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1 BACKGROUND 

The growing availability of 'sequence data' combined with the 'high throughput' 

technologies makes bioinformatics essential in supporting the analysis of the structure 

and the function of biological molecules. To this end, bioinformatics plays a key role 

for data-mining and it has broad applications in the molecular characterization of an 

organism's gene and protein space (i.e. genomics and proteomics); in the genome-wide 

study of mRNA expression (transcriptomics); in the systematic study of the chemical 

fingerprints that specific cellular processes leave behind (metabolomics); in drug 

discovery; in the identification of biomarkers as biological indicators of disease, toxicity 

of pathogens or effectiveness of healing. The real bioinformatics challenge is the design 

of computational methods which should be suitable as to reveal the information that 

biological data still hide as to integrate the large amount of '-omics' data, in the attempt 

to approach a systems biology view. The long term goal is the creation of models for the 

simulation of biological systems’ behaviour and their exploitation into biotechnology, 

plant and agricultural science applications. This work encompasses the design of 

methods and the implementation of algorithmic tools to facilitate the collection, the 

organization and the analysis of large amounts of plant ‘sequence data’ in the mold of 

Expressed Sequence Tags. 

1.1  Expressed Sequence Tags (ESTs) 

1.1.1 What is an EST? 

Messenger RNA (mRNA) sequences represent expressed genes in the cell. The “reverse 

transcription” mechanism allows the genetic information contained in the mRNA to be 

converted into a double-stranded DNA form (i.e. complementary DNA or cDNA). The 

resultant cDNA can be inserted into an appropriated plasmid (cloning) so as to produce 

a cDNA clone. The collection of cDNA clones, isolated from an organism or a specific 

tissue, represents a cDNA library. All the cDNA clones in a library, can be sequenced 

using a large-scale approach. This means that they are randomly sequenced on a single 

strand yielding 5' and 3' Expressed Sequence Tags (ESTs). 

A single sequencing read produces from 100 to 800 readable nucleotides. Thus, an EST 

provides a “tag level” association with an expressed gene sequence. 

cDNA cloning and EST sequencing are schematically summarized in figure 1. 
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Figure 1. Summary of cDNA cloning and EST sequencing. 

A cDNA population is reverse transcribed from the mRNA population. The 3' poly-A tail is 

used as a selective tag for mRNA selection. cDNA sequences are inserted into a cloning vector 

or plasmide. Then using ad hoc primers, the DNA sequence is read from the ends of the cDNA, 

yielding 5' and 3' ESTs. 

 

1.1.2 EST data quality 

EST data quality is highly variable and depends on the sequencing approach (e.g. 

partial, single-pass sequencing) and on the cDNA library construction (e.g. 

concatenated adaptors/linkers, chimeric genes or inversely inserted cDNAs). However, 

it is generally accepted that ESTs are highly error prone sequences, especially at the 

ends where base-calling and/or base-stuttering (repeated bases) errors are frequently 

observed. On the other hand the overall sequence quality is significantly better in the 

middle. Furthermore there can be possible contaminations, either at the end or rarely in 

the middle, from vector or linker/adaptor. 
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1.1.3 Improving EST data 

ESTs represent the first truly high-throughput technology to have populated the 

biological databases and have made the rapid growth of advanced computational studies 

in biology inevitable. 

Expressed Sequence Tags are generated and deposited in the public repository as 

redundant and un-annotated sequences, with negligible biological information content. 

The weak signal associated to an individual raw EST increases when a lot of ESTs are 

analysed together, so as to provide a snapshot of the transcriptome of a species. 

Different strategies, which use different combinations of computational tools, have been 

developed for the analysis of large data-sets of ESTs (http://biolinfo.org/EST/). These 

strategies are originated from the need of making the analysis, the organization and the 

storage of EST data automatic. 

A generic EST analysis pipeline should schedule the following steps: 

1. raw EST sequences are screened for the identification and the removal of vector 

sequences. Then, repeats and low complexity sub-sequences are detected and 

masked; 

2. the high quality EST data-set is then subjected to a clustering/assembling 

procedure in order to group overlapping ESTs (putatively derived from the same 

gene) and to generate consensus sequences which putatively represent the 

transcripts. This step permits hopefully the full-length transcript sequences to be 

reconstructed - by gathering information from several short EST sequences 

simultaneously - and the redundancy of the EST collection to be reduced; 

3. DNA and/or protein database similarity searches are carried out to assign a 

putative function. The value of the functional annotations can be enhanced by 

performing protein domain and motif analysis as well as by including gene 

ontology assignments. 

A detailed list of the main key tools used to accomplish the different tasks of the EST 

analysis is reported in table 1 while the available EST analysis pipelines are listed in 

table 2. 
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Name Website Description Category
*

Phred/Cross_Match http://www.phrap.org/ Base caller/vector trimming and removal F

SeqClean http://compbio.dfci.harvard.edu/tgi/software/ trimming and validation of ESTs F

VecScreen http://www.ncbi.nlm.nih.gov/VecScreen/VecScreen.html Vector, linker and adapter identification F

Vector cleaning http://www.aborygen.com/products/biOpen/tools-for-biOpen/vector-cleaning.php Vector cleaning C

Paracel http://www.paracel.com/ EST pre-processing package C, W

Lucy2 http://www.complex.iastate.edu/download/Lucy2/index.html Sequence trimming and visualization F

Dust ftp://ftp.ncbi.nih.gov/blast/ Low-complexity regions masked F

MaskerAid http://blast.wustl.edu/maskeraid/ Repeats masked F

RepeatMasker http://www.repeatmasker.org/ Repeats masked F

blastclust ftp://ftp.ncbi.nih.gov/blast/ is part of the standalone BLAST package F

megaBLAST ftp://ftp.ncbi.nih.gov/blast/ is part of the standalone BLAST package F, W

THC_BUILB http://compbio.dfci.harvard.edu/tgi/software/ is part of the TGICL package F

d2_cluster http://www.sanbi.ac.za/Dbases.html#stackpack is part of the stackPACK system F

ESTate package http://www.ebi.ac.uk/~guy/estate/ F

CLOBB http://xyala.cap.ed.ac.uk/CLOBB/ F

PaCE The source code and executables can be obtained by email F

CAP3 http://genome.cs.mtu.edu/cap/cap3.html F, W

TIGR_ASSEMBLER http://www.tigr.org/software/assembler/ F

Phrap http://www.phrap.org/ F

essem http://alggen.lsi.upc.es/recerca/essem/frame-essem.html F

miraEST http://www.chevreux.org/projects_mira.html F

Paracel Transcript Assembler http://www.paracel.com/ C, W

Programs for EST pre-processing

Programs for EST sequence assembly and consensus generation

Programs for EST clustering

 

Table 1. Programs used to accomplish the different tasks of the EST analysis (Modified from 
Nagaraj et al., 2006). *F= free for academic users; C= commercial package; W= web interface available. 

 

Pipeline Name Pre-processing Clustering & Assembling ORF prediction and  EST functional annotation

TGICL SeqClean & megaBLAST CAP3 Paracel TranscriptAssembler DIANA-EST, ESTscan & Framefinder

ESTAP Phred & Cross_Match D2_cluster & CAP3 BLASTX

ESTIMA Information not available BlastClust & CAP3 BLASTX

ESTAnnotator Phred  & RepMask & UniVec CAP3 BLASTX

PipeOnline Phred & Cross_Match Phrap BLASTX

openSputnik Cross_Match HPT2( Biomax informatics ) & CAP3 ESTscan & BLASTX

EST analysis pipeline

 

Table 2. Characteristics of the available EST analysis pipelines (Modified from Nagaraj et al., 

2006). 

1.1.4 EST resources 

In 1993, a database called dbEST (Boguski et al. 1993) was established to serve as a 

collection point for ESTs. Since then they are distributed to the scientific community as 

the EST division of GenBank. This database represents the primary data source from 

which the EST sequences are recovered to be processed. 

The quality limitations, the issues of redundancy as well as the less-than-full-length 

nature of ESTs, are the motivations of the development of automated analytical systems 

for the reconstruction and organization of expressed gene sequences. 

Many public EST resources have been developed in the attempt to address these 

questions. The most widely known effort is UniGene (Pontius et al., 2003). It is a 

system for automatically partitioning GenBank sequences into a non-redundant set of 

gene-oriented clusters. Each UniGene cluster contains sequences that represent a unique 

gene. It should be noted that no assembly is available in UniGene, but only the longest 

sequence in each cluster is indicated. 

The TIGR Gene Index Project (Lee et al. 2005) aims to integrate data from international 

EST sequencing projects, in order to produce species-specific sets of unique and high-
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fidelity virtual transcripts which are called TCs from tentative consensus sequences. 

Each set is an inventory of likely genes for which additional information, concerning 

their functional roles, are provided. 

The PlantGDB Project (Dong et al., 2005b) intends to gather information concerning all 

the major plant species from every GenBank release, providing an estimation of plant 

gene space. The PlantGDB-assembled Unique Transcripts (PUT) are an important 

resource for the plant research community. 

The STACK Project (Christoffels et al., 2001) is comprised for the STACKdb
TM

, a 

resource of virtual human transcripts, as well as stackPACK
TM

, the tools to create the 

catalogue of the transcripts. The system organizes the ESTs into tissue/state context, 

then each tissue-grouped set is sent through a pipeline of clustering, assembling and 

consensus generation. STACK differs from other gene indexing projects because of the 

tissue-based and/or disease-related segmentation of the virtual human transcripts. In 

addition, the non-alignment-based clustering tool d2_cluster (Burke et al., 1999) is 

focused on the comprehensive capturing of transcript variants. 

1.1.5 Application of EST data 

Though intrinsic shortcomings due to contaminations and limited sequence quality, 

ESTs are a versatile data source and have multiple applications. In the absence of 

complete genome sequences, the cDNA (and its ESTs) remains the only link back to the 

genome (Richmond and Somerville, 2003). 

EST sequences can be used as landmarks in the construction of physical genome maps. 

An EST sequence can be used as STS (i.e. Sequence-Tagged Site) assuming that it is 

operationally unique and has single occurrence in a genome. 

