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Abstract

This thesis seeks to provide some concrete answers to the growing need for a common,
comprehensive framework for autonomous robotics. In fact, in the last few years, the focus
of the robotic research is increasingly on building robots that interact autonomously with
people, and even assist disabled people through social interactionnévhisboticsposes
new tough challenges for researchers. Long before autonomous (assistive) robots will show
up all around us, we need sound ideas and quantitative methods to asses both their reliability
and our safety in this new scenario. We might be able at least to guarantee that the behavior of
a robot satisfies a set of global constraints — e.g. a safe and bounded response to unexpected
events — or that the robot will eventually always accomplish its own task no matter whether
the environment is static or not and whether fully observed or not.

The Probabilistic Constraint Nets (PCNs) Framework, propos&iti#\ubin et al (2006
andSt-Aubin (2005, seems to be a first concrete answer to the above mentioned problems.
While the mathematical foundations have already been built, much work had yet to be done
in order to make the framework acceptable in the robotic community. My work took up
where St—Aubin’s thesis stopped. | contributed to the PCNs framework in several ways.
First, | discussed extensively the benefits and some of the limitations of using PCNs as a
formal modelling language for robotic systems. Furthermore, | investigated the relationships
between learning and PCNs. As a result | show here that most of the computational tools
usually deployed to build robotic architectures by means of some learning device can be
effectively expressed by means of PCNs. In order to narrow the gap between theory and
practice, | introduce the software package called PCNJ as¢factiee development tool for
robotic researchers. Finally, | explored the possibility of introducing formal methods also in

the context of Computer Vision methods for robotics.
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Chapter 1

Introduction and Motivation

1.1 Thesis Statement

Because robots are on the verge of leaving timgiustrial cagesand they are now poised
to enter our homes and workplaces, robotic researchers are going to face new tough chal-
lenges. Above all, they must overcome a number of potentftudities in designing and
modelling very complex robotic systems, while preserving two crucial properties: reliability
and also harmlessness.

While many dforts are being produced to attack directly specific sub—problems, I believe
that better results can be obtained in the long—term by developing a comprehensive, theoretical
framework for the design of autonomous robotic systems. ffectve integration and fusion
of all the contributions from many disciplines will produce a result that is much better that the
simple “ad hoc aggregate” of all the parts.

This thesis aims at providing convincing arguments in favor of Probabilistic Constraint
Nets as a viable candidate for the framework we are searching for. | show that most of
the computational tools usually deployed to build robotic architectures cafidutieely ex-
pressed by means of PCNs. | discuss the advantages we can obtain with this kind of approach
and the usefulness of a cross—fertilization between PCNs and the other formalisms. In order
to narrow the gap between theory and practice, | introduce the software package called PCNJ
as an fective development tool for robotic researchers. Finally, a number of concrete robotic

problems are presented and it is shown how we can overcome some dfithétats, related
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to them, by using Probabilistic Constraint Nets and PCNJ.

1.2 New Concerns and Challenges in Robotics

“Can we trust robots?

This is definitely a tricky question, yet | believe it is among the most challenging ones
that robotic researchers are asked to answer in the next few years.

First of all, for the sake of clarity, allow me to spend a few words to say what the question
is not about. It is not about fear and scare. We must try to keep real Robotics and fiction as far
apart as possible. During the p&§tyears, loads of books and movies have been warning us
about the danger of a robotic “rebellion” against human beings. Indeed, we must admit they
certainly caused a deep feeling against a wider use of robots in our everyday life. Actually, if
we remain in the realm of fiction then Asimov’s Three Laws of Robolsriov1942) may
be enough to prevent us from being attacked deliberately from robots.

Unfortunately, the solution is not so straightforward, so we'd better move on to the real
world again. We need scientifically grounded answers, and the first step is to understand
better which is actually the problem. If we looked at tiobot market more carefully we
would realize that robots are leaving th&idustrial cagesand are now poised to enter our
homes and workplaces. This consideration leads us back to the initial question because, of
course, many concerns may arise naturally about safety implications of (semi)autonomous
robots sharing the same environment with human beings beyond the factory domain. Given
this scenario, | believe that the initial question is ill-posed because it doesn’t focus enough on
the real problem. Indeed, | suggest changing it slightly:

“Can we trust people that sell us a robbt?

Although at a first glimpse it might seem completelftelient from the original one, this

new question goes to the core of the same problem and has the further merit of bringing the

Matteo Santoro — Ph.D. Thesis
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issue back to a scientific level. Moreover, it is definitely more demanding then the previous
one because itimplies that the hypothetioslot retailers— and, mostimportant, the Research
Institutions' that are behind them — must be able to guarantee at least the following two

conditions:

1. the robot we are going to buy — and that is going to share our living space — has a proven

track record of reliability or, at least, it is certainly not harmful.

2. given that we need the robot to accomplish a specific task for us, there must exist a kind
of “guarantee certificate” that the robot will always eventually reach the goal state, no

matter how much noisy and unpredictable the environment is.

Although these requirements are exactly what any piece of electronic equipment is re-
quired by law to guarantee when we buy it, they still sound quite strange for a robot. The
reason for that lies on the policy adopted by robot manufacturers so far. In fact, nowadays
robots are present massively in almost all factories because they have been shown very help-
ful in industrial applications like assemblage and carriage of goods and loads. Most of the
time industrial robots are huge, metallic arms ending with strange hooks, clamps, harpoons or
spray guns; they are fenced for safety and people are not allowed to enter inside while they are
switched on. It seems that the standard solution to the problem of robot—human interaction
was the safest one: let’s try to prevent the interaction completely. Indeed, despite the intro-
duction of these and many other, more sophisticated safety mechanisms, robots have caused
many victims over the years: people have been crushed, hit on the head, welded, etc. Last
year, there wer&7 robot-related accidents in Britain alone, according to the British Health
and Safety Executive.

What happened in the field of industrial Robotics can give us a clear picture of how dif-

ficult the problem is. To keep people separate from robots didn’'t work in controlled envi-

1Both private (such as, for example, Sony or Pioneer) and public (such as Universities worldwide).
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ronments such as factories; it is very unlikely it will work in far less controlled environments
such as kitchens and living rooms. The picture is not more reassuring for us if we look at what
is being done in order to make the interaction safer in those cases we cannot completely pre-
vent it. The most popular approach is to program the robot to avoid any contact with moving
objects (and thus with people). Despite the fact that the approach can sound quite simplistic,
some good results have been obtained. Moreover, we must acknowledge that the problem is
much harder that it sounds mainly because a robot that simply avoids anything on his path is
quite useless in many applications.

The problem of regulating the behavior of robots is even worse if we consider that they
are being increasingly built on autonomous—learning mechanisms. As robots are becoming
more complex and — in some sense — “smarter”, they are less predictable and tend to go wrong
in unforeseeable ways.

To summarize things, the general feeling within the robotic research community is that
we definitely need something more sophisticated than the above solutions. Actually, several
promising events happened during this last year, and it is very likely that things are going to
changé. Many research groups are trying to make robots safer and, furthermore, several of
them are promoting an intense preliminary debate about concerns and practical problems for
socially interactive robots. A worth mentioning example — and maybe a first step towards a
new deal within theechnological innovation landscapeis the EU-founded ETHICBOTS
project that aims at coordinating a multidisciplinary group of researéhtis the common
purpose of identifying and analyzing techno—ethical issues related to the integration of human
beings and artificial (softwafleardware) entities.

| deeply believe thatféective solutions will derive primarily from a severe criticism for

2The Economist — Technology Quarterly published an interesting article (Jun,8th,2006) about new
trends of Robotics and related safety problems. The electronic version can be downloaded from:
http://www.economist.com/science/displayStory.cfm?Story_ID=7001829

3There are contributions from artificial intelligence, robotics, anthropology, moral philosophy, philosophy of
science, psychology, and cognitive science.

Matteo Santoro — Ph.D. Thesis
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and a revision of current methodologies used to design robotic systems rather than from any
technical, partial advance in preventing human-robot harmful interactions. Throughout this
thesis I'm going to promote a wide discussion about meehitectural guidelines for both

robotic systems modelling and behavior specificatierification.

1.3 Design and Modelling of Hybrid Systems

In the previous section, | described the first motivation behind the present body of work.
A second one, perhaps even more interesting and urgent, is related to the problem of hybrid
systems design and modelling. Hybrid systems consist of interacting discrete and continuous
componentsTomlin and Greenstre 002, Maler and PnuelR003. Practical examples of
hybrid systems include, among others: elevator systems, electric power distributions, auto-
mated factories, air tfAc control systems, autonomous space craft controls.

Robots, of course, are further examples of hybrid systems. Indeed, they are among the
most complex ones and we still lack a coherent methodology to design them. In order to make
it clear what I'm talking about, let me quote from this insightful definition of Robottal{

lam and Bruynincki2006).

[...] Robotics is to a large extent a science of integration, constructing (models
of) robotic systems using concepts, algorithms and components borrowed from
various more fundamental sciences, such as physics and mathematics, control
theory, artificial intelligence, mechanism design, sensor and actuator technology.
The function and properties of a robotic system depend on the components from
which it is made — the specific sensors, actuators, algorithms, mechanism — but,

beyond that, they depend on the way those components are integrated. [...]

This definition draws an interesting picture of robotics as a melting potftérdint dis-

ciplines that contribute to the development of these autonomous systems. Actually, | think

Matteo Santoro — Ph.D. Thesis
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that the definition can be considered a road map to successful robotic system design because
it clearly states the crucial importance of the overall architecture of the system beyond its
constituent parts.

The focus of robotic research, then, shouldbeon finding new, &ective architectural
strategies an¢R) on defining adequate specification languages that allow the system — and its
properties as well — to be represented as a unified schema. In other words, a big amount of
efforts might be devoted to studying formal models for hybrid systems, and the ultimate goal
is to define structured formal languages for the specification of systems and their requirements
and to develop methods for the verification of system behaviours.

In order to understand which kind of formal method we need, we must have a clear picture
of the (hybrid) system under investigation. Thus, let’s consider whath@tic systenis, from
a systemic point of view: basically it is a coupling ofabotic agerit to its environmentThe
robot itself comprises two distinct modulesbadywhich usually encompasses the various
sensors and actuators, andamtroller, which is usually a piece of software that controls the
behavior of the agent.

With its sensors, the agent’s body senses the environment, and reports to the controller
what he perceived. The controller, given the updated piece of information about the state of
the environment, sends appropriate control signals to the actuators of the body to perform the
required actions which change the environment.

Figure/1.1is a pictorial representation of a robotic systems. It shows how the coupled
agent and environment act on — and react to — each other in a closed-loop system evolving
over time.

Many critical issues arise when we try to model such a system as a whole:

¢ all the circuits and most of the hardware (of the body) are analog;

4Throughout this thesis | use the terrobotic agentsrobot or simplyagentas synonymous.

Matteo Santoro — Ph.D. Thesis
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Reactions
suopoy

External
Disturbance

Figure 1.1:The structure of a constraint-based agent system

e controllers and software components that “govern” the behavior of the agent are (mostly)

digital;

¢ theinteraction between robot and environment is governed by a very complex dynamics
that, due to the limitations in modelling of such systems, exhibits uncertainty and very

often behaves probabilistically;

e various other types of uncertaintffect the system: for example, those originating from
external disturbances, sensor noise and uncertainty in the correct execution of actions

by the actuators;

¢ the closed-loop system of figulel comprises real objects that evolve in real time: we

must be able to analyze the model in real time too.

Matteo Santoro — Ph.D. Thesis
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This previous list refers to a lots of veryfficult research problems and this somehow
explains why only a few attempts have been made to develop formal methods for robotics. It
is easier to attack specific subproblems, while hoping that the combination and coordination
of all the results will come soon.

However, up to now there are already a few research groups concentrated on the topic of
using formal methods for robotics systems. A book chapter has been devoted to a preliminary
discussion about the topitdgics in Artificial Intelligence2004. Preliminary approaches
to safety analysis were proposed also/8eWward et al199%; however they do not cover
the verification and validation procedseuschen et a(1998 dealt with fault—tolerant robot
architecturesLankenau and Meyg1999 proposed a fault—tree based method as a general
verification approach for reactive systems. He emphasize the importance of employing formal
methods for the design of robotic systems.

Although almost all the researchers do agree with the urge of formal methods in robotics
— as exhaustively discussed above — this very short survey of the most relevant literature is a
proof that this is still a pioneering research area. The first real, formal approach proposed so
far is the Constraint Nets Framework and its stochastic generalization, on the path of which

I've been working during the preparation of this thesis.

1.4 The Ins and Outs of my Research Work and Summary of

Contributions

In the two previous sections | outlined a number of general, methodological problems
that are emerging as central in robotics. The attempt to find suitable and concrete solutions
to them has inspired my research work and this thesis from the very beginning. However, |
acknowledge that such a long range goal may be considered quite pretentious and far beyond

the scope of a single thesis. This is clear in my mind, and thus in this section | briefly reformu-

Matteo Santoro — Ph.D. Thesis
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late the main purposes of the present dissertation by pointing out only the main contributions

more precisely. They can be classified on thrékedint levels:

1. (methodological levélto provide a (substantially) new point of view in the debate about

methodologies for modelling autonomous robots;

2. (theoretical levelto contribute to the development of the Probabilistic Constraint Nets
framework by discussinfil) the relationships between learning systems and PCNs; and
(2) the the possibility of introducing formal methods also in the context of Computer

Vision methods for robotics.

3. (practical leve) to propose solutions to specific problems that are emerging within the
research area of autonomous robotics; the most important contribution (at this level) is
the development of PCNJ, an integrated development environment for people that want

to design, build and “run” a PCN—based robotic architecture.

The work described in this thesis is well related to the reséstratly activity I've done
as Ph.D. student. In fact, during Ph.D. program | have been studying a quite wide spectrum
of research topics that goes from Computer Vision to Robotics through Machine Learning.
The experience | accumulated in these areas provided me with the idea that most of the major
advances in Robotics will be more relatedatghitectural featureshan to specific subparts
of the system.

Throughout this thesis | try to balance the description ffedénttools® — borrowed from
different research fields — against the proposal of formal meihants new, ective de-
sign approaches for robotics. | tried to link every practical solution to its methodological
counterpart in the attempt to provide insightful elements for the general discussion about the

modelling and critical systems.

5Both conceptual and practical.
5The ones based on the Probabilistic Constraint Nets framework.

Matteo Santoro — Ph.D. Thesis
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1.5 Plan of the thesis

The thesis is organized as follows:

Chapter 2 : | present the basics of the Probabilistic Constraint Nets (PCNs) framework that
has been originally introduced I&t-Aubin (2005 to model any kind of stochastic,
hybrid dynamical system. Even if the usefulness of the framework extends far beyond
the scope of robotic research field, | believe that Robotics is the natural domain for
exploiting PCNs and thus this chapter focus on some of the most interesting issues that

can be useful in Robotics.

Chapter 3 : | summarize the notion of average—timédautomata and discuss its links with
behavioral specification and verification within the PCNs framework. Many mathemat-
ical details of the approach are omitted in order to guarantee a more general, conceptual

understanding.

Chapter 4 : I look more carefully into the relationships between PCNs and several determin-
istic/probabilistic modeling frameworks commonly used in Robotics. | show that they
can be considered as special cases of the PCNs framework, by providing — for each
model — the PCN that computes exactly the same thing, i.e., the proposed PCN actually

preserves the semantics of the computation.

Chapter 5 : | describe an integrated programming environment called PCNJ — that stands
for Probabilistic Constraint Nets in Java which supports probabilistic constraint net

modelling, simulation, and animation for any kind of hybrid systems.

Chapter 6 : | discuss some concrete applications and problems that are relevant to the re-
search on autonomous robotics. For each problem | propose a PCN—-based solution,
and furthermore | discuss interesting implications resulting from it. More specifically,

| focus on problems arising in two broad areas of robotics: theylgteehavior-based

Matteo Santoro — Ph.D. Thesis
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motor coordination of mobile robots anf@) object recognition and localization for

camera—equipped robots.

Matteo Santoro — Ph.D. Thesis



Chapter 2

Probabilistic Constraint Nets

Framework

In this chapter | present the basics of the Probabilistic Constraint Nets (PCNs) framework
that has been originally introduced B+Aubirn (2005 to model any kind of stochastic, hybrid
dynamical system. Even if the usefulness of the framework extends far beyond the scope
of robotic research field, | believe that Robotics is the natural domain for exploiting PCNs
and thus this chapter and the following ones focus mainly on some of the most valuable
contributions of PCNs to Robotics.

PCNs formalism is built on a topological, measure—based description of both time and
domain structures. This abstraction is the main strength of the framework because it makes
it possible:(1) to model time and domains as either discrete, continuous or hybrid structures,
and (2) to describe uncertainty within the system appropriately (i.e. avoiding unwarranted
over—simplifications of the model). This flexibility of the framework is a great asset as it
allows the designer to describe complex systems under the umbrella of a single modelling
language.

Since it is far beyond the scope of my thesis to discuss and demonstrate all the theorems
and properties of the formalism, | refer the reader to the original wer&Ubin2005) for a
more thoroughly description of PCN framework. Therefore | focus on those aspects that are
more related to my own work and are essential for the overall comprehension.

This chapter is organized as follows: an informal discussion about the motivations that led

12
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to the current formulation of PCNs framework is in sec@B.1. The formal syntax of PCNs

is then described in sectidh2.2where a number of examples are provided in order to make

it clear how it is possible to build a PCN—-based model given a concrete hybrid system. The
formal semantics along with some insightful comments are in se2tdrAs already pointed

out, PCNs framework is heavily based on quite a number of rigorous mathematical concepts
and theorems which the reader should be familiar with. However, in order to make it easier
to understand the topics discussed in the chapter some of the most important mathematical

concepts are shortly summarized in sectoh

2.1 Mathematical Concepts

Let’s start with some mathematical concepts on which both syntax and formal semantics
of PCNs are based. | reproduced or adapted in this section some of the definitistaabin
2005 and Zhang1994). The main properties of the underlaying mathematical structures are
summarized without giving any formal demonstration. The reader can find a more compre-
hensive introduction to the required mathematical concepi&emignanil967 Hennessy
1988 Manes and Arbil1986 Wargé1972) (for what concerns topology and metric spaces) or
in (Billingsley /1986 Breiman1968 Williams|1991) (measure and probability theory). Chap-
ter 3 of (Zhang1994) is a useful compendium for modelling dynamics without uncertainty
while the extension to uncertain dynamics are well summarized in chamk(St-Aubin

2005).

2.1.1 Time

The first pillar of the PCNs framework is the conceptiofeand its evolution. In general,
without loss of generality, we can think of tin¥e as a totally ordered set with a minimal

element that we call the “initial start time”. Furthermore, associated Witthwe need a

Matteo Santoro — Ph.D. Thesis
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suitable metric to compute “the distance between any two time points” and a measure to talk
about “the duration of an interval of time”.

Formally, we can define:

Definition 2.1 (Time Structure) Anabstract time structuris a triple (7", d, i), provided the

following conditions hold:

1. 7 is alinearly ordered set7", <), and0 denotes the least element;

2. (7, d) forms a metric space amdisatisfies the equality

d(to, t2) = d(to, t1) + d(t1,t2) Vip <t1 <to.

Furthermore the two set#|d(0,t) < 7} and {t|d(0,t) > 7} must have a greatest and a

least element respectively, for 8l < supgd(0,t)|t € 7};

3. (T, o, u) forms a measure space, wheralenotes the Borel set of the metric topology
associated witR7,d) and u is the corresponding Borel measure. If we consider the
subsets$ts, tp) = {tt; <t < to}, thenu must satisfy the inequalify([t1, t2)) = u([0, t2)) -

u([0,t1)) < d(ty, 12).

Very often, if no ambiguity arises, it is possible to use simpiyto refer to the time
structure(7", d, u). The natural choice is to defipg[ts, t2)) in terms ofd(ty, t), even if this is
not necessarily the case.

