embedding techniques, whose points
are clustered into a set of communities by using unsupervised machine
learning algorithm with the aim to optimize the number of clusters. In
particular, our aim is to use an algorithm, satisfying fast convergence,
scalability and fit for scattered data.

In Algorithm 1 we present our community detection algorithm based
on graph embedding (BERTO). The input of our algorithm are: i) the
selection criterion used to select a subset of the developers and repositories
on GitHub, ii) the chosen graph embedding technique and iii) the clustering
algorithm. The output of BERTO will be C = {C1, . . . , Cn} the set of the
discovered communities.

The BERTO algorithm is given as follows: i) a subset of relationships
between Developers, Issues and Repositories are extracted from Github ac-
cording to a given Selection Criterion (SC), ii) while there are relationships
to analyze iii) an element r is fetched from the relationships set R, and iv)
it is added to the DSN. v) The whole DSN is given as input to the chosen
embedding GE technique to compute the nodes embedding that will feed
vi) the clustering Technique CT responsible for providing in output the
identified K communities. The Selection Criterion SC is used for choos-
ing and categorizing the data to be retrieved from GitHub in terms of:
programming language, the time frame concerning the repository creation
date, and the number of stars assigned to the repositories. There are sev-
eral factors that can influence the choice of clustering techniques, such as
the type of data to be analyzed, available resources, and time constraints.
In the case of the BERTO algorithm, we chose K-Means as our clustering
technique because of its time-efficiency and manageable hyperparameter
tuning phase, which are important for practicality and efficiency in real-
world scenarios [122, 48]. K-Means has a time complexity of O(n), which is
superior to other partition clustering algorithms such as CLARANS and
PAM. It also outperforms clustering algorithms of other categories such

3.3. Framework 33

as density-based algorithms like DBSCAN and OPTICS, and hierarchical
ones like Chameleon, in terms of time complexity. However, K-Means’
scalability is limited as the dimensionality of the input data increases, as
observed in [157]. To address this issue in the BERTO algorithm, we use a
graph-embedding stage that reduces the dimensionality of the input data.
Another advantage of K-Means is that it only requires the identification
of the optimal number of clusters (K), whereas other algorithms such as
DBSCAN require tuning of other parameters for optimization. This tun-
ing process can be more complex than the one used for K-Means, which
can simply use the elbow rule to identify the optimal value of K.

The computational complexity achieved by our proposed algorithm
BERTO is O(n logn), given from a cost of i) O(n) to explore all the
relationships set (n = |R|), ii) O(n) for the graph embedding and cluster-
ing phase, iii) and O(logn) for the graph updating phase.

Algorithm 1 emBEdding gRaph communiTy detectiOn (BERTO)-
algorithm
1: procedure emBEdding gRaph communiTy detectiOn (BERTO)-

algorithm(SC,GE,CT,K)
2: – Input: SC (Selection Criteria)
3: – Input: GE (Graph embedding)
4: – Input: CT (Clustering Technique)
5: – Input: K (Number of Clusters)
6: – Temporary: R (Relationships Set)
7: – Temporary: DSN (Developer Social Network)
8: – Temporary: Ve (List of node embeddings)
9: – Output: C (List of identified community)

10: R← QUERY_GITHUB(SC)
11: while (R ̸= ∅) do
12: r ← dequeue(R)
13: DSN ← UPDATE_GRAPH(DSN,r) ▷ DSN building
14: end while
15: Ve ← EMBEDDING_GRAPH(DSN,GE) ▷ Nodes list Ve with graph

embedding GE on the DSN
16: C ← IDENTIFICATION_COMMUNITY(Ve,CT)
17: return C ▷ List of identified communities
18: end procedure

34
Chapter 3. A Community Detection Approach Based on Network Representation

Learning for Repository Mining

3.3.4 Running Example

In this section, we describe a running example of how it is possible
to generate a DSN from GitHub data and how it is possible to detect
communities of developers by embedding the DSN graph. We suppose to
rely on the following information:

1. (commit,Giancarlo,Repo1)

2. (commit,Antonino,Repo1)

3. (open_by,AnnaRita,Repo2)

4. (pull_request, Porfirio,Repo2)

5. (comment,Marco, Issue1)

6. (watch,Giancarlo,Repo2)

7. (comment,Giancarlo, Issue1)

8. (star,Marco,Repo2)

9. (comment, Porfirio, Issue2)

10. (open_by, V incenzo, Issue2)

11. (comment,AnnaRita, Issue2)

12. (create, V incenzo,Repo3)

Each operation is characterized by: i) a relationship (a commit, a cre-
ation of repositories and so on) ii) a source and destination object.

The obtained DSN, shown in Figure 3.4, is then fed as input to the
embedding algorithm (in this example Complex), which provides an em-
bedding representation of each developer node within our network. Suc-
cessively, an euclidean distance between two nodes has been applied in
order to build the distance matrix, shown in Table 3.1.

Finally, the vectors obtained from the embedding step are given as in-
put to the K-Means clustering algorithm. Choosing K = 2, the community
partition obtained is:

3.3. Framework 35

Figure 3.4. DSN representation for the Running Example. The heteroge-
neous graph is composed by 11 nodes and 12 edges.

C1 = {AnnaRita,Giancarlo,Marco, Porfirio, V incenzo}

C2 = {Antonino}

We expected the obtained clusters because we can see from Example
1 how the developer node Antonino has only a unique connection to a
single repository and in common with only one user, namely Giancarlo.
In turn, the other users show more collaboration activities, as example,
developer V incenzo despite being connected to only two entities (Issue2
e Repo3), the issue he worked on is a node of strong interest for the other
developers as well, which makes V incenzo also strongly connected with the
other developers who worked on the same issue. In conclusion, it can be
interpreted that AnnaRita, Giancarlo, Marco, Porfirio and V incenzo
are probably interested in the same projects, or are close collaborators
(as, for example, can be inferred from their interactions on Repo2), while
Antonino has no close ties with any of them; in fact, only Giancarlo has
interaction with Antonino on a marginal project Repo1.

36
Chapter 3. A Community Detection Approach Based on Network Representation

Learning for Repository Mining

Table 3.1. Distance matrix

Anna Rita Antonino Giancarlo Marco Porfirio Vincenzo
Anna Rita 0 0.7 0.3 0.2 0.2 0.4
Antonino 0.7 0 0.6 0.6 0.7 0.8
Giancarlo 0.3 0.6 0 0.3 0.2 0.5
Marco 0.2 0.6 0.3 0 0.3 0.5
Porfirio 0.2 0.7 0.2 0.3 0 0.4
Vincenzo 0.4 0.8 0.5 0.5 0.4 0

3.4 Experimental analysis

3.4.1 Goals

The objective of this experimentation is the evaluation of the proposed
Community Detection algorithm BERTO. We want to evaluate and com-
pare the performance of the technique obtained by applying different graph
embedding techniques and find the best-performing one. In addition, we
want to compare the performance obtained by adopting the proposed in-
formation model with respect to the ones obtained by adopting the model
proposed for the ABDCI algorithm of [90]. Our information model is
based on a heterogeneous graph that takes into account not only devel-
opers but also other entities such as issues and repositories, along with
their diverse types of relationships, as shown in Figure 3.2. In contrast,
[90] used a homogeneous graph, defined as a Software Ecosystem Network
(SEN) by the authors, that only represents developers connected by a sin-
gle type of edge. The aim of our experiment is to determine whether the
use of a heterogeneous graph, can facilitate a more distinct identification
of communities compared to a homogeneous graph. Additionally, we aim
to compare the time complexity of the two approaches. Furthermore, the
community detection algorithm (ABDCI) [90] is based on hierarchical clus-
tering and achieves a time complexity of O(n2), which is higher respect to
the obtained by our proposed approach (BERTO) based on K-Means and
equal to O(n logn). In order to assess the performance of the technique,
we evaluate the quality of the detected Developers Communities, using
a modularity metric to reward clustering that reveals cohesive communi-
ties of developers. Furthermore, we intent to evaluate the robustness of

3.4. Experimental analysis 37

the proposed technique as different samples of developers and repositories
from GitHub are considered, having different sample sizes and different
repository selection criteria.

Finally, we want to study the computational cost and time needed for
the execution of the community detection algorithm on different informa-
tion samples.

3.4.2 Research Questions

In order to pursue the presented goals, we have formulated four research
questions to be answered by the experimentation.

RQ1 How does the modularity of the Developers Communities produced
by the BERTO algorithm vary depending on the adopted graph em-
bedding technique?

RQ2 How does the modularity of the Developers Communities produced
by the BERTO algorithm vary with different information models?

RQ3 How does the modularity of the Developers Communities produced
by the BERTO algorithm vary for different Github repositories sam-
ples?

RQ4 How does the execution time needed to evaluate the Developers
Communities produced by the BERTO algorithm vary for different
Github repositories samples?

3.4.3 Variables and Metrics

Independent Variables

Different sets of independent variables have been considered in the dif-
ferent phases of the experiments we carried out, i.e. the graph embedding
technique, the information model, the repository sample type, the repos-
itory sample size and the embedding and cluster size. Comprehensive
information regarding the aforementioned variables can be found in Table
3.3.

38
Chapter 3. A Community Detection Approach Based on Network Representation

Learning for Repository Mining

In the context of the research question RQ1, we considered three cat-
egories of graph embedding technique, based on how they capture the net-
work topology [40] and used three different algorithms as representatives of
these categories: i) Proximity Preservation methods, ii) Message-Passing
methods, iii) Relation Learning methods). Specifically, an embedding al-
gorithm was selected for each category, Hin2Vec, RGCN and ComplEx,
respectively.

1. HIN2Vec: a proximity preservation method based on random walk
and meta-path. Taking as input a Heterogeneous Information Net-
work (HIN) and a set of meta-paths, the HIN2Vec framework per-
forms multiple prediction training tasks, that are jointly based on
the targeted set of relationships taken as input [72].

2. RGCN : based on message passing, it aims to learn node embedding
by aggregating the information from the neighborhood. RGCN dif-
fers from standard link predictors because it employs node neighbor-
hood information to learn the vector representations of the node/-
graph [159, 186].

3. ComplEx : a relation learning method, that considers complex-valued
embeddings. The use of complex embedding allows for binary rela-
tionship management, both symmetric and asymmetric. Link pre-
diction can be solved as a binary tensor completion problem, where
each slice of the tensor is an adjacency matrix of the relationships
that are present in the graph [190, 189].

In the context of the research question RQ2, we considered two differ-
ent information models, i.e. the one presented in Section 3.3 w.r.t. the
one built in [89] that considered only the joint commit interactions. In
that work, Hou et al. presented the ABDCI algorithm, which combines
developer interaction information and network topology information and
defined the intensity of collaboration in order to build a DSN. They as-
sumed that developers executing commits into the same repository always
have similar skills and preferences and should be in the same cluster [90].
The computational complexity of the algorithm ABDCI is o(n2) which is
higher than the complexity achieved by our proposed model BERTO.

3.4. Experimental analysis 39

In addition, we have varied two parameters of the BERTO algorithm
in order to study the parameter values combinations providing the better
clustering performance, i.e. the embedding size and the cluster size.

The embedding size is a critical decision: the key factors for the optimal
selection are mainly related to the availability of computational resources
and the choice of a trade-off value that offers complexity reduction and no
information losses, so the embedding size will determine the level of infor-
mation compression. A larger size offers a model with high information
content, at the expense of high complexity, while a smaller size will offer
higher computational performance but losing the heterogeneous informa-
tion in the model. The performance of the clustering is closely related to
the choice of the cluster size value K. It is important to consider values that
are reasonably large, in order to reflect the characteristics of the dataset,
but at the same time significantly small compared to the number of objects
to be analyzed, which is why we desire clustering of the data [144].

Dependent Variables

We have considered two dependent variables, i.e. the modularity of
the detected developer communities and the time needed to execute the
BERTO algorithm.

To evaluate how good is the quality of the division of the networks
into communities, we use a quantitative and topological measure called
Modularity [138], whose score value is an indicator of the quality of the
clustering (high values corresponds to better clusterings).

Modularity Q can be defined according to equation 3.2, where Aij is a
single element of the adjacency matrix A. In particular, Aij = 1 if there
is an edge that connects the nodes i and j, Aij = 0 otherwise. gi is the
number of the community which node i belongs to, and δ(i, j) = 1 only if
i = j, that means that only if the two nodes belong to the same community
δ(gi, gj) = 1. ki indicates the degree of the node i. Lastly m = 1

2

∑
ij Aij

is the total number of edges in the graph.

Q =
1

2m

∑
ij

(Aij −
kikj
2m

)δ(gi, gj) (3.2)

Modularity turns out to be one of the most widely used metrics in op-

40
Chapter 3. A Community Detection Approach Based on Network Representation

Learning for Repository Mining

timization methods to detect communities in networks [90, 127]. Its value
may vary between -1 and 1: a higher value indicates a strong community
structure (for more details see the paper [43]).

The recorded performances are evaluated by the aggregated execution
times inherent to the embedding phase and the community identification
phase.

3.4.4 Objects

The objects of the experiments consisted of selected subsets of reposito-
ries from GitHub, which were analyzed in order to extract the information
to be represented by graphs. In order to obtain these graphs, we have
performed different queries on GitHub adopting different filtering criteria.
In particular, we have varied the values of three query parameters, i.e. the
number of stars received by the repository (that could be an indicator of
the general appreciation of the corresponding project), the creation date of
the repository (that has been used to restrict the search to a set of projects
created within a specific time window) , and the programming framework
of the source code stored in the repository.

In detail, we focused on the repositories that have at least 30 stars,
were created between January 1, 2020 and January 20, 2020 and have
been labeled as Python, Java or Android projects. Once we retrieved the
repositories with these characteristics, we captured for each of them all the
information related to owners, collaborators, forks, issues and any other
relationships of the data model presented in Section 3.3. The decision
to start our search from repositories with a certain number of stars is
because we wanted to consider popular repositories that arouse a high
interest from GitHub users. It is important to note that, unlike Python
and Java, the ”Android” category is a set of technologies (e.g., Java, XML,
Kotlin, HTML5), thus we manually labeled the repositories devoted to the
development of applications for the Android ecosystem.

In the context of RQ1 and RQ2 we have considered the graph built on
the Full subset of repositories (which includes all three subsets of reposi-
tories), whereas in the context of RQ3 and RQ4, we have considered four
different graphs, respectively based on the Python, Java, Android and Full
subsets of repositories.

Table 3.2 reports the main characteristics of these four subsets of ex-

3.4. Experimental analysis 41

Table 3.2. Dataset characterization

Android Java Python Full
Number of Repositories 8,883 7,881 18,570 35,334
Number of Developers 56,231 30,262 81,612 168,105
Number of Issues 4,310 3,520 11,310 19,140
Number of Relationships 961,433 155,389 1,128,458 2,245,280

perimental objects, i.e. the number of repositories in each set, the total
number of involved developers, the total number of found issues, and the
total number of relationships.

3.4.5 Design of Experiments

In order to answer each of the four proposed research questions, an
experiment organized in four phases was carried out, where each phase
is characterized by different sets of objects, independent and dependent
variables and factors.

The selection of graph embedding algorithms for the experiment was
guided by the work of [40] which classifies embedding algorithms into
three categories based on their method of capturing network topology: i)
Proximity Preservation, ii) Message Passing, and iii) Relationship Learn-
ing. For each category, we selected one embedding algorithm, respectively
Hin2Vec, RGCN and ComplEx. As demonstrated in the response to RQ1,
we found that ComplEx outperforms the other algorithms and thus was
chosen as the embedding algorithm for our experimentation.

In the first phase, to answer RQ1, the sample of repositories called Full
and the heterogeneous graph based on the information model presented in
Section 3.3 were considered. We evaluated modularity (dependent variable)
values obtained by considering three different graph embedding techniques
(independent variable): Hin2Vec, RGCN, ComplEx. For this purpose, the
BERTO algorithm was executed by varying two factors, i.e. the embedding
size and the cluster size. In detail, for the embedding size the values of
50, 150 and 300 were considered, while for the cluster size K the values
of 50, 150 and 250 were considered in order to evaluate which of these
combinations produced the best modularity values.

42
Chapter 3. A Community Detection Approach Based on Network Representation

Learning for Repository Mining

In the second phase of the experiment aiming at answering RQ2, we
considered the same sample of repositories (Full) but we varied two infor-
mation models as independent variables: the one that we have proposed in
Section 3.3 (BERTO) and the one considering commits on shared repos-
itories as the only relationship between developers, coherently with the
ABDCI algorithm proposed by [90]. The modularity of the detected com-
munity was considered as dependent variable, and it was evaluated by also
varying in this case the embedding size and the cluster size using the same
set of values considered in the first phase of the experiment.

In order to answer RQ3, we considered different samples of repositories
beyond the Full one. The other three considered samples are the ones
called Java, Python and Android. In this phase, we considered only the
heterogeneous graphs based on the information model presented in Section
3.3. The dependent variable in this phase is still the modularity, and the
variable factors are still the embedding size and the cluster size.

Finally, in the fourth phase of the experiment, we have considered the
same objects involved in the third phase but we have considered a differ-
ent dependent variable, i.e. the execution time. The execution times were
obtained via the Python library "time". This time was measured when
we executed our technique in a cloud-based execution environment built
on Google Colab5, involving a Python 3.6 implementation of the Com-
munity Detection algorithm BERTO and an execution engine composed
by 2 CPU (2.2GHz), 13 GB of RAM. The NetworkX and SciKit-Learn
libraries were used for analyzing graphs and using unsupervised learning
algorithms. Also in this phase, we have considered embedding size and
cluster size as factors to be varied, but we have considered larger samples
of possible values: the clustering size varied between 50 and 500, while the
cluster size varied between 50 and 300.

The characteristics of the four phases of the experiment are summarized
in Table 3.3.

3.4.6 Results

In this Section, we report the results we obtained in each phase of the
experiment and the corresponding answers to each considered RQ:

5https://colab.research.google.com/

https://colab.research.google.com/

3.4. Experimental analysis 43

Table 3.3. Design of Experiments: Phase 1 involves the determination of the
most effective embedding technique in terms of modularity, from among the
three options available. This process is carried out for each of the three em-
bedding techniques. Phase 2 involves fixing the embedding technique selected
in Phase 1 and considering the information model as the independent variable.
Phase 3 involves changing the analyzed sample while keeping the information
model and clustering technique constant, and observing the variations in mod-
ularity that occur across different values of cluster and embedding size. Phase
4, the execution time is established as the dependent variable, and the impact
of sample size and clustering and embedding dimensions is evaluated.

Phase 1 Phase 2 Phase 3 Phase 4

Research Question RQ1 RQ2 RQ3 RQ4

Objects Full Full Full, Java, Python, Android Full, Java, Python, Android

Independent Variables Graph Embedding technique
(Hin2Vec, RGCN, ComplEx) Information Model (Berto, ABCDI Model) - -

Fixed Factors Information Model (Berto) Graph Embedding technique (ComplEx) Information Model (Berto),
Graph Embedding technique (ComplEx)

Information Model (Berto),
Graph Embedding technique (ComplEx)

Varying Factors Embedding size (50, 150, 300),
Cluster size (50, 150, 250)

Embedding size (50, 150, 300),
Cluster size (50, 150, 250)

Embedding size (50, 150, 300),
Cluster size (50, 150, 250)

Embedding size (between 50 and 500),
Cluster size (between 50 and 300)

Dependent Variables Modularity Modularity Modularity Execution Time

RQ1

The execution of the BERTO algorithm for the three adopted graph
embedding techniques and for different values of embedding size and K
produced the results shown in Table 3.4. Due to computational limita-
tions we were unable to compute the embedding vectors for RGCN with
embedding size = 300. We can observe that the adoption of the ComplEx
algorithm produced the greater values of modularity w.r.t. the ones ob-
tained with the other techniques, for any value of embedding size and K,
thus we can affirm that the ComplEx techniques appear the most suitable
to this problem.

The poor results in terms of modularity obtained by HIN2Vec [72] can
be attributed to the fact that this learning framework is based on meta-
paths and thus is unable to obtain a latent representation of nodes that
reflects the network topology.

In the RGCN [159] framework, the vector representation of neighbor-
ing nodes is collected and then transformed for each type of relationship
separately. It turns out that the calculation of node embedding is done
using only one vector from the neighborhood. Therefore, RGCN is unable
to compute a representation of the network topology in the embedding

44
Chapter 3. A Community Detection Approach Based on Network Representation

Learning for Repository Mining

Table 3.4. (RQ1) - Results of BERTO algorithm in terms of modularity by
varying technique and embedding size

BERTO Algorithm Modularity
emb_50 emb_150 emb_300

K Complex RGCN HIN2Vec Complex RGCN HIN2Vec Complex RGCN HIN2Vec
50 77,75% 4,21% 2,71% 82,64% 2,11% 2,32% 78,57% N/A 3,59%
150 67,44% 2,91% 0,82% 77,19% 1,41% 1,16% 72,49% N/A 1,25%
250 55,18% 2,17% 0,73% 68,23% 1,47% 0,91% 64,55% N/A 1,02%

Table 3.5. (RQ2) - Comparison of the average modularity, varying K, for
BERTO and ABDCI [90]

Modularity Comparision
emb_50 emb_150 emb_300

K BERTO ABDCI BERTO ABDCI BERTO ABDCI
50 77,75% 68,35% 82,64% 86,34% 78,57% 82,31%
150 67,44% 35,83% 77,19% 80,74% 72,49% 76,90%
250 55,18% 25,27% 68,23% 73,49% 64,55% 69,86%

space.
This type of issue has not shown up with Complex [190], which uses

complex valued embedding. In particular, when there is only one kind of
relation between entities Complex uses the real part of low-rank normal
matrices to represent the relationship, allowing the framework to capture
the topology of the networking inside the computed embedding vector of
the nodes.

RQ2

Answering RQ1 we concluded that ComplEx is the best performing
embedding technique among the three ones we proposed. To answer RQ2
we executed BERTO algorithm with ComplEx embedding technique for
the two different information models and for different values of embedding
size and K. Table 3.5 reports the obtained modularity values after applying
BERTO to our model where we consider all types of interaction, and the
modularity values obtained using the ABDCI algorithm proposed by [90],
which is only based on shared commits. Our model does not seem to give
us a better result in terms of modularity. We therefore investigated how
developers are distributed across communities for the two techniques we
are comparing. Based on 30 experiments, in Table 3.6 we show median

3.4. Experimental analysis 45

and standard deviation of the node distribution inside the communities/-
clusters. Focusing on the standard deviation, we can see that our model
has smaller values than the model proposed by [90]. This means that the
BERTO algorithm applied to our information model, despite not always
obtaining better modularity values than the ABDCI algorithm, is able to
find a more balanced community division, i.e. a more equal distribution
of nodes within the various communities.

High standard deviation values indicate that the distribution is unbal-
anced, meaning that there will be few clusters, or in the worst case only
one cluster, with most of the nodes inside, whereas all the other clusters
will contain few nodes. Having all developer nodes within the same cluster
is not an optimal outcome in a community detection task. Instead, our
model, by obtaining a lower STD value, was able to obtain a more bal-
anced distribution of developer nodes within clusters, meaning that it was
able to better categorize the various developers in the different communi-
ties, providing us a more meaningful result than that obtained by ABDCI
algorithm.

RQ3

In order to have a confirmation of the validity of our algorithm with
different graphs corresponding to different samples of repositories, we ex-
ecuted BERTO algorithm with ComplEx embedding technique with our
Information Model for different Github repositories samples (Java, Python
and Android), and for different values of embedding size and K. Table 3.7
reports the modularity achieved for each considered combination, showing
that our model is robust in terms of modularity when varying the sample
analyzed.

RQ4

In Figures 3.5 and 3.6 are reported the measured execution times for the
BERTO algorithm using ComplEx embedding techniques applied to our
Information Model with the different considered samples of repositories. In
particular, in Figure 3.5, we see that the execution time increases linearly
as the sample size and embedding size increase. The largest times are
recorded with the Full sample, regardless of the embedding size; this is to

46
Chapter 3. A Community Detection Approach Based on Network Representation

Learning for Repository Mining

Table 3.6. (RQ2) - Comparison of the Median and Standard Deviation (STD)
of community members, varying K, for BERTO and ABDCI [90]

M
ed

ia
n

an
d

S
T

D
C

o
m

p
ar

is
o
n

em
b
_

5
0

em
b
_

1
5
0

em
b
_

3
0
0

B
E
R
T
O

A
B
D

C
I

B
E
R
T
O

A
B
D

C
I

B
E
R
T
O

A
B
D

C
I

K
M

ed
ia

n
S
T

D
M

ed
ia

n
S
T

D
M

ed
ia

n
S
T

D
M

ed
ia

n
S
T

D
M

ed
ia

n
S
T

D
M

ed
ia

n
S
T

D
50

44
,1
2

73
,9
7

38
,1
0

13
0,
79

58
,0
8

35
,4
1

53
,0
4

50
,4
8

53
,0
3

50
,9
9

49
,6
0

57
,9
3

15
0

14
,0
3

26
,0
8

16
,1
0

24
,7
3

18
,1
0

12
,9
6

19
,0
0

15
,9
8

19
,0
9

14
,0
8

18
,0
7

17
,3
9

25
0

6,
53

16
,7
8

10
,0
2

12
,5
7

10
,0
1

9,
37

10
,0
0

11
,3
6

11
,0
3

7,
50

11
,0
4

8,
42

3.4. Experimental analysis 47

Table 3.7. (RQ3) - Evaluation of Modularity for the four considered reposi-
tory samples (Full, Python, Java, Android)

M
o
d
u
la

ri
ty

ev
al

u
at

io
n

w
it

h
d
iff

er
en

t
sa

m
p
le

s
em

b
_

5
0

em
b
_

1
5
0

em
b
_

3
0
0

K
F
u
ll

P
y
th

o
n

J
av

a
A

n
d
ro

id
F
u
ll

P
y
th

o
n

J
av

a
A

n
d
ro

id
F
u
ll

P
y
th

o
n

J
av

a
A

n
d
ro

id
50

77
,7
5%

84
,9
7%

78
,7
7%

62
,8
1%

82
,6
4%

81
,6
4%

69
,8
3%

72
,3
9%

78
,5
7%

78
,9
1%

64
,8
9%

70
,5
9%

15
0

67
,4
4%

80
,7
3%

28
,8
1%

34
,7
9%

77
,1
9%

69
,2
9%

35
,6
2%

53
,7
5%

72
,4
9%

64
,5
3%

32
,6
3%

52
,4
6%

25
0

55
,1
8%

59
,2
7%

14
,4
1%

22
,5
9%

68
,2
3%

56
,0
1%

19
,0
2%

38
,9
8%

64
,5
5%

55
,6
3%

17
,3
9%

38
,0
2%

48
Chapter 3. A Community Detection Approach Based on Network Representation

Learning for Repository Mining

Figure 3.5. Running times by varying the embedding size in BERTO

be expected because it is the larger than the others.
Another point we can observe from Fig 3.5 is that as the number of

nodes within our graph increases, the execution times increase more as the
embedding size increases. In fact, by placing our attention on the blue line
in Fig 3.5, which represents the case where we are analyzing the graph of
the Full sample, we can see that the execution times increase faster than
in the cases where the analyzed samples are smaller (the other lines in
the Figure). This means that the embedding size should be chosen on the
basis of the size of the graph to support more efficiently the SNA tasks.

