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Chapter 1 
 

Introduction 
 
 

The analysis of the electromagnetic scattering plays a key role 
in systems, applications, and services in present and future 
Information and Communication Technology (ICT), as well as in 
fields like medical diagnosis and telemedicine, earth observation and 
monitoring, non invasive electromagnetic sensing, and so on. In these 
areas, electromagnetic field engineering involves the design and 
performance prediction of devices, like antennas and radiofrequency 
(RF) circuits, that are designed to produce and radiate fields, the 
prediction of wave scattering (as in radar, non invasive and remote-
sensing systems), as well as the prediction of adverse effects of 
unwanted fields on systems and subsystems, as in typical 
Electromagnetic Compatibility (EMC) endeavours. In these 
applications, the use of numerical methods, able to reduce the 
prototyping and/or testing time, has grown in recent years following 
the increasing availability of computing power, leading the 
computational electromagnetics to significant achievements. 
However, the interest in the analysis of large and complex problems, 
jointly with the trend toward the use of higher and higher frequencies, 
has to be taken into account. Despite the high performances that 
computers can currently offer, the computational effort needed in a 
variety of situations of definite industrial or scientific interest still 
remains a really expensive, or even prohibitive, task.  
Both large electrical size and geometrical complexity contributes to 
the scale of the numerical problem. Classical examples of large scale 
problem is the evaluation of the radar cross section of large objects, 
the estimation of radio coverage in cellular or other RF 
communication systems, the fast prediction of the scattering of bodies 
in inverse problems (e.g. in the Ground Penetrating Radar) for the 
detection of buried objects, the full analysis of large antennas. 
Many approaches have been proposed by the researchers to solve this 
problem. 
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Asymptotical methods allow to analyse very large structures with low 
numerical load, but their effectiveness is strongly dependant on the 
problem in use: complex geometries cannot be studied in a 
satisfactory way, multiple interaction cannot be taken into account.  
The answer to this kind of problem should be a “full wave” method, 
flexible and able to numerically solve a wide class of problems.  
The numerical full wave method approaches belong to two main 
categories: those based on a Differential Formulation (DF) and those 
based on an Integral Formulation (IF). In both cases, the aim is to 
express the problem in form of a linear system, defined (and to be 
solved) in a finite dimensional space. Among the DF-based methods, 
are the Finite Difference Time Domain method (FDTD) and the Finite 
Element Method (FEM), this latter in the frequency domain. The most 
adopted IF-based technique goes by the name of  Method of Moments 
(MoM).  
DF and IF techniques have different characteristics: a comparison is 
possible between FEM and MoM, both operating in frequency 
domain. In FEM techniques, the differential equations that support the 
EM field are directly discretized in the considered domain: as a 
consequence, a lattice has to be defined in the whole volume, and the 
unknowns are distributed in 3 dimensions. The resulting linear system 
is made by many equations, each involving a few number of 
unknowns, describing a large but strongly sparse matrix. As a 
consequence, a further complicacy is that an infinite domain couldn’t 
be directly considered. For example, in the study of a scatterer in free 
space has to be approximated with a truncated domain with absorbing 
condition on its boundaries.  
In MoM techniques, the unknowns are distributed on the boundary 
surfaces between different media, so that their number grows with the 
square of the linear dimensions instead on the cube, and play the role 
of equivalent currents. The resulting linear system has a physical 
meaning, because relates such currents to the radiated fields, and is 
defined by a so-called Impedance Matrix, which is quite smaller than 
the FEM one, even if it is dense rather than sparse. At difference with 
the FEM, there is no need to impose additional absorbing conditions 
to take into account the radiation condition at infinite, allowing to 
easily analyze scattering systems in free space. Moreover, 
considerations on the physical interpretation of the linear systems 
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allow to adopt some approximation that can result in reducing the 
computational complexity of the solution. As a matter of fact, the 
MoM techniques are the most employed ones for large scatterers in 
linear media.  
Let us now investigate the issue of assessing the size of the problem. 
 
 
1.1 Problem statements 
 
The classical scattering problem can be stated as follows: given a 
scattering system (for example, the antenna structure) and an 
excitation (a set of primary sources or an incident field), evaluate the 
total field (sum of incident and scattered fields)  on a given 
observation domain.  
The IF-based methods, like the Moment Method, are all based on the 
following steps: 

- the relationship between a generic distribution of equivalent 
sources, placed on the boundary surface(s), and the radiated 
field is expressed; 

- an expansion of these equivalent sources is found by enforcing 
the boundary condition; 

- the field radiated by the equivalent current distribution is 
evaluated on the observation domain, and gives the estimate of 
the scattered field. 

The first two points consist in expressing and solving the source 
equation: 
 
 GJ=F0       (1.1) 
 
where J is the induced current density, defined on the boundary 
domain, G is the radiation operator and depends on the adopted 
formulation (more details are given in the following chapters), F0 the 
field due to the primary excitation on the boundary domain..  
The third point amounts to evaluating the radiation integral: 
 
 E=G0J       (1.2) 
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where J is the previously found current distribution, E is the scattered 
field in the given observation domain, G0 is the appropriate radiation 
operator. Obviously, to be practically implemented, the current 
expansion must be approximated by a finite number of terms. 
In MoM approach, the problem is solved by projecting the equation 
(1.1) on a suitable finite dimensional space, thus finding a solution J 
in terms of an expansion in basis functions. Obviously, the space 
dimension grows with the electrical size of the boundary surfaces 
involved in the problem. Being N the finite dimension of such space, 
the problem is turned to the solution of a system of linear equations 
and is expressed in the form of a matrix-by-vector equation: 
 
 0FJG =       (1.3) 
 
where the N-by-N matrix G  is called impedance matrix, and the 
vectors J and F0 express the expansion coefficients of the induced 
current and the forcing field, respectively. 
The application of the M.o.M.-like techniques is characterized by the 
following main costs: 

- a memory occupation for the storage of the elements of the 
matrix describing the radiating operator G (impedance matrix). 
This occupancy is of the order N2; 

- a computational complexity of order O(N2) for the evaluation 
of the N2 elements of the impedance matrix; 

- a computational complexity of order O(N3) for the inversion of 
the impedance matrix (i.e. for the solution of the linear system) 

Accordingly, increasing the electrical size of the scattering system, 
increase the computational costs more than linearly. In particular, the 
effort required for the inversion of the impedance matrix rapidly 
becomes unsustainable. 
The main approaches introduced to keep down the computational cost 
of this kind of techniques essentially attempt to reduce the number of 
unknowns as well as to introduce appropriate algorithms reducing the 
memory requirements and the computational complexity of the 
problem.  
While in the first attempt the choice of a suitable sets of expansion 
functions is involved, the latter strategy relies on the consideration 
that the MoM impedance matrix, even if dense, contains highly 
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redundant information, that can be conveniently handled by means of 
fast schemes able to reduce the storage and to speed up the inversion 
process. 
Before discussing the various approaches proposed for the evaluation 
of the electromagnetic scattering from electrically large structures, in 
the following the estimation of the minimum size and computational 
cost of the of the scattering problem is addressed  
 
 
1.2 Assessing the size of the problem 
 
The key question to answer before trying to reduce the computational 
effort related to these issues is whether it exists a lower bound to the 
numerical complexity for a given problem, analogous to the famous 
result of Shannon for information and communication. If this value 
can be determined, it will be possible to ask whether it exists an 
algorithm able to solve the EM scattering problem with the 
corresponding minimal effort. 
The first problem is to determine the best approximation of the 
radiation operator among the set of finite rank operators. 
The compactness of the operator G0 allows to approximate it, with an 
arbitrary error, by means of a finite rank operator [1]. The best 
approximation of rank n for 0G , that we can indicate with nG0 , is 
obtained by truncation the SVD decomposition to the first n terms. For 
the radiation operator G0, the SVD is: 
 

 ∑
∞

=

<>=
0

00
0

i
iii jeG σ     (1.4) 

 
where iσ  are the singular values, >0

ie  and 0
ij<  are the 

corresponding left and right singular vectors, providing an 
orthonormal basis in the output and input spaces, respectively. The 
singular values iσ  form a non-increasing sequence going to zero as 
n→∞, and we have: 
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where ⋅  is the operator norm. This equation  allows to evaluate the 
number of significant terms of the SVD, provided that the singular 
values can be calculated analytically. Since this is possible only for 
particular, simple scattering geometries, a general approach for the 
evaluation of the rank of the finite dimensional operator 
approximating the radiation operator is proposed by exploiting the 
properties of the kernel of G0. In [2] it is shown that for large 
scattering systems, the sequence of singular values has a step-like 
behaviour (see fig. 1.1): it decreases slowly until a critical value of n, 
say n’, is reached, then starts to decay very rapidly. This implies that, 
when substituting the radiating operator with a finite dimensional one, 
in order to obtain reasonable values for the approximation error, the 
needed rank N0 can be chosen slightly larger than n’, and it will be 
substantially independent on the required precision. 
The so found value N0 can be considered the effective dimension of 
the scattering problem, and can be estimated as [3]: 
 

 
( )20

2
)(2

λ
Σ

≅
AreaN      (1.6) 

 
Σ being the surface of the smallest convex envelope including the 
scattering system. 
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Figure 1.1 – Behaviour of the sequence of the singular values 
 
 
 
The study of the other operator implied in the problem, G, is not as 
easy as for the operator G0. In fact, the inverse operator G-1 is 
unbounded (its role is to relate the equivalent sources on the scatterer 
surface with the field in the same domain), so that it doesn’t exist any 
finite rank approximation that allows the evaluation of a generic 
current distribution J with a bounded error. This fact seems to 
neutralize the attempt to define the size of the problem. However, we 
have to remember that we’re not in a completely general situation: in 
fact, we suppose that the incident field is due to uniformly bounded 
sources external to the antenna/scatterer support. The compactness of 
the radiation operator implies that the set of any possible radiated field 
is compact, so that the effective field can be approximated with a 
bounded error by the elements of a finite dimensional subspace. 
According to [2], if the primary sources are far enough from the 
scattering system (at least some wavelengths), the dimension of the 
subspace is essentially equal to N0. Thus, the operator G can be 
approximated by GN0=PN0G, PN0 being the orthogonal projector onto 
the subspace of the incident fields [1]. In this way, we can say that the 
dimension of the whole problem is N0. This is in accordance with the 
results shown in [4], where it is found that the set of the first N0 

N0 

σ 

n n’ 
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characteristic fields provides an accurate representation of the 
scattered field. 
Provided that it is possible to express the operator G by means of a 
low rank approximation, say GN0, we want to invert the operator, and 
solve the source equation, with the minimum numerical effort. The 
ideal lower limit for the complexity is O(N0), which we should have if 
the SVD form of the problem were available in advance. This is not 
our case, since what we have in practice is just the impedance matrix 
provided by the IF-based methods. The size of this square matrix, say 
N, depends on the implementation of the method, and in general it 
does not correspond with N0. Moreover, the matrix is fully populated, 
and the singular value decomposition would require itself a 
computational complexity of the order O(N3). Analogously, the direct 
inversion of the matrix has to be carried out by means of algorithms as 
the LU decomposition or the Gaussian elimination, also requiring a 
cubic computational complexity. 
 
 
1.3 Reduction of the computational costs 
 
The reduction of the computational costs involves the two steps: 
- finding a practical method to obtain a minimal rank numerical 

expression of the radiation operator  
- finding a scheme to save memory storage and speed up the inversion 
process. 
The first point concerns the possibilities of studying the problem by 
means of a number of unknowns equal to N0. With reference to the 
MoM-based techniques, the problem consists in using a minimal set of 
basis functions able to express the scattered fields with a bounded 
error. From this point of view, for large metallic scatterers, 
particularly attractive appears the Method of Auxiliary Source, which 
will be described and implemented in the following. 
Regarding the second point, many ways have been suggested and 
covered. The first consideration is that the solution of a linear system 
can be found by means of an iterative process, with a bounded 
approximation, instead that in direct way. The iterative algorithms 
(CG, BIGC, GMRES…) [5,6] essentially involve a matrix by vector 
product at each step. Assuming that a bounded error solution is 
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reached within a number of steps independent on the size of the 
problem, the computation effort of the inversion is equal to that of the 
matrix-by-vector product, i.e. O(N0

2). As seen, even if reduced, it is 
still far from the ideal case O(N0). The problem now is to minimize 
the effort needed to perform the multiplication of the impedance 
matrix by the tentative solution vector at each step. A class of 
techniques starts from the consideration that the impedance matrix 
contains high redundantly information, so that it can be expressed 
(and consequently, stored and inverted) in by exploiting a reduced 
redundancy scheme, with significant cost savings. In this way, a 
reduction of the computational complexity up to O(NlogN) is 
achievable [7]. Among these techniques, we will focus our attention 
on the so called Fast Multipole Method.  
 
 
 





 

Chapter 2 
 

Overview of Fast Methods  
 
 
 
 
The research on effective methods for the full-wave analysis of the 
electromagnetic scattering has explored two major pathways: the first 
aims to represent and study the scattering problem with a minimal set 
of variables; the second, tries to speed up the solution process of the 
linear system arising from the integral formulation. 
The issue concerning the reduction of the unknowns in MoM-like 
techniques has been often addressed relying on the choice of minimal 
sets of basis functions, tailored on the problem under study and able to 
express the equivalent currents by means of very few terms.  
In 1994, Boag and Mittra proposed the Complex Multipole Beam 
Approach (CMBA) [8]: the reduction of the MoM matrix size, for 
smooth surfaces, is achieved by exploiting basis functions that 
resemble the Gabor expansion functions.  
In the CBF method [9], Characteristic Basis Functions are estimated 
by solving the inversion problem in restricted areas, then applied to 
the study of the whole scattering system. 
In the Synthetic Function Expansion (SFX) approach [10-13], the 
scattering structure is initially subdivided in blocks, then the analysis 
of the single block is carried out with reduced effort. The solution are 
used as (synthetic) basis functions for the solution of the entire 
problem. 
For the analysis of large metallic scatterers, a very attractive technique 
is the Method of Auxiliary Sources [see also chapter 3] [14-19]. In the 
MAS, a set of elementary point-wise sources is placed beneath the 
scatterer surface: it is shown that, if properly placed, very few 
auxiliary sources can represent the scattered field with a bounded error 
[20]. 
A branch of techniques, rather than reducing the number of unknowns, 
aims to speed up the solution of the linear system arising from the 
MoM approach, i.e. the inversion of the impedance matrix. A common 
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characteristic of this class of methods is the adoption of an iterative 
inversion algorithm (CG, BiCG, GMRES, etc…): in this way, the 
challenge is to expedite the evaluation of each iteration, essentially 
involving an (impedance)matrix-by-(tentative solution)vector product. 
Since sparse matrices need fewer storage memory and can be 
multiplied faster than dense ones, many methods have been developed  
to “sparsify” the impedance matrix, by applying suitable 
transformations to the impedance matrix, amplifying the matrix 
element dynamics and cutting the smaller ones. Among these 
methods, particular mention is due to the Impedance Matrix 
Localization (IML) by Canning [21-23] and to various wavelet-based 
approaches, that can be classified in two branches: the Multi 
Resolution Methods of Moments (MRMoM) [24, 25, 26] and the 
Discrete Wavelet Transformation (DWT) methods [27, 28, 29].  
A further way to achieve a significant reduction of memory 
requirements and computational complexity is the use of the 
Conjugate Gradient-Fast Fourier Transform technique (CGFFT),  
exploiting the translational invariance of the Green’s operator to apply 
an FFT-like scheme to the matrix-by-vector product involved in the 
iterative solution process [30, 31, 32].  
A very promising approach to the reduction of the computational costs 
related to the MoM goes by the name of Fast Multipole Method [see 
also chapter 4] [33]. The key idea under the FMM, and its further 
progresses, is the consideration that the off-diagonal blocks on the 
impedance matrix, that represent the interactions between parts of the 
structure far away from each other, are almost rank-deficient and can 
be represented in an aggregate way, reducing the information 
redundancy (and, as a consequence, the memory requirements) and 
providing a faster matrix-by-vector product scheme. 
In the following, a brief review of the mentioned techniques is 
provided. 
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2.1 The Characteristic Basis Function Method 
 
The MoM based techniques involve a domain discretization that 
strongly influences their performances. Usually, the MoM based 
techniques adopt generic kinds of basis functions, like the Rao-
Wilton-Glisson (RWG) ones [34], and requires more than 10 
unknowns per wavelength to give a good representation of the current 
density [9]. For increasing sizes of the scattering system, the size of 
the impedance matrix, that relates the induced current with the 
incident field, grows very rapidly and the problem becomes soon 
unmanageable.  
The approach by Boag and Mittra [9] proposes the adoption of high-
level expansion functions specially constructed to fit the object 
geometry by taking into account the physics of the problem: the 
Characteristic Basis Functions (CBFs). The aim is to efficiently 
represent the equivalent source distribution on the boundary by means 
of a reduced set of basis functions, each ranging over some 
wavelengths, thus obtaining an impedance matrix of reduced size.  
The scattering geometry is subdivided in M blocks, partially 
overlapping at the boundaries. Then the scattering problem is solved 
in each isolated block, with an excitation obtained by windowing the 
original incident field. For the i_th block, the RWG domain 
decomposition is applied and the impedance matrix )(i

eZ  accounting 
for the interaction within the block is explicitly evaluated. The figure 
2.1 shows the positioning of the block )(i

eZ  in an hypothetical 
complete impedance matrix. 
In formulas, the following linear system has to be solved: 
 

)()()( ii
i

i
e RJZ =      (2.1) 

 
for i=(1, 2, …, M), )(iR being the windowed excitation. The M 

solutions )(i
iJ  will constitute the primary bases for the study of the 

overall problem.  
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The next step amounts in evaluation the secondary bases, i.e. those 
taking into account the mutual interaction between the blocks. For 
each of the M blocks, M-1 secondary bases )(i

kJ  are found by solving: 
 

)()()( i
k

i
k

i
e RJZ =      (2.2) 

 
for k=(1, 2, …, i-1, i+1, …, M), )(i

kR  being the excitation in the i_th 
block due to the primary base of the k_th block. In this way, a set of 
M2 basis functions (each being the aggregation of a high number of 
RWG bases) are found, and a reduced impedance matrix, of size M2 
by M2, can be evaluated. In order to reduce the condition number, it is 
possible to orthonormalize the set of basis functions by means of the 
Graham-Schmidt procedure before evaluating the impedance matrix. 
One of the strong points of the CBF method is the cost saving 
achievable when interested in multiple excitation (a very useful 
feature in RCS evaluations). In fact, the most computational cost of 
the CBF methods derives from the LU factorizations that arise from 
the solution of the single blocks. Since this task is independent on the 
excitation, such factors can be computed once, stored, and then used 
to solve as many excitation problems are needed with a low extra 
computational effort.  
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Figure 2.1– Positioning of the )(i

eZ  blocks in the complete impedance 
matrix 
 
 
 
 
2.2 The Complex Multipole Beam Approach 
 
 
The Complex Multipole Beam approach, proposed by Boag and 
Mittra [8], aims to reduce the number of unknowns needed by the 
standard MoM techniques to study the problem of electromagnetic 
scattering. The key idea is to consider as basis functions the fields 
produced by multipoles, but shifted in the complex space. In 2D, let us 
consider a multipole source located in r0 (see fig. 2.1). The z-directed 
electric field due to the source in the observation point r=(ρ,φ), except 
for a constant factor, is given by: 
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where )2(

nH  is the Hankel function of second kind and order n, k the 

propagation constant, ρ and φ are modulus and angle of the vector r-
r0. The time dependence exp(jωt) is suppressed. 
The source is “shifted” in the complex space by taking r0= r0’+ jr0’’, 
r0’ and r0 being real vectors. The authors define the field of an n_th 
order multipole located in the complex space as: 
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Figure 2.2 – Geometry. 
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Figure  2.3 – Behaviour of the multipole fields ),( 0rrnΨ , for 

xjr )−=0   and ( )ϕϕλ sinˆcosˆ3 yxr +=   
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A qualitative analysis reveals that the multipoles produce well 
confined beams, propagating in the φ direction and with a spatial 
frequency that increases with the order n (see fig.2.3). Such behaviour 
resembles that of the Gabor expansion basis functions: substantially 
windowed exponentials. 
The idea is to use a suitable set of multipoles that can constitute a 
complete base to express the field on the boundary. To do that, the 
positioning and the shift of the complex multipoles have to be choosen 
carefully to match the parameter set in the Gabor expansion for the 
window size, the shift along the boundary and the frequency sampling 
rate. This should be accomplished by choosing proper location and 
complex shifting for the complex multipoles, but cannot be made in a 
rigorous way, since just few heuristic guidelines are proposed. The 
advantage with respect to the direct use of the Gabor expansion is due 
to the fact that the simil-Gabors expansion functions are obtained 
analytically from the (2.4), thus avoiding massive numerical 
integrations [8]. Moreover, the complex multipoles radiated beams 
exhibits an unidirectional character, strongly reducing the coupling of 
each source with far parts of the boundary. This characteristic has two 
positive consequences: on the one hand, it provides a good 
sparsification of the matrix, with possible clipping of the lower 
elements and reduction of the computational costs; on the other hand, 
it is found that the condition number of the impedance matrix is 
reduced with respect to that usually obtained with isotropic or 
bidirectional sources. 
According to the authors, by means of the CMBA it is possible to 
solve the problem of the scattering from a smooth surface with the use 
of a number of multipoles that approaches the Nyquist limit of 2 
unknowns per wavelength. 
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2.3 The Synthetic Function Expansion  
 
The Syntetic basis Function eXpansion (SFX), proposed by 
Matekovits and Vecchi [20,21,23], applies to the MoM-based analysis 
of array antennas, in particular to printed structures. The approach 
starts with a decomposition of the domain, including both the 
radiating and the beam forming network parts. The goal is to employ a 
few, “global” basis functions defined on different portion of the 
structure, able to represent the behaviour of any part even when it is 
embedded in the whole structure. The basic idea is to solve the 
problem in each “block” by supposing it isolated, but under the effect 
of a generic excitation.  
 
