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There are very few human beings who receive the truth,

complete and staggering, by istant illumination.

Most of them acquire it fragment by fragment, on a small scale,

by successive developments, cellularly, like a laborious mosaic.

Anais Nin; 1903-1977
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Abstract

Obtaining information from measured data is a general problem which is encountered

in numerous applications and fields of science.

A goal of many data analysis methods is to transform the observed data into a represen-

tation which reveals the information contained in the data. Methods for obtaining such

representations include principal component analysis, projection pursuit, and neural

unsupervised learning methods.

In the last years, a great interest in the field of signal processing and of neural networks

has been turned to the Independent Component Analysis (ICA). The main reason is

because this method permits to obtain the separation of independent signals from mix-

ture of them.

The ICA model based on Neural Networks (NNs) has been applied with good results to

the Blind Source Separation (BSS). ICA is a statistical and computational technique

for revealing hidden factors that underlie sets of random variables, measurements or

signals. A more difficult problem in ICA is encountered if the number of the mixtures

xi is smaller than the number of independent components si. This means that the

mixing system is not invertible: we cannot obtain the independent components (ICs)

by simply inverting the mixing matrix A. Therefore, even if we knew the mixing matrix

exactly, we could not recover the exact values of the independent components. This is

because information is lost in the mixing process.

The situation is often called ICA with overcomplete bases and we have to note that

basic ICA methods cannot be used as such. In this situation, we have two different

problems. First, how to estimate the mixing matrix, and second, how to estimate the

realizations of the independent components. This is in stark contrast to the ordinary

ICA, where these two problems are solved at the same time.

When the basis is overcomplete, the formulation of the likelihood is difficult, since the

problem belongs to the class of missing data problems. Methods based on maximum

likelihood estimation are therefore computationally rather inefficient. To obtain com-

putationally efficient algorithms, strong approximations are necessary.

Our work focuses its attention on the problem of separating sources signals from a

single observed mixture, exploiting new ideas for the solution of this problem.

We must note that this is a very important issue, because in practice this is the more
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common situation to present: we have one sensors and multiple source that have been

registered by that. We want to extract from the observation of the sensor each single

source, separating them one from another.

At the moment, the literature on this topic is not so much and the technique proposed

to accomplish this problem make a large use of a priori knowledge about the searched

source or about the mixing process. This is clearly, not so good, because we lost one of

the important feature of ICA system: blindness. We don’t know anything about the

sources or the mixing process. We only have the observations vector and from this we

need to extract all the information needed.

In this work, we propose an interesting integration about two “field”: dynamic system

theory and non linear principal component analysis.

The first theory gives us the possibility to exploit the data vector, underlining the

structure and the feature that are shift invariant. While the second theory gives us the

separation algorithm.

At the hearth of this work there is the study and the realization of an algorithm ca-

pable to integrate this two theory for obtaining good separations also in the case of a

single mixture. We show how it is possible to construct a NN architecture that has

the structure of a non linear PCA NN, but where the parameters of the net are chosen

from the dynamic system theory. This permits to analyze a single mixture as it would

be a series of more mixtures shifted in time.

We give also some detail about the problem of ICA on a single mixture and why this

is solvable by a Neural Network composed in this way.

At the end of this work, we present two important field of application of the proposed

method: in astrophysics and in music. In the first case, we apply the method to data

coming from Virgo Interferometer. This is an Italian-French experiment about the

detection of gravitational waves.

We use the proposed method for the detection of gravitational wave signal in the out-

put signal producted from the interferometric antenna. This is a challenge problem,

because we are talking of a colored noise environment of really small amplitude and of

signal with an very limited amplitude and relatively short in time.

From the application of the proposed method to some simulation, we got very good

results obtaining the recognition of the signal at very low signal to noise ratio. Com-

vi



paring that with the technique used for doing that, the matched filter, we can say to

obtain good result in Signal to Noise Ratio terms, with an important feature that is

the complete blindness of the source signal. We stress that the matched filter technique

needs a template of the target signal and who can assure that we are supposing the

right formulation for it?

Another important application field of the proposed method is in music signal analy-

sis.

We found that, with the proposed method we can separate the harmonic from the

sound of a single note for many musical instruments. Then, we also found that it is

possible to separate from mixture of different music instruments, the single source in

the case of single note, but also in the case of harmony.

We make several simulation for that field of application getting really good results of

correlations between the original source and the extracted components.

In the next chapter we will give an overview of the problem and a specific view about

the proposed method.

In particular, in chapter 1 we will give an introduction to the problem of independent

component analysis from a statistical point of view and exploring the affinity of this

technique with other similar.

In chapter 2, we will describe the principal algorithms used to accomplish classical

independent component analysis; we divide this chapter in two part the first explain

the contrast function used and the second explain the optimization technique used for

each contrast function in order to get the algorithm for ICA.

In chapter 3, we will focus our attention to the case of single mixture independent

component analysis, exploring the problem, its innate difficulty and the algorithm pro-

posed in literature for accomplish this problem.

In chapter 4, we will describe the theory of dynamical systems and chaos. We explore

the theory and the method to analyze time series and getting information regarding

embedding dimension. We present also a method of separation based on the projection

of the mixture in the phase space and then applying standard ICA algorithms. We

present this method as a way of comparison for the ability of the proposed method.

In chapter 5, we will describe the Non Linear PCA network and the integration of this

with the embedding dimension. We give some detail about the NN and we formulate
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the new algorithm. We give also some theoretical explanation to the way of working

of the new NN.

In chapter 6, we will present the application to the Virgo Interferometer data.

Finally in chapter 7, we will present the application to music mixture.
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Chapter 1

Introduction to Independent

Component Analysis

In this chapter, we give a general introduction to Independent Component

Analysis (ICA). The features of the ICA method are shown from a statistical

point of view. In the first part of the chapter we focus our attention to a

general description of ICA model. Then we show the relation between ICA

and classical statistical methods. At the end, we show an ICA application

to solve the Blind Source Separation problem.

1.1 Introduction

Obtaining information from measured data is a general problem which is encountered

in numerous applications and fields of science. A goal of many data analysis methods

is to transform the observed data into a representation which reveals the information

contained in the data. Methods for obtaining such representations include principal

component analysis, projection pursuit, and neural unsupervised learning methods.

In the last years, a great interest in the field of signal processing and of neural networks

has been turned to the Independent Component Analysis (ICA). The main reason is

because this method permits to obtain the separation of independent signals from mix-

ture of them.

The ICA model based on Neural Networks (NNs) has been applied with good results to

the Blind Source Separation (BSS). ICA is a statistical and computational technique
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1 Introduction to ICA

for revealing hidden factors that underlie sets of random variables, measurements or

signals.

In the model, the data variables are assumed to be linear or non-linear mixtures of some

unknown latent variables and the mixing system is also unknown. The latent variable

are assumed non-Gaussian and mutually independent and they are called independent

components of the observed data. ICA can be seen as an extension of Principal Com-

ponent Analysis (PCA) and of Factor Analysis (FA) [38, 41].

ICA is a much more powerful technique, however, capable of finding the underlying

factors or sources when these classic methods fail completely. The data analyzed by

ICA could originate from many different kinds of application fields, including digital

images and document databases, as well as economic indicators and psychometric mea-

surements.

The technique of ICA was first time introduced in the early 1980s in the context of the

NNs modeling. In mid-1990s, some highly successful algorithms were introduced by

several research groups, together with impressive demonstration on problems like the

cocktail-party effect, where the individual speech waveforms are found from their mix-

ture. ICA became one of the exciting new topics, both in the field of NNs, especially

unsupervised learning and, more generally, in advanced statistics and signal processing

[38, 41].

1.2 The Statistical Setting

A long-standing problem in statistics and related areas is how to find a suitable rep-

resentation of multivariate data, which means transform the data so that is essential

structure is made more visible or accessible. In neural computation, this fundamental

problem belongs to the area of unsupervised learning, since the representation must be

learned from the data itself without any external input from a supervising "‘teacher"’.

A good representation is also a central goal of many techniques in data mining and

exploratory data analysis. In signal processing, the same problem can be found in

feature extraction and also in the source separation. To explain the last case, let us

assume that the data consists of a number of variables that we have observed together.

Let us denote the number of variables by m and the number of observations by T.
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1 Introduction to ICA

We can then denote the data by xi(t), where the indices take the values i=1,...,m and

t=1,...,T. The dimension m and T can be very large. A very general formulation of

the problem can be stated as follows: what could be a function from a m-dimensional

space to an n-dimensional space such that the transformed variables give information

on the data that is otherwise hidden in the large data set. That is, the transformed

variables should be the underlying factors or components that describe the essential

structure of the data. It is hoped that these components correspond to some physical

causes that were involved in the process that generated the data in the first place.

Let us denote by x an m-dimensional random variable; the problem is then to find a

function f so that the n-dimensional transform y (t) = (y1 (t) , ..., yn (t)) denoted by

y (t) = f (x (t)) (1.1)

has some desirable properties.

In most cases, we consider linear functions only, because in this case the interpreta-

tion of the representation is simpler and so is its computation. Thus, every component,

say yi, is expressed as a linear combination of the observed variables:

yi (t) =
∑

j

wijxj (t) (1.2)

for i = 1,..,n, j = 1,...,m, and where the wij are some coefficients that define the

representation. The problem can then be rephrased as the problem of determining

the coefficients wij. Using linear algebra, we can express the linear transformation in

equation 1.2 as a matrix multiplication. Collecting the coefficients wij in a matrix W,

the equation becomes

y = Wx (1.3)

where y = [y1 (t) , ..., yn (t)]′ and x = [x1 (t) , ..., xm (t)]′. A basic statistical approach

consists of considering the xi (t) as a set of T realizations of m random variables. Thus

each xi (t), t=1,...,T is a sample of one random variable; let us denote the random

variable by xi. In this framework, we could determine the matrix W by the statistical

properties of the transformed components yi.
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1 Introduction to ICA

1.3 Dimension Reduction Methods and Independence

One statistical principle for choosing the matrix W is to limit the number of com-

ponents yi to be quite small and to determine W so that the yi contain as much

information on the data as possible. This leads to a family of techniques as Principal

Component Analysis (PCA) and Factor Analysis (FA) [46, 29].

Another principle that has been used for determining W is independence: the com-

ponents yi should be statistically independent. This means that the value of any one

of the components gives no information on the values of the other components. In

fact, in FA it is often claimed that the factors are independent, but this is only partly

true, because FA assumes that the data has a Gaussian distribution. If the data is

Gaussian, it is simple to find components that are independent, because for Gaussian

data, uncorrelated components are always independent. However, the data often does

not follow a Gaussian distribution and the situation is not as simple as those methods

assume.

This is the starting point of ICA: we want to find statistically independent components,

in the general case where the data is non-Gaussian.

1.3.1 Second Order Methods

The most popular methods for finding a linear transform as in equation 1.3 are second-

order methods. This means methods that find the representation using only the in-

formation contained in the covariance matrix of the data vector x. Of course, the

mean is also used in the initial centering. The use of second-order techniques is to be

understood in the context of the classical assumption of Gaussianity. The two classical

second-order methods are PCA and FA [46, 29]. One might roughly characterize the

second-order methods by saying that their purpose is to find a faithful representation

of the data, in the sense of reconstruction (mean-square) error.

1.3.2 Higher-Order Methods

Higher-order methods use information on the distribution of x that is not contained in

the covariance matrix. In order for this to be meaningful, the distribution of x must

not be assumed to be Gaussian, because all the information of (zero mean) Gaussian
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1 Introduction to ICA

variables is contained in the covariance matrix.

For more general families of density functions, however, the representation problem

has more degrees of freedom. Thus much more sophisticated techniques may be con-

structed for non Gaussian random variables. Indeed, the transform defined by second-

order methods like PCA is not useful for many purposes where optimal reduction of

dimension in the mean-square sense is not needed. This is because PCA neglects such

aspects of non-Gaussian data as clustering and independence of the components (which,

for non-Gaussian data, is not the same as uncorrelatedness). We shall review in the

next sections three conventional methods based on higher-order statistics: projection

pursuit, redundancy reduction and blind deconvolution.

1.4 Independent Component Analysis

Before to introduce the ICA method, we shall recall some basic definitions. Denote

by y1,y2,...,ym some random variables with joint density f(y1,y2,...,ym). For simplicity,

assume that the variable are zero mean. The variables yi are (mutually) independent,

if the density function can be factorized:

f(y1,y2,...,ym) = f(y1)f(y2)...f(ym) (1.4)

where f(yi) denotes the marginal density of yi. To distinguish this form of independence

from other concepts of independence, for example linear independence, this property is

sometimes called statistical independence. Independence must be distinguished from

uncorrelatedness, which means that:

E {yiyj} − E {yi}E {yj} = 0 ∀ i 6= j (1.5)

Independence is in general a much stronger requirement than uncorrelatedness. Indeed,

if the yi are independent, one has

E {g1 (yi) g2 (yj)} − E {g1 (yi)}E {g2 (yj)} = 0 ∀ i 6= j (1.6)

for any measurable function g1 e g2 [61]. This is clearly a more constrained condition

than that of uncorrelatedness. There is, however, an important special case where

independence and uncorrelatedness are equivalent. This is the case when y1,y2,...,ym
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have a joint Gaussian distribution. Due to this property, ICA is not interesting (or

possible) for Gaussian variables.

Now we shall define the problem of ICA. We shall only consider the linear case here,

though non linear form of ICA also exist. In the literature, at least three different

basic definitions for linear ICA can be found [38, 41], though the differences between

the definitions are usually not emphasized. This is probably due to the fact that ICA is

such a new research topic: most research has concentrated on the simplest one of these

definitions. In the definitions, the observed m-dimensional random vector is denoted

by x = (x1, ..., xm)T .

The first and most general definition is as follows:

Definition 1.4.1 (General definition) ICA of the random vector x consists of finding

a linear transform s = Wx so that the components si are as independent as possible,

in the sense of maximizing some function F(s1, ..., sm) that measures independence.

This definition is the most general in the sense that no assumptions on the data

are made, which is in contrast to the definitions below. Of course, this definition is

also quite vague as one must also define a measure of independence for the si. One

cannot use the definition of independence as in equation 1.4, because it is not possible,

in general, to find a linear transformation that gives strictly independent components.

The problem of defining a measure of independence will be treated in the next section.

A different approach is taken by the following more estimation theoretically oriented

definition:

Definition 1.4.2 (Noisy ICA model) ICA of a random vector x consists of estimating

the following generative model for the data:

x = As + n (1.7)

where the latent variables (components) si in the vector s = (s1, ..., sn)T are assumed

independent. The matrix A is a constant m × n “mixing” matrix, and n is a m-

dimensional random noise vector.

This definition reduces the ICA problem to ordinary estimation of a latent variable

model. However, this estimation problem is not very simple and therefore the great

majority of ICA research has concentrated on the following simplified definition:
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Definition 1.4.3 (Noise-free ICA model) ICA of a random vector x consists of esti-

mating the following generative model for the data:

x = As (1.8)

where s and A are defined as in the previous definition.

Here the noise vector has been omitted. This is also the model introduced by Jut-

ten and Hérault in their seminal paper [48], which was probably the earliest explicit

formulation of ICA. Here, we shall concentrate on this noise - free ICA model defini-

tion. This choice can be partially justified by the fact that most of the research on

ICA has also concentrated on this simple definition. Even the estimation of the noise

- free model has proved to be a task difficult enough. The noise - free model may

be thus considered a tractable approximation of the more realistic noisy model. The

justification for this approximation is that methods using the simpler model seem to

work for certain kinds of real data. It can be shown [26], in fact, that if the data does

follow the generative model in equation 1.8, we have that the models described by 1.8

and 1.7 and the equation 1.6 become asymptotically equivalent, if certain measures of

independence are used in Definition 1.4.1., and the natural relation W = A−1 is used

with n = m. In the figures 1.1, 1.2, 1.3, we show an illustration of ICA application

on data sets characterized by different distributions. In figure 1.1, we show the case of

superGaussian data, in figure 1.2 we show the case of subGaussian (uniform) data and

in figure 1.3 we show the case of data with different distribution.

Figure 1.1: Scatter plot of 2 linearly mixed superGaussian data set (left), ICA applied

to the data set (right).
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Figure 1.2: Scatter plot of 2 linearly mixed subGaussian (uniform) data set (left), ICA

applied to the data set (right).

Figure 1.3: Scatter plot of 2 linearly mixed data set with different distribution (left),

ICA applied to the data set (right).
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1.4.1 Identifiability of the ICA Model

The identifiability of the noise - free ICA model has been treated in [26]. By imposing

the following fundamental constraints (in addition to the basic assumption of statistical

independence), the identifiability of the model can be assured:

1. All the independent components si, with the possible exception of one component,

must be non-Gaussian;

2. The number of the observed linear mixtures m must be at least as large as the

number of the independent components n;

3. The matrix A must be of full column rank.

Usually, it is also assumed that x and s are centered, which is equivalently in practice,

to do not have restriction, as this can always be accomplished by subtracting the mean

from the random vector. If x and s are interpreted as stochastic processes instead of

simply random variables, additional restrictions are necessary. At the minimum, one

has to assume that the stochastic processes are stationary in the strict sense. Some

constraints of ergodicity with respect to the quantities estimated are also necessary

[61]. These assumptions are fulfilled, for example, if the process is i.i.d. over time.

After such assumptions, one can consider the stochastic process as random variable, as

we do here.

A basic, but rather insignificant indeterminacy in the model is that the independent

components and the columns of A can only be estimated up to a multiplicative con-

stant, because any constant multiplying an independent component in equation 1.8

could be canceled by dividing the corresponding column of the mixing matrix A by

the same constant. For mathematical convenience, one usually defines that the inde-

pendent components si have unit variance. This makes the independent components

unique, up to a multiplicative sign (which may be different for each component) [26].

The definitions of ICA given above imply no ordering of the independent components,

which is in contrast to, e.g. PCA. It is possible, however, to introduce an order be-

tween the independent components. One way is to use the norms of the columns of

the mixing matrix, which give the contributions of the independent components to the

variances of the xi. Ordering the si according to descending norm of the corresponding
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columns of A, for example, gives an ordering reminiscent of PCA. A second way, is

to use the non-Gaussianity of the independent components. Non-Gaussianity may be

measured, for example, using one of the projection pursuit indexes or other contrast

functions. Ordering the si according to non-Gaussianity gives an ordering related to

projection pursuit.

The first restriction (non-Gaussianity) in the list above, is necessary for the identifiabil-

ity of the ICA model [26]. Indeed, for Gaussian random variables mere uncorrelatedness

implies independence, and thus any decorrelating representation would give indepen-

dent components. Nevertheless, if more than one of the components si are Gaussian,

it is still possible to identify the non-Gaussian independent components, as well as the

corresponding columns of the mixing matrix.

On the other hand, the second restriction, m ≥ n, is not completely necessary. Even

in the case where m < n, the mixing matrix A seems to be identifiable [41] (though

no rigorous proofs exist to our knowledge), whereas the realizations of the independent

components are not identifiable, because of the non-invertibility of A. However, most

of the existing theory for ICA is not valid in this case, and therefore we have to make

the second assumption. Recent works on the case m ≥ n , often called ICA with over-

complete bases can be found in [38, 41].

Some rank restriction on the mixing matrix, like the third restriction given above, is

also necessary, though the form given here is probably not the weakest possible. As

regards the identifiability of the noisy ICA model, the same three restrictions seem

to guarantee partial identifiability, if the noise is assumed to be independent from the

components si [38, 41]. In fact, the noisy ICA model is a special case of the noise-free

ICA model with m ≥ n, because the noise variables could be considered as additional

independent components. In particular the mixing matrix A is still identifiable. In

contrast, the realizations of the independent components si can no longer be identified,

because they cannot be completely separated from noise. It would seem that the noise

covariance matrix is also identifiable [38, 41].

1.4.2 Ambiguities of ICA

In the ICA model it is easy to see that the following ambiguities will necessary hold:

1. We cannot determine the variances (energies) of the independent components
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2. We cannot determine the order of the independent components

For the first case the reason is that, both s and A being unknown, any scalar multiplier

in one of the sources si could always be canceled by dividing the corresponding column

ai of A by the same scalar, say αi:

x =
∑

i

(

1

αi

ai

)

(siαi) (1.9)

As a consequence, we may quite as well fix the magnitudes of the independent compo-

nents. Since they are random variables, the most natural way to do this is to assume

that each has unit variance: E {s2
i } = 1. Then the matrix A will be adapted in the

ICA solution methods to take into account this restriction. Note that this still leaves

the ambiguity of the sign: we could multiply an independent components by -1 without

effecting the model.

For the second case the reason is that, again both A and s are unknown, we can freely

change the order of the terms in equation 1.8, and call any of the independent compo-

nents the first one. Formally, a permutation matrix and its inverse can be substituted

in the model to give x = AP−1Ps. The element of Ps are the original independent

variables sj, but in another order. The matrix x = AP−1 is just a new unknown

mixing matrix, to be solved by the ICA algorithms. In other words, we have that the

separation matrix W is W = ΛP for some permutation matrix P and some diagonal

matrix Λ whose diagonal elements are ±1.

1.5 Beyond Classical ICA: Overcomplete Bases

A more difficult problem in ICA is encountered if the number of the mixtures xi is

smaller than the number of independent components si. This means that the mixing

system is not invertible: we cannot obtain the independent components (ICs) by simply

inverting the mixing matrix A. Therefore, even if we knew the mixing matrix exactly,

we could not recover the exact values of the independent components. This is because

information is lost in the mixing process.

The situation is often called ICA with overcomplete bases and we have to note that

basic ICA methods cannot be used as such. In this situation, we have two different

problems. First, how to estimate the mixing matrix, and second, how to estimate the
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realizations of the independent components. This is in stark contrast to the ordinary

ICA, where these two problems are solved at the same time.

When the basis is overcomplete, the formulation of the likelihood is difficult, since the

problem belongs to the class of missing data problems. Methods based on maximum

likelihood estimation are therefore computationally rather inefficient. To obtain com-

putationally efficient algorithms, strong approximations are necessary.

Our work focus its attention on the problem of separating sources signals from a single

observed mixture, exploiting new ideas for the solution of this problem.

1.6 Applications of ICA

The classical application of the ICA model is Blind Source Separation (BSS) [48]. We

will speak in more detail about BSS in the next section. Another application of ICA

is feature extraction [38, 41]. In this case the columns of A represent features and si

is the coefficient of the i-th feature in an observed data vector x. The use of ICA for

feature extraction is motivated by the theory of redundancy reduction.

A less direct application of the ICA methods can be found in blind deconvolution.

Due to the close connection between ICA and projection pursuit on the one hand and

between ICA and FA on the other, it should be possible to use ICA on many of the

applications where projection pursuit and FA are used. These include (exploratory)

data analysis in such areas as economics, psychology and other social sciences, as well

as density estimation and regression.

1.7 Blind Source Separation

A classical example of BSS is the “cocktail party” problem. Assume that several peo-

ple are speaking simultaneously in the same room. Then the problem is to separate

the voices of the different speakers, using recordings of several microphones in the room.

More formally, we suppose to have a situation where there are a number of signals

emitted by some physical objects or sources. Further, we assume that there are several

sensors or receivers. These sensors are in different positions, so that each one records
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Figure 1.4: Example of the Cocktail Party Problem.

a mixture of the original source signals with slightly different weights. For the sake of

simplicity of exposition, let us say there are three underlying source signals and also

three observed signals. Denote by x1(t), x2(t) and x3(t) the observed signals, and by

s1(t),s2(t) and s3(t) the original signals. The xi(t) are the weighted sums of the si(t),

where the coefficients depend on the distances between the sources and the sensors:

x1(t) = a11s1(t) + a12s2(t) + a13s3(t)

x2(t) = a21s1(t) + a22s2(t) + a23s3(t) (1.10)

x3(t) = a31s1(t) + a32s2(t) + a33s3(t)

The aij are constant coefficients that give the mixing weights. They are assumed

unknown, since we cannot know the values aij without knowing all properties of the

physical mixing system.

What we would like to do is to find the original signals from the mixtures x1(t), x2(t)

and x3(t). This is the Blind Source Separation problem. Blind means that we know

very little if anything about the original signals. We can safely assume that the mixing

coefficients aij are different enough to make the matrix invertible. Thus there exists a

matrix W with coefficients wij such that can separate the si(t) as

s1(t) = w11x1(t) + w12x2(t) + w13x3(t)

s2(t) = w21x1(t) + w22x2(t) + w23x3(t) (1.11)

s3(t) = w31x1(t) + w32x2(t) + w33x3(t)

Such matrix W could be found as the inverse of the matrix that consists of the mixing

coefficients in equation 1.11 if we knew those coefficients aij.
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1.7.1 Source Separation Based on Independence

The question, that arises, is: how can we estimate the coefficients wij in equation

1.11? We use very general statistical properties. A surprisingly simple solution to the

problem can be found by considering just the statistical independence of the signals.

In fact, if the signals are not Gaussian, it is enough to determine the coefficients wij

so that the signals

y1(t) = w11x1(t) + w12x2(t) + w13x3(t)

y2(t) = w21x1(t) + w22x2(t) + w23x3(t) (1.12)

y3(t) = w31x1(t) + w32x2(t) + w33x3(t)

are statistically independent. If the signal y1(t), y2(t) and y3(t) are independent, then

they are equal to the original signals s1(t), s2(t) and s3(t). More formally, we have that

y ≈ s = Wx (1.13)

Using just this information on the statistical independence, we can in fact estimate the

coefficient matrix W
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Figure 1.5: Example of source separation based on independence: mixed signals

for the signals in figure 1.5 that are the mixture of the signals in figure 1.6 . The

23



1 Introduction to ICA

0 100 200 300 400 500
−2

0

2

Time
A

m
pl

itu
de

0 100 200 300 400 500
−5

0

5

Time

A
m

pl
itu

de

0 100 200 300 400 500
−2

0

2

Time

A
m

pl
itu

de

0 100 200 300 400 500
−5

0

5

Time

A
m

pl
itu

de

Figure 1.6: Example of source separation based on independence: source signals.
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Figure 1.7: Example of source separation based on independence: separated signals
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1 Introduction to ICA

separated signals are shown in figure 1.7 . Formally, ICA consists of estimating both

the matrix A and the si(t), when we only observe xi(t).

Alternatively, we could define ICA as follows: find a linear transformation given by

a matrix W so that the random variables yi in equation 1.13 are as independent as

possible.

We note that after estimating A, its inverse gives W.

1.8 History of ICA

The technique of ICA was introduced in the early 1980s by J. Hérault, C. Jutten and

B. Ans [5, 28]. The problem first came up in 1982 in a neurophysiological setting.[48]

A related field was higher-order spectral analysis, on which the first international work-

shop was organized in 1989. In this workshop, early papers on ICA by J. F. Cardoso

and P. Comon [25] were given. Cardoso used algebraic methods, especially higher-order

cumulant tensors, which eventually led to the Jade algorithm [19].

The work of the scientists in the 1980s was extended by, among other, A. Cichocki and

R. Unbehauen, who first propose one of the presently most popular ICA algorithms

[21, 24]. The “non-linear PCA” approach was introduced by E. Oja and J. Karhunen

[50, 59]. ICA attained wider attention and growing interest after that A. J. Bell and

T. J. Sejnowski published their approach based on infomax principle [10, 9] in the mid-

90s. This algorithm was further refined by S. I. Amari and his co-workers using the

natural gradient [4] and its fundamental connections to maximum likelihood estima-

tion. In 2001, A. Hyvärinen, J. Karhunen, E. Oja presented the fixed-point algorithm

or FastICA algorithm [39, 41] which has contributed to the application to large scale

problems due to its computational efficiency.

A recent trend in BSS / ICA is to consider problems in the framework of matrix fac-

torization or more general signals decomposition with probabilistic generative and tree

structured graphical models and exploit a priori knowledge about true nature and

structure of latent (hidden) variables or sources. So in the last time we get a lot of

extensions of ICA such as Topographic ICA (2001)[36], Kernel ICA (2002)[7], Tree-

Dependent Component Analysis (2003)[8], Non-negative Matrix Factorization (1999)

[54], Multichannel Blind Deconvolution (2004) [72].
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Chapter 2

Algorithms on Independent

Component Analysis

In the previous chapter, we have shown the statistical properties of the ICA

method. In this chapter, we describe the principal objective function and

optimization algorithm for the ICA problem.

2.1 Introduction

The estimation of the data model of independent component analysis is usually per-

formed by formulating an objective function and then minimizing or maximizing it.

Often such a function is called a contrast function, but some authors reserve this term

for a certain class of objective functions [26]. Also the terms loss function or cost func-

tion are used. We shall here use the term contrast function rather loosely, meaning any

function whose optimization enables the estimation of the independent components.

Although many different source separation algorithms are available, their principles

can be summarized by the following four fundamental approaches:

• the most popular approach exploits as the cost function some measure of signals

statistical independence, non-Gaussianity or sparseness. When original sources

are assumed to be statistically independent without a temporal structure, the

higher - order statistics (HOS) are essential (implicitly or explicitly) to solve the

BSS problem. In such a case, the method does not allow more than one Gaussian
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2 ICA Algorithms

Figure 2.1: The principle of the source separation algorithms: four approaches.

sources;

• if sources have temporal structures, then each source has non-vanishing temporal

correlation and less restrictive conditions than statistical independence can be

used, namely, second - order statistics (SOS) are often sufficient to estimate

the mixing matrix and sources. Note that the SOS methods do not allow the

separation of sources with identical power spectra shapes or independent and

identically distributed (i.i.d.) sources;

• the third approach exploits non - stationarity (NS) properties and second order

statistics (SOS). Mainly, we are interested in the second order non - stationarity

in the sense that source variances vary in time. The non - stationarity was first

taken into account by [56]. However, these methods do not allow the separation

of sources with identical non - stationarity properties;

• the fourth approach exploits the various diversities (we mean different character-

istics or features of the signals), typically, time, frequency and/or time - frequency

diversities, or more generally, joint space-time-frequency (STF) diversity.
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2 ICA Algorithms

More sophisticated or advanced approaches use combinations or integration of some of

the above mentioned approaches, in order to separate or extract sources with various

statistical properties and to reduce the influence of noise and undesirable interferences.

2.2 Cost Functions and Optimization Algorithms

In this section, we want to focus our attention on the formulation of the ICA method.

We need to have a distinction between the formulation of the objective function and

the algorithm used to optimize it, this is because the choice of the objective function

is determinant for the statistical properties (e.g., consistency, asymptotic variance, ro-

bustness) of the method, while the optimization algorithm gives a characterization of

the algorithmic properties (e.g., convergence speed, memory requirements, numerical

stability) of the method.

In the case of explicitly formulated objective functions, one can use any of the classical

methods of optimization for optimizing the objective function, like (stochastic) gradi-

ent methods, Newton-like methods, etc. In some cases, however, the algorithm and the

estimation principle may be difficult to separate.

The statistical and algorithmic properties are independent in the sense that different

optimization methods can be used to optimize a single objective function and a single

optimization method may be used to optimize different objective functions.

Another important property in the algorithms for ICA estimation is how many inde-

pendent components we want to estimate. Depending on that, we have two kind of

contrast function:

• multi - unit contrast functions, in which we estimate all the independent compo-

nents, or the whole data model, at the same time. Using this contrasts functions,

we get a symmetric orthogonalization, this mean that the vector of the demixing

matrix are not estimated one by one, but they are estimated in parallel.

• one - unit contrast functions, in which we estimate an independent component

at time. In principle, we could find more independent components by running

the algorithm many times and using different initial points. This would not be

a reliable method of estimating many independent components, but using the
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property that the vector of the demixing matrix corresponding to different com-

ponents are orthogonal in the whitened space, we can orthogonalize the vectors

for avoiding the convergence to the same maxima. A simple way of orthogonal-

ization is deflationary orthogonalization using the Gram - Schmidt method.

2.3 Multi - Unit Contrast Functions

In this section, we will describe the multi unit contrast functions, so we will treat the

problem of estimating all the independent components at the same time.

2.3.1 Likelihood and Network Entropy

A very popular approach for estimating the ICA model is maximum likelihood (ML)

estimation. ML estimation is a fundamental method of statistical estimation and we

can give an interpretation of ML estimation in ICA as taking those parameter values

as estimates that gives the highest probability for the observations. It is possible to

formulate the likelihood in the noise - free ICA model 1.8, which was done in [63],and

then estimate the model by a maximum likelihood method.

Assuming that W≈ A−1 is the unmixing matrix then, we can write:

x = As and y=Wx.

Following a basic property of linear transformed random vectors:

fx(x) =
∣

∣det(A−1)
∣

∣ fs(s) (2.1)

Assuming that f y(y) ≈ f s(s) and statistical independence between the estimated sources

u, we can write:

fx(x) = |det(W)| fy(y) = |det(W)|
N
∏

i=1

fi(yi) (2.2)

Let W = [w1,...,wN ]T . Therefore we can write:

fx(x) = |det(W)|
N
∏

i=1

fi(w
T
i x) (2.3)
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Assume that we have T observations of x. Then the likelihood can be obtained as the

product of this density evaluated at the T points. This is denoted by L and considered

as a function of W:

L(W) =
T

∏

t=1

N
∏

i=1

fi(w
T
i x(t)) |det(W)| (2.4)

Very often for practice reason it is used the logarithm of the likelihood.The log-

likelihood takes the form [63]:

L =
T

∑

t=1

m
∑

i=1

logfi(w
T
i x (t)) + T ln |detW| (2.5)

where the fi are the density functions of the si (here assumed to be known) and

the x (t), t = 1, ..., T are the realizations of x.

Another related contrast function was derived from a neural network viewpoint in

[9]. This was based on maximizing the output entropy (or information flow) of a

neural network with non-linear outputs. Assume that x is the input to the neural

network whose outputs are of the form gi

(

wT
i x

)

, where the gi are some non-linear

scalar functions and the si are the weight vectors of the neurons. One then wants to

maximize the entropy of the outputs:

L2 = H
(

g1

(

wT
1 x

)

, ..., gm

(

wT
mx

))

(2.6)

If the gi are well chosen, this framework also enables the estimation of the ICA

model. Indeed, several authors [16, 62], proved the surprising result that the principle

of network entropy maximization , or “infomax”, is equivalent to maximum likelihood

estimation. This equivalence requires that the non-linearities gi used in the neural net-

work are chosen as the cumulative distribution functions corresponding to the densities

fi, i.e., g′i(.) = fi(.).

The advantage of the maximum likelihood approach is that under some regularity con-

ditions, it is asymptotically efficient; this is a well-known result in estimation theory.

However, there are also some drawbacks. First, this approach requires the knowledge

of the probability densities of the independent component. A second drawback is that

the maximum likelihood solution may be very sensitive to outliers, if the pdf’s of the

independent components have certain shapes ([33]), while robustness against outliers

is an important property for an estimator.
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2.3.2 Mutual Information and Kullback-Leibler Divergence

An important approach for ICA estimation, inspired by information theory, is mini-

mization of mutual information. The motivation of this approach is that we want to

have a general purpose measure of the dependence of the components of a random

vector. Using such measure, we could define ICA as a linear decomposition that min-

imizes that dependence measure. Such an approach can be developed using mutual

information, which is a well-motivated information theoretic measure of statistical de-

pendence.

One of the main utilities of mutual information is that it serves as a unifying frame-

work for many estimation principles, in particular ML estimation and maximization of

nongaussianity.

Using the concept of differential entropy [38], it is possible to define the mutual infor-

mation between m scalar random variables yi, i = 1, ...,m, as follows:

I(y1, y2, ..., ym) =
∑

i

H(yi) − H(y) (2.7)

where H denotes differential entropy. The mutual information is a natural measure

of the dependence between random variables. It is always non-negative and zero if and

only if the variables are statistically independent. Thus the mutual information takes

into account the whole dependence structure of the variables. Finding a transform

that minimizes the mutual information between the components si is a very natural

way of estimating the ICA model [26]. This approach gives at the same time a method

of performing ICA according to the general definition 1.4.1. We can note that by

properties of mutual information, we have for an invertible linear transformation y =

Wx:

I(y1, y2, ..., ym) =
∑

i

H(yi) − H(x) − log |detW| (2.8)

The use of mutual information can also be motivated using the Kullback-Leibler

divergence, defined for two probability densities f1 and f2 as

δ(f1, f2) =

∫

f1(y)log
f1(y)

f2(y)
dy (2.9)
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The Kullback-Leibler divergence can be considered as a kind of a distance between

the two probability densities, though it is not a real distance measure because it is

not symmetric. Now, if the yi in equation 2.7 were independent, their joint proba-

bility density could be factorized as in the definition of independence in equation 1.4.

Thus one might measure the independence of the yi as the Kullback-Leibler divergence

between the real density f(y) and the factorized density f̃(y) = f1(y1)f2(y2)...fm(ym),

where fi(.) are the marginal densities of the yi. In fact, this quantity equals the mutual

information of the yi.

The connection to the Kullback-Leibler divergence also shows the close connection

between minimizing mutual information and maximizing likelihood. In fact, the likeli-

hood can be represented as a Kullback-Leibler distance between the observed density

and the factorized density assumed in the model [17]. So both of these methods are

minimizing the Kullback-Leibler divergence between the observed density and a fac-

torized density; actually the two factorized densities are asymptotically equivalent, if

the density is accurately estimated as part of the ML estimation method.

The problem with mutual information is that it is difficult to estimate, because to

use the definition of entropy, one needs an estimate of the density. This problem has

severely restricted the use of mutual information in ICA estimation. Some authors

have used approximations of mutual information based on polynomial density expan-

sion [26, 4], which lead to the use of higher-order cumulants. The polynomial density

expansions are related to the Taylor expansion. They give an approximation of a prob-

ability density f(.) of a scalar random variable y using its higher-order cumulants. For

example, the first terms of the Edgeworth expansion give, for a scalar random variable

y of zero mean and unit variance:

f(ξ) ≈ ϕ(ξ)(1 + κ3(y)h3(ξ)/6 + κ4h4(ξ)/24 + ...) (2.10)

where ϕ is the density function of a standardized Gaussian random variable, the

κi(y) are the cumulants of the random variably y and hi(.) are certain polynomial

functions (Hermite polynomials).

Using such expansions, one obtains for example the following approximation for mutual

information
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I(y) ≈ C +
1

48

m
∑

i=1

[

4κ3(yi)
2 + κ4(yi)

2 + 7κ4(yi)
4 − 6κ3(yi)

2κ4(yi)
]

(2.11)

where C is constant; the yi are here constrained to be uncorrelated. A very similar

approximation was derived in [4] and also earlier in the context of projection pursuit

in [47].

Cumulant-based approximations such as the one in equation 2.11 simplify the use of

mutual information considerably. The approximation is valid, however, only when f(.)

is not far from the Gaussian density function, and may produce poor results when

this is not the case. More sophisticated approximations of mutual information can be

constructed by using the approximations of differential entropy that were introduce in

[35], based on the maximum entropy principle. In these approximations, the cumulants

are replaced by more general measures of nongaussianity.

2.3.3 Non-linear Cross-Correlations

Assume two random variables y1 and y2 and two functions f(y1) and g(y2), where at

least one is nonlinear. We can say that y1 and y2 are nonlinearly decorrelated, if

E {f(y1)g(y2)} = 0 (2.12)

Non-linear decorrelation can be a criterion for statistical independence. The variables

y1 and y2 are statistically independent if

E {f(y1)g(y2)} = E {f(y1)}E {g(y2)} = 0 (2.13)

for every continuous function f and g that are zero outside a finite interval. We can

also show that, in order to satisfy the independence criterion, the functions f and g

should be odd and y1 and y2 must have symmetrical probability density functions. In

this general framework, we need to address the following:

• how can we choose f and g to satisfy equation 2.13;

• how can we nonlinearly decorrelate the variable y1 and y2.
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Two attempts to address these questions was developed by Jutten and Hérault [48]

in their seminal paper, and by Cichocki and Unbehauen [24]. After that several au-

thors have used the principle of canceling non-linear cross-correlations to obtain the

independent components [48, 19, 24].

2.3.4 Higher-order Cumulant Tensors

A principle of ICA estimation that is less directly connected with the objective function

framework, is the eigenmatrix decomposition of higher-order cumulant tensors. Most

solutions use the fourth-order cumulant tensor, whose properties and relation to the

estimation of ICA have been studied extensively [14, 15, 18, 26].

The fourth-order cumulant tensor can be defined as the following linear operator T

from the space of m × m matrices to itself:

T (K)ij =
∑

k,l

cum(xi, xj, xk, xl)Kkl (2.14)

where the subscript ij means the (i,j )-th element of a matrix and K is a m × m

matrix. This is a linear operator and thus has m2 eigenvalues that correspond to eigen-

matrices. Solving for the eigenvectors of such eigenmatrices, the ICA model can be

estimated [14].

The advantage of this approach is that it requires no knowledge of the probability

densities of the independent components. Moreover, cumulants can be used to ap-

proximate mutual information [26, 4], as shown above, though the approximation is

often very crude. The main drawback of this approach seems to be that the statistical

properties of estimators based in cumulants are not very good.

2.4 One-Unit Contrast Functions

We use the expression one unit contrast function to designate any function whose

optimization enables estimation of a single independent component. Thus, instead of

estimating the whole ICA model, we try to find here simply one vector, say w, so

that the linear combination wTx equals one of the independent components si. This

procedure can be iterated to find several independent components. The use of one-unit

34



2 ICA Algorithms

contrast functions can be motivated by the following:

• the one-unit approach shows a direct connection to projection pursuit. Indeed, all

the one-unit contrast functions discussed below can be considered as measure of

non-Gaussianity and therefore this approach gives a unifying framework for these

two techniques. The same contrast functions and algorithms can be interpreted

in two different ways.

• In many applications, one does not need to estimate all the independent com-

ponents. Finding only some of them is enough. In the ideal case where the

one-unit contrast functions are optimized globally, the independent components

are obtained in order of (descending) non-Gaussianity. In the light of the basic

principles of projection pursuit, this means that the most interesting independent

components are obtained first. This reduces the computational complexity of the

method considerably, if the input data has a high dimension.

• Prior knowledge of the number of independent components is not needed, since

the independent components can be estimated one-by-one.

• This approach also shows clearly the connection to neural networks. One can

construct a neural network whose units learn so that every neuron optimizes

its own contrast function. Thus the approach tends to lead to computationally

simple solutions.