Given the previous definition, the notion of infinite time, as well as those of continuous

and discrete time can be stated formally:

e Atime structures isinfinite iff 7 has no greatest element gn@™) = .

e Atime structures is continuousft its metric space is connected.

Matteo Santoro — Ph.D. Thesis
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e Atime structures is discreteiff its metric topology is discrete.

It can be easily shown that the set of natural numb&edong with the standard metric
d(ty, to) = [to—t1] and the measupg]0, t)) = t is an example of infinite, discrete time structure.
Both the same metric and measure can be defined on the set of non negative real ®Rimbers
in order to obtain a continuous time structure. Disconnected sets — like the union of intervals
| € R* —form time structures that are neither discrete nor continuous when they are equipped
with the same metric and measure defined above.

The relationship between twoftBrent time structures is a further, worthwhile issue to dis-
cuss because it is related to the notiomede&rence time mappind.et{7, d, u) and{7, d, )
be two time structures, we will say thag is thereference timef 7" — and tha is thesample

timeof 77 — is there exists a mappig: 7 — 7 satisfying the following properties:

the order among time points is preserved;t.e.t’ impliesh(t) <, h(t"),

the least element is preserved; h0) = Oy,

the distance between two time points is preserveddite, t>) = d,(h(t1), h(t2)), and

the measure on any finite time interval is preservedui(f, t)) = ([0, h(t))).

For exampleR* becomes theeference timef N if we define a mapping : N - R* so
thath(n) = n. The notion of reference time is useful for the event—based systems, as it will be

clearer soon.

2.1.2 Domains

Now that we are equipped with the notion of abstract time structure, we need to formalize
the concept of abstract domain structure too, so that we can define uniformly both discrete

and continuous domains.

Matteo Santoro — Ph.D. Thesis
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Intuitively, we can distinguish between two types of domasimple domainendcom-
posite domains The former denote basic data types, such as reals, integers, Booleans, and
characters; while the latter are related to arrays, vectors, strings, etcetera. The formalization
of simple domain is quite straightforward: basically, it is a well-definedAset elements
— so that we can we decide if an elemargither belongs t&\ or is undefined irA — and a
metricsda to compute the distance between any two elements dfhe specification ofiy
induces directly a metric topologyand a partial order relatioga on A; we can thus define
formally a simple domain as either a p&dtU{_La}, da) Or a triple(AT, <A T), WhereL means
undefined il andA = AU{La}. A composite domain is defined recursively based on simple
domains since it is the product of a familyf domains. The family can be either finite or

infinite, and either countable or uncountable. In general we state the following:
Definition 2.2 (Domain) The tripIe(A_, <a T)is adomainiff:
e itis a simple domain; or

e it is a composite domain, i.e. it is the product of a family of dom#&As <a,, 7i)}iel
such that A, <a) is the product partial order of the family of partial ordef&\;, <a)licl

and(A, ) is the product space of the family of topological spalgés, 7i)}ic .

Given such a broad definition of domain, we might ask how it is possible to manage the
diversity among dterent types of data. Intuitively, for any domain its partial order topology
characterizes the information hierarchies of data and its derived metric topology characterizes
the limit properties of data. Furthermore, as it will be clearer very soon, the PCNs framework
relies on the concept of transductions that are mathematical models of general transforma-
tional processes; and thus we need a syntactical structure for specifying data types associated

with such functions. The following two definitions are introduced for this purpose.

Definition 2.3 (Signature) A signatureX is a pair (S, F) whereS is a set of sorts an# is a

set of function symbolsprovided that:
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e F is equipped with anapping type F — S* x S whereS* denotes the set of all finite

tuples ofS;

e foranyf e F, typgf) is the type off, i.e. typgf) = (s", sy meansf : s* — s.
A domain structure of a signatukeis defined as follows.

Definition 2.4 (£—domain structure) LetX = (S, F) be a signature. A-domain structure
is a pair ({As}ses, { {2} fer ) Where for eacts € S, A is a domain of sors, and for eachf € F
(f : s —rightarrows), A : X|As — Asis a function denoted by, which is continuous in

the partial order topologym

2.1.3 Traces and Events

Traces are functions from a time structyfeto a domainA of values. They can be
represented as a mapping 7 — A. A special type of trace is the so calleglent trace
er . 7 — Bwhose domairB is a boolean set with only two distinct elements (€@nd1).

In the PCNs framework the concept of trace is a crucial one because it allows us to de-
scribe the evolution of physical variables over time. Moreover, the notion of event trace
provides a connection between continuous and discrete time structures. In fact, we can define
an eventas a transition either forrd to 1 or from O to 1 of some event trace, and then we
introduce theevent—based timhat is the set of all events in the trace. The time domain of an
event trace is, of course, theference timef the event—based time.

Unfortunately, simple traces and event traces are not suitable for dynamical systems that
encompass uncertainty. For this purpose we must generalize the notion of trace to that of
stochastic tracén order to be able to describe random changes of values over time. Formally,
a stochastic traces a mapping/ : Q x 7 — A from a sample spac® and a time domain

7 to the value domair\. It is easy to see that, for a giveme Q, the functionv,, : 7 — A
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satisfy the above definition of trate

As usual, in the presence of uncertainty we are more interested in the distribution of a
system rather than in one specific configuration sampled fernThus, we prefer to look
at the distribution of traces of a system rather than to pay attention to one given execution
trace. In fact, the distribution of a stochastic trace provides complete information about the
probability of the state of the system at every finite time point. However it is not possible to
represent explicitly trace distribution values at infinite time points and so we must rely on the
concept of limiting distribution of a stochastic trace because it assesses the behavior of the

system in the long run. The following example will make this clearer.

Example 2.1 Let’s consider the system denoted by the equation:

V(w, 1) = 1+ Bi(w)e™, (2.1)

whereB;(w) is a Brownian motion process. It is straightforward to show that, for dach
vis normally distributed andr, = N(1, te"2). Intuitively, all the traces will exhibit a initial,
transient stage of variability but then, aincreases, the spread of all the points is harrowed
by the negative exponential term of the variance. In the long term all the possible traces will
be undistinguishable and independent from the specific sampieQ. Formally, we can
compute the limit distributiondim_,., N(1,te™®) = AN/(1,0), which confirms the previous
informal considerations. Figur2.1 shows one specific execution trace of the system; the
transient stage is pretty short and, after ab&@0 samples, the system converges to vadlue
and doesn't fluctuate away from it any more, despite being influenced by a Brownian motion

with increasing variance.

Some mathematical fliculties may arise when we deal with limits in distributions of a

stochastic tracg, i.e. v may not have an unique limit. This problem is discussed and solved

1we will usev to denote both the stochastic tracandv,, when no ambiguity caan arise
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Figure 2.1:0ne specific execution trace of the system described by eqifafion

in Chapter2 of (St-Aubiri200%), to which the interested reader is referred.
The set of all the possible stochastic traces is namedttehastic trace spacand will
be a useful, synthesizing concept. The definition below formalize this concept as a composite

domain so that we can use topological concepts to talk about limits.

Definition 2.5 (Stochastic Trace Space)Given a time structur§” and a domairn(A, <a 1)
thestochastic trace spacea triple (A7, <pa.r, Ty whereA®7 is the product set of all the
function formQ x 7 to A, <aexr IS the product partial order relation constructed form the
partial order relation<pa, andT is the product topology constructed from the derived metric

topologyr.

In the following, a given trace space will be deno#dto simplify the notation when no
ambiguity can arise.
Similarly to the deterministic case, it is possible to consider the special class of event—

based stochastic traces that define sample time structures.
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2.1.4 Transductions

A transductionrepresents a causal relationship between two stochastic trace spaces, i.e.
it is a mapping from an input stochastic trace space to a corresponding output one. Roughly
speaking, transductions dictate the evolution of a system by looking at the past and the current
values of input traces. Several types of functional mappings actually meet these requirements,
and thus it is possible to distinguish among a number of classes of transductions and even
build a simple hierarchy.

A first huge diference exists between primitive transductions and event-based transduc-
tions. The former map stochastic traces to stochastic traces with the same time structure,
while the latter can alter the time structure. A further distinction is between deterministic and
probabilistic transductions depending on whether or not they encompass any kind of random-
ness.

If we look more carefully at the set of primitive transductions we can further refine the
classification. In fact, generic primitive transductions comprise any functional composition of
three basic elements) transliterations, which are memory—less combinational proceskes,
delays, andi) generators, which allow for the modeling of uncertainty by introducing random
variables in the model. Hierarchically built over the basic elements, compound transductions
— either deterministic or probabilistic — can be defined by combining basic transductions of
the same type with transliterations and delays.

Figure2.2 schematizes the hierarchy of transduction types within the class of primitive
transductions.

Finally, let's formalize the notions of basic primitive transductions.

Generators A transductionF is called ageneratorif it denotes a (potentially conditional)
cumulative distribution functiorFxa from which it can sample random variables at

each time point. Formally, a generator is a funct@?n(vo) QX T x A— Awhose
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Figure 2.2:Types of primitive transductions and their reciprocal relationships

value isvp if t = 0 andrand(Fxjv(..;(t), w) otherwise.

Transliterations A transductionF is called atransliterationif it is a pointwise extension of
a functionf. Intuitively, a transliteration is a transformational process without memory.
Formally, if f : Q x A — A’ then its pointwise extension into a time structdras a

mappingF : A7 - AT 50 thatF (V)(w, t) = f(V(w, t))

Delays A transductiory is called adelayif it is a sequential process where the output value
at any time is the input value at a previous time. Usually we distinguish betur@en
delays for discrete time andansportdelays for continuous time. L&t be a well-
defined value in the domai If the time7 is discrete, we use a unit dela&(w, Vo)(V)
that is defined to bgy if t = 0 andv(w, pre(t)) otherwise. If the time&™ is continuous,

a transport dela};&é(r)(w, Vp) can be used and its valuevigis m(t) < T andv(w,t — 1)

otherwise.

Finally, let’'s consider the linkage between discrete and continuous components; it is mod-
elled by event—driven transduction that can alter the time structure. More formally, an event—
driven transduction is a transductions augmented with an extra input which is an event trace;

event—driven transduction operate at every event and its output values holds form each event
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to the next. A more rigorous mathematical presentation of the concept of event—driven trans-

duction should go far beyond the scope of the present, explanatory section.

2.1.5 Dynamics Structures

We need a last mathematical entity before introducing syntax and semantics of PCNs; this

is theabstract structure of dynamics

Definition 2.6 (Z—dynamics structure) LetX = (S, F) be a signature. Given @—domain
structureA and a time structurg™, a Z—dynamics structur® (7, A) is a pair (V,¥) such

that

o V= {APT s UEPT whereAX” is a stochastic trace space of saand &> is

the stochastic event space;

e F =F+U 7—‘(}3 where¥+ is the set of basic transductions, including the set of translit-
erations{fﬁ}fep, the set of unit delayssﬁs(vs)}ses,vseAs, the set of transport delays
{A?.S(T)(vs)}sespo,vseAs, and the set of generatorgb‘,}) is the set of event—driven trans-

ductions derived from the set of basic transductions.

2.2 Syntax of Probabilistic Constraint Nets

In this section the formal syntax of PCNs is introduced and a number of examples are
proposed as a first step towards the understanding of the formalism. The section is divided
into two parts; first, | show the rationale behind the proposed definition of PCN and then |

state the syntax formally.
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2.2.1 Informal Considerations Behind the Syntax of PCNs

Physical dynamical systems are sets of rules that describe the time dependence of physical
variables. Mathematically, such rules are denoted by systems of equations, while the variables
are represented as points in suitable geometrical spaces. The solutions of the equations tell us
how the dynamical system evolves over time. Usually, the evolution rule of a system is given
implicitly by a relation involving the future state as a function of the current state; these rules
are referred to as fierential equations and thus, because we are going to deal mostly with
physical dynamical systems, PCNs syntax might be expressive enough to dedteitemtial
equations. On the opposite side, a second major class of systems that have been traditionally
studied in the computer science community are discrete state machines. They are also known
as digital systems and evolve by discrete changes between states. These discrete changes — or
events — happen at certain time points and can be either synchronized or not. We want PCNs
to able to describe this second class of systems too.

Finally, we ought to contemplate physical systems that consist of a mixture of interacting
discrete and continuous components. These are knowmlail dynamical systenm{omlin
and Greenstre2002, Maler and Pnuel?003. Practical examples of hybrid systems include,
among others: elevator systems, electric power distributions, automated factoriegfiair tra
control systems, autonomous space craft controls and — most important from the point of
view of the present thesis — robots. Hence an expressivity level suitable for hybrid dynamical
systems is the ultimate aim of PCNs.

For this reason, Constraint Nets (CNs) have been originally proposgbang (1999
as a formal method for designing and modelling hybrid dynamical systems. As a first im-
portant result of the proposed approabtyyan-Ozcelik(2004 used CNs in order to show
that the Constraint—Based Agent (CBA) framework with prioritized constraints ifectige
methodology for designing and building Situated Agents (i.e. autonomous robots) in the real

world. However, as the complexity of the task increases, it is not possible to ignore the unpre-
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dictability and uncertainty of the robotic system —i.e. the robot coupled with its environment.
Hence we might be able to model and analyze probabilistic systems.

CNs have a lot of nice properties that we’d like not to loose but unfortunately, they lack
the ability of coping with uncertainties; in order to overcome this problem, Machworth and
St.Aubin introduced PCNs as a non trivial extension of CNs so that, while keeping all the
assets of CNs, they are also able to deal with unpredictable behaviors.

We are now equipped with an informal idea about PCNs and, most important, we know
exactly what we should expect form them. Next subsection describes the formal syntax of

PCNs.

2.2.2 Formal Syntax of PCNs

A Probabilistic Constraint Net is defined as follows:

Definition 2.7 (Probabilistic Constraint Nets) A Probabilistic Constraint Nés$ a tuplePCN =
(Lc, Td,Cn), whereLc s afinite set of locations, each associated with a sbdis a finite set

of labels of transductions (either deterministic or probabilistic), each with an output port and
a set of input ports, and each port is associated with a gontis a set of connections between
locations and ports of the same sort, with the restrictions {fhiaho location is isolated(2)
there is at most one output port connected to each loca{®neach port of a transduction

connects to a unique locatiom.

Loosely speaking, we can think of locations as memonyidos in which it is possible to
store the value of variables over time. Transductions are the functional elements of the system
and can represent any kind of causal mapping — either deterministic or probabilistic — among
locations. A transduction computes its output given the input over time and either operates
according to a certain reference time or it is activated by external events. Connections define

the relationship between locations and transductions. In order to be able to handle the uncer-
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tainty in the systems, PCNS contain a special class of transductions thatgerteaators
Actually, they are random number generators that follow a give probability distribution.
Before discussing the properties of a PCN, it is useful to summarize the basics of PCN

terminology:

a locationl is called anoutputlocation of a PCNff | connects to the output port of a

transduction inT d;

a locationl is called aninputlocation ft it is not an output one. This follows from the

observation that isolated locations are not allowed;

I(PCN) denotes the set of all input locations of a probabilistic constrainP@s;

similarly, O(PCN) denotes the set of all output locations;

a probabilistic constraint net apenif there exists at least one input location, otherwise

it is said to beclosed

Many features of PCNs are easier to understand if we look at the representation of a PCN
a graph. In fact, definitio@.7 induces a fairly simple graphical representation of a PCN as a
bipartite graph whose vertices are either locations or transductions and whose edges are the
connections. Edges can connect only vertex of one type to vertices of the other type. Loca-
tions are depicted by circles, transductions by boxes. In ordeiffiereintiate deterministic
from probabilistic vertices, there is the convention of doubling the borders of the latter, that is
to say generators are depicted by double boxes while random locations have double circles.
The following examples are the easiest way to fully understand both the defifiand
the graphical representation. | use them to discuss a number of practical issues and point out

some critical detail about PCN formalism more thoroughly.
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Figure 2.3:Red dots are sampled from the solution of equefidhin the range = 0 + 3s,
the sampling rate i200points per second. Green line represents the soluticitp sin()
in the same range and is plotted for comparison. The other parametets ar@é;85rad/s;
u=0,0=0,1

Example 2.2 (Simple equation with noise and explicit time dependencé)s a first exam-

ple, let's consider the following equation:

X(t) = sin(t) + Ny~ (2.2)

wheret represent the timew is the angular frequency of the sinusoidal function and
N, is a random variable drawn — according to a gaussian probability distribu@gn. —
independently at each time instant

In figure2.3 we plotted both the solution oft) = sin(wt) as a function of (green line)
in the ranget = 0 + 3s, and a sample solution of equati@r?, drawn by means of a standard
implementation of the random number genera&iQy. .

This example is interesting because it allows me to discuss two important issues: first,
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X(t) in eq.2.2 depends explicitly on time this is not the stantard case when we deal with
dynamical systems. More usually the time is note explicitly represented in the syntax; i.e.
we did not formally introduced theomputation pipelinget. A PCN is a representation of a
functional relationship between variables and the concept of traces of execution will come up
in the next section in which the semantics is presented. From this point of view, the function
sin(t) is simply a function and not a well-defintrdnsliteration

In order to overcome these problems, we must introduce a new vailiahléhe equation.

The domain ofl is actually our time structur§™. Let’s use — in this case — a discrete time
structure built onN with a fixed time stept between each time events. Thus, equa®@n
becomes the following.
X(T) = sin(T) + Ny 2.3)
T(N)=T(n—-1)+ At

The transductiorsinis now a well defined transliteration that maps the input trace space
defined byT into output the trace space definedX{I).

A second issue to discuss, is how we actually build the PCN model by starting from a
given equation. In concrete, let's now build the PCN model (se@ #).of equation . We
need at least the following set of variables, i.e. locationxsT, AT, 4, o, N, +, K, h, Z} wherek,

h, andz are temporary variables that won't appear in the interface of the Qe variable

k stores the produab = t, h stores the value adin(k), andz stores the increment of the time
variable and is therefore the input of a unit time delay; that is important in order to avoid
algebraic loops in the NEST The meaning of the other variables is obvious. All the variables
are deterministic except for the output of gaussian generaty;, that will be depicted with

double circle.

2Throughout this thesis | will omit to assign an explicit label to these variables since they are meaningless
from outside the PCN.
3SeeZhang)(1994 andSt-Aubir (2005) for more details about algebraic loops in PCNSs.
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o

()

delay(0)

o~ g

Figure 2.4:PCN representing equati@n?2

The transductions labels arg:, , delay(1), sin, G, ~}. As you can see in figu4, the
label + is used twice in the PCN. Actually, the two transductions are distinct and they must
be kept separated in order to guarantee the semantical correctness of net (as we’ll se later).
Whenever some confusion or even a mistake can arise, it is preferable to use two distinct
labels: for exampler; and +».

The transduction labelle@, - is doubly squared because it is a random number genera-
tor and, thus, it introduces a non determinism in the net.

Before going any further, it is worth spending a few words about random locations: basi-
cally they are the output location of some generator. However, if we add one generator in our
net, then its output is a random variable whose value varies according to the specified prob-
ability distribution. All the (deterministic) transduction with this (random) location as input
will have an output that, in principle, follows itself a modified version of the same original
probability distribution. Therefore it happens that in the presence of at least one generator

all the locations that descend from it should be considered random location; furthermore if
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we add a feedback then it can happen that all locations are random locations. The idea, thus,
is to use double border only for locations that are output of a generator as it provides a visual

and intuitive way of assessing where uncertainty initially enters in the system.

Example 2.3 (Simple Pendulum)in this second example | show how it is possible to apply
the definitior2.7in order to build a PCNs—based model of a well-known physical system: the
simple pendulum.

A simple pendulum consists of an oscillating point mass attached to an inextensible
weightless string. When displaced to an initial angle and released, the pendulum will swing
back and forth with periodic motion. The equation of this physical system can be obtained by

applying Newton'’s second law:

mL?— = —mgLsiné, 2.4
wheremis the massl. is the length of the stringy is the gravitational acceleration ardl
is the displacement angle.