Expressed sequence tags are widely used for gene location discovery and for gene 

structure prediction. Gene predictions are usually based on spliced-alignment of source-

native ESTs onto the genomic sequences (Adams et al., 1991; Kan et al. 2001; Brendel 

et al., 2004). 

A particular exciting aspect is the use of EST data aimed to investigate different types 

of mRNA transcription variants such as those due to alternative splicing, initiation, 

polyadenylation and intron retention. From a mixture of EST fragments, the most likely 

set of full-length isoforms can be reconstructed (Gautheret et al., 1998; Brett et al., 

2000; Gupta et al., 2004; Galante et al., 2004). 
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The usefulness of EST data has been extended to the discovery and the characterization 

of the most common type of DNA sequence variation, the single nucleotide 

polymorphisms (SNPs). Considering that the majority of the EST libraries are obtained 

from different individuals, the assembly of overlapping sequences for the same region 

can lead to the identification of new SNPs (Picoult-Newberg et al., 1999). 

A further relevant application of EST data is the study of gene expression. Digital gene 

expression profiles (i.e. digital Northern) can be successfully exploited to point out the 

expression levels of different genes. The strategy is based on the fact that the number of 

ESTs is reported to be proportional to the abundance of cognate transcripts in the tissue 

or cell type used to make the cDNA library (Audic and Claverie, 1997). 

Large scale computer analyses of EST sequences can be used in the identification and in 

the analysis of co-expressed genes (Ewing et al., 1999; Wu et al., 2005; Faccioli et al., 

2005). It is important to find genes with similar expression patterns (co-expressed 

genes) because there is evidence that many functionally related genes are co-expressed 

and because this co-expression may reveals more about the genes' regulatory systems. 

Similar analyses can be carried out in order to point out genes exhibiting tissue- or 

challenge-specific expression (Mégy et al. 2003). 

EST sequences represent a valuable resource for designing oligonucleotide probes for 

array chip. With the advent of cDNA array-based methods, ESTs have become a key 

reagent within an experiment rather than the final product. In these arrays, a large 

collection of cDNAs is fixed to a substrate and an associated EST sequence provides the 

link between an experimental coordinate and a gene that might be up- or down-

regulated. Array experiments allow massive, parallel investigation of gene expression 

from different tissues or under specific challenges, for example biotic or abiotic stress 

conditions. 

Expressed sequence tags remain a dominant reference for the characterization of the 

protein-encoding portions of various genomes. The larger the EST collection to 

examine, the grater the possibility to generate all the theoretical protein coding regions 

expressed within a genome (defining of a virtual proteome). Therefore, ESTs have also 

become invaluable resources in the area of proteomics for peptide identification and 

proteome characterization, especially in the absence of complete genome sequence 

information (Lisacek et al., 2001). 

Last but not least, the utilization of EST data for comparative genomics must be 

mentioned. Assuming that ESTs are a quick method of sampling an organisms' 
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transcriptome, large-scale analysis can be performed in order to encompass the 

evolution of genome function and structure; to assess sequence conservation and 

divergence between transcriptomes of different organisms and/or finally to illustrate the 

process of sequence divergence during speciation (Dong et al., 2005a; Caicedo and 

Purugganan 2005). 
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1.2  Overview on EST applications: management and analysis of 

plant EST collections to address different biological questions 

1.2.1 Comprehensive analysis of Solanaceae ESTs: gene structure 

prediction and comparative genomics 

The Solanaceae family (common name: Nightshade) comprises about 95 genera and at 

least 2,400 species. Many of these species have considerable economic importance as 

food (tomato, potato, eggplant, garden pepper), 

ornamental (petunia) and drug plants (tobacco). The 

Solanaceae species show a wide morphological 

variability and occupy various ecological niches 

though they share high genome conservation. The 

need of increasing the knowledge of the genetic 

mechanisms which determine Solanaceae 

diversification and adaptation, has brought the 

scientific efforts to be gathered into the 

International Solanaceae (SOL) Genome Project 

(Figure 2). The cultivated tomato, Solanum 

lycopersicum, is the plant chosen by the SOL 

initiative for a BAC-based genome sequencing. The 

long term goal is to exploit the information 

generated by the Tomato Genome Sequencing 

Project (Mueller at al., 2005b) for the analysis of the genome organization, of the 

functionality and the evolution of the entire Solanaceae family. Early studies of the 

Solanaceae genomes, in fact, revealed conservation of gene content among potato, 

tomato, tobacco, petunia and eggplant (Zamir and Tanksley, 1988). Furthermore, these 

Solanaceae species have a base chromosome number of twelve. 

In order to address key questions risen by the SOL vision, large amounts of data from 

different “-omics” approaches are being generated. These data are going to enrich the 

existing sequence data, which year after year have been made available for the 

Solanaceae. 

Since no full genome sequence of a member of the Solanaceae family is yet available, 

much of the existing worldwide sequence data consists of EST sequences. Their 

Figure 2. The International Solanaceae 

Genomics Project (SOL): Systems 

Approach to Diversity and Adaptation. 
Whitepaper at: 

http://www.sgn.cornell.edu/documents/so

lanaceae-project/docs/SOL_vision.pdf. 
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availability has dramatically increased afterward the start-up of the International 

Tomato Genome Sequencing Project (Figure 3). 
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Figure 3. Distribution of EST data submission. The Solanaceae species with most available ESTs at 

dbEST are reported. The black bars indicate the number of EST sequences submitted to the dbEST 

repository since November 2003, the start-up of the International Tomato Genome Sequencing Project, 

until July 2007. The grey bars indicate the overall number of EST entries available at dbEST (release 

072007). 

 

It is not surprising because the screening of the Solanaceae EST collections represents a 

noteworthy and parallel contribution to the study of the tomato gene content as well as 

to the investigation on the Solanaceae family members. 

Hereby the Solanaceae EST resources and repositories worldwide available are briefly 

discussed. The SOL Genomics Network (SGN; Mueller at al., 2005a), a website 

dedicated to the biology of the Solanaceae family, organizes and distributes ESTs and 

the corresponding unigene builds for tomato, potato, pepper, eggplant, and petunia. 

Another sizeable effort is the TIGR collection of high-fidelity virtual TC sequences 

(Lee et al. 2005) constructed by clustering and assembling ESTs from pepper (release 

2.0), potato (release 11.0), petunia (release 1.0), tobacco (release 3.0), Nicotiana 

benthamiana (release 2.0) and tomato (release 11.0). 

The PlantGDB (Dong et al., 2005b) is a valuable resource which intends to provide an 

estimation of plants’ gene space. It picks up EST collections from tomato, potato, 

petunia and different species of Nicotiana genus. 

Furthermore, in order to address particular research interests, specific resource have 

been developed such as the Tomato Stress EST Database (TSED; 
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http://abrc.sinica.edu.tw/ibsdb/), which contains S. lycopersicum ESTs from more than 

10 stress-treated subtractive cDNA libraries and the Micro-Tom Database (MiBASE; 

Yano et al., 2006), which distributes ESTs from a full-length cDNA library from the 

fruit of Micro-Tom (a miniature and dwarf tomato cultivar). The list of the cited Web 

resources is summarized in table 3. 

 

RESOURCE WEB SITE EST COLLECTION AVAILABLE

Solanaceae Genomics Network (SGN) http://www.sgn.cornell.edu/
tomato, potato, pepper, 

eggplant, and petunia

TIGR Plant Gene Indices http://compbio.dfci.harvard.edu/tgi/plant.html

tomato, potato, pepper, 

petunia, tobacco, N. 

benthamiana

PlantGDB -Plant Genome DataBase http://www.plantgdb.org/prj/ESTCluster/index.php

tomato, potato, petunia and 

different species of Nicotiana 

genus.

Tomato Stress EST Database (TSED) http://ibs.sinica.edu.tw/ibsdb/app_all/index.php

tomato ESTs from stress-

treated substractive cDNA 

libraries.

MiBASE- Micro-Tom Database http://www.kazusa.or.jp/jsol/microtom/indexj.html Micro-Tom EST libraries

 

Table 3. Summary of Solanaceae EST resources. 

 

I will report on the analysis of EST sequences of 14 Solanaceae species available at 

dbEST and on the construction of the corresponding gene indices. Certainly, these ESTs 

are hardly useful as they stand and need to be converted into biological meaningful 

information. Therefore, bioinformatics approaches become pre-eminent, though the 

results might be far from being exhaustive and complete. 

To this end, I implemented ParPEST (Parallel Processing of ESTs; D’Agostino et al., 

2005), the pipeline that automatically executes the different steps the EST analysis 

requires, and in addition I designed the relational database where the processed data 

were stored. The need of creating a custom tool originates from the fact that only few 

efforts have been made to integrate all the consecutive steps for EST pre-processing, 

clustering/assembling and annotation into a single procedure (Table 2). Furthermore, 

the diversity of data sources, the quality of the annotations and the produced detailed 

information make our effort useful in the context of EST Solanaceae resources. 

Once the gene indices have been constructed, they were used for gene discovery and 

gene structure predictions. In fact, my team - as part of the iTAG (international Tomato 

genome Annotation Group; http://www.ab.wur.nl/TomatoWiki) – has been committed, 

within the EU-SOL Project, to align Solanaceae expressed transcripts to the tomato 

draft genomic sequences (i.e. BAC sequences) released by the Tomato Genome 

Sequencing Consortium. 
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Finally, the EST resources have been exploited for a survey of the Solanaceae 

transcriptomes and for an Arabidopsis-based investigation to assess sequence 

conservation and divergence between tomato and potato data-sets. 

1.2.2 Gene-expression profiles in a Crocus sativus (saffron) cDNA 

library 

Saffron (Crocus sativus L.) is a triploid, sterile plant which has been propagated and 

used as a spice and as a medicinal plant in the Mediterranean area for thousands of 

years (Fernandez, 2004). It is likely that the domestication of saffron occurred in the 

Greek-Minoan civilization between 3.000 and 1.600 B.C. A fresco depicting saffron 

gatherers dating back to 1.600 B.C. has been unearthed in the island of Santorini, 

Greece. Saffron is commonly considered the most expensive spice on earth. Nowadays, 

the main producing countries are Iran, Greece, Spain, Italy, and India (Kashmir). Apart 

from the commercial and historical aspects, several other characteristics make saffron 

an interesting biological system: the spice is derived from the stigmas of the flower 

(Figure 4A), which are manually harvested and subjected to desiccation. The main 

colours of saffron, crocetin and crocetin glycosides, and the main flavours, picrocrocin 

and safranal, are derived from the oxidative cleavage of the carotenoid, zeaxanthin 

(Bouvier et al., 2003b; Moraga et al., 2004) (Figure 4B). 