 
 
 

 
  a)     b) 
Figure 2.4 – Application example: 2x2 patch array; a) RWG mesh of 
the whole structure; b) domain decomposition 
 
 
 
With reference to a patch array antenna, let us decompose the whole 
structure in a certain number of sub-domains (see fig. 2.4) [23]. The 
n_th block is studied by means of a standard MoM approach, 
exploiting Fn Rao-Wilton-Glisson basis functions, 

1
f , 

2
f , …, 

nF
f . 

This leads to the evaluation of a complete Fn-by-Fn impedance matrix, 
Zn, for the stand-alone block. Then, the isolated problem is solved by 
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considering two kind of excitations: the “natural” one, deriving from 
the patch feeding stripline, and the “coupling” ones, taking into 
account the possible excitation due to the radiation of other parts of 
the structure (see fig. 2.5). The problem then undergoes an SVD 
decomposition in order to identify and retain the Kn “independent” 
solutions 1ψ , 2ψ , …, 

nKψ , each defined on the support of the n_th 
block and described by means of a summation of RWG functions: 
 

 
α

α
αψψ f

fN

kk ∑
=

=
1

,      (2.5) 

  
The obtained synthetic functions 1ψ , 2ψ , …, 

nKψ  are evaluated for 
each block and constitute a set of basis functions for the analysis of 
the whole structure. In this way, we are “compressing” the original 
impedance matrix, by means of the expansion coefficients αψ ,k , 
provided that the number of SFs needed for each block is smaller than 
the number of required RWG functions (i.e. Kn<Nf,n) [22]. It is 
important to note that further savings in the computational effort arise 
from the fact that, when dealing with array antennas, many blocks are 
identical, thus the evaluation of the SFs can be done once for a large 
number of sub-domains. 
 

 
 
Figure 2.5 – “Natural” (S0) and “coupling” (S1,…, SN) excitations 
considered on the single block 
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The technique has been applied to various cases of practical interest 
[20, 21, 22]. It has been shown that a satisfactory analysis of an array 
antenna can be carried out by means of a number of SF quite smaller 
than the original number of RWG basis functions 
 
 
 
2.4 The Method of Auxiliary Sources 
 
The Method of Auxiliary Sources was introduced and developed by 
several researchers in the University of Tbilisi, Georgia, and applied 
to the electromagnetic scattering issue, as well as to other kind of 
problems [14-19].  
In typical integral-equation methods, like the Method of Moments, the 
problem of the scattering by a given object is formulated in terms of 
the known impressed field and unknown continuous currents 
distributed on the boundary surface. Conversely, the idea under the 
MAS is to directly reconstruct the scattered field on the boundary (and 
outside) by means of a set of simple point sources, called Auxiliary 
Sources, placed inside the volume scatterer. A popular choice is to use 
a set of elementary sources (filamentary currents in two-dimensional 
problems and elementary dipoles in three-dimensional ones) on a so-
called Auxiliary Surface, placed just beneath the boundary surface: the 
fields radiated by such sources constitutes a non-orthogonal basis for 
the expression of the scattered field in the outer region (see figure 
3.9). Analogously to the MoM, a linear system is built to relate the 
field radiated by the ASs with the incident field on a set of testing 
points placed on the boundary. The solution of the system, i.e. the 
inversion of the impedance matrix, provides the required values for 
the ASs excitations. 
The MAS approach presents several advantages with respect to the 
standard MoM, in particular when dealing with large and smooth 
metallic scatterers. The fictitious sources adopted have a simple, 
analytically known expression, thus avoiding massive numerical 
integrations on the basis function domains required in classical MoM 
to evaluate the impedance matrix entries. Moreover, since the ASs do 
not lay on the boundary, there is no need to deal with the singularity 
of the Green’s function, that elsewhere should be treated carefully. 
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Finally, due to reasons that will be clarified in the following chapters, 
the MAS analysis of a large metallic scatterer can be performed with a 
number of unknowns slightly larger than 2 per wavelength, while a 
classical MoM can require at least 10 unknowns per wavelength.  
On the other hand, some drawbacks come out from the positioning of 
the ASs beneath the boundary. One is the increase of the impedance 
matrix condition number, and the consequent need for a good 
precision in numerical tools. But the main disadvantage of the MAS is 
probably the lack of rules for the optimal positioning of the ASs and 
the testing functions, that in literature are displaced following heuristic 
criteria.  
This last issue will be approached in the following chapters, exploiting 
the theory on the optimal sampling of the scattered fields, thus 
providing some useful guidelines for the AS and testing point 
positioning. With these considerations, a MAS-based technique for the 
analysis of large scatterers will be implemented by exploiting a non-
redundant number of unknowns [20]. 
 
 
 
2.5 The Impedance Matrix Localization Method  
 
In 1990, Francis X. Canning proposed a novel approach to mitigate 
the well-known drawback of the MoM, the need for a large and dense 
impedance matrix and the consequent high storage and computational 
effort requirements. The key idea is to transform the MoM impedance 
matrix Z  by means of a suitable linear operator, thus effectively 
changing the basis functions and obtaining the sparsification of the 
matrix [21]. In fact, the linear system arising from a MoM-based 
method can be written as: 
 
 EJZ =        (2.6) 
 
where J is the unknown vector of the induced current coefficients, and 
E is the excitation vector. In the IML method, a matrix A  is 
introduced, transforming the linear system (2.6) into: 
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 ( ) EAIAZA T =       (2.7) 
 
that can be written as: 
 
 VIT =        (2.8) 
 
with TAZAT = , IAJ T=  and EAV = . 
The goal is to find a proper transformation A  so that most of the 
elements of the matrix T  turns out to be almost zero, and can be cut 
under a certain threshold, resulting in a sparse matrix approximating 
the original problem.  
To this purpose, the transformed matrix T is obtained by exploiting 
directional basis functions. With reference to a 2D problem, the 
boundary is conceptually broken into regions, and on each one of 
these M basis functions are defined as: 
 
 )/2exp( ajhsπ  for h=0,…,M-1   (2.9) 
 
where s is the arc length and a the size of the region. The field 
radiated by a current distribution like (2.9) shows a maximum 
intensity for an direction θ (indicating the angle with the respect to the 
boundary normal) given by: 
 
 kah /)/2()sin( πθ =  for h=0,…,(M-1)/2  (2.10) 
 
As a result of the directivity of the basis functions, a few interactions 
are very strong, and the correspondent elements in the impedance 
matrix have high magnitude, while most of the other elements in T  
are almost zero. 
This key idea has been improved with the add-on of a weighting 
operator, indicated as W , that transforms the expression of T  into: 
 
 ( ) TT AWZWAT =      (2.11) 
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In a first time, it was introduced an operator W  able to reduce the side 
lobes of the basis function radiation pattern, by actually modifying the 
current distributions (2.9) by means of a tapering function [21]. In a 
second time, the weighting concept has been generalized, and the 
matrix W  used to introduce other kinds of  transformations, aiming to 
improve the performances of the method [23]. 
The numerical results of the application of the IML technique have 
shown that an N-by-N impedance matrix can be approximated by 
means of a sparse matrix having roughly 100N non-zero elements 
[21]. As a consequence, both the memory storage and the 
computational effort related to the evaluation and solution of the linear 
system are significantly reduced. 
 
 
 
2.6 Wavelet-based approaches  
 
An interesting branch of techniques effectively solving an integral 
formulated scattering problem involves the concept of wavelet 
representation, ideally following the Mallat’s Multi-Resolution (MR) 
framework for the signal decomposition [35].  
Two main schemes have been proposed, differing for the level of 
application of the MR approach. The first one solves the classical 
MoM problem by exploiting suitable wavelet-like basis functions, and 
goes by the name of Multi-Resolution MoM (MRMoM). The second 
one proposes the direct application of a wavelet transformation to the 
linear system arising from a standard MoM implementation, and is 
generally referred to as Discrete Wavelet Transform (DWT) method. 
In both cases, the goal is to obtain a sparse, well conditioned 
impedance matrix that can be stored and iteratively inverted with a 
reduced effort.  
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2.6.1 Multi-Resolution MoM 
 
The idea behind the MRMoM approach is to use a wavelet-base set of 
basis function to solve those scattering problems that are formulated in 
the integral form [24]: 
 

 ∫ ∈=
L

LxxgdxxxKxf ),(')',()'(   (2.12) 

 
where K is the known kernel of the integral equation, f is the unknown 
response to be determined and g represents the known excitation. For 
the sake of simplicity, even if the (2.12) is in general vectorial and 
two- or tree-dimensional, in the following we will suppose it to be 
scalar, without loss of generality. 
The MRMoM approach to the solution of the (2.12) is based on the 
use of a hierarchical basis function set. In accordance with the wavelet 
theory, where a mother wavelet is scaled and shifted to build a base 
for the domain in which the signals have to be represented, a basic 
function, )(xψ , - is suitably chosen and replicated to build the basis 
functions, )(xnψ , that have to represent the solution of the integral 
equation.  
The choice of the mother wavelet strongly influences the effectiveness 
of the method in the desired sparsification of the impedance matrix 
arising from the MoM solution of the equation (2.12). We say that the 
function )(xψ  has a vanishing moment of order m if: 
 
 ∫ − dxxx m 1)(ψ      (2.13) 

 
In the hypothesis that the kernel K is smooth enough to be 
approximated by a polynomial expression of order M,  if the basis 
functions )(xnψ  have vanishing moments of orders (1,…,M), most of 
the impedance matrix elements are expected to be very small [26]. 
Obviously, completely vanishing functions are unfit to represent a 
general problem. In practical implementations, also some non-
vanishing “scaling” functions )(xnΦ  are introduced in the basis 
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function set, aiming to represent the spatial DC component of the 
solution. Moreover, some other functions with a reduced number of 
vanishing moments are used to represent the solution at the boundary 
limits, in addition to the previous ones that are appropriate for the 
inner boundary region. 
In literature, many kinds of mother wavelets (and scaling functions) 
have been used. The simplest one is the Haar function, shown in 
figure 2.6 [25]. Other suitable kind of functions comes from the Chui 
(piecewise) wavelets (see figure 2.7) [26].  
 
 
 

 
Figure 2.6 – The Haar wavelet function )(xψ  and the chosen scaling 
function )(xΦ  
 
 
 
 

Φ(x) 

ψ(x) 
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Figure 2.7 – Chui wavelet functions (solid lines) and scaling functions 
(dashed lines) in the inner (a) and left-boundary (b) case.  
 
 
 
The chosen mother wavelet(s) are then dilated and replicated to build, 
together with the scaling function(s), a complete set of basis functions 
(see fig. 2.8, [25]). The higher is the hierarchy level, the smallest is the 
support of the functions included, and the finer is the representation 
provided. 
It can be convenient for the reduction of the number of unknowns that, 
at higher levels, the basis functions do not recover the entire 
geometry, leaving uncovered the areas where the solution is expected 
to have lower spatial frequencies. 
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Figure 2.8 – A set of basis functions based on the Haar wavelet. 
 
 
 
The adoption of the above described approach for the construction of 
the basis function set allows the MRMoM techniques to emphasize the 
dynamic of the impedance matrix entries, so that it is possible to clip 
the elements under a certain threshold, thus obtaining a sparse 
impedance matrix (see figure 2.9). As a result, the memory storage 
and the computational effort required to formulate and solve the 
integral equation (2.12) are considerably reduced. 
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a) 
 

    
b) c) 

 
Figure 2.9 – Example of impedance matrix sparsification: a) standard 
MoM impedance matrix; b) impedance matrix obtained by adopting a 
MRMoM approach; c) sparse matrix obtained by clipping the entries 
under a threshold 
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2.6.2 Discrete Wavelet Transformation approach 
 
The Discrete Wavelet Transformation approach aims to solve a MoM 
formulated scattering problem by applying a suitable transformation to 
the related impedance matrix. Being ZI=E the linear system to be 
solved, where Z is the impedance matrix, I the unknown solution and 
E the known excitation, the problem is turned into the solution of: 
 
 ''' EIZ =        (2.14) 
 
where 
 
 TTZTZ =' , ETE =' , ITI T='   (2.15) 
 
where T is an orthogonal matrix satisfying 1−= TT T  [27]. 
The aim is to find a nonsingular matrix T  so that the transformed 
impedance matrix 'Z  contains many small elements that can be 
neglected without largely affecting the solution I’ [29]. In this way, 
the impedance matrix becomes sparse, and can be stored and inverted 
with reduced effort. In some sense, we are changing the base of the Z 
operator: the idea is similar to the one outlined in the previous section, 
about the MRMoM, but the transformation is applied directly on the 
impedance matrix rather than on the basis function set. 
The matrix T  is built as basis changing operator, and its rows are 
wavelet vectors representing a possible basis of RN [27]. As mother 
wavelet, the Debauchies wavelet has often been used (see fig. 2.10). 
An example of  transformation matrix obtained by means of this 
function is shown in figure 2.11 [27], where the different bands in the 
image correspond to the different resolution scales in the basis. The 
sparsification effectiveness is shown in figure 2.12 where a 
transformed matrix 'Z  is compared to the dense standard MoM matrix 
for the same problem [27]. 
The numerical analysis has shown that a properly chosen wavelet 
transformation provides a sparse impedance matrix containing roughly 
NlogN non-zero elements, thus reducing the operation number of the 
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matrix-by-vector multiplications involved in the iterative solver to 
O(NlogN) [7]. 
 

 
 
Figure 2.10 – Debauchies wavelets 
 
 
 
 

 
 

Figure 2.11 – Transformation matrix obtained by exploiting 
Debauchies wavelets 
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    a)      b)  
 
Figure 2.12 – a) example of dense standard MoM matrix; b) 
impedance matrix obtained by wavelet-based transformation 
 
 
 
2.7 The CG-FFT approach 
 
As said before, the bottleneck of the iterative processes used to solve 
the linear system arising from the MoM formulation of the scattering 
problem is the matrix by vector multiplication, where the impedance 
matrix is dense. Such multiplication represents the evaluation of the 
field radiated by the currents induced on the scatterer, and can be 
written as a convolution integral: 
 
 ')'()'( rdrjrrg

B
∫ −     (2.16) 

 
where )(rg  is the Green’s function, )'(rj  is the induced current and B 
is the domain where the induced currents lay. Since the Green’s 
function is translationally invariant, the evaluation of the convolution 
(2.16) can be expedited by using an FFT scheme. 
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The approach is particularly attractive for the analysis of linearly 
extended structures like conducting strips, and periodic structures like 
antenna arrays. In fact, when identical parts of the geometry reside on 
a regular grid, the pertinent MoM impedance matrix has a block-
Toeplitz structure. Exploiting the Toeplitz structure, it is possible to 
perform the matrix-by-vector multiplication in O(NlogN) operations 
by FFT [30]. 
For the sake of simplicity, let us consider an uni-dimensional problem 
concerning the current distribution on a wire, approached by means of 
the canonical MoM expansion in triangular basis functions (see figure 
2.13).  
 

 
Figure 2.13 – The wire domain discretized by means of triangular 
basis functions 
 
 
It is clear that the zn,m, element of the impedance matrix, representing 
the interaction between the n_th basis and the m_th test function, just 
depends on the difference (n-m), and can be indicated as zn-m. In this 
way, the impedance matrix just contains 2N-1 independent entries (see 
fig. 2.14). 
 
 
 

f1 f2 f3 fN … … fN-1 fN-2 f4 fN-3 

L 
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z0 z1 z2 z3 … z3-N  z2-N z1-N

  
z-1 z0 z1 z2 z3 … z3-N  z2-N

   
z-2 z-1 z0 z1 z2 z3 … z3-N 

  Z  = z-3 z-2 z-1 z0 z1 z2 z3 …

  
… z-3 z-2 z-1 z0 z1 z2 z3 

 
zN-3  … z-3 z-2 z-1 z0 z1 z2 

 
zN-2 zN-3  … z-3 z-2 z-1 z0 z1 

 
zN-1 zN-2  zN-3  … z-3 z-2 z-1 z0 

 
 
Figure 2.14 – Toeplitz structure of the impedance matrix 
 
 
The first observation concerns the possibility of storing just 2N-1 
values instead of N2. But another advantage arises in the evaluation of 
the matrix by vector multiplication, as clarified in the following.  
In fact, a new (2N-1)-by-(2N-1) matrix C can be built by adding N-1 

rows and columns to Z : 
 

 ⎥
⎦

⎤
⎢
⎣

⎡
=

CB
AZ

C       (2.17) 

 
where the joined sub-matrices are called A, B and D. 
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It is easy to build C as a circulant matrix by properly choosing the 

elements of A, B and D among the (2N-1) independent entries in Z , as 
depicted in figure 2.15. The obtained circulant matrix is defined by the 
only (2N-1) elements of the first column c, since all the other columns 
can be derived from it by means of a simple shift. 
 
 
z0 z1 … z2-N z1-N zN-1  zN-2  … z-1 

 
z-1 z0 z1 … z2-N z1-N zN-1  zN-2  … 
 
… z-1 z0 z1 … z2-N z1-N zN-1  zN-2 
 
zN-2 … z-1 z0 z1 … z2-N z1-N zN-1 

 
zN-1  zN-2  … z-1 z0 z1 … z2-N z1-N 
 
z1-N zN-1  zN-2  … z-1 z0 z1 … z2-N 

 
z2-N z1-N zN-1  zN-2  … z-1 z0 z1 … 

 

… z2-N z1-N zN-1 zN-2  … z-1 z0 z1 
 
z1 … z2-N z1-N zN-1 zN-2  … z-1 z0 

 
 
Figure 2.15 – Structure of the circulant matrix C 
 
 
Our aim is to evaluate the product EIZ = . If the matrix C is 

multiplied by a vector ⎥
⎦

⎤
⎢
⎣

⎡
=

0
I

V , where 0  is a null vector of length N-

1, we obtain: 
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 ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⋅⎥

⎦

⎤
⎢
⎣

⎡
=

IB
E

IB
IZI

CB
AZ

VC
0

   (2.18) 

 
Due to the circulant structure of the matrix C, it turns out that the 

product 2.18 (and, as a consequence, the solution vector E ) can be 
evaluated as: 
 

{ } ⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
==⎥

⎦

⎤
⎢
⎣

⎡ −

0
1 I

DFTcDFTDFTVC
IB

E
o   (2.19) 

 
The Discrete Fourier Transforms can be performed by means of an 
FFT algorithm (if necessary, by suitably adding padding elements in 
the c and I vectors to reach a length equal to 2M) requiring a 
computational complexity of O(Nlog2N). 
The procedure outlined for the above 1D case can be extended to other 
kind of geometries [30, 31, 32], also in 2D and 3D, with similar 
results in term of memory saving and reduction of the computational 
complexity. 
 
