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Introduction

My thesis is divided into five chapters.

The first one focuses on some special factorized groups. A group G is
called a factorized group if G can be written by the product of two subgroups
A and B.

In the theory of factorized groups, triply factorized groups play an im-
portant role. A group G is called triply factorized by its subgroups A, B and
M, if

G =AM = BM = AB,

where M is a normal subgroup of G and ANM = BNM = {1}. Many prob-
lems concerning with factorized groups can be reduced to triply factorized
groups, (see [1]).

Triply factorized groups are also connected with radical rings in a natural
way. A ring R is called radical if R forms a group R° under “the circle
operation”

aob=ab+a+b

for every a, b € R. The radical ring R° operates on the additive group
R* and it can be shown that the semidirect product R° x R is a group
which is triply factorized by two subgroups A and B isomorphic to R° and a
normal subgroup M isomorphic to R*. Hence, in the triply factorized groups
obtained in this way, the normal subgroup M is always abelian.

There is a result of Y. P. Sysak [32] such that there always exists a radical
ring if

G =AM = BM = AB
is a triply factorized group with abelian subgroups A, B and M and ANB =

{1}.

At the end of the first chapter a particular product of groups is investi-
gated. More precisely groups having weakly c-normal subgroups are studied.
A subgroup H is called weakly c-normal if there exists a subnormal subgroup
K such that G = HK and HNK < Coreg(H). Finite groups having weakly
c-normal subgroups are investigated in ([40] and [41]), where the authors
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studied the influence of weakly c-normality of some subgroups on the struc-
ture of finite groups. Most of these results are collected in my thesis in order
to have a general overview of this subject. In particular, they proved that
(G is solvable if and only if M is weakly c-normal in G for every maximal
subgroup M in G (cmp. [40], Corollary 3.2).

In [7] infinite groups with many weakly c-normal subgroups are inves-
tigated. More precisely, the structure of weakly Ic-Dedekind groups are
considered. A weakly Ic-Dedekind group is a group such that every infinite
subgroup is weakly c-normal. It will be proved that if G is locally solu-
ble weakly Ic-Dedekind group and G/X(G) is periodic, then either G is a
Cernikov group or it is metabelian. Finally in [7], Theorem 10, the following
result is proved:

Let GG be a locally nilpotent weakly Ic-Dedekind group without elements
of order 2. If G/X(G) is periodic, then either G is a Cernikov group or G is
nilpotent of class at most 3.

The second chapter of the thesis is characterized by the investigation of
a particular algebraic structure, namely nearrings.

Nearrings are a generalization of rings in the sense that addition does not
need to be commutative and only one distributive law holds.

In this study, left nearrings are considered. Right nearrings are used by
some authors (cmp. [27]) and all the results about left nearrings have always
an analogue for right nearrings and vice versa.

Nearrings have an important role in the generalizing of the construction
of triply factorized groups by using radical rings. A method to construct
triply factorized groups G = AM = BM = AB with non-abelian normal
subgroup M using nearrings is described in [13].

An example of a nearring is given by the set of all mappings from a group
G in G denoted by M(G), where G is a group not necessarily abelian with
the operation “+” of sum and with the neutral element 0. More precisely,

M(G)={a:G— G},
is a left nearring under the pointwise addition
gla+ ) = ga+gp
and the composition of mappings
9(af) = (90)pB

for every g € G and «, 5 € M(G).
Some special structures of nearrings such as the zero-symmetric part Ry
and the constant part R, of R are considered. In particular, it will be proved
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that the additive group RT of R is the semidirect product of R.™ and R,™.
Note that nearrings homomorphisms and factor of nearrings are defined in
the usual way. As for rings, ideals of nearrings are exactly the kernel of
nearrings homomorphisms. More precisely, I is called ideal in the nearring
R if I'T is a normal subgroup of R* and the following two properties hold:

e RICI;
e (r+i)s—rselforallielandr,s€R.

In this chapter some other relevant results about nearrings are collected,
most of which are well-known and can be found for example in [24] and in
[27].

In the third chapter the notion of monogenic R-module is introduced
and an useful generalization of Jacobson radical for nearrings is presented.
Furthermore, the notion of quasiregularity is investigated. The following
definition of quasiregular element is given by Beidleman (cmp. [4]): an
element r of a zero-symmetric nearring R is called quasiregular, if there
exists s € R such that (1 —r)s=1

Meldrum [24] gives another definition of a quasiregular element: let R be
a nearring, the element z € R is called “right quasiregular” if z is contained
in the right ideal of R generated by

{r — 2z | = € R}.

It will be showed that if z is quasiregular in the sense of Beidleman, then
z is right quasiregular in the sense of Meldrum [24].

Furthermore, there is a section devoted to the theory of nearfields. The
structure of nearfields were studied before investigating on nearrings. A
nearfield is a group respect with the addition and respect with multiplication.

At the beginning of the last century Dickson found an example for a
finite nearfield. He showed that for a finite nearfield the additive group
is abelian. During the first half of the last century Dickson developed the
principles of the nearfields theory and then Zassenhaus [39] classified all
the finite nearfields. In the subsection (3.2.1) nearfields above a Cernikov
multiplicative group are considered. In particular it will be proved that a
nearfield above a Cernikov multiplicative group is finite. An overview of the
theory of nearfields can be found for instance in [35].

At the end of the chapter the definition and some properties of the prime
rings are described. More precisely, the prime ring of a nearring R with
identity is a commutative ring and in the finite case, it is isomorphic to
Z/nZ.



vi

The last section of the chapter is devoted to the investigation of the
construction subgroups. Using such subgroups, it is possible to construct
triply factorized groups in a very similar way as in section (1.2). For a
detailed description of the use of construction subgroups in the theory of
triply factorized groups see [13].

The fourth chapter focuses on local nearrings. The study of such a struc-
ture was begun by Maxson [20]-[23] and continued by several other authors.
The nearring R is called local if the set of elements of R, which have not
right inverses, denoted as

Lr=1{keR|kR#R)

is a R-subgroup of R. Some properties of the additive group R™ and of
subgroup Lg are described. In particular, if R is a finite nearring or it has
a finite exponent, then R™ is a p-group. Among the important results, there
is one which plays a relevant role in the use of triply factorized groups: if R
is a local nearring then Lp is a construction subgroup, in other terms 1+ L
is a subgroup of the multiplicative group R*. In [12] it was shown that if
R is a local nearring with identity 1 then the set 1 4+ Ly acts on Lg by left
multiplication, so that the semidirect product Lg x (1 + Lg) is a group of
the form G = AB = AM = BM with a normal subgroup M and subgroups
A and B such that M is isomorphic to Ly and A and B are isomorphic to
1+ Lg. Thus, in many cases the study of local nearrings can be reduced to
that of the triply factorized groups. This approach was partly used in [15]
in order to investigate on local nearrings with abelian multiplicative group
and explicitly applied in [2] and [33] with the aim to describe local nearrings
with dihedral multiplicative and generalized quaternion groups respectively.

The structure of the multiplicative group associated to a local nearring is
very important. It turns out that for a finite local nearring the multiplicative
group R* is the semidirect product of L+ 1 and the group of units of R/Lg.
Furthermore, it turns out that if R* is a torsion group, then the additive
group R is also a periodic group.

In the last chapter two special classes of local nearrings are investigated.
The first part of the chapter focuses on local nearrings having a dihedral
multiplicative group. For a detailed account of these results see [2], and [13].
One of the most important results which describes the structure of such a
local nearring in [2] is the following:

Let R be a local nearring whose multiplicative group R* is dihedral and
let Ly be the subgroup of all non-invertible elements of R. Then
(1) R is finite.



vii

(2) The additive group R is either a 3-group of order at most 9 or a 2-group
of order at most 32.

(3) The subgroup Lpg is either an abelian group or a group at most 16 with
derived subgroup of order 2. In particular, Ly has an abelian subgroup of
index 2.

Actually, by a recent investigation made by Hubert, the following results
hold.

There is no local nearring of order 32 whose multiplicative group is dihe-
dral.

If R is a local nearring with dihedral group of units of even order, then
|R| < 16.

In the section (5.2) local nearrings with generalized quaternion multi-
plicative group are investigated. A detailed account of these results is in
[33]. The term “generalized quaternion group” can here be interpreted as
either a finite generalized quaternion group

Qo = {a,b | = bt = 1, a2 = (ab)? = v?},

with n > 3 or, up to isomorphism, a unique infinite locally quaternion group
(D2~ in which every finite subset is contained in a subgroup isomorphic to
Qo for some n > 3. Note that these groups are 2-groups with locally cyclic
subgroups of index 2, the following theorem proves that local nearrings above
such multiplicative groups are finite.

Let R be a local nearring whose multiplicative group R* has a locally
cyclic 2-subgroup of finite index. Then R is finite.

One of the most important results of this section is the following theorem
which describes in a detailed way the structure of a local nearring with a
generalized multiplicative quaternion group.

Let R be a local nearring whose multiplicative group R* is generalized
quaternion. Then the following statements hold.

1) The group R* is either quaternion of order 8 or generalized quaternion
of order 16.

2) The additive group R* of R is abelian of one of types (3, 3), (2,2, 2,2),
(2,2,4), (2,2,2,2,2) and (2,2,2,4).

3) The subgroup Ly of all non-invertible elements of R is trivial if RT is
of type (3,3) and it is elementary abelian of index 2 in R otherwise.
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Conversely, for each abelian group of type listed in statement 2) there exists
at least one R with additive group R™ of this structure whose multiplicative
group R* is a generalized quaternion group.
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Chapter 1

Products of groups

1.1 Factorized groups.

In the theory of factorized groups, triply factorized groups play an important
role. Many problems concerning factorized groups can be reduced to triply
factorized groups. For a detailed account of this subject see [1].

Definition 1.1.1 A group is called factorized (by A and B), if it can be
written as a product G = AB of two of its subgroups A and B.

If G = AB is a factorized group and N is a normal subgroup of GG, then
the factor group G/N = (AN/N)(BN/N) is also factorized. The following
example shows that a subgroup S of G does not need to be factorized by a
subgroup of A and a subgroup of B.

Example 1.1.2 Let G = Dy = (z, y | 22 = ¢5 = 1, y® = y=1) be the
dihedral group of order 12. Then G is factorized by A = (z) and B =
(y?, xy®), but the subgroup S = (y*) of G cannot be written as a product of
a subgroup A and a subgroup of B.

The following two lemmas give further elementary properties of factorized
subgroups.

Lemma 1.1.3 ([1], Lemma (1.1.2)) Let the group G = AB be the product
of two subgroups A and B. Then the following properties hold.

(1) The intersection of arbitrarily many factorized subgroups of G is factor-
1zed.

(13) The subgroup generated by arbitrarily many factorized normal subgroups
of G 1is factorized.

(13i) If N is a normal subgroup of G, a subgroup S/N of the factor group

3
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G/N = (AN/N)(BN/N) is factorized if and only if S is a factorized sub-
group of G.

Proof. The proof of (i) is obvious.

(17) Let (S;)ier be a system of factorized normal subgroups of G, and put
S =(S;|i€el). If x € S, there exist finitely many indices ¢; ..., in I such
that = belongs to

=(ANS;,)S:, (BN S )Si,---S;,
=(ANS;,)(ANS,)(BNS,)(BNS;,)Sis ... S, =

= (AﬂSzl) e (AﬂSit)(BﬂSit) (BﬂS“)
< (AN S)(BNS).

Hence S = (AN S)(BNS), and clearly also AN B is contained in S.

(174) Let S be a factorized subgroup of G containing N. If x N = abN is
an element of S/N, with z € S, a € A, and b € B, then x = aby, where y is
in N < S. Hence ab = zy~"! belongs to S, and so a is in S. Therefore S/N
is a factorized subgroup of G/N.

Conversely, suppose that the subgroup S/N is factorized in G/N. Let
x = ab be an element of S, with a € A and b € B. Since N = abN, it
follows that aN belongs to S/N. Hence a is in S and so S is factorized.

Lemma 1.1.4 ([1], Lemma 1.1.8) Let the group G = AB be the product of
two subgroups A and B. If a subgroup S of G s factorized, then S = ASNBS

Proof. Consider an element z of AS N BS. Then z = au = bv, with a € A,
be B, and u, v in S. It follows that a='b = uv~! is in S, so that a belongs
to S and hence also x is in S. Therefore S = AS N BS.

Definition 1.1.5 A factorized group G is called triply factorized (by A, B,
and M), if G = Ax M = Bx M = AB for two subgroups A and B and a
normal subgroup M of G.

By Lemma (1.1.3), the intersection X (S) of all factorized subgroups of
G = AB containing the subgroup S is the smallest factorized subgroup of G
containing S. The subgroup X (.5) is called the factorizer of S in G = AB.

The following lemma shows that in the case of normal subgroup N of G,
the factorizer X (V) has a triple factorization.
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Lemma 1.1.6 ([1], Lemma (1.1.4)) Let the group G = AB be factorized by
A and B and let N be a normal subgroup of G. Then the following statements
hold:

(1) X(N) = ANNBN

(2) X(N)=(ANBN)N = (BNAN)N = (AN BN)(BNAN).

Example 1.1.7 Let A, B, G, and S be as in Example (1.1.2). Then S <G
and X (S) = (z, y?). In this case, AN BS = A and BN AS = (zy?).

If G is a group which has a triple factorization of the form G = AB =
AM = BM, where A and B are subgroups of G and M is an abelian normal
subgroup of G, then C = (AN M)(B N M) is a normal subgroup of G. In
this case,

G/C = (AC/C) x (MC/C) = (BC/C) x (MC/C) = (AC/C)(BC/C)

Remark 1.1.8 Note that in a triply factorized group G = AxM = BxM =
AB the subgroups A and B are complements of M and hence A = B. But
A and B can only be conjugate if A = B =G.

1.2 Triply factorized groups and radical rings

This section is devoted to the connection of a triply factorized groups with
radical rings.

Definition 1.2.1 Let R be an associative ring. R is called a radical ring, if
R coincides with its Jacobson radical J(R), i.e., if R forms a group under
the circle operation

aob:=a+b+ab

for all a, b € R. Obuviously, a radical ring does not contain an identity
element.

The following construction, made by Ya. Sysak, is described in [1].

Let R be a radical ring, embedded in an arbitrary way into the ring R;
with identity element. Then the radical ring is isomorphic to the subgroup
R + 1 of the group of units of R;.

Let U be a left ideal of R and M = R/U be a left R-module. Then the
group A = R+ 1 operates on M via

L+ =m+1)""N+U
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for all [, m in R. In the semidirect product G = G(R) = A x M,
B={((l+1)' 14+U)|l€R}
is a complement of M with the property
G=AxM=Bx M =AB,

i.e., G is a triply factorized group.
Note that for a triply factorized group

G=AxM=BxM=AB

there is always a radical ring R such that G can be constructed by R. The
following theorem proved by Ya. Sysak, shows that this happens, if A, B
and M are abelian and AN B = 1.

Proposition 1.2.2 ([1], Proposition 6.1.1) If G=Ax M = Bx M = AB
s a triply factorized group with abelian subgroups A, B and M, with ANB =
{1}, then there ezists a radical commutative ring R with G = G(R).

Remark 1.2.3 Since the group M in the above construction is the additive
group of a R-module, it is always abelian. Note that, using the structure of
nearrings, whose notion will be defined in the following chapter, it is possible
to obtain triply factorized groups G = AxM = Bx M = AB with a possibly
non-abelian subgroup M.

In the following two sections groups having weakly c-normal subgroups
are investigated. The properties of such groups will be investigated in a
detailed way both in the finite case and in the infinite case.

1.3 Some factorized groups

A subgroup H of a group G is said to be permutably complemented if there
exists a subgroup K such that G = HK and HN K = {1}. The structure of
groups in which every subgroup is permutably complemented was completely
described by Cernikova and Emaldi; for a detailed description of this subject
see the monograph [31].

Let G be a group. A subgroup H of G is called c-supplemented if there
exists a subgroup K of G such that G = HK and H N K is contained in the
core Hg of H in (G, in this case K is called a c-supplement of H in G. Finite
groups in which all subgroups are c-supplemented have been considered in

[3]-
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A subgroup of a group is called weakly c-normal if it has a c-supplement
that is a subnormal subgroup of the group. In such a section the most
important results about weakly c-normal subgroups of finite groups which
have been recently studied in [40] are collected.

Definition 1.3.1 A subgroup H of G is called weakly c-normal in G if there
erists a subnormal subgroup K such that G = HK and H N K C Hg.

Definition 1.3.2 A group G is called weakly c-simple if G has no weakly
c-normal subgroup except of the identity group {1} and the whole group G.

Let 7w be a set of prime numbers and 7’ the complement of 7 in the set of all
prime numbers. Consider now the following families of subgroups:

F,={M | M mazimal subgroup of G, such that |G : M| is composite}.

FP ={M | M mazimal subgroup of G, Ng(B) < M for a B € Sly,(G)}.

F? = UpEw(G)Fp-
FPe = FPNF,.
F¢=FNF,.
and define S*(G) =N{M | M € F*¢} if F* is non-empty; otherwise
S5(G) =G.
SP(G) =N{M | M € FP¢} if FP¢ is non-empty; otherwise
SP(G) =G.
In the sequel some known results will be considered.

Lemma 1.3.3 (cmp. [17], Lemma 2.1) Let G be a group, then the following
statements hold.

(1) Let H be a subgroup of G. Then H is weakly c-normal in G if and
only if there exists a subnormal subgroup N of G such that G = HN and
HNN = Hg.

(2) If H is normal in G, then H is weakly c-normal in G.

(3) G is weakly c-simple if and only if G is simple.

(4) If H is weakly c-normal in G and H < M < G, then H is weakly c-
normal i M.

(5) Let K be a normal subgroup of G and K < H. Then H is weakly c-
normal in G if and only if H/K is weakly c-normal in G/K.

(6) Let H be a w-subgroup of G and N a normal ©'-subgroup of G. If H is
weakly c-normal in G, then HN/N is weakly c-normal in G/N. Furthermore,
if N < Ng(H), then the converse also holds.
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Lemma 1.3.4 [36] Let G be a finite group. Then G is supersolvable if and
only if G = S*(G).

Lemma 1.3.5 ([17], Corollary 3.2) A finite group G is solvable if and only
if every mazimal subgroup of G is weakly c-normal in G.

