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Abstract

This thesis seeks to provide some concrete answers to the growing need for a common,

comprehensive framework for autonomous robotics. In fact, in the last few years, the focus

of the robotic research is increasingly on building robots that interact autonomously with

people, and even assist disabled people through social interaction. Thisnew roboticsposes

new tough challenges for researchers. Long before autonomous (assistive) robots will show

up all around us, we need sound ideas and quantitative methods to asses both their reliability

and our safety in this new scenario. We might be able at least to guarantee that the behavior of

a robot satisfies a set of global constraints – e.g. a safe and bounded response to unexpected

events – or that the robot will eventually always accomplish its own task no matter whether

the environment is static or not and whether fully observed or not.

The Probabilistic Constraint Nets (PCNs) Framework, proposed bySt-Aubin et al.(2006)

andSt-Aubin (2005), seems to be a first concrete answer to the above mentioned problems.

While the mathematical foundations have already been built, much work had yet to be done

in order to make the framework acceptable in the robotic community. My work took up

where St–Aubin’s thesis stopped. I contributed to the PCNs framework in several ways.

First, I discussed extensively the benefits and some of the limitations of using PCNs as a

formal modelling language for robotic systems. Furthermore, I investigated the relationships

between learning and PCNs. As a result I show here that most of the computational tools

usually deployed to build robotic architectures by means of some learning device can be

effectively expressed by means of PCNs. In order to narrow the gap between theory and

practice, I introduce the software package called PCNJ as an effective development tool for

robotic researchers. Finally, I explored the possibility of introducing formal methods also in

the context of Computer Vision methods for robotics.
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Chapter 1

Introduction and Motivation

1.1 Thesis Statement

Because robots are on the verge of leaving theirindustrial cagesand they are now poised

to enter our homes and workplaces, robotic researchers are going to face new tough chal-

lenges. Above all, they must overcome a number of potential difficulties in designing and

modelling very complex robotic systems, while preserving two crucial properties: reliability

and also harmlessness.

While many efforts are being produced to attack directly specific sub–problems, I believe

that better results can be obtained in the long–term by developing a comprehensive, theoretical

framework for the design of autonomous robotic systems. An effective integration and fusion

of all the contributions from many disciplines will produce a result that is much better that the

simple “ad hoc aggregate” of all the parts.

This thesis aims at providing convincing arguments in favor of Probabilistic Constraint

Nets as a viable candidate for the framework we are searching for. I show that most of

the computational tools usually deployed to build robotic architectures can be effectively ex-

pressed by means of PCNs. I discuss the advantages we can obtain with this kind of approach

and the usefulness of a cross–fertilization between PCNs and the other formalisms. In order

to narrow the gap between theory and practice, I introduce the software package called PCNJ

as an effective development tool for robotic researchers. Finally, a number of concrete robotic

problems are presented and it is shown how we can overcome some of the difficulties, related

1



1.2. New Concerns and Challenges in Robotics 2

to them, by using Probabilistic Constraint Nets and PCNJ.

1.2 New Concerns and Challenges in Robotics

“Can we trust robots?”

This is definitely a tricky question, yet I believe it is among the most challenging ones

that robotic researchers are asked to answer in the next few years.

First of all, for the sake of clarity, allow me to spend a few words to say what the question

is not about. It is not about fear and scare. We must try to keep real Robotics and fiction as far

apart as possible. During the past30 years, loads of books and movies have been warning us

about the danger of a robotic “rebellion” against human beings. Indeed, we must admit they

certainly caused a deep feeling against a wider use of robots in our everyday life. Actually, if

we remain in the realm of fiction then Asimov’s Three Laws of Robotics (Asimov1942) may

be enough to prevent us from being attacked deliberately from robots.

Unfortunately, the solution is not so straightforward, so we’d better move on to the real

world again. We need scientifically grounded answers, and the first step is to understand

better which is actually the problem. If we looked at therobot market more carefully we

would realize that robots are leaving theirindustrial cagesand are now poised to enter our

homes and workplaces. This consideration leads us back to the initial question because, of

course, many concerns may arise naturally about safety implications of (semi)autonomous

robots sharing the same environment with human beings beyond the factory domain. Given

this scenario, I believe that the initial question is ill–posed because it doesn’t focus enough on

the real problem. Indeed, I suggest changing it slightly:

“Can we trust people that sell us a robot?”

Although at a first glimpse it might seem completely different from the original one, this

new question goes to the core of the same problem and has the further merit of bringing the

Matteo Santoro – Ph.D. Thesis



1.2. New Concerns and Challenges in Robotics 3

issue back to a scientific level. Moreover, it is definitely more demanding then the previous

one because it implies that the hypotheticalrobot retailers– and, most important, the Research

Institutions1 that are behind them – must be able to guarantee at least the following two

conditions:

1. the robot we are going to buy – and that is going to share our living space – has a proven

track record of reliability or, at least, it is certainly not harmful.

2. given that we need the robot to accomplish a specific task for us, there must exist a kind

of “guarantee certificate” that the robot will always eventually reach the goal state, no

matter how much noisy and unpredictable the environment is.

Although these requirements are exactly what any piece of electronic equipment is re-

quired by law to guarantee when we buy it, they still sound quite strange for a robot. The

reason for that lies on the policy adopted by robot manufacturers so far. In fact, nowadays

robots are present massively in almost all factories because they have been shown very help-

ful in industrial applications like assemblage and carriage of goods and loads. Most of the

time industrial robots are huge, metallic arms ending with strange hooks, clamps, harpoons or

spray guns; they are fenced for safety and people are not allowed to enter inside while they are

switched on. It seems that the standard solution to the problem of robot–human interaction

was the safest one: let’s try to prevent the interaction completely. Indeed, despite the intro-

duction of these and many other, more sophisticated safety mechanisms, robots have caused

many victims over the years: people have been crushed, hit on the head, welded, etc. Last

year, there were77 robot-related accidents in Britain alone, according to the British Health

and Safety Executive.

What happened in the field of industrial Robotics can give us a clear picture of how dif-

ficult the problem is. To keep people separate from robots didn’t work in controlled envi-

1Both private (such as, for example, Sony or Pioneer) and public (such as Universities worldwide).

Matteo Santoro – Ph.D. Thesis



1.2. New Concerns and Challenges in Robotics 4

ronments such as factories; it is very unlikely it will work in far less controlled environments

such as kitchens and living rooms. The picture is not more reassuring for us if we look at what

is being done in order to make the interaction safer in those cases we cannot completely pre-

vent it. The most popular approach is to program the robot to avoid any contact with moving

objects (and thus with people). Despite the fact that the approach can sound quite simplistic,

some good results have been obtained. Moreover, we must acknowledge that the problem is

much harder that it sounds mainly because a robot that simply avoids anything on his path is

quite useless in many applications.

The problem of regulating the behavior of robots is even worse if we consider that they

are being increasingly built on autonomous–learning mechanisms. As robots are becoming

more complex and – in some sense – “smarter”, they are less predictable and tend to go wrong

in unforeseeable ways.

To summarize things, the general feeling within the robotic research community is that

we definitely need something more sophisticated than the above solutions. Actually, several

promising events happened during this last year, and it is very likely that things are going to

change2. Many research groups are trying to make robots safer and, furthermore, several of

them are promoting an intense preliminary debate about concerns and practical problems for

socially interactive robots. A worth mentioning example – and maybe a first step towards a

new deal within thetechnological innovation landscape– is the EU–founded ETHICBOTS

project that aims at coordinating a multidisciplinary group of researchers3 with the common

purpose of identifying and analyzing techno–ethical issues related to the integration of human

beings and artificial (software/hardware) entities.

I deeply believe that effective solutions will derive primarily from a severe criticism for

2The Economist – Technology Quarterly published an interesting article (Jun,8th,2006) about new
trends of Robotics and related safety problems. The electronic version can be downloaded from:
http://www.economist.com/science/displayStory.cfm?Story_ID=7001829

3There are contributions from artificial intelligence, robotics, anthropology, moral philosophy, philosophy of
science, psychology, and cognitive science.

Matteo Santoro – Ph.D. Thesis



1.3. Design and Modelling of Hybrid Systems 5

and a revision of current methodologies used to design robotic systems rather than from any

technical, partial advance in preventing human–robot harmful interactions. Throughout this

thesis I’m going to promote a wide discussion about newarchitecturalguidelines for both

robotic systems modelling and behavior specification/verification.

1.3 Design and Modelling of Hybrid Systems

In the previous section, I described the first motivation behind the present body of work.

A second one, perhaps even more interesting and urgent, is related to the problem of hybrid

systems design and modelling. Hybrid systems consist of interacting discrete and continuous

components (Tomlin and Greenstreet2002, Maler and Pnueli2003). Practical examples of

hybrid systems include, among others: elevator systems, electric power distributions, auto-

mated factories, air traffic control systems, autonomous space craft controls.

Robots, of course, are further examples of hybrid systems. Indeed, they are among the

most complex ones and we still lack a coherent methodology to design them. In order to make

it clear what I’m talking about, let me quote from this insightful definition of Robotics (Hal-

lam and Bruyninckx2006).

[. . . ] Robotics is to a large extent a science of integration, constructing (models

of) robotic systems using concepts, algorithms and components borrowed from

various more fundamental sciences, such as physics and mathematics, control

theory, artificial intelligence, mechanism design, sensor and actuator technology.

The function and properties of a robotic system depend on the components from

which it is made – the specific sensors, actuators, algorithms, mechanism – but,

beyond that, they depend on the way those components are integrated. [. . . ]

This definition draws an interesting picture of robotics as a melting pot of different dis-

ciplines that contribute to the development of these autonomous systems. Actually, I think

Matteo Santoro – Ph.D. Thesis



1.3. Design and Modelling of Hybrid Systems 6

that the definition can be considered a road map to successful robotic system design because

it clearly states the crucial importance of the overall architecture of the system beyond its

constituent parts.

The focus of robotic research, then, should be(1) on finding new, effective architectural

strategies and(2) on defining adequate specification languages that allow the system – and its

properties as well – to be represented as a unified schema. In other words, a big amount of

efforts might be devoted to studying formal models for hybrid systems, and the ultimate goal

is to define structured formal languages for the specification of systems and their requirements

and to develop methods for the verification of system behaviours.

In order to understand which kind of formal method we need, we must have a clear picture

of the (hybrid) system under investigation. Thus, let’s consider what arobotic systemis, from

a systemic point of view: basically it is a coupling of arobotic agent4 to itsenvironment. The

robot itself comprises two distinct modules: abodywhich usually encompasses the various

sensors and actuators, and acontroller, which is usually a piece of software that controls the

behavior of the agent.

With its sensors, the agent’s body senses the environment, and reports to the controller

what he perceived. The controller, given the updated piece of information about the state of

the environment, sends appropriate control signals to the actuators of the body to perform the

required actions which change the environment.

Figure1.1 is a pictorial representation of a robotic systems. It shows how the coupled

agent and environment act on – and react to – each other in a closed-loop system evolving

over time.

Many critical issues arise when we try to model such a system as a whole:

• all the circuits and most of the hardware (of the body) are analog;

4Throughout this thesis I use the termsrobotic agents, robot or simplyagentas synonymous.

Matteo Santoro – Ph.D. Thesis
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Figure 1.1:The structure of a constraint-based agent system

• controllers and software components that “govern” the behavior of the agent are (mostly)

digital;

• the interaction between robot and environment is governed by a very complex dynamics

that, due to the limitations in modelling of such systems, exhibits uncertainty and very

often behaves probabilistically;

• various other types of uncertainty affect the system: for example, those originating from

external disturbances, sensor noise and uncertainty in the correct execution of actions

by the actuators;

• the closed-loop system of figure1.1comprises real objects that evolve in real time: we

must be able to analyze the model in real time too.

Matteo Santoro – Ph.D. Thesis
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This previous list refers to a lots of very difficult research problems and this somehow

explains why only a few attempts have been made to develop formal methods for robotics. It

is easier to attack specific subproblems, while hoping that the combination and coordination

of all the results will come soon.

However, up to now there are already a few research groups concentrated on the topic of

using formal methods for robotics systems. A book chapter has been devoted to a preliminary

discussion about the topic (Logics in Artificial Intelligence2004). Preliminary approaches

to safety analysis were proposed also in (Seward et al.1995); however they do not cover

the verification and validation process.Leuschen et al.(1998) dealt with fault–tolerant robot

architectures.Lankenau and Meyer(1999) proposed a fault–tree based method as a general

verification approach for reactive systems. He emphasize the importance of employing formal

methods for the design of robotic systems.

Although almost all the researchers do agree with the urge of formal methods in robotics

– as exhaustively discussed above – this very short survey of the most relevant literature is a

proof that this is still a pioneering research area. The first real, formal approach proposed so

far is the Constraint Nets Framework and its stochastic generalization, on the path of which

I’ve been working during the preparation of this thesis.

1.4 The Ins and Outs of my Research Work and Summary of

Contributions

In the two previous sections I outlined a number of general, methodological problems

that are emerging as central in robotics. The attempt to find suitable and concrete solutions

to them has inspired my research work and this thesis from the very beginning. However, I

acknowledge that such a long range goal may be considered quite pretentious and far beyond

the scope of a single thesis. This is clear in my mind, and thus in this section I briefly reformu-

Matteo Santoro – Ph.D. Thesis
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late the main purposes of the present dissertation by pointing out only the main contributions

more precisely. They can be classified on three different levels:

1. (methodological level) to provide a (substantially) new point of view in the debate about

methodologies for modelling autonomous robots;

2. (theoretical level) to contribute to the development of the Probabilistic Constraint Nets

framework by discussing(1) the relationships between learning systems and PCNs; and

(2) the the possibility of introducing formal methods also in the context of Computer

Vision methods for robotics.

3. (practical level) to propose solutions to specific problems that are emerging within the

research area of autonomous robotics; the most important contribution (at this level) is

the development of PCNJ, an integrated development environment for people that want

to design, build and “run” a PCN–based robotic architecture.

The work described in this thesis is well related to the research/study activity I’ve done

as Ph.D. student. In fact, during Ph.D. program I have been studying a quite wide spectrum

of research topics that goes from Computer Vision to Robotics through Machine Learning.

The experience I accumulated in these areas provided me with the idea that most of the major

advances in Robotics will be more related toarchitectural featuresthan to specific subparts

of the system.

Throughout this thesis I try to balance the description of differenttools5 – borrowed from

different research fields – against the proposal of formal methods6 and new, effective de-

sign approaches for robotics. I tried to link every practical solution to its methodological

counterpart in the attempt to provide insightful elements for the general discussion about the

modelling and critical systems.

5Both conceptual and practical.
6The ones based on the Probabilistic Constraint Nets framework.

Matteo Santoro – Ph.D. Thesis
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1.5 Plan of the thesis

The thesis is organized as follows:

Chapter 2 : I present the basics of the Probabilistic Constraint Nets (PCNs) framework that

has been originally introduced bySt-Aubin (2005) to model any kind of stochastic,

hybrid dynamical system. Even if the usefulness of the framework extends far beyond

the scope of robotic research field, I believe that Robotics is the natural domain for

exploiting PCNs and thus this chapter focus on some of the most interesting issues that

can be useful in Robotics.

Chapter 3 : I summarize the notion of average–timed∀–automata and discuss its links with

behavioral specification and verification within the PCNs framework. Many mathemat-

ical details of the approach are omitted in order to guarantee a more general, conceptual

understanding.

Chapter 4 : I look more carefully into the relationships between PCNs and several determin-

istic/probabilistic modeling frameworks commonly used in Robotics. I show that they

can be considered as special cases of the PCNs framework, by providing – for each

model – the PCN that computes exactly the same thing, i.e., the proposed PCN actually

preserves the semantics of the computation.

Chapter 5 : I describe an integrated programming environment called PCNJ – that stands

for Probabilistic Constraint Nets in Java– which supports probabilistic constraint net

modelling, simulation, and animation for any kind of hybrid systems.

Chapter 6 : I discuss some concrete applications and problems that are relevant to the re-

search on autonomous robotics. For each problem I propose a PCN–based solution,

and furthermore I discuss interesting implications resulting from it. More specifically,

I focus on problems arising in two broad areas of robotics: they are(1) behavior–based

Matteo Santoro – Ph.D. Thesis
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motor coordination of mobile robots and(2) object recognition and localization for

camera–equipped robots.

Matteo Santoro – Ph.D. Thesis



Chapter 2

Probabilistic Constraint Nets

Framework

In this chapter I present the basics of the Probabilistic Constraint Nets (PCNs) framework

that has been originally introduced bySt-Aubin(2005) to model any kind of stochastic, hybrid

dynamical system. Even if the usefulness of the framework extends far beyond the scope

of robotic research field, I believe that Robotics is the natural domain for exploiting PCNs

and thus this chapter and the following ones focus mainly on some of the most valuable

contributions of PCNs to Robotics.

PCNs formalism is built on a topological, measure–based description of both time and

domain structures. This abstraction is the main strength of the framework because it makes

it possible:(1) to model time and domains as either discrete, continuous or hybrid structures,

and(2) to describe uncertainty within the system appropriately (i.e. avoiding unwarranted

over–simplifications of the model). This flexibility of the framework is a great asset as it

allows the designer to describe complex systems under the umbrella of a single modelling

language.

Since it is far beyond the scope of my thesis to discuss and demonstrate all the theorems

and properties of the formalism, I refer the reader to the original work (St-Aubin2005) for a

more thoroughly description of PCN framework. Therefore I focus on those aspects that are

more related to my own work and are essential for the overall comprehension.

This chapter is organized as follows: an informal discussion about the motivations that led

12
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to the current formulation of PCNs framework is in section2.2.1. The formal syntax of PCNs

is then described in section2.2.2where a number of examples are provided in order to make

it clear how it is possible to build a PCN–based model given a concrete hybrid system. The

formal semantics along with some insightful comments are in section2.4. As already pointed

out, PCNs framework is heavily based on quite a number of rigorous mathematical concepts

and theorems which the reader should be familiar with. However, in order to make it easier

to understand the topics discussed in the chapter some of the most important mathematical

concepts are shortly summarized in section5.1.

2.1 Mathematical Concepts

Let’s start with some mathematical concepts on which both syntax and formal semantics

of PCNs are based. I reproduced or adapted in this section some of the definitions of (St-Aubin

2005) and (Zhang1994). The main properties of the underlaying mathematical structures are

summarized without giving any formal demonstration. The reader can find a more compre-

hensive introduction to the required mathematical concepts in (Gemignani1967, Hennessy

1988, Manes and Arbib1986, Warga1972) (for what concerns topology and metric spaces) or

in (Billingsley 1986, Breiman1968, Williams 1991) (measure and probability theory). Chap-

ter 3 of (Zhang1994) is a useful compendium for modelling dynamics without uncertainty

while the extension to uncertain dynamics are well summarized in chapter2 of (St-Aubin

2005).

2.1.1 Time

The first pillar of the PCNs framework is the concept oftimeand its evolution. In general,

without loss of generality, we can think of timeT as a totally ordered set with a minimal

element that we call the “initial start time”. Furthermore, associated withT , we need a

Matteo Santoro – Ph.D. Thesis
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suitable metric to compute “the distance between any two time points” and a measure to talk

about “the duration of an interval of time”.

Formally, we can define:

Definition 2.1 (Time Structure) Anabstract time structureis a triple 〈T , d, µ〉, provided the

following conditions hold:

1. T is a linearly ordered set〈T ,≤〉, and0 denotes the least element;

2. 〈T , d〉 forms a metric space andd satisfies the equality

d(t0, t2) = d(t0, t1) + d(t1, t2) ∀t0 ≤ t1 ≤ t2.

Furthermore the two sets{t|d(0, t) ≤ τ} and {t|d(0, t) ≥ τ} must have a greatest and a

least element respectively, for all0 ≤ τ ≤ sup{d(0, t)|t ∈ T };

3. 〈T , σ, µ〉 forms a measure space, whereσ denotes the Borel set of the metric topology

associated with〈T ,d〉 andµ is the corresponding Borel measure. If we consider the

subsets[t1, t2) = {t|t1 ≤ t < t2}, thenµmust satisfy the inequalityµ([t1, t2)) ≡ µ([0, t2))−
µ([0, t1)) ≤ d(t1, t2).

Very often, if no ambiguity arises, it is possible to use simplyT to refer to the time

structure〈T , d, µ〉. The natural choice is to defineµ([t1, t2)) in terms ofd(t1, t2), even if this is

not necessarily the case.

