


Abstract

A three-dimensional sigma coordinate free-surface parallel model is

used to investigate the semidiurnal tidal exchange through the Strait

of Gibraltar. The model makes use of a coastal-following, curvilin-

ear orthogonal grid, that includes the Gulf of Cadiz and the Alboran

Sea, with very high resolution in the Strait (less than 500 m). A

lock-exchange initial condition is used: the western part of the model

domain is filled with Atlantic water, whereas the eastern part with

Mediterranean water. The model is forced at the open boundaries

through the specification of the semidiurnal (M2 and S2) tidal sur-

face elevation. The model is run over a spring-neap cycle (fortnightly

period), and the results are compared with most of the available ob-

served data. Simulated cotidal maps of the M2 and S2 tidal elevation

components are in quantitative and qualitative good agreement with

observed data as well as the simulated major and minor axis of tidal

ellipse. The model reproduces the generation and the subsequent

propagation of internal bores both eastward and westward, showing

that they are always generated during the fortnightly period.

However, the principal aim of this work is to study the effect of the

intermediate layer (a layer in between the Atlantic and Mediterranean

layers) both on the exchanged transports and hydraulics. To this aim,

first the ability of the model in reproducing the interfacial layer be-

tween the Atlantic and Mediterranean waters in the Strait of Gibraltar

is verified. Model results show that the model is able to reproduce

a thick interfacial layer that carries a substantial fraction of the to-

tal volume transport. The interfacial thickness is strongly modulated

by tidal forcing that enhances the vertical exchanges between layers.



In order to take into account the thick interfacial layer, a three-layer

approximation is used to study the hydraulics. Results show that

the exchange regime is intermittently maximal due to cyclically con-

trolled regions over Camarinal Sill and within Tarifa Narrows. The

analysis has been repeated in a two-layer framework to evaluate the

impact of the introduction of an interfacial layer on the calculation

of hydraulics. In the two-layer approximation, there is not any con-

trolled region extending on the whole cross section, so the exchange

is always submaximal. Concluding, the two-layer approximation un-

derestimates hydraulic controls in the strait respect to the three-layer

approach.



Abstract in Italian

Lo stretto di Gibilterra costituisce l’unica connessione dinamicamente

significativa tra il mar Mediterraneo e l’oceano Atlantico (Figura 1.2).

Attraverso lo stretto di Gibilterra, infatti, il Mediterraneo scambia

acqua, sale e calore con l’oceano Atlantico.

Lo stretto di Gibilterra è un canale stretto e poco profondo, carat-

terizzato da una batimetria complessa. Si estende in longitudine per

circa 60 Km, mentre in latitudine si estende, in media, per circa 20

Km. L’estremità orientale dello stretto, chiamata Tarifa Narrows,

è caratterizzata dalla presenza di un canale profondo 800 m e largo

(in latitudine) circa 18 Km (Figura 1.3). Muovendoci verso ovest, il

canale si restringe fino a raggiungere una larghezza di soli 12 Km in

prossimità di Punta Tarifa. 8 Km ad ovest di tale punta, la batimetria

diminuisce rapidamente da 800 m fino a 284 m (sell di Camarinal ).

L’estremità occidentale dello stretto è caratterizzata dalla presenza di

un’altra sella sottomarina, chiamata sella Espartel. Qui la batime-

tria raggiunge una profondità di 360 m. Il fondo compreso tra queste

due selle sottomarine si presenta fondamentalmente piatto e ad una

profondità media di 400 m.

La circolazione marina media nello stretto di Gibilterra è caratteriz-

zata da un flusso a due strati sovrapposti: uno superficiale, diretto

verso il Mediterraneo, ed uno profondo, diretto verso l’oceano At-

lantico. Questa circolazione, tradizionalmente chiamata estuarina in-

versa, è causata dall’eccesso di evaporazione nel bacino del Mediter-

raneo. Diversi processi, su differenti scale temporali, modificano la

circolazione media. L’ampiezza di queste fluttuazioni può essere dello



stesso ordine di grandezza, o perfino maggiore (come nel caso delle

maree), del valore medio.

Obiettivo di questo lavoro è lo studio della circolazione marina pre-

sente nello stretto di Gibilterra, in termini sia di trasporto di volume

che di controllo idraulico, mediante l’utilizzo di un modello numerico

tridimensionale.

Il modello numerico tridimensionale utilizzato in questo lavoro è il

CEPOM, una versione modificata del Princeton Ocean Model (POM,

Blumberg & Mellor (1987)). CEPOM, a differenza di POM, è scritto

in FORTRAN90, è parallelo, ed utilizza come schema di avvezione

dei traccianti l’algoritmo MPDATA (Multidimensional Positive Definite

Advection Transport Algorithm), sviluppato da Smolarkiewicz (1984),

nella versione implementata da Sannino et al. (2002). La paralleliz-

zazione di CEPOM è stata ottenuta mediante SMS (Scalable Model-

ing System), una libreria software sviluppata da Govett et al. (2003)

presso l’Advanced Computing Branch of the Forecast Systems Labo-

ratory della NOAA (vedi Sannino et al. (2005), per ulteriori dettagli

sulla parallelizzazione).

Il dominio computazionale del modello include oltre allo stretto di

Gibilterra anche il golfo di Cadice ad est, ed il mare di Alboran ad

ovest. La griglia computazionale ha una risoluzione variabile; in par-

ticolare, nello stretto di Gibilterra la griglia raggiunge la massima

risoluzione di circa 500 m, mentre nel mare di Alboran e nel Golfo di

Cadiz la risoluzione si riduce a circa 15 Km.

Il modello è stato inizializzato con temperature e salinità tipiche della

stagione primaverile; in particolare il golfo di Cadice è stato inizializ-

zato con i dati forniti dal dataset Levitus, mentre il mar di Alboran

con dati provenienti dal dataset MODB.

Il dominio computazionale del modello è caratterizzato da due lati

aperti. Questi sono localizzati rispettivamente alla estremità occiden-

tale ed orientale del dominio. Su questi due lati il modello è forzato



attraverso l’imposizione delle componenti semidiurne (componente M2

ed S2) dell’elevazione superficiale. Il modello è stato girato in modo

da simulare un intero periodo di marea semidiurna (14.79 giorni). I

risultati ottenuti sono stati confrontati con il maggior numero di dati

sperimentali disponibili per lo stretto di Gibilterra. Dal confronto è

emerso che il modello simula le caratteristiche principali della circo-

lazione nello stretto con una buona aprrossimazione. Questo è par-

ticolarmente evidente confrontando le mappe cotidali dell’elevazione

superficiale simulata dal modello, con quelle calcolate con dati os-

servati, come pure confrontando i semiassi maggiori e minori delle

ellissi di marea simulate ed osservate. Il modello è anche in grado di

riprodurre la generazione e la successiva propagazione delle due onde

interne (internal bore) che si generano sulla sella di Camarinal e si

propagano in direzione opposta verso le due estremità dello stretto.

Uno dei principali scopi di questo lavoro è stato lo studio degli effetti

prodotti dallo strato intermedio di acqua che separa quello puramente

mediterraneo da quello atlantico, sul trasporto di volume e sul con-

trollo idraulico nello stretto di Gibilterra.

Dall’analisi della simulazione è emerso che questo strato intermedio

non è uno strato stagnante, ma anzi, è uno strato attivo capace di

trasportare volumi di acqua considerevoli. È emerso inoltre che il suo

spessore è fortemente condizionato dal forzante mareale. Per l’analisi

del controllo idraulico nello stretto è stata applicata, per la prima

volta, la teoria idraulica a tre strati rispetto alla classica teoria a

due strati generalmente utilizzata per analizzare il controllo idraulico

nello stretto di Gibilterra. I risultati hanno evidenziato che il regime

idraulico nello stretto varia, in maniera intermittente, tra sub-maximal

e maximal.
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Chapter 1

Introduction

1.1 History and Geography

Since ancient times the Fretum Gaditanum (the Roman name of the Strait of

Gibraltar) has fascinated and captured mankind’s imagination: for long time the

Hercules’ pillars, the two promontories of Calpe (now Gibraltar) on the European

side, and Abila Mons (now Monte Hacho in the Spanish enclave of Ceuta) on the

African side, were thought to be the extreme edges of the Earth (Figure 1.1).

About five million years ago, during the Miocene, the strait was topographi-

cally blocked. This triggered the desiccation of the Mediterranean, inducing the

so-called Messinian Salinity Crisis (Hsü et al. (1973)) characterized by a dramatic

sealevel drop that has been estimated up to 1500 m below the current sea-level.

The opening of the Strait of Gibraltar in the Early Pliocene allowed restoring

the water exchange between the Atlantic and Mediterranean waters. About the

opening of the Strait of Gibraltar the most recent theory proposes that it is the

result of the regressive erosion of a stream that was flowing from the Atlantic

toward the desiccated Mediterranean basin.

Most probably the first definition of the Strait of Gibraltar from an oceano-

graphic point of view is to ascribe to Quintus Horatius Flaccus 1 who wrote:

1Quintus Horatius Flaccus, (December 8, 65 BC - November 27, 8 BC), known in the
English-speaking world as Horace, was the leading Roman lyric poet during the time of Augus-
tus.

1



1.1 History and Geography

Monte

Hacho
Gibraltar

Figure 1.1: Three dimensional perspective view of the Strait of Gibraltar. Europe
(Spain) is on the left, Africa (Morocco) is on the right. (Image from SRTM (Shuttle
Radar Topography Mission) Team, NASA JPL).
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1.1 History and Geography

(Roma) Horrenda late nomen in ultimas extendat oras, qua medius liquor secer-

nit Europem ab Afro, qua tumidus rigat arva Nilus...1 Horatius (23 B.C.). In

this Ode Horatius describes the Strait of Gibraltar as the place where the midway

water separates Europe from Africa.

The Strait of Gibraltar represents the only dynamically significant connection

between the Mediterranean Sea and the World Ocean (Figure 1.2). Through the

Strait of Gibraltar the Mediterranean Sea exchanges water, salt and heat with

the North Atlantic. Accurate observations of the mass, salt, and heat transports

in the strait can provide important integral information about the processes in

the interior of the Mediterranean basin. Time variability in these transports may

be indicative of changes in the strait dynamics or in the basin interior balances as

well. Consequential the Strait represents a key point for the general thermohaline

circulation of the whole Mediterranean basin2.

The Strait of Gibraltar is a narrow and shallow channel, 60 km long and 20

km wide, characterized by a complex system of contractions and sills. At the

eastern end, which it will be referred in this work as Gibraltar-Ceuta section, the

deep channel, called Tarifa Narrows, is about 18 Km wide and more than 800 m

deep (Figure 1.3). Going toward west the channel narrows to about 12 Km at Pt.

Tarifa while, 8 Km west of Tarifa, the bottom rises steeply at Camarinal Sill where

it reaches the minimum depth of the whole strait (284 m). The western entrance

of the strait is characterized by the presence of another sill, called Espartel Sill,

where the bottom reaches a minimum depth of about 360 m. In between these

two sills there is a quite flat basin, 400 m deep, called Tangier basin.

1(Rome) Feared everywhere, let her extend her name to the uttermost shores, where the
midway water separates Europe from Africa, where the swollen Nile irrigates the fields...

2The thermohaline circulation is that part of the ocean circulation which is driven by density
differences. Sea water density depends on temperature and salinity, hence the name thermo-
haline. The salinity and temperature differences arise from heating/cooling at the sea surface
and from the surface freshwater fluxes (evaporation and sea ice formation enhance salinity;
precipitation, runoff and ice-melt decrease salinity).
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1.1 History and Geography

Figure 1.2: Maps showing the geographical location of the Strait of Gibraltar.
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1.1 History and Geography

Camarinal Sill

Espartel Sill

Figure 1.3: Chart of the Strait of Gibraltar, adapted from Armi & Farmer (1988),
showing the principal geographic features referred to in the text. Areas deeper than
400 m are shaded.
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1.2 Background

1.2 Background

1.2.1 Exchange flow description

1.2.1.1 Mean Exchange

The excess of evaporation (E) over precipitation (P ) and river runoff (R) over

the Mediterranean basin represents, together with the conservation of mass and

salt for the Mediterranean Sea, the main driver of the mean circulation through

the strait.

This circulation, generally called inverse estuarine (Stommel & Farmer (1953)),

has been traditionally modeled as a two-layer system: in the upper layer a flow

(Q1) of fresh (S1 ' 36.2) and warm Atlantic water spreads in the Mediterranean

basin, while in the lower layer a compensating flow (Q2) of colder and saltier

water (S2 ' 38.4) exits from the Mediterranean toward the Atlantic (Figure 1.4).

h2

h1

Q1 S1

S2

E

Q2

MediterraneanC
a
m

a
ri

n
a
l
S

il
l

Atlantic Ocean

Figure 1.4: Simplified sketch showing the two-layer system.

Mathematically this model can be written as:
Q1 + Q2 = E − P −R

Q1S1 + Q2S2 = 0
(1.1)

where equations 1.1 represent mass and salt conservation respectively. From

these equations it is easy to derive two expressions for the mass transports as
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1.2 Background

Table 1.1: Different estimations of the mean Atlantic (Q1) and Mediterranean
(Q2) transports, net evaporation over the Mediterranean basin (Enet), and salinity
difference (∆S) between Atlantic and Mediterranean water in Gibraltar. Data
corresponding to Nielsen (1912), Lacombe & Richez (1982) and Bryden et al. (1994)
have been adapted from Table 1 in Bryden et al. (1994) as in Vargas (2004).

Source Q1(Sv) Q2(Sv) Enet(my−1) ∆S

Nielsen (1912) 1.87 1.78 1.17 1.91
Lacombe & Richez (1982) 1.21 1.15 0.75 1.75
Bryden & Stommel (1984) 1.67 1.59 0.95 1.72
Bryden et al. (1994) 0.72 0.68 0.52 0.12
Garćıa-Lafuente et al. (2000) 0.92 0.87 0.63 -
Candela (2001) 1.01 0.97 0.45 -
Tsimplis & Bryden (2000) 0.66 0.57 1.12 -
Baschek et al. (2001) 0.81 0.76 0.63 -

function of the net evaporation term (Enet = E − P − R) and salinity difference

between the Atlantic and Mediterranean waters:
Q1 = S2Enet

S2−S1

Q2 = −
[

S1Enet

S2−S1

]
.

(1.2)

These equations are known as the Knudsen (1899) equations. Even if these

relations appear very simple, their direct application is not so easy. This is due

to the fact that none of S1, S2 and Enet is very well known. However from both

direct and derived measurements it emerges that the values of the exchanged

flows, averaged on a sufficiently long time-scale, is of the order of 1Sv (Sverdrup,

1Sv = 106m3s−1). In Table 1.1 are shown the estimated transports in the last 89

years.

