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Chapter 1

Introduction: Complexity and

Uncertainty

In the analysis of real world phenomena the first step consists in establishing

a set of relevant variables able to describe the main aspects of interest. As

result of this procedure a system is distinguished on the analyzed phenom-

ena. In other words, the established variables form a system, which is an

abstraction of the real phenomena.

The concept of complexity is strongly connected to the one of system. In

fact, the quantity of information required to describe a system measures its

degree of complexity.

In general statistical modeling the concept of complexity assumes a promi-

nent rule. In this framework, complexity has many faces and there is not a

unique definition. Specifically, complexity is defined differently as kolmogorov

Complexity (Cover, Gacs & Gray 1989), Shannon complexity (Rissanen 1989)

and Stochastic complexity (Rissanen 1989).

However, these are very technical definitions.

Complexity definition with a broader perspective is given in (Bozdogan 2004):

complexity of a system (of any type) is a measure of the degree of interde-

pendency between the whole system and a simple enumerative composition of
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its subsystems or parts.

The notion of complexity may be best explained considering real world

systems. For instance, a system may be physical, social, biological, economic

or political, it is even characterized by a relatively big amount of variables

interacting each other. In social science, system complexity increases since

humanistic systems have to handle with human thinking and behavior.

In order to analyze such systems it is crucial to simplify them to an accept-

able level of complexity.

There exist different strategies for simplifying a system. One way is to ex-

clude some variables from the system. An important strategy of dealing

complexity is to allow imprecision in the system description. Another im-

portant way for making complex systems manageable is to break them down

into appropriate subsystems.

The present thesis focuses on the last two strategies. The first is not taken

into account since, from a statistical point of view, all variables selected as

relevant for the phenomenon under consideration are sources of information.

Hence, it is preferred to use such variables for the analysis.

The strategy to allow imprecision for reducing complexity is appropriately

expressed by the Zadeh’s principle of incompatibility (Zadeh 1973): as the

complexity of a system increases, our ability to make precise and yet signif-

icant statements about its behavior diminishes until a threshold is reached

beyond which precision and significance (or relevance) become almost mutu-

ally exclusive characteristics.

The main idea is that the traditional techniques for analyzing systems are

not well suited for dealing with humanistic systems. In human thinking, the

key elements are not numbers but classes of objects or concepts in which

the membership of each element to the class is gradual (fuzzy) rather than

sharp. For instance, the concept of “small number” does not correspond to

an exact number. But it is possible to define the class “small numbers”. In

other words, the property small is a vague property, which leads to define the
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class of objects having such property. On the other hand there is nor first

small number nether last small number. There is just the class small numbers

to which all objects belong to some degree. Such class of objects is what is

called fuzzy set, which is the object of the Fuzzy Set Theory (Zadeh 1965).

Hence, fuzzy theory with its approach to imprecision and its logic of degree

of membership allows to deal with complexity inside real world phenomena.

On the other hand, the descriptive complexity of a system can also be

reduced by breaking the system into its appropriate subsystem. This is a

general principle behind Structural Equation Models (SEM) (Bollen 1989,

Kaplan 2000).

The basic idea is that different subset of variables are expression of different

multidimensional concepts, belonging to the same phenomenon. These con-

cepts are named latent variables (LV) as they are not directly observable but

measurable by means of a set of manifest variables (MV).

The aim of SEM is to study the system of relations between each LV and its

MV, and among the different LV inside the system.

Considering one by one each part forming the whole system, and analyzing

the relations among the different parts, the system complexity is reduced

allowing a better description of the main system characteristics.

Thesis outline

In social science it is very common to analyze phenomena whose description

requires the analysis of a complex structure of relations among the variables

inside the system. In addition, in such frameworks there is an additional

source of complexity arising from the influential human beings involvement.

The present work focuses on modeling such complex systems. Specifically,

a new strategy based on fuzzy set theory is proposed to analyze them. The

strategy consists in introducing fuzzy models inside structural equation mod-

els. This allows to face system complexity both introducing an approach tol-

erant of imprecision and using a methodology well suited to link the different
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parts in which the system may be decomposed.

In this first chapter the concepts of system and complexity are explained.

In particular, a definition of complex system and several strategies for han-

dling such complexity are introduced.

The second chapter of the thesis provides an overview of the the different

approaches to uncertainty. In particular, beside the well known probabilistic

uncertainty, fuzziness and imprecision are introduced as additional sources

of uncertainty.

Specifically, fuzziness is object of Fuzzy Set Theory (FST), whereas impre-

cision is object of Interval Data Analysis (IA). Hence, the basic concepts of

fuzzy data and interval data are explained.

Strong focus is given to fuzzy approach, since it is well suited for analyzing

real world phenomena. However, there is a strong relationship between FST

and IA, as it will be shown.

In the third chapter the most widely used models for dealing random-

ness and fuzzyness are presented. Particularly, fuzzy linear regression models

are extensively described.

Among different approaches to fuzzy modeling strong attention is given to

the Possibilistic Fuzzy Regression (PFR).

The main characteristics of the model are extensively described and results of

a detailed study of the relationships between statistical and fuzzy regression

are presented. The study proves that FPR may be considered a valuable

alternative to traditional regression in systems characterized by fuzzy uncer-

tainty and in situations where statistical regression is not applicable as its

strong assumptions are not satisfied.

The core of the thesis is in the fourth chapter. Here, the idea of intro-

ducing fuzzy models inside structural equation models is described.

First, Structural Equation Models (SEM) are extensively described. Then,

the fuzzy approach to SEM is widely motivated. In fact, both PFR and SEM

are soft modeling approaches well suited for analyzing phenomena where the
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human judgment is influential, i.e. customer satisfaction and sensory analy-

sis.

The proposed strategy has been used to face the crucial statistical problem

of the models comparison.

The general approach is based on the comparison between model parameters.

But this strategy could lead to unbiased results since information on the fit

is not taken into account.

On the other hand, FPR for its own characteristics to embed residual in-

formation inside the model, permits to compare models avoiding unbiased

results. In such a way, fuzzy SEM estimated for different groups of observa-

tions may be compared to each other.

This is a an important task in many application contexts. For instance, in

marketing it is very common to apply the same model to different customer

segments and successively comparing the results from different segments.

The chapter fifth shows an application of the proposed strategy to the

customer satisfaction analysis.





Chapter 2

Different approaches to

Uncertainty

2.1 Imprecision, Vagueness, Uncertainty

The first step of any statistical analysis is the codification of the information.

Most relevant variables for describing the phenomenon under investigation

are defined and successively measured over preselected statistical units. As

well known in statistics, according to the nature of the modalities a variable

(o character) is classified as qualitative or quantitative. Specifically, it is

quantitative if the corresponding modalities are numerical values otherwise

it is quantitative.

Focusing on the quantitative variables, it is very common to measure such

variables in terms of single-values, i. e. their modalities are precise values.

However, for many reasons precise measures are very hard to have.

A relevant source of imprecision can be found in the data processing phase,

which consists in computing an estimate of a quantity for example the weight,

based on the results of direct measurements. The outcomes of any data

processing are never 100% accurate (Kreinovich, Lakejev, Rohn & Kahl 1997).

In fact, given the actual value of the measured quantity, this differs from the
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measurement result. If there is information on the error of the result of data

processing, then it is known that the actual (unknown) value of the measured

quantity falls into a specific interval of values.

On the other hand, there are some variables that for their own nature are

better described by a pair of ordered value. Examples of these variables are

the daily temperatures better registered in terms of minimum and maximum

values Another example are the financial data expressed as interval whose

endpoints are the opening and the closing daily prices at the stock market,

respectively. Of course such information can be summarized by a single value,

for instance the average, but this induces a loss of information.

There are also variables not directly measured but whose measure can be

obtained as difference between two closely related variables. An example

from the Consumer Analysis is the variable satisfaction which is measured

as difference between the consumer’s expectations and perceptions (Grassia,

Lauro & Scepi 2004, Amato & Palumbo 2004).

In all these situations, as in many others, statistical units are better described

by interval values rather than by single values.

It must be noticed that this imprecision in the value of measurement refers

to lack of knowledge about the value of a parameter expressed as a tolerance

interval. However, many times the range enclosing the actual value is well

known but the interval has no sharp boundaries. This happens in any deci-

sion making process, where in addition to the results of measurements and

observations, there are expert estimates formulated in terms of natural lan-

guage, i.e. very heavy. This source of imprecision is named vagueness. The

first philosophical papers on the vagueness rose only in the 20-th century

(Russell 1923, Black 1937). However, the interest in vagueness increased

when Zadeh founded Fuzzy Set Theory (FST) (Zadeh 1965). The basic idea

was that the formalizations in traditional mathematical set theory were not

satisfactory to handle concepts from the daily language used to classify and

quantify information. For example, given the concept the set of young per-
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sons, it is difficult or meaningless to specify a strong boundary between ele-

ments inside and outside the set. At this aim, Zadeh proposed to define sets

using graded indicator functions called membership functions. These func-

tions measure the magnitude of participation of each element to the fuzzy

set by means of a scale. This graded approach is coherent with the general

principle of the human mind, which naturally uses scales for describing vague

concepts such as very tall, quite young, too hot, etc. In such a way, fuzzy

sets provides a powerful representation of fuzziness, that means a meaningful

representation of vague concepts expressed in natural language.

It is worth noticing that the word “fuzziness” has been used in a very different

context by Sugeno (1977) : in situation where the uncertainty results from

information deficiency rather than from the lack of sharp boundaries as in

FST. This type of uncertainty named ambiguity is typical of relations one-to

many. In other words, given two sets with distinct boundaries (crisp set) the

graded approach is used to define the degree to which the evidence proves

the membership of an object in either set. For example, a jury member for

a criminal trial has to decide the degree to which the defendant is member

of the set guilty people or of the set innocent people. There is no vagueness

neither in the concept guilty nor in the concept innocent. The uncertainty is

associated with several well-defined alternatives. Thus, the fuzzy measures

assign a value to each crisp set of the universal set, signifying the degree

of evidence that a particular element belongs in the set. Whilst, in FST a

value is assigned to each element of the universal set signifying the degree of

membership in a particular set with unsharp boundaries.

Since 1965, following Zadeh’s paradigm (Zadeh 1973, Zadeh, Fu, Tanaka &

Shimura 1975, Zadeh 1978) fuzzy set theory has been considerably developed

by many researchers with a lot of papers (Gusev & Smirnova 1973, Gupta,

N.Saridis & Gaines 1977, Kandel & Byatt 1978) and monographes (Negoita

& Ralescu 1975, Dubois & Prade 1980, Klir & Yuan 1995).

There is a substantial ongoing misunderstanding between the probabilistic
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and the fuzzy approach to the uncertainty (Indahl 1998). In fact, very often

the membership values are confused with probabilities and the membership

functions with probability distribution.

Zadeh himself introducing the notion of a fuzzy set tried to avoid the confu-

sion “. . . such a framework provides a natural way of dealing with problems

in which the source of imprecision is the absence of sharply defined criteria

of class membership rather than the presence of random variables”.

Uncertainty as well as vagueness form two complementary facets of a more

general phenomenon called indeterminacy (Novák 2005). Specifically, the

uncertainty phenomenon emerges due to the lack of knowledge about the oc-

currence of some event, i.e. during an experiment whose result is not known.

A specific form of uncertainty is randomness which is uncertainty rising in

connection with time. Before doing an experiment there is uncertainty about

the result but there is no randomness after the experiment has been realized

since the result is then well known. However, uncertainty is not only ran-

domness, for example there is uncertainty in potentiality not referred to time

(i.e. lack of knowledge) or with reference to the past (i.e. posterior Bayesian

probability).

Stressing the difference between vagueness and uncertainty, it can be char-

acterized as conflict between actuality and potentiality. A set is considered

actual if all its elements are already existing; thought only a part of the set

is physically present it is possible to assume they are at disposal as whole.

Otherwise the set is potential, i.e. the events may occur or not. It follows

that vagueness steams from the actualized non-sharply delineated set of ob-

jects, whereas uncertainty faces with still non-actualized grouping of objects.

In fact, if there is not certainty about the existence of a specified object it

makes no sense to speak about its degree of membership to the set.

The most widely used mathematical model of the uncertainty is the probabil-

ity theory which provides probabilities as numerical measures of the likelihood

that a particular event will occur. Probabilities measures have been studied
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at length, in fact the literature of probability theory, including textbooks at

various level, is extremely abundant.

On the other hand, the study of the imprecision related to the value of the

information is a subject of Interval Analysis (IA), a branch of mathematics.

Interval Methods are of highest value to deal with problems in which the

the uncertainty is rigorously bounded. The precursors of Interval Analysis

include Sunaga 1958, Warmus 1956 and Young 1931. More recently Interval

Arithmetic is thoroughly covered in two books by Moore (Moore 1966, Moore

1979).

It is derived from the above discussion that uncertainty, involved in any

problem-solving situation, is a result of some information deficiency. Infor-

mation may be incomplete, imprecise, vague, contradictory or deficient in

some other way, and each one of these various information deficiencies result

in different types of uncertainty.

Here, strong focus is given to three specific information deficiencies: impre-

cision, vagueness, uncertainty. Thus, depending on the nature of the infor-

mation deficiency, the analysis of the system can be conducted using interval

analysis, fuzzy theory, or a probabilistic approach, respectively. In interval

analysis, the uncertain parameter is denoted by a simple range. In addition

to the range, if a preference function is used to describe the desirability of

using different values within the range, fuzzy theory can be used. On the

other hand, if the uncertain parameter is described as a random variable

following a specified probability distribution, the probabilistic approach can

be used.

As in the reality the information occurs with more information deficiencies

at the same time, it is convenient a combination of the different approaches.

Many works in these direction has been proposed introducing concept as ran-

dom set (Materón 1975, Miranda, Couso & Gil 2005), interval-valued fuzzy

set (Dubois & Prade 2005) and fuzzy random set (Puri & Ralescu 1986,

Krätschmer 2001).
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2.2 Fuzzy Sets

Fuzzy sets are a generalization of conventional set theory introduced by Georg

Cantor (1845− 1918).

A conventional (crisp) set is a collection of objects which can be treated as a

whole. Let Ω be a space of objects and ω the general element of Ω. A crisp

set A, A ⊆ Ω, is defined as a set of elements ω ∈ Ω, such that each element

ω can either belong or not to the set A. Usually, a set is characterized by a

function, called characteristic function, that defines which elements of Ω are

members of the set an which are not:

µA(ω) =

{
0 for ω /∈ A
1 for ω ∈ A

(2.1)

In other words, the characteristic function maps element of Ω to elements of

the set {0, 1}:

µA : Ω → {0, 1} (2.2)

Classical set theory is based on the two-valued logic as the characteristic

function assigns only the two values 0 and 1 to each element in the set.