Given the previous definition, the notion of infinite time, as well as those of continuous

and discrete time can be stated formally:

• A time structureT is infinite iff T has no greatest element andµ(T ) = ∞.

• A time structureT is continuousiff its metric space is connected.
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• A time structureT is discreteiff its metric topology is discrete.

It can be easily shown that the set of natural numbersN along with the standard metric

d(t1, t2) = |t2−t1| and the measureµ([0, t)) = t is an example of infinite, discrete time structure.

Both the same metric and measure can be defined on the set of non negative real numbersR+

in order to obtain a continuous time structure. Disconnected sets – like the union of intervals

I ⊆ R+ – form time structures that are neither discrete nor continuous when they are equipped

with the same metric and measure defined above.

The relationship between two different time structures is a further, worthwhile issue to dis-

cuss because it is related to the notion ofreference time mapping. Let 〈T ,d, µ〉 and〈Tr ,dr , µr〉
be two time structures, we will say thatTr is thereference timeofT – and thatT is thesample

timeof Tr – is there exists a mappingh : T → Tr satisfying the following properties:

• the order among time points is preserved; i.e.t < t′ impliesh(t) <r h(t′),

• the least element is preserved; i.e.h(0) = 0r ,

• the distance between two time points is preserved; i.e.d(t1, t2) = dr (h(t1),h(t2)), and

• the measure on any finite time interval is preserved; i.e.µ([0, t)) = µr ([0r , h(t))).

For example,R+ becomes thereference timeof N if we define a mappingh : N → R+ so

thath(n) = n. The notion of reference time is useful for the event–based systems, as it will be

clearer soon.

2.1.2 Domains

Now that we are equipped with the notion of abstract time structure, we need to formalize

the concept of abstract domain structure too, so that we can define uniformly both discrete

and continuous domains.
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Intuitively, we can distinguish between two types of domains:simple domainsandcom-

posite domains. The former denote basic data types, such as reals, integers, Booleans, and

characters; while the latter are related to arrays, vectors, strings, etcetera. The formalization

of simple domain is quite straightforward: basically, it is a well–defined setA of elements

– so that we can we decide if an elementa either belongs toA or is undefined inA – and a

metricsdA to compute the distance between any two elements ofA. The specification ofdA

induces directly a metric topologyτ and a partial order relation≤A on A; we can thus define

formally a simple domain as either a pair〈A∪{⊥A},dA〉 or a triple〈Ā,≤Ā, τ〉, where⊥A means

undefined inA andĀ = A∪{⊥A}. A composite domain is defined recursively based on simple

domains since it is the product of a familyI of domains. The familyI can be either finite or

infinite, and either countable or uncountable. In general we state the following:

Definition 2.2 (Domain) The triple〈Ā,≤Ā, τ〉 is a domainiff:

• it is a simple domain; or

• it is a composite domain, i.e. it is the product of a family of domains{〈Ai ,≤AI , τi〉}i∈I
such that〈A,≤A〉 is the product partial order of the family of partial orders{〈Ai ,≤Ai 〉}i∈I
and〈A, τ〉 is the product space of the family of topological spaces{〈Ai , τi〉}i∈I .

Given such a broad definition of domain, we might ask how it is possible to manage the

diversity among different types of data. Intuitively, for any domain its partial order topology

characterizes the information hierarchies of data and its derived metric topology characterizes

the limit properties of data. Furthermore, as it will be clearer very soon, the PCNs framework

relies on the concept of transductions that are mathematical models of general transforma-

tional processes; and thus we need a syntactical structure for specifying data types associated

with such functions. The following two definitions are introduced for this purpose.

Definition 2.3 (Signature) A signatureΣ is a pair 〈S, F〉 whereS is a set of sorts andF is a

set of function symbols, provided that:
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• F is equipped with amapping type: F → S∗ × S whereS∗ denotes the set of all finite

tuples ofS;

• for any f ∈ F, type( f ) is the type off , i.e. type( f ) = 〈s∗, s〉 meansf : s∗ → s.

A domain structure of a signatureΣ is defined as follows.

Definition 2.4 (Σ–domain structure) Let Σ = 〈S, F〉 be a signature. AΣ–domain structure

is a pair 〈{As}s∈S, { f A} f∈F〉 where for eachs ∈ S, As is a domain of sorts, and for eachf ∈ F

( f : s∗ − rightarrows), f A : ×I As∗i → As is a function denoted byf , which is continuous in

the partial order topology.�

2.1.3 Traces and Events

Traces are functions from a time structureT to a domainA of values. They can be

represented as a mappingv : T → A. A special type of trace is the so calledevent trace

eT : T → B whose domainB is a boolean set with only two distinct elements (e.g.0 and1).

In the PCNs framework the concept of trace is a crucial one because it allows us to de-

scribe the evolution of physical variables over time. Moreover, the notion of event trace

provides a connection between continuous and discrete time structures. In fact, we can define

an eventas a transition either form0 to 1 or from 0 to 1 of some event trace, and then we

introduce theevent–based timethat is the set of all events in the trace. The time domain of an

event trace is, of course, thereference timeof the event–based time.

Unfortunately, simple traces and event traces are not suitable for dynamical systems that

encompass uncertainty. For this purpose we must generalize the notion of trace to that of

stochastic tracein order to be able to describe random changes of values over time. Formally,

a stochastic traceis a mappingv : Ω × T → A from a sample spaceΩ and a time domain

T to the value domainA. It is easy to see that, for a givenω ∈ Ω, the functionvω : T → A
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satisfy the above definition of trace1.

As usual, in the presence of uncertainty we are more interested in the distribution of a

system rather than in one specific configuration sampled formΩ. Thus, we prefer to look

at the distribution of traces of a system rather than to pay attention to one given execution

trace. In fact, the distribution of a stochastic trace provides complete information about the

probability of the state of the system at every finite time point. However it is not possible to

represent explicitly trace distribution values at infinite time points and so we must rely on the

concept of limiting distribution of a stochastic trace because it assesses the behavior of the

system in the long run. The following example will make this clearer.

Example 2.1 Let’s consider the system denoted by the equation:

v(ω, t) = 1 + Bt(ω)e−t, (2.1)

whereBt(ω) is a Brownian motion process. It is straightforward to show that, for eacht,

v is normally distributed andFv = N(1, te−2t). Intuitively, all the traces will exhibit a initial,

transient stage of variability but then, ast increases, the spread of all the points is narrowed

by the negative exponential term of the variance. In the long term all the possible traces will

be undistinguishable and independent from the specific sampleω ∈ Ω. Formally, we can

compute the limit distribution:limt→∞N(1, te−2t) = N(1,0), which confirms the previous

informal considerations. Figure2.1 shows one specific execution trace of the system; the

transient stage is pretty short and, after about500samples, the system converges to value1

and doesn’t fluctuate away from it any more, despite being influenced by a Brownian motion

with increasing variance.

Some mathematical difficulties may arise when we deal with limits in distributions of a

stochastic tracev, i.e. v may not have an unique limit. This problem is discussed and solved

1We will usev to denote both the stochastic tracev andvω when no ambiguity caan arise
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Figure 2.1:One specific execution trace of the system described by equation2.1

in Chapter2 of (St-Aubin2005), to which the interested reader is referred.

The set of all the possible stochastic traces is named thestochastic trace spaceand will

be a useful, synthesizing concept. The definition below formalize this concept as a composite

domain so that we can use topological concepts to talk about limits.

Definition 2.5 (Stochastic Trace Space)Given a time structureT and a domain〈A,≤A τ〉
thestochastic trace spaceis a triple 〈AΩ×T ,≤AΩ×T ,Γ〉 whereAΩ×T is the product set of all the

function formΩ × T to A, ≤AΩ×T is the product partial order relation constructed form the

partial order relation≤A, andΓ is the product topology constructed from the derived metric

topologyτ.

In the following, a given trace space will be denotedAT to simplify the notation when no

ambiguity can arise.

Similarly to the deterministic case, it is possible to consider the special class of event–

based stochastic traces that define sample time structures.
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2.1.4 Transductions

A transductionrepresents a causal relationship between two stochastic trace spaces, i.e.

it is a mapping from an input stochastic trace space to a corresponding output one. Roughly

speaking, transductions dictate the evolution of a system by looking at the past and the current

values of input traces. Several types of functional mappings actually meet these requirements,

and thus it is possible to distinguish among a number of classes of transductions and even

build a simple hierarchy.

A first huge difference exists between primitive transductions and event–based transduc-

tions. The former map stochastic traces to stochastic traces with the same time structure,

while the latter can alter the time structure. A further distinction is between deterministic and

probabilistic transductions depending on whether or not they encompass any kind of random-

ness.

If we look more carefully at the set of primitive transductions we can further refine the

classification. In fact, generic primitive transductions comprise any functional composition of

three basic elements:i) transliterations, which are memory–less combinational processes,ii )

delays, andiii ) generators, which allow for the modeling of uncertainty by introducing random

variables in the model. Hierarchically built over the basic elements, compound transductions

– either deterministic or probabilistic – can be defined by combining basic transductions of

the same type with transliterations and delays.

Figure2.2 schematizes the hierarchy of transduction types within the class of primitive

transductions.

Finally, let’s formalize the notions of basic primitive transductions.

Generators A transductionF is called ageneratorif it denotes a (potentially conditional)

cumulative distribution functionFX|A from which it can sample random variables at

each time point. Formally, a generator is a functionGA
T (v0) : Ω × T × A → A whose
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Figure 2.2:Types of primitive transductions and their reciprocal relationships

value isv0 if t = 0 andrand(FX|v(ω,t)(t), ω) otherwise.

Transliterations A transductionF is called atransliterationif it is a pointwise extension of

a functionf . Intuitively, a transliteration is a transformational process without memory.

Formally, if f : Ω × A → A′ then its pointwise extension into a time structureT is a

mappingF : AΩ×T → A′Ω×T so thatF(v)(ω, t) = f (v(ω, t))

Delays A transductionδ is called adelayif it is a sequential process where the output value

at any time is the input value at a previous time. Usually we distinguish betweenunit

delays for discrete time andtransportdelays for continuous time. Letv0 be a well–

defined value in the domainA. If the timeT is discrete, we use a unit delayδA
T (ω, v0)(v)

that is defined to bev0 if t = 0 andv(ω, pre(t)) otherwise. If the timeT is continuous,

a transport delay∆A
T (τ)(ω, v0) can be used and its value isv0 is m(t) < τ andv(ω, t − τ)

otherwise.

Finally, let’s consider the linkage between discrete and continuous components; it is mod-

elled by event–driven transduction that can alter the time structure. More formally, an event–

driven transduction is a transductions augmented with an extra input which is an event trace;

event–driven transduction operate at every event and its output values holds form each event
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to the next. A more rigorous mathematical presentation of the concept of event–driven trans-

duction should go far beyond the scope of the present, explanatory section.

2.1.5 Dynamics Structures

We need a last mathematical entity before introducing syntax and semantics of PCNs; this

is theabstract structure of dynamics.

Definition 2.6 (Σ–dynamics structure) Let Σ = 〈S, F〉 be a signature. Given aΣ–domain

structureA and a time structureT , a Σ–dynamics structureD(T ,A) is a pair 〈V,F 〉 such

that

• V = {AΩ×T
s }s∈S ∪ EΩ×T whereAΩ×T

s is a stochastic trace space of sorts andEΩ×T is

the stochastic event space;

• F = FT ∪ F O
T whereFT is the set of basic transductions, including the set of translit-

erations { f A
T } f∈F , the set of unit delays{δAs

T (vs)}s∈S,vs∈As, the set of transport delays

{∆As
T (τ)(vs)}s∈S,τ>0,vs∈As, and the set of generators ;F O

T is the set of event–driven trans-

ductions derived from the set of basic transductions.

2.2 Syntax of Probabilistic Constraint Nets

In this section the formal syntax of PCNs is introduced and a number of examples are

proposed as a first step towards the understanding of the formalism. The section is divided

into two parts; first, I show the rationale behind the proposed definition of PCN and then I

state the syntax formally.
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2.2.1 Informal Considerations Behind the Syntax of PCNs

Physical dynamical systems are sets of rules that describe the time dependence of physical

variables. Mathematically, such rules are denoted by systems of equations, while the variables

are represented as points in suitable geometrical spaces. The solutions of the equations tell us

how the dynamical system evolves over time. Usually, the evolution rule of a system is given

implicitly by a relation involving the future state as a function of the current state; these rules

are referred to as differential equations and thus, because we are going to deal mostly with

physical dynamical systems, PCNs syntax might be expressive enough to describe differential

equations. On the opposite side, a second major class of systems that have been traditionally

studied in the computer science community are discrete state machines. They are also known

as digital systems and evolve by discrete changes between states. These discrete changes – or

events – happen at certain time points and can be either synchronized or not. We want PCNs

to able to describe this second class of systems too.

Finally, we ought to contemplate physical systems that consist of a mixture of interacting

discrete and continuous components. These are known ashybrid dynamical systems(Tomlin

and Greenstreet2002, Maler and Pnueli2003). Practical examples of hybrid systems include,

among others: elevator systems, electric power distributions, automated factories, air traffic

control systems, autonomous space craft controls and – most important from the point of

view of the present thesis – robots. Hence an expressivity level suitable for hybrid dynamical

systems is the ultimate aim of PCNs.

For this reason, Constraint Nets (CNs) have been originally proposed inZhang(1994)

as a formal method for designing and modelling hybrid dynamical systems. As a first im-

portant result of the proposed approach,Muyan-Ozcelik(2004) used CNs in order to show

that the Constraint–Based Agent (CBA) framework with prioritized constraints is an effective

methodology for designing and building Situated Agents (i.e. autonomous robots) in the real

world. However, as the complexity of the task increases, it is not possible to ignore the unpre-
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dictability and uncertainty of the robotic system – i.e. the robot coupled with its environment.

Hence we might be able to model and analyze probabilistic systems.

CNs have a lot of nice properties that we’d like not to loose but unfortunately, they lack

the ability of coping with uncertainties; in order to overcome this problem, Machworth and

St.Aubin introduced PCNs as a non trivial extension of CNs so that, while keeping all the

assets of CNs, they are also able to deal with unpredictable behaviors.

We are now equipped with an informal idea about PCNs and, most important, we know

exactly what we should expect form them. Next subsection describes the formal syntax of

PCNs.

2.2.2 Formal Syntax of PCNs

A Probabilistic Constraint Net is defined as follows:

Definition 2.7 (Probabilistic Constraint Nets) AProbabilistic Constraint Netis a tuplePCN =

〈Lc,Td,Cn〉, whereLc is a finite set of locations, each associated with a sort;Td is a finite set

of labels of transductions (either deterministic or probabilistic), each with an output port and

a set of input ports, and each port is associated with a sort;Cnis a set of connections between

locations and ports of the same sort, with the restrictions that(1) no location is isolated,(2)

there is at most one output port connected to each location,(3) each port of a transduction

connects to a unique location.�

Loosely speaking, we can think of locations as memory buffers in which it is possible to

store the value of variables over time. Transductions are the functional elements of the system

and can represent any kind of causal mapping – either deterministic or probabilistic – among

locations. A transduction computes its output given the input over time and either operates

according to a certain reference time or it is activated by external events. Connections define

the relationship between locations and transductions. In order to be able to handle the uncer-
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tainty in the systems, PCNS contain a special class of transductions that act asgenerators.

Actually, they are random number generators that follow a give probability distribution.

Before discussing the properties of a PCN, it is useful to summarize the basics of PCN

terminology:

• a locationl is called anoutput location of a PCN iff l connects to the output port of a

transduction inTd;

• a locationl is called aninput location iff it is not an output one. This follows from the

observation that isolated locations are not allowed;

• I (PCN) denotes the set of all input locations of a probabilistic constraint netPCN;

• similarly, O(PCN) denotes the set of all output locations;

• a probabilistic constraint net isopenif there exists at least one input location, otherwise

it is said to beclosed.

Many features of PCNs are easier to understand if we look at the representation of a PCN

a graph. In fact, definition2.7 induces a fairly simple graphical representation of a PCN as a

bipartite graph whose vertices are either locations or transductions and whose edges are the

connections. Edges can connect only vertex of one type to vertices of the other type. Loca-

tions are depicted by circles, transductions by boxes. In order to differentiate deterministic

from probabilistic vertices, there is the convention of doubling the borders of the latter, that is

to say generators are depicted by double boxes while random locations have double circles.

The following examples are the easiest way to fully understand both the definition2.7and

the graphical representation. I use them to discuss a number of practical issues and point out

some critical detail about PCN formalism more thoroughly.
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Figure 2.3:Red dots are sampled from the solution of equation2.2 in the ranget = 0 ÷ 3s;
the sampling rate is200points per second. Green line represents the solution ofx(t) = sin(t)
in the same range and is plotted for comparison. The other parameters are:ω = 7, 85rad/s;
µ = 0; σ = 0,1.

Example 2.2 (Simple equation with noise and explicit time dependence)As a first exam-

ple, let’s consider the following equation:

x(t) = sin(ωt) + Nµ,σ (2.2)

wheret represent the time,ω is the angular frequency of the sinusoidal function and

Nµ,σ is a random variable drawn – according to a gaussian probability distributionGµ,σ –

independently at each time instantt.

In figure2.3 we plotted both the solution ofx(t) = sin(ωt) as a function oft (green line)

in the ranget = 0÷ 3s, and a sample solution of equation2.2, drawn by means of a standard

implementation of the random number generatorGµ,σ.

This example is interesting because it allows me to discuss two important issues: first,
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x(t) in eq.2.2 depends explicitly on timet; this is not the stantard case when we deal with

dynamical systems. More usually the time is note explicitly represented in the syntax; i.e.

we did not formally introduced thecomputation pipelineyet. A PCN is a representation of a

functional relationship between variables and the concept of traces of execution will come up

in the next section in which the semantics is presented. From this point of view, the function

sin(t) is simply a function and not a well–definedtransliteration.

In order to overcome these problems, we must introduce a new variableT in the equation.

The domain ofT is actually our time structureT . Let’s use – in this case – a discrete time

structure built onN with a fixed time step∆t between each time events. Thus, equation2.2

becomes the following.


x(T) = sin(ωT) + Nµ,σ

T(n) = T(n− 1) + ∆t
(2.3)

The transductionsin is now a well defined transliteration that maps the input trace space

defined byT into output the trace space defined byx(T).

A second issue to discuss, is how we actually build the PCN model by starting from a

given equation. In concrete, let’s now build the PCN model (see fig.2.4) of equation . We

need at least the following set of variables, i.e. locations:{x,T,∆T, µ, σ,Nµ,σ, k, h, z}wherek,

h, andzare temporary variables that won’t appear in the interface of the PCN2. The variable

k stores the productω ∗ t, h stores the value ofsin(k), andz stores the increment of the time

variable and is therefore the input of a unit time delay; that is important in order to avoid

algebraic loops in the NET3. The meaning of the other variables is obvious. All the variables

are deterministic except for the output of gaussian generator:Nµ,σ, that will be depicted with

double circle.
2Throughout this thesis I will omit to assign an explicit label to these variables since they are meaningless

from outside the PCN.
3SeeZhang(1994) andSt-Aubin(2005) for more details about algebraic loops in PCNs.
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Figure 2.4:PCN representing equation2.2

The transductions labels are:{+, ∗, delay(1), sin,Gµ,σ}. As you can see in figure2.4, the

label + is used twice in the PCN. Actually, the two transductions are distinct and they must

be kept separated in order to guarantee the semantical correctness of net (as we’ll se later).

Whenever some confusion or even a mistake can arise, it is preferable to use two distinct

labels: for example+1 and+2.

The transduction labelledGµ,σ is doubly squared because it is a random number genera-

tor and, thus, it introduces a non determinism in the net.

Before going any further, it is worth spending a few words about random locations: basi-

cally they are the output location of some generator. However, if we add one generator in our

net, then its output is a random variable whose value varies according to the specified prob-

ability distribution. All the (deterministic) transduction with this (random) location as input

will have an output that, in principle, follows itself a modified version of the same original

probability distribution. Therefore it happens that in the presence of at least one generator

all the locations that descend from it should be considered random location; furthermore if
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we add a feedback then it can happen that all locations are random locations. The idea, thus,

is to use double border only for locations that are output of a generator as it provides a visual

and intuitive way of assessing where uncertainty initially enters in the system.

Example 2.3 (Simple Pendulum)In this second example I show how it is possible to apply

the definition2.7in order to build a PCNs–based model of a well–known physical system: the

simple pendulum.

