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ABSTRACT 
 
 

Physically based approaches for monitoring vegetation from Space 
New generation sensors and operational perspectives 

by 
Francesco Vuolo 

University of Naples “FEDERICO II”, 2006 
   
 

 
Professor: Guido D’Urso 
Department: Agricultural Engineering and Agronomy 

 
 

The use of Earth Observation (E.O.) data to retrieve biophysical variables of land surface such as 

the Leaf Area Index (LAI) has been proven to be useful in many operative tools to repetitively 

gather information at spatial and temporal resolution suitable for agricultural applications.  

In the last years, the diverse capabilities of airborne and satellite remote sensing imagery have 

been extensively exploited and several approaches have been proposed to estimate the LAI with 

different accuracy at scales ranging from individual plots to large areas. So far, empirical 

approaches based on vegetation indices (VI) and alternative approaches based on inversion of 

physically based radiative transfer models of vegetation have been successfully applied using both 

airborne and satellite data.  

The main objective of the work is to exploit the rich information content of CHRIS/PROBA data, 

both in the directional and spectral domains, to estimate Leaf Area Index. For this purpose, 

inversion of a radiative transfer model was performed and results compared, in terms of accuracy 

and operational practicability, to a more empirical approach. 

Results show that the directional information content improves LAI estimation for two out of three 

of the analyzed crops. For the best case (corn), it was achieved a LAI RMSE of 0.41 by using 5 

angles and 62 spectral bands with an improvement of almost 65% respect to 1 angle and 16 

bands. Finally, the accuracy of the LAI estimation for the two approaches was demonstrated to be 

comparable. 
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Chapter 1 
 

1 Introduction 

Biosphere is one of the main components of the Earth’s system since it regulates exchanges of 

energy and mass fluxes at the soil, vegetation and atmosphere level. Global Circulation Models 

(GCMs), carbon cycle models and water models are exploited to describe, to monitor and to 

predict environmental factors. These models all use, as input, vegetation biophysical and 

biochemical parameters for describing H2O and C02 fluxes (Hunt et al., 1996; Sellers et al., 1996). 

These parameters are directly related to plant morphological properties such as leaf area index 

(LAI), leaf angle distribution (LAD) and vegetation roughness (Sellers, 1989). 

The same parameters play also a critical role on a much smaller scale, as in precision farming and 

water management, to describe the state of plants development and water needs.  

The increase of water scarcity - especially for agriculture that accounts for more than 70 per cent 

of freshwater consumption tapped from lakes, rivers and underground sources - requires a 

sustainable management of this limited resource.  

Therefore, the systematic monitoring of vegetation parameters - that regulate such fluxes - is vital 

to view water allocation and distribution among users and to make strategic decisions.  

Water managers and irrigation engineers need to have accurate and precise estimates of 

evapotranspiration (ET) to take decisions on water allocation and to design irrigation 

infrastructures. 

The currently most used approach for estimating ET is the so called 'Kc ETo' methodology 

suggested by the Food and Agriculture Organization (FAO) (Jensen, 1990; FAO, 1998). In order 

to apply this methodology operatively it is necessary to have accurate measurements of weather 

parameters (wind speed, air temperature, humidity, solar radiation) as well as precise estimates of 

vegetation characteristics such as canopy surface albedo, crop height and LAI.  

Earth Observation (E.O.) data are definitely a cost-effective source of information to retrieve 

vegetation parameters required for Kc calculation over in a suitable spatial and temporal resolution 

(Jochum et al., 2006; D’Urso et al., 2006; Vuolo et al., 2006).  

What makes E.O. from satellites so valuable in this context is a high capability of proving 

systematic observations of the surface. In the last decades, the use of space-technology-based 

services has filtered through into everyday life with various applications. However, continued 
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efforts are required, especially for moving from experimental satellites to operational space 

missions and, by promoting Earth observation market in Europe, to maximize the use of the 

growing data flow coming from space. Thanks to innovative experimental satellites, processing 

and modelling techniques, this work wants to demonstrate – focusing on the retrieval of LAI - 

elements of future monitoring systems and to assess the strengths and limitations of current space 

missions from a practical and operative point of view. 

1.1 Overview of the problem  

The possibility to quantitatively estimate vegetation parameters by means of optical E.O. data has 

been explored theoretically by many authors (Sellers, 1985, 1987; Tucker and Sellers, 1986; 

Choudhury, 1987) and has been followed by numerous other works dealing with the subject.  

This work will focus on the retrieval of LAI, which is one of the main variables used to model 

many processes, such as canopy photosynthesis and evapotranspiration. LAI determines the size of 

the plant–atmosphere interface and thus plays a key role in the exchange of energy and mass 

between the canopy and the atmosphere (Monteith and Unsworth, 1990). 

LAI is a quantitative measure of the amount of live green leaf material present in the canopy. It is 

defined as half the total green leaf area (one-sided area for broad leaves) per unit ground surface 

(Chen and Black, 1992).  

Starting from the spectral and directional properties of the vegetation, the following paragraph will 

give a brief overview of the present status and the applicability of satellite remote sensing for 

estimating LAI. 

1.2 Spectral and directional properties of vegetation 

The reflectance of plant canopies in the 0.4–2.5 µm wavelength region provides the basis for 

passive remote sensing of vegetated areas and can be measured from remote instruments such as 

airborne or spaceborne sensors (Tucker and Sellers, 1986).  

In the photosynthesis process green vegetation uses light energy to produce carbohydrates from 

CO2 and water and releases O2. Photosynthetically active radiation (PAR) (in the 0.4–0.7 µm 

wavelength range) is able to penetrate in the upper epidermal surface of leaves (Gates et al, 1965; 

Knipling, 1970; Woolley, 1971; Gausman, 1974), and is absorbed strongly by the plant pigments 

(chlorophyll a +b, carotenoids).  

Thus, absorption is high in the 0.4–0.7 µm region, whereas reflectance and transmittance is low. In 

the near-infrared part of the spectrum (0.7–1.3 µm), scattering by the structures within the leaves 
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causes a high reflectance and transmittance since little absorption occurs (Tucker and Sellers, 

1986). While liquid water is transparent to the PAR wavelengths, it is a strong absorber in the 1.3–

2.5 µm region (Curcio and Petty, 1951). Therefore the water content in the leaf tissues causes 

absorption in this spectral region.  

Tucker (Tucker, 1978) proposed five primary and two transition waveband regions between 0.4–

2.5 µm where differences in leaf optical properties (scattering and absorption) and the background 

optical properties control canopy spectral reflectance. The waveband regions are: (1) 0.4–0.5 µm, 

where strong spectral absorption by the chlorophyll and the carotenoids occurs; (2) 0.5–0.62 µm, 

where reduced levels of chlorophyll absorption occur (i.e. why green vegetation to our eyes 

appears “green”); (3) 0.62–0.7 µm, where strong chlorophyll absorption occurs; (4) 0.70–0.74 µm, 

where strong absorption ceases; (5) 0.74–1.1 µm, where minimal absorption occurs and the leaf 

scattering mechanisms result in high levels of spectral reflectance; (6) 1.1–1.3 µm, where the 

liquid-water coefficients of absorption increase from close to 0 at 1.1 µm to values of 4 at 1.3 µm; 

and (7) 1.3–2.5 µm, where absorption by liquid water occurs.  

 

Figure  1 Typical spectrum reflectance of vegetation  

 

However, the reflectance of vegetation canopies is not only dependent on plant pigments, the leaf 

density and the liquid water present (Tucker and Sellers, 1986), but also on the position of the sun 

(illumination source) with respect to the target and the observer (remote sensors) according to 

Bidirectional Reflectance Distribution Functions (BRDFs) (Nicodemus et al., 1977). These are 

equations which mathematically describe how reflectance of a surface varies with the sun-target-

sensor geometry.  

At leaf level it depends on epidermis characteristics and on the internal structure of the leaves 

(review in Jacquemoud, 1990). At canopy level the directional reflectance is mainly influenced by 
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the LAD and the leaf spatial distribution (Chen, 1996). LAD determines the variation of canopy 

gap fraction with zenith angle. The leaf spatial distribution controls the amount of radiation 

transmitted through the canopy considering the same LAI.  

Multi-directional observations can be the complement to hyper-spectral data to describe the 

canopy reflectance behaviours and extract useful information. 

 

Recent advances in developments of remote sensing platforms, sensor capabilities (e.g., MISR, 

POLDER, CHRIS/PROBA) and BRDF modelling (Chopping 2000a; Chopping 2000b; Lucht et 

al., 2000; Duchemin, 1999; Verstraete et al., 1990) indicate that (not only the hyper-spectral 

information but also) the directional information can be measured and interpreted. This technical 

progress may provide improved accuracies relative to single-angle parameter estimation 

approaches, capitalizing on both the spectral domain as well as the radiometric variations in signal 

with direction. 

In the next paragraph a short overview of vegetation parameters estimation (in particular LAI) 

from single and multi directional data is given. A discussion of advantages and disadvantages of 

both approaches is included. 

  

1.3 Vegetation indices and canopy reflectance models 

Considering the information content of E.O. data, two main approaches have been used to estimate 

LAI from reflective optical measurements (Verstraete et al., 1996): (1) based on empirical–

statistical relationships between LAI and vegetation indices (VI) and (2) on the inversion of 

radiative transfer models.  