Fuzzy set theory is based on the multi-valued logic, thus the characteristic

function assigns values within a specified range which indicate the degree of

membership of each element in the given set. In this context, the character-

istic function is called membership function and the unit interval [0, 1] is the

most common used range of values. Then, the membership function maps

each element of a given set to a membership grade between 0 and 1:

µA : Ω → [0, 1] (2.3)

Formally, given the universe of objects Ω, whit ω as the generic element, a
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fuzzy set Ã in Ω is defined as a set of ordered pairs:

Ã = {(ω, µÃ(ω))|ω ∈ Ω}

For a generic element ω0 ∈ Ω, the value µÃ(ω0) expresses the membership

degree. The larger the value of µÃ(ω), the higher the grade of membership

of ω in Ã. If the membership function is permitted to have only the values 0

and 1 then the fuzzy set is reduced to a classical crisp set. The universal set

Ω may consists of discrete (ordered and non ordered) objects or it can be a

continuous space.

Obviously, the membership degrees are subjective measures which depend

on individual differences in perceiving abstract concepts. In addition, the

same concept may be interpreted differently according to different contexts.

In other words, the specification of membership functions is subjective and

context-dependent.

The universal set Ω is often called linguistic variable. This happens when

Ω is a continuous space divided in several fuzzy sets representing linguistic

concepts whose membership functions cover Ω in a more or less uniform way.

An example is the set “age” shown in figure 2.1 ranging between the values 0

and 90 and divided in the fuzzy sets young, middle aged and old, respectively.

Such a variable is defined fuzzy variable and the respective fuzzy sets are the

states of the fuzzy variable.

A fuzzy set is a codification of the information which allows to represent

vague concepts expressed in natural language. Although, fuzzy sets have a

greater expressive power than the ordinary sets, they strictly depend on the

definition of appropriate membership functions, not even easy to define. To

face this problem it is possible to introduce such uncertainty in the same

definition of membership function. In other words, the membership function

can assign to each object ω ∈ Ω a closed interval of values rather than one

single real number. Fuzzy sets defined by this type of membership functions
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Figure 2.1: Example of fuzzy variable

are called interval-valued fuzzy sets and may be described as follows:

µÃ : Ω → ε([0, 1]) (2.4)

where ε([0, 1]) denotes the set of all closed intervals of real numbers in [0, 1].

A codification with more expressive power is obtained if the intervals in

ε([0, 1]) are fuzzy sets defined in [0, 1]. That means each interval is an ordi-

nary fuzzy set defined in [0, 1]. This type of fuzzy set, so-called fuzzy set of

type 2, is denoted as:

µÃ : Ω → F ([0, 1]) (2.5)

where F ([0, 1]) is called fuzzy power set of [0, 1].

Level 2 fuzzy sets are another generalization of the ordinary fuzzy sets in

which the elements of the universal set are fuzzy sets:

µÃ : F (Ω) → [0, 1] (2.6)

Of course a combination of fuzzy sets of type 2 and level 2 fuzzy sets it is also

possible arising to generalized fuzzy sets whose membership function has the
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form:

µÃ : F (Ω) → F ([0, 1]) (2.7)

Finally, a probabilistic set Ã is defined by a randomized membership function

µÃ as follows:

µÃ : Ω×Θ → [0, 1] (2.8)

where the membership function µÃ of ω in Ã is a random variable built from

the distribution p of ω assumed independent of Ã (Hirota 1977).

Although such generalizations of ordinary fuzzy sets permit to embed the

uncertainty in identifying proper membership functions, their processing is

computationally more demanding.

It must be noticed that in such logic of overlapped subsets, two funda-

mental laws of classical set theory are broken:

• Law of Contradiction: a set and its complement must comprise the

universal set

A ∪ Ā = Ω

• Law of Excluded Middle: an element can either be in its set or in its

complement but never simultaneously in both

A ∩ Ā = ∅

2.2.1 Some noteworthy

Fuzzy sets can be characterized by a family of crisp sets, called α−cut. Given

a fuzzy set Ã defined on Ω and any number α ∈ [0, 1] the α−cut, αÃ, is defined
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as:

αÃ = {ω ∈ Ω : µÃ(ω) ≥ α} (2.9)

In other words, the α−cut of Ã is a crisp set including all ω ∈ Ω which are

members of the fuzzy set Ã with a membership degree greater or equal to

a specified value of α. The α−cut with the strict inequality µÃ(ω) > α is

named strong α−cut and defined as follows:

α+Ã = {ω ∈ Ω : µÃ(ω) > α} (2.10)

Every element in the universal set Ω is a member of the fuzzy set Ã to some

grade, maybe even zero. The set of all objects ω ∈ Ω at which µÃ(ω) > 0 is

defined support of the fuzzy set. Whereas, the core is the set of all objects

ω ∈ Ω at which µÃ(ω) = 1. In particular, if the core of a fuzzy set is

nonempty then the fuzzy set is normal, that means it is always possible to

find at least a point ω ∈ Ω such that µÃ(ω) = 1. Differently, the normality

of a fuzzy set can be derived considering the notion of height of a fuzzy set.

Let h(Ã) be the height of a fuzzy set, it corresponds to the largest membership

degree obtained by any ω ∈ Ω:

h(Ã) = sup
ω∈Ω

Ã(ω) (2.11)

A fuzzy set Ã is defined normal iff

h(Ã) = 1 (2.12)

otherwise if h(Ã) < 1 it is defined subnormal fuzzy set.

The cardinality of a fuzzy set, so-called Σcount (sigma-count), is a different
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concept defined as:

card(Ã) = |Ã| =
I∑

i=1

µÃ(ωi) (2.13)

For fuzzy sets defined on R, a very important property is the convexity. A

fuzzy set Ã is convex if and only if for any ω1, ω2 ∈ Ω and any λ ∈ [0, 1]:

µÃ(λω1 + (1− λ)ω2) ≥ min{µÃ(ω1), µÃ(ω2)} (2.14)

Alternatively, a fuzzy set is convex iff all its α−cuts are convex in the classical

set.

It is common in literature to denote a fuzzy set by means of the pairs

elements-membership function:

Ã =
µÃ(ω1)

ω1

+
µÃ(ω2)

ω2

+ . . .+
µÃ(ωI)

ωI

(2.15)

where the plus sign is meant in the set-theoretic sense, i.e. a group of objects

forming a set.

On the other hand, a fuzzy set defined in an interval of real numbers may be

denoted as:

Ã =

∫
ω

Ã(ω)/ω (2.16)

2.2.2 Basic operations

In Zadeh’s seminal paper on fuzzy sets (Zadeh 1965) only the standard op-

erations of complement, union and intersection were introduced. They are

here shortly described with some related examples.

The complement (negation) of a fuzzy set Ã is the fuzzy set ¬Ã whose mem-
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bership function is given by

µ¬Ã(ω) = 1− µÃ(ω) (2.17)

The union (disjunction) of two fuzzy sets Ã and B̃ is the fuzzy set C̃ = Ã∪ B̃
whose membership function is given by

µC̃(ω) = max(µÃ(ω), µB̃(ω)) (2.18)

i.e. the smallest fuzzy set containing both Ã and B̃.

The intersection (conjunction) of two fuzzy sets Ã and B̃ is the fuzzy set

C̃ = Ã ∩ B̃ with the membership function

µC̃(ω) = min(µÃ(ω), µB̃(ω)) (2.19)

i.e. the largest fuzzy set contained in both Ã and B̃.

Given Ω = {1, 2, . . . , 10}, let Ã =“small numbers”= 1/1 + 1/2 + 0.8/3 +

0.5/4 + 0.3/5 + 0.1/6 and B̃ =“large numbers”= 0.1/5 + 0.2/6 + 0.5/7 +

0.8/8 + 1/9 + 1/10 be two fuzzy sets in the form (2.15) then:

¬Ã = 0.2/3 + 0.5/4 + 0.7/5 + 0.9/6 + 1/7 + 1/8 + 1/9 + 1/10

Ã ∪ B̃ = 1/1+1/2+0.8/3+0.5/4+0.3/5+0.2/6+0.5/7+0.8/8+1/9+1/10

Ã ∩ B̃ = 0.1/5 + 0.1/6

Since Zadeh’s paper, most of the operations inside the classical set theory

have been extended to fuzzy sets (Zimmermann 1996, Dubois & Prade 1980).

It often occurs that a crisp function is extended to act on fuzzy sets.

Such a function represents what is called fuzzified function. A fundamental

principle for fuzzifyng crisp functions is the so-called extension principle. Let

f : Ω → Γ and Ã be a function (operation) and a fuzzy set in Ω, respectively.

Then Ã induces via f a fuzzy set B̃ in Γ with γ as the generic element, as
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follows:

µB̃(γ) =

{
supγ=f(ω)µÃ(ω) if f−1(ω) = ∅
0 otherwise

(2.20)

For example, let Ω = {1, 2, 3, 4} and Γ = {1, 2, . . . , 6}. If Ã = 0.1/1+0.2/2+

0.7/3 + 1/4, then B̃ = 0.1/3 + 0.2/4 + 0.7/5 + 1/6.

2.3 Fuzzy numbers

A fuzzy set in the real line that satisfies both the conditions of normality

(2.12) and convexity (2.14) is a fuzzy number.

It must be normal so that the statement “real number close to r” is fully

satisfied by r itself, i.e. µÃ(r) = 1. In addition, all its α−cuts for α 6= 0

must be closed intervals so that the arithmetic operations on fuzzy sets can

be defined in terms of operations on closed intervals. On the other hand, if

all its α−cuts are closed intervals it follows that the fuzzy number is a convex

fuzzy set.

A method for developing fuzzy arithmetic it to extend operations on real

numbers to operations on fuzzy sets by means of the extension principle.

Unfortunately, this approach is numerically inefficient (Fedrizzi & Kacprzyk

1992). Hence, in literature it is very common to use fuzzy numbers in the

so-called L−R representation (Dubois & Prade 1980):

µÃ(ω) =

{
L
(

c−ω
l

)
α > 0,∀ω ≤ c

R
(

ω−c
r

)
β > 0,∀ω ≥ c

(2.21)

where L(ω) = L(−ω); L(0) = 1; L is increasing in [0,+∞]; and similarly

function R. The value c is the mean value of Ã, whereas l and r are called left

and right spreads, respectively. Notice that if the spreads are zero then Ã is a

nonfuzzy number, whilst Ã becomes fuzzier as well as the spreads increase. A
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fuzzy number represented by the L−R representation is symbolically denoted

as Ã = (c, l, r)LR. A fuzzy number Ã with l = r = w is called symmetrical

fuzzy number and denoted as:

Ã = (c, w)L (2.22)

Arithmetic operations on L − R fuzzy numbers may be defined in terms

of the c, l, r values. For instance, the addition between two fuzzy numbers

Ã = (cÃ, lÃ, rÃ) and B̃ = (cB̃, lB̃, rB̃) is given by:

Ã+ B̃ = (cÃ, lÃ, rÃ) + (cB̃, lB̃, rB̃)

= (cÃ + cB̃, lÃ + lB̃, rÃ + rB̃)

and similarly for the other operations.

In the possibility theory (Zadeh 1978), a branch of fuzzy set theory, fuzzy

numbers are described by possibility distributions.

A possibility distribution πÃ(ω) is a function satisfying the following condi-

tions (Tanaka & Guo 1999):

• there exists an ω such that πÃ(ω) = 1 (normality (2.12))

• α−cuts of fuzzy numbers are convex (2.14)

• πÃ(ω) is piecewise continuous

Most widely used possibility distributions of fuzzy numbers are the intervals,

and the triangular fuzzy numbers.

The possibility distributions of an interval denoted as Ãi = (ci, wi)I is:

πÃi
(ω) =

{
1 {ω|ci − wi ≤ ω ≤ ci + wi}
0 otherwise

(2.23)

where I stands for interval.

The possibility distribution of a triangular fuzzy number denoted as Ãi =
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(ci, li, ri)T is:

πÃi
(ω) =


0 ω ≤ ci − li

1−
(

ci−ω
li

)
ci − li ≤ ω ≤ ci

1−
(

ω−ci

ri

)
ci ≤ ω ≤ ci + ri

0 ω ≥ ci + ri

(2.24)

where T stands for triangular.

Particular fuzzy numbers are the symmetrical fuzzy numbers whose possibility

distribution may be denoted as:

πÃi
(ω) = max

(
0, 1−

∣∣∣∣ω − ci
ri

∣∣∣∣q) (2.25)

Specifically, (2.25) corresponds to triangular fuzzy numbers when q = 0, to

square root fuzzy numbers when q = 1/2 and parabolic fuzzy numbers when

q = 2. Considering (2.4) it is easy to show that (2.25) corresponds to inter-

vals when q = 0.

It is worth noticing that fuzzy variables are associated to possibility distribu-

tions in the similar way that random variable are associated with probability

distributions. Furthermore, possibility distributions are numerically equal to

membership functions (Zadeh 1978).

2.4 Interval Data

A rigorous study of interval data is given by Interval Analysis (Alefeld &

Herzerberger 1983). In this framework, an interval value is a bounded subset

of real numbers x = [x, x], formally:

x = {x ∈ R| x ≤ x ≤ x} (2.26)
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where x and x are called lower and upper bound, respectively. Alternatively,

an interval value may by expressed in terms of width (or radius), xw, and

center (or midpoint), xc:

xw = |x− x| (2.27)

xc =
1

2
|x+ x|

If an interval has zero radius, i.e. x = x, it is a degenerate interval called a

point or thin interval, containing a single point represented by:

x ≡ [x, x] (2.28)

Given x = [x, x] and y = [y, y], algebraic operations on intervals are defined

in such a way that their results are again closed intervals embedding all

possible real results. Formally, the result of x � y is again an interval z with

property:

x � y = z = {z = x � y|x ∈ x, y ∈ y} (2.29)

where � belongs to the set {+,−,×,÷}.
Arithmetic operations on intervals are expressed in terms of ordinary arith-

metics on their bounds as follows:

x + y = [x+ y, x+ y] (2.30)

x− y = [x− y, x− y] (2.31)

x× y = [min([x× y, x× y, x× y, x× y), (2.32)

max(x× y, x× y, x× y, x× y)]

x÷ y = [min([x÷ y, x÷ y, x÷ y, x÷ y), (2.33)

max(x÷ y, x÷ y, x÷ y, x÷ y)]

with the extra condition 0 /∈ y for the division.
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Examples of interval-valued arithmetic operations follow:

[2, 5] + [1, 3] = [3, 8]

[2, 5]− [1, 3] = [−1, 4]

[3, 4]× [2, 2] = [6, 8]

[4, 10]÷ [1, 2] = [2, 10]

Arithmetic operations on intervals satisfy some useful properties. Given the

intervals a = [a, a], b = [b, b], c = [c, c], 0 = [0, 0] and 1 = [1, 1], the most

important properties follow:

1. commutativity

a + b = b + a

a× b = b× a

2. associativity

(a + b) + c = a + (b + c)

(a× b)× c = a× (b× c)

3. identity

a = 0 + a = a + 0

a = 0 + a = a + 0

Geometrically, interval is just a section of a real line, determined by its own

bounds. The set of all intervals is commonly denoted by IR.

