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Introduction

This thesis concerns with reaction-diffusion equations which model diffusion

phenomena of the real world.

In the past several years, reaction-diffusion equations have attracted a great

deal of attention from mathematicians and other scientists. In fact typical

problems which arises in chemical, biological or physical areas are modelled

by these equations.

The aim of this thesis is to use some Liapunov functions for reaction-diffusion

models, introduced by Rionero, to obtain the nonlinear stability for the steady

state solution (biologically meaningfull) of a generalized Lotka-Volterra model.

The plan of the thesis is as follows.

Chapter 1 is dedicated to recall some fundamental results connected with

parabolic equations and to introduce reaction-diffusion equations. These equa-

tions represent an important class of evolution equations which arise in many

real world phenomena such as fluid dynamics, plasma physics, crystal growth

and, last but not list, biological population genetics.

Chapter 2 is a review of general stability theory. After some basic concepts

related to the dynamical systems, the Liapunov direct method is recalled and

in particular some Liapunov functionals, introduced by Rionero et al. for

reaction-diffusion models are recalled. Successively, in order to recall that for

P.D.Es. stability is topologically-dependent, we consider the well known ex-

ample concerning the linear stability of Couette flow of an ideal incompressible

fluid.

In Chapter 3, a binary reaction-diffusion system of partial differential equa-

tions is considered. In order to link the L2-stability (instability) of an assigned

solution, to the stability (instability) of the zero solution of a suitable linear
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binary system of ordinary differential equations associated to the problem at

hand, a peculiar Rionero-Liapunov function is introduced.

Finally Chapter 4 is devoted to the coexistence problem for a generalized

Lotka-Volterra predator-prey model, with Beddington-De Angelis functional

response and Robin type boundary conditions. By using the Rionero-Liapunov

functionals introduced in Chapter 3, conditions guaranteeing the nonlinear L2-

stability of the biologically meaningfull equilibrium state are furnished.



Chapter 1

Preliminaries and Fundamental

Issues on Parabolic Equations

1.1 Introduction

Mathematical equations have always provided a language in which to formu-

late physical concepts. A mathematical model is an equation, or a set of

equations, whose solutions describe the behavior of the related physical phe-

nomena. In general, a mathematical model is a (simplified) description of a

phenomenon of the real world expressed in mathematical terms.

Mathematical modelling involves physical observation, selection of the relevant

physical variables, formulation of the equations, analysis of the equations, sim-

ulation, and, finally, the validation of the model. In this last step information

from the simulations and solutions is fed back into the model to test if the

model can describe the phenomenon, otherwise some modifications and refine-

ments have been made.

6
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The aim of this thesis concerns with models involving partial differential equa-

tions (P.D.Es.) of parabolic type. For the sake of completeness, this chapter

is devoted to recall some fundamental concepts related to the parabolic equa-

tions (Cfr. [11], [14], [21]) and reaction-diffusion equations (Cfr. [26] [39]).

1.2 Initial boundary value problem for parabolic

equations

Let Ω be an open, bounded subset of <n, and let us set ΩT = Ω × (0, T ] for

some fixed time T > 0. The most general form of parabolic equation is the

following

ut − Lu = f

where f : ΩT → < is an assigned function, u : ΩT → < is the unknown, and

L denotes, for each time t, a second order partial differential operator, having

either the divergence form

Lu =
n∑

i,j=1

(
aij(x, t)uxi

)
xj

+
n∑

i=1

bi(x, t)uxi
+ c(x, t)u

or the nondivergence form

Lu =
n∑

i,j=1

aij(x, t)uxixj
+

n∑
i=1

bi(x, t)uxi
+ c(x, t)u

for given coefficients aij, bi and c (i, j = 1, ..., n).

To model concrete physical processes one has to add to the differential equa-

tions some auxiliary conditions, i.e. initial and boundary conditions. For

example, if we want to determine the temperature inside a body at an ar-

bitrary time, we must in addition know the temperature distribution in the



8

body at the initial time (initial condition) and the temperature regime on the

boundary ∂Ω of the body Ω (boundary condition). Different kinds of boundary

conditions can be added to the parabolic equation, i.e.

• Neumann boundary conditions

∇u · n = a(x, t) x ∈ ∂Ω, t > 0

where n is the unit outward normal to ∂Ω and a(x, t) is an assigned

function;

• Dirichlet boundary conditions

u = b(x, t) x ∈ ∂Ω, t > 0

where b(x, t) is a prescribed function;

• Robin boundary conditions or mixed boundary conditions

α(x, t)u+ β(x, t)∇u · n = γ(x, t) x ∈ ∂Ω, t > 0

where α, β and γ are given functions.

Let us consider the initial boundary value problem
ut − Lu = f ΩT

u = 0 Ω× {0}

u = g ∂Ω× [0, T ]

(1.1)

where g : Ω → < is given and

aij, bi, c ∈ L∞ (ΩT )

f ∈ L2 (ΩT )

g ∈ L2 (Ω)

(1.2)
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with aij = aji (i, j = 1, ..., n).

Let us define the time dependent bilinear form

B[u, v; t] :=

∫
Ω

[
n∑

i,j=1

aij(·, t)uxi
vxj

+
n∑

i=1

bi(·, t)uxi
v + c(·, t)uv

]
dx

for u, v ∈ H1
0 (Ω) and 0 ≤ t ≤ T , where

H1
0 =

{
ϕ : ϕ2 + (∇ϕ)2 ∈ L2, ϕ = 0 on ∂Ω

}
and H−1 is the dual space on H1

0 .

Let us associate with u a mapping

u : [0, T ] → H1
0 (Ω)

defined by

[u(t)](x) := u(x, t) x ∈ Ω, t ∈ [0, T ]

and similarly let us define

f : [0, T ] → L2(Ω)

by

[f(t)](x) := f(x, t) x ∈ Ω, t ∈ [0, T ].

If we fix a function v ∈ H1
0 (Ω), on multiplying (1.1) by v and on integrating

by parts, it turns out that

〈u′, v〉 −B[u, v; t] = (f, v) 0 ≤ t ≤ T

where u′ =
du

dt
, (·, ·) is the inner product in L2(Ω), and 〈·, ·〉 is the pair of

H−1(Ω) and H1
0 (Ω). These considerations motivate the following definition of

weak solution.
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Definition 1.2.1. A function

u ∈ L2
(
0, T ;H1

0 (Ω)
)
, with u′ ∈ L2

(
0, T ;H−1(Ω)

)
,

is a weak solution of the parabolic initial boundary value problem (1.1) provided

〈u′, v〉+B[u, v; t] = (f, v)

u(0) = g

for each v ∈ H1
0 (Ω) and 0 ≤ t ≤ T .

The following theorem holds

Theorem 1.2.1. There exists a weak solution of (1.1), and it is unique.

For the proof see [11].

1.3 The maximum principle

One of the most useful and best known tools employed in the study of partial

differential equations is the maximum principle (Cfr. [14], [21]). This principle

enables us to obtain informations about solutions of differential equations

without any explicit knowledge of the solutions themselves. In particular, the

maximum principle is an useful tool to approximate solutions, a subject of

great interest for many scientists.

Let us consider parabolic second order equation of the type

Lu(t, x) = f(t, x) (1.3)

where

Lu =
n∑

i,j=1

(
aij(x, t)uxi

)
xj

+
n∑

i=1

bi(x, t)uxi
+ c(x, t)u− ∂u

∂t
(x, t) (1.4)
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in the (n+ 1)-dimensional domain ΩT = Ω× (0, T ). Let us assume that

(i) L is parabolic in ΩT , i.e., ∀(x, t) ∈ Ω, ∀ξ ∈ <n
∑
aijξiξj > 0,

(ii) the coefficients of L are continuous functions in Ω,

(iii) c(x, t) ≤ 0 in ΩT .

We also assume that u has two continuous x-derivatives and one continuous

t-derivative in ΩT .

Let us remark that, for any point P0 ∈ ΩT , we denote by S(P0) the set of all

points Q in ΩT which can be connected to P0 by a simple continuous curve in

ΩT , along which the t-coordinate is nondecreasing from Q to P0.

Theorem 1.3.1. Strong maximum principle Let (i), (ii) and (iii) hold.

If Lu ≥ 0 (Lu ≤ 0) in ΩT and if u has in ΩT a positive maximum (negative

minimum) which is attained at a point P0(x0, t0), then u(P ) = u(P0), ∀P ∈

S(P0).

For the proof of this theorem, we need to recall the following lemmas.

Lemma 1.3.1. Let (i), (ii) and (iii) hold. Assume that either Lu > 0 through-

out ΩT or that Lu ≥ 0 and c(x, t) < 0 throughout ΩT . Then u cannot have a

positive maximum in ΩT .

Lemma 1.3.2. Let (i), (ii) and (iii) hold. Let Lu ≥ 0 in ΩT and let u have a

positive maximum M in ΩT . Suppose that ΩT contains a closed solid ellipsoid

E:
n∑

i=1

λi(xi − x∗i )
2 + λ0(t− t∗)2 ≤ R2 (λj > 0, R > 0)

and that u < M in the interior of E and u(x, t) = M at some point P = (x, t)

on the boundary ∂E of E. Then x = x∗, where x∗ = (x∗1, ...x
∗
n).
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Lemma 1.3.3. Let (i), (ii) and (iii) hold. If Lu ≥ 0 in ΩT and if u has

a positive maximum in ΩT which is attained at a point P0 = (x0, t0), then

u(P ) = u(P0) for all P ∈ C(P0).

Lemma 1.3.4. Let (i), (ii) and (iii) hold. Let R be a rectangle

xi0 − ai ≤ xi ≤ xi0 + ai t0 − a0 ≤ t ≤ t0 (i = 1, ...n)

contained in ΩT , and let Lu ≥ 0 in ΩT . If u has a positive maximum in R

which is attained at the point P0 = (x0, t0), then u(P ) = u(P0) for all P ∈ R.

Now we can give the proof of the maximum principle.

Proof. Suppose that u(P ) 6= u(P0) in S(P0), then there exists a point Q ∈

S(P0) such that u(Q) < u(P0). Connect Q to P0 by a simple continuous curve

γ lying in S(P0) such that t-coordinate is nondecreasing from Q to P0. On

γ there exists a point P1 such that u(P1) = u(P0) and u(P ) < u(P1) for all

points P ∈ γ lying between Q and P1. Denote by γ0 the subarc of γ lying

between Q and P1. Construct a rectangle

xi1 − ai ≤ xi ≤ xi1 + ai t1 − a ≤ t ≤ t1 (i = 1, ...n)

where P1 = (x11, ...xn1, t1) and a is sufficiently small so that the rectangle

lies in Ω. Applying Lemma 1.3.4 it follows that u = u(P1) in this rectangle.

Hence u(P ) = u(P1) on the segment of γ0 lying in the rectangle. This however

contradicts the definition of P1.

As a consequence of this theorem, we may obtain an uniqueness result.