Most VI combine information in only two spectral broad bands: in the red (R) and near-infrared 

(NIR) wavelength region. VIs are established to minimise the effect of external factors on spectral 

data and have been used to derive canopy parameters such as LAI and fraction of absorbed 

photosynthetic active radiation (FPAR) (Baret and Guyot, 1991). The most commonly used 

indices to derive LAI from E.O. data are the Simple Ratio (SR) (Jordan, 1969) and the Normalised 

Difference Vegetation Index (NDVI) (Rouse et al, 1974). These indices have been found to be 

well correlated with various vegetation variables including green leaf area (Holben et al, 1980; 

Asrar et al, 1984, 1985b; Hatfield et al, 1985; Clevers, 1989) and crop coefficient (Calera et.al , 

2006). However, they are sensitive to optical properties of soil background (Elvidge and Lyon, 

1985; Huete et al, 1985). Therefore several other indices have been proposed to minimise the 
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effects of soil background, e.g. the perpendicular vegetation index (PVI) (Richardson and 

Wiegand, 1977), the weighted difference vegetation index (WDVI) (Clevers, 1986, 1989), the soil 

adjusted vegetation index (SAVI) (Huete, 1988) and the transformed soil adjusted vegetation 

index (TSAVI) (Baret et al, 1989). 

 

Despite the large effort in improving the performance of such empirical formula, they still present 

limitations since they are site and sensor specific, require a reliable ground reference data-set to be 

calibrated and quickly saturate becoming insensitive to variations of LAI at high LAI-values. 

(Curran, 1994; Gobron et al., 1997). Moreover, VIs can not take into account that the canopy 

reflectance depends on the canopy structure (LAD, the leaf spatial distribution, row orientation, 

and spacing), leaf and soil optical properties, sun-target-sensor geometry (Huete, 1987; Bacour et 

al., 2002). 

Furthermore, they are generally based on a few spectral bands and single-angle observation, with a 

consistent under-exploitation of the full spectral and directional range available in new generation 

sensors.  

Therefore satellite derived indices must be based at least on data corrected or normalized to a 

“standard” (e.g., nadir) direction and by using site and sensor-specific calibrated relationships. 

It can be concluded that the estimation of LAI on the basis of optical remote sensing is not 

straightforward, although it is the only way to obtain LAI in a large spatial scale.  

 

Alternative approaches based on canopy reflectance models represent a challenging opportunity 

for the estimation of vegetation parameters from E.O. data with high dimensionality (both in the 

spectral and the directional domains).  

A canopy reflectance (CR) model describes the transfer and interaction of electromagnetic 

radiation inside the canopy based on physical laws. Some reviews, presented in next paragraph, 

were made by Goel (1988), Myneni (1989) and recently by Lewis.  

A CR model can be used in the direct mode and in the inverse mode. In direct mode, the canopy 

reflectance is simulated based on a specific set of (biophysical) input parameters. In inverse mode, 

observed canopy reflectance is used to retrieve these biophysical parameters.  

On the one hand, the physical approach permits a higher validity since there is no restriction by 

empirical relationship. Additionally, it offers the potential to exploit directional information by 

analyzing the distinctive features of the surface BRDF.  
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On the other hand, there are also several limitations. The parameter retrieval performance requires 

sufficient sampling of the surface BRDF, with the associated requirement for good calibration and 

atmospheric correction. It depends both on the CR model accuracy and the inversion algorithms 

(Kimes es al., 2000), which have to be both fast and robust enough to avoid problems in the 

minimization of the error function. 

A short overview of CR models is given in next paragraph followed by most common issues on 

non-linear model inversion. 

1.4 Overview of canopy reflectance models 

Due to the importance of CR modelling for this study, an overview about various models 

developed in the last years will be given in this section.  

Since the first CR model was formulated by Monsi and Saeki (1954), a large number of physically 

based canopy reflectance models with increasing levels of complexity have been developed. 

Recent reviews have been given by Casa (2003) and Lewis (1996), following Goel (1988), 

Myneni et al. (1989), Myneni and Ross (1991). 

 

Generally, models of canopy reflectance can be categorized into five major types, whereas some 

include features from the others: 

 

(1) Empirical Models: 

 Starting from the simplest approach, this kind of models are based on empirical functions which 

only assume the form of realistic reflectance distributions (see Walthall et al., 1985; Roujean et al., 

1992 and Rahman et al., 1994). Thus, the mathematics is not physically-based even though 

"layers" of functions can be added to specifically account for the scattering phenomena (e.g., the 

‘hot spot’). Inversion of empirical models have been carried out to estimate surface albedo and/or 

to correct for surface anisotropy.  

 

(2) Turbid Medium Models:  

 Increasing the complexity, turbid medium models might be regarded as a first step of a physically 

based description of canopy reflectance. These models describe a series of plane parallel 

horizontal layers composed of small randomly distributed infinitesimal elements, with defined 
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optical properties (absorbing and scattering), oriented in given directions (Goel 1989). Their 

angular distribution can be defined according to the LAD of true canopies (Ross and Nilson 1966). 

Turbid medium models are generally able to describe single and multiple scattering. While the 

first can be determined quasi analytically, the second is based on approximations.  

 A disadvantage of the turbid medium approach is the absence of scattering behaviour caused by 

the finite size of actual scatterers (e.g., shading) and the non-random orientation of scatterers (e.g., 

leaf clumping). In consequence, the models are more suitable to simulate reflectance 

characteristics of continuous uniform vegetated covers, such as crops or dense canopies, than to 

describe heterogeneous vegetation structures. 

A benefit of these models is their mathematical simplicity and thus computational efficiency. 

Thus, inversion of these models has been carried out by many authors. 

 

(3) Geometric-Optical Models:  

These kinds of models are based on a ground surface with known reflective properties. The 

canopy above this surface is described by geometrical objects of different shapes (such as 

cylinders, spheres, cones, cubes, ellipsoids, etc.). (see e.g., Otterman, 1984; Li and Strahler 1985; 

1992; Jasinski, 1990).They further consider that illuminated and shadowed proportions of a scene 

vary depending on view and illumination angles, determining the directional reflectance. The 

optical properties (transmittance, reflectance and absorption) are described a in a defined manner.  

Reflectance anisotropy is determined primarily by the fractions and spatial orientation of shaded 

and sunlit surfaces (both canopy and ground) for a particular sun-target-sensor geometry. They are 

most suitable for sparse canopies or clods of soil. The geometric-optic approach was original 

developed as alternative for radiative transfer models, taking into account more complex vegetated 

land surfaces (Li and Strahler, 1995).   

Geometrical models have been inverted to retrieve canopy structure parameters (Li and Strahler, 

1985; Wu and Strahler, 1994; Hall et al., 1994) and optical information (Otterman et al., 1987). 

 

(4) Hybrid Models:  

Hybrid models combine the spatial heterogeneity of geometrical models with the realistic transport 

treatment of turbid medium models. This permits the simulation of gap probabilities and path 

length distributions along with single and multiple scattering (e.g., Norman and Welles, 1983; Li 
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et al., 1994). Nevertheless, this complexity results in relatively high computational expense. Thus, 

operational inversions of these models appear impractical.  

 

(5) Computer Simulation Models:  

This approach depicts the highest level in complexity in describing canopy reflectance 

characteristics and the heterogeneous BRDF problem. By means of computer simulation models 

the arrangement and orientation of canopy elements is based on a three dimensional description. 

They rigorously trace photon interactions with an arrangement of discrete scatterers.  

Although computationally intensive, these models accurately simulate within-canopy spatial 

heterogeneity (e.g., organ size distributions, leaf clumping, gaps) and scene-scale heterogeneity 

(e.g., topography) that other models must either neglect or approximate with quasi-empirical 

formulations. Several models have been developed (see Ross and Marshak, 1988; Goel et al., 

1991; Borel et al., 1991; Lewis and Muller, 1992), but their high computational demand hamper 

the applicability for inversion purposes (Antyufeev and Marshak, 1990). 

 

Concluding, numerous modelling approaches have been worked out to describe the interaction of 

radiation with canopies, basing on a range from simple empirical to highly complex 

methodologies.  

Referring to the objective of this work, a complexity higher than the turbid medium approach is 

presently questionable for operational applicability. For this reason, geometric-optical, hybrid and 

computer simulation model approaches will not be taken into account in further analyses of the 

present study. This does not exclude that in the future these kinds of models may play an 

important role in deriving information from E.O. data.  
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1.5 Canopy reflectance model inversion 

By means of model inversion, information on surface parameters can be obtained from observed 

E.O. data. There are many issues about model inversion. The main concept behind it was given by 

Goel (1989). According to the Least-Square Error method, a cost function is defined to provide a 

measure of “goodness of fit” as follows: 

 

[ ]
2

1
∑

=

−=
n

i
imeasiobsiF ρρω      Eq. 1 

 

where ρobs,i and ρmeas,i are the observed canopy reflectance for n spectral bands and the 

corresponding modelled canopy reflectance, respectively. ωi is the weight given to an observation. 

Each residual should be weighted by the uncertainty associated with the observation i.   

If the model accurately represents canopy reflectance, and there are no measurement errors, the 

value of the cost function should approach to zero. If the relation between canopy reflectance and 

the set of input canopy parameters is not unique, (i.e. there are more than one minima), the model 

is not mathematically invertible. 

Often there is no analytical solution to the (multidimensional and non-linear) simultaneous 

equations obtained from the partial differentiation of CR models. Thus, the inversion of CR 

models is by nature an ill-posed problem. That means different model parameter combinations can 

produce almost identical spectra (Combal et al., 2002; D’Urso, 2004a). Baret (Baret & Guyot, 

1991) for instance, demonstrated that the spectral reflectance of sparse canopy with mostly 

horizontal leaf orientation is similar to a dense canopy with mostly vertical leaf orientation. The 

average deviations between model generated spectrum and retrieved spectra resulted very small 

showing that different sets of parameters can correspond to almost similar spectra. 

However, different methodologies have been proposed for the inversion and for the regularization 

of the ill-posed problem, e.g. based on the constraining to fixed values of some parameters, on the 

use of a-priori knowledge, taking into account the temporal evolution of the crop cycle. Another 

possibility is the object-based retrieval of canopy parameters, considering the radiometric 

information of neighbouring pixels during model inversion. (review in Kimes es al., 2000; Combal 

et al., 2002; CROMA, 2000; Atzberger, 2002, 2004). 