1.2.1.2 Time dependent Exchange

Various processes at different timescales modify the mean exchange flow through

the Strait of Gibraltar. The amplitude of these fluctuations can be of the same
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1.2 Background

order of magnitude, or even greater, than the above mentioned mean value of

about 1Sv (Candela et al. (1990), Bryden et al. (1994)). In general these fluc-

tuations are divided in four main frequency bands: low, subinertial, tidal and

short. The low frequency is related to the seasonal and interannual variability of

the hydrological properties of both the western Mediterranean Sea and the north

Atlantic Ocean (Garrett et al. (1990)). The subinertial frequency, characterized

by a period of some days up to few months, is mainly related to the wind blow-

ing over the Alboran Sea and the Gulf of Cadiz, and the atmospheric pressure

differences between the Atlantic and Mediterranean Sea (Candela et al. (1989),

Garćıa-Lafuente et al. (2002b) and Garćıa-Lafuente et al. (2002a)). The tidal

frequency is mainly semidiurnal 1 (Candela et al. (1990) and Tsimplis & Bryden

(2000)), while the short frequency is due to the propagation through the strait of

internal waves reaching amplitudes of up to 150 m called bore (Richez (1994)).

Among these time-dependent forcing the most energetic one is the barotropic

tidal forcing. Analyzing data collected during the Gibraltar Experiment, 2 (Kinder

& Bryden (1987), Kinder & Bryden (1988)) Candela et al. (1990) showed that

about 90% of the total kinetic energy present in the strait is due to the semidiurnal

components M2 and S2; in particular 75% is due to the M2 and about 12%

is due to the S2. Currents induced by tidal forcing are very strong especially

over Camarinal Sill (Bruno et al. (2000)). Here tidal currents are so strong

to reverse periodically, during each semidiurnal cycle, the direction of both the

Mediterranean and Atlantic flow (Bryden et al. (1994)). In other words the entire

water column over Camarinal Sill can flow in the same direction twice per day.

Recently, others studies have been carried out analyzing data based on direct

observations collected during the CANIGO 3 project (1995-1996) (Parrilla et al.

(2002)). Garćıa-Lafuente et al. (2000) have analyzed in detail the tide at the

eastern section of the Strait. They showed that tides have a marked semidiurnal

character; moreover they showed that while the lower layer flow periodically is

reversed, the upper layer flow is always directed toward the Mediterranean basin.

1A tidal variation consisting of two high and two low tides per lunar day (24.84 hrs.).
2The Gibraltar Experiment(GIBEX) was carried out by a group of American, Spanish,

Moroccan, Canadian and French scientists during the period from October 1985 to May 1986.
3Canary Islands Azores Gibraltar Observations
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1.2 Background

They argued that this different behavior is due to the smallness of the mean flow

and the strong amplitude of the semidiurnal tidal currents in the lower layer and

vice versa for the upper layer. Using an acoustic doppler current profiler (ADCP)

Tsimplis (2000) has described the vertical structure of tidal currents at Camarinal

Sill. He showed that the semidiurnal tidal components are the most energetic,

they are characterized by an along-strait velocity up to 120 cm s−1 for M2 and

48 cm s−1 for S2. Using the same data Tsimplis & Bryden (2000) have estimated

the water transports over Camarinal Sill. They defined as interface between the

Atlantic and the Mediterranean water the time-dependent depth where velocity

exhibits the maximum vertical shear. Using the derived time series of the depth

of the interface and the currents they estimated a transport of about 0.78 Sv for

the Atlantic inflow and 0.67 Sv for the Mediterranean outflow.

The volume transport was also estimated at the eastern entrance of the strait

by Baschek et al. (2001). In order to describe the two-dimensional structure of

the tidal flow at the Gibraltar-Ceuta section as well as the depth of the inter-

face between Mediterranean and Atlantic water, they used a tidal inverse model

to merge currents data recorded both by current meter moorings and intensive

shipboard measurements. The volume transport was estimated to be 0.81± 0.07

Sv for the upper layer and 0.76± 0.07 Sv for the lower layer.

1.2.2 Hydraulic Control

It is important to note that the Knudsen (1899) equations (equations 1.2) do

not determine the salinity difference (S1−S2) between the Atlantic and Mediter-

ranean. In other words these equations are not able to explain why the observed

salinity difference between the Atlantic and Mediterranean is about 2 psu. There

are, in fact, infinite possible solutions for equations 1.2: we can have large flows

corresponding to small salinity differences, or weak flows corresponding to large

salinity differences. Thus, in order to explain the observed salinity difference

further constrains must be considered.

As initially suggested by Bryden & Stommel (1984) one constraint is the

hydraulic control 1 at Camarinal Sill. For a steady two-layer flow through a rect-

1The beginning of hydraulic control theory in physical oceanography is due to Stommel
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1.2 Background

angular cross-section and a sill, both Armi (1986) and Lawrence (1990) showed

that the hydraulic control occurs over the sill when

G2 ≡ F 2
1 + F 2

2 = 1 (1.3)

with

F 2
i =

u2
i

g′hi

, (1.4)

where G is the composite Froude number, Fi, ui and hi represent respec-

tively the layer Froude number, velocity and thickness of the upper (i = 1) and

lower (i = 2) layers, and g′ = g∆ρ/ρ2 is the reduced gravity (∆ρ = ρ2 − ρ1). At

the hydraulic control locations the flow undergoes a transition from subcritical

(G2 < 1) to supercritical (G2 > 1). A hydraulic jump occurs instead when the

flow undergoes a transition from supercritical to subcritical. Hydraulic jump is

characterized by turbulent dissipation of energy.

Subsequently, Dalziel (1990) demonstrated that the condition for critical flow

can be restated as:

G2 ≡ 1 +
C1C2

h1h2

, (1.5)

where C1 and C2 are the phase velocities of the first internal waves mode

(long wave propagating at the interface between the two layers), normalized by
√

g′D/2, where D represents the water depth h1 + h2 (see Figure 1.4). At a

control, where the flow is critical and G2 = 1, C1 or C2 must be zero, i.e. long

waves at the interface cannot propagate upstream against the flow. Where the

flow is subcritical they have opposite signs and can propagate in both directions.

Where the flow is supercritical C1 and C2 have the same sign, and both waves

propagate away from the control into a basin. Consequently, changes within that

basin cannot propagate back to affect the controls or the other basin.

Armi & Farmer (1986, 1987) introduced another element in the hydraulic

theory applied to the Strait of Gibraltar: the concept of maximal and submaximal

exchange. In these works they stated that the flow through the strait can exhibit

& Farmer (1953) who applied the hydraulic theory to study the processes that determine the
salinity of an estuary.
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1.2 Background

two distinct regimes: the first, called maximal exchange, occurs when the flow

is hydraulically controlled both at Camarinal Sill and Tarifa Narrow, while the

second, called submaximal exchange, characterizes flows that are only controlled

at Camarinal Sill. In the first regime, the flow exchange between the Atlantic

and the Mediterranean Sea is maximal, and it is only determined by processes

occurring in the region in between the two controls. A physical explanation is

that the subcritical region between the two controls cannot exchange information

with either basin because internal long waves are unable to propagate upstream

past either control location.

In order to improve the steady hydraulic theory developed by Bryden & Stom-

mel (1984) and Armi (1986) other features, such as Earth’s rotation, friction, time

dependence, and nonrectangular cross sections for the configuration of the strait,

have been added in literature. Assuming potential vorticity conservation Bormans

& Garrett (1989b) estimated the influence of the Earth’s rotation on the flow.

They found that the main effect of the Earth’s rotation is to produce a tilt across

the strait of the interface between the two layers, which is minimum at Camarinal

Sill section, while is enhanced to the east of Tarifa Narrows. Also Dalziel (1990)

estimated the influence of the Earth’s rotation on the flow predicting a decrease in

the exchange up to one-third with respect to the non rotating case. Including fric-

tion in the model of Farmer & Armi (1986), Bormans & Garrett (1989a) estimated

the effect of both interfacial and bottom friction. They concluded that, using rea-

sonable drag coefficients (compatible with dissipation measurements carried out

by Wesson & Gregg (1988) during the Gibraltar Experiment), the interfacial fric-

tion has a smaller influence on the exchange than the bottom friction. They also

found that, by including the bottom friction on the sloping sides of the strait,

the maximal and submaximal solutions tend to come closer than in the inviscid

model. Using a more realistic bathymetry, modeled via triangular or parabolic

cross-strait sections, Bormans & Garrett (1989a) showed that the exchange is re-

duced and the interface between the two layers is raised compared with a simple

rectangular cross-section bathymetry. In order to take in to account the time

dependent tidal forcing in the two-layer hydraulic theory, Farmer & Armi (1986)

proposed the so called quasi-steady approximation in which the steady solution is

applied at each time of a tidal cycle. However Helfrich (1995) demonstrated that
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1.2 Background

this quasi-steady approach is not valid for dynamically long straits, i.e. straits

having a length greater than the distance traveled by an internal wave during a

tidal cycle, which is precisely the situation that occurs in the Strait of Gibraltar.

However both theories assert that the exchanged flows increase with the strength

of the barotropic tidal forcing, but the quasi-steady theory always predicts more

flow than the time-dependent theory. Helfrich (1995) showed that the exchange

flow is a function of two non-dimensional parameters: the dynamic length of the

strait and the tidal forcing strength (qb0). He showed that for the Strait of Gibral-

tar, with a qb0 = 0.6 (corresponding to a barotropic velocity over Camarinal Sill

of about 1.5 ms−1), transport increases of 1.2 respect to the unforced case, but

he also suggested that this increment should be reduced by 20% because of the

increased diffusion caused by the tidal mixing. Farmer & Armi (1986), instead,

predicted, with their quasi-steady theory, a larger increment of about 1.6 respect

to the steady case. Moreover, applying their quasi-steady theory Armi & Farmer

(1988) provided a detailed analysis of the control locations in the strait. They

observed four controls within the strait, two permanent and two episodic. The

first permanent control is located to the west of Espartel Sill while the second is

sited within the Tarifa Narrow, moving cyclically toward east in accordance with

the eastward-traveling internal bore released at Camarinal Sill. The two episodic

controls are located over the two sills: Spartel and Camarinal; the control over

Spartel Sill is lost during high water at Tarifa and recovered just one hour before

low water; the control over Camarinal Sill is lost at the end of each half-tidal

cycle. The presence of the two permanent controls makes the exchange maximal,

independently from the others two episodic controls.

It is important to underline that both the time dependent and the quasi-

steady theory are based on the assumption that the flow is 1-dimensional, i.e. the

flow does not have any across-strait dependency. This assumption is not valid

for the Strait of Gibraltar as demonstrated by two of the most recent numerical

modeling studies (Izquierdo et al. (2001) and Sannino et al. (2002)). Thus, results

from time-dependent as well as quasi-steady two layer hydraulic theory should

be interpreted with care.
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1.2.3 Two-way Exchange

Observational data presented by Wesson & Gregg (1994) indicate that there is

considerable entrainment and mixing at the interface between Mediterranean and

Atlantic water. As initially observed by Bray et al. (1995), the flow exchange

through the Strait of Gibraltar is strongly affected by both entrainment and mix-

ing. This entrainment and mixing leads to the formation of a thick interfacial

layer where density and velocity change gradually in vertical. They suggested

that a three-layer model, i.e. a two-layer model with the inclusion of an inter-

facial (between the two layers) nonuniform layer of considerable thickness and

intermediate density, is more appropriate to describe the flow exchange through

the strait respect to the two-layer model.

Extending the traditional Knudsen model of exchange (equations 1.1) to three

layers, they found that the interfacial layer is capable of carrying a significant

fraction of the horizontal mass transport in both directions (Figure 1.5). They

found also that the horizontal transport within the interfacial layer changes dra-

matically with distance along the strait, implying substantial vertical exchange

between the interface and the Atlantic and Mediterranean layers. At the eastern

end of the strait, roughly half of the transport into the Mediterranean is found

in the interface layer, while at the west end an equivalent outflowing transport

occurs in the interface layer.

It appears clear that it should be better to define the exchange flow through

the Strait of Gibraltar as a two-way exchange rather than a simple two-layer

exchange.

1.2.4 Numerical Models

In the last 15 years the Strait of Gibraltar has been studied also by means of

numerical models. Different hydrodynamic models have been developed: one-

dimensional models were developed by Longo et al. (1992), Brandt et al. (1996b)

and Castro et al. (2004), two-dimensional models by Tejedor et al. (1999), Izquierdo

et al. (2001), Morozov et al. (2002), and three-dimensional model were developed

by Wang (1989, 1993) and Sannino et al. (2002, 2004, 2006).
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Interfacial
layer

Figure 1.5: Summary of along-strait variations in transports and interface struc-
ture. Dotted contours outline the average interface layer along the strait. Arrows
are scaled to indicate the magnitude of horizontal transports in each layer at the
various sections along the strait. Vertical arrows indicate the vertical transport
between the upper and interfacial layer and between the lower and interfacial layer
(adapted from Figure 21 in Bray et al. (1995)).
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One of the first one-dimensional models developed to study the generation

of nonlinear internal tides in the Strait of Gibraltar is the one-dimensional, two-

layer, rigid-lid1, hydrostatic model implemented by Longo et al. (1992). Although

this model was able to describe sufficiently well the generation of internal waves,

by the interaction of the semidiurnal tidal flow with the Camarinal Sill, it was

not able to describe the subsequent evolution and propagation of these internal

waves. This is due to the fact that unlike the generation of the internal tides,

their propagation has to be described by a nonhydrostatic model (Pierini (1989)).

Brandt et al. (1996b) developed a weakly nonhydrostatic, two-layer model

that was capable of describing both the generation and propagation of nonlinear

internal waves in the Strait of Gibraltar, as well as their subsequent disintegration

into trains of internal solitary wave2.

The most recent one-dimensional two-layer model has been developed by Cas-

tro et al. (2004) who, however, focused their work on the development of a new

numerical discretization of the two layer shallow water equations, rather than on

the dynamics of the strait.

Using a two-dimensional, nonlinear, boundary-fitted coordinate, barotropic

model, with a nominal resolution of 0.5 km, Tejedor et al. (1999) simulated the

M2 and S2 surface tides. The resulting cotidal maps were in good agreement with

the same maps proposed by Candela et al. (1990) that analyzed data collected

during the Gibraltar Experiment.

A detailed description of the generation and the subsequent propagation and

evolution of the internal tides in the Strait of Gibraltar can be found in a paper

by Morozov et al. (2002). In their study they developed a two-dimensional (in

the x-z plane), fully nonhydrostatic model with continuous stratification, and

forced both by semidiurnal and diurnal tidal components. Model results showed

1The rigid lid approximation assumes that the surface elevation of the sea water is static.
Doing so filters out fluctuations of the sea associated with motions of the sea surface (i.e. surface
gravity waves such as tides and tsunamis.)