Let Lu defined by (1.4), let β be a continuous function on ∂Ω× (0, T ], and let

τ be a direction defined at each point of ∂Ω× (0, T ] in a continuous manner.
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Consider the initial boundary value problem

Lu(x, t)− ∂u

∂t
= f(x, t) ΩT

u(x, 0) = ϕ(x) Ω× {0}

∂u(x, t)

∂τ
+ β(x, t)u(x, t) = ψ(x, t) ∂Ω× (0, T ]

(1.5)

which is said to be regular if τ is never tangent to ∂Ω× (0, T ].

Definition 1.3.1. The boundary ∂Ω of a domain Ω belongs to the class Cm,

or Cm+α, if there exist local representations of ∂Ω, in neighborhoods of each of

its points, having the form xi = h(x1, ...xi−1, xi+1, ...xn), where the functions

h belong (locally) to Cm, or Cm+α, respectively.

Theorem 1.3.2. Let L be a parabolic operator with continuous coefficients

in ΩT = Ω × [0, T ] and let ∂Ω belong to C1+λ (0 < λ < 1). If f is Holder

continuous (exponent α) in x, uniformly in ΩT , if ϕ(x) is continuous in ΩT

and vanished in some ΩT -neighborhood of the boundary of ΩT , and if ψ is

continuous on ∂Ω × (0, T ], then there exists a unique solution of the problem

(1.5).

For the proof see [14].

1.4 Reaction diffusion equations

An important class of evolution equations is represented by reaction-diffusion

equations, which arise in many fields of application such as heat transfer, com-

bustion, reaction chemistry, fluid dynamics, plasma physics, crystal growth,
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biological population genetics and neurology (Cfr. [8] and [25]).

For example to model the dispersive behaviour of populations (of cells or

animals) or concentrations (of chemicals) one often uses a continuum approach

employing density functions to describe the distribution of basic particles.

Let u(x, t) : Ω × <+ → <, where Ω ⊂ <n, be the particle density function or

concentration. Let Q(x, t, ...) be the net creation rate of particles at x ∈ Ω

at time t (for instance the birth rate per unit volume minus the death rate

per unit volume). Let J(x, t, ...) be the flux density, i.e. for any unit vector

n ∈ <n, the scalar product J · n is the net rate at which particles cross a unit

area in a plane perpendicular to n (positive in n direction).

For any regular subset S ⊂ Ω ∫
S

udx

denotes the population mass in S. We assume that the rate of change of this

mass is due to particle creation or degradation inside S, and to the inflow and

outflow of particles through the boundary ∂S, i.e.

d

dt

∫
S

udx = −
∫

∂S

J · ndσ +

∫
S

Qdx (1.6)

where n denotes the outward normal to ∂S. Applying the divergence theorem,

equation (1.6) becomes ∫
S

utdx =

∫
S

[−∇ · J +Q] dx. (1.7)

But S is arbitrary in Ω so the local balance or conservation equation follows

ut = −∇ · J +Q. (1.8)

For a given model we must specify Q and J . For example, we may follow the

theory of diffusion founded by the physiologist Fick. According to Fick’s law
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the flux J is proportional to the gradient of the density, i.e.

J = −D∇u. (1.9)

Under the assumption that D is a positive constant, (1.8) becomes the follow-

ing reaction diffusion equation

ut = D∆u+Q(x, t, ...) .

There are many more formulations for the flux terms in diffusive process,

Okubo in [26] and Gurtin and Mac Camy in [17], provide a good account of

such processes applied in biology.

Generally if u ∈ IRn, (1.8), by virtue of (1.9) becomes

ut = ∇ · (D∇u) + F (u) x ∈ Ω ⊂ <n, t > 0 (1.10)

where u ∈ <n, D is the diffusion matrix and F (u) is a nonlinear smooth

function of u which represent the reaction term.

If D is a diagonal matrix, i.e. there is no cross-diffusion among the species

D =


d1 0 · · · 0

0 d2 · · · 0

0 0 · · · dn


with di ≥ 0, 1 ≤ i ≤ n, then (1.10) reduces to

ut = D∆u+ F (u) , u ∈ IRn . (1.11)
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1.5 Reaction diffusion equations of two bio-

logical populations

An ecological model represented by equation (1.11) is the following ut = α∆u+ uM(u, v) (x, t) ∈ Ω×<+

vt = β∆v + vN(u, v) (x, t) ∈ Ω×<+
(1.12)

which describes the classical two species interactions, when diffusion and spa-

tial dependence are taken into account.

Here Ω is a bounded region in <n, α, β ≥ 0 are constants; u > 0 and v > 0 are

scalar functions of (x, t) which represent population densities; M and N are

their respective growth rates, that we assume to be smooth. Together with

(1.12), we have the initial conditions u(x, 0) = u0(x) x ∈ Ω

v(x, 0) = v0(x) x ∈ Ω
(1.13)

and the homogeneous Neumann boundary conditions

∂u

∂n
=
∂v

∂n
= 0 on ∂Ω×<+. (1.14)

It is assumed that both u0 and v0 are bounded nonnegative smooth functions.

The boundary conditions (1.14) are to be interpreted as ”no flux” conditions,

i.e. there is no migration of either species across ∂Ω. Ω is here considered as

the habitat of u and v.

We now consider the three classical ecological interactions that are determined

by the signs of the partial derivatives
∂M

∂v
= Mv and

∂N

∂u
= Nu.

• In the predator-prey interaction, the derivatives are of opposite sign

Mv < 0, Nu > 0

where u denotes the prey density, and v the predator density.
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• Competition refers to the case in which both derivatives are negative

Mv < 0, Nu < 0.

• Symbiosis refers to the case in which both derivatives are positive

Mv > 0, Nu > 0.

There are always present, in any environment, specific resource limitations

which place a definite upper bound on the growth rates. Such limits to the

growth are intimately connected with pointwise bounds on u and v; i.e., they

imply the existence of bounded invariant regions.



Chapter 2

Stability. Liapunov Direct

Method

2.1 Introduction

In modelling a real world phenomenon, in general it may happens that the

mathematical model considered contains some errors. These arise in the mea-

surements of the data (initial data, boundary data, forces, geometry of the

domain in which the phenomenon takes place, parameters contained in the

evolution equation,...) and in errors in formulating the model. The question

arises therefore of how these errors may influence the solution. This is the

concept of continuous dependence and, more generally, of stability.

Qualitative theory of solutions of differential equations originates in the de-

velopments due to Poincaré and Liapunov. The basic idea of the so called

Liapunov second method is to generalize the statement that if the poten-

tial energy of a physical system is a minimum (maximum) at an equilibrium

point, than the equilibrium point is stable (unstable). In this method, the

18
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potential energy function is replaced by a more general kind of function, the

Liapunov function, and stability properties of an equilibrium are deduced from

the properties of its time derivative along motions of the dynamical system

being investigated.

Liapunov’s work is applicable to all kinds of evolutionary systems, including

some for which the concept of energy has no meaning, so the interpretation

of Liapunov function is extended to a notion of generalized energy function.

Another interpretation of Liapunov function is that of a generalized distance

function, when it is viewed as representing a measure of the distance of a

trajectory or motion at a time istant t from an invariant set, usually an equi-

librium.

In this chapter, following the books [13]-[22], we introduce the Liapunov direct

method and we give some examples of Liapunov functions for reaction-diffusion

equations (Cfr.also [1]).

2.2 Dynamical Systems

Let us consider the following initial value problem

ut = F (u)

u(x, 0) = u0(x) in Ω

A(u, ∇u) = û on ∂Ω× [0, T ]

(2.1)

where u = (u1, ..., un) ∈ IRn, (n ≥ 1),, u0 ∈ C(IR) and û are prescribed real

functions. Let u(u0, t), with u(u0, 0) = u0 be a global solution of the problem.

Then u is a dynamical system according to the following definition.
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Definition 2.2.1. A dynamical system on a metric space X is a mapping

v : (v0, t) ∈ X ×< → v(v0, t) ∈ X

such that  v(v0, 0) = v0

v(v0, t+ τ) = v(v(v0, t), τ) ∀t, τ ∈ <+

where v0 ∈ X.

For a dynamical system v, the function

v(v0, ·) : t ∈ < → v(v0, t) ∈ X , v0 ∈ X

is called a motion associated to the initial data v0, and is denoted by v(v0, t)

or by v(t).

Definition 2.2.2. The motion v(v0, t) is steady and v0 is an equilibrium, or

a critical point, if

v(t) = v0 , ∀t ∈ < .

Definition 2.2.3. If ∃τ : v(t+ τ) = v(t), ∀t ∈ <, the motion v is periodic in

time with period τ .

Definition 2.2.4. A semigroup on a metric space X is a one parameter family

{S(t)}t≥0 of operators, S(t) : X → X such that, for all t, τ ∈ <+, x ∈ X, one

has

i)S(0) = I

ii)S(t+ τ) = S(t)S(τ) .

The equivalence between a semigroup {S(t)}t≥0 and a dynamical system v is

immediately seen by setting

v(v0, t) = S(t)v0 v0 ∈ X, t ∈ <+ .
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Other basic properties may, in general, be needed in the study of a dynamical

system. We recall here the following

iii) v(·, t) : X → X is continuous ∀t ≥ 0

iv) v(v0, ·) : <+ → X is continuous ∀v0 ∈ X

v) v(v0, ·) : <+ → X is injective.

Let v be a dynamical system on a metric spac (X, d) and let us consider the

open ball S(x, r) centered at x and having radius r > 0. Essentially, the idea of

continuous dependence of a particular motion v(v0, ·) is that any other motion

v(v1, ·), starting at the same initial instant from a position v1 sufficiently close

to v0, will remain as closed as desired to the basic motion for all finite time

T > 0.

In a mathematically rigorous way, it means what it follows.

Definition 2.2.5. A motion v(v0, ·) depends continuously on the initial data

iff ∀T > 0,∀ε > 0

∃δ(ε, T ) : v1 ∈ S(v0, δ) ⇒ v(v1, t) ∈ S(v(v0, t), ε), ∀t ∈ [0, T ]

2.3 Liapunov stability

The Liapunov stability of a basic motion v(v0, ·) of a dynamical system v

extends the requirement of continuous dependence to the infinite interval of

time (0,+∞).

Definition 2.3.1. A motion v(v0, ·) is Liapunov stable (with respect to per-

turbations to the initial data) iff

∀ε > 0,∃δ(ε) > 0 : v1 ∈ S(v0, δ) ⇒ v(v1, t) ∈ S(v(v0, t), ε),∀t ∈ <+ .
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A motion is unstable if it is not stable.

Definition 2.3.2. A motion v(v0, ·) is said to be an attractor on a set Y if

v1 ∈ Y ⇒ lim
t→∞

d[v(v0, t), v(v1, t)] = 0 .

The biggest set Y on which it holds, is called the basin of attraction of v(v0, ·).