Equatiori2.4can be reformulated in terms of the so—called resonant frequeney/g/L

and becomes:

6+ w?sing = 0. (2.5)

If the amplitude of displacement is small enough so thatthall angle approximation
holds, i.e.sinf =~ 6, then the equation of motion reduces to the equation of simple harmonic

motion:

é+w39=0.

The simple harmonic solution t) = 6y cost + ).
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However, if the angular displacement of the pendulum is large enough then the small
angle approximation no longer holds and the equation of motion remair2.#herhis dif-
ferential equation does not have a closed—form analytical solution, and we have to rely on
approximations, i.e. we must try to solve it numerically using a computer by means of some
iterative method for solving glerential equations. Here let's use the standard forward Eu-
ler method. This is a quite popular method for solving ordinagjedential equations using
the formula: yni1 = Yn + Atf(yn, tn), which advances a solution frotp to th,1 = ty + At.

In practice the method increments a solution through an intestalvhile using derivative
information from only the beginning of the interval.

As a first step if we want to use this method, let’s translate the second oyfereniial

equation into the first order system offdrential equations:

0 = —w?sing

Sl

_ (2.6)
9 = 0

gl

For the first equation, thus, we have:

gé~éa+Ao—ao
dt At

where the equality hold only in the limiit — 0. The same approximation holds for the
second equation.

We are allowed to rewrite the systéh€ as:

One1 = On + At(-w? sing) 27

Oni1 = O + AL6.

It is easy to see that the PCN depicted in figRrerepresents the syst2nT.

Example 2.4 (State Transition Systems)rhis third example shows that two nets can denote
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sin —O\
@

N7 @

Figure 2.5:PCN representing system of equati@g

quite djferent dynamical systems even if they are extremely similar from a pictorial point of
view.

Let us consider the graph in Figug6wheref is a generic transliteration andis a unit
delay. If we suppose the time is discrete, then this net can be also written as the equations:
s(n) = f(u(n - 1), s(n - 1)), S(0) = 9. More simply, if we allows’ to denote theext stateof
S, we can write the equations as: = f(u, s), S(0) = .

If we consider continuous time and slightly modify the graph (se2.yby letting the
transliteration f be the standard Riemann integral then we obtain the constraint net of an

ordinary djferential equation:s = f(u, s), S(0) = .

2.3 Subnets, modules and hierarchical modelling

Complex physical systems may be composed of a set of subsystems which — by interacting

together in a hierarchical fashion — produce the behavior of the global system. Thus, it is
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'( : } * 3(sy)
Figure 2.6:The constraint net representing a state transition system.

4’®_’ I(so)

Figure 2.7:The constraint net representing &eiential equation.

¢

worth to define the two concepts siibnetof a PCN and ofmodule then we discuss how it is

possible to composefiierent modules preserving all the properties of the PCN.

Definition 2.8 (Subnet) A probabilistic constraint nePCN; = (Lc;, Tdi,Cmy) is a subnet
of PCN, = (LCp, Tch, Crp), written PCNy € PCN iff Lcy € Lep, Tdh € Tdp, Cmp € Cyp
andl(PCNy) C I(PCN,). m

Definition 2.9 (Module) A module is atripléd PCN I, O), wherePCNi s a probabilistic con-
straint net,I € I(PCN) and O < O(PCN) are subsets of the input and output locations of
PCN. We say that U O defines the interface if the module. When it is clear by the context,

we will use the notatio®PCN(I, O) to denote the modukd’CN, 1, 0). m

Graphically, a module will be represented by a box with rounded corners. Moreover, all
the locations il (PCN)—I andO(PCN)—O are respectivelfiddeninputs anchiddenoutputs
and are used to model non—determinism in the system.

It is possible to introduce three basic operations to obtain a new module from existing

ones. These are:

Union The union operation is used to obtain a new module created by two modules side by
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side. Formally, lePCN; = (Lcy, Td,Cny) andPCN, = (Lcp, Tdh, Crp) be two prob-
abilistic constraint nets, witlhcy N Lco, = 0 andTdy N Tdo = 0, then the union of
PCN. (11, O1) andPCNy(I2, Oy), written PCNy(l1, O1)[|PCNx(I2, Oy), is the new mod-
ulePCN=<(LciULcy, Tch UTdp, Cny UC,), whose interface is defined thy= [; U 1,
andO = O, U O,.

CoalescenceThe coalescence operator combines two locations in the interface of a module
into one, with the restriction that at least one of these two locations is an input location.
Formally, letPCN = (Lc, Td,Cn) be a probabilistic constraint néte | andl’ e | U O
be of the same sort, the coalescenc®GiN(I, O) for | andl’, denotedPCN(l, O)/I, I’

is a new modul®CN (I, 0) with* PCN = (Lc[l’/I], Td,Cr[lI’/I]), I’ = | —{1}.

Hiding The hiding operation deletes a location from the interface by turning it inot a hidden
location. Formally, letPCN = (Lc, Td,Cn) be a probabilistic constraint net ahd
I U O, the hiding of PCN(I, O) for |, denoted”CN(I, O)\I, is a new module the module
PCN(I’,0) with PCN' = PCN, I’ = | — {l} andO’ = O — {I}.

Furthermore, it is possible to define three combined operations:

Cascade The cascade connection connects two modules in series.

Parallel The parallel connection connects two modules in parallel.

4X[v/x] denotes thak in X is replaced by
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2.4 Semantics of Probabilistic Constraint Nets

In this section | define the formal semantics of probabilistic constraint nets, which is
necessary to provide a meaningful way to interpret PCNs. It happens that the formal syntax
of PCNs is quite similar to several other formal models — e.g. Petri NRa&e(sonl981)
and their generalizatio@olored Petri Nets JensetiL98]) — which also have been proposed
as formal language for dynamical systems. After this section it should be clear that, despite
these models share many of the syntactical features, they have complfferdisemantics
and no confusion may arise.

St—Aubin proposed to define the formal semantics of PCNS by using the fixpoint theory
which is a common approach to describe the semantics of programming larjyudges
general idea behind such an approach is quite simple: a program defines a furenidrits
semantics is defined to be the least solutiox ef f(x) that is to say the least fixpoint df

Because any PCN is a set of equations with location serving as variables, the application of

5This choice is consistent with the approach adoptedtmgng and Mackworti1995) for Constraint Nets.
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this theory should seem quite straightforward: the semantics of a PCN can be the least fixpoint
of the set of equations. Unfortunately, some of the variables in the equations are supposed to
be random variables that obey to some probability distrib8tiGurther, if they are input of
transductions the uncertainty is propagated throughout the net, and we can no longer refer to a
specific solution of the system and we must talk about the probability of getting that solution.
Thus, in order to reason about the behavior of the system, it turns out that it is not helpful
to consider single solutions because we can get more interesting insights if we look at the
statistics of the distribution (of solutions); for example we can use its expected value. The

following example, adapted fromiSt-Aubiri2005), makes this last point clearer.

Example 2.5 (The #ect of randomness on fixpoints)Let's consider the following dynam-

ical systems:

-
|

—Xt(Xt = D)Xt - 2) (2.8)

Xq “Xe(Xe = )% — 2) + Ng; (2.9)

where eq2.8is a deterministic system with three equilibri@:and 2 (stable attractors)
and1 (unstable). Its behavior is fully determined by its initial value and it reaches one of the
two stable fixpoints based on this initial value. For examples, figué)shows the solution
of equatior2.8 for two distinct initial values: one in a neighborhood @&nd the other in a
neighborhood o®: the two attractors are reached quite soon and the solution doesn'’t change
anymore.

The second system (é219) is stochastically fected by a simple Brownian motion pro-
cess. Figure2.8(b)shows a sample path for syst@®, with an initial value ofX = 0. As a

consequence of the Brownian motion perturbation, the system fluctuates around this attrac-

SRecall that random variables in a PCN are those locations that are the output of a generators.
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(a) ODE described by equati@ng (b) SDE described by equati@®

Figure 2.8:Differences between ordinary and stochastic systems.

tor. It can happen that a large enough noise disturbance pushes the system over the value of
1-i.e. it leaves the region of attraction — causing the system to be attracted toward the other
equilibrium, atX = 2. Another spike of noise can flip the system back to the lower equilibrium
and so on (see fi@.8(b). This example shows thgaxt of uncertainty on the system and its
behavior. In this case, we can no longer refer to any fixpoint.

However, the system will reach a stationary distribution. That is, in the long run, the
probability distribution of the system will remain unchanged, independent of time. The em-
pirical distribution corresponding to a sample path is showed in fid@iB2 One can clearly
observe that the system is symmetrically distributed with higher weight around the two stable

equilibria located atX = 0and X = 2.

Example 2.6 (Dependence of the fixpoint on the actual run of the systenhis second ex-
ample is a slight modification of the previous one and it shows that it it not safe to look at a
single trace of the system because the possibly well-defined attractor of a single trace could
lead to misleading conclusion about the overall behavior of the system.

Let’s consider the following system of equations, which describe the behavior of a fully—

interconnected system of tweuron—likecomputational uniis

"See chapted for more details about artificial neuron—based systems and their relationships with the PCN
frameworks.
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Empirical Distribution

Figure 2.9:Stationary, empirical distribution of a sample path for system described by equa-
tion2.S

Y1 = —Y1 + W10 (y1 — 61) + Wiz0 (Y2 — 62)

V2 = =Y + Wi20 (Y1 — 61) + Waoo (Y2 — 62) (2.10)

wherey; are the variablesw;j are constant weights in the equations and the standard
sigmoid functionr(x) = (1 + &)1,

The trajectories of the system will depend on the initial st@teFigure/2.10(a)shows
some representative trajectories corresponding to the parameter valueswo, = 4, Wy =
w21 = -3,60; = 62 = 0. The system exhibits two stable equilibrium points ne& 4) and
(4, —3) with basins of attraction that lie respectively on the top—left and bottom-right of the
diagonal of the reference system. Given that the initial state is in one region or in the other
of the plan, each solution will reach the corresponding attractor. Thus the behavior of the
system is fully determined by its initial condition.

Figure 2.10(b)shows what happens to the system if we perturbate it with a simple Brow-
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(a) ODE described by equati@10 (b) SDE described by equatighlOstochastically af-
fected by a simple Brownian motion process

Figure 2.10:Stochastic Perturbations of a Dynamical System.

nian motion process. [Perently from the previous example, here the two basins of attraction
are deeperenough and the stochastic perturbation doesn't influence the single traces (see
figure2.10(b). Even if the system starts from the origin — i.e. on the edge between the two
basins — the trajectory won't fluctuate back and forth between the two attractors. However,
this doesn’'t mean we can rely on the two attractors to define the fixpoint of the distributions.
In fact, figure2.6 shows what happens when we let the system evolve several times with the
same initial conditions. Again we obtain an empirical distribution that is more insightful that

any single path.

Itis clear from the above example that we can get more insightful information if we look
at the distribution of the solutions instead of at one single solution whose measuré.is null

Now that we are equipped with the idea behind the notion of semantics of a PCN, it is
easy to understand the following formal definitions.

Let’s consider a signatui® = (S, F) with a special sort € S defined to represent clocks.

We say thak is the signature of CN = (Lc, Td, CN) and we writePC N, if:

8Here the expressianeasure of a solutiomeans probability of occurrence of the event associated to the single
solution in the sample space with all the possible solution. Hence, it is obvious that the probability associated to
the single event is zero.
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Phase Portrait

Figure 2.11:Stationary, empirical distribution of several sample paths for system described
by equatior?.10stochastically fiected by a simple Brownian motion process

— each location € Lcis associated with a soste S (we write § to refer to the sort off);

— for each transductioh € T cthe sorts of its input and output ports are as follows:

1. if f is a transliteration of a function (i.€. : s* — s) of F, the sort of the output

port issand the sort of the input poris s*(i);

2. if f is a unit delay® or a transport delaxs, the sort of both input and output port
iSs,

3. if f is an event—driven transduction, the sort of the event input parttise sort

sort of the other ports are the same as its primitive transduction;

Definition 2.10 (Semantics oPCN9 The semantic of a probabilistic constraint i€ N on
a dynamics structur€V, ), denoted PCN], is the least stationary distribution of the set of

equationgo = Fqy(X)}ocopcny. Moreover, ifF, is a continuous or pathwise continuous trans-
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duction inF for all o € O(PCN); then[ PCN] is a continuous or pathwise continuous trans-
duction from the input trace space to the output trace space[RPEN] : ><|(pCN)A§X7' -

XOo(PC N)AS)XT. [ ]

Of course, it is possible to define the semantics of the modulesSis@ebin (2005))
and it can be shown that the combination operations defined in the previous section do pre-
serve the semantics, thus we are allowed to build complex systems by means of hierarchical

composition of simpler modules.
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Chapter 3

Behavioral Verification of Robotic

Systems

In this chapter | summarize the notion of average—tivtedutomata and discuss its links
with behavioral specification and verification within the PCNs framework.

The key idea behind the chapter is that the online satisfaction of the local constirmints
posed on the dynamics of a robotic system does not guarantee that the robot will satisfy any
global behavioral constraint, such as — for example — “to accomplish a task correctly within
a limited amount of time”. Unfortunately, PCNs are not tailored for representing global con-
straints on the behavior of a systems. Even if, at least in principle they are expressive enough
to formalize behavioral requirements, it is not reasonable to do it in any real application.

The approach proposed within the PCNs framework to overcome this problem is to define
a different, automata—based specification language by means of which we can easily formulate
behavioral constraints. Such an approach has a second, major advantage since it allow us to
design and (possibly) implement formal verification procedures. To design (semi)automatic
procedures is thus the ultimate goal of researchers in this area.

Even is my personal contribution to the development of specification and verification
methods has been quite limited, | believe this chapter is conceptually fundamental for the
understanding of some following topics discussed in this thesis. Moreover, as discussed in

the next chapter, one of the ongoing developments of PCNJ is to provide the user with the

Which can be easily described by means of PCNSs.
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possibility of defining average timet-automata within PCNJ.

The chapter is organized as follows. Sectid provides some preliminary concepts
of behavioral specification and verification and describes the meaning of formal behavior
for a robotic system. Sectioi&2 and3.23 describe the to specification languages and their
links. Finally, sectior.4 presents the model checking approach proposed by St—Aubin for

the verification of any stochastic, hybrid dynamical system.

3.1 Concepts of Behavioural Specification and Verification in Robotics

Since modern society is increasingly dependent on complex software (and hardware) sys-
tems for managing and processing sensitive and critical information, the consequences of
failures can become extremely severe. Hence, computer scientists have been developing for-
mal methods for decades in order to model the behavior of software systems and to verify that
these models satisfy some desired properties. Nowadays formal specification and verification
of software is an essential stage in many areas of software engineering, and it is a topic any
computer science graduate student is — or should be — familiar with. However, in contrast to
what happens for software system development, the use of formal methods is not prevalent in
almost any research areas of Robotics.

This section provide smoother transitiofrom concepts that are known and well assessed
in the software specification and verification research community to their new, specific use in
Robotics.

Let's start from the fundamentalfterence betweesystem modelingnd thespecification
of behavioural constraintsve assumed the existence of thiffelience throughout chapters
1 and2, yet it might still be unclear. Although the two concepts might appear similar, they
are very diferent. In short, the modeling task focuses on the dynamics of the system and

how different components interact among each other, i.e. it imposes local constraints on the
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Figure 3.1:PCN model of the dynamics of a system comprised of a mobile car with uncertain
actuators moving in @D environment. [Taken froffj

systems dynamics. On the other hand, the specifications of a system impose global constraints
on its evolutiofbehaviours. For example, the dynamics of a (car-like) mobile robot can
be modelled by dferential equations following basic laws of physics such as the relation
between velocity and acceleration — exg= vcos@) + WX,y = vsin@) + V\/ty,é = V/R+W¢;
which are the laws governing the system depicted in figutéaf. These laws represent the
constraints on the dynamics. However, although these represent well the local behaviour of
the system, it does not preclude the robot from hitting people as it is roaming around. If the
goal of the robot is to deliver something (e.g. dfee) somewhere, then we might be able
to represent our wish that the robot will always be successful when attempting to deliver the
coffee. Such restrictions are global constraints on the behaviours of the system and cannot
be represented easily with PCNs only. They can, however, be compactly expressed with a
Y—automaton specification as it is shown in FigBre

Once one is equipped with a model of the dynamics of a system and with requirement
specifications on the global behavior of the system, a key question to ask is whether the

behavior of the system satisfies these requirements. This is called behavioural verification

2Figure3.1(b)shows the corresponding PCN.
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Coffee_Delivery

C@elt offee

/ Coffee_Request

Figure 3.2:Robot Deliveryv—Automaton Specification

and is the topic addressed in secti@

3.2 V-Automata

Y—automata are non—deterministic finite state automata over infinite sequences. They
were originally proposed to specify requirements and temporal properties of concurrent pro-
grams Manna and Pnueli987) or time traces from deterministic dynamical systéthang
(1999, Zhang and Mackwort(199€).

Formally, av—automaton is defined as follows.

Definition 3.1 (Syntax ofY—automata) AV—-automatornA is a quintuplgQ; R; S; €, c) where

Q is a finite set of automaton statd®,C Q is a set of recurrent states arf®IC Q is a set of
stable states. With eaahe Q, we associate an asserti@én), which characterizes the entry
condition under which the automaton may start its activitg.iWith each paig, gz € Q, we
associate an assertior(qg, g/), which characterizes the transition condition under which the

automaton may move frogito g/. m

R and S are generalizations adcceptingstates to the case of infinite inputs. All the
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other states of the automaton, iB.= Q — (RU S), are callecbad states because they are
nom-accepting states.

A Y—automaton is called complet ihe following requirements are met:
- Ve &Q) is valid.

- Vg€ Q, Vgeqc(d, ) is valid.

Any automaton can be transformed to a complete automaton by introducing an additional

bad (error) statgg, with entry conditiore(ge) = - (\/qu e(q)), and the transition conditions:

c(eg,0g) = true
c(qe,q) = false foreach qeQ
c(@.9e) = ﬂ(\/ c(q, o)) foreach qeQ

aQ

Like any kind of automaton, it is possible to introduce a useful, simple graphical repre-
sentation foiv—automata. Let’s consider a labelled, directed graph whose nodes represents
automaton—states and whose arcs are transition relations. We say that such a graph is a repre-

sentation of &/—automatonft:

1. for each automaton state there exists one node of the graph;

N

. each initial automaton stakés marked by a small arrow () pointing to it;

3. arcs, drawn as arrows, connect some pairs of automaton states;

N

. each recurrent state is depicted by a diamond inscribed within a circle;

5. each stable state is depicted by a square inscribed within a circle;

SInitial state are those for which there exists an entry asseg{mn false
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(a) (b) c)

Figure 3.3: Examples ofy—Automata: (a) goal achievementb) safety, and(c) bounded
response.

6. nodes and arcs are labeled by assertions.

Labels, attached to nodes and arcs, define the entry conditions and the transition condi-

tions of the associated automaton as follows:

- Letg € Q be a node in the diagram corresponding to an initial automaton—stage. If
is labeled byy and the entry arc is labeled lpy the entry conditiore(q) is given by
e(g) = ¥ A ¢. If there is no entry areg(q) = false

- Let g, or be two nodes in the diagram corresponding to automaton-statgsisifa-
beled byy, and arcs frong to ¢ are labeled by, i = 1,...,n, the transition condition
c(g,qr) is given byc(aq,q7) = (¢1 V ...V ¢n) A . If there is no arc frong to g,
c(g,or) = false

A diagram representing an incomplete automaton can be interpreted as a complete au-
tomaton by introducing an error state and associated entry and transition conditions. Some
examples of/—automata are shown in figuge?

The formal semantics of discre¥e-automata is defined as follows. L&be a domain of
values. An assertion on A corresponds to a subsé{a) C A. A valuea € A satisfies an
assertiorr on A, writtena | « or a(a), iff a € V(a). Let7 be a discrete time structure and

v:7 — Abe atrace. Aunof A overvis a mapping : 7 — Q such tha(1) v(0) E e(r(0));
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and(2) for all t > 0, v(t) E c(r(pre(t)), r(t)). A complete automaton guarantees that any
discrete trace has a run over it.