2Solitary waves are non-linear waves that propagate without change of shape. The first
soliton was discovered by John Scott Russell (1808 - 1882), who followed a solitary wave gen-
erated by a boat in Edinburghs Union Canal in 1834. The properties of a solitary waves result
from an exact balance between dispersion which tends to spread the solitary wave into a train
of waves, and non-linear effects which tend to shorten and steepen the wave.
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1.2 Background

the strong influence played by the density stratification on the propagation of the

internal wave. In other words they underlined that reducing the internal wave

motion only to the displacement of the interface (like in a two-layer model) is not

enough to describe the evolution of the internal tides.

The first two-dimensional - two-layer - hydrostatic model applied to study the

timespace variability of hydraulic controls in the Strait of Gibraltar is the model

implemented by Izquierdo et al. (2001). Ther model domain is characterized

by a very high-resolution horizontal grid, with a nominal resolution, inside the

strait, of only 125 m. The model is forced at the open boundaries by the four

major semidiurnal (M2, S2) and diurnal (O1, K1) tidal components. This model

predicts the occurrence of four controls located to the west of the Espartel Sill,

at the Espartel and Camarinal Sills and in the Tarifa Narrows. The last of these

controls is apparent in the sense that it consists of discrete fragments alternating

with subcritical flow regions. The only control which extends over the whole

width of the strait is the control at the Camarinal Sill, but it breaks down during

neap tide, too.

Surprisingly only two three-dimensional models have been developed and ap-

plied, in the last 15 years, to the Strait of Gibraltar. Using a three-dimensional

general ocean circulation model, Wang (1989, 1993) was able to describe some of

the aspect of the mean and tidally forced circulation of the Strait of Gibraltar.

However, because of the relatively low horizontal and vertical resolutions (∼ 5

Km and 50 m respectively), the model did not reproduce the hydraulic control

over Camarinal Sill. He found in fact that while the surface flow is supercritical,

i.e. hydraulically controlled on the eastern entrance the bottom flow is subcritical,

i.e. not controlled on the western entrance, over Camarinal Sill.

Considering the occurrence of the interfacial layer between Atlantic and Mediter-

ranean waters, that is, the existence of a three-layer system, where the interfacial

layer is an active participant in the process of exchange, Sannino et al. (2002)

added further complexity to the simulated exchange flow through the Strait of

Gibraltar. Thanks to the relatively high resolution of the model (less than 500

m in the strait region) they were able to describe in detail, for the first time, the

mean exchange through the Strait of Gibraltar. Moreover, applying a three-layer

hydraulic theory to the model results, they found only one permanent control
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located over Camarinal Sill. Subsequently, in order to improve this model, they

included also the tidal forcing in the model (Sannino et al. (2004, 2006)). Imple-

mentation of this tidal model and results obtained, in term of exchange flow and

hydraulics, represent part of this Thesis work and will be described in details in

the next chapters.

1.3 Novel aspects of the Thesis

From the previuos background section, it emerges that recent studies indicate that

the 2-layer model is a reasonable approximation for the flow exchange through

the Strait of Gibraltar, but, if one is interested in realistic values, it is necessary

to include to the 2-layer model a third interfacial layer. However, although it is

believed that this interfacial layer is important in determining the correct two-way

exchange and hydraulics within the Strait of Gibraltar, there is still a tendency

to consider the actual two-way exchange as a two-layer exchange. Also recently,

in some numerical studies, two-layer numerical models have been used to study

the Strait of Gibraltar (Izquierdo et al. (2001); Brandt et al. (2004)). Except for

the numerical study by Sannino et al. (2002) (that however did not consider the

tidal forcing) at the best of my knowledge, there are none numerical models that

take into account the presence of this interfacial layer.

Despite the large number of studies that have dealt with the applicability of

the two-layer hydraulic control theory to the Strait of Gibraltar, there is still an

uncertainty about the flow regime through the strait; in particular it is not clear

if the regime is maximal or submaximal.

In order to fill the gap between the observational study carried out by Bray

et al. (1995) and the numerical modeling studies of the Strait of Gibraltar, the

first goal of this Thesis is to test the ability of a three-dimensional high-resolution

model, forced by the two principal semidiurnal tide components, to simulate the

interfacial layer between the Atlantic and Mediterranean water. In this Thesis

will be also explored the effect of tides on the hydrological and physical properties

of this layer.

However, the principal aim of this Thesis is the investigation of the effects

induced by the presence of the interfacial layer on both hydraulics and exchange
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flow through the strait. In order to better understand these effects, a comparison

between the classical two-layer, and the relatively new three-layer approximation

will be performed.

1.4 Thesis organization

The Thesis is organized as follows. Chapter 2 starts with a description, from a

numerical point of view, of the model used. Then it continues showing the strat-

egy used to parallelize the model, while details on the boundary conditions and

experiment set up conclude this chapter. The model validation has been carried

out in Chapter 3. Here model results are compared with most of the available

experimental data. Chapter 4 is devoted to evaluate both volume transports and

hydraulic regimes in the ’classical’ two-layer approximation. The ability of the

model in reproducing the interfacial layer between the Atlantic and the Mediter-

ranean layers will be tested in Chapter 5. Always in this chapter the simulated

volume transports and hydraulics, computed in the three-layer framework, are

presented together with a comparison between the two-layer and the three-layer

approximations. Conclusions and discussions complete the Thesis.

18



Chapter 2

Numerical Model

2.1 Model Description

2.1.1 POM model

The circulation tidal model developed for this study is based on the Princeton

Ocean Model (hereinafter POM), the ocean circulation numerical model designed

in the late 1970’s by Blumberg & Mellor (1987) to study both coastal and open

ocean circulation. POM is one of the most popular community models of the

ocean circulation; it is used by a large number of research and academic insti-

tutes all over the world. It is a public domain model (URL: POM (2006)) which,

thanks to its ability to simulate both shallow water and deep ocean dynamics,

has been used for a variety of applications, ranging from small scale coastal man-

agement problems to general circulation studies of the Atlantic Ocean (see URL:

POM papers (2006) for a complete and updated list of related papers). POM is

a σ-coordinates, free surface, primitive equation ocean model, which includes a

turbulence sub-model. The prognostic variables of the Princeton Ocean Model

are the three components of the velocity field, temperature, salinity, turbulent ki-

netic energy, turbulent macroscale and sea water level. POM numerically solves,

in finite difference form, the momentum equation, the continuity equation and

the tracer (temperature and salinity) equations along with a non-linear equation

of state ρ = ρ (θ, S, P ) (UNESCO equation of state adapted by Mellor (1991))

which couples the two active tracers to the fluid velocity. Two more prognostic
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equations are used to calculate turbulent kinetic energy and turbulent macroscale.

These equations are part of the Mellor - Yamada 2.5 (Mellor & Yamada (1982))

turbulence closure scheme used to parameterize the vertical turbulent mixing

processes (vertical diffusivity). This numerical scheme, as recently demonstrated

by Ezer (2005), is able to take into account also the effect of entrainment. The

horizontal momentum, heat and salt small scale mixing processes are parameter-

ized as horizontal diffusion (along sigma surfaces), depending on the horizontal

velocity shear and on the grid spacing via the Smagorinsky diffusion scheme

(Smagorinsky (1963)):

AH (x, y, t) = AM (x, y, t) = C ∆x ∆y
[
N2 (x, y, t) + S2 (x, y, t)

] 1
2 (2.1)

where ∆x, and ∆y, are the grid sizes, C is a constant taken to be 0.2 in this

study, and S and N are the mean shear and the normal stress respectively:

N (x, y, t) =
∂

∂x
u ( x, y, t) − ∂

∂y
v (x, y, t) (2.2)

S (x, y, t) =
∂

∂x
v (x, y, t)− ∂

∂y
u (x, y, t) . (2.3)

The model uses an explicit leapfrog scheme for time stepping, except for the verti-

cal diffusion terms, which are treated with a forward implicit scheme. To provide

explicitly the free surface variations the model also solves, with a small time step,

the related barotropic equations, which is a set of vertically integrated equations

of continuity and motion, usually called external mode. For computer time econ-

omy the 3D-equations, usually called internal mode, are solved with a larger time

step, limited by the Courant-Friedrichs-Lewy (CFL) stability condition for the

internal gravity wave speed, using a time splitting technique.

The model specifies the values of all variables at the nodes of a curvilinear

orthogonal grid (which are very useful in applications with complex coastline),

staggered as in Arakawa-C scheme (Arakawa & Lamb (1977)), conserving linear

and quadratic quantities like mass and energy (Figure 2.1). As pointed out before

in this paragraph, the model as vertical grid uses the σ-coordinates system 1 which

1Known also as terrain following coordinate system.
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2.1 Model Description

is the most appropriate for areas with significant topographic variability like the

Strait of Gibraltar (Figure 2.2).

Details on the transformed equations on a horizontal curvilinear orthogonal

framework in a σ-coordinate system and the numerical algorithm can be found

on the POM’s user guide (Mellor (2006)).

dx

dz

dy

u(i-1,j,k) c(i,j,k)

v(i,j-1,k)

v(i,j,k)

u(i,j,k)

w(i,j,k)

w(i,j,k+1)

Figure 2.1: In the Arakawa-C grid the velocity components u, v, and w are
staggered by half a grid spacing. c represents any other grid variable in the model,
like salinity S or temperature T .

2.1.2 Modified POM model (CEPOM)

The version of POM used in this study has been extensively rewritten in FOR-

TRAN90 and a modular parallel version of the model, called CEPOM, has been

developed. The basic structure of the numerical schemes of POM are not modi-

fied in CEPOM except for the advection scheme for tracers, which is completely

different.

As advection scheme for tracers POM uses a second order centred (both spa-

tially and temporally) scheme. It is well-known that such a scheme is dispersive.
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D
e
p
t
h
(
z
)

�

�����

z=H(x,y)

������

Figure 2.2: Schematic representation of a σ-coordinates system.

Dispersion is more evident in presence of strong density gradients where it creates

spurious temperature and salinity values. Thus, the presence of density gradi-

ents within the Strait of Gibraltar makes the centred scheme unable to simulate

correctly the water exchange. For this reason in CEPOM the Multidimensional

Positive Definite Advection Transport Algorithm (MPDATA), as developed by

Smolarkiewicz (1984), has been implemented. MPDATA is a flux corrected up-

stream scheme, i.e. an upstream scheme characterized by a small implicit diffu-

sion. It is reduced by means of an iterative method based on the antidiffusive

velocities which is applied to correct the excessive numerical diffusion of stan-

dard upstream scheme. The number of iterations is optional; each additional

iteration increases the solution accuracy as well as the computing time: the num-

ber of iterations chosen for this study is three, which gives sufficient accuracy for

our purposes. MPDATA, which is second-order accurate on space and time, has

been already used in other ocean models applied to the Strait of Gibraltar giving

satisfactory results (see for example Wang (1989, 1993)).

In order to develop a parallel version of the POM model, both efficient and

portable, the Scalable Modeling System (SMS) tool has been used. SMS has been

22



2.2 Model Configuration

recently developed by Govett et al. (2003) of the Advanced Computing Branch of

the Forecast Systems Laboratory at NOAA (National Oceanic and Atmospheric

Administration). In this section we recall only the principal SMS features used

to parallelize our POM implementation, while a complete overview of SMS can

be found at the URL: SMS (2006).

SMS makes use of a set of directives (about 20) that users have to add to

their code in form of comments. SMS translates the code and directives into a

parallel version which runs efficiently on both shared and distributed memory

high performance computing platforms; in particular it uses a source-to-source

translation technique to generate different parallel target codes from a single

source code. The advantage of the SMS approach is that no complicated compiler-

generated communication statements have to be included in the code, moreover

SMS contains a number of features to speed up the debugging process and to

support incremental parallelization. Further, no code changes are required when

porting the SMS serial version to other shared and distributed memory machines.

As in Sannino et al. (2001) the parallelization strategy used for POM follows

the well known domain decomposition technique, applied to the two horizontal

coordinates, which is automatically achieved by SMS.

The resulting SMS version of POM includes only 3% more code lines respect

to the original serial code, while the speed-up obtained for our implementation

of POM is about 21 using 32 IBM Power4 CPUs (1.3 Ghz clock and 64 Gb). In

Table 2.1 speed-up details for the principal routines are shown (see Sannino et al.

(2005) for more details).

2.2 Model Configuration

2.2.1 Grid and Bathymetry

The region covered by the tidal model includes, in addition to the Strait of Gibral-

tar, also the two sub-basins connected to it: the eastern part of the Gulf of Cadiz

and the Alboran Sea. The horizontal model domain extends longitudinally from

8˚W to 5˚E and meridionally from 33˚N to 39˚N. The horizontal grid, that is
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2.2 Model Configuration

Table 2.1: Time (in milliseconds) and speed-up of the full code and for the
principal routines referred to a single time step.

Time(ms) Speed-up

CPUs 1 4 8 12 16 20 24 28 32

full code 14900 4.1 7.7 10.8 13.3 15.1 17.5 19.5 21.2
profq 1610 4.3 8.4 12 15.5 17.9 20.9 23 23.7
proft 720 4.2 8.8 13 17.1 21.2 24.8 26.6 31.3
advct 717 4.5 7.9 11.4 13.8 16.3 19.4 21.7 22.4
dens 632 4.3 11.1 18 23.4 28.7 35.1 39.5 45.1
denst 511 4.5 12.8 21.3 28.4 35.7 42.5 51.1 53.8
advq 428 5.1 9.9 14.3 17.5 20.4 21.9 23.1 26.7
profs 248 4.3 8.5 11.8 16.5 17.7 20.7 22.5 24.8
profu 242 4.2 7.8 11.5 15.1 18.6 22 26.9 28.5
profv 240 4.4 8.3 11.5 15.5 20.2 22 26.3 26.4
baropg 175 4.2 7.6 12.1 12.1 12.5 15.1 15.3 16.1
vertvl 146 4.7 9.1 11.7 14.6 14.7 15.4 15.5 15.7
advave 128 4.3 8.3 12.2 16 19.4 21.7 27.3 28.4
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2.2 Model Configuration

made by 306× 53 grid points, is characterized by a non-uniform spacing; resolu-

tion is maximum in the strait, where it is less than 500m, while at the eastern

and western ends it reaches 10− 20 km and 8− 15 km, respectively (Figure 2.3).

Morocco

Iberian
Peninsula

Model Grid

Longitude

L
a

ti
tu

d
e

Figure 2.3: Orthogonal curvilinear model grid; the calculated maximum depar-
ture of the grid cells from a rectangular shape is less than 10−12.