Instead in Figure 3.6, by varying K it is possible to observe the ex-
ecution times, depending on the size of the embedding. It can be seen
that the times decrease by reducing K and the embedding size, conversely
they increase with a bigger K and the embedding size. Furthermore, from
Figure 3.6 we can notice that varying K does not have a relevant impact
on execution time.

Looking at the modularity we obtained in the previous experiments,
and focusing on Figure 3.5, we can clearly say that we get the best mod-
ularity results with high values of K and embedding size. However, these
two parameters impact execution times, leading us to have high execution
times as their values increase. In case we have time to run our experi-

3.4. Experimental analysis 49

Figure 3.6. Running times by varying K value in BERTO

ments, it is therefore better to choose higher values of K and embedding
size, since with high values of embedding size we are able to capture the
topology of the network better and better, and get higher results in terms
of modularity.

On the other hand, in the case where we want to be careful about
execution time, there is clearly a need for a trade-off between execution
time and the modularity. For example, in our experiment shown in Figure
3.5, we can see that once we pass the threshold of embedding size equals
to 250, execution times begin to grow much faster as this value increases,
so it is reasonable to choose an embedding size value between 200 and 250.

In practice, depending on the acquired data a parameters tuning phase
is necessary to obtain a trade-off between community goodness and exe-
cution times.

3.4.7 Example

To evaluate the practical relevance of the communities detected by our
algorithm we have selected a sample of clusters and a sample of the de-
velopers belonging to these clusters and we have analyzed in detail their
activities. In the following we will present the results of the analysis involv-

50
Chapter 3. A Community Detection Approach Based on Network Representation

Learning for Repository Mining

ing three developers that were assigned to the same cluster. For privacy
reasons, we have hidden the names of the developers and of the repositories
involved in this example.

We evaluated cluster #16 from the clustering with K=50 clusters hav-
ing the higher Q value. 71 different developers belong to this cluster.
Among them we found many developers who created or collaborated in
repositories related to the development of utilities for the Android envi-
ronment, in particular to mining of data during the use of Android devices.
For example, we verified that the developer Dev1 from Florida, US, created
the Rep1 repository to implement an utility for collecting stack traces gen-
erated by unexpected crashes of Android applications on rooted devices.
This project was implemented in Java and Kotlin and had a good success
in terms of numbers of project forks and stars (19 forks and more than 200
stars at the month of March 2023).

Dev2 is an Italian student who developed (and also published on Google
Play) an Android app for monitoring the use of the network of apps running
on an Android system, within a repository Rep2. This app was realized
in Java and C and had a greater popularity on Github, having more than
100 forks and almost 1000 stars. Dev1 is one of the collaborators to this
project who also made some commits on it.

Dev3 from Peru is a developer who forked both Rep1 and Rep2 repos-
itories and continued developing them in the context of his forks. Dev3 is
a less active developer than Dev1 and Dev2, but it can be seen from his
public profile that he is mainly interested in Android projects and has often
made changes related to their localization. With respect to this subset of
developers that the BERTO algorithm grouped together within the same
cluster, we may conclude that this grouping seems significant, since these
developers actually share common interests and have worked on common
projects. In future, it is reasonable that these three developers may col-
laborate in other projects based on Android internals.

3.4.8 Threats to Validity

Threats to conclusion validity. There are threats to conclusion validity
due to the selection of the sample of repositories involved in our study and
to the choice of the information model.

The experiment carried out in this study involves a sample of the public

3.4. Experimental analysis 51

repositories currently on Github. They have been chosen in an arbitrary
way by filtering the ones that have been created on a short period of time
and that rapidly achieved a large number of stars. This selection may
represent a threat to the conclusion validity because this sample could be
not representative of the overall set of the public repositories on Github,
but we think that our selection is able to limit possible selection biases.
In order to achieve more confidence on our conclusions, in the context of
the third phase of the experiment, we have evaluated the modularity of
the Developers Communities produced by the BERTO algorithm for three
different Github repositories samples (obtained by respectively filtering
only Java, Python and Android repositories).

Our conclusions about modularity and execution times depend on the
amount of information considered in our model. Of course, a model in-
cluding more details about the considered interactions (for example the
text associated to comment, the result of a issue or a pull request), or a
modularity metric weighting in a different way the different relationships
(e.g., pull requests may have a greater weight with respect to comments on
issues) may produce different results. We have concluded that our model,
that is richer than the one proposed by the ABCDI one [90] is able to
obtain better communities in terms of modularity, but we cannot exclude
that another model could be better. In future work we plan to extend our
analyses on other possible models, taking also into account the correspon-
dent increase in execution time.

Threats to internal validity. Since the embedding algorithms are not
completely deterministic, a threats to internal validity due to randomness
is present. In order to limit this threat, the community detection algorithm
BERTO has been repeated 30 times and the mean, median and standard
deviation values have been evaluated.

Threats to external validity. These threats limit the ability to gen-
eralize the results of our experiment. In community detection problems
it is difficult to define a ground truth of the expected communities that
should be returned, because the concept of community is often elusive: a
community includes people who have similar interests and involvement in
the same or similar projects, but these developers could not be aware of
their belonging to a particular community. For this reason, studies related
to community detection in social networks often use only topological mea-

52
Chapter 3. A Community Detection Approach Based on Network Representation

Learning for Repository Mining

sures to assess the goodness of the detected communities. We have adopted
the same modularity metric used in works similar to ours [90, 127] in order
to have fair comparisons between the results of the different algorithms
and configurations.

3.5 Conclusions

In this paper, we addressed the problem of community detection inside
a software repository ecosystem modeled as a particular social network and
using SNA facilities. The main novelty of this work was the definition of
a heterogeneous graph-based model able to capture and handle in an ef-
fective way a comprehensive set of useful, complex and strongly-correlated
information about a DSN.

Then, we have challenged the problem of automatically discovering
communities of developers sharing interests for similar projects, and we
leveraged different graph embedding techniques together with clustering
to overcome huge graph-size analysis issues. It should be noted that the
embedding algorithms utilized in our study employ message passing tech-
niques for information accumulation from neighboring nodes, as well as
meta-path and random-walk based algorithms to compute embedding vec-
tors representative of the initial graph [210]. Although the set of possible
relationships between entities is diverse (as shown in Figure 3.2), we cur-
rently utilize embedding algorithms without estimating the weight of these
relationships. However, as a future development, we may consider cus-
tomized versions of the embedding algorithms that also take into account
an estimation of the weights of the defined relationships. This would allow
the algorithms to select random-walks and meta-paths used for embedding
generation based on the weight of relationships, enabling more emphasis to
be placed on relationships with higher weights during the computational
process of the embedding.

In order to validate our approach, we performed an experiment where
we studied the effectiveness and the performance of the proposed com-
munity detection techniques by considering different instances of DSNs
and different types of graph embedding. The experiment involved data ex-
tracted from GitHub, one of the most used and popular software repository
ecosystem, from which we were able to construct a heterogeneous graph

3.5. Conclusions 53

synthesizing relevant relationships between Developers and other entities,
besides the commit relationship.

This approach has shown his capability in producing a clear division
in cohesive communities.

As we model the data in our original dataset, where we considered
three different kinds of nodes (i.e. Developers, Issues and Repositories) we
are conscious that there are various kinds of relationships and entities that
can be found inside a software ecosystem.

Because GitHub is a very rich source of information, in our future works
we will focus on using all the heterogeneous information that we can gather
from it and try to identify different types of communities. Furthermore,
we plan to apply our model also on different software repositories and to
show how the proposed community detection approach can be very useful
for more specific analytic tasks such as (i) influence analysis to discover the
most important developers within a given community, (ii) team formation
to detect the group of developers w.r.t. a given technology within several
communities in order to start more quickly a new project in according to
agile paradigm, (iii) recommendation to automatically suggest the most
appropriate developers to solve an issue, etc.

Chapter 4
Documenting Software
Architecture Design in
Compliance with the ISO
26262: a Practical Experience
in Industry
Abstract Complexity of automotive systems has increased in recent
years. Nowadays cars are composed by a multitude of electrical and elec-
tronic components, sensors, computer resources and so on. The ISO 26262
is a standard that deals with the functional safety of the E/E (Electric
and Electronic) components of road vehicles. The standard defines a func-
tional safety development process model that automotive manufacturing
must follow and document to achieve compliance with the standard, oth-
erwise the manufactured product will not be suitable to run in commercial
vehicles.

Documenting the Software Architecture Design (SAD) is a challenging
activity in industries for safety critical software systems. This is amplified
when the software development must comply with the guidelines of the
ISO 26262.

This paper describes the results of a practical experience we conducted
in collaboration with four international companies in the automotive do-

56
Chapter 4. Documenting Software Architecture Design in Compliance with the ISO

26262: a Practical Experience in Industry

main. In this work, we firstly performed a survey to understand the chal-
lenges that practitioners have to meet daily to develop SAD in compliance
with the ISO 26262. In the subsequent step, we proposed a documenta-
tion template aiming at overcoming the challenges that emerged from the
survey. The template was implemented in the Sparx Enterprise Architect
modeling environment and was validated in an industrial case study that
involved the same experts we enrolled in the survey. The results showed
that the documentation template was judged as a valid means to produce
SAD compliant with the ISO 26262 and to overcome the emerged chal-
lenges.

4.1 Introduction

The dominating safety Standard in the automotive domain is the ISO
26262 [92]. This Standard deals with the functional safety of the E/E
(Electric and Electronic) components of a road vehicle. It is based on a
system development V-process model and prescribes a series of technical
requirements and recommendations. The compliance with the ISO 26262
requires the development of several types of artifact, where almost all of
them can be considered as a pieces of evidence in the terminology of safety
cases.

The Standard is wide and covers the development lifecycle of all the
different subsystems (both hardware and software ones) of which an Elec-
trical/Electronic Unit is made. In the following, we focus our work on
standard Chapter 6, Clause 7 (ISO 26262§6.7), which discusses about Soft-
ware Architecture Design (SAD) [94].

This part of the Standard defines a set of requirements, recommenda-
tions and principles that need to be followed during the software archi-
tecture development. A requirement is a criterion that must be fulfilled
and is objectively verifiable. No deviation from it is permitted, other-
wise compliance with the standard is not reachable. A recommendation is
a possible suggested choice, among many others, to take in the develop-
ment of a project, but without it, compliance with the standard can still
be achieved. Principles are guidelines that need to be followed in order
to achieve quality characteristics that the SAD shall address in order to
avoid systematic faults. The quality characteristics of architecture design

4.1. Introduction 57

required by the standard are: i) comprehensibility, ii) consistency, iii) sim-
plicity, iv) verifiability, v) modularity, vi) abstraction.

Several works in the literature have described the challenges encoun-
tered in implementing different ISO Standard requirements and recommen-
dations, and have presented possible solutions to demonstrate the compli-
ance with ISO 26262 [58], [73], [88]. Other papers focus on solutions for
implementing the ISO 26262§6 requirements regarding the SAD [64], [136],
[206], [107].

Even if all these works provide valuable indications and suggestions for
implementing ISO 26262 compliant SAD, it is not always easy to translate
these guidelines into practical solutions. Vice-versa, industry needs well-
defined and concrete procedures, artifacts, and approaches to support the
guidelines defined by the Standard in a more practical manner. As an
example, regarding the SAD, it may be useful for the practitioners to have
a SAD documentation template that acts as a reference guide for producing
artifacts having the characteristics prescribed by the Standard.

In this paper, we describe the results of a practical experience we con-
ducted in collaboration with four software international companies in the
automotive domain. For no disclosure agreement reasons we can not pro-
vide further information about them. The work was divided in three steps.
In the first step, we performed a survey with industry safety experts from
the automotive domain, aimed at understanding (1) which parts of the ISO
26262§6.7 are difficult to fulfill during the design of the software architec-
ture, and (2) what are the challenges encountered by the practitioners to
implement a SAD that is compliant with the ISO 26262§6.7. In the second
step, on the basis of the survey results, we defined a software architec-
tural documentation template intended to overcome the difficulties and
challenges that emerged from the study. The template aims to provide a
documentation model that can be instantiated in safety-related projects.
We implemented an instance of the model in the Sparx Enterprise Archi-
tect (EA) 1 modeling environment. In the latter step, we validated the
proposed template with a case study that involved the same experts we
enrolled in the survey. The results showed that the proposed documenta-
tion template was accepted by practitioners as a valid means to produce
SAD compliant with ISO 26262§6.7. Moreover, the template allowed to

1https://sparxsystems.com/

https://sparxsystems.com/

58
Chapter 4. Documenting Software Architecture Design in Compliance with the ISO

26262: a Practical Experience in Industry

overcome the challenges that emerged from the survey.
The remainder of the paper is organized as follows. Section 4.2 presents

related works on SAD challenges in industry and in the automotive do-
main, while Section 4.3 presents the industrial survey we performed with
experts. In Section 4.4 we present the proposed documentation template
and examples of instantiating it in the EA Tool. Section 4.5 presents the
study we performed to validate the proposed template and in Section 4.6
we summarize conclusions and future works.

4.2 Related Works

The relevance of the software documentation process to avoid defects,
costly maintenance interventions, and quality degradation in software sys-
tems is well-known [46], [9], [51]. Empirical studies have shown that most
of the software defects found within the testing phase can be attributed to
a poor quality, outdated, or missing documentation [10], [192]. Software
documentation is not getting a passing grade, especially inside an industrial
context. Studies like [197] highlight clear gaps in software documentation
practices within industrial environments. There is a strong need to turn
good intentions in improving the documentation process into explicit poli-
cies and actions to be taken. This is true also for the software architecture
documentation. The software architecture documentation that includes
design and API documentation is one of the most important parts of the
whole software development process.

Many works discuss the challenges and issues with software architecture
documentation in the industry. In the following, we summarize related
works describing such issues and challenges in industry and in particular
in safety-critical domains.

4.2.1 SAD issues and challenges in industry

Software architectural documentation has received much attention in
the research during the recent years. Low-quality documentation leads to
costly revisions and maintenance, which adds to the cost and time of the
entire development process [104], [115]. The work [39] reports a strong
need to improve the software architecture documentation in the industrial

4.2. Related Works 59

environments. The main problem identified by this study is the absence
of adequate human resources and of specialized tools to support the doc-
umentation process. Aghajani et. al [8] present a survey from the prac-
titioner’s perspective on which are the relevant problems in the software
documentation process. The most frequent issues reported in this work
are: non-complete and up-to-date documentation, inconsistency between
different documentation artifacts, lack of tool to support the documenta-
tion process and maintainability of the documentation. These problems can
be solved by becoming aware that there is a need to increase the budget
devoted to documentation and by the use of adequate tools and standards.
In this regard the ISO 42010:2011 [6] defines a conceptual model for the
software architecture description based on the system’s stakeholders point
of view.

4.2.2 SAD issues and challenges in automotive domains

The problems related to the architecture design become more challeng-
ing when the documentation has to be developed inside a safety-critical
environment under the requirements and recommendations prescribed by
a safety standard [88], [167]. Safety-critical systems are systems that may
lead to harm to people or the environment if they fail. Achieving an ade-
quate level of safety means to be compliant with the most relevant safety
standards like the ISO 26262 for the automotive domain or the EN 50128
for the railway domain. These standards provide guidelines in different
aspects of a system, leading to a lack of common interpretation of the
standard by the different stakeholder/practitioners [28]. In this context, it
is recommended that the software architecture documentation shall con-
tain models with different types of viewpoints [36]. As reported in the book
[174] functional, logical and deployment views should be documented. A
correct documentation under different views can contribute to the system
comprehension and management [136] and can support the abstraction
principle, one of the characteristics that the SAD shall address according
to the ISO 26262. On the other hand, the use of different views with
different levels of detail can be challenging in regard of the consistency
management as shown in [64]. In their industrial case study, Eliasson et
al., report the need to use different architectures with different levels of
detail and abstraction for the automotive system design. However, their

60
Chapter 4. Documenting Software Architecture Design in Compliance with the ISO

26262: a Practical Experience in Industry

study highlighted problems with the consistency management among these
different views, with the consequence of onerous re-work and illegal behav-
ior of the system. Challenges in consistency management has also been
marked by the work of Wohlrab et al.. In [206], the authors conducted a
survey with industrial practitioners and stakeholders to analyze the incon-
sistencies and their consequences, between different architectural views.
This study showed that the consistency management challenges can also
be related to the interface documentation in regard to the implementation,
and for wording and language between different views. According to the
ISO 26262, the software architecture design shall be developed down to
the component (unit) level. The empirical study of Land et al. [107], that
analyzes the challenges identified in [13], highlighting the need to support
the component abstraction and to provide a proper documentation of inter-
faces, including the configuration parameter. An architecture documenta-
tion of the system shall highlight the interaction between the components
and describe the communication through the interfaces. Moreover, the
dynamic aspect shall also address a description for timing semantics of the
element, which can be useful for data consistency and system performance
analysis [152]. The architecture design can impact system maintainability
and testability [174]. In the automotive domain the maintainability is a
key principle because its lifetime has to be considerable, unmanaged and
uncorrected errors at this phase can lead to system failures.

4.3 Industrial survey

To comprehend the point of view of practitioners in the field of safety-
critical software architecture design, we decided to develop an industrial
survey. The goal of the survey was to understand which are the challenges
and issues most frequently encountered when software development orga-
nizations have to comply with the safety standard guidelines regarding
the software architecture design defined by the ISO 26262§6.7. We used
focus groups to conduct the survey and followed the guidelines defined
by Krueger and Casey [105]. We decided to use focus groups since their
purpose is to better understand how people feel or think about an issue,
idea, product, or service. Focus groups are led by a moderator who asks
questions to participants and often encourages discussion between them

4.3. Industrial survey 61

[105]. Focus group interviews typically have five characteristics that re-
late to the ingredients of a focus group: (1) a small group of people, who
(2) possess certain characteristics, (3) provide qualitative data (4) in a fo-
cused discussion (5) to help understand the topic of interest. For our focus
group, we recruited a sample of software engineers from 4 international
software companies of the automobile domain. The companies included
OEMs and Tier-2 suppliers of the automotive supply chain. We selected 3
engineers for each company and the focus group comprehended 12 people.
To guarantee that participants were similar to each other in a way that
was important to the research, we made sure that all the interviewed had
more than 3 years of experience and were skilled in architecture design and
implementation for automotive safety-related software in compliance with
the requirements defined by the ISO 26262. We planned and executed
three focus group interviews and each interview was moderated by one of
the authors. In each interview, that lasted 3 hours, the moderator let the
interview free to explain and discuss one of the following three topics:

1. the challenges they deal with to meet the ISO 26262§6.7 requirements
when they are asked to develop the SAD;

2. the challenges deal with meeting the principles defined by the ISO
26262§6.7 when they are asked to develop the SAD;

3. the challenges they deal with to meet the properties defined by the
ISO 26262§6.7 when they are asked to develop the SAD.

Two authors collected and analyzed the answers to abstract the main
challenges addressed by the practitioners in developing SAD. The answers
for which the two authors did not reach a consensus about the abstraction
of the challenges, were analyzed by the third author. Finally, a two-hour
final focus group interview was executed with the 12 participants to vali-
date the inferred challenges.

The list of challenges that were abstracted by the survey, together
with the ones that emerged from the study of the literature, were finally
collated. Table 4.1 reports the final list of challenges and, for each of
them, an ID, the reference to the specific ISO 26262§6.7 clause, and a brief
description. We identified three categories of challenges reflecting the ISO
Standard structure. The first three table items (evidenced in azure in the

62
Chapter 4. Documenting Software Architecture Design in Compliance with the ISO

26262: a Practical Experience in Industry

table) regard the difficulties encountered in satisfying the SAD Properties.
The items from C4 to C11 (yellow rows) are related to the difficulties in
verifying the design Principles. The latter four ones (highlighted in green)
are related to assuring specific Requirements at the implementation level.

4.4 Proposed Template

Thanks to the focus group interviews and supported from what emerged
from the literature study we understood that most of the challenges were
mainly related to a scant documentation of the SAD and an improper use
of design tools in supporting both traceability and consistency manage-
ment among the different architectural views and models. To overcome
these problems we proposed a documentation template for describing the
SAD in compliance with ISO 26262§6.7. More in detail, the template was
introduced for providing a set of solutions to:

1. manage and guarantee the consistency among the different views and
models’ elements of the SAD;

2. support the SAD refinement process from the highest levels of ab-
straction towards the lowest levels of detail closer to code implemen-
tation;

3. aid the verification process of the design principles defined by the
ISO Standard;

4. introduces new models for describing both static and dynamic safety-
related characteristics of the software architecture.

To design the template, we followed the guidelines proposed by the SEI
[51] for documenting software architectures and by the IEEE 42010 "Sys-
tems and software engineering - Architecture description" [6]. Lastly, the
template was implemented in Enterprise Architect (EA), a tool that sup-
ports UML modeling and design, facilitating many phases of the software
development process. EA support starts from the analysis of requirements
until the model design, building, testing, and maintenance. Although the
template is generic and tool independent, we adopted EA as the modeling
environment since it was used in all four companies and because it has

4.4. Proposed Template 63

ID ISO REFERENCE CHALLENGE DESCRIPTION

Properties, 7.4.1.b:

consistency

Consistency

management

Difficulties in ensuring the consistency between the different artifact produced

during the documentation process. One of the most common problem reported by

interviewees is for example the difficulties in ensuring consistency between static

views and behavior views: occurrence of the same component in different views, but

with different names

Properties, 7.4.1.d: verifiability

Verification of the

design principles

recommended by the

ISO-26262

Difficulty in finding methods for checking that the SAD adheres to the characteristics

defined by the standard (in 7.4.3 Table 3) such as: modularity, maintainability and

consistency

Properties 7.4.1.f: abstraction

Document the SAD

with a hierarchical

structure

Abstraction can be supported by using hierarchical structures, grouping schemes or

views to cover static, dynamic or deployment aspects of an architectural design

Principle, 7.4.3-1: Appropriate

hierarchical structure of the

software component

Verifiability of the

principle

Difficulties in ensuring consistency and traceability between the artifacts, usally lead

to a non-well documented hierarchical structure

Principle, 7.4.3-2: restricted

size and complexity of the

software component

Verifiability of the

principle

Difficulties in documenting the design of the software components at a proper level

of detail to support a qualitative evaluation of the complexity for the verification of

the principle

Principle, 7.4.3-3: restricted

size of interfaces

Verifiability of the

principle

Difficulties in documenting software component interfaces to help the verification of

the principle

Principle, 7.4.3-4,5: strong

cohesion and loose coupling

Verifiability of the

principle

Difficulties in documenting both static and dynamic relationships among software

components for aiding the evaluation of cohesion and coupling metrics to support

the adherence to the principle

Principle, 7.4.3-6: appropariate

scheduling properties

Verifiability of the

principle

Difficulties in documenting the dynamic behavior interactions among the software at

a low level of detail to help the verification of the principle

Principle, 7.4.3-7: restricted

use of interrupts

Verifiability of the

principle

Difficulties in documenting the dynamic behavior interactions among the software at

the lower level of detail to support the verification of the principle

Principle, 7.4.3-8: appropariate

spatial isolation of the software

component

Verifiability of the

principle

Difficulties in documenting the static aspects of the software components and their

relationships at the lower level of detail to help the verification of the principle

Principle, 7.4.3-9: appropariate

management of shared

resources

Verifiability of the

principle

Difficulties in documenting the static aspects of the software components and their

relationships at lower level of detail to aid the verification of the principles

Requirement, 7.4.2.b:

suitability for configurable

software

Documentation for

Configuration variant

and Calibration

parameter

Difficulties in explicitly document of configuration variant and calibration parameter

inside the SAD

Requirement, 7.4.4: The

software architectural design

shall be developed down to the

level where the software units

are identified

Document the SAD

down to the unit

design view

Difficulty in documenting SAD down to the unit design level, especially in the early

stages of a project where not all the information is yet available to ensure proper

documentation.

Requirement, 7.4.5: Static

Design shall address: external

interfaces, global variables

Document the SAD

down to the unit

design view

Difficulty in documenting SAD down to the unit design level, especially in the early

stages of a project where not all the information is yet available to ensure proper

documentation.

Requirement, 7.4.5.b.5:

dynamic design aspects shall

address the temporal

constraints

Documentation for

timing behavior and

constraint

Difficulties in documenting the temporal constraint inside the design aspects

Requirement, 7.4.10.2: identify

or confirm the safety related

part of the software.

Find mechanism to

easly identify safety

related part

Difficulty in identifing or confirm the safety related part of the software.

��

��

��

��

��

��

��

�	

�

���

���

���

���

���

���

���

Table 4.1. Challenges in developing software architecture design emerged
from the Industrial Survey and the Literature Study

64
Chapter 4. Documenting Software Architecture Design in Compliance with the ISO

26262: a Practical Experience in Industry

been used in other industrial work, which enhances its extension capabili-
ties through the development of add-on [113]. In the following, we describe
the documentation template, how it is implemented in EA, and how the
proposed solution can overcome the challenges reported in Table 4.1. The
template was designed and implemented starting from the challenges we
collected from the survey. The interviewees did not participate in this ac-
tivity.