Definition 2.3.3. The motion v(v0, ·) is asymptotically stable if it is stable and

if there exists δ1 > 0 such that v(v0, ·) is attractive on S(v0, δ1). In particular,

v(v0, ·) is exponentially stable if there exist δ1 > 0, λ(δ1) > 0 and M(δ1) > 0

such that

v1 ∈ S(v0, δ1) ⇒ d[v(v1, t), v(v0, t)] ≤Me−λtd(v1, v0),∀t ∈ <+ .

Exponential stability is the strongest stability property which corresponds not

only to (uniform) asymptotic stability, but gives also quantitative description

of the behaviour of solutions.

It is always possible to express the stability of a given basic motion v(v0, t)

through the stability of the zero solution of the perturbed dynamical system

u : (u0, t) ∈ X ×<+ → v(v0 + u0, t)− v(v0, t) .

If the dynamical system v is linear, i.e. v(·, t) is a linear operator of X on X,

∀t ∈ <+, then the stability of every motion is determined by the stability of

zero solution. When v is nonlinear, the stability of the trivial solution does

not determine the stability of every motion.

2.4 Topology dependent stability

Partial differential equations (P.D.Es.) are (generally) embedded in a normed

linear infinite dimensional space. Then it follows that a solution of P.D.Es.
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could be stable with respect one choice of metric and unstable with respect to

another choice. This means that for P.D.Es. stability depends on the topol-

ogy.

In order to show that for P.D.Es. stability is topology-dependent, let us con-

sider the well-known example concerning the linear stability of Couette flow

of an ideal incompressible fluid.

Let us recall that the motion of an incompressible homogeneous viscous fluid

occurring in a fixed region Ω ⊆ <3 is described by the Navier- Stokes equations vt + v · ∇v = −∇p+ ν∆v + F Ω×<+

∇ · v = 0 Ω×<+
(2.2)

where v(x, t) is the velocity field, p(x, t) is the pressure field, ν > 0 is the

kinematic viscosity and F (x, t) is the body force acting on the fluid.

The equations of motion of a perfect incompressible fluid can be obtained from

(2.2) on setting ν = 0. When F is a conservative force (F = −∇U), one has vt + v · ∇v = −∇(p+ U) Ω×<+

∇ · v = 0 Ω×<+
(2.3)

with the initial and the boundary condition given by v(x, 0) = v0(x) Ω

v · n = 0 ∂Ω×<+
(2.4)

where n denotes the outward unit normal to ∂Ω. Because of the vectorial

identities 
a · ∇a = (∇× a)× a+

1

2
∇a2

∇× (a× b) = b · ∇a− a · ∇b+ (∇ · b)a− (∇ · a)b ,

one obtains on taking curl of both sides of (2.3)1

Θt + v · ∇Θ = Θ · ∇v (2.5)
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where Θ = ∇× v is the vorticity vector.

The Euler equations (2.5) for vorticity become simpler in the context of two

dimensional motion v = (v1, v2, 0), with vi = vi(x1, x2, t). In fact introducing

the stream function Ψ(x1, x2, t) and setting

v = ∇⊥Ψ, ∇⊥ =

(
∂

∂x2

,− ∂

∂x1

, 0

)
,

one immediately obtains

∇ · v = 0, Θ = −∆Ψe3, Θ · ∇v = 0

with ei unit vector along xi axes, and (2.5) becomes

∂∆Ψ

∂t
=
∂(Ψ,∆Ψ)

∂(x1, x2)
. (2.6)

From (2.4)2 it turns out that Ψ must be a constant on ∂Ω and therefore,

because Ψ is defined modulo a constant, one can append to (2.6) the initial

and boundary conditions
Ψ(x1, x2, 0) = ϕ(x1, x2) in Ω

Ψ = c on ∂Ω ,

(2.7)

where ϕ is prescribed function and c is an arbitrary constant.

Let ϕ be a steady solution to (2.6), (2.7)2 and let us consider the stability

of the basic motion ϕ∗ = ∇⊥ϕ with respect to planar perturbations u =

∇⊥Φ(x1, x2, t). One immediately obtains the following initial boundary value

problem 

∂∆Φ

∂t
=
∂(Φ,∆Φ + ∆ϕ)

∂(x1, x2)
+
∂(ϕ,∆Φ)

∂(x1, x2)

Φ(x1, x2, 0) = Φ0(x1, x2) in Ω

Φ = 0 on ∂Ω

(2.8)
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where Φ0 is prescribed. Linearizing with respect to Φ, (2.8)1 gives

∂∆Φ

∂t
=
∂(Φ,∆ϕ)

∂(x1, x2)
+
∂(ϕ,∆Φ)

∂(x1, x2)
. (2.9)

As basic motion v∗, let us consider the Couette flow in the flat pipe

Ω = {(x1, x2) : x1 ∈ <, |x2| ≤ 1}

given by

v∗ = ∇⊥ϕ, ϕ =
1

2
x2

2 .

Then (2.8) gives 

∂∆Φ

∂t
+ x2

∂(∆Φ)

∂x1

= 0

Φ(x1, x2, 0) = Φ0(x1, x2)

Φ(x1,±1, t) = 0 t ∈ <+

and hence 
∂ω

∂t
+ x2

∂ω

∂x1

= 0

ω(x1, x2, 0) = ω0(x1, x2)

where ω = −∆Φ and ω0 = −∆Φ0. Assuming ω0 ∈ C1(Ω), immediately one

has

ω(x1, x2, t) = ω0(x1 − x2t, x2) .

Since

sup
Ω
|ω(x1, x2, t)| = sup

Ω
|ω0(x1, x2)| ∀t ≥ 0 (2.10)

sup
Ω
|ωx2| = sup

Ω
|−tω0x1(x1 − x2t, x2) + ω0x2(x1 − x2t, x1)|

≥ t sup
Ω
|ω0x1(x, y)| − sup

Ω
|ω0x2(x, y)| ∀t

one has stability with respect the norm (2.10) but instability with respect the

norm sup
Ω
|ω|+ sup

Ω
|ωx2|.
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2.5 General estimates based on the first order

inequalities

The strategy of qualitative analysis is to obtain estimates and properties of

the state vector u of a phenomenon F without solving explicity the P.D.Es.

modelling F . In this strategy a central role is played by the inequalities that

one is able to obtain from the P.D.E. at hand.

In the present section we introduce a general estimate (Gronwall’s Lemma)

for U satisfying the first order inequality

•
U≤ f(t)U + g(t) t ≥ t0 (2.11)

where f and g are known functions of t.

Subsequently we will concentrate on the simple case
•
U≤ 0 in order to show,

through the Liapunov direct method, how one can obtain much important in-

formation on the behaviour of the state vector u and hence on the phenomenon

at hand.

The following is the Gronwall’s Lemma in differential form.

Lemma 2.5.1. Let (2.11) hold and let U ,
•
U , f and g belong to L1

loc(]t0,∞[),

i.e. are locally integrable. Then the following estimates holds

U(t) ≤ U(t0)exp

[∫ t

t0

f(τ)dτ

]
+

∫ t

t0

g(τ)exp

[∫ t

t0

f(s)ds

]
dτ t ≥ t0 . (2.12)

Proof. Setting

ω(t) = exp

[
−
∫ t

t0

f(τ)dτ

]
it follows that

d

dt
(ωU) ≤ ωg
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and hence, integrating on (t1, t2) with t2 ≥ t1 ≥ t0, one has

ω(t2)U(t2) ≤ ω(t1)U(t1) +

∫ t

t0

ω(τ)g(τ)dτ . (2.13)

The usual Gronwall estimate (2.12) then immediately follows for t1 = t0,

t2 = t.

Let us remark now that if f, g, U are positive then ω(t) ≤ 1, ∀t ≥ t0, and

therefore (2.13), for t1 = t0, t2 = t+ ξ, ξ ≥ 0, implies that

U(t+ ξ) ≤
[
U(t1) +

∫ t+ξ

t1

g(τ)dτ

]
exp

[∫ t+ξ

t1

f(τ)dτ

]
(2.14)

and the following Gronwall’s Lemma in integral form holds.

Lemma 2.5.2. Let the assumptions of Lemma 2.4.1 hold and let U , f and g be

nonnegative. If there exist three positive constants α, β, γ such that (∀t ≥ t0)∫ t+δ

t

f(τ)dτ ≤ β

∫ t+δ

t

g(τ)dτ ≤ α (2.15)

then, for ξ ∈]0, δ[ and t ≥ t0, the following estimate holds

U(t+ ξ) ≤
[
1

ξ

∫ t+ξ

t

U(τ)dτ + α

]
eβ . (2.16)

Proof. Inequality (2.16) is an immediate consequence of (2.14). In fact for

t1 ∈ [t, t+ ξ], (2.14) gives

U(t+ ξ) ≤ [U(t1) + α]eβ

and hence, integrating with respect to t1 on (t, t+ ξ), (2.16) follows.

Let us emphasize the importance of (2.16) considering the case

f = λ = const.(> 0) g = t0 = 0 .

Then (2.12) gives

U(t) ≤ U(0)eλt
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i.e., a bound for U gorwing (exponentially) with t.

Another important inequality for the qualitative analysis of a P.D.Es. model

is the following Poincaré inequality [13].

Theorem 2.5.1. Let Ω be a bounded, connected, open subset of <n, with a C ′

boundary ∂Ω. Assume 1 ≤ p ≤ ∞. Then there exists a constant γ, depending

only on n, p and Ω, such that

‖u− (u)Ω‖Lp(Ω) ≤ γ ‖∇u‖Lp(Ω) ∀u ∈ W 1,p(Ω) (2.17)

where (u)Ω =
∫

Ω
udΩ is the average of u over Ω.

2.6 Liapunov functions

In 1893 A.M. Liapunov – in order to establish conditions ensuring stability of

solutions of ordinary differential equations (O.D.Es.) – introduced a method

which is called the direct or second method. This method – based on knowing

the sign of the time derivative, along the solutions, of an auxiliary function,

but without any recourse to them – has been recognized to be very general

and powerful, and has been used for over 65 years in the qualitative thory of

O.D.Es. . The first generalization of the Liapunov direct method to P.D.Es.

and, in general, to evolution equations other that O.D.Es., appeared only in

the years 1957-59. Our aim is to introduce the fundamental ideas and problems

of the Liapunov direct method in the light of its applications to phenomena

which are modelled (essentially) by P.D.Es. .

Definition 2.6.1. Let v be a dynamical system on a metric space X. A

functional V : X → IR is a Liapunov function on a subset I ⊂ X if V

is continuous on I, and a nonincreasing function of time along the solutions

having the initial data on I.
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In order to ensure that V [v(x, ·)] is a nonincreasing function of time, in the

sequel we assume that V is differentiable with respect to time and that the

derivative is non-positive. However, it is standard in literature to ensure that

V is a non-incresing by requiring that the generalized time derivative

•
V := lim

t→0+
inf

1

t
{V [v(x, t)]− V (x)} , x ∈ I (2.18)

(coinciding with the ordinary derivative when V is differentiable) is non-

positive.