An interval vector X is defined to be a vector with interval components:

xn = [xn, xn] (2.34)

where (n = 1, . . . , N) and the space of all N dimensional interval vectors is

denoted by IRN :
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Similarly an interval matrix [X] is a matrix with interval components:

xnp = [xnp, xnp] (2.35)

where (p = 1, . . . , P ) and the space of all N × P matrices is denoted by

IRN×P .

Arithmetic operations on interval vectors and matrices are carried out accord-

ing to the operations on IR in the same way that real vector and matrices

operations are carried out according to real operations.

It is possible to determine distances between intervals using the Hausdorff

metric. Let a = [ac, aw] and b = [bc, bw] be two generic unidimensional

intervals, the simplest case of Hausdorff metric d(a;b) in R is shown below:

d(a;b) = |ac − bc|+ |aw − bw| (2.36)

It has been shown that 2.36 is a distance since it satisfy the following prop-

erties (Neumaier 1990):

i) d(a;b) ≥ 0

ii) d(a;b) = d(b; a)

iii) d(a; c) ≤ d(a;b) + d(b; c)

where C is a generic interval in R.

The properties of the Hausdorff metric in RP are widely discussed in (Braun,

Mayberry, Powers & Schlicker 2003). It is worth noticing that intervals

are represented as segments in R, parallelograms in R2 and boxes in higher

dimensional spaces. As a consequence, the generalization of the Hausdorff

metric to IRP is quite complex, and the complexity increases as well as P

tends to be large. However, it is possible an easy generalization when the

compact subsets in IRP are restricted to some special cases (Palumbo &

Irpino 2005).
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It must be noticed that interval data treatment involves NP-hard problem

solutions. A lot of papers over the years have faced the problem to find

more feasible solutions (Kreinovich et al. 1997, Ferson, Ginzburg, Kreinovoch,

Longpré & Aviles 2002). However, such problem not inevitably occurs if the

solutions derive from square symmetric matrices. Luckily, this condition is

satisfied by a lot of statistical methods, i.e. least squares regression and

factorial analysis.

2.5 Fuzzy numbers as a nested family of in-

tervals

The bridge between fuzzy set theory and interval analysis is fuzzy arithmetic

since fuzzy arithmetic is interval arithmetic on α−cuts (Kaufmann & Gupta

1985). In fact, each fuzzy number can uniquely be represented as a nested

family of intervals [Ω(α)], α−cuts of [Ω], corresponding to different value of

α (Nguyen, Wang & Kreinovich 2003). In other words, A fuzzy number can

be represented as a nested collection of α−cuts, i.e. intervals corresponding

to different thresholds of membership value.

There exists also a property stating that a fuzzy set can be represented in

terms of special fuzzy sets αÃ which are defined in terms of its α−cuts. This

property is usually referred to as decomposition theorems of fuzzy sets, which

is formulated in different version.

Here, it is empirically discussed one of the basic decomposition theorems of

fuzzy sets. Given the fuzzy set Ã = .2/ω1 + .4/ω2 + .6/ω3 + .8/ω4 + .1/ω5, it is
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associated with five α−cuts defined by the following characteristic functions:

.02Ã = .1/ω1 + .1/ω2 + .1/ω3 + .1/ω4 + .1/ω5

.04Ã = 0/ω1 + .1/ω2 + .1/ω3 + .1/ω4 + .1/ω5

.06Ã = 0/ω1 + 0/ω2 + .1/ω3 + .1/ω4 + .1/ω5

.08Ã = 0/ω1 + 0/ω2 + 0/ω3 + .1/ω4 + .1/ω5

.01Ã = 0/ω1 + 0/ω2 + 0/ω3 + 0/ω4 + .1/ω5

Then each of the α−cut is concerted to a special fuzzy set αÃ:

αÃ(ω) = ααÃ(ω) (2.37)

obtaining

.02Ã = .2/ω1 + .2/ω2 + .2/ω3 + .2/ω4 + .2/ω5

.04Ã = 0/ω1 + .4/ω2 + .4/ω3 + .4/ω4 + .4/ω5

.06Ã = 0/ω1 + 0/ω2 + .6/ω3 + .6/ω4 + .6/ω5

.08Ã = 0/ω1 + 0/ω2 + 0/ω3 + 0/ω4 + .8/ω5

.01Ã = 0/ω1 + 0/ω2 + 0/ω3 + 0/ω4 + 1/ω5

Now, it is easy to shown that the standard fuzzy union of these five special

fuzzy sets is exactly the original Ã:

Ã = .02Ã ∪ .04Ã ∪ .06Ã ∪ .08Ã ∪ 1Ã (2.38)

For the theoretically proof of this basic decomposition theorems of fuzzy sets,

as well as other versions of the theorem see (Klir & Yuan 1995).

The property of a fuzzy set to be represented by its α−cuts is extremely

useful from a computational point of you. In fact, this allows to use all the

interval arithmetic operations discussed in (2.4), instead of the fundamental
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extension principle 2.20 which is definitely computationally more demanding.





Chapter 3

Linear Models for crisp and

fuzzy data

3.1 Modeling under uncertainty

Modeling real world is a fundamental task in Statistics. Models are built for

describing, understanding, estimating, reproducing and inspecting real phe-

nomena (Piccolo 1998). A model is an exemplification of reality. The basic

aim is to explain the complexity inside a system studying the relationships

between variables observed over statistical units. First the data are observed,

then hypothesis are formulated and a cause effect relation between variables

is assumed. The specification of the functional relation between variables is

crucial during model formalization. It is based both on a-priori knowledge

and empirical results.

Since models are idealizations of reality, statistical relations cannot be deter-

ministic. They would be unrealistic. Hence, deterministic models are usually

extended to stochastic ones, by introducing a measurement error. This is in

line with the statistical paradigm which states that real world phenomena

consist of two well defined components: one possible to explain (determinis-

tic component) and another one inexplicable (stochastic component). Thus,
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statistical models are based upon probability theory in which imprecision is

synonymous with randomness and inferential procedures are considered to

face the uncertainty of the estimates.

For a long time, probability theory has been the only available tool for rep-

resenting uncertainty.

In 1965 Zadeh introduced the fuzzy paradigm for dealing vagueness inside real

world phenomena (see chapter 2). In 1970 Bellman and Zadeh stated that

imprecision is not only randomness, and that fuzziness is a major source of

imprecision in many decision problem. Since then, the field of uncertainty

modeling is dramatically changed.

Besides traditional model, new models to face different sources of uncertainty

have been proposed. Particularly, fuzzy models for analyzing phenomena in

which the major source of uncertainty is fuzziness rather than randomness.

3.2 Statistical Regression

Specialized literature on regression analysis (Gujarati 2003) and more gen-

erally on linear and non linear models (Ryan 1997) offers many solutions to

study the dependence between two sets of variables.

Let Y and {X1, X2, . . . , XP} be a quantitative dependent variable and a set

of P independent variables observed on N statistical units, respectively.

Regression Analysis studies the statistical dependence of Y with respect to

the predictors {Xp} (p = 1, . . . , P ).

This requires the choice of a suitable model and the related parameters esti-

mation. Given the generic model:

Y = f(X1, . . . , XP ; β) + ε

the aim of statistical regression is to find the set of unknown parameters so

that Ŷ = f(X1, . . . , XP ; β̂) is a good prediction of Y . The term ε indicates

the deviation of Y from the model.
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The most widely used regression model is the (Multiple) Linear Regression

Model (MLRM), as well as the Least Squares (LS) is the most widespread

estimation procedure.

In MLRM the dependent variable Y would be expressed as the weighted sum

of the independent variables {X1, X2, . . . , XP}, with the unknown weights

{β1, β2, . . . , βP}.
Formally:

yn = β0 + xn1β1 + . . .+ xnPβP + εn (3.1)

where (n = 1, . . . , N) and β0 is the unknown parameter related to intercept

term.

In matrix form the model is expressed as:

y = Xβ + ε (3.2)

where y = [y1, . . . , yN ]′, β = [β0, . . . , βP ]′, ε = [ε1, . . . , εN ]′ and

X =


1 x11 . . . x1P

1
...

. . .
...

1 xN1 . . . xNP


LS is based on the minimization of the sum of squared deviations:

min
β

= (y −Xβ)′(y + Xβ) (3.3)

The optimal solution of the minimization problem (3.3) is the following vec-

tor:

β̂ = (X′X)−1X′y (3.4)
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Substituting (3.2) in (3.4), this may be rewritten as:

β̂ = β + (X′X)−1X′ε (3.5)

Such solutions is totally dependent on the given data. Generalizing results

to the whole population the following LS estimator is obtained:

B = (X′X)−1X′y (3.6)

Ordinary Least Squares (OLS) regression assumes that observations are gen-

erated under the following assumptions:

1. E(ε) = 0

where E(ε) is an expectation vector and 0 is the N × 1 null vector

2. V (ε) = σ2I

where V (ε) is a covariance matrix, I is the N ×N identity matrix and

σ2 is a variance

3. X is non stochastic

that means it consists of fixed numbers

4. ρ(X) = P + 1

where ρ(X) is the rank of X,with 1 representing the intercept term and

P is lower than the number of observations. This constraint guarantees

no exact linear relationship among the variables, i.e. no multicollinear-

ity.

Under the OLS assumptions the LS estimates are BLUE (Best Linear Un-

biased Estimator), as stated by the famous Gauss-Markov theorem. Specifi-

cally, B are linear unbiased estimators since E(B) = β. This is easily shown,

considering (3.4):

E(B) = E(β) + (X′X)−1X′E(ε) = β (3.7)
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Furthermore, let V (B) be the variance of B:

V (B) = E((B − β)(B − β)′) = σ2(X′X)−1 (3.8)

Thus, B is the best estimator because of minimum variance. In other words,

V (B) ≤ V (B∗), where B∗ is any other linear unbiased estimator.

Since the term error ε is a random vector, thus B is a random vector too.

When the context is not exploratory it is necessary to take into account

the uncertainty of the estimates. The B estimator properties and the sample

distribution can be specified only assuming a specific probability distribution

of the disturbances εn.

When ε ∼ N(0, σ2I) then:

B ∼ N(β, s2(X′X)−1) (3.9)

y ∼ N(Xβ, s2I) (3.10)

where s2 is the unbiased estimator of σ2, which is unknown.

Under the normality assumptions OLS estimators are Best Unbiased Esti-

mators (BUE). In fact, Rao has proved they have the uniformly minimum

variance in the class of all unbiased estimators. Moreover, their sampling

distribution is fully specified allowing to define confidence intervals for the

regression parameters.

The OLS model is easy to implement, however its assumptions are too re-

strictive with respect to many real world phenomena. In particular, there

are some fields where these assumptions are violated almost surely. Their vi-

olation affects the estimates because causes biased and inefficient estimators

(Gujarati 2003).

Of particular interest is the case of “quasi” multi-collinearity: that is many

explanatory variables are highly correlated. This does not violate any OLS

assumption, however it has a dramatic impact on the variance of B. Al-

though efficient and unbiased, the OLS estimators have large variance, mak-
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ing estimation unuseful from a practical point of view. The effects of the

quasi multi-collinearity are more evident when the sample size is small. C.H.

Achen (1982) presenting the quasi multicollinarity effects stated that in the

case of small samples “No statistical answer can be given”. In fact, the gener-

ally proposed solution consists in removing correlated exploratory variables.

This solution is unsatisfying in many applications fields where the user would

keep all variables in the model.

Specialized literature provides viable alternatives to OLS estimators in case

of quasi multi-collinearity. The most famouse are the Ridge Regression esti-

mators (Hoerl & Kennard 1970), the Least Absolute Shrinkage and Selection

Operator (LASSO) (Tibshirani 1996) and Partial Least Squares Regression

(PLSR) (Wold, Ruhe, Wold & Dunn 1984).

3.3 Fuzzy Regression

The generalization of linear regression to fuzzy data is a problem that in-

volved and still interests many researchers from different scientific area.

Fuzzy Regression (FR) is a powerful tool for analyzing systems character-

ized by fuzzy relations among the variables or by fuzzy variables themselves.

There exist two different approaches to fuzzy regression.

The first one considers the vagueness of the relation between the dependent

and the independent variables, which can be fuzzy or crisp. Thus the aim is

to minimize such fuzziness and the solution to this optimization problem is

obtained through an extensive use of the mathematical programming. This

approach is called Fuzzy Possibilistic Regression (FPR) since it is based on

possibility concepts (see chapter 2).

The second approach is more close to the traditional statistical approach. In

fact, following the Least Squares line of thought, the aim is to minimize the

distance between the observed and the estimated fuzzy data. This approach

is referred as Fuzzy Least Squares Regression (FLSR).
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A very exhaustive bibliography of the different contributions in both the

research lines is given in (Taheri 2003), whereas a thorough review can be

found in (Shapiro 2004).

3.3.1 Fuzzy possibilistic regression

In the early 80’s, Tanaka proposed the first fuzzy linear regression model,

moving from fuzzy sets theory and possibility theory (Tanaka, Uejima &

Asai 1982).

According to Zadeh’s ideas, he considered that real world phenomena were

mostly characterized by fuzzy uncertainty. Differently from the statistical

paradigm where uncertainty modeling is considered an additive element to the

deterministic relation among the variables he considered fuzziness as reflected

inside the model via fuzzy parameters. Thus, he formulated a regression

model where the functional relation between dependent and independent

variables is represented as fuzzy linear function whose parameters are given

by fuzzy numbers.

As discussed in chapter 2, fuzzy numbers are characterized by a possibility

distribution. Parameters in fuzzy regression are associated with a possibility

distribution in the same way that parameters in statistical regression are

associated with a probability distribution (3.9).

Tanaka’s idea was that possibilistic methods could derive new estimators

(fuzzy estimators) by dealing directly with models formulated in a possibility

context. The extensively use of the possibility concepts led to define Tanaka’s

model as possibilistic fuzzy regression.

Tanaka proposed the first possibilistic linear regression using the following

fuzzy linear model with crisp input and fuzzy parameters:

ỹn = β̃0 + β̃1xn1 + . . .+ β̃pxnp,+ . . .+ β̃PxnP (3.11)
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where the parameters are symmetric triangular fuzzy numbers denoted by

β̃p = (cp;wp)L with cp and wp as center and the spread.

Furthermore, they are assumed to be non-interactive fuzzy numbers, which

means that the respective membership functions are determined indepen-

dently. As showed in chapter (2), the possibility distribution of parameters

as symmetric fuzzy numbers is given by:

πβ̃p
(bp) =

{
1− |bp−cp|

wp
cp − wp ≤ bp ≤ cp + wp

0 otherwise
(3.12)

Using the LR representation proposed by Duboise and Prade (2.21), param-

eters possibility distribution may be written as:

L(z) = max(0, 1− |z|) (3.13)

A representation of such possibility distribution is given in figure (3.1), where

α is the degree of possibility of bp to the fuzzy set β̃p.