A simple pendulum consists of an oscillating point mass attached to an inextensible

weightless string. When displaced to an initial angle and released, the pendulum will swing

back and forth with periodic motion. The equation of this physical system can be obtained by

applying Newton’s second law:

mL2d2θ

dt2
= −mgLsinθ, (2.4)

wheremis the mass,L is the length of the string,g is the gravitational acceleration andθ

is the displacement angle.

Equation2.4can be reformulated in terms of the so–called resonant frequencyω ≡ √
g/L

and becomes:

θ̈ + ω2 sinθ = 0. (2.5)

If the amplitude of displacement is small enough so that thesmall angle approximation

holds, i.e.sinθ ≈ θ, then the equation of motion reduces to the equation of simple harmonic

motion:

θ̈ + ω2
0θ = 0.

The simple harmonic solution isθ(t) = θ0 cos(ωt + ϕ).
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However, if the angular displacement of the pendulum is large enough then the small

angle approximation no longer holds and the equation of motion remains the2.4. This dif-

ferential equation does not have a closed–form analytical solution, and we have to rely on

approximations, i.e. we must try to solve it numerically using a computer by means of some

iterative method for solving differential equations. Here let’s use the standard forward Eu-

ler method. This is a quite popular method for solving ordinary differential equations using

the formula: yn+1 = yn + ∆t f (yn, tn), which advances a solution fromtn to tn+1 = tn + ∆t.

In practice the method increments a solution through an interval∆t while using derivative

information from only the beginning of the interval.

As a first step if we want to use this method, let’s translate the second order differential

equation into the first order system of differential equations:



d
dt θ̇ = −ω2 sinθ

d
dtθ = θ̇

(2.6)

For the first equation, thus, we have:

d
dt
θ̇ ≈ θ̇(t + ∆t) − θ̇(t)

∆t

where the equality hold only in the limit∆t → 0. The same approximation holds for the

second equation.

We are allowed to rewrite the system2.6as:


θ̇n+1 = θ̇n + ∆t(−ω2 sinθ)

θn+1 = θn + ∆tθ̇.
(2.7)

It is easy to see that the PCN depicted in figure2.5represents the system2.7.

Example 2.4 (State Transition Systems)This third example shows that two nets can denote
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Figure 2.5:PCN representing system of equations2.7

quite different dynamical systems even if they are extremely similar from a pictorial point of

view.

Let us consider the graph in Figure2.6wheref is a generic transliteration andδ is a unit

delay. If we suppose the time is discrete, then this net can be also written as the equations:

s(n) = f (u(n− 1), s(n− 1)), s(0) = s0. More simply, if we allows′ to denote thenext stateof

s, we can write the equations as:s′ = f (u, s), s(0) = s0.

If we consider continuous time and slightly modify the graph (see fig.2.7) by letting the

transliteration f be the standard Riemann integral then we obtain the constraint net of an

ordinary differential equation:ṡ = f (u, s), s(0) = s0.

2.3 Subnets, modules and hierarchical modelling

Complex physical systems may be composed of a set of subsystems which – by interacting

together in a hierarchical fashion – produce the behavior of the global system. Thus, it is

Matteo Santoro – Ph.D. Thesis



2.3. Subnets, modules and hierarchical modelling 32

Figure 2.6:The constraint net representing a state transition system.

Figure 2.7:The constraint net representing a differential equation.

worth to define the two concepts ofsubnetof a PCN and ofmodule; then we discuss how it is

possible to compose different modules preserving all the properties of the PCN.

Definition 2.8 (Subnet) A probabilistic constraint netPCN1 = 〈Lc1,Td1,Cn1〉 is a subnet

of PCN2 = 〈Lc2,Td2,Cn2〉, written PCN1 ⊆ PCN2 iff Lc1 ⊆ Lc2, Td1 ⊆ Td2, Cn1 ⊆ Cn2

andI (PCN1) ⊆ I (PCN2). �

Definition 2.9 (Module) A module is a triple〈PCN, I ,O〉, wherePCNis a probabilistic con-

straint net,I ⊆ I (PCN) and O ⊆ O(PCN) are subsets of the input and output locations of

PCN. We say thatI ∪ O defines the interface if the module. When it is clear by the context,

we will use the notationPCN(I ,O) to denote the module〈PCN, I ,O〉. �

Graphically, a module will be represented by a box with rounded corners. Moreover, all

the locations inI (PCN)− I andO(PCN)−O are respectivelyhiddeninputs andhiddenoutputs

and are used to model non–determinism in the system.

It is possible to introduce three basic operations to obtain a new module from existing

ones. These are:

Union The union operation is used to obtain a new module created by two modules side by
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side. Formally, letPCN1 = 〈Lc1,Td1,Cn1〉 andPCN2 = 〈Lc2,Td2,Cn2〉 be two prob-

abilistic constraint nets, withLc1 ∩ Lc2 = ∅ andTd1 ∩ Td2 = ∅, then the union of

PCN1(I1,O1) andPCN2(I2,O2), written PCN1(I1,O1)‖PCN2(I2,O2), is the new mod-

ule PCN = 〈Lc1∪Lc2,Td1∪Td2,Cn1∪Cn2〉, whose interface is defined byI = I1∪ I2

andO = O1 ∪O2.

CoalescenceThe coalescence operator combines two locations in the interface of a module

into one, with the restriction that at least one of these two locations is an input location.

Formally, letPCN = 〈Lc,Td,Cn〉 be a probabilistic constraint net,l ∈ I andl′ ∈ I ∪O

be of the same sort, the coalescence ofPCN(I ,O) for l andl′, denotedPCN(I ,O)/l, l′

is a new modulePCN′(I ′,O) with4 PCN′ = 〈Lc[l′/l],Td,Cn[l′/l]〉, I ′ = I − {l}.

Hiding The hiding operation deletes a location from the interface by turning it inot a hidden

location. Formally, letPCN = 〈Lc,Td,Cn〉 be a probabilistic constraint net andl ∈
I ∪O, the hiding ofPCN(I ,O) for l, denotedPCN(I ,O)\l, is a new module the module

PCN′(I ′,O′) with PCN′ = PCN, I ′ = I − {l} andO′ = O− {l}.

Furthermore, it is possible to define three combined operations:

CascadeThe cascade connection connects two modules in series.

Parallel The parallel connection connects two modules in parallel.

4X[v/x] denotes thatx in X is replaced byv
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Feedback The feedback connection connects an output of the module to an input of its own.

2.4 Semantics of Probabilistic Constraint Nets

In this section I define the formal semantics of probabilistic constraint nets, which is

necessary to provide a meaningful way to interpret PCNs. It happens that the formal syntax

of PCNs is quite similar to several other formal models – e.g. Petri Nets (Peterson1981)

and their generalizationColoredPetri Nets (Jensen1981) – which also have been proposed

as formal language for dynamical systems. After this section it should be clear that, despite

these models share many of the syntactical features, they have completely different semantics

and no confusion may arise.

St–Aubin proposed to define the formal semantics of PCNS by using the fixpoint theory

which is a common approach to describe the semantics of programming languages5. The

general idea behind such an approach is quite simple: a program defines a functionf and its

semantics is defined to be the least solution ofx = f (x) that is to say the least fixpoint off .

Because any PCN is a set of equations with location serving as variables, the application of

5This choice is consistent with the approach adopted byZhang and Mackworth(1995) for Constraint Nets.
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this theory should seem quite straightforward: the semantics of a PCN can be the least fixpoint

of the set of equations. Unfortunately, some of the variables in the equations are supposed to

be random variables that obey to some probability distribution6. Further, if they are input of

transductions the uncertainty is propagated throughout the net, and we can no longer refer to a

specific solution of the system and we must talk about the probability of getting that solution.

Thus, in order to reason about the behavior of the system, it turns out that it is not helpful

to consider single solutions because we can get more interesting insights if we look at the

statistics of the distribution (of solutions); for example we can use its expected value. The

following example, adapted from (St-Aubin2005), makes this last point clearer.

Example 2.5 (The effect of randomness on fixpoints)Let’s consider the following dynam-

ical systems:

Ẋt = −Xt(Xt − 1)(Xt − 2) (2.8)

Ẋt = −Xt(Xt − 1)(Xt − 2) + Nt; (2.9)

where eq.2.8 is a deterministic system with three equilibria:0 and2 (stable attractors)

and1 (unstable). Its behavior is fully determined by its initial value and it reaches one of the

two stable fixpoints based on this initial value. For examples, figure2.8(a)shows the solution

of equation2.8 for two distinct initial values: one in a neighborhood of0 and the other in a

neighborhood of2: the two attractors are reached quite soon and the solution doesn’t change

anymore.

The second system (eq.2.9) is stochastically affected by a simple Brownian motion pro-

cess. Figure2.8(b)shows a sample path for system2.9, with an initial value ofX = 0. As a

consequence of the Brownian motion perturbation, the system fluctuates around this attrac-

6Recall that random variables in a PCN are those locations that are the output of a generators.
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Figure 2.8:Differences between ordinary and stochastic systems.

tor. It can happen that a large enough noise disturbance pushes the system over the value of

1 – i.e. it leaves the region of attraction – causing the system to be attracted toward the other

equilibrium, atX = 2. Another spike of noise can flip the system back to the lower equilibrium

and so on (see fig.2.8(b)). This example shows the effect of uncertainty on the system and its

behavior. In this case, we can no longer refer to any fixpoint.

However, the system will reach a stationary distribution. That is, in the long run, the

probability distribution of the system will remain unchanged, independent of time. The em-

pirical distribution corresponding to a sample path is showed in figure2.5. One can clearly

observe that the system is symmetrically distributed with higher weight around the two stable

equilibria located atX = 0 andX = 2.

Example 2.6 (Dependence of the fixpoint on the actual run of the system)This second ex-

ample is a slight modification of the previous one and it shows that it it not safe to look at a

single trace of the system because the possibly well–defined attractor of a single trace could

lead to misleading conclusion about the overall behavior of the system.

Let’s consider the following system of equations, which describe the behavior of a fully–

interconnected system of twoneuron–likecomputational units7.

7See chapter4 for more details about artificial neuron–based systems and their relationships with the PCN
frameworks.
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Figure 2.9:Stationary, empirical distribution of a sample path for system described by equa-
tion 2.9

ẏ1 = −y1 + w11σ(y1 − θ1) + w12σ(y2 − θ2)

ẏ2 = −y2 + w12σ(y1 − θ1) + w22σ(y2 − θ2) (2.10)

whereyi are the variables,wi j are constant weights in the equations andσ is the standard

sigmoid functionσ(x) = (1 + e−x)−1.

The trajectories of the system will depend on the initial statex0. Figure 2.10(a)shows

some representative trajectories corresponding to the parameter valuesw11 = w22 = 4,w12 =

w21 = −3, θ1 = θ2 = 0. The system exhibits two stable equilibrium points near(−3, 4) and

(4,−3) with basins of attraction that lie respectively on the top–left and bottom–right of the

diagonal of the reference system. Given that the initial state is in one region or in the other

of the plan, each solution will reach the corresponding attractor. Thus the behavior of the

system is fully determined by its initial condition.

Figure 2.10(b)shows what happens to the system if we perturbate it with a simple Brow-
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(b) SDE described by equation2.10stochastically af-
fected by a simple Brownian motion process

Figure 2.10:Stochastic Perturbations of a Dynamical System.

nian motion process. Differently from the previous example, here the two basins of attraction

are deeperenough and the stochastic perturbation doesn’t influence the single traces (see

figure2.10(b)). Even if the system starts from the origin – i.e. on the edge between the two

basins – the trajectory won’t fluctuate back and forth between the two attractors. However,

this doesn’t mean we can rely on the two attractors to define the fixpoint of the distributions.

In fact, figure2.6 shows what happens when we let the system evolve several times with the

same initial conditions. Again we obtain an empirical distribution that is more insightful that

any single path.

It is clear from the above example that we can get more insightful information if we look

at the distribution of the solutions instead of at one single solution whose measure is null8.

Now that we are equipped with the idea behind the notion of semantics of a PCN, it is

easy to understand the following formal definitions.

Let’s consider a signatureΣ = 〈S, F〉 with a special sortc ∈ S defined to represent clocks.

We say thatΣ is the signature of aPCN = 〈Lc,Td,CN〉 and we writePCNΣ, if:

8Here the expressionmeasure of a solutionmeans probability of occurrence of the event associated to the single
solution in the sample space with all the possible solution. Hence, it is obvious that the probability associated to
the single event is zero.
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Figure 2.11:Stationary, empirical distribution of several sample paths for system described
by equation2.10stochastically affected by a simple Brownian motion process

– each locationl ∈ Lc is associated with a sorts ∈ S (we writesl to refer to the sort ofl);

– for each transductionf ∈ Tc the sorts of its input and output ports are as follows:

1. if f is a transliteration of a function (i.e.f : s∗ → s) of F, the sort of the output

port issand the sort of the input porti is s∗(i);

2. if f is a unit delayδs or a transport delay∆s, the sort of both input and output port

is s;

3. if f is an event–driven transduction, the sort of the event input port isc, the sort

sort of the other ports are the same as its primitive transduction;

Definition 2.10 (Semantics ofPCNs) The semantic of a probabilistic constraint netPCNon

a dynamics structure〈V,F 〉, denoted[[PCN]] , is the least stationary distribution of the set of

equations{o = Fo(x)}o∈O(PCN). Moreover, ifFo is a continuous or pathwise continuous trans-
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duction inF for all o ∈ O(PCN); then[[PCN]] is a continuous or pathwise continuous trans-

duction from the input trace space to the output trace space, i.e.[[PCN]] : ×I (PCN)AΩ×T
si

→
×O(PCN)AΩ×T

so
. �

Of course, it is possible to define the semantics of the modules (seeSt-Aubin (2005))

and it can be shown that the combination operations defined in the previous section do pre-

serve the semantics, thus we are allowed to build complex systems by means of hierarchical

composition of simpler modules.
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Chapter 3

Behavioral Verification of Robotic

Systems

In this chapter I summarize the notion of average–timed∀–automata and discuss its links

with behavioral specification and verification within the PCNs framework.

The key idea behind the chapter is that the online satisfaction of the local constraints1 im-

posed on the dynamics of a robotic system does not guarantee that the robot will satisfy any

global behavioral constraint, such as – for example – “to accomplish a task correctly within

a limited amount of time”. Unfortunately, PCNs are not tailored for representing global con-

straints on the behavior of a systems. Even if, at least in principle they are expressive enough

to formalize behavioral requirements, it is not reasonable to do it in any real application.

The approach proposed within the PCNs framework to overcome this problem is to define

a different, automata–based specification language by means of which we can easily formulate

behavioral constraints. Such an approach has a second, major advantage since it allow us to

design and (possibly) implement formal verification procedures. To design (semi)automatic

procedures is thus the ultimate goal of researchers in this area.

Even is my personal contribution to the development of specification and verification

methods has been quite limited, I believe this chapter is conceptually fundamental for the

understanding of some following topics discussed in this thesis. Moreover, as discussed in

the next chapter, one of the ongoing developments of PCNJ is to provide the user with the

1Which can be easily described by means of PCNs.
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possibility of defining average timed∀–automata within PCNJ.

The chapter is organized as follows. Section3.1 provides some preliminary concepts

of behavioral specification and verification and describes the meaning of formal behavior

for a robotic system. Sections3.2 and3.3 describe the to specification languages and their

links. Finally, section3.4 presents the model checking approach proposed by St–Aubin for

the verification of any stochastic, hybrid dynamical system.

3.1 Concepts of Behavioural Specification and Verification in Robotics

Since modern society is increasingly dependent on complex software (and hardware) sys-

tems for managing and processing sensitive and critical information, the consequences of

failures can become extremely severe. Hence, computer scientists have been developing for-

mal methods for decades in order to model the behavior of software systems and to verify that

these models satisfy some desired properties. Nowadays formal specification and verification

of software is an essential stage in many areas of software engineering, and it is a topic any

computer science graduate student is – or should be – familiar with. However, in contrast to

what happens for software system development, the use of formal methods is not prevalent in

almost any research areas of Robotics.

This section provide asmoother transitionfrom concepts that are known and well assessed

in the software specification and verification research community to their new, specific use in

Robotics.

Let’s start from the fundamental difference betweensystem modelingand thespecification

of behavioural constraints; we assumed the existence of this difference throughout chapters

1 and2, yet it might still be unclear. Although the two concepts might appear similar, they

are very different. In short, the modeling task focuses on the dynamics of the system and

how different components interact among each other, i.e. it imposes local constraints on the
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(a) System Dynamic (b) PCN model

Figure 3.1:PCN model of the dynamics of a system comprised of a mobile car with uncertain
actuators moving in a2D environment. [Taken from?]

systems dynamics. On the other hand, the specifications of a system impose global constraints

on its evolution/behaviours. For example, the dynamics of a (car–like) mobile robot can

be modelled by differential equations following basic laws of physics such as the relation

between velocity and acceleration – e.g.ẋ = vcos(θ) + Wx
t , ẏ = vsin(θ) + Wy

t , θ̇ = v/R+ Wθ
t ;

which are the laws governing the system depicted in figure3.1(a)2. These laws represent the

constraints on the dynamics. However, although these represent well the local behaviour of

the system, it does not preclude the robot from hitting people as it is roaming around. If the

goal of the robot is to deliver something (e.g. a coffee) somewhere, then we might be able

to represent our wish that the robot will always be successful when attempting to deliver the

coffee. Such restrictions are global constraints on the behaviours of the system and cannot

be represented easily with PCNs only. They can, however, be compactly expressed with a

∀–automaton specification as it is shown in Figure3.2.

Once one is equipped with a model of the dynamics of a system and with requirement

specifications on the global behavior of the system, a key question to ask is whether the

behavior of the system satisfies these requirements. This is called behavioural verification

2Figure3.1(b)shows the corresponding PCN.
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Figure 3.2:Robot Delivery∀–Automaton Specification

and is the topic addressed in sections3.4.

3.2 ∀–Automata

∀–automata are non–deterministic finite state automata over infinite sequences. They

were originally proposed to specify requirements and temporal properties of concurrent pro-

grams (Manna and Pnueli1987) or time traces from deterministic dynamical systemsZhang

(1994), Zhang and Mackworth(1996).

Formally, a∀–automaton is defined as follows.

Definition 3.1 (Syntax of∀–automata) A∀–automatonA is a quintuple〈Q; R; S; e; c〉where

Q is a finite set of automaton states,R ⊆ Q is a set of recurrent states andS ⊆ Q is a set of

stable states. With eachq ∈ Q, we associate an assertione(q), which characterizes the entry

condition under which the automaton may start its activity inq. With each pairq,q′ ∈ Q, we

associate an assertionc(q,q′), which characterizes the transition condition under which the

automaton may move fromq to q′. �

R and S are generalizations ofacceptingstates to the case of infinite inputs. All the
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other states of the automaton, i.e.B = Q − (R∪ S), are calledbad states because they are

nonŋ-accepting states.

A ∀–automaton is called complete iff the following requirements are met:

-
∨

q∈Q e(q) is valid.

- ∀q ∈ Q,
∨

q′∈Q c(q,q′) is valid.

Any automaton can be transformed to a complete automaton by introducing an additional

bad (error) stateqE, with entry conditione(qE) = ¬
(∨

q∈Q e(q)
)
, and the transition conditions:

c(eE,qE) = true

c(qE, q) = f alse for each q ∈ Q

c(q,qE) = ¬(
∨

q′Q
c(q, q′)) for each q ∈ Q

Like any kind of automaton, it is possible to introduce a useful, simple graphical repre-

sentation for∀–automata. Let’s consider a labelled, directed graph whose nodes represents

automaton–states and whose arcs are transition relations. We say that such a graph is a repre-

sentation of a∀–automaton iff:

1. for each automaton state there exists one node of the graph;

2. each initial automaton state3 is marked by a small arrow () pointing to it;

3. arcs, drawn as arrows, connect some pairs of automaton states;

4. each recurrent state is depicted by a diamond inscribed within a circle;

5. each stable state is depicted by a square inscribed within a circle;

3Initial state are those for which there exists an entry assertione(q) , f alse.
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Figure 3.3: Examples of∀–Automata: (a) goal achievement,(b) safety, and(c) bounded
response.

6. nodes and arcs are labeled by assertions.

Labels, attached to nodes and arcs, define the entry conditions and the transition condi-

tions of the associated automaton as follows:

- Let q ∈ Q be a node in the diagram corresponding to an initial automaton–state. Ifq

is labeled byψ and the entry arc is labeled byφ, the entry conditione(q) is given by

e(q) = ψ ∧ φ. If there is no entry arc,e(q) = f alse.