 
 
2.8 The Fast Multipole Method 
 
The Fast Multipole Method (FMM), proposed by Greengard and 
Rokhlin [33, 36, 37, 38], allows to reduce the memory storage and to 
speed up the matrix-by-vector multiplication involved in the iterative 
solution of the MoM linear system, for arbitrary scattering geometries.  
The MoM impedance matrix is in general dense, since its entries 
represent all the N2 possible interactions between any of the N basis 
and any of the N testing functions. As a consequence, the product of 
this matrix by a tentative-solution vector requires N2 operations.  
The FMM approach moves from the consideration that the MoM 
impedance matrix contains highly redundant information: this is 
confirmed by the fact that many block inside it, representing the 
interactions between far away parts of the geometry, are practically 
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low-rank matrices, and can be represented in an aggregated way. To 
this purpose, the scattering geometry is subdivided into small regions, 
each containing M nodes representing the localized basis (and testing) 
functions. In this way, the N-by-N impedance matrix Z can be split 
into the sum of two matrices: 
 
 ''' ZZZ +=       (2.20) 
 
Z’ taking into account the interaction between basis and testing 
belonging to adjacent groups, Z’’ containing the blocks that express 
the interaction between non adjacent clusters (see figure 4.3).  
The elements of Z’  are evaluated like the entries of the standard MoM 
impedance matrix. If the number M of cluster is assumed 
approximately equal to the square root of N, the Z’ matrix only 
contains a number of non-zero elements proportional to N1.5.  
The matrix ''Z  is not computed explicitly, but a reduced-redundancy 
representation is proposed for its elements. In fact, let us consider a 
generic element of ''Z , ',nnz , representing the interaction between the 
n’_th basis, belonging to the m’_th group, and the n_th testing 
function, belonging to the m_th group. It can be seen that a proper 
factorization of the Green’s function leads to the following 
equivalence: 
  

 ∑
=

≈
R

r
mnrmmrmnrnn utvz

1
,,',,',',',     (2.21) 

 
where: 
- mnru ,,  depends only on the distance between the n_th testing 
function and the center of the m_th cluster; 
- ',', mnrv  depends only on the distance between the n’_th basis 
function and the center of the m’_th cluster; 
- ',, mmrt  depends only on the distance between the centers of the m_th 
and m’_th (non-adjacent) clusters. 
- R is a constant, proportional to N  if NM ≈ . 
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It is easy to find out that the memory occupation of all the translation 
functions ',, mmrt , all the aggregation vectors mnrv ,,  and all the 
disaggregation vectors ',', mnru , able to represent any non-zero element 

',nnz  of  the matrix ''Z , is proportional to N1.5. 
Once addressed, the problem of reducing the storage requirements of 
the impedance matrix, we want to speed-up the matrix by vector 
multiplication involved in the iterative solution algorithm, whose 
direct evaluation has a computational complexity of O(N2). In FMM, 
we have to compute: 
 
 xZxZxZ ''' +≈       (2.22) 
 
The product xZ '  is classically carried out and involves an amount of 
operation equal to the number of non zero elements of the sparse 
matrix 'Z , i.e. proportional to N1.5. On the other hand, the term xZ '' , 
by exploiting the representation 2.21, is evaluated in three steps: 
 
- for each cluster m’, the aggregation of the contributes due to the 

N/M basis function it contains; 
- for each couple of basis and testing cluster, the evaluation of 

',, mmrt  , representing the aggregated interactions; 
- for each cluster m, the disaggregation of the contributes into the 

N/M testing function it contains. 
 
All the three steps involve a number of operations proportional to N1.5.  
In some sense, we have turned the classical matrix-by-vector product, 
that can be seen as “full connected” network between N nodes, into a 
scheme featuring a level of suitable “hubs” (the cluster centers), thus 
reducing the number of links required (see figure 4.5).  
In conclusion, the FMM approach allows to reduce the storage 
requirements of a MoM-like technique from N2 to N1.5, and the 
computational complexity of the matrix-by-vector product from O(N2) 
to O(N1.5). Further improvements involve the use of more than one 
level of “hubs”, thus achieving a memory requirement and a 
computational complexity that tends to NlogN and O(NlogN), 
respectively [39, 40]. 
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For its flexibility and the possibility to be applied to various Integral-
Formulation based technique for the scattering evaluation, the FMM 
has been chosen to speed up our non-redundant implementation of the 
Method of Auxiliary Sources. 
 





 

Chapter 3 
 

The Method of Auxiliary Sources 
 
 
 
 
The fundamentals of the Method of Auxiliary sources are due to the 
Georgian mathematicians V. Kupradze, M. Aleksidze and I. Vekua 
[14, 15, 16]. Moreover, the technique was developed by  D. 
Karkashadze, R. Zaridze and other researchers from the University of 
Tbilisi [17, 18, 19]. The first versions of the MAS were born with 
different names: “Method of Generalized Fourier Series”, by 
Kupradze [14], “Method of Expansion in Terms of Metaharmonic 
Functions”, by Vekua [15], “Method of Expansion by Fundamental 
Solutions”, by Aleksidze [16]. Analogous results were independently 
found and proposed by Leviatan and Boag  under the name of 
Generalized Formulation [41, 42]. 
The method of auxiliary sources has been successfully applied to a 
variety of problems: acoustics, hydrodynamics, electromagnetics [19]. 
We will focus our attention on the latter of these topics, in particular 
on the problem of the evaluation of the electromagnetic field scattered 
by a large object. 
While in typical integral equation methods, like the Method of 
Moments, the boundary-value problem is solved in terms of 
continuous equivalent currents on the boundary surface, the idea under 
the MAS is to directly reconstruct the field on the boundary by means 
of a set of simple point sources, called Auxiliary Sources. 
Our aim is to evaluate the field scattered by a metallic structure in air: 
this situation can be approximated with a Perfect Electric Conducting 
(PEC) object in free space. In the following, typical application of the 
MoM and the MAS techniques to this problem are presented, and 
some advantaged and disadvantages are discussed. 
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3.1 The Method of Moments 
 
 
Let us consider a PEC object immersed in free space and illuminated 
by and incident field Ei (see figure 3.1). In the following, the harmonic 
exp(jωt) time dependence is assumed and suppressed. Let S be the 
(limited and closed) surface of the object, n̂  the outward unit vector 
normal to the boundary, and E1, H1 and E2, H2 the electric and 
magnetic field outside and inside S, respectively. Since the internal 
medium is a perfect conductor, the field inside is equal to zero, and 
the boundary condition are written as:  
 

0ˆ 1 =× En , SJHn =× 1ˆ    

SDn ρ=⋅ 1ˆ ,  0ˆ 1 =⋅ Bn       (3.1) 
 

The resolution of scattering problem essentially consist in determining 
the surface sources (currents and charges) that are excited on the 
boundary by the known incident field Ei. Once determined these 
current, the scattered field Es can be easily evaluated anywhere. 
 
 

Figure 3.1. – PEC object scattering problem 
 

 

PEC 

Ei 

Es=? 
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Equivalently, the Maxwell’s equations with the boundary conditions 
(3.1) must be solved. In the techniques usually referred as “MoM 
techniques”, the differential equations are solved with an integral 
approach: the known incident field is related to the unknown sources 
by means of an integral relation, and this is solved by means of a 
mathematical method, namely, the Method of Moments [43].  
It must be stressed  that although the name “Method of Moments”, 
should indicates just the mathematical technique able to solve a 
system of linear equations L(f)=g (by using suitable expansion basis 
for the unknown function f), it is commonly used also to name the 
whole integral-approach scattering evaluation techniques. As an 
example, the Finite Element Method (FEM), an approach of different 
kind with respect the IE one, also relies on a form of MoM for the 
solution of the involved system of linear equations . 
 
 
3.1.1 Integral Equation Formulation 
 
The electromagnetic field can be expressed in terms of electric scalar 
potential V and magnetic vector potential A. In the phasor domain, we 
have: 
 

VAjE ∇−−= ω    ,     (3.2a) 
AH ×∇=µ       (3.2b) 

 
with the Lorentz gauge VjA ω−=⋅∇ . 
These potentials are related to the surface field sources by the integral 
equations (see figure 3.2): 
 

∫=
S

S drrrgrJrA ')',()'()( µ     (3.3) 

∫=
S

S drrrgrrV ')',()'(1)( ρ
ε

    (3.4) 
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where g is the Green’s function, solution of the inhomogeneous 
Helmholtz equation, i.e.: 
 

'4
)'exp(

)',(
rr

rrjk
rrg

−

−−
=

π
    (3.5) 

 
with εµωjk = . 
 
 

 
Figure 3.2 – Coordinate system for the evaluation of potentials 

 
 
 
In the case of 2D geometries, sources are intended to be infinite 
filamentary currents and charge distribution, for which the Green’s 
function reduces to: 
 

)'(
4

)',( )2(
0 rrkHjrrg −−=     (3.6) 
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0 ⋅H  being the Hankel function of second kind and order zero [44]. 
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From the (3.2a), we can express the electric field in terms of the only 
vector potential: 
 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⋅∇∇+−= A

k
AjE 2

1ω     (3.7) 

 
Let’s come back to the scattering PEC object immersed in free space 
and illuminated by an incident electric field Ei. The boundary 
condition ensures the continuity of the tangential component of the 
electric field on the interface between medium. Since the total electric 
field on the boundary is the sum of the incident field Ei and the 
scattered field Es (due to the sources on S), the tangential scattered 
electric field is equal and opposite to the incident field, i.e., 
 

( ) ( ) 0=×+×
SsSi EnEn     (3.8) 

 
By expressing the electric field in terms of the currents Js by means of 
eq. (3.7) and by enforcing the condition (3.8), we are leaded to the 
formulation of a linear problem L(f)=g, where g is related to the 
known incident electric field, the function f stands for the unknown 
current distribution  and L represents the radiation operator.  
In particular, for points P(r) on S, we have: 
 

 )(ˆ')',()'()(ˆ
2 rEndrrrgrJ

k
Ijn i

S
S ×=⋅

∇∇
+× ∫ ωµ  (3.9) 

 
Since the expression (3.9) is obtained in terms of the electric field, by 
means of the expression (7), this is called Electric Field Integral 
Equation (EFIE) formulation.  
Analogously, by applying the boundary condition (3.1) on the 
magnetic field instead of the electric field, the Magnetic Field Integral 
Equation (MFIE), since the total magnetic field is the sum of the 
incident field Hi and the scattered field Hs, we can write the condition:  
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 ( ) ( ) SSsSi JHnHn =×+×     (3.10) 

 
Exploiting equations (3.3), (3.2b) and we obtain the final expression 
for the MFIE formulation: 
 

),(ˆ')',()'(ˆ)( rHndrrrgrJnrJ i
S

SS ×=×∇×− ∫  (3.11) 

        
 

with 'Sr ∈ . An alternative to the EFIE ad MFIE formulation is the 
Combined Field Integral Equation. It is simply a linear combination of 
the equations (3.9) and (3.11): 
 
 CFIE = α EFIE + (1 - α) MFIE 
 
Where α is a scalar value between 0 and 1. The utility of the CFIE 
formulation arise from the fact that both the EFIE and the MFIE suffer 
from internal resonances that lead to wrong results at specific 
frequencies. In this way, two boundary conditions are applied at the 
same time and the null-space solution of the resulting equation is zero 
for all frequencies. Another advantage of the CFIE is that it usually 
provides better conditioned matrices. 
 
 
3.1.2 MoM solution of the linear system 
 
The Moment Method is now described. We are concerned with a 
linear operator equation in the form  
 

L(f)=g        (3.12) 
 

L being and integral-differential operator, g being a known function, f 
unknown: the MoM will provide an effective approach for the 
numerical solution of this problem. 
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The basic idea of the MoM is to expand the unknown function f into a 
set of linear independent basis functions fn, suitably chosen, so that, 
retaining only N terms of the expansion, we can approximate: 
 

∑
=

≈
N

n
nn ff

1
α       (3.13) 

 
αn being unknown coefficients to be determined. The linearity of the 
operator L ensures that 
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gfL
N

n
nn ≈∑
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)(α      (3.15) 

 
In general, due to the finite number of terms in (3.13), the above 
expression does not allows an exact solution. Anyway, a set of values 
for the coefficients αn can be find  matching at best the equivalence 
(3.15).  
This is obtained by projecting both terms of the equation into a space 
of N weighting functions (w1 , … wN ) . The equation (3.12) can be 
rewritten in the so called “weak form”, because the equivalence is 
enforced only on the subspace spanned by the N weighting functions 
wm, m=1,…,N, i.e., 
 

 >>=<<∑
=

gwfLw mnm

N

n
n ,)(,

1
α    (3.16) 

 
where >⋅⋅< ,  indicates the scalar product. 
Accordingly, a linear system of N equation in N unknowns is 
obtained. 
Usually, the equation (3.13) is rewritten in the form: 
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bZ =α       (3.17) 
 

where in α  is the vector of the unknown coefficients, the matrix Z, 
the Impedance Matrix is, is made by the elements zm,n given by : 
 

 zm,n= >< )(, nm fLw       (3.18)  
 

and the vector b is given by 
 

>=< gwb mm ,      (3.19) 
  

The solution of the linear system (3.17) is equivalent to the inversion 
of the impedance matrix Z. 
 
 
 
3.1.3 Properties of the impedance matrix 
 
The MoM impedance matrix Z is a square, dense matrix accounting 
for the interactions between any current expansion function and any 
testing function on the scattering boundary. The straightforward 
solution of the system (3.17), involving the inversion of the matrix Z, 
usually demands an high computational effort. Being NxN the size of 
Z, the exact solution is obtained by means of algorithms such the LU 
decomposition or the Gaussian elimination, all of them requiring a 
computational effort equal to O(N3).  
As an alternative, in order to speed up the inversion process, iterative 
methods providing an approximate solution are frequently adopted. 
Such algorithms build a sequence of tentative solutions, that are 
improved at each step, until the required precision is achieved. Since 
any iteration is essentially constituted by a matrix-by-vector product, 
assuming that the number of steps needed to attain the convergence is 
essentially independent on the problem size, the computational 
complexity of this inversion process is of the order, O(N2). 
Moreover, taking into account the physical meaning of the matrix-by-
vector product, i.e., the evaluation of the field radiated by the current 
distribution on the boundary, the researcher were leaded to the 
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development of techniques able to reduce the relative computational 
complexity from O(N2) to O(N3/2) and up to O(NlogN) [7]. Among 
these, the Fast Multiple Method has been considered and applied in 
the next chapters. 
 
 
 
3.1.4 Basis and testing functions 
 
The choice of a suitable set of basis and testing function is an 
important issue for the MoM-based techniques. In fact, to improve the 
efficiency of the method, the number of basis and testing function 
should be kept as small as possible. This means that a relatively small 
number of expansion function should be able to satisfactory 
approximate the solution of the physical problem. Analogously, a 
small number of testing functions should be able to approximate the 
equivalence of the left and right hand of the equation (3.16). Often, 
the testing function are chosen coincident with the basis functions: 
thus obtaining the Galerkin’s method. Other very simple testing 
functions used are the Dirac’s delta function. With this choice the 
boundary conditions are enforced on a discrete set of points (point-
matching): this is also called “collocation method”. 
With reference to the domain D of f (in our case, the surface S), two 
types of basis and testing functions can be adopted: the sub-domain 
and the entire-domain functions.  
In the first case, the domain is subdivided into a large number of sub-
domains, wherein the each basis function is defined. This approach 
allows to easily handle any geometry, which can be easily 
decomposed in small sub-domains. 
Entire-domain basis and testing functions are instead defined on the 
whole D: for example, they have a sinusoidal or polynomial 
behaviour. Sometimes the domain D is subdivided into several smaller 
domains (but always larger than the ones found in the sub-domain 
approach), and entire-domain functions are defined on each one. In 
antennas, this is usually done when the object can be decomposed in 
several elementary parts for which characteristic expansion functions 
are known. 
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3.1.5 Examples of basis functions 
 
The continuous current distribution on the boundary has to be 
approximated by a  weighted sum of a finite number of basis 
functions.  
Usually, first the domain itself must be suitably approximated. As an 
example, in the 2D geometry, the scatterer line D is approximated by a 
set of segments, say D1,…,DN (see fig 3.3), on which the basis 
functions will be defined. 
The Dirac’s  functions, the simplest basis functions, are rarely chosen 
both for the poor accuracy they provide and for their singular 
behaviour, making unfeasible any derivative(see eq. (3.9)). Anyway, 
as said before, delta functions are often used as testing functions: this 
means that the equation (3.8) is enforced by means of a point-
matching technique (collocation method). 
Other simple basis functions are the pulse functions, defined as:  
 

⎩
⎨
⎧

=
elsewhere

subdomainthnthein
fn 0

_1
 (3.20) 

 
The use of pulse functions provides a staircase discontinuous 
approximation of the current distribution (see fig. 3.4). 
Among the continuous basis functions, the simplest ones are the so 
called “rooftop” basis functions providing a piece wise approximation 
of f. These functions are defined on two adjacent subdomains, are of 
triangular shape , are equal to 1 on the edge between subdomains and 
decreases linearly down to 0 at the external boundaries of the 
subdomains (see fig. 3.5). 
If needed, finer approximations are possible, for instance by using 
basis functions with more degrees of regularity. 
In the 3D geometry, the boundary surface can be subdivided and 
approximated by a set of subdomains, usually triangular patches.  
As in the 2D case, it is simple to obtain a linear interpolation of the 
current distribution. Once the domain D has been approximated as a 
sum of triangles (fig. 3.6), the support of the n_th basis function is 
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given by the set of triangles that gather around the n_th node, being 
equal to 1 on the central node and decreasing linearly to 0 at the 
external boundary of  each triangle (see fig. 3.7) 
It is worth noting that the most used basis functions are the Rao-
Wilton-Glisson (RWG) edge elements (fig. 3.8) [34]. The boundary 
surface is approximated by a sum of triangles, and on each pair of 
triangles (i.e. for each edge) the basis function is defined as:  
 

⎪
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⎧
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ρ

    (3.21) 

 
where T+ and T- indicates the two triangles, l the edge length, ρ+ the 
vector connecting the free vertex of T+ with the observation point r, ρ- 
the vector connecting the free vertex of T- with the observation point 
r,  and A+ and A- the areas of T+ and T-, respectively. The edge 
between T+ and T- univocally defines the couple of triangles. With the 
shown choice for f(r), the current is continuous inside each triangle, 
and purely parallel along the non-defining edges. Moreover, the 
current normal to the defining edge is continuous. 
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Figure 3.3 – Example of 2D domain segmentation. 
 
 

 
 
Figure 3.4 – Pulse basis functions and approximation of a continuous 
function. 
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Figure 3.5 – Rooftop basis functions and approximation of a 
continuous function. 
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a) b) 
 

 
b) d) 
 

 
Figure 3.6 - Decomposition of a surface in triangular patches; a) 
square sheet; b) planar strip; c) cube; d) sphere. 
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Figure 3.7 – Example of pyramidal basis function. 
 
 
 

 
 
Figure 3.8 – Example of RWG basis function. 
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3.2 The MAS formulation 
 
 
The scattering problem, apart from the classical Method of Moments, 
can be easily solved with the Method of Auxiliary Sources. While the 
MoM strategy aims to determine a distribution of equivalent currents 
on the boundary surface, the MAS formulation involves the use of 
discrete Auxiliary Sources (ASs) placed on a fictitious surface 
satisfying the correct boundary conditions on S. A popular choice is to 
use a set of elementary sources (filamentary currents in two-
dimensional problems and elementary dipoles in three-dimensional 
ones) on a so-called auxiliary surface, placed just beneath the 
boundary surface: the fields radiated by such sources constitutes a 
non-orthogonal basis for the expression of the scattered field in the 
outer region.  
 
 
 
3.2.1 MAS formulation in 2D 
 
As done before for the MoM approach, let us consider a PEC object, 
its surface called S, immersed in free space and illuminated by and 
incident field Ei with a TM polarization (see fig. 3.9a).  
Due to the 2D geometry and the TM polarization, all the electric fields 
are oriented along iz, so that a scalar problem is considered.  
Let us indicate with Es the field scattered by the object in the region 
outside S. A set of elementary sources are placed on an auxiliary 
surface S’, conformal to S, located inside the object’s volume (see fig. 
3.9b).  
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Figure 3.9 – a) problem geometry; b) MAS equivalent problem. 
 