After estimating one independent component, one can use simple decorrelation to

find a different independent component, since the independent components are by def-

inition uncorrelated. Thus, maximizing the one-unit contrast function under the con-

straint of decorrelation (with respect to the independent components already found), a

new independent component can be found, and this procedure can be iterated to find

all the independent components. Symmetric (parallel) decorrelation can also be used

[39, 52].

2.4.1 Negentropy

A most natural information-theoretic one-unit contrast function is negentropy. From

equation 2.7, one is tempted to conclude that the independent components correspond
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to directions in which the differential entropy of wTx is minimized. This turns out to

be roughly the case. However, a modification has to be made, since differential entropy

is not invariant for scale transformations. To obtain a linearly (and in fact affinely)

invariant version of entropy, one defines the negentropy J as follows:

J(y) = H(ygauss) − H(y) (2.15)

where ygauss is a Gaussian random vector of the same covariance matrix as y.

Negentropy, or negative normalized entropy, is always non-negative, and is zero if and

only if y has a Gaussian distribution [26].

The usefulness of this definition can be seen when mutual information is expressed

using negentropy, giving

I(y1, y2, ..., yn) = J(y) −
∑

i

J(yi) +
1

2
log

∏

Cy
ii

detCy (2.16)

where Cy is the covariance matrix of y, and the Cy
ii are its diagonal elements. If

the yi are uncorrelated, the third term is 0, and we thus obtain

I(y1, y2, ..., yn) = J(y) −
∑

i

J(yi) (2.17)

Because negentropy is invariant for linear transformations [26], it is now obvious

that finding maximum negentropy directions, i.e., directions where the elements of the

sum J(yi) are maximized, is equivalent to finding a representation in which mutual

information is minimized. The use of negentropy shows clearly the connection between

ICA and projection pursuit. Using differential entropy as a projection pursuit index,

as has been suggested in [47], amounts to finding directions in which negentropy is

maximized.

Unfortunately, the reservations made with respect to mutual information are also valid

here. The estimation of negentropy is difficult, and therefore this contrast function

remains mainly a theoretical one. As in the multi-unit case, negentropy can be approx-

imated by higher-order cumulants, for example as follows [47]:

J(y) ≈ 1

12
κ3(y)2 +

1

48
κ4(y)2 (2.18)
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where κi(y) is the i -th order cumulant of y. The random variable y is assumed

to be of zero mean and unit variance. However, the validity of such approximations

may be rather limited. In [35], it was argued that cumulant-based approximations

of negentropy are inaccurate, and in many cases too sensitive to outliers. New ap-

proximations of negentropy were therefore introduced. In the simplest case, these new

approximations are of the form:

J(y) ≈ c [E{G(y)} − E{G(υ)}]2 (2.19)

where G is practically any non-quadratic function, c is an irrelevant constant and υ

is a Gaussian variable of zero mean and unit variance (i.e., standardized). In [35], these

approximations were shown to be better than cumulant-based ones in several respects.

Actually, the two approximations of negentropy discussed above are interesting as one-

unit contrast functions in their own right, as will be discussed next.

2.4.2 Higher-Order Cumulants

Mathematically the simplest one-unit contrast functions are provided by higher-order

cumulants like kurtosis. Denote by x the observed data vector, assumed to follow the

ICA data model 1.4.3.

Now, let us search for a linear combination of the observations xi, say wTx, such

that its kurtosis is maximized or minimized. Obviously, this optimization problem is

meaningful only if w is somehow bounded; let us assume E{(wTx)2} = 1. Using the

(unknown) mixing matrix A, let us define z = ATw. Then, using the data model

x = As one obtains E{(wTx)2} = wTAATw = ‖z‖2 = 1 (recall that E{ssT} = I),

and the well-known properties of kurtosis give

kurt(wTx) = kurt(wTAs) = kurt(zT s) =
m

∑

i=1

z4
i kurt(si) (2.20)

Under the constraint ‖z‖2 = 1, the function in the equation 2.20 has a number of lo-

cal minima and maxima. To make the argument clearer, let us assume for the moment

that in the mixture in the equation 1.8, there is at least one independent component

sj whose kurtosis is negative, and at least one whose kurtosis is positive. Then, the

extremal points in equation 2.20 are the canonical base vectors z = ±ej, i.e., vectors
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whose all components are zero except one component which is ±1. The corresponding

weight vectors are w = ±(A−1)Tej, i.e., the rows of the inverse of the mixing matrix A,

up to a multiplicative sign. So by minimizing or maximizing the kurtosis in equation

2.20 under the given constraint, one obtains one of the independent components as

wTx = ±sj. These two optimization modes can also be combined into a single one,

because the independent components correspond always to maxima of the modulus of

the kurtosis.

Kurtosis has been widely used for one-unit ICA (see, for example, [41, 39]), as well

as for projection pursuit [47]). The mathematical simplicity of the cumulants, and

especially the possibility of proving global convergence results has contributed largely

to the popularity of cumulant-based (one-unit) contrast functions in ICA, projection

pursuit and related fields. However, it has been shown, for example in [33], that kur-

tosis often provides a rather poor objective function for the estimation of ICA, if the

statistical properties of the resulting estimators are considered. Note that despite the

fact that there is no noise in the ICA model in equation 1.8, neither the independent

components nor the mixing matrix can be computed accurately because the indepen-

dent components si are random variables, and, in practice, one only has a finite sample

of x. Therefore, the statistical properties of the estimators of A and the realizations

of s can be analyzed just as the properties of any estimator. Such an analysis was

conducted in [33] and the results show that in terms of robustness and asymptotic

variance, the cumulant-based estimators tend to be far from optimal. Intuitively, there

are two main reasons for this. Firstly, higher-order cumulants measure mainly the tails

of a distribution, and are largely unaffected by structure in the middle of the distri-

bution. Secondly, estimators of higher-order cumulants are highly sensitive to outliers

[32]. Their value may depend on only a few observations in the tails of the distribution,

which may be outliers.

2.4.3 General Contrast Functions

To avoid the problems encountered with the preceding objective functions, new one-

unit contrast functions were developed in [38, 41]. Such contrast functions try to

combine the positive properties of the preceding contrast functions, i.e. have statis-

tically appealing properties (in contrast to cumulants), require no prior knowledge of
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the densities of the independent components (in contrast to basic maximum likelihood

estimation), allow a simple algorithmic implementation (in contrast to maximum likeli-

hood approach with simultaneous estimation of the densities), and be simple to analyze

(in contrast to non-linear cross-correlation approach).

The generalized contrast function (introduced in [39]), which can be considered gener-

alizations of kurtosis, seem to fulfill these requirements. To begin with, note that one

intuitive interpretation of contrast functions is that they are measure of non-normality.

A family of such measures of non-normality could be constructed using practically any

functions G and considering the difference of the expectation of G for the actual data

and the expectation of G for Gaussian data. In other words, we can define a contrast

function J that measures the non-normality of a zero-mean random variable y using

any even, non-quadratic, sufficiently smooth function G as follows:

JG(y) = |Ey {G (y)} − Eυ {G (υ)}|p (2.21)

where υ is a standardized Gaussian random variable, y is assumed to be normalized

to unit variance, and the exponent p= 1,2 typically. The subscripts denote expectation

with respect to y and υ.

Clearly, JG can be considered a generalization of (the modulus of) kurtosis. For G(y)

= y4, JG becomes simply the modulus of kurtosis of y. Note that G must not be

quadratic, because then JG would be trivially zero for all distributions. Thus, it seems

plausible that JG could be a contrast function in the same way as kurtosis. In fact,

for p=2, JG coincides with the approximation of negentropy given in equation 2.19.

In [38], the finite sample statistical properties of the estimators based on optimizing

such a general contrast function were analyzed. It was found that for a suitable choice

of G, the statistical properties of the estimator (asymptotic variance and robustness)

are considerably better than the properties of the cumulant based estimators. The

following choice of G were proposed:

G1 (u) = log (cosh (a1u))

G2 (u) = exp
(

−a2u
3/2

)

(2.22)

where a1,a2 ≥ 1 are some suitable constants. In the lack of precise knowledge on the
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distributions of the independent components or on the outliers, these two functions

seem to approximate reasonably well the optimal contrast function in most cases.

Experimentally, it was found that especially the value 1≤a1 ≤ 2,a2 = 1 for the contrast

give good approximations. One reason for this is that G1 above corresponds to the log-

density of a super- Gaussian distribution and is therefore closely related to maximum

likelihood estimation.

2.4.4 A Unifying View on Contrast Functions

It is possible to give a unifying view that encompasses most of the important contrast

functions for ICA. First of all, we can see above, that the principles of mutual infor-

mation and maximum likelihood are essentially equivalent [17]. Second, as already

discussed above, the infomax principle is equivalent to maximum likelihood estimation

[16, 62]. On the other hand, it was discussed above how some of the cumulant-based

contrasts can be considered as approximations of mutual information. Thus it can be

seen that most of the multi-unit contrast function are, if not strictly equivalent, at

least very closely related. However, an important reservation is necessary here: for

these equivalences to be at all valid, the densities f i used in the likelihood must be a

sufficiently good approximations of the true densities of the independent components.

At the minimum, we must have one bit of information on each independent compo-

nent: whether it is sub- or super-Gaussian [18, 16, 40]. This information must be either

available a priori or estimated from the data, see [18, 16, 40]. This situation is quite

different with most contrast functions based on cumulants, and the general contrast

functions which estimate directly independent components of almost any non-Gaussian

distribution.

Also for the one-unit contrast functions, we have a very similar situation. Negentropy

can be approximated by cumulants or by the general contrast functions, which shows

that the considered contrast functions are very closely related. In fact, looking at the

formulas for likelihood and mutual information in equations 2.16 and 2.18, one sees

that they can be considered as sums of one-unit contrast functions plus a penalizing

term that prevents the vector wi from converging to the same directions. This could

be called a “soft” form of decorrelation. Thus we see that almost all the contrast func-

tions could be described by the single intuitive principle: find the most non-Gaussian
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projections and use some (soft) decorrelation to make sure that different independent

component are found. So, the choice of contrast function is essentially reduced to the

simple choice between estimating all the independent components in parallel or just

estimating a few of them (possibly one-by-one). This corresponds approximately to the

choosing between symmetric and hierarchical decorrelation, which is a choice familiar

in PCA learning [38]. One must also make the less important choice between cumulant

based and robust contrast functions (i.e. those based on non-quadratic function), but

it seems that the robust contrast functions are to be preferred in most applications.

2.5 Algorithms for ICA

2.5.1 Introduction

After choosing one of the principles of estimation for ICA, one needs a practical method

for its implementation. Usually, this means that after choosing an objective function

for ICA, we need to decide how to optimize it. In this section, we shall discuss the

optimization method. We must to recall that the statistical properties of the ICA

method depend only on the objective function used.

2.5.2 Preprocessing of the Data

Some ICA algorithms require a preliminary sphering or whitening of the data x and

even those algorithms that do not necessarily need sphering, often converge better with

sphered data. Recall that the data has also been assumed to be centered (i.e. made

zero-mean).

Sphering means that the observed variable x is linearly transformed to a variable v:

v = Qx (2.23)

such that the covariance matrix of v equals unity: EvvT = I. This transformation is

always possible. Indeed, it can be accomplished by classical PCA [38]. In addition to

sphering, PCA may allow us to determine the number of independent components (if

m > n). If noise level is low, the energy of x is essentially concentrated on the sub-

space spanned by the n first principal components, with n the number of independent
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components in the model. Several methods exist for estimating the number of signals

(here, independent components) and thus this reduction of dimension partially justifies

the assumption m = n.

In model 1.4.3, after sphering we have:

v = Bs (2.24)

where B=QA is an orthogonal matrix, because

E
{

vvT
}

= BE
{

ssT
}

BT = BBT = I (2.25)

Recall that we have assumed that the independent components si have unit variance.

We have thus reduced the problem of finding an arbitrary matrix A in model 1.4.3 to

the simpler problem of finding an orthogonal matrix B. Once B is found, equation 2.24

is used to solve the independent components from the observed B by

y = ŝ = BTv (2.26)

It is also worthwhile to reflect why sphering alone does not solve the separation

problem. This is because sphering is only defined up to an additional rotation: if Q1

is a sphering matrix, then Q2 = UQ1 is also a sphering matrix if and only if U is an

orthogonal matrix. Therefore, we have to find the correct sphering matrix that equally

separates the independent components. This is done by first finding any sphering

matrix Q, and later determining the appropriate orthogonal transformation from a

suitable non-quadratic criterion.

2.5.3 Jutten-Hérault Algorithm

The pioneering work in [48] was inspired by NNs. Their algorithm was based on

canceling the non-linear cross-correlations. The non-diagonal terms of the matrix W

are updated according to:

∆ Wij ∝ g1 (yi) g2 (yj) ∀ i 6= j (2.27)

where g1 and g2 are some odd non-linear functions and the y i are computed at

every iteration as y = (y + W)−1x. The diagonal terms Wii are set to zero. The y i
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then give after convergence, estimates of the independent components. Unfortunately,

the algorithm converges only under rather severe restrictions [48].

2.5.4 Non-Linear Decorrelation Algorithms

Further algorithms for canceling non-linear cross-correlations were introduced indepen-

dently in [21, 24] and [19]. Compared to the Jutten-Hérault algorithm, these algorithms

reduce the computational overhead by avoiding any matrix inversion and improve its

stability. For example, the following algorithm was given in [19, 24]:

∆ W ∝
(

I − g1 (y) g2

(

yT
))

W (2.28)

where y = Wx, the non-linearities g1(.) and g2(.) are applied separately on every

components of the vector y and the identity matrix could be replaced by any positive

definite diagonal matrix. In [19], the following EASI algorithm was introduced:

∆ W ∝
(

I − yyT − g (y)yT − yg
(

yT
))

W (2.29)

A principal way to choosing the non-linearities used in this learning rules is provided

by the maximum likelihood (or infomax).

2.5.5 Algorithms for Maximum Likelihood or Infomax Estima-

tion

An important class of algorithms consists of those based on maximization of network

entropy (infomax) [9], which is, under some conditions, equivalent to the maximum

likelihood approach. Usually these algorithms are based on (stochastic) gradient ascent

of the objective function. For example, the following algorithm was derived in [9]:

∆ W ∝
[

WT
]−1 − 2 tanh(Wx)xT (2.30)

where the tanh function is applied separately on every component of the vector Wx,

as above. The tanh function is used here because it is the derivative of the log-

density of the “logistic” distribution [9]. This function works for estimation of most

super-Gaussian (sparse) independent components; for sub-Gaussian independent com-

ponents, other functions must be used. The algorithm in equation 2.30 converges,
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however, very slowly, as had been noted by several researchers. The convergence may

be improved by whitening the data and especially by using the natural gradient. The

natural (or relative) gradient method simplifies the gradient method considerably, and

makes it better conditioned. The principle of the natural gradient [4, 3] is based on

the geometrical structure of the parameter space and is related to the principle of the

relative gradient [19] that uses the Lie group structure of the ICA problem. In the

case of basic ICA, both of these principles amount to multiplying the right-hand side

of equation 2.30 by WTW. Thus we obtain:

∆ W ∝
(

I − 2 tanh(y)yT
)

W (2.31)

with y = Wx. After this modification, the algorithm does not need sphering. Inter-

estingly, this algorithm is a special case of the non-linear decorrelation algorithm in

equation 2.27 and is closely related to the algorithm in equation 2.28. Finally, in [63],

a Newton method for maximizing the likelihood was introduced. The Newton method

converges in fewer iterations, but has the drawback that a matrix inversion (at least

approximate) is needed in every iteration.

2.5.6 Neural One-Unit Learning Rules

Using the principle of stochastic gradient descent, one can derive simple algorithms from

the one-unit contrast functions explained above. Let us consider first whitened data.

For example, taking the istantaneous gradient of the generalized contrast function in

equation 2.19 with respect to w, and taking the normalization ‖w‖2 = 1 into account,

one obtains the following Hebbin-like learning rule:

∆wi ∝ r g
(

wTx
)

;w =
w

‖w‖ (2.32)

where the constant may be defined, e.g. as r=EG(wx) - EG(υ). The non-linearity

g can thus be almost any non-linear function; the important point is to estimate the

multiplicative constant r in a suitable manner [38].

2.5.7 The Tensor-Based Algorithms

A large amount of research has been done on algorithms utilizing the fourth-order

cumulant tensor for estimation of ICA [14, 15]. These are typically batch algorithms
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(non-adaptive), using such tensorial techniques as eigenmatrix decomposition, which

is a generalization of eigenvalue decomposition for higher-order tensors. Such a de-

composition can be performed using ordinary algorithms for eigenvalue decomposition

of matrices, but this requires matrices of size m2 × m2. Since such matrices is of-

ten too large, specialized Lanczos type algorithms of lower complexity have also been

developed [14]. These algorithms often perform very efficiently on small dimensions.

However, in large dimensions, the memory requirements may be prohibitive, because

often the coefficients of the fourth-order tensor must be stored in memory, which re-

quires O(m4) units of memory. The algorithms also tend to be quite complicated to

program, requiring sophisticated matrix manipulations.

2.5.8 The FastICA Algorithm

The FastICA learning rule finds a direction, i.e. a unit vector w such that the projection

wTx maximizes independence of the single estimated source y. Independence is here

measured by the approximation of the negentropy given by:

JG (w) = E
{

G
(

wTx
)}

− E {G (υ)}]2 (2.33)

where w is an m-dimensional (weight) vector, x represents our mixture of signals and

υ is a standardized Gaussian random variable. Maximizing JG allows to find one

independent component or projection pursuit direction. Maximizing the sum of n one-

unit contrast functions and taking into account the constraint of decorrelation, we

obtain the following optimization problem:

maximize
n

∑

i=1

JG (wi)

under constraint E
{(

wT
k x

) (

wT
j x

)}

= δjk {k, j} = 1, ..., n (2.34)

where, on the maximum, every vector wi gives one of the rows of the separating

matrix. In the projection pursuit interpretation, this equation gives n projection pur-

suit directions that are constrained to be decorrelated. Basically, we have the following

choices for the contrast function [38]:
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G1 (u) =
1

a1

logcosh(a1u) g1 (u) = tanh(a1u) (2.35)

G2 (u) = − 1

a2

exp
(

−a2u
2/2

)

g2 (u) = uexp (−a2u
2/2) (2.36)

G3 (u) =
1

4
u4 g3 (u) = u3 (2.37)

where u is a generic variable, a1 ≥1, a2 −̃1 are constants and g i is the derivative of Gi.

The benefits of the different contrast functions may be summarized as follow [38]:

• G1 is a good general purpose contrast function.

• When the independent components are highly super-Gaussian, or when robust-

ness is very important, G2 may be the right choice.

• If computational overhead must be reduced, then piece-wise linear approxima-

tions of G1 and G2 may be used.

• The use of G3, i.e. the kurtosis, is justified on statistical grounds only for esti-

mating sub-Gaussian independent components when there are no outliers.

• In the special case where it is important to first find the super-Gaussian compo-

nents, kurtosis can be used.

Moreover, we note that multi-modality is revealed by a low kurtosis. There is an

interesting relationship between this and the objective function G1: expanding G1 in

Taylor series, setting a1=1 and u = wTx, we obtain for

E {ln cosh (u)} =
1

2
E

{

(

wTx
)2

}

− 1

12
E

{

(

wTx
)4

}

+

+
1

45
E

{

(

wTx
)6

}

+ E
{

O
[

(

wTx
)8

]}

(2.38)

Applying the whitening to the data, we have in the formula that the second term is

dominating and kurtosis is minimized at least approximately [58].

We remark that the algorithm requires a preliminary whitening of the data: the ob-

served variable x is linearly transformed to a zero-mean variable v = Qx such that E

vvT = I. Whitening can always be accomplished by e.g. Principal Component Analysis

[38].
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The one-unit fixed-point algorithm for finding a row vector w is [38]:

w∗ = E
[

vg
(

wT
i v

)]

− E
[

vg′
(

wT
i v

)]

wi

wi = w∗
i / ‖w∗

i ‖ (2.39)

where g(.) is a suitable non-linearity, in our case g(y) = tanh(y) and g’(y) is its

derivative with respect to y.

The algorithm of the previous equations estimates just one of the independent compo-

nents. To estimate several independent components, we need to run one-unit FastICA

algorithm using several units (e.g. neurons) with weight vectors w1,...,wn. To prevent

different vectors from converging to the same maximum we must decorrelate the out-

puts wT
1 x,...,wT

nx after every iteration. In specific applications it may be desidered

to use a symmetric decorrelation, in which vectors are not privileged over the others.

This can be accomplished by the classical method involving matrix-square-roots.

If we assume that the data is whitened, we have that

W = W
(

WTW
)−1/2

(2.40)

where W is the matrix of the vectors (w1,...,wn), and the inverse-square-root is

obtained from the eigenvalue decomposition as (WTW)−1/2=ED−1/2ET where E is

the eigenvector matrix and D is the diagonal eigenvalue one.

2.5.9 Properties of the Fixed-Point Algorithm

The fixed-point algorithm for (approximate) minimization of mutual information has

a number of desirable properties [38]:

• The convergence is cubic (or at least quadratic), under the assumption of the

ICA ata model. This is in contrast to gradient descendent methods, where the

convergence is only linear. This means a very fast convergence, as has been

confirmed by simulations and experiments on real data;

• Contrary to gradient-based algorithms, there are no step size parameters to

choose. This means that the algorithm is easy to use;
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• The algorithm finds directly independent components of any non-Gaussian dis-

tribution, which is in contrast to many algorithms, where some estimate of the

probability distribution function has to be first available;

• The fixed-point algorithm inherits most of the advantages of neural algorithms:

it is parallel, distributed, computationally simple and requires little memory

space. Stochastic gradient methods seem to be preferable only if fast adaptivity

in a changing environment is required;

• The statistical properties for a suitable choices of the contrast functions are su-

perior to those of the kurtosis-based approach.
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Chapter 3

Beyond Independent Component

Analysis: Overcomplete Bases

In the previous chapter, we have shown the principal objective functions

and optimization algorithms for the classical ICA problem. In this chapter,

we focus our attention on the problem of ICA with less sensors than sources,

with a particular attention to the case of a single mixture.

3.1 Introduction

The standard formulation of ICA requires at least as many sensors as sources. Lewicki

and Sejnowski [55] have proposed a first generalization of ICA method for learning

overcomplete representations from data that allows for more basis vectors than dimen-

sions in the input. The goal of this method is illustrated in figure 3.1 [37]. In a two

dimensional data space, the observation x in figure 3.1(a,b) were generated by a linear

mixture of two independent random super-gaussian sources. In this space, figure 3.1

(a) shows orthogonal basis vectors (PCA) and figure 3.1 (b) shows independent basis

vectors. If the two-dimensional observed data are generated by three sparse sources as

shown in figure 3.1 (c,d) the complete ICA representation (c) cannot model the data

adequately but the overcomplete ICA representation (d) finds three basis vectors that

fit the underlying distribution of the data.

In this situation, the mixing system is not invertible: we cannot obtain the indepen-

dent components by simply inverting the mixing matrix A. Therefore, even if we knew
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Figure 3.1: Illustration of basis vectors in a two-dimensional data space with two sparse

sources (top) or three sparse sources (bottom).
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the mixing matrix exactly, we could not recover the exact values of the independent

components. This is because information is lost in the mixing process.

So we have two different problems. First, how to estimate the mixing matrix, and

second, how to estimate the realizations of the independent components. This is in

stark contrast to ordinary ICA, where these two problems are solved at the same time.

3.2 Is Source Separation Possible?

The two problems described below are called: the identifiability and the separability

problems [38]. Identifiability describes the capability of estimating the structure of the

linear model up to a scale and a permutation, while separability is the capability of

retrieving the sources using the estimate of the mixing model. In the case of over-

complete ICA, it is still possible to identify the mixing matrix from the knowledge

of x alone, although it is not possible to uniquely recover the sources s. One of the

possible solution to this problem is that of assuming a probability distribution for s,

one could obtain estimates of the sources by maximizing the likelihood of p(x|A,s). In

the standard ICA formulation, we used the non-Gaussianity as a principle for the sep-

aration, in the overcomplete case non-Gaussianity is much more essential to facilitate

the source separation task. For example, in the case of audio signals, we have certain

time-domain statistical profile. Speech signals tend to have a Laplacian distribution,

due to the many pauses that exist in the nature of speech. Musical signals tend to have

a more Gaussian-like structure that might not affect the ICA algorithm in square case,

but can affect the identifiability of the problem in the overcomplete case. A possible

solution for signals with such statistics for overcomplete ICA is to use a linear, sparse,

super-Gaussian, orthogonal transformation. A sparse transformation linearly maps the

signal to a domain where most of the values are very small, i.e. concentrates the energy

of the signals to certain areas. As a result the mixing matrix A remains unchanged by

the signal transformation, so its estimation in the transform domain is equivalent to

the estimation in the time-domain, although with sparser statistics. If the transform

is invertible, one can perform the estimation of y in the transform domain. There

are many candidate transform for this task, for example: the Fourier transform, the

Discrete Cosine transform and the Wavelet Transform.
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3.3 Estimating the source given the mixing matrix

This is a problem that does not exist in the standard formulation of ICA where m = n,

and so you can invert the matrix A and get accurate estimate of your sources. In the

m ≥ n case, the pseudoinverse can give accurate estimates of the sources. However, in

the overcomplete case, the estimates obtained from the pseudoinverse are not accurate.

Therefore, we have to resort to other methods to solve the problem.

3.3.1 Maximum Likelihood Estimation

One solution is to use Maximum Likelihood (ML) or Maximum A Posteriori (MAP)

estimation to retrieve our sources, given the mixing matrix A.

Imposing a source model, our sources can be retrieved by:

y = argmaxy P (y|x,A) = argmaxy py(y)P (x|A,y)P (y) (3.1)

Therefore, in the noiseless case the sources can be retrieved by

∆y ∝ −δ logP (y)/δy (3.2)

However, this gradient based algorithm is not very fast.

3.3.2 Linear Programming

Usually we employ sparse linear transform to enhance the quality of separation. There-

fore, a Laplacian model for the sources p(y) ∝ exp−|y| can be applied. A good starting

point for the algorithm can always be the pseudoinverse solution. Lewicki [55] proved

that source estimation assuming Laplacian priors, can be reduced to minimizing the

L1-norm of the estimated sources.

miny ‖y‖1 = minyi

∑

i

|yi| = miny[1 1...1] |y| (3.3)

subject to x = Wy

This can be transformed and solved as a linear programming problem. However, solving

a linear programming problem for every time sample can be quite computationally
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demanding and very slow. This can be quite important when you are updating the

mixing matrix as well and you want to find an estimate of the sources for each estimate

of A. In that case, we aim for a solution that can be fast and accurate.

3.4 Estimating the mixing matrix given the sources

3.4.1 Clustering Approach

Hyvärinen’s Approach

Hyvärinen [34] in his analysis shows that maximizing the log p(A,s) is not an approx-

imation but it is equivalent to the log-likelihood that Lewicki tries to maximize in

[34]. Moreover, Hyvärinen forms a very efficient clustering algorithm for superGaus-

sian components. In order to perform separation, he assumes that the sources are very

sparse. Therefore, for sparse data you can claim that at most only one component is

active at each sample. In other words, we attribute each point of the scatter plot to

one source only. This is a competitive winner-take-all mechanism.

The step of the method are:

1. Initialize A = [a1,a2,...,an].

2. Collect the points that are close to the directions represented by ai.

For all ai find the set of points Si of x that:

∣

∣aT
i x(n)

∣

∣ ≥
∣

∣aT
j x(n)

∣

∣ , ∀ j 6= i (3.4)

3. Update

ai ←
∑

n∈ Si

x(n)(aT
i x(n)) (3.5)

ai ← ai/ ‖ai‖ , ∀ i = 1, 2, ..., n (3.6)

4. Repeat 2,3 until convergence.

As we can see, this is a clustering approach, as we force the direction of the mixing

matrix to align along the concentration of the points in the scatter plot.
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Figure 3.2: Illustration of clustering algorithm applied on 2 sensors - 3 sources scenario.

In figure 3.2, we show an example of clustering algorithm applied on 2 sensors - 3

sources scenario.

To estimate the sources in this case, all we have to do is construct the vectors xSi
(t)

that contain all the vectors from x(t) corresponding to each Si. Then the estimates

are given by:

yi = aT
i xSi

(3.7)

3.4.2 Bayesian Approaches

Maximizing joint likelihood

In [55], Lewicki described a Bayesian approach to overcomplete ICA. He also explored

the general case with additive noise n as described in equation 1.7.

Assuming that the noise is Gaussian and isotropic with covariance matrix Cn = σ 2
nI,

it is possible to write:

log p(x|A,s) ∝ − 1

2σ2
n

(x − As)2 (3.8)

Now, we have to deal with two problems as stated before:
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• estimate A;

• estimate y.

We have discussed so far various methods for getting an estimate of the sources, given

an estimate of A. Now, Lewicki thought of maximizing the following:

maxA p(x|A) = maxA

∫

p(y)p(x|A,y)dy (3.9)

After approximating p(x|A), with a Gaussian around y and a mathematical analysis,

Lewicki derives a gradient algorithm that resembles the natural gradient.

∆A ∝ −A(φ(y)yT + I) (3.10)

where φ(y) represents the activation function. Assuming sparse priors, Lewicki pro-

posed φ(y) = tanh(y). Lewicki claims that this approach can work for sources captured

in the time-domain, however it is bound to have performance in a sparser domain. The

algorithm can be summarised as follows:

1. randomly initialize A;

2. initialize source estimates y either with the pseudoinverse or with zero signals;

3. given the estimated y, get a new estimate for A:

A ← A − ηA(φ(y)yT + I) (3.11)

where η is the learning rate;

4. given the new estimate for A, find a new estimate for y either by solving the

linear programming problem for every sample n, or by other methods;

5. repeat steps 3,4 until convergence.

As this is a gradient algorithm, its convergence depends highly on the choice of

learning rate and on signal scaling.
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Mixtures of Gaussians - Attias’ approach

Attias [6] proposed to model the sources as a Mixture of Gaussians (MoG) and used an

Expectation-Maximization (EM) algorithm to estimate the parameters of the model.

A MoG is defined as:

p(si) =
K

∑

k=1

πikNsi
(µik, σ

2
ik) (3.12)

where K defines the number of Gaussians used, µik and σik denote the mean and

standard deviation of the kth Gaussian and πik ∈ [0,1] the weight of each Gaussian,

with the constraint that
∑

K
k=1 πik = 1. To model the joint density function p(s), we

issue a vector q(t) = [q1(t),q2(t),...,qn(t) ]. Each qk(t) can take a discrete value from

1 to K and represents the state of the mixture of the kth source at time t. the joint

density function p(s) is itself a MoG in the following form:

p(s) =
N
∏

i=1

p(si) =
∑

q1

...
∑

qN

π1,q1
...πL,qN

N
∏

i=1

Nsi
(µi,qi

, σ2
i,qi

) (3.13)

Assuming additive Gaussian noise of zero mean and covariance J, it is possible to

exploit the Gaussian structure to express p(x|A).

Attias [6] shows that:

p(x|A,J) =
K

∑

q1=1

...

K
∑

qN=1

π1,q1
...πN,qN

×Nx(a1µ1,q1
+...+a1µN,qN

, J+a1a
T
1 σ2

1,q1
+...+aNaT

NσN
1,qN

)

(3.14)

where A = [a1,a2,...,an]. In order to estimate the parameters of this model, Attias chose

to minimize the Kullback-Leibler distance between the model sensor density p(x|A,J)

and the observed one po(x). He developed an EM algorithm to train the parameters

of the model. Again, the whole training procedure is divided into two steps that are

repeated for each iteration:

1. adapt the parameters of the model;

2. estimate the sources.
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More in detail, for the first step we have:

A = E
{

xyT
}

(E
{

xxT
}

)−1 (3.15)

J = E
{

xxT
}

− E
{

xyT
}

AT (3.16)

µi,qi
=

E {p(qi|yi)yi}
E {p(qi|yi)}

(3.17)

σ2
i,qi

=
E {p(qi|yi)y

2
i }

E {p(qi|yi)}
− µ2

i,qi
(3.18)

πi,qi
= E {p(qi|yi)} (3.19)

p(qi|yi) =
πi,qi

p(yi)
∑N

j=1 πj,qj
p(yj)

(3.20)

While for the second step, Attias proposed a MAP-estimator, maximizing the source

posterior p(y|x). More specifically,

y = argmaxy log p(x|y) +
N

∑

i=1

log p(yi) ⇒ (3.21)

∆y = ηATJ−1(x + Ay) − ηφ(y) (3.22)

where η is the learning rate and φ(y) = ∂ log p(y)/∂ y, incorporating the source model.

All the Bayesian approaches tend to give complete and more general solutions. However

they tend to be very slow in convergence, compared to clustering approaches.

3.5 An harder case: separation of independent com-

ponents from a single mixture

Until now in this chapter we have presented some standard algorithm used for the

ICA problem in the case of overcomplete basis, in particular when we have more than

one mixture. This last case is a challenge problem still open. In fact analyzing the

performance of the cited algorithm, we can see that they fail to solve the problem in

the case of a single mixture.

In literature, some works have been proposed for this case, but usually they use some

a priori knowledge about the source like the approach of T.W.Lee [44, 45]. In the next

section, we will present some of these algorithm.
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3 Overcomplete ICA

3.5.1 A probabilistic approach to single channel blind signal

separation

This technique, presented by T. W. Lee and G.-J. Jang [44, 45] for extracting indi-

vidual sound sources from an additive mixture of different signals, has as a central

idea to exploit the inherent time structure of sources by learning a priori sets of basis

filters in time domain that encode the sources in a statistically efficient manner. Sets

of basis functions are learned a priori from the training data set and these sets are

used to separate the unknown test sound sources. The algorithm recovers the origi-

nal auditory streams in a number of gradient-ascent adaptation steps maximizing the

log-likelihood of the separated signals, calculated using the basis functions and the

probability density function (pdf) of their coefficients - the output of the ICA basis

filters. The object function not only makes use of the ICA basis functions as a strong

prior for the source characteristics, but also their associated coefficient pdf’s modeled

by generalized Gaussian distributions [44, 45, 43]. The algorithm first involves the

learning of the time-domain basis functions of the sound sources that we are interested

in the seaparating from a given training database. This corresponds to the prior infor-

mation necessary to successfully separate the signals. The authors assume a generative

models in the observed single channel mixture as well as in the original sources. The

model is depicted in figure 3.3 [45].

In order to formulate the problem, the authors assume that the observed signal yt

is an addition of P independent source signals

yt = λ1x
t
1 + λ2x

t
2 + . . . + λpx

t
p (3.23)

where xt
i is the t − th sampled value of the i − th source signal and λi is the gain

of each source which is fixed over time. So from this model, it is possible to observe

that at every t ∈ [1, T ] the observed instance is assumed to be a weighted sum

of different sources. In their approach, the authors regard only the case of P = 2,

that is the situation of two different signals mixed and observed in a single sensor.

For each individual source signals, the authors adopt a decomposition based approach

by expressing a fixed-length segment drawn from a time varying signal as a linear

superposition of a number of elementary patterns, called basis functions, with scalar

multiplies, as explained in figure 3.3 (B). Continuous samples of length N , with N <<
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3 Overcomplete ICA

Figure 3.3: Generative models for the observed mixture and original source signal.

From top (A): a single channel observation is generated by a weighted sum of two source

signals with different characheristics. (B): individual source signals are generated by

weighted (st
ik) linear superposition of basis functions (aik). (C): Examples of actual

coefficient distributions.

T are chopped out of a source. The constructed column vector is then expressed as a

linear combination of the basis functions such that

xt
i =

M
∑

k=1

aiks
t
ik = Ast

i (3.24)

where M is the number of basis functions, aik is the k − th basis function of the i− th

source in the form of N -dimensional column vector, st
ik its coefficient (weight). The

authors assume that M = N and A has full rank so that the transform between xt
i

and st
i be reversible in both directions. The inverse of the basis matrix, Wi = A−1

i ,

refers to the ICA filters that generate the coefficient vector: st
i = Wix

t
i. The purpose

of this decomposition is to model the multivariate distribution of xt
i in a statistically

efficient manner. The ICA learning algorithm is equivalent to searching for the linear

transformation that make the components as statistically independent as possible, as

well as maximizing the marginal densities of the transformed coordinates for the given

training data [62],

W∗
i = arg maxWi

∏

t

Pr(xt
i|Wi) = arg maxWi

∏

t

∏

k

Pr(st
ik) (3.25)
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3 Overcomplete ICA

where Pr(a) denotes the probability of the value of a variable a. Independence be-

tween the components and over time samples factorizes the joint probabilities of the

coefficients into the product of marginal ones. The authors use a generalized Gaussian

prior [44, 45] to estimate these marginal probabilities. With the generalized Guassian

ICA learning algorithm [45], the basis function and their individual parameters set are

obtained beforehand and used as prior information for the source separation algorithm.

This is essentially a maximum a posteriori (MAP) estimation in a number of adapta-

tion steps on the source signals to maximize the data likelihood.

The major disvantage of this method is the necessity of a training data set, capable

to modelize the basis function needed, if we don’t have a training data set we can’t

use this method. So we can say that the a priori knowledge needed is impossible to

recovery if we have a single observation of our mixture and no idea on the sources.

3.5.2 Different approaches

A really different approach to the separation of musical signal from single mixture is

given by the Computational Auditory Stream Analysis (CASA) community. Any bio-

logical or artificial hearing system must extract individual acoustic objects or streams

in order to do successfull localization, denoising and recognition. Bregman [12] called

this process auditory scene analysis. Source separation or computational auditory scene

analysis (CASA) is the practical realization of this problem via computer analysis of

microphone recordings. The CASA community have focused on both multiple and

single microphone source separation problems. Usually CASA approaches use almost

exclusively hand designed systems which include substantial knowledge of the human

auditory system and its psychophysical characteristics [64]. Recently, there was an

approach that tried to bring together the representations of CASA and methods which

learn from data such as ICA. In his paper [64], Roweis presents a technique called

refiltering which recovers sources by a nonstationary reweighting (“masking”) of fre-

quency sub-bands from a single recording and argue for the application of statistical

algorithms to learning this masking function. He uses a simple factorial HMM system

which learns on recordings of single speakers and can then separate mixtures using only

one observation signal by computing the masking function and then refiltering. As it

is possible to note from this brief description, also in this case we need to learn some
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3 Overcomplete ICA

“basis functions” or “filters” before to make the separation from a single mixture, so we

need a training set.

3.6 Recent developments and conclusions

In this chapter, we have described some recent work about the case of independent

component analysis in the case of overcomplete basis, focusing our attention to the

case of a single mixture. The method described suffers of different disvantage: slow

convergence, slow capabilities of approximations, too many a priori knowledge.

When passing to the case of a single mixture, we can say that at the moment there

are very few algorithms that can work directly on a single mixture and in general this

algorithm need to learn some a priori parameter from a bigger training data set. So

they are unable to separate directly given only an observation mixtuere. This is still an

open problem. A first temptative to solve this problem is given in [42], we will describe

largely this approach in the next section.

61



Chapter 4

ICA on Single Mixture: a Projection

Method

In the previous chapter, we described the stadard method developed for

the overcomplete ICA scenario. In this chapter, we focus our attention on

the problem of ICA on a single mixture, we propose a method of projection

related to the dynamical system theory.

4.1 Introduction

In [42], the authors developed a methodology for the extraction of multisource brain

activity using only single channel recordings of electromagnetic (EM) brain signals. At

the hearth of the method is dynamical embedding (DE), where first an appropriate

embedding matrix is constructed out of a series of delay vectors from the measured sig-

nal. The embedding matrix contains the information we require, but in a mixed form

which therefore needs to be deconstructed. In particular, the authors demonstrated

how one form of ICA performed on the embedding matrix can deconstruct the single

channel recording into its underlying informative components.

In this chapter, we introduce the dynamical systems theory and the methodologies for

constructing appropriate embedding matrix, starting from a single channel observa-

tions. We introduce, also, a slightly different methodology from [42] for the projection

of the mixture.
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4 Projection of Single Mixture

4.2 Deterministic Chaos

The apparent contradiction (or paradox) contained in the term “deterministic chaos”

has intrigued for long years also people not directly involved with science.

Deterministic math models are usually associated to the idea of regular, predictable

fenomena, which repeat their behavior in time, while the term “chaotic” usually is re-

ferred to situation characterized by completely absence of rules and by unpredictability.

The discovery of the deterministic chaos breaks this dichotomy, because it shows how

deterministic math models (which are deprived of each element of randomness in their

describing equations) can create extremely complex trends, which are unpredictable

under many aspects, so to result almost indistinguishable from sequences of events,

created by random processes.

4.3 Signals, Dynamical Systems and Chaos

Chaos comprises a class of signals intermediate between regular sinusoidal or quasiperi-

odic motions and unpredictable, truly stochastic behavior.

It has long been seen as a form of “noise”, because the tools for its analysis were couched

in a language tuned to linear processes [1].

In the analysis of signals from physical systems, usually it is impossible to assume that

the system is linear, instead we assume from the outset that a dynamical system in the

form of a differential equation or a discrete - time evolution rule is responsible for the

observations.

Chaos occurs as a feature of orbits x(t) arising from nonlinear evolution rules which

are systems of differential equations

dx(t)

dt
= F(x(t)) (4.1)

with three or more degrees of freedom x(t) = [x1(t), x2(t), ..., xd(t)] or invertible discrete

time maps1

x(t + 1) = F(x(t)) (4.2)

1Non Invertible maps in one dimension can show chaos as in the example of the logistic map

x → r x(1-x).
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4 Projection of Single Mixture

with two or more degrees of freedom [1]. Degrees of freedom in systems characterized

by ordinary differential equations means the number of required first order autonomous

ordinary differential equations.

In discrete time systems, which are described by maps x(t) → F(x(t))=x(t+1), the

number of degrees of freedom is the same as the number of the components in the

state vector x(t). The requirement for a minimum size of state space to realize chaos

is geometric. For differential equations in the plane (d=2) it has been known for a long

time that only fixed points (time independent solutions) or limit cycles (periodic orbits)

are possible. Chaos, as a property of the orbits x(t), manifest itself as complex time

traces with continuous, broadband Fourier spectra, nonperiodic motion and exponential

sensitivity to small changes in the orbit.