If ris arun, letinf(r) be the set of automaton states appearing infinitely many times in
r,i.e.,Inf(r) = {qVtaty > t,r(tp) = q}. Notice that the same definition can be used for

continuous as well as discrete time traces. Arismdefined to be acceptingi

1. Inf(r) R # 0, i.e., some of the states appearing infinitely many timashelong to

R, or

2. Inf(r) € S, i.e., all the states appearing infinitely many times belong toS.

We can now introduce the definition of formal semanticsfeautomata.

Definition 3.2 (Semantics off—automata) A Y—automatonA accepts a trace, writtenv £

A, iff all possible runs ofA overv are acceptingm

Figure3.2 shows three dierenty—automata whose semantics are as follol@saccepts
the traces of a system which eventually will always satisfy the goal condijdb) accepts
the traces of a system that should never satisfy the unsafe con8iti@h accepts the traces
of a system that satisfy a bounded response constraint, i.e. whenevetEegeatrs, the
responsdR will occur in bounded time.

One should note that the proposed definition of semanttésrdiin the way it handles
non—determinism from the semantics of conventional automata. A conventional autgmata
which could, in this context, also be calleddaautomata, accepts a language if there exists
at least one run ove? which is accepting. However, in the context of behavior verification,
having at least one run satisfying the requirements is obviously not a strong enough statement
as in the case of a safety requirement, this is generally not what should be defined as a safe

system. Moreover, for deterministic systems, which are defined completely by a single trace,
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it is meaningful to require the trace be accepted. However, when modeling a stochastic sys-
tem, asking for all traces to be accepted (which we referred to as satisfying the requirements at
levela = 1) might be too demanding. Indeed, there might be a very small probability that the
system will move into a set of absorbing bad states, hence never satisfying the behavioural
constraints. However, if this probability (which is equivalent to the measure of all sample
traces leading to the absorbing bad states) is small enough so that these events rarely occur,
one might be willing to accept the risk to work with a system which satisfy the requirements
at a levele whereB < a < 1 andg is the safety threshold.

Before moving on, it might be helpful to discuss the notion of verification at levell of
a stochastic dynamical systems. What type of restrictions on the system itself does this create?
Intuitively, perfect satisfaction of a set of behavioural constraints amounts to the system not
possessing any absorbing bad states. By absorbing we refer to the case where the system
enters this bad state and never leaves it. In practice, for a system to not possess any absorbing
bad states requires that for any state of the stochastic dynamical system associated with a bad
automaton state, there must exist a path with positive probability which leads to an accepting
state (associated to eithBror S). Indeed, for a large class of systems with absorbing bad
states, these states corresponds to a situation where the robotic agent is down in one way
or another. Hence, repair or restart would be needed to ensure that the system can continue
operating. One could take thigpair into account and modify the state space so that once the
agent arrives to a absorbing bad state, a transition occurs with probability one which relocates
the agent taestart state. This simple modification removes absorbing bad states and thus

allows the verification method to be applied to a vast class of systems.
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3.3 Average-Timedv—Automata

The class of constraints that we can express by means of sifpletomata doesn'’t
contain the fundamental subclass of those behavioural constraints that encompass explicitly
temporal specifications. For example, in robotics it is quite meaningless to have a formal
guarantee that the robot — whenever a significant elzestcurs — will produce a responBe
in bounded time. Actually, we are more interested in proving that the resppowideoccur
in a limited time, that is to say we want to attach a finite condtaatthe former time bound.

Timed Y—automata were originally proposed BEhang (1994 in order to augment ba-
sic Y—automata with timed automaton states and time bounds. Bb#n¢ and Mackworth
1996 andMackworth and Zhari2003 provide the formal definition of this family of au-
tomata and a description of the their properties. They are very useful for further references.

Unfortunately, the approach based on tinveéautomata is not well suited for stochastic
dynamical systems. In fact, in the stochastic case, it is not possible any more to talk about
satisfying a given time constraint in an absolute way but rather we might accept a kind of
on—averagesatisfaction, i.e. we can beyond the concept of time constraint and define that
of averagetime constraint. The idea behind average time constraint is that although we can-
not prove that a stochastic dynamical system can always satisfy some given time constraint,
we can show that the average behavior of the system does satisfy the constraints. All these

informal considerations can be defined formally.

Definition 3.3 (Syntax of average—timed/—automata) Anaverage—timed—automatoA7 A
is a triple (A, T, ) whereA = (Q,R S, e c) is avY—automatonT € Q is a set of average—

timed automaton states ard T U {bad} — R* U {co} is an average—timing function.

Of course, any/—automaton is equivalent to a special average—tifieitomaton — the
one obtained by settin§ = 0 andr(bad) = . We attach a nonnegative real number to any

T-state, indicating its average—time bound.
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As anticipated earlier, we cannot define the acceptance of a single trace by an average—
timed Y—automata. Since we are no longer interested in the behavior of individual®races
we might better consider the behavior of a set of traces. Therefore, expected time constraints
should be satisfied by the average behaviours of this ensemble of traces.

Let 8 be the considered behavior. We defineiar of A7 A over B has being aun of

A over every trace : 7 — Ain the behavioB. A runr is accepting fotrAT A iff:

1. r is accepting forA, and

2. r satisfies the expected time constraints. Let’s consider a time intergal” and a
segmeny* of r —q* : | - Qandqg" = r; — whose measure is denoted ffg).
Furthermore, let:ig(g*) denote the measure of bad automaton statgs iandS gq) be
the set of segments of consecutiystate inr. Finally, letBS be the set of segments of

consecutiveB andS—states irr, i.e.,q* € BSimpliesVt e |, g*(t) e BU S.

The expected time constraints focan be formulated as:

(a) (local time constraintyq e T,q* € Sd0), E(u(q*)) < r(q) and

(b) (global time constraintyqg* € BS, E(ugs(q*)) < r(bad).
whereE(-) denotes obviously the expectation over all trace§ 8.
Itis now possible to state the final definition of semantics aiarage—timed—automaton

Definition 3.4 (Semantics of average—timed—automata) An average—timed—automaton
AT A accepts a set of traceB, written B = AT A, iff all possible expected runs A7 A

over B are accepting.

“Because each individual trace is a null-measure event.
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3.4 Model-Checking Approach for Behavioral Verification

In this section | present the model-checking approach for behavioural constraints verifi-
cation proposed b8t-Aubir (2005, whose thesis work showed the existence of well defined
behavioural constraint verification rulder both arbitrary time and domain structures. These
general rules are essential to provide an understanding of general behaviours of stochastic hy-
brid dynamical systems. However, St—Aubin provided a (semi) automatic verification method
only for one special case of finite domain PCNs and discrete time. At the present time, thus,
no algorithm either automatic or semi—automatic has been developed yet for behavior veri-
fication of general stochastic hybrid dynamical systems. If we restrict ourselves to consider
non—probabilistic systems only, then the we can rely on the results obtaidéadimng(1994),

Zhang and Mackwortl{199€ that showed a further nice property of the resulting verifica-
tion algorithms, i.e. they are polynomial in both the size of the model and the size of the
specification.

Once again | recall that the focus of the present thesis is not on the theoretical aspects
of behavioral verification for general hybrid systems. Instead, | aim at providing convincing
arguments in favor of using PCNs framework in the robotic research area. From this point
of view | can dodge the description of the verification rules for the general case and focus on
those for discrete—time finite—domain stochastic systems, which — fortunately — turn out to be
a suitable level of description for most of the real robotic systems. This last claim may seem
a bit contradictory with respect to the initial claims about generality of PCNs framework. In
a way | must agree with these concerns and admit that this part of the framework still needs
significant improvements. However, the existence of verification rules for the general case is
a first big step towards the goal of either finding an algorithm for the general case or proving
the non—existence of such an algorithm.

Let's now introduce the verification rules. This method applies to any stochastic state
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transition systenSg = (Sg,P,) associated to a time—invariant Markovian behavbm
discrete time. Let’s denote~» s an allowed transition from stateto states of the system
—i.e. there is a non-zero probability of transition. AlggB{y} denotes the conditiorg(s) A
(s » &) — yY(9) is valid. We callAT A the the average timed-automatorA, T, 1)
representing the behavioural constraints for the stochastic dynamical s§gtem

The verification method comprises three basic types of rules:

Invariance rules (I) . A set of propositiongag}qeq is a set ofinvariantsfor the behavioB

and specificatiotA7 A ift:

1. Initiality: Vg € Q,0 A &) — g, and

2. ConsecutionVq, q € Q,{ag}B{c(q,q) — aq}

Itis possible to show that, given a set of invariants for an autorfigied and a behavior

B, any trace inB always brings from one state that satisfy the invariant conditions to

a destination state that still satisfy the invariant conditions; no matter which (possibly

uncertain) transition occurs.

Stability (Lyapunov—-based) rules (S) A set of partial functiongpglgeqg —pq : S = R* —
is called a set oLyapunov functionsor A7 A7 andB iff they satisfy the following

conditions:

1. Definednessvq € Q,aqg — dw e R*, pq = w.
2. Non—increaseVq e S,q € Q, {ag A pq = WB{c(q,d" — E(og) < W}

3. Decreasede > 0,¥q € B,3q € Q,{ag A pqg =W}B{c(q,qd — pg —W < —€}.

Condition(S2) requires that for each stable state S, the transitions frong lead on

average to a state for which the value of the Lyapunov function is less than or equal

to the current value. Conditiof83) requires that for each bad state B there exists
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at least one allowed transition (i.e., with positive probability) leading to a state with
strictly smaller Lyapunov value. This is a formal requirement that can only be satisfied

if there are no absorbing bad states in the system under study.

Average Timeliness rules (AT) Let AT A = (A, Tt) be an average—timet-automata. As-
sume, without loss of generality, that time is encoded in the stochastic state transition
system. Let’s defind : Sg — 7 as a function of time measure on states returning the
time until the next transitiod. Let’s introduce two dferent types of timing functions,

associated with the local and global average—time bounds respectively.

A set of partial functiongyqlqer is called a set ofocal timing functionsfor 8 and

AT Aiff yq : Sg — R* satisfies the following conditions:

(L1) Boundedness/qe T,aq — A < yq < 7(0).
(L2) Decrease/qe T, {aqAyq=WAE(1)=1}B{c(q,9" — E(yq) —w < —}.

A set of partial functiongnq}qeq is called a set ofjlobal timing functiondor 8 and

AT Aiff g : Sg — R* satisfies the following conditions:

(G1) Definednessvg € Q,aq — Iw e R*, g = W.
(G2) Boundedness/q € B, aq — 1nq < t(bad).
(G3) Non—increasevVq e S,q" € Q,{ag A ng =W}B{c(0,q — E(ng) < W}.
(G4) DecreaseVqe S,q € Q,{agAng=wWAE() = 1}8{c(0,q — E(q) < W}
The aboveverification rules— i.e. Invariance (1), Stability (S) and Average-Timeliness

(AT) — can be used with a behavigrand an average—timed automatéfi A = (A, T, t) as

follows:

() Associate with each automaton stgte Q a state formularg, such thafeqleeq is a set

of invariants for8 and.A.

SFor the special case of discrete time systemalipa = 1 uniformly.
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(S) Associate with each automaton stgte Q a partial functiorpg, such thatpg}qeq is a set

of Lyapunov functions fo8 and.A.

(AT) Associate with each average—timed automaton sfaerl a partial functionyq, such
that {yglqet is a set of local timing functions faB and A7 A. Associate with each
automaton statg € Q a partial functiongq, such thafng}qeq is a set of global timing

functions forB8 and AT A.

The final step it to state the main result related to these verification rules: St—Aubin
demonstrated that, if we are equipped with a set of invariants, Lyapunov functions and lo-
cal and global timing functions, then the behavioural verification is sound and complete. This

is stated byGt-Aubin (2005 as TheorenT.2, which is reproduced here for completeness.

Theorem 3.1 (Reproduced fromiSt-Aubin! (2005, Theorem 7.2 (Verification Rules)) For any
state-based and time—invariant behaviBrwith an infinite time structure and a complete
average—time&—automatonA7 A, the verification rules are sound and complete, &k

AT A iff there exist a set of invariants, Lyapunov functions and timing functions.
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Chapter 4

Models Subsumed by PCN

PCNs framework is a non trivial extension of CNs framework because it allows for the
modelling of both systems with uncertainty and systems which behave probabilistically. This
is a valuable asset because now we can model a number of systems — by means of PCNs — that
couldn’t be represented as CNs. This is a non-trivial claim that deserves to be proved more
formally, and this chapter contains a number of positive results that provide good evidence
for such a claim.

I look more carefully into the relationships between PCNs and a several determinis-
tic/probabilistic models and algorithms commonly used in Robotics. | show that they are
special cases of PCNs by providing — for each mdigbrithm — the PCN that computes
exactly the same thing, i.e., the proposed PCN preserves the semantics of the computation.
Since many of these models are widespread in Robotics and Computer Science as well, we
reap two main benefits from the results described in this chapter. On one side they further
demonstrate the flexibility of PCNs framework from the point of view of both theoretical
and practical expressivity. On the other side they arefiattve contribution to the general
discussion developed throughout this thesis about the use of PCNs within robotic research
areas.

Furthermore, in this chapter | focus mostly on learning—related models and algorithms;
this is because learning is becoming increasinglyféectve tool to build fundamental mod-
ules of mobile robots. Once we are equipped with PCNs that implement learning algorithms

we might start asking what kind of benefit (if any) we can get from the formal specification
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and verification capabilities provided by average tirdedutomata within PCNs framework.
| do say something about this interesting topic in the last chapter of this thesis.

The chapter is organized as follows: in secHohil motivate the usefulness of this chapter
by explaining what we actually gain by expressing another computational model as a PCN.
The following sections are devoted to showing the equivalence with PCNs of Atrtificial Neural
Networks (sec4.2), Continuous Time Recurrent Neural Networks (8e8), Markov Models
(sec.4.4), Reinforcement Learning and Markov Decision Processes 4sEj.and finally

Kalman Filters (sed.6).

4.1 A Few Preliminary Remarks on the Computational Power of

PCNs

This chapter in general and this section in particular discussahgputational expressive
powerof the PCNs framework.

SinceZhan(1994) showed that CNs are expressive enough to compute any partial recur-
sive function and thus that CNs are universal computing devisesne could argue that the
present chapter is a bit redundant. Hence some preliminary remarks are necessary in order to
clarify the usefulness of what follows.

The notions oexpressive power expressiveness knowledge representation languages
have been investigated by most papers on knowledge representation for nearly a decade (e.qg.
Wo0ds(1983, Levesque and Brachm4®987), Nebel (1990). Surely, we may have an in-
tuitive idea of what these terms mean, but indeed several formal definitions of expressiveness
have been already proposedBaadeil996), to cite just one example — on which there is as
common agreement among researchers in theoretical computer science. Following these defi-

nitions, we can to point out the existence of two distinct criteria for evaluating how expressive

In the sense of Turing computability, i.e. form the point of view of Theoretical Computer Science
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a formal language isTesfagiorgiz2006):

1. Theoretical expressivityOne language is said to be (theoretically) more expressive
than another language, if whatever the latter can express can also be expressed by the

former too, while the reverse is not necessarily true.

2. Practical expressivity deals with the ease and naturalness of a language in express-
ing real-life systems. For instance, a Turing machine is theoretically as expressive as
any programming language, however writing a usable program in a Turing machine

language is far more complex than in a programming language.

These criteria tell us two thing$l) from a theoretical point of view, if we prove that PCNs
are expressive enough to represent — let's say — any (probabilistic) Turing machine, then at
least in principle researchers could use the framework whenever they need because there will
certainly exist the PCN suitable for the ) From a practical point of view, if we demonstrate
that a specific algorithm can be expressed as a PCN by means of a constructive proof, then we
provide researchers with a method for building that PCN. A further immediate reward from
this latter approach is the possibility to discuss directly thiriency of one specific PNC
module and compare it with otherftéirent implementations of the same algorithm.

In the next sections I'll be seeking constructive proofs for specific algorithms —i.e. I'll be

adhering to the practical perspective.

4.2 Neural Networks and PCNs

In this section | build a bridge between PCNs framework and one of the most popular
approach to machine learning, i.e. the one based on atrtificial neural networks (ANNSs) that
gained increasing popularity over the last decades. ANNSs are very often used as part of robotic
architectures ([...]) and thus it is a valuable contribution indeed to show their relationship

with PCNs.

Matteo Santoro — Ph.D. Thesis



4.2. Neural Networks and PCNs 58

An ANN is an interconnected group of computational units that are caltfitial neu-
rons Of course, the term “neural network” suggests biological systems, yet the biological
roots of ANNSs are irrelevant to the present discussion. From the point of view of artificial
intelligence, ANNs are essentially simple mathematical models defining a function and they
are extremely useful when we do not know explicitly the expression of such a function.

The ability tolearnis surely the most interesting one for ANNs and it triggered interest-
ing debates among researchers during the early years of ANNs abaumttthegicalmeaning
of learning machines. Nevertheless learning in ANNs is based on a few simple mathematical
considerations that can be summarized as follows. Informally, ANNs can be considered adap-
tive systems that change their structure based on the flow of information that passes through
the network. More formally, ANNs are families of function approximators: they are mathe-
matical models with a gficiently large number of parameters by means of which it is possible
to define any function , given that a set of input—target training examples is provided to the
ANN. Of course, I'm referring here to th&upervised approacto neural networks. In this
approach, in order ttearn something, we need to collect pairs of input and corresponding
target, the targets being a kind of teacher’s specification of what the neural network’s response
to that input should be. Finally, we can summarize these consideration by stating that learn-
ing in ANNSs takes place owing to their structure and to suitable learning rules defined over
the structure. The learning rules specify the way in which the neural network’s parameters
change over time.

In this section the focus is on a subclass of ANNSs, the so called Multi-layer feedfor-
ward neural networks (MLFFNNs). Most of the learning algorithms commonly used to
train MLFFNNSs is based on the technique of on—line gradient—descent and is called back—
propagation. | will show that, for every ANN, there exist a well-defined PCN; moreover, the
back—propagation algorithm itself can be described as a specific PCN.

Some formal definitions are required preliminary to the description of ANNs as PCNSs.
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Figure 4.1:Schematic representation of a single artificial neuron.

Let’s start from the basic computational unit of an ANN.

Definition 4.1 (Artificial Neuron) A single artificial neuron is a feedforward, computational
device that has a numbeémnf inputsx; and one outpuy (fig.4.1). Associated with each input
is aweightwi(i = 1,...,1). There usually is an additional parametey called thebiasof the

neuron.

Theactivity rule of a single artificial neuron is the specific way we compute the output of
the neuron given its inputs. Usually the activity rule has two steps. First, the response to the

inputsx — theactivationa of the neuron — is computed as:

|
a= > wx +bo;
i=1

Second, the output of the neuron is computed as a functibf@) of the activation. The
function f (@) is also called thactivation functiorwhile the output is known as thectivity
of the neuron. In the literature there have been proposed several activation functions. Among

the others, the most popular activation functions are:

1. Deterministic activation functions:
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e linear:
f(a) =a
¢ threshold:
a>0
f(a) =0(a) =
-1 a<0
e logistic:
1
f@) = 1+eha
e hyperbolic:

f(a) = tanhBa)

2. Stochastic activation functions:

e Heat bath:

1 with probability —
y(e) = P Te
-1 otherwise

e Metropolis rule. The output depends on the previous output gtdteough the
productA = ay: if A <0, flip y to the other state, else flipto the other state with

probabilitye™.

Despite it is a very simple mathematical entity, the artificial neuron has a number of
nice properties that allowed for the widespread use of neural networks in so ntéerg i
applications. Before describing the learning process and presenting such properties, let's show
formally that we can always build a PCN whose semantic is the same of an artificial neuron.
Figure4.Zrepresents such a PCN.