4.4.1 The documentation template

When documenting software architectures we have to choose a set of
related architecture views. An architectural description is by its nature
multi-view because it has to fulfill different stakeholders that have differ-
ent interests in the system [6]. The model of the SAD documentation
template is shown in Figure 4.1 2, and it’s divided in two main packages:
i) Architecture View and ii) Requirements Views representing two different
viewpoints. Complex software systems can contain thousands of elements,
all with different levels of nesting and detail. Presenting all these elements
inside a single package can be confusing, making the SAD unreadable. Di-
viding the documentation of the entire system into different View Packages
is a solution to split the huge amount of information enclosed in the single
Architectural View into smaller "chunks" of information [51]. Each pack-
age represents a portion of the system with a greater level of detail. Thus,
the overall Architectural View of the system has a hierarchical structure
made of packages and sub-packages. We adopted the UML Semiformal
Notations language as the reference modeling language to design both the
static and dynamic aspects of the architecture design, rather than using
Architectural description languages (ADLs) or informal notations. Usu-
ally, more formal notations, like ADLs, take longer to create, but they
provide less ambiguity and better support for analysis. In contrast, less
formal notations are simpler to use but offer fewer assurances. Although it
was defined as a modeling language for object-oriented systems, UML can
be considered as a general-purpose modeling language for any platforms
or implementation technologies [51].

2All figures in high definition are available at: https://drive.google.com/uc?
export=download&id=1esiBRFJs7G-ao-qFP4bYsps8OxOo0C29

https://drive.google.com/uc?export=download&id=1esiBRFJs7G-ao-qFP4bYsps8OxOo0C29
https://drive.google.com/uc?export=download&id=1esiBRFJs7G-ao-qFP4bYsps8OxOo0C29

4.4. Proposed Template 65

Architecture View Package

The Architecture View contains the views and the static models of the
overall architecture at different levels of detail. The Architecture View
package can contain additional architecture views. This hierarchical or-
ganization supports a refinement process, where a high-level architectural
view can be gradually refined and decomposed into views with a greater
level of detail on the individual architectural units. Each Architecture View
can contain up to three UML diagrams, i.e., C&C Architectural Structure,
Interfaces Catalog, and Architectural Breakdown. The former is a Com-
ponent Diagram, describing the software components, their connections,
and dependencies at a given architectural level. The second model is actu-
ally a Class Diagram reporting the catalog and the description of all the
Interfaces of the software components belonging to a specific level of the
architecture. The latter is a Package Diagram that describes the break-
down of the architecture in terms of packages and their relationship. A
more detailed description of the details, we intend to consider in the tem-
plate, for each software component (SW Component) is shown in Figure
4.2. As rendered in the figure, a SW Component belongs to a package of
the Architectural Breakdown, assuring the traceability between each com-
ponent and the package where it is contained.

Moreover, each SW Component can be distinguished, via stereotype
tags, as a ASIL component if it is involved in safety-related parts of the
software, or as a Quality Management component if not. The Automo-
tive Safety Integrity Level (ASIL) is a risk classification scheme defined
as the result of the hazard analysis and risk assessment (HARA), which
ranges from ASIL D to QM [93]. The most severe level of safety mea-
sures required by ISO 26262 to avoid an unreasonably high residual risk
is designated as ASIL-D. If a software component is designated as ASIL,
it is assigned with at least one safety requirement. Otherwise, Quality
Management (QM) levels indicate that the risk of a hazardous event is
not high enough to warrant safety measures, and no safety requirements
are allocated to the component. In our documentation template each SW
Component also exposes one or more interfaces, where each Interface can
be either Provided, Required, or External, meaning that it is a third party
interface required by the SW Component. Since, at the lowest level of de-
tail, the SW Component is implemented in C, C++, Matlab, or Simulink,

66
Chapter 4. Documenting Software Architecture Design in Compliance with the ISO

26262: a Practical Experience in Industry

it must be taken into account whether it defines some Global Parameters
or it has specific Configuration and Calibration attributes.

<<Package>>
Software Architecture Design Documentation

<<Package>>
Architecture View

<<Component Diagram>>
C&C Architectural View

<<Package>>
Functional Requirement View

<<Package>>
Specification View

<<Package>>
Static View

<<Package>>
Dynamic View

<<Text Diagram>>
Textual Scenario Description

<<Activity Diagram>>
Activity/Data Flows Specification

<<State Chart Diagram>>
State Based Specification

<<Activity Diagram>>
Interruption Flows Specification

<<Component Diagram>>
C&C Dependencies

<<Sequence Diagram>>
Components' Dynamic Interactions

<<Sequence Diagram>>
Interruptions Level Interaction

<<Sequence Diagram>>
Scheduling Level Interaction

<<State Chart Diagram>>
State Based Interactions Specification

<<Activity Diagram>>
Detailed Control/Data Flow

<<Activity State Chart Diagram>>
Concurrency and Synchronization

<<Class Diagram>>
Interfaces Catalog

<<Package>>
Scenario View

<<Text Diagram>>
Textual Requirement Description

<<Package Diagram>>
Architectural Breakdown

<<Package>>
Requirement Views

1..*

0..*

1

0..*

1

1

1

0..1

1

0..*

1

0..*

0..1

1

0..*

0..1

0..*

1..*

<<refined by>>

<<refined by>>

<<refined by>>

<<refined by>>

<<refined by>>

<<refined by>>

Figure 4.1. Model of the Software Architecture Design Documentation Tem-
plate

Requirement Views Package

The goal of this package is to collect all the functional requirement
views of the architecture, where each Functional Requirement View pack-
age contains the views and the models describing both the static and dy-
namic design choices for implementing a specific functional requirement
provided by the architecture. This package contains: one Text Diagram
reporting a textual description in natural language of the requirement, one
or more Scenario View packages and one Static View package. The latter
package holds a Component Diagram named C&C Dependencies describing

4.4. Proposed Template 67

SW Component

Architectural Breakdown
Package

ASIL

QUALITY
MANAGEMENT

Conf&Cal
Attribute

Configuration Calibration

Interface

Provided Required External

Global
Parameter

0..*

defines

0..*

0..*

1

exposes

has

belongs to

Figure 4.2. Details on the Software Component Architecture Design Docu-
mentation

only the dependencies among the components involved for implementing
the requirement. The Scenario View package contains in turn the Specifi-
cation View package and the Dynamic View package. The former contains
UML diagrams for the specification of the requirement. During the focus
group, some practitioners indicated that it is also a good practice to have
textual and visual descriptions of the scenario, hence, we decided to adopt,
when needed, combinations of Text Diagram, Activity Diagram and State
Chart Diagram to specify them. Also during the focus groups, in some
companies emerged the need to specify at high level the presence of inter-
rupt flows; this can be specified by more detailed Activity Diagrams with
Interruptible Regions. According to [51] the role of the Dynamic View is to
enrich the Static View by describing the interactions among the software
components, at runtime, to implement the scenario. Usually, these interac-
tions are described by means of Sequence Diagrams reporting the exchange
of messages between the software components. When needed, in the cases
where a SW Component implements a protocol, the best way to describe
this dynamic behavior is through a State Chart Diagram. Moreover, se-
quence diagrams can be refined by other diagrams to highlight additional

68
Chapter 4. Documenting Software Architecture Design in Compliance with the ISO

26262: a Practical Experience in Industry

aspects of the dynamic interactions between the components such as: i)
sequence diagrams for modeling scheduling and interruption properties, ii)
activity diagrams for describing detailed control and data flow, and iii)
state chart diagrams for modeling state based interactions.

4.4.2 Implementation of the proposed SAD template

The template for documenting the SAD has been implemented in the
Sparx EA modeling environment to support its usage by practitioners. In
this section, we show examples of instances of the template in EA and why
the instances of views and models in combination with features provided
by the tool could be possible a solution for the challenges reported in Ta-
ble 4.1. Figure 4.3 shows how the structure defined by the documentation
template has been reflected in EA, where packages and sub-packages of
the template correspond to folders or sub-folders in the Project Browser
of the modeling tool respectively; each folder contains one or more models
as requested by the template. In accordance with the proposed template,
a SAD project is divided into two main folders, i.e., Architecture View
and Requirement View. The package diagram in Figure 4.4, is an ex-
ample of top-level architectural module view of a multi-tier architecture.
This model, belonging to the Architecture View, reports an eagle view on
the main packages of the architecture, their dependencies, and the sub-
packages they include. EA allows one to navigate the packages and the
sub-packages of the architecture breakdown, up to the most detailed view
of each single component contained in a package. The component diagram,
shown in Figure 4.5, reports an example of view at the lowest level of detail
of a SW component, in accordance with the documentation template of
Figure 4.2. This diagram gives a one-shot view of all the needed informa-
tion of a SW component, such as the provided and exposed interfaces, the
calibration and configuration attribute, the global parameters it defines,
and whether it is an ASIL component or not. In addition, the use of the
stereotypes mechanism in this diagram highlights the configuration and
calibration parameters as well as the safety-related or unrelated nature of
a component, making this information readily recognizable, as indicated
by the need of the practitioners.

The documentation project, shown in Figure 4.3, reports an example
of how the Requirement Views is broken down into multiple folders, each

4.4. Proposed Template 69

Figure 4.3. Documentation Structure of the proposed template inside EA

one for documenting a specific functional requirement. Each functional
requirement contains a high-level textual description and a static view,
that is actually a component diagram like the one rendered in Figure 4.6.
This diagram shows the static relationships among all the SW components
used to implement the requirement. Our example shows a possible decom-
position of the functional requirements documentation into three folders,
each one for a specific scenario, i.e., Base Scenario, Failure Scenario, and
Alternative Scenario. All the details of a scenario are stored in a Spec-
ification View folder containing a Textual Scenario Description that can
be further specified by an activity diagram and/or state-based diagram.
As an example, due to their extensive interaction with the environment,

70
Chapter 4. Documenting Software Architecture Design in Compliance with the ISO

26262: a Practical Experience in Industry

Figure 4.4. Example of High-Level Hierarchical View

automotive real-time and embedded systems are mostly interrupt-driven.
An interrupt can be raised at any time adding non-determinism and con-
currency to the system. A large number of potential system behaviors are
produced as a result of the unpredictable interrupt arrival and preemptive
interrupt handling, making it both challenging and expensive to ensure
the correctness of such systems. As described in [65], [182] to specify at
high level of detail the interrupt-driven nature of the automotive software,
our template recommends the use of activity diagram models exploiting
the Interruptible Activity Regions to surround a group of activities that
can be interrupted by the triggering of an asynchronous event, as shown
in Figure 4.7.

Scenarios can be further documented at the lower levels of detail by
the models stored in the Dynamic View folder. As an example, Figure
4.8 renders a very detailed sequence diagram showing the flow of mes-
sages and the function calls that are executed at run-time by the software
components involved in the implementation of a given scenario. This se-
quence diagram also shows how the interrupt can be modeled at code level.
According to [141], in our template, we suggest the use of Interrupt Se-
quence Diagram, an extension of the sequence diagram that exploits the
int CombinedFragment to model the interruptions’ flow. The ISO 26262
requires that dynamic aspects shall document also time constraints. Our
interviewees indicated this requirement as a challenge, indeed, it emerged

4.4. Proposed Template 71

Figure 4.5. Detailed Component Diagram

that the modeling and the verification of time constraints is often written
down manually on a piece of paper. Our documentation template proposes
to group within the same CombinedFragment a sequence of actions that
must be performed in a given time interval. The Time Constraint notation
described in [113] is placed within the CombinedFragment description, as
reported in the first fragment of Figure 4.8.

A sequence diagram can be further refined by another sequence dia-
gram, like the one shown in Figure 4.9, to model scheduled interactions.
In our template, we suggest using the Loop Fragment for documenting the
scheduled nature of sequences of actions.

The EA modeling environment also provides helpful features for the
practitioners. One of these is the consistency management among the
models since it is possible to reuse the elements already defined in other
models. As an example, if the user wants to reuse components and inter-
faces already designed, he can fetch these elements from the folder in the
project browser and move them toward the new diagram with a simple
drag and drop as shown in Figure 4.10. This action generates a hyper-link

72
Chapter 4. Documenting Software Architecture Design in Compliance with the ISO

26262: a Practical Experience in Industry

Figure 4.6. Component-and-Connector (C&C) View

Figure 4.7. High-level modeling of the interruptions flow

instance of the selected element in the new model and when the element
is modified (e.g., changing its name, adding a function to an interface)
the changes are propagated to all the hyper-link instances of that element,
allowing that the information of the element are kept consistent in all the
other views. Another useful feature provided by the tool is the ability
to export diagrams in .xml files, like the one shown in Figure 4.11. The
analysis of the .xml files can also support the verification of the design
principles defined in the ISO 26262. Indeed, the files can be automatically
analyzed to evaluate complexity metrics such as the average number of
parameters of a function or the average number of functions of interfaces.

4.4. Proposed Template 73

Figure 4.8. Interruptions Level Sequence Diagram

4.4.3 Mapping between challenges and solutions

This section briefly discusses how the identified challenges summarized
in Table 4.1 have been addressed by the solutions provided by the docu-
mentation template implemented in EA. The mapping between challenges
and the proposed solutions are reported in Table 4.2. As table shows, the
challenges from C1 to C4 have been solved thanks to the features provided
by EA. Indeed, through its built-in control functionality, EA allows con-
sistency management between different views. In addition, the package
and sub-package structures of the documentation template found a direct
implementation in EA through the use of folders and sub-folders, making
possible to organize the SAD within a hierarchical structure in support of
the abstraction principle. Challenges C4 – C11 are related to the support
that the documentation should provide for verifying that the principles
required by the Standard are met. The use of .xml files can support a
quantitative analysis for the verification of most of these principles like
the restricted size of the interfaces or the cohesion and the coupling be-
tween software components. Moreover, the use of the proposed detailed

74
Chapter 4. Documenting Software Architecture Design in Compliance with the ISO

26262: a Practical Experience in Industry

Figure 4.9. Sequence Diagram for Scheduling Properties

views for modeling component dynamics interactions, such as the ones for
modeling interrupts or scheduling properties, can support qualitative ver-
ification of the principles related to them. The last group of challenges,
C12 – C16, is related to the Standard requirements for which code-level de-
sign solutions have been proposed. As an example, the use of stereotypes
allows to easily identify safety-related parts, or the introduction of views
to describe the time constraints helps in documenting time behaviors. In
conclusion, from Table 4.2 it is possible to observe that all the challenges
that emerged from the survey have been covered by at least one solution
of the documentation template.

4.5 Industrial Case Study

We conducted a case study to answer the following research questions:

1. RQ1: to what extent is the documentation template accepted by the
practitioners to produce SAD compliant with the ISO 26262§6.7?

2. RQ2: to what extent does the proposed documentation template
overcome the safety-related challenges reported in Table 4.1?

The case study relied on the execution of the steps described in the fol-
lowing.

4.5. Industrial Case Study 75

Figure 4.10. Usage example in Enterprise Architect

ID

Architectural

hierarchical

structure

Detailed SW

Component

view

Stereotype

Mechanism

C&C

Dependencies

Interrupt

Modelling

Time

constraint

Modeling

Scheduling

Modeling

Use of

Enterpirse

Architect

.xml

analysis
Count

✔ 1

✔ 1

✔ 1

✔ ✔ 2

✔ 1

✔ 1

✔ ✔ 2

✔ 1

✔ 1

✔ ✔ 2

✔ 1

✔ ✔ 2

✔ 1

✔ ✔ 2

✔ 1

✔ 1

Count 2 2 3 2 1 1 1 4 5

Proposed Solution

��

��

���

���

���

���

���

��	

��

��

��

��

��

�	

�

��

Table 4.2. Traceability Matrix between Challenges and Solutions

Subjects selection

We recruited from each company the same three software engineers
that were interviewed during the focus groups. We had one 30-minute
meeting with the subjects, where one of the authors presented them the
documentation template implemented in Enterprise Architect.

76
Chapter 4. Documenting Software Architecture Design in Compliance with the ISO

26262: a Practical Experience in Industry

Figure 4.11. xml file exported from EA

Objects selection

In each company we chose a closed project, i.e., a project that had
been already shipped to the customers and was under maintenance, on
which the subjects have been stakeholders, i.e., designer, developer, or
tester. We asked the project managers of each project to select from these
projects 6 requirements having the following three characteristics: (i): the
requirement had to be safety-related; (ii): the requirement had to be of
medium or high complexity, (iii) the requirement was not to have been
designed, nor implemented, or tested by none of the subjects. For each
project, two of the authors and the project manager implemented in EA the
folders and the views for modeling the high-level view of the architecture
like the one shown in Figure 4.4.

Experiment execution

We allocated for each subject two requirements, in this way a require-
ment was assigned to one subject. Then we asked the subjects to model
the requirements assigned to them in the EA template. We gave them two
hours to complete this task, and the subjects were free to analyze and to

4.5. Industrial Case Study 77

take cues from the SAD documentation already implemented without our
template. All the subjects were able to accomplish the task in two hours.

Validation survey

In each company, we had one hour meeting with the three subjects to
present them, for each requirement, both the old and the new produced
documentation. Finally, we submitted them a 30-minute survey made by 4
open questions to answer RQ1 and 16 closed questions for RQ2 answering.
The four open questions are the following.

Q1 Could you briefly describe the improvements, if any, provided by the
documentation template in SAD?

Q2 Could you briefly describe which are the strengths of the documenta-
tion template?

Q3 Did you have difficulty applying the template? If yes, could you please
summarize them briefly?

Q4 Could you briefly describe the limitations of the template?

For each challenge Cx of Table 4.1 interviewed had to answer, by se-
lecting one of the values of a 5 levels Likert scale, the following closed
question:
"Based on your experience, how do you rate the support of the template to
overcome the challenge Cx?".

The possible values of the Likert scale were: 1 : No support, 2 : Low,
3 : Neutral, 4 : Good, 5 : Excellent.

Data analysis and RQs answering

the data were analyzed to obtain the evidence needed for answering
the research questions. Regarding RQ1, the answers collected through
the open questions were independently analyzed by two researchers. They
marked quotes that were seen as interesting for the study and coded them.
The coded data were analyzed to gain findings that were used to answer
the research question. The results of the researchers’ analysis were com-
pared using a data triangulation approach. Moreover, the results were also

78
Chapter 4. Documenting Software Architecture Design in Compliance with the ISO

26262: a Practical Experience in Industry

reviewed by the interviewed subjects to identify and solve possible misin-
terpretations. As for RQ2, the answers were grouped in the box plots chart
shown in Figure 4.12. Every single box plot displays the distribution of
the twelve answers we collected for each challenge.

Figure 4.12. Box plot showing the results of the survey for answering RQ2

Answer to RQ1 from the collected data we summarized the evidence
described in the following.

A1 All the interviewees found improvements in the proposed documenta-
tion template w.r.t. the previous one. In particular, they appreciated
the enhancements due to (1) the aid provided for the automated con-
sistency management among the different views and the models’ ele-
ments, (2) the new kinds of models introduced for describing tempo-
ral constraints and scheduled activities, (3) the interrelated module
views of the software architecture design, at different levels of detail,
and (4) the detailed characterization of the software component in
terms of global parameters, exposed interfaces, and configuration and
calibration attributes.

A2 All the interviewees described at least one strength in the proposed
template. Almost all the participants have pointed out that the
proposed documentation facilitates the verifiability of the principles
requested by the Standard. Two of them found very useful the simple

4.5. Industrial Case Study 79

mechanism to distinguish between safety components and non-safety
components. In particular, they found very promising and helpful
the generation of the .xml file for the evaluation of the complexity
metrics of the project.

A3 Participants did not raise particular difficulties in applying the tem-
plate. Three of them had some trouble in managing the reuse of
modules and interfaces in the construction of detailed sequence dia-
grams. Another one evidenced a possible ripple effect after a reused
element has been renamed.

A4 The main limitations pointed out by the participants are (1) the
lack of traceability links to the requirements that are handled by
each company in a different tool, like IBM Doors or Confluence, and
(2) the lack of mechanisms for supporting multi-users collaborative
work.

These evidences allowed us to answer the RQ1 as follows:

The proposed documentation template has been accepted by the sur-
veyed practitioners as a valid means to produce SAD compliant with ISO
26262§6.7.

Answer to RQ2 from the box plots shown in Figure 4.12 it is possi-
ble to observe that the template has been rated, by all the practitioners,
between Good and Excellent to overcome 9 of the 16 challenges. Only
for challenges C3, C9, and C11 the template actually did not provide any
useful improvement for some of the surveyed practitioners. As for C3 we
understood that in some companies the template adopted in many compa-
nies already had a good abstraction of the architecture at different levels of
details. Regarding C9 although the practitioners appreciated the models
to represent the interruptions, some of them did not judge the template
useful to verify if the designed architecture does a restricted use of them.
From a more detailed analysis of the answers, we realized, for challenge
C11, that the template in some case is very useful to verify how shared
software resources have been managed, but it does not give any informa-
tion on very low level shared resources such as memories, CPUs, hardware

80
Chapter 4. Documenting Software Architecture Design in Compliance with the ISO

26262: a Practical Experience in Industry

devices, etc.. From this analysis, we were able to answer the RQ2 as fol-
lows:

The proposed documentation template was considered, by the surveyed
practitioners, a good solution for overcoming the challenges evidenced in
this study.

Threats to validity

the study presents some threats to its general validity. The main threat
affecting the generalizability of the results is due to the limited number of
companies where the study was conducted. A possible solution to mitigate
this threat is to extend the proposed approach in other companies trying
to diversify the characteristics of the sample. Another threat is due to
the choice of the subjects and objects of the study. Indeed, the same
people interviewed in the focus groups to collect the challenges were the
subjects of the case study that evaluated the documentation template on
requirements already designed and documented. A possible mitigation
is to execute focus groups on a greater sample of interviews, to collect
additional challenges, and to validate the template by involving different
subjects for designing and documenting projects starting from scratch.
Another mitigation is to perform the same study by considering other
parts of the ISO 26262, or even in other domains like railway and aircraft.

4.6 Conclusion and Future Work

In this paper, we presented the results of a practical experience we
conducted in collaboration with four automotive partner companies. We
first performed focus group interviews to understand the challenges that
the practitioners, employed in these companies, have to deal with when
they design the software architectures in compliance with the Standard
Chapter 6, Clause 7 (ISO 26262§6.7). From the interviews, we understood
that these challenges were related to a scant documentation template. To
overcome these challenges we proposed a new documentation template in
accordance to the guidelines suggested by the SEI. Moreover, the template

4.6. Conclusion and Future Work 81

was implemented in the Enterprise Architect modeling tool. Finally, we
performed a case study demonstrating that the proposed template was
accepted by the practitioners employed in the four companies and to what
extent it can be considered as a valid support to overcome the raised
challenges.

The case study also pointed out some limitations that we intend to
address in the future. We plan to find suitable solutions to integrate the
Enterprise Architect documentation template with other tools used in the
software development life cycles, such as requirements management sys-
tems, software repositories, and tools supporting the testing phase. More-
over, we want to overcome the limitation due to the lack of support for
collaborative and multi-user work, a feature that is increasingly required
in agile processes. To mitigate the threats to the validity of our study we
intend to extend our process to other companies also involved in different
domains. Moreover, to allow the reuse of models and views from projects
already implemented, we want to introduce a reverse engineering process
for supporting the re-documentation of software architectures according to
our template. Lastly, we intend to apply machine learning or natural lan-
guage processes approaches to the .xml files for the automated verification
of safety design principles.

Chapter 5
Automated Architecture
Recovery for Embedded
Software Systems: An
Industrial Case Study

Abstract The software architecture documentation of embedded sys-
tems is often overlooked in industry, due to time pressure, project budget
constraints, and lack of culture. However, adequately documenting the ar-
chitecture from different points of view is mandatory to reach the expected
maintainability, testability, and safety requirements. This paper presents a
software architecture recovery (SAR) process for automating the documen-
tation process of embedded system software architectures. The approach
uses static code analysis to extract detailed information about the systems
and reconstruct architectural models. It has been implemented in a tool
that automatically generates different UML models, including package di-
agrams, component diagrams, component and connector diagrams, and
state machine diagrams. To evaluate the effectiveness of our approach, we
conducted a survey with industrial experts within Micron, that allowed us
to assess the accuracy and usefulness of the generated documentation.

84
Chapter 5. Automated Architecture Recovery for Embedded Software Systems: An

Industrial Case Study

5.1 Introduction

Software documentation, as a critical aspect of software development
processes, faces numerous challenges, particularly in industrial settings
where code rapidly evolves through frequent development iterations. The
changes in the code throughout multiple development cycles create a com-
plex set of demands for software documentation. In such a situation, keep-
ing the documentation accurate, corresponding to the contemporary state
of the code, and not getting lost during development processes is chal-
lenging. Indeed, as software projects evolve or change ownership, their
documentation can become outdated or fragmented. Industries engage in
re-documentation efforts to ensure that the documentation remains ac-
curate, comprehensive, consistent, and reflective of the current state of
the project. Moreover, Continuous Integration/Continuous Deployment
(CI/CD) practices have revolutionized software development lifecycles by
automating build, testing, and deployment processes. Integrating docu-
mentation tools into the CI/CD pipelines is essential for establishing a
robust mechanism to ensure continuous harmony between the codebase
and its corresponding documentation. This proactive approach minimizes
the risk of inconsistencies and fosters agility and efficiency in the devel-
opment lifecycle. While various reverse engineering techniques exist for
recovering software documentation from traditional software [114], few are
tailored to embedded software systems [187]. These systems, designed to
work on dedicated hardware platforms, have to satisfy strict real-time and
other quality requirements, are often implemented in low-level coding lan-
guages, and pose unique comprehension challenges. Therefore, there’s a
pressing need for techniques to extract structural and behavioral models
from embedded systems, enhancing comprehension and simplifying main-
tenance.