The portion of the horizontal grid representing the strait is rotated anticlock-

wise of about 17˚ so that the along-strait velocity is quite well represented by

the model u component (Figure 2.4).

The vertical grid is made of 32 sigma levels, logarithmically distributed at

the surface and at the bottom, and uniformly distributed in the rest of the water

column.

The model topography was constructed by bilinear interpolation of the depth

data onto each grid point of the horizontal model grid. The depth data were

obtained by merging the high resolution (< 1 Km) topographic data set of the

Strait of Gibraltar, provided by the LODYC laboratory, with the relatively low

resolution (5′) DBDB5 data set provided by the U.S. Navy for the Alboran Sea

and the Gulf of Cadiz.
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Figure 2.4: (top) Model bathymetry, computational grid, and transects for the
presentation of model results within the Strait of Gibraltar. The blue levels indicate
the water depths. The points CS and ES mark the points where Espartel Sill
and Camarinal Sill, respectively, are located. (bottom) Bathymetry along the
longitudinal section E.
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2.2 Model Configuration

In an attempt to reduce the well-know pressure gradient error produced by

sigma coordinate grids in regions of steep topography (Haney (1991)) an addi-

tional smoothing was applied where the slope (δH/H) was greater than 0.2, as

suggested by Mellor et al. (1994). In order to estimate the residual pressure

gradient error, the model was integrated for one year without initial horizon-

tal density gradient, i.e., with salinity and temperature fields varying only with

depth, with no open boundary applied, i.e. closed domain, and without any other

external forcing. The maximum intensity of erroneous currents introduced by the

σ-coordinates was of 2 cm s−1. Since the expected baroclinic velocities are up to

1 m s−1 this error seems to be tolerable.

The resulting model topography, with the minimum depth of the shelf set to

25 m, is illustrated in (Figure 2.5); in particular, the bottom topography and the

computational grid in the region of the strait is shown in Figure 2.4. Here are

clearly recognizable the dominant topographic features of the strait (from west

to east): Spartel Sill (ES), Tangier basin, Camarinal Sill (CS) with a depth of

284 m and Tarifa Narrows.

Figure 2.5: Model bathymetry; contour interval is 250 m.
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2.2 Model Configuration

2.2.2 Initial and Boundary Conditions

Model domain is characterized by two open boundaries. They are located at the

eastern and western ends of the model domain respectively. On these boundaries

values of velocity, temperature, salinity and surface elevation must be specified.

Several kinds of combinations of open boundary conditions have been tested.

In the following is described in details only the set of open boundary conditions

that performed the best model results. For the depth-dependent velocity an Or-

lanski radiation condition (Orlanski (1976)) is used at both boundaries. This

boundary condition has been used because it minimizes the contamination of the

interior model solution due to wave reflection at the boundaries. A zero gradi-

ent condition is used for the depth-integrated velocity while a forced-Orlanski

radiation condition (Bills & Noye (1987)) is used for the surface elevation at the

western and eastern boundaries:

ζ
n+ 1

2
i =

(ζ
n− 1

2
Ti + ζMi)− (Cr/2)ζ

n− 1
2

i + Crζn
i−1

1 + Cr/2
(2.4)

where ζn
i represents the surface elevation at the “i” grid point of the open

boundary at time step “n”, Cr = c∆t/(2∆x) is a Courant number defined in

the x−direction, ζn−1
Ti is the forcing tide elevation at the grid point “i” and time

step n − 1, and ζMi is the time independent mean elevation at the grid point

“i”, which is set to about 12 cm at the western open boundary and to 0 cm at

the eastern open boundary. Equation 2.4 incorporates a radiation mechanism

that allows the undesired transients to pass through the open boundaries, going

out of the model basin, without contaminating the desired forced solution. The

time independent mean elevation (ζMi) value used at the open boundaries is

obtained running the model in barotropic mode. This model, as the baroclinic

version, has at the eastern and western ends of the computational domain two

open boundaries where values of barotropic velocity and surface elevation must

be specified. For the surface elevation an Orlansky radiation condition (Orlanski

(1976)) was used at the western boundary while a clamped to zero condition was

used for the eastern end. For the barotropic velocity a zero gradient condition
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2.2 Model Configuration

was used at both ends. In this way the barotropic model was able to freely adjust

the western surface elevation, after 180 days of simulation, to about 12 cm.

Temperature and salinity are specified on the open boundaries by using an

upwind advection scheme that allows the advection of temperatures and salin-

ities into the model domain under inflow conditions. Normal velocities are set

to zero along coastal boundaries, at the bottom, adiabatic boundary conditions

are applied to temperature and salinity and a quadratic bottom friction, with a

prescribed drag coefficient, is applied to the momentum flux. This is calculated

by combining the velocity profile with the logarithmic law of the wall:

CD = max [2.5× 10−3, k2 ln(∆zb/z0)] (2.5)

where k is the Von Karman constant, z0 is the roughness length, set to 1 cm, and

∆zb is the distance from the bottom of the deepest velocity grid point.

The so-called lock-exchange initial condition has been used in this work. It

consists in ”filling” the model domain with two different water masses separated

by an imaginary dam; in particular in this case the imaginary dam is located in

the middle of the strait, while the two water masses are obtained horizontally av-

eraging the spring MODB data (URL: MODB (2006)) for the Alboran basin, and

the spring Levitus data (Levitus (1982)) for the Gulf of Cadiz. Vertical profiles

of temperature and salinity of the two water masses are shown in Figure 2.6.

The model is forced at the open boundaries through the specification of the

two major semidiurnal surface tidal elevation components: M2 with a period

of 12.42 h, and S2 with a period of 12.00 h. This choice does not represent a

limitation; in fact, as already seen in the Introduction of this thesis, more than

90% of the total kinetic energy present in the strait is due to the semidiurnal

components M2 and S2. The resulting semidiurnal tidal elevation forcing applied

at the open boundaries of the model is defined as:

ζT (y, t) =
2∑

n=1

An(y) cos(σnt− ϕn(y)) (2.6)
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2.2 Model Configuration

Figure 2.6: Initial conditions; (a) vertical profiles of salinity (solid line) and
temperature (dashed line) for the Gulf of Cadiz; (b) vertical profiles of salinity
(solid line) and temperature (dashed line) for the Alboran Sea.
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2.3 Model Experiments

where An(y) and ϕn(y) are the prescribed surface elevation amplitude and

phase of the n-th tidal constituent, and σn is its frequency. The M2 and S2

surface tidal elevation amplitudes and phases have been obtained from the global

tidal model of Kantha (1995) and Kantha et al. (1995). The resulting ζT (yw
m, t)

applied at the middle point of the western open boundary (yw
m) during the neap

tide ranges from –48 to +75 centimeters, while during the spring tide it ranges

from –128 to +140 centimeters (Figure 2.7).

Figure 2.7: Semidiurnal tidal elevation forcing ζT (yw
m, t) applied at the middle

point of the western open boundary.

Due to the strong velocities generated by the tidal forcing, very short external

and internal time steps, of 0.1 and 6 seconds respectively, are used to perform

the numerical simulation.

2.3 Model Experiments

The model was initially run for 360 days without tidal forcing, in order to achieve

a steady two-way circulation that represents the non-tidal experiment. Then the

model simulation was extended for another 29 days, forced only by the M2 and S2

semidiurnal tidal components, in order to achieve a stable time-periodic solution,

and finally the model was run for a further fortnight period (14.79 days) that

represents the tidal experiment.
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Chapter 3

Model Validation

3.1 Armonic Analysis

In order to validate the tidal model a least squares harmonic analysis was per-

formed for both the sea surface elevation and currents for the tidal experiment.

3.1.1 Tidal Elevation

In Tables 3.1 and 3.2 the observed amplitudes (A) and phases (P ) of the two

semidiurnal tidal components of the surface elevation are compared with the

simulated amplitudes (A) and phases (P ) of the same components. A general

good agreement between observed and predicted values is found; the maximum

differences do not exceed 6.2 cm in amplitude (with a maximum error of about

15%) and 13˚ in phase. The maximum differences are confined to coastal points

as Ceuta (CE), Algesiras (AL), Tarifa and Pta. Cires, since the model grid is not

coastal-fitted.

In Figure 3.1 are also shown the computed cotidal charts for the Strait region,

for the simulated M2 and S2 surface tidal waves. The M2 chart is in good qualita-

tive agreement with the empirical cotidal chart presented by Candela et al. (1990).

The only difference is in the Camarinal Sill area, where the cotidal lines (lines of

constant phase) undergo a deviation toward North. The principal features to be

noted on this chart are the reduction (more than 50%) of the amplitude in the
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3.2 Tidal Currents

along-strait direction, the invariability of the amplitude in the cross-strait direc-

tion (except for the eastern part of Tarifa narrow), and the southwestward phase

propagation, more evident east of Camarinal Sill as far as the eastern entrance of

the Strait. The same features are also present on the S2 cotidal chart even if the

cotidal lines exibit a greater deviation toward North over the Camarinal Sill. In

agreement with Candela et al. (1990), the ratios and phase differences between

the M2 and S2 components remain quite constant throughout the Strait; the am-

plitude ratio is confined between 2.6 and 2.8 and the phase difference decreases

from west to east of only 2 degrees between –24˚ to –26˚.

3.1.2 Tidal Ellipse

A direct comparison between the predicted fields of major and minor axes of

tidal ellipse and data are difficult because of the lack of data in most part of the

Strait, with the exception of Camarinal Sill (see Candela et al. (1990)) and of

the eastern entrance of the Strait (see Garćıa-Lafuente et al. (2000)). Thus, in

order to quantitatively compare the model results with observed data, a linear

regression between predicted and observed semimajor axis, in only ten different

locations, was performed (Figure 3.2). The mean errors and the root mean square

errors are shown in Table 3.3. The errors are limited to 4.0 cm s−1 and 7.5 cm s−1

for the S2 and 5.9 cm s−1 and 7.9 cm s−1 for the M2, except for the stations M3

and F3 where the mean error reaches the value of 24.7 cm s−1and the root mean

square reaches 31.9 cm s−1. These differences are mainly due to an overestimation

of the simulated lower layer currents.

3.2 Tidal Currents

Figures 3.3 and 3.4 show a complete semidiurnal tidal cycle simulated by the

model during spring tide at the Gibraltar-Ceuta and Camarinal Sill sections re-

spectively. It is clear from Figures 3.3 that the lower layer flow, at the eastern

section (sec. D in Figure 2.4), is periodically reversed by tidal currents toward

the Mediterranean Sea (also during neap tide, not showed). The typical currents

range from –60 to 30 cm s−1 during spring tide and from –40 to 30 cm s−1 during
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3.2 Tidal Currents

Figure 3.1: Cotidal charts of the (a) M2 and (b) S2 surface tides. Solid lines are
phase contours, in degrees; dashed lines are amplitude contours, in centimeters.
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3.2 Tidal Currents

Figure 3.2: Comparison between observed and simulated semimajor axis com-
ponent of tidal ellipses. Observed data M1, M2, M3, M7, M8, M9, and F3 are from
Candela et al. (1990) and N, C, and S are from Garćıa-Lafuente et al. (2000).
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3.2 Tidal Currents

Table 3.3: Mean and Root Mean Square (RMS) error of the simulated semimajor
axis. Station locations are shown in Figure 2.4.

M2 S2

Station Mean Error RMS Error Mean Error RMS Error

Candela et al. (1990)
M1 3.4 3.9 -0.8 3.3
M2 0.9 5.5 -4.0 7.5
M3 24.7 29.8 3.5 7.2
M7 -0.8 1.9 0.1 0.3
M8 1.0 1.0 -3.3 3.3
M9 5.9 5.9 2.3 2.6
F3 24.5 31.9 -0.4 0.8

Garćıa-Lafuente (1986)
N 2.7 7.9 -0.9 1.7
C 3.9 7.9 0.9 1.5
S 0.1 1.1 0.5 0.8
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3.2 Tidal Currents

neap tide. On the contrary, the upper layer is always directed toward the Mediter-

ranean Sea, indicating a clear weakness of the tidal amplitude in comparison with

the mean upper layer flow, that is too strong to be reversed. For the upper layer,

the currents range from 80 to 140 cm s−1 during spring tide and from 60 to 110

cm s−1 during neap tide. These results are in good agreement with Baschek et al.

(2001), who showed very similar results for the M2 component, computed with

an inverse model at the eastern entrance of the Strait.

At Camarinal Sill, the tidal signal is so strong to always reverse the currents,

both in the upper and lower layers, for a part of each semidiurnal tidal cycle,

except for the neap tide where the Mediterranean layer is not reversed completely

(for the spring tidal cycle see Figure 3.4). To discriminate between upper and

lower layer velocities we superimposed to the velocity contours the depth of the

37.25 isohaline, that, as suggested by Sannino et al. (2002), can be considered as

an interface between the two layers. Using this method, it is possible to see that

velocity in the upper layer ranges from –130 to 200 cm s−1during spring tide and

from –100 to 130 cm s−1 during neap tide. For the lower layer, velocity ranges

from –230 to 150 cm s−1 during spring tide and from –190 to 70 cm s−1 during

neap tide.

Figures 3.5, 3.6, 3.7, and 3.8 show the simulated M2 and S2 tidal amplitude

and phase of the along-strait velocity at Camarinal Sill and Gibraltar-Ceuta cross-

strait sections. Looking at Figures 3.5a and 3.6a it is clear that there is a drastic

decrease in the M2 amplitude (more then 70%) going from Camarinal Sill to

the eastern entrance of the Strait. At Camarinal Sill the amplitude constantly

increases from 100 cm s−1 at the surface up to 140 cm s−1 at a depth of about

220 m and then decreases in the vicinity of the bottom due to the influence of

friction. On the other hand, in good agreement with Baschek et al. (2001), at

the eastern entrance of the Strait the amplitude increases from 8 cm s−1 at the

surface to 42 cm s−1 in the lower layer. The main increase is in the upper layer:

amplitude reaches the value of 34 cm s−1 in the first 200 m, and remains rather

constant in the rest of the water column. A meridional variation of the amplitude

from the southern part (40 cm s−1) to the northern part (18 cm s−1) of the Strait

is also evident. Another point to highlight is that the phase at Camarinal Sill

(Figure 3.6b) is quite constant from the upper layer to the lower layer; there is
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3.2 Tidal Currents

Figure 3.3: (a-f) Simulated sections of the along-strait current (cm s−1) showing
several phases of a semidiurnal (M2 + S2) tidal cycle during spring tide at Gibraltar-
Ceuta section(sec. D in Figure 2.4). The time difference between the single sections
is 2 hours. The time moments are referred to the surface elevation at Tarifa (lower
panel). Contour interval is 10 cm s−1. Red and blue shadows highlight outflow and
inflow currents respectively. Yellow line represents the depth of the 38.1 isohaline.
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3.2 Tidal Currents

Figure 3.4: (a-f) Simulated sections of the along-strait current (cm s−1) showing
several phases of a semidiurnal (M2 + S2) tidal cycle during spring tide at the
Camarinal Sill section (sec. B in Figure 2.4). The time difference between the
single sections is 2 hours. The time moments are referred to the surface elevation
at Tarifa (lower panel). Contour interval is 10 cm s−1. Red and blue shadows
highlight outflow and inflow currents respectively. Yellow line represents the depth
of the 37.25 isohaline.
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3.2 Tidal Currents

only a difference of 20˚, i.e. a difference of 40 minutes between the appearing

of the maximum velocity in the upper layer and the appearing of the maximum

velocity in the lower layer. This difference goes up to 60˚ (2h) at the eastern

entrance (Figure 3.5b), where the phase decreases from about 210˚ in the upper

layer to 150˚ in the lower layer.