Figure 3.1: Possibility distribution of a fuzzy parameter

It is worth noticing that even if the input yn is crisp, the theoretical value ỹ∗n
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is fuzzy, as natural consequence of the fuzzy model (3.11). The possibility

distribution of ỹ∗n is obtained as:

πỹ∗
n
(yn) =


1− |yn−c′xn|

w′xn
xn 6= 0

1 xn = 0, yn = 0

0 otherwise

(3.14)

where c′ = (c0, c1, . . . , cP ), w′ = (w0, w1, . . . , wP ) and xn = (1, xn1, . . . , xnP )′.

Fuzzy estimated output, whose possibility distribution is shown in figure (3.2)

may be denoted also in terms of center and spread as ỹ∗n = (c′xn; c′xn).

Figure 3.2: Possibility distribution of fuzzy estimated output

Differently from statistical regression, the deviations between data and linear

model are assumed to depend on the vagueness of the parameters and not

on the measurement errors. Then, the basic idea of Tanaka’s approach was

to minimize the uncertainty of the estimates minimizing the total spread

of the fuzzy coefficients. Spread minimization must be pursued under the

constraint of the inclusion of the whole given data set, satisfying a degree

of belief α (0 < α < 1) defined by the decision maker. In contrast to the

frequentist interpretation of probability, describing whether or not an event
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will occur on average, the notion of degree of possibility α is usually used to

describe degrees of feasibility to which some conditions exist. In other words,

the objective in fuzzy regression is to fit as much as possible the scatter plot,

given a degree of fitness α chosen by the decision maker. An example of

fuzzy regression model is given in figure (3.3), where it can be seen that the

higher degree of fitness the wider fuzzy interval.

Figure 3.3: Example of fuzzy regression

The estimation problem is afforded by the Mathematical Programming, whose

basic concept are explained in the following section.

Mathematical Programming for Possibilistic regression

In possibilistic regression, estimation procedure is pursued through an exten-

sively use of Mathematical Programming (MP), which includes a wide range

of powerful computer based optimization methods.

The aim of MP is to minimize (or maximize) a real function subject to

constraints expressed as a set of inequalities (Boyd & Vandenberghe 2004).
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Formally a mathematical programming problem is expressed as:{
minimize f0(x)

subject to fl(x) ≤ bl l = 1, . . . , L
(3.15)

where the vector x = (x1, . . . , xM) is the optimization (decision) variable of

the problem, the function f0 : RM → R is the objective function the function

fi : RM → R, l = 1, . . . , L are the (inequality) constraint functions, and the

constants b1, . . . , bL are the limits, or bounds, for the constraints.

The formulation in (3.15) is the standard form of a MP. Any other MP

problem such as maximization problems, or problems with constraints on

alternative forms, may be always rewritten as (3.15).

There is some technical terminology associated with mathematical program-

ming. Variables satisfying all the constraints simultaneously are said to form

a feasible solution to the problem. The constraints set define the feasible re-

gion of the problem under consideration. A feasible solution that in addition

optimizes the objective function is called an optimal feasible solution.

A MP in which the objective function and the constraints are all linear is

defined Linear Programming (LP) problem. Formally:{
min c′x

s.t. Ax ≥ b
(3.16)

where A = {alm} is an L×M matrix.

A LP problem may be geometrically represented. Specifically, each constraint

corresponds to an half-space and the constraints set give rise to a convex

polyhedron, which corresponds to the feasible region. The convex polyhedron

may be bounded (polytope) or unbounded.

Give the feasibility set:

P = {x ∈ RL | Ax− b ≥ 0} (3.17)
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and x ∈ P, x is an extreme point (vertex) of P iff there exists a submatrix

A∗ ∈ RL×L of A, A∗ non singular such that A∗x = b∗.

Thorem 1. If a feasible region S is bounded, then the problem has an opti-

mal solution at an extreme point of S.

Since the objective function is also linear, all local optima are automatically

global optima. The linear objective function implies that an optimal solution

can only occur at a boundary point of the feasible region, unless the objective

function is constant.

To find a vertex it is necessary to solve system of constraints, i.e. working

with matrix A. The number of constraints defines the amount of effort, that

means LP can handle many more decision variables than constraints.

Solving a linear program can result in three possible situations, as stated by

the following Fundamental theorem of Linear Programming:

Thorem 2. If the feasible region does not contain any line, then one and

only one of the following statements holds: i)the problem is infeasible; ii) the

problem is unbounded from below; iii) the problem has optimal solutions and

there exists an extreme point of the feasible region which is optimal.

The LP problem is infeasible if there are no values of the decision variables

that simultaneously satisfy all the constraints. This occurs when the con-

straints contradict each other (for instance, x < 2 and x > 2) then the

feasible region is empty since there no solutions at all.

The problem has an unbounded solution, if maximizing an objective func-

tion its value may be increased indefinitely without violating any of the

constraints or if minimizing, the value of the objective function may be de-

creased indefinitely. In this case there is no optimal solution since solutions

with arbitrarily high values of the objective function can be constructed.

The problem has at least one finite optimal solution and often it has multiple

optimal solutions. Geometrically, the optimum is always attained at a vertex

of the polyhedron. If there are multiple solutions they cover an edge or face
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of the polyhedron, or even the entire polyhedron (if the objective function

were constant).

The simplex method for solving linear programs, which will be discussed in

Appendix, provides an efficient procedure for constructing an optimal solu-

tion, if one exists, or for determining whether the problem is infeasible or

unbounded (Chvátal 1983, Gill, Murray & Wright 1981).

The simplex algorithm, so named because of the geometry of the feasible set,

More recently, new procedures called interior-point algorithms have been

proposed for solving linear programming problems.

Thanaka’s model: estimation and output interpretation

Parameters in FPR are estimated according to the following Linear Pro-

gramming (LP) problem, where the objective function aims at minimizing

the spread parameters and the constraints guarantee that observed data fall

inside fuzzy interval:

minimize
N∑

n=1

P∑
p=0

wp|xnp| (3.18)

subject to the following constraints:(
c0 +

P∑
p=1

cpxnp

)
+ (1− α)

(
w0 +

P∑
p=1

wp|xnp|

)
≥ yn (3.19)(

c0 +
P∑

p=1

cpxnp

)
− (1− α)

(
w0 +

P∑
p=1

wp|xnp|

)
≤ yn (3.20)

where xn0 = 1 (n = 1, . . . , N), wp ≥ 0 and cp ∈ R (p = 1, . . . , P ). The LP

problem has always feasible solutions. In fact, as discussed in (3.3.1), the

constraints (3.19 and 3.20) do not contradict each other. The fuzzy parame-

ters wp are determined as the optimal solution solution of this LP problem.

The uniqueness of such solution should be further investigated.
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There are no restrictive assumptions on the model. Increasing the α–coefficient

expands the fuzzy intervals as well as increasing the confidence level in sta-

tistical regression expands the confidence interval width.

The degree of possibility α is a precise but subjective measure that depends

on the context. A rule of thumb for choosing the value of α is given in

(Tanaka & Guo 1999): If there are enough data, the possibility shown from

these data is sufficient. Thus, α = 0 is recommendable. If the given data

are considered to include only half, comparing with the ideal number of data,

α = 0.5 is recommendable.

Wang and Tsaur (2000) provided a proper interpretation of the fuzzy

regression interval. The basic idea was to find a representative value of the

fuzzy interval among the infinite values enclosed inside the interval bound-

aries. Let y
n

and yn be the lower and the upper bound of the estimated value

ỹ∗n. The authors proved that in models with symmetric coefficients the mean

value of ỹ∗n given by:

ym
n =

y
n

+ yn

2

is equal to the the value occurring with the higher possibility level ỹ1
n (α = 1).

In other words, ỹ1
n is the best representative value of the fuzzy interval and,

more generally, the regression line Ỹ 1 has the best ability to interpret the

given data. Starting from this results the following quantities were defined:

• Total Sum of Squares (SST)

a measure of the total variation of yn in ỹn

SST =
N∑

n=1

(
yn − y

n

)2

+
N∑

n=1

(
y

n
− yn

)2

(3.21)

• Regression Sum of Squares (SSR)
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a measure of the variation of ỹ1
n in ỹ∗n

SSR =
N∑

n=1

(
ỹ1

n − y
n

)2

+
N∑

n=1

(
y

n
− ỹ1

n

)2

(3.22)

• Error Sum of Squares (SSE)

an estimate of the difference when ỹ1
n is used to estimate yn

SSE =
N∑

n=1

(
yn − y

n

)2

+
N∑

n=1

(
y

n
− yn

)2

(3.23)

Thus, using 3.21 and 3.23 an index of confidence is built, similar to the

traditional R2 in Statistics. The index is defined as IC=SSR/SST and gives

a measure of the variation of Y between Y and Y . The higher the IC the

better is the Ỹ 1 used to represent the given data. The partial version of the

index IC is then used by the authors for a variables selection procedure. It

should be mentioned that IC increases as well increases the the value of α.

However increasing α the spread coefficients become wider. This trade-off

should be considered in choosing the α possibility level of the estimates.

Many contributions have compared statistical regression and fuzzy re-

gression (Kim, Moskowitz & Koksalan 1996, Kim & Chen 1997, Romano &

Palumbo 2006b).

Kim et al exhaustively analyzed the two approaches both conceptually and

empirically.

From a conceptual point of view the basic assumptions, the estimation pro-

cedure and the usage of each one of the two models are considered. As it is

well known, statistical regression makes rigid assumption on the error terms

which are due both to relevant omitted variables and random measurement

errors. Differently, in FPR there are no restrictive assumption on the errors.

It is assumed that errors, reflected in the spread of the fuzzy parameters, are

due to the indefiniteness of the system.
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Parameter estimation both in FPR and LS regression aims at minimizing

the difference between the model and the given data. In classical statisti-

cal regression (LS) the objective function is the minimization of the squared

residuals. The normality assumption guarantees BLUE estimators and confi-

dence intervals for the coefficients. In fuzzy regression the objective function

is the minimization of the spread parameters. The constraints guarantee the

estimated values from the model include the observed values for a certain

α−level, where 0 < α < 1.

The usage of statistical and fuzzy regression is very different. In fact, the

first is more focused on predictions whereas the second focuses on the given

data. This is clarified looking at the confidence and possibility intervals. As a

matter of fact, a 95% confidence interval for the regression coefficient means

that if many independent samples are taken from the same population and

a 95% confidence interval for the regression coefficient is built for each one

of them, then 95% of intervals will contain the true value of the coefficient.

This means that in building confidence interval strong focus is given to the

predictions. In fuzzy regression, a 0.95 possibility or fuzzy interval for the

regression coefficient indicates the narrowest interval obtained when each ob-

servation has a membership value of at least 0.95− cut to its fuzzy interval.

This means that fuzzy regression is more focused on the given data rather

than on predictions. Another important difference between statistical and

fuzzy regression is that as the sample size increases the spread of confidence

interval decreases, whereas the spread of fuzzy interval increases. From a

statistical point of view this happens since more information leads to more

accurate estimates. From a possibilistic point of view, each observation rep-

resents a portion of the possibility to be explained by the model. Hence, as

the number of observations increases more possibility need to be explained,

increasing the spread of fuzzy interval: fuzzy model explains possibility by

sacrificing precision. The authors through a simulation study compare the

performance of the two approaches.
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The main conclusions of the simulation study are given:

• statistical regression is superior to fuzzy in terms of predictive capabil-

ities;

• descriptive performance depends on various factor associated with the

data set (size, quality) and proper specificity of the model (aptness of

the model, heteroscedasticity, autocorrelation, non randomness of error

terms). Fuzzy linear regression performance becomes relatively better

when:

- the size of the data set diminishes;

- the aptness of the regression model deteriorates.

Romano and Palumbo (2006) compare the classical statistical linear regres-

sion model with the fuzzy regression model through an empirical study on

simulated data. They point out that fuzzy estimators are unbiased and not

affected by quasi multi-collinearity. The simulation study will be extensively

described in (3.3.1).

Possibilistic regression: criticism and improvements

Although Tanaka’s basic model is still one of the most widely used fuzzy

model due to its simplicity, it presents several shortcomings.

Diamond (1988) pointed out how this approach is far from the statistical

regression line of thought. In (1994) Peters as well as Redden and Woodall

criticized the extremely sensitiveness of the model to the outliers. Sakawa

and Yano (1992) stressed that Tanaka’s models does not take into account

fuzzy explanatory variables. Kao and Chyu (2002) showed that spread of the

estimated response becomes wider when the independent variables increase

their magnitude and/or when more data are included in the model.

Many researchers over the years have built new models and proposed some

solutions to improve Tanaka’s basic model. Tanaka himself generalized the



46 Linear Models for crisp and fuzzy data

basic model (3.11) to coefficients with an exponential possibility distribu-

tion, which is similar to a normal distribution in probability theory (Tanaka

& Guo 1999). Exponential possibility distribution permits to consider in-

teractive possibility distributions avoiding the typical LP problem of crisp

coefficients. The same problem has been solved by formulating the Tanaka’s

basic model estimation procedure in terms of a Quadratic Programming prob-

lem instead of Linear Programming one.

Furthermore, Tanaka extended the basic model (3.11) to the case of fuzzy

dependent variable. Let ỹn = (yn; en)L be the fuzzy value of the dependent

variable, where yn and en are the center and the spread, respectively. The

estimation procedure aims to minimize the fuzziness of the system, minimiz-

ing the spread of the parameters as well as in (3.18). The additional source

of fuzziness embed in the spreads en is taken into account by the constraints

of the following optimization problem:

minimize
N∑

n=1

P∑
p=0

wp|xnp| (3.24)

subject to:(
c0 +

P∑
p=1

cpxnp

)
+ (1− α)

(
w0 +

P∑
p=1

wp|xnp|

)
≥ yn + (1− α)en (3.25)(

c0 +
P∑

p=1

cpxnp

)
− (1− α)

(
w0 +

P∑
p=1

wp|xnp|

)
≤ yn − (1− α)en (3.26)

where xn0 = 1 (n = 1, . . . , N), wp ≥ 0 and cp ∈ R (p = 1, . . . , P ).

In 2000, Wang and Tsaur proposed a new version of Tanaka model for crisp

input (independent variables) and fuzzy output (dependent variable)(Wang

& Tsaur 2000b). The main aim is to solve the problem of too wide ranges

in estimation which leads this model to be not very useful for practical ap-

plication. The idea is to minimize the fuzziness of the system minimizing
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the spread of both parameters and dependent variable. Therefore (3.24) is

rewritten as follows:

minimize
N∑

n=1

(w′|xn| − en) (3.27)

subject to the constraints (3.25-3.26). Moreover, the authors proposed a new

model coherently with the concept of Tanaka’s approach. The model consists

in a new optimization problem whose objective function aims at minimizing

both the spread parameters and the errors in central values. The solution is

obtained by the following Quadratic Programming (QP) problem:

minimize
N∑

n=1

(w′|xn| − en)
2

(3.28)

(
c0 +

P∑
p=1

cpxnp

)
+

(
w0 +

P∑
p=1

wp|xnp|

)
. yn + en (3.29)(

c0 +
P∑

p=1

cpxnp

)
−

(
w0 +

P∑
p=1

wp|xnp|

)
& yn − en (3.30)

where xn0 = 1 (n = 1, . . . , N), wp; cp ∈ R (p = 1, . . . , P ).