In the sequel – for some α ≤ ∞ – we denote by Σα ⊂ X a subset of the set

Σ(X, α) := {x ∈ X : V (x) ≤ α}

and by Σ(α, β) the intersection Σα∩Σ(X, β) for β ≤ α. The following Theorem

holds

Theorem 2.6.1. Let v be a dynamical system on a metric space X and let V

be a Liapunov function on Σα, having a non-positive time derivative. Then

i) Σ(α,β) and Σ(α,β), ∀β ≤ α, are positive invariant.

ii) V [v(x, ·)], Σα, is a non-increasing function of time.

iii) V [v(x, ·)] is differentiable a.e. with

V [v(x, t)] ≤ V (x) +

∫ t

0

•
V [v(x, τ)]dτ (x, t) ∈ Σα ×<+ (2.19)

Theorem 2.6.1 shows that the Liapunov functions can be used to determine

some positive invariant sets. This role is important because if a bounded

(or precompact) set S ∩ Ω can be shown to be positive invariant, then the

positive orbit γ(x), given by x ∈ S → γ(x) ∈ S, is bounded (or precompact).

We notice that the Theorem 2.6.1 continues to hold under weaker conditions

on V . In fact, instead of the continuity of V , it is enough to require its
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lower semicontinuity, i.e. to require that the set {x ∈ Ω, V (x) ≤ α} is closed

∀x ∈ Ω,∀α ∈ <. However the continuity of V is needed in the Liapunov direct

method.

2.7 The Liapunov direct method

The stability of a given motion can be expressed, for a normed linear space X,

through the stability of the zero solution of the perturbed dynamical system.

For this reason, one can introduce the direct method for investigating the

stability of an equilibrium position only. Assuming, for the sake of simplicity,

that X is a normed linear space, and denoting by Fr, with r = const. > 0,

the set of the function ϕ : [0, r) → <+ continuous, strictly increasing and

satisfying ϕ(0) = 0, then the Liapunov direct method can be summarized by

the following two Theorems.

Theorem 2.7.1. Let u be a dynamical system on X and let O be an equilib-

rium point. If V is a Liapunov function on the open ball S(O, r), for some

r > 0, such that:

i) V (O) = 0,

ii) ∃f ∈ Fr : V (u) ≥ f(‖u‖), ∀u ∈ S(O, r),

then O is stable. If, in addition,

iii) ∃g ∈ Fr :
•
V (u) ≤ −g(‖u‖), ∀u ∈ S(O, r),

then O is asymptotically stable.

Proof. Let us assume ε < r and introduce

α = inf
‖u‖=ε

V (u) ≥ f(ε) > 0 , (ε 6= 0) .
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In view of i), ii) and Theorem 2.6.1, it follows that S(O, ε) contains a pos-

itive invariant component Σα of Σ(X,α). The stability is then immediately

obtained observing that, by virtue of i) and of the V continuity, there exists

δ(ε) > 0 such that S(O, δ) ⊂ Σα and therefore

u0 ∈ S(O, δ) ⇒ γ(u0) ⊂ Σα ⊂ S(O, ε).

Turning now to the asymptotic stability, by (2.19), ii) and iii), it follows that

0 ≤ f [‖u(u0, t)‖] ≤ V [u(u0, t)] ≤ V (u0)−
∫ t

0

g(‖u(u0, τ)‖)dτ (2.20)

∀u0 ∈ S(0, δ). Because V [u(u0, t)] : <+ → <+ is a bounded nonincreasing

function, then there exists a β ∈ <+ such that

0 ≤ inf
t∈<+

V [u(u0, t)] = β ≤ V (u0) ≤ α .

But β > 0 implies γ(u0)∩Σ(X, β) = ø and, by the V continuity the existence

of r∗ > 0 such that ∀ t ∈ <+

• γ(u0) ∩ S(O, r∗) = ø

• ‖u(u0, t)‖ > r∗

• g(r∗) ≤ g(‖u(u0, t)‖) .

Consequently (2.20) gives

0 < V [u(u0, t)] ≤ V (u0)−
∫ t

0

g(r∗)dτ ≤ V (u0)− tg(r∗) < 0, t >
V (u0)

g(r∗)

which is impossible. Therefore β = 0 and the asymptotic stability then follows.

Theorem 2.7.2. Let u be a dynamical system on X × <+, and let O be

an equilibrium point. If V is a Liapunov function on the open set Ar =

S(O, r) ∩ Σ(X, 0), for some r > 0, and
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i) V (O) = 0,

ii) ∃g ∈ Fr :
•
V (u) ≤ −g[−V (u)], u ∈ Ar,

iii) Aε 6= ∅, ∀ε > 0,

then O is unstable.

Proof. Because of i) and the V continuity, there exists 0 < ε < r such that

u ∈ S(O, ε) ⇒ V (u) > −1 .

The point O cannot be stable for otherwise one could find a δ(ε) > 0 such that

u0 ∈ S(O, δ) ⇒ γ(u0) ∈ S(O, ε)

and hence, by ii), u0 ∈ Aδ ⇒ γ(u0) ∈ Aε and V [u(u0, t)] ≤ V (u0) < 0,

∀t ∈ <+. Consequently g[−V (u)] ≥ g[−V (u0)] on γ(u0) and (2.19) gives

−1 < V [u(u0, t)] ≤ V (u0)−
∫ t

0

g[−V (u0)]dτ ≤ V (u0)− tg[−V (u0)] < −1

for t >
V (u0)

g[−V (u0)]
, which is impossible. Therefore O is unstable.

2.8 Liapunov functions for some reaction-diffusion

systems

In the present section, on considering the initial boundary value problem
ut = uxx + F (x, t, u, ux, uxx) x ∈ (0, 1), t > 0

u(0, t) = u(1, t) = 0 ∀t ≥ 0

u(x, 0) = u0(x) x ∈ [0, 1] ,

(2.21)

under the assumption that

u = 0 ⇒ F = 0,
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we will recall some suitable Liapunov functionals for different type of reaction

term.

i) The diffusion equation (i.e. F = 0). In this case, the following functionals
U =

1

2
‖u(t)‖2 =

1

2

∫ 1

0

u2(x, t)dx

V =
1

2
‖ux(t)‖2 =

1

2

∫ 1

0

u2
x(x, t)dx

W = U + V

(2.22)

are Liapunov functionals. In fact, along the solutions of (2.21), by virtue of

the Poincaré inequality, it turns out that

·
U=

∫ 1

0

uutdx =

∫ 1

0

uuxxdx = −
∫ 1

0

u2
xdx ≤ −γ

2
U

·
V=

∫ 1

0

uxuxtdx = −
∫ 1

0

u2
xxdx ≤ −γ

2
V

·
W= −

∫ 1

0

(u2
x + u2

xxdx ≤ −γ
2
W,

with γ = const. > 0. Hence the solution u ≡ 0 is asymptotically exponentially

stable according to 
U ≤ U0e

−γt

V ≤ V0e
−γt

W ≤ W0e
−γt .

ii) A nonhomogeneous linear case. If

F = (g(x)u)x

with g ∈ C1([0, 1]), on choosing

V =
1

2

∫ 1

0

eϕ(x)u2dx, ϕ(x) =

∫ x

0

g(ξ)dξ

along the solutions of (2.21), by virtue of

inf
x∈[0,1]

ϕ ≡ α ≤ ϕ(x) ≤ β ≡ sup
x∈[0,1]

ϕ
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it turns out that

·
V=

∫ 1

0

eϕuutdx =

∫ 1

0

eϕu[uxx + (gu)x]dx = −
∫ 1

0

eϕ(gu+ ux)
2dx

= −
∫ 1

0

e−ϕ[(eϕu)x]
2dx ≤ −e−β

∫ 1

0

[(eϕu)x]
2dx

≤ −e
−βγ

2

∫ 1

0

e2ϕu2dx ≤ −e
α−βγ

2

∫ 1

0

eϕu2dx ≤ cV

where c = −e
α−βγ

2
. Hence one recover the asymptotic exponential stability of

u ≡ 0 with respect to the V -norm.

iii) The nonlinear case F = g(ux)uxx. In this case, equation (2.21)1 becomes

ut = [1 + g(ux)]uxx

which is a diffusion equation with the nonconstant diffusion coefficient given

by

k = 1 + g(ux).

According to the physical meaning of k, it is natural to require that

1 + g(ux) ≥ 0.

Choosing the function (2.22)2 along the solution of (2.21), it turns out that

·
V=

∫ 1

0

(1 + g)u2
xxdx.

Assuming

∃ε = const. > 0 : g(ξ) > ε− 1 ∀ξ ∈ <

it follows that
·
V≤ −ε

∫ 1

0

u2
xxdx ≤ −εγV

and hence the asymptotic stability of the zero solution is recovered.
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iv) Diffusion with variable conductivity. Let us consider the initial boundary

value problem 
ut =

∂

∂x
[(k + g(u))ux] x ∈ (0, 1), t > 0

u(0, t) = u(1, t) = 0 ∀t ≥ 0

u(x, 0) = u0(x) x ∈ [0, 1]

(2.23)

with u = u(x, t), k = const. > 0 and g ∈ C1(<). This problem arises in

the heat diffusion phenomena, when thermal conductivity depends on the

temperature. This happens, for instance, in the “cold ice” of glaciers. (2.23)1,

more generally, can be written

ut = ∆ϕ(u) (2.24)

with ϕ(u) =
∫ 1

0
[k + g(s)]ds.

Equation (2.24) models many other phenomena like diffusion of biological

populations, diffusion of fluids through porous media and heat diffusion in the

Stefan problem. Setting

F (u) =

∫ u

0

g(ξ)dξ

it follows that

u = 0 ⇒ F = 0

and (2.23)1 becomes

ut = uxx +
∂2

∂x2
F (u).

Choosing the function (2.22)1 as Liapunov function, it turns out that

·
U= −k

∫ 1

0

u2
xdx−

∫ 1

0

ux
∂F

∂x
dx = −

∫ 1

0

(k + g)u2
xdx.

Hence, assuming

∃ε = const. > 0 : k + g(ξ) ≥ ε ∀ξ ∈ <
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it follows that

·
U= −ε

∫ 1

0

u2
xdx ≤ −εγU, γ = const, > 0

i.e. the asymptotic exponential stability of the zero solution of (2.21).

v) The case ut = ∆F (u). Let Ω ⊂ <3 be a sufficiently smooth bounded domain.

Let us consider 
ut = ∆F (u) Ω×<+

u(x, 0) = u0(x) Ω× {0}

u(x, t) = u1(x) ∂Ω×<+

(2.25)

where F ∈ C2(Ω), u0 ∈ C(Ω) and u1 ∈ C(∂Ω) are assigned functions. Some

interesting results, relating to the asymptotic behaviour of solutions of (2.25),

have been obtained in [12], [28]. For the sake of completness here we recall

the following ones. Let us consider the steady boundary value problem ∆F (U) = 0 Ω×<+

U = u1(x) ∂Ω×<+
(2.26)

and let us put u = U + v, it follows that
vt = ∆L Ω×<+

v(x, 0) = v0(x) Ω× {0}

v(x, t) = 0 ∂Ω×<+ .