Lemma 1.3.6 (/8/, Theorem A; 14.3) If H is a subnormal subgroup of a
group G, then Soc(G) < Ng(H), where Soc(G) is the socle of G, i.e., the
product of all minimal normal subgroups of G.

Lemma 1.3.7 ([28], 10.4.2) If a finite group G has a nilpotent mazimal
subgroup M of odd order, then G is solvable.

Lemma 1.3.8 (/30], Theorem 1) Suppose that G is a finite insoluble group
with a nilpotent mazximal subgroup M. Let T be the unique Sylow 2-subgroup
of M and U the unique 2-complement of M. Then U is normal in G, Z(U) <
Z(@),G/Z(U) =2 G/UxU/Z(U) and G/U is an insoluble group whose Sylow
2-subgroups are mazximal subgroups. In particular, if Z(G) =1 then M is a
Sylow 2-subgroup of G.

The following theorem is proved by Zhu, Guo, Zhang in ([41], Theorem
3.1).

Theorem 1.3.9 Let G be a finite group. Then G is solvable if and only if
M is weakly c-normal in G for every mazximal subgroup M in F*°.

The previous result also holds in the case in which the maximal subgroups
are c-normal and it is proved by Wang in [36].

Definition 1.3.10 A subgroup H of G is called c-normal in G if there exists
a normal subgroup K of G such that G = HK and H N K < Hg.

The notion of c-normality is introduced by Wang in [36], where the author
studied the influence of such a property on the structure of finite groups.

1.4 Generalizations of c-Dedekind groups

In this section weakly c-normal subgroups of infinite groups are investigated.
For a detailed description see [7].

A group is said to be a c-Dedekind group if all its subgroups are c-normal.
It is well-known that the Frattini subgroup of a group with complemented
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subgroup lattice is trivial, and this property suggests that for a c-Dedekind
group G the subgroup X (G), defined as the intersection of all maximal nor-
mal subgroups of G, must play an important role. In fact, it was proved in
[19] that a group G such that G/X(G) is periodic, is a c-Dedekind group if
and only if all subgroups of X (G) are normal in G.

Clearly, every c-normal subgroup is also a weakly c-normal subgroup, but
arbitrary weakly c-normal subgroups do not need to be c-normal (see for
instance [40], example 1).

Recall that, as quoted above, if G is any group X (G) is the intersection
of all normal subgroups of G that are also maximal subgroups.

Lemma 1.4.1 Let G be a group in which all cyclic subgroups are weakly
c-normal. Then all subgroups of X(G) are normal in G.

Proof. Let X be any cyclic subgroup of X (G) and assume by contradiction,
that X is not normal in G. Let Y be a subnormal c-supplement of X in
G, so that G = XY and X NY = Xg. Since X is not normal in G, the
subgroup Y must be properly contained in G' and hence also N = Y is
a proper subgroup of G. Clearly G = NX and G/N ~ X/X NN is a
non-trivial cyclic group, so that there exists a maximal subgroup M/N of
G/N. It follows that X < X(G) < M and hence G = XN = M. This
contradiction shows that all cyclic subgroups of X (G) are normal in G' and
hence the Lemma is proved.

Corollary 1.4.2 Let G be a group in which all cyclic subgroups are weakly
c-normal, then the group G/Z (X (Q)) is abelian. In particular, G is metabelian
and hypercyclic.

Proof. By Lemma (1.4.1), G acts as a group of power automorphisms on
X(G) and hence G/Cs(X(Q)) is abelian. If follows that

G¢' < X(G)NCa(X(G)) = Z(X(G))

and hence G" is trivial. Moreover, all subgroups of G’ are normal in G so
that G is hypercyclic.

The following result proves, in particular, that any periodic group in
which all subgroups are weakly c-normal is a c-Dedekind group.

Theorem 1.4.3 Let G be a group in which all cyclic subgroups are weakly
c-normal. If G/ X (Q) is periodic, then G is a c-Dedekind group.
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Proof. By Lemma (1.4.1), all subgroups of X(G) are normal in G so that
the result follows from Theorem 3 of [19].

Using the same arguments as in [19] it can be also proved the following
result.

Theorem 1.4.4 Let G be a locally nilpotent group whose cyclic subgroups are
weakly c-normal. If either G is not periodic or G is periodic and 2 ¢ w(G),
then G is nilpotent of class at most 3.

Definition 1.4.5 A group G is called Ic-Dedekind group if every infinite
subgroup is weakly c-normal.

Note that subgroups and quotients of weakly Ic-Dedekind groups are
likewise weakly Ic-Dedekind groups.

Lemma 1.4.6 Let G be a weakly Ic-Dedekind group and let x be an element
of infinite order of X(G). If y is any element of X(G), then (z,y) is a
normal subgroup of G.

Proof. Arguing as in Lemma (1.4.1) it is possible to see that (x) is normal in
G. Put X = (z, y) = (z){y) and suppose that X is not a normal subgroup of
G. Let Y be a subnormal subgroup of G such that G = XY and XNY = Xg.
Since X is not normal in G, the subgroup Y is properly contained in G so
also Y% is a proper subgroup of G. As G = XYY, the factor group G/Y¢
is a non-trivial supersoluble so that G contains a maximal normal subgroup
M containing Y¢. Thus X < X(G) < M and G = XY% = M. This
contradiction proves that X is a normal subgroup of G.

Lemma 1.4.7 Let G a weakly Ic-Dedekind group and let H be a locally finite
subgroup of X (G). Then either H is a Cernikov group or all subgroups of H
are normal in G.

Proof. Assume that H is not a Cernikov group. Then H does not satisfy
the minimal condition on abelian subgroups (see [34]), so that it contains
an abelian subgroup with infinite socle and there exists in H a chain of
subgroups
S1> 8> >8> > ]S ={1}
neN
where each S; is the direct product of infinitely many cyclic groups of prime

order. Let i be a positive integer such that S; is not normal in GG, and let
L be a subnormal c-supplement of S; in G. Then G = S;L = S;L¢ and L¢
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is a proper subgroup of G. Since G/L¢ is isomorphic to a quotient of S;, it
follows that there exists a maximal normal subgroup M of G containing L¢.
Therefore G = S;L% = M, that is a contradiction. It follows that S, is a
normal subgroup of G for each positive integer n. Let x be any element of
H and let k be a positive integer such that S, N (z) = {1}. As above, it is
possible to prove that (z)S; is a normal subgroup of G for every i > k, and

hence also
((@)Si = (@)(() Si) = ()

i>k i>k

is a normal subgroup of G. It follows that all subgroups of H are normal in

G.

Theorem 1.4.8 I:et G be a locally soluble weakly Ic-Dedekind group. Then
either X (G) is a Cernikov group or all subgroups of X (G) are normal in G.

Proof. Let H be any subgroup of X (G). Assume that H contains an element
of infinite order x. Then by Lemma (1.4.6) (y)¢ < (x, y) for any element
y of H; therefore H is normal in G in this case. On the other hand, if H
is periodic, either H is a Cernikov group or it is a normal subgroup of G
by Lemma (1.4.7). It follows that X (G) satisfies the minimal condition on
non-normal subgroups and hence it is either a Cernikov group or a Dedekind
group (see [26]); in particular, if X (G) does not satisfy the minimal condition,
all subgroups of X (@) are normal in G again by Lemma (1.4.6) and Lemma
(1.4.7). The theorem is proved.

Corollary 1.4.9 Let G be a locally soluble wfaakly Ic-Dedekind group. If
G/X(G) is periodic, then either X(G) is a Cernikov group or G is a c-
Dedekind group.

Proof. By Theorem (1.4.8), either X (G) isa Cernikov group or all subgroups
of X(G) are normal in G. Therefore the result follows immediately from
Theorem 3 of [19].

Theorem 1.4.10 Let G be a locally solvuble weakly Ic-Dedekind group. If
G/X(Q) is periodic, then either G is a Cernikov group or it is metabelian.

Proof. By ([19], Corollary 2) assume that G is not a c-Dedekind group, so
that in particular, X(G) is a Cernikov group by Corollary (1.4.9). Thus
G is soluble and periodic. Assume that G is not a Cernikov group. Let
a, b, c,d be elements of G and put X = (a,b,¢,d). Then X induces a finite
group of automorphisms on GG and hence G must contain an abelian non-
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Cernikov X-invariant subgroup A (see [38]). If S is the socle of A, then
Y = (S, X) = 5X is an infinite residually finite weakly Ic-Dedekind group.
Let N be any normal subgroup of finite index of Y. Clearly, N is infinite
so that all subgroups of Y/N are weakly c-normal and hence Y < N by
Corollary (1.4.2). As Y is residually finite, it follows that Y is trivial. In
particular, [[a, b], [c,d]] = 1 and hence G is metabelian.

By Theorem (1.4.4), any periodic locally nilpotent group in which all
subgroups are weakly c-normal is nilpotent of class at most 3, provided that it
does not contain elements of order 2; therefore the proof of Theorem (1.4.10)
also shows that the following result holds.

Theorem 1.4.11 Let G be a locally nilpotent weakly Ic-Dedekind group with-
out elements of order 2. If G/ X (G) is periodic, then either G is a Cernikov
group or G is nilpotent of class at most 3.



Chapter 2

Nearrings

2.1 Elementary properties of nearrings

This chapter deals with the theory of nearrings, most of the results can be
found in Meldrum [24], Pilz [27], and Clay [6].

Definition 2.1.1 A set R with two binary operations “+” and “” is called
a left nearring, if the following conditions hold:

(1) (R,+) is a group not necessarily abelian with neutral element 0;
(2) (R,-) is a semigroup;
(8) the left distributive law holds, i.e.,
z-(y+z2)=z-y+z-2
forallz, y, z € R.

Remark 2.1.2 The group (R, +) is often denoted as R*.

As usual, instead of z - y will be written zy. If R contains an element
1 such that z -1 =1-2 = zx for all x € R, then R is called nearring with
wdentity. A nearring with xy = 0 for all x, y € R is called a zero symmetric
nearring, and a nearring is called constant nearring, if xy = y for all x,
y € R. If, instead of the property (3), the right distributive holds, R is called
right nearring. Right nearrings are used by some authors (e.g. Pilz [27]), and
all results about left nearrings always have an analogue for right nearrings
and vice versa.

Conventions 2.1.3 Let R be a nearring, r € R and n > 0 a positive in-
teger. Then r +---+4+ 1 in the sequel will always be written rn and never
—_——

n times

13
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nr. Analogously, for negative integers m, rm will mean —(r(—m)). If the

integral factors are written on the right, they can be considered as multiples

of the identity element. Conversely, nr will mean (1 + ---+ 1) r, which is in
n—times

general different from rn.

Note that because of left distributivity, in every nearring R the equation
(zy)n = x(yn) holds for all z, y € R and for all n € Z, even if R has not an
identity element.

As for rings, it can be shown that a nearring with identity must be trivial
if 1 = 0. Hence, in the sequel “nearring with identity” will always imply

140.

Example 2.1.4 a) Let G be a not necessarily abelian additive group with
neutral element 0. Then

M(G) ={a: G — G},

the set of all mappings from G in G, is a left nearring under pointwise
addition

gla+B)=ga+gB

and the composition of mappings
g(aB) = (9a)B).

b) The following subsets of M(G) are also nearrings under these opera-
lions:

e My(G)={a:G— G| 0a =0}
e M.(G)={a:G— G| a=const}
o M(G)={a:G— G| alg_i0} = const and 0 = 0}

Example 2.1.5 Let R be a ring, and let R[z] be the set of all polynomials in
one “indeterminate” over R. Define addition in R[z] in the usual way, and
define composition "o" by fog = f(g), where f, g € R[z]. Then (R[z],+,0)
s the right nearring of polynomials over R.

Definition 2.1.6 Let (R,+,-) be a nearring. Then a non-empty subset S of
R is called a subnearring if (S,+,-) satisfies the azioms of definition (2.1.1),
with the operations being induced by those in R.

It is then immediate that My(G) is a subnearring of M (G). As in the case
with subgroups and other familiar substructures, there is an easier criterion
for a subset to be a subnearring than that given by the definition.
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Lemma 2.1.7 ([24]) Let S be a subset of the nearring (R,+,-). Then S
is a subnearring if and only if (S,+) is a subgroup of (R,+) and (S,-) is a
subsemigroup of (R, -).

Note that (R[z], +, o) is a nearring whose additive group is commutative.
This is also the case with M(G) and My(G) if G is abelian. This prompts
the following definition.

Definition 2.1.8 A nearring (R, +, -) is called abelian if (R, +) is an abelian
group and it is called commutative if (R, -) is a commutative semigroup.

Remark 2.1.9 The following equalities hold in any nearrings as for rings:
a) 0 =0 for every r € R
b) r(—s) = —(rs) for every r, s € R.

Considering constant nearrings, it is easy to see that the following equations
do not hold in nearrings in general:

a’) Or =0 for every r € R
b’) (=r)s = —(rs) for every r, s € R.
Definition 2.1.10 Let R be a nearring.
a) Ry={r € R | Or =0} is called the zero-symmetric part of R.
b) R.={r € R | Or =1} is called the constant part of R.

¢) Rg={d€R| (r+s)d=rd+sdVr, s € R}. An element d is called
distributive element, if d € Ry

d) An element d € R is called antidistributiv, if (r + s)d = sd + rd for
every r, s € R.

e) The nearring R is called constant, zero-symmetric, or distributive if
R=R., R= Ry or R= R, respectively.

f) R is called distributively generated (d.g.), if there is a subsemigroup
S < (Rg,"), such that the additive group R is generated by S. In this
case, R is denoted by R = (R, S).

g) If R is a nearring with identity, the group of units of R is denoted by
R*.
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h) If R is a nearring with identity and r € R, 0% (r) is the additive order
ofr € R*. If r € R*, 0*(r) is the multiplicative order of r.

Lemma 2.1.11 Let R be a nearring and r € R. If —r is antidistributiv,
then r s distributive.

Proof. For all s, t € R the element —r is antiditributiv <= (s + t)(—r) =
t(—r)+s(—r) <= —((s+t)r)=—(tr) — (sr) <= sr+tr=(s+t)r < r
is distributiv.

Lemma 2.1.12 Let R be a nearring with identity whose additive group R*
s abelian. Then the set D of all distributive elements of R is a subring of R
whose multiplicative group D* coincides with the intersection D N R*.

Proof. Ifdy and dy € D and r, s € R, then (r+s)(d;—dy) = (r+s)d; — (r+
S)dg = T‘dl +Sd1 —Sdg —T‘dg = (T‘dl —T’dg) +(8d1 —Sdg) = T(dl —d2)+8(d1 —dz).
Therefore D is a subgroup of Rt and simultaneously a subsemigroup of (R, -)
containing the identity of R. Thus D is a subring of R whose multiplicative
group D* is clearly contained in DNR*. On the other hand, if d € DNR*, then
(rd*+sd )= (rd )d+(sd )d=r+sandso (r+s)d ' =rd ' +sd '
Hence d! € D and thus D* = D N R*, as desired.

The following result is concerning with distributive nearrings and it is
proved by Weinert in [37].

Lemma 2.1.13 If R is a distributive nearring, then

RQ = {szyz| n €Ny z;, Y; € R}

i=1
15 a ring. In particular, a distributive nearring with identity element is a

ring.

Proof. Since R? C R, it follows that R? is a distributive nearring, it is
sufficient to prove that R? is abelian. Let a, b, ¢, d € R. Then the following
two equalities hold:

(a+0b)(c+d) =a(c+d)+blc+d) =ac+ ad+ bc+ bd

and
(a+0b)(c+d) = (a+b)c+ (a+ b)d = ac+ bc + ad + bd.

Hence ad + bc = be+ ad for all a, b, ¢, d € R. This means that R? is abelian.
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Corollary 2.1.14 (a) Commutative nearrings are distributive.
(b) Distributive nearrings with identity element are rings.
(¢) Commutative nearrings with identity element are rings.

Proof. Let R be a commutative nearring, then (r+s)t =t(r+s) = tr+ts =
rt+ st for all , s, t € R and so R is distributiv. The condition (b) is proved
by applying the previous lemma (2.1.13). The last condition is a consequence
of the conditions (a) and (b).

The following theorem proved by Meldrum in ([24], Theorem 1.15) gives
an important description of the structure of the additive group of a nearring.

Theorem 2.1.15 Let R be a nearring. Then R. is the unique mazrimal
constant subnearring of R and Ry is the unique mazimal zero-symmetric
subnearring of R. Moreover, Rt = R,* x Ry". In particular, if r € R, then
r—0r € Ry and Or € R,.

Corollary 2.1.16 Let R be a nearring with identity 1. Then 1 € Ry and
hence 1 -z € Ry for all z € 7.

The following result is proved by ([24], Lemma 1.12).

Lemma 2.1.17 Let R be a nearring and r € R an element of the form
r = 0x for somex € R. Thenr € R.. On the other hand, all elements of R,
are of this form (since y = Oy, for y € R.).

In nearrings with identity the structure of the group of units has an
important role. It results that the multiplicative inverse of zero-symmetric
elements are zero-symmetric as well.

Proposition 2.1.18 Let R be a nearring with identity 1 and r € R* N Ry.
Then r~' € Ry.

Proof. Let r=! =17+ 0r~! with ry € Ry. Then, 1 =7r=' = r(rg +0r7') =
rro + 0r~! and hence —rry + 1 = Or~!. Since sums, products, and additive
inverses of zero-symmetric elements are zero-symmetric, the left side of the
last equation is contained in Ry, while the right side is contained in R, by
Lemma (2.1.17), and thus both must be 0. Hence, Or™' =0 and r~! € R,.

The following lemma shows that the group of units of a nearring R is
factorized by the group of units of the zero-symmetric part of R and the
group R, + 1.

Lemma 2.1.19 Let R be a nearring with identity 1. Then R, + 1 is a sub-
group of R* isomorphic to R.* and R* = Ry*(R. + 1) with Ry* N (R.+1) =

{1}.
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Proof. The mapping o : R." — (R, + 1)* such that 2 — —z +1 is a group
isomorphism. Moreover, if r € R*, by (2.1.15), there are elements ¢ € R, and
z € Ry such that r = ¢+ 2z = z(c + 1). Since the intersection Ry N R, = {0}
and 1 € Ry, it follows that Ry* N (R, + 1) = {1}.

The following result is important for the study of the construction of
triply factorized groups.