Regardless of the choice of minimisation method, there are a number of general issues that must 

be considered when inverting canopy reflectance models (reviews in Lewis et al. 2003).  
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To find out the minimum of the cost function, there are different kinds of optimization routines 

that can be exploited, e.g. Quasi-Newton methods, Genetic Algorithms (GAs), Look-up Table 

(LUT) and Artificial Neural Networks (ANNs). 

Quasi-Newton methods start to search space around a single starting point and explores all the 

local information, in particular the gradient to find the better next point. GA use population of 

candidate solutions initially distributed over the whole function and identify the sub-domain in 

which the global minimum can be located. The optimisation problems are expressed as non-linear 

‘fitness for survival’ functions, and genetic mutation and propagation applied to find the ‘fittest’ 

parameter values as can be in nature. LUT method consists in generating a discrete set of possible 

canopy reflectance combinations and storing corresponding parameter values in a table. 

Optimisation is then based on the comparison of the values in the table with measured data. 

(Knyazikhin et al, 1998; Pragnere et al, 1999). ANN are non-physical methods that relate a set of 

input variables to a set of output variables by a learning process. (Abuelgasim et al., 1998; Smith, 

1993). They present a training data consisting of canopy reflectance value inputs and true 

parameter outputs.  

Selecting the right inversion algorithm and strategy for a particular problem is of crucial 

importance in parameter estimation. 

1.6 Objective of the work 

Due to the mechanisms outlined above, inversion of canopy reflectance models is an ill-posed 

problem and it needs to be regularized to get reliable results.  

Simultaneous directional observations, containing information both on the geometrical and 

structural characteristics of the surface, can better characterize the anisotropic reflectance 

behaviours over vegetation canopies. Therefore they may contribute, for instance, to uncouple one 

of the counterbalancing effects between LAI and LAD on reflectance signal. In this sense, multi-

directional information should smooth the ill-posed inverse problem. 

An agile satellite (PROBA) and a highly configurable sensor (CHRIS) offers the unique potential 

to acquire high spatial resolution, spectral BRDF data sets and, from these, to study the 

biophysical and biochemical properties of vegetation canopies. It also provides an important 

means of validating similar data sets from other, coarser spatial resolution sensors, such as 

VEGETATION, POLDER2, MODIS and MISR. 

Thus, in exploiting the unique and innovative hyper-spectral and multi-angular information 

content of CHRIS/PROBA imagery, the aim of this research is to estimate LAI by inverting a 
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canopy reflectance model and to compare the results, in terms of accuracy and operational 

practicability, to a more empirical approach based on VI. 
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Chapter 2 

 

2 Materials and Methods 

2.1 Experimental campaign: the SPARC experience 

2.1.1 Overall description of the area 

The ESA Spectra Barrax Campaigns (SPARC) [Moreno et al., 2004] were carried out in Barrax 

(N30°3’, W2°6’), an agriculture test area situated within La Mancha region in the South of Spain, 

from 12 to 14 July 2003 and from 14 to 16 July 2004.   

Agricultural research has been concentrated in this area for many years thanks to its flat 

topography (differences in elevation range up to 2 m only) and to the presence of large and 

uniform vegetation fields (e.g., alfalfa, corn, potato, sugar beet, onion and garlic) with a wide 

range of LAI from 0.5 up to 6.5. The area consists of approximately 65% rain fed and 35% 

irrigated land with different agricultural fruits. The regional water table is located approximately 

20-30 m below the land surface. The typical climatic conditions of the Mediterranean area can be 

found: high precipitations in spring and autumn with a summer minimum. The annual average 

rainfall is about 400 mm. 

2.1.2 Ground data measurements  

During SPARC campaign a large amount of ground measurements were collected in the Barrax 

study area covering leaf water content, leaf biomass, leaf Chla+b, LAI and fCover (Fernández et al., 

2005).  

Leaf water content and dry matter measurements were carried out on 3 samples per Elementary 

Sampling Unit (ESU) collected from a pre-defined area and stored into plastic bags. Each sample 

was weighted within a few hours and digital photographs of the leaves over squared paper were 

taken for the calculation of the leaf area. Samples were dried at 70ºC, until constant weight was 

reached, and then weighted again. From the two masses and the known sampled area, water and 

dry matter content were calculated. 

The leaf chlorophyll content was measured with the CCM-200 Chlorophyll Content Meter. It 

performs relative measurements, so that a calibration should be made by using laboratory analysis 

methods (Gandia et al., 2005). 
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Field non-destructive measurements of LAI and Mean Tilt Angle (MTA) were made by means of 

the digital analyzer LI-COR LAI-2000 (LI-COR Inc., 1992); the manufacturer's recommendations 

were followed in deciding sampling strategy. In order to reduce the effect of multiple scattering on 

LAI-2000 measurements, the instrument was only operated near dusk and dawn (6:30-9:30 am; 

6:30-8:30 pm) and under diffuse radiation conditions using one sensor for both above and below 

canopy measurements. In order to prevent interference caused by the operator’s presence and the 

illumination condition, the sensor field of view was limited with a 180° view-cap. Both 

measurements were azimuthally oriented opposite to the sun azimuth angle. Twenty four samples 

of LAI measurements were taken, comprising one full set of measurements in each ESU. Each 

centre of the LAI-2000 transects was geolocated by using GPS measurements as showed in    .  

A summary of the biophysical parameters measured for the characterization of the different crops 

during SPARC-2003 is shown in Table 1. The strategy sampling is described in detail in SPARC 

campaign handbook.  

 
Figure  2 Leaf Area Index protocol measurements  

 

Figure  3 Examples of LAI values for alfalfa canopies 
 

r 
c 

1 LAI  data for each ESU (Elementary Sampling Unit) is 
given by: 3 (a, b and c) repetitions of 8 measurements  
Semi-radius r ≅ 10 m.  
 
For each repetition, 1 above canopy measurement in the 
center of sector is taken. 
 
Duration of each measure approximately 10-15’. 

GPS 
a 

b 
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Table 1 Biophysical characterization of crops during SPARC-2003 

 

 
Figure  4 Land use classification during SPARC-2003 and LAI measurement points 
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2.1.3 Earth Observation (EO) data: CHRIS/Proba imagery 

The European Space Agency’s (ESA) Project for On-Board Autonomy (PROBA) is a technology 

demonstration experiment to take advantage of autonomous pointing capabilities of a generic 

platform suitable for Earth observation purposes. Among different sensors, the PROBA instrument 

payload includes the Compact High Resolution Imaging Spectrometer (CHRIS). The coupled 

PROBA/CHRIS system, launched on October 22, 2001, provides high spatial resolution hyper-

spectral and multi-angular data, that constitutes a new generation of remote sensing information to 

be processed and exploited. 

PROBA platform provides pointing in both across-track and along-track directions. In this way, 

PROBA/CHRIS system has multi-angular capabilities, acquiring up to five consecutive images 

from five different view angles in the same satellite overpass. Each imaged target has an 

associated “fly-by” position, which is associated to that position on the ground track where the 

platform zenith angle, as seen from the target, is a minimum [i.e., minimum zenith angle (MZA)]. 

The platform acquires the images at times when the zenith angle of the platform with respect to the 

fly-by position is equal to a set of fly-by zenith angles (FZA): 0 , ± 36, or ± 55. Negative MZA 

values correspond to target locations east of the ground track, and negative FZAs to acquisition 

geometries when the satellite already passed over the target position. A schematic view of 

PROBA/CHRIS acquisition geometry is displayed in Figure  5. 

On the other hand, CHRIS measures over the visible/near-infrared (NIR) bands from 400–1050 

nm, with a spectral sampling interval ranging between 1.25 (at 400 nm) and 11 nm (at 1000 nm). It 

can operate in different modes, reflecting a necessary compromise between spatial resolution and 

the number of spectral channels, caused by limits to onboard storage. 
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Figure  5 Scheme of CRHIS/PROBA acquisition geometry (Guanter et al., 2005) 

 

For this study we worked with a set of five hyper-spectral consecutive CHRIS/PROBA images 

collected on 14 July 2003 at 11:32 GMT from five different view angles during a single orbital 

overpass. These images (namely “A1”, “A2”, “A3”, “A4”, “A5”) were acquired in Mode-1 with a 

spectral resolution of 62 bands over the visible/near-infrared bands from 400–1050 nm, in a spatial 

resolution of 34 m. The acquisition geometry for the images is shown in Table 2 and Figure  7.   

 

A1 A2 A3 A4 A5
14/07/2003 57,3 42,4 27,6 42,5 57,4

Minimum satellite zenith angle

 

Table 2 CHRIS/PROBA acquisition geometry 

The image closer to nadir, “A3”, was acquired with a view zenith angle equal to 27,6°.  