- Let q,q′ be two nodes in the diagram corresponding to automaton–states. Ifq′ is la-

beled byψ, and arcs fromq to q′ are labeled byφi , i = 1, . . . ,n, the transition condition

c(q,q′) is given byc(q,q′) = (φ1 ∨ . . . ∨ φn) ∧ ψ. If there is no arc fromq to q′,
c(q,q′) = f alse.

A diagram representing an incomplete automaton can be interpreted as a complete au-

tomaton by introducing an error state and associated entry and transition conditions. Some

examples of∀–automata are shown in figure3.2

The formal semantics of discrete∀–automata is defined as follows. LetA be a domain of

values. An assertionα on A corresponds to a subsetV(α) ⊆ A. A valuea ∈ A satisfies an

assertionα on A, writtena |= α or α(a), iff a ∈ V(α). LetT be a discrete time structure and

v : T → A be a trace. Arun ofA overv is a mappingr : T → Q such that(1) v(0) |= e(r(0));
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and (2) for all t > 0, v(t) |= c(r(pre(t)), r(t)). A complete automaton guarantees that any

discrete trace has a run over it.

If r is a run, letIn f (r) be the set of automaton states appearing infinitely many times in

r, i.e., In f (r) = {q|∀t∃t0 ≥ t, r(t0) = q}. Notice that the same definition can be used for

continuous as well as discrete time traces. A runr is defined to be accepting iff:

1. In f (r)
⋂

R , ∅, i.e., some of the states appearing infinitely many times inr belong to

R, or

2. In f (r) ⊆ S, i.e., all the states appearing infinitely many times inr belong toS.

We can now introduce the definition of formal semantics for∀–automata.

Definition 3.2 (Semantics of∀–automata) A ∀–automatonA accepts a tracev, writtenv |=
A, iff all possible runs ofA overv are accepting.�

Figure3.2shows three different∀–automata whose semantics are as follows.(a) accepts

the traces of a system which eventually will always satisfy the goal conditionG; (b) accepts

the traces of a system that should never satisfy the unsafe conditionB. (c) accepts the traces

of a system that satisfy a bounded response constraint, i.e. whenever eventE occurs, the

responseRwill occur in bounded time.

One should note that the proposed definition of semantics differs in the way it handles

non–determinism from the semantics of conventional automata. A conventional automataC,

which could, in this context, also be called a∃–automata, accepts a language if there exists

at least one run overC which is accepting. However, in the context of behavior verification,

having at least one run satisfying the requirements is obviously not a strong enough statement

as in the case of a safety requirement, this is generally not what should be defined as a safe

system. Moreover, for deterministic systems, which are defined completely by a single trace,
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it is meaningful to require the trace be accepted. However, when modeling a stochastic sys-

tem, asking for all traces to be accepted (which we referred to as satisfying the requirements at

levelα = 1) might be too demanding. Indeed, there might be a very small probability that the

system will move into a set of absorbing bad states, hence never satisfying the behavioural

constraints. However, if this probability (which is equivalent to the measure of all sample

traces leading to the absorbing bad states) is small enough so that these events rarely occur,

one might be willing to accept the risk to work with a system which satisfy the requirements

at a levelα whereβ < α < 1 andβ is the safety threshold.

Before moving on, it might be helpful to discuss the notion of verification at levelα = 1 of

a stochastic dynamical systems. What type of restrictions on the system itself does this create?

Intuitively, perfect satisfaction of a set of behavioural constraints amounts to the system not

possessing any absorbing bad states. By absorbing we refer to the case where the system

enters this bad state and never leaves it. In practice, for a system to not possess any absorbing

bad states requires that for any state of the stochastic dynamical system associated with a bad

automaton state, there must exist a path with positive probability which leads to an accepting

state (associated to eitherR or S). Indeed, for a large class of systems with absorbing bad

states, these states corresponds to a situation where the robotic agent is down in one way

or another. Hence, repair or restart would be needed to ensure that the system can continue

operating. One could take thisrepair into account and modify the state space so that once the

agent arrives to a absorbing bad state, a transition occurs with probability one which relocates

the agent torestart state. This simple modification removes absorbing bad states and thus

allows the verification method to be applied to a vast class of systems.
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3.3 Average–Timed∀–Automata

The class of constraints that we can express by means of simple∀–automata doesn’t

contain the fundamental subclass of those behavioural constraints that encompass explicitly

temporal specifications. For example, in robotics it is quite meaningless to have a formal

guarantee that the robot – whenever a significant eventE occurs – will produce a responseR

in bounded time. Actually, we are more interested in proving that the responseR will occur

in a limited time, that is to say we want to attach a finite constantk to the former time bound.

Timed ∀–automata were originally proposed byZhang(1994) in order to augment ba-

sic∀–automata with timed automaton states and time bounds. Both (Zhang and Mackworth

1996) and(Mackworth and Zhang2003) provide the formal definition of this family of au-

tomata and a description of the their properties. They are very useful for further references.

Unfortunately, the approach based on timed∀–automata is not well suited for stochastic

dynamical systems. In fact, in the stochastic case, it is not possible any more to talk about

satisfying a given time constraint in an absolute way but rather we might accept a kind of

on–averagesatisfaction, i.e. we can beyond the concept of time constraint and define that

of averagetime constraint. The idea behind average time constraint is that although we can-

not prove that a stochastic dynamical system can always satisfy some given time constraint,

we can show that the average behavior of the system does satisfy the constraints. All these

informal considerations can be defined formally.

Definition 3.3 (Syntax of average–timed∀–automata) Anaverage–timed∀–automatonATA
is a triple 〈A,T, τ〉 whereA = 〈Q,R,S,e, c〉 is a ∀–automaton,T ⊆ Q is a set of average–

timed automaton states andτ : T ∪ {bad} → R+ ∪ {∞} is an average–timing function.

Of course, any∀–automaton is equivalent to a special average–timed∀–automaton – the

one obtained by settingT = ∅ andτ(bad) = ∞. We attach a nonnegative real number to any

T–state, indicating its average–time bound.
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As anticipated earlier, we cannot define the acceptance of a single trace by an average–

timed ∀–automata. Since we are no longer interested in the behavior of individual traces4

we might better consider the behavior of a set of traces. Therefore, expected time constraints

should be satisfied by the average behaviours of this ensemble of traces.

LetB be the considered behavior. We define arun r of ATA overB has being arun of

A over every tracev : T → A in the behaviorB. A run r is accepting forATA iff:

1. r is accepting forA, and

2. r satisfies the expected time constraints. Let’s consider a time intervalI ⊆ T and a

segmentq∗ of r – q∗ : I → Q andq∗ = r |I – whose measure is denoted byµ(q∗).

Furthermore, letµB(q∗) denote the measure of bad automaton states inq∗, andS g(q) be

the set of segments of consecutiveq state inr. Finally, letBS be the set of segments of

consecutiveB andS–states inr, i.e.,q∗ ∈ BS implies∀t ∈ I ,q∗(t) ∈ B∪ S.

The expected time constraints forr can be formulated as:

(a) (local time constraint)∀q ∈ T, q∗ ∈ S g(q),E(µ(q∗)) ≤ τ(q) and

(b) (global time constraint)∀q∗ ∈ BS,E(µB(q∗)) ≤ τ(bad).

whereE(·) denotes obviously the expectation over all tracesv of B.

It is now possible to state the final definition of semantics of anaverage–timed∀–automaton.

Definition 3.4 (Semantics of average–timed∀–automata) An average–timed∀–automaton

ATA accepts a set of tracesB, writtenB |= ATA, iff all possible expected runs ofATA
overB are accepting.

4Because each individual trace is a null–measure event.
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3.4 Model–Checking Approach for Behavioral Verification

In this section I present the model–checking approach for behavioural constraints verifi-

cation proposed bySt-Aubin(2005), whose thesis work showed the existence of well defined

behavioural constraint verification rulesfor both arbitrary time and domain structures. These

general rules are essential to provide an understanding of general behaviours of stochastic hy-

brid dynamical systems. However, St–Aubin provided a (semi) automatic verification method

only for one special case of finite domain PCNs and discrete time. At the present time, thus,

no algorithm either automatic or semi–automatic has been developed yet for behavior veri-

fication of general stochastic hybrid dynamical systems. If we restrict ourselves to consider

non–probabilistic systems only, then the we can rely on the results obtained inZhang(1994),

Zhang and Mackworth(1996) that showed a further nice property of the resulting verifica-

tion algorithms, i.e. they are polynomial in both the size of the model and the size of the

specification.

Once again I recall that the focus of the present thesis is not on the theoretical aspects

of behavioral verification for general hybrid systems. Instead, I aim at providing convincing

arguments in favor of using PCNs framework in the robotic research area. From this point

of view I can dodge the description of the verification rules for the general case and focus on

those for discrete–time finite–domain stochastic systems, which – fortunately – turn out to be

a suitable level of description for most of the real robotic systems. This last claim may seem

a bit contradictory with respect to the initial claims about generality of PCNs framework. In

a way I must agree with these concerns and admit that this part of the framework still needs

significant improvements. However, the existence of verification rules for the general case is

a first big step towards the goal of either finding an algorithm for the general case or proving

the non–existence of such an algorithm.

Let’s now introduce the verification rules. This method applies to any stochastic state
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transition systemSB = 〈SB,P, 〉 associated to a time–invariant Markovian behaviorB in

discrete time. Let’s denotes s′ an allowed transition from states to states′ of the system

– i.e. there is a non-zero probability of transition. Also{ϕ}B{ψ} denotes the condition:ϕ(s)∧
(s  s′) → ψ(s′) is valid. We callATA the the average timed∀–automaton〈A,T, τ〉
representing the behavioural constraints for the stochastic dynamical systemSB.

The verification method comprises three basic types of rules:

Invariance rules (I) . A set of propositions{αq}q∈Q is a set ofinvariantsfor the behaviorB
and specificationATA iff:

1. Initiality : ∀q ∈ Q,Θ ∧ e(q)→ αq, and

2. Consecution: ∀q,q′ ∈ Q, {αq}B{c(q,q′)→ αq′}

It is possible to show that, given a set of invariants for an automataATA and a behavior

B, any trace inB always brings from one state that satisfy the invariant conditions to

a destination state that still satisfy the invariant conditions; no matter which (possibly

uncertain) transition occurs.

Stability (Lyapunov–based) rules (S)A set of partial functions{ρq}q∈Q – ρq : SB → R+ –

is called a set ofLyapunov functionsfor ATAT andB iff they satisfy the following

conditions:

1. Definedness: ∀q ∈ Q, αq→ ∃w ∈ R+, ρq = w.

2. Non–increase: ∀q ∈ S,q′ ∈ Q, {αq ∧ ρq = w}B{c(q,q′ → E(ρq′) ≤ w}.

3. Decrease: ∃ε > 0,∀q ∈ B,∃q′ ∈ Q, {αq ∧ ρq = w}B{c(q,q′ → ρq′ − w ≤ −ε}.

Condition(S2) requires that for each stable stateq ∈ S, the transitions fromq lead on

average to a state for which the value of the Lyapunov function is less than or equal

to the current value. Condition(S3) requires that for each bad stateq ∈ B there exists
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at least one allowed transition (i.e., with positive probability) leading to a state with

strictly smaller Lyapunov value. This is a formal requirement that can only be satisfied

if there are no absorbing bad states in the system under study.

Average Timeliness rules (AT) LetATA = 〈A,Tτ〉 be an average–timed∀–automata. As-

sume, without loss of generality, that time is encoded in the stochastic state transition

system. Let’s defineλ : SB → T as a function of time measure on states returning the

time until the next transition.5. Let’s introduce two different types of timing functions,

associated with the local and global average–time bounds respectively.

A set of partial functions{γq}q∈T is called a set oflocal timing functionsfor B and

ATA iff γq : SB → R+ satisfies the following conditions:

(L1) Boundedness: ∀q ∈ T, αq→ λ ≤ γq ≤ τ(q).

(L2) Decrease:∀q ∈ T, {αq ∧ γq = w∧ E(λ) = l}B{c(q, q′ → E(γq) − w ≤ −l}.

A set of partial functions{ηq}q∈Q is called a set ofglobal timing functionsfor B and

ATA iff ηq : SB → R+ satisfies the following conditions:

(G1) Definedness: ∀q ∈ Q, αq→ ∃w ∈ R+, ηq = w.

(G2) Boundedness: ∀q ∈ B, αq→ ηq ≤ τ(bad).

(G3) Non–increase: ∀q ∈ S,q′ ∈ Q, {αq ∧ ηq = w}B{c(q,q′ → E(ηq′) ≤ w}.

(G4) Decrease: ∀q ∈ S,q′ ∈ Q, {αq ∧ ηq = w∧ E(λ) = l}B{c(q,q′ → E(ηq′) ≤ w}.

The aboveverification rules– i.e. Invariance (I), Stability (S) and Average-Timeliness

(AT) – can be used with a behaviorB and an average–timed automatonATA = 〈A,T, τ〉 as

follows:

(I) Associate with each automaton stateq ∈ Q a state formulaαq, such that{αq}q∈Q is a set

of invariants forB andA.
5For the special case of discrete time systems onN, λ = 1 uniformly.
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(S) Associate with each automaton stateq ∈ Q a partial functionρq, such that{ρq}q∈Q is a set

of Lyapunov functions forB andA.

(AT) Associate with each average–timed automaton stateq ∈ T a partial functionγq, such

that {γq}q∈T is a set of local timing functions forB andATA. Associate with each

automaton stateq ∈ Q a partial functionηq, such that{ηq}q∈Q is a set of global timing

functions forB andATA.

The final step it to state the main result related to these verification rules: St–Aubin

demonstrated that, if we are equipped with a set of invariants, Lyapunov functions and lo-

cal and global timing functions, then the behavioural verification is sound and complete. This

is stated bySt-Aubin(2005) as Theorem7.2, which is reproduced here for completeness.

Theorem 3.1 (Reproduced fromSt-Aubin (2005), Theorem 7.2 (Verification Rules)) For any

state-based and time–invariant behaviorB with an infinite time structure and a complete

average–timed∀–automatonATA, the verification rules are sound and complete, i.e.,B |=
ATA iff there exist a set of invariants, Lyapunov functions and timing functions.
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Chapter 4

Models Subsumed by PCN

PCNs framework is a non trivial extension of CNs framework because it allows for the

modelling of both systems with uncertainty and systems which behave probabilistically. This

is a valuable asset because now we can model a number of systems – by means of PCNs – that

couldn’t be represented as CNs. This is a non–trivial claim that deserves to be proved more

formally, and this chapter contains a number of positive results that provide good evidence

for such a claim.

I look more carefully into the relationships between PCNs and a several determinis-

tic/probabilistic models and algorithms commonly used in Robotics. I show that they are

special cases of PCNs by providing – for each model/algorithm – the PCN that computes

exactly the same thing, i.e., the proposed PCN preserves the semantics of the computation.

Since many of these models are widespread in Robotics and Computer Science as well, we

reap two main benefits from the results described in this chapter. On one side they further

demonstrate the flexibility of PCNs framework from the point of view of both theoretical

and practical expressivity. On the other side they are an effective contribution to the general

discussion developed throughout this thesis about the use of PCNs within robotic research

areas.

Furthermore, in this chapter I focus mostly on learning–related models and algorithms;

this is because learning is becoming increasingly an effective tool to build fundamental mod-

ules of mobile robots. Once we are equipped with PCNs that implement learning algorithms

we might start asking what kind of benefit (if any) we can get from the formal specification
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and verification capabilities provided by average timed∀–automata within PCNs framework.

I do say something about this interesting topic in the last chapter of this thesis.

The chapter is organized as follows: in section4.1I motivate the usefulness of this chapter

by explaining what we actually gain by expressing another computational model as a PCN.

The following sections are devoted to showing the equivalence with PCNs of Artificial Neural

Networks (sec.4.2), Continuous Time Recurrent Neural Networks (sec.4.3), Markov Models

(sec.4.4), Reinforcement Learning and Markov Decision Processes (sec.4.5), and finally

Kalman Filters (sec.4.6).

4.1 A Few Preliminary Remarks on the Computational Power of

PCNs

This chapter in general and this section in particular discuss thecomputational expressive

powerof the PCNs framework.

SinceZhang(1994) showed that CNs are expressive enough to compute any partial recur-

sive function and thus that CNs are universal computing devices1, some could argue that the

present chapter is a bit redundant. Hence some preliminary remarks are necessary in order to

clarify the usefulness of what follows.

The notions ofexpressive poweror expressivenessof knowledge representation languages

have been investigated by most papers on knowledge representation for nearly a decade (e.g.

Woods(1983), Levesque and Brachman(1987), Nebel(1990)). Surely, we may have an in-

tuitive idea of what these terms mean, but indeed several formal definitions of expressiveness

have been already proposed – (Baader1996), to cite just one example – on which there is as

common agreement among researchers in theoretical computer science. Following these defi-

nitions, we can to point out the existence of two distinct criteria for evaluating how expressive

1In the sense of Turing computability, i.e. form the point of view of Theoretical Computer Science
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a formal language is (Tesfagiorgis2006):

1. Theoretical expressivity: One language is said to be (theoretically) more expressive

than another language, if whatever the latter can express can also be expressed by the

former too, while the reverse is not necessarily true.

2. Practical expressivity: deals with the ease and naturalness of a language in express-

ing real–life systems. For instance, a Turing machine is theoretically as expressive as

any programming language, however writing a usable program in a Turing machine

language is far more complex than in a programming language.

These criteria tell us two things:(1) from a theoretical point of view, if we prove that PCNs

are expressive enough to represent – let’s say – any (probabilistic) Turing machine, then at

least in principle researchers could use the framework whenever they need because there will

certainly exist the PCN suitable for them.(2)From a practical point of view, if we demonstrate

that a specific algorithm can be expressed as a PCN by means of a constructive proof, then we

provide researchers with a method for building that PCN. A further immediate reward from

this latter approach is the possibility to discuss directly the efficiency of one specific PNC

module and compare it with other different implementations of the same algorithm.

In the next sections I’ll be seeking constructive proofs for specific algorithms – i.e. I’ll be

adhering to the practical perspective.

4.2 Neural Networks and PCNs

In this section I build a bridge between PCNs framework and one of the most popular

approach to machine learning, i.e. the one based on artificial neural networks (ANNs) that

gained increasing popularity over the last decades. ANNs are very often used as part of robotic

architectures ([. . . ]) and thus it is a valuable contribution indeed to show their relationship

with PCNs.

Matteo Santoro – Ph.D. Thesis



4.2. Neural Networks and PCNs 58

An ANN is an interconnected group of computational units that are calledartificial neu-

rons. Of course, the term “neural network” suggests biological systems, yet the biological

roots of ANNs are irrelevant to the present discussion. From the point of view of artificial

intelligence, ANNs are essentially simple mathematical models defining a function and they

are extremely useful when we do not know explicitly the expression of such a function.

The ability tolearn is surely the most interesting one for ANNs and it triggered interest-

ing debates among researchers during the early years of ANNs about theontologicalmeaning

of learning machines. Nevertheless learning in ANNs is based on a few simple mathematical

considerations that can be summarized as follows. Informally, ANNs can be considered adap-

tive systems that change their structure based on the flow of information that passes through

the network. More formally, ANNs are families of function approximators: they are mathe-

matical models with a sufficiently large number of parameters by means of which it is possible

to define any function , given that a set of input–target training examples is provided to the

ANN. Of course, I’m referring here to thesupervised approachto neural networks. In this

approach, in order tolearn something, we need to collect pairs of input and corresponding

target, the targets being a kind of teacher’s specification of what the neural network’s response

to that input should be. Finally, we can summarize these consideration by stating that learn-

ing in ANNs takes place owing to their structure and to suitable learning rules defined over

the structure. The learning rules specify the way in which the neural network’s parameters

change over time.

In this section the focus is on a subclass of ANNs, the so called Multi–layer feedfor-

ward neural networks (MLFFNNs). Most of the learning algorithms commonly used to

train MLFFNNs is based on the technique of on–line gradient–descent and is called back–

propagation. I will show that, for every ANN, there exist a well–defined PCN; moreover, the

back–propagation algorithm itself can be described as a specific PCN.

Some formal definitions are required preliminary to the description of ANNs as PCNs.
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Figure 4.1:Schematic representation of a single artificial neuron.

Let’s start from the basic computational unit of an ANN.

Definition 4.1 (Artificial Neuron) A single artificial neuron is a feedforward, computational

device that has a numberI of inputsxi and one outputy (fig. 4.1). Associated with each input

is a weightwi(i = 1, . . . , I ). There usually is an additional parameterb0 called thebiasof the

neuron.