In (3.29-3.30) α is selected equal to 0 and the constraints (≤;≥) are relaxed

into (.; &), respectively, for a more efficient solution due to a wider feasible

region. Furthermore, the constraint of positive spread coefficients is relaxed.

This avoids the problem of conflicting trends, i.e. spread size dependent on

the independent variables magnitude.

Moving from Peter’s paper (Peters 1994), Chen (2001) proposed a solution

to handle the outliers problem in case of fuzzy dependent variable. The

main idea is to assign a pre-defined k value which discriminates the potential

outliers. The restriction leads to an additional constraint in the optimization
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problem 3.24. The new optimization problem is given by:

minimize
N∑

n=1

P∑
p=0

wp|xnp| (3.31)

subject to the following constraints:(
c0 +

P∑
p=1

cpxnp

)
+ (1− α)

(
w0 +

∑P
p=1wp|xnp|

)
≥ yn + (1− α)en(

c0 +
P∑

p=1

cpxnp

)
− (1− α)

(
w0 +

∑P
p=1wp|xnp|

)
≤ yn − (1− α)en(

w0 +
∑P

p=1wp|xnp|
)
− en ≤ k

where xn0 = 1 (n = 1, . . . , N), wp; cp ∈ R (p = 1, . . . , P ).

The third constraint analyzes the difference between the spread of the esti-

mated and observed data, respectively. If their difference is higher than k

the problem (3.31) has no feasible solution. This means that the presence of

outliers is detected. The author gives different criteria for choosing the value

of k, some of them follows:

k = max
n
{en}N

n=1

k = min
n
{en}N

n=1

k = em =
N∑

n=1

en

N

k = 3sen = 3

√√√√ N∑
n=1

(en − em)2

N − 1

Smaller values of k lead to restrictive requirements as well as larger values

lead to consider the whole data as abnormal.

More recently, a model for dealing with fuzzy independent variables has been
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proposed (Nasrabadi & Nasrabadi 2004).

Let x̃p = (xp, rp) be the p-th independent fuzzy variable. The model is

formalized as follows:

ỹn = β̃0 + β̃1x̃n1 + . . .+ β̃px̃np,+ . . .+ β̃P x̃nP (3.32)

The estimation procedure leads to the following QP problem:

minimize
N∑

n=1

(w′|rn| − en)
2

(3.33)

where rn = (r0, r1, . . . , rN)′. The problem 3.33 is subject to the constraints

(??) but with spread parameters unrestricted in sign.

A simulation study

In order to compare the performance of the ordinary regression and the fuzzy

regression models, a simulation study is carried out.

The main aim is to compare confidence intervals and fuzzy intervals for re-

gression coefficients.

Data are simulated under the following hypotheses:

1. The true parameter values of the model are assumed to be know. The

model has been simulated both under the null hypothesis of coefficients

equal to zero and equal to 0.5. Thus, the regression model from which

the data are generated is:

yn = βo + β1xn1 + β2xn2 + εn (3.34)

where εn ∼ N(0, 0.25), β = [0, 0, 0]′ and β = [0.5, 0.5, 0.5]′ under the

null hypothesis of coefficients equal to zero and equal to 0.5, respec-

tively.

2. Explanatory variables are assumed to be dependent or independent. In
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the first case, [X1, X2] ∼ N having mean vector µ′ = [0, 0] and extra

diagonal terms of the var–cov matrix σ1,2 and σ2,1 equal to 0.75 and

0.75, respectively. In the second case, [X1, X2] ∼ N having mean vector

µ′ = [0, 0] and extra diagonal terms of the var–cov matrix σ1,2 and σ2,1

both equal to 0.

3. As test data, 3000 set of 25 statistical units have been used.

4. The confidence and the possibility coefficients have been set equal to

0.95 and 0.75, respectively.

The experimental factors are summarized in table (3.1).

Table 3.1: Experimental factors

β = [b0, b1, b2]
′ [X1, X2] ∼ N(0, σ2) replicates N

β = [0, 0, 0]′ µ′ = [0, 0]; cov(X1, X2) = 0 3000 25
β = [0.5, 0.5, 0.5]′ µ′ = [0, 0]; cov(X1, X2) = 0 3000 25
β = [0, 0, 0]′ µ′ = [0, 0]; cov(X1, X2) = 0.75 3000 25
β = [0.5, 0.5, 0.5]′ µ′ = [0, 0]; cov(X1, X2) = 0.75 3000 25

Results only for one regression coefficient are shown. Anyway, same results

are obtained for the other coefficient.

Figure (3.4) shows results under the null hypothesis of coefficients equal to

zero and no correlation between predictors.

Figure (3.5) shows results under the null hypothesis of coefficients equal to

zero and correlated predictors.

It should be noted that in both cases intervals of Tanaka’s model are nar-

rowest.

Analogous results are obtained under the null hypothesis of coefficient equal

to 0.5. Obviously the OLS intervals are narrower when there is no collinear-

ity among the predictors.

Figures (3.4-3.5) show also that fuzzy estimators are unbiased as well as OLS
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Figure 3.4: OLS confidence intervals (black lines) and fuzzy intervals (red
lines) under the hypothesis β = 0 and independent predictors;

Figure 3.5: OLS confidence intervals (black lines) and fuzzy intervals (red
lines) under the hypothesis β = 0 and dependent predictors;

estimators. In fact, analytically Bols = 0.0014 and Bfuzzy = 0.0034 under

the null hypothesis of coefficients equal to one.
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Empirical results underline a better performance of the fuzzy regression in

presence of high correlations among the predictors. It follows that fuzzy re-

gression may be considered a good alternative to OLS regression in case of

multicollinearity

The same simulation study is performed on the Tanaka’s model whose esti-

mation parameters is obtained as solution of the following QP problem:

min (|X|w)T (|X|w) ⇐⇒ min
N∑

n=1

(|xn| ·w)2 (3.35)

subject to the following constraints:
Xc− |X|w ≤ y

Xc + |X|w ≥ y

α ≥ 0

(3.36)

where X is a (N ×P ) data matrix with N > P , c and w are two (unknown)

((P + 1)× 1) parameter vectors.

As discussed in (3.3.1), the QP (Coleman & Li 1996) has been introduced

in order to solve the problem of crisp parameters, i.e. no information about

the fuzziness inside the system is taken into account by the model.

Simulation results under the condition β1 = 0 and independence/dependence

of X1 X2 are shown in figure (3.6) and (3.7), respectively. Empirical results

show that FPR presents same properties both using a LP or a QP approach.

This simulation study point out two important information:

• LS and FPR produce unbiased estimates under the same hypothesis:

E(ε) = 0

• FPR estimators are not affected by quasi multi-collinearity

Such conclusions, combined to the ones from Kim et al. introduced in (3.3.1),

leads to consider FPR model a very useful tool for analyzing system where:
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Figure 3.6: OLS confidence intervals (black lines) and fuzzy intervals (red
lines) under the hypothesis β = 0 and independent predictors;

Figure 3.7: OLS confidence intervals (black lines) and fuzzy intervals (red
lines) under the hypothesis β = 0 and dependent predictors;

a) the data set is too small; b) the normality assumption of the error term is

not easy to verify; c) the linearity assumption behind the model is inappro-

priate; d) there is vagueness in the relationship between the dependent and
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independent variables and/or vagueness in the same variables (fuzzy vari-

ables); e) predictors are highly correlated; f) number of predictors higher

than number of observations.

It is worth mentioning that all these conditions are very common in real

world phenomena.

3.3.2 Fuzzy Least Squares Regression

The most strong opposition to the possibilistic regression from the statistical

community is that such approach is very different from the classical one. This

led many authors to propose new fuzzy models more in line with the tradi-

tional statistical regression. The results of these contributions has produced

models with a better explanatory power consisting in fuzzy interval narrower

than those from possibilistic regression. However, these new models based on

the classical LS approach are computationally more demanding and requires

often restrictive assumptions.

Following the LS approach, FLSR aims to minimize the distance between ob-

served and estimated fuzzy data. Many criteria for measuring such distance

have been proposed over the years.

In table (3.2) are summarized the main characteristics of FPR and FLSR:

Table 3.2: FPR and FLSR
hypotheses

soft modelling approach hard modelling approach
fit

minimum fuzziness criterion least squares criterion
numerical approach

MP problem distance between fuzzy numbers
computational complexity

O(N2P ) O(N2P 4)
where N is the number of samples and P the number of variables

In 1987, Celmins proposed the first FLSR based on the compatibility mea-
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sure. Let µÃ(ω) and µB̃(ω) be the membership functions of two quantities Ã

and B̃. If µÃ(ω) and µB̃(ω) are normalized triangular membership functions,

the compatibility measure between B̃ and C̃ is expressed as:

γ(Ã, B̃) = max
ω

min{µÃ(ω), µB̃(ω)} (3.37)

where 0 ≤ γ ≤ 1.

If there is no overlapping between Ã and B̃ then γ = 0. On the other hand,

γ = 1 when the centers overlap. The measure γ assumes the same meaning

of the α level in (3.3.1). Thus, the idea of this approach is to maximize

the overall compatibility between data and model. This objective may be

reformulated in a minimization problem with the following objective function:

W =
N∑

n=1

(1− γn)2 (3.38)

Consider the following model for crisp data with a single independent vari-

able:

Ỹ = β̃0 + β̃1X (3.39)

where the coefficients are symmetric triangular fuzzy numbers denoted by

β̃p = (cp;wp)L. The final formula for the FLSR using (3.38) is given by:

Ỹ = c0 + c1X ±
√
w2

0 + 2w2
01X + w2

1X
2 (3.40)

The first part of the equation (3.40) corresponds to the centerline of the fuzzy

regression obtained as weighted LS regression. The second part specifies the

upper and lower boundary of the regression model. The term w01 is the

fuzzy concordance between β̃0 and β̃1, a concept similar to the covariance in

statistics.

In 1988, Diamond proposed a new FLSR more in line with the traditional
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LS regression. In fact, the objective function is an L2 metric between fuzzy

numbers. Considering the model (3.39), the aim is to minimize the distance

between the data and the model as follows:

D = min
β̃0,β̃1

N∑
n=1

d(β̃0 + β̃1xn, yn)2 (3.41)

It is possible to expand the (3.41) as follows:

D = (c0 + w0 + c1xn1 + w1xn1 − yn − en)2 + (c0 + c1xn1 +−yn − en)2

+(c0 − w0 + c1xn1 − w1xn1 − yn − en)2 (3.42)

The parameter estimates are obtained from the derivatives associated with

(3.42) being set equal to zero. This approach gives error estimates of resid-

uals. However it requires restrictive assumptions, i.e. same trends between

center and spread and positive values of c0, c1, w0, w1.

Successively, Diamond’s approach has been improved by many authors.

Ming et al. (1997) proposed a new metric for dealing all fuzzy numbers

represented by single maxima piecewise continuous functions. The model

involved fuzzy dependent and independent fuzzy variable.

Savic and Pedrycz proposed a model which is a combination of the possi-

bilistic and the LS approach. The model consists in a double step procedure.

In the first step an ordinary LS regression procedure is implemented on the

centers of the fuzzy parameters. In the second step a possibilistic regression

is performed to find the spread parameters, using the centers estimated in

the first step.

Wang and Tsaur (2000) proposed a modified version of Diamond’s model

relaxing its restrictive assumptions.

More recently, Xu and Li (2001) have proposed a new model taking into

account a new distance defined on a fuzzy number space.

Following the idea of the Savic and Pedrycz, D’Urso and Gastaldi (2000) have
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proposed a new FLSR. The model, named doubly linear adaptive model, is a

model for crisp input and symmetric triangular fuzzy output. It follows the

classical approach minimizing the Euclidean distance between the observed

and the estimated fuzzy output. Based on the assumption that the spreads

are proportional to the respective centers, first a linear model for the centers

is built and after a model for the spreads is derived:{
c = c∗ + εc where c∗ = Xa

w = w∗ + εw where w∗ = c∗b+ 1d
(3.43)

where X is the matrix including the independent variables, c and c∗ are

the observed and estimated centers, w and w∗ are the observed and the

estimated spreads, and a, b, d are the parameters of the respective models.

It should be mentioned that the model does not provide fuzzy parameters.

However, in a recent work devoting to generalize their procedure to LR fuzzy

numbers the authors set up a procedure for estimating also the spreads of

the regression coefficients (Coppi, D’Urso, Giordani & Santoro 2006).





Chapter 4

Structural Equation Models

based on Fuzzy Regression

4.1 Introduction

The analysis of a socio-economic system would take into account many com-

plex relationships. As discussed in chapter (3), Regression Analysis is known

as one of the most widely used statistical methods for analyzing the depen-

dence between two sets of variables. However, the complexity of many real

world phenomena makes single equation models ineffective to analyze and

describe dependence structures that are in the data. As a matter of fact,

the multiple regression equation is additive by definition. Thus, only direct

relationships between the independent variables and the dependent variable

are allowed. This strongly limits the variables to have no indirect effects

on each other, as instead permitted in path analysis (Tukey 1964, Alwin &

Hauser 1975). Path models are a logical extension of regression models as

they involve the analysis of simultaneous multiple regression equations. More

specifically, a path model is a relational model with direct and indirect ef-

fects between observed variables. It does not represent a tool for specifying

a model, but it just estimates the effects among the variables once the model
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has been specified by the researcher. When the variables inside the path are

latent variables whose measure is inferred by a set of observed indicators,

path analysis is termed structural equation modeling.

Structural Equation Models (SEM) (Bollen 1989, Kaplan 2000) combine the

idea behind path analysis with the basic principles of confirmatory factor

analysis. Factor analysis (Thurstone 1931) presumes that a number of fac-

tors smaller than the number of observed variables are responsible for the

shared variance-covariance amongst the observed variables. Hence, SEM

receive from confirmatory factor analysis the idea that different subsets or

blocks of variables are expression of different concepts. These concepts are

named latent variables (LV) as they are not directly observable but measur-

able by means of a set of manifest variables (MV). On the other hand, such

blocks of variables are linked to each other through the existing relations

among the respective LVs, as well as in path analysis single observed vari-

ables are connected among them. Roughly speaking, path models are used

for defining relations among variables while confirmatory factor analysis for

creating latent variables.

In the SEM framework, the literature presents two dominant approaches:

covariance-based SEM (Jöreskog 1970) and partial least squares-based SEM

(Wold 1982). The present work mainly refers to SEM-PLS, alternatively de-

fined PLS Path Modeling (PLS-PM) (Tenenhaus, Vinzi, Chatelin & Lauro

2005). However, differences between the two approaches will be discussed.