 
 
In order to evaluate the scattered field, the excitation of each source 
must be determined so that the superimposition of all the fields 
radiated in free space equals the scattered field. B 
I.e., being En the field radiated by the n_th source, in the region 
outside S we must have: 
 

s

N

n
n EE =∑

=1
      (3.22) 

 
Similarly to the MoM approach, in order to determine the source 
excitation, we have to enforce the boundary condition, that in the case 
of a PEC scattering object is written: 
 

Es|S+Ei|S=0      (3.23) 
 

The (3.23) gives us the value of the scattered field on the boundary S. 
The equivalence principle ensures that if the (3.22) is enforced on the 
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surface S, the field radiated by the set of ASs corresponds to the 
effective scattered field in the whole region outside S.  
In any practical instance, the condition (3.23) is enforced on a number 
of so called collocation points (CPs) equal to the number of sources N. 
The collocation points are usually homogeneously distributed on the 
boundary S. In analogy with MoM, these play the role of impulsive 
testing functions, while the ASs plays the role of the basis functions. 
The field radiated at the observation point r’ by the n-th (filamentary) 
auxiliary source located at rn, can be written as: 
 

En(r’)=an H0
(2)(k|rn-r’|)    (3.24) 

 
where )()2(

0 ⋅H  is the Hankel function of second kind and order zero, k 
is the propagation constant, and an is an excitation coefficient to be 
determined.   
By enforcing the condition (3.23) on a set of N points on S, indicated 
as (r’1.. rm, r’N), and using the field expression (3.24), a system of 
linear equations is found: 
 
 aGEi =       (3.25) 
 
where Ei is the vector whose components are the values of the incident 
field at the collocation points (r’1.. rm, r’N), and the N-by-N matrix G  
expresses the interactions between the sources and the collocation 
points, i.e., 
 

 Gn,m= H0
(2)(k|rn-r’m|)     (3.26) 

 
The vector a, whose components are the excitation coefficients, is 
found by  solving the system (3.25). Existence and uniqueness of the 
solution of the linear system arising from the MAS have been proved 
in [41]. With a proper choice of the CPs, the excitations obtained by 
solving the equation (3.25) ensure that  the field radiated by the ASs is 
a good approximation of  the actual scattered field on the whole 
domain S. Accordingly, on the basis of the equivalence principle, it 
can be assumed that also the fields radiated by the ASs is a good 
approximation of the scattered field in the volume outside S.  
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Details on the criteria underlying the choice of the CP and the AS are 
provided in the following. 
 
 
3.2.2 Positioning the Auxiliary Sources and the testing 

points 
 
The positioning of the Auxiliary Sources and testing points is a very 
critical issue of the MAS. As a matter of fact, general rules addressing 
the optimal positioning of the auxiliary sources and the collocation 
points are not available in the literature. The only available 
prescription requires that the auxiliary sources be located on a surface  
enclosing the singularities of the analytical continuation of the 
scattered field inside the scatterer body [42]. Usually, for smooth 
scatterers the auxiliary surface is chosen conformal to the boundary 
surface, and the ASs and the CPs are uniformly distributed. In the case 
of  non smooth scatterers, two approaches are proposed. In the first 
one, the rate of AS and  CP per unit length increases near the wedges, 
and the auxiliary surface is suitably shaped to approach the wedge 
vertexes. In the second approach, wedges are rounded out and 
eliminated from the scatterer profile, thus obtaining a smooth surface 
that approximates the original one [45, 46] (fig. 3.10). 
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Figure 3.10 – Strategies for dealing with wedges: a) wedge rounding; 
b) thickening of the Auxiliary Sources. 
 
 
Concerning the positioning of the collocation points on the boundary 
surface, we have to point out that the AS technique is essentially 
based on enforcing a relationship between two continuous functions 
(the incident and the scattered field on the boundary, see eq. (3.24)) on 
a finite number of points and on the assumption that this will ensure 
that the relationship holds (with a satisfactory accuracy) on the whole 
boundary surface. Obviously, the correctness of this assumption 
strictly depends on the spatial spectrum of the functions of interest as 
well as on the choice of the CPs.  
The ‘dept’ of the auxiliary surface, i.e. the minimum distance between 
the ASs and the CPs, is an important parameter, since it strongly 
influences the performances of the technique. As pointed out by 
Anastassiu, Lymperopoulos and Kaklamani in a recent work [47], 
with reference to a 2D scatterer of circular shape, the evaluation error 
of the scattered field due to the MAS implementation decays when the 
‘dept’ increase, but at the same time the displacement of the AS on an 
inner circumference of smaller radius causes the condition number to 
increase with an exponential law. Accordingly, when implementing a 
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MAS technique, a particular care should be used in choosing the 
dimension of the auxiliary surface and the number of AS, which 
determine the condition number of the impedance matrix, in order to 
be sure that the ill-conditioning will not affect the accuracy of the 
solution.  

 
 

 
3.2.3 MAS formulation in 3D 
 
In three-dimensional problems, the auxiliary sources are pairs of 
perpendicular elementary dipoles, both tangential to the surface S’. 
Analogously, pairs of point-wise testing functions are used to impose 
the boundary condition on the tangential components of the scattered 
and incident fields [48].  
For example, with reference to a spherical scatterer of radius ρS, a grid 
is defined by choosing a set of N spherical directions (θn,φn), n from 1 
to N.  
A spherical auxiliary surface of radius ρA is defined, and in each point 
rAn= (ρA ,θn,φn) a pair of auxiliary sources are placed along the two 
versors ϕθ ˆ,ˆ  thus. the impulsive current distributions: 
 

ϕδθδ ˆ)()('';ˆ)()(' nnnn rrJrrJ ==   (3.22) 
 
The boundary condition are enforced by considering the tangential 
components of the incident and the ASs’ field on a set of points rn=(ρS 
,θn,φn) n=1,…,N, on the scattering surface.  
We have two sets of testing functions: 
 
 ϕδθδ ˆ)()('';ˆ)()(' nnnn rrwrrw ==   (3.23) 
 
For the sake of convenience often the ASs NJ ..1' and NJ ..1'' are 
merged together considering a single set of ASs currents, say NJ 2..1 . 
Analogously, the testing functions usually are merged together 
considering a single  set, say Nw 2..1 . 
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The field radiated by each AS is evaluated by means of the 3D 
Green’s function in free space. Analogously to the 2D case, a linear 
system relating the unknown values  NJ 2..1  to the known incident 
field is found and solved.  
 

 
 
Figure 3.10 – Positioning of auxiliary sources and testing functions 
 
 
 
It is interesting to note that the MAS can be of particularly interest in 
the 3D case, where the classical MoM techniques are scarcely used 
due to the excessive number of unknowns. 
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3.3 MAS advantages and disadvantages with 
respect to the standard MoM 

 
The application of MAS to the analysis of large metallic scatterers 
enjoy significant advantages with respect to the classical MoM-based 
techniques. 
The first one is related to the kind of basis functions adopted. In fact, 
in, the set of basis functions the MoM-based techniques should  be 
able to represent any possible continuous current distribution induced 
by the incident field. For large scatterers, this leads to basis functions 
(rooftop, RWG, …), continuous on a sub-domain of the boundary 
surface. In order to numerically evaluate the radiated field, the current 
distribution of each function has to be discredited by means certain 
number of points, and all the contributions are then summated. 
Concerning the testing, the Galerkin method is often adopted, that 
consist in choosing the testing functions coincident with the current 
expansion functions. For the same purpose, simple pointwise 
functions are instead adopted in the MAS (“collocation method”), thus 
reducing the computational effort in enforcing the boundary condition. 
Another problem pertains to the evaluation of the “self-terms” of the 
impedance matrix which is a critical issue in MoM techniques and has 
to be properly addressed.  In fact, their evaluation involve the 
singularity of the Green function for argument equal to zero.  
In the MAS approach, it can be said that the role of the basis functions 
is played by a set of elementary point-wise sources located inside the 
scatterer surface. The field radiated on the boundary (and elsewhere) 
by each source is analytically known and can be very easily evaluated. 
At variance of the M.o.M. no discretizations and integrations are 
needed. Furthermore, the self-terms evaluation problem is avoided, 
since the sources are located inside the scatterer domain and the Green 
function is always evaluated for arguments  away from the singularity. 
However, the main advantages of the MAS consists in the capability 
of studying the scattering by a large object by means of a very small 
number of unknowns. In fact, it will be shown that an optimized MAS 
technique can solve this problems by means of a number of AS and 
testing function very close to the number of degrees of freedom of the 
scattered field (i.e. 2 per wavelength), while a standard MoM 
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technique, to attain the same accuracy requires at least 10 unknowns 
per wavelength [20]. 
On the other hand, to give a comprehensive understanding of the MAS 
capabilities, some critical points concerning its implementation are to 
be illustrated, and some possible solutions proposed.  
The first negative issue concerns the increase of the condition number 
of the impedance matrix, due to the increase of the distance of the AS 
from the scatterer surface. However, it must be noted that this problem 
become prohibitive only when the precision of the available numerical 
tools is not high enough to manage the ill conditioning of the problem. 
As previously noted, the most critical issue of the MAS approach is 
related to the positioning of the Auxiliary Sources and Collocation 
Points. This problem will be addressed in this thesis by exploiting the 
theory of the spatial bandwidth of the scattered fields introduced by 
Bucci and Franceschetti [2, 50]. In particular, starting from the 
optimal sampling theory [51], we will formulate some useful 
guidelines for the optimal implementation of the MAS, strongly 
improving its performances, and proposing it as a non-redundant 
technique for the analysis of large scatterers. 



 

Chapter 4 
 

The Fast Multipole Method 
 

 
 
 
 
An innovative approach to the boundary value problem, called 

“Fast Multipole Method”, was proposed by  Greengard and Rokhlin 
for the evaluation of the potential and force fields in a system 
involving a large number of particles [36], starting from Rokhlin’s 
work on the fast solution of the Laplace equation [37]. Subsequently, 
the FMM approach has been successfully extended to the Helmholtz 
equation arising from the acoustic scattering problem [38].  
In recent years, the FMM has been applied to many other issues 
involving the multiplication of N by N matrices by vector of length N, 
and it gained a place among the best ten algorithms of the 20th Century 
[52]. 
A field of particular interest for the application of the FMM paradigm 
the Computational Electromagnetics. As discussed in the previous 
chapters, even if the available computational capacity undergoes a 
continuous increase, the interest in the full-wave analysis of large 
scattering and radiating structures still involves problems of 
prohibitive size from the numerical point of view.  
The solution of the system of linear equations arising from an integral 
formulation (for example, a MoM technique) of the scattering problem 
is usually obtained by means of an iterative approach, in order to 
reduce the computational complexity of the matrix inversion (from 
O(N3), required by a direct solver) to O(N2). The FMM paradigm can 
be applied to the matrix-by-vector multiplications entailed in the 
iterative solver, reducing the overall computational complexity to 
O(N3/2) or lower. In particular, the recursive application of the FMM 
over a multilevel scheme, that goes under the name of MultiLevel Fast 
Multipole Method (MLFMM) [39, 40], is capable to reduce the 
numerical effort up to O(NlogN). 
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4.1 Iterative Methods 
 
 
The solution of many scientific problems require the solution of large 
linear systems in the form: 
 

bxA =       (4.1) 
 

where A is an N-by-N matrix, b is a known vector of length N, and x is 
the solution to determine. The direct inversion of the matrix A  
involves the application of procedures like the Gaussian elimination or 
the LU factorization, that requires a number of operations proportional 
to N3. In most application such computational complexity is 
prohibitive, so that the problem cannot be solved in a straight way. As 
an alternative, many iterative approaches have been proposed to solve 
approximately the linear system (1). They allows to evaluate a 
sequence {xn} converging to the solution of (1) so that a good 
approximation is reached after a suitable finite number of steps. Each 
iteration essentially requires a matrix-by-vector product and involves a 
computational complexity of O(N2). Accordingly, the overall 
numerical effort is reduced, provided that a satisfactory estimate of the 
solution is obtained within a number of steps independent on N.  
Iterative methods can be subdivided in two classes: stationary and 
nonstationary methods. Stationary methods, like the Jacobi method, 
the Gauss Seidel method, the Successive Overrelaxion method (SOR) 
[6], were the first to be proposed and applied, while the nonstationary 
methods, like the Conjugate Gradient (CG), the Biconjugate Gradient 
(BiCG) and the Generalized Minimal Residual (GMRES)[53], are 
relatively recent.  
Nonstationary methods are based on the idea of sequences of 
orthogonal vectors, and differ from the stationary ones because the 
information involved by the computation changes from one iteration 
to the other. Nonstationary methods are more complicated and harder 
to be implemented, but they are typically more effective than the 
stationary ones [6]. Even if there is not an universally agreed 
definition, they’re often denoted as Krylov Methods [54].  



73                                           Chapter 4 – The Fast Multipole Method 

 

A Krylov method starts with an initial guess x0 and performs a series 
of improving iterations. At k_th iteration, the method produces an 
approximate solution xk from a Krylov space generated by a vector c: 
 
 ( ) { }cAcAcspancAK k

k
1,...,,, −=    (4.2) 

 
where cAn  is the result of n applications of the operator A  to the 
vector c . A common choice for the initial condition is x0=0 and c=b. 
In the following, some popular Krylov methods are briefly illustrated. 
 
 
4.1.1 The Conjugate Gradient Method  
 
Developed by Hestenes and Stiefel [55], the Conjugate Gradient 
method has been the first proposed nonstationary method and  has 
been intensively used because of its effectiveness.  
The CG method produces a sequence of iterates x1,…, xN, such that the 
norm of the difference between the x(k) at the k-th step and the exact 
solution, is minimized. At k-th step, the iterate x(k) belongs to the 
space  
 

( ) { })0(1)0()0()0( ,...,,, rArArspanrAK k
k

−=   (4.3) 
 

where r(0) is the residual relative to the initial guess 
)0()0()0( : xAbrx −= . 

The method proceeds as follows: 
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)()(
1

kk
kk qp

T

−= ρα  
)()1()( k

k
kk pxx α+= −  

)()1()( k
k

kk qrr α−= −  
end 

 
where the apex T indicates the transpose of the column vectors. 
At each iteration, the CG generates a tentative solution vector, a 
residual vector, and a search direction used to update them. 
Starting from the bottom lines, it can be seen that the solution x(k) is 
updated at every step with a correction in the direction p(k), while the 
residual is modified by a correction in the direction q(k). It is possible 
to show that the choice of the scalars αk and βk makes the search 
direction p(k) and the residual r(k) orthogonal to all previous Ap(i<k) and 
r(i<k), respectively. 
According to these considerations, the CG algorithm requires at each 
step only one matrix-by-vector product, two inner product and three 
vector updates. From a computational point of view, the overall 
complexity is dominated by the matrix-by-vector multiplication, of the 
order O(N2), N being the size of the square matrix. Moreover, the 
method just requires the storage of a few number of vectors. 
Some guidelines can be given on the convergence properties of the 
method, even if an accurate prediction is not possible. The behaviour 
of the approximation error as a function of the number of iterations is 
strongly related to the condition number of the matrix A, say κ(A). In 
fact, it can be shown that: 
 
 

A
i

A xxxix )) −≤− )0(2)( ε     (4.4) 

 
where x)  is the exact solution, ( ) ( )11 +−= κκε , and 

),( yAyy
A
= . This equation shows that in order to have a bounded 

error it is necessary to perform a number of iteration proportional to 
κ . 

The use of a proper preconditioning matrix M, usually tailored on the 
specific problem under consideration, helps to ameliorate the 
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convergence properties. In particular, the preconditioner should be 
such that the matrix M·A should have a lower condition number with 
respect to the original matrix A.  
 
 
4.1.2 The Bi-Conjugate Gradient Method  
 
Proposed by Fletcher [56], the Bi-Conjugate Gradient Method (BiCG) 
is an improvement of the classical CG scheme, useful when the matrix 
is nonsymmetric and non-singular [57]. The key idea behind the BiCG 
is to replace the orthogonal sequence of residuals with two mutually 
orthogonal sequences, by using both the original matrix A and its 
transposed AT. Analogously to the CG, an initial guess x(0) is chosen 
(often equal to zero), but two sequences of residuals are needed, 
say )(kr and )(~ kr , instead of one. The starting value of the first 

residual is chosen like in CG, i.e. )0()0( xAbr −= , while the second 

choice is free, even if usually is set )0()0(~ rr = . The BiCG finds an 
approximate solution to the linear system in the space: 
 
 ( ) { })0(1)0()0()0( ,...,,, rArArspanrAK k

k
−=   (4.5) 

 
and orthogonally to the space: 
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The method proceeds according to the following scheme: 
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end 
 
Together with the residual sequence )(~ kr , also a search direction 

vector sequence is added, )(~ kp . The choice of the scalars kα  and kβ  
ensures the bi-orthogonality relations: 
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The BiCG has been applied with good results to non-symmetrical 
systems. Concerning the convergence properties, sometimes an 
irregular behaviour has been denoted: typical break down situation 

can occur when 0~ )1()1( ≈−− kk rr
T

, or when 0~ )()( ≈kk qp
T

. 
 
 
 
 
4.1.3 The Generalized Minimal Residual method  
 
Proposed by Saad and Schultz in 1986 [53], the Generalized Minimal 
Residual method (GMRES) is useful to solve general nonsymmetric 
systems.  
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The GMRES method founds the best solution xk from the Krylov 
space ( ))0(, rAKk . This means that, at each step, xk solves the least 
square problem: 
 
 ( ) xAb

rAKx k

−
∈ )0(,

min      (4.8) 

 
where ||.|| is the Euclidean norm.  
In the GMRES, an orthonormal basis { }kvv ,...,1  for the space 

( ))0(, rAKk  is constructed explicitly by means of the Arnoldi’s 
method [58], which is a version of the Graham-Schmidt procedure. 
Such basis is retained and updated at every step during the iterative 
process. 
The method proceeds according to the following scheme: 
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The first vector of the basis is obtained by normalizing the known 
term vector b, which constitutes the base for the space K1(A,b). Then, 
a procedure evaluating an orthonormal basis for Kk+1(A,b) from 
Kk(A,b) is applied recursively. At each step, the (k+1)_th basis vector 
vk+1 is obtained by othornormalizing the vector Avk against the 
subspace Kk(A,b). The basis vectors are stored and retained in the 
matrix Vk. The least square problem (8) is solved by projecting the 
solution on the orthogonal basis, providing at each step the solution 
xk= Vkyk. 
In principle, the method provides the exact solution after N iterations. 
However the procedure is usually terminated as soon as the residual 
becomes small enough.  
To reduce the storage requirements, the method is often implemented 
in “restarted” version: after m iteration, all the retained data are 
cleared up, and the procedure is restarted from the last found tentative 
solution. 
 