 

Figure  6 Simplified schematization of multiangular acquisitions from CHRIS/PROBA. 
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Figure  7 Directional sampling of CHRIS/PROBA for SPACR-2003 on 14 July 2003 at 11:30 GMT 

 

 
Figure  8 CHRIS/PROBA imagery acquired on 14th July 2003 

Radiometric calibration, atmospheric and geometric correction of CHRIS imagery was performed 

by the Department of Thermodynamics of the University of Valencia. Since important calibration 

problems were reported in several CHRIS channels data, a dedicated atmospheric correction 

algorithm was applied jointly with radiometric calibration of the data in an autonomous process, 

without the need for any ancillary data (Guanter et al., 2005). 
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Figure  9 CHRIS/PROBA imagery over BARRAX – 14 JULY 2003  
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2.1.3.1 Directional sampling of BRDF from CHRIS/PROBA 
 
To obtain a BRDF feature representative to the true properties of ground object, it is necessary to 

perform a spatial average to the georeferenced multi angular images. In fact, because of the 

limitations of registration, pixel alignment and the intrinsic scale of scene, to extract BRDF 

features from georeferenced image without average is not recommended (Qiang et al., 2003). Thus 

a set of surface reflectance was extracted from CHRIS images considering an average filter of 3*3 

pixels. An example of the BRDF features of different surface in shown in Figure  10 and Figure  

11. 
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Figure  10 CHRIS/PROBA spectral and directional reflectance acquired by CHRIS/PROBA over Barrax site 

on 14 July 2003 at 11.30 GMT. 
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Figure  11 CHRIS/PROBA spectral and directional reflectance acquired by CHRIS/PROBA over Barrax site 

on 14 July 2003 at 11.30 GMT. 
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2.2 Canopy Reflectance Modelling. 

For the purpose of this study two well known reflectance models were used: the PROSPECT 

model (Jacquemoud et al., 1990) for the simulation of the leaf reflectance and transmittance 

coupled with the one-dimensional canopy reflectance model SAILH (Verhoef, 1984, 1998) 

adapted to take into account the hotspot effect and the multiple scattering in the canopy (kuusk, 

1991) (PSH model).  

The SAILH model was selected considering the results of the RAMI experiment (The RAdiation 

transfer Model Intercomparison) (Pinty et al., 2000), that carried out modelling exercises for both 

structurally homogeneous and heterogeneous canopies.   

Two fundamental criteria were considered to choose the coupled version of the PROSPECT and 

SAILH models: i) simplicity, i.e. the possibility to have a rather good representation of the 

radiative transfer of the canopy using a relatively small amount of input parameters as well as 

limited computational requirements (performing numerous calculations with minimum time), and 

ii) reliability since the SAILH model has been successfully tested for a large set of crops, among 

them corn (Major et al., 1992) and sugar beet (Andrieu et al., 1997) which were present in our 

study-area. 

2.2.1 SAILH and PROSPECT models 

The SAILH model (Verhoef, 1984, 1998) assumes the canopy as a horizontal, homogenous and 

infinitely extended vegetation layer (turbid medium), made up of Lambertian scatterers (leaves) 

randomly distributed within the canopy. The radiative transfer equation is solved by the four-

stream approximation method: ascending and descending fluxes of direct and diffuse radiation are 

considered.  

The SAILH model requires few parameters; such as single leaf hemispherical reflectance and 

transmittance (ρ, τ ), leaf area index (LAI), average leaf angle (ALA), geometric parameters (the 

solar zenith, the view zenith angles and the azimuth angle between sun and observer, hotspot 

parameter (hot), introduced by Kuusk (Kuusk, 1991), the fraction of diffuse radiation (ESKY) and 

soil hemispherical reflectance (ρsoil). A reflectance factor (αsoil) was introduced to scale the mean 

measured soil spectrum accounting for variances in soil brightness.  

The PROSPECT model (Jacquemoud et al., 1990) provides the leaf hemispherical reflectance and 

transmittance to the SAILH model as a function of the leaf structural parameter (N), the leaf 

chlorophyll a+b concentration (Chla+b), the equivalent water thickness (Cw) and the dry matter 

content (Cm).  
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Figure  12 shows the schematization of the coupled PROSPECT and SAILH models, integrating 

the required input information 

 

Figure  12 Schematization of the direct mode of PROSPECT and SAILH models (PSH). 

 

2.2.2 Issues on model inversion  

The ability to determine canopy parameters correctly depends on model accuracy and capability to 

reproduce the experimental data, appropriate sampling of the surface BRDF and finally it depends 

on model inversion parameterization.  

If the solution is not unique and stable, the model may not be invertible for the given problem 

configuration (Goel, 1988). The uniqueness and the stability of a solution are determined by the 

presence of local minima in the model parameter space. These minima represent incorrect 

parameter combinations for which model spectra resemble the measured data. Solution stability 

requires that the global minimizer not change significantly for reasonable errors in the data. 

 

CHRIS/PROBA data may provide the potential to overcome some of the difficulties associated 

with physical-based model inversion from satellite data. First, high spatial resolution of the 

instrument could facilitate the application of CR models, since there are fewer problems with sub 

pixel mixtures of land cover type than for “moderate” resolution sensors. Secondly, five views of a 
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fixed point on the Earth surface can be obtained in a single orbital over-pass. CHRIS/PROBA 

provides both hyperspectral and directional sampling, which can be expected to have greater 

information content than each domain alone (Barnsley et al. 1997). Furthermore, simultaneous 

directional observations, which better characterize the anisotropic reflectance behaviour of 

vegetation, should so contribute to uncouple the counterbalancing effect between LAI and ALA on 

spectral signal.  

In this sense, multidirectional information should smooth the ill-posed problem. Thus, the only 

regularization taken into account in this study will be a physical coherent bound on the parameter 

values.  

2.2.3 Inversion algorithm 

A traditional Levenberg-Marquardt algorithm (LMA) (Levenberg, 1944; Marquardt, 1963) was 

implemented in order to retrieve LAI by inverting the PSH model.  

The LMA interpolates between the Gauss-Newton algorithm (GNA) and the method of gradient 

descent. The LMA is more robust than the GNA, which means that in many cases it finds a 

solution even if it starts very far off the final minimum. On the other hand, for well-behaved 

functions and reasonable starting parameters, the LMA tends to be a bit slower than the GNA.  

The solution is achieved by iteratively running the PSH model in direct mode and comparing the 

model output with the acquired CHRIS spectra until an optimal parameter set is found. The 

optimal parameter set is defined as this combination of canopy variables for which the cost 

function value is reduced to a minimum. The selected cost function is a simple least square 

function defined as the sum of squared deviations between model-generated observations and 

satellite observations: 
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where nb is the number of spectral bands, nd is the numbers of view directions and ρmod expresses 

the modelled reflectance for the sun-sensor geometry corresponding to the observed reflectance 

ρobs. The smaller the cost function value the greater is the consistency between model and 

observations. To start off the inversion process, the algorithms need an initial guess for the 

parameter vector x as well as their lower and upper bounds (summarized in Table 3). 
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2.2.4 Parameterization and setup 

PSH model requires eight parameters and a given geometric configuration. The N and HOT 

parameter value bounds were left as broad as possible since no field measurements is possible to 

perform due to their uncertain physical nature. Chla+b is allowed to vary between 30 and 70, Cw 

between 0.015 and 0.1 and Cm between 0.001 and 0.01. The ESKY parameter (diffuse part of the 

incoming radiation) is fixed to 0.16 independent of the wavelength considering local irradiance 

measurements. The parameters to be retrieved by model inversion, LAI and ALA, are allowed to 

vary in the range 0.1 – 6.5 and 30° – 80° (starting point 0.1 and 30°), respectively.  

The parameter settings take into account field and intra-fields variability from in situ 

measurements and were conservatively expanded. In Table 3 all input parameters with 

corresponding bounds are listed. 

Parameters Units Initial 
values

Lower 
bounds 

Upper 
bounds 

N - 1.3 1.3 2.0 
Chla+b µg cm-2 30.0 30.0 70.0 

Cw g cm-2 0.015 0.015 0.100 
Cm g cm-2 0.001 0.001 0.010 

LAI m2 m-2 0.1 0.1 6.5 
HOT - 0.0 0.0 1.0 
ALA Deg. 30 30 80 
αsoil  - 0.80 0.80 1.20 

Table 3 Input parameters, units, initial values and bounds. 

The input soil reflectance is calculated averaging spectral samples of soils measured by means of a 

field spectrometer during the campaign. A wavelength-independent scaling factor, αsoil, is left free 

to vary in a range of ±20% from the mean.  

 

Figure  13 Average soil reflectance used as input in the inversion of PSH model and its variability according to 
the reflectance scale factor ( αsoil ) 
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2.2.5 Inverse problem configuration 

To understand the contribution of directional information in LAI estimation, the PSH model was 

inverted by using first one (“A3”), then three (“A2” “A3” “A4”) and finally five (“A1” “A2” “A3” 

“A4” “A5”) view angles.  

Several researches demonstrated that the optimal information in quantitative characterization of 

forest canopies (Blackburn, 1998) or vegetation (Broge and Leblanch, 2000) or agricultural crops 

(Carter, 1998, Thenkabail et al., 2002a) is present in a few specific narrowbands rendering a large 

number of wavebands redundant. Thus, in order to reduce redundancy and to understand the 

contribution of the spectral information on the directionality, the experiment was first performed 

with the full spectral 62 CHRIS bands. Second the process was repeated with a selection of 

optimal spectral bands in the visible (542, 563, 583, 605, 664, 674 and 694 nm), in the red edge 

(706, 718, 731, 745 and 758 nm) and in the infrared (773, 780, 831 and 889 nm) part of the 

spectrum (according to the results of previous works found in literature, Thenkabail, 2004) and 

finally by using 4 bands close to Landsat-TM spectral configuration. 

For each of the experiments, the LAI accuracy is evaluated in terms of root mean square error 

(RMSELAI) and relative percentage error (RPELAI). 

2.3 The semi-empirical approach: CLAIR model (LAI-WDVI) 

To compare the physical approach with a traditional VI one, the semi-empirical relationship 

between the Weighted Differences Vegetation Index (WDVI) and LAI (CLAIR model, Clevers, 

1989, 0) was adopted.  