In the last years, SEM have become a reference technique for analyzing real

world phenomena. However, as fully explained in chapters (2) and (3), such

systems are mostly characterized by fuzzy uncertainty. Moreover, fuzzy possi-

bilistic regression and PLS path modeling share several characteristics, yield-

ing the idea to combine them into a new strategy of analysis based on a “fuzzy

approach to PLS-PM”. Such a strategy regards a two-stage procedure for

multi-block analysis combining fuzzy linear regression and PLS path model-

ing.
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The new methodology is applied to face the model comparison problem. In

other words, when according to one specific characteristic, a data set is a

priori divided into homogeneous groups, the same model or SEM may be

replicated and estimated according to each group. This approach offers more

efficient estimates and detailed information but it is not obvious how to com-

pare then the different models.

Various approaches have been proposed for the model comparison and the

related literature is quite wide. However, it is possible to distinguish two

dominant approaches. The first focuses on the comparison of different mod-

els for the same data set, based on the goodness of fit indexes (Myung &

Pitt 2003). The second concerns the comparison of the same model for

different data set, and the most significative contributions were in the fol-

lowing frameworks: time series analysis (Piccolo 1990); Bayesian statistics

(O’Hagan 1995); SEM (Lee & Song 2001, Chin & Dibbern 2007).

In the following strong focus is given to the presence of multi-group structure

data, implying the estimation of the same model for the different groups.

In the regression analysis framework, statistical methods for comparing mod-

els are mostly based on the comparison of the estimated model parameters

(Clogg, Petkova & Haritou 1995). It is quite intuitive to understand differ-

ences among several statistical populations or samples looking at the respec-

tive model parameters. However, the same model fits differently with respect

to the different populations so that the model parameters are expression of a

different amount of information. It is worth noticing that the whole informa-

tion is given both by the part explained by the model - through the model

parameters - and the part indicated as residual. These two kinds of informa-

tion are called structural information and residual information, respectively.

In this framework, the idea is to face the model parameters comparison by

introducing the possibilistic fuzzy regression (3.11) in the PLS-PM context.

As extensively explained in chapter (3), the estimation of fuzzy parame-

ters, instead of single-valued (crisp) parameters, permits to gather both the
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structural and the residual information. Thus, the proposed model compari-

son is accomplished taking into account the fuzzy parameters and introduc-

ing a suitable classification approach based on fuzzy variables (Romano &

Palumbo 2006a).

4.2 Structural Equation Models

Structural equation modeling is a rather general methodology in the contexts

of regression analysis, path analysis and factor analysis. The basic aim is to

specify and estimate a pattern of linear relationships among variables. Such

network of causal relations is a more realistic representation of real-world

phenomena than simple linear models.

The development of SEM may be traced bach to the 1970s, when two seminal

papers were published approaching SEM from two different perspectives.

Essentially developed in a social domain, structural equations were firstly in-

troduced by Jöreskog (Jöreskog 1970) as confirmatory models to asses cause-

effect relations among two or more set of variables, based on maximum likeli-

hood (ML) estimation method (SEM-ML). This method, known as LISREL

(LInear Structural RELations), has been for many years the only estimation

method for SEM. The term LISREL was initially used for the software im-

plementing the methodology. However, it had such a rapid development that

the methodology and software have been associated to each other.

In 1975, Wold finalized a soft modeling approach to the analysis of the rela-

tions among several blocks of variables observed on the same statistical units.

This method, known as PLS approach to SEM (SEM-PLS), was developed

as a flexible technique for handling a huge amount of data characterized by

missing values, strongly correlated variables and small sample size as com-

pared to the number of variables.

Several authors have compared the two approaches over the years; see, for ex-

ample, (Jöreskog & Wold 1982), (Fornell & Bookstein 1982), (Djkstra 1983).
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The two approaches differ in the objectives of the analysis, the statistical

assumptions, the estimation procedures and related output.

According to their respective objectives, LISREL may be defined as a causal

model whereas PLS-PM as a predictive model. The aim of LISREL is that the

model a priori specified by the researcher is corroborated by the data. Hence,

parameter estimates are obtained so that the implied covariance structure C

estimated by the model is as close as possible to the empirical covariance

matrix S observed for the manifest variables. On the other hand, the aim of

PLS-PM is to achieve the best set of predictions available for a given data

set. Hence, it is a variance-based approach aiming to maximize the explained

variance of each latent variable inside the model.

Different objectives imply differences in the estimation procedures. In LIS-

REL, the estimation process involves the selection of a particular fitting func-

tion for minimizing the distance between C and S. Maximum Likelihood

(ML) estimates are mainly used but such method requires the multivariate-

normal distribution. When there are substantial deviations from the normal-

ity assumption, alternative procedures such as the Unweighted Least Square

(ULS) may be used. On the other side, PLS-PM performs an iterative se-

quence of interdependent OLS regressions, analyzing one block at a time.

The parameters are estimated so that residual variances of all the dependent

variables (both manifest and latent) in the model are minimized. This means

that PLS approach is less affected by small sample size and less influenced

by deviations from multivariate normal distributions.

Different estimation procedures and statistical assumptions involve different

output. LISREL provides several global model fit indices and examines the

fit of all the parameters in the model. In PLS approach there is no overall

fitting function, but non-parametric procedures as jackknife and bootstrap

are used to test the significance of the estimates.

The common root to all the differences between covariance-based approach

and PLS-approach is the scientific aim at the basis of the model. The basic
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aim of LISREL is to describe the causal mechanism inside a system since it

focuses on the relations among the variables rather than on the individuals.

The objective is to confirm a theoretical model which can be inferred to the

population from which the sample has been drawn. Hence, the attention is on

the covariance matrix, whereas the multinormality assumption allows the ML

estimates having very nice statistical properties. However, such assumption

is rarely met in social science where the data are mostly collected as ordinal

variables. Furthermore, LISREL presents some problems related to the non-

convergence of the algorithm, the factor scores indeterminacy and improper

solutions, i.e. solutions outside the admissible parameter space. PLS-PM is a

more data oriented approach. Here, the focus is on fixed observed individuals

and the estimation procedures aim to optimize the prediction of the factor

scores. This is a more flexible approach with no measurement, distributional,

or sample size assumptions.

Of course, there is no best model but the existing differences between the

two approaches make each of them more or less appropriate for certain type

of analysis. Thus, the choice of the model to be used should be based on

the research objectives and the limitations imposed by the sample size and

distribution assumptions.

4.2.1 Partial Least Squares Path Modeling

The PLS approach to SEM has been proposed as an alternative estimation

procedure to the ML approach, mostly focused on the detection and estima-

tion of direct effects among the variables observed on fixed individuals.

In Wold’s seminal paper (Wold 1975) the main principles of partial least

squares, for the principal component analysis (Wold 1966), were extended to

situations with more blocks of variables. The first presentation of the PLS

path modeling is given in (Wold 1979), and the algorithm is described in

(Wold 1982, 1985) . An extensive review on PLS approach to SEM is given

in (Chin 1998). Later, (Tenenhaus et al. 2005) have shown some PLS-PM
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extensions focusing on the statistical aspects and the relations between PLS-

PM and multiple table analysis.

PLS Path Modeling aims to estimate the relationships among H blocks of

variables, which are expression of unobservable constructs. Specifically, PLS-

PM estimates the network of relations among the manifest variables and their

own latent variables, and among the latent variables inside the model. The

model can be explained following three basic steps: model specification, model

estimation, model validation.

4.2.2 Model Specification

Model specification is sitting down with all of the relevant theory which the

model is based on. In this phase the researcher defines a model specifying

the pattern of relations among the variables inside the system.

Formally, let us assume P variables observed on N units (n = 1, . . . , N). The

resulting data xnp are collected in a partitioned table X = [X1,Xh, . . . ,XH],

where Xh is the generic block.

A path diagram (fig. 4.1) gives a graphical representation of the whole model,

including all the connections among the variables inside the system.

Figure 4.1: Path model representation
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Path models adhere to certain common drawing conventions. Specifically,

ellipses represent latent variables, rectangles refer to manifest variables and

error terms are represented by circles. Arrows showing causations among

the variables start from the independent variables pointing to the dependent

ones.

In the PLS-PM literature, authors are used to distinguish causal relationships

between the latent variables constitute the structural model, while relations

between latent variables and related manifest variables define the measure-

ment model. Thus, in the first step of in PLS-PM the researcher specifies the

set of observed variables for each latent variable in the measurement model,

and the relationships amongst the different latent variables in the structural

model. Alternatively, structural and measurement model may be termed in-

ner model and outer model, respectively. The notation used for the model

is given in table (4.1). Matrices are denoted by bold upper case characters;

vectors are always column vectors and denoted with bold lower case charac-

ters, where the subscript indicates to which block the vector belongs; scalars

are denoted with normal lower case characters. Each block has the same

number of objects, while the number of variables may be different for each

block. The size of each matrix or vector is given.

The measurement model can be reflective or formative according to the link-

age between the latent and the manifest variables.

In the reflective model each manifest variable reflects its latent variable, thus

it is related to the latent variable by a simple regression:

xhj = λhjξh + εhj (4.1)

The error term εhj represents the imprecision in the measurement process.

An example of reflective block whose items are drawn with an arrow leading

away from the latent construct is given in figure (4.1) by ξh. The assumption

behind this model is that the residual εhj has a zero mean and is uncorrelated
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Table 4.1: PLSPM Notation
Symbol Meaning
N (n = 1, . . . , N) Number of observations
H (h = 1, . . . , H) Number of latent variables
P (p = 1, . . . , P ) Number of indicators
Ph (j = 1, . . . , Ph) Number of indicators of the generic block
X (N × P ) Matrix of indicators
Xh (N × Ph) Generic block of indicators
xhj (N × 1) Generic j-th variable of the h-th block
ξh (N × 1) Latent variables
βhh′ Structural parameters relating latent variables
εjh Measurement errors in reflective model
δh Measurement errors in formative model
ψh Measurement errors in structural model
ωhj Weights in formative model
πhj Loadings in reflective model

with the latent variable of the same block:

E(xhj|ξh) = λhjξh (4.2)

This assumption defined predictor specification assures desirable estimation

properties in LS modeling. Furthermore, as the reflective block reflects the

construct, it should be unidimensional. Hence, the set of indicators are

assumed to measure the same unique underlying concept. There exist several

tools for checking unidimensionality of a block:

a) Cronbach’s alpha: a block is considered unidimensional if this index is

larger than 0.7

α =

∑
j 6=j′ cor(xhj,xhj′)

p+
∑

j 6=j′ cor(xhj,xhj′)
× ph

ph − 1
(4.3)

b) Dillon-Goldstein’s rho (or Jöreskog’s): a block is considered unidimen-
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sional if this index is larger than 0.7

ρ =
(
∑

j λhj)
2

(
∑

j λhj)2 + (
∑

j 1− λ2
hj)

(4.4)

d) Principal component analysis of a block: a block is considered unidi-

mensional if the first eigenvalue of the correlation matrix is higher than

1, while the others are smaller.

In the formative model, each MV or each sub-blocks of MV’s represents

different dimensions of the underlying concept. The observed variables are

not assumed to be correlated, thus there is no need for checking the block

unidimensionality. In other words, the latent variable is a linear function of

its manifest variables:

ξh =

Ph∑
j=1

πhjxhj + δh (4.5)

The error term δh represents the fraction of the corresponding latent variable

not accounted for by the manifest variables. The assumption behind this

model is the following predictor specification:

E(ξh|xhj) =

Ph∑
j=1

πhjxhj (4.6)

An example of formative block in figure (4.1) is represented by ξ1.

The basic algorithm has been successively extended (Lohmöller 1989) to sup-

port the MIMIC model which is a combination of the reflective and formative

model.

In both reflective and formative model, the latent variables are estimated as

weighted aggregates of their own MV’s:

ξ = ωX (4.7)
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where ω is the vector of regression coefficients or loadings scaled so as to have

latent variables with unitary variance.

The path coefficients (β) then come from a regular regression between the

estimated latent variables.

The structural model describes the causations among the latent variables:

ξh = βh0 +
∑
h′

βhh′ξh′ + ψh (4.8)

where ξh and ξh′ are adjacent latent variables and h, h′ ∈ [1, . . . , H] vary

according to the model complexity. Each latent variable may be independent,

dependent or both. A latent variable which is independent in the model is

defined exogenous, whereas a dependent latent variable is called endogenous.

The only constraint is to have no loop in the model, which is the main

characteristic in the so-called recursive models.

4.2.3 Model estimation

Model estimation involves estimating each parameter specified in the model.

An iterative procedure allows to estimate the latent variable scores (ξ), the

outer weights (w). The estimation procedure is named partial since it solves

blocks one at time by means of alternating single and multiple linear regres-

sions. The path coefficients (β) come afterwards from a regular regression

between the estimated latent variables. As discussed in chapter (4.2) SEM-

ML and SEM-PLS aim at different objectives. In SEM-ML, the aim is to

minimize the residual covariance matrix E(ψψ′) = Ψ by reproducing the

observed covariances. In SEM-PLS the aim is to minimize the trace (sum of

diagonal elements=variances) of E(ψψ′) = Ψ, of E(εε′) = Θε in case of re-

flective model, and E(δδ′) = Θδ in case of formative model. That shows that

PLS-PM is a variance-based model opposed to the covariance-based model.

In PLS-PM algorithm the estimation of the latent variable scores are ob-

tained through the alternation of outer and inner estimation, iterating till
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convergence. The procedure starts by choosing arbitrary weights whj. In the

external estimation, the latent variable is estimated as a linear combination

of its own MVs:

vh ∝
Ph∑
j=1

whjxhj = xhwh (4.9)

where vh is the standardized outer estimation of the latent variable ξh and

the symbol ∝ means that the left side of the equation corresponds to the

standardized right side. In the internal estimation, the latent variable is

estimated by considering its links with the other adjacent latent variables:

zh ∝
∑

ehh′vh′ (4.10)

where the inner weights are equal to the signs of the correlations between vh

and the vh′ ’s connected with vh. These first two steps allow to update the

outer weights whj. There are two options for updating the outer weights:

• Mode A: the weight is the regression coefficient of zh in the simple

regression of xjh on the inner estimate zh, which corresponds to the

covariance as zh is standardized:

wjh = cor(xjhzh) (4.11)

• Mode B: the vector wh of the weights whj is the regression coefficient

vector in the multiple regression of zh on its centered MVs:

wh = (X′
hXh)

−1X′
hzh (4.12)

The choice of the external mode estimation depends on the nature of the

model. For a reflective model the Mode A is more appropriate, while Mode B

is better for the formative model. Furthermore, Mode A is suggested for en-



4.2. Structural Equation Models 71

dogenous latent variables, while Mode B for the exogenous ones. Is is worth

noticing, that Mode B is affected by multicollinearity. In such a situation,

PLS regression may be used as a valuable alternative to OLS regression. The

algorithm is iterated till convergence, which is demonstrated to be convergent

for one and two-block models. However, for multi-block models, convergence

is always verified in practice. After convergence, structural (or path) coeffi-

cients are estimated through an OLS multiple regression among the estimated

latent variables (4.8). Wold’s original algorithm has been further developed

(Lohmöller 1987, Lohmöller 1989). In particular, new options for computing

both inner and outer weights have been implemented together with a specific

treatment for missing data (Tenenhaus et al. 2005).