 

Figure 4. The saffron spice. 
A. Crocus flowers. Arrowheads point to the stigmas which once are harvested and desiccated constitute 

the saffron spice. 

B. Biosynthetic pathway of main saffron colour (crocin) and flavours (picrocrocin and safranal) (modified 

from Bouvier et al., 2003b). 

 

Saffron belongs to the Iridaceae (Liliales, Monocots) with poorly described genomes. 

The characterization of the transcriptome of saffron stigmas is likely to shed light on 
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several important biological phenomena: the molecular basis of flavour and colour 

biogenesis in spices; the biology of the gynoecium; and the genomic organization of 

Iridaceae. For these reasons, the sequencing and the bioinformatics characterization of 

expressed sequence tags from saffron stigmas have been undertaken. The primary goal 

is to point out the expression levels of different genes, assuming that the number of 

ESTs is proportional to the abundance of cognate transcripts in the stigma tissue. 

This research topic originates from a collaborative effort between my team and the one 

directed by Mr. Giovanni Giuliano, who is Senior Research Scientist at ENEA (Italian 

National Agency for New Technologies, Energy and the Environment) in Rome. 

1.2.3 Characterization of a Citrus sinensis gene family by EST 

screening 

This research originates in the frame of the AGRONANOTECH Project and is in 

collaboration with the team directed by Mr. Giuseppe Reforgiato Recupero, who is 

Senior Research Scientist at the ISAGRU Institute (CRA - Istituto Sperimentale per l’ 

Agrumicoltura) in Acireale. 

Mr Reforgiato’s team is involved in the study of the anthocyanin biosynthetic pathway 

and of the molecular mechanisms that underpin the production and accumulation of 

anthocyanin pigments in the flesh of the blood orange fruits. 

In a previous paper (Licciardello et al., 2007), they discussed on the identification of 

differentially expressed genes in the flesh of pigmented (Moro nucellare 58-8D-I) and 

non-pigmented (Blonde cadenera) orange genotypes. One of the genes, that have been 

detected by expression profiling and resulted up-regulated in the flesh of pigmented 

orange, encodes for a gluthatione S-transferase (GST), an enzyme of the anthocyanin 

pathway (Figure 5). 

It has been shown that plant GSTs are important in binding secondary metabolites like 

anthocyanins and in their transfer from the site of synthesis in the cytoplasm into the 

vacuole, where they are permanently stored (Marrs 1996; Mueller et al. 2000). 

However, it is known that plant cells can express several GSTs belonging to different 

GST classes and grouped into a gene family (Frova, 2003). For this reason, we decided 

to characterize the GST gene family by screening a collection of 94.127 Citrus sinensis 

(L.) Osbeck expressed sequence tags. Tissue expression patterns of the putative full-

length transcripts identified in this study were inferred by querying the dbEST database 

with respect to different tissues. Furthermore, Semi-Quantitative Reverse Transcription 
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Polymerase Chain Reaction (SemiQ RT-PCR) analyses were performed by Miss 

Licciardello in order to check the real presence in the cells of the in silico assembled 

GST transcripts and to assess their expression patterns in the albedo, flavedo, flesh, 

young and adult leaves and ovary. In addition, the experiments were also performed to 

compare the gene expression levels between the Blonde cadenera and Moro nucellare 

58-8D-I genotypes. 

 

Figure 5. Schema of the anthocyanin pathway. 
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2 METHODS 

2.1 Set up of a pipeline for EST data analysis based on parallel 

computing 

The “analysis pipeline” ParPEST was implemented using public software integrated by 

in-house developed Perl scripts (D’Agostino et al., 2005). It currently operates on a 

“Beowulf class” cluster running the Fedora Linux Core 4 operating system and the 

OSCAR 4.0 toolkit (http://hpcs2003.ccs.usherbrooke.ca/papers/desLigneris_01.pdf) 

able to support the cluster management and the job scheduling and monitoring. 

The schematic view of the ParPEST pipeline is shown in figure 6. 

In succession, a brief description of each module of the analysis and the input/output 

resources are discussed.  

 

 

 

Figure 6. Schematic view of the ParPEST pipeline. 

2.1.1 Data sources 

EST sequences can be submitted to the ParPEST pipeline in the ABI (Applied 

Biosystems Inc.), GenBank or FASTA format. In case of submission in the ABI format, 

the first module in ParPEST is the base-caller PHRED (Ewing and Green, 1998) as it 

converts chromatogram files to bases and quality indices. The output sequences are 
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written in the standard FASTA format. Besides the input format, it is convenient that 

the following valid attributes are associated to each EST: the name of the library, the 

organism from which the library has been prepared, the organism strain or the plant 

cultivar, the tissue type, the developmental stage and a brief description of the library 

preparation method.  

2.1.2 Removal of the over-represented ESTs 

It is known that the dbEST division of the GenBank repository contains a large number 

of EST copies (i.e. over-represented ESTs). In order to reduce the EST analysis 

execution time, which slows down dramatically as the number of input sequences 

grows, it is necessary to remove these over-represented EST sequences so as to clip the 

original data-set and produce a non-redundant collection. To achieve this task, a parallel 

algorithm has been designed (C++ language). First, input ESTs are sorted according to 

their sequence length. Then, each input sequence is compared to each other considering 

also its reverse-complement counterpart. If a sequence X is contained in the sequence Y 

as X being a subsequence of Y, the sequence X is excluded from the subsequent step 

because its sequence information is already represented by Y. Therefore, it is defined as 

a “contained” sequence and the “contained” relationship between X and Y is marked so 

that it can be easily recorded in a database table. Indeed, for each “container” sequence 

(i.e. the larger “parent” sequence) can be traced the contribution of all the “contained” 

sequences (i.e. children sequences). 

2.1.3 Pre-processing: checking for contaminations and repetitive 

elements 

A division of the EST sequences deposited in dbEST can be contaminated by non-

native sequences such as those derived from the cloning vectors or the bacterial host. In 

addition, ESTs can include repetitive elements as well as low complexity sub-

sequences. This can prevents the correct and accurate generation of clusters and 

assemblies. The pipeline includes the RepeatMasker (http://www.repeatmasker.org/) 

tool to identify both contaminations and low complexity sub-sequences and/or repetitive 

elements. In particular, the NCBI UniVec database (ftp://ftp.ncbi.nih.gov/pub/UniVec/) 

was used for the identification and the masking of vector and bacterial contaminations. 

Once the masked nucleotides were trimmed off, the next step follows. 
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RepBase (Jurka, 2000) was used as the filtering database for masking low complexity 

sub-sequences and interspersed repeats. RepeatMasker is not designed for parallel 

computing. Therefore, in order to reduce its execution time, a specific utility was 

designed to submit an arbitrary number of serial jobs to the PBS (Portable Batch 

System) simply by creating a command file with one command per line. Such utility 

showed an excellent speedup over its sequential counterpart and its memory 

requirements are almost negligible making it suitable to run virtually on any data size.  

2.1.4 Clustering and Assembling 

The sequences were clustered by the PaCE (Parallel Clustering of ESTs) program 

(Kalyanaraman et al., 2003) which builds a distributed representation of the generalized 

suffix tree data structure in parallel. This data structure was used for the generation of 

groups of overlapping sequences. It is assumed that all sequences in a cluster represent 

the same gene, this is why each cluster is defined as a gene index. For the parallel 

execution PaCE requires an MPI (Message Passing Interface) environment. 

CAP3 (Huang and Madan, 1999), with an overlapping window of 60 nucleotides and a 

minimum score of 85, was the program used to perform the assembling process. A 

specific utility was designed to bundle groups of CAP3 commands to be executed 

sequentially by each processor in order to speed up the execution of CAP3 and to avoid 

the overhead time consuming of PBS. All the EST sequences into a PaCE cluster, were 

assembled into tentative consensus sequences (TCs) which were generated from 

multiple sequence alignments of ESTs. Each EST which during the clustering process 

did not meet the match criteria to be clustered with any other EST, can be thought of as 

a cluster by itself and it is defined as singleton (sEST).  

The EST set in a cluster can be assembled in one or multiple TCs. Indeed, since the 

clustering process is a simple “tentative closure” procedure, PaCE finds the overlaps 

among EST sequences not considering if they make sense all together. When sequences 

in a cluster cannot be all reconciled into a consistent multiple alignment during the 

much more rigorous assembly phase, they are accordingly split into multiple assemblies 

or TCs. Possible interpretations of multiple TCs from a cluster are: (i) alternative 

transcription, (ii) paralogy or (iii) protein domain sharing. 

TCs/sESTs resulting from the CAP3 step were assumed to be putative transcripts.  
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2.1.5 Functional annotation 

Both raw EST sequences and TCs were independently annotated by an automated 

module. Two different database searches were performed. The first annotation 

procedure was carried out by BLASTx (E-value ≤ 10
-3

) versus the UniProtKB/Swiss-

Prot database (Release 27012006; The UniProt Consortium, 2007); the second one was 

performed by BLASTn (E-value ≤ 10
-5

) versus the Rfam database (version 7.0; 

Griffiths-Jones et al., 2005). This second annotation procedure allows to better refine 

the sequence function assignment. In fact, it is well known that mRNA-like non-coding 

RNAs (ncRNAs) can be present in EST collections (MacIntosh et al., 2001).  

In case Affymetrix Gene Array probe-sets are available for the organism under 

investigation, a further BLASTn analysis (E-value ≤ 10
-5

) was carried out to establish 

correspondences between the EST sequence data-set and the Affymetrix probe-sets 

(http://www.affymetrix.com/products/arrays/index.affx). 