The CLAIR model (Clevers, 1989) is based on the logarithmic relation between LAI and the 

WDVI. It assumes that all parameters are constant, except LAI and soil brightness: 
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where α* is an extinction coefficient, expressing the increase of LAI for a unitary of WDVI. It has 

to be estimated from simultaneous measurements of LAI and WDVI. WDVI∞ expresses the 

asymptotical value of WDVI for LAI → ∞.  
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where ρi and ρr indicate the reflectance of the observed canopy in red and infrared bands 

respectively, while ρsi and ρsr are the corresponding values for bare soil conditions. The ratio 

ρsi/ρsr can be taken as constant, in analogy with the “soil line concept” (Baret et al., 1993). 
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Chapter 3 

 

3 Experimental results 

3.1 Validation of the PSH model 

A preliminary model validation was performed comparing a canopy reflectance spectrum acquired 

by ASD FieldSpec® spectroradiometer over an alfalfa canopy during the field campaign with the 

spectrum simulated by the PSH model. Parameter values were set as follows: nadir view, 

Chla+b=57 mg/cm2, Cw=0.011 g/cm2, Cm=0.0055 g/cm2, LAI=2.7, HOT=0.057 and ESKY=0.16, as 

from ground measurements, while N=1.8 (Walter-Shea et al., 1997) and Spherical LAD (ALA= 

57°) were taken from literature. 

The model was run with 9 different measured soil spectra during the campaign, ranging from very 

bright (dry) to very dark (wet), showing a good agreement between measured and all simulated 

data. Figure  14 shows the best result obtained with a relative percentage error (RPE) of 7.8% 

using a wet soil reflectance spectrum.  

 
Figure  14 Field measurement vs. simulated spectra for Alfalfa 



 

 29

To observe the soil background effect on the canopy reflectance, the PSH model was run by using 

soil spectra from very bright (dry) to very dark (wet) and different LAI values. In Figure 15 is 

demonstrated how the soil reflectance influences the spectral response of the surface to a 

noticeable extent for a LAI value of 1.50 and even for a higher value of 3.0 in the near infrared 

part of the spectrum.  

 

S5:dry soil spot S6:wet soil spot; A:alfalfa  

 

Figure 15 Canopy reflectance simulated for a low and for an high LAI value by using dry and wet soil spectra 
as input of PSH model (N=1.8; Chla+b=57 µg/cm2; Cw=0.011 g/cm2; Cm=0.0055 g/cm2; LAI = 1.5 (left) and 3.0 
(right); hot= 0.057; ALA=57°; nadir view; SZA=25°) 

 

The spectral and angular reflectance of different samples of alfalfa fields was then extracted from 

CHRIS/PROBA imagery and compared with the simulated ones. The best result was achieved 

(RPE of 10% over all wavelength and view angles) for an alfalfa sample with LAI value of 1.8 

(Figure 16). 
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Figure 16  Alfalfa spectral and directional reflectance. CHRIS/PROBA data vs. forward PSH model simulation 

 

The green and the near-infrared bands were finally analyzed for all the view angles. A RPE less 

than 3% for the green band and about 10% for the near-infrared bands was found Figure  17. 
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Figure  17 PSH model test. The models were tested in forward mode in previous studies. Comparison between 
BRDF model output and CHRIS BRDF sampling showed satisfactory results (D’Urso, 2004). An error less than 
3% for the green band and less than 10% for the near-infrared band was found 
 

A preliminary analysis was also performed for potato stands, using the measured LAI value of 6.2. 

A quite good accuracy was achieved using as input parameters Chla+b=30 mg/cm2, Cw=0.021 

g/cm2 Cm=0.0046 g/cm2 (from ground measurements), while N=2.0, HOT=0.1 and ALA=27° were 

assumed from literature.  The most relevant discrepancies between model and measurement were 
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found again in the near-infrared region for the -36° and -55° images (backward viewing direction), 

while for the red region the model seems to perform more accurately. 

3.1.1 Conclusions 

A preliminary analysis on CHRIS/PROBA data was carried out. The spectral and space 

information content of the satellite data was exploited to validate the canopy reflectance model.  

The effectiveness of the combined use of PROSPECT and SAILH models could be demonstrated 

to simulate canopy BRDF of alfalfa crop with an acceptable accuracy. The investigation also 

showed the importance of the soil reflectance component on the overall spectral reflectance. 

Therefore a soil reflectance map of the image as well as the removal of the Lambertian surface 

hypothesis for the bare soil could lead to a more accurate BRDF modelling for sparse canopies. 

The goodness of the results obtained, at least for the crops under investigation, encouraged the use 

of these models in the inverse mode in order to retrieve vegetation parameters.                                    

3.2 Invertibility of the PSH model 

Due to the ill-pose nature of the inverse problem, the invertibility of a canopy reflectance model is 

not guaranteed (Goel, 1988). Therefore, before PSH model is inverted with real measured 

reflectance data, it is necessary to test its inversion performance using synthetic model generated 

error-free data and the selected LM algorithm. 

The canopy reflectance for three different parameter sets (X, Y and Z, see Table x) was thus 

computed by using model inputs representative of those encountered in the field measurement (see 

section x). The geometric configuration of CHRIS/PROBA respective to the Barrax acquisition 

was adopted for all the simulations (62 bands and 5 view angles). A Uniform and a Spherical leaf 

angle distribution were selected with an average leaf inclination of 45° (case: X) and 57° (case: 

Y). For the Y case, the soil reflectance was varied scaled from dark to wet soil conditions (αsoil= 

0.8) (case: Z). Variations of these three base cases were made by varying LAI values to cover a 

wide range from 0.8 to 5.4. 

Since in an inversion problem, model parameters may be excessively sensitive to reflectance 

[Goel, 1988], small errors in measured reflectance may result in large errors in retrieved 

parameters. To take into account this uncertainty, Gaussian noise was added to synthetic 

reflectance data (cases: Xn,Yn and Zn).  

The Relative Root Mean Square Errors (RRMSELAI) and Relative Percentage Errors (RPELAI) for 

LAI estimation accuracies are shown in Table 4 for all the cases. 



 

 32

 

    
 LAI: 

case 1 
0.8 

case 2 
1.5 

case 3 
2.7 

case 4 
3.6 

case 5 
4.5 

case 6 
5.4 

Mean 
errors 

 RRMSELAI 0.05 0.12 0.32 0.03 0.17 0.44 0.19 
 

Xn 
RPELAI 5.7% 9.7% 19.3% 1.6% 8.2% 19.1% 10.6% 

           
 RRMSELAI 0.06 0.14 0.33 0.18 0.06 0.21 0.16 
 Yn 

RPELAI 6.2% 11.3% 19.9% 9.4% 2.7% 9.2% 9.8% 
           
 RRMSELAI 0.06 0.14 0.31 0.46 0.13 0.27 0.23 
 Zn 

RPELAI 7.1% 11.3% 19.1% 24.5% 6.1% 11.6% 13.3% 

 

Table 4 RRMSELAI  and RPELAI . Xn: ALA=47°; Yn: ALA=57°; Zn: ALA=57° & very dark soil input 

 

The RRMSEALA and RPEALA for ALA estimation accuracies are shown in Table 5 for all the 

cases. 

 case 1 case 2 case 3 case 4 case 5 case 6 
   LAI: 0.8 1.5 2.7 3.6 4.5 5.4 

Mean 
errors 

RRMSEALA 0.36 0.39 0.16 0.05 0.11 0.09 0.19 Xn 
REPALA 5.3% 5.8% 2.5% 0.8% 1.7% 1.3% 2.9% 

         
RRMSEALA 0.19 0.38 0.34 0.06 0.10 0.01 0.18 Yn 
REPALA 2.5% 5.0% 4.5% 0.7% 1.3% 0.1% 2.4% 

         
RRMSEALA 0.16 0.21 0.11 0.01 0.07 0.03 0.10 Zn 
REPALA 2.2% 2.8% 1.5% 0.1% 1.0% 0.4% 1.3% 

Table 5 RRMSEALA  and RPEALA . Xn: ALA=47°; Yn: ALA=57°; Zn: ALA=57° & very dark soil input 

 

Model input parameters are shown in Table 6 and Table 7 for the X and Y cases (ALA 45° and 

57°), respectively. The estimated parameters are called “Estimated a and b”, i.e. noise-free and 

with a relative 10 % Gaussian noise added, respectively. Model input parameters for the case Y 

(dark soil) are shown in Table 8. 

3.2.1 Conclusions  

By using LM optimization algorithm and the parameterization as in Table 3, the invertibility of the 

PSH model was shown for typical conditions using noise-free synthetic data generated under 

satellite sampling schemes. In general, LAI estimates were reasonably accurate (RPELAI=10%) 

except for case 3 were the mean RPELAI  is 19.4%. ALA was more accurately estimated with a 

mean percentage error of 2.2%. The PROSPECT parameters were estimated within a mean 

percentage error of 30%, 24% and 5% for Cw, Cm and Chla+b, respectively. The N parameter was 
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always not estimated. The hot parameter was retrieved with large errors probably due to the small 

sensitivity of this parameter when the sensor-target-sun positions are not in the principal plain 

configuration as for the CRHIS/PROBA orbit. Soil reflectance was systematically slightly 

overestimated. Effects of random Gaussian noise in synthetic data were also tested and parameters 

estimation remained accurate. In Figure  18 the synthetic noise-added reflectance (•) is plotted 

(obtained running PSH model in forward mode) and the corresponding retrieved reflectance ( ) by 

PSH model inversion. The model input and the parameter estimates are shown Table 6, case 3. 