The approach is based on the introduction of the following peculiar Liapunov

functional

V (t) =

∫
Ω

G(U, v)dΩ

with

G(U, v) =

∫ v

0

L(U, v)dv. (2.27)

For u ∈ <, let

F ′(u) ≥ m (2.28)
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where m is a positive constant.

Lemma 2.8.1. Supposing that v ∈ <, then

1. G(U, 0) =

[
∂G

∂v

]
v=0

= 0

2.
∂2G

∂v2
> 0

3. G(U, v) ≥ 1

2
mv2

4.

(
∂G

∂v

)2

= L2(U, v) ≥ 2mG(U, v).

The following theorem holds.

Theorem 2.8.1. Let (2.28) hold and let (2.26) be solvable. Then U is asymp-

totically exponentially stable in the L2-norm and is the asymptotic state of any

solution of the initial boundary value problem (2.25) in this norm.

Let us introduce a second type of Liapunov functional as follows

Vn(t) =

∫
Ω

Gn(U, v)dΩ

Let us now consider the following Lemma

Lemma 2.8.2. Let v ∈ < and let (2.27) hold. On setting

Gn(U, v) =

∫ v

0

L2n+1(U, vdv, G0 = G

(n being a positive integer or zero), it follows that

1. 0 ≤ Gn < vL2n+1
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2. Gn ≥
m2n+1

2(n+ 1)
v2(n+1)

3. L2n+2 ≥ mGn.

Introducing a second type of Liapunov function, in [12], Flavin and Rionero

obtain the following two generalizations of Theorem 3.5.1 .

Theorem 2.8.2. Let (2.28) hold and let the boundary value problem (2.26)

be solvable. Then U is asymptotically exponentially stable in the L2n-norm,

n ∈ <+, and is the asymptotic state of each solution of (2.25) in the L2n-norm

as t→∞.

Theorem 2.8.3. Let (2.28) hold and let the boundary value problem (2.26) be

solvable.

a) Then the steady state U is stable in the L∞-norm.

b) If F ′ < M , with M positive constant, then the steady state U is exponen-

tially asymptotically stable in the L∞-norm, and it is the asymptotic state in

this norm.

We notice that the Poincaré inequality holds also on noncompact domains,

bounded at least in one direction. Therefore Theorems 2.8.1 - 2.8.3 continue

to hold also for these domains, at least with respect to perturbations spatially

periodic in the directions in which the domains are unbounded.
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2.9 Linear stability

Let H be a Hilbert space endowed with a scalar product 〈·, ·〉 and associated

norm |·|. We consider in H the following perturbed dynamical system u(u0, t)
ut + Lu+Nu = 0

u(x, 0) = u0(x),

(2.29)

where u(u0, t) has been obtained on perturbing at the initial time the basic

motion v(v0, t). In (2.29) we assume that L is a linear operator (possibly

unbounded), and N is a nonlinear operator with N(0) = 0 in order to ensure

that (2.29) admits the null solution.

On linearizing system (2.29), one studies the linear stability of the basic motion

v(v0, t) or equivalently the linear stability of the null solution of equation

(2.29)1.

Hence, the linear stability is governed by the system
ut + Lu = 0

u(x, 0) = u0(x) .

(2.30)

Let us assume that

(i) L is an autonomous, densely defined and closed operator such that for

λ ∈ C, (L−λI)−1 is compact (where I is the identity operator in H), i.e. L is

an operator with compact resolvent. In such hypotheses the following theorem

holds true.

Theorem 2.9.1. The spectrum of the operator L consists entirely of an at

most denumerable number of eigenvalues {σn}n∈N with finite (both algebraic

and geometric) multiplicites and, moreover, such eigenvalues can cluster only

at infinity.
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Generally the linear operator L is not symmetric. For this reason, on looking

for solutions of (2.29) of the type u = φ(x)e−σ t, the eigenvalues σ satisfying

the equation

Lφ = σφ (2.31)

are not necessarily real eigenvalues, but they can be ordered in the following

way

re(σ1) ≤ re(σ2) ≤ ... ≤ re(σn) ≤ ... .

On indicating Σ the set of the eigenvalues that are solutions of the equation

(2.31), in the linear stability theory one introduces the following definition

Definition 2.9.1. The null solution of system (2.29) is linearly stable if

re(σ1) > 0 . (2.32)

The null solution of system (2.29) is linearly unstable if it is not stable.

2.10 Connection between linear and nonlinear

stability

Now we are interested to the connections between the linear and nonlinear

stability of an assigned motion. To this end, let us decompose the linear

operator L as follows

L = L1 + L2 (2.33)

with: i)D(L2) ⊃ D(L1) = D(L) being D(·) the domain of the associated

operator; ii) L1 symmetric operator with compact resolvent; iii) L2 skew-

symmetric and bounded operator in H∗, being H∗ a compact space embedded



41

in H. Hence being L1 a symetric operator, the eigenvalues {λi}i∈IN they can

be ordered as follows:

λ1 ≤ λ2 ≤ ... ≤ λn ≤ ...

Let us reconsider the problem (2.29), under the hypothesis that the nonlinear

operator N(u) is such that (N(u), u) ≥ 0. In such hypothesis, on mulytiplying

both the sides of the equation (2.29)1 by u, we obtain the following inequality

1

2

d

dt
‖u‖2 + 〈Lu, u〉 ≤ 0

from which, by virtue of (2.33), one obtains

1

2

d

dt
‖u‖2 +

L1[φ, φ]

‖u‖2
‖u‖2 ≤ 0 (2.34)

where L1[φ, φ] is the bilinear form associated to the operator L1. Let us

suppose that the bilinear form associated to L1 is defined and bounded on H∗

and let us set φ the eigenfunction associated to the eigenvalue λ1. Then

λ1 = min
φ∈H∗

L1[φ, φ]

‖φ‖2
. (2.35)

Hence from (2.34), by virtue of (2.35), one obtains

‖u(t)‖2 ≤ ‖u0‖2 e−2λ1t . (2.36)

Hence, if one supose that λ1 > 0 (linear stability), the null solution of (2.29) is

unconditional nonlinearly stable with respect to the H-norm. From the above

considerations, it follows that, while the linear stability problem is linked to

the study of the eigenvalues associated to the operator L, if 〈N(u), u〉 ≥ 0, the

nonlinear stability involves the study of the eigenvalues of the symmetric part

L1 of L only. Hence, if for example L2 = 0, since the two eigenvalue problems

coincide, the linear stability and nonlinear stability thresholds coincide.



Chapter 3

On the Stability of the Solution

of a Nonlinear Binary Reaction

Diffusion System of P.D.Es.

3.1 Preliminaries

In this chapter, our aim is to recall some fundamental results due to Rionero

(cfr. [30], [31]) concerning the nonlinear stability of a biologically meaningfull

solution of a binary reaction-diffusion model.

Let Ω ⊂ <3 be a bounded smooth domain. The nonlinear stability analysis

of an equilibrium state in Ω of two substances, for example, diffusing in Ω,

can be traced back to the nonlinear stability analysis of the zero solutions of

42
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a dimensionless binary system of P.D.Es. like

ut = a1(x)u− a2(x)v + γ1∆u+ f(u, v)

vt = a3(x)u+ a4(x)v + γ2∆v + g(u, v)
(3.1)

where ai : x ∈ Ω → ai(x) ∈ <, ai ∈ C(Ω) (1 ≤ i ≤ 4); γi (i = 1, 2)

positive constants; u, v perturbations (of finite amplitude) to the equilibrium

concentrations of the substances and f, g nonlinear smooth functions of u and

v verifying the conditions

f(0, 0) = g(0, 0) = 0.

To (3.1) we append the Dirichlet boundary conditons

u = v = 0 on ∂Ω×<+ (3.2)

or the Neumann boundary conditions (n being the unit outward normal to

∂Ω)

du

dn
=
dv

dn
= 0 on ∂Ω×<+ (3.3)

with the additional conditions∫
Ω

udΩ =

∫
Ω

vdΩ = 0 ∀t ∈ <+, (3.4)

in the case (3.3).

We denote by

< ·, · > the scalar product in L2(Ω);

< ·, · >|Ω the scalar product in L2(Ω), with Ω ⊂ Ω;

‖·‖ the L2(Ω)-norm;
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‖·‖Ω the L2(Ω)-norm, with Ω ⊂ Ω;

H1
0 (Ω) the Sobolev space such that

ϕ ∈ H1
0 (Ω) →

{
ϕ2 + (∇ϕ)2 ∈ L2(Ω), ϕ = 0 on ∂Ω

}
;

H1
∗ (Ω) the Sobolev space such that

ϕ ∈ H1
∗ (Ω) →

{
ϕ2 + (∇ϕ)2 ∈ L2(Ω),

dϕ

dn
= 0 on ∂Ω,

∫
Ω

ϕdΩ = 0

}
and study the stability of (u∗ = v∗ = 0) in the L2(Ω)-norm with respect to

the perturbations (u, v) belonging, ∀t ∈ <+, to [H1
0 (Ω)]2 in the case (??) and

to [H1
∗ (Ω)]2 in the case (3.3)− (3.4).

We also assume that

|< u, f >|+ |< v, g >| = o
(
‖u‖2 + ‖v‖2) (3.5)

which is equivalent to require

|< u, f >|+ |< v, g >| ≤ C (‖u‖+ ‖v‖)
(
‖∇u‖2 + ‖∇v‖2)

with C positive constant.

To (3.1) we associate the binary linear system of O.D.Es.
dξ

dt
= b1(x)ξ − b2(x)η

dη

dt
= b3(x)ξ + b4(x)η

(3.6)

with 

b1 = a1(x)− γ1α b2 = a2(x)

b4 = a4(x)− γ2α b3 = a3(x)
(3.7)
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α being the positive constant appearing in the Poincaré - Wirtinger inequality

‖∇φ‖2 ≥ α ‖φ‖2 (3.8)

holding both in the spaces H1
0 (Ω) and H1

∗ (Ω).

As it is well known, α = α(Ω) > 0 is the lowest eigenvalue λ of

∆φ+ λφ = 0

respectively in H1
0 (Ω) and H1

∗ (Ω) (i.e. the principal eigenvalue of −∆).