2.1.6 Overview of the Gene Ontologies 

For a standard and controlled classification of gene products, the protein annotation was 

switched to the Gene Ontology (GO) terms (The Gene Ontology Consortium, 2000) in 

the event that the subject UniProt identifier is recorded in a local GO database.  

Gene Ontology assignments were reduced using GO slim terms in order to give a broad 

overview of the ontology content of each transcriptome. GO slims are, in fact, cut-down 

versions of the gene ontologies and contain a subset of the terms in the whole GO. The 

map2slim.pl script, distributed as part of the go-perl package (version 0.04), was used to 

convert all the GO terms related to each transcript to the plant GO slim terms 

(http://www.geneontology.org/GO_slims/goslim_plant.obo). 

2.1.7 Overview of the ENZYME assignments 

ENZYME (Bairoch, 2000) is a repository which describes each type of characterized 

enzyme (which an EC number has been provided to). The protein annotation was 

switched to the ENZYME assignments in the event that the EC number was present in 

the description lines of the subject UniProt hit. The release of may 2006, which 

comprises 4037 entries, was considered. 
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The association to an EC number let the expressed sequence be associated to the KEGG 

(Kyoto Encyclopedia of Genes and Genomes; Kanehisa et al., 2006) metabolic 

pathways. 
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2.2 The EST database 

2.2.1 Implementation and architecture 

The EST database architecture consists of a main MySQL relational database, where all 

the data generated by ParPEST were deposited, and of two satellite databases myGO 

and myKEGG. The Entity-Relationship (ER) diagram, which illustrates the 

relationships between entities in the EST database, is shown in figure 7. 

 

 

Figure 7. The Entity-Relationship (ER) diagram of the EST database. 

The ER diagram is reported to show the database structure schema. The schema describes the entities and 

their relationships. 

 

The myGO database, which comprises both ontology and annotation data, was built 

from the flat files available on the GO website (www.geneontology.org) which were 

downloaded in the mySQL format (go_200605-assocdb.data.gz and go_200605-

assocdb.tables.tar.gz). 

The myKEGG database was built by parsing the KEGG XML formatted files 

(ftp://ftp.genome.jp/pub/kegg/xml/map/) using the XML::XPath::XMLParser Perl 

module and by downloading the metabolic maps in the GIF format 

(ftp://ftp.genome.jp/pub/kegg/pathway/map/).  



 - 25 -  

The web interface to the database was created using HTML and PHP scripts which 

dynamically execute MySQL queries. It operates under an Apache web server on a 

Fedora Linux Core 4 system. 

2.2.2 Web application 

The EST database web application was developed in order to support data retrieval 

through pre-defined query systems. Data can be inspected via three different HTML 

forms that allow distinctive queries on (i) EST sequences, (ii) clusters and (iii) putative 

transcripts (i.e. transcript indices). 

The first HTML form produces an “EST report page” (Figure 8A) displaying each EST 

as a bar. The colour of the EST bar changes depending on the EST type. “Container” 

ESTs are blue, stand-alone ESTs are green while “contained” ESTs are not traced since 

their sequence information is already represented by the corresponding “container” 

sequence. Vector contaminations, low complexity sub-sequences and repeats are 

properly highlighted with colours (black, red). The EST bar is linked to the nucleotide 

sequence. Protein as well as ncRNA matching regions are drawn on the length of the 

query sequence as grey and/or brown bars respectively; each bar is linked to the details 

concerning the local alignments. 

The second HTML form results in a “clusters report page” (Figure 8B) where data are 

presented in a summary table. In a row, are reported the cluster identifier, the number of 

TC(s) which the EST sequences in a cluster are split into, and the total number of the 

ESTs within the cluster. Via the cluster ID, the EST multiple sequence alignment 

constructed for each TC can be accessed. Each TC is represented as an orange bar along 

which the EST bars are drawn so as to reconstruct the assembly. The protein and the 

ncRNA matching regions are traced on the length of the query sequence (Figure 8C). 

The third HTML form results in a “transcript indices report page” where data 

corresponding to the user-selected criteria are listed in a summary table. These data can 

be also investigated considering two different classes of objects: the enzymes and the 

metabolic pathways. Enzymes are classified into classes, subclasses and sub-subclasses 

according to the guidelines of the Nomenclature Committee of the International Union 

of Biochemistry and Molecular Biology (IUBMB). They are listed as HTML-based tree 

menus (Figure 9A). For each enzyme are enumerated all the associated transcripts as 

determined by the functional annotation module. 
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Figure 8. Screenshots of the EST database web interface. 
A. ‘EST report page’. EST sequences are displayed as bars whose colour depends on how the EST has 

been classified (the green bar corresponds to a stand-alone EST while the blue bar corresponds to a 

container EST). The black bar describes an EST whose nucleotide sequence is likely to represent a vector 

contamination. Low complexity sub-sequences and repeats are highlighted as red segments. Protein as 

well as ncRNA matching regions are traced along the EST query sequence as grey or brown bars 

respectively. 

B. ‘clusters report page’. Data are presented in a summary table where in a row are reported the cluster 

identifier, the number of TC(s) which the EST sequences in a cluster are split into, and the total number 

of the ESTs within the cluster. 

C. Representation of the multiple alignment of EST reads generating a TC. TC is represented as an 

orange bar along which the EST bars (green or blue according to the EST type) are drawn so as to 

reconstruct the assembly. The protein (grey) and the ncRNA (brown) matching regions are traced on the 

length of the TC sequence. 

 

Redundancy may occur because (i) more proteins are referenced in the ENZYME 

repository with the same EC number; (ii) different transcripts encode for different 

subunits of the same enzyme; (iii) different transcripts represent different segments of 

the same cDNA which have not been assembled because of the EST “tag” nature. 

Because one enzyme can contribute to more than one metabolic pathway, all the 

pathways which the enzyme belongs to are also enumerated in the tree menu. The class 

“metabolic pathway” is useful to investigate on a specific map and on its “coverage”; 

indeed, transcripts are mapped on-the-fly onto the pathways via the enzymes they are 

associated to. Each metabolic pathway represents the main node of the HTML-based 

tree menu; the number of the enzymes mapped as well as the number of the map-
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specific enzymes are indicated. Nodes, which describe each enzyme and enumerate the 

transcripts associated to the enzyme itself, are added to the menu object (Figure 9B). 

Metabolic pathways can be always accessed as GIF images modelled as graphs where a 

node represents a compound and an edge represents the enzyme-catalyzed reaction. For 

each image the enzymes, which have been mapped on-the-fly, are highlighted in red 

(Figure 9C). 

 

Figure 9. Screenshots of the EST database web interface. 
A. An example of a tree menu listing all the metabolic enzymes annotated for a plant species is shown. 

The node corresponding to chalcone isomerase (EC 5.1.1.6) is expanded and shows the transcript(s) 

associated to the enzyme and the metabolic pathway(s) which include the enzyme. 

B. An example of a tree menu listing all the metabolic pathways associated to the plant species is shown. 

The node corresponding to ‘Stilbene, coumarine and lignine biosynthesis’ is expanded. 

C. The pathway image shows seven on-the-fly mapped enzymes highlighted in red.



 - 28 -  

2.3 EST-based gene discovery and gene model building 

2.3.1 Setting up the Generic Genome Browser database 

The Generic Genome Browser (GBrowse) is an open-source browser developed as part 

of the Generic Model Organism Database project (GMOD; Stein et al., 2002). It is a 

Web-based application for displaying DNA, protein, or other sequence features within 

the context of a reference sequence such as a chromosome, a BAC or a metacontig. The 

release “Gbrowse-1.62” was retrieved from the Sourceforge download page and 

installed onto a Fedora Linux Core 4 system. 

GBrowse is based on the GFF file format which stands for “General Feature Format” 

(http://www.sanger.ac.uk/Software/formats/GFF). The GFF format is a flat tab-

delimited file, each line of which corresponds to a feature (i.e. an annotation). 

For smaller data-sets the GBrowse uses a file-based database (i.e. the 'in-memory' 

database) which allows it to run directly off text files. On the other hand, for larger data-

sets the GBrowse requires a MySQL database management system. Then, because we 

deal with a large amount of data, we used the BioPerl utility bp_load_gff.pl to upload in 

the MySQL database a series of GFF and FASTA files. 

2.3.2 EST-to-genome alignments 

The program GenomeThreader (Gremme et al., 2005) (settings: coverage ≥ 80%; 

identity ≥ 90%) is used to produce EST/TC to genomic DNA spliced alignments. The 

alignment data were parsed and converted into the GFF format by a Perl script and 

subsequently uploaded into the MySQL database. 

2.3.3 Gene models from ESTs 

The GeneModelEST software (D’Agostino et al., 2007b) was used for defining a data-

set of candidate gene models based exclusively on EST evidences. It requires two GFF 

formatted files which describes the in silico derived coordinates of EST- and TC-to-

genome alignments. 

The GFF files must include two features: 

� the match feature: it indicates the full-length of the EST/TC-to-genome 

alignment from the start to the end coordinate. 

� the HSP (High-Scoring Pairs) feature: it indicates the start and the end 

coordinates of a section of the match feature. In other words all the HSPs 
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belonging to a match feature describe all the consecutive elements representing 

exons. Instead, the genomic region between two consecutive HSPs corresponds 

to an intron region. 

An NCBI BLAST report file, in which are recorded information on sequence 

similarities between TCs and proteins, is fed into GeneModelEST too. 

Firstly, given the coordinates of each TC match feature, the TC-to-TC status is 

established as follows: 

� overlapping TCs 

� non-overlapping TCs 

We need to define the HSPs of non-overlapping TCs as c-HSPs and all the EST HSPs 

as e-HSPs. Then, the status of each c-HSPs was established by comparing its 

coordinates to the ones of the e-HSPs aligned in the same genomic region. Possible 

results of the pair-wise comparisons are classified according to the instances shown in 

figure 10. 

 

Figure 10. Representation of possible results from c-HSP and e-HSP pair-wise comparison. 
i) exact match: the start and the end positions of the e-HSP coincide with the ones of the c-HSP; 

ii) partial match: at least one of the edges of the e-HSP is exactly the same of the edges of the c-HSP. 