 
Figure  18 Data fitting of synthetic noise-added reflectance (•) (obtained running PSH model in forward mode 
for LAI = 2.70) and the corresponding retrieved reflectance ( ) by PSH model inversion.  
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Model Input  Estimated Input  Estimated 
parameters case 1 - a b case 2 - a b 

N 1.80  1.86 2.00 1.80  1.87 2.00 

Chla+b 66  66 68 66  66 69 

Cw 0.011  0.015 0.015 0.011  0.015 0.015 

Cm 0.0055  0.0071 0.0067 0.0055  0.0067 0.0060 
LAI 0.80  0.82 0.75 1.50  1.53 1.35 

HOT 0.250  0.166 0.173 0.250  0.183 0.182 
ALA 45.0  45.6 42.6 45.0  45.9 42.4 

αsoil 1  1.034 1.043 1  1.072 1.067 

         
Model Input  Estimated Input  Estimated 

parameters case 3 - a b case 4 - a b 

N 1.80  1.91 2.00 1.80  1.94 1.80 

Chla+b 66  67 68 66  67 70 

Cw 0.011  0.015 0.015 0.011  0.015 0.015 

Cm 0.0055  0.0057 0.0049 0.0055  0.0050 0.0075 
LAI 2.70  2.51 2.18 3.60  2.98 3.54 

HOT 0.250  0.173 0.199 0.250  0.182 0.785 
ALA 45.0  45.3 43.9 45.0  45.6 45.4 

αsoil 1  1.142 1.137 1  1.2 1.061 

         
Model Input  Estimated Input  Estimated 

parameters case 5 - a b case 6 - a b 

N 1.80  1.80 1.80 1.80  1.80 1.80 

Chla+b 66  70 70 66  70 70 

Cw 0.011  0.015 0.015 0.011  0.015 0.015 

Cm 0.0055  0.0059 0.0073 0.0055  0.0060 0.0068 
LAI 4.50  3.83 4.13 5.40  4.35 4.37 

HOT 0.250  0.39 0.974 0.250  0.476 1 
ALA 45.0  44.6 45.8 45.0  44.7 44.4 

αsoil 1  1.15 1.158 1  1.2 1.2 

Table 6 Model input parameter for base case X varying the LAI and estimated parameter for noise-free 
reflectance (a) and noise-added reflectance (b) 
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Model Input  Estimated Input  Estimated 
parameters case 1 - a b case 2 - a b 

N 1.80  1.91 2.00 1.80  1.94 2.00 

Chla+b 66  67 67 66  67 70 

Cw 0.011  0.015 0.015 0.011  0.015 0.015 

Cm 0.0055  0.0067 0.0060 0.0055  0.0063 0.0055 
LAI 0.80  0.81 0.75 1.50  1.51 1.33 

HOT 0.250  0.055 0.056 0.250  0.112 0.126 
ALA 57.0  57.2 55.6 57.0  57.4 54.2 

αsoil 1  1.028 1.039 1  1.056 1.045 

         
Model Input  Estimated Input  Estimated 

parameters case 3 - a b case 4 - a b 

N 1.80  1.95 2.00 1.80  1.92 1.80 

Chla+b 66  68 70 66  69 70 

Cw 0.011  0.015 0.015 0.011  0.015 0.015 

Cm 0.0055  0.0056 0.0045 0.0055  0.0052 0.0061 
LAI 2.70  2.53 2.16 3.60  3.13 3.26 

HOT 0.250  0.147 0.159 0.250  0.183 0.623 
ALA 57.0  56.4 54.4 57.0  56.4 56.6 

αsoil 1  1.085 1.07 1  1.107 1 

         
Model Input  Estimated Input  Estimated 

parameters case 5 - a b case 6 - a b 

N 1.80  1.80 1.80 1.80  1.80 1.80 

Chla+b 66  70 70 66  70 70 

Cw 0.011  0.015 0.015 0.011  0.015 0.015 

Cm 0.0055  0.0055 0.0069 0.0055  0.0056 0.0068 
LAI 4.50  3.84 4.38 5.40  4.45 4.90 

HOT 0.250  0.316 1 0.250  0.38 1 
ALA 57.0  56.1 57.8 57.0  56.3 56.9 

αsoil 1  1.097 1.036 1  1.139 1.107 

Table 7 Model input parameter for base case Y varying the LAI and estimated parameter for noise-free 
reflectance (a) and noise-added reflectance (b) 
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Model Input  Estimated Input  Estimated 
parameters case 1 - a b case 2 - a b 

N 1.80  1.90 2.00 1.80  1.91 2.00 

Chla+b 66  67 67 66  66 68 

Cw 0.011  0.015 0.015 0.011  0.015 0.015 

Cm 0.0055  0.0066 0.0054 0.0055  0.0063 0.0047 
LAI 0.80  0.81 0.74 1.50  1.53 1.33 

HOT 0.250  0.056 0.006 0.250  0.127 0.106 
ALA 57.0  57.4 55.8 57.0  57.8 55.4 

αsoil 0.8  0.825 0.838 0.8  0.852 0.852 

         
Model Input  Estimated Input  Estimated 

parameters case 3 - a b case 4 - a b 

N 1.80  1.87 2.00 1.80  1.80 2.00 

Chla+b 66  67 68 66  68 67 

Cw 0.011  0.015 0.015 0.011  0.015 0.015 

Cm 0.0055  0.0056 0.0040 0.0055  0.0055 0.0039 
LAI 2.70  2.62 2.18 3.60  3.30 2.72 

HOT 0.250  0.196 0.176 0.250  0.279 0.231 
ALA 57.0  57.7 56.1 57.0  57.3 56.9 

αsoil 0.8  0.896 0.909 0.8  0.917 0.973 

         
Model Input  Estimated Input  Estimated 

parameters case 5 - a b case 6 - a b 

N 1.80  1.80 1.80 1.80  1.80 1.80 

Chla+b 66  70 70 66  70 70 

Cw 0.011  0.015 0.015 0.011  0.015 0.015 

Cm 0.0055  0.0057 0.0068 0.0055  0.0057 0.0067 
LAI 4.50  3.97 4.23 5.40  4.55 4.77 

HOT 0.250  0.366 1 0.250  0.425 1 
ALA 57.0  56.7 57.6 57.0  56.8 56.8 

αsoil 0.8  0.929 0.864 0.8  1 0.955 

Table 8 Model input parameter for base case Z varying the LAI and estimated parameter for noise-free 
reflectance (a) and noise-added reflectance (b) 
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3.3 Optimization and analysis of the inversion procedure. 

After performing a preliminary analysis of the invertibility of PSH model both on error free and 

noise-added data, the inversion algorithm was further investigated. In next section a more 

mathematical view of the problem is given. The minimum of the cost function value, the number 

of cost function evaluations and the inversion time are considered.  

The canopy reflectance was computed by using PSH model in forward mode for three different 

LAI values (0.5, 3.0 and 5.0). The other parameters were considered fixed, described in Table 9 

(forward simulation).   

Model parameters N Chla+b Cw Cm LAI ALA HOT αsoil 
         

Forward simulation 1.8 50 0.011 0.0055 var. 57 0.0057 1.0 
Lower bound - (LB) 1.3 30 0.011 0.001 0.01 30 0.001 0.8 
Upper bound - (UB) 2.0 70 0.1 0.01 6.00 80 1.000 1.2 

Table 9 Set of PSH model parameters used in forward simulation and Lower and Upper bounds for the same 
parameters used in inverse simulations. 

 
The influence of starting off the inversion process from different initial parameter values was 

tested, first by using as initial values the set of parameters used in forward model simulation 

except for LAI parameter, that was set up equal to 3.0 (when LAI=0.5 and LAI=5) and to 1.5 

(when LAI=3.0) and then by using lower and upper bounds parameter values, LB and UB 

respectively. In Table 10 estimations of LAI (LAIest) from inverting model-generated data are 

presented, first for 62 and then for 4 spectral bands and 5 view directions. 

 62 bands – 5 view directions  4 bands – 5 view directions 
for: 

Initial values 
LAIest f-count Time min f(x)  LAIest f-count Time min f(x) 

LAI 3.0 0.49 403 103 6*10-6  0.50 327 66 4*10-4 
LB 0.50 404 102 1*10-5  0.50 533 108 4*10-6 

L
A

I=
0.

5 

UB 0.49 848 205 0.4  0.49 318 65 2*10-3 
     

  LAIest f-count Time min f(x)  LAIest f-count Time min f(x) 
LAI 1.5 3.00 347 80 6*10-5  3.00 409 81 2*10-4 

LB 2.99 363 92 5*10-4  2.78 426 87 0.0027 

L
A

I=
3.

0 

UB 3.00 558 141 1*10-6  2.77 459 93 0.0033 
     

  LAIest f-count Time min f(x)  LAIest f-count Time min f(x) 
LAI 3.0 5.00 518 134 2*10-6  4.03 402 84 0.012 

LB 4.99 895 232 2*10-6  4.76 447 89 8*10-4 

L
A

I=
5.

0 

UB 5.00 607 157 2*10-6  5.60 517 106 7*10-4 

Table 10 LAI estimates (LAIest)  for three LAI forward simulations (0.5, 3.0 and 5.0) by using 62 and 4 spectral 
bands. The optimization process starts from different initial parameter values. In the table is also shown the 
number of cost function evaluations (f-count), the optimization time in seconds (Time) and the minimum of  the 
cost function f(x).  
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For LAI values of 0.5, the inversion results showed in general a good accuracy for LAI estimation. 

When exploiting 62 spectral bands and 4 spectral bands, the cost function values are on the order 

of 10-5, except when the inversion process is started from the upper bounds for 62 bands. In this 

case, the optimization is probably stacked in a local minimum due to the counterbalancing effect 

of the other parameters. The cost function showed a high value (min. of f(x)=0.4) despite the good 

accuracy in estimating LAI (LAI=0.49). An alternative inversion parameterization was thus tested, 

restarting the optimization by using as initial values not the UB but the set of parameters estimated 

from the previous optimization. The retrieved LAI was 0.49 with a new minimum of the cost 

function of 7*10-6. In this case, the starting points seem to play a crucial role and restarting the 

optimization generates good approximation.  