As a class of observable signals x(t), chaos lies logically between:

1. the well studied domain of predictable, regular, or quasi-periodic signals which

have been the mainstay of signal processors for decades, and

2. the totally irregular stochastic signals we call “noise” and which are completely

unpredictable.

With conventional linear tools such as Fourier transforms, chaos looks like “noise”, but

chaos has structure in an appropriate state or phase space.

That structure means there are numerous potential engineering applications of sources

of chaotic time series which can take advantage of the structure to predict and control

those sources.

One important insight into dynamical systems is the role played by information the-

ory. There is an intuitive notion that a dynamical system that has chaotic behavior is

precisely a realization of Shannon’s concept of an ergodic information source [1].

4.4 Observed Chaos

From the point of view of extracting quantitative information from observations of

chaotic systems, the characteristic feature just outlined in the previous section, pose

an interesting challenge to the observer. First of all, it is typical to observe only one
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or at best a few of the dynamical variables which govern the behavior of the system of

interest.

How are we to go from scalar to univariate observations to the multivariate state or

phase space which is required for chaotic motions to occur in the first place?

To address this we focus our attention on discrete time maps. This is really no restric-

tion as in some sense all analysis of physical systems takes place in discrete time: we

never sample anything continuously. If we sample a scalar signal s(t) at time intervals

τs starting at some time t0, then our data is actually of the form s(n) = s(t0+n τs),

and the evolution we observe takes us from s(k) to s(k+1).

We can represent continuous flows

dx(t)

dt
= F(x(t)) (4.3)

as finitely sampled evolution

x(t0 + (n + 1)τs) ≈ x(t0 + nτs) + τsF(x(t0 + nτs)) (4.4)

So the observations take

s(t0 + kτs) → s(t0 + (k + 1)τs), (4.5)

s(k) → s(k + 1)

4.5 Reconstructing Phase Space or State Space

The answer to the question how to go from scalar observation s(k) = s(t0+kτs) to

multivariate phase space is contained in the geometric theorem called the embedding

theorem attributed to Takens and Mañé [1].

Suppose we have a dynamical system x(t) → F(x(t))=x(t+1), where x(t) phase space

is multidimensional. The theorem tells us that if we are able to observe a single scalar

quantity h(.), of some vector function of the dynamical variables g(x(n)), then the

geometric structure of the multivariate dynamics can be unfolded from this set of

scalar measurements h(g(x(n))) in a space made out of new vectors with components

consisting of h(.) applied to powers of g(x(n)). These vectors

y(n) = [h(x(n)), h(gτ1(x(n))), h(gτ2(x(n))), ..., h(gτd−1(x(n)))] (4.6)
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define motion in a d-dimensional Euclidian space.

With quite general conditions of smoothness on the functions h(.) and g(x) [], it

is shown that if d is large enough, then many important properties of the unknown

multivariate signal x(n) at the source of the observed chaos are reproduced without

ambiguity in the new space of vectors y(n).

In particular, it is shown that the sequential order of the points y(n) → y(n+1),

namely, the evolution in time, follows that of the unknown dynamics x(n) → x(n+1),

assures the deterministic behavior of the substitute representation of this dynamics

y(n) → y(n+1). The integer dimension of the original space need not be the same as

the integer dimension of the reconstructed space.

The vector y(n) is designed to assure that errors in the sequential order which might

occur during the projection from the evolution in the original x(n) space down to the

scalar space h(g(x(n))) are undone. Such errors result if two points quite far apart in

the original space were projected near each other along the axis of scalar observations.

This false neighborliness of observations in h(g(x(n))) can arise from projection from

a higher dimensional space. It has nothing to do with closeness due to dynamics.

Further, such an error would be mistaken for some kind of “random” behavior as the

deterministic sequence of phase space locations along a true orbit would be interrupted

by false neighbors resulting from the projection.

To implement the general theorem any smooth choice for h(.) and g(x) is possible [].

We focus our attention to a choice that is easy to utilize directly from observed data.

One uses for the general scalar function h(.) the observed scalar variable s(n)

h(x(n)) = s(n) (4.7)

and for the general function g(x), we choose the operation which takes some initial

vector x to that vector one time delay τs later so the τ th
k power of g(x) is

gτk(x(n)) = x(n + τk) = x(t0 + (n + τk)τs) (4.8)

then the components of y(n) take the form:

y(n) = [s(n), s(n + τ1), s(n + τ2), ..., s(n + τd−1)] (4.9)
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If we make the further useful choice τk = kτ , that is, time lags which are integer

multiples of a common lag τ , then the data vectors y(n) are:

y(n) = [s(n), s(n + τ), s(n + 2τ), ..., s(n + (d − 1)τ)] (4.10)

composed simply of time lags of the observation at time n × τs. These y(n) replace the

scalar data measurements s(n) with data vectors in an Euclidian d-dimensional space

in which the invariant aspects of the sequence of points x(n) are captured with no loss

of information about the properties of the original system. The new space is related to

the original space of the x(n) by smooth, differentiable transformations.

The basic idea of this construction of a new state space is that if one has an orbit - a

time ordered sequence of points in some multivariate space observed at time differences

τs - seen projected onto a single axis h(.) or s(n) on which the measurements happen to

be made, then the orbit, which we presume came from an autonomous set of equations,

may have overlaps with itself in the variables s(n) - by virtue of the projection, not

from the dynamics. We know there is no overlap of the orbit with itself in the true

set of state variables by the uniqueness theorems about the solutions of autonomous

equations. Unfortunately, we don’t know these true state variables, having observed

only s(n). If we can unfold the orbit by providing independent coordinates for a multi-

dimensional space made out of the observations, then we can undo the overlaps coming

from the projection and recover orbits which are not ambiguous.

The reconstruction theorem recognizes that even in the case where the motion is

along a one-dimensional curve, it is possible for the orbit to overlap in points when

one uses two-dimensional space to view it. If one goes to a three-dimensional space

[s(n),s(n+τ),s(n+2τ)], then any such remaining points of overlap are undone. The the-

orem notes that if the motion lies on a set of dimension dA, which could be fractional,

then choosing the integer dimension d of the unfolding space so d>dA is sufficient to

undo all overlaps and make the orbit unambiguous.

It is important to note that once one has enough coordinates to unfold any overlaps due

to projection, further coordinates are not needed: they serve no purpose in revealing

the properties of the dynamics. The embedding theorem [70] works in principle for any

value of τ once the dimension is large enough as long as one has an infinite amount of

noise free data. This is never going to happen to anyone. This means some thought

must be given as to how one may choose both the time delay τ and the embedding
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dimension d when one is presented with real, finite length and possibly contaminated

data. In the next sections, we will describe some methods for the choice of the time

delay and the embedding dimension.

4.6 Choosing Time Delays

The statement of the embedding theorem [70] that any time lag will be accetable is

not useful for extracting information from the data. If we choose τ too small, then the

coordinates x(n+jτ) and x(n+(j+1)τ) will be so close to each other in numerical value

that we cannot distinguish from each other. From any practical point of view, they

have not provided us with two independent coordinates. Similarly, if τ is too large, then

x(n + jτ) and x(n + (j + 1)τ) are completely independent of each other in statistical

sense and the projection of an orbit on the attractor is onto two totally unrelated

directions. The origin of this statistical independence is the ubiquitous instability in

chaotic systems, which results in any snall numerical or measurement error’s being

amplified exponentially in time. A criterion for an intermediate choice is called for,

and it cannot come from the embedding theorem itself or considerations based on it,

since the theorem works for almost any value of τ . Now, we introduce two possible

methods for estimating τ .

4.6.1 Cross Correlation

One’s first thought might be to consider the values of x(n) as chosen from some un-

known distribution. Then computing the linear autocorrelation function [1]:

CL(τ) =
1
N

∑N
m=1 [x(m + τ) − x̄ ] [x(m) − x̄ ]

1
N

∑N
m=1 [x(m) − x̄ ]2

(4.11)

where

x̄ =
1

N

N
∑

m=1

x(m) (4.12)

and looking for that time lag where CL(τ) first passes through zero, would give us a

good hint of a choice for τ .

Indeed, this does give a good hint. It tells us, however, about the independence of the

coordinates only in a linear fashion. To see this, recall that if we want to know whether
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two measurements x(n) and x(n+τ) depend linearly on each other on the average over

the observations, we find that their connection, in a least-squares sense, is through the

correlation matrix just given.

That is, if we assume that the values of x(n) and x(n + τ) are connected by

[x(n + τ) − x̄ ] = CL(τ) [x(n) − x̄ ] (4.13)

then minimizing

N
∑

n=1

{x(n + τ) − x̄ − CL(τ) [x(n) − x̄ ]}2 (4.14)

with respect to CL(τ), immediately leads to the definition of CL(τ) above.

Choosing τ to be the first zero of CL(τ) would then, on average over the observations,

make x(n) and x(n + τ) linearly independent. What this may have to do with their

nonlinear dependence or their utility as coordinates for a nonlinear system is not ad-

dressed by all this. Since we are looking for a prescription for choosing τ and this

prescription must come from considerations beyond those in the embedding theorem,

linear independence of coordinates may serve, but we prefer another point of view,

one that stresses an important aspect of chaotic behavior - namely the viewpoint of

information theory [27] - and leads to a nonlinear notion of independence.

4.6.2 Average Mutual Information

The second method that we introduce for choosing the time delay is based on the

average mutual information [27]. The mutual information between measurement ai

drawn from a set A={ai} and bj drawn from a set B= {bj} is the amountlearned by

the measurement of a i about the measurement of bj. In bits, it is

log2

[

PAB(ai, bj)

PA(ai)PB(bj)

]

(4.15)

where PAB(a, b) is the joint probability density for measurements A and B. PA(a)

and PB(b) are the individual probability densities for the measurements of A and B. If

the measurements of a value from A is completely independent from a measurement of

a value from B, then PAB(a, b) factorizes: PAB(a, b) = PA(a)PB(b) and the amount of

information between the measurements, the mutual information, is zero, as it should
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be. The average over all measurements of this information statistic, called the average

mutual information between A and B measurements, is:

IAB =
∑

ai,bj

PAB(ai, bj) log2

[

PAB(ai, bj)

PA(ai)PB(bj)

]

(4.16)

To place this abstract definition in the context of observations from a physical system

x (i), we think of the sets of measurements x i as the A set and of the measurement a time

lag τ later, x i+τ , as the B set. The average mutual information between observations

at i and i+τ , namely , the average amount of information about x i+τ we have when

we make an observation x i, is then

I(τ) =
N

∑

i=1

P (xi, xi+τ ) log2

[

P (xi, xt+τ )

P (xi)P (xi+τ )

]

(4.17)

and I(τ) ≥ 0.

The average mutual information can be considered a kind of generalization to the

nonlinear world from the correlation function in the linear world. It is the average

over the data or equivalently the attractor of a special statistic, namely the mutual

information, while the correlation function is the average over a quadratic polynomial

statistic.

Now we have to decide what property of I(τ) we should select, in order to establish

which among the various values of I(τ) we should use in making our data vectors y i. If

τ is too small, the measurements x(n) and x(n+ τ) tells us so much about one another

that we need not make both measurements. If τ is large, then I(τ) will approach zero

and nothing connects x(n) and x(n + τ), so this is not useful.

Fraser and Swinney [27] suggest as a prescription that we choose that τm where the

first minimum of I(τ) occurs as a useful selection of time lag τ . The lag τm is selected

as a time lag where the measurements are somewhat independent, but not statistically

independent.

Recognizing that this is a prescription, one may well ask what to suggest if the average

mutual information ha no minimum. This occurs when one is dealing with maps, as

the I(τ) curve from x(n) data taken from the Hénon map [1].

This does not mean that I(τ) loses its role as a good grounds for selection of τ , but

only that the first minimum criterion needs to be replaced by something representing

good sense. Without much grounds beyond intuition, we use τ = 1 or 2 if we know
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the data comes from a map, or choose τ such that I(τ)/I(0) ≈ 1
5
. This is clearly an

attempt to choose a useful τ in which some nonlinear decorrelation is at work, but not

too much. Since this is prescriptive, one may compare it to the prescription used in

linear dynamics of choosing a time lag τ such that CL(τ) = 0 for the first time.

Recognizing, as we have stressed, that the choice of τ is prescriptive, we agree with the

caution that “we do not believe that there exists a unique optimal choice of time lag”.

Nonetheless, it is useful to have a general rule of thumb as a guide to a delay τ that is

workable; seeking the optimum is likely to be quite unrewarding.

4.7 Choosing the Embedding Dimension

The goal of the reconstruction theorem [70] is to provide a Euclidean space Rd large

enough so that the set of points of dimension dA can be unfolded without ambiguity.

This means that if two points of the set lie close to each other in some dimension d

they should do so because it is a property of the set of points, not of the small value

of d in which the set is being viewed.

The simplest example is that of a sine wave s(t) = A sin(t). Seen in d = 1 (the s(t)

space), as in figure 4.1, this oscillates between ±A. Two points on this line which are

Figure 4.1: The phase space structure of a sine wave seen in one dimension x(t) where

x(t) = 2sin(t).

close in the sense of Euclidean or other distance may have quite different values of ṡ(t).

So two “close” points in d = 1 may be moving in opposite directions along the single
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spatial axis chosen for viewing the dynamics.

Seen in a two dimensional space [s(t), s(t + Tτs)], as in figure 4.2, the ambiguity of

velocity of the points is resolved and the sine wave is seen to be motion on a figure

topologically equivalent to a circle. It is generically an ellipse whose shape depends on

Figure 4.2: The phase space structure of a sine wave seen in two dimensions [x(n), x(n+

2)] where x(t) = 1sin(t).

the value of T . The overlap of orbit points due to projection onto the one - dimensional

axis is undone by the creation of the two - dimensional space.

If we procced further and look at the sine wave in three dimensions, as in figure 4.3,

no further unfolding occurs and we see the sine wave as another ellipse.

It is clear that once we have unfolded without ambiguity the geometric figure on which

the orbit moves, no further unfolding will occur. When all ambiguities are resolved,

one says that the space Rd provides an embedding of the attractor.

An equivalent way to look at the embedding theorem is to think of the attractor

as comprised of orbits from a system of very high dimension. The attractor, which

has finite dA, lies in a very small part of the whole phase space and we can hope to

provide a projection of the whole space down to a subspace in which the attractor can

be faithfully captured. The embedding theorem provides a sufficient condition from

geometrical considerations alone for choosing a dimension dE large enough so that the

projection is good - i.e. without orbit crossings of dimension zero, one, two, etc.

If we work with a dimension dE larger than necessary, two problems will arise:

1. many of the computations, needed for extracting interesting properties from the
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Figure 4.3: The phase space structure of a sine wave seen in three dimensions

[x(n), x(n + 2), x(n + 4)] where x(t) = 1sin(t).

data, require searches and other operation in Rd whose computational cost rises

exponentially with d;

2. in the presence of “noise” or other high-dimensional contamination of our obser-

vations, the “extra” dimensions are not populated by dynamics, already captured

by a smaller dimension, but entirely by the contaminating signal.

In too large an embedding space one is unnecessarily spending time working around

aspects of a bad representation of the observations which are solely filled with “noise”.

This realization has motivated the search for analysis tools that will identify a necessary

embedding dimension from the data itself. In the next section we will describe some

methods for this analysis.

4.7.1 Singular Value Analysis

If our measurements y(n) are composed of the signal from the dynamical system we

wish to study plus some contamination from other systems, then in absence of specific

information about the contamination it is plausible to assume it to be rather high

dimensional and to assume that it will fill more or less uniformly any few dimensional

space we choose for our considerations.

Let us call the embedding dimension necessary to unfold the dynamics we seek dN . If
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we work in dE > dN , then in an heuristic sense dE − dN dimensions of the space are

being populated by contamination alone. If we think of the observations embedded in

dE as composed of a true signal yT (n) plus some contamination c: y(n) = yT (n)+c(n)

then the dE × dE sample covariance matrix:

COV =
1

N

N
∑

n=1

[y(n) − ȳ][y(n) − ȳ]T (4.18)

with ȳ = 1
N

∑N
n=1 y(n),

will, again in an heuristic sense, have dN eigenvalues arising from the variation of

the (slightly contaminated) real signal about its mean and dE − dN eigenvalues which

represent the “noise”. If the contamination is quite high dimensional, it seems plausible

to think of it filling these extra dE−dN dimensions in some uniform manner, so perhaps

one could expect the unwelcome dE − dN eigenvalues, representing the power in the

extra dimensions, to be nearly equal. If this were the case, then by looking at the

eigenvalues or equivalently the singular values of COV, we might hope to find a “noise

floor” at which the eigenvalue spectrum turned over and became flat. There are dE

eigenvalues and the one where the floor is reached may be taken as dN .

This analysis can also be carried out locally [], which means that the covariance matrix

is over a neighborhood of the NB nearest neighbors y(r)(n) of any given data point

y(n):

COV (n) =
1

NB

NB
∑

r=1

[y(r)(n) − ȳ(n)][y(r)(n) − ȳ(n)]T (4.19)

with ȳ = 1
NB

∑NB

r=1 y(r)(n).

The global singular - value analysis has the attractive feature of being easy to imple-

ment, but it has the downside of being hard to interpret. It gives a linear hin as to

the number of active degrees of freedom, but it can be misleading because it does not

distinguish two process with nearly the same Fourier spectrum.

4.7.2 False Nearest Neighbors

The False Nearest Neighbors Method [53] for determining dN comes from asking, di-

rectly of the data, the basic question addressed in the embedding theorem. When has

one eliminated false crossings of the orbit with itself which arose by virtue of having
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projected the attractor into a too low dimensional space?

Answer to this question have been discussed in various ways. Each of the ways has

addressed the problem of determining when points in dimension d are neighbors of one

another by virtue of the projection into too low a dimension.

By examining this question in dimension one, then dimension two, etc. until there are

no incorrect or false neighbors remaining, one should be able to establish, from geo-

metrical considerations alone, a value for the necessary embedding dimension dE = dN .

We describe the implementation of Kennel et al [53].

In dimension d each vector

y(k) = [x(k), x(k + τ), ..., x(k + (d − 1)τ)] (4.20)

has a nearest neighbor yNN(k) with nearness in the sense of some distance function.

Euclidean distance is natural and works well. The Euclidean distance in dimension d

between y(k) and yNN(k), that we denote with Rd(k)

(4.21)

Rd(k)2 =
[

x(k) − xNN(k)
]2

+
[

x(k + τ) − xNN(k + τ)
]2

+ ... (4.22)

+
[

x(k + (d − 1)τ) − xNN(k + (d − 1)τ)
]2

Rd(k) is presumably small when one has a lot of data and for a data set with N entries,

this distance is more or less of order 1/N1/d. In dimension d + 1 this nearest neighbor

distance is changed due ti the (d + 1)st coordinates x(k + dτ) e xNN(k + dτ) to

Rd+1(k)2 = Rd(k)2 +
[

x(k + dτ) − xNN(k + dτ)
]2

(4.23)

If Rd+1(k) is large, we can presume it is because the near neighborliness of the two points

being compared is ude to the projection from some higher dimensional attractor down

to dimension d. By going from dimension d to dimension d + 1, we have “unprojected”

these two points away from each other. Some threshold size RT is required to decide

when neighbors are false. Then if
[

x(k + dτ) − xNN(k + dτ)
]2

Rd(k)
> Rt (4.24)

the nearest neighbors at time point k are declared false.

The criterion stated so far for false nearest neighbors has a subtle defect. If one applies
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it to data from a very high dimensional random number generator, it indicates that this

set of observations can be embedded in a small dimension. If one increase the number

of points analyzed, the apparent embedding dimension rises. The problem is that when

one tries to populate “uniformly” (as “noise” will try to do) an object in d dimensions

with a fixed number of points, the points must move further and further apart as d

increases because most of the volume of the object us at large distances. If we had

an infinite quantity of data, there would be no problem, but with finite quantities of

data eventually all points have “near neighbors” that do not move apart very much as

dimension is increased.

4.7.3 Cao’s Method

The method due to Cao [13] overcomes the shortcomings of this basic methods and

in particular the problem of threshold selection of the false neighbor method. Infact

similar to the idea of the false neighbor method [53], we define:

a(i,m) =

∥

∥yi(m + 1) − yn(i,m)(m + 1)
∥

∥

∥

∥yi(m) − yn(i,m)(m)
∥

∥

, for i = 1, 2, ..., N − (m − 1)τ (4.25)

where ‖.‖ is some measurement of the Euclidian distance, usually the maximum norm,

y i is the i -th reconstructed vector with embedding dimension m+1, n(i,m) (1≤ n(i,m)

≤ N-mτ) is an integer such that yn(i,m)(m) is the nearest neighbor of y i(m) in the m-

dimensional reconstructed phase space in the sense of distance ‖.‖ we defined above.

Notes that n(i,m) depends on i and m, and the n(i,m) in the numerator in equation

4.25 is tha same as that in the denominator.

If m is qualified as an embedding dimension by the embedding theorem [70], then any

two points which stay close in the m-dimensional reconstructed space will be close

in the (m+1)-dimensional reconstructed space. Such a pair of points are called true

neighbors, otherwise they are called false neighbors. Perfect embedding means that no

false neighbors exist. This is the idea of the false neighbor method in [53], where the

authors diagnosed a false neighbor by seeing whether their (slightly different) version

of a(i,m) is larger than some given threshold value. The problem is how to choose this

threshold value. To avoid this problem, Cao [13] in his method define the following
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quantity, i.e. the mean value of all a(i,m),

E(m) =
1

N − mτ

N−mτ
∑

i=1

a(i,m) (4.26)

E (m) is dependent only on the dimension m and the lag τ . To investigate its variation

from m to m+1, we define

E1(m) =
E(m + 1)

E(m)
(4.27)

We found that E1(m) stops changing when m is greater than some value m0 if the time

series comes from an attractor. So m0+1 is the minimum embedding dimension we look

for. In [13], it is defined another quantity which is useful to distinguish deterministic

signals from stochastic signals. Let

E∗(m) =
1

N − mτ

N−mτ
∑

i=1

∣

∣xi+mτ − xn(i,m)+mτ

∣

∣ (4.28)

From this it is possible to define

E2(m) =
E∗(m + 1)

E∗(m)
(4.29)

The introduction of E2(m) is justified by the fact that for time series data from a

random set of numbers, E1(m), in principle, will never attain a saturation value as m

increases. But in practical computations, it is difficult to resolve whether the E1(m)

is slowly increasing or has stopped changing if m is sufficiently large. To solve this

problem, it is possible to consider E2(m). For random data, since the future values

are independent of the past values, E2(m) will be equal to one for any m. However for

deterministic data, E2(m) is certainly related to m, as a result, it cannot be a constant

for all m.

It is recommended calculating both E1(m) and E2(m) for determining the minimum

embedding dimension of a scalar time series and to distinguish deterministic data from

random data.

4.8 Choosing T and dE

The dertemination of the appropriate phase space in which to analyze chaotic signals

is one of the first tasks, and certainly a primary task, for all who wish to work with
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observed data in the absence of detailed knowledge of the system dynamics.

To determine the time lag to be used in an embedding, one may always wish to use

something nonlinear, such as average mutual information, but the data may mitigate

against that. If one has sampled a map, achieved stroboscopically or taken as a Poincaré

section, there is typically no minimum in the average mutual information function. The

reason is quite simple: the time between samples τs is so long that the orbit has become

decorrelated, in an information - theoretic sense.

For solving this problem there are two opportunity, the first, if it is possible, is to

resample the data. The second is to turn to the autocorrelation function of the time

series to find at least an estimate of what one can reliably use for a time delay in state-

space reconstruction. While the criterion is linear, it may not be totally misleading to

use the first zero crossing of the autocorrelation function as a useful time lag. When

the average mutual information does have a first minimum, it is usually more or less

the same order, in units of τS, as the first zero crossing of the autocorrelation, so one

is not likely to be terribly misled by this tactic.

Once a time delay has been agreed upon, the embedding dimension is the next order

of business. In [1], the authors state that is better to work with algorithms that

are geometric rather then derivative from the data. Computing correlation functions

Cq(r) not only requires a large data set, it also degrades rapidly when the data are

contaminated. If one wishes to know whether to use dimension d or d+1, then geometric

methods will allow a way to start the selection. In any case, robustness seems to come

with methods that do not require precise determination of distances between points on

the strange attractor.

4.9 ICA on a single mixture by projection

As mentioned in the introduction of this chapter, in [42] the authors developed a

methodology for the extraction of multisource brain activity using only single channel

recordings of electromagnetic (EM) brain signals. At the hearth of the method is

dynamical embedding, where first an appropriate embedding matrix is constructed out

of a series of delay vectors from the measured signal. The approach considered a SVD

to accomplish phase space reconstruction and a ICA based approach to separate the
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signals.

In our case we use the methods introduced to analyze the phase space and the FatICA

algorithm [38] to separate the signals. The FastICA is a fixed-point algorithm developed

by Hyvärinen to perform the BSS using the negentropy information [38].

In this case the approach is composed by two steps.

In the first step we determine the embedding dimension using the Cao’s method and

the time lag using the average mutual information to obtain the time delayed mixtures.

In the second step, obtained the matrix of time delayed mixtures as shown in equation

4.30

x1, x2, . . . , xN−(m−1)τ

x1+τ , x2+τ , . . . , xN−(m−1)τ+τ

...
...

...
...

x1+(m−1)τ , x2+(m−1)τ , . . . , xN

(4.30)

we apply the FastICA approach on this.

4.10 Conclusions

In this chapter, we first introduced some methodologies for the analysis of the embed-

ding dimension of a time series. We described the most used method for the recovering

of the time delay and the embedding dimension of the time series. We gave the de-

tail of this method and how it is possible to use them in the case of the independent

component analysis on single channel. We must note that the projection given from

the application of the dynamical system theory gives us a matrix of vectors, where

each vector is a shifted version of the original signal, where the time delay and the

embedding dimension determine that shift.

Applying FastICA on that vector gives us the possibility to overcome the single channel

mixture.

We made several experiments using that method applying it on Musical and Gravita-

tional data. Detail of the experiments are shown in the nexts chapters.

79



Chapter 5

ICA on Single Mixture: a Non Linear

Principal Component Analysis

method.

In the previous chapter, we described the methodologies for the analysis of

a time series. We explained the detail of some methods for the extraction

from the data of two parameters: a time delay and an embedding dimension.

In this chapter, we explain a new model for the separation of independent

component analysis on single mixture based on the integration of a Non

Linear Principal Component Analysis neural network, with the parameters

found by the time series analysis.

5.1 Introduction

Principal Component Analysis (PCA) is a well-known, widely used statistical tech-

nique. Essentially, the same basic technique is used in several areas under different

names, such as Karhunen - Loeve transform or expansion, Hotelling transform and

signal subspace or eigenstructure approach.

In pattern recognition, PCA is used in various forms for optimal feature extraction

and data compression [46]. In image processing, PCA defines the Hotelling or KL

transform, that is optimal in image data compression. In signal processing, a useful

characterization of signals is to assume that they roughly lie in the signal subspace de-
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fined by PCA. Several modern methods of signal modeling, spectrum estimation and

array processing are based on this concept.

5.2 Basic Mathemathics

Let x be an L-dimensional data vector coming from some statistical distribution cen-

tralize to zero: E{x} = 0. The i-th principal component xTc(i) of x is defined by the

normalized eigenvector c(i) of the data covariance matrix C = E{xxT} associated with

the i-th largest eigenvalue λ(i). The subspace spanned by the principal eigenvectors

c(1), ..., c(M) (M < L) is called the PCA subspace (of dimensionality M).

PCA networks are neural realizations of PCA in which th weight vectors w(i) of the

neurons or the weight matrix W = [w(1), ...,w(M)] converge to the principal eigen-

vectors c(i) or to the PCA subspace during the learning phase.

It is well known that standard PCA emerges as the optimal solution to several different

information representation problems. These include:

1. maximization of linearly transforme variances E{[w(i)Tx]2} or outputs of a linear

network under orthonormality constraints (WWT = I);

2. minimization of the mean-square representation error E{‖x − x̂‖2}, when the

input data x are approximated using a lower dimensional linear subspace x̂ =

WWTx;

3. uncorrelatedness of outputs w(i)Tx of different neurons after orthonormal trans-

form (WWT = I);

4. minimization of representation entropy.

Derivation of the optimal PCA solutions with the required assumptions and constraint

conditions can be found in several paper [57].

In the next section, we briefly consider the relative merits and shortcomings of linear

and nonlinear PCA networks and algorithms. Various robust and nonlinear extensions

of neural PCA are introduced by generalizing each of the above mentioned quadratic

optimization criteria, which lead to standard PCA solution [51]. Such an approach
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gives a sound mathematical foundation to the generalizations and helps to understand

the properties of the corresponding learning algorithms. The main attention is devoted

to the first two criterions, for which we derive several new learning algorithms.

Another typical approach to nonlinear PCA has been just to insert a nonlinearity

somewhere in a PCA network and see what happens, or to propose some other heuristic

modification. The result of such heuristic algorithms are more difficult to interpret. A

third approach is to start from some fixed neural network structure and study what

kind of algorithms can be realized using it. Sometimes this approach lead to the same

learning algorithms that are obtained from suitable optimization criteria.

5.3 Linear and Non Linear Neural PCA

It is now well known that relatively simple, neurobiologically justified Hebbian-type

learning rules can provide PCA. This, togheter with the usefulness and many appli-

cations of PCA, has prompted a lot of interest in various realizations of PCA [59].

However, PCA networks and learning algorithms have some limitations that diminish

their attractiveness:

1. Standard PCA networks are able to realize only linear input-output mappings.

2. The eigenvectors needed in standard PCA can be computed efficiently using

well-known numerical methods. Gradient type neural PCA learning algorithms

converge relatively slowly and achieving a good accuracy requires an ecessive

number of iterations in large problems.

3. Principal Components are defined solely by the data covariances (or correlations).

These second-order statistics characterize completely only Gaussian data and

stationary, linear processing operations.

4. PCA networks cannot usually separate independent subsignals from their linear

mixture.

If a PCA-type network contains nonlinearities, the situation becomes much more fa-

vorable for a neural realization.
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First, the input-output mapping becomes generally nonlinear, which is a major argu-

ment for using neural networks. Nonlinear processing of the data is often more efficient,

and the properties of standard linear methods have been explored thoroughly.

Second, neural algorithms become much more competitive or may be the only possi-

bility for heuristic learning principles. In optimizing nonquadratic criteria, one must

resort to iterative algorithms anyway, because efficient closed form solutions are usually

not available.

The third motivation of using nonlinearities is that they introduce in an implicit way

higher-order statistics into the computations. This can be seen by expanding the non-

linearities into their Taylor series. Higher order statistics, defined by cumulants and

higher than second moments are needed for a good characherization of non-Gaussian

data. There exist several important problems that cannot adequately be solved using

merely second-order statistics.

Fourth, the outputs of standard PCA networks are usually at most mutually uncor-

related but not independent, which would be more desiderable in many cases. In

Karhunen and Joutensalo [50], the authors have demonstrated that adding nonlinear-

ities to a PCA network increases the independence of the outputs, so that the original

signals can sometimes be roughly separated by their mixture. Naturally, nonlinear

PCA type networks have some drawbacks compared to the linear ones. The math-

ematical analysis of the learning algorithms is often inherently difficult, making the

properties of the networks less well understood. The nonlinear learning algorithms are

more complicated and may sometimes be caught more easily in local minima. Adding

nonlinearities to a neural network does not help automatically or in all the problems.

For some nonquadratic criteria the final input - output mapping is still linear, because

the nonlinearities appear in the learning rule only.

Another important characterization of the nonlinear PCA is that the learning algo-

riths are divided into symmetric and hierarchic, in a way quite similar to those for

standard PCA networks. In standard PCA learning algorithms, some kind of hierar-

chy or differentiation is necessary between the learning rules of different neurons to

get the prinicipal components or eigenvectors themselves. The completely symmetric

algorithms yield PCA subspace and some linear combinations of principal components

only. It seems that in nonlinear PCA networks hierarchy is not so important, because
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nonlinearities break the complete symmetry during learning and the outputs of sym-

metric networks become more unique as in the linear case [59, 50].

The learning algorithms derived considering generalizations of the optimization prob-

lems leading to standard PCA can be divided into two classes in another way. We

distinguish between the so-called robust PCA algorithms [51, 23] and nonlinear PCA

algorithms. We define robust PCA so that the criterion to be optimized grows less

than quadratically and the constraint conditions are the same as for the standard PCA

solution, which emerges from the respective quadratic criterion. Typically, the weight

vectors of the neurons are required to be mutually orthonormal. Robust PCA prob-

lems usually lead to mildly nonlinear algorithms, in which the nonlinearities appear at

selected places only. More specifically, at least some of the outputs of the neurons are

still their linear responses y(i) = xTw(i), where w(i) is the weight vector of the ith

neuron. In the nonlinear PCA algorithms all the outputs g [y(i)] of the neurons are

nonlinear functions of the response.

The structure for the nonlinear PCA network is shown in figure 5.1 for the symmetric

Figure 5.1: Architecture of the symmetric network for NLPCA. Feedback connections

(dashed lines) are needed in the learning phase only.

case and in figure 5.2 for the standard hierarchic arrangement. The network contains

input and output layers only. After learning, the feedback connections between out-

puts and inputs shown by dashed lines in the figures are not needed and the network

becomes purely feedforward. The same structure can be used for all the algorithms,
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Figure 5.2: Architecture of the hierarchic network for NLPCA. Feedback connections

(dashed lines) are needed in the learning phase only.

but details of the realization vary.

5.4 Generalization of variance maximization

The standard quadratic problem leading to a PCA solution is one of how to maximize

the output variances E{y(i)2} = E{[w(i)Tx]2} = w(i)TCw(i) of the linear network

under orthonormality constraints.

The number of neurons M is assumed to be less than or equal to the dimension L of

the data vectors x. The maximization problem is not well defined unless the nonran-

dom L-dimensional weight vectors w(i) of the neurons are constrained somehow. In

lack of prior knowledge, orthonormality constraints are the most natural, because they

measure the variances along maximally different directions.

Normally, the ith weight vector w(i) is constrained so that it must have unit norm and

be orthogonal to the weight vector w(j), j = 1, . . . , i−1 of the previous neurons. These

constraints take the mathematical form w(i)Tw(j) = δij, j ≤ i, where the Kronecker

delta δij = 1, for i = j and 0 for i 6= j. The optimal w(i) is then the ith princi-

pal eigenvector c(i) of C and the outputs of the PCA network become the principal

component of the data vectors. The PCA network and the learning algorithms are in
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this case hierarchic. In the following, we refer to this constraint set and case as the

standard hierarchic case.

The respective variance maximization problem can be solved for symmetric orthornor-

mality constraints w(i)Tw(j) = δij, j ≤ i, as well. It is convenient to define the L×M

weight matrix W = [w(1), . . . ,w(M)], for which columns are the weight vectors of

the M neurons. The symmetric orthonormality constraints then become WTW = I,

where I is the unit matrix. The optimal solution is now given by any orthonormal basis

spanning the PCA and is thus not unique. This version of the variance maximization

problem leads to PCA subspace networks and learning rules. We refer to this case and

constraint set as the standard symmetric case.

Consider now generalization of the variance maximization problem for robust PCA.

Instead of using the standard mean - square value, we can maximize a more general

expecatation E{f [xTw(i)]} of the response xTw(i) of the ith neuron. The function

f(t) is assumed to be a valid cost function that grows less than quadratically, at least

for large values of t. More specifically, we assume that f(t) is even, nonnegative,

continuously differentiable almost everywhere and f(t) ≤ t2/2 for large values of |t|.
Furthermore, its only minimum is attained at t = 0 and f(t1) ≤ f(t2) if |t1| < |t2|.
Some of these assumptions are not absolutely necessary. Examples of such a function

are f(t) = ln cosh(t) and f(t) = |t| [51].

The criterion to be maximized is then for each neuron weight vector w(i), i = 1, . . . ,M

of the form

J1 [w(i)] = E
{

f
[

xTw(i)
]}

+

I(i)
∑

j=1

λij

[

w(i)Tw(j) − δij

]

(5.1)

Here the summation imposes via the Lagrange multipliers λij = λji the necessary

orthonormality constraints w(i)Tw(j) = δij. Both the hierarchic and symmetric prob-

lems can be discussed under the same general criterion 5.1. In the standard symmetric

case, the upper bound of the summation index is I(i) = M for all i = 1, . . . ,M . In the

standard hierarchic case I(i) = i; the optimal weight vector of the ith neuron defines

then the robust counterpart of the ith principal eigenvector c(i). One advantage in

using hierarchic networks is that the order of the neurons could be permuted.

However the two basic cases described above are the most relevant ones and we con-

centrate on them in the following.
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The gradient of J1 [w(i)] with respecto to w(i) is

h(i) =
∂J1 (w(i))

∂w(i)
= (5.2)

= E
{

xg
[

xTw(i)
]}

+ 2λijw(i) +

I(i)
∑

j=1,j 6=i

λijw(j)

where g(·) is the derivative df(·)/dt of f(·).
At the optimum, the gradients must vanish for i = 1, . . . ,M . Differentiation with

respect to the Lagrange multipliers yields the orthonormality constraints

w(i)Tw(j) = δij, j = 1, . . . , I(i) (5.3)

which must also be satisfied at the optimum. The optimal values of the Lagrange

multipliers can be determined by multiplying equation 5.3 by w(j)T , j = 1, . . . , I(i),

from the left, and equating the result to zero. Taking into account the equation 5.3, this

yields to λij = −w(j)T E
{

xg
[

xTw(i)
]}

for i 6= j and λii = −1
2
w(i)T E

{

xg
[

xTw(i)
]}

.

Inserting these values into equation 5.3, we get

h(i) =



I −
I(i)
∑

j=1

w(j)w(j)T



E
{

xg
[

xTw(i)
]}

(5.4)

A practical stochastic gradient algorithm for maximizing equation 5.1 is now obtained

by inserting the estimate hk(i) of the gradient vector in equation 5.4 at step k into the

update formula

wk+1(i) = wk(i) + µkhk(i) (5.5)

Here the µk is the gain parameter.

In the practice, we use the standard instantaneous gradient estimates. They are ob-

tained simply by omitting the expectations and using instead of them the instantaneous

values of the quantities in question.

The final algorithm thus becomes

wk+1(i) = wk(i) + µk



I −
I(i)
∑

j=1

wk(j)wk(j)
T



xkg
[

xT
k wk(i)

]

(5.6)

The assumptions made earlier on the cost function f(·) imply that its derivative g(·)
appearing in equation 5.6 should be an odd, nondecreasing (often monotonically grow-

ing) function. For stability reason, it is at least necessary to assume that g(t) ≤ 0, for
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t < 0 and g(t) ≥ 0, for t > 0 [59].

Defining the instantaneous representation error vector

ek(i) = xk −
I(i)
∑

j=1

[

xT
k wk(j)

]

wk(j) = xk −
I(i)
∑

j=1

yk(j)wk(j) (5.7)

the algorithm in equation 5.6 can be written in a simpler form

wk+1(i) = wk(i) + µkg [yk(i)] ek(i) (5.8)

From equation 5.7 and equation 5.8, one can easily see that no matrix multiplications

are needed in the actual realization.

In the symmetric case I(i) = M , for i = 1, . . . ,M , the error vector ek(i) becomes the

same ek for all the neurons. Then equation 5.6 can be expressed compactly in the

matrix form

Wk+1(i) = Wk + µk

[

I − WkW
T
k

]

xkg
[

xT
k Wk

]

= Wk + µkekg(yT
k ) (5.9)

where yk = WT
k xk is the instantaneous response vector. The function g(·) is applied

separately to each component of its argument vector. The algorithm in equation 5.9

coincides with the well-known Oja’s PCA subspace rule [22, 57, 51] in the linear special

case g(t) = t.

Otherwise, equation 5.9 defines a robust generalization of Oja’s rule that was first

proposed quite heuristically at the end of the paper by Oja et al. [59].

In the standard hierachic case I(i) = i, so equation 5.9 can be written in the matrix

form

Wk+1(i) = Wk + µk

{

xkg
(

yT
k

)

− WkUT
[

ykg(yT
k )

]}

(5.10)

where the upper triangular operator UT sets the elements of its argument matrix to

zero below the diagonal. In the linear special case g(t) = t, equation 5.10 coincides

exactly with the well-known GHA algorithm [22, 57, 51] proposed originally by Sanger

[66, 65]. Otherwise, equation 5.10 defines a robust generalization of the GHA algo-

rithm. Another, more practical formulation of equation 5.10 is obtained by noting

that the error vector in equation 5.7 can be expressed in the standard hierarchic case

recursively as ek(i) = ek(i − 1) − yk(i)wk(i), with ek(0) = xk. This show that robust

GHA can be implemented locally in a similar manner as standard GHA [65].
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5 Non Linear PCA on Single Mixture

5.5 Independent component analysis using non linear

PCA network

In this section, we will describe how it is possible to obtain the standard ICA problem

starting from a non linear PCA network.

We can consider a single mixture data vector as

xk = (x [k] , x [k + 1] , . . . , x [k + L − 1])T (5.11)

formed of L successive samples. We note that L is the number of the neural network

(NN) inputs. We suppose to find the p principal eigenvectors u1,u2, . . . ,up correp-

sonding to the p largest eigenvalues λ1 ≥ . . . ≥ λp (number of outputs in the NN). In

other words, we have

Rxxui = λiui (5.12)

The autocorrelation matrix on the data vectors xk of equation 5.11 is

Rxx =
1

K

K−1
∑

k=1

xkx
H
k (5.13)

Now, inserting equation 4.11 into equation 5.12 yelds

λiui ≈
1

K

K−1
∑

k=1

(

xH
k ui

)

xk (5.14)

Thus, the true eigenvectors are approximately some linear combinations of the data

vectors xk [49]. So it is possible to write equation 5.14 as

vi =
K−1
∑

k=1

gikxk (5.15)

where i = 0, . . . , p − 1. In matrix form, we can also write

V = GX (5.16)
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5 Non Linear PCA on Single Mixture

where V is a p× (L− 1) matrix, G is a p×K mixing matrix and X is the data vector.