Proposition 2.1.20 Let R be a nearring with identity element 1. Then R*
is isomorphic to a subgroup of Aut(RY), i.e, R* operates faithfully on R*.

Proof. Consider r € R* and the mapping o, : R — R such that z + rx for
all z € R. Since (x+y)o, =r(x+y) =rx+ry = zo, +yo, forall z, y € R,
it follows that o, is an endomorphism of R*. By its definition, the mapping
results bijective, hence o, € Aut(R'). Since 0,05 = oy, for all s, r € R*,
the mapping o : R* — Aut(R") with r — o,-1 for all » € R* is a group
homomorphism. But if ¢, is the identity mapping, rx = x for all x € R, in
particular for z = 1 and hence r = 1. It follows that ¢ is a monomorphism
thus R* is isomorphic to Im(o).

Theorem 2.1.21 Let R be a nearring and let r € R have finite additive
order. Then ot (xr) | o™ (r) for all x € R.

Proof. Let n = o"(r). Then (2r) -n = z(r-n) = 20 = 0. Hence,
ot(zr) | ot (r).

Corollary 2.1.22 Let R be a nearring with identity. Then, o™ (r) = exp(R™)
for all T € R*.

Proof. Suppose that exp(R") < oo and 7 € R*. Then o™ (r) | exp(R") = n.
Let s be an arbitrary element of R. Then s- ot (r) = srr-ot(r) = sr(r-
ot (r)) = sr7'0 = 0, and hence 0" (s) | 0" (r); thus, o™(r) = n. By the same
argument, ot (r) must be infinite, if the exponent of R* is infinite. Indeed if
ot (r) =n < oo for some r € R*, s- 0" (r) =0 for all s € R.

2.2 Homomorphisms of nearrings

Homomorphisms are an important tool for the investigation of any algebraic
structures. As in the case of the rings or groups, nearring homomorphisms
can be used to embed nearrings into other nearrings and in this way it pos-
sible to have some information on the structure of the nearrings taken into
consideration.
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Definition 2.2.1 Let (R,+,-) and (S,+, ) be nearrings. The mapping « is
called nearring homomorphism, if for all r1, ro € R the following properties
hold:

(r1 + ro)a = ra + rea,
(riry)a = (ria)(rea).

The terms kernel of a homomorphism, monomorphism, epimorphism, endo-
morphism and automorphism are defined as usual.

Lemma 2.2.2 (/24], Lemma 1.17) Let o be a homomorphism from the near-
ring R to the nearring S. Then

(a) a is a group homomorphism from (R,+) to (S,+);

(b) « is a semigroup homomorphism from (R,-) to (S,-);

(¢) Ra is a subnearring of S.

Theorem 2.2.3 Let R be a nearring and G be a group. Let U be a proper
subgroup such that U = R*. Then R can be embedded into M(G), i.e.,
0: R— M(G) is a monomorphism.

Proof. Let a be the isomorphism « : R — U such that ra := u, € U, for
every r € R. Let r € R, and 6 : R — M (G), define for every g € G

9(7“9)={u’" 9¢ U

gur geU

Show that # is a nearring homomorphism. Let 7, ro € R. For every
g € G it follows that

Up, + Uy g¢U
r1+72)0) = ! ?
g((r + r2)0) {g(uﬁuw) s

_J g(ri0) +g(r0) g¢ U
| gup, + gu, geU

:{9(7'19+729) g¢U
g(ri0) +g(ra0) geU

= g(r10 + r20).

Then 6 is a group homomorphism from Rt to M(G)". Moreover

9((r10) o (r20)) = (9(r10))(r20)
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[ un(rb) g¢U
gu,, (ref) g€ U

Gur Ur, gEU

— { u”‘lu’r2 g ¢ U

= g((r1m2)0)

for all g € G. Thus € is also a semigroup homomorphism from R* to (M(G), -)
and so it is a nearring homomorphism. If 710 = 70, then u,, = g(r16) =
g(ref) = u,, for every g € U. Since « is an isomorphism, it follows that 6 is
injective.

Theorem 2.2.4 (a) Every nearring R can be embedded in a nearring with
identity.

(b) A zero-symmetric nearring Ry can be embedded in a zero-symmetric near-
ring with identity.

(c) A constant nearring R, can be embedded in a constant nearring with
identity.

Proof. (a) Let G be an additive group with neutral element 0 and let U be
a proper subgroup of G such that U = R*. By the previous result (2.2.3), it
follows the thesis.

(b) Let Ry be a zero-symmetric nearring, which can be embedded in the
nearring M(G), where G is a group. Since 0 € U, it follows that 0(rf) =
Ou, = 0 for all » € Ry. Thus rf € My(G) for all r € Ry. Thus Ry can be
embedded in a zero-symmetric nearring.

(c) If R, is a constant nearring, then for every ¢ € G and r € R, it
follows that

g(r9)={u’" 7Y

gur g€U

:uT

Thus (R.)# C M.(G) and R. can be embedded in the constant nearring
M.(G).

2.3 Nearring modules

As in ring theory, it is possible to study modules over nearrings. The notion
of such a structure is defined via the concept of representation.



2.4. IDEALS AND SPECIAL SUBGROUPS 21

Definition 2.3.1 a) Let (G,+) be a group and R be a nearring. The
group G is called right R-module, if there is a nearring homomor-
phism w : (R,+,-) — (M(G),+,0). Such a homomorphism is called
representation of R. A representation w of R is called faithful, if
Ker(w) = {0}.

b) Let R be a nearring and G a R-module. Consider Y C G the following
set
Ur(Y)={z € R| Yz =0}
15 called annihilator of Y. If w is a representation of R, then w 1is

faithful, if and only if Ur(G) = Ker(w) = {0}.

Remark 2.3.2 It is possible to define the notion of R-modules, which is
equivalent to the previuos definition (2.3.1): let (G,+) be a group with
neutral element 0 and R be a nearring. Let p : G X R — G, such that
(g,7) — gr. Then, (G, u) is called R-module, if the following properties hold
forallge G, r, s € R:

1) g(r+s)=gr+gs
2) g(rs) = (gr)s.

Example 2.3.3 1. Every nearring R is a R-module, which is also denoted
by Rg. It is often called reqular R-module.

2. FEvery additive group G is a M(G)-module as the identity application
id: M(G) — M(G)

is the representation of M(G). Clearly G is also a faithful M(G)-
module.

2.4 Ideals and special subgroups

In this section the ideals of nearrings are studied. As for rings, the ideals
are defined as the kernels of homomorphisms. More precisely, an ideal is a
normal subgroup of the additive group of a nearring R which is invariant
with respect to the link multiplication with elements of R. Moreover it must
fulfil the property according which for every x € I, (r + z)s —rs € I for
every r, s € R.

Definition 2.4.1 Let R be a nearring and G a R-module.
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a) A normal subgroup I of R™ is called ideal of R, denoted I < R, if
i) RICI
ii) (r+xz)s—rsel,Vr,se R, Vx € 1.

If I has only the property 1), it is called left ideal (denoted I <; R), if
I has only the property ii), it is called right ideal (denoted I <, R).

b) A normal subgroup N of G is called R-ideal of G, (denoted N < G),
if the element (g + n)r — nr is contained in N for all g € G for all
n € N and for all r € R. In particular, the right ideals of R are the
R-ideals of the reqular R-module Rp.

c) A subgroup U < G is called R-submodule of G (denoted U <g G), if
URCU.

Corollary 2.4.2 ([2}], Corollary 2.32) Let R be a nearring and Y be a
subset of the R-module G. Then (0:Y) =Ugr(Y) <, R and Ur(G) < R.

Definition 2.4.3 Let R be a nearring, K an ideal of R. Let
R/K :={K +r; r € R}

be the set of cosets of K in R. Then (R/K,+,-) is called the quotient nearring
of R over K, where + and - are defined by

(K+m)+ (K+mr):=K+r +r
and
(K+mr) - (K+mr):=K+rre
for all ry, r9 € R.

Theorem 2.4.4 ([2}], Theorem 1.24) Let R be a nearring, K be an ideal of
R. Then the quotient nearring of R over K is a nearring.

Definition 2.4.5 Let R be a nearring and let K be an ideal of R. Then
m: R — R/K defined by rm = K +r is called the natural homomorphism
associated with K.

Theorem 2.4.6 Let R and S be nearrings and o : R — S a nearring
homomorphism. Then Kern « is an ideal of R. Moreover every ideal I of
R is the kernel of a nearring homomorphism.
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Proof. Since a: Rt — St is a group homomorphism, Kern « is a normal
subgroup of R*. Let k € Kern o and r, s € R. Then the following equalities
hold.

(rk)a = (ra)(ka) = (ra)0s = 0

and
((r+k)s—rs)a=(ra+ka)(sa) — (ra)(sa)
= (ra+ 05)(sa) — (ra)(sa) = 0.
Thus rk and (r + k)s — rs € Kern «. This means that Kern « is an ideal
of R.
Define v : R — R/I such that rv := I + r. It is easy to prove that v is
a homomorphism with Kern a = 1.

Asin the case of nearrings, the R-ideals are the kernel of R-homomorphism
between R-modules.

Definition 2.4.7 (a) A nearring is called simple, if R and {0} are the only
ideals of R. An R- module is called simple, if it has no trivial R-ideals (
cmp. [27]).

(b) An ideal I < R is called mazimal ideal, if [ # R and I < J < R implies
that J = 1. Maximal left, right ideals and R-ideals are defined analogously.

Example 2.4.8 Let R be a nearring. Then the zero-symmetric part Ry s
a right ideal of R. By the theorem (2.1.15), Ry™ < R*, thus it is sufficient
to show that for all z € Ry and all r, s € R the element (r + 2)s — rs is
zero-symmetric. But this is true, since 0((r +z)s —rs) = (0r +0z)s — 0rs =
Ors —0rs =0.

Note that, as for rings, the sum of two nearring ideals is still an ideal.

Lemma 2.4.9 a) The group-theoretical sum of two right ideals K and L
18 a right ideal.

b) The group-theoretical sum of two left ideals K and L is a left ideal.

¢) The group-theoretical sum of two ideals K and L is an ideal.

Proof. Since K and L are normal subgroups of R' in the three cases (a),
(b) and (c) the sum K + L is also a normal subgroup of R™.

(a) Let s, 7 € R, k € K and | € L. Then

(r+k+l)s—rs = (r+k+l)s—rs+ (r + k)s —(r+k+)s+(r+ k+1)s — (r + k)s

EK €L
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Note that —rs + (r + k)s € K since K is a normal subgroup of R and
(r+k)s+rse K. Thus (r+k+1)s—rs+(r+k)s—(r+k+1[)s € K and more-
over (r+k+1)s—(r+k)s € Lsincer+k € R. Then (r+k+1)s—rs € K+L.

(b) Let r € R, k€ Kandl € L. Then r(k+1) =rk+rl € K + L and so
K + L is a link ideal of R.

The property (c) follows from (a) and (b).

As in the ring theory, nearrings with identity element always contain
maximal ideals.

Lemma 2.4.10 Let R be a nearring with identity element, I < R a proper
tdeal of R. Then there ts a maximal ideal M < R such that I C M.

Proof. Let
S={L<«R|ICL}

Since I € S, S # ), and S is partially ordered by inclusion. Now let 7 be
achainin S, and let J :=|J{L | L € n}. For L € , 1g ¢ L since L # R.
Thus 1 ¢ J and so J # R. Moreover, since 7 is a chain in S, it is easy to
check that J < R. By Zorn’s lemma, S contains a maximal element M.

The following theorem shows that the factor nearring R/I of a nearring
R modulo an ideal I is zero-symmetric if the constant part R, is contained
in the ideal I.

Theorem 2.4.11 Let R be a nearring and I an ideal of R with R, C I.
Then R/I is zero-symmetric nearring.

Proof. Let r € R. Then I(r +1I) = (0+ I)(r+ 1) = Or + I = I, since
Or € R, C I.

In the ring theory, left and right ideals are often introduced as subgroups
of additive group of ring, which are invariant under left or right multiplication
(or both) with arbitrary ring elements. In the theory of nearrings the R-
invariant subgroups are important.

Definition 2.4.12 Let R be a nearring and H < R be a subgroup of the
additive group R*.

a) H is called left R-subgroup of R (denoted H <, R), if RH C H.

b) H is called right R-subgroup of R (denoted H <, R), if HR C H.
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¢) If H is both a right and a left R-subgroup, it is called two-sided R-
subgroup or (R, R)-subgroup of R.

In the sequel, the right R-subgroup are called briefly R-subgroups.

Example 2.4.13 Let R be a nearring. Then the constant part R. is an
(R, R)-subgroup of R, since the following equalities hold Orc = ¢ = rc and
Ocr =cr forr € R and ¢ € R.. By the lemma (2.1.17), rc, cr € R,

The following result shows that in the zero-symmetric nearrings the right
ideals are right R-subgroups. From this point of view, zero-symmetric near-
rings are a bit closer to rings than general nearrings.

Lemma 2.4.14 (/24], Lemma 1.35) Let R be a nearring. If I is a right ideal
of R then IRy C I. In particular, if R = Ry is a zero-symmelric nearring,
every right ideal is a right R-subgroup, and every ideal is a (R, R)-subgroup
of R.

Lemma 2.4.15 If R is a nearring with identity and B is a R-subgroup of
R. Then
(B:R):={reR| RrC B}

is the largest (R, R)-subgroup of R, which is contained in B.

Proof. (B:R)C B,sincer =1r € Bfor allr € (B : R). Note that (B : R)
is a (R, R)-subgroup of R, as the following equalities hold for all » € R and
be (B:R):

R(br) = (Rb)r C Br C B,

ie.,br € (B: R) and (B: R)R C (B : R).
R(rb) =

ie., b€ (B: R)and R(B: R) C (B:R).

Let U be a proper (R, R)-subgroup of R in B. Since U is a link R-
subgroup of R, for all the elements u € U, Ru CU C B. Thus u € (B : R)
and U C (B : R). This means that (B : R) is the largest (R, R)-subgroup in
B.
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Chapter 3

Nearrings and radical theory

3.1 Monogenic R-modules and modules of type
v

In ring theory the Jacobson radical J(R) of a ring R plays an important role
(cmp. [9]). There are several different definitions of the Jacobson radical in
ring theory. Unfortunately, these definitions lead to different concepts when
generalized to nearrings. In the following, a few useful generalizations of
Jacobson radical for nearrings are introduced. These are closely connected
to quasiregularity for nearrings, as the usual quasiregualrity is connected to
the Jacobson radical in ring theory.
Many notions which are collected in the following, can be found in [24]

Definition 3.1.1 Let R be a nearring and G be an R-module. The R-module
G is called monogenic, if there exists a g € G such that gR = G, in other
terms G = {gr | r € R}. An element g € G such that G = gR is called a
generator of G.

Proposition 3.1.2 Let G be a monogenic R-module and R be a nearring
with identity, then g1 = g for all g € G.

Proof. Let h € G be a generator of GG, and let g € G an arbitrary element.
Then there is an element r € R with g = hr. It follows that g1 = (hr)1 =
h(rl) = hr = g.

Definition 3.1.3 Let G be a monogenic R-module. Then

e (G is an R-module of type 0, if G is simple, i.e., it has not non-trivial
proper R-ideals;

27
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e (G is an R-module of type 1, if G is simple and for all g € G, either
gR =G or gR ={0};

e (G is an R-module of type 2, if G has not non-trivial proper R-submodules.

Note that R-modules of type 2 are also of type 1, and those of type 1 are
also of type 0.

Lemma 3.1.4 If R is a nearring with identity and G is an R-module of type
2, then G = gR for all g € G — {0}.

Proof. For every g € GG, the set gR is a submodule of G, since for r, s € R
the following properties hold gr+gs = g(r+s) € gR and (gr)s = g(rs) € gR.
Since G is of type 2, gR = {0} or gR = G. But g = g1 € gR, and hence, if
g # 0, then gR = G.

Using R-modules of type v, it possible to define the radicals J,(R) for
a zero-symmetric nearring R. Note that if R is a ring, these three radicals
coincide with the Jacobson radical of R.

Definition 3.1.5 Let R be a nearring. For v € {0, 1, 2} the v-radical
J,(R) is

J,(R) = ﬂ{Z/{R(G) | G is an R — module of type v}.
If there are no R-modules of type v, then put J,(R) = R.

Remark 3.1.6 For zero-symmetric nearrings R, Beidleman ([4]) defines the
radical J(R) as the intersection of all right ideals of R which are maximal as
R-subgroups. Using the result (3.1.4), it is easy to see that J(R) = Ja(R).

Definition 3.1.7 ([4]) Let R be a zero-symmetric nearring and B a right
ideal of R. B is called modular, if B is mazimal as R-subgroup.

Definition 3.1.8 Let R be a zero-symmetric nearring, put
I:={B | B is a modular right R — subgroup}.

Then the radical J(R) = NperB. If I = 0, then put J(R) = R and R is
called radical nearring.

Theorem 3.1.9 Let R be a zero-symmetric nearring, with R # RJ(R),
then the radical J(R) is an ideal.
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Proof. Since J(R) is a right ideal, it is sufficient to prove that J(R) is
a link ideal. By contradiction suppose that RJ(R) ¢ J(R). Then there
exists a modular right ideal B, such that R7(R) ¢ B. Moreover B C
RJ(R) + B C R. Since J(R) is a right ideal, R7(R) is a R-subgroup. By
(2.4.9), RT(R)+ B is a R-subgroup and it is equal to R since B is a maximal
R-subgroup. Moreover for every j € J(R) and for every b € B it follows
that
(1+j)b—be J(R)CRI(R)=R-B.

This means that (14 j)b —b =r — b’ for an element ' € B and r € R. Thus
(1+j)b=r—bV+be R—B=RJ(R). For j =0, it follows that b € RJ(R)
and so B C RJ(R). Hence R = RJ(R) which is a contradction.

3.1.1 Quasiregularity in nearrings

In the following some results about quasiregularity in the theory of nearrings
are collected. The concept of quasiregularity defined in ring theory can be
generalized to nearrings theory. The definition of quasiregularity seems to
be more complicated in nearrings theory because of the lack of the right
distributive law. For a detailed description of this topic see [4] and [24].

Definition 3.1.10 [2// Let R be a nearring. The element z € R is said to
be right quasiregular, if z is contained in the right ideal of R generated by
{r—zx | x € R}. A subset X of R is called quasiregular if every element of
X s right quasiregular.