Theactivity ruleof a single artificial neuron is the specific way we compute the output of

the neuron given its inputs. Usually the activity rule has two steps. First, the response to the

inputsx – theactivationa of the neuron – is computed as:

a =

I∑

i=1

wi xi + b0;

Second, the outputy of the neuron is computed as a functionf (a) of the activation. The

function f (a) is also called theactivation functionwhile the outputy is known as theactivity

of the neuron. In the literature there have been proposed several activation functions. Among

the others, the most popular activation functions are:

1. Deterministic activation functions:
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• linear:

f (a) = a

• threshold:

f (a) = Θ(a) =


1 a > 0

−1 a ≤ 0

• logistic:

f (a) =
1

1 + e−βa

• hyperbolic:

f (a) = tanh(βa)

2. Stochastic activation functions:

• Heat bath:

y(a) =


1 with probability 1

1+e−a

−1 otherwise

• Metropolis rule. The output depends on the previous output statey, through the

product∆ = ay: if ∆ < 0, flip y to the other state, else flipy to the other state with

probabilitye−∆.

Despite it is a very simple mathematical entity, the artificial neuron has a number of

nice properties that allowed for the widespread use of neural networks in so many different

applications. Before describing the learning process and presenting such properties, let’s show

formally that we can always build a PCN whose semantic is the same of an artificial neuron.

Figure4.2represents such a PCN.

Consider the PCNAN = 〈Lc,Tn,Cn〉 defined as follows:

• Lc contains the following locations:{x1, . . . , xI , b0,w1, . . . ,wI ,h1, . . . ,hI+2}. Where

x1, . . . , xI are
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Figure 4.2:A PCN module for a generic artificial neuron.
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• Tc transductions labels are:{+, ∗,delay(1), sin,Gµ,σ}. As you can see in figure2.4, the

label+ is used twice in the PCN. Actually, the two transductions are distinct and they

must be kept separated in order to guarantee the semantical correctness of net (as we’ll

se later). Whenever some confusion or even a mistake can arise, it is preferable to use

two distinct labels: for example+1 and+2.

• Cncontains all the edges between locations and transductions as depicted in figure4.2.

[. . . ]

Now that we are equipped with a PCN–based representation of the single artificial neuron,

let’s consider the learning stage. I aim at showing that we can always build a well–defined

PCN that represents the learning algorithm itself.

To understand the learning of a single artificial neuron is straightforward if we introduce

the concept of weight space, that is, the parameter space of the network. Given an artificial

neuron withI inputs, there are atI +1 parameters2. For each selection of values of the param-

eter vectorw, the neural net computes a specific function, i.e. the corresponding activation

function. Thus each point in the weight space corresponds to a function ofx. Now, the central

idea of supervised neural networks is this. Given examples of a relationship between an input

vectorx, and a targett, we hope to make the neural networklearna model of the relationship

betweenx andt. A successfully trained network will, for any givenx, give an outputy that

is close (in some sense) to the target valuet. Training the network involves searching in the

weight space of the network for a value ofw that produces a function that fits the provided

training data well. Typically an objective function or error function is defined, as a function

of w, to measure how well the network with weights set tow solves the task. The objective

function is a sum of terms, one for each input/target pair{x, t}, measuring how close the output

y(x; w) is to the targett. The training process is simply a function minimization, and it can

be carried our by adjustingw in such a way as to find awmin that minimizes the objective

2Remember we haveI weightswi and the biasb0.
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function. Many function–minimization algorithms make use not only of the objective func-

tion, but also its gradient with respect to the parametersw. For instance, the backpropagation

algorithm – on of the most popular in the field of ANN – efficiently evaluates the gradient of

the outputy with respect to the parametersw, and hence the gradient of the objective function

with respect tow.

Let’s describe in short how a generic learning algorithm for perceptron does work.

Formally, let’s assume we have a data set of inputs{x(n)}Nn=1 with binary labels{t(n)}Nn=1,

and a neuron whose outputy(x; w) is bounded between0and1.

4.2.1 Feedforward Neural Networks

The time has come to connect multiple neurons together, making the output of one neuron

be the input to another, so as to make neural networks. Neural networks can be divided

into two classes on the basis of their connectivity. (a) (b) Figure 42.1. (a) A feedforward

network. (b) A feedback network. Feedforward networks. In a feedforward network, all

the connections are directed such that the network forms a directed acyclic graph. Feedback

networks. Any network that is not a feedforward network will be called a feedback network.

The multilayer perceptron is a feedforward network. It has input neurons, hidden neurons

and output neurons. The hidden neurons may be arranged in a sequence of layers. The

most common multilayer perceptrons have a single hidden layer, and are known as “two–

layer” networks, the number “two” counting the number of layers of neurons not including

the inputs. Such a feedforward network defines a nonlinear parameterized mapping from an

inputx to an outputy = y(x,w,A). The output is a continuous function of the input and of the

parametersw; the architecture of the net, i.e., the functional form of the mapping, is denoted

by A. Feedforward networks can be “trained” to perform regression and classification tasks.
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Figure 4.3: A typical two–layer feedforward neural network. There are five inputs, eight
hidden units and two outputs. Network weights can be represented as two matrices. . .

4.2.2 Feedback Neural Networks

This section deals with neural networks that have at least one feedback connection be-

tween a pair of neurons.

Feedback networks (figure 1) can have signals travelling in both directions by introducing

loops in the network. Feedback networks are very powerful and can get extremely compli-

cated. Feedback networks are dynamic; their ’state’ is changing continuously until they reach

an equilibrium point. They remain at the equilibrium point until the input changes and a new

equilibrium needs to be found. Feedback architectures are also referred to as interactive or

recurrent, although the latter term is often used to denote feedback connections in single-layer

organisations

The most popular class of such networks are the so–called Hopfield nets which are fully

interconnected nets, i.e. each neuron has a connection with non–zero weight to any other

neuron except to itself. The weights in the Hopfield network are constrained to be symmetric,

i.e., the weight from neuron i to neuron j is equal to the weight from neuron j to neuron i.

Hopfield networks have two applications.
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The properties of a Hopfield network may be sensitive to the above choices.

The stochastic Hopfield network or Boltzmann machine (Hinton and Sejnowski, 1986)

has a probabilistic activity rule.

The Boltzmann machine is time-consuming to simulate because the computation of the

gradient of the log likelihood depends on taking the difference of two gradients, both found

by Monte Carlo methods. So Boltzmann machines are not in widespread use. It is an area

of active research to create models that embody the same capabilities using more efficient

computations (Hinton et al., 1995; Dayan et al., 1995; Hinton and Ghahramani, 1997; Hinton,

2001; Hinton and Teh, 2001).

4.3 Continuous Time Recurrent Neural Networks and PCNs

In this section I describe a specific subclass of FBNNs, the so calledcontinuous time

recurrent neural networks(CTRNNs). I believe they deserve a different characterization be-

cause they have been playing a special role during the last few years in the Robotic research

field.

Many authors prefer to describe theactivity of each neuron of the net in terms of differ-

ential equations (see equation4.1below) instead of in terms of the messages passed through

a graph of neurons3. Such a more strict mathematical representation allow us to build the

corresponding PCN, which can be used directly whenever the neural system is described as

a dynamical system evolving over time. The goal of this section, thus, is to take advantage

of the peculiar properties of CTRNNs and provide a compact (and, hopefully, more efficient)

representation for them within the PCNs framework.

Informally, a CTRNN is a neural system that comprisesN different, fully interconnected4

3This choice is not only a matter of preference, of course. In fact there are some properties of the neural system
that can be more conveniently expressed if we look at it as a dynamical system. Sometimes our goal is to exploit
such properties; and in these cases we are forced to adopt this approach.

4Feedback loops are also allowed.
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artificial neurons{qi}i∈1,...,N. Each neuron is further connected to some neuron–like elements

calledinput of the net. Formally, a CTRNNR is defined as the quadruple〈Q, I ,W,W′〉, where:

• Q = {qi}Ni=1 is the set of the nodes of the net;

• I = {Ik}Sk=1 is the set of the inputs of the net;

• W : (qi , q j) ∈ Q× Q→ wi j ∈ R is a function that defines the weights associated to the

connection between each pairqi , q j of nodes;

• W : (qi , Ik) ∈ Q× I → w′ik ∈ R is a function that defines the weights of the inputIk over

the nodeqi .

The state of each neuronqi at time t is described by a functionyi(t) called activation

of the neuron5. The reader should note many similarities between the terminology proposed

here and the one introduced above for artificial neuron in general; this should have been easily

expected.

The semantics of the nets – i.e. its dynamical behavior – is the solution of a system of

differential equation whosei-th equation is:

ẏi = fi(y1, . . . , yN) =
1
τi

−yi +

N∑

j=1

w jiσ(y j − θ j) +

S∑

k=1

w′kiIk

 , (4.1)

whereσ is the logistic sigmoidal function introduced above,τi is a time constant6, andθi

is a bias term associated to each neuron.

If we constraint the matrixwi j to to be symmetric (with zero diagonal elements) we can

use a well known result ofHopfield(1984) which states that such networks could be used as

associative memories, with each pattern stored as a different equilibrium point attractor of the

5The dependence ont is usually omitted if no ambiguity can arise.
6If the equation is considered a model of the biological neuron, the time constant is related to some properties

of the membrane of the neuron. In a pure mathematical framework it provide a useful rescaling factor to each
equation.
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network. This is an “attractive” property for robotic researchers since it could be used to link

specific configuration of the environment to corresponding desired response. In fact, as we’ll

see in chapter??, it is possible to use equations4.1as motor behavior controller.

In this section we are interested in studying equations4.1 in the general framework of

the methods forordinary differential equations. As stated in chapter2 the formal syntax of

PCNs was defined with the constraint that PCNs should be able at least to express (stochastic)

dynamical systems – i.e. systems of (stochastic) differential equation – and thus we are sure

there exist a suitable PCN for any system like4.1.

Actually we are not satisfied of this guarantee and want something further: we want a

methodologicalexample of how to build the PCN. Of course we can reason about the general

case withN neurons andI inputs, but the considerations still hold if we reason about a special

case with, e.g.,2 interconnected neurons with one inputI . All the formulas and pictures will

be definitely clearer and this section will be more useful for practical uses. Let’s consider the

system whose behavior is:


τ1ẏ1 = −y1 + w11σ(y1 − θ1) + w21σ(y2 − θ2) + w′1I

τ2ẏ2 = −y2 + w12σ(y1 − θ1) + w22σ(y2 − θ2) + w′2I
(4.2)

In order to implement on a digital computer the equations above, we must use a numerical

integration method. Let’s adopt the same method we used in the example2.3; and we obtain:


yn+1

1 = yn
1 + ∆t

τ1

(
−yn

1 + w11σ(yn
1 − θ1) + w21σ(yn

2 − θ2) + w′1In+1
)

yn+1
2 = yn

2 + ∆t
τ2

(
−yn

2 + w12σ(yn
1 − θ1) + w22σ(yn

2 − θ2) + w′2In+1
) (4.3)

wheren represents the step of the computation and∆t the so called step size. Interestingly

enough, a generalization of equations4.3 can be adopted as the fundamental equation of

another class of recurrent neural networks, namely thediscrete time recurrent neural networks
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Figure 4.4:PCN that represents an implementation of a CTRNN

DTRNN7.

It is quite straightforward to build the PCN that represent equations4.3; it is represente in

figure4.4.

All the transduction are basic transliterations, except for two unit delaysδ1(0) andδ2(0)

which are necessary to avoid algebraic loops. The only location that have a physical meaning

arey1, y2, θ1, θ2, I1, I2 and all the weights. Their domains are usually some interval ofI ⊆ R.

The inputs of the PCN are the two inputs of the net while we are interested (as output) to the

traces associated withy1 andy2.

7This (supposed) equivalence between DTRNN and any algorithmic implementation of CTRNN is an inter-
esting topic but it would lead far beyond the scope of this thesis.
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4.4 Markov Models and PCNs

In this section I briefly recall a number of results presented already in St–Aubin’s thesis.

They show that any Markov model can be represented by a suitable PCN, and this is valuable8

because in practice many robotic systems naturally make use of the Markovian hypotheses

about the probabilistic dependance between any two consecutive states of the system.

There exist four distinct cases of Markov models: they are obtained by combination of

both discrete vs. continuous state space and discrete vs. continuous time. Let’s start from the

easiest one; if both time and state space are discrete, then the modelMC is calleddiscrete

time Markov Chain(DTMC). A DTMC is a tuple〈S, s0.P〉, whereS, s0 andP represents the

finite set of states (|S| = n), the initial state, and the probability transition respectively. It is

quite straightforward to build the corresponding PCN moduleMCPCN of a givenMC; it is

simply 〈{S}, {δ(s0),PPCN},CPCN〉. This means that the set of locations ofMPCN contains one

locationS whose domain is the set of all possible states of the DTMC:{1,2, . . . ,n}, and each

value of the location encodes for the corresponding state of the DTMC.MCPCN contains only

one deterministic transduction – the unit delayδ(s0), and one generatorPPCN following the

probability distributionP. We needδ(s0) not only in order to avoid an algebraic loop but also

to model the Markovian property of the Markov chain; in fact, the unit delay guarantees that

the stateSt – i.e. the value of the locationS in the domain at timet – depends only on state

St−1. The generator inPPCN is equivalent to the probability transition matrix ofMC; thus,

given the currentSt, the generator provides the probability distribution of the next possible

St+1. CPCN contains only three connections that are represented in figure4.5(a).

If we let the state space to be continuous while keeping the time discrete, i.e. we consider

the so calleddiscrete–time Markov Processes(DTMP), then it is still very simple to build the

corresponding Markov–process like PCNMPPCN. The only difference with respect to the

8These valuable results are quite relevant to the idea discussed in this chapter, thus I believe it is worthwhile
to recall them here.

Matteo Santoro – Ph.D. Thesis



4.4. Markov Models and PCNs 70

(a) PCN equivalent of a DTMC (b) PCN equivalent of a DTMP

Figure 4.5:Equivalence between PCNs and discrete–time Markov models

previous case is that instead of a probability transition matrix, we must introduced a proba-

bility measureP({St}|St−1) over sets of states. The representation of such a DTMP is shown

in figure4.5(b). The locationS has a continuous domain (e.g.R) rather than a discrete one.

Moreover the generator is now defined on a set of states{S}.
The case of continuous–time and discrete state space is calledcontinuous–time Markov

Chain(CTMC). In a CTMC, the state transitions may occur at any time, with a given proba-

bility rate. In order to manage this transition rate, it is usual to define the so calledrate matrix

Rt
i j (s) that represents the transition probability from statei to statej and from timet to time

t + s. Often, the transition probabilities are independent from the initial timet – the chain

is called time homogeneous – and thusRi j (s) denotes the transition probability fromi to j

overs time period. In the most common type of time homogeneous CTMCs the time between

transitions is exponentially distributed. Since the exponential distribution is memoryless, the

future outcome of the process depends only on the present state and does not depend on

when the last transition occurred or what any of the previous states were, and this allows the

Markov property to still hold. In such cases, the rate matrix is actually a three–dimensional

Ri j (s) where, for each pair of statesi and j, there is the corresponding rate parameter of the
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Figure 4.6:PCN equivalent of a Continuous Time Markov Chain

exponential distribution.

Since our goal is to build the PCN corresponding to the chain, let’s start from a CTMC

CMC = 〈S, s0,R〉, whit |S| = n. The equivalentCMCPCN is 〈{S}, {Rate,P},C〉, whereS

is the only location of the system and its domain{s0, s1, . . . , sn} encodes then states of the

system.Rateis a stochastic event generator following an exponential distribution with state–

dependent rateR(t) that triggers an event when the transition condition has been completed;P

is the generator following the distributionP(i, j) = Ri, j(s) for all s in domain(S) which causes

the system to transition probabilistically to a new state s0 when: 1) the system is in state s,

and 2) an event signifying the completion of the race condition has occurred. This general

situation, which applies to any CTMC with discrete state space, is represented in Figure4.4.

The final, last case is the pure analog continuous time Markov processes (CTMP) which

is a special case of stochastic differential equation. The equivalence of CTMPs and PCNs was

showd via the equivalence of stochastic integration
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4.5 Planning, Markov Decision Processes, Reinforcement Learn-

ing

Chapter9 of St-Aubin(2005) discusses the problem of control synthesis and its relation-

ships with PCNs framework. The goal is to introduce the reader to specific techniques that

are especially well suited to synthesize controllers when in the presence of a PCN model. The

focus of that chapter is on(Partially Observable) Markov Decision Processes, or (PO)MDPs,

which are quite popular methods within the AI community because they are effective algo-

rithms to compute optimal policies. St–Aubin showed the existence of a subclass of PCN

models, which he calledsynchfin–PCN, and which has a one–to–one correspondence to the

class of all MDPs. This result is valuable from the point of view of this thesis because it

As mentioned earlier, policies can be viewed as controllers; hence computing a policy can

be seen as control synthesis. It would be extremely valuable to be able to merge the modeling

simplicity and power of the PCN framework with the control synthesis capabilities of MDP.

Maybe one of the most common problems in mobile robotics isplanning under uncer-

tainty, which is also known asdecision–theoretic planning(DTP). In short, a DTP approach

is useful in those systems whose dynamics can be modelled as stochastic processes and where

an agent, acting as a decision maker, can influence the system’s behavior by performing (un-

certain) actions. Resulting from the Markov property, the current state of the system and the

choice of the action by the agent jointly determine a probability distribution over the possible

next states. It is usually assumed that systems evolve in stages, where actions cause

Reinforcement learning is learning what to do–how to map situations to actions–so as

to maximize a numerical reward signal. The learner is not told which actions to take, as

in most forms of machine learning, but instead must discover which actions yield the most

reward by trying them. In the most interesting and challenging cases, actions may affect

not only the immediate reward but also the next situation and, through that, all subsequent
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rewards. These two characteristics–trial-and-error search and delayed reward–are the two

most important distinguishing features of reinforcement learning.

Reinforcement learning is defined not by characterizing learning methods, but by char-

acterizing a learning problem. Any method that is well suited to solving that problem, we

consider to be a reinforcement learning method. The basic idea is simply to capture the most

important aspects of the real problem facing a learning agent interacting with its environment

to achieve a goal. Clearly, such an agent must be able to sense the state of the environment to

some extent and must be able to take actions that affect the state. The agent also must have a

goal or goals relating to the state of the environment. The formulation is intended to include

just these three aspects–sensation, action, and goal–in their simplest possible forms without

trivializing any of them.

We do not intend to cover all those areas here, but rather we wish to introduce the reader

to specific techniques that are especially well suited to synthesize controllers when in the

presence of a PCN model.

A Markov decision processMDP is defined by the tuple〈S,A,P,R〉 , whereS is a finite

set of states of the system, and where states are defined as a description of the system at any

point in time. In a MDP, these states can be exactly identified by the agent, i.e., at any given

time the agent knows exactly which state it is in.A is a finite set of actions from which the

agent can choose;P is the state transition model of the system which is a function mapping

from elements ofS × A into discrete probability distributions overS; andR is a stationary

reward function mapping fromS ×A toR. R(s,a) specifies the immediate reward gained by

the agent for taking actiona in states. Actions induce stochastic transitions, withP(s,a, t)

denoting the probability with which statet is reached when, at the previous time step, actiona

is performed at states. It is to be noted that the transitions of the model specify the resulting

next state using only the state and action at the previous time step. This therefore assumes that

the next state is solely determined by the current state and the current action and corresponds
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to the Markov assumption discussed earlier. It is worth mentioning that not all systems are

Markovian in nature. The Markov assumption is merely a property of a particular model of

that system, not of the system itself. However, one should note that the Markovian assumption

is not too restrictive, since any non-Markovian model of a system can be converted to an

equivalent Markov model. In the field of control theory, this conversion is referred to as the

conversion to state form [Lue79]. Astationary policyπ : S → A describes a particular, time

independent, course of action to be adopted by an agent, withπ(s) denoting the action to be

taken in states. It is often assumed that the agent acts indefinitely (an infinite horizon) but the

finite horizon case has also been studied extensively. In the finite-horizon case however, the

optimal policy is typically non-stationary: the agent’s choice of action on the last step of his

life will generally be very different than when it has a long life ahead of it.