Here, a schematic description of the original PLS-PM Wold’s algorithm is

given:

Algorithm 1 PLS Path Moldeling Wold’s algorithm

Input: X = [X1, . . . ,Xh, . . . ,XH ] standardized MV’s;
Output: βh, wh, ξh;

1: for all h = 1, . . . , H do
2: initialize wh

3: vh ∝
∑

j whjxhj = xhwh

4: ehh′ = sign[cor(vh,vh′)]
5: zh ∝

∑
ehh′vh′

6: update wh : wjh = cor(xjh, zh) or wh = (X′
hXh)

−1X′
hzh)

7: if vh = zh then
8: ξh ∝ Xhwh

9: βh = (Ξ′Ξ)−1Ξξh, where Ξ includes LVs connected to ξh
10: else
11: repeat till convergence
12: end if
13: end for
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4.2.4 Model Validation

Model validation involves determining how well the data fit the theoretical

implied model. As described above, PLS approach lacks of a global opti-

mization criterion so that there is no global fitting function. Furthermore,

it is a variance-based model strongly oriented to prediction. Thus, model

validation focuses on the model predictive capability. According to PLS-PM

structure, each part of the model needs to be validated: measurement model,

structural model and each structural equation inside the model.

The quality of the measurement model for each block is measured by means

of the communality index measure:

Comh =
1

Ph

Ph∑
j=1

cor2(xjh,vh) (4.13)

This index measures how much variability of the MVs is explained by their

own latent variable. That means how well the MVs describe the related LV.

It is possible to measure the quality of the whole measurement model by

means of the average communality, which is the average of all cor2(xjh,vh):

Com =
1

P

H∑
h=1

phComh (4.14)

The quality of the structural model for each endogenous block is explained

by mean of the redundancy index measure:

Redh = Comh ×R2(vh, {v′h′s explaining vh}) (4.15)

The redundancy index measures the portion of variability of the MVs con-

nected to an endogenous latent variable explained by the latent variables

indirectly connected to the block.

The quality of each structural equation is measured by a simple evaluation
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of the R2 fit index.

As aforementioned, there is no overall fit index in PLS-PM. Nevertheless,

a global criterion of goodness-of-fit has been proposed (Amato, Vinzi &

Tenenhaus 2005). Such index, called GoF, is the geometric mean of the

average communality and the average R2:

Gof =

√
communality ×R2 (4.16)

As PLS-PM is a soft modeling approach with no distributional assumptions,

it is possible to estimate the significance of the parameters based on cross-

validation methods like jack-knife and bootstrap. It is also possible to build

cross-validated version of both the communality and the redundancy fit in-

dexes by means of a blindfolding procedure.

4.3 Fuzzy and PLS path modeling: a mar-

riage of convenience

This section describes the original contribution of the present thesis in this

chapter. The basic idea is to combine fuzzy regression and PLS path mod-

eling through a two-stage approach for multi-block analysis. Advantages of

the approach will be presented and discussed in chapter (5), dedicated to the

application on a real dataset.

It is useful to remark that there exist many different fuzzy regression models,

as widely discussed in chapter (3). Basically, fuzzy regression models may

be classified in Fuzzy Possibilistic Regression (FPR) and Fuzzy Least Squares

Regression (FLSR). The approach used in this context is the first one. More

specifically, the basic FPR model for single-valued data (3.11). It is character-

ized by an estimation procedure based on optimization techniques, providing

fuzzy/interval regression coefficients. There are no distributional assump-

tions. The estimates are obtained as solutions of a minimization problem
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with the constraint that the estimated values include the observed values for

a certain α-level (0 < α < 1), called possibility level. The fuzziness of the

coefficients represents the imprecision in estimating parameters. Hence, the

objective function to be minimized is the sum of the spread coefficients. In

other words, the fuzzy/interval coefficients defined in terms of minimum and

maximum values measure the uncertainty in estimates, similarly to interval

confidence in classical inference. It is just a different approach to uncertainty

(see, chapter 2). Increasing the α-coefficient expands the fuzzy intervals as

well as increasing the confidence level in statistical regression expands the

confidence interval width. Notice that a fuzzy data boils down to an interval

data when α = 0, i.e. there is no information on the imprecision distribution.

Furthermore, once the α possibility level has been selected, the corresponding

fuzzy data is algebraically treated as an interval data since fuzzy arithmetic

is interval arithmetic on α−cuts (see, 2.5).

In chapter (3), FPR has been widely discussed. Strong focus is given on the

comparison between FPR and OLS regression. It has pointed out that FPR

may be considered a viable alternative to OLS regression when the data set is

insufficient to support statistical regression analysis (strong assumption with

respect to the distributions, sample size, multi-collinearity), and the human

knowledge is the main source of uncertainty (Kim et al. 1996, Romano &

Palumbo 2006b). Thus, the proposal is to introduce FPR inside PLS-PM in

order to have a more flexible approach, combining the advantages of both

the methodologies.

PLS-PM and FPR present many similar characteristics so that a combina-

tion between these two methodologies seems to be very appropriate. They

are well suited methodologies for analyzing phenomena where the human

judgment is influential. For instance in consumer analysis, where consumers

give their opinions on a certain number of products and/or services. In this

framework, such as in many other decision processes the major source of

uncertainty is fuzziness rather than randomness (Zadeh 1973). In addition,
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both PLS-PM and FPR are “soft modeling” approaches, that means there

are no constraints on distributions and measurement scales.

Specifically, FPR joints PLS-PM in its final step, allowing for a fuzzy struc-

tural model but a still crisp measurement model. This connection implies a

two stage estimation procedure:

• stage 1: latent variables are estimated according to the PLS-PM esti-

mation procedure;

• stage 2: FPR on the estimated latent variables is performed so that

the following fuzzy structural model is obtained:

ξh = β̃h0 +
∑
h′

β̃hh′ξh′ (4.17)

where β̃hh′ refers to the generic fuzzy path coefficient and h and h′ vary

as described in section (4.2.2).

It is worth noticing that the structural model from this procedure is different

with respect to the traditional structural model presented in section (4.2.2).

Here the path coefficients are fuzzy numbers and there is no error term, as a

natural consequence of a FPR. As aforementioned, the error term is reflected

in the model via fuzzy parameters. By definition the FPR identifies a family

of lines covering the whole scatter plot, this implies that computing measures

of fitness would be meaningless.

4.4 Models comparison

The analysis of complex systems, characterized by particularly heterogeneous

statistical populations, leads to split the whole population into more homo-
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Algorithm 2 Two stage PLS-PM & FPR algorithm

Input: X = [X1, . . . ,Xh, . . . ,XH ] standardized MV’s;
Output: β̃h, wh, ξh;

1: for all h = 1, . . . , H do
2: initialize wh

3: vh ∝
∑

j whjxhj = xhwh

4: ehh′ = sign[cor(vh,vh′)]
5: zh ∝

∑
ehh′vh′

6: update wh : wjh = cor(xjh, zh) or wh = (X′
hXh)

−1X′
hzh

7: if vh = zh then
8: ξh ∝ Xhwh

9: ξh = β̃h0 +
∑

h′ β̃hh′ξh′ + ψh

10: fuzzy parameters β̃h = minimize (|Ξ|$)′(|Ξ|$) subject to:
Ξc− |Ξ|$ ≤ ξh
Ξc+ |Ξ|$ ≥ ξh

$ ≥ 0

c and $ vectors of centers and spreads of β̃h

11: else
12: repeat till convergence
13: end if
14: end for
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geneous groups or segments.

Formally, let us assume the N units (n = 1, . . . , N) are divided into G groups.

Different groups may include a different number of observations Ng. The re-

sulting data xg
np are collected in a multiple table, where ng = 1, . . . , Ng,

p = 1, . . . , P and the generic term g = 1, . . . , G indicates the table corre-

sponding to the g–th group.

Like in classical inferential problems, sampling from heterogeneous popu-

lations, the stratified sampling is preferred to the random sampling. The

segments are based on some predetermined criteria such as geographic loca-

tion, size or any demographic characteristic. It is important the segments are

as heterogeneous as possible according to the predetermined criterion. For

instance, let the satisfaction of a hotel guests has to be determined. Knowing

that the business clientele behaves quite differently from the leisure guests,

you might want to separate them into different groups or strata.

Population segmentation leads to estimate the same model as many times

as the segments identified into the target population. Several approaches

have been proposed to compare the sub-populations. As discussed in sec-

tion (4.1), the comparison will be based on the estimated parameters (Clogg

et al. 1995). However, estimated models assess the relation structures in

different proportions; in fact the residual component can vary with respect

to the different models. It is important to stress that comparing models in

such a way could lead to biased results. Consider the simple linear regression

analysis. Specifically, consider two models with equal parameters (slope and

location). Such models should be considered statistically equivalent, consid-

ering the approach based on the parameters comparison. Figure (4.2) shows

similar linear regressions in case [a] and [b]. However, such models could

have a different fit, as shown in figure (4.2) case [c].

In the analysis of a statistical model one should always, in one way or an-

other, take into account the goodness of fit, above all in comparing different

models among them. The proposal is then to use the FPR. The estimation
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of fuzzy parameters, instead of single-valued (crisp) parameters, permits to

gather both the structural and the residual information (Tanaka et al. 1982).

In fact, FPR embeds the residual in the model via fuzzy parameters allowing

a full comparison among the models.

Figure 4.2: Comparison between simple linear regressions

4.4.1 Comparing PLS-PM models

In the specific framework of SEM, Hensler and Fassott (2007) consider the

model comparison problem as a special case of moderating effects. Moderat-

ing effects (also called interaction effects) arise when some variables influence

a direct effect between the latent variables inside the model. In particular if

the moderator variable is categorical, it becomes a grouping variable involv-

ing group comparisons, i. e. comparisons of model estimates for different

group of observations. A simple model with a moderating effect (d) is shown

in figure (4.3), where it is symbolized by an arrow pointing to the direct

relationship (b) between two latent variables.

Once the observations are grouped according to the moderator variable, the

strategy is then to estimate local models with direct effects for each group

and looking for differences in path coefficients across groups. At this aim,
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Figure 4.3: A simple model with a moderating effect

non-parametric approaches may be used to test for different path coefficients

among groups (Chin & Dibbern 2007).

Figure 4.4: Detecting a moderating effect (d) through group comparison

If there is no difference between the parameters from the different models

then there is no reason for considering local models. In other words, a global

model is effective for the whole population. If there exist differences between

parameters, these are evaluated as differences between local models.

It should be noticed how the moderating effects only concern the structural

models. That is equivalent to assume the differences among measurement

models to be not significant.

Under this hypothesis, in this work, model differences are gathered comparing
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the fuzzy structural parameters in terms of distances.

The strategy consists in three basic steps:

a) estimate local fuzzy structural models for each group

ξg
h = β̃g

h0 +
∑
h′

β̃g
hh′ξ

g
h′

b) gather model differences comparing the related fuzzy path coefficients

Table 4.2: Data matrix

β̃h,1 . . . β̃H,1 . . . β̃H,h

mod(1) b̃h,1 . . . b̃H,1 . . . b̃H,h

. . . . . . . . . . . .

mod(g) b̃h,1 . . . b̃H,1 . . . b̃H,h

. . . . . . . . . . . .

mod(G) b̃h,1 . . . b̃H,1 . . . b̃H,h

c) clustering for fuzzy/interval data to produce clusters of models.

The G estimated fuzzy structural models are characterized by fuzzy path

coefficients. That means there are no residual terms, because in the fuzzy

model the error terms are embedded in the parameters themselves. This

peculiarity confers to the G fuzzy structural models the same explicative

power, making the comparison, that is based on the estimated fuzzy path

coefficients, meaningful.

4.4.2 Fuzzy clustering for fuzzy PLS-PM

In order to compare the groups with respect to the identified fuzzy structural

parameters this section introduces a fuzzy classification algorithm for inter-

val data. The choice of a fuzzy classification algorithm is consistent with the

whole strategy approach, that is based on imprecise data.
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In particular the HIPYR procedure (Brito 2000) has been used to obtain

a data clustering. The procedure is implemented in the SODAS c© software

(Symbolic Official Data Analysis System, rel. 2.5) and is designed to cluster

symbolic datasets (Bock & Diday 2000). It is worth noticing that fuzzy data

and interval data can also be defined as special cases of symbolic data, only

characterized by continuous interval valued variables (Bock & Diday 2000).

HIPYR clustering procedure determines the G(G − 1)/2 distances between

models by the Hausdorff metric in Rp (see, 2.36) (Neumaier 1990). This al-

lows to appreciate the differences into the Rp parameters space.

HIPYR algorithm provides both hierarchical and pyramidal classification

structures: hierarchical classification leads to disjunctive partition, pyrami-

dal classification determines fuzzy clusters. In the following, only pyramidal

clustering will be taken into account.

The HIPYR algorithm is a bottom up procedure that allows to cluster a set of

objects E = {1, . . . , N} characterized by P symbolic variables. The pyrami-

dal model is a generalization of the hierarchical model in which non-disjoint

classes are allowed at each given level:

1. a pyramid is a family {P = A,B, . . .} of non-empty subsets or classes

A,B, . . . ⊆ E = {1, . . . , N} such that:

a) the set of objects belongs to P

E ∈ P

b) all N singletons belong to P

[{1}, {2}, . . . , {n}, . . . , {N}] ∈ P

c) the intersection of two classes may be empty or belongs to P

A ∩B = ∅ or A ∩B ∈ P

d) there exists a linear order ≤ on E such that each class A of P is

an interval of (E,≤)

A = [α, β] := {k|k ∈ E,α ≤ k ≤ β}, [α, β] ∈ E
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2. a pyramid is defined indexed pyramid or pyramidal dendrogram (P, h) if

for each class A ∈ P an index h(A) ≥ 0 is defined so that h(A) ≥ h(B)

if A ⊂ B

3. an indexed pyramid is indexed in the broad sense if for all A,B ∈ P with

A & B and h(A) = h(B) imply the existence of two classes C,D ∈ P

with A = C ∪D and C 6= A,D 6= A

Here follows a concise and schematic description of the procedure.

In the initial step, there are singleton clusters Cn (n = 1, . . . , N). At each

step a new cluster Cn+1 is formed by merging already constructed clusters.

The clusters are merged together if: a) they have not been aggregated twice in

former steps; b) there exists a total linear order≤ on E so that Cn+1 = C1∪C2

is an interval with respect to ≤.

Among all possible pairs (C1, C2) satisfying such conditions, it is chosen the

one with the smallest value of G(s), where G(s) is a numerical criterion

named generality degree. The algorithm stops when Cn+1 = E.



Chapter 5

Application in Customer

Satisfaction Analysis

5.1 Introduction

The present chapter shows some applications of the methodologies described

in the previous chapters on data from customer satisfaction analysis. As

is well known, customer satisfaction (CS) is a variable hard to define and

measure.