The S2 tidal current amplitude also decreases of more than 70% from Ca-

marinal Sill to the eastern entrance (Figures 3.8a and 3.7a respectively). At the

eastern entrance the amplitude increases with depth, from the surface to about

250 m, of only 2 cm s−1, remaining constant at 11 cm s −1as far as the bottom

on the southern side. S2 tidal current phase (Figure 9b) decreases from 170˚ to

130˚ in the first 200 m and increasing up to 150˚ at about 350 m, remaining

constant below 350 m to the bottom. At Camarinal Sill the S2 tidal current

amplitude increases from surface to 90 m of about 14 cm s −1, with an increment

that is not uniform along the cross section (maximum values of about 42 cm s −1

are concentrated on the south and north sides), while below 150 m the amplitude

decreases going toward the bottom. Phase (Figure 3.8b) is constant (150˚) from

the surface to the bottom for nearly the whole section.

Figure 3.5: M2 tidal constituent of the along-strait velocity at the eastern section
(sec. D in Figure 2.4). (a) Amplitude in cm −1, contour interval is 2.0 cm −1.
(b) Phase relative to the moon transit at Greenwich in degrees, contour interval is
10˚.
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3.2 Tidal Currents

Figure 3.6: M2 tidal constituent of the along-strait velocity at the Camarinal Sill
section (sec. B in Figure 2.4). (a) Amplitude in cm −1, contour interval is 2.0
cm −1. (b) Phase relative to the moon transit at Greenwich in degrees, contour
interval is 10˚.

Figure 3.7: S2 tidal constituent of the along-strait velocity at the eastern section
(sec. D in Figure 2.4). (a) Amplitude in cm −1, contour interval is 2.0 cm −1.
(b) Phase relative to the moon transit at Greenwich in degrees, contour interval is
10˚.
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3.3 Internal Bore

Figure 3.8: S2 tidal constituent of the along-strait velocity at the Camarinal Sill
section (sec. B in Figure 2.4). (a) Amplitude in cm −1, contour interval is 2.0
cm −1. (b) Phase relative to the moon transit at Greenwich in degrees, contour
interval is 10˚.

3.3 Internal Bore

One of the most important features of the dynamics in the Strait is the pres-

ence of internal bores which are generated over Camarinal Sill and propagate

both eastward and westward (Armi & Farmer (1988)). In Figure 3.9 six se-

quential snapshots, representing a longitudinal salinity section during the spring

tidal period, are shown. Here one can see that, in good agreement with the

two-dimensional, two-layer, hydrostatic model of Izquierdo et al. (2001), the gen-

eration of the eastward propagating internal bore begins with the formation of

an interfacial depression over the western edge of Camarinal Sill, approximately

1.5 hours before high tide at Tarifa, i.e. as soon as the westward barotropic forc-

ing over Camarinal Sill starts weakening and the interface located upstream of

Camarinal Sill is not sustained any more. Subsequently, about 30 minutes before

high tide at Tarifa, the internal bore is released from Camarinal Sill and starts to

travel eastward. The bore is released when the upper layer starts to move toward

east while the lower layer continues to move westward. Its initial length scale, in

the along-strait direction, is about 3 Km and its travel times from Camarinal Sill

to Tarifa, Pta. Cires and Gibraltar sections are 2, 4 and 6 hours, respectively. It

follows that, always in agreement with the two dimensional model of Izquierdo

44



3.3 Internal Bore

et al. (2001), the speed of the bore is about 1.7 m s−1 between Camarinal Sill

and Tarifa sections, 2.5 m s−1 between Tarifa and Pta. Cires sections, and 1.5 m

s−1 between Pta. Cires and Gibraltar sections.

In agreement with Armi & Farmer (1988), a much weaker westward propa-

gating internal bore is also released from Camarinal Sill, just 30 minutes before

the eastward propagating bore reaches Gibraltar-Ceuta section, i.e. 40 minutes

before the low tide at Tarifa.

The amplitude of the eastward propagating bore decreases progressively from

about 100 m on the western edge of Camarinal Sill to about 50 m at the Gibraltar

section. Initially the bore is characterized by two large and steep internal waves

that during the eastward propagation seem to be subject to an amplitude disper-

sion. What actually happens is that the bore, during its eastward propagation,

disintegrates into a train of internal solitary waves (Pierini (1989), Artale & Levi

(1990), Artale et al. (1990), Brandt et al. (1996a)).

The model is not able to reproduce these internal solitary waves since nonhy-

drostatic effects are neglected and the horizontal model resolution is lower in the

eastern part of the domain; however the final effect is the same, since the bore is

in any case dispersed.

The model shows also that the bores are always released from Camarinal Sill

in the course of the fortnight period, even during neap tides.
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Chapter 4

The two-layer approximation

4.1 Interface definition

The most intuitive definition of interface between the Atlantic and Mediterranean

water, in the Strait of Gibraltar, is the one that considers the interface as the

internal surface where velocity changes sign, in other words where the velocity

reduces to zero. Applying this definition to the non-tidal experiment it has been

possible to compute a volume exchange (Figure 4.1) characterized by an inflow

(toward the Mediterranean) and an outflow (toward the Atlantic Ocean) of 0.62

and –0.51 Sv at the Camarinal Sill section (sec. B in Figure 2.4), and of 0.69 and

–0.58 Sv at the Gibraltar-Ceuta section (sec. D in Figure 2.4). Transports were

computed integrating the along-strait velocity first vertically, from the bottom

up to the depth where the along-strait reverts its direction for the outflow, and

from this depth up to the surface for the inflow, and then meridionally, from the

south to north side of the strait:

IN(x) =

∫ y=north

y=south

∫ z=0

z=h(x,y)

u(x, y, z)dzdy (4.1)

OUT (x) =

∫ y=north

y=south

∫ z=h(x,y)

z=bottom

u(x, y, z)dzdy, (4.2)

where u is the along strait velocity, h is the depth of the interface, and x is

the longitude.
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4.1 Interface definition

Figure 4.1: Variation of the eastward (positive values) and westward (negative
values) transports along the strait computed for the cases without tidal forcing for
the two-layer case.

It appears clear that this simple and intuitive method of computation of inflow

and outflow volume transport, is strictly related to the existence of an internal

surface of zero along strait velocity. For this reason this method cannot be used to

determine the volume transport when tidal forcing is included, since, as described

in Section 3.2, the semidiurnal tidal signal is so strong to reverse the inflow or

the outflow during part of each tidal cycle, obscuring the two-layer character of

the mean flow.

Another way of defining the interface between upper and lower layer is by

using an isohaline. For example, Bryden et al. (1994) and Candela et al. (1989)

used respectively the 37.0 and 37.5 isohaline to define the exchange interface over

Camarinal Sill, while Baschek et al. (2001) used the 38.1 isohaline at the eastern

entrance of the strait. The choice of different values for the separating isohaline

has to be ascribed, as it will be discussed in the next Chapter, to the strong

entrainment developing along the strait.

Thus, it emerges that it is incorrect to use a single isohaline as an interface

for the whole strait. For this reason, an alternative definition is used in this

Thesis. Here, the interface is defined as the fortnightly averaged salinity surface

corresponding with the internal surface where the fortnightly averaged along-

strait velocity is zero (Sannino et al. (2004)). The resulting internal salinity

surface obtained in this way is shown in Figure 4.2a. Here it is possible to note
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4.2 Transports

that the salinity interface changes from ∼37.25 psu at Camarinal Sill up to ∼38.1

at the eastern entrance of the strait, in good agreement with value used by Bryden

et al. (1994), Candela et al. (1989) and Baschek et al. (2001).

Figure 4.2: Internal surface salinity interface between the Atlantic and Mediter-
ranean waters and time-averaged salinity difference between upper-layer and lower-
layer for the two-layer case.

4.2 Transports

The salinity interface defined in the previous section can be used to find the time

dependent depth of the internal surface interface between the two layers. Thus, it

is possible to compute the instantaneous upper (ULT ) and lower layer transport

(LLT ) in the whole strait by using the following equations:

ULT (x, t) =

∫ z=north

z=south

∫ z=0

z=h(x,y,t)

u(x, y, z, t)dzdy (4.3)

LLT (x, t) =

∫ z=north

z=south

∫ z=0

z=bottom

h(x, y, t)dzdy, (4.4)
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4.2 Transports

where u is the along-strait velocity and h is the time dependent depth of the

interface.

In Figure 4.3, the computed upper and lower layer transports are shown for

a complete fortnight cycle at three different cross-strait sections: over Camarinal

Sill, Tarifa, and at the eastern entrance of the strait. In agreement with Candela

et al. (1990), the largest amplitude of the instantaneous transport occurs in the

upper layer at the sill, and in the lower layer at the eastern section. The behaviour

of tidal currents noted in Section 3.2 is apparent in the transports: it is clear that

the upper currents have decreasing amplitudes going eastward and reverse their

directions only as far as Tarifa, while the lower currents increase eastward and

reverse their direction everywhere in the strait.

Figure 4.4 show the mean along strait transports, obtained averaging over the

fortnight period the ULT and LLT . From west to east the upper layer transport

ranges from 0.68 Sv to 0.9 Sv, while lower layer transport ranges between –0.5

Sv to –0.75 Sv. At Camarinal Sill the transports are 0.85 Sv and –0.70 Sv for

the upper and lower layer respectively, while at the east entrance they are 0.9 Sv

and –0.75 Sv.

At Camarinal Sill the most accurate estimates of transports from direct mea-

surements are the ones given by Bryden et al. (1994) and, more recently, by

Tsimplis & Bryden (2000). In their computation they considered the vertical

movement of the interface and determined the transport of the upper layer to be

0.72±0.16 Sv and 0.78 Sv respectively, and the transport of the lower layer to be

–0.68±0.15 Sv and –0.67 Sv respectively. At the eastern entrance of the strait the

last most accurate estimates of transports are from Baschek et al. (2001). They

calculated the transports using an inverse model to predict for every instant the

depth of the isohaline 38.1 obtaining an upper layer transport of 0.81±0.07 Sv

and a lower layer transport of –0.76±0.07 Sv. Results of the present study are in

reasonable agreement with all these transport estimates since they lie within the

error bars.

Comparing these transports with the transports computed for the experiment

without tidal forcing (equation 4.1) it emerges that the tidal forcing increases

transport, both in the upper and in the lower layer. It is also interesting to note

that the increment is different between upper and lower layer; in particular, at
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4.2 Transports

(a)

(b)

(c)

Figure 4.3: Sixteen days of computed upper (blue) and lower (red) layer transport
at three different cross-strait section: over Camarinal sill (a), at Tarifa (b) and at
the eastern entrance of the strait (c), for the two-layer case. Sections (a), (b) and
(c) are marked as: B, C and D in Figure 2.4.
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4.3 Hydraulic Control

Figure 4.4: Variation of the eastward (positive values) and westward (negative
values) transports along the strait computed for the cases with tidal forcing for the
two-layer case.

Camarinal Sill is 37% for the upper layer and 34% for the lower layer, while at

the eastern entrance the increment is 28% and 29% for the upper and lower layer

respectively.

4.3 Hydraulic Control

As already presented in the introduction, for a two-layer flow the hydraulic control

occurs when:

G2 ≡ F 2
1 + F 2

2 = 1, (4.5)

with

F 2
i =

u2
i

g′hi

, (4.6)

where G2 is the composite Froude number, F 2
i represents the internal Froude

number for the i-th layer with i = 1, 2 (1 for the upper layer and 2 for the lower

layer), whose velocity and thickness are ui and hi respectively, g′ = g(ρ2 − ρ1)/ρ2

is the reduced gravity, and ρi is the layer density.

In order to identify regions where the flow is hydraulically controlled in the

two-layer approximation, the instantaneous internal Froude numbers for the up-

per and lower layer, as well as the composite Froude number is evaluated. In
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4.3 Hydraulic Control

particular layer velocities and densities, necessary to compute the internal Froude

numbers, are computed by averaging the along-strait velocity and density from

the surface to the internal interface depth for the upper layer, and from the

interface depth down to the bottom for the lower layer. The resulting maps,

showing the frequency of occurrence, over the fortnight period, of supercritical

Froude numbers for the upper layer (F 2
1 > 1), for the lower layer (F 2

2 > 1) and

the composite Froude number (G2 > 1) are shown in Figure 4.5. Looking at

G2 the flow is supercritical over Camarinal Sill and along the north and south

coast both west and east of the Sill; in particular both internal Froude numbers

contribute to reach the supercritical regime in those regions. The flow is super-

critical also on the northern boundary of Tangier basin, but in this case it is only

the Froude number of the lower layer that contributes to the criticality. None

of the previously described supercritical regions is permanent, in fact the maxi-

mum frequency of about 70% is reached only on the northern and southern side

of Camarinal Sill. The above described supercritical composite Froude number

pattern is in good agreement with that computed by Izquierdo et al. (2001) and

Brandt et al. (2004) by means of a two dimensional two-layer model.

Figure 4.5: Maps of the frequency of occurrence of supercritical internal Froude
numbers for the (a) upper-layer, (b) lower-layer and (c) Composite Froude number
for the two-layer case.

Over Camarinal Sill the control is achieved two times for each semidiurnal pe-

riod: the flow is controlled during the rising water at Tarifa then the control is lost
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4.3 Hydraulic Control

and recovered again during the subsequent descending tidal phase (Figure 4.6).