Consider the PCNAN = (Lc, Tn,Cn) defined as follows:

e Lc contains the following locations{xs,..., X, bg,W1,...,w;, hy,...,h12}. Where

X1, ..., X] are
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Figure 4.2:A PCN module for a generic artificial neuron.
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e Tctransductions labels aré+, x, delay(1), sin, G, -}. As you can see in figui2.4, the
label+ is used twice in the PCN. Actually, the two transductions are distinct and they
must be kept separated in order to guarantee the semantical correctness of net (as we’'ll
se later). Whenever some confusion or even a mistake can arise, it is preferable to use

two distinct labels: for example; and+».

e Cncontains all the edges between locations and transductions as depicted id &yure

[...]

Now that we are equipped with a PCN-based representation of the single artificial neuron,
let's consider the learning stage. | aim at showing that we can always build a well-defined
PCN that represents the learning algorithm itself.

To understand the learning of a single artificial neuron is straightforward if we introduce
the concept of weight space, that is, the parameter space of the network. Given an artificial
neuron withl inputs, there are dt+ 1 parametei% For each selection of values of the param-
eter vectow, the neural net computes a specific function, i.e. the corresponding activation
function. Thus each point in the weight space corresponds to a functiorNaiw, the central
idea of supervised neural networks is this. Given examples of a relationship between an input
vectorx, and a target, we hope to make the neural netwdelrn a model of the relationship
betweernx andt. A successfully trained network will, for any giveq give an outpuy that
is close (in some sense) to the target vdlu€raining the network involves searching in the
weight space of the network for a valuewfthat produces a function that fits the provided
training data well. Typically an objective function or error function is defined, as a function
of w, to measure how well the network with weights settsolves the task. The objective
function is a sum of terms, one for each inpaget paif x, t}, measuring how close the output
y(x; w) is to the target. The training process is simply a function minimization, and it can

be carried our by adjusting in such a way as to find anmi, that minimizes the objective

2Remember we haveweightsw; and the biasy.
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function. Many function—minimization algorithms make use not only of the objective func-
tion, but also its gradient with respect to the parameterSor instance, the backpropagation
algorithm — on of the most popular in the field of ANN fieiently evaluates the gradient of
the outputy with respect to the parametexs and hence the gradient of the objective function
with respect tow.
Let's describe in short how a generic learning algorithm for perceptron does work.
Formally, let's assume we have a data set of ingxf8}N | with binary labels{t™}N

and a neuron whose outpy(x; w) is bounded betweeBandl.

421 Feedforward Neural Networks

The time has come to connect multiple neurons together, making the output of one neuron
be the input to another, so as to make neural networks. Neural networks can be divided
into two classes on the basis of their connectivity. (a) (b) Figure 42.1. (a) A feedforward
network. (b) A feedback network. Feedforward networks. In a feedforward network, all
the connections are directed such that the network forms a directed acyclic graph. Feedback
networks. Any network that is not a feedforward network will be called a feedback network.

The multilayer perceptron is a feedforward network. It has input neurons, hidden neurons
and output neurons. The hidden neurons may be arranged in a sequence of layers. The
most common multilayer perceptrons have a single hidden layer, and are known as “two—
layer” networks, the number “two” counting the number of layers of neurons not including
the inputs. Such a feedforward network defines a nonlinear parameterized mapping from an
inputx to an outpuly = y(x, w, A). The output is a continuous function of the input and of the
parametersv; the architecture of the net, i.e., the functional form of the mapping, is denoted

by A. Feedforward networks can be “trained” to perform regression and classification tasks.
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OUTPUT LAYER

W o (=18 =10)

i

HIDDEN LAYER

W.(Gi=1..5j=1..28)

INPUT LAYER

Figure 4.3: A typical two—layer feedforward neural network. There are five inputs, eight
hidden units and two outputs. Network weights can be represented as two matrices. ..

4.2.2 Feedback Neural Networks

This section deals with neural networks that have at least one feedback connection be-
tween a pair of neurons.

Feedback networks (figure 1) can have signals travelling in both directions by introducing
loops in the network. Feedback networks are very powerful and can get extremely compli-
cated. Feedback networks are dynamic; their 'state’ is changing continuously until they reach
an equilibrium point. They remain at the equilibrium point until the input changes and a new
equilibrium needs to be found. Feedback architectures are also referred to as interactive or
recurrent, although the latter term is often used to denote feedback connections in single-layer
organisations

The most popular class of such networks are the so—called Hopfield nets which are fully
interconnected nets, i.e. each neuron has a connection with non—-zero weight to any other
neuron except to itself. The weights in the Hopfield network are constrained to be symmetric,
i.e., the weight from neuron i to neuron j is equal to the weight from neuron j to neuron i.

Hopfield networks have two applications.
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The properties of a Hopfield network may be sensitive to the above choices.

The stochastic Hopfield network or Boltzmann machine (Hinton and Sejnowski, 1986)
has a probabilistic activity rule.

The Boltzmann machine is time-consuming to simulate because the computation of the
gradient of the log likelihood depends on taking thedence of two gradients, both found
by Monte Carlo methods. So Boltzmann machines are not in widespread use. It is an area
of active research to create models that embody the same capabilities usingfiicarate
computations (Hinton et al., 1995; Dayan et al., 1995; Hinton and Ghahramani, 1997; Hinton,
2001; Hinton and Teh, 2001).

4.3 Continuous Time Recurrent Neural Networks and PCNs

In this section | describe a specific subclass of FBNNSs, the so cedietinuous time
recurrent neural network@CTRNNS). | believe they deserve df@irent characterization be-
cause they have been playing a special role during the last few years in the Robotic research
field.

Many authors prefer to describe thetivity of each neuron of the net in terms offér-
ential equations (see equatidrl below) instead of in terms of the messages passed through
a graph of neurofs Such a more strict mathematical representation allow us to build the
corresponding PCN, which can be used directly whenever the neural system is described as
a dynamical system evolving over time. The goal of this section, thus, is to take advantage
of the peculiar properties of CTRNNs and provide a compact (and, hopefully, fimiers)
representation for them within the PCNs framework.

Informally, a CTRNN is a neural system that compriskdifferent, fully interconnectéd

3This choice is not only a matter of preference, of course. In fact there are some properties of the neural system
that can be more conveniently expressed if we look at it as a dynamical system. Sometimes our goal is to exploit
such properties; and in these cases we are forced to adopt this approach.

“Feedback loops are also allowed.
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artificial neurongq;}ic1...n. Each neuron is further connected to some neuron-like elements

.....

calledinput of the netFormally, a CTRNNR is defined as the quadrupl®, I, W, W’), where:

e Q={qg}", is the set of the nodes of the net;

| = {Ik}f:l is the set of the inputs of the net;

W : (g, 0;) € Qx Q — wij € Ris a function that defines the weights associated to the

connection between each pagjr g; of nodes;

W (g, Ik) € Qx 1 — wjy € Ris afunction that defines the weights of the inpubver

the nodey;.

The state of each neurap at timet is described by a functiog;(t) called activation
of the neuro?. The reader should note many similarities between the terminology proposed
here and the one introduced above for artificial neuron in general; this should have been easily
expected.

The semantics of the nets — i.e. its dynamical behavior — is the solution of a system of

differential equation whoseth equation is:

N S
. 1
V= i) = = —Yi"‘jZZ;WjiU'(Yj_Qj)"‘kZ:;V\/kilk , (4.2)

whereo is the logistic sigmoidal function introduced abovgis a time constafif andé;
is a bias term associated to each neuron.

If we constraint the matrixvij to to be symmetric (with zero diagonal elements) we can
use a well known result dflopfield (1984 which states that such networks could be used as

associative memories, with each pattern stored aferelt equilibrium point attractor of the

5The dependence dris usually omitted if no ambiguity can arise.

81f the equation is considered a model of the biological neuron, the time constant is related to some properties
of the membrane of the neuron. In a pure mathematical framework it provide a useful rescaling factor to each
equation.
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network. This is an “attractive” property for robotic researchers since it could be used to link
specific configuration of the environment to corresponding desired response. In fact, as we’'ll
see in chapte??, it is possible to use equatiodsl as motor behavior controller.

In this section we are interested in studying equatibrdsn the general framework of
the methods foordinary diferential equations As stated in chapté? the formal syntax of
PCNs was defined with the constraint that PCNs should be able at least to express (stochastic)
dynamical systems — i.e. systems of (stochasti¢gdntial equation — and thus we are sure
there exist a suitable PCN for any system kk&.

Actually we are not satisfied of this guarantee and want something further: we want a
methodologicakxample of how to build the PCN. Of course we can reason about the general
case withN neurons andl inputs, but the considerations still hold if we reason about a special
case with, e.g.2 interconnected neurons with one inputAll the formulas and pictures will
be definitely clearer and this section will be more useful for practical uses. Let’s consider the

system whose behavior is:

711 = Y1+ Wiio (Y1 — 61) + Wa10 (Y2 — 62) + W) | 4.2)
ToY2 = =Y + Wi20 (Y1 — 01) + Wooo (Y2 — 62) + \l\/2|
In order to implement on a digital computer the equations above, we must use a numerical

integration method. Let’s adopt the same method we used in the exarSpdad we obtain:

Vit = yi o+ A (—yh + Waaor (] — 61) + Woror (] — 62) + w1 ™)
Y3 = Y3+ B (=3 + Wiao (Y] — 61) + Waoor (Y3 — 62) + w1 ™)

wheren represents the step of the computation Anthe so called step size. Interestingly

(4.3)

enough, a generalization of equatioh& can be adopted as the fundamental equation of

another class of recurrent neural networks, namelgiberete time recurrent neural networks
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Figure 4.4:PCN that represents an implementation of a CTRNN

DTRNN.

It is quite straightforward to build the PCN that represent equatidg)st is represente in
figurel4.4.

All the transduction are basic transliterations, except for two unit deélg{ andd»(0)
which are necessary to avoid algebraic loops. The only location that have a physical meaning
areys, Yo, 01,02, 11, 1> and all the weights. Their domains are usually some intervaloR.
The inputs of the PCN are the two inputs of the net while we are interested (as output) to the

traces associated with andys.

"This (supposed) equivalence between DTRNN and any algorithmic implementation of CTRNN is an inter-
esting topic but it would lead far beyond the scope of this thesis.
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4.4 Markov Models and PCNs

In this section | briefly recall a number of results presented already in St—Aubin’s thesis.
They show that any Markov model can be represented by a suitable PCN, and this is aluable
because in practice many robotic systems naturally make use of the Markovian hypotheses
about the probabilistic dependance between any two consecutive states of the system.

There exist four distinct cases of Markov models: they are obtained by combination of
both discrete vs. continuous state space and discrete vs. continuous time. Let’s start from the
easiest one; if both time and state space are discrete, then the Miadil calleddiscrete
time Markov ChaifDTMC). A DTMC is a tuple(S, s50.), whereS, s and® represents the
finite set of stateg$| = n), the initial state, and the probability transition respectively. It is
quite straightforward to build the corresponding PCN modul€pcy of a given MC; it is
simply {{S}, {6(%0), Prcn}, Cren)- This means that the set of locationsMi-cn contains one
locationS whose domain is the set of all possible states of the DTM{2, ..., n}, and each
value of the location encodes for the corresponding state of the DTk contains only
one deterministic transduction — the unit detdg), and one generat#®pcy following the
probability distributior®. We need(sy) hot only in order to avoid an algebraic loop but also
to model the Markovian property of the Markov chain; in fact, the unit delay guarantees that
the stateS; — i.e. the value of the locatio in the domain at timé — depends only on state
St-1. The generator itPpcy is equivalent to the probability transition matrix MC; thus,
given the curreng;, the generator provides the probability distribution of the next possible
St+1. Cpen contains only three connections that are represented in 4gbfa)

If we let the state space to be continuous while keeping the time discrete, i.e. we consider
the so calledliscrete—time Markov Process@3TMP), then it is still very simple to build the

corresponding Markov—process like POX#pcn. The only diference with respect to the

8These valuable results are quite relevant to the idea discussed in this chapter, thus | believe it is worthwhile
to recall them here.
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P(SSt.1) o(sq) P{S¢ISt1) d(sg)
(a) PCN equivalent of a DTMC (b) PCN equivalent of a DTMP

Figure 4.5:Equivalence between PCNs and discrete—time Markov models

previous case is that instead of a probability transition matrix, we must introduced a proba-
bility measureP({S;}|S;_1) over sets of states. The representation of such a DTMP is shown
in figure4.5(b) The locationS has a continuous domain (eR) rather than a discrete one.
Moreover the generator is now defined on a set of s{&@gs

The case of continuous—time and discrete state space is calgitiuous—time Markov
Chain(CTMC). In a CTMC, the state transitions may occur at any time, with a given proba-
bility rate. In order to manage this transition rate, it is usual to define the so catethatrix
R.tj(s) that represents the transition probability from siati® statej and from timet to time
t + s. Often, the transition probabilities are independent from the initial timmeghe chain
is called time homogeneous — and tiRjgs) denotes the transition probability froirto j
overstime period. In the most common type of time homogeneous CTMCs the time between
transitions is exponentially distributed. Since the exponential distribution is memoryless, the
future outcome of the process depends only on the present state and does not depend on
when the last transition occurred or what any of the previous states were, and this allows the
Markov property to still hold. In such cases, the rate matrix is actually a three—dimensional

Rij(s) where, for each pair of stateésnd j, there is the corresponding rate parameter of the
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P(SiSt)

Figure 4.6:PCN equivalent of a Continuous Time Markov Chain

P(SiSt)

exponential distribution.

Since our goal is to build the PCN corresponding to the chain, let’s start from a CTMC
CMC = (S, %, R), whit |[S| = n. The equivalenCMCpcn is ({S}, {Rate P}, C), whereS
is the only location of the system and its domésg, s1, ..., Sy} encodes tha states of the
system.Rateis a stochastic event generator following an exponential distribution with state—
dependent ratB(t) that triggers an event when the transition condition has been compiReted;
is the generator following the distributid?(i, j) = R; j(s) for all s in domain(S) which causes
the system to transition probabilistically to a new state sO when: 1) the system is in state s,
and 2) an event signifying the completion of the race condition has occurred. This general
situation, which applies to any CTMC with discrete state space, is represented in&ijure

The final, last case is the pure analog continuous time Markov processes (CTMP) which
is a special case of stochasti€fdrential equation. The equivalence of CTMPs and PCNs was

showd via the equivalence of stochastic integration
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4.5 Planning, Markov Decision Processes, Reinforcement Learn-
ing

Chapter of |St-Aubir (2005) discusses the problem of control synthesis and its relation-
ships with PCNs framework. The goal is to introduce the reader to specific techniques that
are especially well suited to synthesize controllers when in the presence of a PCN model. The
focus of that chapter is dffPartially Observable) Markov Decision Processes(PO)MDPs,
which are quite popular methods within the Al community because theyfiaetiee algo-
rithms to compute optimal policies. St—Aubin showed the existence of a subclass of PCN
models, which he calledynchfir-PCN, and which has a one—to—one correspondence to the
class of all MDPs. This result is valuable from the point of view of this thesis because it

As mentioned eatrlier, policies can be viewed as controllers; hence computing a policy can
be seen as control synthesis. It would be extremely valuable to be able to merge the modeling
simplicity and power of the PCN framework with the control synthesis capabilities of MDP.

Maybe one of the most common problems in mobile robotigsasning under uncer-
tainty, which is also known adecision—theoretic plannin@@TP). In short, a DTP approach
is useful in those systems whose dynamics can be modelled as stochastic processes and where
an agent, acting as a decision maker, can influence the system’s behavior by performing (un-
certain) actions. Resulting from the Markov property, the current state of the system and the
choice of the action by the agent jointly determine a probability distribution over the possible
next states. It is usually assumed that systems evolve in stages, where actions cause

Reinforcement learning is learning what to do—how to map situations to actions—so as
to maximize a numerical reward signal. The learner is not told which actions to take, as
in most forms of machine learning, but instead must discover which actions yield the most
reward by trying them. In the most interesting and challenging cases, actionsfieely a

not only the immediate reward but also the next situation and, through that, all subsequent
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rewards. These two characteristics—trial-and-error search and delayed reward—are the two
most important distinguishing features of reinforcement learning.

Reinforcement learning is defined not by characterizing learning methods, but by char-
acterizing a learning problem. Any method that is well suited to solving that problem, we
consider to be a reinforcement learning method. The basic idea is simply to capture the most
important aspects of the real problem facing a learning agent interacting with its environment
to achieve a goal. Clearly, such an agent must be able to sense the state of the environment to
some extent and must be able to take actions tfi@ttethe state. The agent also must have a
goal or goals relating to the state of the environment. The formulation is intended to include
just these three aspects—sensation, action, and goal—in their simplest possible forms without
trivializing any of them.

We do not intend to cover all those areas here, but rather we wish to introduce the reader
to specific techniques that are especially well suited to synthesize controllers when in the
presence of a PCN model.

A Markov decision procesD®P is defined by the tupléS, A, P, R) , whereS is a finite
set of states of the system, and where states are defined as a description of the system at any
point in time. In a MDP, these states can be exactly identified by the agent, i.e., at any given
time the agent knows exactly which state it is iA.is a finite set of actions from which the
agent can choos®, is the state transition model of the system which is a function mapping
from elements ofS x A into discrete probability distributions ovet; andR is a stationary
reward function mapping fror§ x A to R. R(s, @) specifies the immediate reward gained by
the agent for taking actioa in states. Actions induce stochastic transitions, wiRs, a, t)
denoting the probability with which statés reached when, at the previous time step, adion
is performed at state It is to be noted that the transitions of the model specify the resulting
next state using only the state and action at the previous time step. This therefore assumes that

the next state is solely determined by the current state and the current action and corresponds
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to the Markov assumption discussed earlier. It is worth mentioning that not all systems are
Markovian in nature. The Markov assumption is merely a property of a particular model of
that system, not of the system itself. However, one should note that the Markovian assumption
is not too restrictive, since any non-Markovian model of a system can be converted to an
equivalent Markov model. In the field of control theory, this conversion is referred to as the
conversion to state form [Lue79]. &ationary policyr : S — A describes a particular, time
independent, course of action to be adopted by an agentgttdenoting the action to be
taken in states. It is often assumed that the agent acts indefinitely (an infinite horizon) but the
finite horizon case has also been studied extensively. In the finite-horizon case however, the
optimal policy is typically non-stationary: the agent’s choice of action on the last step of his
life will generally be very diferent than when it has a long life ahead of it.

We will, in this short presentation of the MDP framework, assume infinite horizon, un-
less explicitly stated. A possible way to assess the qualityfeéreint policies is to adopt an
expected total discounted reward as the optimality criterion wherein future rewards are dis-
counted at arat@ < 8 < 1, and the value of a policy is given by the expected total discounted

reward accrued. The expected valygs) of a policyr at a given state s satisfies [Put94]:

Vi(8) = R 7(9) + 8 ) P(S 7(9), V(1) (4.4)

teS
4.6 Kalman Filter and Bayesian Filtering as PCNs

The Kalman filter (KF) is a very powerful mathematical tool that is playing an increas-
ingly important role in mobile robotics, for example agaptive filtering devicéor localiza-
tion®. Actually, KF is not the cutting edge of stochastic estimation since it has been around

for about40 years [Kalman/1960). However, it turned out to be amptimal estimator for

%Of course, this is not the only application of KF to robotics, yet this is the most popular in the last few
years. However the present discussion does not rely on one this specific example but rather on the mathematical
properties of the KF as filtering device in general.
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a large class of problems and a vefieetive and useful estimator for an even larger class;
moreover, it is extremely easy to implement and pretty fast in many practical applications.
All this resulted in a widespread use of the filter and explains its popularity. The following
constructive demonstration of the equivalence between PCNs and KF, then, could result in a
useful contribution.