Besides the established definition in absolute terms, some researchers have

proposed to alternatively define the CS in relative terms. For instance, the CS

may be defined as difference between consumer’s expectations and perceptions

on quality of attributes characterizing products/services (Zeithaml, Parasur-

aman & Berry 1991). However, the analysis of such differences does not take

into account the two-dimensional nature of CS. A new codification under the

perspective of Interval Analysis as been proposed firstly by (Lauro, Esposito,

Vinzi & Scepi 2001) and successively by (Grassia et al. 2004) and (Amato

& Palumbo 2004). Specifically, the two components consumer’s expectations

and consumer’s perceptions, respectively, are combined into a unique numer-

ical structure: the interval data. Within this framework, the first application
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consists in combining fuzzy possibilistic regression and interval codification

for analyzing the satisfaction in its own nature of interval data (Romano &

Palumbo 2005).

Another problem is how to effectively measure the CS. One of the most

widely used approaches is the latent variable approach based on structural

equation modeling. Here, the CS is considered a latent concept measured by

means of a set of indicators. Thus, a satisfaction index is obtained through a

deep analysis of the causality relations between the latent variables that are

the components of the customer’s satisfaction and the the manifest variables

representing the customer’s answers to the questions concerning their satis-

faction. In particular, the PLS approach to SEM is preferred for measuring

CS as it is more oriented to predict the latent variables, rather than the ML

approach more oriented to confirm the theory of the customer’s decision pro-

cess. In this context, an application of the methodology presented in chapter

(4) based on the fuzzy approach to PLS-PM is shown. Introducing FPR

inside PLS-PM allows to take into account both the vagueness connected

with the use of linguistic terms in describing the real world and the impreci-

sion in measuring the empirical phenomena. In addition such a methodology

permits to face the problem of model comparison in presence of multi-group

data structure.

5.2 Data description

The present application is based on a data set used to estimate the customer

satisfaction of a service industry. The data contains 23 variables observed

on 366 units. The variables, assessed on continuous scales anchored in 1

and 10, are grouped in 6 blocks: perceived quality (7 manifest variables),

expectations (4 manifest variables), perceived value (3 manifest variables),

satisfaction index (3 manifest variables), image (3 manifest variables) and

loyalty (3 manifest variables). According to the moderator variable sector of
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activity, the statistical units are groped into 8 classes (labels are indicated

in round brackets): hospital (Hosp), health authority (HeAu), school (Scho),

university (Univ), local administration (LoAd), Red Cross (RCro), social

security (SoSe), public administration (PuAd). Variable names cannot be

revealed because confidential constraints on the data. The final data table is

a matrix (336 × 23) partitioned in 6 columns (variables blocks) and 8 rows

(classes).

5.3 FPR for Customer Satisfaction

The basic aim of this analysis is to apply fuzzy possibilistic regression for

the CS estimation. For this application only a small sample of 50 units is

considered. The main assumption of the model is that the CS depends on

the expected and perceived quality. Thus, the first step of the analysis is to

estimate these latent variables starting from their own manifest variables.

The estimation is pursued by means of a Principal Component Analysis on

the two respective blocks of indicators. Each block is unidimensional, as

the variance explained by the first principal components of the two blocks

is 85.2% and 50.6%, respectively (see figure 5.1). Therefore, the estimated

latent variable of each block corresponds to the first principal component of

the related block. The second step is the codification of the dependent vari-

able overall satisfaction. Specifically, using the interval codification proposed

by Amato and Palumbo (2004), the interval valued variable satisfaction in-

terval is built synthesizing the two components perceived satisfaction (P)

and expected satisfaction (E). The authors consider the perceived satisfac-

tion as midpoint of the satisfaction interval (P − E), whereas the spread

depends on both the satisfaction interval itself and the maximum observed

gap (max([Lu − E;E − Ll])):

r =
|E − P |

max[Lu − E;E − Ll]
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[a] [b]

Figure 5.1: a) Expected quality scree plot; b) Perceived quality scree plot

where Lu and Ll correspond to the upper and the lower values of the scale.

A FPR for crisp input and fuzzy output is performed. The estimation of

the satisfaction interval is obtained as solution of the linear programming

problem in (3.24) with constraints (3.25 and 3.26). The estimated model

with a possibility level selected to α = 0.5 follows:

Y = {0.59; 2.47}+ {0.23; 0.10}X1 + {0.60; 0.05}X2 (5.1)

where X1 and X2 are the principal component expected and perceived qual-

ity, respectively. The coefficients are symmetrical triangular fuzzy numbers

expressed in terms of center and spread. Considering the center coefficients,

the model shows that the satisfaction interval strongly depends on the per-

ceived quality. On the other hand, the vagueness of the system is mstly

explained by the expected quality, whose coefficient has a wider spread. Such

a result, highlights how the customer is more ambiguous in expressing his

expectations rather than its perceptions. These results are consistent with

the model. In fact, it is more plausible to consider that the CS depends on

the perceptions rather than on the expectations, and that assessment im-
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precision is higher when the customer expresses his expectations rather than

his perceptions. Figures (5.2) and (5.3) show the observed satisfaction in-

tervals and the regression intervals. The symbols “•” and “×” indicate the

Figure 5.2: Interval regression for expected quality

expected and the perceived satisfaction, respectively. Such a representation

allows to identify positive and negative intervals. In fact, the customer is

satisfied if his perceptions are higher than his expectations (P − E > 0),

otherwise he is unsatisfied (P −E < 0). The customer is indifferent when he

has same expectations and perceptions (P − E = 0). Both figures represent

two intervals regression. The tighter one corresponds to α = 0, while the

wider interval correspond to α = 0.5. As discussed in section (3.3.1), the

degree of possibility α is a precise but subjective measure that depends on

the context. Furthermore, the α–coefficient expands the fuzzy intervals as

well as increasing the confidence level in statistical regression expands the

confidence interval width. The representation of the results allows to imme-

diately perceive the intensity of the relation between the CS and its drivers
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Figure 5.3: Interval regression for perceived quality

looking at the slope of the intervals regression. On the other hand, spread

and versus of the intervals show the satisfaction level in relative terms.

This application shows the potentiality of FPR in Customer Satisfaction

Analysis. However, a full evaluation of CS needs a deep analysis of the whole

pattern of relations among the satisfaction drivers. At this aim, PLS path

modeling is a well suited methodology. An example of fuzzy approach to

PLS-PM is given in the next section.

5.4 Classification of SEM

A typical application for SEM is the estimation of the customer satisfac-

tion. Within this framework, a widely adopted model is the one specified for

the European Customer Satisfaction Index (ECSI) (Tenenhaus et al., 2005),

where the satisfaction is estimated using the PLS approach.

ECSI model allows to estimate latent variables from their respective mani-
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fest variables and to build individual indexes of satisfaction (CSI). The global

model contains the following latent variables: perceived quality, expectations,

perceived value, satisfaction index, image, loyalty and complaints. In partic-

ular, the customer satisfaction is explained by the drivers perceived quality,

expectations, perceived value and image.

The multi-group data structure suggests significantly different models. Specif-

ically, 8 local models have been estimated according to the procedure intro-

duced in section 4.3. The generic model is represented in figure (5.4).

Figure 5.4: Generic local model

Differently from the classical PLS-PM, the approach proposed in this work

produces fuzzy path coefficients. The five fuzzy structural equations corre-
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sponding to figure (5.4) may be written as follows:

customer expectation = β̃21image

perceived quality = β̃32customer expectation

perceived value = β̃42customer expectation + β̃43perceived quality

CSI = β̃51image + β̃52customer expectation

+ β̃53perceived quality + β̃54perceived value

loyalty = β̃61image + β̃65CSI

The eight estimated models are compared on the basis of their fuzzy path

coefficients (see table 5.1).

Table 5.1: Data matrix of fuzzy structural parameters

β̃2,1 β̃3,2 β̃4,2 β̃4,3 β̃5,1 β̃5,2 β̃5,3 β̃5,4 β̃6,1 β̃6,5

Hosp
...

...
...

...
...

...
...

...
...

...

HeAu
...

...
...

...
...

...
...

...
...

...

Scho
...

...
...

...
...

...
...

...
...

...

Univ
...

...
...

...
...

...
...

...
...

...

LoAd
...

...
...

...
...

...
...

...
...

...

RCro
...

...
...

...
...

...
...

...
...

...

SoSe
...

...
...

...
...

...
...

...
...

...

PuAd
...

...
...

...
...

...
...

...
...

...

In other words, the distances among the different local models are consid-

ered for a pyramidal classification procedure. The results are shown in figure

(5.5). Looking at the figure and taking into account the analytical results, it

appears quite clear that there are two well separated groups. However, the

fuzzy clustering does not produce disjoint clusters so that it is more consis-

tent with the whole methodology. Here are the obtained fuzzy clusters:
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Figure 5.5: Pyramid

Cluster 1 [Scho, Hosp, SoSe, RCro, HeAu]

Cluster 2 [Hosp, SoSe, RCro, HeAu, Univ, LoAd, PaAd]

Notice that Cluster 1 is represented by the blue shadowed part of the pyra-

mid in figure (5.5), whereas the Cluster 2 refers to the red shadowed part

of the pyramid. As a fuzzy clustering has been adopted, there is a cluster

overlapping: Hosp, SoSe, RCro, HeAu.

Results are consistent with other studies performed on the same data. It is

quite evident that Cluster 1 is mainly characterized by public bodies having

autonomy of expenditure. On the contrary Cluster 2 is mainly characterized

by Local and Central administrations. Notice that these two later groups

only appear in the Cluster 2.

This application has shown the prospective combination of Partial Least

Squares Path-Modeling (PLS-PM) and Fuzzy Possibilistic Regression (FPR).
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Theoretical and empirical results are very encouraging and suggest several

further research directions.

The proposed strategy should be compared with alternative and similar ap-

proaches. However, the proposed method has some specific peculiarities that

would make difficult comparisons with more traditional approaches.

There are some important and profitable aspects of the procedure it is worth

noticing and that make the approach particularly suitable in some applica-

tion domains. For example, let us think to sensory analysis and customer

satisfaction: where any distributional hypothesis is satisfied and, at the same

time, it is of interest to make comparisons among models estimated with re-

spect to different populations or estimated on the same population over the

time.

As regards the model comparison, the next step ahead will be devoted to

extend the FPR to the measurement model. This will permit to consider the

whole path model in the comparison phase. Another important research line

is the validation of the proposed methodology.
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Guidelines of future research

There are many aspects of the proposed methodologies that require further

developments. They involve both the FPR as well as the combined two-stage

approach for multi-block analysis.

As regards the fuzzy possibilistic regression, future research lines concern the

theoretical proofs of the main presented properties, the development of pro-

cedures for selecting the best set of variables as well as new methods for

handling outliers.

On the other hand, it would be useful to extend the two steps algorithm

combining FPR and PLS-PM to the whole model. At the same time, there

is a need of a proper interpretation of the related results by means of appro-

priate goodness of fit indexes. Another important extension of the proposed

methodology is devoted to consider also fuzzy input.

6.1 Insight of fuzzy possibilistic regression

Although the optimization problem implemented to determine the fuzzy pa-

rameters in FPR has always feasible solutions there is no proof of their

uniqueness. Empirical results have shown the existence of a unique optimal

solution. However, there is a need of a theoretical proof of such conclusion.
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Probably, the proof is easier for the quadratic programming problem, rather

than for the linear one, since in a quadratic objective function the local min-

imum always corresponds to the global minimum.

Another important research line which is now on-going concerns the study

of the fuzzy estimators properties. Empirically such estimators are shown

to be unbiased and robust to multi-collinearity, anyway further analysis are

required.

A very important aspect to be improved in FPR is the interpretation of the

results. There are already some contributions in this direction, but they fo-

cus on FPR for crisp input. Thus, it would be useful a proper extension to

FPR for fuzzy input/output.

Finally, ad hoc procedures for selecting the best subset of variables, as well

as new methods for handling outliers would be useful to improve the perfor-

mance of FPR.

6.2 Extensions of fuzzy approach to PLS-PM

The fuzzy approach to PLS-PM is a very innovative methodology so that it

provides many research perspectives.

First of all, this is a partial fuzzy approach since it provides a fuzzy structural

model but a crisp measurement model. Thus the first research line regards

the extension of the fuzzy approach to the whole model in order to have a

Fuzzy PLS Path Modeling (FPL-PM). This leads to introduce FPR in any

step of the PLS-PM algorithm. According to each step different FPR should

be used: FPR for crisp input, for crisp input and fuzzy output, and for fuzzy

input/output.

Another important extension of such a methodology, very useful for appli-

cation purposes, is the fuzzy/interval data codification. In other words, the

data to be processed may be fuzzy data, rather than single valued data. As

it has been widely discussed, fuzzy approach is mostly appropriate in con-
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text where human judgment is influential. This aspect has been outlined by

the first application presented in chapter (5). However, in this application

customers’ preferences were expressed in terms of single values. In order to

better capture the imprecision in expressing subjective preferences it would

be interesting to adopt a fuzzy data coding. In other words, the consumer’s

assessment of a given product/service may be expressed in linguistic terms

such as worst, poor, fair, good, best, each one of them associated to a fuzzy

number.

On the other hand, interval coding may be used for synthesizing informa-

tion in multi-way data. For instance, in Sensory Analysis a panel of asses-

sors score blocks of sensory attributes for profiling products, thus yielding

a three-way table crossing assessors, attributes and products. In this con-

text, it is important to synthesize the scores into a global assessment to

investigate differences between products. A number of different techniques

have already been proposed to find a consensus profile for all the assessors.

The simplest averaging over the assessors and more complex techniques as

Three-way Factor Analysis, Generalized Procrustes Analysis and General-

ized Canonical Analysis. The former approach does not take into account

the variability between assessor’s scores, whereas the latter provides results

not always easy to interpret.

In this framework, an ad hoc interval coding may be used to collapse the

tables over the assessors into a two-way table partitioned by the attributes.

Then a fuzzy PLS path modeling would provide two sets of synthesized as-

sessments: the overall latent scores for each product and the partial latent

scores for the different blocks of attributes.





Appendix

.1 Simplex algorithm

The simplex algorithm for solving the LP problem in (3.16) is described:

Algorithm 3 Simplex

Input: A, b ;
Output: x;

1: initialize B (basis matrix) and x0 (basic feasible solution)
2: compute the vector c
3: if c ≥ 0 then
4: x0 is optimal
5: else
6: choose m for which cm < 0
7: compute u = B−1Am

8: if u ≤ 0 then
9: θ∗ = ∞ and the LP is unbounded

10: else

11: θ∗ = minl=1,...,L:ul≥0

x0
Bl

ul

12: end if
13: end if

14: choose g such that
x0

Bg

ug
and form a new basis replacing AB(g) with Am

15: the new basic variables are x1
m = θ∗ and x1

Bl
= x0

Bl
− θ∗ul if l 6= g
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