 
4.2 Preconditioning 
 
As previously mentioned, the convergence rate of the iterative 
methods depends on the spectral properties of the coefficient matrix. 
When the matrix representing the linear system to solve is scarcely 
conditioned, the number of iteration required to reach an acceptable 
approximation of the solution can be prohibitive. As pointed out by 
the relation (4.4), the precision achievable after a finite number of 
steps is related to the condition number of the matrix. 
The countermeasure set up by the researchers consists in turning the 
original linear system into a better-conditioned one, by means of a so-
called preconditioning technique [5]. A preconditioner is a matrix that 
transforms the original linear system (4.1) into: 
 
 bMxAM 11 −− =   (left preconditioning)  (4.9) 
 
or: 
 

bxMMA =− )(1  (right preconditioning) (4.10) 
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Obviously, the systems (4.9) and (4.10) have the same solution than 
the original system, although the matrices AM 1−  and 1−MA , in 
principle, can show  spectral properties different than the original one. 
The aim of a preconditioning system is to find a matrix M ensuring a 
faster convergence of the iterative procedures due to the improved 
spectral properties of the matrix AM 1−  or 1−MA . 
Generally speaking, all the iterative methods discussed above suffer 
from slow convergence and can be improved by a suitable 
preconditioning.  
In the case of  techniques useful only to symmetric systems, like the 
CG one, a little complication can arise. In fact, even if M is a 
symmetrical matrix, AM 1−  or 1−MA  can be nonsymmetric, and the 
solution of the transformed system is not possible. A simple method to 
solve this problem is based on the splitting of the preconditioner as a 
product of two matrices, i.e.,: 
 
 M= M 1 M 2      (4.11) 
 
where M2=M1

T, and then on the simultaneous application of the left 
and right conditioning, i.e.,: 
 
 bMxMMAM 1

12
11

1 )(2
−−− =     (4.12) 

 
In this way, the matrix 11

1 2
−− MAM  is symmetrical an the CG method 

can be applied. 
Most of the preconditioners try to find a matrix M that, in some sense, 
can approximate the matrix A so that, with reference to the 
formulation (4.9), AM 1−  is close to an identity matrix, and can be 
quite easily inverted.  
Preconditioner can be derived from the knowledge of the original 
physical problem from which the linear system arise, or can be 
constructed directly from the data contained in the original matrix.  
In the following, some popular approaches are described. 
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4.2.1 Diagonal Preconditioning  
  
The simplest preconditioning technique consists in taking the matrix 
M equal to the diagonal of the original impedance matrix A: 

 
⎩
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⎧
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m ji
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,
,  

where ai,j is the generic element of the matrix A. This approach, even 
if rough, is quite inexpensive from a computational point of view, and 
can be effective in reducing the condition number when the original 
matrix is quite diagonal. 
 
 
4.2.2 Block Jacobi Preconditioning  
 
The block Jacobi preconditioning is based on a partitioning of the 
variable space. The set of the indexes { }NS ,...,1=  is partitioned into a 

collection of H disjoint subsets S1..H: h
H

h
SS

1=
= U . The preconditioner 

M  is built as: 
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Obviously, that the diagonal preconditioning can be considered a 
particular case of block preconditioner. 
Usually, the index partitioning arise from considerations on the 
physical problem at hand. For example, when dealing with the MoM 
and other IF-based methods for the electromagnetic scattering 
evaluation, the blocks arise from the partitioning of the boundary 
surface and the consequent clustering of the expansion and testing 
functions defined on each partition. 
From a computational point of view, this techniques implies the direct 
inversion of the block diagonal matrix, in order to evaluate 1−M . 
Such task correspond to the inversion of H square matrices of 
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dimension N/H, requiring an O(N3/H2) complexity. Provided that the 
number of blocks is proportional to the root square of the number of 
unknowns, a popular choice, the computational effort becomes 
O(N1.5). Thus, the application of this preconditioning technique can be 
considered fairly inexpensive. 
The block Jacobi preconditioner is effective in those cases where the 
matrix can be rearranged so that the dominant terms are clustered 
around the diagonal. 
 
 
4.2.3 Preconditioning based on the incomplete LU 

Factorization  
 
As said previously, a direct inversion of the matrix is possible by 
means of a LU factorization, that requires a number of operation 
proportional to N3, in most cases a prohibitive complexity. A class of 
techniques exploits the decomposition concept to produce an 
approximated version of the LU factorization by neglecting some 
elements of the matrix to invert [6]. In this way, a preconditioner 

ULM =  is obtained, such that 1−M   approximates 1−A . In 
computational terms, the number of quasi-zero elements to neglect 
must be large enough to ensure significant savings with respect to the 
direct inversion. 
 
 
4.2.4 Preconditioning based on the near interaction data 

in FMM 
 
In the implementation of the Fast Multipole Method, some 
complicacies for the choice of the preconditioning arise from the fact 
that the impedance matrix is never computed explicitly. Anyway, the 
near field interactions, that fill the full-rank blocks of the matrix, are 
evaluated explicitly and constitute a good starting set of data to build a 
preconditioner that approximates A . In fact, it is clear that both the 
diagonal and the block-diagonal preconditioners can be easily 
implemented [59]. Moreover, also the ILU preconditioning technique 
can be applied to the FMM [60]. 
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Anyway, in the most common approach the sparse matrix based on the 
NF interactions of the FMM is directly used as the preconditioner, as 
it can be considered an approximation of the impedance matrix.  
 
 
4.3 The FMM strategy 
 
The Fast Multipole Method and its various variants can be effectively 
applied to the MoM-based analysis of the scattering by arbitrary 
geometries [33]. The bottleneck of common MoM implementation is 
the iterative algorithm (CG, BiCG, GMRES, …) used for the 
inversion of the impedance matrix. As seen, it requires the evaluation 
at each step of the field produced by a tentative solution representing a 
current distribution, which involves a matrix-by-vector product that 
requires a number of operations proportional to N2, N being the 
number of basis functions in use.  
The impedance matrix is dense, because the interaction between any 
current expansion and any testing function is never zero, even if 
they’re localized far away from each other. From a physical point of 
view, the evaluation, storage and usage of the full impedance matrix 
implies that all the interactions between any current expansion 
function and any testing function are taken into account singularly 
(see fig. 4.1a). The aim of the FMM approach is to turn this “full 
connected” network into a properly built scheme where the number of 
total links is reduced by means of “hubs” (see fig. 4.1b). 
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Figure 4.1 -  a) Full connected network; b) Network exploiting 
“hubs” to reduce the number of links 
 
 
The idea behind the FMM is that most of the elements of the 
impedance matrix, which represent the interaction between basis and 
testing function localized very far from each other, effectively involve 
very few degrees of freedom and carry redundant information. The 
strategy is to subdivide the basis and testing function into localized 
groups, and to “aggregate” the contributions due to the elements in 
each group, then to study the interactions between the couples of non-
adjacent groups (fig. 4.2).  
In this way, the N-by-N impedance matrix Z is split into the sum of 
two matrices: 
 
 ''' ZZZ +=       (4.13) 
 
Z’ taking into account the interaction between nearby basis and testing 
function, Z’’ containing the blocks that expresses the interaction 
between non adjacent groups (see figure 4.3).  
 
 

          
  a)      b) 
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Figure 4.2 – Scheme representing the evaluation of the far interaction 
by means of the FMM. The black circles represents the nodes on the 
geometry, the red circles indicate the multipole centers. Relation 
between each node and its multipole center is indicated by a red 
arrow, interactions between the multipoles are depicted by blue lines. 
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Figure 4.3 – The impedance matrix can be split in the sum of two 
matrices: Z = Z’+ Z’’. 
 
 
From a mathematical point of view, it can be seen that the blocks 
(usually off-diagonal) constituting the matrix Z’’ are practically rank 
deficient, thus can be conveniently expressed by means of a suitable 
low-redundancy representation. 
To figure out how it is possible, it’s interesting to note that an M-by-M 
(sub-) matrix B of rank R can be expressed by means of a sum of outer 
products of vectors of length M: 
 

∑
=

⋅=
R

r

T
rrr vutB

1
     (4.14) 

=

+



Chapter 4 – The Fast Multipole Method                                           86 

 

This means that the M-by-M matrix B can be stored by means of R 
vectors, with an occupancy proportional to 2RM instead of M2. 
Moreover, the matrix-by-vector product Bx, that usually requires N2 
operations, is carried out by means of a number of operations 
proportional to RM. In fact, the product 
 

∑
=

⋅⋅⋅=
R

r

T
rrr xvtuxB

1
    (4.15) 

 
for any fixed r involves three steps:  

- the vector-by-vector product xv T
r ⋅ , called “aggregation”, 

because in some sense it “joins” the contributes from the M 
elements of the vector x into a scalar result 

- the multiplication of the above result by the scalar tr, 
representing a “translation”;  

- the product of the translated value by the vector ru , named 
“disaggregation”, since it derives the M elements of the 
resulting vector from the scalar result of the above step 

It is clear that a number of operation proportional to the block size M 
is needed to carry out the three-step sequence, that is repeated R times. 
When dealing with EM scattering, the required factorization can be 
obtained by applying the addition theorem to the Green’s function; 
this leads to an analogous decomposition of the impedance matrix.  
The scheme seen for the block B can be applied to the whole matrix 
containing the low rank block accounting for the interaction between 
non adjacent clusters, Z’’. It is found that it can be written: 
 

 ∑
=

⋅⋅=
R

r

T
rrr VTUZ

1
''      (4.16) 

 
Where the matrices V contain the aggregation vectors, U  the 
disaggregation vectors, and T expresses the “translation” operator, i.e. 
the interaction between the clusters.  
The group dimension M is chosen equal to N , and it is also found R 
to be proportional to N . We have to store R matrices T1..R, of size 
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M-by-M, with an occupancy proportional to N1.5, while the sparse 
matrices V1..R contain N1.5 non-zero elements, and the same for the 
sparse matrices U1..R. Again, it is found that the memory needed to 
store the sparse matrix Z’ is proportional to N1.5  (see fig 4.4): the 
overall memory occupation of this representation for Z is proportional 
to N1.5. It is important to note that the impedance matrix Z is never 
computed (nor stored) explicitly. 
 
 

 
 

 
 
Figure 4.4 – Decomposition of the matrix Z’’  
 
 
From the viewpoint of the computational complexity, the product Zx 
is carried out with significant savings. The first task concerns the 
explicit evaluation of the contribution between nearby parts, i.e. the 
computation of the sparse matrix Z’: even if performed in the classical 

= ∑ 

= 
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way, it involves the evaluation of the only nearby interactions, that 
amounts to a number proportional to N1.5. Then, the FMM scheme is 
applied for taking into account the far interactions. The algorithm 
involves:  

• The aggregation of the source contributions into the clusters 
• The translation of the contributions from the source clusters to 

the observation clusters 
• The disaggregation of the contribution from the cluster to the 

observation points 
 

 
Figure 4.5 – Scheme of the FMM based product. Green links 
represent the explicitly evaluated nearby interactions, red links the 
aggregation and disaggregation, blue links the interaction between 
the multipoles 
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Each of the three steps is carried out by means of a number of 
operation proportional to N1.5, so that the overall computational 
complexity of the matrix-by-vector product is O(N1.5). The figure 4.5 
shows the scheme of the FMM-based multiplication algorithm. 
A natural extension of the Fast Multiple Method is the Multi Level 
Fast Multipole Algorithm [39, 40], where the above described scheme 
is repeated recursively. The FMM reduces the computational 
complexity from O(N2) to O(N3/2) by exploiting a two-level scheme. 
In the same way, further reduction can be obtained by adding more 
“hub” levels: for example, a three-level scheme leads to a complexity 
of O(N4/3), and so on (see fig. 4.6). It is found that the total memory 
storage can asymptotically become proportional to Nlog(N), while the 
computational complexity of the matrix by vector multiplication 
reaches O(Nlog(N)).  
 
 

 
  a)       b) 
Figure 4.6 – a) Full connected network; b) Network exploiting 2 levels 
of “hubs” to reduce the number of links 
 
 
The proposed FMM scheme can be applied to any MoM-like integral 
formulation of the scattering problem, provided that it is possible to 
express the far interaction matrix as stated in (4.16).  
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4.4 The FMM applied to a generic MoM-EFIE 

formulation 
 
The goal is to find a separable expansion for the Green’s function, to 
obtain the expression (4.15) for the “far interaction” part of the 
impedance matrix. When dealing with perfect conductive scatterers 
immersed in free space, in 2D or 3D environment, the Green’s 
function is analytically known in closed form, and the addition 
theorem can be easily applied. 
In the following, we first introduce the general case, with reference to 
a classical MoM-EFIE formulation of the scattering problem.  
 
 
4.4.1 Factorization of the interactions 
 
As seen in chapter 3, applying the Method of Moments in the EFIE 
formulation,  the elements of the impedance matrix can be expressed 
as: 
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where: nw  and 

'n
f are the n_th testing and the n’_th expansion 

functions, defined on the supports nS  and ''nS , respectively, and G is: 
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g being the dyadic Green’s function: 
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Let us consider the decomposition of the distance vector into the sum 
of two vectors (see figure 4.7):  
 

dXrr +=− '       (4.20) 
 

The expression of the Green’s function becomes: 
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For |X|>|d|, the above expression can be manipulated by means of the  
addition theorem for the spherical Bessel functions [61], leading to: 
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where )(⋅lj  is the spherical Bessel function, )()2( ⋅lh  is the spherical 
Hankel function of the second kind, )(⋅lP  is the Legendre polynomial. 
 

 
Figure 4. 7 – Decomposition of the distance vector. 
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The product ll Pj  can be expanded as an integral of propagating plane 
waves [62]: 
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dkj

l
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where the versor k̂  is a generic direction and ∫ kd ˆ2  indicates the 

integral over the unit sphere.  
By merging the two results (4.22) and (4.23), and by truncating the 
infinite sum to L+1 terms, we have: 
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The so obtained expression (4.24) presents factors depending only on 
d or X.  Defining the so called “translation function”: 
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γ being the angle between k̂  and X̂  (see figure 4.7), the final 
expression for the Green’s function becomes: 
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It is important to note that the translation function doesn’t depend on 
d.  
Now, by means of equation (4.17) we want to evaluate the generic 
element Zn,n’ of the impedance matrix, i.e. the interaction between a 
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generic basis function, say fn’, and a generic testing function, say wn 
(see figure 4.8).  
As anticipated above, both the basis and testing function sets should 
be subdivided in localized clusters. If we call M the number of 
clusters, we have grouped P=N/M functions in each one. Let us label 
with m the testing clusters and with m’ the source clusters. The 
particular testing or basis function  in each cluster is indexed with p 
and p’, respectively. This means that the indexes n and n’ have been 
substituted each by a couple of indexes: 
 
 ),( pmn →  ; )','(' pmn →    (4.27) 
 
Suppose that fn’ belongs to a cluster centered in rm’ and the wn belongs 
to a cluster centered in rm. Let us decompose the segment r-r’ as 
follows:  
 
 ',',',' mmpmpm Xddrr ++=−     (4.28) 
 
where: 
 

''1 rrd m −=       (4.29) 
 

mrrd −=2       (4.30) 
 

'cc rrX −=       (4.31) 
 

rc and rc’ being the positions of the test and of the source clusters, 
respectively. 
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Figure 4.8 – Decomposition of the segment r1-r2 
 
 
 
After these considerations, assuming 21 ddd += , the expression 
(4.26) can be rewritten: 
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and the G function: 
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X 

d1 
d2 r-r’ 

wm 
fn 

wm-1 

wm+1 wm+2

fn+1 

fn+2 fn+3 

Testing cluster 

Source cluster 



95                                           Chapter 4 – The Fast Multipole Method 

 

so that, from eq. (4.17),  the expression for the generic element of the 
impedance matrix is: 
 

( )
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π   (4.34) 

 
In the integration domain ''nn SS × , r  depends only on 2d  and 'r  
depends only on 1d : as a consequence, the G is a function of the 
couple ( )21, dd , and does not vary with X. As a consequence, the ∇∇  
operator is applied only on the exponential terms )exp( 2,1dkj ⋅  and it 

can be substituted by the operator kk ˆˆ− : 
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where we have inverted the integration order. We can define the 
“excitation vectors” V m,p  and V’m’,p’ : 
 

( )∫ ⋅−=
''

'1',' ')'()exp(ˆˆ)ˆ('
nS

npm rdrfdkjkkIkV  (4.36) 

 

( )∫ ⋅−=
nS

npm rdrwdkjkkIkV )()exp(ˆˆ)ˆ( 2,   (4.37) 

 
Then we have: 
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The integral over the unit sphere ∫ kd ˆ2  can be discretized by means 

of a summation of contributes evaluated on a suitable set of NK 
discrete directions 1k̂ …

KNk̂ : 
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The (4.40) is a factorized expression for the impedance matrix 
elements according to the scheme (4.16) described in the previous 
paragraph. As can be seen, the dependence of the matrix element on 
the distance vector has been disaggregated.  
Note that the two indexes m and m’ have been added as pedices to the 
translation function TL, since it depends on the particular pair of 
considered clusters. 
Relations (4.36) and (4.37) shows that the excitation vectors 

)ˆ(' ',' ipm kV  and )ˆ(, ipm kV  can be evaluated once (in the discrete set of 

values 1k̂ … Kk̂ ) for each basis and testing function, and plays the 
roles of aggregation and disaggregation functions, respectively. On the 
other hand, the translation functions )ˆˆ,(',, XkXkT immL ⋅ can be 
computed once for each couple of clusters m and m’.  
In the FMM implementation, not all the possible couples of cluster 
have to be actually considered: in fact, the factorization for the 
Green’s function is valid under the condition |d|<|X|. As a 
consequence, the m-t testing cluster and the m’-th source cluster are 
considered “nearby” if their distance |Xm,m’| is larger than the radius of 
the cluster. This forces to exclude from the fast scheme the evaluation 
of the interactions between adjacent clusters, that are instead taken 
into account in the near interaction matrix Z’, and directly computed. 
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In order to estimate the computational complexity related to the 
FMM-based matrix-by-vector product, it is necessary discuss validity 
of the approximation previously introduced. 
 
 
4.4.2 Truncation and discretization error 
 
The first approximation we made concerns the truncation to L+1 terms 
of the summation over the index l in the relation (4.22). It is well 
known that the values of the Bessel’s functions )(xjl  and )(xhl stays 
bounded until the order is lower than the argument. When l exceeds 
the value of x, )(xhl  starts to grow, and )(xjl  decays rapidly. We can 
reasonably suppose that for l>|kd| the factor )(kdjl  becomes almost 
zero, so that the contributions that the further terms give to the 
summation become negligible. Anyway, when the index l exceeds 
|kX|, because of the growth of the Hankel’s function )(kXhl , the 
integrand starts to oscillate: due to the finite machine precision, the 
summation of additional terms should only add numerical error to the 
solution. In determining L, a semi-empirical formula has been 
proposed by Coifman, Rokhlin and Wandzura [63]: 
 
 )ln()( maxmaxmax πα ++= kdkdkdL   (4.40) 
 
where dmax is the maximum distance between a generic point in any 
basis/testing function and the relative cluster center, and α is a 
parameter that depends on the prescribed precision. 
The second approximation concerns the discretization of the integral 
over the unit sphere into a finite summation made in (4.39). The 
number NK of directions ik̂  must be enough to ensure accuracy for all 

spherical harmonics of order l<L. Being ( )iiik ϕθ ,,1ˆ = , a simple 
method [63] consider the couples ( ),i iθ ϕ  wherein iθ  corresponds to 
the zeros of the Legendre polynomial, )(cos iLP θ , and the azimutal 
angles iϕ  are 2L equally spaced points [62]. Thus, the total number of 
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directions would be NK=2L2, which is essentially proportional to 
2
maxd . 

 
 
 
4.4.3 Evaluation of the computational costs 
 
It is now possible to assess the cost savings, in terms of memory 
occupation and computational complexity, due to the introduction of 
the FMM.  
Once the splitting of the impedance matrix into a “near” and a “far” 
contribution (eq. (4.13)) has been obtained , the matrix-by-vector 
multiplication required by the i_th step of the iterative solution 
process can be written as: 
 

)()( ii IZE ⋅= )()( ''' ii IZIZ ⋅+⋅=    (4.41) 
 

where )(iI  contains the coefficients representing the i-th estimate of 
the current distribution and )(iE  the coefficients of the radiated field.  
The matrix Z’, describing the direct interactions between the basis and 
testing functions corresponding to adjacent clusters, is largely sparse. 
Since any cluster contains N/M functions, the total number of non-
zero elements of the matrix Z’ is proportional to N2/M. As a 
consequence, the multiplication with the vector iI  requires a 
computational complexity O(N2/M). 
The matrix Z’’, which accounts for the FMM scheme of interactions, 
is never computed explicitly. The role of the impedance matrix is 
played by the excitation vectors )ˆ(' ',' ipm kV , )ˆ(, ipm kV   and the 

translation functions )ˆˆ,(',, XkXkT immL ⋅ .  
The key parameter of interest is the number of directions  

2
maxdN K ∝ , that it proportional to the cluster area.  