We will, in this short presentation of the MDP framework, assume infinite horizon, un-

less explicitly stated. A possible way to assess the quality of different policies is to adopt an

expected total discounted reward as the optimality criterion wherein future rewards are dis-

counted at a rate0 ≤ β < 1, and the value of a policy is given by the expected total discounted

reward accrued. The expected valueVπ(s) of a policyπ at a given state s satisfies [Put94]:

Vπ(s) = R(s, π(s)) + β
∑

t∈S
P(s, π(s), t)Vπ(t) (4.4)

4.6 Kalman Filter and Bayesian Filtering as PCNs

The Kalman filter (KF) is a very powerful mathematical tool that is playing an increas-

ingly important role in mobile robotics, for example asadaptive filtering devicefor localiza-

tion9. Actually, KF is not the cutting edge of stochastic estimation since it has been around

for about40 years (Kalman1960). However, it turned out to be anoptimal estimator for

9Of course, this is not the only application of KF to robotics, yet this is the most popular in the last few
years. However the present discussion does not rely on one this specific example but rather on the mathematical
properties of the KF as filtering device in general.

Matteo Santoro – Ph.D. Thesis



4.6. Kalman Filter and Bayesian Filtering as PCNs 75

a large class of problems and a very effective and useful estimator for an even larger class;

moreover, it is extremely easy to implement and pretty fast in many practical applications.

All this resulted in a widespread use of the filter and explains its popularity. The following

constructive demonstration of the equivalence between PCNs and KF, then, could result in a

useful contribution.

The following presentation – originally due toSorenson(1970) – is the common way to

introduce and explain the Kalman filter and it is very helpful to catch on to the basics of the

topic. For more extensive discussion on KF and stochastic estimation in general the reader is

referred – for example – to (Lewis 1986) and (Kailath et al.2000); a very helpful tutorial on

KF was written byWelch and Bishop(2001).
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Chapter 5

PCNJ: A Visual Programming

Environment for Probabilistic

Constraint Nets

In the previous three chapters I introduced the PCN framework and I described a model–

checking approach to behavioral verification for Robotics. Furthermore, several examples

have been discussed in order to make it clear how many interesting features and tools PCNs

provide for robotic researchers. However, everything would remain in the realm of abstract

discussions if we didn’t provide an effective toolbox that people can rely on when designing

and modelling their robotic systems.

This chapter describes an integrated programming environment called PCNJ – that stands

for Probabilistic Constraint Nets in Java– which supports probabilistic constraint net mod-

elling, simulation, and animation for any kind of hybrid systems. My contribution to PCNJ

was twofold; as a Visiting Scholar at the Laboratory for Computational Intelligence1 I collab-

orated with Alan Mackworth and Lee Leif Chang on the designing and development of the

fundamental packages of PCNJ2. Moreover, during the last few months, I’ve been involved

in testing the pre–release version of PCNJ. Several tools have been added to PCNJ as side

effects of the implementation of many of the examples described in this thesis.

1At the University of British Columbia, Vancouver B.C., CA
2I focused mainly on the two packagescore andsimulation.
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Some insightful examples based on “concrete” robotic problems are presented in the next

chapters and for each of them a PCN–based program was created in PCNJ. The experiments

conducted on them confirm the effectiveness of PCNJ as a tool for hybrid system modelling

and real-time simulation.

5.1 Concepts of PCNJ

PCNJ is thought to be anintegrated development environment(IDE) for people that want

both to build a PCN and to simulate its dynamical evolution in order to verify the behavior

of a (stochastic) hybrid system. PCNJ allows for the modelling of PCNs that either are pure

software simulations or are coupled with some physical device – for example a software

module that is connected to (and controls) a real mobile robot3.

IDEs are popular and useful pieces of software that assists computer programmers to

develop other software. IDEs normally comprise a source code editor, a compiler or an inter-

preter, and (usually) a debugger. Moreover, numerous tools are provided to further simplify

the “construction” of new software. IDEs are becoming an indispensable support for devel-

oping large pieces of software composed of many independent parts. Typically, IDEs are

not general–purpose environments since each IDE is devoted to a specific programming lan-

guage, even if there exist a few multiple–language IDEs4 such as the Eclipse IDE, NetBeans

or Microsoft Visual Studio. Thus, despite the availability of many professional tools, they are

not suitable for modelling PCNs directly; we cannot rely on them and so we definitely must

face the problem of building a specific IDE for our purposes.

Since our goal is to build an IDE for PCNs creation and simulation, then the first step is to

specifywhich istheprogramming language. So far, in fact, we have not introduced formally

3In such cases the PCN module is the controller of a real robotic body that senses and interacts with its
environment.

4Usually these are professional IDEs and are tailored for the most popular procedural and/or object–oriented
programming languages such as C/C++/C#, Java, Visual Basic
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any programming language. As described in chapter2, PCN framework deals with systems

of equations defined on a dynamics structureD(T ,A) whereT andA denote an abstract

time structure and an abstract domain structure, respectively. Even if it is quite intuitive

how it is possible to move from such an equation–based specification language to a concrete

formal programming language, I believe it is worth describing the transition in a clear way in

order to avoid unwarranted pitfalls. The nice graphical representation for PCNs introduced in

section2.2.2clues us in that our language may be a visual programming language5 (VPL).

Thus, let’s start from the graphical representation of a PCN as a bipartite graph. The graph

that represents a specific PCN includes a group of nodes (the locations) that store the value of

variables over time. Some other nodes (the transductions) represent functional relationships

among variables. Some transductions – the event generators – play a special role since their

output is an event that can trigger other transductions. Event generators whose outputs are

produced at a fixed time rate, can be used as clocks6 and can be attached to both primitive

transductions and generators or to other modules.

The above graph–based picture of PCN closely resembles that of a dataflow computing

model (DFCM). Unlike the more standard, control–flow computing model (CFCM), DFCM

is based on the flow of information between data processing entities, instead of the flow of

control between instructions; more specifically, DFCM assumes that a program is a data–

dependency graph whose nodes denote operations and whose edges denote dependencies be-

tween operations. DFCM executes any operation denoted by a node as soon as its incoming

edges have the necessary operands (seeJagannathan(1996) for a thoroughly description of

dataflow computing approaches). This similarity between PCNs and dataflow graphs was the

bridgebetween dynamical systems and programming languages we had been searching for.

Given the above intuitive idea ofhowthe “PCN programming language” should look like,

5SeeChang(1990) andBurnett(1999) for an introduction to the most important concepts of visual program-
ming language.

6Note that we are not making any assumption about parallelization and synchronization of computation. There
can be either just one or more clocks and they can be either dependent or independent to each other.
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let’s point out some critical issues we’d better consider carefully in order to avoid conceptual

misleading. The original syntax of PCNs deals with abstract mathematical entities; for ex-

ample transductions map input trace spaces to output trace spaces. Hence, the fundamental

concept of time ishard–codedinto the abstract concept of dynamics structure. Any soft-

ware implementation of this abstraction must address the problem of “unveiling the time” and

make it explicit what can trigger the computation in the actual programs. Mathematically,

both primitive and compound transductions can not alter the time structure underlying a trace

whereas event generators can do it – in fact they are used to link continuous and discrete

systems together. Thus, a plausible solution would be to associate athreadof computation to

each syntactical counterpart (in the programming language) of the the event generators, and

let them trigger a (non empty) subset of transductions7 We’ll call these elementsclocks, to

which we associate a fixed firing–rate. We require at least one clock to be specified for each

well–defined program; this is somehow equivalent to the abstract requirement that dynamics

structures relies on at least one abstract time structure.

A final issue we must be aware of is possibility of define independent PCN modules or

sub–nets; the semantics of the modules should be preserved during the computation.

5.1.1 TheLPCN Visual Language

In this section I introduce a visual programming language calledLPCN – based on the

PCNs framework – which underlies the PCNJ IDE. A well–definedLPCN program provides a

software implementation of the corresponding abstract PCN, i.e. the ordered set of the values

of a specificLPCN variable over time is a sample8 of the trace associated to the corresponding

location.

Let’s now define the basic syntactical elements of the language that we calledLPCN :

7There must be at least on transduction per thread, i.e. two distinct thread cannot fire on the same transduction.
8If the PCN is defined on a continuous time structure then this set is actually a sample. It the time structure is

discrete the this set coincides with the trace.

Matteo Santoro – Ph.D. Thesis



5.1. Concepts of PCNJ 80

Circles : these are both theconstantsand thevariablesof LPCN . A circle denotes one

specific location of the PCN, and it stores thevalueof the location over time. The

domain of the circles is the domain of the corresponding location. Thesort a circle is

the corresponding type of domain. We callconstantsthose circles associated to aninput

locationandvariablesall the others. Those circles for which there exists an arrow from

a double border square have themselves a double border, i.e. they are the stochastic

locations.

Squares : these arebuilt–in operators that can act on the values of input circles and whose

output updates the values of the output circle. A circle is aninput circleof the square

if there exists an arrow from the circle to the square. A circle is anoutput circleof

the square if there exists an arrow from the square to the circle. Squares corresponds

to the basictransductionsof the PCN. We adopt the convention thatgeneratorshave a

double border whiletransliterationshave a single border. Each square have a specific

signature and it is possible to draw arrows between a circle and a square only if the type

of the circle satisfy the signature of the square.

Clocks : these are a special type of squares. They corresponds to theevent generatorsof the

corresponding PCN. Each clock has a specificfiring–rate. Arrows can be drawn from

a clock to a transduction directly.

Arrows : these can connect any circle to a square and viceversa. It is not possible to connect

neither a circle to another circle nor a square to another square. It is possible to connect

a clock to a square. Arrows correspond to the connections of the corresponding PCN.

The set of the arrows of aLPCN program must satisfy the constraints imposed on the

connections of the corresponding PCN.

To summarize, the above syntactical elements can be combined together in order to define

a well–formedLPCN program:
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Definition 5.1 (LPCN program) Let’s consider the bipartite graphsG whose vertices are

either circles or squares (or clocks), and whose edges are the arrows. We say thatG is a well–

definedLPCN program iff the corresponding PCN is a well–defined Probabilistic Constraint

Nets. Furthermore, we require that(1) G must contain at least on clock, and(2) there must

exist exactly one arrow pointing to a each transduction and starting from one of the clocks in

G.

Definition 5.2 (PCN programming language (LPCN )) The PCN programming language is

the set of all the well–definedLPCN programs.

The execution of a PCN program is a specific computation given a set of sequences of

input values and a (possibly infinite) sequence offiring signals from each clock to the corre-

sponding transductions. It is easy to show that, given the previous definitions, the semantics

of the program is exactly that of the constraint net, given that we guarantee a correct initial-

ization of the computation. If all the values of the input locations are properly defined at the

initial step then, at each subsequent step, some of the undefined locations are computed and

eventually, the constraint net outputs are computed.

Now that we are equipped with the programming languageLPCN we can face the prob-

lems of designing thecompiler/interpreterfor it. Because we defined a graph–based approach

that is very similar to the dataflow computing model, we adopted the approach of interpreting

by means of a simulation of the evolution of the system. In the section5.4I discuss thoroughly

how PCNJ simulate any PCN, that is to say how theinterpreterdoes work.

In PCNJ, the computation is triggered by a PCN module component is often both con-

nected with and driven by a clock. To evaluate the module correctly, the transductions con-

tained in the module have to be triggered in proper sequence. CNJ uses the transduction

scheduling algorithm to figure out a right dependency relationship within the transductions.

Then the clock triggers those transductions one by one in that order. This approach allows the
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computation of constraint net modules to work as demand-driven dataflow, and it works well.

5.1.2 PCNJ and its Relationships with other Visual Programming Languages

Before presenting the details of PCNJ, I propose in this section a very brief overview

of the most common visual programming languages to whichLPCN and PCNJ should be

compared:

Matlab /Simulink Matlab/Simulink is a visual programming and simulation environment for

continuous and discrete control systems. It enables users to build graphical block di-

agrams, simulate dynamic systems, evaluate system performance, and refine their de-

signs. It is currently the most popular tool for control system modeling and simulation.

However, it is not suited for hybrid system modeling in constraint nets. There are three

reasons for this:

1. First, Simulink is unable to support an event–based time structure, which is an

important characteristic of hybrid systems.

2. Second, although it supports bottom-up modeling well (by grouping), it does not

support top-down and middle-out modeling methods, which are helpful for some

users.

3. Third, in Simulink, all the system models are stored in MDL format (Model De-

scription Language). In addition, since CN has a different graphical representation

from Simulink’s models, the MDL file format is not able to store constraint net

models.

LaBVIEW : LabVIEW is a platform and development environment for a visual program-

ming language named “G”. LabVIEW is commonly used for data acquisition, instru-

ment control, and industrial automation The programming language “G”, is a dataflow

language. Execution is determined by the structure of a graphical block diagram (the
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LV–source code) on which the programmer connects different function–nodes by draw-

ing wires. These wires propagate variables and any node can execute as soon as all

its input data become available. Since this might be the case for multiple nodes si-

multaneously, “G” is inherently capable of parallel execution. Multi-processing and

multi–threading hardware is automatically exploited by the built–in scheduler, which

multiplexes multiple OS threads over the nodes ready for execution.

One main benefit of LabVIEW over other development environments is the extensive

support for accessing instrumentation hardware. Drivers and abstraction layers for

many different types of instruments and buses are included or are available for inclu-

sion. These present themselves as graphical nodes. The abstraction layers offer stan-

dard software interfaces to communicate with hardware devices. The provided driver

interfaces save program development time.

Unfortunately, LabVIEW is a proprietary product of National Instruments. Hence, Lab-

VIEW is not managed or specified by a third party standards committee such as the

ANSI for C. Obtaining a fully compatible and up to date LabVIEW platform requires

purchasing the product. Thus this very promising approach is not suitable for the pur-

poses of the present thesis.

5.2 System Requirements for PCNJ

Because PCNJ is thought to be an IDE for a visual programming language, it should be

able at least to support users todrawa program by means of PCN graphical primitives.

We impose the following requirements on our modeling and simulation environment:

1. it should enable developers to interactively pick components, and place them onto a

work area. These components are CN’s atomic nodes: locations, transductions, con-

nections, and modules;
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2. connecting has to be accomplished in a way where events and data can be exchanged

correctly among the components;

3. the convenient interactive customization of bean properties should be supported by the

environment;

4. there has to be a method to check each CN node’s dynamic values. For instance, users

might wish to see a location’s changing values while a simulation is running.

5. such a modeling and simulation environment has to be simple to use and execute. Also

the designed model should be reusable as a new component in any other hybrid sys-

tem. In this case, a very complicated system can be built by assembling some less

complicated components.

In such a visual programming environment, users “draw” constraint net programs, instead

of writing code for them. The look and feel is intended to resemble the style of some popular

drawing tools such as Adobe Illustrator, MS Painter, and Unix xfig to support constraint net

designing. In addition, to make the GUI respond as quickly as possible, we adopt multi-

threaded programming to minimize the response time to users’ action. In Constraint Nets, a

model possibly consists of dozens of modules that are hierarchically located in different levels.

To support as many modules as possible, CNJ uses Multiple Document Interface (MDI) to

display each module in a child window. Thus, every module component corresponds to a

child window in the MDI desktop.

5.3 Software Architecture of PCNJ

In this section I describe the software architecture of PCNJ. Of course, many details will

be omitted and the focus will be on
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Figure 5.1:Overview of the packages of PCNJ

The approach we adopted to develop PNCJ is to use as much as possible already developed

open–source (or freely available) software. In particular we

An overview of software architecture of PCNJ is in figure5.3. Currently, PCNJ comprises

6 packages, the most important of which is thecore package. It contains classes that are in

ono–to–one correspondence with the syntactical elements of PCNs framework. All the other

packages depends oncore and provides the following features to PCNJ:

pcn.io : contains classes that support I/O capabilities forLPCN programs. It is possible

to save and open each graph associated to aLPCN program. We adapted the XML–

based language introduced bySong(2002) and thus it is possible to save hierarchical

description of PCNs into textual files by means of abstract XML syntax. Moreover it is

possible to import/exportLPCN programs as pure JAVA objects because every class in

thepcn.core package implements theSerializableinterface9. A further I/O capability

is provided by thepcn.builder package and thus it is possible to saveLPCN programs

9See some JAVA reference for further detail.
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as image.

pcn.exceptions : contains several utility classes to handle almost any of exception that

can be generated within PCNJ.

pcn.simulator : contains classes the allow us to generate execution traces for eachLPCN
program. Classes in package exploit the properties ofClocksto be autonomous threads

of computation; they start the computation andlisten to the changes produces to the

value of output traces. JFreeChart and Swing allow for the displaying of traces over

time.

pcn.builder : contains classes that allowed us to createPCNJ–Builderthat is, actually,

the graphical user interface of the IDE discussed in this chapter. Most of functional-

ities of PCNJ–Builderare provided by the free libraryJGraphon which we strongly

rely. JGraph provides a range of graph drawing functionality for either client–side or

server–side applications. JGraph has a powerful API that allows for the visualization,

manipulation, automatic layout managing and, finally, it provides tools to make some

analysis of graphs. JGraph complies with all of Swings standards, such aspluggable

look and feel, data transfer, accessibility, internationalization and serialization. Further-

more, advanced features such as undo/redo, printing and XML support, the standard

Swing designs are also included. JGraph also complies with the Java conventions for

method and variable naming, source code layout and javadocs comments.

pcn.psg : contains classes useful to simulate a PCN–based controller that govern either a

real robot or a simulated body/environment. This package should be considered an API

to the open–source, popular robotic interface PLAYER/STAGE/GAZEBO.
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5.3.1 PCNJ–core package

The most important part of PCNJ is, definitely, thecore package. It contains one specific

class for each syntactical element ofLPCN hence it can be used in two different ways:

• people that want to design PCNs by means of thePCNJ–Builderuser interface can

simply drag and drop graphical tokens and draw arrows between them. Hence, each

class of thecore package might be inherited by a corresponding class in thebuilder

package that have some further display/visualization capabilities.

• people that

5.4 Simulations of PCNs within PCNJ

One of the most important feature of the current version of PCNJ is the simulation of the

dynamical evolution of anyLPCN program that stands for an abstract PCN.

The simultaneous evolution of several traces – each with its own time structure – is deeply

founded upon the idea of parallelism. Transliterations encodes functional mappings between

trace spaces and are used to constraint the evolution of the output trace space based on the

actual state of the input locations. If we really want to build a software simulation of these

difficult abstract concepts we can not avoid to use parallel computation. Hence we developed

a multi–thread mechanism within PCNJ in order to – let’s say –executeaLPCN program.

The basic idea is well schematized in figure5.4.

Each Clock is an independent thread of computation with its ownfiring–rate; thus the

life–cycle of a that specific thread is as follows:

1. fires an event for each transduction that are connected with an arrow exiting from the

clock;
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Figure 5.2:UML diagram of thecore package in PCNJ
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Figure 5.3:A schematic representation of the mechanism for activate the computation of a
Transduction in PCNJ

2. tells the java virtual machine that it can sleep for a∆t interval of time (depending on its

firing–rate;

3. wait until the java virtual machine re-activate the thread, and start again from point1.

When fired by a Clock, then the transduction should simply read the inputs from its input

locations and compute its output which will be set as the new value of the output location.

The scheduling mechanism for the activation of the Clocks is managed directly java virtual

machine. Properlocksare defined over the variables in order to guarantee the correctness of

the computation.

The final problem we must face is the scheduling of the activatio sequence of the trans-

ductions controlled by a single clock. In PCNJ we adapted an algorithm proposed bySong

(2002) which is described as follows.

This algorithm aims at specifying a correct order to drive the transductions; it is based

on thetopological sorting algorithm. Topological sorting is a natural problem in many algo-
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Figure 5.4:(Taken fromSong(2002)) An example of a PCN whose transduction are activated
by a single clock; and thus they must be scheduled correctly in order to simulate the PCN
correctly.

rithms on directed acyclic graphs (DAG). Topological sorting orders the vertices and edges

of a DAG in a simple and consistent way. It can be used to schedule tasks under dependency

constraints. The problem of topological sorting is described as follows:

Input : A directed, acyclic graphG = (V,E) (also known as a partial order).

Problem : Find a linear ordering of the vertices ofV such that for each edge(i, j) in E, vertex

i is to the left of vertexj.