In details we have that

vi = gi × x1 (5.17)

x2

. . .

xK

(5.18)

where we have that in our case xj = (as1
j + bs2

j) and where the source signals are

sn
j = (sn[j], sn[j + 1], . . . , sn[j + L − 1])T . We can note that also in this case and it is

clearer from equation 5.16, we obtain the standard ICA problem.

5.6 Use of the embedding dimension

It is important to note that in the approach proposed in this work, we made an inte-

gration between the described model of non linear PCA network and the embedding

dimension.

In fact, in standard ICA, each source can be separated and reconstructed in the obser-

vation domain through the operation

xsi
= A(:,i)W(i,:)x (5.19)

where xsi
is the i-th source in the observation domain.

With a single channel of data, we can apply the same formula to data blocks giving

xsi
(nN − k + 1) = A(:,i)

N
∑

j=1

W(i,j)x(nN − j + 1) (5.20)

However the resulting source estimates are highly dependent on the block alignment.

In our case, we choose the shift of the observation data in according to the embedding

dimension of the mixture. This choice is made in order to emphasize the independence

between the signal embedded in the mixture and to avoid the problem of the dependence

between blocks. As explained in the previous chapter, in fact, with the study of the

embedding dimension of a mixture we want to identify quantities that are unchangend

when initial conditions on an orbit are altered or when, anywhere along the orbit,

pertubation are encountered.
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5 Non Linear PCA on Single Mixture

5.7 Characterization of the algorithm proposed

As described in the previous section, in a robust nonlinear PCA NN of fundamental

importance is the choise of the parameter of the network such as the number of input

nuerons, the number of output neurons and the initial choice of the weight matrix.

Our idea was that of using the embedding parameter for the definition of the network

model and the initial data guess. In detail, the proposed approach can be divided into

the following steps:

• Preprocessing: we first calculate and subtract the average pattern to obtain a

zero mean process.

• Neural computing: we calculate the weights vector wi, for i = 1, ...,m, by using

equations in Step 4 of the Algorithm 1.

The fundamental learning parameters are:

i) the number of output neurons m, which is equal to the embedding dimension

and it is the number of principal eigenvectors that we need and the time lag τ

needed to build the input patterns;

ii) the number of input neurons q;

iii) the initial random weight matrix W of m × q dimension;

iv) α, the nonlinear learning function parameter;

v) the learning rate µk and the ε tolerance.

The general algorithm is described in Algorithm 1.

5.8 A case of study: an Armonic Oscillator, the Mackey

Glass time series and random Gaussian noise

In the experiment we consider a mixture of a three different signals. The first source is a

simple harmonic oscillator with frequency of 15 Hz. The second is obtained by sampling

the Mackey-Glass time delay differential equation [1]. This time series is chaotic, and

so there is no clearly defined period. The third signal is a random Gaussian noise (see

Fig. 5.3). The mixture that we analyze is plotted in Fig. 5.4. We note that for the

single harmonic oscillator we have the time lag τ = 2 and the embedding dimension

m = 2, while for the Mackey-Glass τ = 17 and m = 3. Applying the phase reconstruct

91



5 Non Linear PCA on Single Mixture

Algorithm 1 Embedded Robust PCA Algorithm
1: Initialize m to the embedding dimension calculated in the first step. Initialize

the weight matrix W = [w1, . . . ,wm] with small random values. Initialize the
learning threshold ε, the learning rate µk (that generally is exponential decrescent
and depends from the epoch key)and the α parameter.
Reset epoch counter k = 1 and pattern counter n = 1.

2: Input the n − th pattern

xn = [x(n), x(n + τ), . . . ., x(n + (m − 1)τ)]

where m is the number of input components and τ is the time lag.
3: Calculate the output for each neuron yi = w

T
i xn, ∀i = 1, . . . ,m.

4: Modify the weights using the following equation

wi(k + 1) = wi(k) + µkg(yi(k))ei(k)

where

ei(k) = xn −
I(i)
∑

j=1

yj(k)wj(k)

and

wi(k + 1) =
wi(k + 1)

‖wi(k + 1)‖
where g(.) is the derivative of the cost function f(.). In the hierarchical case we
have I(i) = i. In the symmetric case I(i) = m, the error vector ei(k) becomes the
same ei for all the neurons.

5: n = n + 1.
6: UNTIL n ≤ m GO TO 2
7: Convergence test:

IF CT = 1
2

∑m
i=1

∑m
j=1(wij − wold

ij )2 < ε
THEN GO TO 8
ELSE
Make orthonormalization:

W = (WW
T )

1

2W

W
old = W

8: k = k + 1; GO TO 2.
9: END

approach to the mixture, we obtain τ = 1 and m = 8 and they are the parameters that

we use to reconstruct the signals and to determine the PCA NN architecture. In Fig.

5.5a and in Fig. 5.5b we show the separated signals obtained by using the FastICA

based approach and the Robust PCA approach, respectively. However in the case of the
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5 Non Linear PCA on Single Mixture

Robust PCA we have to note that the separation is clearer than the other. This can be

shown in Fig. 5.6a and 5.6b where we show and compare the source and the estimated

signals. In this case we also calculate the correlation coefficients between the signals.

In the case of the harmonic oscillator the ICA based approach has a correlation of 67%

while the Robust PCA based approach of 95%. In the case of the Mackey-Glass we

have a correlation of 28% for the ICA based approach while the Robust PCA method

of 83%.
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Figure 5.3: Source signals: Single harmonic oscillator (up); Mackey-Glass time series
(middle); random Gaussian noise (down).
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Figure 5.4: Mixture of Mackey Glass time series, single armonic oscillator and random
Gaussian noise.
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Figure 5.5: Separated signals: a) FastICA based algorithm; b) Robust PCA based
approach.
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Figure 5.6: Separated signals: a) Harmonic oscillator estimation: source signal (up),
Robust PCA NN based approach estimation (middle), FastICA based approach (down)
; b)Mackey-Glass estimation.
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Chapter 6

Applications on Data Coming from

Virgo Interferometer

In the previous chapter, we presented a model for the separation of single

channel independent components. In this chapter, we show an application

of this model to the case of data coming from Virgo interferometer, for the

detection of gravitational wave signals.

6.1 Introduction

Gravitational Wave (hereafter GW) detection is certainly one of the most challenging

goals for today physics: a very strong proof in favor of the Einstein General Rela-

tivity description of phenomena related to the dynamics of gravitation and the open-

ing of a completely new channel of information on astrophysical objects [67]. The

VIRGO/LIGO/GEO/TAMA ([2], [68], [71], [69]) network of ground-based kilometer-

scale laser interferometer gravitational wave detectors will be the key to open up that

new astronomical channel of information in the frequency band 10 Hz to 10 KHz.

Virgo1 project is an international project (Italian - French), that has as goal the direct

detection of the gravitational wave, come out by astrophysical sources, by means of

interferometric techniques. Virgo antenna, an interferometer located in Cascina (PI),

is listening all gravitational signals coming from all the universe. These signals must

be detected from a ground of noise registered by the interferometer. Detecting grav-

itational wave is a really complex problem, because they are unknown signals with a

minimal amplitude (about 10−23). There are two possible application of the separation

1http://www.virgo.infn.it
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6 Application on Virgo Data

techniques to Virgo data:

• identification of noise source

• identification of gravitational wave signal in noise ground

The first kind of application is the identification of noise source that interacts with

the interferometer output. Because of the minimal amplitude of the gravitational wave

signal, it is necessary to detect and isolate in the output of the interferometer all the

possible sources of external noise (i.e. for example environmental noise). For detecting

such noise, on Virgo site has been installed environmental sensors of different nature,

for example: seismometer, magnetometer, temperature sensors, pressure sensors and

so on.

Data analysis from all these sensors contribute to characterize and identify noise sources

inherent of the site, such as noise due to the motor of the various machine present on

the site, air movement due to the conditioning or other.

As second kind of application, we can think to the possibility of using blind source

separation technique for the detection of the gravitational signal in the ground of

noise.

6.2 Detecting gravitational wave signals

As we stated above, the gravitational wave signals have minimal amplitude, but even

if these interferometers seem to be sensitive enough for the detection of these sources,

nevertheless the problem of GW signal analysis is still in progress, concerning an ad-

equate choice of the data analysis techniques in connection with the shape of the

expected signal, the noise of the detector and the available computing power. For this

task, many efforts have been made for the development of special data analysis tech-

niques for the enhancement of the signal-to-noise ratio of these GW signals and the

most credited algorithm is the matched-filtering technique. This technique, as it is well

known [31] [60], requires the correlation of the output of a detector with a template

of the expected signal (matched filter). But, although very simple in principle, the

application of such algorithm requires a practically exact theoretical knowledge of the

shape of the expected signal as function of the unknown parameters which describe

the coalescing binary and, then, the correlation of the detector output with several
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thousands of templates and these two requirements are very difficult to satisfy for a

certain kind of signals coming from coalescing binary signals. The shape of the GW

signal can be obtained by computing the gravitational radiation field generated by a

system of two point-masses moving on a practically circular orbit. The large number

of templates necessary for data analysis using matched-filtering technique poses prob-

lems due to the great computing power needed to perform this task on-line. In fact,

as a consequence of the large band of these detectors (some kHz), sampling rates of

the order of 20 kHz are used, resulting in a huge amount of data/day to be analyzed

on-line (of the order of 10 GByte/day). Of course, the analysis of such a large amount

of information could be made off-line, but it would be better to select on-line all the

data frames which may contain a GW signal. The computational cost depends on the

number of parameters considered in the approximation of the phase, on the accuracy

of the sampling of the likelihood function (connected with the ability to recover weak

signals) and on the actual frequency band to be considered, taking into account the

VIRGO sensitivity.

6.3 Whitening

For working with Virgo data it is necessary a preprocessing step for whitening the

data. Let x(t) be a wide-sense stationary, continuous-time random process, with mean

µ, covariance function:

Kx(τ) ≡ E{(x(t1) − µ)(x(t2) − µ)}, τ = t1 − t2 , (6.1)

and power spectral density:

Sx(ω) ≡ F {Kx(τ)} =

∫ ∞

−∞

Kx(τ) exp(−jωτ)dτ , (6.2)

where F is the Fourier transform.

We can whiten the process x(t) by defining a suitable filter Hw(ω) which transforms

the process into a white noise process w(t), whose power spectral density is constant.

Since Kx(τ) is Hermitian symmetric and positive semi-definite by construction, it

follows that Sx(ω) is real, and can be factored as:

Sx(ω) ≡ |H(ω)|2 = H(ω)H∗(ω), (6.3)
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where the star “*” operator denotes complex conjugation. It is possible to show that

such representation is possible if and only if Sx(ω) satisfies the Paley-Wiener condition:
∫ ∞

−∞

log Sx(ω)

1 + ω2
dω < ∞ . (6.4)

To build the whitening filter, we have to choose a suitable parametric form for

H(ω), which is then adapted to the data. The most common choice is to consider a

rational function in zero-pole form:

H(ω) =

∑N
k ck − iω

∑D
k dk − iω

. (6.5)

Choosing the minimum-phase H(ω) (so that its poles and zeros are on the left half ω

plane), the whitening filter will then be stable:

Hw(ω) =
1

H(ω)
. (6.6)

Formally, the whitening operation can then be written:

w(t) = F−1 {Hw(ω)} ∗ (x(t) − µ) , (6.7)

where the star “∗” denotes convolution. We can show that w(t) is a white process, by

showing that its power spectral density is constant:

Sw(ω) ≡ F {E {w(t1)w(t2)}} = Hw(ω)Sx(ω)H∗
w(ω) =

Sx(ω)

Sx(ω)
= 1 . (6.8)

In a practical implementation, we will deal with discrete-time processes, however the

basic principles are always the same. In particular, we will choose a pole-only function

which implies an autoregressive (AR) model of the data. In the following, we have

used the maximum entropy (or Burg) algorithm [30] to fit the model coefficients to the

data. To assess the model order, we have used the cross-validation criterion [11], and

selected the order which gives the highest spectral flatness measure:

f =
exp

(

1
2π

∫ π

−π
log Sw(ω)dω

)

1
2π

∫ π

−π
Sw(ω)dω

(6.9)

6.4 Simulation results for detection

In this section we describe some result of application of the non linear PCA approach to

the detection of chirp signal in Virgo noise at different signal to noise ratio (hereinafter
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SNR). The result proposed are really interesting because of the small SNR and the

possibility to recognize the presence of a signal without knowing nothing about the

sources. As a first example, we consider a mixture composed of Virgo noise and a chirp

signal with an SNR of 10. In figure 6.1, we show the mixture which we use in the

simulation, while in figure 6.2, we show the source signals used to form the mixture.

We want to stress that a SNR of 10 is really small, in fact if we compare the source

noise with the mixture it is impossible to note where has been injected the signal, that

is further observable in figure 6.3 where we superimpose at the noise the chirp signal

at SNR 10.
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Figure 6.1: Mixture with SNR 10.
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Figure 6.2: Source signal: (up) Virgo noise, (down) chirp signal.

On the mixture presented in figure 6.1, we apply first a whitening process as de-

scribed in the previous section, getting the mixture 6.4, and then we apply the NLPCA

approach to separate the components. After that we was able to recognize clearly the

presence of the signal in the noise as it is shown in the figure 6.5(a-b).
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Figure 6.3: Comparison between source signals at SNR 10, in blue Virgo noise and in
red chirp signal.
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Figure 6.4: Whitened Mixture with SNR 10.
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Figure 6.5: Separated components from mixture at snr 10.

For better underline the results it is useful to show a spectrogram (time-frequency

plot) of one of the separated components (the others have similar spectra). As it is

possible to note from figure 6.6, it is clearly recognizable the chirp.

In the others simulation proposed, we show how it is still possible to obtain the
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Figure 6.6: Spectro of the first independent component.

separation also if the SNR decrease.

Now, we consider a mixture composed of Virgo noise and a chirp signal with an SNR

of 5. First of all, we show the mixture which we use in simulation (figure 6.7), then

we show the source signals (figure 6.8), in order to underline the great difference in

amplitude among the signal and the consequently difficult of the problem. As in the

previous simulation described, it is important to stress that a SNR of 5 is really small, in

fact if we compare the source noise with the mixture it is impossible to note where has

been injected the signal. We can further observe in figure 6.9 this important feature,

where we superimpose at the noise the chirp signal at SNR 5.
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Figure 6.7: Mixture with SNR 5.

On the mixture, we apply the same process described for the first simulation: a

first step of whitening of the signal in order to obtain the mixture in figure 6.10; and

a second step in which we apply the NLPCA approach to separate the components.

The result of this computation is shown in figures 6.11(a-b), as it is possible to note

we clearly identify the gravitational signal and its position in the chunk of noise.
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Figure 6.8: Source signal: (up) Virgo noise, (down) chirp signal.
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Figure 6.9: Comparison between source signals at SNR 5, in blue Virgo noise and in
red chirp signal.
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Figure 6.10: Whitened Mixture with SNR 5.

In figure 6.12, we show a spectrogram (time-frequency plot) of one of the separated

components (the others have similar spectra), as it is possible to note from figure 6.12,

it is clearly recognizable the chirp.

Continuing to decrease the SNR between the chirp signal and the noise to 1, we work
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Figure 6.11: Separated components from mixture at snr 5.

Figure 6.12: Spectro of the first independent component.

on the mixture shown in figure 6.13. For better understand the increasing difficulty of

the problem, we show in figure 6.14 the source signals used to form the mixture and

in figure 6.15 we show the superposition of the noise signal with the chirp signal with

SNR 1. As it is possible to note from this images, the comparison between the noise

and the signal really underline the problem of different amplitude and the difficult to

detect the chirp signal in the noise.

On the mixture presented in figure 6.13, we apply first the whitening process, getting

the mixture 6.16, and then we apply the NLPCA approach to separate the components

6.17(a-b).

In this last case, separation is not so good, in fact in time domain (see figure 6.17

), it is impossible to recognize the chirp wave form, but if we have a look at the

spectrogram (time-frequency plot) of one of the separated components in figure 6.18, it

is still possible to note, also if not clearly as in the previous case, the chirp wave form.

From the simulation presented in this section, we can say that NLPCA is a good
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Figure 6.13: Mixture with SNR 1.
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Figure 6.14: Source signal: (up) Virgo noise, (down) chirp signal.
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Figure 6.15: Comparison between source signals at SNR 1, in blue Virgo noise and in
red chirp signal.

method for detecting a gravitational wave signal in the background noise of an inter-

ferometer. In this simulation, we have shown three particular case with different SNR,

starting from 10 to 1. It is important to note that in gravitational wave detection an

SNR of 10 is really a good starting point for detection. We can say that in this first
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Figure 6.16: Whitened Mixture with SNR 1.
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Figure 6.17: Separated components from mixture at snr 1.

Figure 6.18: Spectro of the first independent component.

kind of application, we use our method for determine a chunk of data in which it is

possible to find a gravitational signal. This is an important use of the method, because

it is important to have a pre-analysis of the data. We must consider that the interfer-

ometer collects data all day long, so considering its sampling frequency for seconds, we
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got an huge quantity of data. It’s important to have a method for choose among this

huge quantity a chunk of data in which it is possible to have a signal.

6.5 Chirp Wave Form Reconstruction

In this second kind of application, we can use our method for reconstructing the gravita-

tional wave signal. Until now, we have used the NLPCA in according with a whitening

process for detecting a chunk of data in which it is possible to have a chirp signal.

Now considering an higher SNR, we can show how it is possible to use NLPCA for the

reconstruction of the signal.

In this simulation we construct a mixture using noise coming from Virgo interferometer

and an amplitude and frequency modulated chirp signal, the source signal are repre-

sented in figure 6.19. This modulated chirp signal is a variant to the standard chirp

used in the previous section in which it is assumed that the generating mass have a

spin, in this way to the characteristic frequency in time increasing of a chirp, we also

have a difference in amplitude. We choose these two signals in order to get a signal

similar to the one produced by coalescing binaries stars [67] and also for trying the

method on a more difficult environment. In this simulation, we also show a compar-

ison between the NLPCA method described in chapter 5 and the embedded FastICA

method described at the end of chapter 4. We made this comparison, for evaluating

two different method based on similar concept. Both the methods, in fact, work on a

single mixture and use the embedding dimension as parameter of the method, but they

are very different in the separation method and in the modelling of the neural network

for the separation.

The mixture on which we work is represented in figure 6.20. First of all we analyze

the embedding dimension of the mixture obtaining τ = 45 and m = 5. These are the

parameters that we use in both the approaches.

In figure 6.21(a,b), we show the results obtained from the two method: Embedded

FastICA (figure a) and NLPCA (figure b). As it is possible to note as a first view on this

two figure, both the methods obtain a good detection of the gravitational signal, but

the NLPCA method can also reconstruct the signal waveform without any knowledge

of the signal.

We also give a quantitative measure of the goodness of the separation using a correlation
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Figure 6.19: Source signals: Interferometric noise simulation (up); Amplitude modulate
chirp signal (down).
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Figure 6.20: Signal Mixture.

measure, calculated between the extracted signals and the source signal. We use this

kind of quality measure because we can’t use the standard measures used in ICA world.

The standard Amari’s performance index, the measures usually used in literature [20],

work on the separation matrix, but with these method we can’t estimate that, so we

need a measure that acts directly on the signals and its forms, avoiding to consider the

amplitude: the correlation is a good candidate for that purpose.

So in the case of the simulation proposed, the correlation percentage for the chirp

signal with the signals extracted by NLPCA is in mean of 70% while for the Embedded

FastICA approach we have a mean of 43%.

Then, we choose the best representative signal for each method and we compare these

with the source signal in figure 6.22). In this image, it is really evident the better

performance of the NLPCA method in the reconstruction of the signal.
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Figure 6.21: Separated signals: a) FastICA based algorithm; b) Robust PCA based
approach.
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Figure 6.22: Comparison of the original modulated chirp signal (top) with the Embed-
ded Non Linear PCA approach (middle) and FastICA approach (down).

6.6 Conclusions

In this chapter, we have shown an important field of application of the proposed ap-

proach. We want to stress that we are working on realistic data, the chunk of noise

used in the simulation is really a small chunk of data taken from Virgo interferometer

data. The gravitational source signals are the most realistic one, because they come

from the theoretic study on this subject.

It is important to note that until now we don’t have a sperimental proof of the exis-

tence of these waves and so we can only trust the gravitational wave theory for what

regards the wave’s form.
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So, it is important to note that using a method that doesn’t need to know in advan-

tage the form of the signal as a target, is a real improvement in the gravitational wave

detection theory. The simulations proposed in this chapter show an approach that

permit to detect a gravitational wave signals without any knowledge about the signal

itself. In fact, we use the source signals only for an evaluation of the performance of

the methods.

We presented two kind of simulation: a first one with the only aim of detecting the

signal and a second one with the purpose to detect and reconstruct the signal in its

form.

In the simulations based on the detection of the signal, we got really good performance

also at SNR really low and we want to stress without knowledge of the source.

It’s also important to note that we can’t make a comparison with the technique of the

matched filter because of the intrinsic difference of the methods. In rough words, in the

case of the matched filter, the signal is detected after a matching of the mixture data

with a collection of possible target signal. This collection is composed of a forecasting

of the wave form for the gravitational source signal, varying the mass and the position

of the stars. But how can we be sure to have covered all the possible cases? And what

happens if the signals emitted are not equal to the target signal? With matched filter,

the answer to these question is that we cannot detect the signal or if you want that we

have a very low probability to detect the signals.

In this chapter we have shown a method that overcome the knowledge of the wave

form and so it can be used in every situation, maybe as a preprocessing analysis for

individuating a chunk of data in which it is possible to have a gravitational signal.

The other kind of simulations proposed aims to detect and also to reconstruct the

signal in its form. This is a very important field of application because it permits to

recovery the signal in its form analyzing in detail its characteristics.
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Chapter 7

Applications on Music Mixture

In the previous chapter, we have described a first kind of application of

the proposed model on real data coming from Virgo interferometer. In

this chapter, we show another important sector of application: music. We

present several experiments and simulation about signals coming from music

instruments.

7.1 Introduction

In these last years, music and computer science have met in a variety of way. The

introduction of music in this field has opened really challenging scenarios for the re-

searchers, in particular for the recognition of the speak, for the synthesization of digital

music, for the creation of new algorithm of compression and so on. In this scenario,

the recognition of a music instruments track from a mixture of different instruments

tracks is an open problem with an high importance.

Until now, techniques like Independent Component Analysis have been used princi-

pally for the speak recognition task. This is because speak signals have an highly

super Gaussian distribution. Several works have been proposed for this purpose.

In this chapter, we will show some applications of the NLPCA method described in

algorithm 1 to the problem of separation of source signals from a single mixture in the

case of music signal.

We start from simple simulation, in which given an instrument track playing a single

note, we try the separation of the harmonics of the note using the proposed NLPCA

method. After these first simulations, we pass to examine mixtures composed by dif-
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ferents instruments. We try the separation of the single music sources composing the

mixture. It’s important to note that the quality of the obtained separation is so high

that in certain situation we can extract from the estimated components the music tran-

scription, in order to compare it with the one obtained from the original source.

As a major difficulty, we present a simulation in which we separate from a single mix-

ture two different kind of signals: a music instruments track and a male voice, mixed

with white noise.

7.2 Short introduction to Mathematical Armonies

Music is a periodic variation in air pressure

P = Asin(2πft) (7.1)

where A is the amplitude, t the time, f the frequency and P is the pressure in decibels

or Pascal (see figure 7.1)

Figure 7.1: Sound Feature

Sound has two characteristics:

• Volume, that is the amplitude A in Pascals or decibels

• Pitch, that is the frequency f in Hertz (Hz)

In figure 7.2, we show some frequency range of various instruments. If we consider a
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Figure 7.2: Frequency ranges of various instruments, in Hz. Audible frequencies range
from 20 Hz to 20000 Hz

vibrating string, we can show that the frequency is expressed by

f =
1

2 length

√

tension

thickness
(7.2)

In this way, we say that the frequencies of octaves form a geometric sequence (figure

7.3). We note also that a string vibrates in many modes, called harmonics (figure 7.4)

Figure 7.3: Frequency diagram of octaves.

and the frequencies of the harmonics form an arithmetic sequence.

In figure 7.5, we show an example of a keyboard. There are two accepted musical
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Figure 7.4: Frequency diagram of music harmonics.

Figure 7.5: Examples of harmonics and octave in the case of a piano.

pitch standards, the so-called American Standard pitch, which takes A in the fourth

piano octave (A4) to have a frequency of 440 Hz, and the older International pitch

standard, which takes A4 to have a frequency of 435 Hz. Both of these pitch standards

define what are called “equal tempered chromatic scales”. Mathematically, this means

that each successive pitch is related to the previous by a factor of the twelfth root of 3.

12
√

2 = 1.05946309436 (7.3)
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That is, the ratio between the frequencies of any two successive pitches in either stan-

dard is 1.05946309436. There are twelve half-tones (black and white keys on a piano),

or steps in an octave. Since the pitch (frequency) of each successive step is related to the

previous pitch by the twelfth root of 2, the twelfth step above a given pitch is exactly

twice the initial pitch (i.e., an octave corresponds to a doubling of a pitch). The fre-

quency of intermediate notes, or pitches, can be found simply by multiplying (or divid-

ing) a given starting pitch by as many factors of the twelfth root of 2 as there are steps

up to (or down to) the desired pitch. For example, the G above A4 (that is G5) in the

American Standard has a frequency of 440×( 12
√

2)1 = 440×1.78179743628 = 783.99Hz

(approximately). Likewise in the International standard, G5 has a frequency of 775.08

Hz(approximately). G#5 is another factor of the 12th root of 2 above these, or 830.61

and 821.17 Hz, respectively.

Note when counting steps that there is a single half-tone (step) between B and C, and

between E and F. In figure 7.6, 7.7 and 7.8, we show some fundamental frequencies.

The frequencies of 440 Hz of the note LA corresponds to the fundamental frequency

and it is associated to the diapason. The notes of the superior tone are multiple of

the fundamental frequency. For example, we consider the note La with a fundamental

frequency of 55 Hz, this note has the following harmonics:

• I harmonic: f = 55 ∗ 2 = 110Hz

• II harmonic: f = 55 ∗ 4 = 220Hz

• III harmonic: f = 55 ∗ 8 = 440Hz

• IV harmonic: f = 55 ∗ 16 = 880Hz

• V harmonic: f = 55 ∗ 32 = 1760Hz

In general, n harmonic: f = c ∗ 2n.

7.3 Simulation on the separation of harmonics

The first kind of simulation on music data made is on the separation of harmonics:

given a single mixture of a music instrument sounding a note, we try to separate the

different harmonics of this note. We made several experiments on different kind of
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Figure 7.6: Examples of frequencies of the notes: table 1.

music instruments and different notes. From the results obtained, we can state that

with the proposed approach it is possible to separate the harmonics. Let us show
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Figure 7.7: Examples of frequencies of the notes: table 2.

some figures explaining the obtained results. The first set of figures is relative to some

experiments made on a single mixture of a flute sounding C4 note. In figure 7.9, we
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Figure 7.8: Examples of frequencies of the notes: table 3.

show the source signal of the mixture used and in figure 7.10 the spectrogram of this

signal in order to underline the frequency of the note and its harmonics.
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Figure 7.9: Harmonics separation on flute C4 note: source signal.
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Figure 7.10: Harmonics separation on flute C4 note: spectrogram of the source signal.

The results of the separation of the harmonics are visible in the time domain (see

figure 7.11), in the frequency domain (see figure 7.12) and in the frequency-time domain

(see figure 7.13).

As it is possible to note from these figure, we got a good separation of the different

harmonics starting from a single mixture of the original signal.

The second set of figures is relative to some experiments made on a single mixture

of a piano sounding G6 note. As before the first figure presented (7.14) represents the

source signal, while in figure 7.15, we show the spectrogram of this signal for better

evidentiate the time-frequency contribute of the note and its harmonics.

After the application of the NLPCA method, we can see the results of the separation

in the time domain (see figure 7.16), in the frequency domain (see figure 7.17) and in

the frequency-time domain (see figure 7.18).

As it is possible to note from these figure, the separation of the harmonics is really

good. In fact we can distinguish clearly the contribute of each harmonic to the single
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Figure 7.11: Harmonics separation on flute C4 note: separation view in time domain.
The first plot from above is the source signal, while the other are the separation of the
harmonics.

estimated component.

As third example of separation of harmonics, let us consider a trumpet playing the

C4 note. For better understand the results obtained, first of all we present the source

signal in figure 7.19 and its spectrogram in figure 7.20.

We show the results in different context: in the time domain (see figure 7.21), in

the frequency domain (see figure 7.22) and in the frequency-time domain (see figure

7.23).

Once again, we can note a good separation of the harmonics.

As last simulation for this section we consider a violin playing C5 note. As in the

previous case, in figure 7.24, we show the source signal of the mixture used and in

figure 7.25 the spectrogram of this signal in order to underline the frequency of the

note and its harmonics.

We show the results in three different context: in the time domain (see figure 7.26),

in the frequency domain (see figure 7.27) and in the frequency-time domain (see figure

7.28). These different representations are useful for better understand the performance
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Figure 7.12: Harmonics separation on flute C4 note: separation view in frequency
domain. The blue curve is the source signal, while the other are the separation of the
harmonics.

of the separation. In fact, the frequency domain and the time-frequency domain are

more representetive for these results. Analyzing these figures, we stress the high per-

formance in the separation obtained by the NLPCA method.

As it is possible to note from the simulations proposed in this section, the NLPCA

introduced in this work is a very powerful method for the separation of the harmonics

from single note. This is a very interesting result also because as the variety of the

simulations can show, it doesn’t depend from the type of the instruments used or from

the note played.

We must stress that we made several experiments on that topic varying instruments

and note and in all the case we got a good separation. Here we have presented only

the most representative ones.
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Figure 7.13: Harmonics separation on flute C4 note: separation view in frequency-time
domain. The first plot in the left corner is the source signal, while the other are the
separation of the harmonics.
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Figure 7.14: Harmonics separation on piano G6 note: source signal.

7.4 Experimental results

In the second part of simulations, we focused our attention on the separation of mu-

sic signals and we made several experiments using single mixtures composed by three
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Figure 7.15: Harmonics separation on piano G6 note: spectrogram of the source signal.
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Figure 7.16: Harmonics separation on piano G6 note: separation view in time domain.
The first plot from above is the source signal, while the other are the separation of the
harmonics.

different kind of musical instruments. The samples are chosen among the following mu-

sical instruments: cello, viola, piano, guitar, oboe, gong, violin, castanets, xylophone,

etc.

We use known signals, for better understanding the quality of the results, because we

can compare the estimated signals with the source signals. We compare our model

with the one based on that described in Section 4.9, also using a performance index
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Figure 7.17: Harmonics separation on piano G6 note note: separation view in frequency
domain. The blue curve is the source signal, while the other are the separation of the
harmonics.

based on the correlation. We note that in our case we are unable to use the standard

Amari’s performance index since in that case a demixing matrix is needed [20]. We

stress that in all the experiments that we made, we obtained a good separation of the

single signals and this is also confirmed by the high correlation between the estimated

and the source signals, that generally is from 50% to 94%.

In the first experiment we present the result obtained by analyzing a mixture com-

posed by these instruments: oboe, cello and gong. With our approach, we obtain a

good separation of the single signals of the mixture, with a correlation of 94% for the

oboe, 85% for the cello and 50% for the gong, while with the ICA approach we got a

correlation of 75% for the oboe, 70% for the cello and 45% for the gong, respectively.

To clarify the separation performances, in figure 7.29, we also show the single mixture

on which we applied the proposed approach and in figure 7.30 (a,b,c), we show the

original source signal (top), the NLPCA approach signal estimation (middle) and the

Embedded FastICA Approach Estimation (down) for the three source signal, respec-

tively.
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Figure 7.18: Harmonics separation on piano G6 note: separation view in frequency-
time domain. The first plot in the left corner is the source signal, while the other are
the separation of the harmonics.
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Figure 7.19: Harmonics separation on trumpet C4 note: source signal.

As a second experiment presented, we work on a mixture composed by these instru-

ments: castanets, xylophone and viola. With our approach, we obtain the separation

of the single signals from the mixture, with a correlation of 50% for the castanets, 83%

for the viola and 50% for the xylophone, while with the Embedded FastICA approach
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Figure 7.20: Harmonics separation on trumpet C4 note: spectrogram of the source
signal.
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Figure 7.21: Harmonics separation on trumpet C4 note: separation view in time do-
main. The first plot from above is the source signal, while the other are the separation
of the harmonics.

we got a correlation of 20% for the castanets, 51% for the viola and 15% for the xylo-

phone.

In figure 7.31, we show the single mixture on which we applied the proposed approach,

in figure 7.32 (a,b,c), we show the original source signal (top), the NLPCA approach

signal estimation (middle) and the Embedded FastICA Approach Estimation (down)

for the three source signal.
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Figure 7.22: Harmonics separation on trumpet C4 note note: separation view in fre-
quency domain. The blue curve is the source signal, while the other are the separation
of the harmonics.

As it is possible to note an important feature of the simulation made is that we use

different kind of instruments in the composition of the mixture. In the third experiment

proposed in fact, we analyze a mixture composed by these instruments: castanets, bells

and viola.

The obtained results are: a correlation of 50% for the castanets, 83% for the viola

and 55% for the bells with the proposed approach, while with the Embedded FastICA

approach we have a correlation of 5% for the castanets, 62% for the viola and 18% for

the bells.

For better understand the results in figure 7.34 (a,b,c), we show the original source sig-

nal (top), the NLPCA approach signal estimation (middle) and the Embedded FastICA

Approach Estimation (down) for the three source signal.

As a fourth experiment, we present the result obtained by analyzing a mixture

composed by these instruments: guitar, oboe and viola. By using the NLPCA approach

we have a correlation of 50% for the guitar, 80% for the viola and 85% for the oboe,

while with the Embedded FastICA approach we get a correlation of 32% for the guitar,
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7 Application on Music Data

Figure 7.23: Harmonics separation on trumpet C4 note: separation view in frequency-
time domain. The first plot in the left corner is the source signal, while the other are
the separation of the harmonics.
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Figure 7.24: Harmonics separation on violin C5 note: source signal.

66% for the viola and 75% for the oboe.

Also in this case to clarify the result in figure 7.35, we show the single mixture on

which we applied the proposed approach, in figure 7.36 (a,b,c), we show the original

source signal (top), the NLPCA approach signal estimation (middle) and the Embedded
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Figure 7.25: Harmonics separation on violin C5 note: spectrogram of the source signal.
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Figure 7.26: Harmonics separation on violin C5 note: separation view in time domain.
The first plot from above is the source signal, while the other are the separation of the
harmonics.

FastICA approach estimation (down) for the three source signal.

Going on with the differentiation of the instruments, we present the case in which

the mixture is composed by: oboe, bell and corn. With the approach proposed in

this work, we obtain a good separation of the single signals of the mixture, with a

correlation of 50% for the corn, 90% for the oboe and 55% for the bell, while with the

Embedded FastICA approach we got a correlation of 40% for the corn, 62% for the

oboe and 30% for the bell.

In figure 7.37, we show the single mixture on which we applied the proposed approach,

while in figure 7.38 (a,b,c), we show a comparison in the time domain among the

original source signal (top), the NLPCA approach signal estimation (middle) and the
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Figure 7.27: Harmonics separation on violin C5 note note: separation view in frequency
domain. The blue curve is the source signal, while the other are the separation of the
harmonics.

Figure 7.28: Harmonics separation on violin C5 note: separation view in frequency-
time domain. The first plot in the left corner is the source signal, while the other are
the separation of the harmonics.
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Figure 7.29: The single music mixture in simulation 1.
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Figure 7.30: The comparison among original source signal (top), NLPCA Estimation
(middle), Embedded FastICA Estimation (down): (a) cello signal, (b) oboe signal,(c)
gong signal.
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Figure 7.31: The single mixture in experiment 2.

Embedded FastICA Approach Estimation (down) for the three source signal.

As a summary of results, we report a table where we indicate the correlation coeffi-

cient in the experiments proposed by the NLPCA approach and the FastICA approach.

We also stress that another important result is the extraction of the single instru-

ment’s score and its musical transcription from the separated signals. Even thought

we are still working on this problem, here we present some results where we obtain a

better performance. In fact, for example considering the signals of experiment 1, in

Fig. 7.39 (a) we compare the original cello score (up), with the cello score extracted by

the separated signal (down) and in Fig. 7.39 (b), we compare the original oboe score

(up), with the oboe score extracted by the separated signal (down). We observe that

in both the cases there is a good agreement between the scores.

We can conclude that with our method we can perform an high quality separation of

music signals from a single mixture and that by using the separated signals we can

transcript in a simple way instrument scores.

7.5 A different kind of experiment: separation of a

voice from a music instruments

In this section, we describe a different kind of simulation in which we consider signals

of different nature. In particular in this experiment, we consider a mixture of two

recorded signals and one Gaussian noise (Fig. 7.40 - down). The first recorded signal

is the recording of a male voice that contains the seven digits (7.40 - top) and the

second is a single flute note (G6) (7.40 - middle). The mixture that we analyze is
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Figure 7.32: The comparison among original source signal (top), NLPCA Estimation
(middle), Embedded FastICA Estimation (down): (a) castanets signal, (b) viola sig-
nal,(c) xylophone signal.

plotted in Fig. 7.41. We note that in this case, for the flute note, we have the time lag

τ = 2 and the embedding dimension m = 9. Instead for the male voice is τ = 4 and

m = 13. Applying the phase reconstruct approach on the mixture we obtain τ = 2

and m = 10. In Fig. 7.43, we show the separated signals obtained by using NLPCA,

the proposed approach, and we compare these results with the approach proposed in

[42] in Fig. 7.42. The correlation percentages are 98% for the flute source and 62% for

the male voice in the case of Robust NLPCA approach; 94% and 58% in the case of

FastICA approach. However, it’s possible to note in Fig. 7.45 and in Fig. 7.44 that

using the robust PCA NN, we obtain a clearer separation, that can be appreciate also
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Figure 7.33: The single mixture in experiment 3.

listening the results.

7.6 Conclusions

In this section, we used a methodology to accomplish single channel mixtures BSS. The

proposed approach is based on an on-line Robust PCA NN and the embedding dimen-

sion and the time lag are used to define the architecture of the NN. We also compared

the method with one based on a batch ICA approach. From the experiments that

we have made, we found that the robust PCA NN permits to good results compared

with those of the other approach. We also can stress that one of the features of the

on-line learning is that it permits to define the NN’s input dimension that improves

the separation of the signals.
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Figure 7.34: The comparison among original source signal (top), NLPCA Estimation
(middle), Embedded FastICA Estimation (down): (a) castanets signal, (b) viola sig-
nal,(c) bells signal.
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Figure 7.35: The single mixture in experiment 4.
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Figure 7.36: The comparison among original source signal (top), NLPCA Estimation
(middle), Embedded FastICA Estimation (down): (a) guitar signal, (b) viola signal,(c)
oboe signal.
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Figure 7.37: The single mixture in experiment 5.
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Figure 7.38: The comparison among original source signal (top), NLPCA Estimation
(middle), Embedded FastICA Estimation (down): (a) oboe signal, (b) bells signal,(c)
corn signal.
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Experiment Music Instruments NLPCA Approach FastICA Approach
Experiment 1 . . . . . . . . .

. . . Oboe 94% 75%

. . . Cello 85% 70%

. . . Gong 50% 45%
Experiment 2 . . . . . . . . .

. . . Castanets 50% 20%

. . . Xylophone 50% 15%

. . . Viola 83% 51%
Experiment 3 . . . . . . . . .

. . . Castanets 50% 5%

. . . Bell 55% 18%

. . . Viola 83% 62%
Experiment 4 . . . . . . . . .

. . . Guitar 50% 32%

. . . Oboe 85% 75%

. . . Viola 80% 66%
Experiment 5 . . . . . . . . .

. . . Corn 50% 40%

. . . Oboe 90% 62%

. . . Bell 55% 30%

(a) (b)

Figure 7.39: Musical transcription: (a) the cello scores extracted from the source
signal (up) and from the separated signal (down); (b) the oboe scores extracted from
the source signal (up) and from the separated signal (down);.
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Figure 7.40: Seven - Flute note Experiment source signals: male voice (up); flute note
(middle); gaussian Noise (down).
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Figure 7.41: Seven - Flute note Experiment mixture.
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Figure 7.42: Seven - Flute note Experiment: Embedded Fastica Results
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Figure 7.43: Seven - Flute note Experiment: Non Linear PCA Results
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Figure 7.44: Comparison of the original sources (top) with the Embedded Non Linear
PCA approach (middle) and FastICA approach (down): male voice.
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Figure 7.45: Comparison of the original sources (top) with the Embedded Non Linear
PCA approach (middle) and FastICA approach (down): flute note.
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Chapter 8

Conclusions

In this thesis, we introduce a methodology to accomplish single channel mixtures BSS.

The proposed approach is based on the combination of an on-line Robust PCA NN

and the chaotic system theory. In particolar, we use the embedding dimension and

the time lag to define directly the architecture of the NN. This is a very interesting

and innovative approach, in fact we can say that it solves the problem of independent

components separation in a good way. We can also say that at the moment the methods

described in literature that can accomplish separation of independent components from

single mixtures all use a priori knowledge about the original sources that form the

mixture or have some knowledge about the mixing process. Our method insteand is

completely blind, the only thing that we need to know for applying it is the data of

the mixture.

We also compared the method with that based on a batch ICA approach. From

our experiments, we found that, as in this example, in many cases the robust PCA

NN permits to obtain better results than in the other approach. We also can stress

that one of the features of the on-line learning is that permits to define the NN’s input

dimension that improves the separation of the signals.

In the next future the authors will focus their attention on the application of the

method to separate signals coming from real environments: astrophysics, geophysics

and music, and to find the correlation between the embedding dimension of the signals

and the separation ability of our model.
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Abstract


Obtaining information from measured data is a general problem which is encountered


in numerous applications and fields of science.


A goal of many data analysis methods is to transform the observed data into a represen-


tation which reveals the information contained in the data. Methods for obtaining such


representations include principal component analysis, projection pursuit, and neural


unsupervised learning methods.