Let us notice that the eigenvalues of (3.6) are given by

λ =
I ±

√
I2 − 4A

2
(3.9)

with 

I = b1 + b4

A = b1b4 + b2b3

hence the conditions  I < 0

A > 0
(3.10)

guarantee the stability of (ξ∗ = η∗ = 0), while the instability is guaranteed by I > 0

A < 0
(3.11)

or by

A < 0. (3.12)

Our aim is to show that the stability (instability) of the critical point (ξ∗ =

η∗ = 0) of (3.6) implies the stability (instability) of the critical point (u∗ =

v∗ = 0) of (3.1).
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3.2 Some peculiar Liapunov functionals

Setting

u = αu, v = βv

with α and β suitable constants to be chosen appropriately later, (3.1) can be

written as follows 
ut = a1u−

β

α
a2v + γ1∆u+ f

vt =
α

β
a3u+ a4v + γ2∆v + g

(3.13)

with

f =
1

α
f

∣∣∣∣
(u=αu,v=βv)

g =
1

β
g

∣∣∣∣
(u=αu,v=βv)

.

Setting 

f ∗ = γ1(∆u+ αu)

g∗ = γ2(∆v + αv)

by virtue of (3.7) it follows that
ut = b1u−

β

α
b2v + f ∗ + f

vt =
α

β
b3u+ b4v + g∗ + g

(3.14)

under the boundary conditions

u = v = 0 on ∂Ω, ∀t ≥ 0.

Let us consider the following Liapunov functional

V =
1

2

[
A
(
‖u‖2 + ‖v‖2)+

∥∥∥∥b1v − α

β
b3u

∥∥∥∥2

+

∥∥∥∥βαb2v + b4u

∥∥∥∥2
]

(3.15)
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which is very peculiar for the problem at hand. Infact, along the solutions of

(3.14) it turns out that

dV

dt
= AI

(
‖u‖2 + ‖v‖2)+ Ψ∗ + Ψ

with

Ψ∗ =< α1u− α3v, f
∗ > + < α2v − α3u, g

∗ >

Ψ =< α1u− α3v, f > + < α2v − α3u, g >

α1 = A+
α2

β2
b23 + b24, α2 = A+ b21 +

β2

α2
b22, α3 =

α

β
b1b3 −

β

α
b2b4

and hence the eigenvalues given by (3.9) influence
dV

dt
in a simple direct way

through the product AI.

We notice that, setting

f ∗1 = −β
α
b2v + f ∗, g∗1 = −α

β
b3u+ g∗

(3.14) becomes 

ut = b1u+ f ∗1 + f

vt = b4v + g∗1 + g .
(3.16)

Introducing for (3.16) the functional V̂ analogous to (3.15)

V̂ =
1

2

[
b1b4

(
‖u‖2 + ‖v‖2)+ b21 ‖v‖

2 + b24 ‖u‖
2] (3.17)

it follows that, along (3.14)

dV̂

dt
= b1b4(b1 + b4)

(
‖u‖2 + ‖v‖2)+ Ψ̂∗ + Ψ̂
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with 

Ψ̂∗ =< α̂1u, f
∗
1 > + < α̂2v, g

∗
1 >

Ψ̂ =< α̂1u, f > + < α̂2v, g >

α̂1 = b4(b1 + b4), α̂2 = b1(b1 + b4), α̂3 = 0 .

Remark 3.2.1. Let us notice that, by virtue of (3.15), A > 0 implies that V is

a positive definite functional of (u, v). Further, V denotes a norm equivalent

to the L2(Ω)-norm in the sense that there exist two positive constants k1, k2

such that

k1(‖u‖2 + ‖v‖2) ≤ V ≤ k2(‖u‖2 + ‖v‖2). (3.18)

infact, on choosing

k1 =
A

2
, k2 = max

{
A, e

(
b21 +

α2

β2

)
, e

(
β2

α2
b22 + b24

)}
by virtue of (3.15), (3.18) immediately follows.

By virtue of (3.17), b1b4 > 0 implies that V̂ is a positive definite functional of

(u, v). Further it turns out that

k3(‖u‖2 + ‖v‖2) ≤ V̂ ≤ k4(‖u‖2 + ‖v‖2)

with

k3 =
1

2
b1b4, k4 = (b1 + b4)

2.

If we append to (3.1) the Neumann boundary conditions (3.3), if the eigenval-

ues λ1 < λ2 given by (3.9) are real numbers and b3 6= 0, we may choose α = β

and introduce the functional

W =
1

2

[
‖(b1 − λ1)v − b3u‖2 + µ ‖(b1 − λ2)v − b3u‖2]
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with µ positive parameter to be choose suitably. Then along the solution of

(3.14)-(3.3) it follows that

dW

dt
≤ δW + F ∗ + µG∗

with 

δ = 2 max(λ1, µλ2)

F ∗ =< F,U >, G∗ =< G, V >

U = (b1 − λ1)v − b3u, V = (b1 − λ2)v − b3u .

3.3 Nonlinear stability

The following theorem holds.

Theorem 3.3.1. Let (3.5) and (3.10) hold. Then (u∗ = v∗ = 0) is nonlinearly

asymptotically stable with respect to the L2(Ω)-norm.

Proof. For any constant ε such that

0 < ε < inf

(
|I|
2α
,
A

α|I|

)
,

setting

bi = bi + αε, (i = 1, 4) (3.19)

it easily turns out that 

I = b1 + b4 < 0

A = b1b4 + b2b3 > 0 .
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By virtue of (3.13) and (3.19), we obtain
ut = b1u−

β

α
b2v + f

∗
+ f

vt =
α

β
b3u+ b4v + g∗ + g

(3.20)

with 

f
∗

= γ1(∆u+ αu) + ε∆u

g∗ = γ2(∆v + αv) + ε∆v .
(3.21)

Then, using the substitution b1 b4 f
∗
g∗

b1 b4 f ∗ g∗


we obtain that along the solutions of (3.20) it turns out that

dV

dt
= AI

(
‖u‖2 + ‖v‖2)+ Ψ

∗
+ Ψ

with

V =
1

2

[
A
(
‖u‖2 + ‖v‖2)+

∥∥∥∥b1v − α

β
b3u

∥∥∥∥2

+

∥∥∥∥βαb2v − b4u

∥∥∥∥2
]

and

Ψ
∗

=< α1u− α3v, f
∗
> + < α2v − α3u, g

∗ >

Ψ =< α1u− α3v, f > + < α2v − α3u, g >

α1 = A+
α2

β2
b23 + b

2

4, α2 = A+ b
2

1 +
β2

α2
b22, α3 =

α

β
b1b3 −

β

α
b2b4

.

(3.22)
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Choosing

α =

√
b2b4

b1b3
, β = 1

it follows that α3 = 0, and by virtue of (3.22), we obtain

Ψ
∗

= α1 < u, f
∗
> +α2 < v, g∗ >=

α1γ1

(
−‖∇u‖2 + α ‖u‖2)+α2γ2

(
−‖∇v‖2 + α ‖v‖2)−ε (α1 ‖∇u‖2 + α2 ‖∇v‖2)

i.e.

Ψ
∗ ≤ −k∗

(
‖∇u‖2 + ‖∇v‖2)

with

0 < k∗ = ε inf {α1, α2} .

On the other hand, from (3.5) it follows

Ψ ≤ α1

α2
< u, f > +α2 < v, g >

≤ k

(
α1

α2
+ α2

)(
α2 + 1

)ε (‖u‖2 + ‖v‖2)ε (‖∇u‖2 + ‖∇v‖2) .
Therefore we obtain

dV

dt
≤ −A|I|

k2

V −

(
k∗ −

k̃

k
ε

1

V
ε

)(
‖∇u‖2 + ‖∇v‖2)

with

k1 =
A

2
, k2 = max

{
A, 2(b

2

1 + α2b23), 2

(
1

α2
b22 + b

2

4

)}
.

By recursive arguments, one obtains that

V
ε

0 <
k∗k

ε

1

k̃

implies

dV

dt
≤ 0 ∀t ≥ 0



52

and in view of the Poincaré inequality, setting

0 < δ =
1

k2

[
A|I|+ α

(
k∗ −

k̃

k
ε

1

V ε
0

)]

it easily follows

dV

dt
≤ −δV

i.e.

V ≤ V 0e
−δt.

3.4 Instability

The following theorem holds.

Theorem 3.4.1. Let (3.5) and (3.11) or (3.5) and (3.12) hold . Then (u∗ =

v∗ = 0) is unstable with respect to the L2(Ω)-norm.

Proof. By definition, the instability is guaranteed by the existence of at

least one destabilizing admissible perturbation. The optimum is when the

destabilizing perturbations are dynamically admissible.

In view of (3.14) with α = β = 1, the L2-energy system

1

2

d

dt
‖u‖2 =< u, b1u− b2v > + < u, f ∗ + f >

1

2

d

dt
‖v‖2 =< v, b3u+ b4v > + < v, g∗ + g >

(3.23)

easily follows.

Let us look for solutions of (3.23) having the multiplicative form

u = p = X(t)ϕ v = q = Y (t)ϕ (3.24)
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with ϕ principal eigenfunction of −∆ in H1
0 (Ω).

Then (3.24) imply
∆p+ αp = ∆q + αq = f ∗(p) = g∗(q) = 0

‖∇p‖2 = α ‖p‖2 , ‖∇q‖2 = α ‖q‖2

and any non zero solution of
dX

dt
= b1X − b2Y + F (X, Y )

dY

dt
= b3X + b4Y +G(X,Y )

(3.25)

with

F (X, Y ) =
1

‖ϕ‖2 < ϕ, f(ϕX,ϕY ) >, G(X, Y ) =
1

‖ϕ‖2 < ϕ, g(ϕX,ϕY ) >

nonlinear smooth functions of X,Y such that

F (0, 0) = G(0, 0) = 0 ,

is a solution of (3.23).

The global existence of the multiplicative solutions (3.24) of (3.23) is guaran-

teed by the global existence of the solutions of the binary system of O.D.Es.

(3.25), and the instability of the null solution X∗ = Y ∗ = 0 of (3.25) implies

the instability of the null solution (u∗ = v∗ = 0) of (3.1).

The linear version of (3.25) coincide with (3.6) hence its eigenvalues are given

by (3.9). Both in the cases (3.11) and (3.12), at least one of the eigenvalues

is real positive or complex with positive real part. Although in these circum-

stances it is well known that, in the case at hands, the null solution of (3.25)

is nonlinearly unstable, for the sake of completeness, we present here a simple
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direct proof of it.

In the case (3.11) the appropriate Liapunov functional for the instability is

W =
1

2

[
A(X2 + Y 2) + (b1Y − b3X)2 + (b2Y + b4X)2

]
.

Along (3.25) it follows that

dW

dt
= AI(X2 + Y 2) + Ψ2

with 

Ψ2 = FF1 +GG1

F1 = (A+ b23 + b24)X − (b1b3 − b2b4)Y

G1 = (A+ b21 + b22)Y − (b1b3 − b2b4)X .

But it easily follows that exists a positive constant k4 such that

Ψ2 ≤ k4(X
2 + Y 2)1+ε

and hence

dW

dt
≥ AI(X2 + Y 2)− k4(X

2 + Y 2)1+ε.

Therefore in the sphere Sr of radius r ≤
(

AI
k4

)1+ε

centered at (X = Y = 0),

W is positive definite and
dW

dt
> 0. Then the instability is guaranteed by the

Liapunov instability theorem.