This paper introduces a tool-supported Software Architecture Recovery
(SAR) process aimed at automatically generating Software Architecture
Documentation (SAD) from the code of embedded software. The SAR
process utilizes a reverse engineering approach, leveraging static analysis
of the C code of embedded software systems to recover models that can
be integrated into the architectural views of the documentation template
proposed in [16]. The resulting SAD includes various UML models, such as

5.2. Related Studies 85

package diagrams, component diagrams, component and connector (C&C)
diagrams, and state chart diagrams. Finally, we conducted a questionnaire-
based industrial survey involving 14 participants from Micron developing
embedded software systems. The survey had a dual purpose: to evaluate
the accuracy and utility of the UML diagrams automatically produced by
the tool and to gather feedback on the limitations of the SAR process for
further refinement. The contribution of this paper is threefold:

1. proposing a tool-supported SAR process that automatically produces
UML models from static analysis of C code for embedded software
systems;

2. conduction of an industrial survey to validate the effectiveness of the
SAR process within real-world contexts;

3. evaluation of the accuracy of the UML diagrams generated by the
tool and its usefulness through a survey involving developers of the
industry in which the study was conducted.

The paper is structured as follows, Section 5.2 describes the studies related
to this work, Section 5.3 presents the proposed SAR process, Section 5.4
discusses implementation details, Section 5.5 presents the industrial survey
we conducted, and finally, conclusions and future research directions are
summarized in Section 5.6.

5.2 Related Studies

Reverse engineering techniques apply to software and hardware sys-
tems, to extract and identify system structure and design for better com-
prehension. This process enhances program understanding in software
systems by extracting design information about components and their re-
lationships, presenting them at a higher abstraction level. Reverse engi-
neering techniques are particularly valuable for maintaining and compre-
hending poorly documented or legacy systems, which are often affected by
Architectural Technical Debt due to resource limitations and inadequate
documentation [110, 196]. As outlined by Nelson et al. [137] reverse en-
gineering can have different goals, i.e., Design Rediscovery, Reengineering,
and Redocumentation. Design Rediscovery aims to develop a system model

86
Chapter 5. Automated Architecture Recovery for Embedded Software Systems: An

Industrial Case Study

at a higher level of abstraction. Reengineering combines reverse and for-
ward engineering techniques to understand which functionalities need to
be refactored, deleted, or added. Restructuring aims to refactor the whole
system to improve maintainability, readability, or other quality attributes
by keeping the system’s functionalities intact. Lastly, Redocumentation
aims at generating new documentation of updating existing ones depicting
the system behavior. Moreover, reverse engineering processes rely on the
execution of three steps [178]: Extraction, to gather data from the source
code and existing documentation to retrieve design and construction arti-
facts; Abstraction: to synthesize and abstract the extracted information in
a format less dependent on its implementation; Presentation: to convert
the abstracted information into a format that is user-friendly and easy to
comprehend.

5.2.1 Software Architecture Recovery (SAR)

SAR processes are an extension of reverse engineering and focus on ab-
straction and presentation, highlighting the architectural structure [185].
SAR addresses issues like architectural discrepancies during software evo-
lution [193, 169, 74]. SAR techniques are critical for software maintenance,
especially in understanding and modifying legacy systems. They assist in
conformance checking, reconstructing descriptions, and analysis for meet-
ing new requirements [47]. Different SAR techniques have been developed,
ranging from static and dynamic analysis to machine learning approaches.
Static analysis does not require the executing of the code and extracts
architectural structures and dependencies [181]. Dynamic analysis, involv-
ing code execution, aims to create high-level system models. Revealer
[148], using lexical and syntactic code analysis, abstracts high-level archi-
tectural views using regular expressions and XML-based patterns. Sora et
al. [173] introduced a static analysis-based approach using PageRank algo-
rithm to identify important classes. NEGAR, a machine learning algorithm
by Chem et al. [45], uses graph representations of software dependencies
for clustering related files, aiding maintenance. These approaches vary in
accuracy and effectiveness but collectively contribute to a deeper under-
standing and maintenance of software systems.

5.3. The proposed reverse engineering process 87

5.2.2 Reverse Engineering of State Chart Diagrams

Recovering state machine behavior involves two main strategies: dy-
namic analysis, which logs features and execution flow through code in-
strumentation and static analysis, based on source code, allowing for cus-
tomization. Static analysis as the one proposed by Walkinshaw et al. [132]
utilizes symbolic execution and program conditioning on source code. It
identifies state transitions and annotates them with corresponding code
segments, observing that transition points often correlate with specific syn-
tax elements. This model is especially effective for small, structured sys-
tems like object-oriented ones. Tonella et al. [188] consider each method
call on an object as a transition, an assumption not applicable to embed-
ded firmware with implicit state machines. Similarly, Kung et al. [106]
and Sen and Mall [162] employ symbolic execution for automatic state
machine extraction from C++ and Java sources, focusing on small meth-
ods and state variables influencing branching in object-oriented systems.
Bae et al. [25] suggest generating state charts from contract-based speci-
fications, using method pre and postconditions instead of path conditions,
and strengthening transition conditions when necessary. Researchers like
van den Brand et al. [194], Knor et al. [102], and Somé et al. [172] have
worked on extracting state machines from procedural code with specific
patterns, like nested-choice structures. However, these techniques are lim-
ited and not widely applicable to more diverse code categories.

5.3 The proposed reverse engineering process

In this section, we present the proposed Software Architecture Recov-
ery (SAR) process, which is based on static analysis and used to recover
both the structural and behavioral views of embedded software. According
to the five-axis taxonomy for SAR characterization presented by Ducasse
et al. [61], our SAR focuses on documentation and conformance. Our
SAR was used to analyze an embedded firmware developed for managing
NAND memory systems. This firmware provides different functionalities
for memory access to external hosts and it’s designed to be configurable for
running on different hardware platforms. Moreover, the firmware follows
a layered architectural style, where the lower layers are strictly related
to the hardware architecture. To ensure this portability requirement, the

88
Chapter 5. Automated Architecture Recovery for Embedded Software Systems: An

Industrial Case Study

firmware is developed according to company-specific coding practices that
make extensive usage of macros and pre-processor directives. As a con-
sequence, the resulting code is difficult to analyze and comprehend. The
SAR outputs include various UML diagrams, including Package, Compo-
nent, Component and Connector (C&C), and State Chart models. The
recovered models can fill the views of the documentation template pro-
posed in [16], designed for documenting ISO26262-compliant automotive
software systems. This template is suitable for documenting embedded
software systems as well. The SAR process, as illustrated in Figure 5.1,
consists of four phases. It has been implemented in a tool that exploits the
features of both Enterprise Architect1 (EA) for UML modeling and reverse
engineering, and Pycparser2, a Python library for analyzing C code and
generating Abstract Syntax Trees (AST). In the following, we provide an
overview of these phases and their inner activities.

1. Pre-Processing: This phase includes several activities: first, during
the Source Code Compilation at “Preprocessing Stage", the compilation is
stopped early to expand macros, resolve #include directives and headers,
and remove comments, producing the preprocessed source code. This step
is essential for processing with Pycparser and Enterprise Architect. Next,
in Data Cleaning, the source code is cleaned up of all the code generated
by the expansion of header files and directives, resulting in a clean version
free of macros or keywords. Finally, in Source Code Folder Structure Gen-
eration, the source code is reorganized into a new configuration of folders
and subfolders that reflects the architectural design of the software.

2. Extraction: This extraction process involves two main activities:
first, the Enterprise Architect Reverse Engineering feature is used to gen-
erate structural models of the software system, that include package and
component diagrams. Second, the Parsing of preprocessed code involves
adapting and parsing the preprocessed code to produce an abstract-syntax
tree (AST). This AST is subsequently analyzed to create an intermediate
representation (IR) of a state chart, which includes detailed information
about states and transitions, including guards, signals, and triggers.

1Enterprise Architect: https://sparxsystems.com/
2Pycparser: https://github.com/eliben/pycparser

https://sparxsystems.com/
https://github.com/eliben/pycparser

5.3. The proposed reverse engineering process 89

Figure 5.1. The proposed SAR process

3. Abstraction: The models produced by EA are enhanced by ex-
tracting component interfaces and generating C&C diagrams. This pro-
cess includes several key activities: First, Static Dependency Extraction
involves analyzing the source code to identify static dependencies between
components. Next, in Extraction of Component Interfaces, the XML file
representing the extracted UML diagram is automatically edited to in-
clude UML interfaces. C&C Diagram Generation follows, utilizing the list
of static dependencies and the XML file to generate the diagrams automat-
ically. The State Chart IR Conversion to XML, converts the intermediate
representation (IR) of the state chart in an XML format compatible with
the syntax of EA. Finally, a Merge between the XML file containing the
State Chart Diagram and the XML file containing the structural model
is performed to obtain an XML file that integrates both structural and

90
Chapter 5. Automated Architecture Recovery for Embedded Software Systems: An

Industrial Case Study

behavioral models.

4. Presentation: Using Enterprise Architect, XML files are displayed
as UML diagrams. The Enterprise Architect Visualization activity requires
inputting the merged XML into the tool to create the UML representation.

5.4 Implementation Details

In the following, we describe the adopted technological solutions to
recover the architectural models.

Pre-processing. Is a crucial activity in our recovery process, designed
to address company-specific coding and programming practices, especially
the extensive use of macros that complicate analysis and understanding.
This phase standardizes the code’s syntax to align with the common syntax
standards of the programming language. Our starting point is a collection
of source code files organized in a single folder, including both .c files and
associated header files (.h). To align the source code with the requirements
of EA and Pycparser, it undergoes a pre-processing phase via the C com-
piler. This is ensured by executing the compiler command gcc -E which
interrupts the compilation of the code in the preprocessing phase, result-
ing in what we define as preprocessed source code. This phase expands
macros, resolves #include directives and headers, and removes comments
from the source code. The pre-processed code has a dual function: it is
routed to Pycparser for the identification of the finite-state machine and
is simultaneously submitted to the Data Cleaning step. After this step, a
variant of the source code identical to the original is obtained, but with
expanded macros and keywords and resolved directives.

Package Diagram generation. In the provided project, the names of
the .c files and their corresponding .h files reflect the layered structure
of the embedded software system. We implemented a Python script that
analyzes the names of all pairs of .c and .h files and creates a package
structure, in terms of folders and sub-folders, mirroring the architecture
of the software system. The newly-organized source code is then input
into EA to leverage its static code analysis capabilities and generate UML

5.4. Implementation Details 91

diagrams. Consequently, the tool produces a package diagram of the entire
project, reflecting the folder and sub-folder structure provided as input, as
shown in Figure 5.2 and Figure 5.3.

Figure 5.2. Package Diagram
browser view

Figure 5.3. Reconstructed Pack-
age Diagram

Component Diagram generation. For each .c and .h file pair, EA au-
tomatically generates a UML class diagram, like the one shown in Figure
5.4. These diagrams include attributes, operations, structs, and enumer-
ations. Attributes and operations are classified as public if declared in
the .h file and implemented in the .c file; otherwise, they are private if
only defined in the .c file. EA allows these UML diagrams to be converted
into an XML format for easy modification. These XML files are struc-
tured into tables such as t_package, t_object, and t_diagram, each one
holding different UML elements like packages, classes, and diagrams re-
spectively, as shown in listing 5.1). Moreover, each table row represents a
UML element with attributes including Name, Object_Type, and ea_guid,
the latter serving as a unique identifier for the element. To enhance the
diagrams generated by EA and align them with the reference metamodel,
we developed a Python script to manipulate the XML files representing
UML diagrams. Firstly, the script updates the Object_Type attribute of

92
Chapter 5. Automated Architecture Recovery for Embedded Software Systems: An

Industrial Case Study

each Class object to convert it into a Component object. Subsequently, an
Interface object is created and added to the t_object table. To achieve
this, we follow the XML file structure, setting the Object_Type attribute
to Interface and adding the ea_guid of the package where we intend to
place the interface within the <Extension> tag. This ensures that the
Interface and its corresponding Component reside in the same package.
Next, the tool generates a Realization Object_Type to establish the re-
lationship between the Interface and Component. This is achieved by
specifying the respective ea_guid of the interface and component within
the <Extension> tag of the realization object being created. Finally, the
script analyzes the t_operation table, appropriately modifying the ea_guid
within the <Extension> tag to bind the interface with the operation it
should contain. In Figure 5.5, the diagram reconstructed by our tool is de-
picted, where we can observe the interface extracted from the component.

Listing 5.1. Sample of the XML file generate by EA
<Package name="My␣Project" guid="{350E9CE0−4958−42c0−8F83−1E449CB016AC}">

<Table name="t_package">
<Row> [...] </Row>

</Table>
<Table name="t_object">

<Row>
<Column name="Object_id" value="4"/>
<Column name="Object_Type" value="Component"/>
<Column name="Diagram_id" value="2"/>
<Column name="Name" value="My_Component"/>
<Column name="Author" value="marco"/>
<Column name="Package_id" value="2"/>
<Column name="GenType" value="C"/>
[...]
<Column name="Scope" value="Public"/>
<Column name="ea_Guid" value="{A7FCE46C−3C14−48c6−8BFB−07FAB08F22D7}"/>
[...]
<Extension Package_ID="{350E9CE0−4958−42c0−8F83−1E449CB016AC}"/>

</Row>
<Row> [...] </Row>

</Table>
<Table name="t_diagram"> [...] </Table>
<Table name="t_operation"> [...] </Table>
<Table name="t_connector"> [...] </Table>

</Package>

Component and Connector (C&C) Diagram generation. Using
gcc to compile code it is possible to generate a MapFile, which details
the memory layout of code including functions and variables. This file
also includes cross-references among symbols to identify function calls,
enabling the extraction of static dependencies list between different func-
tions within the system. We have developed an additional Python script

5.4. Implementation Details 93

Figure 5.4. Class Diagram reconstructed by Enterprise Architect

Figure 5.5. Component Diagram reconstructed by the tool

to automatically reconstruct C&C diagrams by taking as input the list
of static dependencies extracted from the MapFile and the XML files
of the UML diagrams. For each component present in the XML file,
the script adds Provided and Required interface objects, specifying their
Object_Type and inserting the ea_guid of the corresponding component in
the <Extension> tag. Subsequently, the script inserts a new diagram ob-
ject into the t_diagram table of the XML file. Leveraging the list of static
dependencies, the script can: i) incorporate into the diagram the compo-
nents with which the component in question interacts, ii) reconstruct the
dependency relationships between the various components, which are ap-
propriately created and inserted into the t_connector table. At the end of

94
Chapter 5. Automated Architecture Recovery for Embedded Software Systems: An

Industrial Case Study

Figure 5.6. C&C Diagram reconstructed by the tool

the process, the C&C diagram for each component is reconstructed, and
the new XML file, representing the UML representation, is provided as
output, depicted in Figure 5.6.

State Chart Diagram generation. Our SAR process also reconstructs
State Chart diagrams from the source code, to represent the system’s states
and transitions for a better understanding of its behavior. To achieve this,
we rely on the task table, a table containing the function pointer of the
APIs scheduled by the embedded operative system as a task. This table
is used to identify tasks in the pre-compiled source code, ensuring proper
parsing. The tasks are units of execution and are implemented as state
machines. After processing the code into a parsing tree, we generate an
intermediate representation (IR) in JSON format, which is then converted
into XML format, to be given as input to EA. The recovery of state chart
diagrams relies on several assumptions. It presupposes that each task
consistently produces a return value indicating its status and employs a
switch-case construct to define a state machine. The tool also requires
well-formed switch-case statements composed solely of case-statements
to define behavior. The state variables are identified as the condition ex-
pression in the switch-case statement. Signals and triggers are discerned
through the use of APIs provided by the embedded operating system.
Furthermore, tasks may include multiple exit points, and the presence of
spaghetti code allows for the use of jump instructions such as goto. All
these cases are handled appropriately by our tool. The proposed reverse

5.4. Implementation Details 95

engineering approach relies on the execution of the following 4 steps:

Prepare state-machine before starting: the preprocessed source code
is elaborated to simplify the abstraction of state-machines. This
adaptation is necessary because the C language allows various pat-
terns for describing state machines, primarily using the switch-case
structure. In some cases, switch-case statements are embedded
within selective or iterative flows, which are not well-formed for
straightforward conversion into state chart diagrams. Therefore,
these switch-case statements require refactoring to align the C con-
structs with the state chart diagram representation.

State variable definition: according to the criteria outlined by Said [153],
our approach is based on a specific pattern of switch-case imple-
mentation. In this context, the state variable is defined as the con-
dition expression of the switch statement.

Guard & transition definition: drawing from Walkinshaw’s strategy
[132], our method extracts guards from source code analyzing two key
variables: the state variable, discerned within switch-case state-
ments, and the return variable, typically located at the begging of
variable declarations. These transitions between states are further
classified into three categories: event-driven, goto, and rescheduling
transitions. Event-driven transitions correspond to specific events,
while goto transitions occur independent of triggers, and reschedul-
ing transitions follow guard condition verification, subsequently reschedul-
ing tasks in subsequent cycles. Furthermore, to enhance readability,
we prioritize transitions, inspired by Said et al. [153], over a sequen-
tial read approach, and conduct boolean reduction on conditions.
Additionally, recurring sub-expressions or API calls in the code are
identified and simplified with the use of symbolic names.

Generate XML diagram EA compatible: the step for generating the
XML output file involves several steps. Initially, Entry and Exit
point UML state chart objects are created to mark the beginning
and end of the state machine. An additional Exit point may also
be generated to handle error conditions if necessary. Subsequently,
node states are defined for each state in the state machine, transitions

96
Chapter 5. Automated Architecture Recovery for Embedded Software Systems: An

Industrial Case Study

between states are established, and guards, triggers, and signals are
applied as needed.

In Figure 5.7, we present an example of a task-based switch-case statement.
Figure 5.8 shows the corresponding reconstructed state chart diagram.

TaskReturn_t task_example(void* args) {
TaskReturnState_em ret;
switch(taskContext.state){
STATE_CMD_GET: case STATE_CMD_GET:{

CmdPtr_t* CmdHandler = HAL_GetCommand();
if (CmdHandler != NULL){

taskContext.cmd = CmdHandler;
goto STATE_CHECK_PRIORITY;

}
return TASK_READY;

}
STATE_CHECK_PRIORITY: case

STATE_CHECK_PRIORITY: {
CmdHeader_t* cmd =

taskContext.cmd->header;
if (cmd->flag & ATTR_MASK) ==

PRIORITY_MASK){
if (cmd->hit){

OS_WaitEvent(EVENTID_HIGH_PRIORITY_DONE);
return TASK_SUSPEND;

}
else

cmd->flag =
Analyze_Command(CmdHandler);

}
}
STATE_EXECUTE_CMD: case STATE_EXECUTE_CMD: {

uint8_t cmdIdx = taskContext.cmd->cmdIdx;
CmdPayload_t* cmdEntry =

taskContext.cmd->payload;
if (CmdAbortStatus(cmdIdx) == true){

if(OS_ResourceLocked() == true)
OS_RealeseResource();

goto STATE_CMD_GET;
}

}
}

Figure 5.7. Task Code Example

Figure 5.8. Reconstructed Task
State Chart Diagram

5.5 Experimental evaluation

We aimed to assess the effectiveness of the proposed documentation
process in terms of extracting accurate information from the source code
and representing it in UML diagrams, as well as its usability in aiding
system comprehension. To achieve this, we conducted a survey involving

5.5. Experimental evaluation 97

software engineers from the embedded systems domain. The survey aimed
to answer the following Research Questions (RQs):

1. RQ1 - To what extent the recovered software architecture documen-
tation is considered accurate by the practitioners?

2. RQ2 - If important information is missing, what kind of information
is it?

3. RQ3 - To what extent have the practitioners found the proposed soft-
ware architecture recovery (SAR) tool useful?

Interviewees selection. We recruited 14 embedded software engineers
currently employed in Micron where the case study was conducted. Each
participant has been with the company for at least three years and is ex-
perienced in working on software documentation and development tasks.
Additionally, all the engineers understand the principles of software archi-
tecture documentation and are familiar with using UML notation.

Questionnaire Design. The 14 participants were surveyed through a
questionnaire we appositely designed to answer the three RQs. The ques-
tionnaire was organized into three sections, to evaluate the accuracy and
comprehensibility of diagrams generated by the tool, along with evaluating
the tool’s usability. An additional fourth section was introduced to collect
data about the strengths and the limitations of the tool. It consisted of
30 questions, mainly closed-ended, with respondents given the opportu-
nity to provide additional feedback through open-ended questions. The
closed-ended questions were measured using a 5-point Likert scale. The
questionnaire was implemented in Microsoft Forms. The data analysis re-
lied on both quantitative and qualitative methods to answer the research
questions.

Survey execution. We conducted a preliminary training phase with all
the participants, by executing two focus group sessions, each one lasting
two hours. The first focus group session introduced the participants to the
tool and included small reverse engineering tasks to familiarize them with
its use. Three days later, the second focus group session was devoted to
exploring more in detail the tool’s features and addressed any doubts that

98
Chapter 5. Automated Architecture Recovery for Embedded Software Systems: An

Industrial Case Study

arose during the reverse engineering tasks performed in the first session.
Following this training, participants were tasked with a software documen-
tation recovery exercise to be executed with the tool. Each task involved
two components of the system they had previously manually designed and
implemented. All components were of medium complexity according to
the company standards, and each respondent analyzed two different com-
ponents. We assigned them one hour to complete the task. After that, the
respondents filled out the Microsoft Forms questionnaire.

Answer to RQ1 - To what extent the recovered software archi-
tecture documentation is considered accurate by the practition-
ers? The box plot in Figure 5.9 shows the accuracy distribution for the
diagrams reconstructed by the tool, based on the responses from practi-
tioners. Higher values indicate a good perception of accuracy. From the
chart, we can observe that the distribution of the State Chart Diagram is
skewed on the higher part of the graph, indicating that it is considered to
be reconstructed with a high level of accuracy.

Component C&C State Chart Package
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Va
lu

es

Figure 5.9. Box plot showing the accuracy distribution of diagrams recon-
structed automatically by the tool

Both the Component Diagram and Package Diagram have a positive
median, suggesting that the accuracy of these two diagrams is generally
regarded as good. The C&C diagrams have a distribution concentrated

5.5. Experimental evaluation 99

on lower values, and the presence of outliers with low values indicates
a negative perception of their accuracy. From the analysis of open-ended
answers, we observed that some respondents mentioned that the tool some-
times struggled to accurately identify interfaces, enumeration variables, or
functions, which they had to manually add to the diagram. They believe
this issue may be attributed to the wide variety of programming styles
present in the code.

Our analysis revealed a generally positive perception of accuracy, par-
ticularly with State Chart diagrams being deemed the most accurate.
Component and Package diagrams were also considered sufficiently ac-
curate, while improvements were identified as necessary for the C&C dia-
grams.

Answer to RQ2 - If important information is missing, what kind
of information is it? To identify the types of missing information, two
authors manually analyzed the responses to the open-ended questions, ex-
tracted keywords from the responses, and finally classified the missing
information into the four categories shown in Figure 5.10. Another author
validated the proposed classification. The histogram rendered in Figure
5.11 shows the distribution of the categories of missing information. In Fig-
ure 5.11, the “Relationship" category was identified as the most commonly
missing element, reported by 32.4% of respondents. This category high-
lights the tool’s difficulty in capturing interactions within the diagrams,
such as the realization relationships between components and interfaces,
dependency relationships between provided and required interfaces, and
transitions between states. The “Module Structure" category was the next
most frequently mentioned, with 26.5% of responses indicating that the
tool does not adequately capture structural details of the recovered Com-
ponents such as methods or attributes. Both the “Model Element" category
and “No Missing" were noted by 20.6% of respondents each. These results
indicate that about one-fifth of users find shortcomings in how the tool
reconstructs system components, packages, and interfaces, while another-
fifth see no missing information.

Answer to RQ3 - To what extent have the practitioners found the
proposed software architecture recovery (SAR) tool useful? The

100
Chapter 5. Automated Architecture Recovery for Embedded Software Systems: An

Industrial Case Study

Category Keyword

Relationship

Realization relationship be-
tween component and Interface
Dependency relationship be-
tween component and enumer-
ation
Dependency relationship be-
tween provided and required
interfaces
Transitions between State
Dependency between package

Component
Properties

Method
Enumeration
Required Interfaces
Provided Interfaces
Attribute Type

Model
Element

Interface
Component
Package

No Missing No missing information

Figure 5.10. Identified cat-
egories of missing information
and their relative keyword

Relationship Component
Properties

Model
Element

No Missing0

2

4

6

8

10

%
 V

al
ue

32.4%

26.5%

20.6% 20.6%

Figure 5.11. Distribution of the
missing information categories

pie charts in Figures 5.12 and 5.13 display the results of responses to spe-
cific questions regarding the tool’s usefulness in aiding the comprehension
of the embedded system architecture. As shown in Figure 5.12, the major-
ity of the interviewed participants (71.4%) agreed that the tool is useful in
supporting the comprehension of the system. Similarly, as shown in Figure
5.13, a significant portion of the respondents (61.5%) expressed a prefer-
ence for the models automatically generated by the tool to understand the
system architecture. To answer RQ3, we found strong evidence indicating
a positive response regarding the effectiveness of the tool in facilitating the
understanding of architectural elements and relationships. These aspects
are often complex and challenging to discern from code alone. However,
some respondents remained neutral, suggesting that certain aspects of the
reconstructed documentation may not fully meet the needs or expecta-
tions of all practitioners. These respondents prefer consulting the source
code over UML diagrams for understanding the system’s structure. Oth-
ers noted that while auto-generated documentation aids in comprehension,
it lacks in capturing the system’s “semantics". These limitations suggest

5.5. Experimental evaluation 101

potential areas for future development, such as implementing customized
rules to better suit various working contexts.

Figure 5.12. Pie chart on the
closed-ended question: “Based on
my experience in using the tool,
I find it useful in supporting the
comprehension of the system.”

Figure 5.13. Pie chart on the closed-
ended question: “Which reconstructed
models, whether generated automati-
cally or manually, do you find most
useful for understanding the system?”

Threats to validity. Our study faces several potential threats to valid-
ity. The primary external threat arises from the fact that the SAR process
proposed is tailored specifically to the company programming practices
in which the case study was conducted, resulting in a static analysis of
the process customized for the C code developed by Micron. We plan to
mitigate this threat by extending the case study to other industries devel-
oping embedded software systems. Another threat to external validity is
the heavy reliance on predefined reverse engineering rules within the EA
tool. We intend to mitigate this threat by implementing tool-independent
reverse engineering rules. Finally, the narrow scope of our company survey,
involving only a small number of participants from a single organization,
may also impact the generalizability of the study. To mitigate this threat,
we plan to interview more personnel from Micron and expand the survey
to include other companies in the embedded systems software development
sector.