In the last years, a great interest in the field of signal processing and of neural networks


has been turned to the Independent Component Analysis (ICA). The main reason is


because this method permits to obtain the separation of independent signals from mix-


ture of them.


The ICA model based on Neural Networks (NNs) has been applied with good results to


the Blind Source Separation (BSS). ICA is a statistical and computational technique


for revealing hidden factors that underlie sets of random variables, measurements or


signals. A more difficult problem in ICA is encountered if the number of the mixtures


xi is smaller than the number of independent components si. This means that the


mixing system is not invertible: we cannot obtain the independent components (ICs)


by simply inverting the mixing matrix A. Therefore, even if we knew the mixing matrix


exactly, we could not recover the exact values of the independent components. This is


because information is lost in the mixing process.


The situation is often called ICA with overcomplete bases and we have to note that


basic ICA methods cannot be used as such. In this situation, we have two different


problems. First, how to estimate the mixing matrix, and second, how to estimate the


realizations of the independent components. This is in stark contrast to the ordinary


ICA, where these two problems are solved at the same time.


When the basis is overcomplete, the formulation of the likelihood is difficult, since the


problem belongs to the class of missing data problems. Methods based on maximum


likelihood estimation are therefore computationally rather inefficient. To obtain com-


putationally efficient algorithms, strong approximations are necessary.


Our work focuses its attention on the problem of separating sources signals from a


single observed mixture, exploiting new ideas for the solution of this problem.


We must note that this is a very important issue, because in practice this is the more
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common situation to present: we have one sensors and multiple source that have been


registered by that. We want to extract from the observation of the sensor each single


source, separating them one from another.


At the moment, the literature on this topic is not so much and the technique proposed


to accomplish this problem make a large use of a priori knowledge about the searched


source or about the mixing process. This is clearly, not so good, because we lost one of


the important feature of ICA system: blindness. We don’t know anything about the


sources or the mixing process. We only have the observations vector and from this we


need to extract all the information needed.


In this work, we propose an interesting integration about two “field”: dynamic system


theory and non linear principal component analysis.


The first theory gives us the possibility to exploit the data vector, underlining the


structure and the feature that are shift invariant. While the second theory gives us the


separation algorithm.


At the hearth of this work there is the study and the realization of an algorithm ca-


pable to integrate this two theory for obtaining good separations also in the case of a


single mixture. We show how it is possible to construct a NN architecture that has


the structure of a non linear PCA NN, but where the parameters of the net are chosen


from the dynamic system theory. This permits to analyze a single mixture as it would


be a series of more mixtures shifted in time.


We give also some detail about the problem of ICA on a single mixture and why this


is solvable by a Neural Network composed in this way.


At the end of this work, we present two important field of application of the proposed


method: in astrophysics and in music. In the first case, we apply the method to data


coming from Virgo Interferometer. This is an Italian-French experiment about the


detection of gravitational waves.


We use the proposed method for the detection of gravitational wave signal in the out-


put signal producted from the interferometric antenna. This is a challenge problem,


because we are talking of a colored noise environment of really small amplitude and of


signal with an very limited amplitude and relatively short in time.


From the application of the proposed method to some simulation, we got very good


results obtaining the recognition of the signal at very low signal to noise ratio. Com-
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paring that with the technique used for doing that, the matched filter, we can say to


obtain good result in Signal to Noise Ratio terms, with an important feature that is


the complete blindness of the source signal. We stress that the matched filter technique


needs a template of the target signal and who can assure that we are supposing the


right formulation for it?


Another important application field of the proposed method is in music signal analy-


sis.


We found that, with the proposed method we can separate the harmonic from the


sound of a single note for many musical instruments. Then, we also found that it is


possible to separate from mixture of different music instruments, the single source in


the case of single note, but also in the case of harmony.


We make several simulation for that field of application getting really good results of


correlations between the original source and the extracted components.


In the next chapter we will give an overview of the problem and a specific view about


the proposed method.


In particular, in chapter 1 we will give an introduction to the problem of independent


component analysis from a statistical point of view and exploring the affinity of this


technique with other similar.


In chapter 2, we will describe the principal algorithms used to accomplish classical


independent component analysis; we divide this chapter in two part the first explain


the contrast function used and the second explain the optimization technique used for


each contrast function in order to get the algorithm for ICA.


In chapter 3, we will focus our attention to the case of single mixture independent


component analysis, exploring the problem, its innate difficulty and the algorithm pro-


posed in literature for accomplish this problem.


In chapter 4, we will describe the theory of dynamical systems and chaos. We explore


the theory and the method to analyze time series and getting information regarding


embedding dimension. We present also a method of separation based on the projection


of the mixture in the phase space and then applying standard ICA algorithms. We


present this method as a way of comparison for the ability of the proposed method.


In chapter 5, we will describe the Non Linear PCA network and the integration of this


with the embedding dimension. We give some detail about the NN and we formulate
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the new algorithm. We give also some theoretical explanation to the way of working


of the new NN.


In chapter 6, we will present the application to the Virgo Interferometer data.


Finally in chapter 7, we will present the application to music mixture.
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Chapter 1


Introduction to Independent


Component Analysis


In this chapter, we give a general introduction to Independent Component


Analysis (ICA). The features of the ICA method are shown from a statistical


point of view. In the first part of the chapter we focus our attention to a


general description of ICA model. Then we show the relation between ICA


and classical statistical methods. At the end, we show an ICA application


to solve the Blind Source Separation problem.


1.1 Introduction


Obtaining information from measured data is a general problem which is encountered


in numerous applications and fields of science. A goal of many data analysis methods


is to transform the observed data into a representation which reveals the information


contained in the data. Methods for obtaining such representations include principal


component analysis, projection pursuit, and neural unsupervised learning methods.


In the last years, a great interest in the field of signal processing and of neural networks


has been turned to the Independent Component Analysis (ICA). The main reason is


because this method permits to obtain the separation of independent signals from mix-


ture of them.


The ICA model based on Neural Networks (NNs) has been applied with good results to


the Blind Source Separation (BSS). ICA is a statistical and computational technique
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for revealing hidden factors that underlie sets of random variables, measurements or


signals.


In the model, the data variables are assumed to be linear or non-linear mixtures of some


unknown latent variables and the mixing system is also unknown. The latent variable


are assumed non-Gaussian and mutually independent and they are called independent


components of the observed data. ICA can be seen as an extension of Principal Com-


ponent Analysis (PCA) and of Factor Analysis (FA) [38, 41].


ICA is a much more powerful technique, however, capable of finding the underlying


factors or sources when these classic methods fail completely. The data analyzed by


ICA could originate from many different kinds of application fields, including digital


images and document databases, as well as economic indicators and psychometric mea-


surements.


The technique of ICA was first time introduced in the early 1980s in the context of the


NNs modeling. In mid-1990s, some highly successful algorithms were introduced by


several research groups, together with impressive demonstration on problems like the


cocktail-party effect, where the individual speech waveforms are found from their mix-


ture. ICA became one of the exciting new topics, both in the field of NNs, especially


unsupervised learning and, more generally, in advanced statistics and signal processing


[38, 41].


1.2 The Statistical Setting


A long-standing problem in statistics and related areas is how to find a suitable rep-


resentation of multivariate data, which means transform the data so that is essential


structure is made more visible or accessible. In neural computation, this fundamental


problem belongs to the area of unsupervised learning, since the representation must be


learned from the data itself without any external input from a supervising "‘teacher"’.


A good representation is also a central goal of many techniques in data mining and


exploratory data analysis. In signal processing, the same problem can be found in


feature extraction and also in the source separation. To explain the last case, let us


assume that the data consists of a number of variables that we have observed together.


Let us denote the number of variables by m and the number of observations by T.
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We can then denote the data by xi(t), where the indices take the values i=1,...,m and


t=1,...,T. The dimension m and T can be very large. A very general formulation of


the problem can be stated as follows: what could be a function from a m-dimensional


space to an n-dimensional space such that the transformed variables give information


on the data that is otherwise hidden in the large data set. That is, the transformed


variables should be the underlying factors or components that describe the essential


structure of the data. It is hoped that these components correspond to some physical


causes that were involved in the process that generated the data in the first place.


Let us denote by x an m-dimensional random variable; the problem is then to find a


function f so that the n-dimensional transform y (t) = (y1 (t) , ..., yn (t)) denoted by


y (t) = f (x (t)) (1.1)


has some desirable properties.


In most cases, we consider linear functions only, because in this case the interpreta-


tion of the representation is simpler and so is its computation. Thus, every component,


say yi, is expressed as a linear combination of the observed variables:


yi (t) =
∑


j


wijxj (t) (1.2)


for i = 1,..,n, j = 1,...,m, and where the wij are some coefficients that define the


representation. The problem can then be rephrased as the problem of determining


the coefficients wij. Using linear algebra, we can express the linear transformation in


equation 1.2 as a matrix multiplication. Collecting the coefficients wij in a matrix W,


the equation becomes


y = Wx (1.3)


where y = [y1 (t) , ..., yn (t)]′ and x = [x1 (t) , ..., xm (t)]′. A basic statistical approach


consists of considering the xi (t) as a set of T realizations of m random variables. Thus


each xi (t), t=1,...,T is a sample of one random variable; let us denote the random


variable by xi. In this framework, we could determine the matrix W by the statistical


properties of the transformed components yi.
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1.3 Dimension Reduction Methods and Independence


One statistical principle for choosing the matrix W is to limit the number of com-


ponents yi to be quite small and to determine W so that the yi contain as much


information on the data as possible. This leads to a family of techniques as Principal


Component Analysis (PCA) and Factor Analysis (FA) [46, 29].


Another principle that has been used for determining W is independence: the com-


ponents yi should be statistically independent. This means that the value of any one


of the components gives no information on the values of the other components. In


fact, in FA it is often claimed that the factors are independent, but this is only partly


true, because FA assumes that the data has a Gaussian distribution. If the data is


Gaussian, it is simple to find components that are independent, because for Gaussian


data, uncorrelated components are always independent. However, the data often does


not follow a Gaussian distribution and the situation is not as simple as those methods


assume.


This is the starting point of ICA: we want to find statistically independent components,


in the general case where the data is non-Gaussian.


1.3.1 Second Order Methods


The most popular methods for finding a linear transform as in equation 1.3 are second-


order methods. This means methods that find the representation using only the in-


formation contained in the covariance matrix of the data vector x. Of course, the


mean is also used in the initial centering. The use of second-order techniques is to be


understood in the context of the classical assumption of Gaussianity. The two classical


second-order methods are PCA and FA [46, 29]. One might roughly characterize the


second-order methods by saying that their purpose is to find a faithful representation


of the data, in the sense of reconstruction (mean-square) error.


1.3.2 Higher-Order Methods


Higher-order methods use information on the distribution of x that is not contained in


the covariance matrix. In order for this to be meaningful, the distribution of x must


not be assumed to be Gaussian, because all the information of (zero mean) Gaussian
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variables is contained in the covariance matrix.


For more general families of density functions, however, the representation problem


has more degrees of freedom. Thus much more sophisticated techniques may be con-


structed for non Gaussian random variables. Indeed, the transform defined by second-


order methods like PCA is not useful for many purposes where optimal reduction of


dimension in the mean-square sense is not needed. This is because PCA neglects such


aspects of non-Gaussian data as clustering and independence of the components (which,


for non-Gaussian data, is not the same as uncorrelatedness). We shall review in the


next sections three conventional methods based on higher-order statistics: projection


pursuit, redundancy reduction and blind deconvolution.


1.4 Independent Component Analysis


Before to introduce the ICA method, we shall recall some basic definitions. Denote


by y1,y2,...,ym some random variables with joint density f(y1,y2,...,ym). For simplicity,


assume that the variable are zero mean. The variables yi are (mutually) independent,


if the density function can be factorized:


f(y1,y2,...,ym) = f(y1)f(y2)...f(ym) (1.4)


where f(yi) denotes the marginal density of yi. To distinguish this form of independence


from other concepts of independence, for example linear independence, this property is


sometimes called statistical independence. Independence must be distinguished from


uncorrelatedness, which means that:


E {yiyj} − E {yi}E {yj} = 0 ∀ i 6= j (1.5)


Independence is in general a much stronger requirement than uncorrelatedness. Indeed,


if the yi are independent, one has


E {g1 (yi) g2 (yj)} − E {g1 (yi)}E {g2 (yj)} = 0 ∀ i 6= j (1.6)


for any measurable function g1 e g2 [61]. This is clearly a more constrained condition


than that of uncorrelatedness. There is, however, an important special case where


independence and uncorrelatedness are equivalent. This is the case when y1,y2,...,ym
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have a joint Gaussian distribution. Due to this property, ICA is not interesting (or


possible) for Gaussian variables.


Now we shall define the problem of ICA. We shall only consider the linear case here,


though non linear form of ICA also exist. In the literature, at least three different


basic definitions for linear ICA can be found [38, 41], though the differences between


the definitions are usually not emphasized. This is probably due to the fact that ICA is


such a new research topic: most research has concentrated on the simplest one of these


definitions. In the definitions, the observed m-dimensional random vector is denoted


by x = (x1, ..., xm)T .


The first and most general definition is as follows:


Definition 1.4.1 (General definition) ICA of the random vector x consists of finding


a linear transform s = Wx so that the components si are as independent as possible,


in the sense of maximizing some function F(s1, ..., sm) that measures independence.


This definition is the most general in the sense that no assumptions on the data


are made, which is in contrast to the definitions below. Of course, this definition is


also quite vague as one must also define a measure of independence for the si. One


cannot use the definition of independence as in equation 1.4, because it is not possible,


in general, to find a linear transformation that gives strictly independent components.


The problem of defining a measure of independence will be treated in the next section.


A different approach is taken by the following more estimation theoretically oriented


definition:


Definition 1.4.2 (Noisy ICA model) ICA of a random vector x consists of estimating


the following generative model for the data:


x = As + n (1.7)


where the latent variables (components) si in the vector s = (s1, ..., sn)T are assumed


independent. The matrix A is a constant m × n “mixing” matrix, and n is a m-


dimensional random noise vector.


This definition reduces the ICA problem to ordinary estimation of a latent variable


model. However, this estimation problem is not very simple and therefore the great


majority of ICA research has concentrated on the following simplified definition:
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Definition 1.4.3 (Noise-free ICA model) ICA of a random vector x consists of esti-


mating the following generative model for the data:


x = As (1.8)


where s and A are defined as in the previous definition.


Here the noise vector has been omitted. This is also the model introduced by Jut-


ten and Hérault in their seminal paper [48], which was probably the earliest explicit


formulation of ICA. Here, we shall concentrate on this noise - free ICA model defini-


tion. This choice can be partially justified by the fact that most of the research on


ICA has also concentrated on this simple definition. Even the estimation of the noise


- free model has proved to be a task difficult enough. The noise - free model may


be thus considered a tractable approximation of the more realistic noisy model. The


justification for this approximation is that methods using the simpler model seem to


work for certain kinds of real data. It can be shown [26], in fact, that if the data does


follow the generative model in equation 1.8, we have that the models described by 1.8


and 1.7 and the equation 1.6 become asymptotically equivalent, if certain measures of


independence are used in Definition 1.4.1., and the natural relation W = A−1 is used


with n = m. In the figures 1.1, 1.2, 1.3, we show an illustration of ICA application


on data sets characterized by different distributions. In figure 1.1, we show the case of


superGaussian data, in figure 1.2 we show the case of subGaussian (uniform) data and


in figure 1.3 we show the case of data with different distribution.


Figure 1.1: Scatter plot of 2 linearly mixed superGaussian data set (left), ICA applied


to the data set (right).
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Figure 1.2: Scatter plot of 2 linearly mixed subGaussian (uniform) data set (left), ICA


applied to the data set (right).


Figure 1.3: Scatter plot of 2 linearly mixed data set with different distribution (left),


ICA applied to the data set (right).
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1.4.1 Identifiability of the ICA Model


The identifiability of the noise - free ICA model has been treated in [26]. By imposing


the following fundamental constraints (in addition to the basic assumption of statistical


independence), the identifiability of the model can be assured:


1. All the independent components si, with the possible exception of one component,


must be non-Gaussian;


2. The number of the observed linear mixtures m must be at least as large as the


number of the independent components n;


3. The matrix A must be of full column rank.


Usually, it is also assumed that x and s are centered, which is equivalently in practice,


to do not have restriction, as this can always be accomplished by subtracting the mean


from the random vector. If x and s are interpreted as stochastic processes instead of


simply random variables, additional restrictions are necessary. At the minimum, one


has to assume that the stochastic processes are stationary in the strict sense. Some


constraints of ergodicity with respect to the quantities estimated are also necessary


[61]. These assumptions are fulfilled, for example, if the process is i.i.d. over time.


After such assumptions, one can consider the stochastic process as random variable, as


we do here.


A basic, but rather insignificant indeterminacy in the model is that the independent


components and the columns of A can only be estimated up to a multiplicative con-


stant, because any constant multiplying an independent component in equation 1.8


could be canceled by dividing the corresponding column of the mixing matrix A by


the same constant. For mathematical convenience, one usually defines that the inde-


pendent components si have unit variance. This makes the independent components


unique, up to a multiplicative sign (which may be different for each component) [26].


The definitions of ICA given above imply no ordering of the independent components,


which is in contrast to, e.g. PCA. It is possible, however, to introduce an order be-


tween the independent components. One way is to use the norms of the columns of


the mixing matrix, which give the contributions of the independent components to the


variances of the xi. Ordering the si according to descending norm of the corresponding
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columns of A, for example, gives an ordering reminiscent of PCA. A second way, is


to use the non-Gaussianity of the independent components. Non-Gaussianity may be


measured, for example, using one of the projection pursuit indexes or other contrast


functions. Ordering the si according to non-Gaussianity gives an ordering related to


projection pursuit.


The first restriction (non-Gaussianity) in the list above, is necessary for the identifiabil-


ity of the ICA model [26]. Indeed, for Gaussian random variables mere uncorrelatedness


implies independence, and thus any decorrelating representation would give indepen-


dent components. Nevertheless, if more than one of the components si are Gaussian,


it is still possible to identify the non-Gaussian independent components, as well as the


corresponding columns of the mixing matrix.


On the other hand, the second restriction, m ≥ n, is not completely necessary. Even


in the case where m < n, the mixing matrix A seems to be identifiable [41] (though


no rigorous proofs exist to our knowledge), whereas the realizations of the independent


components are not identifiable, because of the non-invertibility of A. However, most


of the existing theory for ICA is not valid in this case, and therefore we have to make


the second assumption. Recent works on the case m ≥ n , often called ICA with over-


complete bases can be found in [38, 41].


Some rank restriction on the mixing matrix, like the third restriction given above, is


also necessary, though the form given here is probably not the weakest possible. As


regards the identifiability of the noisy ICA model, the same three restrictions seem


to guarantee partial identifiability, if the noise is assumed to be independent from the


components si [38, 41]. In fact, the noisy ICA model is a special case of the noise-free


ICA model with m ≥ n, because the noise variables could be considered as additional


independent components. In particular the mixing matrix A is still identifiable. In


contrast, the realizations of the independent components si can no longer be identified,


because they cannot be completely separated from noise. It would seem that the noise


covariance matrix is also identifiable [38, 41].


1.4.2 Ambiguities of ICA


In the ICA model it is easy to see that the following ambiguities will necessary hold:


1. We cannot determine the variances (energies) of the independent components
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2. We cannot determine the order of the independent components


For the first case the reason is that, both s and A being unknown, any scalar multiplier


in one of the sources si could always be canceled by dividing the corresponding column


ai of A by the same scalar, say αi:


x =
∑


i


(


1


αi


ai


)


(siαi) (1.9)


As a consequence, we may quite as well fix the magnitudes of the independent compo-


nents. Since they are random variables, the most natural way to do this is to assume


that each has unit variance: E {s2
i } = 1. Then the matrix A will be adapted in the


ICA solution methods to take into account this restriction. Note that this still leaves


the ambiguity of the sign: we could multiply an independent components by -1 without


effecting the model.


For the second case the reason is that, again both A and s are unknown, we can freely


change the order of the terms in equation 1.8, and call any of the independent compo-


nents the first one. Formally, a permutation matrix and its inverse can be substituted


in the model to give x = AP−1Ps. The element of Ps are the original independent


variables sj, but in another order. The matrix x = AP−1 is just a new unknown


mixing matrix, to be solved by the ICA algorithms. In other words, we have that the


separation matrix W is W = ΛP for some permutation matrix P and some diagonal


matrix Λ whose diagonal elements are ±1.


1.5 Beyond Classical ICA: Overcomplete Bases


A more difficult problem in ICA is encountered if the number of the mixtures xi is


smaller than the number of independent components si. This means that the mixing


system is not invertible: we cannot obtain the independent components (ICs) by simply


inverting the mixing matrix A. Therefore, even if we knew the mixing matrix exactly,


we could not recover the exact values of the independent components. This is because


information is lost in the mixing process.


The situation is often called ICA with overcomplete bases and we have to note that


basic ICA methods cannot be used as such. In this situation, we have two different


problems. First, how to estimate the mixing matrix, and second, how to estimate the
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realizations of the independent components. This is in stark contrast to the ordinary


ICA, where these two problems are solved at the same time.


When the basis is overcomplete, the formulation of the likelihood is difficult, since the


problem belongs to the class of missing data problems. Methods based on maximum


likelihood estimation are therefore computationally rather inefficient. To obtain com-


putationally efficient algorithms, strong approximations are necessary.


Our work focus its attention on the problem of separating sources signals from a single


observed mixture, exploiting new ideas for the solution of this problem.


1.6 Applications of ICA


The classical application of the ICA model is Blind Source Separation (BSS) [48]. We


will speak in more detail about BSS in the next section. Another application of ICA


is feature extraction [38, 41]. In this case the columns of A represent features and si


is the coefficient of the i-th feature in an observed data vector x. The use of ICA for


feature extraction is motivated by the theory of redundancy reduction.


A less direct application of the ICA methods can be found in blind deconvolution.


Due to the close connection between ICA and projection pursuit on the one hand and


between ICA and FA on the other, it should be possible to use ICA on many of the


applications where projection pursuit and FA are used. These include (exploratory)


data analysis in such areas as economics, psychology and other social sciences, as well


as density estimation and regression.


1.7 Blind Source Separation


A classical example of BSS is the “cocktail party” problem. Assume that several peo-


ple are speaking simultaneously in the same room. Then the problem is to separate


the voices of the different speakers, using recordings of several microphones in the room.


More formally, we suppose to have a situation where there are a number of signals


emitted by some physical objects or sources. Further, we assume that there are several


sensors or receivers. These sensors are in different positions, so that each one records
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Figure 1.4: Example of the Cocktail Party Problem.


a mixture of the original source signals with slightly different weights. For the sake of


simplicity of exposition, let us say there are three underlying source signals and also


three observed signals. Denote by x1(t), x2(t) and x3(t) the observed signals, and by


s1(t),s2(t) and s3(t) the original signals. The xi(t) are the weighted sums of the si(t),


where the coefficients depend on the distances between the sources and the sensors:


x1(t) = a11s1(t) + a12s2(t) + a13s3(t)


x2(t) = a21s1(t) + a22s2(t) + a23s3(t) (1.10)


x3(t) = a31s1(t) + a32s2(t) + a33s3(t)


The aij are constant coefficients that give the mixing weights. They are assumed


unknown, since we cannot know the values aij without knowing all properties of the


physical mixing system.


What we would like to do is to find the original signals from the mixtures x1(t), x2(t)


and x3(t). This is the Blind Source Separation problem. Blind means that we know


very little if anything about the original signals. We can safely assume that the mixing


coefficients aij are different enough to make the matrix invertible. Thus there exists a


matrix W with coefficients wij such that can separate the si(t) as


s1(t) = w11x1(t) + w12x2(t) + w13x3(t)


s2(t) = w21x1(t) + w22x2(t) + w23x3(t) (1.11)


s3(t) = w31x1(t) + w32x2(t) + w33x3(t)


Such matrix W could be found as the inverse of the matrix that consists of the mixing


coefficients in equation 1.11 if we knew those coefficients aij.
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1.7.1 Source Separation Based on Independence


The question, that arises, is: how can we estimate the coefficients wij in equation


1.11? We use very general statistical properties. A surprisingly simple solution to the


problem can be found by considering just the statistical independence of the signals.


In fact, if the signals are not Gaussian, it is enough to determine the coefficients wij


so that the signals


y1(t) = w11x1(t) + w12x2(t) + w13x3(t)


y2(t) = w21x1(t) + w22x2(t) + w23x3(t) (1.12)


y3(t) = w31x1(t) + w32x2(t) + w33x3(t)


are statistically independent. If the signal y1(t), y2(t) and y3(t) are independent, then


they are equal to the original signals s1(t), s2(t) and s3(t). More formally, we have that


y ≈ s = Wx (1.13)


Using just this information on the statistical independence, we can in fact estimate the


coefficient matrix W
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Figure 1.5: Example of source separation based on independence: mixed signals


for the signals in figure 1.5 that are the mixture of the signals in figure 1.6 . The
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Figure 1.6: Example of source separation based on independence: source signals.
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Figure 1.7: Example of source separation based on independence: separated signals


24







1 Introduction to ICA


separated signals are shown in figure 1.7 . Formally, ICA consists of estimating both


the matrix A and the si(t), when we only observe xi(t).


Alternatively, we could define ICA as follows: find a linear transformation given by


a matrix W so that the random variables yi in equation 1.13 are as independent as


possible.


We note that after estimating A, its inverse gives W.


1.8 History of ICA


The technique of ICA was introduced in the early 1980s by J. Hérault, C. Jutten and


B. Ans [5, 28]. The problem first came up in 1982 in a neurophysiological setting.[48]


A related field was higher-order spectral analysis, on which the first international work-


shop was organized in 1989. In this workshop, early papers on ICA by J. F. Cardoso


and P. Comon [25] were given. Cardoso used algebraic methods, especially higher-order


cumulant tensors, which eventually led to the Jade algorithm [19].


The work of the scientists in the 1980s was extended by, among other, A. Cichocki and


R. Unbehauen, who first propose one of the presently most popular ICA algorithms


[21, 24]. The “non-linear PCA” approach was introduced by E. Oja and J. Karhunen


[50, 59]. ICA attained wider attention and growing interest after that A. J. Bell and


T. J. Sejnowski published their approach based on infomax principle [10, 9] in the mid-


90s. This algorithm was further refined by S. I. Amari and his co-workers using the


natural gradient [4] and its fundamental connections to maximum likelihood estima-


tion. In 2001, A. Hyvärinen, J. Karhunen, E. Oja presented the fixed-point algorithm


or FastICA algorithm [39, 41] which has contributed to the application to large scale


problems due to its computational efficiency.


A recent trend in BSS / ICA is to consider problems in the framework of matrix fac-


torization or more general signals decomposition with probabilistic generative and tree


structured graphical models and exploit a priori knowledge about true nature and


structure of latent (hidden) variables or sources. So in the last time we get a lot of


extensions of ICA such as Topographic ICA (2001)[36], Kernel ICA (2002)[7], Tree-


Dependent Component Analysis (2003)[8], Non-negative Matrix Factorization (1999)


[54], Multichannel Blind Deconvolution (2004) [72].
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Chapter 2


Algorithms on Independent


Component Analysis


In the previous chapter, we have shown the statistical properties of the ICA


method. In this chapter, we describe the principal objective function and


optimization algorithm for the ICA problem.


2.1 Introduction


The estimation of the data model of independent component analysis is usually per-


formed by formulating an objective function and then minimizing or maximizing it.


Often such a function is called a contrast function, but some authors reserve this term


for a certain class of objective functions [26]. Also the terms loss function or cost func-


tion are used. We shall here use the term contrast function rather loosely, meaning any


function whose optimization enables the estimation of the independent components.


Although many different source separation algorithms are available, their principles


can be summarized by the following four fundamental approaches:


• the most popular approach exploits as the cost function some measure of signals


statistical independence, non-Gaussianity or sparseness. When original sources


are assumed to be statistically independent without a temporal structure, the


higher - order statistics (HOS) are essential (implicitly or explicitly) to solve the


BSS problem. In such a case, the method does not allow more than one Gaussian
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Figure 2.1: The principle of the source separation algorithms: four approaches.


sources;


• if sources have temporal structures, then each source has non-vanishing temporal


correlation and less restrictive conditions than statistical independence can be


used, namely, second - order statistics (SOS) are often sufficient to estimate


the mixing matrix and sources. Note that the SOS methods do not allow the


separation of sources with identical power spectra shapes or independent and


identically distributed (i.i.d.) sources;


• the third approach exploits non - stationarity (NS) properties and second order


statistics (SOS). Mainly, we are interested in the second order non - stationarity


in the sense that source variances vary in time. The non - stationarity was first


taken into account by [56]. However, these methods do not allow the separation


of sources with identical non - stationarity properties;


• the fourth approach exploits the various diversities (we mean different character-


istics or features of the signals), typically, time, frequency and/or time - frequency


diversities, or more generally, joint space-time-frequency (STF) diversity.
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More sophisticated or advanced approaches use combinations or integration of some of


the above mentioned approaches, in order to separate or extract sources with various


statistical properties and to reduce the influence of noise and undesirable interferences.


2.2 Cost Functions and Optimization Algorithms


In this section, we want to focus our attention on the formulation of the ICA method.


We need to have a distinction between the formulation of the objective function and


the algorithm used to optimize it, this is because the choice of the objective function


is determinant for the statistical properties (e.g., consistency, asymptotic variance, ro-


bustness) of the method, while the optimization algorithm gives a characterization of


the algorithmic properties (e.g., convergence speed, memory requirements, numerical


stability) of the method.


In the case of explicitly formulated objective functions, one can use any of the classical


methods of optimization for optimizing the objective function, like (stochastic) gradi-


ent methods, Newton-like methods, etc. In some cases, however, the algorithm and the


estimation principle may be difficult to separate.


The statistical and algorithmic properties are independent in the sense that different


optimization methods can be used to optimize a single objective function and a single


optimization method may be used to optimize different objective functions.


Another important property in the algorithms for ICA estimation is how many inde-


pendent components we want to estimate. Depending on that, we have two kind of


contrast function:


• multi - unit contrast functions, in which we estimate all the independent compo-


nents, or the whole data model, at the same time. Using this contrasts functions,


we get a symmetric orthogonalization, this mean that the vector of the demixing


matrix are not estimated one by one, but they are estimated in parallel.


• one - unit contrast functions, in which we estimate an independent component


at time. In principle, we could find more independent components by running


the algorithm many times and using different initial points. This would not be


a reliable method of estimating many independent components, but using the
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property that the vector of the demixing matrix corresponding to different com-


ponents are orthogonal in the whitened space, we can orthogonalize the vectors


for avoiding the convergence to the same maxima. A simple way of orthogonal-


ization is deflationary orthogonalization using the Gram - Schmidt method.


2.3 Multi - Unit Contrast Functions


In this section, we will describe the multi unit contrast functions, so we will treat the


problem of estimating all the independent components at the same time.


2.3.1 Likelihood and Network Entropy


A very popular approach for estimating the ICA model is maximum likelihood (ML)


estimation. ML estimation is a fundamental method of statistical estimation and we


can give an interpretation of ML estimation in ICA as taking those parameter values


as estimates that gives the highest probability for the observations. It is possible to


formulate the likelihood in the noise - free ICA model 1.8, which was done in [63],and


then estimate the model by a maximum likelihood method.


Assuming that W≈ A−1 is the unmixing matrix then, we can write:


x = As and y=Wx.


Following a basic property of linear transformed random vectors:


fx(x) =
∣


∣det(A−1)
∣


∣ fs(s) (2.1)


Assuming that f y(y) ≈ f s(s) and statistical independence between the estimated sources


u, we can write:


fx(x) = |det(W)| fy(y) = |det(W)|
N
∏


i=1


fi(yi) (2.2)


Let W = [w1,...,wN ]T . Therefore we can write:


fx(x) = |det(W)|
N
∏


i=1


fi(w
T
i x) (2.3)
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Assume that we have T observations of x. Then the likelihood can be obtained as the


product of this density evaluated at the T points. This is denoted by L and considered


as a function of W:


L(W) =
T


∏


t=1


N
∏


i=1


fi(w
T
i x(t)) |det(W)| (2.4)


Very often for practice reason it is used the logarithm of the likelihood.The log-


likelihood takes the form [63]:


L =
T


∑


t=1


m
∑


i=1


logfi(w
T
i x (t)) + T ln |detW| (2.5)


where the fi are the density functions of the si (here assumed to be known) and


the x (t), t = 1, ..., T are the realizations of x.


Another related contrast function was derived from a neural network viewpoint in


[9]. This was based on maximizing the output entropy (or information flow) of a


neural network with non-linear outputs. Assume that x is the input to the neural


network whose outputs are of the form gi


(


wT
i x


)


, where the gi are some non-linear


scalar functions and the si are the weight vectors of the neurons. One then wants to


maximize the entropy of the outputs:


L2 = H
(


g1


(


wT
1 x


)


, ..., gm


(


wT
mx


))


(2.6)


If the gi are well chosen, this framework also enables the estimation of the ICA


model. Indeed, several authors [16, 62], proved the surprising result that the principle


of network entropy maximization , or “infomax”, is equivalent to maximum likelihood


estimation. This equivalence requires that the non-linearities gi used in the neural net-


work are chosen as the cumulative distribution functions corresponding to the densities


fi, i.e., g′i(.) = fi(.).


The advantage of the maximum likelihood approach is that under some regularity con-


ditions, it is asymptotically efficient; this is a well-known result in estimation theory.


However, there are also some drawbacks. First, this approach requires the knowledge


of the probability densities of the independent component. A second drawback is that


the maximum likelihood solution may be very sensitive to outliers, if the pdf’s of the


independent components have certain shapes ([33]), while robustness against outliers


is an important property for an estimator.
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2.3.2 Mutual Information and Kullback-Leibler Divergence


An important approach for ICA estimation, inspired by information theory, is mini-


mization of mutual information. The motivation of this approach is that we want to


have a general purpose measure of the dependence of the components of a random


vector. Using such measure, we could define ICA as a linear decomposition that min-


imizes that dependence measure. Such an approach can be developed using mutual


information, which is a well-motivated information theoretic measure of statistical de-


pendence.


One of the main utilities of mutual information is that it serves as a unifying frame-


work for many estimation principles, in particular ML estimation and maximization of


nongaussianity.


Using the concept of differential entropy [38], it is possible to define the mutual infor-


mation between m scalar random variables yi, i = 1, ...,m, as follows:


I(y1, y2, ..., ym) =
∑


i


H(yi) − H(y) (2.7)


where H denotes differential entropy. The mutual information is a natural measure


of the dependence between random variables. It is always non-negative and zero if and


only if the variables are statistically independent. Thus the mutual information takes


into account the whole dependence structure of the variables. Finding a transform


that minimizes the mutual information between the components si is a very natural


way of estimating the ICA model [26]. This approach gives at the same time a method


of performing ICA according to the general definition 1.4.1. We can note that by


properties of mutual information, we have for an invertible linear transformation y =


Wx:


I(y1, y2, ..., ym) =
∑


i


H(yi) − H(x) − log |detW| (2.8)


The use of mutual information can also be motivated using the Kullback-Leibler


divergence, defined for two probability densities f1 and f2 as


δ(f1, f2) =


∫


f1(y)log
f1(y)


f2(y)
dy (2.9)
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The Kullback-Leibler divergence can be considered as a kind of a distance between


the two probability densities, though it is not a real distance measure because it is


not symmetric. Now, if the yi in equation 2.7 were independent, their joint proba-


bility density could be factorized as in the definition of independence in equation 1.4.


Thus one might measure the independence of the yi as the Kullback-Leibler divergence


between the real density f(y) and the factorized density f̃(y) = f1(y1)f2(y2)...fm(ym),


where fi(.) are the marginal densities of the yi. In fact, this quantity equals the mutual


information of the yi.


The connection to the Kullback-Leibler divergence also shows the close connection


between minimizing mutual information and maximizing likelihood. In fact, the likeli-


hood can be represented as a Kullback-Leibler distance between the observed density


and the factorized density assumed in the model [17]. So both of these methods are


minimizing the Kullback-Leibler divergence between the observed density and a fac-


torized density; actually the two factorized densities are asymptotically equivalent, if


the density is accurately estimated as part of the ML estimation method.


The problem with mutual information is that it is difficult to estimate, because to


use the definition of entropy, one needs an estimate of the density. This problem has


severely restricted the use of mutual information in ICA estimation. Some authors


have used approximations of mutual information based on polynomial density expan-


sion [26, 4], which lead to the use of higher-order cumulants. The polynomial density


expansions are related to the Taylor expansion. They give an approximation of a prob-


ability density f(.) of a scalar random variable y using its higher-order cumulants. For


example, the first terms of the Edgeworth expansion give, for a scalar random variable


y of zero mean and unit variance:


f(ξ) ≈ ϕ(ξ)(1 + κ3(y)h3(ξ)/6 + κ4h4(ξ)/24 + ...) (2.10)


where ϕ is the density function of a standardized Gaussian random variable, the


κi(y) are the cumulants of the random variably y and hi(.) are certain polynomial


functions (Hermite polynomials).


Using such expansions, one obtains for example the following approximation for mutual


information
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I(y) ≈ C +
1


48


m
∑


i=1


[


4κ3(yi)
2 + κ4(yi)


2 + 7κ4(yi)
4 − 6κ3(yi)


2κ4(yi)
]


(2.11)


where C is constant; the yi are here constrained to be uncorrelated. A very similar


approximation was derived in [4] and also earlier in the context of projection pursuit


in [47].


Cumulant-based approximations such as the one in equation 2.11 simplify the use of


mutual information considerably. The approximation is valid, however, only when f(.)


is not far from the Gaussian density function, and may produce poor results when


this is not the case. More sophisticated approximations of mutual information can be


constructed by using the approximations of differential entropy that were introduce in


[35], based on the maximum entropy principle. In these approximations, the cumulants


are replaced by more general measures of nongaussianity.


2.3.3 Non-linear Cross-Correlations


Assume two random variables y1 and y2 and two functions f(y1) and g(y2), where at


least one is nonlinear. We can say that y1 and y2 are nonlinearly decorrelated, if


E {f(y1)g(y2)} = 0 (2.12)


Non-linear decorrelation can be a criterion for statistical independence. The variables


y1 and y2 are statistically independent if


E {f(y1)g(y2)} = E {f(y1)}E {g(y2)} = 0 (2.13)


for every continuous function f and g that are zero outside a finite interval. We can


also show that, in order to satisfy the independence criterion, the functions f and g


should be odd and y1 and y2 must have symmetrical probability density functions. In


this general framework, we need to address the following:


• how can we choose f and g to satisfy equation 2.13;


• how can we nonlinearly decorrelate the variable y1 and y2.
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Two attempts to address these questions was developed by Jutten and Hérault [48]


in their seminal paper, and by Cichocki and Unbehauen [24]. After that several au-


thors have used the principle of canceling non-linear cross-correlations to obtain the


independent components [48, 19, 24].


2.3.4 Higher-order Cumulant Tensors


A principle of ICA estimation that is less directly connected with the objective function


framework, is the eigenmatrix decomposition of higher-order cumulant tensors. Most


solutions use the fourth-order cumulant tensor, whose properties and relation to the


estimation of ICA have been studied extensively [14, 15, 18, 26].


The fourth-order cumulant tensor can be defined as the following linear operator T


from the space of m × m matrices to itself:


T (K)ij =
∑


k,l


cum(xi, xj, xk, xl)Kkl (2.14)


where the subscript ij means the (i,j )-th element of a matrix and K is a m × m


matrix. This is a linear operator and thus has m2 eigenvalues that correspond to eigen-


matrices. Solving for the eigenvectors of such eigenmatrices, the ICA model can be


estimated [14].


The advantage of this approach is that it requires no knowledge of the probability


densities of the independent components. Moreover, cumulants can be used to ap-


proximate mutual information [26, 4], as shown above, though the approximation is


often very crude. The main drawback of this approach seems to be that the statistical


properties of estimators based in cumulants are not very good.


2.4 One-Unit Contrast Functions


We use the expression one unit contrast function to designate any function whose


optimization enables estimation of a single independent component. Thus, instead of


estimating the whole ICA model, we try to find here simply one vector, say w, so


that the linear combination wTx equals one of the independent components si. This


procedure can be iterated to find several independent components. The use of one-unit
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contrast functions can be motivated by the following:


• the one-unit approach shows a direct connection to projection pursuit. Indeed, all


the one-unit contrast functions discussed below can be considered as measure of


non-Gaussianity and therefore this approach gives a unifying framework for these


two techniques. The same contrast functions and algorithms can be interpreted


in two different ways.


• In many applications, one does not need to estimate all the independent com-


ponents. Finding only some of them is enough. In the ideal case where the


one-unit contrast functions are optimized globally, the independent components


are obtained in order of (descending) non-Gaussianity. In the light of the basic


principles of projection pursuit, this means that the most interesting independent


components are obtained first. This reduces the computational complexity of the


method considerably, if the input data has a high dimension.


• Prior knowledge of the number of independent components is not needed, since


the independent components can be estimated one-by-one.


• This approach also shows clearly the connection to neural networks. One can


construct a neural network whose units learn so that every neuron optimizes


its own contrast function. Thus the approach tends to lead to computationally


simple solutions.


After estimating one independent component, one can use simple decorrelation to


find a different independent component, since the independent components are by def-


inition uncorrelated. Thus, maximizing the one-unit contrast function under the con-


straint of decorrelation (with respect to the independent components already found), a


new independent component can be found, and this procedure can be iterated to find


all the independent components. Symmetric (parallel) decorrelation can also be used


[39, 52].


2.4.1 Negentropy


A most natural information-theoretic one-unit contrast function is negentropy. From


equation 2.7, one is tempted to conclude that the independent components correspond
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to directions in which the differential entropy of wTx is minimized. This turns out to


be roughly the case. However, a modification has to be made, since differential entropy


is not invariant for scale transformations. To obtain a linearly (and in fact affinely)


invariant version of entropy, one defines the negentropy J as follows:


J(y) = H(ygauss) − H(y) (2.15)


where ygauss is a Gaussian random vector of the same covariance matrix as y.


Negentropy, or negative normalized entropy, is always non-negative, and is zero if and


only if y has a Gaussian distribution [26].