The topological sorting problem is also applicable to constraint net graphs. Suppose we

have a set of transductions to be driven in a PCN module, and certain transductions must be

computed before other transductions. These dependency constraints thus form a constraint

net (also a directed graph). The transduction scheduling algorithm searches for an order to

execute the transductions, such that each is performed only after all of its previous transduc-

tions are executed. In the implementation, it utilizes the breadth-first algorithm to transverse

the constraint net graph, but in a backward way (from output interface locations to input in-

terface locations). The algorithm picks vertices in hierarchical levels with the output interface

locations as roots. That is, if a vertex has an out–degree–count0 it can be next in the topo-

logical order. Then, the algorithm removes this vertex and looks for another vertex with an
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Figure 5.5:(Taken fromSong(2002)) The hierarchical tree after sorting.

out–degree–count0 in the resulting DAG. It repeats this until all vertices are added to the

topological order. Figure5.4 represents a constraint net example to illustrate the algorithm;

it shows a constraint net module. After applying the breadth-first algorithm to transverse

the graph from the end to the beginning, together with an out–degree–count in each node, a

linear order is reached in figure5.4, where the numbers denote the order of the node in the

breadth-first transverse. However, the order in figure5.4 is not the final result yet, since the

sequence number is calculated with the roots of the output locations instead of the input lo-

cations. Therefore in figure5.4, a correct order is finally acquired after reversing the order in

figure5.4. Based on the final order, the execution of the module works correctly. Although the

ordered sequence includes both transductions and locations, the clock only needs to trigger

the transductions. The transduction scheduling algorithm, however, does not work without

the condition that the constraint net has to be a directed acyclic graph (DAG). Sometimes

constraint nets have feedback connections resulting in a few cycles in the graph. In the com-
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Figure 5.6:(Taken fromSong(2002)) The sorted order to fire the transduction.

plex case of a directed cyclic graph, those cycles have to be broken up, and then it becomes

an acyclic graph. In PCN modules, a cycle forms when there is a backward connection for

creating a feedback. To run the simulation, the particular location in that feedback cycle has

to be assigned an initial value (or else, the involved transduction can never get inputs to com-

pute). Such a special kind of location is regarded as a “heuristic tip” for breaking up cycles.

When designing a constraint net and confronting a feedback cycle, designers are required to

paint the special location in a non-white background color. It also reminds designers to assign

an initial value to that location before starting the simulation.
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Chapter 6

Concrete Applications of PCNs

Framework

This final chapter I describe some concrete applications and problems that are relevant

to the research on autonomous robotics. For each problem I propose a PCN–based solution,

and furthermore I discuss interesting implications resulting from it. More specifically, I focus

on problems arising in two broad areas of robotics: they are(1) behavior–based motor co-

ordination of mobile robots and(2) object recognition and localization for camera–equipped

robots.

Robots that use Vision to sense the environment naturally need the ability to recognize

objects in the scene. Indeed, assistive robots are supposed to interact actively with the en-

vironment and so the further ability to localize and (eventually) reach the objects is crucial

too.

Robotic architectures refer to formal models and structures that define a software and

hardware framework for controlling robots. They describe the interactions between the com-

ponents in this framework and provide a structured way for building controllers.

6.1 Several Paradigms for Robot Architecture Design

Mackworth proposed that there are three main research paradigms in robotics, namely

Good Old Fashioned AI and Robotics (GOFAIR), Insect AI and Situated Agents, which have
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evolved dialectically. GOFAIR utilizes deliberative architectures, Insect AI employs reactive

architectures (e.g. subsumption architecture) and Situated Agents advocates the emerging

thesis, which is called deliberative/reactive architectures. Characteristics of these paradigms

are explained below.

6.1.1 GOFAIR

GOFAIR (e.g. first mobile robots such as Nilsson’s Shakey) approach is the first paradigm

developed for robotic agent construction. It strongly depends on a set of restrictive assump-

tions about the agent, the world and interaction between the agent and the world. These

assumptions can be listed as follows:

• There is a single agent in the world. Therefore, cooperation between multiple agents is

not possible.

• The world can be accurately and completely modelled by the agent and it stays static

unless the agent changes it. Hence, the agent does not have the capability to react

towards dynamic changes in the world.

• The agent has definite knowledge of everything related to completing its goals and it

can predict all the effects of its actions that have been carried out towards reaching these

goals. Thus, non-deterministic actions are not supported. Also actions are performed

in sequence and concurrent actions are not supported.

Planning constitutes the main activity of the GOFAIR controller. These systems use hi-

erarchical deliberative planners, which have modules that are delegated to clearly identifiable

subdivisions of functionality. Modules interact with each other in a predetermined manner

and higher modules in the hierarchy provide subgoals for lower modules. Reasoning with rule

based manipulation of symbolic structures in the world model is defined as “intelligence” and
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sensing and acting in the real world are referred as “secondary concerns”. Sensing is only

needed to determine the initial state of the real world in order to construct the world model.

Actions that are carried out to reach goals are produced by reasoning in this world model.

Since all effects of the actions can be predicted and these predictions can be used to update

the world model without percepting the changes in the real world, sensing is not required

to maintain the world model. Thus, sensing is not used to produce intelligent actions after

the initial model is constructed and it is not directly connected to the acting. However, in-

telligence in nature is created by the interconnectivity among sensing, reasoning, and acting.

Hence, separating them into three distinct modules by assigning importance priorities can not

be a scalable approach.

6.1.2 Insect AI

Insect AI (e.g. earlier works of Brooks such as Genghis) paradigm is the antithesis of GO-

FAIR approach. It advocates reactive architectures. Insect AI does not make an assumption

about the world being static and deals with robotic systems that inhabit in environments which

are unstructured, dynamic and lack temporal consistency and stability. It uses animal models

of behaviour as a basis for construction of these robotic systems, where sensing and acting is

tightly coupled to produce realtime responses. Since the actions are produced in a reflexive

manner with hardwired reactive motor behaviours, reasoning and the use of world models are

minimized and planning is eliminated in these systems. Thus, one important drawback of

Insect AI is that it can only produce low-level intelligence, which can be observed in animals

of nature such as insects.

Brooks proposed the following principles for reactive behaviour-based robotics:

• Situatedness: The robot is a real physical system grounded and embedded in a real

world, here and now, acting and reacting in real time. There is a strong two way cou-

pling between the robot and its environment. The world is its own best model and robot
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does not operate upon abstract representation of reality but rather real world itself. The

robot continuously refers to its sensors rather than to an internal world model.

• Embodiment: The robot has a physical body and its interactions with the world cannot

be simulated faithfully. The embodiment of robots is critical for two reasons. First,

only an embodied robot (not the simulation of it) is fully validated as one that can deal

with real world. Second, only through physical grounding can any internal symbolic

systems find a place to bottom out and give “meaning” to the processes going on within

the system.

• Intelligence: Intelligence is determined by the dynamics of interaction of the robot with

its world. Simple things to do with sensing and acting in a dynamic environment are

necessary basis for high-level intelligence. Therefore, the valid approach for building

intelligence is to follow bottom-up model. Consequently, the dynamics of interaction

between the robot and its environment are primary determinants of intelligence not the

reasoning.

• Emergence: It is hard to point a single component as a source of intelligence. Intelli-

gence is not a property of either the agent or the environment in isolation but is rather

a result of interplay between them. The way in which the intelligence emerges is de-

scribed quite differently by GOFAIR and behaviour-based robotics. In GOFAIR, the

components of the controller are delegated to “functions” such as sensing, planning,

modelling, and learning. The “intelligent behaviour” of the system (e.g. avoiding ob-

stacles, standing up, etc.) emerges from interaction of these “functional” components.

However, in behaviour–based robotics, components of the controller are defined as be-

haviour producing. The “intelligent functionality” of the system (e.g. sensing, learning,

etc.) emerges from the interaction of these “behaviour” components.
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6.1.3 Situated Agents

Emerging synthesis of GOFAIR and Insect AI is called as Situated Agents (e.g. robots

developed by the CBA framework such as Dynamite vehicles). Since they can pursue goals

as they react to unpredicted real-time changes in their environments, the robotic controllers

designed with this paradigm are both deliberative and reactive. When the uncertainty in the

world is restricted and some guarantee is given that no change exist in the world during the

execution of the system, the world can accurately be modelled. In these situations, deliber-

ative methods can be used to carry out a complete plan. However, to execute this proactive

plan, neither deliberative architectures of GOFAIR nor reactive architectures of Insect AI can

be used. Deliberative structures can not be deployed, since all the assumptions of GOFAIR

paradigm can not be true in the real world. Reactive counterparts of these architectures can

also not be utilized since they do not support planning. Therefore, hybrid deliberative/reactive

robotic architectures have emerged under the Situated Agents paradigm. In hybrid architec-

tures, the controller should be able to integrate world knowledge and goals to arrive at a

plan prior to execution. It should also be able to respond rapidly and effectively to dynamic

changes that occur within its world. Since, the traditional deliberative controllers attempt to

pre-plan for all eventualities, they often cause the planning process not to terminate. They

commit to arbitrary length plans and do not allow the robot to change its goals in response to

unpredictable changes in the world. The reactive approach, on the other hand, is very good

at dealing with the immediacy of sensor data but is less effective in integrating world knowl-

edge. Hence, hybrid architectures of Situated Agents paradigm do not center on reactive

versus deliberative control but rather on how to synthesize a control regime that incorporates

both types of structures. They use symbolic methods and abstract representational knowledge

of GOFAIR and maintain the Insect AI’s goal of providing the responsiveness, robustness

and flexibility. Situated Agent paradigm follows Brooks’ principles of reactivity. As in In-

sect AI, Situated Agent paradigm challenges GOFAIR by grounding the agent in space and
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time by proposing tight coupling of sensing and acting. However, it does not follow Insect

AI’s efforts on reducing reasoning and representation, but rather integrates reasoning with

sensing and acting while creating necessary world models. In addition, opposing to Insect

AI paradigm, Situated Agents allows planning to be the part of system if needed. However,

planning is not the essential activity in Situated Agents as it is in GOFAIR paradigm. Indeed,

in this approach, sensing and acting take a preeminence over knowledge representation and

planning. Other differences can be listed as follows: Situated Agents approach can have mul-

tiple agents in a dynamic world, whereas GOFAIR can only have a single agent in a static

world. As in Insect AI paradigm, Situated Agents can operate on unstructured and uncertain

environments (e.g. soccer field), whereas GOFAIR is only suitable for structural and highly

predictive environments (e.g. manufacturing). Speed of response of the controller increases as

we shift from GOFAIR (which mostly uses offline computational models) to Situated Agents

(which uses online computational models) and from Situated Agents to Insect AI. However

level of intelligence decreases as we shift from GOFAIR to Situated Agents and from Situated

Agents to Insect AI.

6.2 Subsumption Architecture

Subsumption is a reactive architecture developed by Brooks which focuses on priority-

based arbitration of task-achieving behaviours. Each behavior is represented as a separate

layer. Lower levels have no awareness of higher levels and this provides the basis for bottom-

up incremental design. The name subsumption arises from this design, where higher level

behaviours (e.g. avoid collisions) are added on top of lower level behaviours (e.g. move

around) by using priority-based arbitration. Hence, complex behaviours always include sim-

pler behaviours (e.g. in order to avoid collisions the robot should move around). Thus, this

architecture allows us to follow the the evolutionary path and to start building simple agents
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in the unpredictable real world in order to construct targeted complex systems. Traditional ar-

chitectures used in GOFAIR paradigm also advocates layered controller structures. However,

subsumption architecture and traditional architectures are layered along completely different

dimensions as seen in Figure (TO BE INSERTED). GOFAIR architectures use sense-plan-act

vertical models where each layer is dedicated to a separate functional unit such as sensing,

modelling, planning, and acting. Layers in this model work sequentially and synchronously.

The subsumption architecture use a horizontal model where each layer is dedicated to a sep-

arate task-achieving behaviour and each behaviour embodies functional units such as sensing

and acting. Layers in subsumption work concurrently and asynchronously. Each layer of

the subsumption architecture is constituted by networks of augmented finite state machines

(AFSM). AFSMs can be defined with a formal model called Behaviour Language which is

also developed by Brooks. Finite state machines in AFSM are augmented by timers which

enable state changes after predetermined time periods. Reset signals are used to restore be-

haviour to its original state. Each AFSM encapsulates a particular behavioural transformation

function and has an input and output signals in addition to reset signal. Input signals which

refer to stimulus of the behaviour can be suppressed and output signals which refers to re-

sponse of the behaviour can be inhibited by other active behaviours. These mechanisms of

suppression and inhibition enforce priority-based arbitration of behaviours and permit com-

munication between layers. However they restrict this communication heavily. The real world

itself becomes the primary medium of communication in the following way: Actions taken

by one behaviour create changes within the world and at the same time, sensing element of

each layer, which reports new perceptions of the world, communicate those changes to the

other behaviours. Hence, in subsumption architecture, world models which uses symbolic

representations do not exist. Consequently, reasoning and planning activities are not a part of

the architecture. Since no representation and reasoning is used, this architecture is called as

Şpurely̌T reactive and only based on a synergy between sensing and acting.
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6.3 Object Recognition and Detection

Recognizing objects is one of the fundamental challenges in computer vision. Roughly

speaking, the goal of an object recognition (OR) system is to answer the question:Is this

(specific) object present in the scene?. Sometimes, actually, the focus is not on a specific

object but rather on the broader class (or category) to which it belongs1. In such a case the

question is somehowlessaccurate. For example we could be interested in the presence of a

car in the scene regardless of its model or color.

As I have said above, sometimes robots need to knowwherethe object is (with respect

to some reference frame) and not onlyif it is present or not in the scene. Quite surprisingly,

not all OR systems are able to provide this last clue2 and thus it seems useful to distinguish –

among them – those that actually do. Henceforth we will call Object Detection (OD) Systems

those systems that recognize objects and further locate them into the scene. It is worth saying

here that this definition of OD is a bit less standard and (of course) more controversial the one

proposed for OR systems. Many authors would agree with it but some could argue that the

boundary between the two is quite fuzzy. It is not my concern to defuse such a controversy

here but I believe that, for the sake of clarity, it is useful to keep separated the two kinds of

systems because there is a huge difference between them from the practical point of view.

In our everyday life we are so many times involved in recognizing objects (or object

classes) that the task seems to us straightforward and we definitely underestimate how difficult

it is to perform it by means of an artificial, computer vision system.

One of the main difficulty faced by a recognition system is the problem of variability, and

the need to generalize across variations in the appearance of either distinct objects belonging

to the same class or the same object seen from different views. In fact, We consider an object

1Identifying objects as members of a class, such as cars or dogs, is often referred to asobject categoriza-
tion, while identifying individuals within the same class is referred to asobject identification. I adhere to this
convention.

2See, for example,Serre et al.(2005) in which the feature vector takes account of the image as awhole to
check if an object is present or not.
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to be a part of – or token in – a sensory signal. The precise representation of the object within

the signal can undergo changes such as scaling, translation, or other deformations, or it can be

contaminated by noise or be partially occluded. These changes give rise to an entire collection

or class of signals which can all still be associated with the original object.

6.4 Algorithms for Object Detection and Recognition

The number of new papers and algorithms for Object Recognition proposed yearly in the

Computer Vision community is definitely huge. An exhaustive review of all of them is quite

impractical. However it is possible and very helpful indeed to try to classify them according

to theconceptualapproach they are based on. Such a categorization will make it easier for us

to see the pros and cons of each method and thus to focus on the one that most likely could fit

in with our system.

The first, broader split is definitely the one betweenappearance–basedandfeature–based

methods. Each of them can be further divided into two separate groups that we callglobaland

local. This latter split takes account of the information used to decide if the object is present in

the scene or not. Loosely speaking, global methods have a holistic approach to classification

while local ones aims at detecting (almost independently) smaller components of the objects

first. The specific way of building the “model” fo the object leads us to a final methodological

differentiation that is somehow independent from and indeed overlays the previous ones.

The “visual” appearance of an object in an image stands for the combined effects of its

shape, reflectance properties, pose in the scene, and illumination conditions. Thus it seems

quite plausible to describe and characterize the objects by their global appearance and this

can be done – at least in principle – by means of an exemplar of how the object should look

like in the scene. In the simplest cases the model is simply built from one or more (entire)

images that contain the object in the foreground; this technique is calledexample–drivenand
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among others has been successfully deployed in (Papageorgiou and Poggio2000, Sung and

Poggio1998)3. Given the exemplar, the most popular strategy is based on representing it as

point in a high-dimensional space, and then performing some partitioning of the space into

regions corresponding to the different objects or object classes. In order to partition the space

a variety of methods have been used: the most common ones are nearest–neighbor classifica-

tion, vector projection to the nearest manifold (Murase and Nayar1995), feed–forward neural

networks (Sahambi and Khorasani2003) or support vector machines (dos Santos and Gomes

2002).

Alternatives to the “global” approaches can be found among those methods that attempt to

describe all object views belonging to the same class using a collection of some basic building

blocks – a kind of local appearance descriptors – by extracting several local image patches.

Over the years, researchers’ feelings about appearance-based approaches have had highs

and lows. Indeed, the approach is conceptually simple and has led to a variety of successful

applications, e.g., illumination planning, visual positioning and tracking of robot manipu-

lators, visual inspection and human face recognition. Nevertheless, these methods are not

robust to occlusion and suffer from a lack of invariance to scale, rotation and – of course –

changes in the viewpoint. Moreover, the high–dimensionality of the representation is a final

problem not easy to overcome if one wishes to use many of the standard learning techniques

for pattern recognition.

In order to (partly) overcome this last severe weakness of the appearance–based methods

people switched to a moreparsimoniousrepresentation by means of the so called principal–

component methods. In this methods, a collection of objects within a class – for example a set

of faces, cars or bikes – are used and described as a set of (grey-level)N–dimensional vectors,

and the principle components of the training images are extracted. The principal components

are then used as the building blocks for describing new images within the class, using linear

3It is worth making it clear that the authors did not use pure appearance–based description, though.
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combination of the basic images. For example, a set of “eigenfaces” is extracted and used

to represent a large space of possible faces. In this approach, the building blocks are global

rather than local in nature.

As we shall see in the next section, the building blocks selected by our method are inter-

mediate in complexity: they are considerably more complex than simple local features used

in previous approaches, but they still correspond to partial rather than global object views.

6.5 The proposed method

In this section I describe an OR schema that overcomes some of the difficulties and lim-

itations mentioned above. The schema comprises several pieces of algorithms and methods

that I’ve cited in sec.6.4. The main novelty of the schema lies in the way the modules hang

together. The system is able to recognize (specific views of) an object of interest in a cluttered

background and even in presence of partial occlusion. Interestingly enough, it is further able

to recognize a specific person – let’s call this person theinstructor – among several people

and, by “looking at” what he holds in his hands, to acquire the model of a new object of in-

terest on the fly. The main asset of this system to socially assistive robotics is the possibility

to “ask” a robot to search for any new object (i.e. never seen before)

6.5.1 Face Detection

In order to interact with people, the ability of recognizing faces is crucial. Almost any

socially assistive robot might be able – at least – to detect people in the scene very quickly and

without too much computational load so that we can design a basic behavior that continuously

search for faces popping up in the scene. Such an event can therefore “trigger” a refinement

of the recognition and check if the person (just detected) can be ignored or if some kind of

interaction is needed. This basic behavior in my system is provided by a module for fast
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Figure 6.1:Examples of rectangle features. The sum of the pixels which lie within the white
rectangles are subtracted from the sum of pixels in the black rectangles. This figure has been
adapted from (Viola and Jones2001)

In this section I give the bare essential of the system for face detection described in (Vi-

ola and Jones2001). Furthermore, I outline how it is possible to define a prior probability

P(body|x, y) = P(body| f ace, x, y) of the pixel(x, y) to belong to the body of a person given

that his face is present in a neighborhood.

The module classifies images based on the value of simple features that are strongly rem-

iniscent of Haar basis functions – already used for object recognition byPapageorgiou et al.

(1998). The authors describe three different kind of features (see fig.6.1):

• two–rectanglefeature is the difference between the sum of the pixels within two rect-

angular regions with the same size. The regions can be aligned either horizontally(A)

or vertically(B).

• three–rectanglefeature is the sum of the pixels within a central region subtracted by

the sum of the pixels within two regions that are at the opposite sides of the central one

(C).

• four–rectanglefeature is the difference between diagonal pairs of rectangles(D).

Given a base resolution of the detector, thousands of these simple features can be extracted

from each image. However this computation can be speeded up by using theintegral image

trick that involve an intermediate representation for the image4 that contains, at each location

4This intermediate representation is calledIntegral Imagein order to emphasize its use for the analysis of the
image.
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(x, y) the sum of the pixel sabove and to the left ofx andy, inclusive. It is easy to show that

the sum of all the pixels within a region can be computed by simple addition and subtraction

of the value of the corner pixels in the integral image.

Given this set of features, the learning . . . (Freund and Schapire1995, Schapire et al.

1998).