The following presentation — originally due/8orensor{(1970) — is the common way to
introduce and explain the Kalman filter and it is very helpful to catch on to the basics of the
topic. For more extensive discussion on KF and stochastic estimation in general the reader is
referred — for example — td_éwis'198€) and Kailath et al:2000); a very helpful tutorial on

KF was written byWelch and Bisho§2007).
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Chapter 5

PCNJ: A Visual Programming
Environment for Probabilistic

Constraint Nets

In the previous three chapters | introduced the PCN framework and | described a model-
checking approach to behavioral verification for Robotics. Furthermore, several examples
have been discussed in order to make it clear how many interesting features and tools PCNs
provide for robotic researchers. However, everything would remain in the realm of abstract
discussions if we didn’t provide arffective toolbox that people can rely on when designing
and modelling their robotic systems.

This chapter describes an integrated programming environment called PCNJ — that stands
for Probabilistic Constraint Nets in Java which supports probabilistic constraint net mod-
elling, simulation, and animation for any kind of hybrid systems. My contribution to PCNJ
was twofold; as a Visiting Scholar at the Laboratory for Computational Intelligeina|ab-
orated with Alan Mackworth and Lee Leif Chang on the designing and development of the
fundamental packages of PCNMoreover, during the last few months, I've been involved
in testing the pre—release version of PCNJ. Several tools have been added to PCNJ as side

effects of the implementation of many of the examples described in this thesis.

1At the University of British Columbia, Vancouver B.C., CA
2| focused mainly on the two packagesre andsimulation.
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Some insightful examples based on “concrete” robotic problems are presented in the next
chapters and for each of them a PCN—based program was created in PCNJ. The experiments
conducted on them confirm thé&ectiveness of PCNJ as a tool for hybrid system modelling

and real-time simulation.

5.1 Concepts of PCNJ

PCNJ is thought to be @ntegrated development environm&iE) for people that want
both to build a PCN and to simulate its dynamical evolution in order to verify the behavior
of a (stochastic) hybrid system. PCNJ allows for the modelling of PCNs that either are pure
software simulations or are coupled with some physical device — for example a software
module that is connected to (and controls) a real mobile Pobot

IDEs are popular and useful pieces of software that assists computer programmers to
develop other software. IDEs normally comprise a source code editor, a compiler or an inter-
preter, and (usually) a debugger. Moreover, numerous tools are provided to further simplify
the “construction” of new software. IDEs are becoming an indispensable support for devel-
oping large pieces of software composed of many independent parts. Typically, IDEs are
not general—purpose environments since each IDE is devoted to a specific programming lan-
guage, even if there exist a few multiple—language {Hbégh as the Eclipse IDE, NetBeans
or Microsoft Visual Studio. Thus, despite the availability of many professional tools, they are
not suitable for modelling PCNs directly; we cannot rely on them and so we definitely must
face the problem of building a specific IDE for our purposes.

Since our goal is to build an IDE for PCNs creation and simulation, then the first step is to

specifywhich isthe programming languageSo far, in fact, we have not introduced formally

3In such cases the PCN module is the controller of a real robotic body that senses and interacts with its
environment.

4Usually these are professional IDEs and are tailored for the most popular procedyoslaject—oriented
programming languages such g&&+/C#, Java, Visual Basic
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any programming language. As described in che2t&CN framework deals with systems

of equations defined on a dynamics struct@¢, A) where7 andA denote an abstract

time structure and an abstract domain structure, respectively. Even if it is quite intuitive
how it is possible to move from such an equation—based specification language to a concrete
formal programming language, | believe it is worth describing the transition in a clear way in
order to avoid unwarranted pitfalls. The nice graphical representation for PCNs introduced in
sectiori2.2.2clues us in that our language may be a visual programming langj(dBe).

Thus, let’s start from the graphical representation of a PCN as a bipartite graph. The graph
that represents a specific PCN includes a group of nodes (the locations) that store the value of
variables over time. Some other nodes (the transductions) represent functional relationships
among variables. Some transductions — the event generators — play a special role since their
output is an event that can trigger other transductions. Event generators whose outputs are
produced at a fixed time rate, can be used as cfoakd can be attached to both primitive
transductions and generators or to other modules.

The above graph—based picture of PCN closely resembles that of a dataflow computing
model (DFCM). Unlike the more standard, control-flow computing model (CFCM), DFCM
is based on the flow of information between data processing entities, instead of the flow of
control between instructions; more specifically, DFCM assumes that a program is a data—
dependency graph whose nodes denote operations and whose edges denote dependencies be-
tween operations. DFCM executes any operation denoted by a node as soon as its incoming
edges have the necessary operands Jagannathafil996¢ for a thoroughly description of
dataflow computing approaches). This similarity between PCNs and dataflow graphs was the
bridge between dynamical systems and programming languages we had been searching for.

Given the above intuitive idea dbwthe “PCN programming language” should look like,

5SeeChang(1990) andBurnet:(1999 for an introduction to the most important concepts of visual program-
ming language.

5Note that we are not making any assumption about parallelization and synchronization of computation. There
can be either just one or more clocks and they can be either dependent or independent to each other.
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let’s point out some critical issues we’d better consider carefully in order to avoid conceptual
misleading. The original syntax of PCNs deals with abstract mathematical entities; for ex-
ample transductions map input trace spaces to output trace spaces. Hence, the fundamental
concept of time ishard—codedinto the abstract concept of dynamics structure. Any soft-
ware implementation of this abstraction must address the problem of “unveiling the time” and
make it explicit what can trigger the computation in the actual programs. Mathematically,
both primitive and compound transductions can not alter the time structure underlying a trace
whereas event generators can do it — in fact they are used to link continuous and discrete
systems together. Thus, a plausible solution would be to assodiatesa of computation to
each syntactical counterpart (in the programming language) of the the event generators, and
let them trigger a (non empty) subset of transductione’ll call these elementslocks to
which we associate a fixed firing—rate. We require at least one clock to be specified for each
well-defined program; this is somehow equivalent to the abstract requirement that dynamics
structures relies on at least one abstract time structure.

A final issue we must be aware of is possibility of define independent PCN modules or

sub—nets; the semantics of the modules should be preserved during the computation.

5.1.1 TheLpcy Visual Language

In this section | introduce a visual programming language callegdy — based on the
PCNs framework — which underlies the PCNJ IDE. A well-defidigd program provides a
software implementation of the corresponding abstract PCN, i.e. the ordered set of the values
of a specificLpcn Variable over time is a samSlef the trace associated to the corresponding
location.

Let’s now define the basic syntactical elements of the language that we £aiiged

"There must be at least on transduction per thread, i.e. two distinct thread cannot fire on the same transduction.
8f the PCN is defined on a continuous time structure then this set is actually a sample. It the time structure is
discrete the this set coincides with the trace.
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Circles : these are both theonstantsand thevariablesof Lpcp. A circle denotes one
specificlocation of the PCN, and it stores thealue of the location over time. The
domain of the circles is the domain of the corresponding location.sdhea circle is
the corresponding type of domain. We aahstantshose circles associated toiaput
locationandvariablesall the others. Those circles for which there exists an arrow from
a double border square have themselves a double border, i.e. they are the stochastic

locations.

Squares : these arduilt—in operators that can act on the values of input circles and whose
output updates the values of the output circle. A circle isnguit circle of the square
if there exists an arrow from the circle to the square. A circle imaiput circleof
the square if there exists an arrow from the square to the circle. Squares corresponds
to the basidransductionsf the PCN. We adopt the convention tlggineratorshave a
double border whilgransliterationshave a single border. Each square have a specific
signature and it is possible to draw arrows between a circle and a square only if the type

of the circle satisfy the signature of the square.

Clocks : these are a special type of squares. They corresponds ée¢hegeneratorsf the
corresponding PCN. Each clock has a spedifing—rate Arrows can be drawn from

a clock to a transduction directly.

Arrows : these can connect any circle to a square and viceversa. It is not possible to connect
neither a circle to another circle nor a square to another square. It is possible to connect
a clock to a square. Arrows correspond to the connections of the corresponding PCN.
The set of the arrows of Zpcn program must satisfy the constraints imposed on the

connections of the corresponding PCN.

To summarize, the above syntactical elements can be combined together in order to define

a well-formedLpcn program:
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Definition 5.1 (Lpcn program) Let’s consider the bipartite graphg whose vertices are
either circles or squares (or clocks), and whose edges are the arrows. We sgyishatvell—
definedLpcn program jf the corresponding PCN is a well-defined Probabilistic Constraint
Nets. Furthermore, we require thét) G must contain at least on clock, anf@) there must

exist exactly one arrow pointing to a each transduction and starting from one of the clocks in

G.

Definition 5.2 (PCN programming language L»cx)) The PCN programming language is

the set of all the well-definefpcn programs.

The execution of a PCN program is a specific computation given a set of sequences of
input values and a (possibly infinite) sequencdinirig signals from each clock to the corre-
sponding transductions. It is easy to show that, given the previous definitions, the semantics
of the program is exactly that of the constraint net, given that we guarantee a correct initial-
ization of the computation. If all the values of the input locations are properly defined at the
initial step then, at each subsequent step, some of the undefined locations are computed and
eventually, the constraint net outputs are computed.

Now that we are equipped with the programming langufgen we can face the prob-
lems of designing theompileyinterpreterfor it. Because we defined a graph—based approach
that is very similar to the dataflow computing model, we adopted the approach of interpreting
by means of a simulation of the evolution of the system. In the seBtddrdiscuss thoroughly
how PCNJ simulate any PCN, that is to say howititerpreterdoes work.

In PCNJ, the computation is triggered by a PCN module component is often both con-
nected with and driven by a clock. To evaluate the module correctly, the transductions con-
tained in the module have to be triggered in proper sequence. CNJ uses the transduction
scheduling algorithm to figure out a right dependency relationship within the transductions.

Then the clock triggers those transductions one by one in that order. This approach allows the
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computation of constraint net modules to work as demand-driven dataflow, and it works well.

5.1.2 PCNJ and its Relationships with other Visual Programming Languages

Before presenting the details of PCNJ, | propose in this section a very brief overview
of the most common visual programming languages to whlighy and PCNJ should be

compared:

Matlab/Simulink MatlalySimulink is a visual programming and simulation environment for
continuous and discrete control systems. It enables users to build graphical block di-
agrams, simulate dynamic systems, evaluate system performance, and refine their de-
signs. It is currently the most popular tool for control system modeling and simulation.
However, it is not suited for hybrid system modeling in constraint nets. There are three

reasons for this:

1. First, Simulink is unable to support an event—based time structure, which is an

important characteristic of hybrid systems.

2. Second, although it supports bottom-up modeling well (by grouping), it does not
support top-down and middle-out modeling methods, which are helpful for some

users.

3. Third, in Simulink, all the system models are stored in MDL format (Model De-
scription Language). In addition, since CN hasféedent graphical representation
from Simulink’s models, the MDL file format is not able to store constraint net

models.

LaBVIEW : LabVIEW is a platform and development environment for a visual program-
ming language named “G”. LabVIEW is commonly used for data acquisition, instru-
ment control, and industrial automation The programming language “G”, is a dataflow

language. Execution is determined by the structure of a graphical block diagram (the
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LV—source code) on which the programmer connedfedint function—nodes by draw-

ing wires. These wires propagate variables and any node can execute as soon as all
its input data become available. Since this might be the case for multiple nodes si-
multaneously, “G” is inherently capable of parallel execution. Multi-processing and
multi-threading hardware is automatically exploited by the built—in scheduler, which

multiplexes multiple OS threads over the nodes ready for execution.

One main benefit of LabVIEW over other development environments is the extensive
support for accessing instrumentation hardware. Drivers and abstraction layers for
many diferent types of instruments and buses are included or are available for inclu-
sion. These present themselves as graphical nodes. The abstraction fegrestan-

dard software interfaces to communicate with hardware devices. The provided driver

interfaces save program development time.

Unfortunately, LabVIEW is a proprietary product of National Instruments. Hence, Lab-
VIEW is not managed or specified by a third party standards committee such as the
ANSI for C. Obtaining a fully compatible and up to date LabVIEW platform requires
purchasing the product. Thus this very promising approach is not suitable for the pur-

poses of the present thesis.

5.2 System Requirements for PCNJ

Because PCNJ is thought to be an IDE for a visual programming language, it should be
able at least to support usersti@w a program by means of PCN graphical primitives.

We impose the following requirements on our modeling and simulation environment:

1. it should enable developers to interactively pick components, and place them onto a
work area. These components are CN’s atomic nodes: locations, transductions, con-

nections, and modules;
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2. connecting has to be accomplished in a way where events and data can be exchanged

correctly among the components;

3. the convenient interactive customization of bean properties should be supported by the

environment;

4. there has to be a method to check each CN node’s dynamic values. For instance, users

might wish to see a location’s changing values while a simulation is running.

5. such a modeling and simulation environment has to be simple to use and execute. Also
the designed model should be reusable as a new component in any other hybrid sys-
tem. In this case, a very complicated system can be built by assembling some less

complicated components.

In such a visual programming environment, users “draw” constraint net programs, instead
of writing code for them. The look and feel is intended to resemble the style of some popular
drawing tools such as Adobe lllustrator, MS Painter, and Unix xfig to support constraint net
designing. In addition, to make the GUI respond as quickly as possible, we adopt multi-
threaded programming to minimize the response time to users’ action. In Constraint Nets, a
model possibly consists of dozens of modules that are hierarchically locatefbedt levels.

To support as many modules as possible, CNJ uses Multiple Document Interface (MDI) to
display each module in a child window. Thus, every module component corresponds to a

child window in the MDI desktop.

5.3 Software Architecture of PCNJ

In this section | describe the software architecture of PCNJ. Of course, many details will

be omitted and the focus will be on
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PCMN_exceptions
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Location, Transduction,
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support XML 10
operations. And
Export/Import facilities
to several standard

Spedifies a basic
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any kind of exceptions,
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by means of default
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application, based on
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PCMI_simulator PCMI_builder PCMI_PSG
Contains dasses to Contains a JAVA [ Specifies an interface to

Player [Stage /Gazebo.
The users can design
PCM-based controllers
for PSG-based robots

values over the time. to modify saved ones. and environments.

Figure 5.1:0verview of the packages of PCNJ

The approach we adopted to develop PNCJ is to use as much as possible already developed
open—source (or freely available) software. In particular we

An overview of software architecture of PCNJ is in fighté. Currently, PCNJ comprises
6 packages, the most important of which is tteere package. It contains classes that are in
ono—to—one correspondence with the syntactical elements of PCNs framework. All the other

packages depends anre and provides the following features to PCNJ:

pcn.io : contains classes that suppgi® Icapabilities forLpcn programs. It is possible

to save and open each graph associated fp@y program. We adapted the XML—
based language introduced Bpng(2002 and thus it is possible to save hierarchical
description of PCNs into textual files by means of abstract XML syntax. Moreover it is
possible to impoyexport Lpcn programs as pure JAVA objects because every class in
thepcn. core package implements tierializablenterfac®. A further /O capability

is provided by thepcn. builder package and thusit is possible to sayg:x programs

9See some JAVA reference for further detail.
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as image.

pcn.exceptions : contains several utility classes to handle almost any of exception that

can be generated within PCNJ.

pcn.simulator : contains classes the allow us to generate execution traces forgggh
program. Classes in package exploit the properti€sletksto be autonomous threads
of computation; they start the computation distento the changes produces to the
value of output traces. JFreeChart and Swing allow for the displaying of traces over

time.

pcn.builder : contains classes that allowed us to cre@@NJ—Builderthat is, actually,
the graphical user interface of the IDE discussed in this chapter. Most of functional-
ities of PCNJ—Builderare provided by the free librardGraphon which we strongly
rely. JGraph provides a range of graph drawing functionality for either client—side or
server—side applications. JGraph has a powerful API that allows for the visualization,
manipulation, automatic layout managing and, finally, it provides tools to make some
analysis of graphs. JGraph complies with all of Swings standards, suyahgmable
look and feel, data transfer, accessibility, internationalization and serialization. Further-
more, advanced features such as yretio, printing and XML support, the standard
Swing designs are also included. JGraph also complies with the Java conventions for

method and variable naming, source code layout and javadocs comments.

pcn.psg : contains classes useful to simulate a PCN—based controller that govern either a
real robot or a simulated bonvironment. This package should be considered an API

to the open—source, popular robotic interface PLAYERARGE/GAZEBO.
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5.3.1 PCNJ-core package

The most important part of PCNJ is, definitely, teere package. It contains one specific

class for each syntactical elementff-pn hence it can be used in twoft#irent ways:

e people that want to design PCNs by means of R@NJ-Builderuser interface can
simply drag and drop graphical tokens and draw arrows between them. Hence, each
class of thecore package might be inherited by a corresponding class ibulié¢der

package that have some further displégualization capabilities.

e people that

5.4 Simulations of PCNs within PCNJ

One of the most important feature of the current version of PCNJ is the simulation of the
dynamical evolution of any’pcp program that stands for an abstract PCN.

The simultaneous evolution of several traces — each with its own time structure — is deeply
founded upon the idea of parallelism. Transliterations encodes functional mappings between
trace spaces and are used to constraint the evolution of the output trace space based on the
actual state of the input locations. If we really want to build a software simulation of these
difficult abstract concepts we can not avoid to use parallel computation. Hence we developed
a multi—-thread mechanism within PCNJ in order to — let's sakecutea Lpcn program.

The basic idea is well schematized in figisd.
Each Clock is an independent thread of computation with its fimmg—rate thus the

life—cycle of a that specific thread is as follows:

1. fires an event for each transduction that are connected with an arrow exiting from the

clock;
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Module
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+output Interface +Hnput Interface +irigger computation
0..* 0..* ¥
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+getalue(): Object

-Hises as a buffer

+Transduction{)
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These three subdasses
seem to be sufficent for
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of PNCJ. More subdasses
can be added tough.

Every other subclass of Transductions
should implement itz own “isValidSort™ and
“run” methods, It's useful, not mandatory
though, to override the constructors
adding every kind of controls after a call to
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Figure 5.2:UML diagram of thecore package in PCNJ
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;E trigger computation
—_—

clock:Clock

/ transduction:Transduction

getinput values

/ set output value

in_locl:Location
in_loc2:Location %

out_loc:Location

Figure 5.3:A schematic representation of the mechanism for activate the computation of a
Transduction in PCNJ

2. tells the java virtual machine that it can sleep faxtanterval of time (depending on its

firing—rate

3. wait until the java virtual machine re-activate the thread, and start again fronilpoint

When fired by a Clock, then the transduction should simply read the inputs from its input
locations and compute its output which will be set as the new value of the output location.
The scheduling mechanism for the activation of the Clocks is managed directly java virtual
machine. Propediocksare defined over the variables in order to guarantee the correctness of
the computation.

The final problem we must face is the scheduling of the activatio sequence of the trans-
ductions controlled by a single clock. In PCNJ we adapted an algorithm proposgainly
(2002 which is described as follows.

This algorithm aims at specifying a correct order to drive the transductions; it is based

on thetopological sorting algorithmTopological sorting is a natural problem in many algo-
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Figure 5.4:(Taken fronmiSong(2002)) An example of a PCN whose transduction are activated
by a single clock; and thus they must be scheduled correctly in order to simulate the PCN
correctly.

rithms on directed acyclic graphs (DAG). Topological sorting orders the vertices and edges
of a DAG in a simple and consistent way. It can be used to schedule tasks under dependency

constraints. The problem of topological sorting is described as follows:

Input : A directed, acyclic grapf® = (V, E) (also known as a partial order).

Problem : Find a linear ordering of the vertices\éfsuch that for each eddg j) in E, vertex

i is to the left of vertex.