For LAI=3.0 and LAI=5.0, the results are only accurate in terms of min f(x) and LAIest when the 

full spectral information is exploited in the inversion of the PSH model. This might be caused by a 

lower sensitivity of the model to higher LAI values, 

The relevance of using 62 or 4 bands and the effect of searching for a low or high LAI is shown in 

Figure  19 and Figure  20. The error surface for LAI and ALA parameters are plotted considering a 

cost function based on 62 or 4 bands, respectively. 

The error surface is relatively sharp and well-behaved for low LAI (LAI<2) and when more 

spectral information is provided. It becomes flat for high LAI values and exploiting 4 bands. 

 

 
Figure  19 Sensitivity of the cost function to LAI for LAI=3.0 considering 62 and 4 spectral bands and 5 view 
directions 



 

 39

 
Figure  20 Sensitivity of the cost function to ALA for ALA=57 and LAI=3.0 considering 62 and 4 spectral bands 
and 5 view directions 

 
Since the largest uncertainties in parameter estimation were observed for LAI=5.0 and 4 spectral 

bands, the influence of different model inversion parameterizations and data set up was considered 

for these cases.  

The first analysis was performed to understand the influence of initial parameter values on the 

optimization. The inversion was run starting from standard initial parameter values. At the end of 

the first run a condition on the cost function was set up: if f(x) is less or equal to a defined 

minimum value, the optimization is stopped and the results are displayed; if f(x) is greater than the 

minimum, the optimization is restarted by using as initial values the set of parameters estimated 

from the previous optimization. In this case the effect of not appropriate starting point should be 

eliminated.  

A second alternative was tested reducing the free parameters to be retrieved by model inversion. 

First Cw and Cm were kept fixed, and then the experiment was repeated for ALA and αsoil 

parameters. The results are shown in Table 11.  

In the latter case, restarting the optimization does not bring any improvement. While reducing the 

number of free parameters, it is still possible to obtain LAI with a good accuracy by exploiting 

only 4 bands. On the one hand, it is possible to get the best result, in terms of cost function, fixing 
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ALA and αsoil. On the other hand, from an operative point of view it seems more feasible to fix Cw 

and Cm since these are parameters possible to measure or to approximate with a-priori knowledge. 

However, ALA and αsoil are more difficult to determinate. 

  4 bands  other parameter estimated 

  LAIest f-count Time min f(x)  N Chla+b Cw Cm ALA HOT αsoil 

UB  
restarting 5.60 599 118 6*10-4  1.78 50.56 0.011 0.0057 56.01 0.046 0.829

UB  
Cw & Cm 

fixed 
5.06 722 145 4*10-5  1.80 50.25 0.011 0.0055 56.65 0.054 0.966

L
A

I=
5.

0 

UB 
ALA & αsoil 

fixed 
4.99 545 109 8*10-7  1.79 50.03 0.013 0.0055 57.00 0.058 1.00 

Table 11 Alternative approaches of model inversion parameterizations and results. 

 
The sensitivity of the cost function to Cw and Cm is plotted in Figure  21 and Figure  22, 
respectively.    
  
 
 
 
 
 

 
Figure  21 Sensitivity of the cost function to Cw for Cw=0.011 considering 62 spectral bands and 5 view 
directions 
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Figure  22 Sensitivity of the cost function to Cm, for Cm=0.0055 considering 62 spectral bands and 5 view 
directions 

 

Finally, the inversion was repeated by using 16 bands selected as reported in section 2.2.5. The 

results are shown in Table 12 for LAI=5.0, starting the optimization from the lower and the upper 

bounds. The estimated LAI, the cost function value and the inversion time, all indicate that some 

of the problems reported before by using only 4 spectral bands can be avoid adding spectral 

information until at a certain point, after that it starts to be redundant.   

  16 bands – 5 view directions Values of other parameters estimated: 
  LAIest f-count Time min f(x) N Chla+b Cw Cm ALA HOT αsoil 

             

LB 5.12 475 99 7*10-4 1.78 50.29 0.011 0.0056 56.67 0.058 0.959

L
A

I=
5.

0 

UB 5.00 758 161 2*10-6 1.80 50.00 0.011 0.0055 56.98 0.057 0.998

Table 12 LAI estimation accuracy for LAI=5 by using 16 bands and 5 view directions.  

 
The directional information was finally analyzed. The inversions were performed again for the 

three LAI values by using only one view angle. The results are shown in Table 12. 

    62 bands - 1 view angle 
For:   LAIest f-count Time min f(x) 
LAI=0.5 LAI 3 0.38 78 48 0.0015 
LAI=3.0 LAI 1.5 2.54 73 35 0.043 
LAI=5.0 LAI 3 6.00 932 51 0.0683 

Table 13 LAI estimation accuracy for LAI=0.5, LAI=3.0 and LAI=5.0 by using 62 bands and 1 view direction 
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3.4 Inversion results 

LAI root mean square error (RMSELAI) and relative percentage error (RPELAI) trend is reported in 

Table 14, Table 15, and Table 16 for alfalfa, corn and potato, respectively. 

Alfalfa   Directional   
    1 3 5 Angles 

4 24.5% 23.1% 18.5%   
16 25.6% 25.7% 21.1%   

Sp
ec

tr
al

 

62 24.4% 25.3% 18.8%   
  Bands       RPELAI 

    Directional   
    1 3 5 Angles 

4 0.71 0.49 0.44   
16 0.82 0.61 0.49   

Sp
ec

tr
al

 

62 0.76 0.59 0.41   
  Bands       RMSELAI

Table 14 LAI root mean square error (RMSELAI) and relative percentage error (RPELAI) trend for alfalfa 
 

Corn    Directional   
    1 3 5 Angles 

4 38.4% 32.9% 30.6%   
16 41.1% 14.1% 14.0%   

Sp
ec

tr
al

 

62 31.4% 13.1% 12.9%   
  Bands       RPELAI 

    Directional   
    1 3 5 Angles 

4 1.42 1.31 1.25   
16 1.57 0.54 0.58   

Sp
ec

tr
al

 

62 0.76 0.59 0.41   
  Bands       RMSELAI

Table 15 LAI root mean square error (RMSELAI) and relative percentage error (RPELAI) trend for corn 
 

Potato    Directional   
    1 3 5 Angles 

4 59.8% 59.3% 58.3%   
16 64.3% 61.5% 57.5%   

Sp
ec

tr
al

 

62 64.5% 62.9% 55.3%   
  Bands       RPELAI 

    Directional   
    1 3 5 Angles 

4 3.21 3.18 3.14   
16 3.45 3.29 3.10   

Sp
ec

tr
al

 

62 3.46 3.37 2.98   
  Bands       RMSELAI

Table 16 LAI root mean square error (RMSELAI) and relative percentage error (RPELAI) trend for potato 

 
Going from left to right, in each table the RMSELAI and RPELAI values were shown corresponding 

to one angle (“A3”), three angles  (“A1”,“A3”, “A5”) and five angles (“A1”,“A2”, “A3”, “A4” 

and “A5”).  
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From up to down the values corresponding to 4 (LANDSAT-TM5 configuration), 16 (542, 563, 

583, 605, 664, 674, 694, 706, 718, 731, 745, 758, 773, 780, 831 and 889 nm) and 62 (full CHRIS 

data set) spectral bands are demonstrated.   

 

In case of alfalfa and even more of corn, the LAI estimation accuracy improves for each fixed 

spectral configuration by adding directional information. However, for each fixed directional 

configuration, the addition of spectral information does not improve LAI estimation accuracy for 

alfalfa. Whereas, in case of corn there is a remarkable increase in estimation accuracy going from 

4 to 16 spectral bands, but less evident going from 16 to 62 spectral bands. Considering these 

results, the contribution of directional information seems to be more marked for the estimation 

performance of LAI than the spectral content. 

 

Concerning the LAI accuracy analysis of potato crops, results indicate the impossibility to achieve 

reasonable values by using model inversion. Looking at field book notes and photos, reasons may 

be related to the agronomic practices of growing potato: during the satellite overpass the potato 

field revealed deep grooves, partly filled with water. Perhaps additional restrictions on the soil 

reflectance should be considered in the model inversion parameterization. From these results and 

considerations, a further model analysis was carried out to take into account the effect of the soil 

background. According to CHRIS/PROBA geometric configuration and the results achieved for 

potato, two different spectra were simulated by using first as model input a LAI value as estimated 

from model inversion for the potato fields (mean LAI = 3.1) and then a LAI value as expected 

from field measurements (mean LAI = 5.3). The effect of the soil influence was simulated, first by 

using a standard spectrum (in this case LAI = 3) and second a dark soil spectrum with a LAI value 

of 5. 

In Figure  23 an example of the forward modelling results is demonstrated. As observed by several 

studies for other parameter combinations (see LAI and ALA), a counterbalancing effect of model 

parameters on the spectral and directional data was also found here between the LAI and the soil 

brightness. 
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Figure  23 Different for standard and very wet soil. N=1.5; Chla+b=40; Cw=0.02; Cm0.004 ALA=40 
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3.5 Validation of model inversion results by using Genetic Algorithms 

As discussed in the first part of this work, there are several kinds of optimization routines that can 

be exploited to numerically invert a canopy reflectance model. The results achieved might be 

variable depending on the optimization methodology and the inversion parameterization. With the 

aim to validate the results obtained by using a L-M optimization algorithm, a genetic algorithm 

was implemented to locate the minimum of the cost function. 

The experiment was carried out by exploiting the directional information (from 1 to 5 angles) as 

well as the spectral information: starting from the simplest configuration (4 bands) to the full 

spectra (62 bands), by adding at every step the same amount of bands in the visible part and 

infrared region.  

The results for alfalfa and corn (shown in Table 17) confirmed the predominant role of directional 

information compared to spectral information in the estimation of LAI.  