Once the spatial distribution of the basis functions is chosen, KN  is 
proportional to the number of functions in each cluster, i.e., to N/M. 
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For any of the N basis and any of the N testing functions, the 
excitation vectors should be evaluated in KN  directions and N2/M 
operations are involved. Obviously, the storage of the results require a 
memory occupancy proportional to N2/M . 
For any of couple of non-adjacent clusters, the functions 

)ˆˆ,(',, XkXkT immL ⋅  should be evaluated in the NK directions. Since 
the number of couples of clusters is essentially proportional to M2, this 
task requires M2*N/M=MN operations, and a memory storage also 
proportional to MN. 
The pre-computation of both the near interaction matrix, the excitation 
vectors and the translation functions is equivalent to the evaluation of 
the complete MoM impedance matrix.  
Accordingly, the memory storage requirement has been reduced from 
N2 elements to a value of order O(N/M + MN). The computational 
effort also reduces from O(N2) to O(N/M) + O(MN), even if from the 
computational point of view the most important role is played by the 
multiplication (4.41) required by the iterative solvers, rather that by 
the FMM pre-computation. 
The matrix-by-vector multiplication will follow the scheme proposed 
in figure 4. At first, we rewrite the (4.41) in terms of the pre-computed 
data. For the generic n_th component of the vector :)(iE  
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)( ''' i
n

N

n
nn

i
n

N

n
nn

i
n IZIZE ∑∑

==

⋅+⋅=   (4.42) 

 
Both Z’ and Z’’ are sparse matrices. In fact, if the n_th testing 
function and the n’_th basis function are in adjacent clusters, the 
second summation in (4.42) is zero, and the n’th contribution to En 
just comes from the first summation. Elsewhere, when evaluating the 
interaction between far away functions, only the second summation is 
different from zero. Defining with Qn the set of the indexes of the 
basis function adjacent to the n_th test function, we can rewrite the 
(4.42): 
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Since the number of elements in Qn is proportional to M, the 
evaluation of the first summation, for all the N components of )(iE , 
involves MN operations. 
The second contribution in (4.43) can be rewritten in terms of 
translation and excitation vectors. In fact, using the correspondence 
between indexes seen in (4.27), it  can be expressed as: 
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 (4.44) 

 
where Rn contains the indexes of the clusters adjacent to the n_th 
testing function, and Pm’ the set of the sub-indexes inside the m’_th 
cluster. 
An algorithm consisting of three steps allows to evaluate the 
expression (4.44) for all the values of { }Nn ,..1∈ .  

- 1° step: aggregation. The expression )(
'',' )ˆ(' i

nipm IkV  is evaluated 

for any value of n and in any of the NK directions ik̂ , involving a 
number of operations proportional to N*N/M=N2/M. The values, that 
represent the contribution of the whole source cluster to the radiation, 
are aggregated in the quantities: 
 

 ∑
∈

=
''

)(
'','' )ˆ(')ˆ(

mPp

i
nipmim IkVks    (4.45) 

 
- 2° step: translation. The expression:  
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⋅=     (4.46) 

 
is evaluated for any of the M testing clusters, in any of the NK 
directions ik̂ . The computational effort is proportional to NKM2=NM. 

- 3° step: disaggregation. The expression )ˆ()ˆ(, imipm kgkV , 
representing the contributions of the field radiated from the far sources 
into the n_th testing function, is evaluated for any n (i.e., for any 
couple of m and p) and in any direction ik̂ , then the sum over i in the 
(4.44) is performed. In this way, all the N components of the vector 

)(iE  are evaluated by means of NNK=N2/M operations. 
The above described aggregation-translation-disaggregation scheme is 
introduced in the iterative process of solution. Accordingly, the 
overall complexity of the solution process can be expressed as: 
 
 O(NiterNM)+ O(NiterN2/M)    (4.47) 
 
where Niter is the number of iteration needed by the method to 
converge. 
The choice of M should ensure the minimum computational effort: it 
is clear from (4.47) that the optimal choice is NM = . Taking into 
account this consideration, and supposing that the number Niter is 
independent from N, the computational complexity of the FMM-based 
solution process becomes O(N1.5). This choice of M also minimizes 
the memory needed to store the near interaction and the translation 
and excitation vectors, that also becomes proportional to N1.5. 
 
 
 
4.5 Application of the FMM to the Method of 

Auxiliary Sources in 2D  
 
The FMM is a very powerful technique and can be successfully 
applied to speed up the solution process of the linear systems coming 
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from a MoM (or other IF-based) implementation that utilize localized 
basis and testing functions.  
In this paragraph we show how to apply the FMM paradigm to the 
Method of Auxiliary Sources in 2D. The procedure essentially 
resembles that of the MoM case. 
The first problem concerns the factorization of the Green function. In 
a 2D case, the ASs are filamentary currents, whose field behaves like 
a Hankel function of second kind )()2(

0 krH , r being the distance 
between the source and the observation point and k the propagation 
constant. Putting r=X+d, for |d|<|X| we can apply the addition 
formula [61]:            
 

∑
+∞

−∞=

=
l

ll lkdJkXHkrH )cos()()()( )2()2(
0 α   (4.48) 

 
Jl being the Bessel function of first kind and α the angle between X 
and d. Since the Bessel functions decay rapidly for |l|>k|d|, the infinite 
summation may be truncated between –L and +L, with L> k|d|.  
Moreover, we have [63]:    
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From (4.48) and (4.49) we find: 
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 (4.50) 

 
where ∫ kd ˆ  indicates the integral over the unit circle and γ is the angle 

between the vectors X and k̂ . 
Let N be the number of auxiliary sources and testing points (they play 
the roles of the basis and testing functions, respectively). As seen in 
the previous section, both the sets can be subdivided into M localized 
groups, so that each cluster contains P=N/M elements. Let us label 
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with m the testing point clusters and with m’ the source clusters. The 
particular testing point/source point in each cluster is indexed with p 
and p’, respectively. In this way, the vector joining the source and the 
testing point can be written as dXr mm += ', , where ',', pmpm ddd −= , 

',mmX  being the vector joining the centres of the clusters, pmd ,  and 

',' pmd  being those from the centre of the cluster to the testing/source 
point, respectively (see figure 4.9). 
 
 

 

Figure 4.9 - Decomposition of the distance ',',', pmpmmm ddXr −+= . 
Black circles denotes the testing points, white circles the auxiliary 
sources, dotted curves delimit the clusters interested in interaction, 
crosses indicates the cluster centres  

 
 
Now we want to consider the interaction between a generic source 
point (m’,p’) and a generic testing point (m,p). The integral in (4.50) 
can be numerically evaluated over a discrete set of Nk directions ik̂ : 
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being: 
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The relation (4.53) requires |d|<|X|, so it can be used to evaluate the 
elements of the MAS impedance matrix which represent the 
interaction between non-adjacent clusters. The field radiated at the n-
th testing point by the non-adjacent source clusters, i.e. the n-th 
component of the product IZ '' , can be factorized as: 
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As seen, the equation (4.54) represents an aggregation-translation-
disaggregation scheme for the (impedance) matrix-by-(source) vector 
multiplication similar to the one considered in the previous section. 
Being L and NK essentially proportional to the radius of the clusters, as 
seen before, the application of the FMM scheme to a 2D MAS 
implementation allows to reduce the memory storage from N2 to N1.5, 
and the computational complexity of the matrix-by-vector 
multiplication from O(N2) to O(N1.5). 
The FMM-MAS technique has been applied to the analysis of large 
PEC scattering objects, achieving significant results in terms of 
reduction of computational costs. Some interesting numerical results 
can be found in chapter 6.  



 

Chapter 5 
 
A non-redundant implementation of 
the Method of the Auxiliary Sources 
 

 
 
 
 
In order to take full advantage of the ability of the MAS in reducing 

the number of unknowns, we want to exploit the results of the theory 
of the optimal sampling of the scattered fields [3, 50, 51], providing 
reliable guidelines to the positioning of both the testing points and the 
auxiliary sources. According to this theory , the field radiated by a 
scattering or radiating system over a smooth curve, not closer than 
some wavelength from the radiators, can be approximated by means 
of a band-limited function of the curve parameterization with a 
bandwidth w. The approximation error is a step-like function of w and 
decreases drastically for values of w, hence of the spatial frequency, 
higher than β [50]. Based on this basic result,  the criteria underlying 
the estimation of the number of the degrees of freedom of the field 
radiated by a given set of scatterers or radiators are given in [2]. In 
particular, avoiding the case of superdirective sources, it is shown that 
they can be estimated by means of only geometrical considerations, 
being proportional to the extension of the surface of the minimum 
convex envelope including the scattering/radiating system. It is also 
shown that the field can be represented with the desired accuracy by 
considering a number of sampling points slightly larger than the 
degrees of freedom of the field. 
In common MAS implementations, usually the auxiliary surface is 
chosen conformal to the boundary, and the testing points are usually 
placed uniformly along the curvilinear abscissa. However, the 
application of some results deriving from the optimal sampling theory 
suggest different choices that significantly improve the performances 
of the Method of Auxiliary Sources applied to extended PEC objects, 
and allows the use of a minimum set of unknowns. 
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5.1 Spatial bandwidth and optimal sampling of 
the scattered fields 

 
In this paragraph, a brief description of the theory on the spatial 
bandwidth and the optimal sampling of the scattered field is reported. 
 
 
5.1.1 Problem statement  
 
Let us consider a set of scattering objects in free space, and denote 
with a the radius of the smallest sphere B enclosing all of them (see 
Figure 1). In the following, an exp(jωt) time dependence is supposed 
and suppressed. The field scattered at the point r , belonging to a 
given observation domain M, according to [50], can be expressed as: 
 

∫ ⋅=
D

rdrJrrGrE ')'()',()( 00    (5.1) 

 
where 0G  is the dyadic Green’s function and J  are the (or induced) 
surface current on the domain D, given by the surfaces of the 
scattering objects included in B and r’ is the position vector of a point 
of D. In the free space we have: 
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where R=|r-r’| and εµωβ = . 
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Figure 5.1 – Geometry of the problem. 
 
 
The observation point r can be placed in the complex extension of the 
domain M. The only singularity for the function (5.2) occurs when the 
source point r’ coincides with the observation point r , i.e. when R=0. 
Such situation is easily avoided when the observation domain is 
placed away from the ball B.  
The exponential factor contained in (5.2), when r is allowed to take 
complex values, can grow indefinitely at infinity. This factor can be 
conveniently singled out by considering the reduced field: 
 
 )exp()()( 0 rjrErE β=     (5.3) 
 
In this way, a “reduced” Green’s function can be defined: 
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where the matrix )',( rrN  is defined as: 
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and the field expression becomes: 
 

 ∫ ⋅=
D

rdrJrrGrE ')'()',()(     (5.6) 

 
It is interesting to note that the norm of the matrix (5.5) approaches 
unity as Rβ  becomes large. Moreover, the exponential term grows 
with (r-R), that stays bounded when R goes to infinite. As a 
consequence, we can say that any scattered field is an analytic 
function, regular in a complex extension of the real observation 
domain M [50]. 
 
 
5.1.2 Approximating the field  with a band-limited 

function 
 
As shown in [50], these results allow to approximate the radiated 
fields by means of bandlimited functions. As an instance of 
observation domain, let us consider an indefinite analytical curve S, 
external to the ball B. To avoid any  spurious singularities due to the 
properties of the coordinate mapping, the arc length s, normalized by 
the minimum distance between the curve S and the origin O is taken 
as the curve parameter, s being the curvilinear coordinate on S. Being 
r=r(s), also the Green’s function (5.4) can be rewritten as a function of 
the normalized arclength: 
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with  
 

( ))',()()',( rsRsrrs −= βψ     (5.8) 
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The best approximation of the field E(s) with a band-limited function 
is the projection of the field on the set of all the functions defined in 
the observation domain and band-limited to w. By applying such 
projection to the expression (5.6), the evaluation of the approximation 
error is transferred from the scattered field to the Green’s function. 
We obtain that the maximum error can be estimated with [50]: 
 

[ ] ∫⋅∆≤∆
D

rs
rdrJrsGE ')'()',(max

',
   (5.10) 

 
where E∆  is the difference field between E(s) and its band-limited 
version, and G∆  is the difference between the Green’s function and 
its band-limited version. 
In this way the problem turns into the evaluation of the error Green’s 
function. To this purpose, a modified integral representation  is 
exploited to perform an asymptotical evaluation. It is found that, for a 
given source point at r’, the value of G∆  is comparable with G  if do 
exist stationary points defined by the condition: 
 
 

)'),(()'( rsrw ξψ
ξ∂
∂

±=     (5.11) 

 
where ξ is an arbitrary, analytic curve parameterization. the 
normalized arc length. If we define: 
 

)'),((max)'(0 rsrw ξψ
ξξ ∂
∂

=     (5.12) 

 
we have that no stationary points arise for 0ww > , and G∆  is 
expected to be very small [50]. It is interesting to study the behavior 
of the error in the region where it is small, i. e. for w  sufficiently 

larger than 0w , where it is found that: 
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A being  a constant, and 
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ξ0 being the point of maximum for ))(( ξψ
ξ

s
∂
∂ . 

The evaluation of the band-limitation error requires the maximization 
of the expression (5.13) with respect to r’. Aiming to consider any 
possible source location inside the envelope, we must enforce the 
condition: 
 

)'(max 0
'

rwWw
r

=>      (5.15)  

 
in order to avoid large errors. The maximization of the (5.13) and its 
substitution into the (5.10) gives the relation: 
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5.1.3 Estimation of the spatial bandwidth 
 
The band-limitation error expressed in (5.16), shows a dependence 
from the entity of the induced currents, that are obviously finite, and 
from a factor related to the “band excess”, w-W. In fact, it is clear that 
the value of σm is controlled by the choice of the band w and by the 
value of W, since it is always w-w0>w-W. The maximum bandwidth 
can be evaluated by means of geometrical considerations.  
In particular, an upper bound for W is found to be always lower or 
equal to aβ2 , and we have aW β≈  as the distance between the 
scattering envelope and the observation curve  becomes slightly larger 
than a. The quantity: 
 

 
a

w
W
w

β
χ ≈=       (5.17) 

 
is defined as the excess bandwidth factor, an we can express: 
 
 )1( −≈− χβaWw      (5.18) 
 
Since the value of mσ  is controlled by the excess bandwidth, as said 
above, it is clear that the error (5.16) decays exponentially as w 
exceeds the value aβ , showing a step-like behavior. Thus, it is 
possible to identify aβ  as the effective bandwidth of the scattered 
field. 
The possibility of approximating the fields over arbitrary observation 
domains by means of band-limited functions has been successfully 
exploited to propose an innovative approach to the sampling problem 
[51]. With reference to an one-dimensional observation domain (i.e. a 
generic curve), starting from only geometrical information about the 
scattering system, it is possible to evaluate the maximum field 
bandwidth and, as a consequence, the minimum sampling rate needed 
to perform a spatial sampling with an acceptable error.  
For a closed curve, the number of samples needed to express any 
scattered field is finite, and can be seen that it is proportional to aβ . In 
particular, it is found that the minimum number of samples needed to 
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reconstruct the field over a sphere is finite, approximately πβ 2)(4 a , 
and practically equal to the degrees of freedom of the field, i.e. the 
number of relevant spherical harmonics 2)( aβ .  
For an unbounded line (see fig. 5.2), the sampling of the field at a 
fixed rate, related to the estimated effective bandwidth, provides an 
infinite number of samples. Since the field on any point outside the 
sphere can be obtained by the tangential components on its surface, 
the degrees of freedom are finite in the whole space, and it is desirable 
to have a technique able to represent the field with a finite, non 
redundant number of samples, even on an unbounded domain.  
 

 
Figure 5.2 – Example of unbounded observation domain 
 
 
 
5.1.4 Introducing the generalized field reduction 
 
A non-redundant sampling approach to the above issue has been 
presented in 1994 [64, 65, 66]. It relies on the generalization of the 
field’s reduction; let us consider: 

B 

r’ 

θ 

S 
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 )())(exp()( ξξγξ EjF =     (5.19) 
 
where )(ξγ  is a the generalized reduction function, and )(sξ  a 
generic parameterization of the curve, s indicating the arc length as 
usual. The aim is to determine both those functions in order to 
minimize the number of samples needed. In fact, it is clear that the 
local bandwidth can vary with the value of ξ, and this implies that the 
value of W can be larger that the effective local bandwidth in most of 
the observation domain. To avoid this problem, the value of w0 should 
be constant with ξ, and, obviously, equal to W . By expressing w0 for 
the generalized reduced field, it is possible to determine the 
expression of both the reduction function and the curve 
parameterization matching this condition. For example, with reference 
to the previously considered case of sources enclosed in a circle (see 
fig. 5.2), the curve parameterization is found to coincide with the 
angular variable θ. In this way, it turns out that the sampling at a 
constant rate (with respect to the parameter) involves a finite number 
of sampling points, even on the considered unbounded observation 
domain. In a certain way, we can imagine that the degrees of freedom 
of the field “move along the radii” of a spherical reference system 
centered in the center of the sphere enclosing the sources/scatterers. 
 
 
5.1.5 Extension to non-spherical scattering envelopes 
 
In many cases of practical interest, for instance when dealing with 
planar antennas, the minimum spherical envelope is not the most 
realistic way to take into account the scattering geometry. Important 
achievements in this direction was obtained by considering, instead of 
a sphere, the smallest convex domain with rotational symmetry: this 
leaded to a more flexible approach to the problem [3].  
So, let us consider the smallest convex domain Σ enclosing the 
scattering system, and let indicate with C’ its intersection with a 
meridian plane П (see fig. 5.3).  
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Figure 5.3 – Non-spherical scattering envelope 
 
 
 
In [3], for and observation curve C laying on the plane П, two 
expressions are found for the optimal field reduction and curve 
parameterization: 
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where R1 and R2 are the distances between the observation point P and 
the two tangency points P1 and P2 on the source envelope (see fig. 
5.3),  s’1 and s’2 are the arclength coordinates of P1 and P2, 
respectively. It is important to note that the expressions (5.20) and 
(5.21) only depend on the observation point, and provide an 
(orthogonal) coordinate system on the plane П. Moreover, when the 

П plane 
 P 

 P1 

 P2 

 2a 

2b

 C 

 C’ 
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observation point P goes to infinity, γ tends to coincide with βr, i.e. a 
normalized radial coordinate, and ξ becomes an angle-like coordinate.  
In the case Σ is a spheroid of rotation, and П a meridian plane, the 
coordinate curves of the system (γ,ξ) are shown to be the families of 
ellipses and hyperbolas confocal to C’ (see figure 5.4) . 
 
 
 

 
Figure 5.4 – Coordinate curves in the case of spheroidal scattering 
envelope 
 
 
 
5.1.6 The degrees of freedom of the field 
 
Important considerations on the degrees of freedom of the scattered 
fields can be derived from the application of the optimal sampling 
theory. When the observation point encircles the scattering system 
along an ellipse of length 'l , ξ covers a 2π range, and the variation of 
the expression (5.21) is W/'lβ , so that it can be chosen: 
 

ξ =const 

γ =const 

θ∞ 

P 
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 πβ 2/'l=W       (5.22) 
By performing a sampling at Nyquist rate W/πξ =∆ , the number of 
point to consider on any meridian curve enclosing the scattering 
system is 
 
 λπβξ /'2/' ll == WWN     (5.23) 
 
that can be considered as the number of the field’s degrees of freedom 
on the plane П. As seen previously, the band limitation error decays 
exponentially with the excess bandwidth, so that the field on the curve 
C can be approximated with a number of samples slightly larger than 

ξN , whatever is the size of the observation curve. Since the optimal 
sampling points on any observation curve are the intersections with 
the ξ=constant coordinate curves, we can say that, in the elliptic case, 
the ξN  degrees of freedom of the field “moves along the hyperbolas” 
of the (γ,ξ) reference system. 
The reasoning presented on the degrees of freedom on a closed curve 
on a meridian plane can be extended to any closed surface with 
rotational symmetry. In fact, the rotation of any point of the plane П 
around the z-axis describes an azimuthal circumference, say Cφ. The 
field spatial bandwidth on Cφ can be estimated with analogous 
geometrical consideration [3], so that the number of samples needed 
to describe the field on a closed surface enclosing the scattering 
system turns out: 
 

2)2/(
)(

λ
Σ

≅
ofareaN      (5.24) 

 
Since the tangential components of the radiated field on any closed 
surface including all the scatterers determine the field in any external 
point, we can say that the equation (5.24) provides the number of 
degrees of freedom of the field in the whole space. 
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5.2 Application to the A.S. positioning issue 
 
Let us consider a PEC profile S, parameterized with the arc length s, 
illuminated by an incident field. As seen in chapter 3, the MAS 
technique is based on the choice of a set of auxiliary sources whose 
radiated field matches at best the boundary conditions over the 
scatterer profile: the fulfilment of this condition with a given precision 
ensures that the field radiated by the auxiliary sources outside the 
boundary agrees with the true scattered field within the same 
precision.  
For large scatterers, according to the theory on the spatial bandwidth 
of the field, the field over S due to an arbitrary set of external primary 
sources (some wavelength far from it), as a function of the arc length, 
is essentially band limited to the free space propagation constant β. In 
the same way, if the distance of the auxiliary sources from the 
scatterer surface is small compared to its size, but not less than a few 
wavelengths, their field on S is also band limited to β. This ensures 
that if the incident field and that due to the ASs satisfy the boundary 
condition at a number N of uniformly spaced sampling points larger 
then the Nyquist number N0=L/(λ/2) (L being the length of S), this 
condition is satisfied all over S within the band limitation error, which 
decreases very rapidly with the oversampling ratio χ=N/N0. Thus, the 
field radiated by the auxiliary sources, within this error, coincides with 
the scattered one. As N0 is essentially equals the number of degrees of 
freedom of the scattered field, the MAS should be able to achieve non 
redundancy and require a minimum possible number of auxiliary 
sources. 
However, the location of the ASs is by no means a trivial task. In fact, 
they should lie well inside S, to make the band limitation error 
negligible, but not too much, to avoid a prohibitive ill-conditioning of 
the impedance matrix, which is also affected by the way they are 
distributed. 
An answer to this question can be provided by the theory of optimal 
sampling representation of scattered fields, which involves a “natural” 
orthogonal coordinate system, strictly tied to the scatterer’s geometry, 
as shown in the previous paragraph. From this representation an 
ansatz follows: while the testing points are displaced uniformly at 
Nyquist rate on the scatterer profile, the ASs can be positioned inside 



Chapter 5 – A non-redundant implementation of the M.A.S.           118   

 

S, in correspondence with each test point, along the ξ=constant 
coordinate curves. 
 