Therefore, because of EST length-limit, the other e-HSP edge is included in the region spanned by the c-

HSP; 

iii) internal match: an e-HSP lies within a c-HSP. According to the e-HSP status this instance can be 

split in two cases: a) unchained e-HSP: in case the e-HSP is completely included in the corresponding c-

HSP or b) chained e-HSP: in case the e-HSP is concatenated to the flanking e-HSPs; 

iv) undefined edges: the e-HSP is overlapping a terminal c-HSP going beyond one of its edges. This 

implies that the e-HSP is describing a terminal exon longer than the c-HSP. 

v) e-HSP overlapping introns: one or both edges of an internal e-HSP lie within one of the intron 

regions defined by aligning the TC to the genome sequence. This implies that the EST, which the e-HSP 

belongs to, is representing an intron retaining sequence or an alternatively spliced transcript of the same 

gene or the transcript of a gene which is overlapping the same locus. 
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The status of each c-HSP was defined as confirmed, undefined or ambiguous by 

combining all the possible instances enumerated with Boolean operators illustrated in 

table 4. 

 

cHSP status
exact 

match

partial 

match

undefined 

edges

e-HSP 

overlapping 

introns

Unchained 

e-HSP

Chained 

e-HSP

Confirmed X OR X OR X AND 0 AND 0 AND 0

Undefined X OR X OR X AND 0 AND X AND 0

Ambiguous X OR X OR X AND X OR X AND X

internal match

 

Table 4. c-HSP status determination. The determination of the c-HSP status originates from the result 

of all pair-wise comparisons versus all e-HSPs aligned in the same genomic region. X indicates at least 

one occurrence of the instance. Boolean operators have been used to define the c-HSP status. 

 

GeneModelEST assigns a TC as a consequence of the evaluation of all its c-HSPs to 

one of the following classes: optimal, acceptable and rejected. Optimal are those TCs 

for which all the c-HSP are confirmed; acceptable are those TCs presenting at least one 

undefined c-HSP; rejected are those TCs with at least one ambiguous c-HSP. 

Alternative gene structures must be avoided in the definition of candidate gene models. 

Therefore, GeneModelEST declares as candidate gene models those TCs which have 

been classified as optimal or acceptable. Indeed, rejected TCs are excluded because 

they represent either possible alternative splicing or intron retaining sequences, and 

therefore, they need a human-curated validation. 

In order to assign a preliminary functional annotation to TCs, GeneModelEST evaluates 

the protein sequence coverage (%coverage) and the similarity threshold (%positives) of 

the highest scoring alignment described in the NCBI BLAST report file according to the 

following rules : 

1. Complete TCs (coverage ≥ 95%) are classified as: 

a. identical to (similarity ≥ 90%) 

b. similar to (similarity < 90%) 

2. Uncomplete TCs (50% ≤ coverage < 95%) are classified as: 

a. similar to (similarity ≥ 60%) 

b. low similarity to (similarity < 60%) 

3. Undefined product: TCs with protein coverage < 50%. 

4. Expressed product: TCs without BLAST matches. 
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2.4 Comparative analysis of the tomato and potato transcriptomes 

The total protein complement of the Arabidopsis thaliana genome was obtained by the 

.faa files (NC_003070, NC_003071, NC_003074, NC_003075, NC_003076) retrieved 

from the genome session of the NCBI ftp site. In total 30,480 Arabidopsis protein 

sequences were collected. The available functional annotations was established by the 

TIGR and were reported in the description line of FASTA amino acid files. 

The gene families and genes are displayed in the tab delimited file 

gene_family_tab_121906.txt which was downloaded from the ftp session of The 

Arabidopsis Information Resource (TAIR; Rhee et al., 2003). This file enumerates 996 

gene families and 8,331 genes. 

In order to collect all the protein-Refseq sequences which corresponded to the 8,331 

genes, the file TAIR7_NCBI_mapping_prot was retrieved 

(ftp://ftp.arabidopsis.org/home/tair/Proteins/Id_conversions/TAIR7_NCBI_mapping_pr

ot) and used to switch the AGI (Arabidopsis Genome Initiative) gene model IDs into the 

NCBI protein Refseq ID. Therefore, the Bio::DB::Query::GenBank BioPerl module was 

used to query GenBank in order to collect all protein sequences belonging to gene 

families in FASTA format. Initially, BLASTx searches were performed to identify 

tomato as well as potato transcripts with significant sequence similarities (e-value < 10
-

5
) to the Arabidopsis proteome. Then the same query sequence sets were searched 

against the Arabidopsis protein collection which entries are annotated and classified into 

families. BLASTx results were filtered for significant hits using an e-value cut-off < 10
-

5
. Finally tomato and potato transcripts which did not have a match in Arabidopsis were 

used for pair-wise comparisons (BLASTn with an e-value cut-off < 10
-10

) in order to 

check for significant sequence similarities at the nucleotide level. 
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2.5 Identification of new members of the gluthatione S-transferase 

superfamily in Citrus sinensis 

The schematic view of the step-by-step analysis was aimed to identify new members of 

the gluthatione S-transferase in Citrus sinensis by EST screening (Figure 11). In 

succession, a brief description of each module of the analysis is discussed.  

 

 

 
 

Figure 11. Step-by-step analysis procedure using EST sequences as primary data source. 

 

2.5.1 Identification of ESTs encoding putative GST proteins 

Members of the Citrus sinensis GST superfamily were identified by screening the EST 

collection retrieved from the dbEST divison of the GenBank repository (Release 01-11-

06). A preliminary functional annotation was based on BLASTx comparisons of 94.127 

EST sequences against the UniProtKB/Swiss-Prot database (Release 01-11-2006). The 

NCBI BLAST report file was parsed with an in-house Perl script in order to select 

orange ESTs that matched as best hit a GST protein. The original data-set was reduced 

to 370 putative GST encoding sequences. This collection was used to feed the 

clustering/assembling procedure. 
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PaCE (default parameter) is the EST clustering software (Kalyanaraman et al., 2003) 

that we used in order to group the ESTs putatively derived from the same gene. Instead, 

the assembly software CAP3 (Huang and Madan, 1999) (with an overlapping window 

of 30 nucleotides and a minimum score of 95) was used in order to assemble the short 

ESTs which were clustered in the same group into tentative consensus sequences (TCs). 

The clustering/assembling resulted in 62 putative distinct transcripts: 28 TCs and 34 

singletons (sESTs) (Table 5). 

 

GST CLASS SEQ. ID # ESTs ESTs PER TISSUE TISSUE GST CLASS SEQ. ID # ESTs ESTs PER TISSUE TISSUE

CITSI24:CX077363 1 1 callus CITSI54:CB293267 1 1 rind containing flavedo and albedo

CITSI13:CX300684 1 1 phloem 20 callus

CITSI60:BQ624512 1 1 entire seedling 9 entire seedling

CITSI31:CN188035 1 1 pulp 5 flavedo

4 callus 5 flavedo, albedo, some red scale

6 immature ovaries 11 flower

2 leaf, petiole, bark 2 flush leaves and stems

2 phloem 4 immature ovaries

3 callus 3 leaf blade

4 flower 2 leaf, petiole, bark

2 flush leaves and stems 5 ovary

3 immature ovaries 1 peel (flavedo)

2 rind 6 phloem

2 seed 2 pulp

4 shoot meristem 6 rind

CITSI47:2 1 flower 3 rind containing flavedo and albedo

1 flush leaves and stems 7 seed

CITSI17:CX675467 1 1 callus 4 shoot meristem

CITSI07:DY257387 1 1 mature fruit abscission zone C CITSI38:CK934228 1 1 flower

CITSI06:DY257487 1 1 mature fruit abscission zone C CITSI23:1 2 2 leaf, petiole, bark

CITSI55:CB293075 1 1 rind containing flavedo and albedo CITSI65:BQ623038 1 1 entire seedling

2 rind containing flavedo and albedo CITSI34:CK939385 1 1 flower

1 entire seedling CITSI28:CX046491 1 1 flavedo

1 flush leaves and stems CITSI27:CX070573 1 1 callus

1 entire seedling 8 callus

2 flavedo 1 entire seedling

2 flower 1 flavedo

1 flush leaves and stems 2 flavedo, albedo, some red scale

1 leaf blade 7 flower

1 peel (flavedo) 1 immature ovaries

2 phloem 2 phloem

2 pulp 3 pulp

1 rind 1 rind

2 callus 3 shoot meristem

1 entire seedling CITSI56:CB292998 1 1 rind containing flavedo and albedo

1 flavedo CITSI05:DY257328 1 1 mature fruit abscission zone C

2 flower CITSI22:CX672147 1 1 leaf, petiole, bark

1 immature ovaries 1 entire seedling

2 rind containing flavedo and albedo 1 leaf, petiole, bark

2 entire seedling 6 phloem

2 flavedo, albedo, some red scale 1 phloem

1 flower CITSI02:1 11 11 flesh

1 Immature ovaries CITSI00:1 11 11 flesh

1 leaves 2 flavedo

1 phloem 1 flower

2 rind containing flavedo and albedo 1 callus

CITSI15:DN618611 1 1 flavedo, albedo, some red scale CITSI35:CK936125 1 1 flower

2 entire seedling CITSI08:CV716584 1 1 callus

1 flavedo CITSI18:1 6 6 callus

1 peel (flavedo) CITSI26:1 2 2 callus

1 phloem CITSI63:BQ623555 1 1 entire seedling

1 entire seedling 1 entire seedling

1 phloem 4 flavedo, albedo, some red scale

CITSI61:BQ623696 1 1 entire seedling 3 flower

CITSI58:BQ624883 1 1 entire seedling 2 flush leaves and stems

CITSI40:CK701666 1 1 entire seedling 1 immature ovaries

3 entire seedling 1 phloem

2 callus 4 pulp

CITSI39:CK739807 1 1 entire seedling 4 rind

CITSI01:EG358290 1 1 flesh 3 rind containing flavedo and albedo

2 phloem CITSI32:CN187483 1 1 pulp

1 leaves CITSI42:CK665050 1 1 entire seedling

1 peel (flavedo) CITSI37:CK935114 1 1 flower

8 leaves CITSI30:CV884511 1 1 fower

1 phloem CITSI49:CF504122 1 1 immature ovaries

2 leaves CITSI48:CF506057 1 1 immature ovaries

1 callus 2 leaf, petiole, bark

1 entire seedling 1 entire seedling

2 phloem 2 immature ovaries

1 rind 2 rind containing flavedo and albedo

2 shoot meristem 2 seed

2 flavedo 1 flavedo, albedo, some red scale

2 flower CITSI62:BQ623695 1 1 entire seedling

1 immature ovaries 1 entire seedling

1 leaves 2 flavedo, albedo, some red scale

2 rind 4 flower

CITSI03:DY305803 1 1 leaves 2 leaf, petiole, bark

1 pulp

1 seed

2 entire seedling

1 callus

M
A

P
E

G CITSI20:1 11

CITSI09:1 3

THETA

Z
E

T
A

CITSI21:1 3

CITSI50:1 7

4

L
A

M
B

D
A CITSI46:1 23

CITSI36:1 8

P
H

I

CITSI52:1 94

CITSI33:1 29

CITSI11:1 9

CITSI29:1

CITSI04:1 9

CITSI44:1 9

CITSI25:1 5

CITSI51:1 4

CITSI41:1 5

CITSI59:1 2

CITSI16:1 9

CITSI53:1 10

T
A

U

CITSI47:3 14

CITSI47:1 20

2

CITSI57:1 4

CITSI43:1 13

 