It is interesting to note the complete absence of a supercritical region extend-

ing over any entire cross-section within Tarifa Narrow for the two-layer case. This

is the clear indication that, in this case, the exchange regime through the strait

is always predicted to be submaximal.
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Chapter 5

The three-layer approximation

5.1 Interfacial layer definition and characteris-

tics

As suggested by Bray et al. (1995), we use the upper and lower limit of the

halocline to define the interfacial layer. However a different quantitative method

for dividing all salinity profiles into Atlantic layer, interfacial layer, and Mediter-

ranean layer has been used. In this work salinity profiles are fitted with an hyper-

bolic tangent. The upper and lower bounds of the interfacial layer are identified

as the intersections of the tangent at the flex of the hyperbolic tangent with two

vertical lines passing respectively through the simulated salinity at surface and at

the deepest salinity (defined as the arithmetic mean between the deepest simu-

lated salinity, and the deepest fitted salinity). In order to quantitatively measure

the fit quality of all salinity profiles, the amount of variance that is explained by

the hyperbolic tangent fitting was computed as:

fq ≡

1−

∑
k

(
Sk − Ŝk

)2

∑
k

(
Sk − S̄k

)2

× 100 (5.1)

where k represents the model vertical levels, Sk is the simulated salinity, Ŝk

is the fitted salinity and S̄ is the arithmetic mean of the profiles. Only salinity

profiles with a fit quality > 98% are retained; that however represent more than
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5.1 Interfacial layer definition and characteristics

80% of the available salinity profiles (about 3000). The mean fit quality value

obtained averaging over the entire set of retained salinity profiles is about 99.5%.

As example, four different salinity profiles, and the respective fitted curves are

shown in Figure 5.1.

Figure 5.2 shows the time-averaged thickness of the three layers together with

the depth of the midpoint of the interfacial layer. The thickness of the Atlantic

layer is characterized by a positive north-south gradient, more intense in the

region to the west of Camarinal Sill, where the thickness ranges from 30 m up

to 120 m. Along Tarifa Narrow the thickness presents a value of about 40 m,

decreasing to 20 m at the eastern end of the strait. It is evident that the Atlantic

layer is strongly influenced by Camarinal Sill, in fact the thickness almost halves

its value crossing the sill. In accordance with the bathymetric gradient, the

thickness of the Mediterranean layer is characterized by a negative along-strait

gradient going from the eastern end of the strait towards Camarinal Sill, with a

decrease of the thickness along Tarifa Narrow from 800 m to about 80 m. On the

western side of the strait, instead, the Mediterranean layer is very shallow with a

thickness of about 100 m along the Tangier basin. The interfacial layer thickness

has a relative minimum of about 120 m over Camarinal Sill and a maximum of

180 m just west of it along Tangier Basin; a north-south gradient is evident both

to the west and to the east of the sill. This pattern is reflected in the depth

of the midpoint of the interfacial layer which presents a north-south gradient

throughout the entire strait that is more intense east of Camarinal Sill. Here the

values range from about 180 m in Tangier Basin to 40 m on the north coast, while

in Tarifa Narrow the values range from about 120 m on the south to 40 m on the

north.

Comparison with the results of Bray et al. (1995) shows a general agreement

for the midpoint depth of the interfacial layer, while differences are evident both

in the magnitude and pattern of the interfacial layer thickness. Bray et al. (1995)

shows a thickness that is everywhere lower than the simulated one, with an along-

strait gradient to the east of Camarinal Sill that is not present in our simulation,

and lower values on the western side of Camarinal Sill, along the Tangier Basin.

These discrepancies can be mainly attributed to the fact that the analysis of Bray

et al. (1995) does not take tidal variability into account explicitly, while in this
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Figure 5.1: Comparison of the simulated (solid lines) with fitted (dashed lines)
salinity profiles. The tangent to the flex of the hyperbolic tangent and the two
horizontal lines indicating the upper and lower bound of the interfacial layer are
also plotted.
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5.1 Interfacial layer definition and characteristics

Figure 5.2: Time-averaged Atlantic-layer, interfacial-layer and Mediterranean-
layer thickness, and depth of the midpoint of the interfacial layer as simulated by
the numerical model.
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5.1 Interfacial layer definition and characteristics

Thesis simulated data from an entire fortnight tidal cycle are used, and secondly

to the fact that here it is used a different method to define the upper and lower

bounds of the interfacial layer.

That tidal forcing strongly affects the interfacial layer thickness may be clearly

observed comparing Figure 5.2 and Figure 5.3a where the interfacial layer thick-

ness, computed for the non-tidal experiment, is plotted. It appears evident that

for the tidal experiment a general increase in thickness of about 50 m is present

throughout all the strait. On the contrary no differences are present in the mid-

point depth of the interfacial layer for the non-tidal (Figure 5.3b) and tidal ex-

periments.

(a) (b)

Figure 5.3: (a) Interfacial-layer thickness, (b) and depth of the midpoint of the
interfacial layer as simulated by the numerical model for the non-tidal simulation.

Temporal variation of the interfacial layer thickness for the main experiment

may be observed in Figure 5.4, where the interfacial layer thickness is plotted as

a function of longitude and time. Values are referred to section E (see Figure

2) and cover an entire day during neap tide (Figure 5.4a) and during spring

tide (Figure 5.4b). Figure 5.4b shows that the maximum variability is confined

in Tarifa Narrow, where a maximum of about 200 m starting from Camarinal

Sill, propagates towards east, in accordance with the eastward propagating bore.
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5.1 Interfacial layer definition and characteristics

On the contrary, on the western side of the strait the interfacial layer thickness

remains almost constant. It is noteworthy that during neap tide (Figure 5.4a),

while the thickness on the western side of the strait is almost equal to that

obtained for spring tide, the interfacial layer thickness variability in Tarifa Narrow

is clearly reduced and maximum values does not exceed 150 m.

(a) (b)

Figure 5.4: Frequency of occurrence of supercritical first mode, second mode, and
simultaneous first and second internal modes over the fortnight period.

The time-averaged salinity of the three layers together with the time-averaged

salinity difference between Atlantic layer and Mediterranean layer are shown in

Figure 5.5. In the Atlantic layer the salinity slowly increases from 36.3 at the

western end of the strait up to 36.4 at the eastern end of the strait. This is an

indication of entrainment of saltier water coming from the underlying Mediter-

ranean water. Conversely in the Mediterranean layer salinity decreases from the

eastern end of the strait toward the western end indicating in this case entrain-

ment from the above Atlantic water. The time-averaged salinity of the interfacial

layer is characterized by values between 37.3 and 37.4 along the strait, with a

minimum of less than 37.2 at Camarinal Sill. Moreover, the time-averaged salin-

ity difference between Atlantic layer and Mediterranean layer is found to have
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5.2 Transports

an almost constant value between 1.9 and 2.0 throughout the strait, except over

Camarinal Sill where a local minimum of about 1.8 is reached. This is the clear

indication that the time-averaged mixing in that region is stronger than in the

other regions of the strait in agreement with Wesson & Gregg (1994).

Finally, the time averaged along-strait Atlantic layer, interfacial layer and

Mediterranean layer velocities are depicted in Figure 5.6. The Atlantic layer

velocity is always positive, with an absolute maximum of about 1 m s−1, reached

in the eastern part of the strait, and a relative maximum, higher than 0.5 m s−1,

just west of Camarinal Sill. The Mediterranean layer only shows negative values

with the largest velocities of about 1.0 m s−1 along the Tangier Basin, just to the

west of Camarinal Sill. It is interesting to note that only the interfacial layer is

characterized by both positive and negative velocities, that can reach 0.5 m s−1.

The velocity pattern is divided in two parts by Camarinal Sill: a western side

where velocities are toward west and an eastern part where they are everywhere

directed toward east.

5.2 Transports

The instantaneous Atlantic layer transport (ALT ), interfacial layer transport

(ILT ) and Mediterranean layer transport (MLT ) for each model cross-section

within the strait, have been computed by using the following equations:

ALT (x, t) =

∫ z=north

z=south

∫ z=0

z=HU (x,y,t)

u(x, y, z, t)dzdy (5.2)

ILT (x, t) =

∫ z=north

z=south

∫ z=HU (x,y,t)

z=HL(x,y,t)

u(x, y, z, t)dzdy (5.3)

MLT (x, t) =

∫ z=north

z=south

∫ z=HL(x,y,t)

z=0

u(x, y, z, t)dzdy, (5.4)

where u is the along-strait velocity component, and HU , HL represent the

instantaneous depths of the upper and lower bounds of the interfacial layer re-

spectively. The resulting transports, over the fortnight period, are shown in Fig-

ure 5.7, for three different cross-strait sections located at Gibraltar, Tarifa and
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5.2 Transports

Figure 5.5: Time-averaged Atlantic-layer salinity, Mediterranean-layer salinity,
interfacial-layer salinity and difference between the time-averaged salinity of the
Mediterranean-layer and the time-averaged salinity of the Atlantic-layer.
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5.2 Transports

Figure 5.6: Time-averaged Atlantic-layer, interfacial-layer and Mediterranean-
layer velocity as simulated by the numerical model.

Camarinal Sill. It is interesting to note that ILT reaches values comparable both

with ALT and MLT , contributing to transport mixed Atlantic-Mediterranean

water alternatively in both directions. Moreover, the interfacial layer transport

exhibits a large along-strait variability, since its range increases, during spring

tide, from about 1.5 Sv at Gibraltar to 4 Sv at Camarinal. The Atlantic layer

carries water principally toward east, with a small fraction of the transport cycli-

cally directed in the opposite direction. On the contrary, the MLT is directed

toward west at Camarinal Sill while at Tarifa and Gibraltar it represents the

principal contribution both westward and eastward.

The time-averaged along-strait transports for the three layers exhibit other

interesting features (Figure 5.8). A substantial fraction of the total transport

occurs in the interfacial layer, in particular in the eastern part of the strait the

transport in the interfacial layer is 0.2 Sv higher than that in the Atlantic layer,

and contributes to carry water toward east. At the western end, the time-averaged

transport in the interfacial layer is directed toward west contributing only for

about 0.1 Sv. The transition occurs at the sill, where the net interfacial layer

transport reduces to zero, reflecting the velocity behaviour (Figure 5.6). Within

the Atlantic layer, the eastward transport monotonically decreases toward the

east end of the strait, almost halving its initial value of 0.65 Sv. The MLT is
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5.2 Transports

(a)

(b)

(c)

Figure 5.7: Time dependent Atlantic-layer (blue line), interfacial-layer (green
line), and Mediterranean-layer (red line) transports at (a) Gibraltar, (b) Tarifa
and (c) Camarinal Sill computed for the three-layer case.
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5.2 Transports

always directed toward west, loosing about 30% of its initial value of 0.75 Sv

going from the eastern to the western end of the strait; in this case the transport

undergoes a sudden decrease in the sill region, coincident with the sudden increase

of the interfacial layer transport. The general behaviour of the transport in the

three layers is comparable with that shown in the analogous figure by Bray et al.

(1995), even if the magnitudes are slightly less.

In order to estimate the along-strait time-averaged two-way transports the

algebraic sum of the three instantaneous transports has been evaluated (Fig-

ure 5.9). The eastward transport decreases from 0.62 Sv at the western end of

the strait to its minimum of 0.52 Sv near Camarinal Sill, and then increases,

reaching a value of 0.8 Sv at Tarifa, that remains practically constant till the

eastern end of the strait. The westward transport shows the same behaviour but

with slightly smaller values, determining a constant net eastward transport of

about 0.1 Sv throughout the strait. This net transport is equivalent to an excess

of evaporation, averaged over the entire Mediterranean Sea, of about 0.69 m yr-1.

This value is in good agreement with the experimental estimates of 0.55 m yr-1

and 1 m yr-1 by Bryden & Kinder (1991) and Bethoux (1979) respectively.

Figure 5.8: Along-strait time-averaged Atlantic-layer (solid line), interfacial-layer
(dashed-dotted line), Mediterranean-layer (dashed line) transports. The location
of Camarinal Sill is marked by the vertical solid line.

In Figure 5.8, it has been shown that the time-averaged transport in the in-

terfacial layer increases from the Atlantic to the Mediterranean Sea. This large
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5.2 Transports

Figure 5.9: Along-strait time-averaged eastward (solid line), westward (dashed
line), and net (dashed-dotted line) transports computed for the three-layer case.
The location of Camarinal Sill is marked by the vertical solid line.

variation in the horizontal transport can be interpreted in terms of vertical ex-

changes between layers. Temporal variations of the along-strait vertical exchange

between Atlantic layer and interfacial layer, and between interfacial layer and

Mediterranean layer, during spring tide, are shown in Figure 5.10 (note that neg-

ative values represent downward fluxes while positive values represent upward

fluxes). These fluxes have been computed as the instantaneous differences of the

horizontal transports between two adjacent model cross-sections. The vertical ex-

change between Atlantic layer and interfacial layer shows two distinct behaviours

east and west of Camarinal Sill. From the Sill to the western end of the strait

the exchange oscillates regularly between positive and negative values reaching

0.15 and −0.25 Sv respectively; on the contrary, to the east of Camarinal Sill is

present a downward flux propagating toward east within Tarifa Narrow, in ac-

cordance with the internal eastward propagating bore. At the eastern end of the

strait the downward flux reaches 0.45 Sv, while the upward flux reduces to 0.05

Sv. The vertical exchange between the interfacial layer and the Mediterranean

layer exhibits a similar behaviour, with generally higher values of the upward

and downward fluxes (the upward flux reaches values up to 0.7 Sv at the eastern

end of the strait). The instantaneous unbalance of the magnitude of the verti-

cal exchange between the interfacial layer and the two other layers can be used

to explain the time variability of the interfacial thickness shown in Figure 5.4b,
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5.2 Transports

where it has been observed a maximum of about 200 m generated over Camarinal

Sill and propagating toward east. The previous vertical exchange description is

also valid during neap tide, but in this case the vertical exchanges are reduced

by almost a factor of two.

Figure 5.10: Exchange between (a) Atlantic-layer and interfacial-layer and be-
tween (b) interfacial-layer and Mediterranean-layer as a function of longitude and
time during an entire day corresponding to spring tide (day 10). Negative values
represent downward fluxes while positive values represent upward fluxes. Simulta-
neous tidal elevation at Camarinal Sill is also shown. The location of Camarinal
Sill is marked by the vertical solid line.

Since the downward flux from the Atlantic layer and the upward flux from the

Mediterranean layer are not instantaneously balanced, the interfacial layer does

not behave as a simple permeable layer, but as an active layer that is able to

horizontally transport the water masses coming from Atlantic layer and Mediter-

ranean layer.

In order to describe in detail the flow transfer between layers, a schematic

representation of the horizontal and vertical transports along the strait is shown
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5.3 Hydraulic Control

in Figure 5.11. Here the horizontal transport in each layer is presented together

with the vertical flux from the Atlantic layer and the Mediterranean layer (depth

of the upper and lower bounds of the interfacial layer along section E are also

shown). Times are chosen to describe the semidiurnal cycle during spring tide.

At low water at Tarifa, transports in the three layers are all eastward directed.