In the case (3.12), (X = Y = 0) is a saddle point and, via the transformation

X1 = −b4X + (b1 − λ1)Y, Y1 = −b4X + (b1 − λ2)Y,

(3.25) can be reduced into 
dX

dt
= λ1X1 + F1

dY

dt
= λ2Y1 +G1

(3.26)
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with

F1 = F [X(X1, Y1), Y (X1, Y1)], G1 = G[X(X1, Y1), Y (X1, Y1)] (3.27)

and 

X(X1, Y1) =
1

b4(λ1 − λ2)
[(b1 − λ1)Y1 + (λ2 − b1)X1]

Y (X1, Y1) =
Y1 −X1

λ1 − λ2

.

In view of λ1λ2 < 0, without loss of generality, one can assume λ1 < 0. The

appropriate Liapunov functional in this case is

E =
1

2
(X2

1 − Y 2
1 )

and along the solutions of (3.26) it follows that

dE

dt
= λ1X

2
1 + |λ2|Y 2

1 +X1F1 + Y1G1.

Setting δ = min {λ1, |λ2|}, (3.27) imply

|X1F1 + Y1G1| ≤ a(X2
1 + Y 2

1 )1+ε

with a positive constant, it turns out that

dE

dt
> δ(X2

1 + Y 2
1 )− a(X2

1 + Y 2
1 )1+ε.

Therefore in the sphere Sr of radius r ≤
(

δ
a

)1/ε
, centered at (X1, Y1 = 0) it

turns out that dE
dt
> 0. By virtue of

Y1 = 0 ⇒ E > 0

also in the case (3.12) the instability is guaranteed by the Liapunov instability

theorem.

We observe that the classical energy method of nonlinear L2-stability generally

does not allow to obtain conditions guaranteing instability.



56

Remark 3.4.1. Theorems 2.12.1 and 2.12.2 continue to hold also in the case

of Neumann boundary conditions

du

dn
=
dv

dn
= 0

(n being the outward normal to ∂Ω) in the class of the perturbations such that∫
Ω

udΩ =

∫
Ω

vdΩ = 0.

3.5 Stabilizing-destabilizing effect of diffusiv-

ity

Immediate consequences of Theorems 2.12.1 and 2.12.2 are the following ones.

Theorem 3.5.1. Let (3.5), (3.10) and

I0 = a1 + a4 > 0

A0 = a1a4 + b2b3 > 0

or

A0 = a1a4 + b2b3 < 0

hold. Then (u∗ = v∗ = 0), unstable in absence of diffusivity, is stabilized by

diffusivity.

Theorem 3.5.2. Let (3.5), (3.12) and

I0 = a1 + a4 < 0

A0 = a1a4 + b2b3 > 0
(3.28)
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hold. Then (u∗ = v∗ = 0), stable in absence of diffusivity, is destabilized by

diffusivity.

It remains only to show the consistency of the assumptions (3.28).

From

A = γ1γ2α
2 − (γ1a4 + γ2a1)α+ A0 < 0 (3.29)

it follows that the consistency of (3.28) requires γ1 6= γ2

a1a4 < 0 .

Let

a1 < 0 (3.30)

then (3.29) becomes

γ1 >
1

a4

(|a1|+ γ1α)γ2 +
A0

a4α

and the consistency of (3.28) is guaranteed by (3.5), (3.30) and

γ1 >
(1 + δ)A0

a4α

γ2 <
δA0

(|a1|+ γ1α)α

with δ = const. > 0. Analogously if

a4 < 0 (3.31)

the consistency is guaranteed by (3.5), (3.31) and

γ2 ≥
(1 + δ)A0

a1α

γ<
δA0

(|a4|+ γ2α)α
.
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Remark 3.5.1. The stabilizing-destabilizing effect of diffusivity on the linear

stability is well known {see [13],[28]}. When Ω is a torus and the perturbations

verify the plan-form equations, the nonlinear stabilizing-destabilizing effect of

diffusivity has been considered in [31].

Remark 3.5.2. Theorems 2.12.1 and 2.12.2 allow to obtain the coincidence

between the conditions of linear stability (via normal modes) and the conditions

of nonlinear stability with respect to the L2-norm.

Let now = denote the identity operator. The scalar

Ξ(u, v) =< u,=u > + < v,=v >

is usually interpreted as energy of the perturbation (u, v) to the basic state.

Generalizing this point of view, the scalar

Q =< u, Fu > + < v,Gv > (3.32)

with F and G operators acting on u and v respectively, can be interpreted as

energy dissipated or generated by the operators F and G, according to Q < 0

or Q ≥ 0 respectively. In the case of the operators

F = γ1∆, G = γ2∆

appearing in (3.1), in view of < f,∆f >=< f,∇ · ∇f >= −‖∇f‖2

∀f ∈ H1
0 (Ω), ∀f ∈ H1

∗ (Ω)

Q is given by

Q = −γ1 ‖∇u‖2 − γ2 ‖∇v‖2

and hence the energy is dissipated. By virtue of (3.8),

|Qmax| = α(γ1 ‖∇u‖2 + γ2 ‖∇v‖2)
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with 

∆u+ αu = 0

∆v + αv = 0

denotes the lowest energy dissipated by (3.32). The guideline of this chapter

has been to show that the conditions guaranteeing the stability (instability)

with respect to the perturbations dissipating the lowest energy, guarantee the

stability (instability) with repect to any other perturbation.



Chapter 4

Nonlinear stability for

reaction-diffusion

Lotka-Volterra model with

Beddington-DeAngelis

functional response

4.1 Introduction

This chapther is devoted to the coexistence problem for Lotka-Volterra predator-

prey model, with Beddington-De Angelis functional response and Robin type

boundary conditions.

By using the Rionero-Liapunov functionals introduced in section 3.2, condi-

tions guaranteeing the nonlinear L2-stability of the biologically meaningful

equilibrium state are furnished.

60
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4.2 The model

Denoting by U and V the prey and predator densities respectively, the Lotka-

Volterra predator-prey model equations with Beddington-DeAngelis functional

response F (U, V ) are:

∂U

∂t
= d1∆U + U(1− U)− aUV

1 + bU + cV
(x, t) ∈ Ω×<+

∂V

∂t
= d2∆V − dV +

eUV

1 + bU + cV
(x, t) ∈ Ω×<+

(4.1)

where Ω ⊂ <3 is a bounded smooth domain and a, b, c, d, d1, d2 are positive

constants.

The dynamics of (4.1), under the boundary conditions (βi = const., i = 1, 2)
β1U + (1− β1)

dU

dn
= 0 on ∂Ω×<+

β2V + (1− β2)
dV

dn
= 0 on ∂Ω×<+

(4.2)

n being the outward normal to ∂Ω and β1, β2 ∈ [0, 1], has been deeply studied

recently in [5] {Cfr. also [6]}. The analysis is mostly based on the well known

Liapunov functional

Ξ(t) =

∫
Ω

W (U(x, t), V (x, t))dx (4.3)

with 

W = W1(U) + [a(1 + bU∗)/e(1 + cV ∗)]W2(V )

W1 = U − U∗ − U∗ln(U/U∗)

W2 = V − V ∗ − V ∗ln(V/V ∗) .

(4.4)
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The positive equilibrium state S = (U∗, V ∗), existing for

e > (b+ 1)d , (4.5)

is given by
U∗ =

−[a(e− bd)− ce] +
√

[a(e− bd)− ce]2 + 4acde

2ce
< 1

V ∗ = −1

c
+
e− bd

cd
U∗ > 0 .

(4.6)

In particular in [5] the stability of S has been studied in the case in which

both the species cannot live Ω, i.e.:

dU

dn
=
dV

dn
= 0 on ∂Ω×<+ . (4.7)

Here we reconsider the stability of S, but under more general boundary con-

ditions. In fact we consider the case in which each specie cannot live Ω only

through a part of ∂Ω. Precisely we consider the mixed boundary conditions

(Robin type conditions)
dU

dn
= 0 on Σ1 ×<+ , U = U∗ on Σ∗

1 ×<+

dV

dn
= 0 on Σ2 ×<+ , V = V ∗ on Σ∗

2 ×<+ ,

(4.8)

with ∂Ω = Σi ∪ Σ∗
i , Σi ∩ Σ∗

i = ∅, and Σ∗
i 6= ∅ (i = 1, 2).
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4.3 Preliminaries

Let (u, v) denote the perturbation to S. It easily follows that
ut =

(
1 +

ah1

b
− 2U∗

)
u+

ah2

c
v − u2 + d1∆u− aH(u, v)

vt = −eh1

b
u+

(
−eh2

c
− d

)
v + d2∆v + eH(u, v)

(4.9)

under the boundary conditions
du

dn
= 0 on Σ1 ×<+ u = 0 on Σ∗

1 ×<+

dv

dn
= 0 on Σ2 ×<+ v = 0 on Σ∗

2 ×<+ ,

(4.10)

with 

H(u, v) =
h1u

2 + h2v
2 + h3uv

φ∗ + bu+ cv

h1 = −bV
∗(1 + cV ∗)

φ∗2
, h2 = −cU

∗(1 + bU∗)

φ∗2

h3 =
φ∗ + 2bcU∗V ∗

φ∗2
, φ∗ = 1 + bU∗ + cV ∗ .

(4.11)

Denoting by Hi(Ω) ⊂ W 1,2(Ω) (i = 1, 2) the functional spaces defined by

Hi(Ω)=

{
ϕ :ϕ2+ |∇ϕ|2 ∈ L(Ω),

dϕ

dn
= 0 on Σi×<+, ϕ = 0 on Σ∗

i×<+

}
(4.12)

we study the stability of S with respect to the perturbations

(u, v) ∈ H1(Ω)×H2(Ω) ,

biologically meaningful, i.e. such that
U = U∗ + u > 0

V = V ∗ + v > 0 .

(4.13)
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It is easily verified that system (4.9) can be written
ut = b1u+ b2v + d1∆u+ f(u, v)

vt = b3u+ b4v + d2∆v + g(u, v)

(4.14)

with 

b1 = 1− 2U∗ − aV ∗(1 + cV ∗)

φ∗2

b2 = −aU
∗(1 + bU∗)

φ∗2
(< 0)

b3 =
eV ∗(1 + cV ∗)

φ∗2
(> 0)

b4 = −d+
eU∗(1 + bU∗)

φ∗2
= −cdV

∗

φ∗
(< 0)

f(u, v) = −u2 − aH(u, v) , g(u, v) = eH(u, v) .