102
Chapter 5. Automated Architecture Recovery for Embedded Software Systems: An

Industrial Case Study

5.6 Conclusion and Future Works

This paper presented a tool-supported Software Architecture Recovery
(SAR) process for the automated generation of Software Architecture Doc-
umentation (SAD) from C code in embedded systems. The evaluation was
conducted via a questionnaire with 14 industry professionals, demonstrat-
ing the tool’s utility in enhancing documentation practices and providing
significant insights into its performance and areas for improvement. In
conclusion, our tool demonstrated to be accurate in reconstructing docu-
mentation and supporting system comprehension, addressing critical chal-
lenges within the embedded systems industry.

We’ve identified several areas for future work based on the insights from
this initial study. To enhance the applicability of our tool, we’ll extend the
SAR process to other companies in the embedded software industry, includ-
ing those using different programming languages, ensuring adaptability to
diverse development environments. We also plan to develop independent
reverse engineering rules to reduce reliance on EA-specific ones, making the
SAR process more versatile across various software development contexts.
Additionally, we’ll expand our industrial survey to include more partici-
pants from the surveyed company and to encompass additional companies,
gathering broader feedback to refine the tool and better cater to different
organizational needs.

Chapter 6
Characterizing Software
Architectural Metrics for
Continuous Compliance in the
Automotive Domain
Abstract The software of critical systems, such as automotive, is in-
creasingly required to change and evolve after production. In the automo-
tive domain, this is a consequence of self-driving and connected cars, which
continuously collect data from the field that is then exploited to produce
safer and more advanced and reliable versions of the used algorithms or
AI modules. Consequently, there exists a need for techniques and tools to
facilitate incremental and Continuous Compliance with safety and security
standards.

This paper focuses on software architectural metrics that can be used
for Continuous Compliance in the automotive domain. Our initial stride
involved a literature review to find metrics capable of assessing software
architectures. Subsequently, in collaboration with architecture, safety, and
security experts in the automotive domain, we proposed a framework defin-
ing the characteristics these metrics must possess for continuous evaluation
of software architectural compliance. The framework was used to charac-
terize 48 metrics gathered from the literature review and to associate them
with a score expressing their suitability to be used in software architecture

104
Chapter 6. Characterizing Software Architectural Metrics for Continuous

Compliance in the Automotive Domain

Continuous Compliance processes.

6.1 Introduction

The automotive domain lives a revolution guided by business goals and
technology drivers [52, 26], such as self-driving, connected vehicles, and
over-the-air software updates [38]. The most advanced original equipment
manufacturers (OEMs) often define themselves as software companies [11].
They are selling to their customers the possibility to have new functional-
ities and features on their cars over time via over-the-air (OTA) software
updates [143, 4, 7]. The possibility of performing OTA updates of software
is also an important safety and security instrument, e.g., to push, as soon
as possible, new versions of algorithms that fix security or safety issues or
that reduce the risks of accidents. However, OTA updates are also risky
and can easily compromise the functioning of vehicles. This is the case of
the problems recently caused by an OTA update to Rivian’s vehicles due
to a fat finger where the wrong build with the wrong security certificates
was sent out: the 2023.42.0 update fails and unintentionally soft-bricks the
infotainment systems of R1T and R1S all-electric trucks.1 Even though
the update did not brick the vehicles completely (only the entertainment
system is affected), this example clearly explains the need for mechanisms
and instruments to avoid undesired, costly, and potentially dangerous side
effects of software updates.

The possibility of performing OTA updates after production and when
the systems are already used in the operations environment poses ques-
tions on the software certification process. The typical process of certify-
ing software before production becomes obsolete and new approaches of
incremental and Continuous Compliance to safety and security standards
are necessary [163, 57, 126, 129]. This is a challenging and complex prob-
lem that touches various facets from technical aspects to processes and
organizational ones [163].

In this paper, we aim to contribute to this problem by identifying and
characterizing architectural metrics that can be used for Continuous Com-
pliance. To give more concreteness to the results, we focus on the automo-
tive domain. As a first step, we study the literature to extract and identify

1https://insideevs.com/news/696177/rivian-ota-update-softbricks-evs/

https://insideevs.com/news/696177/rivian-ota-update-softbricks-evs/

6.2. Background and Related Studies 105

metrics that can be potentially used in Continuous Compliance processes
in the automotive domain. As a parallel activity, we build a framework
to evaluate metrics and characterize those that can be used in Continuous
Compliance processes. This framework is built in collaboration with some
experts in safety and security certification and software architectures. We
then applied the framework to the list of collected metrics to identify and
characterize 48 metrics that, according to our study, can be used in Con-
tinuous Compliance processes.

Summarizing, the main contributions of this paper are:

1. at the best of our knowledge this is the first work proposing a set of
metrics that could be applied to evaluate the Continuous Compliance
of software architectures in the automotive domain;

2. a general framework, defined in collaboration with practitioners for
characterizing a metric from the point of view of Continuous Compli-
ance. The framework points out the main attributes and the possible
values these attributes can assume;

3. an evaluation system, based on the framework’s attributes, to eval-
uate a score indicating the suitability of a metric for being applied
in Continuous Compliance processes.

The paper is structured as follows. Section 6.2 provides background in-
formation and compares the work with related works. Section 6.3 describes
the methodology used in this study. Section 6.4 discusses and shows the
results of the analyses on the metrics that have passed the selection pro-
cess. Section 6.5 reports threats to the validity of the study and, finally,
the paper concludes in Section 6.6 with final remarks and directions for
future works.

6.2 Background and Related Studies

The concept of Continuous Compliance for a safety-critical domain,
such as the Automotive one, was defined to manage safety in an environ-
ment increasingly subject to safety standards and software updates [164,
156]. The importance of software architectures for the development of com-
plex and safety-critical software systems such as Automotive is universally

106
Chapter 6. Characterizing Software Architectural Metrics for Continuous

Compliance in the Automotive Domain

recognized [99]. Over the years, numerous metrics have been proposed to
calculate specific aspects of the quality of architectures [170]. Since, to
the best of our knowledge there are no works on architectural metrics for
Continuous Compliance, in this section, we explore the state of the art
regarding Continuous Compliance, in Section 6.2.1, and metrics for archi-
tectures, in Section 6.2.2.

6.2.1 Continuous Compliance

Scientific literature is scarce on Continuous Compliance in the automo-
tive domain. To the best of our knowledge in the automotive domain, there
are only two articles that discuss Continuous Compliance. In the first [164]
the authors discuss the challenges and problems that led to the develop-
ment of the Continuous Compliance concept. In the second article [156]
the authors focus on the main applications of Continuous Compliance in
the automotive domain and then give a formal definition of the term Con-
tinuous Compliance. Finally, they provide an overview of the Continuous
Compliance process applied to the automotive domain.

The recent literature on Continuous Compliance in general domains
aims to ensure adherence to security, safety, privacy, and internal guide-
lines. In the article [70], Filepp et al. developed a framework called “Con-
tinuous Compliance". This tool aligns teams with the company’s poli-
cies and best practices while identifying anomalies. D’Alessandro et al.
[57, 126] discuss the economic problem companies face if they violate pri-
vacy requirements. The work in [57] introduces Continuous Compliance
Assurance (CCA), a module that detects privacy anomalies in XML mes-
sages. In the second article, CCA is tested and confirmed effective in
various use cases.

Cheng et al. [49], propose a solution to the inefficiency and high cost
of the manual compliance acquisition process for security in software sys-
tems. Their approach is based on ontologies, natural language processing,
heuristics, and secure systems development lifecycle to achieve Continuous
Compliance with standards and regulations. The framework they suggest
harmonizes existing ontologies and defines test cases to be run continu-
ously. However, the natural language process engine for populating the
ontology struggles with expressing itself effectively.

In their article, Moyon et al. [129], argue that as agile development

6.2. Background and Related Studies 107

methods continue to advance, ensuring security and compliance becomes
increasingly important, given that security and compliance techniques have
traditionally evolved linearly. To address this issue, the authors propose
a methodology that enables continuous and safe development by mapping
standard security requirements into agile models. This methodology in-
volves three main steps: (i) creating different visual models that comply
with the standards, (ii) evaluating these models using natural language de-
scriptions, and (iii) using the models to verify completeness, correctness,
and consistency.

At the Continuous software engineering: Challenge areas and frame-
works workshop [103], several speakers discussed the challenges faced by
software systems like adaptive systems, microservice-based systems, mobile
applications, IoT applications, and cyber-physical systems. These systems
have multiple components that need to be adaptable, reconfigurable, and
reusable while maintaining specific performance levels, reliability, stability,
security, and compliance. The authors also addressed key challenges for
monitoring and Continuous Compliance, including determining when and
what to monitor, interpreting monitored data, and adjusting monitoring
intensity.

The work of Dännart et al.[63] stresses the need to comply with secu-
rity standards to gain customers’ trust. They want to comply with the
IEC 62443 standard but face the challenges of ensuring security in an agile
environment. They propose an assessment methodology for agile security-
compliant processes, based on the SAFe and IEC 62443-4-1 models, and
define quality artifacts from levels 1 to 4. They create a compliance matrix
by combining quality artifacts with process maturity levels. They evalu-
ated their work by conducting expert interviews.

In their publication [145], Phipps and Zacchiroli present a novel chal-
lenge regarding the upkeep of open-source code in software systems by
guaranteeing its Continuous Compliance. Although regular checks are per-
formed, automating and ensuring Continuous Compliance requires the use
of several tools. The authors propose the implementation of linked tools
to achieve this goal.

In [50] Cheng et al., proposes an automatic method for complying with
increasing numbers of requirements, focusing on security improvements
to existing ontologies. The paper presents a framework for Continuous

108
Chapter 6. Characterizing Software Architectural Metrics for Continuous

Compliance in the Automotive Domain

Compliance monitoring of multiple requirements documents, with flexible
and customizable audit and validation using test cases and unit testing
frameworks.

Bicaku et al. [31], address the increasing challenges of compliance
with standards due to globalization and digitization of industrial systems.
They provide a set of guidelines and standards for best practices and offer
a metric template for compliance verification. Additionally, they present a
prototype of the standard compliance monitoring and verification frame-
work for an Internet of Things industrial use case.

6.2.2 Metrics for Architecture

Concerning metrics for software architectures, the literature offers nu-
merous publications. The state of the art in this field is summarized in
a literature review [54], where Coulin et al. highlight the importance of
metrics for the qualification of architectures as “In Software Engineering,
early detection of architectural issues is key. It helps mitigate the risk of
poor performance and lowers the cost of repairing these issues. Metrics
give a quick overview of the project which helps designers with the detec-
tion of flaws or degradation in their architecture.". A more recent work
by Silva et al. surveys quality metrics in software architecture [170]. The
work brings together all the metrics that are available for software archi-
tectures over the last 12 years. The article lists all the metrics with their
description, they are then classified based on their application domain
(general, specific) and, based on whether they are internal (regarding the
software architecture) or external (regarding other stakeholders). In total,
this work surveys 52 metrics relating exclusively to software architectures
and 38 quality attributes.

6.3 Research methodology

In this section, we present the methodology we followed to characterize
the metrics that could be used for the Continuous Compliance of software
architectures in the automotive domain. The goal has been broken down
into the following two research questions:

RQ1: Which are the architectural metrics proposed in the literature that

6.3. Research methodology 109

can be used in the Continuous Compliance of automotive software
architectures?

RQ2: How can these metrics be characterized?

The adopted methodology is represented in Figure 6.1. As the figure
shows the methodology relies on the execution of the three steps described
in the following.

Digital Libraries'
Studies Selection

Secondary
Studies

Replications

Merge

Metrics Descriptions

Authors and Continuous
Compliance Experts

Framework

Continuous
Compliance Metrics

Characterization

Data analysis

1

2

3

11 Primary
Studies

3 Primary
Studies

13 Primary
Studies

Metrics
Extraction

Figure 6.1. Overview of the research methodology

110
Chapter 6. Characterizing Software Architectural Metrics for Continuous

Compliance in the Automotive Domain

6.3.1 Step 1: Metrics gathering and description

The first step was executed to build a set of architectural metrics that
have been proposed in the literature. The metrics were extracted from
a set of primary studies that were retrieved by combining two sources of
information. As shown in the box 1 of Figure 6.1, 3 primary studies were
selected from digital libraries, and 11 works were obtained by replicating
secondary studies. These 14 primary studies were merged, the duplicated
ones were removed, and the final set of 13 primary studies listed in Table
6.1 was obtained. Figure 6.2 shows the publication years distribution of
the selected papers. From the figure emerges that more than 60% (8/13)
of the selected studies have been published in the last 5 years, and almost
92% (12/13) of them was published in the last ten years. This gives evi-
dence of the growing interest of the research community in measuring the
conformance of software architectures in the automotive domain.

Each primary study of the set was analyzed by one researcher who ex-
tracted the metrics it presents and for each metric also extracted sentences
describing them. Moreover, the researcher extracted sentences providing
shreds of evidence on how the metrics can be evaluated and how these met-
rics were applied in case studies or experiments. This activity produces
the Metrics Descriptions document collecting the evidence extracted from
the primary studies.

Authors applied the following six inclusion criteria (IC) when selecting
the documents and deciding on their pertinence to the research scope:

IC1: the primary study discusses KPI, SPI, or metrics for evaluating the
compliance of software architecture;

IC2: the study is in the context of the automotive domain;

IC3: the work is written in English;

IC4: the work is not a secondary or tertiary study;

IC5: the study can be downloaded;

IC6: the primary study is not a duplicate of other selected works.

Two researchers reviewed each candidate source and voted on applying
the inclusion criteria first to the title and abstract and then to the full

6.3. Research methodology 111

paper reading. Each researcher classified each information source into
Accept, Doubt, or Exclude. To be included in the sample, documents
must have at least one Accept and one Doubt vote. A third researcher was
involved in discussing the inclusion or exclusion of studies with two Doubt
votes.

The processes we followed to select the primary studies from the infor-
mation sources relied on the execution of the two activities briefly described
in the following.

Digital Libraries’ Studies Selection in this activity we executed at
the June 30th 2023, the two search strings reported below in the Scopus
and the Web of Science (WoS) digital libraries respectively. We got a total
of 147 primary studies, of which 81 were returned by Scopus and 66 by
WoS. By applying the inclusion criteria 3 studies overcame the selection.

Scopus Search String
TITLE-ABS ((compliance OR adherence* OR conformance*) AND (kpi*
OR spi OR metric OR metrics OR indicator OR indicators) AND
(automotive OR car OR cars OR vehicle OR vehicles OR *26262 OR
ASPICE OR *24089 OR *21434)) AND (LIMIT-TO (SUBJAREA,"COMP"))

WoS Search String
(TI=(compliance OR adherence* OR conformance*) OR AB=(compliance
OR adherence* OR conformance*)) AND (TI=(kpi* OR "spi" OR "metric"
OR "metrics" OR "indicator" OR "indicators") OR AB =(kpi* OR "spi"
OR "metric" OR "metrics" OR "indicator" OR "indicators")) AND
(TI=("automotive" OR "car" OR "cars" OR "vehicle" OR "vehicles" OR
26262 OR "ASPICE" OR 24089 OR 21434) OR AB = ("automotive" OR "car"
OR "cars" OR "vehicle" OR "vehicles" OR 26262 OR "ASPICE" OR 24089
OR 21434))

Secondary Studies Replications in this activity the literature sur-
veys presented by Silva et al.[170] and Vogel et al. [198] were replicated.
To replicate each study two steps were executed. Firstly, the defined IC
were applied to the primary studies already surveyed by the two works. In
this way 2 over the 33 primary studies already analyzed by Silva et al.[170]
were selected, and 6 of the 38 primary studies analyzed by Vogel et al.[198]
were included. Secondly, the same selection processes followed by the two

112
Chapter 6. Characterizing Software Architectural Metrics for Continuous

Compliance in the Automotive Domain

secondary studies were replicated with two main differences: i) the inclu-
sion and exclusion criteria used in the studies were substituted by the ones
defined in this work and ii) the search strings, used in these works, to query
the digital libraries were limited to dates after those in which the studies
were performed. No new primary studies were obtained by replicating the
selection process presented in [170], meanwhile by rejuvenating the survey
[198], stuck at 2018, 6 new primary studies were included as stated by the
219 works returned by executing the search strings.

Table 6.1. Selected Primary Studies

ID Title Year Ref

PS1 A viewpoint-based evaluation method for future
Automotive Architectures 2022 [86]

PS2
Performance Assessment of Traditional Software
Development Methodologies and DevOps Automation
Culture

2022 [134]

PS3
Measurements of Support Processes: Proposed
Improvements on Automotive SPICE PAM V3.1 in
Light of OEM Standard Supplier Quality Requirements

2022 [128]

PS4 Playground for Early Automotive Service Architecture
Design and Evaluation 2020 [42]

PS5 Towards Metrics for analyzing System Architectures
Modeled with EAST-ADL 2020 [66]

PS6
Improved Technique for Measuring the Number of
Defects in Automotive Agile SW Development Defect
debt trend

2018 [154]

PS7 Traceability Metrics as Early Predictors of Software
Defects? 2017 [135]

PS8 Cyber-Physical Codesign at the Functional Level for
Multidomain Automotive Systems 2017 [200]

PS9 Metrics design for safety assessment 2016 [111]

PS10 Metrics for Verification and Validation of Architecture
in Powertrain Software Development 2015 [195]

PS11
On Bringing Object-Oriented Software Metrics into the
Model-Based World – Verifying ISO 26262 Compliance
in Simulink

2014 [131]

PS12 Measuring the impact of changes to the complexity and
coupling properties of automotive software systems 2013 [62]

PS13 Process Family Points 2006 [100]

6.3. Research methodology 113

2006
2007

2008
2009

2010
2011

2012
2013

2014
2015

2016
2017

2018
2019

2020
2021

2022
Year

0

1

2

3

1 1 1 1 1

2

1

2

3

Figure 6.2. Distribution of the selected primary studies per publication year

6.3.2 Step 2: Framework definition

This step aimed to identify the key characteristics a metric needs to
have to consistently meet compliance with the standards continuously.

As shown in the box 2 of Figure 6.1, this step was performed by the
authors in collaboration with experts in Continuous Compliance to define
a Framework that could be used i) to characterize software architecture
metrics from the point of view of Continuous Compliance and ii) to eval-
uate the suitability of a metric to be applied in Continuous Compliance
processes.

To build such a framework we surveyed three experts selected from our
lists of industrial collaborations. All the interviewees had more than 10
years of experience in the safety and security compliance field for software
architectures in the automotive domain. One expert works for an auto-
motive original equipment manufacturer (OEM), and the other two work
for two automotive supplier companies. Each expert has been interviewed
individually through semi-structured interviews, following the guidelines
outlined by Wilson et al. [205].

Each interview lasted 2 hours and allowed the participants to freely
discuss and elaborate on these topics:

1. Identifying the key characteristics of a metric for the Continuous

114
Chapter 6. Characterizing Software Architectural Metrics for Continuous

Compliance in the Automotive Domain

Compliance to define the framework’s Dimension.

2. Defining the set of values that can be assigned to each dimension of
the framework.

3. Define an evaluation criteria, based on the above-defined dimension,
for assessing the suitability of a metric to be used in the context of
Continuous Compliance.

Two of the authors were responsible for collecting and interpreting the
responses. Their goal was to abstract the main characteristics of a metric,
as identified by the practitioners, and to identify the dimension of the
framework. Furthermore, they aimed to delineate how the different values
that can be assumed by the different dimensions can be used to assess
the effectiveness of the metric in continuously supporting the compliance
process.

From the surveys, we build the Framework shown in Figure 6.3. It was
validated in a final 2 hours meeting that involved all the authors and the
three interviewed experts.

As Figure 6.3 shows, the framework features eight dimensions. Five
dimensions were indicated by the experts as representative for evaluat-
ing the suitability of a metric to be introduced in Continuous Compliance
processes. For each one of such dimensions, it has also been possible to
abstract the possible values these dimensions must have. Moreover, to
evaluate the suitability of a metric to be used in the Continuous Compli-
ance context, we developed an evaluation system based on the framework’s
dimension. Based on the guidance provided by the experts during the sur-
vey, each value of the different framework dimensions has been assigned a
score reflecting their relevance. A ‘++’ score is assigned to values that have
been indicated as very significant for Continuous Compliance, whereas, the
‘+’ score refers to values that have been considered as significant by the
experts. Conversely, to values that were considered as irrelevant for Con-
tinuous Compliance, it was assigned a “neutral" value, indicated with ‘⊘’.

Moreover, the last three dimensions of the framework do not directly
influence the evaluation of metrics’ suitability for Continuous Compliance,
experts have highlighted their importance in offering a more detailed de-
scription of the metrics. This encompasses both the property measured by

6.3. Research methodology 115

Metric
Assessment

approach

Input Artifact

Type

Metric

Description

Type

Experimental

Settings

Experimental

Objects Type

Measured

Property

Output

Category

Application

Field
Score

Average Output

Interface Size
Methodology (Ø) Architecture (Ø) Formula (+) Instrudial (+) Proprietary (Ø) Complexity Component

Hybrid

control

Software

++

System Risk

Identification
Tool (++) Architecture (Ø) Formula (+) Academic (Ø) Open Source (+) Coverage Process DevOps ++++

Table 6.2. Example of metrics description and evaluation according to the
proposed Framework

the metric and its application context, providing valuable insights to char-
acterize metrics from the perspective of their application contexts as well.
Each dimension of the framework and its values and score are described in
the following.

D1 - Assessment Approach

outlines the technique used in the analyzed paper to evaluate the met-
ric. When a metric is assessed within a Methodology it means that is
provided with a high-level conceptual structure and description lacking in
explicit guidance or steps for the adoption of the metric. In contrast, a
Framework approach means that the study in which the metric is presented
provides well-defined and detailed assessment procedures like an algorithm
or step-by-step process. Finally, a metric can also be assessed using a Tool.
The availability of a Tool was positively assessed by the experts, who as-
signed a score of ‘++’ to this value, as the presence of a tool suggests that
the metric has already been applied in a practical solution. Otherwise, if
a metric assessment approach was based on a Framework, it received a ‘+’
score, reflecting its lower impact on the metric suitability for Continuous
Compliance. Methodological assessment approaches did not receive favor-
able evaluations from experts and were consequently assigned a ‘neutral’
value, indicated by ‘⊘’.

D2 - Input Artifact Type

identifies the artifacts required as input for calculating the metric. Ar-
chitecture artifacts encompass information that is available in the software
architectural design (SAD) documentation, such as static or dynamics

116
Chapter 6. Characterizing Software Architectural Metrics for Continuous

Compliance in the Automotive Domain

view. For the metric that only requires information that resides in the
source code, we have outlined Code as input artifact. In some instances,
the information required as input by the metrics may be found in other
types of artifacts used in different phases of the software development life
like analysis or deployment for which the value Requirement and Deploy-
ment are designed. Lastly, metrics can also take into account information
that is obtained at the end of the testing phase and is identified as Test
artifacts. For this dimension, the Code, Test, and Deployment values re-
ceived a ‘+’ valuable score by the experts. This decision was based on
the expert opinion that code, test, and deploy artifacts usually are always
available and update in an iterative development context. In contrast,
metrics utilizing architectural artifacts as input were deemed unsuitable
by the experts for the context of Continuous Compliance. One motiva-
tion was that artifacts related to software architectural views might not
be consistently updated across different development iterations, due to ar-
chitectural degradation [184] and lack of automated software architectural
documentation recovery tools.

D3 - Metric Description Type

specifies whether the metric is described by a Formula or by a detailed
Textual description, as metrics without a description were excluded in the
early stages of our work. The availability of a Formula has been scored
with a ‘+’, whereas the Textual description has been scored with a ‘⊘’.

D4 - Experimental Setting

The experimental setting in which the metric was applied is divided
into two categories. Metrics with Industrial value have been introduced in
studies conducted in collaboration with industrial partners, specifically in
the automotive field, and were utilized in a real-world context with actual
data. For this reason, the Industrial values are assigned with a ‘+’ score.
Instead, Academic metrics, assigned with the ‘⊘’ have been introduced in
studies not conducted in collaboration with the industrial partner.

6.3. Research methodology 117

D5 Experimental Objects Type

specifies the nature of the data employed in the experimental setting.
The dimension can assume only two different values: Open Source Data,
assigned with a ‘+’ score, denotes data that are publicly available in a
dataset. The Proprietary values, on the other hand, refer to data that are
not accessible to the public and are assigned with a ‘⊘’ score.

D6 - Measured Property

identifies the properties of the software system that are measured using
the metric. For this dimension, it is not feasible to define a predetermined
set of values. Additionally, the property measured by the metric has not
been involved in the introduced scoring procedure. In the Result section,
we will discuss the measured properties observed from the analyzed met-
rics.

D7 - Output Category

represents a grouping of the measured properties identified in the pre-
vious dimension. Due to the diverse and variable nature of the measured
properties, it is not possible to define a set of possible values by a metric
that can be observed. Even in this case, this dimension is not involved
in the metric’s characterization phase within the context of Continuous
Compliance.

D8 - Application Field

indicates the specific automotive sub-domain where the metric has been
implemented or used. This detail offers an indication of the specific con-
text in which the metric was used, allowing a more detailed and targeted
analysis of the metric. Determining the specific scope within the auto-
motive environment where the metric has been tested could be useful to
understand its impact, relevance, and validity in the domain of interest.
Also, in this case, the dimension is not involved in the characterizing phase
and is not provided with a pre-defined set of possible values.