A strong downward flux from the interfacial layer to the Mediterranean layer is

present to the east of the sill so that, in the subsequent hours, the interfacial

layer becomes thinner; on the western side of the sill, instead, during the rising

tidal phase, the interfaces between the layers increase their slope, with an evident

growth of the Atlantic layer thickness. Six hours before high water, the flow in

the Mediterranean layer veers toward west while the transport in the two other

layers is decreasing. At high water, the Atlantic layer east of the sill is very thin,

and almost all the horizontal transports are westward directed. The decreasing

tidal phase is characterized in the Atlantic layer by a bore that starting from

Camarinal Sill propagates toward east along Tarifa Narrow.

5.3 Hydraulic Control

In this Section the time evolution of the hydraulic control in the three-layer

framework is explored. In particular the three-layer hydraulic theory proposed

by Smeed (2000) to study the hydraulic control variability in the strait of Bab

al Mandab is applied. In the theory proposed by Smeed the fluid is assumed to

be Boussinesq, hydrostatic, inviscid, steady and each layer is characterized by a

uniform density and velocity (similar assumptions were used for the developing

of the two-layer hydraulic theory). In a three-layer flow with a rigid lid there are

two possible internal wave modes and each of them can be subcritical, critical,

or supercritical. Each internal mode has two phase speeds; if they have opposite

signs the wave can propagate both upstream and downstream and the mode is

said to be subcritical, while if they have the same sign, or one of them is zero, the

wave can only propagate in one direction and the mode is said to be supercritical.

The first internal mode is characterized by displacements of the two interfaces

that are in phase and it corresponds, in first approximation, to the mode that
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5.3 Hydraulic Control

would arise in a two-layer system, while the second internal mode is characterized

by 180˚ out of phase displacements of the interfaces (Pratt et al. (1999)).

According to the three-layer hydraulic theory proposed by Smeed (2000) the

condition for the flow to be critical with respect to one or both of the modes is:

det (M) = h2
[
F 4

2 −
(
r − F 2

1 − F 2
2

) (
1− r − F 2

2 − F 2
3

)]
= 0, (5.5)

where F 2
i = u2

i /g
′hi is the Froude number for the i-th layer with i = 1, 2, 3

(1 for the Atlantic layer, 2 for the interfacial layer, and 3 for the Mediterranean

layer), r = (ρ2 − ρ1)/(ρ3 − ρ1), and h is the total depth. Here ui, ρi are the

vertically averaged along-strait velocity and density for the i-th layer, hi is the

depth of the i-th layer, and g′ = g′1 + g′2 with g′i = g (ρi+1 − ρi)/ρ̄, where ρ̄

represent the mean density. Moreover, it has been shown by Lane-Serff et al.

(2000) that at a control it is the first mode to be critical if F 2
1 +F 2

2 > r while the

second mode appears to be critical if F 2
1 + F 2

2 < r.

In Figure 5.12, maps of the frequency of occurrence, over the fortnight pe-

riod, of the two supercritical modes are presented. Regions where the first in-

ternal mode is supercritical are confined along the Tarifa Narrow, starting from

Camarinal Sill, and in some scattered areas close to the northern coast west of

Camarinal. Along the Tarifa Narrow the frequency increases in the north-east

direction reaching its maximum value of 100%, corresponding to a permanent

supercritical region, only in a small region around Gibraltar. At Camarinal Sill

the supercritical region does not extend over the whole width of the strait and

appears only for 20% of the total time, corresponding to about three days over

the entire fortnight period. The second internal mode is supercritical in a small

region over Camarinal Sill, that does not extend over the whole width of the

strait. The maximum frequency of 20% is reached over the shallower part of the

sill. A second supercritical region is present over Spartel Sill where, however,

the frequency is limited to only 10%. Finally both modes are simultaneously

supercritical, in the same position, only in some scattered regions limited to the

western side of the strait, and in particular close to the north and south coast

near Camarinal. Here the maximum frequency reached is of about 20%.
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5.3 Hydraulic Control

Figure 5.12: Frequency of occurrence of supercritical first mode, second mode,
and simultaneous first and second internal modes over the fortnight period.

The model reproduces most of the features found by Armi & Farmer (1985)

and Armi & Farmer (1988). It predicts the presence of episodic controlled regions

over Spartel and Camarinal Sill, but, in contrast with them, our model does

not predict the existence of controls to the west of Spartel Sill, as well as of a

permanent control within Tarifa Narrow. In fact, as shown in Figure 5.12, the

model predicts a permanent control, due to the first internal mode, only in a

limited region close to Gibraltar and not in the whole cross section. In the rest of

Tarifa Narrow the hydraulic control has the characteristics of a moving hydraulic

control that is locked in phase with the eastward bore propagation. It reaches its

minimum extension during high tide at Tarifa and its maximum extension during

low tide. At Camarinal Sill the model reproduces the tidally-induced periodic loss

and subsequent renewal of the control that occurs two times for each semidiurnal

cycle (Figure 5.13). During rising water at Tarifa the control at Camarinal, due

to both the first and second internal modes, is well developed over the entire

cross-section; during the subsequent descending phase the control is initially lost

and then recovered, mainly due to the contribution of the first internal mode,

and lost again at low tide.

While the previous description is useful in identifying the regions within the

strait where the flow is controlled, a complete understanding of the hydraulic
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5.3 Hydraulic Control

(a)

(b)

(c)

(d)

Figure 5.13: Variation of the supercritical region over a fortnight period and in
the across-strait direction at Camarinal Sill due to (a) the first internal mode, (b)
the second internal mode and (c) both the internal modes. The regions where the
flow is supercritical are shaded. In the lower panel (d) the tidal elevation at Tarifa
is plotted.

regimes, in terms of maximal or submaximal exchange, can only be achieved

by exploring the simultaneous presence of supercritical flow regions through the

strait. This is done in Figure 5.14, where in the light of the previous findings, anal-

ysis is restricted to the region over Camarinal Sill and the region of Tarifa Narrow.

Bars in panels 5.14a and 5.14b of the figure indicate the presence of supercritical

regions, covering the whole cross-section of the strait, in Tarifa Narrow and over

Camarinal Sill, respectively. Comparison of Figure 5.14a and Figure 5.14b shows

that the flow exchange exhibits intermittent maximal regimes (see black bars in

Figure 5.14c). Maximal exchange is achieved intermittently during the entire

fortnight period. Its frequency increases from 2 times per day during neap tide to

6 times per day during spring tide. Adding all the maximal exchange periods we

find that the flow through the strait is in a maximal exchange regime for about

20% of the total fortnight period.
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5.4 Three-layer vs Two-layer approximation

5.4 Three-layer vs Two-layer approximation

The first difference emerging by comparing the three-layer and the two-layer

approximation is that the two-layer system, as it is divided by a single salinity

surface, produces a time-averaged upper layer salinity substantially higher and

a lower layer salinity substantially lower than that obtained for the same layer

in the three-layer system. In fact, salinity differences between the upper and

lower layers do not exceed 1.6 for the two-layer case (Figure 4.2), while for the

three-layer case a value of about 2.0 is reached (Figure 5.6).

About transports, Figure 4.4 in Section 4.2 can be compared with Figure 5.9

that has been evaluated in the three-layer framework. As expected, the net

transport is unchanged in the two calculations. The transports at the eastern

end of the strait are almost the same for the two approximations, while it is

evident the difference in both the eastward and westward transports over the

region around Camarinal Sill. In particular the minimum eastward transport

west of the sill increases from 0.52 Sv to more than 0.70 Sv in the two-layer

approximation, furthermore the transport increases rapidly toward the western

end of the strait reaching the value of about 0.8 Sv, instead of 0.62 Sv that is the

value obtained for the three-layer case.

These large differences in the along-strait horizontal transport in the western

part of the strait, and in particular over Camarinal Sill, is due to the fact that in

the three-layer approximation the net transport of the intermediate layer does not

contribute to the total two-way transports, while in the two-layer approximation

the fraction of instantaneous transport of the intermediate layer is almost equally

distributed in both the upper and lower layers.

It has been shown in Section 4.3 that over Camarinal Sill, for the two-layer

approximation, the control is achieved two times for each semidiurnal period: the

flow is controlled during the rising water at Tarifa then the control is lost and

recovered again during the subsequent descending tidal phase (Figure 4.6). A

similar general behaviour has been found also for the three-layer approximation

(Figure 5.13) even if some significant differences come forth: for the two-layer

case the control extends cyclically over the whole cross section only for about 8

days, from day 7 to day 15, while for the three-layer case the control extends
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5.4 Three-layer vs Two-layer approximation

through the entire cross-section cyclically over the entire period, moreover, for

the two-layer case the control holds over Camarinal Sill for a time interval that

is always less than the corresponding time-interval found in the three-layer case.

Always in Section 4.3 it has been pointed out the complete absence of a su-

percritical region extending over any entire cross-section within Tarifa Narrow,

for the two-layer case. Control variability within Tarifa Narrow found in the

three layer approximation is completely different, in fact in this case a perma-

nent supercritical region is present near the northern coast at Gibraltar extending

cyclically over the entire cross-strait section. Furthermore, looking at the simul-

taneous presence of controlled regions both at Camarinal Sill and Tarifa Narrow

for the three-layer case, our results reveal that the exchange through the strait of

Gibraltar switches cyclically between maximal and submaximal, with a frequency

increasing from 2 times per day during neap tide to 6 times per day during spring

tide.

76



Chapter 6

Conclusions and Discussion

The two-layer approximation is generally used to describe both the exchange and

hydraulics within the Strait of Gibraltar. However, analyzing experimental data

from the Gibraltar Experiments, Bray et al. (1995) have shown the presence of

an active interfacial layer suggesting, in the final remarks, the use of a model

that incorporates an interfacial layer of finite thickness between the Atlantic and

Mediterranean layers. One of the aims of this Thesis has been the developing of

a three-dimensional numerical model ables to reproduce this interfacial layer, in

order to investigate the effect of tidal forcing on the hydrological and physical

properties of this layer. Moreover this Thesis has been devoted to evaluate the

differences on both the hydraulics and transports of the exchange flow when the

‘classical’ two-layer or the three-layer approximation, that takes in to account the

interfacial layer, are applied.

The three-dimensional model used in this Thesis can be considered as the

natural improvement of the three-dimensional models developed by Wang (1989,

1993). It is the parallel version (Sannino et al. (2005)) of the Princeton Ocean

Model (POM) developed by Blumberg & Mellor (1987) in the configuration im-

plemented by Sannino et al. (2004). The model grid has a non uniform horizontal

spacing; horizontal resolution is maximum in the strait, where it is less than 500

m, while at the eastern end (Alboran Sea) and western end (Gulf of Cadiz) it

reaches 10-20 km and 8-15 km, respectively. The vertical grid is made of 32

sigma levels, logarithmically distributed at the surface and at the bottom. Ini-

tial temperature and salinity fields are derived from climatological data sets for
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the spring period: MODB for the Mediterranean side of the model domain and

Levitus (1982) for the Gulf of Cadiz. A significant aspect of this model is that it

takes into account the effect of entrainment and mixing since it resolves the verti-

cal sub-grid scale turbulence by prognostic equations for the turbulence velocity

and length scale (Ezer (2005)). The model is forced at the two open boundaries

through the specification of the surface elevation that is characterized by the two

principal semidiurnal harmonics: M2 and S2. The main experiment analyzed in

this work simulates an entire tidal fortnight period.

The validity of this numerical model has been tested by comparing the ob-

served and simulated amplitude and phase of the two semidiurnal tidal compo-

nent, both for the tidal elevation and the semimajor tidal ellipse for the currents.

It has been shown that model results are in good agreement with the observed

tidal elevation amplitudes and phases. The model reproduces all the known fea-

tures of the spatial structure of both the M2 and S2 tidal components: a decrease

of more than 50% in amplitudes and slight variations in phases along the strait, a

prevailing propagation of phases southwestward, and nearly constant amplitude

ratios and phase differences between the M2 and S2 tidal elevations throughout

the strait. At the same time the model has revealed a distribution of amplitude

and phase in the region of Camarinal Sill (both for the M2 and S2) that is dif-

ferent from the empirical cotidal chart presented by Candela et al. (1990). The

predicted semimajor axis as well as amplitude and phase of the along-strait ve-

locities are quantitatively and qualitatively in good agreement with all available

observed data. The simulated eastward and westward internal bores are also in

agreement with available data as well as the internal bore speeds in different sec-

tions of the strait coincide with those estimated by Izquierdo et al. (2001) who

used a completely different model.

In this Thesis it has been shown that the model implemented is also able

to reproduce an interfacial layer with time-averaged characteristics substantially

similar to that found by Bray et al. (1995). The thickness (Figure 5.2) is char-

acterized by an almost constant value of about 120 m throughout Tarifa Narrow

as far as Camarinal Sill and about 160 m along Tangier Basin. A maximum of

about 200 m is present just west of Camarinal Sill. The depth of the midpoint of

the interfacial layer presents a north-south gradient throughout the entire strait
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that is more intense east of Camarinal Sill. Here the values range from about

180 m in Tangier Basin to 40 m on the north coast, while in Tarifa Narrow the

values range from about 120 m on the south to 40 m on the north. Model results

also show that the interface layer thickness is strongly affected by tide, with an

increase of the time-averaged value of about 50 m in the tidal experiment respect

to the non-tidal one. The maximum tidal variability is confined in Tarifa Nar-

row, where a maximum of about 200 m propagates towards east, starting from

Camarinal Sill, in accordance with the eastward propagating bore (Figure 5.4).

Model results have confirmed that the interfacial layer has to be considered an

active layer since it is able to carry a substantial fraction of the total transport.

Figure 6.1 summarizes the time-averaged transport both in the horizontal and

vertical direction. Here the time-averaged upper and lower bounds of the inter-

facial layer for the along-strait section E (see Figure 2.4) are plotted. While the

Atlantic layer is characterized everywhere by an inflow and the Mediterranean

layer by an outflow, the interfacial layer is split in two parts with an inflow in the

eastern part of the strait and an outflow in the western part of the strait. Over

Camarinal Sill there is no transport in the interfacial layer. On the west end of

the strait most of the total transport is carried by the Mediterranean layer with

a value of about 0.4 Sv, while the interfacial layer contributes for only 0.1 Sv.

On the eastern end the interfacial layer transport is about 0.2 Sv higher than the

Atlantic layer. The large differences in horizontal transports along the strait evi-

dent in Figure 6.1 can be interpreted as due to vertical exchanges between layers.

Everywhere along the strait the exchange is directed into the interfacial layer.

The exchange between the Mediterranean layer and the interfacial layer shows

a maximum over Camarinal Sill, while it decreases both in the western and the

eastern part. The exchange between the Atlantic layer and the interfacial layer

slowly decreases from the western to the eastern end.