(4.15)

Remark 4.3.1. We observe that

i) the positive quadrant U ≥ 0, V ≥ 0 is invariant {Cfr. [5]− [6] and [39]};

ii) the global existence of (u, v) with (u0, v0) ∈ H1(Ω)×H2(Ω) can be proved

as in [5]− [6];

iii) the infimum

ᾱi(Ω) = inf
Hi(Ω)

‖∇ϕ‖2

‖ϕ‖2
, (4.16)

exists and is a real positive number {Cfr. [6] and [39]};

iv) denoting by Ω∗ a smooth domain such that Ω ⊂ Ω∗/∂Ω∗, it turns out that

ᾱ1(Ω) ≥ k̄, k̄ being the lowest eigenvalue of

∆ϕ+ λϕ = 0 , ϕ ∈ W 1,2
0 (Ω∗) .
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In particular for Ω∗ =
[
δ
(1)
1 , δ

(2)
1

]
×
[
δ
(1)
2 , δ

(2)
2

]
×
[
δ
(1)
3 , δ

(2)
3

]
, it turns out

that {Cfr. Appendix}

ᾱi(Ω) ≥ k̄ =
3∑

j=1

1[
δ
(2)
j − δ

(1)
j

]2 . (4.17)

4.4 Nonlinear stability

Following the methodology introduced in [29] − [37], we observe that (4.14)

can be written 
ut = b∗1u+ b2v + f ∗(u) + f(u, v)

vt = b3u+ b∗4v + g∗(v) + g(u, v)

(4.18)

with 

0 < ε = const. < 1 , ᾱ = min{ᾱ1, ᾱ2}(> 0)

b∗i = bi − εdiᾱ , i = 1, 4

f ∗(u) = d1(∆u+ εᾱu) , g∗(v) = d2(∆v + εᾱv) .

(4.19)

Denoting by γi (i = 1, 2) two positive scalings to be chosen suitably later, and

setting

u = γ1ū , v = γ2v̄ , µ =
γ1

γ2

(4.20)

in view of (4.18), it turns out that
ūt = b∗1ū+

1

µ
b2v̄ + f ∗(ū) + f̄(ū, v̄)

v̄t = µb3ū+ b∗4v̄ + g∗(v̄) + ḡ(ū, v̄)

(4.21)
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with 

f(u, v) =
1

γ1

f(u, v)

∣∣∣∣
u=γ1u,v=γ2v

g(u, v) =
1

γ2

g(u, v)

∣∣∣∣
u=γ1u,v=γ2v

.

(4.22)

Our aim is to show that the nonlinear stability of S in the L2(Ω)-norm can be

reduced to the stability of the zero solution of
dξ

dt
= b∗1ξ +

1

µ
b2η

dη

dt
= µb3ξ + b∗4η

(4.23)

i.e. to 
I∗ = b∗1 + b∗4 = λ1 + λ2(< 0)

A∗ = b∗1b
∗
4 − b2b3 = λ1λ2(> 0)

(4.24)

λi (i = 1, 2) being the eigenvalues of

 b∗1 b2

b3 b∗4

.

Theorem 4.4.1. Let

b1 < d1ᾱ . (4.25)

Then S = (U∗, V ∗) is nonlinearly asymptotically exponentially stable with

respect to the L2(Ω)-norm.

Proof. Let ε > 0 be such that b1 < εd1ᾱ. Then (4.24) hold. Denoting by

‖ · ‖ and < ·, · > respectively the norm and the scalar product in L2(Ω), let

us introduce the Rionero-Liapunov functional {[29]− [36]}

E =
1

2

[
A∗(‖ū‖2 + ‖v̄‖2) + ‖b∗1v̄ − µb3ū‖2 + ‖b2

µ
v̄ − b∗4ū‖2

]
(4.26)
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which time derivative along the solution of (4.21) is given by

dE

dt
= A∗I∗(‖ū‖2 + ‖v̄‖2) + Ψ + Ψ∗ (4.27)

with 

Ψ =< α1ū− α3v̄, f̄ > + < α2v̄ − α3ū, ḡ >

Ψ∗ =< α1ū− α3v̄, f
∗ > + < α2v̄ − α3ū, g

∗ >

α1 = A∗ + µ2b23 + (b∗4)
2, α2 = A∗ + (b∗1)

2 +
1

µ2
b22

α3 = µb∗1b3 +
1

µ
b2b

∗
4 .

(4.28)

By virtue of (4.15), (4.19) and (4.25) it turns out that
b∗1b3 < 0

b2b
∗
4 > 0 ,

(4.29)

hence choosing

µ = µ̄ =

√∣∣∣∣b2b∗4b∗1b3

∣∣∣∣ (4.30)

it follows that

α3 = 0 . (4.31)

In view of
< ū, f ∗ >= d1[−‖∇ū‖2 + εᾱ‖ū‖2] < −d1(1− ε)‖∇ū‖2

< v̄, g∗ >= d2[−‖∇v̄‖2 + εᾱ‖v̄‖2] < −d2(1− ε)‖∇v̄‖2

(4.32)

one obtains

dE

dt
≤ A∗I∗(‖ū‖2 + ‖v̄‖2)− (1− ε)[d1‖∇ū‖2 + d2‖∇v̄‖2] + Ψ (4.33)
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with

Ψ = α1 < ū, f̄ > +α2 < v̄, ḡ > . (4.34)

In view of (4.20) and (4.30) it follows that

γ1 = µ̄ γ2

|f̄(ū, v̄)| ≤ γ2 (c1ū
2 + c2v̄

2 + c3|ū v̄|)

|ḡ(ū, v̄)| ≤ γ2 (c4ū
2 + c5v̄

2 + c6|ū v̄|)

(4.35)

with ci (i = 1, ..., 6) positive constants depending only on µ̄. In fact (4.13)

imply

φ∗ + bγ1ū+ cγ2v̄ > 1 (4.36)

and hence

|f̄(ū, v̄)| =
∣∣∣∣−γ1ū

2 − a
h1γ1ū

2 + h2γ
2
2/γ1v̄

2 + h3γ2ūv̄

φ∗ + bγ1ū+ cγ2v̄

∣∣∣∣ =

=

∣∣∣∣−µ̄γ2ū
2 − a

h1µ̄γ2ū
2 + h2γ2/µ̄v̄

2 + h3γ2ūv̄

φ∗ + bγ1ū+ cγ2v̄

∣∣∣∣ ≤
≤ γ2[c1ū

2 + c2v̄
2 + c3|ū v̄|]

(4.37)

with

c1 = µ̄(1 + a|h1|), c2 = a|h2|/µ̄, c3 = a|h3| . (4.38)

Analogously, it is can easily proved that (4.35)2 holds true, with

c4 = e|h1|µ̄2, c5 = e|h2|, c6 = e|h3|/µ̄ . (4.39)

Then, by virtue of (4.34)-(4.39), it follows that

|Ψ| ≤ γ2[η1 < |ū|3 > +η2 < |v̄|3 > +η3 < |ū| |v̄|2 > +η4 < |ū|2 |v̄| >] (4.40)
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with ηi (i = 1, .., 4) positive constants given by

η1 = |α1|c1 , η2 = |α2|c5

η3 = |α1|c2 + |α2|c6

η4 = |α1|c3 + |α2|c4

(4.41)

and the Hölder inequality implies

|Ψ| ≤ γ2(‖ū‖2 + ‖v̄‖2)1/2[[(η1 + η4)‖ū‖2
4 + (η2 + η3)‖v̄‖2

4] . (4.42)

From (4.46), in view of the embedding inequality {[40]}:

‖f‖2
4 ≤ k(Ω)‖∇f‖2

2 , k(Ω) = positive constant (4.43)

it turns out that

|Ψ| ≤ γ2 kM (‖∇ū‖2 + ‖∇v̄‖2)(‖ū‖2 + ‖v̄‖2)1/2 , (4.44)

with

M = max{η1 + η4, η2 + η3} > 0 . (4.45)

By virtue of A∗ > 0, it easily follows that E is positive definite and that exist

two positive constants ki (i = 1, 2) such that

k1(‖ū‖2 + ‖v̄‖2) ≤ E ≤ k2(‖ū‖2 + ‖v̄‖2) . (4.46)

Therefore

(‖ū‖2 + ‖v̄‖2)1/2 ≤ 2E1/2

k
1/2
1

(4.47)

and (4.33), (4.44), (4.46)-(4.47) imply

dE

dt
≤ −k3E − (k4 − γ2k5E

1/2)(‖∇ū‖2 + ‖∇v̄‖2) (4.48)
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with 
k3 =

A∗|I∗|
k1

, k4 = (1− ε) inf(d1, d2)

k5 =
2kM

k
1/2
1

.

(4.49)

By recursive argument

0 < γ2 <
k4

k5E
1/2
0

(4.50)

implies

dE

dt
≤ −k3E ∀ t ≥ 0 (4.51)

i.e.

E(t) ≤ E0 e
−k3t . (4.52)

Theorem 4.4.2. Let

bU∗(1− U∗) < U∗ + d1φ
∗ᾱ . (4.53)

Then S = (U∗, V ∗) is asymptotically nonlinearly stable according to (4.52).

Proof. S is a steady state, hence
U∗(1− U∗)− a

U∗V ∗

φ∗
= 0

φ∗ = 1 + bU∗ + cV ∗

(4.54)

i.e. 
aV ∗

φ∗
= 1− U∗

1 + cV ∗ = φ∗ − bU∗ .

(4.55)
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By virtue of (4.55), it turns out that

b1 = 1− 2U∗ − (1− U∗)
φ∗ − bU∗

φ∗
=

= 1− 2U∗ − (1− U∗)

(
1− bU∗

φ∗

)
=

= 1− 2U∗ − 1 + U∗ +
bU∗

φ∗
(1− U∗) = −U∗ +

bU∗

φ∗
(1− U∗)

(4.56)

i.e.

b1 =
U∗

φ∗
[−φ∗ + b(1− U∗)] . (4.57)

From (4.25) and (4.57), (4.53) immediately follows.

Remark 4.4.1. We observe that

i) in the case of the boundary conditions (4.7) one has ᾱ = 0, and (4.53)

reduces to

b(1− U∗) < 1 , (4.58)

which is the stability condition given in [5];

ii) (4.53) is only a sufficient condition for guaranteeing (4.24).

Appendix

Let Ω∗ be a smooth bounded domain such that Ω ⊂ Ω∗/∂Ω∗ and

k̄ = inf
ϕ∈W 1,2

0 (Ω∗)

‖∇ϕ‖2

‖ϕ‖2
. (4.59)

Then

‖ϕ‖2 ≤ k̄‖∇ϕ‖2 ∀ϕ ∈ W 1,2
i (Ω, βi) . (4.60)
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In fact, setting

ϕ =


Ψ , x ∈ Ω

0 , x ∈ Ω∗/Ω

(4.61)

Ψ ∈ W 1,2
i (Ω, βi) → ϕ ∈ W 1,2

0 (Ω) hence (4.59) ⇒ (4.60). In particular for

Ω∗ =
[
δ
(1)
1 , δ

(2)
1

]
×
[
δ
(1)
2 , δ

(2)
2

]
×
[
δ
(1)
3 , δ

(2)
3

]
it follows that

k̄ ≥
3∑

j=1

1[
δ
(2)
j − δ

(1)
j

]2 . (4.62)
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