Table 5. List of the 62 GST-encoding putative transcripts. In a row are reported the GST class, the 

sequence ID, the total number of EST sequences which have been assembled to generate the transcript, 

the number of ESTs grouped per tissue which the ESTs have been derived from. 

 

The collection of the 62 transcripts was compared against the GenBank non-redundant 

nucleotide database to establish if some of the 62 sequences could have been further 
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extended. This allowed to concatenate the TCs CITSI00:1 and CITSI02:1 into a unique 

transcript which corresponds to the sequence DQ198153 from GenBank (Lo Piero et al., 

2006). 

 

2.5.2 GST class assignment 

Entrez query was carried out to retrieve all the Arabidopsis thaliana protein sequences 

belonging to the GST class Tau (resulting in 29 different sequences), class Phi (20 

sequences), class Zeta (3 sequences), class theta (2 sequences), class Lambda (6 

sequences) and class MAPEG (1; Membrane-Associated Proteins involved in 

Eicosanoid and Glutathione metabolism). All the protein sequences in each class were 

analysed by Block Maker (Henikoff and Henikoff, 1997), a tool for the identification of 

conserved blocks (i.e. segments corresponding to the most highly conserved regions of 

proteins) in a set of related sequences. An embedded consensus sequence for each of the 

GST classes was generated using COBBLER (COnsensus Biasing By Locally 

Embedding Residues; Henikoff and Henikoff, 1997). These COBBLER-embedded 

sequences were used as a reference to classify the putative Citrus sinensis GST 

sequences into specific GST classes. 
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2.5.3 Open Reading Frame finding 

The EXPASY Translate tool (http://www.expasy.ch/tools/dna.html) was used to define 

the longest Open Reading Frame (ORF) for each GST putative encoding transcript. 

The transcripts defined as full-length mRNAs (FL) are the ones showing a complete 

Open Reading Frame (ORF). The remaining transcripts exhibited partial ORFs. Those 

including the start triplet ATG but lacking the stop codon were classified as 5’ 

fragments (5F). On the other hand those lacking the initiating ATG but presenting a 

termination triplet were classified as 3’ fragments (3F). Finally, the transcripts which 

show interspersed stop codons were classified as “no good ORFs” (NGO)(Figure 12).  

2.5.4 Multiple alignments generation 

The ClustalW program (Larkin et al., 2007) was used to generate multiple alignments of 

the nucleotide (mRNA) sequences for each GST class. Transcripts, which no good 

ORFs are detected in, were also included in the multiple alignments. It happened 

because they share similarities with the remaining sequences in the corresponding class 

despite of insertions/deletions putatively due to sequencing errors. The alignment editor 

BioEdit (Hall, 1999) was used to edit multiple alignments in order to define the mRNA 

structure and to identify the mRNA segments (5’ UTR, codig exons, 3’UTR). 

Segment-to-segment DNA distances were calculated using the DNADIST program in 

PHYLIP (Felsenstein, 1993). This, in the attempt to further group sequences within a 

GST class. 

The cut off of 20% divergence was used to define 2 segments as closely related. They 

show the same colour in figure 12. Indeed, a deeper analysis of the multiple alignment 

highlighted different subgroups of sequences per class. Each sequence in a subgroup 

still presented nucleotide heterogeneity that is hardly referred to sequencing errors. 
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Figure 12. Schematic view of the 6 different multiple alignments generated by grouping the 62 
transcripts according to GST class membership. The coding exons, the 5’ and 3’ UTRs (mRNA 

segments) are reported. Closely related segments (DNADist cut off of 20% divergence) are reported with 

the same colour. In red we marked the ID of those sequences to be analysed by SemiQ RT-PCR. Primers 

(zebra bars) and their localization along the corresponding GST transcript are shown. The last column 

describes each GST sequence as full length (FL), 5’ fragment (5F), 3’ fragment (3F), fragment (F), no 

good ORF (NGO), intron retaining (IR). 
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2.5.5 Total RNA extraction and gene expression analysis by SemiQ RT–

PCR 

This part of the analysis was performed by the Dr. Concetta Licciardello, from the 

ISAGRU Institute. 

Tissue samples were collected from the Moro nucellare 58-8D-1 and the Blonde 

Cadenera cultivars. The TRIzol
® 

LS Reagent (Invitrogen, Scotland UK) was used for 

extracting total RNA from 3g of flesh tissue while guanidine hypochlorite was used for 

the RNA extraction from 2g of albedo, flavedo, young and adult leaf tissues. 

The RNeasy plant mini kit (Qiagen) was used to isolate total RNA from 0.1g of ovary. 

The amount and quality of the total RNA were estimated by spectrophotometer readings 

and by agarose gel electrophoresis (0.8% agarose in 1x TAE). The electrophoresis gels 

were stained with ethidium bromide. 

Semi-Quantitative Reverse Transcription Polymerase Chain Reaction (SemiQ RT-PCR) 

analyses were performed to assess the expression level of the putative GST genes in the 

albedo, flavedo, flesh, young and adult leaf tissues and ovary. 

SuperScript III One-Step RT-PCR with Platinum Taq (end point) (Invitrogen) was used. 

The amplification of the Elongation Factor (EF) alpha chain (AY498567) RNA was 

used as control. The primers used to amplify the target regions are shown in table 6 

where in a row are reported the sequence, the annealing temperature and the expected 

size of the amplicon. The oligonucleotide primers were designed according to different 

criteria in order to avoid non-specific amplifications. All the reverse primers were 

designed into the 3’ UTR regions close to the polyA tail (Figure 12). Since the Phi class 

multiple alignment includes sequences that we classified as intron-retaining (marked as 

IR in Figure 12), the forward primers were selected straddle the second and the third 

coding exons.  

Considering that an intron-retaining sequence was included in the Tau class multiple 

alignment too, some of the forward primers were designed straddle the first and the 

second coding exons (Figure 12). 
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Forward (5'-3') Reverse (5'-3') Ta (°C.) Amplicon bp

CITSI52:1 GGCCTTCCTTTCTTTGAATCCATTC TTTTGATAAACCCATTGGGACAGTCGT 60 835

CITSI38-CK934228 GTACCTCAAATTGCAGCCTTTCGGA TTTTCTCCCAAGGCCCCAAGCATTT 63 659

CITSI23:1 ACGTTATACGGTAGAATCTCGAGCTATCA TTTTGTCCTCCAAGGCCCCAAGCAT 63 610

CITSI34-CK939385 AGTACCTCAAATTGCAGCCTTTCGGT TTTTGTCCTCCAAGGCCCCCAGCAT 64 655

CITSI33:1 TTTATACGAGTCGCGAGCTATCATGAGGT TTTTAAAGCTCCAACTCCAAACAT 60 658

CITSI05-DY257328 ATTTTATACGAGTCGCGAGCTATCATGAGG ACCCCTTATCCAAGGAACATTTCCCA 64 565

CITSI11:1 TGGGGATTTTACTCTATACGAATCGCGA ATGGCGACAACAAGAAATCGCCGCA 63 640

CITSI29:1 TCTGAAGATCCAGCCCTTTGGCCAA TGGGAAATTATTAGACCATGCCA 60 732

CITSI18:1 TCTTGCCAAGAATCCCTTCGGTCA CATCAATGTAAAATCATCACGCAACCA 60 569

DQ198153(CITSI02:1+CITSI00:1) TCGAGGGCAATCATAAGGTACTACGCAGC GATAACAGTAATGACAGCCAGCCGAA 55 642

CITSI47:3 TCGCCAAGCCCATTTGTGATGAGGGCA ACGAGACAGGCTGCTGCCTAGTCCGA 66 866

CITSI57:1 AGTAAGCTTCTGTAATAATGGCGGACGA ACAATACCCTAAGATAACAGTCGGGGACA 64 879

CITSI43:1 TCTGTCACAATGGCGGACGAAGTGGT AGCAGGCAGCACGATTGCGCTGCT 68 732

CITSI16:1 TCACTCGCCCTTAATTCTCAGTAAGGT AGATTGACGCCACATAATATTCCCA 60 966

CITSI53:1 TGCTGGGTTACTGGGCAAGCCCCT ACCTTCATGCATGGGCAACCGCTGA 66 686

CITSI41:1 GTTTACAGGGTGATTTGGGCTCTGA ACCACTATGCTAGTCCCCCGAACT 63 757

CITSI25:1 GTTCATCGACGAAAAGCTGTTGGCA ACACAGAGAGAGAGCTAACCCAATCA 63 449

CITSI51:1 TGGCCAAGCCCGTTTGTGTTTAGGGT AGACTTTCCACACAACATCACACTAC 63 756

CITSI04:1 AGACGTGGTCAAGCCCCTTTGGT TGGAATGGGAAAAGGGCAAAAGGA 62 889

CITSI44:1 GCAGAAGATTATGGCAACAAAAGTG GAGCGTACAGAAAGGAGACACGTGCA 62 764

CITSI36:1 GCGAAAATAATATGGCCAAAGAAGTGACGCT GTCATTACAACACACCACAACACCACCT 64 765

consensus CITSI48-CITSI49 TGGGTGGGCTAAAGAAAGGAAAATGAAGC TGCGGAACATATAGGCAACATTGAAACCT 64 464

CITSI21:1 ATGCTGAAACTGTATTCATACTGGAGGAGT TGCTGCTTATTGAGGGTCAACAAAGGCTG 64 880

CITSI46:1 CCTCCAAGATAGGCCCGCTTGGTAC TCCAGCAACGTACACAAGCTCACATCGGCA 66 672

CITSI20:1 CGACTCGACTATGGCGGATGCAAC CTATGAGCTTATGCTTGCGCCATGCAGC 66 638

Sequence ID
Primer features

 

Table 6. List of sequences and primers designed to perform Semi-Quantitative RT-PCR 

experiments.  