The topological sorting problem is also applicable to constraint net graphs. Suppose we
have a set of transductions to be driven in a PCN module, and certain transductions must be
computed before other transductions. These dependency constraints thus form a constraint
net (also a directed graph). The transduction scheduling algorithm searches for an order to
execute the transductions, such that each is performed only after all of its previous transduc-
tions are executed. In the implementation, it utilizes the breadth-first algorithm to transverse
the constraint net graph, but in a backward way (from output interface locations to input in-
terface locations). The algorithm picks vertices in hierarchical levels with the output interface
locations as roots. That is, if a vertex has an out—degree—€dtican be next in the topo-

logical order. Then, the algorithm removes this vertex and looks for another vertex with an
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Figure 5.5:(Taken fromSong(2002)) The hierarchical tree after sorting.

out—degree—cour@ in the resulting DAG. It repeats this until all vertices are added to the
topological order. Figur®.4 represents a constraint net example to illustrate the algorithm;

it shows a constraint net module. After applying the breadth-first algorithm to transverse
the graph from the end to the beginning, together with an out-degree—count in each node, a
linear order is reached in figue4, where the numbers denote the order of the node in the
breadth-first transverse. However, the order in figludais not the final result yet, since the
sequence number is calculated with the roots of the output locations instead of the input lo-
cations. Therefore in figu®.4, a correct order is finally acquired after reversing the order in
figure5.4. Based on the final order, the execution of the module works correctly. Although the
ordered sequence includes both transductions and locations, the clock only needs to trigger
the transductions. The transduction scheduling algorithm, however, does not work without
the condition that the constraint net has to be a directed acyclic graph (DAG). Sometimes

constraint nets have feedback connections resulting in a few cycles in the graph. In the com-
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Figure 5.6:(Taken fromSong(2002)) The sorted order to fire the transduction.

plex case of a directed cyclic graph, those cycles have to be broken up, and then it becomes
an acyclic graph. In PCN modules, a cycle forms when there is a backward connection for
creating a feedback. To run the simulation, the particular location in that feedback cycle has
to be assigned an initial value (or else, the involved transduction can never get inputs to com-
pute). Such a special kind of location is regarded as a “heuristic tip” for breaking up cycles.
When designing a constraint net and confronting a feedback cycle, designers are required to
paint the special location in a non-white background color. It also reminds designers to assign

an initial value to that location before starting the simulation.
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Chapter 6

Concrete Applications of PCNs

Framework

This final chapter | describe some concrete applications and problems that are relevant
to the research on autonomous robotics. For each problem | propose a PCN—based solution,
and furthermore | discuss interesting implications resulting from it. More specifically, | focus
on problems arising in two broad areas of robotics: they(hydehavior—based motor co-
ordination of mobile robots an@) object recognition and localization for camera—equipped
robots.

Robots that use Vision to sense the environment naturally need the ability to recognize
objects in the scene. Indeed, assistive robots are supposed to interact actively with the en-
vironment and so the further ability to localize and (eventually) reach the objects is crucial
too.

Robotic architectures refer to formal models and structures that define a software and
hardware framework for controlling robots. They describe the interactions between the com-

ponents in this framework and provide a structured way for building controllers.

6.1 Several Paradigms for Robot Architecture Design

Mackworth proposed that there are three main research paradigms in robotics, namely

Good Old Fashioned Al and Robotics (GOFAIR), Insect Al and Situated Agents, which have
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evolved dialectically. GOFAIR utilizes deliberative architectures, Insect Al employs reactive
architectures (e.g. subsumption architecture) and Situated Agents advocates the emerging
thesis, which is called deliberatjweactive architectures. Characteristics of these paradigms

are explained below.

6.1.1 GOFAIR

GOFAIR (e.qg. first mobile robots such as Nilsson’s Shakey) approach is the first paradigm
developed for robotic agent construction. It strongly depends on a set of restrictive assump-
tions about the agent, the world and interaction between the agent and the world. These

assumptions can be listed as follows:

e There is a single agent in the world. Therefore, cooperation between multiple agents is

not possible.

e The world can be accurately and completely modelled by the agent and it stays static
unless the agent changes it. Hence, the agent does not have the capability to react

towards dynamic changes in the world.

e The agent has definite knowledge of everything related to completing its goals and it
can predict all theféects of its actions that have been carried out towards reaching these
goals. Thus, non-deterministic actions are not supported. Also actions are performed

in sequence and concurrent actions are not supported.

Planning constitutes the main activity of the GOFAIR controller. These systems use hi-
erarchical deliberative planners, which have modules that are delegated to clearly identifiable
subdivisions of functionality. Modules interact with each other in a predetermined manner
and higher modules in the hierarchy provide subgoals for lower modules. Reasoning with rule

based manipulation of symbolic structures in the world model is defined as “intelligence” and
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sensing and acting in the real world are referred as “secondary concerns”. Sensing is only
needed to determine the initial state of the real world in order to construct the world model.
Actions that are carried out to reach goals are produced by reasoning in this world model.
Since all éfects of the actions can be predicted and these predictions can be used to update
the world model without percepting the changes in the real world, sensing is not required
to maintain the world model. Thus, sensing is not used to produce intelligent actions after
the initial model is constructed and it is not directly connected to the acting. However, in-
telligence in nature is created by the interconnectivity among sensing, reasoning, and acting.
Hence, separating them into three distinct modules by assigning importance priorities can not

be a scalable approach.

6.1.2 Insect Al

Insect Al (e.g. earlier works of Brooks such as Genghis) paradigm is the antithesis of GO-
FAIR approach. It advocates reactive architectures. Insect Al does not make an assumption
about the world being static and deals with robotic systems that inhabit in environments which
are unstructured, dynamic and lack temporal consistency and stability. It uses animal models
of behaviour as a basis for construction of these robotic systems, where sensing and acting is
tightly coupled to produce realtime responses. Since the actions are produced in a reflexive
manner with hardwired reactive motor behaviours, reasoning and the use of world models are
minimized and planning is eliminated in these systems. Thus, one important drawback of
Insect Al is that it can only produce low-level intelligence, which can be observed in animals
of nature such as insects.

Brooks proposed the following principles for reactive behaviour-based robotics:

e Situatedness The robot is a real physical system grounded and embedded in a real
world, here and now, acting and reacting in real time. There is a strong two way cou-

pling between the robot and its environment. The world is its own best model and robot
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does not operate upon abstract representation of reality but rather real world itself. The

robot continuously refers to its sensors rather than to an internal world model.

e Embodiment: The robot has a physical body and its interactions with the world cannot
be simulated faithfully. The embodiment of robots is critical for two reasons. First,
only an embodied robot (not the simulation of it) is fully validated as one that can deal
with real world. Second, only through physical grounding can any internal symbolic
systems find a place to bottom out and give “meaning” to the processes going on within

the system.

e Intelligence: Intelligence is determined by the dynamics of interaction of the robot with
its world. Simple things to do with sensing and acting in a dynamic environment are
necessary basis for high-level intelligence. Therefore, the valid approach for building
intelligence is to follow bottom-up model. Consequently, the dynamics of interaction
between the robot and its environment are primary determinants of intelligence not the

reasoning.

e Emergence It is hard to point a single component as a source of intelligence. Intelli-
gence is not a property of either the agent or the environment in isolation but is rather
a result of interplay between them. The way in which the intelligence emerges is de-
scribed quite dterently by GOFAIR and behaviour-based robotics. In GOFAIR, the
components of the controller are delegated to “functions” such as sensing, planning,
modelling, and learning. The “intelligent behaviour” of the system (e.g. avoiding ob-
stacles, standing up, etc.) emerges from interaction of these “functional” components.
However, in behaviour—based robotics, components of the controller are defined as be-
haviour producing. The “intelligent functionality” of the system (e.g. sensing, learning,

etc.) emerges from the interaction of these “behaviour” components.
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6.1.3 Situated Agents

Emerging synthesis of GOFAIR and Insect Al is called as Situated Agents (e.g. robots
developed by the CBA framework such as Dynamite vehicles). Since they can pursue goals
as they react to unpredicted real-time changes in their environments, the robotic controllers
designed with this paradigm are both deliberative and reactive. When the uncertainty in the
world is restricted and some guarantee is given that no change exist in the world during the
execution of the system, the world can accurately be modelled. In these situations, deliber-
ative methods can be used to carry out a complete plan. However, to execute this proactive
plan, neither deliberative architectures of GOFAIR nor reactive architectures of Insect Al can
be used. Deliberative structures can not be deployed, since all the assumptions of GOFAIR
paradigm can not be true in the real world. Reactive counterparts of these architectures can
also not be utilized since they do not support planning. Therefore, hybrid delib¢edistve
robotic architectures have emerged under the Situated Agents paradigm. In hybrid architec-
tures, the controller should be able to integrate world knowledge and goals to arrive at a
plan prior to execution. It should also be able to respond rapidly &edtiely to dynamic
changes that occur within its world. Since, the traditional deliberative controllers attempt to
pre-plan for all eventualities, they often cause the planning process not to terminate. They
commit to arbitrary length plans and do not allow the robot to change its goals in response to
unpredictable changes in the world. The reactive approach, on the other hand, is very good
at dealing with the immediacy of sensor data but is léBc@ve in integrating world knowl-
edge. Hence, hybrid architectures of Situated Agents paradigm do not center on reactive
versus deliberative control but rather on how to synthesize a control regime that incorporates
both types of structures. They use symbolic methods and abstract representational knowledge
of GOFAIR and maintain the Insect Al's goal of providing the responsiveness, robustness
and flexibility. Situated Agent paradigm follows Brooks’ principles of reactivity. As in In-

sect Al, Situated Agent paradigm challenges GOFAIR by grounding the agent in space and
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time by proposing tight coupling of sensing and acting. However, it does not follow Insect
Al's efforts on reducing reasoning and representation, but rather integrates reasoning with
sensing and acting while creating necessary world models. In addition, opposing to Insect
Al paradigm, Situated Agents allows planning to be the part of system if needed. However,
planning is not the essential activity in Situated Agents as itis in GOFAIR paradigm. Indeed,
in this approach, sensing and acting take a preeminence over knowledge representation and
planning. Other dferences can be listed as follows: Situated Agents approach can have mul-
tiple agents in a dynamic world, whereas GOFAIR can only have a single agent in a static
world. As in Insect Al paradigm, Situated Agents can operate on unstructured and uncertain
environments (e.g. soccer field), whereas GOFAIR is only suitable for structural and highly
predictive environments (e.g. manufacturing). Speed of response of the controller increases as
we shift from GOFAIR (which mostly usegitine computational models) to Situated Agents
(which uses online computational models) and from Situated Agents to Insect Al. However
level of intelligence decreases as we shift from GOFAIR to Situated Agents and from Situated

Agents to Insect Al.

6.2 Subsumption Architecture

Subsumption is a reactive architecture developed by Brooks which focuses on priority-
based arbitration of task-achieving behaviours. Each behavior is represented as a separate
layer. Lower levels have no awareness of higher levels and this provides the basis for bottom-
up incremental design. The name subsumption arises from this design, where higher level
behaviours (e.g. avoid collisions) are added on top of lower level behaviours (e.g. move
around) by using priority-based arbitration. Hence, complex behaviours always include sim-
pler behaviours (e.g. in order to avoid collisions the robot should move around). Thus, this

architecture allows us to follow the the evolutionary path and to start building simple agents
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in the unpredictable real world in order to construct targeted complex systems. Traditional ar-
chitectures used in GOFAIR paradigm also advocates layered controller structures. However,
subsumption architecture and traditional architectures are layered along complezndi
dimensions as seen in Figure (TO BE INSERTED). GOFAIR architectures use sense-plan-act
vertical models where each layer is dedicated to a separate functional unit such as sensing,
modelling, planning, and acting. Layers in this model work sequentially and synchronously.
The subsumption architecture use a horizontal model where each layer is dedicated to a sep-
arate task-achieving behaviour and each behaviour embodies functional units such as sensing
and acting. Layers in subsumption work concurrently and asynchronously. Each layer of
the subsumption architecture is constituted by networks of augmented finite state machines
(AFSM). AFSMs can be defined with a formal model called Behaviour Language which is
also developed by Brooks. Finite state machines in AFSM are augmented by timers which
enable state changes after predetermined time periods. Reset signals are used to restore be-
haviour to its original state. Each AFSM encapsulates a particular behavioural transformation
function and has an input and output signals in addition to reset signal. Input signals which
refer to stimulus of the behaviour can be suppressed and output signals which refers to re-
sponse of the behaviour can be inhibited by other active behaviours. These mechanisms of
suppression and inhibition enforce priority-based arbitration of behaviours and permit com-
munication between layers. However they restrict this communication heavily. The real world
itself becomes the primary medium of communication in the following way: Actions taken

by one behaviour create changes within the world and at the same time, sensing element of
each layer, which reports new perceptions of the world, communicate those changes to the
other behaviours. Hence, in subsumption architecture, world models which uses symbolic
representations do not exist. Consequently, reasoning and planning activities are not a part of
the architecture. Since no representation and reasoning is used, this architecture is called as

SpurelyT reactive and only based on a synergy between sensing and acting.
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6.3 Object Recognition and Detection

Recognizing objects is one of the fundamental challenges in computer vision. Roughly
speaking, the goal of an object recognition (OR) system is to answer the qudstitis
(specific) object present in the sceneSometimes, actually, the focus is not on a specific
object but rather on the broader class (or category) to which it belomgsuch a case the
qguestion is somehovessaccurate. For example we could be interested in the presence of a
car in the scene regardless of its model or color.

As | have said above, sometimes robots need to kwberethe object is (with respect
to some reference frame) and not oiflyt is present or not in the scene. Quite surprisingly,
not all OR systems are able to provide this last €lared thus it seems useful to distinguish —
among them — those that actually do. Henceforth we will call Object Detection (OD) Systems
those systems that recognize objects and further locate them into the scene. It is worth saying
here that this definition of OD is a bit less standard and (of course) more controversial the one
proposed for OR systems. Many authors would agree with it but some could argue that the
boundary between the two is quite fuzzy. It is not my concern to defuse such a controversy
here but | believe that, for the sake of clarity, it is useful to keep separated the two kinds of
systems because there is a hugtedence between them from the practical point of view.

In our everyday life we are so many times involved in recognizing objects (or object
classes) that the task seems to us straightforward and we definitely underestimat&iboly di
it is to perform it by means of an artificial, computer vision system.

One of the main diiculty faced by a recognition system is the problem of variability, and
the need to generalize across variations in the appearance of either distinct objects belonging

to the same class or the same object seen fréfardnt views. In fact, We consider an object

identifying objects as members of a class, such as cars or dogs, is often referredbjecisategoriza-
tion, while identifying individuals within the same class is referred tobgect identification | adhere to this
convention.

2See, for example/Serre et al(200%) in which the feature vector takes account of the image aSaeto
check if an object is present or not.
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to be a part of — or token in — a sensory signal. The precise representation of the object within
the signal can undergo changes such as scaling, translation, or other deformations, or it can be
contaminated by noise or be partially occluded. These changes give rise to an entire collection

or class of signals which can all still be associated with the original object.

6.4 Algorithms for Object Detection and Recognition

The number of new papers and algorithms for Object Recognition proposed yearly in the
Computer Vision community is definitely huge. An exhaustive review of all of them is quite
impractical. However it is possible and very helpful indeed to try to classify them according
to theconceptuabpproach they are based on. Such a categorization will make it easier for us
to see the pros and cons of each method and thus to focus on the one that most likely could fit
in with our system.

The first, broader split is definitely the one betwag@pearance—baseazhdfeature—based
methods. Each of them can be further divided into two separate groups that gieballand
local. This latter split takes account of the information used to decide if the objectis present in
the scene or not. Loosely speaking, global methods have a holistic approach to classification
while local ones aims at detecting (almost independently) smaller components of the objects
first. The specific way of building the “model” fo the object leads us to a final methodological
differentiation that is somehow independent from and indeed overlays the previous ones.

The “visual” appearance of an object in an image stands for the combffesdseof its
shape, reflectance properties, pose in the scene, and illumination conditions. Thus it seems
quite plausible to describe and characterize the objects by their global appearance and this
can be done — at least in principle — by means of an exemplar of how the object should look
like in the scene. In the simplest cases the model is simply built from one or more (entire)

images that contain the object in the foreground; this technique is ededple—driverand
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among others has been successfully deploye®apégeorgiou and Pogd@®0( Sung and
Poggiol1998°3. Given the exemplar, the most popular strategy is based on representing it as
point in a high-dimensional space, and then performing some patrtitioning of the space into
regions corresponding to thefidirent objects or object classes. In order to partition the space

a variety of methods have been used: the most common ones are nearest—neighbor classifica-
tion, vector projection to the nearest manifddirase and Nay#995), feed—forward neural
networks Gahambi and Khorasa@003 or support vector machinedds Santos and Gomes

2002).

Alternatives to the “global” approaches can be found among those methods that attempt to
describe all object views belonging to the same class using a collection of some basic building
blocks — a kind of local appearance descriptors — by extracting several local image patches.

Over the years, researchers’ feelings about appearance-based approaches have had highs
and lows. Indeed, the approach is conceptually simple and has led to a variety of successful
applications, e.g., illumination planning, visual positioning and tracking of robot manipu-
lators, visual inspection and human face recognition. Nevertheless, these methods are not
robust to occlusion and fier from a lack of invariance to scale, rotation and — of course —
changes in the viewpoint. Moreover, the high—dimensionality of the representation is a final
problem not easy to overcome if one wishes to use many of the standard learning techniques
for pattern recognition.

In order to (partly) overcome this last severe weakness of the appearance—based methods
people switched to a moparsimoniougepresentation by means of the so called principal—
component methods. In this methods, a collection of objects within a class — for example a set
of faces, cars or bikes — are used and described as a set of (greyNedet)ensional vectors,
and the principle components of the training images are extracted. The principal components

are then used as the building blocks for describing new images within the class, using linear

31t is worth making it clear that the authors did not use pure appearance—based description, though.
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combination of the basic images. For example, a set of “eigenfaces” is extracted and used
to represent a large space of possible faces. In this approach, the building blocks are global
rather than local in nature.

As we shall see in the next section, the building blocks selected by our method are inter-
mediate in complexity: they are considerably more complex than simple local features used

in previous approaches, but they still correspond to partial rather than global object views.

6.5 The proposed method

In this section | describe an OR schema that overcomes some offfilcellties and lim-
itations mentioned above. The schema comprises several pieces of algorithms and methods
that I've cited in sec6.4. The main novelty of the schema lies in the way the modules hang
together. The system is able to recognize (specific views of) an object of interest in a cluttered
background and even in presence of partial occlusion. Interestingly enough, it is further able
to recognize a specific person — let’s call this personitsgructor — among several people
and, by “looking at” what he holds in his hands, to acquire the model of a new object of in-
terest on the fly. The main asset of this system to socially assistive robotics is the possibility

to “ask” a robot to search for any new object (i.e. never seen before)

6.5.1 Face Detection

In order to interact with people, the ability of recognizing faces is crucial. Almost any
socially assistive robot might be able — at least — to detect people in the scene very quickly and
without too much computational load so that we can design a basic behavior that continuously
search for faces popping up in the scene. Such an event can therefore “trigger” a refinement
of the recognition and check if the person (just detected) can be ignored or if some kind of

interaction is needed. This basic behavior in my system is provided by a module for fast
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Figure 6.1:Examples of rectangle features. The sum of the pixels which lie within the white
rectangles are subtracted from the sum of pixels in the black rectangles. This figure has been
adapted fromViola and Jone2007)

In this section | give the bare essential of the system for face detection describéd in (
ola and Jone&001). Furthermore, | outline how it is possible to define a prior probability
P(bodyx,y) = P(bodyface x,y) of the pixel(x,y) to belong to the body of a person given
that his face is present in a neighborhood.

The module classifies images based on the value of simple features that are strongly rem-
iniscent of Haar basis functions — already used for object recognitid®abageorgiou et al.

(1998. The authors describe thredtdrent kind of features (see i6.1):

o two—rectangldeature is the dference between the sum of the pixels within two rect-
angular regions with the same size. The regions can be aligned either horizitally

or vertically(B).

¢ three—rectangldeature is the sum of the pixels within a central region subtracted by

the sum of the pixels within two regions that are at the opposite sides of the central one
(©).
o four—rectangleeature is the dference between diagonal pairs of rectan@®s

Given a base resolution of the detector, thousands of these simple features can be extracted
from each image. However this computation can be speeded up by usimgetip@l image

trick that involve an intermediate representation for the irfidlgat contains, at each location

4This intermediate representation is callategral Imagein order to emphasize its use for the analysis of the
image.