If R is a zero-symmetric nearring with identity element 1, Beidleman [4]
calls the element z € R right quasiregular, if there exists an element r € R
such that (1 — z)r = 1. More precisely:

Definition 3.1.11 Let R be a zero-symmetric nearring with identity. An
element r € R is called quasiregular, if there exists an element s € R such
that (1 — r)s = 1 and a subset is called quasiregular if every element is
quasiregular.

Remark 3.1.12 If z is quasiregular in the sense of Beidleman, then z is right
quasiregular in the sense of Meldrum [24]. Indeed, let z be right quasiregular
in the sense of Beidleman [4], r € R with (1 — z)r = 1, and let I be the
right ideal generated by {x — zz | + € R}. Then 1 — z € I, and since R
is zero-symmetric, I is an R-subgroup of R by (2.4.14). Hence z = 1-z =
(1—-2)rzel.

Note that the definitions of Beidleman [4], and Meldrum [24] are not
equivalent, even for zero-symmetric nearrings with identity.
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Theorem 3.1.13 If B is a quasireqular R-subgroup of a zero-symmetric
nearring R, then B is contained in the radical J(R) of R.

Proof. Assume that B ¢ J(R). Then there exists a modular right ideal B’
such that B ¢ B'. By ([4], lemma (1.2)), R = B’ + B, since B’ is a maximal
R-subgroup. If 1 =b' + b, where b € B', b € B, then 1 —b =8 € B'. Now
B is quasiregular and so there is an element 7 € R such that 1 = (1 — b)r =
b'r € B', a contradiction. Hence, B C J(R).

Let R be a nearring and B a proper R-subgroup of R. Since R contains
an identity element 1, it follows by Zorn’s lemma that B is contained in
a maximal R-subgroup. In particular, R contains a maximal R-subgroup.
Therefore, the collection £ of all maximal R-subgroups of R is non-empty.

Definition 3.1.14 Let L be the collection of all mazximal R-subgroups of R.
Then the R-subgroup A = NperB is called the radical-subgroup of R.

Clearly, the radical-subgroup A of a nearring R is a R-subgroup of R. By
its definition, it follows that A C J(R).

Theorem 3.1.15 The radical-subgroup A of a nearring R is a quasiregular
R-subgroup that contains all quasi-reqular right ideals of R.

Proof. Let a be an element of A. Show that (1 —a)R = R. Forif (1 —a)R
is a proper R-subgroup, then (1 —a)R is contained in a maximal R-subgroup
B. Therefore, 1 = (1—a)+a € B, a contradiction. Since (1 —a)R = R there
is an element r € R such that (1 — a)r = 1, and therefore A is quasi-regular
R-subgroup.

Assume A’ is non-zero quasi-regular right ideal of R. If A’ is not contained
in the radical-subgroup A, then there exists a maximal R-subgroup B such
that A’ is not contained in B. By ([4], Lemma (1.2)), R = A'+ B, since B is a
maximal R-subgroup. Let 1 = b+ad’, where b € B, o’ € A'. Then, since A’ is
quasi-regular, there exists an element r € R such that 1 = (1—a')r = br € B,
a contradiction. Therefore, A’ is contained in A.

Corollary 3.1.16 ([4], Corollary 2.3) The group sum of two quasi-reqular
right ideals of R is a quasi-reqular right ideal.

Corollary 3.1.17 ([4], Corollary 2.4) The radical J(R) of a nearring R is
quasi-reqular ideal if, and only if, J(R) = A where A is the radical-subgroup
of R.

Appealing (3.1.15), the following result holds:
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Corollary 3.1.18 ([4], Corollary (2.5)) If A is the radical-subgroup of R,
then (A : R) is a quasi-regular two-sided R-subgroup that contains all the
quasi-reqular ideals of R.

Corollary 3.1.19 (/4/, Corollary 2.6) If (A : R) = {0}, then R contains no
proper non-zero quasi-reqular ideals.

As for rings, it is possible to define nil and nilpotent subsets for nearrings,
as well as nilpotent elements.

Definition 3.1.20 Let R be a nearring. An element x € R is called nilpo-
tent, if there is a positive integer n such that x™ = 0. A subset X C R
18 called nil, if all elements of X are nilpotent. A subset X C R is called
nilpotent, if there is a positive integer n such that

X”:{T1""7'n|TiEX}:{O}

By the previous definitions (3.1.20) it follows that every nilpotent subset
of R is nil.

The following lemma is well-known in ring theory, and hold also for near-
rings.

Lemma 3.1.21 A nilpotent element of a nearring R is right quasireqular.
In particular, a nil subset of R is quasireqular.

Proof. Let z € R be a nilpotent element. Then there is a positive integer n
with 2" = 0. Let K be the right ideal of R generated by {z — zz | z € R}.
Then for all ¢ > 1 the element z* — z2* = 2* — 2'*! € K. In particular,
z=z—2"=Y1 (2 —2z"") € K. Hence z is right quasiregular.

The following definition will be useful in the proof of (3.1.24).

Definition 3.1.22 Let R be a nearring and X, Y #0 X, Y C R. Then

Cy(X):={yeY | Xy C R}

Theorem 3.1.23 (/24], Theorem 5.38) Let R be a zero-symmetric nearring
with descending chain condition for R-subgroups. Then every quasireqular
R-subgroup H of R is nilpotent.

This may be generalized as follows:
Theorem 3.1.24 Let R be a nearring with identity element which satisfies

the descending chain condition for R-subgroups. Let H be an R-subgroup of
R with H+1 C R*. Then there is a positive integer n such that H® = HNR,.
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Proof. For k € N, let H;, be the R-subgroup of R generated by H*. Then
H=H 2Hy 2D ---Hy 12 Hy 2 Hgyyp--- 2

is a descending chain of R-subgroups. By the chain condition, there is a least
positive integer n with H,, = H, ;. First, it is clear that H N R, C H* for
all k£, and hence HyN R. = HN R,. Let K = H,, show that K = H N R,.

Assume that K # H N R.. If K, is the R-subgroup generated by
{kiks | k1, ko € K}, then Ky > Hy, = H, = K. Hence K, = K. Now
consider the set

S={L|L <, R, LCK, LK # HNR,}.

(Note that H N R, is always contained in XK for X C R). Since K = Kj is
the R-subgroup generated by K? and K # HNR,, K? # HNR,. Thus K € S.
By the descending chain condition, & contains a minimal element M. Since
MK # H N R, there is an element m € M with mK # H N R.. It follows
that mK is an R-subgroup of R contained in K. Now (mK)K = HN R,
would mean that mK? = H N R.. But then K? C Cx(m) <, R, and hence
Cr(m) 2 Ky = K (c. f. Definition (3.1.22)). This is a contradiction since
mK # H N R, and thus (mnK)K # HN R, and mK € S. Moreover,
mK C M and by the minimality of M, it follows that mK = M.

Let z € K with mz = m. Then mar = mr and hence zr — r € Ug(m)
for all € R. Since H +1 C R*, —z + 1 € Ur(m) N R*. It follows

m=m(—z+1)(—z+1)"'=0(—z +1)"' € R,.
=0

Then mk € R, for all k € K and thus mK = HNR,., which is a contradiction.
Hence K = HN R,.

3.2 Nearfields

This chapter is devoted to the study of nearfields, an important class of
nearrings. An overview of the theory of nearfields can be found in Waehling
[35].

Definition 3.2.1 A nearring F is called nearfield, if F —{0} is a multiplica-
tive group. A nearfield which is not a skew-field is called a proper nearfield.

Example 3.2.2 (/35])

e Fuvery skew-field and every field is a nearfield.
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o Let p # 2 be a prime number and Fp. = (F,+,) be the Galois field
with p* elements. Consider the two binary operations the addition “+”
defined in the usual way and the multiplication “o”, defined as follows:

yz if there exists an element x with y = 22
yoz= i
yzP  otherwise

(F,+,0) forms a nearfield. Forp =3, (F,+,0) is the smallest non-trivial
nearfield.

Remark 3.2.3 Let x and y elements of F, with zy = 0 and x # 0. Then
y=atay =270 =0. If y # 0 then = 0, which is a contradiction. Thus
y=0.

Corollary 3.2.4 Let F be a nearfield. Then either Char(F) = 0 or Char(F)
p, with p a prime number.

Theorem 3.2.5 If F is a finite nearfield, then the additive group F7T is
abelian.

Proof. Since F is a finite nearfield, then Char(F) = p, where p is a prime
number. Thus z-p =2+ -+ =z(1+---+1) = 2(1-p) = 0 for
x € F. This means that F'* is a p-group. Let p™ be the order of F' for
some n € N and K;, Ky--- K, be the conjugacy classes of the elements of
F*, which have at least two elements. Then p" = |Z(F*)| + Y., |K;,
where clearly |K;| = |F" : Cp+(x)| as K; is the conjugacy class of z € F''.
Then p | |K;| for every i € {1,---,7r}. This means that p | |[Z(F*)| and
Z(F*) # {0}. Hence there exists a € Z(F"), a #0. Forz, y € F, y # 0,
r+y=uya ‘(ay 'z +a) = ya'(a+ ay 'zr) = y+ . This completes the
proof.

Lemma 3.2.6 Let R a nearfield. Then the set of all distributive elements
of R 1s a diwvision subring of R.

Proof. It follows from (2.1.12) and (3.2.5).

Lemma 3.2.7 Let F be a nearfield and let x, y € F. Then the following
equalities hold:

(@) 22 =1 if and only if t =1 or x = —1

(b) (-1 = x(-1)

(c) (=2)y = —zy = z(~y)

(d) —y—z=-z—y.
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Proof. (a) Let x be 1 or —1, then 22 = 1. Suppose that z? = 1. It follows
that

(-D)(1+1)=(-1)+(-1)=—(1+1)=(1+1)(-1).
Put y:= 2 — 1 in the case 1 = —1 and put y := 1+ (=1 + )27 ! in the case

2=1+1#0.
If 1 = -1, it follows that

ry=z@z-1)=2>-z=1-z=01-2)(-1)=—(1—-2)=2—-1=y,

if 1 # —1, then
zy=x(l+ (-1+)27")

=z+a(-1+2)2 ' =z+(—2+1)2"

=1 —14z +(—2z+12 ' =1+ (—z+1)(-1+271
N —
=(~z+1)(-1)

=1+ (—z+DE2Y(-D2+27h
=1+ (—=z+1D2(-D)A+D)+)=1+(—2z+D2 ((-1)+(-1)+1)
=14+ (—z+127 (=) =14+ (—z+1)(-1)27 =y

In both cases if y # 0, it follows that x = 1 and if y = 0, in the first case
2 =1 and in the second case z = —1.

(b) If z = 0 the thesis is proved. Suppose that z # 0, then (z(—1)z7')%? =
z(—1)z 'z(—1)z~' = 1. Using the part (a), it follows that z(—1)z~* = —1,
ie, z(—-1) = (-1)z or z(-1)z ' =1, i.e., z(—1) = z and —1 = 1. Note that
also in this case the equality z(—1) = (—1)z holds.

(0) (-2)y = (=2 -y =2(-1)y = zy(-1) = —zy = z(~y).

(@) —y—z=—(@+y) =9 (-)(z+y)= (- + (-y =) —z -y

Theorem 3.2.8 If F is a nearfield, then the additive group F™ is abelian.

Proof. Let z, y € F. By (3.2.7), (-1)(—y —z) = (—1)(—z — y). Then
—(—y—2z)=—(—x —y) and thus x + y = y + z.

3.2.1 Nearfields with periodic multiplicative groups.

In the following section nearfields above a Cernikov multiplicative group are
studied. In particular, it will be proved that a nearfield above a Cernikov
multiplicative group is finite as well as a nearfield above a periodic multi-
plicative group of exponent p.
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Lemma 3.2.9 Let F be a nearfield and F* be a periodic group. Then Char(F) =
p with p a prime number and FT is periodic.

Proof. Since F' has the identity element, consider the element 1 +1 € F.
If 14+ 1 =0 then Char(F) = 2. Suppose that 1+ 1 # 0, then 1 +1 € F*
and there exists m € N such that (1+1)™ = 1. Thus 1- (2™ — 1) = 0 and
Char(F) = p # 0. This means that pF' = 0 and F'" is an elementary abelian
p-group. In particular, F'* is periodic.

Remark 3.2.10 Since every skew-field above a periodic multiplicative group
is a field see [11], it follows easily the following result:

Lemma 3.2.11 Let F' be a nearfield and F* be a periodic group. Then
Krp:={a€F [(x+y)a=za+ya, Vz,yecF}isa field

The proof of the following result can be found in [35].

Lemma 3.2.12 Let F' be an infinite nearfield, whose multiplicative group
has a normal abelian subgroup of finite index n. Then [F : Kp] < nl.

Definition 3.2.13 Let G be a multiplicative group. Define
7(G) ={p | p a prime number, ¥ =1, for an element r € G — {1}}
the set of all prime numbers which are the orders of the elements of G.

Lemma 3.2.14 Let G be a Cernikov group, then |m(G)| < oo

Proof. Since G is a Cernikov group, there exists a normal abelian subgroup
A of G with finite index, which is the direct product of n quasicyclic groups,
n € N. It follows that |7(A)| = n. Let g € G — A an element of prime order,
note that every element which belongs to the same coset has the same prime
order. Since G has a finite number of cosets, it follows that |7(G — A)| < co.
Thus |7(G)] < 0.

The following result can be easily proved. For the sake of brevity the
proof is omitted.

Lemma 3.2.15 Let F be a nearfield with Char(F) = p, p a prime number
and F = U2 F;, where F; is a finite subnearfield of F' which belong to an
ascending chain of F' for every i € N. If F* is infinite, then w(F*) is infinite.

Corollary 3.2.16 Let K be a field and K* be a Cernikov group. Then K is
finite.
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Proof. Since K* is a Cernikov group, it is in particular a periodic group.
Let K = U$°, K; the union of the finite subfields K; of an ascending chain of
K*. By (3.2.9), Char(K) = p and by (3.2.14), it follows that |7 (K*)| < oc.
If |K*| = oo, then |7(K*)| = oo by (3.2.15). This is a contradiction, thus K*
is finite and so K is finite.

Theorem 3.2.17 Let F a nearfield and F* is a Cernikov multiplicative
group. Then F' is finite.

Proof. Suppose F' an infinite nearfield. By (3.2.12) |F' : Kp| < oco. Since
F* is a Cernikov group, it is in particular a periodic group. Thus Kp is a
field by (3.2.11) and so by the previous result (3.2.16) it is finite. Hence it
follows that F' is finite, which is a contradiction.

3.3 Prime rings

The prime field of a field is the subfield generated by the identity element. In
general, it is not true that the subnearring generated by the identity element
is a field but it turns out that such a structure is a commutative ring.

Definition 3.3.1 Let R be a nearring with identity element 1. Then define
Eg := (1)*. Furthermore, define Pr = {nm™ | n € Eg, m € ErxN R*}

Definition 3.3.2 Let R be a nearring with identity 1. Then Pg is called the
prime ring of R.

Lemma 3.3.3 Let R be a nearring with identity 1. Then Eg and Py are
commutative rings.

Proof. Let n, m € FEp, i.e., there exist integers n, m such that n = 1-7n and
m=1-m. Ilf m >0 then nm =n+---4+n € Ex and hence, if m < 0, then
—_———

m summands
nm = —(n(—m)) € Eg. Since nm = (1-n)-m = 1-(7)(m) = 1-(m)(A) = mn,
it is also clear that Eg is a commutative nearring with identity and hence a
ring by (2.1.13).

It is clear that Pg is closed under multiplication and that (Pg,-) is a
commutative semigroup. Thus it suffices to show that Pg is closed under
addition. Let n, z € Egr and m, y € Egr N R*. Then it is not difficult to see
that nm™' 4+ zy~' = (ny +mx)(my)~'. Hence Pg is a commutative nearring
with identity and thus a ring by (2.1.13).
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Lemma 3.3.4 Let R be a nearring with identity 1 and ot (1) = n < oc.
Then ER = PR = Z/TLZ

Proof. It is clear that Er = Z/nZ. Since an element of Z/nZ which is not
invertible is a zero-divisor, it cannot be invertible in R. Hence the inverses
of invertible elements of Er are contained in Fr and thus Er = Pkg.

Lemma 3.3.5 ([13], Lemma 4.8.4) Let R be a nearring with identity 1 and
0t (1) = co. Then Eg = Z. There is a set mg of primes such that an element
n € Eg s wnvertible in R if and only if no prime p € wg is a divisor of n.
Pr 2 ZD ', where D = Z — (UperpPZ), i.e.,

n
PR%{EEQ\VpEWR : ptm}.

Note that it is possible that mr contains all prime numbers. In this case Pg
18 isomorphic to 7.

Note that by (3.3.4) and by (3.3.5) Pg is always contained in Ry.

3.4 Construction subgroups

Definition 3.4.1 Let R be a nearring with identity 1. Let U < R™ such
that (U + 1) < R*. Then, U is called a construction subgroup of R.

Proposition 3.4.2 Let R be a nearring with identity and U be a construc-
tion subgroup of R. Then (U + 1)U C U.

Proof. Let A =U +1 < R*. Since U is an additive group, for every a,
be A, it follows that a —b=a—-14+1—-b=(a—1)—(b—1) € U since
a—1,b—1€U. Now let u, v € U with u =a —1 and v = b — 1 for suitable
elements a, b € A. Then (u+ 1)v =a(b—1) =ab— a € U, since ab, a € A.

Example 3.4.3 (a) Let R be a nearring with identity. Then the trivial sub-
group {0} is a construction subgroup.

(b) Let R be a nearring with identity 1. Then R. is a construction subgroup
of R, since R, +1 < R* by (2.1.19).

(c) Let p be a prime, n > 1 a positive integer, and R = Z/p"Z. Then the
subgroup pR of R is a construction subgroup of R.

(d) Let R be a ring with identity element. Then the Jacobson radical J(R)
18 a construction subgroup of R.

In the following, the structure of construction subgroups is investigated.
In particular, for zero-symmetric nearrings some result are showed.
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Proposition 3.4.4 Let R be a zero-symmetric nearring with identity. If U
s a construction subgroup, then U is quasiregular in the sense of Meldrum.
If U is also an R-subgroup, U is contained in the radical Jo(R).