 

   Bands          
Angles 4 8 12 16 20 24 28 32 42 62  

1 0.81 0.83 0.88 0.91 0.91 0.94 0.92 0.93 0.95 0.95 
2 0.82 0.79 0.86 0.78 0.74 0.80 0.74 0.80 0.80 0.75 
3 0.73 0.74 0.75 0.76 0.76 0.79 0.76 0.78 0.78 0.76 
4 0.48 0.56 0.57 0.43 0.43 0.41 0.42 0.41 0.41 0.42 
5 0.48 0.45 0.44 0.43 0.42 0.42 0.41 0.42 0.39 0.39 

A
lfa

lfa
 

                      
1 0.74 0.94 1.09 1.14 1.22 1.17 1.11 1.20 1.18 1.26 
2 0.66 0.78 0.82 1.01 1.09 0.94 0.95 0.93 0.96 1.06 
3 0.42 0.46 0.47 0.52 0.57 0.50 0.51 0.55 0.53 0.48 
4 0.51 0.38 0.41 0.49 0.54 0.46 0.48 0.49 0.44 0.40 
5 0.49 0.38 0.42 0.49 0.53 0.43 0.45 0.48 0.45 0.40 

C
or

n 

                      

1 3.51 3.66 3.61 3.58 3.69 3.66 3.68 3.70 3.62 3.68 
2 3.52 3.63 3.64 3.65 3.72 3.70 3.71 3.72 3.66 3.64 
3 3.62 3.71 3.70 3.64 3.62 3.68 3.62 3.62 3.52 3.44 
4 3.55 3.63 3.62 3.58 3.55 3.58 3.57 3.58 3.45 3.37 
5 3.50 3.54 3.51 3.41 3.49 3.46 3.46 3.49 3.41 3.28 

Po
ta

to
 

Table 17 RMSE values obtained by using Genetic Algorithms 
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3.6 Operative prospect 

As shown in the previous chapter, the directional information content exploited in CR model 

inversion improves LAI estimation for two from three of the analyzed crops. Thus, LAI estimation 

from multiangular data by means of model inversion seems to perform reliable. Furthermore, it 

essentially does not require any ground information to be calibrated as for empirical approaches. 

On the other hand, there are limitations due to the directional sampling required for the 

determination of the ill-posed problem, for the model inversion parameterization and for 

optimizing computational time. Moreover, although CHRIS/PROBA mission has been operating 

much longer than foreseen, prospecting economical feasibility, nowadays, E.O. data at spatial 

scale and directional sampling as provided by this unique sensor are not available for on-request 

acquisition and commercial distribution.   

Therefore, for this study the use of a simple vegetation index as an alternative approach to model 

inversion is also considered, giving an operative prospective for LAI estimation from E.O. data. 

In this section the CLAIR model approach is applied and a comparison with CR model inversion 

is presented.  

3.7 Effect of view angle on WDVI and CLAIR model 

Near nadir satellite acquisitions are often requested to minimize the effect of solar angle and view 

position on directional reflectance due to non-Lambertian properties of natural surfaces (Osborne 

et al., 2002; Otterman et al., 1995; Serrano et al.,2000).  

The effect and the persistence of reflectance anisotropy on vegetation indices based on band ratios 

were demonstrated by some authors using model simulation and ground radiometric measurements 

(see e.g. Woolley, 1971; Pinter et al., 1987; Rahman et al., 1999; Giardino, 2001).  

For our case study this effect was evaluated considering the geometry observation first in the 

Principal Plane (PP) and then in the Orthogonal Plane (OP). The PP occurs when the azimuth 

angle between sensor and sun is equal to 0° and 180°. The OP is the plane orthogonal plane to the 

PP one.  

The WDVI was computed by using model simulated reflectance for these two configurations as a 

function of view zenith angles ranging from 0° (nadir position) to 60°.  

A relative variation of 16% on the WDVI was found in the PP (considering the hot-spot position - 

when phi = 0° - and the dark-spot position - when phi = 180° -, where phi is the difference 

between Sun and View azimuth Angles, SAA and VAA, respectively). A relative variation of 4% 

was observed in the OP (phi = 90°).  
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Figure  24 Anisotropy of WDVI calculated from PSH model simulations, as a function of viewing zenith angle 
and three azimuth angle configurations (phi=0°, phi=90°, phi=180°, where phi is the difference between Sun 
and View azimuth Angles) (Sun zenith is 20°). 

 
 

 
 

Figure  25 Schematic representation of the acquisitions and observation geometry with azimuth and zenith 
coordinates in degrees. Definition of the principal and orthogonal planes.  

 
Considering CHRIS/PROBA geometric configuration, the difference on the WDVI for the closest 

to nadir acquisition (“A3”, VZA=27.6°, phi= 137.2°) in respect to the WDVI calculated from 

nadir observation is about 2%. An error function was then computed for the CLAIR model, taking 

into account a variation of 20% on WDVI.  
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Figure  26 Sensitivity of CLAIR model to error on LAI estimation due to percentage variations on WDVI 

 

3.8 CLAIR model results 

The calibration and validation of the CLAIR model was carried out using two independent data 

sets of LAI measurements collected during the campaign. The broad red and infrared bands of the 

view angle closest to nadir (“A3”) were considered (while broad red was integrated from band 21 

to 28 and the infrared from band 39 to 54).  The value of soil-line slope coefficient was calculated 

resulting in a value of 1.07 (ρsi/ρsr), with α* = 0.4 and WDVI∞ = 6800. 
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Figure  27 Soil-line characteristics for Barrax site - 2003 
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LAI estimation accuracy              
CLAIR model 

  CROP RMSELAI RPELAI 

  Alfalfa 0.68 35.3% 
  Corn  0.45 9.0% 
  Potato 0.67 12.1% 

 
Table 18 LAI estimation accuracy by using CLAIR model. For each of the experiments, the LAI accuracy is 
evaluated in terms of root mean square error (RMSELAI) and relative percentage error (RPELAI). 
 
Comparing the two approaches for alfalfa, using similar spectral and directional information, the 

RMSELAI values are close to each other: 0.68 (CLAIR, 1 angle, 2 bands) and 0.71 (PSH, 1 angle, 4 

bands). With the best angular and spectral sampling (5 and 62 respectively), the physical approach 

improves the accuracy slightly less than 25%. As for corn, with similar information contents, the 

CLAIR model performs better than the PSH inversion: 0.45 (CLAIR, 1 angle, 2 bands) and 1.42 

(PSH, 1 angle, 4 bands). Only by using 5 angles and 62 bands, model inversion provides 

comparable results to the empirical approach. For potato, in all cases the vegetation index 

approach performs better than the inversion of the PSH model.  

 

Figure  28 LAI map obtained from LandsatTM-5 data by means of the CLAIR model - 15/July/2003 
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Figure  29 LAI map obtained from CHRIS/PROBA “A3” data by means of the CLAIR model – 14/July/2003 

 

 

Figure 30 The image shows the differences between LAI map obtained from LANDSAT and from 
CHRIS/PROBA. Areas that present a difference greater than 10% are displayed in green, whereas areas 
colored in red describe the areas with a difference less than 10%. The black the zones present equal 
distribution of LAI estimation.   
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Chapter 4 

 

4 Conclusions 

This work aimed to demonstrate processing and modelling techniques to assess the strengths and 

limitations of vegetation parameters retrieval from Earth Observation data, in particular from 

innovative experimental satellites.  

In this context, the CHRIS/PROBA technology demonstration mission and the ESA SPARC 

campaign offered the scientific community the unique opportunity to exploit high spatial and 

spectral multiangular imagery from space.  

The main objective of this study was to assess the importance of directional information sampled 

from space on the LAI estimation accuracy. The high dimensionality of this kind of data, with a 

complete exploitation of the spectral and directional domains of the canopy radiometric 

measurements, allowed us to validate the inversion of complex physical based models. 

 

The effectiveness of the combined use of PROSPECT and SAILH models (PSH model) to 

simulate canopy BRDF with an acceptable accuracy could be demonstrated. In particular the 

importance of the soil reflectance component on the overall spectral reflectance could be shown. 

Thus, the use of a soil reflectance map of the area under investigation as well as the removal of the 

Lambertian surface hypothesis for the soil reflectance could lead to a more accurate BRDF 

modelling for sparse canopies. However, the goodness of the results obtained, at least for the crops 

under investigation, encouraged the use of these models in the inverse mode in order to retrieve 

vegetation parameters. 

 

By using different optimization algorithms, the invertibility of the PSH model was proven by 

using noise-free synthetic-generated data. LAI estimates were reasonably accurate (RPELAI=10%). 

ALA was more accurately estimated with a mean percentage error of 2.2%. Effects of random 

Gaussian noise in synthetic data were also tested and parameters estimation remained accurate. 
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Results from model inversion by using satellite data showed that the directional information 

content improves LAI estimation for two of three of analyzed crops. In the best case (corn) a LAI 

RMSE of 0.41 was achieved by using 5 angles and 62 spectral bands with an improvement of 

almost 65% respect to 1 angle and 16 bands.   

It seems also that the directional is predominant on the spectral information, suggesting the design 

of space-borne instruments in the future with better capabilities to sample the surface reflectance 

anisotropy.         

 

A comparison analysis between the inversions of the physical-based model vs. an empirical 

approach was carried out. From an operational point of view, results obtained by inverting PSH 

model and exploiting the full CHRIS data are better or comparable to the ones from the empirical 

approach. On the one hand, the inversion process results highly demanding in terms of 

computational time and parameterization complexity, on the other hand it does not require any 

field measurements to be calibrated as the empirical approaches. 

 
Conclusively, this work gives an operative perspective of current possibilities from single-view 

satellite data and how technical progress contributes to improve accuracies of parameter 

estimation, in particular for LAI retrieval.  
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