 

This to ensure the amplification of mature GST transcripts. In the remaining cases, 

anyway, the forward primers were selected straddle the 5’ UTR and the ATG initial 

codon because of high sequence variability in the 5’UTR regions (Figure 12). The same 

criterion was assumed for the selection of the forward primers of the Theta as well as 

the MAPEG class. For the amplification of Lambda and Zeta class sequences, the 

forward primers were selected immediately after the ATG initial codon (Figure 12). 

For RT-PCR reactions, first-strand cDNA was synthesized from 200 ng of total RNA in 

a volume of 25 µl containing 1x PCR Reaction mix, 0.2 µM of each target-specific 

amplification primer, 1U of SuperScript III One-Step RT-PCR with Platinum Taq. 

Reverse transcription was performed at 50°C for 30 min., followed by PCR 

amplification: denaturation at 94°C for 6 min followed by 35 cycles of denaturation at 

94°C for 30 s, annealing for 30 s, and extension at 72°C for 120 s, with a final extension 

at 72°C for 7 min, in a GeneAmp PCR system 9700 (Applied Biosystems, Foster City, 

CA, 94404). The amplified DNA samples were separated by agarose gel electrophoresis 

(1.5% agarose in 1x TAE) and stained with ethidium bromide. 
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3 RESULTS 

3.1 ParPEST efficiency 

The ParPEST pipeline analyses large amount of EST data and it is based on distributed 

computing. Jobs are scheduled according to the available resources. 

The free release of PaCE (Kalyanaraman et al., 2003) that we experienced to be 

restricted to 30.000 sequences has been replaced with the updated version provided by 

the authors, who successfully tested the software with more than 200.000 sequences 

(personnel communication). Therefore, the sole constraining factor appears to be the 

memory requirements for data storage. 

The ParPEST “analysis pipeline” has been tested on a cluster of 8 single processor 

computing nodes. Tests were performed considering different dataset dimensions 

(randomly selected ESTs) and different cluster configurations (4, 6 and 8 nodes). 

Table 7 reports the global execution time as well as the ones calculated for each of the 

main steps of the ParPEST pipeline. 

#sequences BLAST on ESTs Pre-processing Clustering Assembling BLAST on TCs TOT

250 3712 441 15 201 501 4870

500 7072 613 15 201 441 8342

1000 13643 857 30 202 1474 16206

5000 70490 2979 150 257 6806 80682

10000 14559 6029 346 328 16045 168287

250 1992 441 15 201 350 2999

500 3648 443 15 201 421 4728

1000 6911 847 30 212 903 8903

5000 35647 2834 136 268 4137 43022

10000 72525 5483 240 357 7845 86450

250 1600 441 15 201 280 2537

500 2517 443 15 202 461 3910

1000 4704 797 30 212 733 6476

5000 23819 2784 121 267 2853 29844

10000 48700 5377 240 357 7845 62519

6 nodes

8 nodes

4 nodes

 

Table 7. ParPEST execution time (in seconds) calculated considering different dataset dimensions 
as well as different cluster configurations. Execution time is enumerated for each step of the pipeline: 

1) BLAST on ESTs: functional annotation of raw EST sequences; 2) Pre-processing: vector 

contaminations cleaning and low complexity and interspersed repeat masking; 3) Clustering; 4) 

Assembling; 5) BLAST on TCs: functional annotation of consensus sequences. 6) TOT: is the ParPEST 

global execution time. 

 

As it is evident, the global execution time of the pipeline are strongly dependent on the 

MPI-BLAST analyses. As a consequence, ParPEST ‘s behaviour - in terms of 

scalability and performance - is greatly biased by BLAST searches both on single ESTs 

and on TCs. 

As expected, the larger the dataset to be analysed (>1000 ESTs), the wider the 

execution time decrease observed at the increase of the number of computing nodes 
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(Figure 13). In case of dataset of small size, execution time continue to be the same 

despite the cluster configuration is different. This is due to the overhead time that the 

software spends for the job scheduling. A better evaluation of overhead time is reported 

in figure 14 where the average running time per sequence is reported at varying the 

cluster configuration. As the number of the ESTs increases, the timing profiles flatten 

out since the average response of the system becomes more stable due to the reduction 

of the overhead effect. 

 

Figure 13. ParPEST global execution time. Execution time (in hours) is calculated considering 

different dataset dimensions and an increasing number of computing nodes (from 4 to 8). 

 
 
Figure 14. Average execution time per sequence. The average execution time (in seconds) is calculated 

considering different dataset dimensions and an increasing number of computing nodes (from 4 to 8) 
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3.2 Characterizing the tomato and the potato transcriptomes 

3.2.1 The tomato data-set 

In total, 267,906 tomato sequences were available into the dbEST session of the 

GenBank repository until January 2007. The most economically important species of 

the Lycopersicon subgenus, Solanum lycopersicum, was the source of the majority of 

the sequences having 250,552 ESTs derived from 102 cDNA libraries representing 29 

distinct cultivars. The depth of sequencing of S. lycopersicum cDNA libraries ranged 

from 1 to 30,569 EST sequences (data not shown). 

1,008 EST sequences from a crossbreeding between S. lycopersicum and S. 

pimpinellifolium (also known as the currant tomato, a species of small tomato native to 

South America) are collected. The remaining tomato species, S. pennellii and S. 

habrochaites, which are close wild relative of S. lycopersicum from South America, are 

represented by 16, 346 ESTs (data not shown). 

These libraries represent 21 distinct tissue types covering both the sexual reproductive 

and the vegetative parts of the plant (Figure 15). 

TomatEST (D’Agostino et al., 2007a) is the secondary database which collects and 

organizes as tomato primary data from dbEST as the ParPEST-processed data. 
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Figure 15. Tissue-based classification of the EST libraries. The number of EST sequences per tissue 

type is reported. 

3.2.2 Building of tomato unigene sets 

In order to generate an unigene set for each tomato species, ESTs were fed into the 

ParPEST. The first module of the procedure (see Methods 2.1.2) involves the 
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identification of over-represented ESTs and their removal from the original data-set. 

The S. lycopersicum EST collection was reduced of the 24% overall; the S. pennellii 

data-set was reduced of the 17.5% overall, while no significant decrease was observed 

in the remaining collections (Table 8). For each data-set, the number of sequences was 

further reduced because of the presence of non-native sequences such as vector 

contaminations (see Methods 2.1.3) (Table 8).  

 

SOURCE Total ESTs nr ESTs
% 

decrease
container ESTs             

(long parent sequences)

contained ESTs        
(duplicates)

vector-clean      

ESTs

S. lycopersicum 250552 190763 23,86 22873 59789 190593

S. pennellii 8346 6888 17,47 442 1458 6887

S. habrochites 8000 7868 1,65 89 132 7859

S. lycopersicum X S. 

pimpinellifolium
1008 979 2,88 19 29 977

 

Table 8. Summary of quality control of tomato EST data-sets. 

In a row, the number of EST sequences in the raw data-set; the number of non-redundant (nr) ESTs (after 

the duplicates removal module); the decrease as a percentage of the original EST data-set; the number of 

ESTs classified as container (i.e. long parent sequences); the number of ESTs classified as contained (i.e. 

duplicates or children sequences); the number of EST in clean data-set (after procedures detailed in the 

pre-processing module) are reported per each species. 

 

Then, the vector-cleaned data-sets were submitted to the clustering/assembling module 

(see Methods 2.1.4) in order to incorporate overlapping ESTs that tag the same gene in 

a single cluster (i.e. gene index) and generate a tentative consensus sequence (TC) per 

putative transcript. ESTs which did not meet the criteria to be clustered with any other 

EST in the collection were classified as singleton ESTs (sESTs). A summary of the 

composition of each gene index is shown in table 9. 

SOURCE
Gene 

indices
TCs 

Average     

TC length
sESTs

Average 

singleton 

length

Total               

putative 

transcrpts

S. lycopersicum 44759 17629 913,10 28005 446,3 45634

S. pennellii 3863 730 679,84 3140 464,07 3870

S. habrochites 4101 907 890,48 3203 547 4110

S. lycopersicum X 

S.pimpinellifolium
744 94 475,45 650 345,78 744

53467 19360 34998 54358  

Table 9. Summary of the gene index for each tomato species. 

 

Multiple TCs split from the same cluster. In particular, 658 S. lycopersicum clusters are 

assembled into multiple TCs, ranging in size from 2 to 25 members (Figure 16).Possible 

interpretations are: alternative transcripts, shared protein domains or paralogy. 
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Figure 16. Number of S. lycopersicum clusters which are split into multiple TCs. 

3.2.3 Functional annotation of the tomato unigene sets 

Comparisons against the UniProtKB/Swiss-Prot database were performed using 

BLASTx, as part of the ParPEST pipeline, in order to assign a putative function to each 

transcript (see Methods 2.1.5). 

About 73% (33,174 sequences) of the S. lycopersicum transcripts showed significant 

similarities to proteins in the UniProt database. 8,955 transcripts (27%) are similar to 

proteins which have been annotated as hypothetical, unknown or expressed proteins. 