The usefulness of this definition can be seen when mutual information is expressed


using negentropy, giving


I(y1, y2, ..., yn) = J(y) −
∑


i


J(yi) +
1


2
log


∏


Cy
ii


detCy (2.16)


where Cy is the covariance matrix of y, and the Cy
ii are its diagonal elements. If


the yi are uncorrelated, the third term is 0, and we thus obtain


I(y1, y2, ..., yn) = J(y) −
∑


i


J(yi) (2.17)


Because negentropy is invariant for linear transformations [26], it is now obvious


that finding maximum negentropy directions, i.e., directions where the elements of the


sum J(yi) are maximized, is equivalent to finding a representation in which mutual


information is minimized. The use of negentropy shows clearly the connection between


ICA and projection pursuit. Using differential entropy as a projection pursuit index,


as has been suggested in [47], amounts to finding directions in which negentropy is


maximized.


Unfortunately, the reservations made with respect to mutual information are also valid


here. The estimation of negentropy is difficult, and therefore this contrast function


remains mainly a theoretical one. As in the multi-unit case, negentropy can be approx-


imated by higher-order cumulants, for example as follows [47]:


J(y) ≈ 1


12
κ3(y)2 +


1


48
κ4(y)2 (2.18)
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where κi(y) is the i -th order cumulant of y. The random variable y is assumed


to be of zero mean and unit variance. However, the validity of such approximations


may be rather limited. In [35], it was argued that cumulant-based approximations


of negentropy are inaccurate, and in many cases too sensitive to outliers. New ap-


proximations of negentropy were therefore introduced. In the simplest case, these new


approximations are of the form:


J(y) ≈ c [E{G(y)} − E{G(υ)}]2 (2.19)


where G is practically any non-quadratic function, c is an irrelevant constant and υ


is a Gaussian variable of zero mean and unit variance (i.e., standardized). In [35], these


approximations were shown to be better than cumulant-based ones in several respects.


Actually, the two approximations of negentropy discussed above are interesting as one-


unit contrast functions in their own right, as will be discussed next.


2.4.2 Higher-Order Cumulants


Mathematically the simplest one-unit contrast functions are provided by higher-order


cumulants like kurtosis. Denote by x the observed data vector, assumed to follow the


ICA data model 1.4.3.


Now, let us search for a linear combination of the observations xi, say wTx, such


that its kurtosis is maximized or minimized. Obviously, this optimization problem is


meaningful only if w is somehow bounded; let us assume E{(wTx)2} = 1. Using the


(unknown) mixing matrix A, let us define z = ATw. Then, using the data model


x = As one obtains E{(wTx)2} = wTAATw = ‖z‖2 = 1 (recall that E{ssT} = I),


and the well-known properties of kurtosis give


kurt(wTx) = kurt(wTAs) = kurt(zT s) =
m


∑


i=1


z4
i kurt(si) (2.20)


Under the constraint ‖z‖2 = 1, the function in the equation 2.20 has a number of lo-


cal minima and maxima. To make the argument clearer, let us assume for the moment


that in the mixture in the equation 1.8, there is at least one independent component


sj whose kurtosis is negative, and at least one whose kurtosis is positive. Then, the


extremal points in equation 2.20 are the canonical base vectors z = ±ej, i.e., vectors
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whose all components are zero except one component which is ±1. The corresponding


weight vectors are w = ±(A−1)Tej, i.e., the rows of the inverse of the mixing matrix A,


up to a multiplicative sign. So by minimizing or maximizing the kurtosis in equation


2.20 under the given constraint, one obtains one of the independent components as


wTx = ±sj. These two optimization modes can also be combined into a single one,


because the independent components correspond always to maxima of the modulus of


the kurtosis.


Kurtosis has been widely used for one-unit ICA (see, for example, [41, 39]), as well


as for projection pursuit [47]). The mathematical simplicity of the cumulants, and


especially the possibility of proving global convergence results has contributed largely


to the popularity of cumulant-based (one-unit) contrast functions in ICA, projection


pursuit and related fields. However, it has been shown, for example in [33], that kur-


tosis often provides a rather poor objective function for the estimation of ICA, if the


statistical properties of the resulting estimators are considered. Note that despite the


fact that there is no noise in the ICA model in equation 1.8, neither the independent


components nor the mixing matrix can be computed accurately because the indepen-


dent components si are random variables, and, in practice, one only has a finite sample


of x. Therefore, the statistical properties of the estimators of A and the realizations


of s can be analyzed just as the properties of any estimator. Such an analysis was


conducted in [33] and the results show that in terms of robustness and asymptotic


variance, the cumulant-based estimators tend to be far from optimal. Intuitively, there


are two main reasons for this. Firstly, higher-order cumulants measure mainly the tails


of a distribution, and are largely unaffected by structure in the middle of the distri-


bution. Secondly, estimators of higher-order cumulants are highly sensitive to outliers


[32]. Their value may depend on only a few observations in the tails of the distribution,


which may be outliers.


2.4.3 General Contrast Functions


To avoid the problems encountered with the preceding objective functions, new one-


unit contrast functions were developed in [38, 41]. Such contrast functions try to


combine the positive properties of the preceding contrast functions, i.e. have statis-


tically appealing properties (in contrast to cumulants), require no prior knowledge of
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the densities of the independent components (in contrast to basic maximum likelihood


estimation), allow a simple algorithmic implementation (in contrast to maximum likeli-


hood approach with simultaneous estimation of the densities), and be simple to analyze


(in contrast to non-linear cross-correlation approach).


The generalized contrast function (introduced in [39]), which can be considered gener-


alizations of kurtosis, seem to fulfill these requirements. To begin with, note that one


intuitive interpretation of contrast functions is that they are measure of non-normality.


A family of such measures of non-normality could be constructed using practically any


functions G and considering the difference of the expectation of G for the actual data


and the expectation of G for Gaussian data. In other words, we can define a contrast


function J that measures the non-normality of a zero-mean random variable y using


any even, non-quadratic, sufficiently smooth function G as follows:


JG(y) = |Ey {G (y)} − Eυ {G (υ)}|p (2.21)


where υ is a standardized Gaussian random variable, y is assumed to be normalized


to unit variance, and the exponent p= 1,2 typically. The subscripts denote expectation


with respect to y and υ.


Clearly, JG can be considered a generalization of (the modulus of) kurtosis. For G(y)


= y4, JG becomes simply the modulus of kurtosis of y. Note that G must not be


quadratic, because then JG would be trivially zero for all distributions. Thus, it seems


plausible that JG could be a contrast function in the same way as kurtosis. In fact,


for p=2, JG coincides with the approximation of negentropy given in equation 2.19.


In [38], the finite sample statistical properties of the estimators based on optimizing


such a general contrast function were analyzed. It was found that for a suitable choice


of G, the statistical properties of the estimator (asymptotic variance and robustness)


are considerably better than the properties of the cumulant based estimators. The


following choice of G were proposed:


G1 (u) = log (cosh (a1u))


G2 (u) = exp
(


−a2u
3/2


)


(2.22)


where a1,a2 ≥ 1 are some suitable constants. In the lack of precise knowledge on the
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distributions of the independent components or on the outliers, these two functions


seem to approximate reasonably well the optimal contrast function in most cases.


Experimentally, it was found that especially the value 1≤a1 ≤ 2,a2 = 1 for the contrast


give good approximations. One reason for this is that G1 above corresponds to the log-


density of a super- Gaussian distribution and is therefore closely related to maximum


likelihood estimation.


2.4.4 A Unifying View on Contrast Functions


It is possible to give a unifying view that encompasses most of the important contrast


functions for ICA. First of all, we can see above, that the principles of mutual infor-


mation and maximum likelihood are essentially equivalent [17]. Second, as already


discussed above, the infomax principle is equivalent to maximum likelihood estimation


[16, 62]. On the other hand, it was discussed above how some of the cumulant-based


contrasts can be considered as approximations of mutual information. Thus it can be


seen that most of the multi-unit contrast function are, if not strictly equivalent, at


least very closely related. However, an important reservation is necessary here: for


these equivalences to be at all valid, the densities f i used in the likelihood must be a


sufficiently good approximations of the true densities of the independent components.


At the minimum, we must have one bit of information on each independent compo-


nent: whether it is sub- or super-Gaussian [18, 16, 40]. This information must be either


available a priori or estimated from the data, see [18, 16, 40]. This situation is quite


different with most contrast functions based on cumulants, and the general contrast


functions which estimate directly independent components of almost any non-Gaussian


distribution.


Also for the one-unit contrast functions, we have a very similar situation. Negentropy


can be approximated by cumulants or by the general contrast functions, which shows


that the considered contrast functions are very closely related. In fact, looking at the


formulas for likelihood and mutual information in equations 2.16 and 2.18, one sees


that they can be considered as sums of one-unit contrast functions plus a penalizing


term that prevents the vector wi from converging to the same directions. This could


be called a “soft” form of decorrelation. Thus we see that almost all the contrast func-


tions could be described by the single intuitive principle: find the most non-Gaussian
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projections and use some (soft) decorrelation to make sure that different independent


component are found. So, the choice of contrast function is essentially reduced to the


simple choice between estimating all the independent components in parallel or just


estimating a few of them (possibly one-by-one). This corresponds approximately to the


choosing between symmetric and hierarchical decorrelation, which is a choice familiar


in PCA learning [38]. One must also make the less important choice between cumulant


based and robust contrast functions (i.e. those based on non-quadratic function), but


it seems that the robust contrast functions are to be preferred in most applications.


2.5 Algorithms for ICA


2.5.1 Introduction


After choosing one of the principles of estimation for ICA, one needs a practical method


for its implementation. Usually, this means that after choosing an objective function


for ICA, we need to decide how to optimize it. In this section, we shall discuss the


optimization method. We must to recall that the statistical properties of the ICA


method depend only on the objective function used.


2.5.2 Preprocessing of the Data


Some ICA algorithms require a preliminary sphering or whitening of the data x and


even those algorithms that do not necessarily need sphering, often converge better with


sphered data. Recall that the data has also been assumed to be centered (i.e. made


zero-mean).


Sphering means that the observed variable x is linearly transformed to a variable v:


v = Qx (2.23)


such that the covariance matrix of v equals unity: EvvT = I. This transformation is


always possible. Indeed, it can be accomplished by classical PCA [38]. In addition to


sphering, PCA may allow us to determine the number of independent components (if


m > n). If noise level is low, the energy of x is essentially concentrated on the sub-


space spanned by the n first principal components, with n the number of independent
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components in the model. Several methods exist for estimating the number of signals


(here, independent components) and thus this reduction of dimension partially justifies


the assumption m = n.


In model 1.4.3, after sphering we have:


v = Bs (2.24)


where B=QA is an orthogonal matrix, because


E
{


vvT
}


= BE
{


ssT
}


BT = BBT = I (2.25)


Recall that we have assumed that the independent components si have unit variance.


We have thus reduced the problem of finding an arbitrary matrix A in model 1.4.3 to


the simpler problem of finding an orthogonal matrix B. Once B is found, equation 2.24


is used to solve the independent components from the observed B by


y = ŝ = BTv (2.26)


It is also worthwhile to reflect why sphering alone does not solve the separation


problem. This is because sphering is only defined up to an additional rotation: if Q1


is a sphering matrix, then Q2 = UQ1 is also a sphering matrix if and only if U is an


orthogonal matrix. Therefore, we have to find the correct sphering matrix that equally


separates the independent components. This is done by first finding any sphering


matrix Q, and later determining the appropriate orthogonal transformation from a


suitable non-quadratic criterion.


2.5.3 Jutten-Hérault Algorithm


The pioneering work in [48] was inspired by NNs. Their algorithm was based on


canceling the non-linear cross-correlations. The non-diagonal terms of the matrix W


are updated according to:


∆ Wij ∝ g1 (yi) g2 (yj) ∀ i 6= j (2.27)


where g1 and g2 are some odd non-linear functions and the y i are computed at


every iteration as y = (y + W)−1x. The diagonal terms Wii are set to zero. The y i
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then give after convergence, estimates of the independent components. Unfortunately,


the algorithm converges only under rather severe restrictions [48].


2.5.4 Non-Linear Decorrelation Algorithms


Further algorithms for canceling non-linear cross-correlations were introduced indepen-


dently in [21, 24] and [19]. Compared to the Jutten-Hérault algorithm, these algorithms


reduce the computational overhead by avoiding any matrix inversion and improve its


stability. For example, the following algorithm was given in [19, 24]:


∆ W ∝
(


I − g1 (y) g2


(


yT
))


W (2.28)


where y = Wx, the non-linearities g1(.) and g2(.) are applied separately on every


components of the vector y and the identity matrix could be replaced by any positive


definite diagonal matrix. In [19], the following EASI algorithm was introduced:


∆ W ∝
(


I − yyT − g (y)yT − yg
(


yT
))


W (2.29)


A principal way to choosing the non-linearities used in this learning rules is provided


by the maximum likelihood (or infomax).


2.5.5 Algorithms for Maximum Likelihood or Infomax Estima-


tion


An important class of algorithms consists of those based on maximization of network


entropy (infomax) [9], which is, under some conditions, equivalent to the maximum


likelihood approach. Usually these algorithms are based on (stochastic) gradient ascent


of the objective function. For example, the following algorithm was derived in [9]:


∆ W ∝
[


WT
]−1 − 2 tanh(Wx)xT (2.30)


where the tanh function is applied separately on every component of the vector Wx,


as above. The tanh function is used here because it is the derivative of the log-


density of the “logistic” distribution [9]. This function works for estimation of most


super-Gaussian (sparse) independent components; for sub-Gaussian independent com-


ponents, other functions must be used. The algorithm in equation 2.30 converges,
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however, very slowly, as had been noted by several researchers. The convergence may


be improved by whitening the data and especially by using the natural gradient. The


natural (or relative) gradient method simplifies the gradient method considerably, and


makes it better conditioned. The principle of the natural gradient [4, 3] is based on


the geometrical structure of the parameter space and is related to the principle of the


relative gradient [19] that uses the Lie group structure of the ICA problem. In the


case of basic ICA, both of these principles amount to multiplying the right-hand side


of equation 2.30 by WTW. Thus we obtain:


∆ W ∝
(


I − 2 tanh(y)yT
)


W (2.31)


with y = Wx. After this modification, the algorithm does not need sphering. Inter-


estingly, this algorithm is a special case of the non-linear decorrelation algorithm in


equation 2.27 and is closely related to the algorithm in equation 2.28. Finally, in [63],


a Newton method for maximizing the likelihood was introduced. The Newton method


converges in fewer iterations, but has the drawback that a matrix inversion (at least


approximate) is needed in every iteration.


2.5.6 Neural One-Unit Learning Rules


Using the principle of stochastic gradient descent, one can derive simple algorithms from


the one-unit contrast functions explained above. Let us consider first whitened data.


For example, taking the istantaneous gradient of the generalized contrast function in


equation 2.19 with respect to w, and taking the normalization ‖w‖2 = 1 into account,


one obtains the following Hebbin-like learning rule:


∆wi ∝ r g
(


wTx
)


;w =
w


‖w‖ (2.32)


where the constant may be defined, e.g. as r=EG(wx) - EG(υ). The non-linearity


g can thus be almost any non-linear function; the important point is to estimate the


multiplicative constant r in a suitable manner [38].


2.5.7 The Tensor-Based Algorithms


A large amount of research has been done on algorithms utilizing the fourth-order


cumulant tensor for estimation of ICA [14, 15]. These are typically batch algorithms
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(non-adaptive), using such tensorial techniques as eigenmatrix decomposition, which


is a generalization of eigenvalue decomposition for higher-order tensors. Such a de-


composition can be performed using ordinary algorithms for eigenvalue decomposition


of matrices, but this requires matrices of size m2 × m2. Since such matrices is of-


ten too large, specialized Lanczos type algorithms of lower complexity have also been


developed [14]. These algorithms often perform very efficiently on small dimensions.


However, in large dimensions, the memory requirements may be prohibitive, because


often the coefficients of the fourth-order tensor must be stored in memory, which re-


quires O(m4) units of memory. The algorithms also tend to be quite complicated to


program, requiring sophisticated matrix manipulations.


2.5.8 The FastICA Algorithm


The FastICA learning rule finds a direction, i.e. a unit vector w such that the projection


wTx maximizes independence of the single estimated source y. Independence is here


measured by the approximation of the negentropy given by:


JG (w) = E
{


G
(


wTx
)}


− E {G (υ)}]2 (2.33)


where w is an m-dimensional (weight) vector, x represents our mixture of signals and


υ is a standardized Gaussian random variable. Maximizing JG allows to find one


independent component or projection pursuit direction. Maximizing the sum of n one-


unit contrast functions and taking into account the constraint of decorrelation, we


obtain the following optimization problem:


maximize
n


∑


i=1


JG (wi)


under constraint E
{(


wT
k x


) (


wT
j x


)}


= δjk {k, j} = 1, ..., n (2.34)


where, on the maximum, every vector wi gives one of the rows of the separating


matrix. In the projection pursuit interpretation, this equation gives n projection pur-


suit directions that are constrained to be decorrelated. Basically, we have the following


choices for the contrast function [38]:
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G1 (u) =
1


a1


logcosh(a1u) g1 (u) = tanh(a1u) (2.35)


G2 (u) = − 1


a2


exp
(


−a2u
2/2


)


g2 (u) = uexp (−a2u
2/2) (2.36)


G3 (u) =
1


4
u4 g3 (u) = u3 (2.37)


where u is a generic variable, a1 ≥1, a2 −̃1 are constants and g i is the derivative of Gi.


The benefits of the different contrast functions may be summarized as follow [38]:


• G1 is a good general purpose contrast function.


• When the independent components are highly super-Gaussian, or when robust-


ness is very important, G2 may be the right choice.


• If computational overhead must be reduced, then piece-wise linear approxima-


tions of G1 and G2 may be used.


• The use of G3, i.e. the kurtosis, is justified on statistical grounds only for esti-


mating sub-Gaussian independent components when there are no outliers.


• In the special case where it is important to first find the super-Gaussian compo-


nents, kurtosis can be used.


Moreover, we note that multi-modality is revealed by a low kurtosis. There is an


interesting relationship between this and the objective function G1: expanding G1 in


Taylor series, setting a1=1 and u = wTx, we obtain for


E {ln cosh (u)} =
1


2
E


{


(


wTx
)2


}


− 1


12
E


{


(


wTx
)4


}


+


+
1


45
E


{


(


wTx
)6


}


+ E
{


O
[


(


wTx
)8


]}


(2.38)


Applying the whitening to the data, we have in the formula that the second term is


dominating and kurtosis is minimized at least approximately [58].


We remark that the algorithm requires a preliminary whitening of the data: the ob-


served variable x is linearly transformed to a zero-mean variable v = Qx such that E


vvT = I. Whitening can always be accomplished by e.g. Principal Component Analysis


[38].
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The one-unit fixed-point algorithm for finding a row vector w is [38]:


w∗ = E
[


vg
(


wT
i v


)]


− E
[


vg′
(


wT
i v


)]


wi


wi = w∗
i / ‖w∗


i ‖ (2.39)


where g(.) is a suitable non-linearity, in our case g(y) = tanh(y) and g’(y) is its


derivative with respect to y.


The algorithm of the previous equations estimates just one of the independent compo-


nents. To estimate several independent components, we need to run one-unit FastICA


algorithm using several units (e.g. neurons) with weight vectors w1,...,wn. To prevent


different vectors from converging to the same maximum we must decorrelate the out-


puts wT
1 x,...,wT


nx after every iteration. In specific applications it may be desidered


to use a symmetric decorrelation, in which vectors are not privileged over the others.


This can be accomplished by the classical method involving matrix-square-roots.


If we assume that the data is whitened, we have that


W = W
(


WTW
)−1/2


(2.40)


where W is the matrix of the vectors (w1,...,wn), and the inverse-square-root is


obtained from the eigenvalue decomposition as (WTW)−1/2=ED−1/2ET where E is


the eigenvector matrix and D is the diagonal eigenvalue one.


2.5.9 Properties of the Fixed-Point Algorithm


The fixed-point algorithm for (approximate) minimization of mutual information has


a number of desirable properties [38]:


• The convergence is cubic (or at least quadratic), under the assumption of the


ICA ata model. This is in contrast to gradient descendent methods, where the


convergence is only linear. This means a very fast convergence, as has been


confirmed by simulations and experiments on real data;


• Contrary to gradient-based algorithms, there are no step size parameters to


choose. This means that the algorithm is easy to use;
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• The algorithm finds directly independent components of any non-Gaussian dis-


tribution, which is in contrast to many algorithms, where some estimate of the


probability distribution function has to be first available;


• The fixed-point algorithm inherits most of the advantages of neural algorithms:


it is parallel, distributed, computationally simple and requires little memory


space. Stochastic gradient methods seem to be preferable only if fast adaptivity


in a changing environment is required;


• The statistical properties for a suitable choices of the contrast functions are su-


perior to those of the kurtosis-based approach.
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Beyond Independent Component


Analysis: Overcomplete Bases


In the previous chapter, we have shown the principal objective functions


and optimization algorithms for the classical ICA problem. In this chapter,


we focus our attention on the problem of ICA with less sensors than sources,


with a particular attention to the case of a single mixture.


3.1 Introduction


The standard formulation of ICA requires at least as many sensors as sources. Lewicki


and Sejnowski [55] have proposed a first generalization of ICA method for learning


overcomplete representations from data that allows for more basis vectors than dimen-


sions in the input. The goal of this method is illustrated in figure 3.1 [37]. In a two


dimensional data space, the observation x in figure 3.1(a,b) were generated by a linear


mixture of two independent random super-gaussian sources. In this space, figure 3.1


(a) shows orthogonal basis vectors (PCA) and figure 3.1 (b) shows independent basis


vectors. If the two-dimensional observed data are generated by three sparse sources as


shown in figure 3.1 (c,d) the complete ICA representation (c) cannot model the data


adequately but the overcomplete ICA representation (d) finds three basis vectors that


fit the underlying distribution of the data.


In this situation, the mixing system is not invertible: we cannot obtain the indepen-


dent components by simply inverting the mixing matrix A. Therefore, even if we knew
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Figure 3.1: Illustration of basis vectors in a two-dimensional data space with two sparse


sources (top) or three sparse sources (bottom).
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the mixing matrix exactly, we could not recover the exact values of the independent


components. This is because information is lost in the mixing process.


So we have two different problems. First, how to estimate the mixing matrix, and


second, how to estimate the realizations of the independent components. This is in


stark contrast to ordinary ICA, where these two problems are solved at the same time.


3.2 Is Source Separation Possible?


The two problems described below are called: the identifiability and the separability


problems [38]. Identifiability describes the capability of estimating the structure of the


linear model up to a scale and a permutation, while separability is the capability of


retrieving the sources using the estimate of the mixing model. In the case of over-


complete ICA, it is still possible to identify the mixing matrix from the knowledge


of x alone, although it is not possible to uniquely recover the sources s. One of the


possible solution to this problem is that of assuming a probability distribution for s,


one could obtain estimates of the sources by maximizing the likelihood of p(x|A,s). In


the standard ICA formulation, we used the non-Gaussianity as a principle for the sep-


aration, in the overcomplete case non-Gaussianity is much more essential to facilitate


the source separation task. For example, in the case of audio signals, we have certain


time-domain statistical profile. Speech signals tend to have a Laplacian distribution,


due to the many pauses that exist in the nature of speech. Musical signals tend to have


a more Gaussian-like structure that might not affect the ICA algorithm in square case,


but can affect the identifiability of the problem in the overcomplete case. A possible


solution for signals with such statistics for overcomplete ICA is to use a linear, sparse,


super-Gaussian, orthogonal transformation. A sparse transformation linearly maps the


signal to a domain where most of the values are very small, i.e. concentrates the energy


of the signals to certain areas. As a result the mixing matrix A remains unchanged by


the signal transformation, so its estimation in the transform domain is equivalent to


the estimation in the time-domain, although with sparser statistics. If the transform


is invertible, one can perform the estimation of y in the transform domain. There


are many candidate transform for this task, for example: the Fourier transform, the


Discrete Cosine transform and the Wavelet Transform.
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3.3 Estimating the source given the mixing matrix


This is a problem that does not exist in the standard formulation of ICA where m = n,


and so you can invert the matrix A and get accurate estimate of your sources. In the


m ≥ n case, the pseudoinverse can give accurate estimates of the sources. However, in


the overcomplete case, the estimates obtained from the pseudoinverse are not accurate.


Therefore, we have to resort to other methods to solve the problem.


3.3.1 Maximum Likelihood Estimation


One solution is to use Maximum Likelihood (ML) or Maximum A Posteriori (MAP)


estimation to retrieve our sources, given the mixing matrix A.


Imposing a source model, our sources can be retrieved by:


y = argmaxy P (y|x,A) = argmaxy py(y)P (x|A,y)P (y) (3.1)


Therefore, in the noiseless case the sources can be retrieved by


∆y ∝ −δ logP (y)/δy (3.2)


However, this gradient based algorithm is not very fast.


3.3.2 Linear Programming


Usually we employ sparse linear transform to enhance the quality of separation. There-


fore, a Laplacian model for the sources p(y) ∝ exp−|y| can be applied. A good starting


point for the algorithm can always be the pseudoinverse solution. Lewicki [55] proved


that source estimation assuming Laplacian priors, can be reduced to minimizing the


L1-norm of the estimated sources.


miny ‖y‖1 = minyi


∑


i


|yi| = miny[1 1...1] |y| (3.3)


subject to x = Wy


This can be transformed and solved as a linear programming problem. However, solving


a linear programming problem for every time sample can be quite computationally
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demanding and very slow. This can be quite important when you are updating the


mixing matrix as well and you want to find an estimate of the sources for each estimate


of A. In that case, we aim for a solution that can be fast and accurate.


3.4 Estimating the mixing matrix given the sources


3.4.1 Clustering Approach


Hyvärinen’s Approach


Hyvärinen [34] in his analysis shows that maximizing the log p(A,s) is not an approx-


imation but it is equivalent to the log-likelihood that Lewicki tries to maximize in


[34]. Moreover, Hyvärinen forms a very efficient clustering algorithm for superGaus-


sian components. In order to perform separation, he assumes that the sources are very


sparse. Therefore, for sparse data you can claim that at most only one component is


active at each sample. In other words, we attribute each point of the scatter plot to


one source only. This is a competitive winner-take-all mechanism.


The step of the method are:


1. Initialize A = [a1,a2,...,an].


2. Collect the points that are close to the directions represented by ai.


For all ai find the set of points Si of x that:


∣


∣aT
i x(n)


∣


∣ ≥
∣


∣aT
j x(n)


∣


∣ , ∀ j 6= i (3.4)


3. Update


ai ←
∑


n∈ Si


x(n)(aT
i x(n)) (3.5)


ai ← ai/ ‖ai‖ , ∀ i = 1, 2, ..., n (3.6)


4. Repeat 2,3 until convergence.


As we can see, this is a clustering approach, as we force the direction of the mixing


matrix to align along the concentration of the points in the scatter plot.
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Figure 3.2: Illustration of clustering algorithm applied on 2 sensors - 3 sources scenario.


In figure 3.2, we show an example of clustering algorithm applied on 2 sensors - 3


sources scenario.


To estimate the sources in this case, all we have to do is construct the vectors xSi
(t)


that contain all the vectors from x(t) corresponding to each Si. Then the estimates


are given by:


yi = aT
i xSi


(3.7)


3.4.2 Bayesian Approaches


Maximizing joint likelihood


In [55], Lewicki described a Bayesian approach to overcomplete ICA. He also explored


the general case with additive noise n as described in equation 1.7.


Assuming that the noise is Gaussian and isotropic with covariance matrix Cn = σ 2
nI,


it is possible to write:


log p(x|A,s) ∝ − 1


2σ2
n


(x − As)2 (3.8)


Now, we have to deal with two problems as stated before:
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• estimate A;


• estimate y.


We have discussed so far various methods for getting an estimate of the sources, given


an estimate of A. Now, Lewicki thought of maximizing the following:


maxA p(x|A) = maxA


∫


p(y)p(x|A,y)dy (3.9)


After approximating p(x|A), with a Gaussian around y and a mathematical analysis,


Lewicki derives a gradient algorithm that resembles the natural gradient.


∆A ∝ −A(φ(y)yT + I) (3.10)


where φ(y) represents the activation function. Assuming sparse priors, Lewicki pro-


posed φ(y) = tanh(y). Lewicki claims that this approach can work for sources captured


in the time-domain, however it is bound to have performance in a sparser domain. The


algorithm can be summarised as follows:


1. randomly initialize A;


2. initialize source estimates y either with the pseudoinverse or with zero signals;


3. given the estimated y, get a new estimate for A:


A ← A − ηA(φ(y)yT + I) (3.11)


where η is the learning rate;


4. given the new estimate for A, find a new estimate for y either by solving the


linear programming problem for every sample n, or by other methods;


5. repeat steps 3,4 until convergence.


As this is a gradient algorithm, its convergence depends highly on the choice of


learning rate and on signal scaling.
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Mixtures of Gaussians - Attias’ approach


Attias [6] proposed to model the sources as a Mixture of Gaussians (MoG) and used an


Expectation-Maximization (EM) algorithm to estimate the parameters of the model.


A MoG is defined as:


p(si) =
K


∑


k=1


πikNsi
(µik, σ


2
ik) (3.12)


where K defines the number of Gaussians used, µik and σik denote the mean and


standard deviation of the kth Gaussian and πik ∈ [0,1] the weight of each Gaussian,


with the constraint that
∑


K
k=1 πik = 1. To model the joint density function p(s), we


issue a vector q(t) = [q1(t),q2(t),...,qn(t) ]. Each qk(t) can take a discrete value from


1 to K and represents the state of the mixture of the kth source at time t. the joint


density function p(s) is itself a MoG in the following form:


p(s) =
N
∏


i=1


p(si) =
∑


q1


...
∑


qN


π1,q1
...πL,qN


N
∏


i=1


Nsi
(µi,qi


, σ2
i,qi


) (3.13)


Assuming additive Gaussian noise of zero mean and covariance J, it is possible to


exploit the Gaussian structure to express p(x|A).


Attias [6] shows that:


p(x|A,J) =
K


∑


q1=1


...


K
∑


qN=1


π1,q1
...πN,qN


×Nx(a1µ1,q1
+...+a1µN,qN


, J+a1a
T
1 σ2


1,q1
+...+aNaT


NσN
1,qN


)


(3.14)


where A = [a1,a2,...,an]. In order to estimate the parameters of this model, Attias chose


to minimize the Kullback-Leibler distance between the model sensor density p(x|A,J)


and the observed one po(x). He developed an EM algorithm to train the parameters


of the model. Again, the whole training procedure is divided into two steps that are


repeated for each iteration:


1. adapt the parameters of the model;


2. estimate the sources.
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More in detail, for the first step we have:


A = E
{


xyT
}


(E
{


xxT
}


)−1 (3.15)


J = E
{


xxT
}


− E
{


xyT
}


AT (3.16)


µi,qi
=


E {p(qi|yi)yi}
E {p(qi|yi)}


(3.17)


σ2
i,qi


=
E {p(qi|yi)y


2
i }


E {p(qi|yi)}
− µ2


i,qi
(3.18)


πi,qi
= E {p(qi|yi)} (3.19)


p(qi|yi) =
πi,qi


p(yi)
∑N


j=1 πj,qj
p(yj)


(3.20)


While for the second step, Attias proposed a MAP-estimator, maximizing the source


posterior p(y|x). More specifically,


y = argmaxy log p(x|y) +
N


∑


i=1


log p(yi) ⇒ (3.21)


∆y = ηATJ−1(x + Ay) − ηφ(y) (3.22)


where η is the learning rate and φ(y) = ∂ log p(y)/∂ y, incorporating the source model.


All the Bayesian approaches tend to give complete and more general solutions. However


they tend to be very slow in convergence, compared to clustering approaches.


3.5 An harder case: separation of independent com-


ponents from a single mixture


Until now in this chapter we have presented some standard algorithm used for the


ICA problem in the case of overcomplete basis, in particular when we have more than


one mixture. This last case is a challenge problem still open. In fact analyzing the


performance of the cited algorithm, we can see that they fail to solve the problem in


the case of a single mixture.


In literature, some works have been proposed for this case, but usually they use some


a priori knowledge about the source like the approach of T.W.Lee [44, 45]. In the next


section, we will present some of these algorithm.
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3.5.1 A probabilistic approach to single channel blind signal


separation


This technique, presented by T. W. Lee and G.-J. Jang [44, 45] for extracting indi-


vidual sound sources from an additive mixture of different signals, has as a central


idea to exploit the inherent time structure of sources by learning a priori sets of basis


filters in time domain that encode the sources in a statistically efficient manner. Sets


of basis functions are learned a priori from the training data set and these sets are


used to separate the unknown test sound sources. The algorithm recovers the origi-


nal auditory streams in a number of gradient-ascent adaptation steps maximizing the


log-likelihood of the separated signals, calculated using the basis functions and the


probability density function (pdf) of their coefficients - the output of the ICA basis


filters. The object function not only makes use of the ICA basis functions as a strong


prior for the source characteristics, but also their associated coefficient pdf’s modeled


by generalized Gaussian distributions [44, 45, 43]. The algorithm first involves the


learning of the time-domain basis functions of the sound sources that we are interested


in the seaparating from a given training database. This corresponds to the prior infor-


mation necessary to successfully separate the signals. The authors assume a generative


models in the observed single channel mixture as well as in the original sources. The


model is depicted in figure 3.3 [45].


In order to formulate the problem, the authors assume that the observed signal yt


is an addition of P independent source signals


yt = λ1x
t
1 + λ2x


t
2 + . . . + λpx


t
p (3.23)


where xt
i is the t − th sampled value of the i − th source signal and λi is the gain


of each source which is fixed over time. So from this model, it is possible to observe


that at every t ∈ [1, T ] the observed instance is assumed to be a weighted sum


of different sources. In their approach, the authors regard only the case of P = 2,


that is the situation of two different signals mixed and observed in a single sensor.


For each individual source signals, the authors adopt a decomposition based approach


by expressing a fixed-length segment drawn from a time varying signal as a linear


superposition of a number of elementary patterns, called basis functions, with scalar


multiplies, as explained in figure 3.3 (B). Continuous samples of length N , with N <<
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Figure 3.3: Generative models for the observed mixture and original source signal.


From top (A): a single channel observation is generated by a weighted sum of two source


signals with different characheristics. (B): individual source signals are generated by


weighted (st
ik) linear superposition of basis functions (aik). (C): Examples of actual


coefficient distributions.


T are chopped out of a source. The constructed column vector is then expressed as a


linear combination of the basis functions such that


xt
i =


M
∑


k=1


aiks
t
ik = Ast


i (3.24)


where M is the number of basis functions, aik is the k − th basis function of the i− th


source in the form of N -dimensional column vector, st
ik its coefficient (weight). The


authors assume that M = N and A has full rank so that the transform between xt
i


and st
i be reversible in both directions. The inverse of the basis matrix, Wi = A−1


i ,


refers to the ICA filters that generate the coefficient vector: st
i = Wix


t
i. The purpose


of this decomposition is to model the multivariate distribution of xt
i in a statistically


efficient manner. The ICA learning algorithm is equivalent to searching for the linear


transformation that make the components as statistically independent as possible, as


well as maximizing the marginal densities of the transformed coordinates for the given


training data [62],


W∗
i = arg maxWi


∏


t


Pr(xt
i|Wi) = arg maxWi


∏


t


∏


k


Pr(st
ik) (3.25)
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where Pr(a) denotes the probability of the value of a variable a. Independence be-


tween the components and over time samples factorizes the joint probabilities of the


coefficients into the product of marginal ones. The authors use a generalized Gaussian


prior [44, 45] to estimate these marginal probabilities. With the generalized Guassian


ICA learning algorithm [45], the basis function and their individual parameters set are


obtained beforehand and used as prior information for the source separation algorithm.


This is essentially a maximum a posteriori (MAP) estimation in a number of adapta-


tion steps on the source signals to maximize the data likelihood.


The major disvantage of this method is the necessity of a training data set, capable


to modelize the basis function needed, if we don’t have a training data set we can’t


use this method. So we can say that the a priori knowledge needed is impossible to


recovery if we have a single observation of our mixture and no idea on the sources.


3.5.2 Different approaches


A really different approach to the separation of musical signal from single mixture is


given by the Computational Auditory Stream Analysis (CASA) community. Any bio-


logical or artificial hearing system must extract individual acoustic objects or streams


in order to do successfull localization, denoising and recognition. Bregman [12] called


this process auditory scene analysis. Source separation or computational auditory scene


analysis (CASA) is the practical realization of this problem via computer analysis of


microphone recordings. The CASA community have focused on both multiple and


single microphone source separation problems. Usually CASA approaches use almost


exclusively hand designed systems which include substantial knowledge of the human


auditory system and its psychophysical characteristics [64]. Recently, there was an


approach that tried to bring together the representations of CASA and methods which


learn from data such as ICA. In his paper [64], Roweis presents a technique called


refiltering which recovers sources by a nonstationary reweighting (“masking”) of fre-


quency sub-bands from a single recording and argue for the application of statistical


algorithms to learning this masking function. He uses a simple factorial HMM system


which learns on recordings of single speakers and can then separate mixtures using only


one observation signal by computing the masking function and then refiltering. As it


is possible to note from this brief description, also in this case we need to learn some
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“basis functions” or “filters” before to make the separation from a single mixture, so we


need a training set.


3.6 Recent developments and conclusions


In this chapter, we have described some recent work about the case of independent


component analysis in the case of overcomplete basis, focusing our attention to the


case of a single mixture. The method described suffers of different disvantage: slow


convergence, slow capabilities of approximations, too many a priori knowledge.


When passing to the case of a single mixture, we can say that at the moment there


are very few algorithms that can work directly on a single mixture and in general this


algorithm need to learn some a priori parameter from a bigger training data set. So


they are unable to separate directly given only an observation mixtuere. This is still an


open problem. A first temptative to solve this problem is given in [42], we will describe


largely this approach in the next section.
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ICA on Single Mixture: a Projection


Method


In the previous chapter, we described the stadard method developed for


the overcomplete ICA scenario. In this chapter, we focus our attention on


the problem of ICA on a single mixture, we propose a method of projection


related to the dynamical system theory.


4.1 Introduction


In [42], the authors developed a methodology for the extraction of multisource brain


activity using only single channel recordings of electromagnetic (EM) brain signals. At


the hearth of the method is dynamical embedding (DE), where first an appropriate


embedding matrix is constructed out of a series of delay vectors from the measured sig-


nal. The embedding matrix contains the information we require, but in a mixed form


which therefore needs to be deconstructed. In particular, the authors demonstrated


how one form of ICA performed on the embedding matrix can deconstruct the single


channel recording into its underlying informative components.


In this chapter, we introduce the dynamical systems theory and the methodologies for


constructing appropriate embedding matrix, starting from a single channel observa-


tions. We introduce, also, a slightly different methodology from [42] for the projection


of the mixture.
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4.2 Deterministic Chaos


The apparent contradiction (or paradox) contained in the term “deterministic chaos”


has intrigued for long years also people not directly involved with science.


Deterministic math models are usually associated to the idea of regular, predictable


fenomena, which repeat their behavior in time, while the term “chaotic” usually is re-


ferred to situation characterized by completely absence of rules and by unpredictability.


The discovery of the deterministic chaos breaks this dichotomy, because it shows how


deterministic math models (which are deprived of each element of randomness in their


describing equations) can create extremely complex trends, which are unpredictable


under many aspects, so to result almost indistinguishable from sequences of events,


created by random processes.


4.3 Signals, Dynamical Systems and Chaos


Chaos comprises a class of signals intermediate between regular sinusoidal or quasiperi-


odic motions and unpredictable, truly stochastic behavior.


It has long been seen as a form of “noise”, because the tools for its analysis were couched


in a language tuned to linear processes [1].


In the analysis of signals from physical systems, usually it is impossible to assume that


the system is linear, instead we assume from the outset that a dynamical system in the


form of a differential equation or a discrete - time evolution rule is responsible for the


observations.


Chaos occurs as a feature of orbits x(t) arising from nonlinear evolution rules which


are systems of differential equations


dx(t)


dt
= F(x(t)) (4.1)


with three or more degrees of freedom x(t) = [x1(t), x2(t), ..., xd(t)] or invertible discrete


time maps1


x(t + 1) = F(x(t)) (4.2)


1Non Invertible maps in one dimension can show chaos as in the example of the logistic map


x → r x(1-x).
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with two or more degrees of freedom [1]. Degrees of freedom in systems characterized


by ordinary differential equations means the number of required first order autonomous


ordinary differential equations.


In discrete time systems, which are described by maps x(t) → F(x(t))=x(t+1), the


number of degrees of freedom is the same as the number of the components in the


state vector x(t). The requirement for a minimum size of state space to realize chaos


is geometric. For differential equations in the plane (d=2) it has been known for a long


time that only fixed points (time independent solutions) or limit cycles (periodic orbits)


are possible. Chaos, as a property of the orbits x(t), manifest itself as complex time


traces with continuous, broadband Fourier spectra, nonperiodic motion and exponential


sensitivity to small changes in the orbit.


As a class of observable signals x(t), chaos lies logically between:


1. the well studied domain of predictable, regular, or quasi-periodic signals which


have been the mainstay of signal processors for decades, and


2. the totally irregular stochastic signals we call “noise” and which are completely


unpredictable.


With conventional linear tools such as Fourier transforms, chaos looks like “noise”, but


chaos has structure in an appropriate state or phase space.


That structure means there are numerous potential engineering applications of sources


of chaotic time series which can take advantage of the structure to predict and control


those sources.


One important insight into dynamical systems is the role played by information the-


ory. There is an intuitive notion that a dynamical system that has chaotic behavior is


precisely a realization of Shannon’s concept of an ergodic information source [1].


4.4 Observed Chaos


From the point of view of extracting quantitative information from observations of


chaotic systems, the characteristic feature just outlined in the previous section, pose


an interesting challenge to the observer. First of all, it is typical to observe only one
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or at best a few of the dynamical variables which govern the behavior of the system of


interest.


How are we to go from scalar to univariate observations to the multivariate state or


phase space which is required for chaotic motions to occur in the first place?