Matteo Santoro — Ph.D. Thesis



6.5. The proposed method 105

(%, y) the sum of the pixel sabove and to the leftxadindy, inclusive. It is easy to show that
the sum of all the pixels within a region can be computed by simple addition and subtraction
of the value of the corner pixels in the integral image.

Given this set of features, the learning Frgund and Schapii&995 Schapire et al.

1999).

6.5.2 Skin Detection

The part of the system that provides information about where the robot might “look at” in
the scene in order to acquire the model of a new object of interest is basically a skin detection
module, i.e. it uses skin color as a feature for hand detection. There are two main problems we
must face in order to build a robust skin detection module. First, what color space to choose
and second, how exactly the skin color distribution should be modelled. Once the skin pixels
have been located, a third issue is how to segment the image in order to locate exactly the
region where there are the hands that is to say — in our specific case — where the new object of
interest is in the image reference frame.

In the literature, we find two main approaches to skin detectegion—base@ndpixel—
based According to the former one, spatial arrangement of pixels plays some part in the de-
cision to assign a label to each pixKrgppa et al2002, Jadynak et aR002, Yang and Ahuja
199§. While pixel-based skin detection methods classify each pixel as skin or non-skin in-
dividually, independently from its neighbors — s@&Zhnevets et aR003 for a complete
survey on these latter methods.

In order to develop the module for skin detection | preferred to use the pixel-based ap-
proach because it has been shown to be faster than the other one while keeping the perfor-
mance at high level in a wide range of applications.

The most common camera used in mobile robotics are siR@IBcolor camera and so

— for what concern the color space — a quite obvious choice is to work in the staR@dd
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color space. Itis the most widely used color space for processing and storing of digital image
data. However, it has two main drawbacK4) channels are high correlated between each
other, and(2) information about chrominance and luminance is fused together. RGB

does not seem to be a favorable choice for color based skin detection algorithms. The easiest,

obvious candidate as a color space is one obtained RGBby a simple normalization:

R G B

r:R+G+B g:R+G+B b:R+G+B' (6.1)

This normalization leads to two interesting properties. First, the sum of the three com-
ponents is knownr(+ g + b = 1) and so one of them can be obtained from the other two:
we can omit it, reduce the space dimensionality and speed up the computation. Second, it
has been showiBkarbek and KoschatB94) that normalizedRG Bis invariant (under certain
assumptions) of changes of surface orientation relatively to the light surface.

A second, popular color space is the so calslV space that separates diiie (which
color it is) from Saturation(how concentrated the color is) andlue that is tightly related
to the brightness of the pixel. Here are the formulas for color conversionRGato HS |

(Gonzalez and Woo2002):

3(R-G) + (R-B)

H = arccos
V(R-G)2 + (R-B)(G - B)
3 min(R, G, B)

V = %(R+G+ B+).

The main advantages of usifS V color space is thafl) it uses an extremely intuitive

manner of specifying color — for instance, it is very easy to select a desired hue and then

SSometimes this last channel is calledensity
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HSV_cylinder.omp HSV_cone.bmp

(a) Cylindrical representation (b) Conical representation

Figure 6.2: Two standard visualization methods of thkS V color space. The Cylindrical
representation might be considered the most mathematically accurate. However the cone
visualization is more practical in most cases because of the limited range of precision of RGB
values for digital images.

to modify it slightly by adjustment of its saturation and intensity — &2\t explicitly dis-
criminates between luminance and chrominance. Thus hue channel, at least in principle, is
invariant to surface orientation (relative to the light source) and to highlights at white sources:
often ambient light can be considered “approximatively” white. Moreover, good results have
been obtained by using only andS to detect skin pixels. However, there are several unde-
sirable features of this color space that are related to the discontinuitiésndl to the fact
that, in practice, the number of visually distiri®levels decreases &sapproaches zero (see
figurel6.2 for more details). Therefore, in the limit — 0, H becomes quite noisy and use-
less, since the small number of discrete hue levels cannot adequately represent slight changes
in RGB. To overcome this problem, a simple trick could be to ignore pixels that have very
low V value. This means that we cannot use the system on very dim scenes. Further, at very
low saturation § ~ 0), variations amongl values are tiny and not appreciablyfdrent using
the usual discret®56-levelsH scale. Therefore it is a common practise to ignore pixels that
have very lowS value.

A further color space is the so call®dC. C, —itis commonly used by European television

studios and for image compression work. The space is represented by means of three principal
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componentsl (that encode luminance) and two coloffdirence value€, andCy, that are

formed by subtracting luminance froRGBred and blue components.

Y = 0.29%R+0.587G +0.114B
Cr = R-Y (6.3)
Cb = B-Y

This transformation is easy to compute, yet it explicitly separate luminance and chromi-
nance components. These two motivations make this color space also attractive for skin color
modelling.

In order to build a complete skin detection module, the second step is to define a decision
rule, that discriminates between skin and non-skin pixels. This is usually accomplished by
introducing a metric, which measures distance (in a general sense) of the pixel color to skin
model. In the probabilistic framework, the metric is encoded by means of a probability distri-
bution of each pixel — represented by a veaan the color space — to be either a skin—pixel
(P(skinc)) or a non—skin—pixelf(=skinc)). Though it would be nice to assess directly how
“correct” it is to assign the labekinto each pixé, it is not possible to compute(skiric) di-
rectly from the data. Instead, we can compute how likely is for a color \alade classified
as skin or not, that is to compuR{c|skin). These two quantities can be related by means of

the Bayes rule:

P(c|skin)P(skin)
P(c|skinP(skin) + P(c|-~skinP(-skin)’

P(skinc) = (6.4)

From this equation, a simple decision rule can be constructed by introducing a threshold

5Actually, this is exactly the meaning &f(skinc), since it tells us the probability of observing skin given a
concretec color value.
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0 so that we label as skin all those pixelthat satisfy the inequalityP(skinc) > ® (Jones
and Rehgl999. However this requires us to know the two priétskin) and P(-skin) and
compute the normalizing factor. It is possible to avoid that and define a new decision rule by

means of the ratio dP(skinc) to P(-skinc), that is:

P(skinc)  P(cIskin(1 — P(skin)) P(c|skin)

P(-skinc) ~ _ P(G-skinP(skif) . P(cl~skin) (6.5)

It has been possible to get rid Bfskin) in the equation because it doesn’t depend on each
pixel value and can be taken into account only during the choice of a fixed absolute threshold.

The several methods proposed in literaturf@edifrom one another in the way they com-
pute P(c|skin) from the data. The most straightforward methods are the non parametric
ones Birchfield 199§ [Sigal et al.200(Q 'Soriano et al2000), which use a histogram based
approach. The color spakes quantized into a number of bins corresponding to particular
range of colc?. Each bin stores the number of times this particular color occurred in the
training skin (and non skin) images. After training, the histogram counts are normalized,
converting histogram values to discrete probability distribution. Two clear advantages of the
these methods ar€l) they are theoretically independent to the shape of skin distribution in
the color space an@) they are fast in training and usage. This last property is quite appealing
in the robotic context we going go use this module. On the opposite side, the main drawback
is their inability to interpolate or generalize the training data. Moreover, they require much
storage space to store the LUTs; sometimes, in order to reduce the amount of needed memory
and to account for possible training data sparsity, coarser color space samplings are used —
128x 128x 128 64 x 64 x 64and32x 32x 32,

The need for more compact skin model representation along with ability to generalize and

“Usually, the authors use the chrominance plane only.

8In literature, 2D or 3D histograms are referred to as lookup tables (LUT).

9The evaluation of dferentRGBsamplings inlJones and Relit899) has shown, tha&82x 32x 32 shows the
best performance.
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interpolate the training data stimulates the development of parametric skin distribution mod-
els. | considered only the most populare of them (the Mixture of Gaussians modelling) ap-
proach that is able to describe quite well also complex—shaped distributions. The parametrized

pdf is:

K
P(ciskir) = ) aj exp{—%(c —m) T e~ m)}, (6.6)
i=1

where,u; and; are, respectively, the mean vector and covariance matrix of each gaus-
sian in the (eithe2D or 3D) color spaceK is the number of mixture components amd
are the so—called mixing parameters that obeys to the normalization consFaint= 1.
Model training can beféectively performed with the Expectation Maximization (EM) algo-
rithm (Yang and Ahujal999 Terrillon et al.2000). The numbeK of components must be
chosen taking into account that the model needs to explain the training data reasonably well
with the given model on one hand, and avoid data over-fitting on the other. In the literature,
choices range frorK = 2to K = 16, but a less humber of components is preferable because
it allow a faster model learning stage with less training samples.

In the chaptef? | present experimental results obtained with each of the three previous
color spaces and both the classification techniques. By taking into account both performance

and results | decided to ke®gHICH ONE??7n the complete system.

6.5.3 Sift Features Extraction and Robust Matching

The purpose of this assignment is to learn how to perform object recognition and image
matching using local invariant features. The family of features | used is the one based on the
SIFT approach described ibdwe2004).

In order to compute the features and find the matches among points for each image pairs,

| used the pre—compiled binary detector and the simple Matlab matching program provided
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on David’'s home page. The matching algorithm can read lists of keypoints and match them
between images.

Figure?? shows the output of the matching produced by the software. Basically, it extract
features from each of the two input images calling the binary detector and then draws lines
between features that have close matches.

The key idea behind the program is very simple: the best candidate match for each key-
point is found by identifying its nearest neighbor in the list of keypoints of the second image.
The nearest neighbor is defined as the keypoint with minimum Euclidean distance for the
invariant descriptor vector. Folffciency in Matlab, it is cheaper to compute dot products
between unit vectors rather than Euclidean distatices

It is very likely that many features from an image won't have any correct match in the
other one because they correspond to background clutter or occlusion or more simply because
they are detected in one image only. Therefore, it is necessary to define a way to detect and
discard features that do not have any good match in the other list. A naive approach could
be to define a global threshold of the neighbor distance, but it can be easily proven that this
method is not reliable at all. 1iL6we 2004, again, Lowe proposes to look at the comparisons
between the distance of the closest neighbor to that of the second—closest one. The rational
behind this approach is the following: we expect that a correct match is highly distinctive and
so no keypoint (other than the closest one) should be too close to it. This approach works
quite well since, generally, many matches are found and only a small fraction are incorrect.
However, as shown in figurg?, some image pairs could be venyiitiult to match and a more
sophisticated approach is needed.

In order to obtain better results, we should consider what kind of information can help
us to assess the correctness of a candidate match. We could use that information to design a

validity checkingor each match and discard only those that do not satisfy the criteria. This

0The ratio of angles is a close approximation to the ratio of Euclidean distances for small angles. In the Matlab
function theacosof dot products is computed and the result is simply used as distance measure.
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cascadeapproach should help us to improve the precision while keeping as high as possible
the recall of the system since we only try to filter out wrong matches (decrease the number of
false positive).

The key observation that can provide us with a suitable approach is that correct matches
will usually have other nearby features vectors that provide consistent matches, while incor-
rect matches will usually not be consistent with their neighbors.

This idea can be translated easily in an algorithm indeed. For each match from the first
image to the second, we should check thether closest matched features in the first image
and check that at leakt of them provide locally consistent matches. Unlikely from the above
approach, hereloseis related to the image distance.

The lastbrick in this building is a compact andffective definition oflocal consistency
among matches. Our feature vector, now, aredhdimensional vectorsk = (R,C, 0, 0)
whereR andC are the row and the column respectively of the keypoint in the imags.
the orientation in radians and is the scale. The main problem with tkevectors is that
they can non be compared homogeneously. For instance, it is worth measuring the similarity
between to angles in radians as th&atence of them. If we consider the scale, though, it
could be more useful to compute the ratio. So, for example, if two keypoints in the first match
have an orientation ffierence ofAd radians, then the consistent matches should also have an
orientation diference close tad. However, the ratios of scales (and not thatences) for
each match should be similar too. The last cue for a docal consistencyneasure, comes
form the spatial proximity of keypoints: two keypoints in the first list that are close each other
must have matches that are close too. A simple comparison of these two distances, however,
will fail miserably since the occurrence of the object in the second image con Héeesdi
scale as well: that’s one of the strength point of SIFT features and we don’t want to loose it,
of course.

Given the previous considerations, | propose to usadahocthe similarity measure for
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keypoints within the same li$t

é‘i12 = 6|(k|1 - k|2) = R|l Rlz ’ & IZ’ gll - Qiza ﬂ (67)

O'il O'il O'iz

Definition in Eg. 6.7 is not a Euclidean metric and it is not a metric at all, actually. It
is, instead, a kind of similarity vector that we can uséedively, to assess how close two
keypoints are.

Two keypointsk andl, within the same neighborhood in the lisand with a similarity
vectors,,, are said to be consistent if their corresponding matches in ti&Heste a similarity

vectoréy,, such that:

01, — 02, < alpha (6.8)

Wherea is a threshold vector specified by the user.

The algorithm

The pseudo—code of the algorithm is the described in program

6.5.4 Object Recognition

In this section | describe a probabilistic recognition method that detects an instance of a
specific object in the scene. The method relies on finding highly probable matches from SIFT
feature vectors extracted in the image of the scene to those extracted from a a snapshot of the
object.

Thus the first hypothesis is that we can build a motJ of the objeciO we wish to find
and that the model is represented by a list of keypoints extracted by an exemplar of how the
object should look like. Even if this method depends strongly on the appearance of the object,

actual information is not the image itself — as for appearance—based methods — but instead is
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Program 1 Match Validity Check
INPUT:
L1, Lo: keypoint list of the first and second image respectively;
M: list of candidate matches;
N: size of neighborhood;
K: minimum number of consistent matches in each neighborhood;
alpha: threshold vector;
OUTPUT:
Ma: list of matches that pass the validity check;

create a copy, Ms, of M;
for each kq, € L1
Ni « N nearest neighbors of ky, in Ly;
k:=0;
klj « the nearest neighbor in Nj;
while (k < K) AND (there are still vectors left in Aj)
ko, = the candidate match in Ly of kj,
ko, = the candidate match in L; of ky,

01,1) = lRl'(Tlilel; 01,(2) = lCl'afl'l; 01,(3) = 10, — 041, 01,9) = Z—:
02,1) = lRZ'(Tziszl; 02;(2) = lCZ'UZicz'l; 62,3) = 102, — 02,1, 02;(4) = Z—:
A= |6lij - 62ij|;
fA<a
k=k+1;
end if
klj « the next nearest neighbor in Nj;
end while
if kK< K
Discard the match for M
end if
end for
return Ms

built upon a number of local features that are coded in the SIFT space. More formally, the

model M is a set:

Mo = [k

J }jeJ (6.9)
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wherelJ is an index set whose cardinality depends on how many keypoints have been
found in the exemplar image. Similarly we can describe each image over time by means of a

setl:

T = {Kilier - (6.10)

Given this representation approach for both the model and the images of the scene, we

can state the problem of finding an instance of the object in the scene as follows:

Definition 6.1 (Recognition Problem Statement)For each imagd, find a subse® C 1 of
the list of keypoints whose elements match most likely one corresponding keypoint in the list

Mo.

That is to say find all the candidate subparts of the occurrence of the object in the scene.
Once all candidate subparts are detected we check if they are consistent. Only those keypoints
that pass the check can give us information about object position and orientation over the im-
age plane and its scale factor with respect to the model. In order to make these considerations
more formal and to translate them in an algorithmic form, | propose the following work flow

to solve the Recognition Proble@nl. For each imag&

1. extract the keypoints using the technique described in se2®and associate a de-

scriptor to each keypoint;

2. assign a measure to each keypdintwe call Py, (ki) = P(kilk®,,) P(k®,,) this mea-
sure and it is the probability df; to represent a part of the obje@t Such a probability
is the product of the likelihood term (kilk?,,) — that assess how likely it s to firid

in the image given the model —and a prmfk(f:M) over the model keypoirits,

1For the moment we can omit to mention explicitly the time in the notation.
2In section?? | describe a reasonable choice of the priors.
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3. asses the presence of the obf@tty means of a probability measuP€O is presentl) =

P, (K1n) that is a function of alN the candidate keypoints extracted frém

4. (if the object is present) compute the mean values of position, orientation and scale of

k1 : N and assign them to the object.

The proposed method is fairly straightforward yet it is quite robust as you can see from the
experimental results presented in chaf@r However we still miss three main ingredients:
the explicit form of the probability measures and a decision rule to assess the presence of the
object in the scene. We can introduce them by using the following arguments.

Recall from sectior?? that we discard all those keypoints whose distance from the closest
kjO € Mp is much the same of that from the second—closest one. This criterion leads to a
robust keypoint detectot.bwe 2004, so as a first instance | suggest to use a similar measure
to define a probability over the keypoints extracted from each image. Letd call|A(k;) -
A(k?)ll, withi € | andj € J, the distance between the descriptor vectors associated to each
keypoint. Then we can defint = min{d; |, . andd" = min({dij}iel,je‘])/d{ and introduce

the likelihood measure:

d\?
P (kilky) = exp[— (d—') l (6.11)
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Chapter 7

Conclusions

Throughout this thesis | adhere to a schematic picture of a robotic system as a combina-
tion of a controller and abodyimmersed in theienvironmenfi(see figurel.1). This is the
insightful picture that underlies therobabilistic Constraint Netéramework introduced by
Robert St—Aubin$t-Aubin2005 St-Aubin et al’2006 for the modelling and simulation of
stochastic hybrid dynamical system. Formal syntax and semantics are provided for PCNs
in order to assess the correctness of the models. The framework comprises a specification
language (average timet-automata) and some verification algorithms too; they allow for
the formal specification of behavioural constraints on the system and enable us to make on—
averaggprobabilistic verification of the requirements. If one adopts this approach to design
robotic architectures, then thehaviorof a robotic system is defined as the set of observed
robotenvironment traces. Thus, any behavioral requirement can be formally specified as a
subset of all the possible traces

In short, theformal methods for roboticgroposed by this thesis are based on the
following guidelines. Given some requirement specificapnse should model the body
and the environmer&, and then build a suitable controll€r such that the behavior of the
resulting system satisfies the requirement, that is to say, it verifies the fundamental equation:
[X=38U,Y),U=CXY),Y=EX] ER
Therefore — at least in principle — within the PCNs framework it is always possible to

provide formal guarantees that the robot meets (or does not) the specified requirements.

1That is to say the subset of all the traces that satisfy the given preganstraint.
2For examplegoal achievemerR, safety guaranteeandbounded responde unexpected events.

117



118

This is a valuable asset to the robotic research context, because it is a first concrete answer to
the growing need for a common, comprehensive framework for modelling autonomous
robots. As extensively discussed in the introduction, this is well motivated by the recent
trend in building robots that interact autonomously with people, and even assist disabled

people through social interaction.

The contributions of the present thesis to the PCNs framework are threefold. First, in
chapter, | discuss the relationships between PCNs and several deternjipristiabilistic
modeling frameworks commonly used in Robotics. More specifically | consider Atrtificial

Neural Networks, Continuous Time Recurrent Neural Networks, Markov Chains and Markov

Processes, Reinforcement Learning systems and Markov Decision Processes, and finally,
Bayesian Filtering and Kalman Filters. | show that they can be considered as special cases of
the PCNs framework, by providing — for each model — the PCN that actually preserves the
semantics of the computation —i.e. the propose PCN computes exactly the same thing.

Second, in chaptds, | describe an integrated programming environment called PCNJ — that

stands foProbabilistic Constraint Nets in Javawhich supports probabilistic constraint net

modelling, simulation, and animation for any kind of hybrid systems. | co—developed PCNJ
with Alan Mackworth and Lee Leif Chang from the University of British Columbia

(Vancouver B.C.,CA).
Third, in chapte, | discuss some concrete applications and problems that are relevant to the
research on autonomous robotics. For each problem | propose a PCN-based solution, and

furthermore | discuss interesting implications resulting from it. More specifically, | focus on

problems arising in two broad areas of robotics: they(dydehavior-based motor
coordination of mobile robots ar(@) object recognition and localization for

camera—equipped robots.
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