From the model results it also emerges also that the transports at the eastern

end of the strait are almost the same for the two approximations, while it is evi-

dent the difference in both the eastward and westward transports over the region

from Camarinal Sill toward west. In fact, in the three-layer approximation, the

minimum over the sill is deeper and extends till the western end of the strait. The

large differences in the along-strait horizontal transport in the western part of the
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strait, is due to the fact that in the three-layer approximation the net transport

of the intermediate layer does not contribute to the total two-way transports,

while in the two-layer approximation the fraction of instantaneous transport of

the intermediate layer is almost equally distributed in both the upper and lower

layers.

0
.1

S
v

1.0 Sv

Figure 6.1: Time-averaged along-strait (sec. E in Figure 2.4) variations in trans-
ports and interface structure. Solid lines outline the time-averaged upper and lower
bounds of the interfacial layer. Horizontal arrows are scaled to indicate the magni-
tude of the transport in each layer at the various sections along the strait. Vertical
arrows are scaled to indicate the magnitude of the vertical transport between the
interfacial layer and the Atlantic and Mediterranean layers.

The time evolution of the hydraulic control, using the three-layer hydraulic

theory proposed by Smeed (2000), has been presented and compared with results

from the two-layer hydraulic theory. In the three-layer approximation, the model

predicts a permanent supercritical region, due to the first internal mode, in a

limited region close to Gibraltar (Figure 5.12) and regions in Tarifa Narrow con-

trolled only cyclically. Moreover at Camarinal Sill the three-layer approximation

predicts a tidally-induced periodic loss and subsequent renewal of the control that

occurs two times for each semidiurnal cycle. In this approximation the flow in
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the strait is in a maximal exchange regime on about 20% of the total fortnight

period. Despite the two-layer approximation predicts a control over Camarinal

Sill with a general behaviour similar to the three-layer approximation, it does

not predict any controlled region extending over the whole cross section in Tarifa

Narrow, and, as a consequence, it predicts always a submaximal exchange for the

strait. These conclusions could appear in contrast with previous experimental

studies (see for example Armi & Farmer (1985); Armi & Farmer (1988)); in fact,

using a two-layer approach, they predicted a control variability more similar to

that found in this study using the three-layer approximation than that found

with the two-layer approximation. This apparent inconsistency is essentially due

to the fact that the previous studies did not take into account the vertical, and

in some case also horizontal, variation of the hydrological and physical properties

in computing the composite Froude Number. For example, in the experimental

study by Armi & Farmer (1988) they used, for the western part of the strait, 2σθ

units of density as pycnocline step and as velocity the nearby current meter value

within the layer of interest, while at the eastern end they used as interface σθ = 28

and as velocity the value present at mid-depth of each layer. In both cases the

velocity used to compute the Froude numbers cannot be properly considered as

representative of two homogeneous layers, implying a general overestimation of

the layer velocity and consequently an overestimation of the Froude numbers.

For continuously stratified flows, Pratt et al. (2000) suggested that a necessary

condition for a flow to be supercritical is to reach a Richardson number less than

0.25 somewhere in the water column. Applying this criterion to the model results

we have identified regions where the Richardson number, defined as:

Ri = −g

ρ

∂ρ

∂z

(
du

dz

)−2

, (6.1)

satisfies this condition (Figure 6.2). In agreement with the results obtained

from the three-layer hydraulic theory, the Richardson number is less than 0.25

not only in the region of CS but also in TN. Moreover from Figure 6.2 appears

clear that in TN the critical Richardson number moves together with the east-

ward propagating bore with critical Richardson number also in the wake of the
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bore. Even if this criterion is not sufficient to prove that the flow is supercriti-

cal it represents, however, a further indication on the validity of the three-layer

hydraulic theory.

Nevertheless it is necessary to stress that for a complete understanding of

the hydraulic regime within the Strait of Gibraltar a new hydraulic theory, ac-

counting for the continuously stratified properties of the flow, friction, departure

from hydrostatics, rotation, time dependence, mixing and entrainment, should be

developed.
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(a)

(c)

(b)

(d)

(f)
(e)

Figure 6.2: (a)-(d) Four velocity fields along the longitudinal section (f) during
spring tide. Triangles mark the position where the flow reaches a Richardson
number less than 0.25. The times of the individual snapshots are marked on the
tidal elevation at Tarifa (panel (e)).
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Hsü, K., Ryan, W. & Cita, M. (1973). Late miocene dessication of the

mediterranean. Nature, 242, 240244. 1

Izquierdo, A., Tejedor, L., Sein, D.V., Backhaus, J.O., Brandt, P.,

Rubino, A. & Kagan, B.A. (2001). Control variability and internal bore

evolution in the strait of gibraltar: a 2-d two-layer model study. Estuarine,

Coastal and Shelf Science, 53, 637–651. 12, 13, 16, 17, 44, 53, 78

Kantha, L. (1995). Barotropic tides in the global oceans from a nonlinear tidal

model assimilating altimetric tides. part 1: Model description and results. J.

Geophys. Res., 100, 25283–25308. 31

Kantha, L., Desai, S., Lopez, J., Tierney, C., Parke, M. & Drexler,

L. (1995). Barotropic tides in the global oceans from a nonlinear tidal model

assimilating altimetric tides. part 2: Altimetric and geophysical implications.

J. Geophys. Res., 100, 25309–25317. 31

Kinder, T. & Bryden, H. (1987). 1985-1986 gibraltar experiment: Data col-

lection and preliminary results. EOS , 68, 786–787. 8

Kinder, T. & Bryden, H. (1988). Gibraltar experiment: Summary of the field

program and initialresults of the gibraltar experiment. Tech. Rep. Whoi-88-30,

Woods Hole Oceanographic Institution. 8

Knudsen, M. (1899). De hydrografiske forhold i de danske farvande indefor

skagen i 1894-98. Komm. Vidensk. Unders. Dan. Farvande, 2(2), 19–79. 7, 9

Lacombe, H. & Richez, C. (1982). Hydrodynamics of Semi-Enclosed Seas ,

chap. The regime of the Strait of Gibraltar. Elsevier, Amsterdam. xv, 7

Lane-Serff, G., Smeed, D. & Postlethwaite, C. (2000). Multi-layer hy-

draulic exchange flows. J. Fluid Mech., 416, 269–296. 71

88



REFERENCES

Lawrence, G. (1990). The Physical Oceanography of Sea Straits , chap. Can

mixing in exchange flows be predicted using internal hydraulics? Kluwer Acad.,

Norwell, Mass. 10

Levitus, S. (1982). Climatological Atlas of the World Ocean. 29, 78

Longo, A., Manzo, M. & Pierini, S. (1992). A model for the generation

of nonlinear internal tides in the strait of gibraltar. Oceanologica Acta, 15,

233–243. 13, 15

Mellor, G. (1991). An equation of state for numerical models of oceans and

estuaries. J. Atmosph. and Oceanic Tech., 8 (4), 609–611. 19

Mellor, G. (2006). User’s Guide for a Three-

dimensional, Primitive Equation, Numerical Ocean Model .

http://www.aos.princeton.edu/WWWPUBLIC/htdocs.pom/PubOnLine/POL.html.

21

Mellor, G. & Yamada, T. (1982). Development of a turbulence closure model

for geophysical fluid problems. Reviews of Geophysics and Space Physics , 20

(4), 851–875. 20

Mellor, G., Ezer, T. & Oey, L. (1994). The pressure gradient conundrum

of sigma coordinate ocean models. J. of Atmospheric and Oceanic Technology ,

11 (4 part 2), 1126–1134. 27

Morozov, E.G., Trulsen, K., Velarde, M. & Vlasenko, V. (2002).

Internal tides in the strait of gibraltar. J. Phys. Oceanogr., 32, 3193–3206. 13,

15

Nielsen, J. (1912). Hydrography of the mediterranean and adjacent waters.

Tech. Rep. 1, Danish Oceanographical Expedition 1908-1910, Copenhagen. xv,

7

Orlanski, I. (1976). A simple boundary condition for unbounded hyperbolic

flows. J. of Computational Physics , 21, 251–269. 28

89

http://www.aos.princeton.edu/WWWPUBLIC/htdocs.pom/PubOnLine/POL.html


REFERENCES

Parrilla, G., Neuer, S., Le Traon, P. & Fernandez, E. (2002). Topical

studies in oceanography: Canary islands azores gibraltar observations (canigo).

Deep Sea Res. II , 49, 3951–3955. 8

Pierini, S. (1989). A model for the alboran sea internal solitary waves. J. Phys.

Oceanogr , 19, 755–772. 15, 45

Pratt, L., Johns, W., Murray, S.P. & Katsumata, K. (1999). Hydraulic

interpretation of direct velocity measurements in the bab al mandab. Journal

of Physical Oceanography , 29, 2769–2784. 69

Pratt, L., Deese, H., Murray, S. & Johns, W. (2000). Continuous dy-

namical modes in straits having arbitrary cross sections, with applications to

the bab al mandab. Journal of Physical Oceanography , 30 (10), 25152534. 81

Richez, C. (1994). Airborne synthetic aperture radar tracking of internal waves

in the strait of gibraltar. Prog. in Oceanogr., 33, 93–159. 8

Sannino, G., Artale, V. & Lanucara, P. (2001). An hybrid openmp/mpi

parallelization of the princeton ocean model. Parallel Computying Advances

and Current Issues: Proceedings of the International Conference ParCo2001 ,

129. 23

Sannino, G., Bargagli, A. & Artale, V. (2002). Numerical modeling of

the mean exchange through the strait of gibraltar. J. of Geophysical Research,

107 (8), 9 1–24. iv, 12, 13, 16, 17, 39

Sannino, G., Bargagli, A. & Artale, V. (2004). Numerical modeling of

the semidiurnal tidal exchange through the strait of gibraltar. J. of Geophysical

Research, 109, C05011, doi:10.1029/2003JC002057. 13, 17, 48, 77

Sannino, G., Carillo, A., Artale, V., Ruggiero, V. & Lanu-

cara, P. (2005). Flow regimes study within the strait of gibraltar using

a high-performance numerical model. Nuovo Cimento, 28, Issue 2,DOI:

10.1393/ncc/i2005-10177-2, 97–104. iv, 23, 77

90



REFERENCES

Sannino, G., Carillo, A. & Artale, V. (2006). Three-layer view of trans-

ports and hydraulics in the strait of gibraltar: a 3d model study. Accepted on

J. of Geophysical Research. 13, 17

Smagorinsky, J. (1963). General circulation experiments with primitive equa-

tions. i: the basic experiment. Mon. Weather Rev., 91, 99–164. 20

Smeed, D. (2000). Hydraulic control of three-layer exchange flows: application

to the bab al mandab. Journal of Physical Oceanography , 30 (10), 2574–2588.

69, 71, 80

Smolarkiewicz, P. (1984). A fully multidimensional positive definite advection

transport algorithm with small implicit diffusion. J. Comput. Phys., 54, 325–

362. iv, 22

Stommel, H. & Farmer, H. (1953). Control of salinity in an estuary by a

transition. J. Mar. Res., 12, 13–20. 6, 9

Tejedor, L., Izquierdo, A., Kagan, B. & Sein, D. (1999). Simulation of

the semidiurnal tides in the strait of gibraltar. J. of Geophysical Research, 104

(C6), 13541–13557. 13, 15

Tsimplis, M. (2000). Vertical structure of tidal currents over the camarinal sill

at the strait of gibraltar. J. of Geophysical Research, 105 (C8), 19709–19728.

9

Tsimplis, M. & Bryden, H. (2000). Estimation of the transports through the

strait of gibraltar. Deep-Sea Research Part I , 47 (12), 2219–2242. 7, 8, 9, 50

Tsimplis, M., Proctor, R. & Flather, R. (1995). A two-dimensional tidal

model for the mediterranean sea. J. of Geophysical Research, 100 (C8), 16223–

16239. 33, 34

URL: MODB (2006). http://modb.oce.ulg.ac.be/modb/welcome.html. 29

URL: POM (2006). http://www.aos.princeton.edu/htdocs.pom/. 19

URL: POM papers (2006). http://www.aos.princeton.edu/htdocs.pom/. 19

91

http://modb.oce.ulg.ac.be/modb/welcome.html
http://www.aos.princeton.edu/htdocs.pom/
http://www.aos.princeton.edu/htdocs.pom/


REFERENCES

URL: SMS (2006). http://www-ad.fsl.noaa.gov/ac/SMS UsersGuide v2.8.pdf.

23

Vargas, J. (2004). Fluctuaciones Subinerciales y Estado Hidraulico del Inter-

cambio a traves del Estrecho de Gibraltar . Ph.D. thesis, Universidad de Sevilla.

xv, 7

Wang, D. (1989). Model of mean and tidal flows in the strait of gibraltar. Deep-

Sea Res., 36, 1535–1548. 13, 16, 22, 77

Wang, D. (1993). The strait of gibraltar model: internal tide, diurnal inequality

and fortnightly modulation. Deep-Sea Research. Part I , 40 (6), 1187–1203.

13, 16, 22, 77

Wesson, J. & Gregg, M. (1988). Turbulent dissipation in the strait of gibral-

tar and assiciated mixing. In C. Nihoul & B. Jamart, eds., Small-Scale Turbu-

lence and Mixing in the Ocean, 201–212, 19th International Liege Colloquium

on Ocean Hydrodynamics, Elsevier. 11

Wesson, J. & Gregg, M. (1994). Mixing at camarinal sill in the strait of

gibraltar. J. Geophys. Res., 99 (C5), 9847–9878. 13, 62

92

http://www-ad.fsl.noaa.gov/ac/SMS_UsersGuide_v2.8.pdf

	1 Introduction
	1.1 History and Geography
	1.2 Background
	1.2.1 Exchange flow description
	1.2.1.1 Mean Exchange
	1.2.1.2 Time dependent Exchange

	1.2.2 Hydraulic Control
	1.2.3 Two-way Exchange
	1.2.4 Numerical Models

	1.3 Novel aspects of the Thesis
	1.4 Thesis organization

	2 Numerical Model
	2.1 Model Description
	2.1.1 POM model
	2.1.2 Modified POM model (CEPOM)

	2.2 Model Configuration
	2.2.1 Grid and Bathymetry
	2.2.2 Initial and Boundary Conditions

	2.3 Model Experiments

	3 Model Validation
	3.1 Armonic Analysis
	3.1.1 Tidal Elevation
	3.1.2 Tidal Ellipse

	3.2 Tidal Currents
	3.3 Internal Bore

	4 The two-layer approximation
	4.1 Interface definition
	4.2 Transports
	4.3 Hydraulic Control

	5 The three-layer approximation 
	5.1 Interfacial layer definition and characteristics
	5.2 Transports
	5.3 Hydraulic Control
	5.4 Three-layer vs Two-layer approximation

	6 Conclusions and Discussion
	References