 
5.2.1 The case of an elliptic profile 
 
Let us refer to the case of a 2D profile of elliptic shape. The natural 
system is the elliptic coordinate system confocal with the given 
profile. We propose to distribute the auxiliary sources on an interior 
coordinate curve (a confocal ellipse, in this case), in correspondence 
of the orthogonal coordinate curves (here confocal hyperboles) trough 
the sampling points (see Fig. 5.5) [20]. 
 
 

 
Figure 5.5 – Positioning of the auxiliary sources inside an elliptic 
scatterer. The scatterer profile is indicated with a solid line, the 
auxiliary surface with a dashed line, the confocal hyperboles with 
dotted lines, the testing points with crosses, the auxiliary sources with 
circles 
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This criterion can be applied in a similar way  to the case of a different 
scattering geometry, by exploiting eqs. (5.20) and (5.21). 
 
 
 
5.3 Improvements to the optimal positioning 
 
In the MAS technique considered above, the testing points are 
uniformly distributed along the curvilinear abscissa on the scatterer 
surface, according to a spatial sampling of the incident field on S at a 
constant spatial frequency β. However, exploiting the theory on the 
sampling of the scattered fields, a further improvement can be 
obtained, and used to optimize the positioning of the MAS testing 
points.  
In theory, in order to minimize the representation error we have to 
maximize the value of the parameter mσ , which is a functional of the 
curve parameterization, appearing in the expression of the field 
sampling error given in §5.1. The problem of finding the curve 
parameterization (and, as a consequence, the optimal positions of the 
testing points) that maximizes the minimum of the σ  parameter, is 
mathematically quite hard, and the solution can be found only for 
given geometries.  
Anyway, in order to find a generic expression of a curve 
parameterization able to reduce the sampling error, an approach 
suggested by the professor O.M. Bucci is described and applied in the 
following. 
Let us parameterize the boundary domain with the arc length s. Any 
given point r(s) on the curve is critical for a possible source position r’ 
(in particular, it happens when the distance vector r-r’ is tangent to the 
boundary in r), since w0 reaches its maximum value β. In this 
condition, the σ  parameter determining the error decay is written: 
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From the expression (5.25) it turns out that for a fixed value of the 
sampling bandwidth w, the σ  parameter (and, as a consequence, the 
sampling error) is not constant, due to the variation of ψ&&& . This means 
that the uniform distribution of the sampling points along the 
curvilinear abscissa  provides a variable representation error. By an 
ansatz, aiming to a more convenient displacement of the testing points 
on the boundary, we can try to use a variable sampling bandwidth w to 
compensate the variation of the representation error, making the 
expression (5.25) constant. From a practical point of view, this will 
result in thickening of the testing points where the actual spatial 
bandwidth of the incident field is expected to be higher. 
Concerning the evaluation of ψ&&& , assuming constant the reduction 
function, we have: 
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Geometrical considerations allow to turn the above expression into: 
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where ρ is the local curvature radius of the curve. From (5.25) we 
obtain: 
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The relation shows that the σ  parameter, with a fixed w, increases 
with the curvature of the observation domain. Aiming to make 
constant the error expression (5.13), we set: 
 
 const=23σ        

 
i.e., from (5.25) 
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Now, w/β is the ratio between two spatial frequencies and can be 
rewritten in terms of sampling rates as: 
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where ∆s is the increase curvilinear abscissa and ∆n the corresponding 
increase of the number of sampling points. Assuming ∆n/∆s ≈ dn/ds, 
we have from the eq. 5.29: 
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The constant Y can be determined by integrating left and right hand 
over the whole observation curve (whose length is indicated with L): 
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where ξ=s/λ and N0=2L/λ, i.e., 
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k=1/ρ being the local curvature, and ξλ
λ

dk
L

k
L

∫=
0

3232  

representing the average value of 32k  along the curve. Since N/N0=χ, 
we have: 
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Substituting the value of Y  into the equation (5.31) we find: 
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This equation (5.35) suggests, for a given value of the ratio χ, the 
optimal positioning of the λχLN 2=  sampling points on the 
scatterer’s surface. In fact it is easy to find the following 
parameterization for the curve: 
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The value of n given by expression can be evaluated numerically or 
analytically, depending on the characteristic of the domain curve. 
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5.3.1 Application to the elliptic geometry 
 
The results of the previous Section can be applied to the positioning of 
the MAS testing points according to the expression (5.36), by taking 
into account the bandwidth increase due to the profile curvature. In 
particular, a more effective positioning criterion for the testing point 
and, as a consequence, a reduced redundancy of the auxiliary sources 
technique is expected. 

 
Figure 5.6 – Elliptic scatterer 
 
 
Let us consider an ellipse of semiaxes (a,b) (see figure 5.6). The 
curvature of this profile is found to be: 
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For the average of k2/3 can be written: 
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K(e) being the complete elliptic integral of the first kind, with 
parameter )(1 222 bae −= . Analogously, we find: 
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according to the relation  )(cos)(sin1 2222 θθ
λθ

ξ ba
d
d

+= , where 

F(θ,e) is  the incomplete elliptic integral of the first kind. 
By substituting (3.38) and (5.39) in (5.36), the optimal 
parameterization of the elliptic profile is found: 
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As a conclusion, in the  2D elliptic scatterer case, the optimal 
sampling of the profile can be performed by taking into account the 
actual variation of the local bandwidth of the field due to the curvature 
and exploiting the analytical expression (5.40). In the following 
chapter, the main results of a wide numerical analysis will confirm the 
validity of this criterion. 
 
 



 

 
Chapter 6 
 

Numerical Analysis 
 
 
 
The main results of the numerical analysis performed to enlighten the 
performance of the  technique are presented in this Chapter. The aim 
is to show the improvement of the performances of the Method of 
Auxiliary Sources, with respect to the non-redundancy of the number 
of unknowns and the required computational effort. 
 
 
 
6.1 Scattering by a circular cylinder 
 
First, the scattering by a PEC indefinite cylinder of circular section is 
considered. This simple geometry allows to focus the analysis on 
some relevant parameters, and to make comparison with the available 
analytical solution of the scattering problem, thus giving an accurate 
evaluation of the  performances of the approach. 
In this case the determination of the positioning of the auxiliary source 
(AS) and collocation point (CP) is almost trivial. In fact, the radial 
symmetry of the geometry imply that the spatial bandwidth of the 
field along the boundary is constant and, as a consequence, the CPs 
are displaced uniformly with respect to the curvilinear abscissa. 
Analogously, the auxiliary surface is a concentric cylinder, and the 
ASs are placed uniformly in correspondence with the testing points. 
The only parameters to be set are: 

1) the “dept” of the ASs beneath the scattering surface, i.e. the 
radius of the auxiliary cylinder. 

2) the “oversampling” factor χ involved in the spatial frequency 
setting for the AS and CP positioning. 

Let us denote with a and a0 the radius of the PEC and auxiliary 
cylinder, respectively, and with χ the “oversampling” factor: 
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π
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4
=       (6.1) 

 
N being the number of the ASs (Fig 6.1). 
As seen before, the problem consists in evaluating the Auxiliary 
sources excitations whose radiated field matches the boundary 
condition, i.e., satisfy the equation: 
 

incEIZ −=*       (6.2) 
 

where Z  is the impedance matrix, I the AS excitation vector and Einc 
the vector containing the value of the tangential components of the 
incident field on the CPs. 
The field produced by the n_th AS on the m_th CP is represented by 
the matrix element: 
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where )2(

0H  is the Hankel function of second kind and order zero and 
rm and rn the position vectors of the m_th CP and n_th AS points, 
respectively. By applying the addition theorem [61], eq. (6.3) can be 
rewritten as: 
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where mφ  and n'φ  are the angles of the m_th CP and of the n_th AS, 
respectively. Exploiting the expression (6.4) is possible to diagonalize 
and analytically solve the linear system (6.2) [47]. The eigenvalues of 
the impedance matrix are: 
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and the eigenvectors: 
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q assuming values between 1 and N. 
The condition number of the impedance matrix strongly influences the 
stability and the accuracy of the numerical solution. In this case, it 
depends on the radii a ed a0, and on the number of CPs-Ass, according 
to the relationship: 
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By means of an asymptotical analysis [47], for large scatterers, the 
behaviour of the condition number for increasing N can be estimated 
as: 
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Eq. (6.8) shows that, due to the relationship a0<a,  the condition 
number grows exponentially with the number of auxiliary sources N. 
This is an issue typical of the MAS approach not encountered in the 
classical MoM implementations wherein the equivalent sources are 
placed on the boundary surface, and the impedance matrix does not 
suffer of so severe ill-conditioning. 
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Another point of interest concerns the presence of some “resonance 
phenomena” already observed in some MAS implementations [47]. In 
fact, for high values of N (N>>ka0) the infinite sums in (6.7) can be 
approximated by means of the only s=0 term, leading to the 
approximate expression for the condition number: 
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It is noted that when the value of ka0 approaches a zero of the Bessel 

functions, even if the 
a

a0  ratio is close to 1, the condition number 

steadily increases and the numerical solution exhibits an outstanding 
error.  
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Figure 6.1 – Circular cylinder in 2D. The continuous line shows the 
boundary of the scatterer, the dotted line indicates the auxiliary 
surface. Circle and crosses shows the positions of the collocation 
points and of the auxiliary sources, respectively. 
 
 
 
According to equation (6.8), to obtain a well conditioned impedance 
matrix, the ratio a0/a should approach the value 1. However, the fact 
that both the incident and the AS fields, in the non redundant 
implementation of the MAS previously presented, should be 
essentially band-limited to β does not allows values of (a0/a) too close 
to unity. Accordingly, differences between a and a0 at least equal to 1-
2λ should be ensured. Provided that this distance is large enough, the 
error of the proposed MAS technique will show the exponential 
behaviour discussed in chapter 5, i.e., in the case of a circular cylinder 
of radius a, the error should be asymptotically proportional to: 
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))1/(exp( 2/3

0 −− NNaCβ     (6.10) 
 

being N0=2βa, and C a constant depending on the geometry. The ratio 
N/N0 is also referred as the “oversampling ratio” and is indicated with 
χ. 
Two cases have been numerically worked out (both with a=5λ) by 
considering a plane wave and a point-wise source. The numerical 
analysis has been carried out by varying the “oversampling” ratio χ 
and the “penetration” ratio ν=a0/a and evaluating the errors of the 
solutions as compared to the known analytical solution.  
Let us consider a Cartesian reference system with the z-axis equal to 
the cylinder axis and an incident plane wave propagating along the x-
axis, i.e., Einc=izexp(-jkx). The analytical solution is given by [68]: 
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εn being the Neumann symbol (ε0=1; εn≠0=2), )2(

nH being the Hankel 

function of second kind and order n, nJ being the Bessel function of 
order n, and (ρ,φ) being the polar coordinates of the observation point 
with respect to the centre of the cylinder.  
For the sake of numerical evaluation,  the infinite sum in (6.11) can be 
truncated to an index ρkn >~ , according to the fact that the values of 
the Bessel function become negligible when the order exceeds the 
argument. 
The modulus of the MAS impedance matrix obtained by setting χ=1.5 
and (a0/a)=0.7 is shown in figure 6.2. As can be seen, it is a dense one, 
even if the off-diagonal elements have smaller modulus with respect 
to the diagonal ones. Furthermore, due to the symmetry of the 
geometry, the N-by-N matrix has a circulant structure, i.e., its rows 
are composed by cyclically shifted versions of a sequence of N values. 
The eigenvalues of the matrix obtained by a Singular Value 
Decomposition, are shown in fig. 6.3 as a function of the radius of the 
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auxiliary surface. As expected, they decay exponentially as the index 
n exceeds the number of degrees of freedom of the scattered field, i.e., 
N0=4πa0/λ. Moreover, the condition number increases according to the 
law (6.8) as a function of the ratio (a0/a). 
The normalized main square difference between the exact scattered 
field and the one estimated by means of the MAS, in the case of an 
incident plane wave, is reported under Fig.6.4 as a function of χ and 
a0/a. As expected, the error behaviour approaches the asymptotical 
behaviour (6.10) as the (a0/a) ratio decreases, due to the fact that the 
distance between the sources and the collocation points becomes large 
enough to assume that the radiated field is a band-limited function. In 
this “saturation” region, the error due to the MAS approach has the 
same level of the minimal band limitation error associated to the 
representation of the field by means of N samples, according with the 
optimal sampling theory [1]. At the same time, as the ASs shrink, the 
ill conditioning of the impedance matrix increases, so that, for small 
values of (a0/a), the error curve may explode for relatively low values 
of χ before attaining a satisfactory error level. The error explosion 
occurs when the ill-conditioning becomes too high with respect to the 
numerical accuracy of the used computational tool. As this happens, 
the numerical error introduced by the finite machine precision is 
amplified and start to prevail on the error due to the MAS formulation. 
The results do no show any “resonance phenomena” found by some 
researchers and explained with the previous considerations related to 
equation (6.9). It is believed that this is due to the fact that the number 
N of used unknowns is not so much larger  than ka0, essentially equal 
to the number of degrees of freedom of the problem, so that, in this 
case, the approximations leading to eq. (6.9) are not justified. 
Another interesting result concerns the dependence of the error on the 
dimensions of the scatterer . According to the asymptotical law (6.10), 
the error decreases more rapidly as the size of the cylinder increase. 
This behaviour is confirmed by the numerical results reported in 
Figure 6.5, wherein the analytically forecasted error and the actual 
one, obtained by a MAS implementation working in the saturation 
area, is reported in the cases a=5λ, a=10λ, a=20λ and a=30λ. 
According to these considerations, a rule for positioning of the ASs 
inside the cylinder should take into account two contrasting demands: 
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the distance (a-a0) should be large enough to work in the “saturation” 
region and small enough to control the ill-conditioning, increasing 
when the auxiliary sources shrink. It is important to note that, once the 
“saturation” has been reached, that is to say the minimum attainable 
error has been obtained, any further increase of the distance (a -a0), 
only will raise the condition number of the matrix. 
The parameters of a MAS technique can be set by referring to the 
abacus of fig. 6.5, giving the value of χ required to ensure the 
prescribed error level for the assigned problem size. Successively, the 
distance (a -a0) must be chosen large enough to ensure that the field 
radiated by the auxiliary sources on the scatterers boundary is 
essentially a band-limited function. Finally, eq. (6.8) allows to 
estimate the condition number of the impedance matrix, so that its 
compatibility with the numerical precision of the used tools can be 
estimated.  
The numerical analysis has shown that, for large scatterers, using 
standard computers featuring the “double precision” arithmetic, results 
with a relative error of -100dB can be achieved before the effect of the 
ill-conditioning becomes relevant. 
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Figure 6.2 – MAS impedance matrix, in modulus, for a circular 
cylinder of radius 5λ, for χ=1.5 and (a0/a)=0.7. 
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Figure 6.3 – Behaviour of the sequence of the normalized singular 
values for a circular cylinder of radius a, for various radii of the 
auxiliary surface. 
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Figure 6.4 – Relative error in scattered field evaluated via the MAS, 
for a cylinder of radius a=5λ under plane wave incidence. 
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Figure 6.5 – Abacus reporting the relative error for various values of 
the radius a (solid lines), compared with the asymptotical behaviour 
of the band-limitation error (dashed lines) 
 
 
 
6.2. Scattering by elliptical cylinders. 
 
An elliptical scattering profile, without the radial symmetry of the 
circular cylinder, allows to study the effectiveness of the optimal 
positioning strategies based on the concept of the spatial bandwidth of 
the scattered fields. Since the radial symmetry is lost, the impedance 
matrix has no more a circulant structure, and it is not possible to speed 
up the evaluation and the inversion of the matrix by trivially 
exploiting the symmetry of the geometry. 
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Moreover, at variance of the circular scatterer case wherein only the 
oversampling ratio and the “dept” of the auxiliary surface are of 
concern, in the elliptical scatterer case the positioning of the ASs is 
less trivial. In the chapter 5, it was shown that the spatial bandwidth of 
the scattered field on the scatterer surface is limited to β . 
Furthermore, it was noted that any scattering geometry induces a 
“natural” coordinate system acting as a “grid” for the optimal 
sampling of the field. In a pictorial sense, it can be said that the 
degrees of freedom “move” along well known coordinate curves. 
Accordingly, it is “natural” to locate the auxiliary sources at the 
intersection of an interior coordinate curve with the orthogonal 
coordinate curves passing trough the testing points (see fig. 5.5). 
In the case of the elliptic profile, the coordinate curves are sets of 
confocal ellipses and hyperbolas.  
As known, the field scattered by a PEC elliptic cylinder has been 
evaluated in [68]. The elliptic cylindrical coordinates (u,v) are related 
to the Cartesian ones (x,y) by the transformation (see Fig. 6.6): 
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where 2f is the inter-focal distance. Moreover, defining  
 

 
v

u
cos
cosh

=
=

η
ξ

      (6.13) 

 
with ∞<≤ ξ1  and 11 ≤≤− η  the equation u=constant (as well as 
ξ =constant) defines an ellipse of foci (+f,0) and (-f,0), and 

eccentricity 1−ξ .  
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Figure 6.6 – Elliptic coordinate system 
 
 
 
Let us consider a PEC scattering cylinder whose profile has equation 
u=u1 and an incident plane wave propagating in the x-y plane at an 
angle 0φ  with respect to the negative x-axis. The incident field is 
given by: 
 
 ( )( )00 sincosexpˆ φφβ yxjzEi +−=    (6.14) 
 
and the scattered field is: 
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 (6.15) 

 
where fc β= , 11 cosh u=ξ , )3,1(, moeR  denotes the even and odd radial 

Mathieu function of the first and third kind, respectively, and moeS ,  
is the angular even or odd angular Mathieu function [69]. The 
expression (6.15) can be evaluated by truncating the summation to a 
finite value, and the result can be used as a reference to estimate the 
accuracy of the MoM-like approaches. 
 