118
Chapter 6. Characterizing Software Architectural Metrics for Continuous

Compliance in the Automotive Domain

Continuous

Compliance Metrics

Framework

D6: Measured

Property

D5: Experimental

Objects Type

D7: Output

Category

D3: Metric

Description Type

D4: Experimental

Setting

D2: Input Artifact

Type

D1: Assessment

Approach

D8: Application

Field

Figure 6.3. The proposed Framework

6.3.3 Step 3: Metrics characterization and evaluation

In this step, a Data Analysis activity was executed to obtain a set of
Continuous Compliance Metrics Characterizations as shown in box 3 of
Figure 6.1. The Metrics Description produced in 1 have been analyzed by
taking into account the Framework defined in 2 . The Data Analysis was
performed blindly by two groups, the groups were made by two authors.
Each group worked independently to recast all the metric descriptions in
accordance with the dimensions and the values of the Framework. The
two groups had one-hour weekly meetings to discuss about the analysis
results, and, every two weeks a one-hour meeting was conducted with the
three experts, interviewed in the 2 , to validate the results. The Data

6.4. Results and Discussion 119

Analysis step lasted two months, and the final Continuous Compliance
Metrics Characterizations are available in the supplemental material.

The evaluation system we proposed rates a metric by concatenating
the ‘+’ symbols of its attributes’ values.

Table 6.2 shows an example of how two metrics, extracted from our
sample, have been described according to our framework. As the table
shows, the “Average Output Interface Size” metric reaches a score of ‘++’
since it assumes the values Formula and Industrial for the Metric Descrip-
tion Type and Experimental Settings domains, respectively. Similarly the
“System Risk Identification” has been evaluated with ‘+ + ++’ obtained
by concatenating the ‘+’ symbols of the Tool, Formula, and Open Source
values.

6.4 Results and Discussion

In this section, we discuss and show the results of the analyses on the
metrics that have passed the selection process. Thanks to the opinion
of the experts we were able to carry out 8 analyses, that are mapped to
the dimensions of the framework, which we will explain in detail in the
following sections.

6.4.1 RQ1: Which are the architectural metrics proposed
in the literature that can be used in the Continuous
Compliance of automotive software architectures?

The evaluation system we proposed allowed us to assess the suitability
of each selected metric in Continuous Compliance processes. Table 6.3
summarizes the evaluation results we obtained. More in detail, the table
shows for each analyzed primary study, the metrics we extracted from it
along with the Continuous Compliance score we evaluated. Moreover, the
plot shown in Figure 6.4 represents the distribution of the metrics based
on the obtained scores.

From these results, we have evidence that no metrics reached the
maximum value allowed by the proposed evaluation system, i.e., six ‘+’
(‘++++++’). The data we obtained also show that only 4 metrics over
48 (∼ 8%) are almost ready for being applied in Continuous Compliance

120
Chapter 6. Characterizing Software Architectural Metrics for Continuous

Compliance in the Automotive Domain

since they were rated with four or five ‘+’. These metrics were extracted
from the primary study PS2 [134]. These metrics have not reached the
maximum value since they were not applied in an industrial setting and
two of them need architectures or requirements as input artifacts. The
primary reason these two metrics achieved such scores is their automatic
evaluation due to a tool support [133]. Additionally, they earn extra pos-
itive evaluations due to their presentation as formulas, the use of open
source data as experimental objects type, and their utilization of input
artifacts from the Deployment and Test phases.

On the other hand, 21 metrics over 48 (∼ 4%), are far, or very far,
from their application in a Continuous Compliance process since they were
scored with one ‘+’ (7/48) or two ‘+’ (14/48). Lastly, 23 metrics (∼
48%), have been evaluated with three ‘+’. We believe that these metrics
could become suitable for Continuous Compliance with a little extra effort.
Indeed, we observed that most of these metrics lack a tool supporting their
automatic evaluation, even if they propose a clear framework explaining
how they should be applied in practice. The implementation of tools able
to execute these frameworks may lead to additional metrics ready for being
used in Continuous Compliance processes.

+ ++ +++ ++++ +++++
Number of Metrics

0

5

10

15

20

 7

 14

 23

 2 2

Figure 6.4. Distribution of the metrics over the Continuous Compliance
Evaluation Score

6.4. Results and Discussion 121

Table 6.3. Continuous compliance Metrics Evaluation

ID Metric’s Name Evaluation
Score

PS1

Average Input Interface Size of Components ++
Testability Metric ++
Cost Function ++
Coupling of Components ++
Score View ++

PS2

Project Defect Density +++++
Release Deployment Frequency +++++
Process Productivity ++++
System Risk Identification ++++

PS3

Software Requirement Coverage ++
Software Static / Dynamic Code Analysis Cover-
age Metrics

+++

Implemented Software Requirements +

PS4

Service Group Interface Count +++
Service Group Local Interface Count +++
Service Group Interface Exposure Degree +++
Service Group Exposure Count +++
Service Group Required Interfaces Count +++
Service Group Required Groups Count +++
Service Groups Dependency Intensity +++
Service Group Reallocation Capacity +++

PS5

Coupling between Object Classes +
Response for a Class ++
Coupling Factor +
Clustering Factor +

PS6 Defect Debt Trend +++

PS7 Traced Components per Requirement +++
Traced Requirements per Component +++

PS8 Cost of the architecture (perspective) ++
Cost of the architecture (robustness) ++

PS9 Functional Safety Requirements and Safety Goals ++
Number of functional safety requirements ++

PS10

Average Function Interaction within a Compo-
nent

+++

Number of Requirements associated with a
Software Component

+

Number of Functions per Software Components +
Average Input Interface Size ++
Average Input Interface Size ++

PS11

Number of Elements ++
Element Hiding Factor +++
Fan In / Fan Out +++
Range of Demeter +++
Halstead Volume +++
Tight Block Cohesion +++
Loose Block Cohesion +++

PS12

Single Component +++
Component Complexity +++
Package Coupling Coup +++
Package Coupling Metrics +++

PS13 Process Family Points +

6.4.2 RQ2: How can these metrics be characterized?

Thanks to the proposed framework, it was possible to characterize the
selected metrics from the point of view of Continuous Compliance. In the
following, we describe the results obtained for each dimension of the frame-
work, showing both aggregate views and brief discussions of the results.

122
Chapter 6. Characterizing Software Architectural Metrics for Continuous

Compliance in the Automotive Domain

D1: Assessment Approach Analysis

Figure 6.5 shows the distribution of the metrics over the values they
assume for the D1 Assessment Approach dimension. Most of the metrics,
30 out of 48, were evaluated within frameworks. In this category, we find
primary studies in which there are algorithms and well-structured pro-
cesses from which step-by-step procedures can be abstracted to obtain the
metrics. This allows us to say that these identified metrics are described
within well-defined processes and therefore can be used with little effort.
Instead, 14 out of 48 metrics are presented within a Methodology without
providing specific information on the steps to be carried out to evaluate
the metrics. In this context, we identified several case studies that offered
interesting examples of metric applications. However, these studies lacked
comprehensive and clearly defined procedures for the implementation of
the metrics. Finally, 4 out of 48 metrics are already ready to be used as
they are supported by a tool featured in the work of Narang et al. [133].
This result from the perspective of Continuous Compliance shows us that
there is currently a lack of tools for calculating metrics in the literature
but at the same time, the community is working towards the definition of
well-defined and concrete procedures.

0 5 10 15 20 25 30
Number of Metrics

To
ol

Meth
od

olo
gy

Fra
mew

ork

 4

 14

 30

Figure 6.5. Distribution of the metrics over the Assessment Approach do-
main of the Framework

6.4. Results and Discussion 123

D2: Input Artifact Type Analysis

The diagram in Figure 6.6, shows how the metrics are distributed on
the different types of artifacts required as input. This figure indicates
that most of the metrics, 32 out of 48, take architectural artifacts as in-
put. In this category, we observed both the use of high-level architectural
views, showing the components and the relationships among them, as well
as more detailed architectural views focusing on individual components.
This result reflected the observation that most of the analyzed metrics, as
can be seen in the following, evaluate properties related to cohesion and
coupling between components. To evaluate these properties, the metrics
require two inputs: information about the components and the relation-
ship between them, which resides within the documentation of the software
architecture. In the context of this study, most of the metrics under anal-
ysis take architectural artifacts as input. Although standards require such
architectural views, and some papers in the literature call for solutions to
produce them in compliance with standards [17], experts considered these
artifacts as inadequate to meet the requirements of Continuous Compli-
ance. This inadequacy restricts the practical adaptation of these metrics
in the context of Continuous Compliance. The second occurrence of input
artifacts concerns the requirements, with 10 metrics out of 48. In terms
of code, testing, and deployment, our analysis revealed that only a limited
number of metrics provide architectural insights based on these elements.
Specifically, just 6 out of 48 metrics are derived from these artifacts.

0 5 10 15 20 25 30
Number of Metrics

Dep
loy

men
t

Te
st

Cod
e

Req
uir

em
en

t
Arch

ite
ctu

re

 1

 2

 3

 10

 32

Figure 6.6. Distribution of the metrics over the Input Artifact Type domain
of the Framework

124
Chapter 6. Characterizing Software Architectural Metrics for Continuous

Compliance in the Automotive Domain

D3: Metric Description Type Analysis

As Figure 6.7 shows, most of the metrics, 41 out of 48, have been
presented with a mathematical formula. The remaining 7 metrics were
described through detailed textual descriptions.

0 5 10 15 20 25 30 35 40
Number of Metrics

Te
xtu

al
For

mula

 7

 41

Figure 6.7. Distribution of the metrics over the Metric Description Type
domain of the Framework

D4: Experimental Setting Analysis

The plot rendered in Figure 6.8 gives evidence that most of the met-
rics (33/48) have been experimented in industrial settings. The industrial
partners we identified are from the automotive sector, both suppliers and
OEMs. The remaining metrics were used exclusively in the academic field.

The finding that most of the metrics were used in real contexts with
real data in collaboration with industrial partners suggests that interest in
the practical application and evaluation of metrics is high in the industry.

0 5 10 15 20 25 30
Number of MetricsAcad

em
ic

Ind
ust

ria
l

 15

 33

Figure 6.8. Distribution of the metrics over the Experimental Setting domain
of the Framework

6.4. Results and Discussion 125

D5: Experimental Objects Type Analysis

The distribution of the metrics over the Experimental Object Type di-
mension is illustrated in Figure 6.9. As rendered in the diagram, most
of the metrics (44 out of 48) have been evaluated using proprietary data.
Only the remaining 4 metrics have been evaluated with open source data.
This finding is in line with the observations of the previous analysis, which
highlighted that most of the metrics have been experimented in industrial
settings where data are often not publicly accessible.

0 10 20 30 40
Number of Metrics

Ope
n S

ou
rce

Pro
pri

eta
ry

 4

 44

Figure 6.9. Distribution of the metrics over the Experimental Objects Type
domain of the Framework

D6: Measured Property Analysis

The graph reported in Figure 6.10 shows the distribution of the met-
rics based on their measured properties. As depicted in Figure most of the
metrics focus on measuring system properties like complexity, as well as
aspects related to the interaction and relationships between system com-
ponents, such as cohesion and coupling. This encompasses metrics that
assess the average number of functions per interface, Fan In-Fan Out, as
well metrics to assess coupling at both the component and package lev-
els. From a strictly standards compliance perspective, it is interesting to
observe that there are metrics, categorized with properties related to sys-
tem defectiveness, such as software defect proneness and defect debt, two
aspects that should be kept under control within iterative development
contexts that can be adapted within Continuous Compliance methodolo-
gies. In this analysis, the total sum of the occurrences is greater than the
48 metrics because some of them explicitly have two Measured Properties.
In particular, the metric “Element Hiding Factor" has complexity and co-

126
Chapter 6. Characterizing Software Architectural Metrics for Continuous

Compliance in the Automotive Domain

hesion as measured properties, while the metric “Service Group Interface
Exposure Degree" has both cohesion and coupling as measured properties.

0 2 4 6 8 10 12 14
Number of MetricsDefe

cts
 Deb

tCov
era

ge
So

ftw
are

 Defe
ct

Pro
ne

ne
ss

Cost
Coh

esi
onCom

ple
xit

yCou
plin

g

 2

 4

 5

 7

 8

 9

 15

Figure 6.10. Distribution of the metrics over the Measured Property domain
of the Framework

D7: Output Category Analysis

The bar chart in Figure 6.11 shows how the metrics are distributed
on the output types. This analysis can be seen as a high-level abstrac-
tion of the values observed for the Measured Property. The value with
the highest number of occurrences is Components’ Relationship. In this
group, metrics are focusing on cohesion and coupling like “Loos Block Co-
hesion" and “Coupling Factor". Additionally, this category encompasses
metrics such as ‘Service Group Dependency Intensity’, which quantifies
the intensity of the relationship among components. The identified value
Component counts 14 out of 48 metric. This subset includes metrics like
“Component Complexity" and “Number of Requirements associated with
a Software Component", both metrics that evaluate properties relative to
a single component. In the System group, we found metrics related to cost

6.5. Threats to validity 127

or metrics like the “Range of Demeter" used to evaluate the hierarchical
structure of software components. Lastly, within the Process group, we
identified the “Defect Debt Trend" and the “System Risk identification"
both useful for process-oriented evaluation.

0 2 4 6 8 10 12 14 16
Number of MetricsPro

ces
s

Sy
ste

mCom
po

ne
ntCom

po
ne

nts
'

Rela
tio

nsh
ip

 8

 10

 14

 16

Figure 6.11. Distribution of the metrics over the Output Category domain
of the Framework

D8: Application Field Analysis

In Figure 6.12 we render how the metrics are distributed on the ap-
plication field on which they have been applied. We have observed that
each analyzed primary study presents a different application field always
concerning the automotive domain. From the point of view of Continu-
ous Compliance, it is interesting to note how some metrics are taken from
primary studies that deal with DevOps and Agile techniques within the
automotive context. These processes encourage continuous and iterative
development and show us how there is interest in the literature in using
metrics that can be used to support iterative processes.

6.5 Threats to validity

This study encounters threats that pertain to its external and internal
validity, each requiring attention and potential mitigation strategies.

128
Chapter 6. Characterizing Software Architectural Metrics for Continuous

Compliance in the Automotive Domain

0 1 2 3 4 5 6 7 8
Number of Metrics

Agile SW
Development

Software system
families

Cross-cutting
requirements

Functional model of
cyber-physical

systems

A-SPICE

DevOps

Distributed
software system

EAST-ADL system
architectures

Hybrid control
software

E/E-architecture

Dataflow
architectures in

model-driven

Service-oriented
architectures

 1

 1

 2

 2

 3

 4

 4

 4

 5

 5

 7

 8

Figure 6.12. Distribution of the metrics over the Application Field domain
of the Framework

6.5.1 External validity threats

The primary challenge impacting the generalizability of the outcomes
stems from the limited pool of experts engaged in defining the framework
for characterizing continuous compliance metrics. This constrained in-
volvement may have led to a potential lack of additional dimensions that
could hold relevance for other practitioners. To address this limitation, an
expansion of the approach to include a more diverse set of domain experts
could enrich the framework and capture broader practitioner perspectives.

6.6. Conclusion and Future Works 129

Another concern involves the absence of a validation step for the Con-
tinuous Compliant Metrics Characterization. While the results were vali-
dated with the same experts involved in defining the Framework, this may
not ensure the general applicability of the proposed metrics and their de-
scriptions. To mitigate this, a case study assessing the actual adoption of
these metrics within real industrial software development processes would
provide valuable insights.

6.5.2 Internal validity threats

An internal threat identified in this study revolves around the method-
ology employed to gather metrics and construct the framework. Metrics
were obtained by scrutinizing primary studies from digital libraries and
replicating selection processes from secondary studies. To mitigate this
limitation and expand the pool of potential metrics, a more formal sys-
tematic literature review could be conducted. Additionally, conducting
industrial surveys or multivocal literature reviews would support the di-
versity of collected metrics.

Regarding the internal threat linked to the limited number of experts
involved in framing the framework, a proactive step to mitigate this chal-
lenge is to plan an empirical study involving a broader sample of experts
from various automotive companies, thereby capturing a more comprehen-
sive range of perspectives during the interview process.

6.6 Conclusion and Future Works

Continuous Compliance is an approach that can be considered as a
useful mechanism to ensure ongoing compliance with standards, best prac-
tices, and internal policies, particularly within safety-critical domains like
automotive systems prone to Over-The-Air (OTA) updates. Identifying
and defining metrics that consistently quantify work quality becomes sig-
nificant. Collaborating extensively with experts in safety, security, and
architecture, we crafted the technical facets of this paper. In this study,
we derived a collection of 48 architectural metrics already proposed in the
literature for the automotive domain. These metrics have been selected by
analyzing 13 primary studies we selected by analyzing 147 works, returned

130
Chapter 6. Characterizing Software Architectural Metrics for Continuous

Compliance in the Automotive Domain

by the Scopus and the Web of Science digital libraries, and 219 studies
obtained by replicating two known secondary studies.

These metrics have been characterized following a general framework
we defined in collaboration with practitioners. This framework was pro-
posed for characterizing a metric from the point of view of Continuous
Compliance in terms of eight specific attributes and the values these at-
tributes can assume. Moreover, each metric was evaluated according to a
scoring system we proposed. The system scores each metric based on the
values it assumes for some of the framework’s attributes. The obtained
score allows the assessment of the suitability of a metric for being applied
in Continuous Compliance processes.

On the one hand, the results allowed us to have a list of four met-
rics having high suitability for being adopted in Continuous Compliance
processes since they have been rated with five ‘+’ or four ‘+’. Moreover,
an additional set of 23 metrics, rated with three ‘+’, that could become
suitable with an extra tool development effort has been also proposed.

On the other hand, as an additional result, we obtained a deep char-
acterization of the analyzed metrics from the point of view of Continuous
Compliance.

In future work, we intend to increase the number of experts to be inter-
viewed, and also recruit from a broader and varied sample of automotive
companies, to improve the generalizability of the proposed framework.

Moreover, we are planning to perform an empirical study to evaluate
the feasibility of the selected metrics in Continuous Compliance processes
performed in real industrial automotive settings. Another possible future
work is to expand the number of metrics and explore metrics related to
other software life cycle phases instead of just focusing on architecture.
This is possible both through conducting industrial surveys or multivocal
literature reviews, but also by relaxing the constraint of the automotive
domain, trying to adapt metrics developed in other domains to the auto-
motive one.

Chapter 7
Conclusions

The integration of embedded software into automotive systems has
deeply transformed vehicle design and development. Software now plays
a pivotal role in controlling nearly every aspect of modern vehicles, from
basic engine functionality to advanced safety systems like ADAS. The com-
plexity of automotive software has grown exponentially, driven by increas-
ing consumer expectations and the industry’s shift toward autonomous
driving technologies. This transformation has brought unprecedented op-
portunities for innovation, but also significant challenges in terms of soft-
ware development, quality assurance, and compliance with safety stan-
dards.

The growing reliance on software in vehicles has made it critical to
manage both the technical and organizational challenges that come with
the increased complexity. This thesis has addressed these challenges by
exploring several key areas in the automotive software development pro-
cess. First, it highlighted the importance of collaboration between different
engineering disciplines (e.g., mechanical, electrical, and software) under-
scoring the need for multidisciplinary approaches to manage the intricate
interactions between hardware and software. Community detection and
expert finding techniques were identified as crucial tasks in ensuring that
the right skills are brought to bear on increasingly complex development
projects. Our proposed solution of applying community detection within
developer social networks presents an innovative way to identify experts
and optimize team formation in large and heterogeneous development en-

132 Chapter 7. Conclusions

vironments.
Another key contribution of this thesis is the development of a new

software documentation template designed to address the challenges of
traceability and maintainability in architectural documentation, specifi-
cally within safety-critical domains that must comply with ISO 26262.
The proposed template, validated through a case study in collaboration
with several automotive companies, provides a structured approach to im-
proving documentation quality, reducing the risk of defects and ensuring
long-term maintainability of software systems.

This thesis also introduces a Software Architecture Recovery (SAR)
tool aimed at addressing poor documentation practices in the industry,
often caused by time and budget constraints. The tool automates the
generation of software architecture documentation from code, addressing
the gap between design and implementation, which frequently leads to
misalignment and higher maintenance costs. The SAR tool was validated
through an industrial case study, demonstrating its effectiveness in im-
proving system understanding and documentation accuracy.

Lastly, this research presented a framework for characterizing software
architecture metrics to support Continuous Compliance processes. As au-
tomotive systems evolve, ensuring ongoing compliance with safety stan-
dards, best practices, and internal policies becomes essential. The frame-
work developed in this study identifies and assesses metrics that are highly
suited for continuous compliance, providing a foundation for integrating
these metrics into real-world industrial processes.

While this research has made significant contributions to addressing
the challenges of software development in the automotive domain, there
are several areas for future work. First, the community detection approach
for expert finding could be further refined by incorporating additional data
sources, such as other developer social networks or code repositories beyond
GitHub. Extending the validation of this approach to different domains
could also provide insights into its broader applicability.

The documentation template and SAR tool could benefit from further
integration with other tools commonly used in the software development
life cycle, such as requirements management and testing systems.

The framework for software architecture metrics could be expanded to
include metrics from other stages of the software development life cycle,

133

such as testing, deployment, and maintenance. This would provide a more
comprehensive view of software quality and compliance, enabling a more
holistic approach to Continuous Compliance. Furthermore, future research
could explore the applicability of metrics developed in other domains to the
automotive industry, potentially uncovering new ways to enhance software
quality and safety.

Finally, expanding the scope of industrial surveys and case studies to
include a wider range of automotive companies and development environ-
ments would help validate the findings of this research and improve its
generalizability. By continuing to refine and expand the methodologies
proposed in this thesis, the automotive industry can better manage the
complexity of software development while maintaining the high levels of
safety and reliability required for modern vehicles.

Bibliography

[1] AUTOSAR architecture. https://www.autosar.org/fileadmin/
standards/R22-11/CP/AUTOSAR_EXP_LayeredSoftwareArchitecture.
pdf. [Online; accessed 1-September-2024].

[2] AUTOSAR Partner. https://www.autosar.org/about/partners. [On-
line; accessed 1-September-2024].

[3] Honda Admits Software Problem, Recalls
175,000 Hybrids. https://www.eetimes.com/
honda-admits-software-problem-recalls-175000-hybrids/?_ga.
[Online; accessed 20-August-2024].

[4] Making Fully Vehicle OTA Updates Reality
WP. https://www.nxp.com/docs/en/white-paper/
Making-Full-Vehicle-OTA-Updates-Reality-WP.pdf. [Online; ac-
cessed 01-December-2020].

[5] Software-Related Recalls and the Auto Industry’s Ongoing Evolu-
tion. https://www.wardsauto.com/software-defined-vehicles/
software-related-recalls-and-the-auto-industry-s-ongoing-evolution.
[Online; accessed 20-August-2024].

[6] Iso/iec/ieee systems and software engineering – architecture description.
ISO/IEC/IEEE 42010:2011(E) (Revision of ISO/IEC 42010:2007 and
IEEE Std 1471-2000), pages 1–46, 2011.

[7] Amit Agarwal. Understanding Automotive OTA (Over-the-Air
Update), howpublished = "https://www.pathpartnertech.com/
understanding-automotive-ota-over-the-air-update/.

[8] Emad Aghajani, Csaba Nagy, Mario Linares-Vasquez, Laura Moreno,
Gabriele Bavota, Michele Lanza, and David C. Shepherd. Software docu-

135

https://www.autosar.org/fileadmin/standards/R22-11/CP/AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf
https://www.autosar.org/fileadmin/standards/R22-11/CP/AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf
https://www.autosar.org/fileadmin/standards/R22-11/CP/AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf
https://www.autosar.org/about/partners
https://www.eetimes.com/honda-admits-software-problem-recalls-175000-hybrids/?_ga
https://www.eetimes.com/honda-admits-software-problem-recalls-175000-hybrids/?_ga
https://www.nxp.com/docs/en/white-paper/Making-Full-Vehicle-OTA-Updates-Reality-WP.pdf
https://www.nxp.com/docs/en/white-paper/Making-Full-Vehicle-OTA-Updates-Reality-WP.pdf
https://www.wardsauto.com/software-defined-vehicles/software-related-recalls-and-the-auto-industry-s-ongoing-evolution
https://www.wardsauto.com/software-defined-vehicles/software-related-recalls-and-the-auto-industry-s-ongoing-evolution
https://www.pathpartnertech.com/understanding-automotive-ota-over-the-air-update/
https://www.pathpartnertech.com/understanding-automotive-ota-over-the-air-update/

136 Bibliography

mentation: The practitioners perspective. page 590 – 601, 2020. Cited by:
16.

[9] Emad Aghajani, Csaba Nagy, Olga Lucero Vega-Márquez, Mario Linares-
Vásquez, Laura Moreno, Gabriele Bavota, and Michele Lanza. Software
documentation issues unveiled. In 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE), pages 1199–1210, 2019.

[10] Emad Aghajani, Csaba Nagy, Olga Lucero Vega-Márquez, Mario Linares-
Vásquez, Laura Moreno, Gabriele Bavota, and Michele Lanza. Software
documentation issues unveiled. In 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE), pages 1199–1210, 2019.

[11] S. Magnus Ågren, Rogardt Heldal, Eric Knauss, and Patrizio Pelliccione.
Agile beyond teams and feedback beyond software in automotive systems.
IEEE Trans. Engineering Management, 69(6):3459–3475, 2022.

[12] Deniz Akdur, Vahid Garousi, and Onur Demirörs. A survey on modeling
and model-driven engineering practices in the embedded software industry.
Journal of Systems Architecture, 91:62–82, 2018.

[13] Mikael Åkerholm and Rikard Land. Towards systematic software reuse in
certifiable safety-critical systems. In RESAFE-International Workshop on
Software Reuse and Safety, Falls Church, VA, 2009.

[14] Mohammed Al-Taie, Seifedine Nimer Kadry, and Obasa Isiaka Adekunle.
Understanding expert finding systems: domains and techniques. Social
Network Analysis and Mining, 8:1–9, 2018.

[15] D. Amalfitano, M. De Luca, A. Fasolino, P. Pelliccione, and T. Santilli.
Characterizing software architectural metrics for continuous compliance in
the automotive domain. In 2024 IEEE 21st International Conference on
Software Architecture (ICSA), pages 182–193, Los Alamitos, CA, USA, jun
2024. IEEE Computer Society.

[16] Domenico Amalfitano, Marco De Luca, and Anna Rita Fasolino. Docu-
menting software architecture design in compliance with the iso 26262: a
practical experience in industry. In 2023 IEEE 20th International Confer-
ence on Software Architecture Companion (ICSA-C), 2023.