Proof. Let U be a construction subgroup of the zero-symmetric nearring R,
and let x € U. Let I be the right ideal of R generated by {r — zr | r € R}.
Then 1 — x € I and since I < R*, also —z + 1 € I. But since R is zero-
symmetric and U is a construction subgroup, also 1 = (—z+1)(—z+1)t eI
by Lemma (2.4.14), and thus I = R. Hence z € I and so z is a right
quasiregular element. The final part of the proposition follows immediately
from Theorem (3.1.13).

The following theorem shows that every nearring with identity contains
maximal construction subgroups.

Theorem 3.4.5 Let R be a nearring with identity 1 and U be a construction
subgroup of R. Then U s contained in a mazximal construction subgroup. In
particular, R contains mazimal construction subgroups.

Proof. Let M be the set of all construction subgroups of R which contain U.
Since U € M, M # (). Note that M is partially ordered by inclusion. Let
A be the chain in M and let V = |J{K | K € A}. Then V is a construction
subgroup of R, since for u, v € V there is a group K € A with u, v € K, and
henceu—v € K CV,u+1,v+1€ R* and (u+1)(v+1) e K+1 CV+1.
By Zorn’s Lemma, M contains a maximal element.

Lemma 3.4.6 Let R be a zero-symmetric nearring with identity, K <, R
is quasireqular right ideal of R in the sense of Beidleman [{]. Then K is a
construction subgroup.

Proof. Since R is zero-symmetric, K is an R-subgroup. Since K is quasireg-
ular in the sense of Beidleman ([4]), for every k € K the element 1 —k is right
invertible, and since K is a right ideal, K +1 =1+ K and all the elements
of K 4+ 1 have a right inverse. Thus it is sufficient to show that these right
inverses are contained in K +1 and that K + 1 is closed under multiplication.
First let £ € K be an arbitrary element, » € R be the right quasi-inverse of
—k,i.e, (1+k)r =1. Then 1 — (1 + k)r = 0. Moreover, since K is a right
ideal, (14+k)r—r € K. This means that 1 — (1+k)r+(1+k)r—r=1-re K
if and only if r — 1 € K, and hence r € K + 1. Now let k. | € K. Then
k+D)(I+)=(k+)l+k+1=((k+1)-0)+(l+k)+1€ K+1, and
hence K + 1 is closed with respect to multiplication.

Lemma 3.4.7 Let R be a nearring and U be a construction subgroup of R,
and I < R. Then (U + 1)/1 is a construction subgroup of R/I.
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Proof. It is clear that (U + I)/I is a subgroup of (R/I)*. Now, let u € U.
Then there exists an element v € U such that (u+ 1)(v+ 1) = 1, and hence
(u+D)+A+D)((v+DHA+1)=(u+)(v+1)+I1=1+1.

The following result shows that the sum of two construction subgroups
can be a construction subgroup under special hypothesis.

Lemma 3.4.8 Let R be a nearring with identity and let U and V' be two
construction subgroups with the additional property that U +V =V +U. If
U and V are left R-subgroups, then U + V s also a construction subgroup.

Proof. Let U and V be left R-subgroups. Since U +V =V + U, it follows
that U + V is an additive group. Let u, v’ € U and v, v' € V, then

(u+v+ D)W+ +1)=w+v+Du'+(u+v+ 1) +u+v+1.

eU ev

N J/

eU+Vv

Moreover, since RU C U and U and V' are construction subgroups,
(w+ 1D u+1
is contained in U + 1 and therefore

(((v + 1) u+1)" (v + 1)_1)(u +v+1)

=((v+1) T u+1)"((v+1) (ut+v+1))

=((v+1) tu+1)" ((v +1) tu+ 1)
=1,

in other words all the elements of U + V 4+ 1 are left invertible. But
since (v+ 1) tfu+1)"' e U+1and (v+1)7!' € V+ 1, it follows that
(v+1)"'u+1)"Y(v+1)"' € U+ V + 1. This means that U + V + 1 is
closed under multiplication and every element of U + V + 1 is left invertible
in U+ V 4+ 1. Hence U +V + 1 is a group under multiplication and thus
U + V is a construction subgroup.

The following result shows a relationship between the chain condition for
subgroups of R* and for construction subgroups of R.

Lemma 3.4.9 Let R be a nearring with identity, and let R* satisfy the
ascending or descending chain condition on subgroups. Then R fulfils the
ascending or descending chain condition for construction subgroups, respec-
tively.
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Proof. Let R* satisfy the ascending chain condition for subgroups. Further-
more, let Uy < U; < --- be an ascending chain of construction subgroups of
R. Then Uy+1 < U;+1 < --- is an ascending chain of subgroups of R* and
hence there is an element n € N with U,, +1 = U,, + 1 for all m > n. Thus
U, = U, for m > n. The proof is similar for the descending chain condition.

By definition of construction subgroup, if U is a construction subgroup
of a nearring R, then U + 1 is a subgroup of R*. The following result shows
that if U is also an ideal of R, then U + 1 is a normal subgroup of R*.

Lemma 3.4.10 Let R be a nearring with identity and U be a construction
subgroup of R which is an tdeal of R. Then U + 1 is normal in R*.

Proof. Since U is an ideal of R, the canonical epimorphism o : R — R/U
can be restricted to the set R*. Since o is a nearring homomorphism, o|R*
is a group homomorphism R* — (R/U)*. Clearly, U + 1 is the kernel of
o|R*, and hence U + 1 is normal in R*.



Chapter 4

Local Nearrings

The study of local nearrings was begun by Maxson [20]-[23] and continued
by several other authors. In particular, it was shown in [12] that if R is a
local nearring with identity 1 and Ly is the subgroup of all non-invertible
elements of R, then the set 1 4 Lg is a subgroup of the multiplicative group
R* of R acting on Lg by left multiplication, so that the semidirect product
Lg x (1 + Lg) is a group of the form G = AB = AM = BM with a normal
subgroup M isomorphic to Lr and with subgroups A and B isomorphic to
1+ Lg. Thus, in many cases the study of local nearrings can be reduced to
that of groups of this form, so called triply factorized groups (cmp. Chapter
1). First, this approach was partly used in [15] where the author studied
local nearrings with abelian multiplicative group and explicitly applied in [2]
and in [33] where the investigation is concerned with local nearrings with
dihedral multiplicative group and generalized quaternion group rispectively.

4.1 Basic properties of local nearrings

Local nearrings belong to a large class of nearrings containing non-trivial
construction subgroups and hence are useful for the construction of triply
factorized groups. They were first introduced by Maxson [20] as a general-
ization of local rings. In the following subsection some basic properties of
local nearrings are described. In particular, the structure of additive group
and the group of units of local nearrings are studied.

4.1.1 Structure of local nearrings

In the following, only nearrings R with identity 1 are considered. Most of the
following results are proved in the case of zero-symmetric nearrings in [20].

41
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Definition 4.1.1 Let R be a nearring. The set of elements of R, which have
not right inverses, will be denoted as Lg, i.e.,

Lr={keR|kR+#R)

Definition 4.1.2 The nearring R is called a local nearring, of Lr is an R-
subgroup of R.

Theorem 4.1.3 (/20/, Theorem 2.2) Let R be a local nearring. Then the
subgroup Ly is the unique mazrimal R-subgroup of R.

The following theorem gives an important criterion for a nearring to be
local.

Theorem 4.1.4 ([20], Theorem 2.8) The nearring R is local if and only if
Ly is a subgroup of RT.

The next result shows that a local nearring R is the set theoretical union
of the group R* of units of R and the R-subgroup Lgr. Thus every element
of R is either a unit or contained in Lp.

Lemma 4.1.5 Let R be a local nearring. Then the elements of Lg has no
left inverses and the elements of R — Ly are units.

Proof. Assume that [ € Ly has a left inverse r, i.e., rl = 1. Then Ir € Ly
and hence 1 — Ir ¢ Lg. Therefore there exists an element ¢t € R with 1 =
(1 —lr)t. This implies that r = r(1 — Ir)t = 0t, and hence 1 = r{ = 0t/ € R,.
Since 1 € Ry, this yields that 1 = 0 by Theorem (2.1.15) a contradiction.
Thus, the elements of Lr have no left inverses.

Now let 7 € (R — Lg). Then there is an element s € R with rs = 1. By
the above argument, s ¢ Lg, and hence there is an element ¢ € R such that
st = 1. But then 7 = r -1 = r(st) = (rs)t = t. Hence, r is a unit and so
R* =R — L.

Corollary 4.1.6 Let R be a local nearring, then Ly is a (R, R)-subgroup of
R.

The following two results show that there is a connection between local
nearrings and triply factorized groups.

Proposition 4.1.7 Let R be a local nearring. Then Lg is a construction
subgroup of R.
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Proof. It is clear that Lg +1 C R*. Thus let k£, [ € Lg. Then
k+1D)(I+1)=(k+1)l+k+1€Lr+1.

Moreover, let I’ = (I +1)7'. Then 1 =I'(l +1) = I'l + ' and hence I' =
—l'l+1 € Lgr+1. Thus Lr+1 is a group with respect to the multiplication.

Lemma 4.1.8 ([2/, Lemma 3.12(2)) Let R be a local nearring with identity
1. Then the subgroup Lg is invariant under the action of R* on R by left
multiplication and the semidirect product G = Lr % (14 Lg) has subgroups
A and B isomorphic to 1 + Ly such that G = AB=Lr X A= Lg% B and
ANB=1.

Lemma 4.1.9 Let R be a nearring. Then R, C Lg.

Proof. Assume that x € R, is an invertible element. Then there is an
element y € R with 1 = yz = x € R.. By the corollary (2.1.16), 1 € Ry and
by the theorem (2.1.15), R. N Ry = {0}, a contradiction to 1 # 0.

Corollary 4.1.10 ([18], 5.19) Let Lg be nil, then R is a zero-symmetric
local nearring.

The following result shows that a local nearring always contains a zero-
symmetric local subnearring.

Proposition 4.1.11 Let R be a local nearring. Then Ry is also local. More-
over, Lr, = Lr N Ry.

Proof. Ifl € LpN Ry, then! € Lg,. Now let | € Lg,. Note that [ cannot be a
unit in R, since the inverses of zero-symmetric units are also zero-symmetric
by Proposition (2.1.18). Hence | € Lg and thus Lg, = LrN R, is an additive
group. By Theorem (4.1.4), Ry is local.

It is well-known that for local rings R the group Lg is always an ideal of
R which coincides with the Jacobson radical J(R). A similar result can be
stated for local nearrings R, if R # J>(R), but it seems to be still unknown
whether a local nearring R with R = J,(R) exists or not.

Lemma 4.1.12 If R is a zero-symmetric local nearring, then Ly is a quasireg-
ular R-subgroup of R and Lr C J2(R).

Proof. Since R is zero-symmetric, Lg is a quasiregular R-subgroup by (3.1.6)
and hence it is contained in J5(R) by (3.1.13).
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Remark 4.1.13 (a) If R is a zero-symmetric local nearring with descending
chain condition for R-subgroups, then Lg is nilpotent by (3.1.23).

(b) If R is local nearring with descending chain condition for R-subgroups
then by (3.1.24), and (4.1.9) there exists n € Ny with Lg" = R,.

As for rings it is possible to show that non-trivial factor nearrings of local
nearrings are likewise local.

Lemma 4.1.14 Let R be a local nearring and I < R a proper ideal of R.
Then the factor nearring R/I is local.

Proof. Since I is a proper ideal, I < L. Thus Lg/I is an additive subgroup
of (R/I)*. Forr€ R*, (r+1)(r*+1)=1+1, and hence r + I € (R/I)*.
Now let [ € Lp and assume that there is an element k + I € R/I with
(l+1I)(k+1)=1+1I. This means that [k —1 € I. But since I < Lg and
Ik —1 ¢ Lg, this is a contradiction. Hence, Lp/; = Lr/I and R/I is local.

The following theorem gives a criterion for Ly to be an ideal of the local
nearring R.

Lemma 4.1.15 ([20], Theorem 2.10) If R is zero-symmetric nearring with
J2(R) # R, then R is local if and only if Lp = Jo(R). The subgroup Lg is
an ideal of R if and only if R # J5(R).

Corollary 4.1.16 (/20/, Corollaries 2.11 and 2.12) Let R be a local nearring
with Lr < R.

(a) The factor nearring R/Lyg is a nearfield. In particular, R/Ly is abelian.
(b) R is simple if and only if R is a nearfield.

4.1.2 The additive group R*

Let R be a local nearring. If there is a positive integer n, such that 1-n € Lg,
then R is said to satisfy the Property (P).

Now, let K ={n € N|1-n € Lg}. Then K has a minimal element n.
If ng is a composite number, say ng = ning, with 1 < n; < ng for i € {1, 2},
then 1-n; € R* = R— Lg for i € {1, 2} and hence 1-ny = 1- (ning) =
(1-n1)(1-ny) € R*, a contradiction. Thus ng is a prime number.

As consequence of that, R fulfils the Property (P) if and only if there is
a prime p with 1-p € Lg.

Proposition 4.1.17 Let R be a local nearring satisfying the Property (P),
and let n, m be positive integers with 1-n and 1-m € Lg. If d is the greatest
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common diwvisor of n and m, then 1-d € Lg. In particular, the prime p with
1-p € Lg is uniquely determined.

Proof. Since d is the greatest common divisor of n and m, there are integral
numbers z and y with d = nz + my. But then 1-d = 1 (nz + my) =
(1-n)-x+(1-m)-y € Li. It is clear now that p must be a divisor of all
n € Nwith 1-n € Lg.

The following result shows that if Lr has finite exponent and is non-
trivial, it follows that R satisfies the Property (P).

Lemma 4.1.18 Let R be a local nearring, and let Ly have finite exponent.
Then R is a nearfield or R satisfies the Property (P).

Proof. Assume that R is not a nearfield, i.e., Lr # {0}. Let n = exp(Lg™)
and assume that R does not satisfy the Property (P). Then 1-n € R*, i.e.,
there is an x € R with (1-n)x = 1. But then [ = [(1-n)x = (I - n)z = 0z
for all [ € Lg. By Corollary (2.1.16), 1 - n is zero-symmetric, so that by
Propostion (2.1.18), it follows that z is zero-symmetric. Thus, [ = 0z = 0
for all | € Lg, a contradiction to Lg # {0}. Hence 1-n € Lg and R satisfies
the Property (P).

The next theorem and the subsequent corollary give some information
about the structure of the additive group of a local nearring with certain
finiteness conditions. In particular, it turns out that the additive group of a
finite local nearring is always a p-group for some prime number p.

Theorem 4.1.19 If R is a local nearring with descending chain condition
for R-subgroups and with the Property (P), then RY is a p-group for the
prime p with 1-p € Lg.

Proof. The proof for the zero-symmetric case can be found in Maxson ([20],
Theorem 7.4). Here, the proof for the general case will be given.
Let p be the prime with 1-p € Lg and consider the chain

Lg2(1-p)Le2 (1-p)’Lrg2 -2 (1-p)* 'L 2 (1-p)*LrD---.

Since rLg is an R-subgroup of R for all » € R, in the above chain,
there exists some k € N with (1-p)*"'Lg = (1 - p)*Lg. This means that
(1-p)* = (1-p)kly for a suitable I; € Lg, ie., (1-p)¥(1 —1;) = 0. Since
1—1; € R*, there is an element x = (1—[;)~%. Then (1-p)* = (1-p)*(1-1)z =
0z, which is a constant element by Lemma (2.1.17). By Corollary (2.1.16),
(1-p)f=1-p* € Ry, i.e., 0z = (1-p)* € R.N Ry = {0}. Hence o"(1) | p*,
and by Corollary (2.1.22) R* is a p-group.
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Corollary 4.1.20 The additive group of a local nearring R, whose subgroup
Ly is finite and non-trivial, is a p-group for a prime p. In particular, the
additive group of a finite local nearring is always a p-group (even if Ly is
trivial).

Proof. Since Lg is the unique maximal R-subgroup of R, all proper sub-
groups of R liein Li. But since Lg is finite, R satisfies the descending chain
condition on R-subgroups. By Lemma (4.1.18), R satisfies the Property (P),
and hence R* is a p-group by Theorem (4.1.19). If R is finite, R satisfies
the Property (P) as well as the descending chain condition for R-subgroups,
even if Lg is trivial.

Corollary 4.1.21 Let R be a local nearring. Then |R*| is odd, if and only
if R is a finite nearfield of characteristic 2.

Proof. If R is a finite nearfield of characteristic 2, it is clear that |R*| is odd.

Let |R*| be odd, in particular finite. Since Lr +1 C R* and |Lp + 1| =
|Lgr|, Lg and hence R is finite. By Corollary (4.1.20), |R| = p™ and |Lg| = p™
for a prime p and non-negative integers n and m with m < n. This means
that |[R*| = p"—p™ = p™(p" ™ —1) =1 (mod 2). Since the number p"~™ —1
is odd, it follows that p = 2. But then p™ is odd only for m = 0, i.e., |Lg| = 1.
Hence R is a nearfield.

The following result shows an useful connection between the nilpotency
of Ly and the exponent of the additive group Lz™.

Proposition 4.1.22 Let R be a local nearring. If R™ is a p-group for a
prime p and L™ = {0} for some n € N then exp(Lpt) < p" .

Proof. Since o7 (1) = p! for some [ € N. Tt follows that 0 = 1-p! € Ly and
hence p € Li. Let | € Ly be an arbitrary element. Then [ -p"~! € Lg" =0
and hence [ - p"~! = 0. Thus exp(Lg™) divides p"~'.

4.1.3 The structure of Ly

It seems to be unknown whether there is a local nearring R with the property
that Ly is not an ideal of R or not. It is even not known if Li has to be
a normal subgroup of the additive group R™. But it is in fact possible to
determine some structural facts about local nearrings R in which Ly is not
a normal subgroup of R*.

Lemma 4.1.23 Let R be a local nearring in which the additive subgroup
Lz is not normal in the additive group R*. Then Lr™ concides with its
normalizer Ng+(Lg™").
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Proof. Since Lz is not normal in RT, there is an element » € R* and an
element k € Ly with —r + k + r ¢ Lg. This means that r~!(—r + k+71) =
—1+7r7'k +1 € R*. Hence, for arbitrary s € R*, —s + s(r~'k) + s ¢ L.
But s(r~'k) € Lg, hence R* N Np+(Lg") =0, and thus Lg™ = N+ (Lg™).