To address this we focus our attention on discrete time maps. This is really no restric-


tion as in some sense all analysis of physical systems takes place in discrete time: we


never sample anything continuously. If we sample a scalar signal s(t) at time intervals


τs starting at some time t0, then our data is actually of the form s(n) = s(t0+n τs),


and the evolution we observe takes us from s(k) to s(k+1).


We can represent continuous flows


dx(t)


dt
= F(x(t)) (4.3)


as finitely sampled evolution


x(t0 + (n + 1)τs) ≈ x(t0 + nτs) + τsF(x(t0 + nτs)) (4.4)


So the observations take


s(t0 + kτs) → s(t0 + (k + 1)τs), (4.5)


s(k) → s(k + 1)


4.5 Reconstructing Phase Space or State Space


The answer to the question how to go from scalar observation s(k) = s(t0+kτs) to


multivariate phase space is contained in the geometric theorem called the embedding


theorem attributed to Takens and Mañé [1].


Suppose we have a dynamical system x(t) → F(x(t))=x(t+1), where x(t) phase space


is multidimensional. The theorem tells us that if we are able to observe a single scalar


quantity h(.), of some vector function of the dynamical variables g(x(n)), then the


geometric structure of the multivariate dynamics can be unfolded from this set of


scalar measurements h(g(x(n))) in a space made out of new vectors with components


consisting of h(.) applied to powers of g(x(n)). These vectors


y(n) = [h(x(n)), h(gτ1(x(n))), h(gτ2(x(n))), ..., h(gτd−1(x(n)))] (4.6)
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define motion in a d-dimensional Euclidian space.


With quite general conditions of smoothness on the functions h(.) and g(x) [], it


is shown that if d is large enough, then many important properties of the unknown


multivariate signal x(n) at the source of the observed chaos are reproduced without


ambiguity in the new space of vectors y(n).


In particular, it is shown that the sequential order of the points y(n) → y(n+1),


namely, the evolution in time, follows that of the unknown dynamics x(n) → x(n+1),


assures the deterministic behavior of the substitute representation of this dynamics


y(n) → y(n+1). The integer dimension of the original space need not be the same as


the integer dimension of the reconstructed space.


The vector y(n) is designed to assure that errors in the sequential order which might


occur during the projection from the evolution in the original x(n) space down to the


scalar space h(g(x(n))) are undone. Such errors result if two points quite far apart in


the original space were projected near each other along the axis of scalar observations.


This false neighborliness of observations in h(g(x(n))) can arise from projection from


a higher dimensional space. It has nothing to do with closeness due to dynamics.


Further, such an error would be mistaken for some kind of “random” behavior as the


deterministic sequence of phase space locations along a true orbit would be interrupted


by false neighbors resulting from the projection.


To implement the general theorem any smooth choice for h(.) and g(x) is possible [].


We focus our attention to a choice that is easy to utilize directly from observed data.


One uses for the general scalar function h(.) the observed scalar variable s(n)


h(x(n)) = s(n) (4.7)


and for the general function g(x), we choose the operation which takes some initial


vector x to that vector one time delay τs later so the τ th
k power of g(x) is


gτk(x(n)) = x(n + τk) = x(t0 + (n + τk)τs) (4.8)


then the components of y(n) take the form:


y(n) = [s(n), s(n + τ1), s(n + τ2), ..., s(n + τd−1)] (4.9)
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If we make the further useful choice τk = kτ , that is, time lags which are integer


multiples of a common lag τ , then the data vectors y(n) are:


y(n) = [s(n), s(n + τ), s(n + 2τ), ..., s(n + (d − 1)τ)] (4.10)


composed simply of time lags of the observation at time n × τs. These y(n) replace the


scalar data measurements s(n) with data vectors in an Euclidian d-dimensional space


in which the invariant aspects of the sequence of points x(n) are captured with no loss


of information about the properties of the original system. The new space is related to


the original space of the x(n) by smooth, differentiable transformations.


The basic idea of this construction of a new state space is that if one has an orbit - a


time ordered sequence of points in some multivariate space observed at time differences


τs - seen projected onto a single axis h(.) or s(n) on which the measurements happen to


be made, then the orbit, which we presume came from an autonomous set of equations,


may have overlaps with itself in the variables s(n) - by virtue of the projection, not


from the dynamics. We know there is no overlap of the orbit with itself in the true


set of state variables by the uniqueness theorems about the solutions of autonomous


equations. Unfortunately, we don’t know these true state variables, having observed


only s(n). If we can unfold the orbit by providing independent coordinates for a multi-


dimensional space made out of the observations, then we can undo the overlaps coming


from the projection and recover orbits which are not ambiguous.


The reconstruction theorem recognizes that even in the case where the motion is


along a one-dimensional curve, it is possible for the orbit to overlap in points when


one uses two-dimensional space to view it. If one goes to a three-dimensional space


[s(n),s(n+τ),s(n+2τ)], then any such remaining points of overlap are undone. The the-


orem notes that if the motion lies on a set of dimension dA, which could be fractional,


then choosing the integer dimension d of the unfolding space so d>dA is sufficient to


undo all overlaps and make the orbit unambiguous.


It is important to note that once one has enough coordinates to unfold any overlaps due


to projection, further coordinates are not needed: they serve no purpose in revealing


the properties of the dynamics. The embedding theorem [70] works in principle for any


value of τ once the dimension is large enough as long as one has an infinite amount of


noise free data. This is never going to happen to anyone. This means some thought


must be given as to how one may choose both the time delay τ and the embedding
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dimension d when one is presented with real, finite length and possibly contaminated


data. In the next sections, we will describe some methods for the choice of the time


delay and the embedding dimension.


4.6 Choosing Time Delays


The statement of the embedding theorem [70] that any time lag will be accetable is


not useful for extracting information from the data. If we choose τ too small, then the


coordinates x(n+jτ) and x(n+(j+1)τ) will be so close to each other in numerical value


that we cannot distinguish from each other. From any practical point of view, they


have not provided us with two independent coordinates. Similarly, if τ is too large, then


x(n + jτ) and x(n + (j + 1)τ) are completely independent of each other in statistical


sense and the projection of an orbit on the attractor is onto two totally unrelated


directions. The origin of this statistical independence is the ubiquitous instability in


chaotic systems, which results in any snall numerical or measurement error’s being


amplified exponentially in time. A criterion for an intermediate choice is called for,


and it cannot come from the embedding theorem itself or considerations based on it,


since the theorem works for almost any value of τ . Now, we introduce two possible


methods for estimating τ .


4.6.1 Cross Correlation


One’s first thought might be to consider the values of x(n) as chosen from some un-


known distribution. Then computing the linear autocorrelation function [1]:


CL(τ) =
1
N


∑N
m=1 [x(m + τ) − x̄ ] [x(m) − x̄ ]


1
N


∑N
m=1 [x(m) − x̄ ]2


(4.11)


where


x̄ =
1


N


N
∑


m=1


x(m) (4.12)


and looking for that time lag where CL(τ) first passes through zero, would give us a


good hint of a choice for τ .


Indeed, this does give a good hint. It tells us, however, about the independence of the


coordinates only in a linear fashion. To see this, recall that if we want to know whether
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two measurements x(n) and x(n+τ) depend linearly on each other on the average over


the observations, we find that their connection, in a least-squares sense, is through the


correlation matrix just given.


That is, if we assume that the values of x(n) and x(n + τ) are connected by


[x(n + τ) − x̄ ] = CL(τ) [x(n) − x̄ ] (4.13)


then minimizing


N
∑


n=1


{x(n + τ) − x̄ − CL(τ) [x(n) − x̄ ]}2 (4.14)


with respect to CL(τ), immediately leads to the definition of CL(τ) above.


Choosing τ to be the first zero of CL(τ) would then, on average over the observations,


make x(n) and x(n + τ) linearly independent. What this may have to do with their


nonlinear dependence or their utility as coordinates for a nonlinear system is not ad-


dressed by all this. Since we are looking for a prescription for choosing τ and this


prescription must come from considerations beyond those in the embedding theorem,


linear independence of coordinates may serve, but we prefer another point of view,


one that stresses an important aspect of chaotic behavior - namely the viewpoint of


information theory [27] - and leads to a nonlinear notion of independence.


4.6.2 Average Mutual Information


The second method that we introduce for choosing the time delay is based on the


average mutual information [27]. The mutual information between measurement ai


drawn from a set A={ai} and bj drawn from a set B= {bj} is the amountlearned by


the measurement of a i about the measurement of bj. In bits, it is


log2


[


PAB(ai, bj)


PA(ai)PB(bj)


]


(4.15)


where PAB(a, b) is the joint probability density for measurements A and B. PA(a)


and PB(b) are the individual probability densities for the measurements of A and B. If


the measurements of a value from A is completely independent from a measurement of


a value from B, then PAB(a, b) factorizes: PAB(a, b) = PA(a)PB(b) and the amount of


information between the measurements, the mutual information, is zero, as it should
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be. The average over all measurements of this information statistic, called the average


mutual information between A and B measurements, is:


IAB =
∑


ai,bj


PAB(ai, bj) log2


[


PAB(ai, bj)


PA(ai)PB(bj)


]


(4.16)


To place this abstract definition in the context of observations from a physical system


x (i), we think of the sets of measurements x i as the A set and of the measurement a time


lag τ later, x i+τ , as the B set. The average mutual information between observations


at i and i+τ , namely , the average amount of information about x i+τ we have when


we make an observation x i, is then


I(τ) =
N


∑


i=1


P (xi, xi+τ ) log2


[


P (xi, xt+τ )


P (xi)P (xi+τ )


]


(4.17)


and I(τ) ≥ 0.


The average mutual information can be considered a kind of generalization to the


nonlinear world from the correlation function in the linear world. It is the average


over the data or equivalently the attractor of a special statistic, namely the mutual


information, while the correlation function is the average over a quadratic polynomial


statistic.


Now we have to decide what property of I(τ) we should select, in order to establish


which among the various values of I(τ) we should use in making our data vectors y i. If


τ is too small, the measurements x(n) and x(n+ τ) tells us so much about one another


that we need not make both measurements. If τ is large, then I(τ) will approach zero


and nothing connects x(n) and x(n + τ), so this is not useful.


Fraser and Swinney [27] suggest as a prescription that we choose that τm where the


first minimum of I(τ) occurs as a useful selection of time lag τ . The lag τm is selected


as a time lag where the measurements are somewhat independent, but not statistically


independent.


Recognizing that this is a prescription, one may well ask what to suggest if the average


mutual information ha no minimum. This occurs when one is dealing with maps, as


the I(τ) curve from x(n) data taken from the Hénon map [1].


This does not mean that I(τ) loses its role as a good grounds for selection of τ , but


only that the first minimum criterion needs to be replaced by something representing


good sense. Without much grounds beyond intuition, we use τ = 1 or 2 if we know
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the data comes from a map, or choose τ such that I(τ)/I(0) ≈ 1
5
. This is clearly an


attempt to choose a useful τ in which some nonlinear decorrelation is at work, but not


too much. Since this is prescriptive, one may compare it to the prescription used in


linear dynamics of choosing a time lag τ such that CL(τ) = 0 for the first time.


Recognizing, as we have stressed, that the choice of τ is prescriptive, we agree with the


caution that “we do not believe that there exists a unique optimal choice of time lag”.


Nonetheless, it is useful to have a general rule of thumb as a guide to a delay τ that is


workable; seeking the optimum is likely to be quite unrewarding.


4.7 Choosing the Embedding Dimension


The goal of the reconstruction theorem [70] is to provide a Euclidean space Rd large


enough so that the set of points of dimension dA can be unfolded without ambiguity.


This means that if two points of the set lie close to each other in some dimension d


they should do so because it is a property of the set of points, not of the small value


of d in which the set is being viewed.


The simplest example is that of a sine wave s(t) = A sin(t). Seen in d = 1 (the s(t)


space), as in figure 4.1, this oscillates between ±A. Two points on this line which are


Figure 4.1: The phase space structure of a sine wave seen in one dimension x(t) where


x(t) = 2sin(t).


close in the sense of Euclidean or other distance may have quite different values of ṡ(t).


So two “close” points in d = 1 may be moving in opposite directions along the single
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spatial axis chosen for viewing the dynamics.


Seen in a two dimensional space [s(t), s(t + Tτs)], as in figure 4.2, the ambiguity of


velocity of the points is resolved and the sine wave is seen to be motion on a figure


topologically equivalent to a circle. It is generically an ellipse whose shape depends on


Figure 4.2: The phase space structure of a sine wave seen in two dimensions [x(n), x(n+


2)] where x(t) = 1sin(t).


the value of T . The overlap of orbit points due to projection onto the one - dimensional


axis is undone by the creation of the two - dimensional space.


If we procced further and look at the sine wave in three dimensions, as in figure 4.3,


no further unfolding occurs and we see the sine wave as another ellipse.


It is clear that once we have unfolded without ambiguity the geometric figure on which


the orbit moves, no further unfolding will occur. When all ambiguities are resolved,


one says that the space Rd provides an embedding of the attractor.


An equivalent way to look at the embedding theorem is to think of the attractor


as comprised of orbits from a system of very high dimension. The attractor, which


has finite dA, lies in a very small part of the whole phase space and we can hope to


provide a projection of the whole space down to a subspace in which the attractor can


be faithfully captured. The embedding theorem provides a sufficient condition from


geometrical considerations alone for choosing a dimension dE large enough so that the


projection is good - i.e. without orbit crossings of dimension zero, one, two, etc.


If we work with a dimension dE larger than necessary, two problems will arise:


1. many of the computations, needed for extracting interesting properties from the
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Figure 4.3: The phase space structure of a sine wave seen in three dimensions


[x(n), x(n + 2), x(n + 4)] where x(t) = 1sin(t).


data, require searches and other operation in Rd whose computational cost rises


exponentially with d;


2. in the presence of “noise” or other high-dimensional contamination of our obser-


vations, the “extra” dimensions are not populated by dynamics, already captured


by a smaller dimension, but entirely by the contaminating signal.


In too large an embedding space one is unnecessarily spending time working around


aspects of a bad representation of the observations which are solely filled with “noise”.


This realization has motivated the search for analysis tools that will identify a necessary


embedding dimension from the data itself. In the next section we will describe some


methods for this analysis.


4.7.1 Singular Value Analysis


If our measurements y(n) are composed of the signal from the dynamical system we


wish to study plus some contamination from other systems, then in absence of specific


information about the contamination it is plausible to assume it to be rather high


dimensional and to assume that it will fill more or less uniformly any few dimensional


space we choose for our considerations.


Let us call the embedding dimension necessary to unfold the dynamics we seek dN . If
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we work in dE > dN , then in an heuristic sense dE − dN dimensions of the space are


being populated by contamination alone. If we think of the observations embedded in


dE as composed of a true signal yT (n) plus some contamination c: y(n) = yT (n)+c(n)


then the dE × dE sample covariance matrix:


COV =
1


N


N
∑


n=1


[y(n) − ȳ][y(n) − ȳ]T (4.18)


with ȳ = 1
N


∑N
n=1 y(n),


will, again in an heuristic sense, have dN eigenvalues arising from the variation of


the (slightly contaminated) real signal about its mean and dE − dN eigenvalues which


represent the “noise”. If the contamination is quite high dimensional, it seems plausible


to think of it filling these extra dE−dN dimensions in some uniform manner, so perhaps


one could expect the unwelcome dE − dN eigenvalues, representing the power in the


extra dimensions, to be nearly equal. If this were the case, then by looking at the


eigenvalues or equivalently the singular values of COV, we might hope to find a “noise


floor” at which the eigenvalue spectrum turned over and became flat. There are dE


eigenvalues and the one where the floor is reached may be taken as dN .


This analysis can also be carried out locally [], which means that the covariance matrix


is over a neighborhood of the NB nearest neighbors y(r)(n) of any given data point


y(n):


COV (n) =
1


NB


NB
∑


r=1


[y(r)(n) − ȳ(n)][y(r)(n) − ȳ(n)]T (4.19)


with ȳ = 1
NB


∑NB


r=1 y(r)(n).


The global singular - value analysis has the attractive feature of being easy to imple-


ment, but it has the downside of being hard to interpret. It gives a linear hin as to


the number of active degrees of freedom, but it can be misleading because it does not


distinguish two process with nearly the same Fourier spectrum.


4.7.2 False Nearest Neighbors


The False Nearest Neighbors Method [53] for determining dN comes from asking, di-


rectly of the data, the basic question addressed in the embedding theorem. When has


one eliminated false crossings of the orbit with itself which arose by virtue of having
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projected the attractor into a too low dimensional space?


Answer to this question have been discussed in various ways. Each of the ways has


addressed the problem of determining when points in dimension d are neighbors of one


another by virtue of the projection into too low a dimension.


By examining this question in dimension one, then dimension two, etc. until there are


no incorrect or false neighbors remaining, one should be able to establish, from geo-


metrical considerations alone, a value for the necessary embedding dimension dE = dN .


We describe the implementation of Kennel et al [53].


In dimension d each vector


y(k) = [x(k), x(k + τ), ..., x(k + (d − 1)τ)] (4.20)


has a nearest neighbor yNN(k) with nearness in the sense of some distance function.


Euclidean distance is natural and works well. The Euclidean distance in dimension d


between y(k) and yNN(k), that we denote with Rd(k)


(4.21)


Rd(k)2 =
[


x(k) − xNN(k)
]2


+
[


x(k + τ) − xNN(k + τ)
]2


+ ... (4.22)


+
[


x(k + (d − 1)τ) − xNN(k + (d − 1)τ)
]2


Rd(k) is presumably small when one has a lot of data and for a data set with N entries,


this distance is more or less of order 1/N1/d. In dimension d + 1 this nearest neighbor


distance is changed due ti the (d + 1)st coordinates x(k + dτ) e xNN(k + dτ) to


Rd+1(k)2 = Rd(k)2 +
[


x(k + dτ) − xNN(k + dτ)
]2


(4.23)


If Rd+1(k) is large, we can presume it is because the near neighborliness of the two points


being compared is ude to the projection from some higher dimensional attractor down


to dimension d. By going from dimension d to dimension d + 1, we have “unprojected”


these two points away from each other. Some threshold size RT is required to decide


when neighbors are false. Then if
[


x(k + dτ) − xNN(k + dτ)
]2


Rd(k)
> Rt (4.24)


the nearest neighbors at time point k are declared false.


The criterion stated so far for false nearest neighbors has a subtle defect. If one applies
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it to data from a very high dimensional random number generator, it indicates that this


set of observations can be embedded in a small dimension. If one increase the number


of points analyzed, the apparent embedding dimension rises. The problem is that when


one tries to populate “uniformly” (as “noise” will try to do) an object in d dimensions


with a fixed number of points, the points must move further and further apart as d


increases because most of the volume of the object us at large distances. If we had


an infinite quantity of data, there would be no problem, but with finite quantities of


data eventually all points have “near neighbors” that do not move apart very much as


dimension is increased.


4.7.3 Cao’s Method


The method due to Cao [13] overcomes the shortcomings of this basic methods and


in particular the problem of threshold selection of the false neighbor method. Infact


similar to the idea of the false neighbor method [53], we define:


a(i,m) =


∥


∥yi(m + 1) − yn(i,m)(m + 1)
∥


∥


∥


∥yi(m) − yn(i,m)(m)
∥


∥


, for i = 1, 2, ..., N − (m − 1)τ (4.25)


where ‖.‖ is some measurement of the Euclidian distance, usually the maximum norm,


y i is the i -th reconstructed vector with embedding dimension m+1, n(i,m) (1≤ n(i,m)


≤ N-mτ) is an integer such that yn(i,m)(m) is the nearest neighbor of y i(m) in the m-


dimensional reconstructed phase space in the sense of distance ‖.‖ we defined above.


Notes that n(i,m) depends on i and m, and the n(i,m) in the numerator in equation


4.25 is tha same as that in the denominator.


If m is qualified as an embedding dimension by the embedding theorem [70], then any


two points which stay close in the m-dimensional reconstructed space will be close


in the (m+1)-dimensional reconstructed space. Such a pair of points are called true


neighbors, otherwise they are called false neighbors. Perfect embedding means that no


false neighbors exist. This is the idea of the false neighbor method in [53], where the


authors diagnosed a false neighbor by seeing whether their (slightly different) version


of a(i,m) is larger than some given threshold value. The problem is how to choose this


threshold value. To avoid this problem, Cao [13] in his method define the following
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quantity, i.e. the mean value of all a(i,m),


E(m) =
1


N − mτ


N−mτ
∑


i=1


a(i,m) (4.26)


E (m) is dependent only on the dimension m and the lag τ . To investigate its variation


from m to m+1, we define


E1(m) =
E(m + 1)


E(m)
(4.27)


We found that E1(m) stops changing when m is greater than some value m0 if the time


series comes from an attractor. So m0+1 is the minimum embedding dimension we look


for. In [13], it is defined another quantity which is useful to distinguish deterministic


signals from stochastic signals. Let


E∗(m) =
1


N − mτ


N−mτ
∑


i=1


∣


∣xi+mτ − xn(i,m)+mτ


∣


∣ (4.28)


From this it is possible to define


E2(m) =
E∗(m + 1)


E∗(m)
(4.29)


The introduction of E2(m) is justified by the fact that for time series data from a


random set of numbers, E1(m), in principle, will never attain a saturation value as m


increases. But in practical computations, it is difficult to resolve whether the E1(m)


is slowly increasing or has stopped changing if m is sufficiently large. To solve this


problem, it is possible to consider E2(m). For random data, since the future values


are independent of the past values, E2(m) will be equal to one for any m. However for


deterministic data, E2(m) is certainly related to m, as a result, it cannot be a constant


for all m.


It is recommended calculating both E1(m) and E2(m) for determining the minimum


embedding dimension of a scalar time series and to distinguish deterministic data from


random data.


4.8 Choosing T and dE


The dertemination of the appropriate phase space in which to analyze chaotic signals


is one of the first tasks, and certainly a primary task, for all who wish to work with
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observed data in the absence of detailed knowledge of the system dynamics.


To determine the time lag to be used in an embedding, one may always wish to use


something nonlinear, such as average mutual information, but the data may mitigate


against that. If one has sampled a map, achieved stroboscopically or taken as a Poincaré


section, there is typically no minimum in the average mutual information function. The


reason is quite simple: the time between samples τs is so long that the orbit has become


decorrelated, in an information - theoretic sense.


For solving this problem there are two opportunity, the first, if it is possible, is to


resample the data. The second is to turn to the autocorrelation function of the time


series to find at least an estimate of what one can reliably use for a time delay in state-


space reconstruction. While the criterion is linear, it may not be totally misleading to


use the first zero crossing of the autocorrelation function as a useful time lag. When


the average mutual information does have a first minimum, it is usually more or less


the same order, in units of τS, as the first zero crossing of the autocorrelation, so one


is not likely to be terribly misled by this tactic.


Once a time delay has been agreed upon, the embedding dimension is the next order


of business. In [1], the authors state that is better to work with algorithms that


are geometric rather then derivative from the data. Computing correlation functions


Cq(r) not only requires a large data set, it also degrades rapidly when the data are


contaminated. If one wishes to know whether to use dimension d or d+1, then geometric


methods will allow a way to start the selection. In any case, robustness seems to come


with methods that do not require precise determination of distances between points on


the strange attractor.


4.9 ICA on a single mixture by projection


As mentioned in the introduction of this chapter, in [42] the authors developed a


methodology for the extraction of multisource brain activity using only single channel


recordings of electromagnetic (EM) brain signals. At the hearth of the method is


dynamical embedding, where first an appropriate embedding matrix is constructed out


of a series of delay vectors from the measured signal. The approach considered a SVD


to accomplish phase space reconstruction and a ICA based approach to separate the
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signals.


In our case we use the methods introduced to analyze the phase space and the FatICA


algorithm [38] to separate the signals. The FastICA is a fixed-point algorithm developed


by Hyvärinen to perform the BSS using the negentropy information [38].


In this case the approach is composed by two steps.


In the first step we determine the embedding dimension using the Cao’s method and


the time lag using the average mutual information to obtain the time delayed mixtures.


In the second step, obtained the matrix of time delayed mixtures as shown in equation


4.30


x1, x2, . . . , xN−(m−1)τ


x1+τ , x2+τ , . . . , xN−(m−1)τ+τ


...
...


...
...


x1+(m−1)τ , x2+(m−1)τ , . . . , xN


(4.30)


we apply the FastICA approach on this.


4.10 Conclusions


In this chapter, we first introduced some methodologies for the analysis of the embed-


ding dimension of a time series. We described the most used method for the recovering


of the time delay and the embedding dimension of the time series. We gave the de-


tail of this method and how it is possible to use them in the case of the independent


component analysis on single channel. We must note that the projection given from


the application of the dynamical system theory gives us a matrix of vectors, where


each vector is a shifted version of the original signal, where the time delay and the


embedding dimension determine that shift.


Applying FastICA on that vector gives us the possibility to overcome the single channel


mixture.


We made several experiments using that method applying it on Musical and Gravita-


tional data. Detail of the experiments are shown in the nexts chapters.
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Chapter 5


ICA on Single Mixture: a Non Linear


Principal Component Analysis


method.


In the previous chapter, we described the methodologies for the analysis of


a time series. We explained the detail of some methods for the extraction


from the data of two parameters: a time delay and an embedding dimension.


In this chapter, we explain a new model for the separation of independent


component analysis on single mixture based on the integration of a Non


Linear Principal Component Analysis neural network, with the parameters


found by the time series analysis.


5.1 Introduction


Principal Component Analysis (PCA) is a well-known, widely used statistical tech-


nique. Essentially, the same basic technique is used in several areas under different


names, such as Karhunen - Loeve transform or expansion, Hotelling transform and


signal subspace or eigenstructure approach.


In pattern recognition, PCA is used in various forms for optimal feature extraction


and data compression [46]. In image processing, PCA defines the Hotelling or KL


transform, that is optimal in image data compression. In signal processing, a useful


characterization of signals is to assume that they roughly lie in the signal subspace de-
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fined by PCA. Several modern methods of signal modeling, spectrum estimation and


array processing are based on this concept.


5.2 Basic Mathemathics


Let x be an L-dimensional data vector coming from some statistical distribution cen-


tralize to zero: E{x} = 0. The i-th principal component xTc(i) of x is defined by the


normalized eigenvector c(i) of the data covariance matrix C = E{xxT} associated with


the i-th largest eigenvalue λ(i). The subspace spanned by the principal eigenvectors


c(1), ..., c(M) (M < L) is called the PCA subspace (of dimensionality M).


PCA networks are neural realizations of PCA in which th weight vectors w(i) of the


neurons or the weight matrix W = [w(1), ...,w(M)] converge to the principal eigen-


vectors c(i) or to the PCA subspace during the learning phase.


It is well known that standard PCA emerges as the optimal solution to several different


information representation problems. These include:


1. maximization of linearly transforme variances E{[w(i)Tx]2} or outputs of a linear


network under orthonormality constraints (WWT = I);


2. minimization of the mean-square representation error E{‖x − x̂‖2}, when the


input data x are approximated using a lower dimensional linear subspace x̂ =


WWTx;


3. uncorrelatedness of outputs w(i)Tx of different neurons after orthonormal trans-


form (WWT = I);


4. minimization of representation entropy.


Derivation of the optimal PCA solutions with the required assumptions and constraint


conditions can be found in several paper [57].


In the next section, we briefly consider the relative merits and shortcomings of linear


and nonlinear PCA networks and algorithms. Various robust and nonlinear extensions


of neural PCA are introduced by generalizing each of the above mentioned quadratic


optimization criteria, which lead to standard PCA solution [51]. Such an approach
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gives a sound mathematical foundation to the generalizations and helps to understand


the properties of the corresponding learning algorithms. The main attention is devoted


to the first two criterions, for which we derive several new learning algorithms.


Another typical approach to nonlinear PCA has been just to insert a nonlinearity


somewhere in a PCA network and see what happens, or to propose some other heuristic


modification. The result of such heuristic algorithms are more difficult to interpret. A


third approach is to start from some fixed neural network structure and study what


kind of algorithms can be realized using it. Sometimes this approach lead to the same


learning algorithms that are obtained from suitable optimization criteria.


5.3 Linear and Non Linear Neural PCA


It is now well known that relatively simple, neurobiologically justified Hebbian-type


learning rules can provide PCA. This, togheter with the usefulness and many appli-


cations of PCA, has prompted a lot of interest in various realizations of PCA [59].


However, PCA networks and learning algorithms have some limitations that diminish


their attractiveness:


1. Standard PCA networks are able to realize only linear input-output mappings.


2. The eigenvectors needed in standard PCA can be computed efficiently using


well-known numerical methods. Gradient type neural PCA learning algorithms


converge relatively slowly and achieving a good accuracy requires an ecessive


number of iterations in large problems.


3. Principal Components are defined solely by the data covariances (or correlations).


These second-order statistics characterize completely only Gaussian data and


stationary, linear processing operations.


4. PCA networks cannot usually separate independent subsignals from their linear


mixture.


If a PCA-type network contains nonlinearities, the situation becomes much more fa-


vorable for a neural realization.
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First, the input-output mapping becomes generally nonlinear, which is a major argu-


ment for using neural networks. Nonlinear processing of the data is often more efficient,


and the properties of standard linear methods have been explored thoroughly.


Second, neural algorithms become much more competitive or may be the only possi-


bility for heuristic learning principles. In optimizing nonquadratic criteria, one must


resort to iterative algorithms anyway, because efficient closed form solutions are usually


not available.


The third motivation of using nonlinearities is that they introduce in an implicit way


higher-order statistics into the computations. This can be seen by expanding the non-


linearities into their Taylor series. Higher order statistics, defined by cumulants and


higher than second moments are needed for a good characherization of non-Gaussian


data. There exist several important problems that cannot adequately be solved using


merely second-order statistics.


Fourth, the outputs of standard PCA networks are usually at most mutually uncor-


related but not independent, which would be more desiderable in many cases. In


Karhunen and Joutensalo [50], the authors have demonstrated that adding nonlinear-


ities to a PCA network increases the independence of the outputs, so that the original


signals can sometimes be roughly separated by their mixture. Naturally, nonlinear


PCA type networks have some drawbacks compared to the linear ones. The math-


ematical analysis of the learning algorithms is often inherently difficult, making the


properties of the networks less well understood. The nonlinear learning algorithms are


more complicated and may sometimes be caught more easily in local minima. Adding


nonlinearities to a neural network does not help automatically or in all the problems.


For some nonquadratic criteria the final input - output mapping is still linear, because


the nonlinearities appear in the learning rule only.


Another important characterization of the nonlinear PCA is that the learning algo-


riths are divided into symmetric and hierarchic, in a way quite similar to those for


standard PCA networks. In standard PCA learning algorithms, some kind of hierar-


chy or differentiation is necessary between the learning rules of different neurons to


get the prinicipal components or eigenvectors themselves. The completely symmetric


algorithms yield PCA subspace and some linear combinations of principal components


only. It seems that in nonlinear PCA networks hierarchy is not so important, because
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nonlinearities break the complete symmetry during learning and the outputs of sym-


metric networks become more unique as in the linear case [59, 50].


The learning algorithms derived considering generalizations of the optimization prob-


lems leading to standard PCA can be divided into two classes in another way. We


distinguish between the so-called robust PCA algorithms [51, 23] and nonlinear PCA


algorithms. We define robust PCA so that the criterion to be optimized grows less


than quadratically and the constraint conditions are the same as for the standard PCA


solution, which emerges from the respective quadratic criterion. Typically, the weight


vectors of the neurons are required to be mutually orthonormal. Robust PCA prob-


lems usually lead to mildly nonlinear algorithms, in which the nonlinearities appear at


selected places only. More specifically, at least some of the outputs of the neurons are


still their linear responses y(i) = xTw(i), where w(i) is the weight vector of the ith


neuron. In the nonlinear PCA algorithms all the outputs g [y(i)] of the neurons are


nonlinear functions of the response.


The structure for the nonlinear PCA network is shown in figure 5.1 for the symmetric


Figure 5.1: Architecture of the symmetric network for NLPCA. Feedback connections


(dashed lines) are needed in the learning phase only.


case and in figure 5.2 for the standard hierarchic arrangement. The network contains


input and output layers only. After learning, the feedback connections between out-


puts and inputs shown by dashed lines in the figures are not needed and the network


becomes purely feedforward. The same structure can be used for all the algorithms,


84







5 Non Linear PCA on Single Mixture


Figure 5.2: Architecture of the hierarchic network for NLPCA. Feedback connections


(dashed lines) are needed in the learning phase only.


but details of the realization vary.


5.4 Generalization of variance maximization


The standard quadratic problem leading to a PCA solution is one of how to maximize


the output variances E{y(i)2} = E{[w(i)Tx]2} = w(i)TCw(i) of the linear network


under orthonormality constraints.


The number of neurons M is assumed to be less than or equal to the dimension L of


the data vectors x. The maximization problem is not well defined unless the nonran-


dom L-dimensional weight vectors w(i) of the neurons are constrained somehow. In


lack of prior knowledge, orthonormality constraints are the most natural, because they


measure the variances along maximally different directions.


Normally, the ith weight vector w(i) is constrained so that it must have unit norm and


be orthogonal to the weight vector w(j), j = 1, . . . , i−1 of the previous neurons. These


constraints take the mathematical form w(i)Tw(j) = δij, j ≤ i, where the Kronecker


delta δij = 1, for i = j and 0 for i 6= j. The optimal w(i) is then the ith princi-


pal eigenvector c(i) of C and the outputs of the PCA network become the principal


component of the data vectors. The PCA network and the learning algorithms are in


85







5 Non Linear PCA on Single Mixture


this case hierarchic. In the following, we refer to this constraint set and case as the


standard hierarchic case.


The respective variance maximization problem can be solved for symmetric orthornor-


mality constraints w(i)Tw(j) = δij, j ≤ i, as well. It is convenient to define the L×M


weight matrix W = [w(1), . . . ,w(M)], for which columns are the weight vectors of


the M neurons. The symmetric orthonormality constraints then become WTW = I,


where I is the unit matrix. The optimal solution is now given by any orthonormal basis


spanning the PCA and is thus not unique. This version of the variance maximization


problem leads to PCA subspace networks and learning rules. We refer to this case and


constraint set as the standard symmetric case.


Consider now generalization of the variance maximization problem for robust PCA.


Instead of using the standard mean - square value, we can maximize a more general


expecatation E{f [xTw(i)]} of the response xTw(i) of the ith neuron. The function


f(t) is assumed to be a valid cost function that grows less than quadratically, at least


for large values of t. More specifically, we assume that f(t) is even, nonnegative,


continuously differentiable almost everywhere and f(t) ≤ t2/2 for large values of |t|.
Furthermore, its only minimum is attained at t = 0 and f(t1) ≤ f(t2) if |t1| < |t2|.
Some of these assumptions are not absolutely necessary. Examples of such a function


are f(t) = ln cosh(t) and f(t) = |t| [51].


The criterion to be maximized is then for each neuron weight vector w(i), i = 1, . . . ,M


of the form


J1 [w(i)] = E
{


f
[


xTw(i)
]}


+


I(i)
∑


j=1


λij


[


w(i)Tw(j) − δij


]


(5.1)


Here the summation imposes via the Lagrange multipliers λij = λji the necessary


orthonormality constraints w(i)Tw(j) = δij. Both the hierarchic and symmetric prob-


lems can be discussed under the same general criterion 5.1. In the standard symmetric


case, the upper bound of the summation index is I(i) = M for all i = 1, . . . ,M . In the


standard hierarchic case I(i) = i; the optimal weight vector of the ith neuron defines


then the robust counterpart of the ith principal eigenvector c(i). One advantage in


using hierarchic networks is that the order of the neurons could be permuted.


However the two basic cases described above are the most relevant ones and we con-


centrate on them in the following.
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The gradient of J1 [w(i)] with respecto to w(i) is


h(i) =
∂J1 (w(i))


∂w(i)
= (5.2)


= E
{


xg
[


xTw(i)
]}


+ 2λijw(i) +


I(i)
∑


j=1,j 6=i


λijw(j)


where g(·) is the derivative df(·)/dt of f(·).
At the optimum, the gradients must vanish for i = 1, . . . ,M . Differentiation with


respect to the Lagrange multipliers yields the orthonormality constraints


w(i)Tw(j) = δij, j = 1, . . . , I(i) (5.3)


which must also be satisfied at the optimum. The optimal values of the Lagrange


multipliers can be determined by multiplying equation 5.3 by w(j)T , j = 1, . . . , I(i),


from the left, and equating the result to zero. Taking into account the equation 5.3, this


yields to λij = −w(j)T E
{


xg
[


xTw(i)
]}


for i 6= j and λii = −1
2
w(i)T E


{


xg
[


xTw(i)
]}


.


Inserting these values into equation 5.3, we get


h(i) =





I −
I(i)
∑


j=1


w(j)w(j)T





E
{


xg
[


xTw(i)
]}


(5.4)


A practical stochastic gradient algorithm for maximizing equation 5.1 is now obtained


by inserting the estimate hk(i) of the gradient vector in equation 5.4 at step k into the


update formula


wk+1(i) = wk(i) + µkhk(i) (5.5)


Here the µk is the gain parameter.


In the practice, we use the standard instantaneous gradient estimates. They are ob-


tained simply by omitting the expectations and using instead of them the instantaneous


values of the quantities in question.


The final algorithm thus becomes


wk+1(i) = wk(i) + µk





I −
I(i)
∑


j=1


wk(j)wk(j)
T





xkg
[


xT
k wk(i)


]


(5.6)


The assumptions made earlier on the cost function f(·) imply that its derivative g(·)
appearing in equation 5.6 should be an odd, nondecreasing (often monotonically grow-


ing) function. For stability reason, it is at least necessary to assume that g(t) ≤ 0, for
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t < 0 and g(t) ≥ 0, for t > 0 [59].


Defining the instantaneous representation error vector


ek(i) = xk −
I(i)
∑


j=1


[


xT
k wk(j)


]


wk(j) = xk −
I(i)
∑


j=1


yk(j)wk(j) (5.7)


the algorithm in equation 5.6 can be written in a simpler form


wk+1(i) = wk(i) + µkg [yk(i)] ek(i) (5.8)


From equation 5.7 and equation 5.8, one can easily see that no matrix multiplications


are needed in the actual realization.


In the symmetric case I(i) = M , for i = 1, . . . ,M , the error vector ek(i) becomes the


same ek for all the neurons. Then equation 5.6 can be expressed compactly in the


matrix form


Wk+1(i) = Wk + µk


[


I − WkW
T
k


]


xkg
[


xT
k Wk


]


= Wk + µkekg(yT
k ) (5.9)


where yk = WT
k xk is the instantaneous response vector. The function g(·) is applied


separately to each component of its argument vector. The algorithm in equation 5.9


coincides with the well-known Oja’s PCA subspace rule [22, 57, 51] in the linear special


case g(t) = t.


Otherwise, equation 5.9 defines a robust generalization of Oja’s rule that was first


proposed quite heuristically at the end of the paper by Oja et al. [59].


In the standard hierachic case I(i) = i, so equation 5.9 can be written in the matrix


form


Wk+1(i) = Wk + µk


{


xkg
(


yT
k


)


− WkUT
[


ykg(yT
k )


]}


(5.10)


where the upper triangular operator UT sets the elements of its argument matrix to


zero below the diagonal. In the linear special case g(t) = t, equation 5.10 coincides


exactly with the well-known GHA algorithm [22, 57, 51] proposed originally by Sanger


[66, 65]. Otherwise, equation 5.10 defines a robust generalization of the GHA algo-


rithm. Another, more practical formulation of equation 5.10 is obtained by noting


that the error vector in equation 5.7 can be expressed in the standard hierarchic case


recursively as ek(i) = ek(i − 1) − yk(i)wk(i), with ek(0) = xk. This show that robust


GHA can be implemented locally in a similar manner as standard GHA [65].
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5.5 Independent component analysis using non linear


PCA network


In this section, we will describe how it is possible to obtain the standard ICA problem


starting from a non linear PCA network.


We can consider a single mixture data vector as


xk = (x [k] , x [k + 1] , . . . , x [k + L − 1])T (5.11)


formed of L successive samples. We note that L is the number of the neural network


(NN) inputs. We suppose to find the p principal eigenvectors u1,u2, . . . ,up correp-


sonding to the p largest eigenvalues λ1 ≥ . . . ≥ λp (number of outputs in the NN). In


other words, we have


Rxxui = λiui (5.12)


The autocorrelation matrix on the data vectors xk of equation 5.11 is


Rxx =
1


K


K−1
∑


k=1


xkx
H
k (5.13)


Now, inserting equation 4.11 into equation 5.12 yelds


λiui ≈
1


K


K−1
∑


k=1


(


xH
k ui


)


xk (5.14)


Thus, the true eigenvectors are approximately some linear combinations of the data


vectors xk [49]. So it is possible to write equation 5.14 as


vi =
K−1
∑


k=1


gikxk (5.15)


where i = 0, . . . , p − 1. In matrix form, we can also write


V = GX (5.16)
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where V is a p× (L− 1) matrix, G is a p×K mixing matrix and X is the data vector.


In details we have that


vi = gi × x1 (5.17)


x2


. . .


xK


(5.18)


where we have that in our case xj = (as1
j + bs2


j) and where the source signals are


sn
j = (sn[j], sn[j + 1], . . . , sn[j + L − 1])T . We can note that also in this case and it is


clearer from equation 5.16, we obtain the standard ICA problem.


5.6 Use of the embedding dimension


It is important to note that in the approach proposed in this work, we made an inte-


gration between the described model of non linear PCA network and the embedding


dimension.


In fact, in standard ICA, each source can be separated and reconstructed in the obser-


vation domain through the operation


xsi
= A(:,i)W(i,:)x (5.19)


where xsi
is the i-th source in the observation domain.


With a single channel of data, we can apply the same formula to data blocks giving


xsi
(nN − k + 1) = A(:,i)


N
∑


j=1


W(i,j)x(nN − j + 1) (5.20)


However the resulting source estimates are highly dependent on the block alignment.