[17] Domenico Amalfitano, Marco De Luca, and Anna Rita Fasolino. Docu-
menting software architecture design in compliance with the iso 26262: a
practical experience in industry. In 2023 IEEE 20th International Confer-
ence on Software Architecture Companion (ICSA-C), pages i–xi, 2023.

Bibliography 137

[18] Domenico Amalfitano, Marco Luca, Domenico Angelis, and Anna Fasolino.
Automated Architecture Recovery for Embedded Software Systems: An In-
dustrial Case Study, pages 53–68. 09 2024.

[19] Samuil Angelov, Paul Grefen, and Danny Greefhorst. A framework for
analysis and design of software reference architectures. Information and
Software Technology, 54(4):417–431, 2012.

[20] Noppadol Assavakamhaenghan, Morakot Choetkiertikul, Suppawong Tu-
arob, Raula Gaikovina Kula, Hideaki Hata, Chaiyong Ragkhitwetsagul,
Thanwadee Sunetnanta, and Kenichi Matsumoto. Software team member
configurations: A study of team effectiveness in moodle. In 2019 10th Inter-
national Workshop on Empirical Software Engineering in Practice (IWE-
SEP), pages 19–195, 2019.

[21] Noppadol Assavakamhaenghan, Waralee Tanaphantaruk, Ponlakit Suwan-
woraboon, Morakot Choetkiertikul, and Suppawong Tuarob. Quantifying
effectiveness of team recommendation for collaborative software develop-
ment. Automated Software Engineering, 29, 08 2022.

[22] Marco Autili, Luca Berardinelli, Vittorio Cortellessa, Antinisca Marco, Da-
vide Di Ruscio, Paola Inverardi, and Massimo Tivoli. A development pro-
cess for self-adapting service oriented applications. volume 4749, pages
442–448, 09 2007.

[23] G. Avelino, L. Passos, A. Hora, and M. T. Valente. A novel approach for
estimating truck factors. In 2016 IEEE 24th International Conference on
Program Comprehension (ICPC), pages 1–10, 2016.

[24] Nicholas Ayres, Lipika Deka, and Daniel Paluszczyszyn. Continuous au-
tomotive software updates through container image layers. Electronics,
10:739, 03 2021.

[25] Jung Ho Bae and Heung Seok Chae. Systematic approach for constructing
an understandable state machine from a contract-based specification: con-
trolled experiments. Softw. Syst. Model., 15(3):847–879, jul 2016.

[26] Len Bass, Paul Clements, and Rick Kazman. Software architecture in prac-
tice. Addison-Wesley Professional, 2003.

[27] Natércia A. Batista, Michele A. Brandão, Gabriela B. Alves, Ana
Paula Couto da Silva, and Mirella M. Moro. Collaboration strength met-
rics and analyses on github. In Proceedings of the International Conference
on Web Intelligence, WI ’17, page 170–178, New York, NY, USA, 2017.
Association for Computing Machinery.

138 Bibliography

[28] Stephan Baumgart, Joakim Fröberg, and Sasikumar Punnekkat. Industrial
challenges to achieve functional safety compliance in product lines. In 2014
40th EUROMICRO Conference on Software Engineering and Advanced Ap-
plications, pages 356–360, 2014.

[29] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learn-
ing: A review and new perspectives. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 35(8):1798–1828, 2013.

[30] Avijit Bhattacharjee, Sristy Sumana Nath, Shurui Zhou, Debasish
Chakroborti, Banani Roy, Chanchal K. Roy, and Kevin Schneider. An
exploratory study to find motives behind cross-platform forks from soft-
ware heritage dataset. In Proceedings of the 17th International Conference
on Mining Software Repositories, MSR ’20, page 11–15, New York, NY,
USA, 2020. Association for Computing Machinery.

[31] Ani Bicaku, Markus Tauber, and Jerker Delsing. Security standard com-
pliance and continuous verification for industrial internet of things. Inter-
national Journal of Distributed Sensor Networks, 16:155014772092273, 06
2020.

[32] David Fernández Blanco, Frédéric Le Mouël, Trista Lin, and Marie-Pierre
Escudié. A comprehensive survey on software as a service (saas) transfor-
mation for the automotive systems. IEEE Access, 11:73688–73753, 2023.

[33] Barry W. Boehm and Victor R. Basili. Software defect reduction top 10
list. Computer, 34:135–137, 2001.

[34] P. Boldi, A. Pietri, S. Vigna, and S. Zacchiroli. Ultra-large-scale repository
analysis via graph compression. In 2020 IEEE 27th International Confer-
ence on Software Analysis, Evolution and Reengineering (SANER), pages
184–194, 2020.

[35] Manfred Broy. Challenges in automotive software engineering. In Proceed-
ings of the 28th International Conference on Software Engineering, ICSE
’06, page 33–42, New York, NY, USA, 2006. Association for Computing
Machinery.

[36] Manfred Broy, Mario Gleirscher, Stefano Merenda, Doris Wild, Peter
Kluge, and Wolfgang Krenzer. Toward a holistic and standardized au-
tomotive architecture description. Computer, 42(12):98–101, 2009.

[37] Alessio Bucaioni and Patrizio Pelliccione. Technical architectures for au-
tomotive systems. In 2020 IEEE International Conference on Software
Architecture (ICSA), pages 46–57, 2020.

Bibliography 139

[38] Alessio Bucaioni, Patrizio Pelliccione, and Rebekka Wohlrab. Aligning
architecture with business goals in the automotive domain. In 2021 IEEE
18th International Conference on Software Architecture (ICSA), pages 126–
137, 2021.

[39] Georg Buchgeher, Claus Klammer, Bernhard Dorninger, and Albin Kern.
Providing technical software documentation as a service - an industrial
experience report. In 2018 25th Asia-Pacific Software Engineering Confer-
ence (APSEC), pages 581–590, 2018.

[40] HongYun Cai, Vincent W. Zheng, and Kevin Chen-Chuan Chang. A com-
prehensive survey of graph embedding: Problems, techniques, and applica-
tions. IEEE Transactions on Knowledge and Data Engineering, 30(9):1616–
1637, 2018.

[41] X. Cai, J. Zhu, B. Shen, and Y. Chen. Greta: Graph-based tag assignment
for github repositories. In 2016 IEEE 40th Annual Computer Software and
Applications Conference (COMPSAC), volume 1, pages 63–72, 2016.

[42] Vadim Cebotari and Stefan Kugele. Playground for early automotive ser-
vice architecture design and evaluation. In 2020 IEEE Intelligent Vehicles
Symposium (IV), pages 1349–1356, 2020.

[43] Tanmoy Chakraborty, Ayushi Dalmia, Animesh Mukherjee, and Niloy Gan-
guly. Metrics for community analysis: A survey. ACM Comput. Surv.,
50(4), aug 2017.

[44] Chih-Chieh Chang, Ming-Yi Chang, Jhao-Yin Jhang, Lo-Yao Yeh, and
Chih-Ya Shen. Learning to extract expert teams in social networks. IEEE
Transactions on Computational Social Systems, 9(5):1552–1562, 2022.

[45] Jiayi Chen, Zhixing Wang, Yuchen Jiang, Jun Pang, Tian Zhang, Minxue
Pan, and Jianwen Sun. Negar: Network embedding guided architecture
recovery for software systems. In 2022 29th Asia-Pacific Software Engi-
neering Conference (APSEC), pages 367–376, 2022.

[46] Jie-Cherng Chen and Sun-Jen Huang. An empirical analysis of the impact
of software development problem factors on software maintainability. Jour-
nal of Systems and Software, 82(6):981–992, 2009.

[47] Jie-Cherng Chen and Sun-Jen Huang. An empirical analysis of the impact
of software development problem factors on software maintainability. Jour-
nal of Systems and Software, 82(6):981–992, 2009.

[48] Yufeng Chen, Jinwang Wu, and Zhongrui Wu. China’s commercial bank
stock price prediction using a novel k-means-lstm hybrid approach. Expert
Systems with Applications, 202:117370, 2022.

140 Bibliography

[49] Danny C. Cheng, Jod B. Villamarin, Gregory Cu, and Nathalie Rose Lim-
Cheng. Towards compliance management automation thru ontology map-
ping of requirements to activities and controls. In 2018 Cyber Resilience
Conference (CRC), pages 1–3, 2018.

[50] Danny C. Cheng, Jod B. Villamarin, Gregory Cu, and Nathalie Rose Lim-
Cheng. Towards end-to-end continuous monitoring of compliance status
across multiple requirements. International Journal of Advanced Computer
Science and Applications, 9, 2018.

[51] P. Clements, D. Garlan, R. Little, R. Nord, and J. Stafford. Documenting
software architectures: views and beyond. In 25th International Conference
on Software Engineering, 2003. Proceedings., pages 740–741, 2003.

[52] Paul Clements and Len Bass. Relating business goals to architecturally
significant requirements for software systems. Technical report, Carnegie-
Mellon Univ Pittsburgh Software Engineering Institute, 2010.

[53] Riccardo Coppola and Maurizio Morisio. Connected car: Technologies,
issues, future trends. ACM Comput. Surv., 49(3), oct 2016.

[54] Théo Coulin, Maxence Detante, William Mouchère, and Fabio Petrillo.
Software architecture metrics: a literature review. 01 2019.

[55] Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim Herbsleb. Social cod-
ing in github: Transparency and collaboration in an open software reposi-
tory. In Proceedings of the ACM 2012 Conference on Computer Supported
Cooperative Work, CSCW ’12, page 1277–1286, New York, NY, USA, 2012.
Association for Computing Machinery.

[56] Yanja Dajsuren, Mark van den Brand, Alexander Serebrenik, and Rudolf
Huisman. Automotive adls: a study on enforcing consistency through mul-
tiple architectural levels. QoSA ’12, page 71–80, New York, NY, USA,
2012. Association for Computing Machinery.

[57] Joseph M. D’Alessandro, Cynthia D. Tanner, Bonnie W. Morris, and Tim
Menzies. Is continuous compliance assurance possible? In 2009 Sixth
International Conference on Information Technology: New Generations,
pages 1599–1599, 2009.

[58] Raghad Dardar, Barbara Gallina, Andreas Johnsen, Kristina Lundqvist,
and Mattias Nyberg. Industrial experiences of building a safety case in
compliance with iso 26262. In 2012 IEEE 23rd International Symposium
on Software Reliability Engineering Workshops, pages 349–354, 2012.

Bibliography 141

[59] Marco De Luca, Anna Rita Fasolino, Antonino Ferraro, Vincenzo Moscato,
Giancarlo Sperlí, and Porfirio Tramontana. A community detection ap-
proach based on network representation learning for repository mining.
Expert Systems with Applications, 231:120597, 2023.

[60] Juri Di Rocco, Davide Di Ruscio, Claudio Di Sipio, Phuong Nguyen, and
Riccardo Rubei. Topfilter: An approach to recommend relevant github
topics. In Proceedings of the 14th ACM / IEEE International Symposium
on Empirical Software Engineering and Measurement (ESEM), ESEM ’20,
New York, NY, USA, 2020. Association for Computing Machinery.

[61] Stephane Ducasse and Damien Pollet. Software architecture reconstruction:
A process-oriented taxonomy. IEEE Transactions on Software Engineering,
35(4):573–591, 2009.

[62] Darko Durisic, Martin Nilsson, Miroslaw Staron, and Jörgen Hansson. Mea-
suring the impact of changes to the complexity and coupling properties of
automotive software systems. Journal of Systems and Software, 86(5):1275–
1293, 2013.

[63] Sebastian Dännart, Fabiola Moyón, and Kristian Beckers. An Assessment
Model for Continuous Security Compliance in Large Scale Agile Environ-
ments: Exploratory Paper, pages 529–544. 05 2019.

[64] Ulf Eliasson, Rogardt Heldal, Patrizio Pelliccione, and Jonn Lantz. Archi-
tecting in the automotive domain: Descriptive vs prescriptive architecture.
In 2015 12th Working IEEE/IFIP Conference on Software Architecture,
pages 115–118, 2015.

[65] Gregor Engels, Alexander Förster, Reiko Heckel, and Sebastian Thöne.
Process modeling using uml. pages 83 – 117, 10 2005.

[66] Christoph Etzel, Florian Hofhammer, and Bernhard Bauer. Towards met-
rics for analyzing system architectures modeled with east-adl. pages 441–
448, 01 2020.

[67] Fabian Fagerholm, Marko Ikonen, Petri Kettunen, Jürgen Münch, Virpi
Roto, and Pekka Abrahamsson. How do software developers experience
team performance in lean and agile environments? In Proceedings of the
18th International Conference on Evaluation and Assessment in Software
Engineering, EASE ’14, New York, NY, USA, 2014. Association for Com-
puting Machinery.

[68] Asma Fariha, Sanaa Alwidian, and Akramul Azim. A systematic literature
review on requirements engineering and maintenance for embedded soft-
ware. IEEE Access, 12:114263–114279, 2024.

142 Bibliography

[69] H. Fennel, Stefan Bunzel, Harald Heinecke, Jürgen Bielefeld, Simon Fürst,
K. P. Schnelle, Walter Grote, Nico Maldener, Thomas Weber, Florian An-
dreas Wohlgemuth, Jens Ruh, Lennart Lundh, Tomas Sandén, Peter
Heitkämper, Robert Rimkus, Jean Leflour, Alain Gilberg, Ulrich Virnich,
Stefan Voget, Kenji Nishikawa, Kazuhiro Kajio, Klaus-Jörn Lange, Thomas
Scharnhorst, and Bernd Kunkel. Achievements and exploitation of the au-
tosar development partnership. 2006.

[70] Robert Filepp, Constantin Adam, Milton Hernandez, Maja Vukovic, Nikos
Anerousis, and Guan Qun Zhang. Continuous compliance: Experiences,
challenges, and opportunities. In 2018 IEEE World Congress on Services
(SERVICES), pages 31–32, 2018.

[71] Erzheng Fu, Yingqiu Zhuang, Jianxi Zhang, Jiayun Zhang, and Yang Chen.
Understanding the user interactions on github: A social network perspec-
tive. In 2021 IEEE 24th International Conference on Computer Supported
Cooperative Work in Design (CSCWD), pages 1148–1153. IEEE, 2021.

[72] Tao-yang Fu, Wang-Chien Lee, and Zhen Lei. Hin2vec: Explore meta-paths
in heterogeneous information networks for representation learning. pages
1797–1806, 11 2017.

[73] Barbara Gallina, Kathyayani Padira, and Mattias Nyberg. Towards an iso
26262-compliant oslc-based tool chain enabling continuous self-assessment.
2016 10th International Conference on the Quality of Information and
Communications Technology (QUATIC), pages 199–204, 2016.

[74] David Garlan, Robert Allen, and John Ockerbloom. Architectural mis-
match: Why reuse is still so hard. IEEE Software, 26(4):66–69, July 2009.

[75] Vahid Garuslu, Michael Felderer, Cagri Karapicak, and Ugur Yilmaz. Test-
ing embedded software: A survey of the literature. Information and Soft-
ware Technology, 104, 07 2018.

[76] Franz-Xaver Geiger, Ivano Malavolta, Luca Pascarella, Fabio Palomba,
Dario Di Nucci, and Alberto Bacchelli. A graph-based dataset of commit
history of real-world android apps. In Proceedings of the 15th International
Conference on Mining Software Repositories, MSR ’18, page 30–33, New
York, NY, USA, 2018. Association for Computing Machinery.

[77] G. Gousios and D. Spinellis. Ghtorrent: Github’s data from a firehose.
In 2012 9th IEEE Working Conference on Mining Software Repositories
(MSR), pages 12–21, 2012.

[78] Georgios Gousios. The ghtorent dataset and tool suite. In Proceedings of
the 10th Working Conference on Mining Software Repositories, MSR ’13,
page 233–236. IEEE Press, 2013.

Bibliography 143

[79] K. Grimm. Software technology in an automotive company - major chal-
lenges. In 25th International Conference on Software Engineering, 2003.
Proceedings., pages 498–503, May 2003.

[80] Viral Gupta, Parmod Kumar Kapur, and Deepak Kumar. Measuring ar-
chitecture and design efficiency for enterprise applications. International
Journal of Industrial and Systems Engineering, 28(4):494 – 529, 2018. Cited
by: 4.

[81] Ayşe Günsel, Atif Açikgšz, Ayça Tükel, and Emine Öğüt. The role of
flexibility on software development performance: An empirical study on
software development teams. Procedia - Social and Behavioral Sciences,
58:853–860, 2012. 8th International Strategic Management Conference.

[82] Alireza Haghighatkhah, Ahmad Banijamali, Olli-Pekka Pakanen, Markku
Oivo, and Pasi Kuvaja. Automotive software engineering: A systematic
mapping study. Journal of Systems and Software, 128:25–55, 2017.

[83] N. Hajiakhoond Bidoki and G. Sukthankar. Network semantic segmenta-
tion with application to github. In 2018 International Conference on Com-
putational Science and Computational Intelligence (CSCI), pages 1281–
1284, 2018.

[84] Wen-Ming Han and Sun-Jen Huang. An empirical analysis of risk com-
ponents and performance on software projects. Journal of Systems and
Software, 80(1):42–50, 2007.

[85] Bernd Hardung, Thorsten Koelzow, and Andreas Krüger. Reuse of software
in distributed embedded automotive systems. pages 203–210, 09 2004.

[86] Jacqueline Henle, Laurenz Adolph, Carl Philipp Hohl, and Eric Sax. A
viewpoint-based evaluation method for future automotive architectures.
In 2022 IEEE International Symposium on Systems Engineering (ISSE),
pages 1–8, 2022.

[87] Steffen Herbold, Aynur Amirfallah, Fabian Trautsch, and Jens Grabowski.
A systematic mapping study of developer social network research. Journal
of Systems and Software, 171:110802, 2021.

[88] A. Hocking, John Knight, M. Aiello, and Shinichi Shiraishi. Arguing soft-
ware compliance with iso 26262. In Proceedings - IEEE 25th International
Symposium on Software Reliability Engineering Workshops, ISSREW 2014,
11 2014.

[89] Tingting Hou, Xiangjuan Yao, and Dunwei Gong. Community detection in
software ecosystem by comprehensively evaluating developer cooperation
intensity. Information and Software Technology, 130:106451, 10 2020.

144 Bibliography

[90] Tingting Hou, Xiangjuan Yao, and Dunwei Gong. Community detection in
software ecosystem by comprehensively evaluating developer cooperation
intensity. Information and Software Technology, 130:106451, 2021.

[91] Yan Hu, Jun Zhang, Xiaomei Bai, Shuo Yu, and Zhuo Yang. Influence
analysis of github repositories. SpringerPlus, 5(1):1268, 2016.

[92] ISO. ISO 26262 — Road vehicles — Functional safety, 2018.

[93] ISO. ISO 26262 — Road vehicles — Functional safety — Part 3: Concept
phasel, 2018.

[94] ISO. ISO 26262 — Road vehicles — Functional safety — Part 6: Product
development at the software level, 2018.

[95] Oskar Jarczyk, Blazej Gruszka, Leszek Bukowski, and Adam Wierzbicki.
On the effectiveness of emergent task allocation of virtual programmer
teams. In Proceedings of the 2014 IEEE/WIC/ACM International Joint
Conferences on Web Intelligence (WI) and Intelligent Agent Technologies
(IAT) - Volume 01, WI-IAT ’14, page 369–376, USA, 2014. IEEE Com-
puter Society.

[96] Houye Ji, Xiao Wang, Chuan Shi, Bai Wang, and Philip Yu. Heterogeneous
graph propagation network. IEEE Transactions on Knowledge and Data
Engineering, pages 1–1, 2021.

[97] J. Jiang, L. Zhang, and L. Li. Understanding project dissemination on a
social coding site. In 2013 20th Working Conference on Reverse Engineering
(WCRE), pages 132–141, 2013.

[98] Katharina Juhnke, Matthias Tichy, and Frank Houdek. Challenges con-
cerning test case specifications in automotive software testing. In 2018
44th Euromicro Conference on Software Engineering and Advanced Appli-
cations (SEAA), pages 33–40, Aug 2018.

[99] Tim Kelly. Using software architecture techniques to support the modular
certification of safety-critical systems. 69, 05 2007.

[100] Sebastian Kiebusch, Bogdan Franczyk, and Andreas Speck. Process-family-
points. pages 314–321, 05 2006.

[101] Johannes Kloos, Tanvir Hussain, and Robert Eschbach. Risk-based testing
of safety-critical embedded systems driven by fault tree analysis. In 2011
IEEE Fourth International Conference on Software Testing, Verification
and Validation Workshops, pages 26–33, 2011.

Bibliography 145

[102] Roland Knor, Georg Trausmuth, and Johannes Weidl. Reengineering
c/c++ source code by transforming state machines. page 97–105. Springer-
Verlag, 1998.

[103] Kostas Kontogiannis, Michael Athanasopoulos, and Chris Brealey. Contin-
uous software engineering: Challenge areas and frameworks. In Proceed-
ings of the 26th Annual International Conference on Computer Science and
Software Engineering, CASCON ’16, page 335–338, USA, 2016. IBM Corp.

[104] Philippe Kruchten, Robert L. Nord, and Ipek Ozkaya. Technical debt:
From metaphor to theory and practice. IEEE Software, 29(6):18–21, 2012.

[105] Richard A. Krueger and Mary Anne Casey. Focus Groups A Practical Guide
for Applied Research. Sage, 2015.

[106] D. Kung, N. Suchak, J. Gao, P. Hsia, Y. Toyoshima, and C. Chen. On
object state testing. In Proceedings Eighteenth Annual International Com-
puter Software and Applications Conference (COMPSAC 94), pages 222–
227, 1994.

[107] Rikard Land, Mikael Åkerholm, and Jan Carlson. Efficient software compo-
nent reuse in safety-critical systems – an empirical study. In Frank Ortmeier
and Peter Daniel, editors, Computer Safety, Reliability, and Security, pages
388–399, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[108] Theodoros Lappas, Kun Liu, and Evimaria Terzi. Finding a team of ex-
perts in social networks. In Proceedings of the 15th ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining, KDD
’09, page 467–476, New York, NY, USA, 2009. Association for Computing
Machinery.

[109] William Leibzon. Social network of software development at github. In
2016 IEEE/ACM International Conference on Advances in Social Networks
Analysis and Mining (ASONAM), pages 1374–1376, 2016.

[110] Yazmin Luna-Herrera, Juan Carlos Pérez-Arriaga, Jorge Ocharán-
Hernández, and Angel Sanchez Garcia. Comprehension of Computer Pro-
grams Through Reverse Engineering Approaches and Techniques: A Sys-
tematic Mapping Study, pages 126–140. 10 2022.

[111] Yaping Luo and Mark van den Brand. Metrics design for safety assessment.
Information and Software Technology, 73:151–163, 2016.

[112] Z. Luo, X. Mao, and A. Li. An exploratory research of github based on
graph model. In 2015 Ninth International Conference on Frontier of Com-
puter Science and Technology, pages 96–103, 2015.

146 Bibliography

[113] Christian Manteuffel, Dan Tofan, Paris Avgeriou, Heiko Koziolek, and
Thomas Goldschmidt. Decision architect – a decision documentation tool
for industry. Journal of Systems and Software, 112:181–198, 2016.

[114] Onaiza Maqbool and Haroon Babri. Hierarchical clustering for soft-
ware architecture recovery. IEEE Transactions on Software Engineering,
33(11):759–780, 2007.

[115] J.F. Maranzano, Sandra Rozsypal, G.H. Zimmerman, G.W. Warnken, P.E.
Wirth, and David Weiss. Architecture reviews: Practice and experience.
Software, IEEE, 22:34 – 43, 04 2005.

[116] Raluca Marinescu, Mehrdad Saadatmand, Alessio Bucaioni, Cristina Se-
celeanu, and Paul Pettersson. A model-based testing framework for au-
tomotive embedded systems. In 2014 40th EUROMICRO Conference on
Software Engineering and Advanced Applications, pages 38–47, 2014.

[117] Jennifer Marlow, Laura Dabbish, and Jim Herbsleb. Impression formation
in online peer production: Activity traces and personal profiles in github.
In Proceedings of the 2013 Conference on Computer Supported Cooperative
Work, CSCW ’13, page 117–128, New York, NY, USA, 2013. Association
for Computing Machinery.

[118] Silverio Martínez-Fernández, Claudia P. Ayala, Xavier Franch, and Elisa Y.
Nakagawa. A survey on the benefits and drawbacks of autosar. WASA
’15, page 19–26, New York, NY, USA, 2015. Association for Computing
Machinery.

[119] Nicholas Matragkas, James R. Williams, Dimitris S. Kolovos, and
Richard F. Paige. Analysing the ’biodiversity’ of open source ecosystems:
The github case. In Proceedings of the 11th Working Conference on Min-
ing Software Repositories, MSR 2014, page 356–359, New York, NY, USA,
2014. Association for Computing Machinery.

[120] Niklas Mellegard, Miroslaw Staron, and Fredrik Torner. A light-weight de-
fect classification scheme for embedded automotive software and its initial
evaluation. pages 261–270, 11 2012.

[121] Nilton Mendes Souza, Diógenes Dias, Lucas Bueno Ruas de Oliveira, Cris-
tiane Aparecida Lana, Elisa Yumi Nakagawa, and José Carlos Maldonado.
Exploring together software architecture and software testing: A systematic
mapping. In 2016 35th International Conference of the Chilean Computer
Science Society (SCCC), pages 1–12, Oct 2016.

Bibliography 147

[122] Hoang-Le Minh, Thanh Sang-To, Magd Abdel Wahab, and Thanh Cuong-
Le. A new metaheuristic optimization based on k-means clustering algo-
rithm and its application to structural damage identification. Knowledge-
Based Systems, 251:109189, 2022.

[123] MIRA Ltd. MISRA-C:2004 Guidelines for the use of the C language in
critical systems, October 2004.

[124] Audris Mockus, Diomidis Spinellis, Zoe Kotti, and Gabriel John Dusing.
A complete set of related git repositories identified via community detec-
tion approaches based on shared commits. In Proceedings of the 17th In-
ternational Conference on Mining Software Repositories, MSR ’20, page
513–517, New York, NY, USA, 2020. Association for Computing Machin-
ery.