Theorem 4.1.24 Let R be a local nearring with nil R-subgroup Lr. Then
Lr <R

Proof. Letl € Lgrandr,s € R and let n be the smallest integer with [ = 0.
Assume that the element t = (r + [)s — s does not belong to Lg. Then
=0t )s =" trs= (" tr+1M)s— 1" rs=1""1rs— " 1lrs=0.
But if ¢ € R*, multiplying with ¢!, from the right it follows that [" ! = 0,
contradicting the choice of n.

Thus, it suffices to show that Lzt < R*. But since (r+1)s—rs € Ly, for
allr,s € Rand !l € Ly, withr = —1 and s = 1, it follows that —1+{+1 € L.
By Lemma (4.1.23), L™ < R*.

Corollary 4.1.25 Let R be a zero-symmetric local nearring with descending
chain condition for R-subgroups. Then Lr < R.

Proof. Lg is quasiregular by Lemma (4.1.12), and hence nilpotent by The-
orem (3.1.23). Thus, Lr < R by Theorem (4.1.24).

Lemma 4.1.26 Let R be a local nearring.
(a) If the group R is not perfect, then Lg™ < R*.
(b) If Lr < R, then R* is not perfect.

Proof. (a) If R* is not perfect, (R")" is a proper subgroup of R*. Since
r(s,t] = [rs,rt] for all v, s, t € R, (R")" is a left R-subgroup of R, and hence
is contained in Lg. This means that Ly™ < R*.

(b) Now let Lg < R. By Corollary (4.1.16), R/Lg is a nearfield. Hence,
R*/Lr" is an abelian group and thus (R*)’ C Lp. This means that R* is
not perfect.

The following theorem shows that it is sufficient to investigate the zero-
symmetric part of a local nearring to check if Ly is an ideal of R. Moreover,
it is shown in (4.1.28), that in a finite local nearring R the R-subgroup Lg
is always an ideal.

Theorem 4.1.27 Let R be a local nearring. Then Lr < R if and only if
LRo ﬁ R().
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Proof. If Lr < R, itis clear that Lp, < Ry. Consider the case Lr, < Rj. As
in the proof of Theorem (4.1.24), it suffices to show that ¢t = (r+1)s—rs € Lg
for all 7, s € Rand all [ € Lg. Since R* = Rj x R} the elements r, s and [
can be uniquely written as r = rg + 7., § = So + S¢, and [ = [y + [, with rg,
So, lo € Ry and r¢, s¢, l. € R,.

Thus t = (r+1)(so+5sc) —7(so+sc) = (r+1)so+Sc—s.—159 = (r+1)so—rso.
Since Lg is a (R, R)-subgroup of R by Corollary (4.1.6), the element ¢ is
contained in Lg if r € Lz or s € Li. Hence it may be assumed that r,
se€R*. Thenr *t=r"(r+0)sy—r'rso=(1+r1)sp—spand r 't € Ly
if and only if ¢ € Lg. Thus it suffices to show that ¢ = (1 +1)s — s € Lg for
all s € Ry" and for all [ € Lg.

Now, (1+1) = 1+1) 1+l +1l)s— 1+l ts=1+1)s— (1+
lo) ts = (1+1.)s—s+s—(1+1y)~ts. Since Lg, < Ry, s—(1+1lp)"ts € Ly, <
Ly, and hence t € Lg ifand only if (1+1.)s—s € Lg. Butif (14+1.)s—s € R*,
there is an element z € R* with 1 = z((1 +{.)s —s) = (z + l.)s — xs. This
means that 0 = 0-1 = 0((x + l.)s — xs) = (0z + I.)s — Ozs and hence
(0z + [.)s = Oxs. Since s is invertible, 0z + [, = 0z and hence /. = 0. But
this contradicts (1 +1.)s — s € R*. Hence L < R.

Corollary 4.1.28 If R is a finite local nearring, then Ly is an ideal of R.

Proof. If R is zero-symmetric, then the subgroup L is nil (see [24], Theorem
5.38) and so Lg is an ideal of R by (4.1.24) and (4.1.6). The general case
follows from Theorem (4.1.27).

Corollary 4.1.29 Let R be a local nearring with descending chain condition
for R-subgroups. Then

Lr < R.

Proof. By Corollary (4.1.25), Lg, < Ry. Hence by Theorem (4.1.27) Lr <
R.

Remark 4.1.30 It seems to be unknown, if there is a local nearring with
Lr ¥ R, and hence it is unknown if it can happen that Lr" ¢ RT. The
result (4.1.28) shows, that such a local nearring must be infinite, if it exists.
Moreover, if R is a local nearring with Lr 4 R, then let I be a maximal ideal
in R (by Lemma (2.4.10), such an ideal exists). Then R/I is a simple local
nearring, and Lg/r 4 R/I. Thus, if there is a local nearring with Lg 4 R,
then there also exists a simple local nearring with this property. Simple local
nearrings are investigated in the following subsection.
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The next result gives some information about the centralizer of Lg in a
local nearring. In particular, if the group Lz " is not abelian, the centralizer
Cr(Lg) is contained in Lg.

Lemma 4.1.31 Let R be a local nearring. If there is an element r € R*
such that v € Cr+(Lg"), then R* C Cr+(Lr™) and Lg" is abelian. Hence
Lp < Z(RY).

Proof. Letr € R*NCgr+(Lg"). Then —r+1+7r =1 for alll € Ly and hence
r i =r"Y(—r+l+r)=—1+r"'+1foralll € Lg. Hence, 1 € Cg+(Lg")
and thus R* C Cg+(Lg™). Now, l+k+1 =1+ (k+1) =(k+1)+1 =
k+ (1+1)=k+1+1. Hence Lp" is abelian.

In the proposition (4.1.7), it was shown that in a local nearring R the
group Lg is always a construction subgroup. The following lemma shows
that in a local nearring R even every proper left R-subgroup is a construction
subgroup.

Lemma 4.1.32 Let R be a local nearring and U be a proper left R-subgroup
of R. ThenU + 1 and 1+ U are subgroups of R*.

Proof. It is clear that U +1 C R*, since U C L. Let u, v € U, u =
(u+1)"' € R*. Then

(u+1)w+1)=(u+lv+u+leU+1.
U
€

Moreover, 1 = 4(u + 1) = du + @, ie., &t = —tu + 1 € U + 1. Similarly it
follows that 1 + U < R*.

Lemma 4.1.33 Let R be a local nearring, I < R a proper ideal of R. Then
I+1<4 R

Proof. Since I <R, I is a proper left R-subgroup of R and hence by Lemma
(4.1.32), a construction subgroup of R. By Lemma (3.4.10), I 41 is a normal
subgroup of R*.

The following theorem shows that the converse of Lemma (4.1.33) holds
for the construction subgroup Lg of a local nearring R. Moreover, this gives
another criterion for Lz to be an ideal of R.

Theorem 4.1.34 Let R be a local nearring. The subgroup Lr+1 is a normal
subgroup of R* if and only if Lr < R.
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Proof. If Lr < R then Lg + 1 < R* by Lemma (4.1.33).
On the other hand, if Lz +1 < R*, for every | € Lg and every r € R*
there is an element k; , € Lg with r~*(l+ 1)r =k , + 1.

(1) Let | € Lg. Then

ki 1+1=(-1D({+1)(-1)=((-1)l-1)(-1)=1-(-1)
= (-Di=—-1—Fk, -1 +1
el (C1)(-1—hy a4+ 1)=1— (D 41
= 1+1+1=—(-1)k -, € Lg
Hence 1 € Ng+(Lg"). By Lemma (4.1.23), Lg* < R*.

(2) Let l € Lg, 7, s € R. If r € Lr or s € Ly, then (I +7)s —rs € Lg.
Thus it may be assumed that r, s € R*. Then

(I+r)s—rs=r(r '+ 1)r 'rs—rs
= (kp-1y, =1 + D)rs —rs = r8(rs) " (k-1 -1 + 1)rs — s
=rs(kk,_y, ars T 1) —rs=rskp _, s tTS—TS
= TSkk,,—ll, 11 € Ly
Corollary 4.1.35 Let R be a finite local nearring. Then Lg+1 € Syl,(R*)
for some prime p. By Theorem (4.1.28), Lr < R, so that Lr + 1 is normal

in R*. This is the only Sylow-p-subgroup of R*, and every p-element of R*
must be an element of Lg + 1.

Proof. If|R| < oo, then |R| = p™ and |Lg| = p™ for a prime p and some non-
negative integers n and m with m < n. Hence, |R*| = p"—p™ = p™(p" ™ —1).
Since |Lg + 1| = |Lg| = p™, it follows that Lg + 1 € Syl,(R*).

Lemma 4.1.36 (/2], Lemma 3.6) Let R be a local nearring with L™ < R*.
Then
N = Ly UNg-(1 + Lg)

s a local nearring with Ly < N.

The following result shows that a local nearring with cyclic additive group
is finite.

Theorem 4.1.37 Let R be a local nearring with cyclic additive group. Then
R is finite.
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Proof. Assume that R is infinite, i.e., R = Z*. Then there is a non-
negative integer k with Lr = kZ. Let F # 0 be the identity element of R,
which does not need to concide with the generator 1 of the additive group
ZF. Without loss of generality n > 0, n € Z. For every n € R* there is an
element z € R* with £ = xn € nZ. Now if k£ # 0, let ¢ be a prime number
with ¢ 1 k; if £ = 0, let ¢ be an arbitrary prime number. Then ¢™ ¢ Ly for
every m € N. Hence, E € ¢™Z, which implies

Ee ()¢ z={0}.

meN

This contradiction shows that |R)| is finite.

4.1.4 Simple local nearrings

If R is a local nearring, it seems to be unknown whether Ly is always an ideal
of R or not. This subsection investigates the structure of a local nearring R,
in which Lg is not an ideal of R.

Let R be such a local nearring. Since by Theorem (4.1.27), Lg < R if
and only if Lg, < Ry, in the following R will be assumed zero-symmetric. By
Corollary (4.1.25), R cannot satisfy the descending chain condition. Clearly,
every proper (right) ideal of R is contained in Ly. Since R has an identity
element, it contains maximal (right) ideals by Lemma (2.4.10). Since the
sum of two (right) ideals is likewise a (right) ideal by Lemma (2.4.9) and
the sum of two distinct maximal (right) ideals is the whole nearring, R can
contain only one maximal (right) ideal. Furthermore, factor nearrings of
local nearrings are local, so if I is the maximal ideal of R, the nearring R/I
is simple local nearring which is not a nearfield. Obviously, Lg/; is not an
ideal of R/I.

Without loss of generality, in the following assume that R is simple.

Theorem 4.1.38 R does not have non-trivial proper right ideals.

Proof. Let I <, R be a right ideal of R and assume that I # {0}. Then
G = R/I is a R-module with I < Ug(G) < R. Since I # {0} and since R is
simple, Ur(G) = R, a contradiction to 1 € R((I +1)-1=1+1#I).

Theorem 4.1.39 R has no zero-divisors.

Proof. Assume kl = 0 for k, [l € R — {0}. Then Ugr(k) <, Rand 0 # [ €
Ur(k). By (4.1.38), Ur(k) = R, a contradiction to k-1 =k # 0.

In the following let 0 # [ € Lg be fixed and let G = [R. Then G is a
monogenic R-module.
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Theorem 4.1.40 G s isomorphic to the reqular R-module Ry
Proof. The mapping o : R — G with ra = [r is a R-module isomorphism:

(1) « is a group homomorphism:

(r+s)a=Il(r+s)=Ir+ls=ra+sa
(2) a is a R-module homomorphism:
(rs)a=1(rs) = (Ir)s = (ra)s
(3) « is a monomorphism:
ra=0&Ilr=0&7r=0

By the definition of G it is clear that « is surjective, so G = R.

Corollary 4.1.41 G is a simple R-module

Proof. By Theorem (4.1.40), G is isomorphic to Rr. If G has a proper
non-trivial R-ideal, then so does Rr. But R-ideals of R are exactly the right
ideals of R, and these do not exist in R by Theorem (4.1.38).

Thus G is a R-module of type 0. Since J;(R) = J2(R) = R, G cannot be
of type 1 or type 2. Thus there is an element ¢ € G with 0 < gR < G. The
results (4.1.40), (4.1.41) applied to gR, gives an infinite descending chain of
R-submodules of G"

The nearring R can be embedded into the nearring My(G) via
a: R — My(G)

such that r — «, with (Is)a, = I(sr). Then « is a nearring monomorphism.
Let ge G, r, s € R.

e 9o, s =g(r+s)=gr+ gs = ga, + gas, hence apys = @ + Q.
e ga,; = g(rs) = (gr)s = ga,as, hence a,s = aas.

e Let o, = a,. Then, for all t € R, ltr = lta, = ltay = lts, it follows
0=ltr —lts = lt(r — s), i.e., r = s. Hence, « is injective.

Proposition 4.1.42 «, is surjective if and only if r € R*.
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Proof. Let a, be surjective. Then there is a ¢ =ls € G = [R with ga,. = [,
i.e., Isr = 1. Then 0 = lsr — [ = I(sr — 1) and by Theorem (4.1.39) sr = 1.
Hence r € R*. The converse is trivial.

Remark 4.1.43 Since the elements of Lgra are not surjective, they have
nontrivial annihilators in My(G). Define 3; via

_J 0 geIm(w)
gﬂl_{g g & Im(ay)

Since « is not surjective, §; # 0 and it is clear that oy = 0.

4.1.5 Prime rings of local nearrings

In this subsection the structure of the prime rings of local nearrings will be
investigated. It turns out that these prime rings are local.

Lemma 4.1.44 Let R be a local nearring.

(a) If 0 (1) = m < oo, then the prime ring Pg is isomorphic to Z/p"Z
for a prime p.

(b) If 07 (1) = oo, then Pr =2 Q, = {% € Q | p{m}, if there is a prime
p with 1-p € Lg, and Pr = Q, if there is no such a prime.
In particular, the prime ring of a local nearring is local.

(¢) If Lp, = {0}, then Pg is a field, since it is both a nearfield and a ring.

Proof. (a) By Lemma (3.3.4), Pg & Z/mZ. Since 0™ (1) < oo, R has the
Property (P), so that there is a prime p such that 1-p € LgN P, i.e., p | m.
But LN Pg is a group with respect to the addition , and all elements of Py
which are not contained in Lg are invertible in Pg by Lemma (3.3.4). Hence
Pr is local and thus m is a prime power.

(b) Consider the mapping ¢ : Pp — Q with (1-n)(1-m)™" — 2. It
is easy to check that o is a ring monomorphism. If there is a prime p with
1-p € Lg, then 1-m is invertible if and only if p { m, i.e., Im(c) = Q,. If
there is no such a prime, ¢ is an epimorphism.

Since it is well known that Q, is a local ring, it follows that Pg is always
a local ring.

(¢) This is obviuos.
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Corollary 4.1.45 If R™ has finite exponent, then R™ is a p-group for a
prime p.

Proof. R™ has finite exponent if and only if 0% (1) < oo. Hence, Py is a
finite local nearring, and by Theorem (4.1.19) Pg" is a p-group. Thus o™ (1)
is a power of p, and since 0" (1) = ezp(R*), R" is a p-group.

The converse of Corollary (4.1.45) is also true. If Rt is a p-group for
some prime p, then there is a positive integer n such that o™ (1) = p". But
by Corollary (2.1.22) it follows that ezp(R") = p" < oc.

Lemma 4.1.46 Let R be a local nearring with Lg™ < R*. Then Pr + Lg
15 also a local nearring.

Proof. Let N = LRUNg«(Lg+1). By Theorem (4.1.36), N is a subnearring
of R and Ly < N. Furthermore, since 1 € N, the prime ring Pg is contained
in N. Hence Pp + Lr C N. Since Lg < N and Py is a subnearring of
N, by Lemma (2.4.9) Pg + Lg is a subnearring of N with Lr < Pgr + Lg.
Let 7 = p+1 € (Pr+ Lg) — Lr. Then there exists r~! € R. Since r
is invertible, p cannot be an element of L. Hence the inverse p~' € Ppg
exists. Since Ly < R, the element rp~' — 1 = (p+ )p~' —pp~! € Lpg.
Multiplying this with 7=! from the left, it follows that p~! —7~! € L. Thus,
—r t=—pl4pt—rt e Pr+Lg, andso also r~! € P+ Lg. This means
that Pg + Lg is local.

If a (not necessarily local) nearring R is used for the construction of
triply factorized groups, only a construction subgroup U of R is considered.
Hence it suffices to consider the subnearring of R generated by U + 1. Thus,
if Lp™ < R*, for the construction of triply factorized groups using local
nearrings, it is possible to assume that R = Pg + Lg.

4.1.6 The multiplicative group R*

In this subsection the structure of the group of units of a local nearring will
be investigated. It turns out that for a finite local nearring this group can
be described as a semidirect product of Ly + 1 and the group of units of a
nearfield R/Lg. Furthermore, it will be showed that if the group of units of
a local nearring R is a torsion group, also the additive group of R is periodic.

Lemma 4.1.47 Let R be a local nearring with L < R. Then (R/Lg)* =
R*/(1+ Lg)*.

Proof. Clearly, the mapping « : (R/Lg)* — R*/(Lg + 1)* with

(Lr+r)a=(Lg+ 1)r
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is a group isomorphism.

Lemma 4.1.48 Let R be a finite local nearring. Then
R* = (Lg +1)" » (R/Lg)".

Proof. Let |R| = p", p is a prime, n € N. Moreover, let |Lg| = p™, (0 <
m < n). Then |R*| = p™ —p™ = p™(p"~™ — 1). Since p™ { p"~™ — 1, the
group Lg + 1 has a complement B in R* by the Schur- Zassenhaus Theorem
(cmp. [29], Theorem 9.1.2). But since B & R*/(Lg + 1)* = (R/Lg)*, it
follows that R* = (Lg + 1)* x (R/Lg)*.

The following result follows from ([35], Satz I11.2.8).

Lemma 4.1.49 Let R be a nearfield and D be the set of all distributive
elements of R. If the multiplicative group R* of R has an abelian subgroup

of finite index. Then the additive group of D is a subgroup of finite index in
R+

Lemma 4.1.50 Let R be a local nearring.

(a) If R" is a torsion group, then exp(R") < oo.

(b) If R contains a non-trivial element of finite additive order, R has the
Property (P).

(¢) If |IR : Lg| < oo, R has the Property (P).