 
6.2.1 A small elliptical cylinder, comparison between 
MAS and MoM 
 
As a first case, we consider a PEC scatterer with major and minor axes 
equal to 10λ and  6λ, respectively, illuminated by an incident plane 
wave with a TM polarization propagating along the major axis. The 
small size of scatterer allow us to solve the scattering problem with a 
classical MoM techniques, and to compare its effectiveness with a 
MAS based technique. 
The mean square error between the far field calculated with the MAS 
and the analytically known solution (6.15) is shown in Fig.6.8, as a 
function of the oversampling ratio χ, for different values of the ratio, 
ν, between the major axis of the auxiliary ellipse and the boundary 
length. As can be seen, when the distance between the auxiliary 
ellipse and the scatterer boundary increases, the error saturates. This is 
due to the fact that, when the sources are located far enough from the 
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scatterer’s profile, the bandlimitation error of the corresponding 
radiated field becomes negligible as compared with that of the 
incident field. This is confirmed by the behaviour of the limit curve, 
which is proportional to (N/N0-1)3/2, matching the theoretical 
behaviour of the band limitation error previously determined. 

 
Figure 6.7 - Geometry of the problem. Solid line: scatterer profile; 
dotted lines: confocal hyperboles; crosses: testing points; circles: 
auxiliary sources. 
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Figure 6.8 – Mean square error of the field evaluated by MAS, as a 
function of ν. 

 
 
The figure 6.8 shows that, even for not too large scatterers, an 
oversampling ratio of the order of  20% ensures a negligible error, i.e., 
an error smaller than -60dB. 
For the sake of comparison, a classical MoM based algorithm, 
exploiting triangular and pulse functions as basis and test functions, 
respectively, has been developed to solve the same scattering problem. 
At variance of MAS, filling the impedance matrix requires the 
numerical evaluation of integrals (instead of the direct computation of 
the interaction between 2 points). 
Analogously to the MAS case, the numerically evaluated field has 
been compared with the exact one, and the error has been plotted with 
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respect to the parameter χ=N/N0 , N being now the number of 
unknowns (basis and testing function) (Fig. 6.9).  
 

 
Figure 6.9 – Error of the scattered field evaluated with a standard  
MoM algorithm, for varying values of  χ (ratio between the number of 
unknowns and the number of the field’s degrees of freedom)  

 
 
The  figure 6.9 shows that, despite its higher complexity, the MoM 
algorithm needs a number of unknowns per wavelength much larger 
than our MAS technique in order to obtain the same error. For 
example, if we want to evaluate the scattered field with an error lower 
than -70 dB, we can choose ν=0.85 and χ=1.23 in our MAS algorithm 
(2.46 unknowns per wavelength), while we need at least χ=4.5 (9 
unknowns per wavelength) to obtain the same precision with the 
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standard MoM. For large scatterers, this reduction in the number of 
unknows can be very significant, and allows the study of problems 
that otherwise would be prohibitive. 
 
 
6.2.2 A set of two elliptical cylinders  
 
Another case of interest concerns a scattering system made by more 
than one PEC object. We consider  two “small” ellipses, with different 
eccentricity, illuminated by a plane wave and placed not so far by 
each other, so that the interaction between them cannot be neglected. 
Since no analytical result is available for such a problem, we are 
forced to exploit a classical MoM approach for comparison purposes.  
In particular, we consider two ellipses with major and minor semi-axis 
equal to 5λ and 3λ and 3λ and 2λ, respectively (see Figure 6.10).  
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Figure 6.10 – Geometry of the scattering system 
 
 
For each ellipse, the collocation points and the auxiliary sources have 
been located following the guidelines already established in the case 
of a single elliptic cylinder. In order to evaluate the accuracy of the 
solution obtained by applying the MAS based technique, the MoM 
algorithm with 20 unknowns per wavelength, and basis functions 
involving  4 interpolation points has been considered [70]. 
The mean square error is reported in Figure 6.11 as a function of the 
oversampling ratio χ, for various values of the ratio ν0 between the 
major axes of the auxiliary ellipse and the length of the PEC 
boundary. Since the accuracy of the reference MoM field is not better 
than  -47dB, the error can be analyzed just on a restricted range, and 
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the agreement with the expected exponential behaviour cannot be 
confirmed. Anyway, it is possible to confirm two aspects highlighted 
in the previous examples: the curves tend to saturate when the depth 
of the ASs reaches 1-2 λ inside the profile; the MAS error at saturation 
decays rapidly, and it is possible to obtain a good precision for values 
of oversampling slightly larger than the unity. An oversampling factor 
χ=1.2 ensures an error lower that -40dB. 
 

 
Figure 6.11 – Error of the MAS field, with respect to the MoM 
solution, for various values of the ratio between auxiliary and profile 
ellipse major axes. 
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6.2.3 Larger elliptical cylinders 
 
The numerical analysis performed in the case of the circular cylinder 
(see Figure 6.5) shows that, for a fixed oversampling ratio, the relative 
error of the MAS based solution decreases with the size of the 
scatterer. As will be seen, the same behaviour holds also in the elliptic 
case wherein  the angle of incidence 0φ  must be taken into account. 
First, the numerical problems involved in the evaluation of the 
analytical expression of the scattered field (6.15) has been considered. 
In the case of large scatterers the number of terms needed to evaluate 
the summation in (6.15) seriously increase, and the attainment of the 
required accuracy became difficult.  
As a matter of fact, to build a reference scattered field and to estimate 
the error of the MAS based solution, we use classical MoM algorithm 
with a strong increase of the number of the unknowns. In particular, to 
ensure an accuracy of -100dB up to 30 rooftop basis functions per 
wavelength have been used. 
Three scattering elliptical cylinders of different size and three angles 
of incidence have been considered for a total of 9 cases. The values of 
the major and minor semi-axes are equal to 5λ, 3λ, 10λ, 6λ and 20λ, 
12λ, respectively while the values of the incidence angle 0φ  are equal 
to 0, 45° and 90°, respectively. The resulting error of the field 
evaluated by the MAS with parameters guaranteeing the so called 
“saturation” condition, are shown in figures 6.12, 6.13 and 6.14. 
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Figure 6.12 – Error of the scattered field evaluated by the MAS, with 
respect to the MoM solution, for a scattering elliptical cylinder of 
semiaxes  (5λ, 3λ), under the following conditions of incident plane 
wave: 0φ =0 (solid line), 0φ =45° (dashed line), 0φ =90° (dotted line) 
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Figure 6.13 – Error of the scattered field evaluated by the MAS, with 
respect to the MoM solution, for a scattering elliptical cylinder of 
semiaxes  (10λ, 6λ), under the following conditions of incident plane 
wave: 0φ =0 (solid line), 0φ =45° (dashed line), 0φ =90° (dotted line) 
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Figure 6.14 – Error of the scattered field evaluated by the MAS, with 
respect to the MoM solution, for a scattering elliptical cylinder of 
semiaxes  (20λ, 12λ), under the following conditions of incident plane 
wave: 0φ =0 (solid line), 0φ =45° (dashed line), 0φ =90° (dotted line) 
 
 
Although we expected the exponential behaviour (6.10), the actual 
error is such that the higher is the spatial bandwidth of the incident 
field in the points of the profile with a minimum curvature radius, say 
w~ , the higher is the error. In fact, the worst case is when the 
propagation is parallel to the minor axis, since β≈w~ . On the 
contrary, the error decays more rapidly when 0φ =0, being almost zero 
the spatial bandwidth at the ellipse ends.  
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6.3. Application of the optimal positioning 
criterion 
 
 
As seen in the Section 5.3, when the collocation points are uniformly 
distributed assuming a value of χ slightly larger than unity, the 
scattered field is sampled at a frequency slightly larger than β, thus 
resulting in possible undersampling on some portions of the 
observation curve. In order to clarify this point, the qualitative 
behaviour of the spatial bandwidth of the field due to an incident plane 
wave on the elliptic profile is shown in the figure 6.15. The envelope 
of the spectral content of all the possible incident fields gives the 
curve of the function wε, representing the local sampling bandwidth 
that provides a constant error, that varies along the curvilinear 
abscissa s according with the profile’s curvature. 
 
 

 
Figure 6.15 – Qualitative behaviour of the actual bandwidth of the 
incident field on the elliptical boundary, for the following conditions 
of incident plane wave: 0φ =0 (solid line), 0φ =45° (dashed line), 

0φ =90° (dotted line). The dash-dotted line indicates the function wε 
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In the previous chapter it has been shown that, taking into account the 
profile curvature, an “optimal” curve parameterization is found, that 
ensures an uniform band-limitation error on the observation domain. 
The optimal parameterization thickens the testing point in the region 
with the higher values of wε. In the case of an elliptic profile the 
analytic expression for the curve’s parameterization is given by: 
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where s is the curvilinear abscissa on the profile, K(e) is the complete 
elliptic integral of the first kind, F(θ,e) is  the incomplete elliptic 
integral of the first kind, and )(1 222 bae −= .  
The expression (6.16) gives the optimal positions of the N collocation 
points for n assuming values in [1,N]. Since the elliptic integral cannot 
be inverted analytically, the right end of the (6.16) is evaluated in a 
large set of positions on the boundary, thus building a look-up table, 
then the solution of the equation for each value of n is obtained by 
conveniently interpolating the table data. 
This positioning criterion has been applied to the above described 
MAS implementation in the case of the elliptic scattering cylinder. 
The first case involves an ellipse of semi-axes (10λ, 6λ) under the 
incidence of two plane waves propagating along the axis directions. 
The results in figure 6.16 show that the field evaluation error, obtained 
by the introduction of the optimized positioning criterion in the MAS 
implementation, fits the exponential behaviour of the band-limitation 
error (6.10), thus increasing the accuracy with the respect to the 
standard uniform test point positioning case. 
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Figure 6.16 – Scattered field evaluation error for an ellipse of semi-
axes  (10λ, 6λ). The solid line indicates the error of the MAS  with 
uniform test point positioning, the dotted line indicates the MAS error 
with the proposed optimized positioning, and the dashed line shows 
the theoretic band-limitation error behaviour. 
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Figure 6.17 - Comparison between the scattered field evaluated by the 
MAS with the optimized positioning criterion (dotted lines) and the 
theoretich band-limitation error (dashed lines), for various sizes of the 
scattering ellipses and incident plane waves. 
 
 
 
Moreover, three scattering ellipses of semi-axes (5λ, 3λ), (10λ, 6λ) 
and (20λ, 12λ) illuminated by two plane waves propagating along the 
major and minor axis, respectively, have been considered. The figure 
6.17 shows the behaviour of the error in the evaluation of the scattered 
field in the six considered cases. A comparison with the asymptotical 
trend of the band-limitation error is performed.  
The comparison confirms that the use of a proper curve 
parameterization allows to obtain an error behaviour that complies 



 

154                                                      Chapter 6 –  Numerical Analysis 

with the exponential decay of the band-limitation error, that can be 
estimated in advance by means of the only knowledge of the 
scattering geometry. 
  
 
 
6.4. The FMM-MAS 
 
 
To improve the computational performances, an FMM approach has 
been applied to the impedance matrix inversion of the proposed MAS-
based technique, as formulated in the chapter IV. 
It must be noted that, in the FMM based technique the whole 
impedance matrix is never explicitly computed, because its role is 
played by the M-by-M matrices 

ik
T ˆ  (representing the aggregate 

interactions between clusters) together with the excitation vectors 
ik

V ˆ . 

As previously discussed, the memory needed to store these data is 
proportional to N3/2, while a dense N-by-N matrix would requires the 
storage of N2 values. On the other hand, the matrix inversion is 
performed with a Generalized Minimal Residual (GMRES) based 
iterative process which essentially requires an (impedance) matrix-by- 
(current) vector product at each step. As seen in chapter VI, the FMM 
technique allows to evaluate this product with a complexity O(N3/2), 
instead of the classical O(N2). 
The numerical analysis has been performed by considering the 
scattering of a plane wave from several ellipses of increasing size. The 
couple made by the major and minor axes varies from a minimum 
corresponding to (150λ, 90λ) to a maximum corresponding to (400λ, 
240λ). A MAS technique capable of evaluating the scattering by these 
geometries with a minimal number of unknowns has been 
implemented..  
In the GMRES-based iterative method the FMM parameters have 
been set to L=1.1kdmax and Nk=2L, according to the usual 
prescriptions [62]. 
Figure 6.18 shows a comparison between the memory required to 
store the full impedance matrix (needed in classical MoM and MAS) 
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and the memory requirement in the FMM-MAS implementation. As 
previous discussed, the use of a low-redundancy representation for the 
impedance matrix results in a significant memory saving. Figure 6.19 
reports the computational time required to compute the matrix-by-
vector product, in both the standard and FMM cases, as a function of 
the size of the scatterer. Even if for small problem sizes the 
complications introduced with the FMM is not compensated by the 
FMM speed up, we note that the curves relative to fast case grow with 
a smaller order with the number of unknowns, this assuring an 
advantage for large problems [71]. 
 
 

 
Figure 6.18 – Memory needed to store the classical impedance matrix 
(dashed line) compared to the storage of the low-redundancy 
representation exploiting the FMM (solid line) 
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Figure 6.19 – Comparison between the computational time needed to 
compute the classical product between impedance matrix and current 
vector in the standard (dashed line) and in the FMM schemes (solid 
line) by a PC equipped with a Pentium 4 CPU at 3.20GHz and 2 
GBytes of RAM. 

 
 
The overall error, ε, of the scattered field evaluated by means of the 
described technique is separable into three components: the error εmas 
due to the MAS implementation of the problem; the error εiter, due to 
the iterative solution process, with respect to the solution by direct 
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inversion; the error, εfmm, introduced by the usage of the FMM 
scheme, which approximates the matrix-by-vector products needed in 
the iterative solution.  
These last error terms are numerically computed for the considered 
geometries. In particular, it is found εiter<-75dB and εfmm<-66dB, while 
the overall error reaches the maximum value of -65dB. The 
consideration made in the previous sections ensures that for the 
chosen oversampling rate (χ=1.2) and scatterer size the error εmas is 
negligible with respect to the total error. As a check, a reference 
solution has been evaluated by using a significantly larger 
oversampling ratio (χ=1.6), obtaining εmas<-100dB.  
It is important to note that the value of εfmm can be reduced, if needed, 
by using a larger value for L and/or a higher number Nk of directions 
when evaluating the factorized expression of the Green’s function 
[71]. 
 
 
6.4.1 Preconditioning 
 
As pointed out in the chapter 4, another relevant point related to the 
computational complexity of the problem involves the choice of an 
appropriate preconditioning technique that allows to reduce the 
number of iterations required to reach the GMRES convergence. The 
first choice was to adopt a block Jacobi preconditioning, but the 
results were pour, as shown in figure 6.20. Then, we applied the 
preconditioning technique described in the chapter IV and based on 
the matrix of the MAS “near interaction”, which is explicitly 
evaluated and available: this approach allowed to strongly reduce the 
number of interactions required to reach the convergence, by 
providing an exponential-like decay for the residual sequence (see 
figure 6.20). The entity of the iteration-saving factor depends on the 
precision required (i.e. the value of the residual chosen to stop the 
process).  
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Figure 6.20 – Sequences of GMRES residuals. Solid line: no 
preconditioner used. Dotted line: preconditioning based on the MAS 
near interaction data. Dashed line: Block Jacobi preconditioning. 
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6.5. The MAS for 3D scatterers 
 
 
The result of the application of the MAS algorithm to the analysis of 
three-dimensional PEC scatterers are presented in this Section. The 
numerical efficiency is of crucial interest in the evaluation of the RCS 
of objects of relevant size. The analysis of scatterers of relevant size 
(for example, the evaluation of the RCS) is usually approached by 
exploiting asymptotical methods, even if they provide a reduced 
precision with respect to the integral methods. In fact, the use of full-
wave technique like the standard MoM, requires a prohibitive 
computational effort that becomes soon unsustainable as the size of 
the problem exceeds a few wavelengths. 
In order to show the potential of the MAS in reducing the size of the 
problem, even for 3D problems, the RCS of some 3D geometries have 
been evaluated by means of our MAS implementation and, for the 
sake of comparison, with a standard MoM algorithm featuring RWG 
basis functions. 
First, we considered a simple, canonical geometry: the sphere. This 
choice will allow us to evaluate the precision of both the MoM and the 
MAS results, since, in the spherical case, the value of the scattered 
field is analytically known. With reference to a sphere with the radius 
equal to 3λ, the mesh of the MoM algorithm, featuring 5154 RWG 
basis function, and the displacement of the MAS sources and testing 
points, involving 1136 impulsive functions are shown under Figures 
6.21 and 6.22, respectively. Despite the lower number and the simpler 
kind of basis function used, the RCS evaluated with the MAS 
algorithm is more precise than the one provided by the MoM, the 
MAS featuring a mean square error smaller than -21dB, the MoM 
reaching an error -16dB (see figure 6.23). 
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Figure 6.21 – MoM mesh featuring RWG basis function, spherical 
case 
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Figure 6.22 – The spherical case studied by means of MAS sources 
and impulsive testing functions 
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Figure 6.23 – Comparison between the RCS compared by the MAS 
and the MoM with the analytical solution, spherical case 
 
 
 
A more realistic scattering geometry we considered is made by the 
superimposition of an upper hemisphere, a circular cylinder and a 
lower hemisphere. In the following, we will refer to this geometry as 
the “pill”. 
The mesh of the MoM algorithm, featuring 4528 RWG basis function, 
and the displacement of the MAS sources and testing points, involving 
1252 impulsive functions are shown in the figures 6.24 and 6.25, 
respectively.  
The results of the RCS evaluations obtained by means of the two 
methods (MAS and MoM) are shown in figure 6.26. The two results 
differ for -28dB in mean square value. This difference is comparable 
with the precision found for the RCS evaluation found in the spherical 
case, where the known analytic result has been used as reference.  
This means that the two evaluations substantially have the same 
precision, even if the MAS requires a reduced computational effort. 
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Figure 6.24 – MoM mesh featuring RWG basis function, “pill” case 
 



 

164                                                      Chapter 6 –  Numerical Analysis 

 
Figure 6.25 – The “pill” case studied by means of MAS sources and 
impulsive testing functions 
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Figure 6.26 – Comparison between the RCS compared by the MAS 
and the MoM with the analytical solution, “pill” case 
 
 
 
To introduce a further realistic detail, we considered a 3D geometry 
with an edge. The scatterer, that we will refer to as the “bullet”, is 
build by laying an hemisphere upon a circular cylinder. Since the 
scattering surface locally presents a non-finite curvature, the local 
band-limitation hypothesis cannot apply. 
To manage this case we must take into account that the local spatial 
bandwidth is expected to rise, so that we have to: 

- thicken the testing point in the region nearby the edge, in order 
to better enforce the boundary condition 

- place the auxiliary sources closer to the scattering edge, so that 
they can produce a field not band-limited to β anymore 

In this way, the auxiliary sources distribution is no more conformal to 
the scattering geometry. The mesh of the MoM algorithm, featuring 
3987 RWG basis function, and the displacement of the MAS sources 
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and testing points, involving 1238 impulsive functions are shown in 
the figures 6.27 and 6.28.  
As seen in figure 6.29, the RCS evaluation made by the MAS and the 
MoM algorithms, differing for -24dB, can be considered to have the 
same precision, for the same reasoning followed in the “pill” case. 
 

 
 
Figure 6.27 – MoM mesh featuring RWG basis function, “bullet” case 
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Figure 6.28 – The “bullet” case studied by means of MAS sources and 
impulsive testing functions. The auxiliary surface is not exactly 
conformal to the scattering profile 

 
Figure 6.29 – Comparison between the RCS compared by the MAS 
and the MoM with the analytical solution, “bullet” case 
 
 
 
6.6. Conclusions 
 
 
In conclusion, we introduced a criterion for the positioning of the 
auxiliary sources and the testing points in the MAS approach thus 
allowing the evaluation of the field scattered by a PEC scatterer by 
means of a practically minimal number of unknowns (slightly larger 
than 2 per  wavelength. 
Moreover, we have verified that the error related to the evaluation of 
the scattered field agrees with the band-limitation error, that is 
theoretically known and depends on the oversampling ratio (i.e. the 
ratio between the number of unknown used and the number of the 
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degrees of freedom of the field). Accordingly, this ratio can be chosen 
in advance according to the desired accuracy.  
Moreover, it has been shown that the Fast Multipole paradigm can be 
applied to the MAS in order to obtain a relevant reduction of the 
computational costs related to the evaluation, storage and inversion of 
the impedance matrix. 
Finally, it has been shown that a MAS algorithm can be used to 
evaluate the field scattered by a three-dimensional PEC object, even in 
presence of edges, providing a precision comparable to a classical 
MoM implementation, with a strongly reduced number of unknowns. 
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