In our case, we choose the shift of the observation data in according to the embedding


dimension of the mixture. This choice is made in order to emphasize the independence


between the signal embedded in the mixture and to avoid the problem of the dependence


between blocks. As explained in the previous chapter, in fact, with the study of the


embedding dimension of a mixture we want to identify quantities that are unchangend


when initial conditions on an orbit are altered or when, anywhere along the orbit,


pertubation are encountered.
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5.7 Characterization of the algorithm proposed


As described in the previous section, in a robust nonlinear PCA NN of fundamental


importance is the choise of the parameter of the network such as the number of input


nuerons, the number of output neurons and the initial choice of the weight matrix.


Our idea was that of using the embedding parameter for the definition of the network


model and the initial data guess. In detail, the proposed approach can be divided into


the following steps:


• Preprocessing: we first calculate and subtract the average pattern to obtain a


zero mean process.


• Neural computing: we calculate the weights vector wi, for i = 1, ...,m, by using


equations in Step 4 of the Algorithm 1.


The fundamental learning parameters are:


i) the number of output neurons m, which is equal to the embedding dimension


and it is the number of principal eigenvectors that we need and the time lag τ


needed to build the input patterns;


ii) the number of input neurons q;


iii) the initial random weight matrix W of m × q dimension;


iv) α, the nonlinear learning function parameter;


v) the learning rate µk and the ε tolerance.


The general algorithm is described in Algorithm 1.


5.8 A case of study: an Armonic Oscillator, the Mackey


Glass time series and random Gaussian noise


In the experiment we consider a mixture of a three different signals. The first source is a


simple harmonic oscillator with frequency of 15 Hz. The second is obtained by sampling


the Mackey-Glass time delay differential equation [1]. This time series is chaotic, and


so there is no clearly defined period. The third signal is a random Gaussian noise (see


Fig. 5.3). The mixture that we analyze is plotted in Fig. 5.4. We note that for the


single harmonic oscillator we have the time lag τ = 2 and the embedding dimension


m = 2, while for the Mackey-Glass τ = 17 and m = 3. Applying the phase reconstruct
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Algorithm 1 Embedded Robust PCA Algorithm
1: Initialize m to the embedding dimension calculated in the first step. Initialize


the weight matrix W = [w1, . . . ,wm] with small random values. Initialize the
learning threshold ε, the learning rate µk (that generally is exponential decrescent
and depends from the epoch key)and the α parameter.
Reset epoch counter k = 1 and pattern counter n = 1.


2: Input the n − th pattern


xn = [x(n), x(n + τ), . . . ., x(n + (m − 1)τ)]


where m is the number of input components and τ is the time lag.
3: Calculate the output for each neuron yi = w


T
i xn, ∀i = 1, . . . ,m.


4: Modify the weights using the following equation


wi(k + 1) = wi(k) + µkg(yi(k))ei(k)


where


ei(k) = xn −
I(i)
∑


j=1


yj(k)wj(k)


and


wi(k + 1) =
wi(k + 1)


‖wi(k + 1)‖
where g(.) is the derivative of the cost function f(.). In the hierarchical case we
have I(i) = i. In the symmetric case I(i) = m, the error vector ei(k) becomes the
same ei for all the neurons.


5: n = n + 1.
6: UNTIL n ≤ m GO TO 2
7: Convergence test:


IF CT = 1
2


∑m
i=1


∑m
j=1(wij − wold


ij )2 < ε
THEN GO TO 8
ELSE
Make orthonormalization:


W = (WW
T )


1


2W


W
old = W


8: k = k + 1; GO TO 2.
9: END


approach to the mixture, we obtain τ = 1 and m = 8 and they are the parameters that


we use to reconstruct the signals and to determine the PCA NN architecture. In Fig.


5.5a and in Fig. 5.5b we show the separated signals obtained by using the FastICA


based approach and the Robust PCA approach, respectively. However in the case of the
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Robust PCA we have to note that the separation is clearer than the other. This can be


shown in Fig. 5.6a and 5.6b where we show and compare the source and the estimated


signals. In this case we also calculate the correlation coefficients between the signals.


In the case of the harmonic oscillator the ICA based approach has a correlation of 67%


while the Robust PCA based approach of 95%. In the case of the Mackey-Glass we


have a correlation of 28% for the ICA based approach while the Robust PCA method


of 83%.
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Figure 5.3: Source signals: Single harmonic oscillator (up); Mackey-Glass time series
(middle); random Gaussian noise (down).
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Figure 5.4: Mixture of Mackey Glass time series, single armonic oscillator and random
Gaussian noise.
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Figure 5.5: Separated signals: a) FastICA based algorithm; b) Robust PCA based
approach.
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Figure 5.6: Separated signals: a) Harmonic oscillator estimation: source signal (up),
Robust PCA NN based approach estimation (middle), FastICA based approach (down)
; b)Mackey-Glass estimation.
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Chapter 6


Applications on Data Coming from


Virgo Interferometer


In the previous chapter, we presented a model for the separation of single


channel independent components. In this chapter, we show an application


of this model to the case of data coming from Virgo interferometer, for the


detection of gravitational wave signals.


6.1 Introduction


Gravitational Wave (hereafter GW) detection is certainly one of the most challenging


goals for today physics: a very strong proof in favor of the Einstein General Rela-


tivity description of phenomena related to the dynamics of gravitation and the open-


ing of a completely new channel of information on astrophysical objects [67]. The


VIRGO/LIGO/GEO/TAMA ([2], [68], [71], [69]) network of ground-based kilometer-


scale laser interferometer gravitational wave detectors will be the key to open up that


new astronomical channel of information in the frequency band 10 Hz to 10 KHz.


Virgo1 project is an international project (Italian - French), that has as goal the direct


detection of the gravitational wave, come out by astrophysical sources, by means of


interferometric techniques. Virgo antenna, an interferometer located in Cascina (PI),


is listening all gravitational signals coming from all the universe. These signals must


be detected from a ground of noise registered by the interferometer. Detecting grav-


itational wave is a really complex problem, because they are unknown signals with a


minimal amplitude (about 10−23). There are two possible application of the separation


1http://www.virgo.infn.it
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techniques to Virgo data:


• identification of noise source


• identification of gravitational wave signal in noise ground


The first kind of application is the identification of noise source that interacts with


the interferometer output. Because of the minimal amplitude of the gravitational wave


signal, it is necessary to detect and isolate in the output of the interferometer all the


possible sources of external noise (i.e. for example environmental noise). For detecting


such noise, on Virgo site has been installed environmental sensors of different nature,


for example: seismometer, magnetometer, temperature sensors, pressure sensors and


so on.


Data analysis from all these sensors contribute to characterize and identify noise sources


inherent of the site, such as noise due to the motor of the various machine present on


the site, air movement due to the conditioning or other.


As second kind of application, we can think to the possibility of using blind source


separation technique for the detection of the gravitational signal in the ground of


noise.


6.2 Detecting gravitational wave signals


As we stated above, the gravitational wave signals have minimal amplitude, but even


if these interferometers seem to be sensitive enough for the detection of these sources,


nevertheless the problem of GW signal analysis is still in progress, concerning an ad-


equate choice of the data analysis techniques in connection with the shape of the


expected signal, the noise of the detector and the available computing power. For this


task, many efforts have been made for the development of special data analysis tech-


niques for the enhancement of the signal-to-noise ratio of these GW signals and the


most credited algorithm is the matched-filtering technique. This technique, as it is well


known [31] [60], requires the correlation of the output of a detector with a template


of the expected signal (matched filter). But, although very simple in principle, the


application of such algorithm requires a practically exact theoretical knowledge of the


shape of the expected signal as function of the unknown parameters which describe


the coalescing binary and, then, the correlation of the detector output with several
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thousands of templates and these two requirements are very difficult to satisfy for a


certain kind of signals coming from coalescing binary signals. The shape of the GW


signal can be obtained by computing the gravitational radiation field generated by a


system of two point-masses moving on a practically circular orbit. The large number


of templates necessary for data analysis using matched-filtering technique poses prob-


lems due to the great computing power needed to perform this task on-line. In fact,


as a consequence of the large band of these detectors (some kHz), sampling rates of


the order of 20 kHz are used, resulting in a huge amount of data/day to be analyzed


on-line (of the order of 10 GByte/day). Of course, the analysis of such a large amount


of information could be made off-line, but it would be better to select on-line all the


data frames which may contain a GW signal. The computational cost depends on the


number of parameters considered in the approximation of the phase, on the accuracy


of the sampling of the likelihood function (connected with the ability to recover weak


signals) and on the actual frequency band to be considered, taking into account the


VIRGO sensitivity.


6.3 Whitening


For working with Virgo data it is necessary a preprocessing step for whitening the


data. Let x(t) be a wide-sense stationary, continuous-time random process, with mean


µ, covariance function:


Kx(τ) ≡ E{(x(t1) − µ)(x(t2) − µ)}, τ = t1 − t2 , (6.1)


and power spectral density:


Sx(ω) ≡ F {Kx(τ)} =


∫ ∞


−∞


Kx(τ) exp(−jωτ)dτ , (6.2)


where F is the Fourier transform.


We can whiten the process x(t) by defining a suitable filter Hw(ω) which transforms


the process into a white noise process w(t), whose power spectral density is constant.


Since Kx(τ) is Hermitian symmetric and positive semi-definite by construction, it


follows that Sx(ω) is real, and can be factored as:


Sx(ω) ≡ |H(ω)|2 = H(ω)H∗(ω), (6.3)
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where the star “*” operator denotes complex conjugation. It is possible to show that


such representation is possible if and only if Sx(ω) satisfies the Paley-Wiener condition:
∫ ∞


−∞


log Sx(ω)


1 + ω2
dω < ∞ . (6.4)


To build the whitening filter, we have to choose a suitable parametric form for


H(ω), which is then adapted to the data. The most common choice is to consider a


rational function in zero-pole form:


H(ω) =


∑N
k ck − iω


∑D
k dk − iω


. (6.5)


Choosing the minimum-phase H(ω) (so that its poles and zeros are on the left half ω


plane), the whitening filter will then be stable:


Hw(ω) =
1


H(ω)
. (6.6)


Formally, the whitening operation can then be written:


w(t) = F−1 {Hw(ω)} ∗ (x(t) − µ) , (6.7)


where the star “∗” denotes convolution. We can show that w(t) is a white process, by


showing that its power spectral density is constant:


Sw(ω) ≡ F {E {w(t1)w(t2)}} = Hw(ω)Sx(ω)H∗
w(ω) =


Sx(ω)


Sx(ω)
= 1 . (6.8)


In a practical implementation, we will deal with discrete-time processes, however the


basic principles are always the same. In particular, we will choose a pole-only function


which implies an autoregressive (AR) model of the data. In the following, we have


used the maximum entropy (or Burg) algorithm [30] to fit the model coefficients to the


data. To assess the model order, we have used the cross-validation criterion [11], and


selected the order which gives the highest spectral flatness measure:


f =
exp


(


1
2π


∫ π


−π
log Sw(ω)dω


)


1
2π


∫ π


−π
Sw(ω)dω


(6.9)


6.4 Simulation results for detection


In this section we describe some result of application of the non linear PCA approach to


the detection of chirp signal in Virgo noise at different signal to noise ratio (hereinafter
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SNR). The result proposed are really interesting because of the small SNR and the


possibility to recognize the presence of a signal without knowing nothing about the


sources. As a first example, we consider a mixture composed of Virgo noise and a chirp


signal with an SNR of 10. In figure 6.1, we show the mixture which we use in the


simulation, while in figure 6.2, we show the source signals used to form the mixture.


We want to stress that a SNR of 10 is really small, in fact if we compare the source


noise with the mixture it is impossible to note where has been injected the signal, that


is further observable in figure 6.3 where we superimpose at the noise the chirp signal


at SNR 10.
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Figure 6.1: Mixture with SNR 10.


0 1 2 3 4 5 6


x 10
4


−1.5


−1


−0.5


0


0.5


1


1.5


2
x 10


−15


Samples


A
m


p
lit


u
d


e


Virgo Noise


0 1 2 3 4 5 6


x 10
4


−4


−3


−2


−1


0


1


2


3


4
x 10


−19


Samples


A
m


p
lit


u
d


e


Chirp Signal


Figure 6.2: Source signal: (up) Virgo noise, (down) chirp signal.


On the mixture presented in figure 6.1, we apply first a whitening process as de-


scribed in the previous section, getting the mixture 6.4, and then we apply the NLPCA


approach to separate the components. After that we was able to recognize clearly the


presence of the signal in the noise as it is shown in the figure 6.5(a-b).
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Figure 6.3: Comparison between source signals at SNR 10, in blue Virgo noise and in
red chirp signal.
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Figure 6.4: Whitened Mixture with SNR 10.
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Figure 6.5: Separated components from mixture at snr 10.


For better underline the results it is useful to show a spectrogram (time-frequency


plot) of one of the separated components (the others have similar spectra). As it is


possible to note from figure 6.6, it is clearly recognizable the chirp.


In the others simulation proposed, we show how it is still possible to obtain the
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Figure 6.6: Spectro of the first independent component.


separation also if the SNR decrease.


Now, we consider a mixture composed of Virgo noise and a chirp signal with an SNR


of 5. First of all, we show the mixture which we use in simulation (figure 6.7), then


we show the source signals (figure 6.8), in order to underline the great difference in


amplitude among the signal and the consequently difficult of the problem. As in the


previous simulation described, it is important to stress that a SNR of 5 is really small, in


fact if we compare the source noise with the mixture it is impossible to note where has


been injected the signal. We can further observe in figure 6.9 this important feature,


where we superimpose at the noise the chirp signal at SNR 5.


0 2 4 6 8 10 12


x 10
4


−1.5


−1


−0.5


0


0.5


1


1.5


2
x 10


−15


Samples


A
m


p
lit


u
d


e


Mixture SNR 5


Figure 6.7: Mixture with SNR 5.


On the mixture, we apply the same process described for the first simulation: a


first step of whitening of the signal in order to obtain the mixture in figure 6.10; and


a second step in which we apply the NLPCA approach to separate the components.


The result of this computation is shown in figures 6.11(a-b), as it is possible to note


we clearly identify the gravitational signal and its position in the chunk of noise.


101







6 Application on Virgo Data


0 1 2 3 4 5 6


x 10
4


−2


−1


0


1


2
x 10


−15


0 1 2 3 4 5 6


x 10
4


−2


−1


0


1


2
x 10


−19


Figure 6.8: Source signal: (up) Virgo noise, (down) chirp signal.
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Figure 6.9: Comparison between source signals at SNR 5, in blue Virgo noise and in
red chirp signal.
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Figure 6.10: Whitened Mixture with SNR 5.


In figure 6.12, we show a spectrogram (time-frequency plot) of one of the separated


components (the others have similar spectra), as it is possible to note from figure 6.12,


it is clearly recognizable the chirp.


Continuing to decrease the SNR between the chirp signal and the noise to 1, we work
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Figure 6.11: Separated components from mixture at snr 5.


Figure 6.12: Spectro of the first independent component.


on the mixture shown in figure 6.13. For better understand the increasing difficulty of


the problem, we show in figure 6.14 the source signals used to form the mixture and


in figure 6.15 we show the superposition of the noise signal with the chirp signal with


SNR 1. As it is possible to note from this images, the comparison between the noise


and the signal really underline the problem of different amplitude and the difficult to


detect the chirp signal in the noise.


On the mixture presented in figure 6.13, we apply first the whitening process, getting


the mixture 6.16, and then we apply the NLPCA approach to separate the components


6.17(a-b).


In this last case, separation is not so good, in fact in time domain (see figure 6.17


), it is impossible to recognize the chirp wave form, but if we have a look at the


spectrogram (time-frequency plot) of one of the separated components in figure 6.18, it


is still possible to note, also if not clearly as in the previous case, the chirp wave form.


From the simulation presented in this section, we can say that NLPCA is a good
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Figure 6.13: Mixture with SNR 1.
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Figure 6.14: Source signal: (up) Virgo noise, (down) chirp signal.
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Figure 6.15: Comparison between source signals at SNR 1, in blue Virgo noise and in
red chirp signal.


method for detecting a gravitational wave signal in the background noise of an inter-


ferometer. In this simulation, we have shown three particular case with different SNR,


starting from 10 to 1. It is important to note that in gravitational wave detection an


SNR of 10 is really a good starting point for detection. We can say that in this first
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Figure 6.16: Whitened Mixture with SNR 1.
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Figure 6.17: Separated components from mixture at snr 1.


Figure 6.18: Spectro of the first independent component.


kind of application, we use our method for determine a chunk of data in which it is


possible to find a gravitational signal. This is an important use of the method, because


it is important to have a pre-analysis of the data. We must consider that the interfer-


ometer collects data all day long, so considering its sampling frequency for seconds, we
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got an huge quantity of data. It’s important to have a method for choose among this


huge quantity a chunk of data in which it is possible to have a signal.


6.5 Chirp Wave Form Reconstruction


In this second kind of application, we can use our method for reconstructing the gravita-


tional wave signal. Until now, we have used the NLPCA in according with a whitening


process for detecting a chunk of data in which it is possible to have a chirp signal.


Now considering an higher SNR, we can show how it is possible to use NLPCA for the


reconstruction of the signal.


In this simulation we construct a mixture using noise coming from Virgo interferometer


and an amplitude and frequency modulated chirp signal, the source signal are repre-


sented in figure 6.19. This modulated chirp signal is a variant to the standard chirp


used in the previous section in which it is assumed that the generating mass have a


spin, in this way to the characteristic frequency in time increasing of a chirp, we also


have a difference in amplitude. We choose these two signals in order to get a signal


similar to the one produced by coalescing binaries stars [67] and also for trying the


method on a more difficult environment. In this simulation, we also show a compar-


ison between the NLPCA method described in chapter 5 and the embedded FastICA


method described at the end of chapter 4. We made this comparison, for evaluating


two different method based on similar concept. Both the methods, in fact, work on a


single mixture and use the embedding dimension as parameter of the method, but they


are very different in the separation method and in the modelling of the neural network


for the separation.


The mixture on which we work is represented in figure 6.20. First of all we analyze


the embedding dimension of the mixture obtaining τ = 45 and m = 5. These are the


parameters that we use in both the approaches.


In figure 6.21(a,b), we show the results obtained from the two method: Embedded


FastICA (figure a) and NLPCA (figure b). As it is possible to note as a first view on this


two figure, both the methods obtain a good detection of the gravitational signal, but


the NLPCA method can also reconstruct the signal waveform without any knowledge


of the signal.


We also give a quantitative measure of the goodness of the separation using a correlation


106







6 Application on Virgo Data


0 1 2 3 4 5 6 7


x 10
4


−1


−0.5


0


0.5


1


1.5
x 10


−15


Samples


A
m


p
lit


u
d


e


Colored Noise


0 1 2 3 4 5 6 7


x 10
4


−6


−4


−2


0


2


4


6


8
x 10


−16 Amplitude Modulated Chirp


Samples


A
m


p
lit


u
d


e


Figure 6.19: Source signals: Interferometric noise simulation (up); Amplitude modulate
chirp signal (down).
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Figure 6.20: Signal Mixture.


measure, calculated between the extracted signals and the source signal. We use this


kind of quality measure because we can’t use the standard measures used in ICA world.


The standard Amari’s performance index, the measures usually used in literature [20],


work on the separation matrix, but with these method we can’t estimate that, so we


need a measure that acts directly on the signals and its forms, avoiding to consider the


amplitude: the correlation is a good candidate for that purpose.


So in the case of the simulation proposed, the correlation percentage for the chirp


signal with the signals extracted by NLPCA is in mean of 70% while for the Embedded


FastICA approach we have a mean of 43%.


Then, we choose the best representative signal for each method and we compare these


with the source signal in figure 6.22). In this image, it is really evident the better


performance of the NLPCA method in the reconstruction of the signal.
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Figure 6.21: Separated signals: a) FastICA based algorithm; b) Robust PCA based
approach.
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Figure 6.22: Comparison of the original modulated chirp signal (top) with the Embed-
ded Non Linear PCA approach (middle) and FastICA approach (down).


6.6 Conclusions


In this chapter, we have shown an important field of application of the proposed ap-


proach. We want to stress that we are working on realistic data, the chunk of noise


used in the simulation is really a small chunk of data taken from Virgo interferometer


data. The gravitational source signals are the most realistic one, because they come


from the theoretic study on this subject.


It is important to note that until now we don’t have a sperimental proof of the exis-


tence of these waves and so we can only trust the gravitational wave theory for what


regards the wave’s form.
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So, it is important to note that using a method that doesn’t need to know in advan-


tage the form of the signal as a target, is a real improvement in the gravitational wave


detection theory. The simulations proposed in this chapter show an approach that


permit to detect a gravitational wave signals without any knowledge about the signal


itself. In fact, we use the source signals only for an evaluation of the performance of


the methods.


We presented two kind of simulation: a first one with the only aim of detecting the


signal and a second one with the purpose to detect and reconstruct the signal in its


form.


In the simulations based on the detection of the signal, we got really good performance


also at SNR really low and we want to stress without knowledge of the source.


It’s also important to note that we can’t make a comparison with the technique of the


matched filter because of the intrinsic difference of the methods. In rough words, in the


case of the matched filter, the signal is detected after a matching of the mixture data


with a collection of possible target signal. This collection is composed of a forecasting


of the wave form for the gravitational source signal, varying the mass and the position


of the stars. But how can we be sure to have covered all the possible cases? And what


happens if the signals emitted are not equal to the target signal? With matched filter,


the answer to these question is that we cannot detect the signal or if you want that we


have a very low probability to detect the signals.


In this chapter we have shown a method that overcome the knowledge of the wave


form and so it can be used in every situation, maybe as a preprocessing analysis for


individuating a chunk of data in which it is possible to have a gravitational signal.


The other kind of simulations proposed aims to detect and also to reconstruct the


signal in its form. This is a very important field of application because it permits to


recovery the signal in its form analyzing in detail its characteristics.
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Chapter 7


Applications on Music Mixture


In the previous chapter, we have described a first kind of application of


the proposed model on real data coming from Virgo interferometer. In


this chapter, we show another important sector of application: music. We


present several experiments and simulation about signals coming from music


instruments.


7.1 Introduction


In these last years, music and computer science have met in a variety of way. The


introduction of music in this field has opened really challenging scenarios for the re-


searchers, in particular for the recognition of the speak, for the synthesization of digital


music, for the creation of new algorithm of compression and so on. In this scenario,


the recognition of a music instruments track from a mixture of different instruments


tracks is an open problem with an high importance.


Until now, techniques like Independent Component Analysis have been used princi-


pally for the speak recognition task. This is because speak signals have an highly


super Gaussian distribution. Several works have been proposed for this purpose.


In this chapter, we will show some applications of the NLPCA method described in


algorithm 1 to the problem of separation of source signals from a single mixture in the


case of music signal.


We start from simple simulation, in which given an instrument track playing a single


note, we try the separation of the harmonics of the note using the proposed NLPCA


method. After these first simulations, we pass to examine mixtures composed by dif-
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ferents instruments. We try the separation of the single music sources composing the


mixture. It’s important to note that the quality of the obtained separation is so high


that in certain situation we can extract from the estimated components the music tran-


scription, in order to compare it with the one obtained from the original source.


As a major difficulty, we present a simulation in which we separate from a single mix-


ture two different kind of signals: a music instruments track and a male voice, mixed


with white noise.


7.2 Short introduction to Mathematical Armonies


Music is a periodic variation in air pressure


P = Asin(2πft) (7.1)


where A is the amplitude, t the time, f the frequency and P is the pressure in decibels


or Pascal (see figure 7.1)


Figure 7.1: Sound Feature


Sound has two characteristics:


• Volume, that is the amplitude A in Pascals or decibels


• Pitch, that is the frequency f in Hertz (Hz)


In figure 7.2, we show some frequency range of various instruments. If we consider a
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Figure 7.2: Frequency ranges of various instruments, in Hz. Audible frequencies range
from 20 Hz to 20000 Hz


vibrating string, we can show that the frequency is expressed by


f =
1


2 length


√


tension


thickness
(7.2)


In this way, we say that the frequencies of octaves form a geometric sequence (figure


7.3). We note also that a string vibrates in many modes, called harmonics (figure 7.4)


Figure 7.3: Frequency diagram of octaves.


and the frequencies of the harmonics form an arithmetic sequence.


In figure 7.5, we show an example of a keyboard. There are two accepted musical
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Figure 7.4: Frequency diagram of music harmonics.


Figure 7.5: Examples of harmonics and octave in the case of a piano.


pitch standards, the so-called American Standard pitch, which takes A in the fourth


piano octave (A4) to have a frequency of 440 Hz, and the older International pitch


standard, which takes A4 to have a frequency of 435 Hz. Both of these pitch standards


define what are called “equal tempered chromatic scales”. Mathematically, this means


that each successive pitch is related to the previous by a factor of the twelfth root of 3.


12
√


2 = 1.05946309436 (7.3)
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That is, the ratio between the frequencies of any two successive pitches in either stan-


dard is 1.05946309436. There are twelve half-tones (black and white keys on a piano),


or steps in an octave. Since the pitch (frequency) of each successive step is related to the


previous pitch by the twelfth root of 2, the twelfth step above a given pitch is exactly


twice the initial pitch (i.e., an octave corresponds to a doubling of a pitch). The fre-


quency of intermediate notes, or pitches, can be found simply by multiplying (or divid-


ing) a given starting pitch by as many factors of the twelfth root of 2 as there are steps


up to (or down to) the desired pitch. For example, the G above A4 (that is G5) in the


American Standard has a frequency of 440×( 12
√


2)1 = 440×1.78179743628 = 783.99Hz


(approximately). Likewise in the International standard, G5 has a frequency of 775.08


Hz(approximately). G#5 is another factor of the 12th root of 2 above these, or 830.61


and 821.17 Hz, respectively.


Note when counting steps that there is a single half-tone (step) between B and C, and


between E and F. In figure 7.6, 7.7 and 7.8, we show some fundamental frequencies.


The frequencies of 440 Hz of the note LA corresponds to the fundamental frequency


and it is associated to the diapason. The notes of the superior tone are multiple of


the fundamental frequency. For example, we consider the note La with a fundamental


frequency of 55 Hz, this note has the following harmonics:


• I harmonic: f = 55 ∗ 2 = 110Hz


• II harmonic: f = 55 ∗ 4 = 220Hz


• III harmonic: f = 55 ∗ 8 = 440Hz


• IV harmonic: f = 55 ∗ 16 = 880Hz


• V harmonic: f = 55 ∗ 32 = 1760Hz


In general, n harmonic: f = c ∗ 2n.


7.3 Simulation on the separation of harmonics


The first kind of simulation on music data made is on the separation of harmonics:


given a single mixture of a music instrument sounding a note, we try to separate the


different harmonics of this note. We made several experiments on different kind of
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Figure 7.6: Examples of frequencies of the notes: table 1.


music instruments and different notes. From the results obtained, we can state that


with the proposed approach it is possible to separate the harmonics. Let us show
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Figure 7.7: Examples of frequencies of the notes: table 2.


some figures explaining the obtained results. The first set of figures is relative to some


experiments made on a single mixture of a flute sounding C4 note. In figure 7.9, we
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Figure 7.8: Examples of frequencies of the notes: table 3.


show the source signal of the mixture used and in figure 7.10 the spectrogram of this


signal in order to underline the frequency of the note and its harmonics.


117







7 Application on Music Data


0 0.5 1 1.5 2


x 10
4


−0.06


−0.04


−0.02


0


0.02


0.04


0.06


0.08


0.1


Samples
A


m
pl


itu
de


Figure 7.9: Harmonics separation on flute C4 note: source signal.
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Figure 7.10: Harmonics separation on flute C4 note: spectrogram of the source signal.


The results of the separation of the harmonics are visible in the time domain (see


figure 7.11), in the frequency domain (see figure 7.12) and in the frequency-time domain


(see figure 7.13).


As it is possible to note from these figure, we got a good separation of the different


harmonics starting from a single mixture of the original signal.


The second set of figures is relative to some experiments made on a single mixture


of a piano sounding G6 note. As before the first figure presented (7.14) represents the


source signal, while in figure 7.15, we show the spectrogram of this signal for better


evidentiate the time-frequency contribute of the note and its harmonics.


After the application of the NLPCA method, we can see the results of the separation


in the time domain (see figure 7.16), in the frequency domain (see figure 7.17) and in


the frequency-time domain (see figure 7.18).


As it is possible to note from these figure, the separation of the harmonics is really


good. In fact we can distinguish clearly the contribute of each harmonic to the single


118







7 Application on Music Data


0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2


x 10
4


−0.1


0


0.1


0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2


x 10
4


−20


0


20


0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2


x 10
4


−10


0


10


0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2


x 10
4


−10


0


10


0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2


x 10
4


−5


0


5


0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2


x 10
4


−5


0


5


Figure 7.11: Harmonics separation on flute C4 note: separation view in time domain.
The first plot from above is the source signal, while the other are the separation of the
harmonics.


estimated component.


As third example of separation of harmonics, let us consider a trumpet playing the


C4 note. For better understand the results obtained, first of all we present the source


signal in figure 7.19 and its spectrogram in figure 7.20.


We show the results in different context: in the time domain (see figure 7.21), in


the frequency domain (see figure 7.22) and in the frequency-time domain (see figure


7.23).


Once again, we can note a good separation of the harmonics.


As last simulation for this section we consider a violin playing C5 note. As in the


previous case, in figure 7.24, we show the source signal of the mixture used and in


figure 7.25 the spectrogram of this signal in order to underline the frequency of the


note and its harmonics.


We show the results in three different context: in the time domain (see figure 7.26),


in the frequency domain (see figure 7.27) and in the frequency-time domain (see figure


7.28). These different representations are useful for better understand the performance
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Figure 7.12: Harmonics separation on flute C4 note: separation view in frequency
domain. The blue curve is the source signal, while the other are the separation of the
harmonics.


of the separation. In fact, the frequency domain and the time-frequency domain are


more representetive for these results. Analyzing these figures, we stress the high per-


formance in the separation obtained by the NLPCA method.


As it is possible to note from the simulations proposed in this section, the NLPCA


introduced in this work is a very powerful method for the separation of the harmonics


from single note. This is a very interesting result also because as the variety of the


simulations can show, it doesn’t depend from the type of the instruments used or from


the note played.


We must stress that we made several experiments on that topic varying instruments


and note and in all the case we got a good separation. Here we have presented only


the most representative ones.
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Figure 7.13: Harmonics separation on flute C4 note: separation view in frequency-time
domain. The first plot in the left corner is the source signal, while the other are the
separation of the harmonics.
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Figure 7.14: Harmonics separation on piano G6 note: source signal.


7.4 Experimental results


In the second part of simulations, we focused our attention on the separation of mu-


sic signals and we made several experiments using single mixtures composed by three
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Figure 7.15: Harmonics separation on piano G6 note: spectrogram of the source signal.
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Figure 7.16: Harmonics separation on piano G6 note: separation view in time domain.
The first plot from above is the source signal, while the other are the separation of the
harmonics.


different kind of musical instruments. The samples are chosen among the following mu-


sical instruments: cello, viola, piano, guitar, oboe, gong, violin, castanets, xylophone,


etc.


We use known signals, for better understanding the quality of the results, because we


can compare the estimated signals with the source signals. We compare our model


with the one based on that described in Section 4.9, also using a performance index
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Figure 7.17: Harmonics separation on piano G6 note note: separation view in frequency
domain. The blue curve is the source signal, while the other are the separation of the
harmonics.


based on the correlation. We note that in our case we are unable to use the standard


Amari’s performance index since in that case a demixing matrix is needed [20]. We


stress that in all the experiments that we made, we obtained a good separation of the


single signals and this is also confirmed by the high correlation between the estimated


and the source signals, that generally is from 50% to 94%.


In the first experiment we present the result obtained by analyzing a mixture com-


posed by these instruments: oboe, cello and gong. With our approach, we obtain a


good separation of the single signals of the mixture, with a correlation of 94% for the


oboe, 85% for the cello and 50% for the gong, while with the ICA approach we got a


correlation of 75% for the oboe, 70% for the cello and 45% for the gong, respectively.


To clarify the separation performances, in figure 7.29, we also show the single mixture


on which we applied the proposed approach and in figure 7.30 (a,b,c), we show the


original source signal (top), the NLPCA approach signal estimation (middle) and the


Embedded FastICA Approach Estimation (down) for the three source signal, respec-


tively.
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Figure 7.18: Harmonics separation on piano G6 note: separation view in frequency-
time domain. The first plot in the left corner is the source signal, while the other are
the separation of the harmonics.
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Figure 7.19: Harmonics separation on trumpet C4 note: source signal.


As a second experiment presented, we work on a mixture composed by these instru-


ments: castanets, xylophone and viola. With our approach, we obtain the separation


of the single signals from the mixture, with a correlation of 50% for the castanets, 83%


for the viola and 50% for the xylophone, while with the Embedded FastICA approach
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Figure 7.20: Harmonics separation on trumpet C4 note: spectrogram of the source
signal.
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Figure 7.21: Harmonics separation on trumpet C4 note: separation view in time do-
main. The first plot from above is the source signal, while the other are the separation
of the harmonics.


we got a correlation of 20% for the castanets, 51% for the viola and 15% for the xylo-


phone.


In figure 7.31, we show the single mixture on which we applied the proposed approach,


in figure 7.32 (a,b,c), we show the original source signal (top), the NLPCA approach


signal estimation (middle) and the Embedded FastICA Approach Estimation (down)


for the three source signal.
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Figure 7.22: Harmonics separation on trumpet C4 note note: separation view in fre-
quency domain. The blue curve is the source signal, while the other are the separation
of the harmonics.


As it is possible to note an important feature of the simulation made is that we use


different kind of instruments in the composition of the mixture. In the third experiment


proposed in fact, we analyze a mixture composed by these instruments: castanets, bells


and viola.


The obtained results are: a correlation of 50% for the castanets, 83% for the viola


and 55% for the bells with the proposed approach, while with the Embedded FastICA


approach we have a correlation of 5% for the castanets, 62% for the viola and 18% for


the bells.


For better understand the results in figure 7.34 (a,b,c), we show the original source sig-


nal (top), the NLPCA approach signal estimation (middle) and the Embedded FastICA


Approach Estimation (down) for the three source signal.


As a fourth experiment, we present the result obtained by analyzing a mixture


composed by these instruments: guitar, oboe and viola. By using the NLPCA approach


we have a correlation of 50% for the guitar, 80% for the viola and 85% for the oboe,


while with the Embedded FastICA approach we get a correlation of 32% for the guitar,
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Figure 7.23: Harmonics separation on trumpet C4 note: separation view in frequency-
time domain. The first plot in the left corner is the source signal, while the other are
the separation of the harmonics.
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Figure 7.24: Harmonics separation on violin C5 note: source signal.


66% for the viola and 75% for the oboe.


Also in this case to clarify the result in figure 7.35, we show the single mixture on


which we applied the proposed approach, in figure 7.36 (a,b,c), we show the original


source signal (top), the NLPCA approach signal estimation (middle) and the Embedded
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Figure 7.25: Harmonics separation on violin C5 note: spectrogram of the source signal.
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Figure 7.26: Harmonics separation on violin C5 note: separation view in time domain.
The first plot from above is the source signal, while the other are the separation of the
harmonics.


FastICA approach estimation (down) for the three source signal.


Going on with the differentiation of the instruments, we present the case in which


the mixture is composed by: oboe, bell and corn. With the approach proposed in


this work, we obtain a good separation of the single signals of the mixture, with a


correlation of 50% for the corn, 90% for the oboe and 55% for the bell, while with the


Embedded FastICA approach we got a correlation of 40% for the corn, 62% for the


oboe and 30% for the bell.


In figure 7.37, we show the single mixture on which we applied the proposed approach,


while in figure 7.38 (a,b,c), we show a comparison in the time domain among the


original source signal (top), the NLPCA approach signal estimation (middle) and the
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Figure 7.27: Harmonics separation on violin C5 note note: separation view in frequency
domain. The blue curve is the source signal, while the other are the separation of the
harmonics.


Figure 7.28: Harmonics separation on violin C5 note: separation view in frequency-
time domain. The first plot in the left corner is the source signal, while the other are
the separation of the harmonics.
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Figure 7.29: The single music mixture in simulation 1.
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Figure 7.30: The comparison among original source signal (top), NLPCA Estimation
(middle), Embedded FastICA Estimation (down): (a) cello signal, (b) oboe signal,(c)
gong signal.
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Figure 7.31: The single mixture in experiment 2.


Embedded FastICA Approach Estimation (down) for the three source signal.


As a summary of results, we report a table where we indicate the correlation coeffi-


cient in the experiments proposed by the NLPCA approach and the FastICA approach.


We also stress that another important result is the extraction of the single instru-


ment’s score and its musical transcription from the separated signals. Even thought


we are still working on this problem, here we present some results where we obtain a


better performance. In fact, for example considering the signals of experiment 1, in


Fig. 7.39 (a) we compare the original cello score (up), with the cello score extracted by


the separated signal (down) and in Fig. 7.39 (b), we compare the original oboe score


(up), with the oboe score extracted by the separated signal (down). We observe that


in both the cases there is a good agreement between the scores.


We can conclude that with our method we can perform an high quality separation of


music signals from a single mixture and that by using the separated signals we can


transcript in a simple way instrument scores.


7.5 A different kind of experiment: separation of a


voice from a music instruments


In this section, we describe a different kind of simulation in which we consider signals


of different nature. In particular in this experiment, we consider a mixture of two


recorded signals and one Gaussian noise (Fig. 7.40 - down). The first recorded signal


is the recording of a male voice that contains the seven digits (7.40 - top) and the


second is a single flute note (G6) (7.40 - middle). The mixture that we analyze is
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Figure 7.32: The comparison among original source signal (top), NLPCA Estimation
(middle), Embedded FastICA Estimation (down): (a) castanets signal, (b) viola sig-
nal,(c) xylophone signal.


plotted in Fig. 7.41. We note that in this case, for the flute note, we have the time lag


τ = 2 and the embedding dimension m = 9. Instead for the male voice is τ = 4 and


m = 13. Applying the phase reconstruct approach on the mixture we obtain τ = 2


and m = 10. In Fig. 7.43, we show the separated signals obtained by using NLPCA,


the proposed approach, and we compare these results with the approach proposed in


[42] in Fig. 7.42. The correlation percentages are 98% for the flute source and 62% for


the male voice in the case of Robust NLPCA approach; 94% and 58% in the case of


FastICA approach. However, it’s possible to note in Fig. 7.45 and in Fig. 7.44 that


using the robust PCA NN, we obtain a clearer separation, that can be appreciate also
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Figure 7.33: The single mixture in experiment 3.


listening the results.


7.6 Conclusions


In this section, we used a methodology to accomplish single channel mixtures BSS. The


proposed approach is based on an on-line Robust PCA NN and the embedding dimen-


sion and the time lag are used to define the architecture of the NN. We also compared


the method with one based on a batch ICA approach. From the experiments that


we have made, we found that the robust PCA NN permits to good results compared


with those of the other approach. We also can stress that one of the features of the


on-line learning is that it permits to define the NN’s input dimension that improves


the separation of the signals.
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Figure 7.34: The comparison among original source signal (top), NLPCA Estimation
(middle), Embedded FastICA Estimation (down): (a) castanets signal, (b) viola sig-
nal,(c) bells signal.
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Figure 7.35: The single mixture in experiment 4.
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Figure 7.36: The comparison among original source signal (top), NLPCA Estimation
(middle), Embedded FastICA Estimation (down): (a) guitar signal, (b) viola signal,(c)
oboe signal.
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Figure 7.37: The single mixture in experiment 5.
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Figure 7.38: The comparison among original source signal (top), NLPCA Estimation
(middle), Embedded FastICA Estimation (down): (a) oboe signal, (b) bells signal,(c)
corn signal.
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Experiment Music Instruments NLPCA Approach FastICA Approach
Experiment 1 . . . . . . . . .


. . . Oboe 94% 75%


. . . Cello 85% 70%


. . . Gong 50% 45%
Experiment 2 . . . . . . . . .


. . . Castanets 50% 20%


. . . Xylophone 50% 15%


. . . Viola 83% 51%
Experiment 3 . . . . . . . . .


. . . Castanets 50% 5%


. . . Bell 55% 18%


. . . Viola 83% 62%
Experiment 4 . . . . . . . . .


. . . Guitar 50% 32%


. . . Oboe 85% 75%


. . . Viola 80% 66%
Experiment 5 . . . . . . . . .


. . . Corn 50% 40%


. . . Oboe 90% 62%


. . . Bell 55% 30%


(a) (b)


Figure 7.39: Musical transcription: (a) the cello scores extracted from the source
signal (up) and from the separated signal (down); (b) the oboe scores extracted from
the source signal (up) and from the separated signal (down);.
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Figure 7.40: Seven - Flute note Experiment source signals: male voice (up); flute note
(middle); gaussian Noise (down).
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Figure 7.41: Seven - Flute note Experiment mixture.
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Figure 7.42: Seven - Flute note Experiment: Embedded Fastica Results
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Figure 7.43: Seven - Flute note Experiment: Non Linear PCA Results
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Figure 7.44: Comparison of the original sources (top) with the Embedded Non Linear
PCA approach (middle) and FastICA approach (down): male voice.
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Figure 7.45: Comparison of the original sources (top) with the Embedded Non Linear
PCA approach (middle) and FastICA approach (down): flute note.
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Chapter 8


Conclusions


In this thesis, we introduce a methodology to accomplish single channel mixtures BSS.


The proposed approach is based on the combination of an on-line Robust PCA NN


and the chaotic system theory. In particolar, we use the embedding dimension and


the time lag to define directly the architecture of the NN. This is a very interesting


and innovative approach, in fact we can say that it solves the problem of independent


components separation in a good way. We can also say that at the moment the methods


described in literature that can accomplish separation of independent components from


single mixtures all use a priori knowledge about the original sources that form the


mixture or have some knowledge about the mixing process. Our method insteand is


completely blind, the only thing that we need to know for applying it is the data of


the mixture.


We also compared the method with that based on a batch ICA approach. From


our experiments, we found that, as in this example, in many cases the robust PCA


NN permits to obtain better results than in the other approach. We also can stress


that one of the features of the on-line learning is that permits to define the NN’s input


dimension that improves the separation of the signals.


In the next future the authors will focus their attention on the application of the


method to separate signals coming from real environments: astrophysics, geophysics


and music, and to find the correlation between the embedding dimension of the signals


and the separation ability of our model.
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