(d) If R* is periodic, so is R™.

Proof. (a) By Corollary (2.1.22), exp(R") = 0*(1) < oc.

(b) Let 0 # r € R with n = 0" (r) < co. Then 0 = rn. This implies that
n € Li. Hence R has the Property (P).
(c) Consider the right cosets of Lg. Since |R : Lg| < oo, there are positive
integers n < m with Lg +n = Lg +m. Hence n — m € Lg. Thus R has the
Property (P).
(d) Let R* be periodic. Assume that exp(R") = oco. By Lemma (4.1.44), Py
is isomorphic either to Q or to @, for a prime p. Both rings Q and Q, have
non-periodic multiplicative groups, which contradicts Pj < R*.

Theorem 4.1.51 Let R be a local nearring which is not a nearfield, then
|R| < |Lg|*.

Proof. By Corollary (2.4.2), for every y € R, the annihilator Ug(y) is a right
ideal of R. Since 1 ¢ Ug(y), this yields Ur(y) < Lr. Now let 0 # | € Lp.
Define \; : R — [R by x\; = lx for all x € R. Thisis an R-endomorphism of
the regular module Rp with Ker(\,) = Ug(l). Hence Rg/Ugr(l) =g Im(\).
Since Im(/\l) g IR g LR, |R‘ = |RR‘ = |K€’I"()\l)| . \Im()\l) S |LR| . ‘LR| =
|Lr/*.
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Corollary 4.1.52 (a) Let R be a local nearring which is not a nearfield, with
|Lr| < co. Then R is finite.
(b) |R| = |Lg| if and only if R is infinite.

Proof. (a) The proof of Theorem (4.1.51) shows that L is a finite subgroup
of finite index of R*. Hence R is finite.

(b) If R is infinite, also Lg is infinite by Theorem (4.1.51). In this case,
|R| < |Lg|*> = |Lg|- On the other hand, if R is finite, |[Lg| < |R| since
1 ¢ LR-

By Malone ([18], Corollary 4) no generalized quaternion group can occur
as the additive groups of nearrings with identity. The next corollary shows
that also non-commutative dihedral groups cannot occur as additive groups
of local nearrings.

Corollary 4.1.53 Let n > 3 be an integer. Then there is no local nearring
R with R™ = Dgn.

Proof. The dihedral group Dy» has exponent 2"~! > 2. Assume that R is
a local nearring with R = Dyx. Then by Corollary (2.1.22) all elements
of additive order 2 must be contained in Lg. But Ds» is generated by two
elements of order 2, and hence Ly = R, contradicting 1 ¢ Lg.



Chapter 5

Special local nearrings

5.1 Local nearrings with dihedral group

In this section local nearrings with dihedral multiplicative group are inves-
tigated. For a detailed account of these results see [2] and [13]. The first
lemma on the structure of dihedral groups is well-known and will not be
proved.

Lemma 5.1.1 Let D be a dihedral group and N < D. Then one of the
following properties holds:

(@) |D: N| =2 and N is a dihedral group.

(b) D=N.

(¢) N is a cyclic group.

Lemma 5.1.2 ([2/, Lemma 3.10) Let R be a local nearring whose subgroup
Lg has finite index in the additive group RY of R. Then Lg is a normal
subgroup of R*.

Lemma 5.1.3 If R is a nearfield with (non-trivial) dihedral multiplicative
group, then |R| = 3 and hence R = Ty.

Proof. By Lemma (3.2.7) (a) the equation z? = 1 has only two solutions
z =1and z = —1 in R. Hence |R| < 4, which means that |R*| = 2. Thus
|R| = 3, and so R = F;.

Lemma 5.1.4 ([2], Lemma 4.2) Let R be a local nearring. If the multiplica-
tive subgroup 1+ Lg of the dihedral group R* is cyclic, then Ly is finite.

Theorem 5.1.5 Let R be a local nearring whose multiplicative group R* is
dihedral. Then R s finite.

o7
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Proof. If R* is finite, then the subgroup Lp is also finite. Hence R is finite by
(4.1.5). In particular, R™ is a p-group for some prime p by Lemma (4.1.20).
Thus to prove the theorem, it suffices to show that R* is finite.

Suppose the contrary, and let R be a counterexample whose multiplicative
group R* is infinite dihedral. Then Ly # 0 by Lemma (5.1.3) and so Lg is
infinite. Therefore 1 4+ Lp is an infinite dihedral subgroup of R* by Lemma
(5.1.4) and hence it has finite index in R*. This implies that L has finite
index in R™ and thus Lg is normal in R™ by Lemma (5.1.2).

Put N = Lgr U Ng«(1 + Lg). Then N is a local subnearring of R by
Lemma (4.1.36) and its multiplicative group N* = Ng«(1+ Lg) is also infinite
dihedral. Moreover, since 1+ Lg is normal in N*, the index of 1+ Lg in N*
is at most 2.

If 14+ Lr = N*, then the factor group N* /L is of order 2 and so 2-1 € Lp.
If 2-1 =0, then R* is a group of exponent 2 and thus abelian. But then the
subgroup Lg must be finite because the semidirect product Lg x (1 + Lg)
is a soluble group factorized by two dihedral subgroups by (4.1.8) and so is
polycyclic by ([1], Theorem 4.4.2). This contradiction shows that 2-1 # 0
and so —1 is an element of order 2 in R*. Hence Cg«(—1) = {1, —1}. Since
—1 commutes with 3 - 1, this implies 3-1 =—1 and so 4-1 = 0.

Consider an element ¢ € Lg such that 1+a is an element of infinite order
in R*. Then (1+a)"' =1+bfor some b € Ly and (—1)(1+a) = (1+b)(-1).
This gives —1 + (—1)a = —b— 1 and so (—1)a = +1 — b — 1. By symmetry,
(=1)b =1 —a — 1. Therefore (—1)(a +b) = 1 — (a + b) — 1 and hence
(-1)(1+a+b) = (1+a+b)(—1), so that either 1+a+b=1or 1+a+b = —1.

In the first case b= —a and so 1 = (1+a)(1 —a) = 1+a— (1+a)a which
implies (14+a)a = a. But then (1+a)* = 1+a+(1+a)a+(1+a)’a+(1+a)®a =
1 + 4a = 1, contrary to the choice of a. Therefore a +b = 2 -1 and,
by symmetry, b+a = 2-1 so that a +b = b+ a and 2a = 2b. Hence
a—b= —a+b. On the other hand, (—1)(a —b) = 1—b+a — 1 and so
(-D)(1+a—-b)=(1—-a+b)(-1). Thus (-1)(1+a—0)=(14+a—0b)(-1)
which implies 1 +a — b = —1. Therefore b=a+2-1 =21+ a. Show that
in this case also (1 + a)* = 1 which contradicts the choice of a.

Indeed, since 1 = (1+a)(1+b) = 1+a+(1+a)b, it follows that a = (1+a)b
andso a = (14+a)(a+2-1) = (1+a)a+2(1+a). Hence (1+a)a =2(1+a)+a
and thus (1 + )2:( +a)+(1+aa=31+a)+a=—-(1+a)+a.
Therefore (1 +a)+ (1+a)? =aandso (1+a)®> =—-(1+4+a) 4+ (1+a)a=
a+(1+a)+2(1+a)+a=a+3(1+a)+a=-1+a.

Finally,

(14+a)=—-14a)?+(1+a)a

=a+1+21+a)?+(1+a)a
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=a+14+2(—-1+a)+a)+2(14+a)+a
=a+14+a+2-14a+14+a+1
=a+3-1+14+a+1=1.

Thus 1 + Lr # N* so that 1 + Lg is the subgroup of index 2 in N*.
Therefore the factor group N*/Lg is of order 3 and so 3-1 € Lg. Hence
2-1€ R* and —1 is an element of order 2 of R* which commutes with 2 - 1.
This implies that 2 -1 = —1, and so 3-1 = 0. Therefore R" is a group
of exponent 3 and hence soluble. As above, this means that the semidirect
product Lgr x (1 4+ Lg) is a polycyclic group and hence Lp must be finite.
This final contradiction completes the proof of the theorem.

Theorem 5.1.6 Let R be a finite local nearring of odd order. If the multi-
plicative group R* of R is dihedral, then either R is isomorphic to the Galois
field B3 of order 3 or RT is an elementary abelian group of order 9.

Proof. Note first that the subgroup Lg is an ideal of R by (4.1.28). As the
factor nearring R/Lpg is a nearfield whose multiplicative group is isomorphic
to the factor group R*/(1 + Lg), which is dihedral, R/Lr = F3 by Lemma
(5.1.3). Therefore 3-1 € Li and hence R* is a 3-group by Lemma (4.1.20).
Thus 1 4+ Ly is a normal 3-subgroup of R* and so a cyclic group whose
elements are inverted by (—1). In particular, 4-1 = (—=1)(4-1)(—1) = (4-1)~*
from which it follows that 16 -1 = 1 and so 3 -1 = 0. Therefore R* is a
group of exponent 3. Next, the group Lr x (1 + Lg) is the product of two
cyclic 3-subgroups by Lemma (4.1.8), so that Lg is cyclic by ([32], Lemma
6). Hence the order of Ly is equal to 3 and so the group R" is elementary
abelian of order 9.

5.1.1 Nearrings of even order

In this subsection local nearrings of even order will be studied. In [2] it was
shown that a local nearring of even order has order at most 32, if its group
of units is dihedral. Actually, an investigation in [13] of all possible additive
groups of order 32 shows that there is no local nearring of order 32 whose
multiplicative group is dihedral. Thus ([13], 8.3.11) improves the main result
of [2].

Lemma 5.1.7 Let R be a local nearring of order 2" with dihedral multi-
plicative group. Then the factor nearring R/Lg is of order 2 and so R* =
1+ Ly is a group of order 2". Furthermore, the additive group Rt of R has
exponent at most 8.
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Proof. Since the factor nearring R/Lp, is a nearfield of even order, it cannot
be isomorphic to F3. Thus, by Lemma (5.1.3), (R/Lg)* cannot be dihedral
and hence must be trivial. This means that R/Lr = F, and so |R: Lg| = 2.

Let 2' be the exponent of RT. Then Pr = Z/2'Z by (3.3.4). Hence
Pr* =2 Cy x Cy-2 is an abelian subgroup of R*. This means that |Pr"| < 4,
which is equivalent to |Pr| < 8. Thus exp(R") < 8.

Lemma 5.1.8 ([2/, Lemma 5.4) Let R be a local nearring of even order with
dihedral multiplicative group such that R* operates faithfully on Lg™. Then
the following two statements hold:
(1) Lg is either a group of order 4 or a non-cyclic abelian group of order 8.
(2) R* is either a cyclic group of order 8 or a group with exponent at most
4.

In particular, |R| < 16.

Corollary 5.1.9 Let R be a local nearring of even order with dihedral multi-
plicative group such that R* operates faithfully on Lg™. Then exp(R") < 4.

Proof. By Lemma (5.1.8) R" is either a cyclic group of order 8 or a group
of exponent at most 4. But if R* is isomorphic to Cg, then R & Zg/8Z by
Lemma (3.3.4). This is impossible since in this local nearring the operation
of Lr + 1 on Lg is not faithful (it is not difficult to see that

Stabg~ (LR) =< =-3>"
in this case).

Theorem 5.1.10 (/2/, Theorem 5.7) Let R be a local nearring of 2" with
n > 1, and let R* be dihedral. Then 2 < n < 5 and Lg"* is either an
abelian group or a group of order 16 whose derived subgroup has order 2. In
particular, Lr has an abelian subgroup of index 2.

The following result plays an important role in the investigation of local
nearrings having a dihedral multiplicative group. In [13], it is proved that
there does not exist any local nearrings having a dihedral multiplicative group
of order 32. For this study, all the groups of order 32 are considered, most
of all cannot occur as R*, since for example their exponent is larger than 8.

Theorem 5.1.11 ([13], Theorem 8.3.11) There is no local nearring of order
32 whose multiplicative group s dihedral.

Corollary 5.1.12 ([13], Corollary 8.5.12) If R is a local nearring with di-
hedral group of units of even order, then |R| < 16.
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In the following the structure of finite triply factorized 2-groups G' =
AB = AM = BM with dihedral subgroups A and B is determined.

The following result is useful for the proof of Lemma (5.1.14) and it is
due to King see [16].

Lemma 5.1.13 The centre of every non-abelian normal subgroup of a p-
group H which is contained in ¢(H) cannot be cyclic.

Lemma 5.1.14 (/2], Lemma 5.6) Let H be a 2-group of the form H = AK =
BK = AB with two dihedral subgroups A and B and a normal subgroup K
such that ANB =ANK = BN K = 1. Then the following statements hold:

(1) the Frattini subgroups ¢(A) and ¢(B) are permutable, so that their
product F = ¢(A)p(B) is a subgroup of H;

(2) ¢(F) = ¢(A)?¢(B)? is a normal subgroup of H;

(3) the intersection F'N K is a cyclic subgroup of index at most 4 in K
except in the case in which K is of order 16 and F'N K is elementary abelian
of order 4.

5.2 Local nearrings with quaternion group

In this section local nearrings with generalized quaternion multiplicative
group will be considered. For a detailed account of this topic see [33]. It
turns out that the structure of such nearrings can be completely described.
The term “generalized quaternion group” can here be interpreted as either a
finite generalized quaternion group

Qo ={a,b| ™ =b*=1,a>""" = (ab)? = b*}

with n > 3 or, up to isomorphism, a unique infinite locally quaternion group
(Do~ in which every finite subset is contained in a subgroup isomorphic to
Qon for some n > 3.

5.2.1 Some triply factorized groups

In this subsection triply factorized groups of the form G = AB = AK = BK
with subgroups A and B and a normal subgroup K such that AN K =
BN K =1 will be considered.
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The first lemma of this subsection describes the periodic groups where
the subgroups A and B have quasicyclic 2-subgroups of finite index.

Recall that an infinite periodic group is quasicyclic if it is abelian and
all its proper subgroups are cyclic. It is precisely an infinite locally cyclic
p-group for some prime p and so it has only one cyclic subgroup of order p"
for each positive integer n.

A group is Chernikov if it has a normal subgroup of finite index which is a
direct product of finitely many quasicyclic subgroups. For a detailed account

of the results concerning Chernikov groups and their finiteness conditions see
the book [29].

Lemma 5.2.1 Let G be a periodic group of the form G = AB = AK = BK
with two subgroups A and B each of which has a quasicyclic 2-subgroup of
finite index and a normal subgroup K such that ANK = BNK =1. Then
the subgroup K is either finite or quasicyclic-by-finite.

Proof. Since the subgroups A and B satisfy the minimal condition on sub-
groups, the group G satisfies the minimal condition on normal subgroups by
([1], Lemma 1.2.6) and thus its hypercentre Z,,(G) is a Chernikov subgroup
by a result of Baer (see for instance [29, Theorem 5.22]). Moreover, if G is
a soluble-by-finite group, then G itself is Chernikov by ([1], Corollary 3.2.8).
Hence, if Ay and By are quasicyclic subgroups of A and B, respectively,
then the subgroup H = (A, By) is abelian of finite index in G and clearly
H = AyBy = (HN K)Ay = (H N K)By. Therefore the subgroup H N K and
so K is either finite or quasicyclic-by-finite, as desired. Show now that the
group G must really be soluble-by-finite.

Suppose the contrary and choose a counterexample G such that the index
of the quasicyclic subgroup Ay in A is minimal. Since the hypercentre of G is
Chernikov by proved above, it does not contain the subgroup K, so that the
intersection Ky = K N Z,(G) is a normal subgroup of G properly contained
in K. Therefore the intersection AygKy N ByKj is also a normal subgroup
of G' because it is normal in AK, and BK, simultaneously. Thus, passing
to the factor group G/(AgKy N ByKy), we may assume that K N Zo(G) =
Ao N By = 1. Indeed, if z € K and [z,G] < AgKy N ByKy, then [z,G] <
(AoKo N BoKy) N K = Ky < Zy(G) and hence z € K,. Note also that
A # Ay and so B # By because otherwise the group G is abelian by ([1]
Theorem 7.4.4).

As Ay has only one involution a, it belongs to the centre of A and so
the centralizer Ck(a) is an A-invariant subgroup of K. Therefore the inter-
sections B; = ACk(a) N B and A; = AN B;Ck(a) are subgroups such that
A1B; = Ck(a)A; = Ck(a)By by [1, Lemma 1.1.4]. If Ck(a) is finite, then the
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subgroup K and so G is soluble-by-finite by a result of Shunkov [34], contrary
to the assumption. Thus the centralizer Cx(a) and hence the subgroups A,
and B; are infinite. Hence Ay < A; and By < By, so that either the index
of Ay in A; is less than that of Ay in A or A; = A and so B; = B. However
in the first case the subgroup A;B; = Ck(a)A; = Ck(a)Bj is soluble-by-
finite by the choice of G and thus Ck(a) is a quasicyclic-by-finite subgroup
by proved above. Since the index of Ck(a) in K is finite because it is equal
to the index of A; in A, the subgroup K is quasicyclic-by-finite and so the
group G is Chernikov, contrary to the assumption. Therefore Ck(a) = K
and, by the same arguments, Cx(b) = K for the unique involution b € By.
Hence the subgroup (a,b) is central in G and has a non-trivial intersection
with K because AN K = BN K = AyN By = 1. On the other hand, by
assumption K NZ(G) = 1, and this final contradiction completes the proof.

Repeating the arguments of the proof of the Lemma (5.1.14), it can be
shown that statements 1) - 3) hold also for triply factorized 2-groups

with generalized quaternion subgroups A and B. For the purpose of this
section, it suffices to consider the case when the subgroup K is elementary
abelian.

Lemma 5.2.2 Let H be a 2-group of the form H = AK = BK = AB with
two generalized quaternion subgroups A and B and an elementary abelian
normal subgroup K such that ANB=ANK =BNK =1. Then the order
of K 1s either 8 or 16.

Proof. Let F' =< ®(A),®(B) > be the subgroup of H generated by the
Frattini subgroups ®(A) and ®(B). Show that in fact F = ®(A)®(B). As
the Frattini subgroup ®(H) contains F' and it is contained in the subgroup
®(A)K = ®(B)K, it follows that

() O(H) = ®(A)(®(H) N K) = ®(B)(®(H) N K).