[125] Behnaz Moradi-Jamei, Brandon L. Kramer, J. Bayoán Santiago Calderón,
and Gizem Korkmaz. Community formation and detection on github col-
laboration networks. In Proceedings of the 2021 IEEE/ACM Interna-
tional Conference on Advances in Social Networks Analysis and Mining,
ASONAM ’21, page 244–251, New York, NY, USA, 2022. Association for
Computing Machinery.

[126] Bonnie Morris, Cynthia Tanner, and Joseph D’Alessandro. Enabling trust
through continuous compliance assurance. In 2010 Seventh International
Conference on Information Technology: New Generations, pages 708–713,
2010.

[127] Vincenzo Moscato and Giancarlo Sperlì. A survey about community
detection over on-line social and heterogeneous information networks.
Knowledge-Based Systems, 224:107112, 2021.

[128] Noha Moselhy, Yasser Ali, and Reem Mamdouh. Measurements of support
processes: Proposed improvements on automotive spice pam v3.1 in light
of oem standard supplier quality requirements. In Murat Yilmaz, Paul
Clarke, Richard Messnarz, and Bruno Wöran, editors, Systems, Software
and Services Process Improvement, pages 568–592, Cham, 2022. Springer
International Publishing.

[129] Fabiola Moyon, Kristian Beckers, Sebastian Klepper, Philipp Lachberger,
and Bernd Bruegge. Towards continuous security compliance in agile soft-
ware development at scale. In 2018 IEEE/ACM 4th International Workshop
on Rapid Continuous Software Engineering (RCoSE), pages 31–34, 2018.

[130] Bhavesh Raju Mudhivarthi, Vaibhav Saini, Ayush Dodia, Pritesh Shah, and
Ravi Sekhar. Model based design in automotive open system architecture.

148 Bibliography

In 2023 7th International Conference on Intelligent Computing and Control
Systems (ICICCS), pages 1211–1216, 2023.

[131] Lukas Mäurer, Tanja Hebecker, Torben Stolte, Michael Lipaczewski, Uwe
Möhrstädt, and Frank Ortmeier. On bringing object-oriented software met-
rics into the model-based world – verifying iso 26262 compliance in simulink.
09 2014.

[132] N. Walkinshaw, K. Bogdanov, S. Ali, and M. Holcombe. Automated dis-
covery of state transitions and their functions in source code. page 99 –
121, 2008.

[133] P. Narang and P. Mittal. Implementation of devops based hybrid model for
project management and deployment using jenkins automation tool with
plugins. International Journal of Computer Science and Network Security,
22(8):249–259, Aug 2022.

[134] P. Narang and P. Mittal. Performance assessment of traditional software
development methodologies and devops automation culture. Engineering,
Technology & Applied Science Research, 12(6):9726–9731, Dec. 2022.

[135] Bashar Nassar and Riccardo Scandariato. Traceability metrics as early
predictors of software defects? In 2017 IEEE International Conference on
Software Architecture (ICSA), pages 235–238, 2017.

[136] Nicolas Navet and Françoise Simonot-Lion. Automotive embedded systems
handbook. CRC press, 2017.

[137] Michael L. Nelson. A survey of reverse engineering and program compre-
hension. ArXiv, abs/cs/0503068, 2005.

[138] M. Newman. Equivalence between modularity optimization and maximum
likelihood methods for community detection. Physical Review E, 94, 11
2016.

[139] P.T. Nguyen, J. Di Rocco, R. Rubei, and D. Di Ruscio. An automated
approach to assess the similarity of github repositories. Software Quality
Journal, 28(2):595–631, 2020. cited By 2.

[140] Liam O’Brien, Paulo Merson, and Len Bass. Quality attributes for service-
oriented architectures. In International Workshop on Systems Development
in SOA Environments (SDSOA’07: ICSE Workshops 2007), pages 3–3,
2007.

[141] Minxue Pan, Shouyu Chen, Yu Pei, Tian Zhang, and Xuandong Li. Easy
modelling and verification of unpredictable and preemptive interrupt-driven
systems. In 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE), pages 212–222, 2019.

Bibliography 149

[142] Juraj Pancik, Aleš Vémola, Robert Kledus, Marek Semela, and Albert
Bradáč. Auto recalls and software quality in the automotive sector. ICST
Transactions on Scalable Information Systems, 5:154808, 05 2018.

[143] Stefan Penthin. Software-Over-The-Air (SOTA):
An Automotive Accelerator. https://www.
bearingpoint.com/en-se/our-success/thought-leadership/
software-over-the-air-sota-an-automotive-accelerator/.

[144] Duc Truong Pham, Stefan S Dimov, and Chi D Nguyen. Selection of k in
k-means clustering. Proceedings of the Institution of Mechanical Engineers,
Part C: Journal of Mechanical Engineering Science, 219(1):103–119, 2005.

[145] Simon Phipps and Stefano Zacchiroli. Continuous open source license com-
pliance. Computer, 53(12):115–119, 2020.

[146] Antoine Pietri, Guillaume Rousseau, and Stefano Zacchiroli. Determining
the intrinsic structure of public software development history. In Proceed-
ings of the 17th International Conference on Mining Software Repositories,
MSR ’20, page 602–605, New York, NY, USA, 2020. Association for Com-
puting Machinery.

[147] G. Pinto, I. Steinmacher, and M. A. Gerosa. More common than you think:
An in-depth study of casual contributors. In 2016 IEEE 23rd International
Conference on Software Analysis, Evolution, and Reengineering (SANER),
volume 1, pages 112–123, 2016.

[148] M. Pinzger, M. Fischer, H. Gall, and M. Jazayeri. Revealer: a lexical
pattern matcher for architecture recovery. In Ninth Working Conference
on Reverse Engineering, 2002. Proceedings., pages 170–178, 2002.

[149] Shobha S Prabhu, Hem Kapil, and Shashirekha H Lakshmaiah. Safety
critical embedded software: Significance and approach to reliability. In 2018
International Conference on Advances in Computing, Communications and
Informatics (ICACCI), pages 449–455, 2018.

[150] Md. Mokhlesur Rahman and Jean-Claude Thill. Impacts of connected
and autonomous vehicles on urban transportation and environment: A
comprehensive review. Sustainable Cities and Society, 96:104649, 2023.

[151] Mohammad Masudur Rahman and Chanchal K. Roy. An insight into the
pull requests of github. In Proceedings of the 11th Working Conference on
Mining Software Repositories, MSR 2014, page 364–367, New York, NY,
USA, 2014. Association for Computing Machinery.

https://www.bearingpoint.com/en-se/our-success/thought-leadership/software-over-the-air-sota-an-automotive-accelerator/
https://www.bearingpoint.com/en-se/our-success/thought-leadership/software-over-the-air-sota-an-automotive-accelerator/
https://www.bearingpoint.com/en-se/our-success/thought-leadership/software-over-the-air-sota-an-automotive-accelerator/

150 Bibliography

[152] Fabíola Gonçalves C. Ribeiro, Achim Reuberg, Carlos E. Pereira, and
Michel S. Soares. An approach for architectural design of automotive sys-
tems using marte and sysml. In 2018 IEEE 14th International Conference
on Automation Science and Engineering (CASE), pages 1574–1580, 2018.

[153] Wasim Said, Jochen Quante, and Rainer Koschke. Mining understandable
state machine models from embedded code. Empirical Software Engineer-
ing, 25(6):4759 – 4804, 2020.

[154] Ionut-Andrei Sandu and Alexandru Salceanu. Improved technique for mea-
suring the number of defects in automotive agile sw development : Defect
debt trend. In 2018 International Conference and Exposition on Electrical
And Power Engineering (EPE), pages 0765–0768, 2018.

[155] Teodora Sanislav and Liviu Miclea. Cyber-physical systems - concept, chal-
lenges and research areas. Control Engineering and Applied Informatics,
14:28–33, 01 2012.

[156] T. Santilli, P. Pelliccione, R. Wohlrab, and A. Shahrokni. What is contin-
uous compliance? IEEE Software, (01):1–10, dec 5555.

[157] Amit Saxena, Mukesh Prasad, Akshansh Gupta, Neha Bharill, Om Prakash
Patel, Aruna Tiwari, Meng Joo Er, Weiping Ding, and Chin-Teng Lin. A re-
view of clustering techniques and developments. Neurocomputing, 267:664–
681, 2017.

[158] V. Schettino, V. Horta, M. A. P. Araújo, and V. Ströele. Towards com-
munity and expert detection in open source global development. In 2019
IEEE 23rd International Conference on Computer Supported Cooperative
Work in Design (CSCWD), pages 350–355, 2019.

[159] Michael Sejr Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den
Berg, Ivan Titov, and Max Welling. Modeling relational data with graph
convolutional networks. pages 593–607, 2018.

[160] Philipp Seifer, Johannes Härtel, Martin Leinberger, Ralf Lämmel, and Stef-
fen Staab. Empirical study on the usage of graph query languages in open
source java projects. In Proceedings of the 12th ACM SIGPLAN Inter-
national Conference on Software Language Engineering, SLE 2019, page
152–166, New York, NY, USA, 2019. Association for Computing Machin-
ery.

[161] Kalyani Selvarajah, Ziad Kobti, and Mehdi Kargar. Cultural algorithms for
cluster hires in social networks. Procedia Computer Science, 170:514–521,
2020. The 11th International Conference on Ambient Systems, Networks
and Technologies (ANT) / The 3rd International Conference on Emerging
Data and Industry 4.0 (EDI40) / Affiliated Workshops.

Bibliography 151

[162] Mall R. Sen T. Extracting finite state representation of java programs. In
Softw Syst Model, page 497–511, 2016.

[163] Ali Shahrokni and Patrizio Pelliccione. Significance of continuous compli-
ance in automotive. In The International Conference on Evaluation and
Assessment in Software Engineering 2022, EASE 2022, page 272–273, New
York, NY, USA, 2022. Association for Computing Machinery.

[164] Ali Shahrokni and Patrizio Pelliccione. Significance of continuous compli-
ance in automotive. In Proceedings of the 26th International Conference
on Evaluation and Assessment in Software Engineering, EASE ’22, page
272–273, New York, NY, USA, 2022. Association for Computing Machin-
ery.

[165] Rebecca Shannon-Spicer, Amin Vahabaghaie, George Bahouth, Ludwig
Drees, Robert Bülow, and Peter Baur. Field effectiveness evaluation of
advanced driver assistance systems. Traffic Injury Prevention, 19:1–5, 12
2018.

[166] Jyoti Sheoran, Kelly Blincoe, Eirini Kalliamvakou, Daniela Damian, and
Jordan Ell. Understanding "watchers" on github. In Proceedings of the 11th
Working Conference on Mining Software Repositories, MSR 2014, page
336–339, New York, NY, USA, 2014. Association for Computing Machinery.

[167] Adam Sherer, John Rose, and Riccardo Oddone. Ensuring functional safety
compliance for iso 26262. In 2015 52nd ACM/EDAC/IEEE Design Au-
tomation Conference (DAC), pages 1–3, 2015.

[168] Ikhlaq Sidhu, Sudarshan Gopalakrishnan, and Rajarathnam Balakrishnan.
Effectiveness factors for algorithm based team formation with data project
case application. In 2021 IEEE International Conference on Engineering,
Technology and Innovation (ICE/ITMC), pages 1–6, 2021.

[169] Lakshitha Silva and Dharini Balasubramaniam. Controlling software archi-
tecture erosion: A survey. Journal of Systems and Software, 85:132–151,
01 2012.

[170] Samira Silva, Adiel Tuyishime, Tiziano Santilli, Patrizio Pelliccione, and
Ludovico Iovino. Quality metrics in software architecture. In 2023 IEEE
20th International Conference on Software Architecture (ICSA), pages 58–
69, 2023.

[171] Jacopo Sini, Massimo Violante, and Fabrizio Tronci. A novel iso 26262-
compliant test bench to assess the diagnostic coverage of software hardening
techniques against digital components random hardware failures. Electron-
ics, 11(6), 2022.

152 Bibliography

[172] Stéphane S. Somé and Timothy C. Lethbridge. Enhancing program com-
prehension with recovered state models. In Proceedings of the 10th Interna-
tional Workshop on Program Comprehension, IWPC ’02. IEEE Computer
Society, 2002.

[173] Ioana Şora. Helping program comprehension of large software systems
by identifying their most important classes. In Leszek A. Maciaszek and
Joaquim Filipe, editors, Evaluation of Novel Approaches to Software Engi-
neering, pages 122–140, Cham, 2016. Springer International Publishing.

[174] Miroslaw Staron. Automotive software architectures: An introduction. 2017.
Cited by: 24; All Open Access, Green Open Access.

[175] Miroslaw Staron. Introduction, pages 1–18. Springer International Publish-
ing, Cham, 2021.

[176] Miroslaw Staron and Darko Durisic. AUTOSAR Standard, pages 81–116.
Springer International Publishing, Cham, 2017.

[177] Kim Strandberg, Ulf Arnljung, Tomas Olovsson, and Dennis Kengo Oka.
Secure vehicle software updates: Requirements for a reference architecture.
In 2023 IEEE 97th Vehicular Technology Conference (VTC2023-Spring),
pages 1–7, June 2023.

[178] C. Stringfellow, C.D. Amory, D. Potnuri, A. Andrews, and M. Georg. Com-
parison of software architecture reverse engineering methods. Information
and Software Technology, 48(7):484–497, 2006.

[179] Emre Sülün, Eray Tüzün, and Uğur Doğrusöz. Reviewer recommendation
using software artifact traceability graphs. In Proceedings of the Fifteenth
International Conference on Predictive Models and Data Analytics in Soft-
ware Engineering, PROMISE’19, page 66–75, New York, NY, USA, 2019.
Association for Computing Machinery.

[180] Mikael Svahnberg, Claes Wohlin, Lars Lundberg, and Michael Mattsson. A
method for understanding quality attributes in software architecture struc-
tures. In Proceedings of the 14th International Conference on Software
Engineering and Knowledge Engineering, SEKE ’02, page 819–826, New
York, NY, USA, 2002. Association for Computing Machinery.

[181] Tarja Systä. Static and dynamic reverse engineering techniques for java
software systems. 2000.

[182] Sparx Systems. Using UML Part Two – Behavioral Modeling Diagrams,
2018.

Bibliography 153

[183] Emre Sülün, Eray Tüzün, and Uğur Doğrusöz. Rstrace+: Reviewer sugges-
tion using software artifact traceability graphs. Information and Software
Technology, 130:106455, 2021.

[184] Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy. Software
Architecture: Foundations, Theory, and Practice. John Wiley & Sons,
2010.

[185] A. Telea, A. Maccari, and C. Riva. An open visualization toolkit for re-
verse architecting. In Proceedings 10th International Workshop on Program
Comprehension, 2002.

[186] Thiviyan Thanapalasingam, Lucas Berkel, Peter Bloem, and Paul Groth.
Relational graph convolutional networks: A closer look. 07 2021.

[187] Sam L. Thomas, Jan Van den Herrewegen, Georgios Vasilakis, Zitai Chen,
Mihai Ordean, and Flavio D. Garcia. Cutting through the complexity of re-
verse engineering embedded devices. IACR Transactions on Cryptographic
Hardware and Embedded Systems, (3), 2021.

[188] Paolo Tonella. Reverse engineering of object oriented code. In Proceedings
of the 27th International Conference on Software Engineering, ICSE ’05,
page 724–725, New York, NY, USA, 2005. Association for Computing Ma-
chinery.

[189] Théo Trouillon, Christopher R. Dance, Éric Gaussier, Johannes Welbl, Se-
bastian Riedel, and Guillaume Bouchard. Knowledge graph completion via
complex tensor factorization. J. Mach. Learn. Res., 18:130:1–130:38, 2017.

[190] Théo Trouillon, Johannes Welbl, Sebastian Riedel, Eric Gaussier, and Guil-
laume Bouchard. Complex embeddings for simple link prediction. 2016.

[191] Sara Tucci-Piergiovanni, Chokri Mraidha, Ernest Wozniak, Agnes Lanusse,
and Sebastien Gerard. A uml model-based approach for replication assess-
ment of autosar safety-critical applications. In 2011IEEE 10th International
Conference on Trust, Security and Privacy in Computing and Communi-
cations, pages 1176–1187, 2011.

[192] Gias Uddin and Martin P. Robillard. How api documentation fails. IEEE
Software, 32(4):68–75, 2015.

[193] Burak Uzun and Bedir Tekinerdogan. Architecture conformance analysis
using model-based testing: A case study approach. Software - Practice and
Experience, 49(3), 2019.

[194] van Zeeland D. van den Brand M, Serebrenik A. Extraction of state
machines of legacy c code with cpp2xmi. In Proceedings of 7th belgian-
netherlands software evolution workshop, pages 28–30, 2008.

154 Bibliography

[195] Hariharan Venkitachalam, Johannes Richenhagen, Axel Schlosser, and
Thomas Tasky. Metrics for verification and validation of architecture in
powertrain software development. In 2015 First International Workshop
on Automotive Software Architecture (WASA), pages 27–33, 2015.

[196] Roberto Verdecchia, Philippe Kruchten, and Patricia Lago. Architectural
technical debt: A grounded theory. In Software Architecture: 14th Eu-
ropean Conference, ECSA 2020, L’Aquila, Italy, September 14–18, 2020,
Proceedings, Berlin, Heidelberg, 2020. Springer-Verlag.

[197] M. Visconti and C.R. Cook. An overview of industrial software documen-
tation practice. volume 2002-January, page 179 – 186, 2002. Cited by: 12;
All Open Access, Green Open Access.

[198] Martin Vogel, Peter Knapik, Moritz Cohrs, Bernd Szyperrek, Win-
fried Pueschel, Haiko Etzel, Daniel Fiebig, Andreas Rausch, and Marco
Kuhrmann. Metrics in automotive software development: A systematic
literature review. Journal of Software: Evolution and Process, 33(2):e2296,
2021. e2296 smr.2296.

[199] Marco Wagner, Dieter Zobel, and Ansgar Meroth. Towards runtime adap-
tation in autosar: Adding service-orientation to automotive software archi-
tecture. In Proceedings of the 2014 IEEE Emerging Technology and Factory
Automation (ETFA), pages 1–7, 2014.

[200] Jiang Wan, Arquimedes Canedo, and Mohammad Abdullah Al Faruque.
Cyber–physical codesign at the functional level for multidomain automotive
systems. IEEE Systems Journal, 11(4):2949–2959, 2017.

[201] D. Wang, J. Cao, S. Qian, and Q. Qi. Investigating cross-repository socially
connected teams on github. In 2019 26th Asia-Pacific Software Engineering
Conference (APSEC), pages 490–497, 2019.

[202] Xiao Wang, Deyu Bo, Chuan Shi, Shaohua Fan, Yanfang Ye, and S Yu
Philip. A survey on heterogeneous graph embedding: methods, techniques,
applications and sources. IEEE Transactions on Big Data, 2022.

[203] Xiao Wang, Deyu Bo, Chuan Shi, Shaohua Fan, Yanfang Ye, and Philip S.
Yu. A survey on heterogeneous graph embedding: Methods, techniques,
applications and sources. IEEE Transactions on Big Data, pages 1–1, 2022.

[204] Z. Wang and D. E. Perry. Role distribution and transformation in open
source software project teams. In 2015 Asia-Pacific Software Engineering
Conference (APSEC), pages 119–126, 2015.

Bibliography 155

[205] Chauncey Wilson. Chapter 2 - semi-structured interviews. In Chauncey
Wilson, editor, Interview Techniques for UX Practitioners, pages 23–41.
Morgan Kaufmann, Boston, 2014.

[206] Rebekka Wohlrab, Ulf Eliasson, Patrizio Pelliccione, and Rogardt Hel-
dal. Improving the consistency and usefulness of architecture descriptions:
Guidelines for architects. In 2019 IEEE International Conference on Soft-
ware Architecture (ICSA), pages 151–160, 2019.

[207] Lu Xiao, Yuanfang Cai, Rick Kazman, Ran Mo, and Qiong Feng. Identify-
ing and quantifying architectural debt. ICSE ’16, page 488–498, New York,
NY, USA, 2016. Association for Computing Machinery.

[208] Yu Xie, Bin Yu, Shengze Lv, Chen Zhang, Guodong Wang, and Maoguo
Gong. A survey on heterogeneous network representation learning. Pattern
Recognition, 116:107936, 2021.

[209] Kazuhiro Yamashita, Shane McIntosh, Yasutaka Kamei, Ahmed E. Hassan,
and Naoyasu Ubayashi. Revisiting the applicability of the pareto principle
to core development teams in open source software projects. In Proceed-
ings of the 14th International Workshop on Principles of Software Evolu-
tion, IWPSE 2015, page 46–55, New York, NY, USA, 2015. Association for
Computing Machinery.

[210] Carl Yang, Yuxin Xiao, Yu Zhang, Yizhou Sun, and Jiawei Han. Hetero-
geneous network representation learning: A unified framework with survey
and benchmark. IEEE Transactions on Knowledge and Data Engineering,
pages 1–1, 2020.

[211] Luting Ye, Hailong Sun, Xu Wang, and Jiaruijue Wang. Personalized team-
mate recommendation for crowdsourced software developers. In Proceedings
of the 33rd ACM/IEEE International Conference on Automated Software
Engineering, ASE ’18, page 808–813, New York, NY, USA, 2018. Associa-
tion for Computing Machinery.

[212] Y. Zhang, D. Lo, P. S. Kochhar, X. Xia, Q. Li, and J. Sun. Detecting
similar repositories on github. In 2017 IEEE 24th International Conference
on Software Analysis, Evolution and Reengineering (SANER), pages 13–
23, 2017.

[213] Morteza Zihayat, Mehdi Kargar, and Aijun An. Two-phase pareto set
discovery for team formation in social networks. In Proceedings of the
2014 IEEE/WIC/ACM International Joint Conferences on Web Intelli-
gence (WI) and Intelligent Agent Technologies (IAT) - Volume 02, WI-IAT
’14, page 304–311, USA, 2014. IEEE Computer Society.

Author’s publications

1. P. Tramontana, M. De Luca, A. R. Fasolino. An Approach for Model Based
Testing of Augmented Reality Applications, RCIS Workshops, 2022

2. M. De Luca, A. R. Fasolino, A. Ferraro, V. Moscato, G. Sperlí, P. Tramon-
tana. A community detection approach based on network representation
learning for repository mining. Expert Systems with Applications, Volume
231, 2023, DOI: 10.1016/j.eswa.2023.120597.

3. D. Amalfitano, M. De Luca, A. Rita Fasolino. Documenting Software Ar-
chitecture Design in Compliance with the ISO 26262: a Practical Experi-
ence in Industry, IEEE 20th International Conference on Software Archi-
tecture Companion (ICSA-C), 2023, DOI: 10.1109/ICSA-C57050.2023.00022.

4. M. De Luca, A. R. Fasolino, P. Tramontana. Investigating the robustness
of locators in template-based Web application testing using a GUI change
classification model, Journal of Systems and Software, Volume 210, 2024,
DOI: 10.1016/j.jss.2023.111932.

5. D. Amalfitano, M. De Luca, D. F. De Angelis, A. Rita Fasolino. Automated
Architecture Recovery for Embedded Software Systems: An Industrial Case
Study, 18th European Conference on Software Architecture (ECSA), 2024,
DOI: 10.1007/978-3-031-70797-1_4

6. M. De Luca, S. Di Meglio, A. R. Fasolino, L. L. L. Starace, P. Tra-
montana. Automatic Assessment of Architectural Anti-patterns and Code
Smells in Student Software Projects, 28th International Conference on
Evaluation and Assessment in Software Engineering (EASE), 2024, DOI:
10.1145/3661167.3661290

7. D. Amalfitano, M. De Luca, A. Fasolino, P. Pelliccione and T. Santilli.
Characterizing Software Architectural Metrics for Continuous Compliance

158 Bibliography

in the Automotive Domain, IEEE 21st International Conference on Soft-
ware Architecture (ICSA), 2024, DOI: 10.1109/ICSA59870.2024.00025

	Abstract
	Sintesi in lingua italiana
	Acknowledgements
	List of Acronyms
	List of Figures
	List of Tables
	List of Symbols
	Introduction
	Challenges in Automotive Software Development
	Multidisciplinary Software Development
	Software Documentation in Automotive Systems Development
	Industry Standards and Frameworks

	A Community Detection Approach Based on Network Representation Learning for Repository Mining
	Introduction
	Related Work
	GitHub Information Models
	Developer Social Networks
	Community Detection on Developer Social Networks

	Framework
	Task Definition
	Modeling GitHub as a DSN
	Community Detection process
	Running Example

	Experimental analysis
	Goals
	Research Questions
	Variables and Metrics
	Objects
	Design of Experiments
	Results
	Example
	Threats to Validity

	Conclusions

	Documenting Software Architecture Design in Compliance with the ISO 26262: a Practical Experience in Industry
	Introduction
	Related Works
	SAD issues and challenges in industry
	SAD issues and challenges in automotive domains

	Industrial survey
	Proposed Template
	The documentation template
	Implementation of the proposed SAD template
	Mapping between challenges and solutions

	Industrial Case Study
	Conclusion and Future Work

	Automated Architecture Recovery for Embedded Software Systems: An Industrial Case Study
	Introduction
	Related Studies
	Software Architecture Recovery (SAR)
	Reverse Engineering of State Chart Diagrams

	The proposed reverse engineering process
	Implementation Details
	Experimental evaluation
	Conclusion and Future Works

	Characterizing Software Architectural Metrics for Continuous Compliance in the Automotive Domain
	Introduction
	Background and Related Studies
	Continuous Compliance
	Metrics for Architecture

	Research methodology
	Step 1: Metrics gathering and description
	Step 2: Framework definition
	Step 3: Metrics characterization and evaluation

	Results and Discussion
	RQ1: Which are the architectural metrics proposed in the literature that can be used in the Continuous Compliance of automotive software architectures?
	RQ2: How can these metrics be characterized?

	Threats to validity
	External validity threats
	Internal validity threats

	Conclusion and Future Works

	Conclusions
	Bibliography
	Author's publications