6.5.2 Skin Detection

The part of the system that provides information about where the robot might “look at” in

the scene in order to acquire the model of a new object of interest is basically a skin detection

module, i.e. it uses skin color as a feature for hand detection. There are two main problems we

must face in order to build a robust skin detection module. First, what color space to choose

and second, how exactly the skin color distribution should be modelled. Once the skin pixels

have been located, a third issue is how to segment the image in order to locate exactly the

region where there are the hands that is to say – in our specific case – where the new object of

interest is in the image reference frame.

In the literature, we find two main approaches to skin detection:region–basedandpixel–

based. According to the former one, spatial arrangement of pixels plays some part in the de-

cision to assign a label to each pixel (Kruppa et al.2002, Jadynak et al.2002, Yang and Ahuja

1998). While pixel–based skin detection methods classify each pixel as skin or non-skin in-

dividually, independently from its neighbors – see (Vezhnevets et al.2003) for a complete

survey on these latter methods.

In order to develop the module for skin detection I preferred to use the pixel–based ap-

proach because it has been shown to be faster than the other one while keeping the perfor-

mance at high level in a wide range of applications.

The most common camera used in mobile robotics are simpleRGBcolor camera and so

– for what concern the color space – a quite obvious choice is to work in the standardRGB
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color space. It is the most widely used color space for processing and storing of digital image

data. However, it has two main drawbacks:(1) channels are high correlated between each

other, and(2) information about chrominance and luminance is fused together. ThusRGB

does not seem to be a favorable choice for color based skin detection algorithms. The easiest,

obvious candidate as a color space is one obtained fromRGBby a simple normalization:

r =
R

R+ G + B
g =

G
R+ G + B

b =
B

R+ G + B
. (6.1)

This normalization leads to two interesting properties. First, the sum of the three com-

ponents is known (r + g + b = 1) and so one of them can be obtained from the other two:

we can omit it, reduce the space dimensionality and speed up the computation. Second, it

has been shown (Skarbek and Koschan1994) that normalizedRGBis invariant (under certain

assumptions) of changes of surface orientation relatively to the light surface.

A second, popular color space is the so calledHS Vspace that separates outHue (which

color it is) fromSaturation(how concentrated the color is) andValue5 that is tightly related

to the brightness of the pixel. Here are the formulas for color conversion fromRGBto HS I

(Gonzalez and Woods2002):

H = arccos
1
2((R−G) + (R− B))√

(R−G)2 + (R− B)(G − B)

S = 1− 3
min(R,G, B)
R+ G + B

(6.2)

V =
1
3

(R+ G + B+).

The main advantages of usingHS V color space is that(1) it uses an extremely intuitive

manner of specifying color – for instance, it is very easy to select a desired hue and then

5Sometimes this last channel is calledIntensity.
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HSV_cylinder.bmp

(a) Cylindrical representation

HSV_cone.bmp

(b) Conical representation

Figure 6.2: Two standard visualization methods of theHS V color space. The Cylindrical
representation might be considered the most mathematically accurate. However the cone
visualization is more practical in most cases because of the limited range of precision of RGB
values for digital images.

to modify it slightly by adjustment of its saturation and intensity – and(2) it explicitly dis-

criminates between luminance and chrominance. Thus hue channel, at least in principle, is

invariant to surface orientation (relative to the light source) and to highlights at white sources:

often ambient light can be considered “approximatively” white. Moreover, good results have

been obtained by using onlyH andS to detect skin pixels. However, there are several unde-

sirable features of this color space that are related to the discontinuities ofH and to the fact

that, in practice, the number of visually distinctS levels decreases asV approaches zero (see

figure6.2 for more details). Therefore, in the limitV → 0, H becomes quite noisy and use-

less, since the small number of discrete hue levels cannot adequately represent slight changes

in RGB. To overcome this problem, a simple trick could be to ignore pixels that have very

low V value. This means that we cannot use the system on very dim scenes. Further, at very

low saturation (S ' 0), variations amongH values are tiny and not appreciably different using

the usual discrete,256–levelsH scale. Therefore it is a common practise to ignore pixels that

have very lowS value.

A further color space is the so calledYCrCb – it is commonly used by European television

studios and for image compression work. The space is represented by means of three principal
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components:Y (that encode luminance) and two color difference valuesCr andCb that are

formed by subtracting luminance fromRGBred and blue components.

Y = 0.299R+ 0.587G + 0.114B

Cr = R− Y (6.3)

Cb = B− Y

This transformation is easy to compute, yet it explicitly separate luminance and chromi-

nance components. These two motivations make this color space also attractive for skin color

modelling.

In order to build a complete skin detection module, the second step is to define a decision

rule, that discriminates between skin and non-skin pixels. This is usually accomplished by

introducing a metric, which measures distance (in a general sense) of the pixel color to skin

model. In the probabilistic framework, the metric is encoded by means of a probability distri-

bution of each pixel – represented by a vectorc in the color space – to be either a skin–pixel

(P(skin|c)) or a non–skin–pixel (P(¬skin|c)). Though it would be nice to assess directly how

“correct” it is to assign the labelskinto each pixel6, it is not possible to computeP(skin|c) di-

rectly from the data. Instead, we can compute how likely is for a color valuec to be classified

as skin or not, that is to computeP(c|skin). These two quantities can be related by means of

the Bayes rule:

P(skin|c) =
P(c|skin)P(skin)

P(c|skin)P(skin) + P(c|¬skin)P(¬skin)
. (6.4)

From this equation, a simple decision rule can be constructed by introducing a threshold

6Actually, this is exactly the meaning ofP(skin|c), since it tells us the probability of observing skin given a
concretec color value.
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Θ so that we label as skin all those pixelsc that satisfy the inequality:P(skin|c) ≥ Θ (Jones

and Rehg1999). However this requires us to know the two priorsP(skin) andP(¬skin) and

compute the normalizing factor. It is possible to avoid that and define a new decision rule by

means of the ratio ofP(skin|c) to P(¬skin|c), that is:

P(skin|c)
P(¬skin|c)

=
P(c|skin)(1− P(skin))

P(c|¬skin)P(skin)
∝ P(c|skin)

P(c|¬skin)
(6.5)

It has been possible to get rid ofP(skin) in the equation because it doesn’t depend on each

pixel value and can be taken into account only during the choice of a fixed absolute threshold.

The several methods proposed in literature differ from one another in the way they com-

pute P(c|skin) from the data. The most straightforward methods are the non parametric

ones (Birchfield 1998, Sigal et al.2000, Soriano et al.2000), which use a histogram based

approach. The color space7 is quantized into a number of bins corresponding to particular

range of color8. Each bin stores the number of times this particular color occurred in the

training skin (and non skin) images. After training, the histogram counts are normalized,

converting histogram values to discrete probability distribution. Two clear advantages of the

these methods are:(1) they are theoretically independent to the shape of skin distribution in

the color space and(2) they are fast in training and usage. This last property is quite appealing

in the robotic context we going go use this module. On the opposite side, the main drawback

is their inability to interpolate or generalize the training data. Moreover, they require much

storage space to store the LUTs; sometimes, in order to reduce the amount of needed memory

and to account for possible training data sparsity, coarser color space samplings are used –

128× 128× 128, 64× 64× 64and32× 32× 329.

The need for more compact skin model representation along with ability to generalize and

7Usually, the authors use the chrominance plane only.
8In literature, 2D or 3D histograms are referred to as lookup tables (LUT).
9The evaluation of differentRGBsamplings in (Jones and Rehg1999) has shown, that32× 32× 32shows the

best performance.
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interpolate the training data stimulates the development of parametric skin distribution mod-

els. I considered only the most populare of them (the Mixture of Gaussians modelling) ap-

proach that is able to describe quite well also complex–shaped distributions. The parametrized

pdf is:

P(c|skin) =

K∑

i=1

αi exp

{
−1

2
(c− µi)

TΣ−1
i (c− µi)

}
, (6.6)

where,µi andΣi are, respectively, the mean vector and covariance matrix of each gaus-

sian in the (either2D or 3D) color space,K is the number of mixture components andαi

are the so–called mixing parameters that obeys to the normalization constraint:
∑

i αi = 1.

Model training can be effectively performed with the Expectation Maximization (EM) algo-

rithm (Yang and Ahuja1999, Terrillon et al.2000). The numberK of components must be

chosen taking into account that the model needs to explain the training data reasonably well

with the given model on one hand, and avoid data over-fitting on the other. In the literature,

choices range fromK = 2 to K = 16, but a less number of components is preferable because

it allow a faster model learning stage with less training samples.

In the chapter?? I present experimental results obtained with each of the three previous

color spaces and both the classification techniques. By taking into account both performance

and results I decided to keepWHICH ONE???in the complete system.

6.5.3 Sift Features Extraction and Robust Matching

The purpose of this assignment is to learn how to perform object recognition and image

matching using local invariant features. The family of features I used is the one based on the

SIFT approach described in (Lowe2004).

In order to compute the features and find the matches among points for each image pairs,

I used the pre–compiled binary detector and the simple Matlab matching program provided
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on David’s home page. The matching algorithm can read lists of keypoints and match them

between images.

Figure??shows the output of the matching produced by the software. Basically, it extract

features from each of the two input images calling the binary detector and then draws lines

between features that have close matches.

The key idea behind the program is very simple: the best candidate match for each key-

point is found by identifying its nearest neighbor in the list of keypoints of the second image.

The nearest neighbor is defined as the keypoint with minimum Euclidean distance for the

invariant descriptor vector. For efficiency in Matlab, it is cheaper to compute dot products

between unit vectors rather than Euclidean distances10.

It is very likely that many features from an image won’t have any correct match in the

other one because they correspond to background clutter or occlusion or more simply because

they are detected in one image only. Therefore, it is necessary to define a way to detect and

discard features that do not have any good match in the other list. A naive approach could

be to define a global threshold of the neighbor distance, but it can be easily proven that this

method is not reliable at all. In (Lowe2004), again, Lowe proposes to look at the comparisons

between the distance of the closest neighbor to that of the second–closest one. The rational

behind this approach is the following: we expect that a correct match is highly distinctive and

so no keypoint (other than the closest one) should be too close to it. This approach works

quite well since, generally, many matches are found and only a small fraction are incorrect.

However, as shown in figure??, some image pairs could be very difficult to match and a more

sophisticated approach is needed.

In order to obtain better results, we should consider what kind of information can help

us to assess the correctness of a candidate match. We could use that information to design a

validity checkingfor each match and discard only those that do not satisfy the criteria. This

10The ratio of angles is a close approximation to the ratio of Euclidean distances for small angles. In the Matlab
function theacosof dot products is computed and the result is simply used as distance measure.
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cascadeapproach should help us to improve the precision while keeping as high as possible

the recall of the system since we only try to filter out wrong matches (decrease the number of

false positive).

The key observation that can provide us with a suitable approach is that correct matches

will usually have other nearby features vectors that provide consistent matches, while incor-

rect matches will usually not be consistent with their neighbors.

This idea can be translated easily in an algorithm indeed. For each match from the first

image to the second, we should check theN other closest matched features in the first image

and check that at leastK of them provide locally consistent matches. Unlikely from the above

approach, herecloseis related to the image distance.

The lastbrick in this building is a compact and effective definition oflocal consistency

among matches. Our feature vector, now, are the4–dimensional vectors:k = (R,C, θ, σ)

whereR andC are the row and the column respectively of the keypoint in the image.θ is

the orientation in radians andσ is the scale. The main problem with thek vectors is that

they can non be compared homogeneously. For instance, it is worth measuring the similarity

between to angles in radians as the difference of them. If we consider the scale, though, it

could be more useful to compute the ratio. So, for example, if two keypoints in the first match

have an orientation difference of∆θ radians, then the consistent matches should also have an

orientation difference close to∆θ. However, the ratios of scales (and not the differences) for

each match should be similar too. The last cue for a goodlocal consistencymeasure, comes

form the spatial proximity of keypoints: two keypoints in the first list that are close each other

must have matches that are close too. A simple comparison of these two distances, however,

will fail miserably since the occurrence of the object in the second image con have different

scale as well: that’s one of the strength point of SIFT features and we don’t want to loose it,

of course.

Given the previous considerations, I propose to use anad–hocthe similarity measure for
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keypoints within the same listi:

δi12 = δi(k i1 − k i2) =

[
Ri1 − Ri2

σi1
,
Ci1 −Ci2

σi1
, θi1 − θi2,

σi1

σi2

]
(6.7)

Definition in Eq. 6.7 is not a Euclidean metric and it is not a metric at all, actually. It

is, instead, a kind of similarity vector that we can use, effectively, to assess how close two

keypoints are.

Two keypointsk and l, within the same neighborhood in the list1 and with a similarity

vectorδ1kl , are said to be consistent if their corresponding matches in the list2have a similarity

vectorδ2kl such that:

δ1kl − δ2kl ≤ alpha (6.8)

Whereα is a threshold vector specified by the user.

The algorithm

The pseudo–code of the algorithm is the described in program1:

6.5.4 Object Recognition

In this section I describe a probabilistic recognition method that detects an instance of a

specific object in the scene. The method relies on finding highly probable matches from SIFT

feature vectors extracted in the image of the scene to those extracted from a a snapshot of the

object.

Thus the first hypothesis is that we can build a modelMO of the objectO we wish to find

and that the model is represented by a list of keypoints extracted by an exemplar of how the

object should look like. Even if this method depends strongly on the appearance of the object,

actual information is not the image itself – as for appearance–based methods – but instead is
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Program 1 Match Validity Check
INPUT:

L1, L2: keypoint list of the first and second image respectively;
M: list of candidate matches;
N: size of neighborhood;
K: minimum number of consistent matches in each neighborhood;
alpha: threshold vector;

OUTPUT:
M1: list of matches that pass the validity check;

create a copy,M1, ofM;
for each k1i ∈ L1

Ni ← N nearest neighbors of k1i in L1;
k := 0;
k1 j ← the nearest neighbor in Ni ;
while (k < K) AND (there are still vectors left in Ni)

k2i = the candidate match in L2 of k1i

k2 j = the candidate match in L2 of k1 j

δ1i j (1) =
|R1i−R1 j |
σ1i

; δ1i j (2) =
|C1i−C1 j |

σ1i
; δ1i j (3) = |θ1i − θ1 j |; δ1i j (4) =

σ1i
σ1 j

;

δ2i j (1) =
|R2i−R2 j |
σ2i

; δ2i j (2) =
|C2i−C2 j |

σ2i
; δ2i j (3) = |θ2i − θ2 j |; δ2i j (4) =

σ2i
σ2 j

;

∆ = |δ1i j − δ2i j |;
if ∆ ≤ α

k = k + 1;
end if
k1 j ← the next nearest neighbor in Ni ;

end while
if k < K

Discard the match forM1

end if
end for
return M1

built upon a number of local features that are coded in the SIFT space. More formally, the

modelM is a set:

MO =
{
kO

j

}
j∈J (6.9)
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whereJ is an index set whose cardinalityM depends on how many keypoints have been

found in the exemplar image. Similarly we can describe each image over time by means of a

set11:

I = {k i}i∈I . (6.10)

Given this representation approach for both the model and the images of the scene, we

can state the problem of finding an instance of the object in the scene as follows:

Definition 6.1 (Recognition Problem Statement)For each imageI, find a subsetO ⊆ I of

the list of keypoints whose elements match most likely one corresponding keypoint in the list

MO.

That is to say find all the candidate subparts of the occurrence of the object in the scene.

Once all candidate subparts are detected we check if they are consistent. Only those keypoints

that pass the check can give us information about object position and orientation over the im-

age plane and its scale factor with respect to the model. In order to make these considerations

more formal and to translate them in an algorithmic form, I propose the following work flow

to solve the Recognition Problem6.1. For each imageI:

1. extract the keypoints using the technique described in section?? and associate a de-

scriptor to each keypoint;

2. assign a measure to each keypointk i ; we callPMO(k i) = P
(
k i |kO

1:M

)
P

(
kO

1:M

)
this mea-

sure and it is the probability ofk i to represent a part of the objectO. Such a probability

is the product of the likelihood termP
(
k i |kO

1:M

)
– that assess how likely it is to findk i

in the image given the model – and a priorP
(
kO

1:M

)
over the model keypoints12.

11For the moment we can omit to mention explicitly the time in the notation.
12In section?? I describe a reasonable choice of the priors.
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3. asses the presence of the objectO by means of a probability measureP(O is present|I) =

PMO(k1:N) that is a function of allN the candidate keypoints extracted fromI.

4. (if the object is present) compute the mean values of position, orientation and scale of

k1 : N and assign them to the object.

The proposed method is fairly straightforward yet it is quite robust as you can see from the

experimental results presented in chapter??. However we still miss three main ingredients:

the explicit form of the probability measures and a decision rule to assess the presence of the

object in the scene. We can introduce them by using the following arguments.

Recall from section?? that we discard all those keypoints whose distance from the closest

kO
j ∈ MO is much the same of that from the second–closest one. This criterion leads to a

robust keypoint detector (Lowe2004), so as a first instance I suggest to use a similar measure

to define a probability over the keypoints extracted from each image. Let’s calldi j = ‖∆(k i)−
∆(kO

j )‖, with i ∈ I and j ∈ J, the distance between the descriptor vectors associated to each

keypoint. Then we can defined′i = min
{
di j

}
i∈I , j∈J andd′′i = min

({
di j

}
i∈I , j∈J

)
/d′i and introduce

the likelihood measure:

P
(
k i |kO

1:M

)
= exp

−
(

d′i
d′′i

)2 (6.11)
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Chapter 7

Conclusions

Throughout this thesis I adhere to a schematic picture of a robotic system as a combina-

tion of a controller and abody immersed in theirenvironment(see figure1.1). This is the

insightful picture that underlies theProbabilistic Constraint Netsframework introduced by

Robert St–Aubin (St-Aubin2005, St-Aubin et al.2006) for the modelling and simulation of

stochastic hybrid dynamical system. Formal syntax and semantics are provided for PCNs

in order to assess the correctness of the models. The framework comprises a specification

language (average timed∀–automata) and some verification algorithms too; they allow for

the formal specification of behavioural constraints on the system and enable us to make on–

average/probabilistic verification of the requirements. If one adopts this approach to design

robotic architectures, then thebehaviorof a robotic system is defined as the set of observed

robot/environment traces. Thus, any behavioral requirement can be formally specified as a

subset of all the possible traces1.

In short, theformal methods for roboticsproposed by this thesis are based on the

following guidelines. Given some requirement specifications2, one should model the bodyB
and the environmentE, and then build a suitable controllerC, such that the behavior of the

resulting system satisfies the requirement, that is to say, it verifies the fundamental equation:

[[X = B(U,Y),U = C(X,Y),Y = E(X)]] |= R
Therefore – at least in principle – within the PCNs framework it is always possible to

provide formal guarantees that the robot meets (or does not) the specified requirements.

1That is to say the subset of all the traces that satisfy the given property/constraint.
2For examplegoal achievementR, safety guarantee, andbounded responseto unexpected events.
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This is a valuable asset to the robotic research context, because it is a first concrete answer to

the growing need for a common, comprehensive framework for modelling autonomous

robots. As extensively discussed in the introduction, this is well motivated by the recent

trend in building robots that interact autonomously with people, and even assist disabled

people through social interaction.

The contributions of the present thesis to the PCNs framework are threefold. First, in

chapter4, I discuss the relationships between PCNs and several deterministic/probabilistic

modeling frameworks commonly used in Robotics. More specifically I consider Artificial

Neural Networks, Continuous Time Recurrent Neural Networks, Markov Chains and Markov

Processes, Reinforcement Learning systems and Markov Decision Processes, and finally,

Bayesian Filtering and Kalman Filters. I show that they can be considered as special cases of

the PCNs framework, by providing – for each model – the PCN that actually preserves the

semantics of the computation – i.e. the propose PCN computes exactly the same thing.

Second, in chapter5, I describe an integrated programming environment called PCNJ – that

stands forProbabilistic Constraint Nets in Java– which supports probabilistic constraint net

modelling, simulation, and animation for any kind of hybrid systems. I co–developed PCNJ

with Alan Mackworth and Lee Leif Chang from the University of British Columbia

(Vancouver B.C.,CA).

Third, in chapter6, I discuss some concrete applications and problems that are relevant to the

research on autonomous robotics. For each problem I propose a PCN–based solution, and

furthermore I discuss interesting implications resulting from it. More specifically, I focus on

problems arising in two broad areas of robotics: they are(1) behavior–based motor

coordination of mobile robots and(2) object recognition and localization for

camera–equipped robots.
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