Clearly the index [K : ®(H) N K] is either 2 or 4 because [A: ®(A)] = [B :
®(B)] = 4. In particular, if A and B are of order 8, then ®(H) has order at
most 8 and therefore the subgroup ®(H) must be abelian by King’s result
[16] cited above. Hence in this case F' = ®(A)®(B).

Suppose now that A and B are subgroups of order at least 16. Since ele-
mentary abelian groups of order 2" with n > 4 have no automorphisms of or-
der 2”71 the centralizers C'4(K) and Cp(K) are both non-trivial and so they
contain the centers Z(A) and Z(B), respectively. Therefore Z(A)Z(B) is a
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central subgroup of H contained in F. Clearly the factor group H/(Z(A)Z(B))
satisfies the hypothesis of Lemma (5.1.14) because the factor groups A/Z(A)
and B/Z(B) are dihedral. Hence F/(Z(A)Z(B)) = (®(A)®(B))/(Z(A)Z(B))
and thus F' = ®(A)®(B).

It follows from (*) that F' = ®(A)®(B) = ®(A)(FNK) = ®(B)(FNK), so
that the index |K : FN K| is equal to 4 because |A : ®(A)| = |B : ®(B)| = 4.
On the other hand, since the Frattini subgroups ®(A4) and ®(B) are cyclic,
the order of F'N K does not exceed 4 by [32, Lemma 6]. As K is of order at
least 16, this means that the order of F' N K must be equal to 4, so that K
is of order 16.

It is clear that every locally cyclic p-group is either finite or quasicyclic.
Furthermore, it follows from Lemma (4.1.7) that a local nearring is finite if
and only if its multiplicative group is finite.

Theorem 5.2.3 Let R be a local nearring whose multiplicative group R* has
a locally cyclic 2-subgroup of finite index. Then R is finite.

Proof. Suppose the contrary and let R be a counterexample in which Lg
is the subgroup of all non-invertible elements of R. Then R* contains a
quasicyclic 2-subgroup C' of finite index and 1 + Lg is a subgroup of R*
by Lemma (4.1.7). Moreover, it follows that either Lr = 0 and so R is a
nearfield or Ly is infinite and so the subgroup 1+ Lg contains C'.

Assume first that R is an infinite nearfield and let D denote the set
of all distributive elements of R. Then D is a division subring of R by
Lemma (3.2.6) and thus the multiplicative group D* of D is a subgroup of
R*. The subring D cannot be finite because otherwise R must also be finite
by Lemma (4.1.49) which is not the case. Thus D* is infinite and so C' must
be contained in D*. Therefore there exists a maximal abelian subgroup P of
D* containing C, so that P has finite index in R*. Clearly the set P U {0}
forms a maximal subfield F' of D and for every element a € R the set aF' is a
subgroup of the additive group R™ of R. Since R* is a union of finitely many
left cosets of P in R*, there exist elements a; = 1, as, ..., a, of R* such that
R*=PUayPU...a,P. Then Rt = FUaF U---Ua,F and hence some
of the subgroups a;F,1 < 7 < n must have finite index in R* by a result of
B. Neumann (see for instance ([1], Lemma 1.2.4). But then every subgroup
a;F' is of finite index in R, so that for all 4 # j the intersection a,F' N a;F
is a subgroup of finite index in R*. On the other hand, this intersection
coincides with {0} because a;P N a;P = () and this implies that R is finite,
contrary to the assumption.

Now let the subgroup Lg be infinite. Then the quasicyclic 2-subgroup C
of finite index in R* must be contained in 1 + Lg. If G = Lr x (14 Lg) is a
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semidirect product in which 1+ Ly acts on Ly by left multiplication, then
G has two subgroups A and B isomorphic to 1 + Lg such that

G:AB:LRX]A:LRNB

by Lemma (4.1.8). But then, on the one hand, the group R™ and so its
subgroup Lg is a p-group of finite exponent for some prime p by Lemma
(4.1.50) and, on the other hand, the group G is periodic and hence its nor-
mal subgroup Lg is quasicyclic-by-finite by Lemma (5.2.1). This is a final
contradiction which completes the proof.

Recall that an abelian p-group is said to be of type (p™,...,p") with
positive integers ni, ..., n; if it is the direct product of k cyclic groups of
orders p™, ..., p"*, respectively.

From here and up to the end of this section R will be a finite local nearring
with identity 1 whose multiplicative group R* is generalized quaternion and
Lp will denote the subgroup of all non-invertible elements of R.

Theorem 5.2.4 Let R be a local nearring whose multiplicative group R* is
generalized quaternion. Then the following statements hold.

1) The group R* is either quaternion of order 8 or generalized quaternion
of order 16.

2) The additive group R* of R is abelian of one of types (3,3), (2,2,2,2),
(2,2,4), (2,2,2,2,2) and (2,2,2,4).

3) The subgroup Ly of all non-invertible elements of R is trivial if RT is
of type (3,3) and it is elementary abelian of index 2 in Rt otherwise.

Conversely, for each abelian group of type listed in statement 2) there erists
at least one R with additive group R* of this structure whose multiplicative
group R* is generalized quaternion.

Note that, up to isomorphism, there exists only one local nearring of order
9 with quaternion multiplicative group, namely non-commutative Dickson
nearfield coupled to the Galois field of order 9 (see [35], Chapter IV, Part
1). Using some calculations made by means of a GAP-program based on
the package “SONATA, version 2.3” of computer algebra system GAP 4.4, it
can be shown that the number of non-isomorphic local nearrings R of order
16 with quaternion group R* is divided in two halves: there exist 24 such
nearrings with R* of type (2,2,2,2) and as many with Rt of type (2,2,4).
Two appropriate examples of these nearrings as well as that of such local
nearrings of order 32 are given in the last section.
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Proof. The proof is divided into several lemmas. Consider, first, the case
when R is a nearfield. It turns out that, up to isomorphism, there exists only
one nearfield with generalized quaternion multiplicative group.

Lemma 5.2.5 If R is a nearfield, then its order is equal to 9 and so R* is
a quaternion group of order 8.

Proof. As R* is a p-group of order p" for some prime p and an integer
n > 2 by Lemma (4.1.20), it holds p™ = 29 + 1. A result of Zsigmondy (see
for instance ([14], Theorem IX.8.3) shows now that this is possible only if
p =3 and n = 2, so that R is of order 9.

Lemma 5.2.6 If the additive group Rt of R is a 2-group, then its exponent
does not exceed 4.

Proof. Indeed, as the exponent of R* is finite by Lemma (4.1.50), it is equal
to 2! for some positive integer I. Therefore the subnearring Py of R generated
by 1 is isomorphic to the residue ring Z/2'Z by Lemma (3.3.4) and hence its
multiplicative group Pr* is abelian of type (2,2°2) for [ > 2. On the other
hand, Pgr" is contained in R*, so that it must be cyclic because so are the
finite abelian subgroups of a generalized quaternion group. Thus [ < 2, as
desired.

Lemma 5.2.7 Let R be a local nearring whose multiplicative group is gen-
eralized quaternion group, then either R is a nearfield or R* is a 2-group,
R* =1+ Ly and Ly is a subgroup of index 2 in R™.

Proof. As R* is a group of order 29 for some integer ¢ > 3 and 1 + Lg is
a subgroup of R*, the order of 1 4+ L is equal to 2° with 0 < s < ¢. This
means that Lg is of order 2° and hence either R is a nearfield or Lgr # {0}
and so s > 1. Since R' is a p-group for some prime p by Lemma (4.1.45)
and Lemma (4.1.50), in the second case p = 2 and so R* is of order 2" for
some n > ¢q. Taking into account that R = Lz U R*, the following equality
holds: 2" = 2% 4 27 = 2%(1 4 27°%) which implies that ¢ = s and n = ¢ + 1.
Thus R* = 1+ Ly and the subgroup Lg is of index 2 in R, as desired.

Lemma 5.2.8 Let the multiplicative group R* act on the additive group R*
by left multiplication and let G = RT x R* be the semidirect product of R*
by R*. Then the subgroup Lg is normal in G and contained in the Frattini
subgroup ®(G) of G.
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Proof. Clearly without loss of generality we may assume that L # 0, so
that it follows from Lemma (5.2.7) that R" is a finite 2-group. Therefore G
is also such a group generated by its subgroup R* and the element 1 of R*.
As R* is generated by two elements, the group G is 3-generated and so the
factor group G/®(G) is of order 8.

On the other hand, since Ly has index 2 in R* and R* = 1+ Ly by
Lemma (5.2.7), the subgroup Lg is normal in G and the factor group G/Lg
is the direct product of the cyclic group R™/Lg of order 2 and a generalized
quaternion group isomorphic to R*. Thus, if ®(R*) is the Frattini subgroup
of R*, then the subgroup H = Lg x ®(R*) of G is also normal in G and the
factor group G/ H is elementary abelian of order 8. Therefore ®(G) = H and
so Lg is contained in ®(G), as desired.

Corollary 5.2.9 If the subgroup Lg is non-abelian, then the center of Ly is
non-cyclic.

Proof. Indeed, the group R™ is a 2-group by Lemma (5.2.7) and so the
semidirect product G = Rt x R* is a 2-group in which Ly is a normal
subgroup contained in its Frattini subgroup ®(G) by Lemma (5.2.8).

Lemma 5.2.10 The additive group Rt of R is abelian and the subgroup Ly
1s elementary abelian.

Proof. It follows from Lemma (5.2.5) that only the case Ly # 0 is necessary
to consider. Then R™ is a 2-group, R* = 1+ Ly and Ly is a subgroup of
index 2 in R* by Lemma (5.2.7). In particular, the order of Ly is equal to
27 for some integer ¢ > 3 and the group R* acts on Lg by left multiplication.
Show first that this action cannot be faithful, i.e. the representation of R*
by automorphisms of Lz has a non-trivial kernel.

Indeed, otherwise Lz has an automorphism of order 29! and therefore
is either a non-cyclic abelian group of order 8 or a dihedral or generalized
quaternion group by the result of Berkovich [5]. But if Lg is dihedral or
generalized quaternion, then its center Z(Lg) is cyclic, contrary to Corollary
(5.2.9). Hence ¢ = 3 and the subgroup Lg is abelian of types (2,2,2) or
(2,4). Since in both cases the automorphism group of Lg is dihedral of order
8, they are also excluded. Thus the kernel of the representation of R* by
automorphisms of Lg is non-trivial and so it contains the center Z(R*) of
R*.

Assume next that the additive group R™ is not elementary abelian. Then
R™ is a group of exponent 4 by Lemma (5.2.6), so that —1 # 1. As (-1)? =1
and so (—1) = Z(R*), it follows that (—1)a = a for every a € Lg. Further-
more, (—1)(14+a) = (14+a)(—1) and hence —1+ (—1)a = —a — 1. Therefore
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—a=—1+a+1forevery a € Lg. Thus, ifb € Ly, then —b = —1+b+1 and
—(a+b) = —1+a+b+1. As —(a+b) = —b—a = (—1+b+1)+(—1+a+1) =
—1+ b+ a+ 1, this implies a + b = b + a for any a,b € L and so Lp is
abelian. Show that in fact Ly is an elementary abelian subgroup.

Suppose the contrary and let M = {a-2 | a € Lg}. Then 1+ M is a non-
trivial subgroup of R*. Indeed, as Lg is abelian, for every a,b € Lg it follows
that (14+a-2)(1+b-2) = 1+a-2+(1+a-2)b-2 = 1+a+(1+a-2)b+a+(1+a-2)b =
1+ (a+(14+a-2)b)-2€ 1+ M. Therefore —1 € 1+ M because (—1) is the
only subgroup of order 2 in R*. Hence 2 = a - 2 for some a € Li. On the
other hand, multiplying the equality —a = —1 4+ a + 1 from the left on a, we
have —a? = —a + a? + a = a?, so that a® -2 = a%? + a? = 0. This implies that
2=oa-2=a®-2=0, contrary to the assumption.

Thus the subgroup Lp is elementary abelian and so 1 +a = a + 1 for
every a € Lg. Since R™ is generated by Lz and the element 1, this means
that the group R™ is abelian, as desired. Il

Lemma 5.2.11 If the local nearring R is of order 291 with ¢ > 2, then its
additive group R™ is abelian, the subgroup Lg is elementary abelian of index
2 in R and either ¢ = 3 or q = 4.

Proof. It follows from Lemma (5.2.7) and Lemma (5.2.10) that R* = 1+ Lg,
the group R™ is abelian and the subgroup L is elementary abelian of index
2 in R*. Furthermore, the semidirect product G = L X 1 + Lg in which
1+ Lg acts on Lg by left multiplication is a group of the form G = AB =
Lr x A = Li x B whose subgroups A and B are isomorphic to 1 + Lg by
Lemma (4.1.8). Therefore the order of Lg is equal to 8 or 16 by Lemma
(5.2.2) and so ¢ = 3 or ¢ = 4.

As a conclusion, statements (1) - (3) of Theorem (5.2.4) are an immediate
consequence of Lemma (5.2.5) and Lemma (5.2.11). Finally, the examples
given below in the last section show that every abelian group satisfying state-
ment (2) of the Theorem (5.2.4) is really the additive group of a local nearring
with generalized quaternion multiplicative group.

5.2.2 Examples

Recall first the example of the non-commutative Dickson nearfield coupled
to the Galois field Fy of order 9.

Example 1. Define on the field Fy = F(+,-) a new operation * as
follows: for all a,b € F put

eh ab if a*=1, and
GFO= ap? otherwise.



5.2. LOCAL NEARRINGS WITH QUATERNION GROUP 69

Then a simple calculation shows that R = F'(+, *) is a nearfield with quater-
nion multiplicative group.

The following two examples of local nearrings of order 16 were chosen by
means of a GAP-program based on the package “SONATA, version 2.3” and
now they can manually be verified.

Example 2. Let R be the nearring with identity 1 whose additive group
R is abelian of type (2,2, 2, 2) with generators 1, 1,79, r3 and the semigroup
(R, -) satisfies the relations:

A+r)ry =, (1+r)ry = 1,
(1+ry)rs = 11479, (1+r3)rs = 1o
(1+ry)rs = 11+73, (1+rg)rs = r1+7s,
T3 =12 ry and ri=rr; = 0

forall #j 1<i4,5<3.

Then it is easy to see that the subgroup L of RT generated by the elements
1,T9,73 consists of non-invertible elements of R. Furthermore (1 + 7"2)2 =
1+re+ (L+r)re =1+7ry+7 +7y =1+ 7 and similarly (1 + 73)* =
147 Next, 1+7)>=14+r+ 1 +m)?ry=14+r+(1+7r)r; =1 and
(1 +’f’2)(1+7‘3)(1+7‘2) = (1 +T‘2)(1+T’3+’I‘2) = 1+T’3. Thus, 1fa = 1+T2 and
b= 1473, thena* =1, a> =b? and b='ab = a~!. Therefore the multiplicative
subgroup of R* generated by the elements a, b is quaternion of order 8 and so
must coincide with R* because L N R* = () and L has the same order. Hence
R* is the quaternion group and R = LU R* is a local nearring with Ly = L.

Example 3. Let R be the nearring with identity 1 whose additive group
R* is abelian of type (2,2,4) with generators r1,73,1 and the semigroup
(R, -) satisfies the relations:

(1+T1)T1 = 2+T’1, (1+’/’2)T‘1 = T,

(1+T‘1)’f’2 = 2+T’2, (1+7’2)T‘2 = 2+7’2,
1Ty = 0, 2 =r2=ror; = 2,

(ri+ry)r1 = 0, (r1 + 1ro)re = 2,
2'7”1 = 2'7’2 = 0.

Then the subgroup L of RT generated by the elements r, 75, 2 consists of the
non-invertible elements of R and the multiplicative group R* is quaternion
of order 8 because it is generated by the elements a =1+ 7, and b=1+1r,
which satisfy the relations a? = > = —1 and b 'ab=a *. Thus R= LU R*
is a local nearring with Ly = L.

The final two examples of local nearrings of order 32 arose from studying
generalized quaternion groups of automorphisms of the abelian groups of type



70 CHAPTER 5. SPECIAL LOCAL NEARRINGS

(2,2,2,2,2) and (2,2,2,4). Most calculations were also made with computer
algebra system GAP 4.4.

Example 4. Let R be the nearring with identity 1 whose additive group
R* is abelian of type (2,2,2,2,2) with generators 1,7, 79,73, 74 and whose
semigroup (R, -) satisfies the relations:

(1+’I"1)7‘1 = T1+7’2+T3+7’4, (1+7‘2)7”1 = 7"1+7'2+7‘3,
(I+r)rs = ra+rs, (L+7ro)re = ro+T74,
(1+7)r3 = T3+ Ty, (1 +ry)rs = r3+14,
(14 71)ry = T4, (1+mr)ry = 74 and

(7‘,' +r;+ Tk)T'l (T'Z' +r;+re+ Tl)rm = for all

—_
IA I

1,7, k,l,m <A4.

Clearly the subgroup L of Rt generated by the elements 71, 79, 73, 74 is the
set of all non-invertible elements of R and a rudimentary verification shows
that the multiplicative group R* is generated by the elements ¢ = 1+, and
b = 1 + ry satisfying the relations a® = * = 1, a* = b? and b tab = a 1.
Thus the group R* is generalized quaternion of order 16 and R = L U R*, so
that R is a local nearring with Ly = L.

Example 5. Let R be the nearring with identity 1 whose additive group
R* is abelian of type (2,2,2,4) with generators ry,re,73 and 1, with 1 of
order 4 and let the semigroup (R, -) satisfies the relations:

AI+r)r = 2471 +713, (14 r9)r; = 247,
(L+r)rs = rotrs, (1+79)ry = 2+,
(I+7r)rs = r+ro+rs, (14 ro)r3 = 2471 +r2+73
and (ri+rj)rk = (’f’i+7“j+7“k)’l‘l =
(2+7“i+7“j)7“k = (2+7’i+7“j+7‘k)7“l =0
for all 1<4,7,k,1 < 3.

Clearly the subgroup L of RT generated by the elements 71, 75,73, 2 coin-
cides with the set of all non-invertible elements of R and it is easily verified
that the multiplicative group R* is generated by the elements a = 1+ r; and
b = 1 + ry satisfying the relations a® = b* = 1, a* = b? and b~lab = o'
Therefore the group R* is generalized quaternion of order 16 and hence
R = LU R*, so that R is a local nearring with Lr = L, as desired.
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