This uninformative result is not surprising considering that a great number of sequences 

in the UniProt database represents uncharacterized proteins. BLASTx analysis for the 

remaining tomato species revealed similar trends as shown in table 10.  

% to total 

transcripts

% to annotated 

transcripts

S. lycopersicum 45634 33174 72,69 8955 27,00

S. pennellii 3870 3042 78,60 659 21,66

S. habrochites 4110 3446 83,84 683 19,82

S. lycopersicum X 

S.pimpinellifolium
744 606 78,29 57 7,36

SOURCE

Total               

putative 

transcrpts

Transcripts showing 

similarity to UniProtKB 

proteins 

Transcripts showing 

similarity to uninformative 

UniProtKB proteins 

 

Table 10. Summary of the highest scoring BLAST hits against the UniProtKB/Swiss-Prot database. 
For each tomato species, uninformative BLAST hits are counted and the percentage to annotated 

transcripts is reported. 
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In addition, a more detailed functional annotation was provided by mapping transcripts 

to the GO hierarchy (see Methods 2.1.6). The Gene Ontology provides a controlled 

vocabulary to describe gene products. It is organized into three ontology areas which 

are considered independent from each other: molecular function, biological process and 

cellular component. For this reason, multiple gene ontology term assignments are 

possible. In total, 13,361 tomato transcripts are associated to one or more ontology 

terms. Thus, 312,920 assignments were made to the molecular function, 213,834 to the 

biological process and finally 157, 326 to the cellular component class. To give a broad 

overview of the ontology content without the detail of the specific fine grained terms, 

the entire set of the ontologies was mapped onto the plant GO slims terms. 

The GO slim assignments for the four tomato species are shown in figure 17. 

 
Figure 17. Assignment of Gene Ontology terms to tomato unique transcripts. Plant GOSlim terms 

were assigned to the four tomato species in the 3 GO indicated areas. SOLLP: S. lycopersicum X S. 

pimpinellifolium; SOLHA: S. habrochaites; SOLPN: S. pennellii; SOLLC: S. lycopersicum. 
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In the molecular function area, the largest functional categories are molecular function 

(28.5-31%), catalytic activity (15.5-19.5%), binding (14-15.5%), transferase (5-5.5%) 

and hydrolase activity (4.5-5.25%), while the remaining categories are less represented. 

Considering the biological process area, the vast majority of the GO assignments 

correspond to the more generic physiological process (18%), biological process (18-

19%), cellular process (15-16.4%) and metabolism (12.5-15.75%) categories. A large 

functional category is the protein metabolism (4.5-6.5%) too. The 2% of the GO 

annotations describes responses to biotic or abiotic stimula and to stress. This is not 

surprising since a division of the collected EST was derived from tissues/libraries 

responding to plant pathogen challenge or salt stressed. 

Finally, if the cellular component, intracellular and cell categories are neglected, the 

remaining assignments for the cellular component area were to the nucleus (1.5-3.5%), 

cytoplasm (12-15%), mitochondrion (4-5.5%), plastid (3.5-5%) and membrane (5-

6.5%). 

3.2.4 The potato data-set 

In total, 234,557 potato sequences are recovered from dbEST (release January 2007) to 

be processed. The most of the collected sequences are from Solanum tuberosum, which 

is the world's most widely grown tuber crop, and the fourth largest food crop in terms of 

fresh produce after rice, wheat and maize. They amount to 226,805 ESTs which are split 

into 68 cDNA libraries representing 18 cultivars. The depth of sequencing of S. 

tuberosum cDNA libraries ranged from 1 to 20,758. All the libraries represent 29 tissue 

types. Of course the more represented tissue is the tuber (∼ 25% of the whole 

collection). Indeed the tissue sources used for library construction and sequencing 

largely reflected the various agronomic usages and research foci of the potato species 

(Figure 18). 

The remaining 7,752 ESTs are from Solanum chacoense a wild species related to the 

cultivated potato (i.e. Solanum tuberosum). This species is indigenous to northern 

Argentina and the surrounding areas. It is of interest to plant breeders because some 

individuals produce foliar-specific leptine glycoalkaloids which seem to confer 

resistance to the Colorado potato beetle (Lorenzen et al., 2001). 

All the processed potato EST sequences are compiled into the secondary database 

PotatEST (http://biosrv.cab.unina.it/potatestdb). 
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Figure 18. Tissue-based classification of the potato EST libraries. The number of EST sequences per 

tissue type is reported. 

 

3.2.5 Building of potato unigene sets 

Each EST collection was independently subjected to ParPEST. The first module of the 

analysis pipeline (see Methods 2.1.2), which has the job of identifying and removing 

over-represented ESTs from the original data-set, produced the results summarized in 

table 11. The S. tuberosum EST collection was reduced of the ∼ 9% overall, while no 

significant decrease was observed in the S. chacoense collection (Table 11). The 

number of sequences in each data-set was further reduced by performing the vector 

cleaning step of the pre-processing module (see Methods 2.1.3) (Table 11).  

 

 

SOURCE Total ESTs nr ESTs
% 

decrease
container ESTs             

(long parent sequences)

contained ESTs        
(duplicates)

vector-clean      

ESTs

S. tuberosum 226805 206696 8,87 14642 20109 206462

S. chacoense 7752 7750 0,03 2 2 7651  

Table 11. Summary of quality control of potato EST data-sets. 

In a row, the number of EST sequences in the raw data-set; the number of non-redundant (nr) ESTs (after 

the duplicates removal module); the decrease as a percentage of the original EST data-set; the number of 

ESTs classified as container (i.e. long parent sequences); the number of ESTs classified as contained (i.e. 

duplicates or children sequences); the number of EST in clean data-set (after procedures detailed in the 

pre-processing module) are reported per each species. 

 

Then, the vector-cleaned data-sets were fed to the clustering/assembling module (see 

Methods 2.1.4) in order to incorporate fragmented copies (i.e. ESTs) of the same gene 

in a single cluster (i.e. gene index) and generate a tentative consensus sequence (TC) 

per putative transcript. A summary of the composition of each gene index is shown in 

table 12. 
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SOURCE
Gene 

indices
TCs 

Average     

TC length
sESTs

Average 

singleton 

length

Total               

putative 

transcrpts

S. tuberosum 62752 19732 962,47 44138 565,34 63870

S. chacoense 7192 306 762,01 6886 819,1 7192

69944 20038 51024 71062  

Table 12. Summary of the gene index for each potato species. 

 

Multiple TCs are assembled from the same cluster as a consequence of alternative 

transcription, shared protein domains or paralogy. In particular, 903 S. tuberosum 

clusters are split into multiple TCs ranging in size from 2 to 13 members (Figure 19). 

 

Figure 19. Number of S. tuberosum clusters which are split into multiple TCs. 

3.2.6 Functional annotation of the potato unigene sets 

The functional annotation module (see Methods 2.1.5 and 2.1.6),which is part of the 

ParPEST pipeline, assigned a putative function to each transcript. About 70% (44,547 

sequences) of the S. tuberosum transcripts showed significant similarities to proteins in 

the UniProtKB/Swiss-Prot database. 11,392 transcripts (25%) are similar to proteins 

which have been annotated as hypothetical, unknown or expressed proteins. As already 

mentioned in the paragraph 3.2.3, these uninformative results are not surprising but 

highlight the still limited information available in the databases. 

Furthermore, functional annotation analysis for the wild potato species S. chacoense 

revealed similar trends as shown in table 13.  
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% to total 

transcripts

% to annotated 

transcripts

S. tuberosum 63870 44547 69,75 11392 25,57

S. chacoense 7192 5603 77,91 1274 22,74

SOURCE

Total               

putative 

transcrpts

Transcripts showing 

similarity to UniProtKB 

proteins 

Transcripts showing 

similarity to uninformative 

UniProtKB proteins 

 

Table 13. Summary of the highest scoring BLAST hits against the UniProtKB/Swiss-Prot database. 
For both potato species, uninformative BLAST hits are counted and the percentage to annotated 

transcripts is reported.  

 

In addition, in order to enhance the annotations, the biological functions associated to 

each transcript are converted into Plant GO slims terms (see Methods 2.1.6). 

GO assignments for both potato species are shown in figure 20. 

Considering the molecular function area, the largest functional categories, as already 

observed in case of the tomato GO assignments, are molecular function (29%), catalytic 

activity (16%), binding (10 and 15% respectively), transferase (5%) and hydrolase 

activity (5.3 and 4.3%). Moreover the nucleic acid binding (6%) and the nucleotide 

binding (6%) categories are also significantly represented  

Also in the case of the biological process area the vast majority of the GO assignments 

reproduces the tomato behaviour. Therefore, physiological process (18%), biological 

process (18.4%), cellular process (15.7%), metabolism (14%) and protein metabolism 

(5-6%) are the larger functional categories. A similar trend for potato GO cellular 

component assignments is observed with respect to the tomato ones. 
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Figure 20. Assignment of Gene Ontology terms to potato unique transcripts. Plant GOSlim terms 

were assigned to both potato species in the 3 indicated GO areas. 

SOLTU: S. tuberosum; SOLCH: S. chacoense. 
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3.3 EST survey of other Solanaceae transcriptomes 

By querying dbEST, the most copious Solanaceae EST collections are those from 

tomato and potato. This is due to the wide interest for tomato (for fruit production) and 

potato (for tuber) with regards to cultivation for food consumption. 

However, thousands of EST sequences for other Solanaceae species are deposited in the 

public database dbEST. We decided to gather the most representative collections and, 

then, to build, by performing ParPEST, a catalogue of preliminary annotated unique 

transcripts (i.e. gene indices) per each species. Table 14 resumes the composition of 

each gene indices. The EST sequence themselves, as well as the gene indices we built, 

are a valuable resource for gene discovery along tomato DNA stretches, whose 

sequencing is currently underway, and for the study of the Solanaceae family by means 

of comparative approaches. 

 

family genus species total EST nr ESTs
gene 

indices
TC  sEST

total 

transcripts

TOBAC 74940 67745 37845 7529 30578 38107

NICBE 27010 24784 9420 3206 6315 9521

NICLS 12448 11749 6785 958 5840 6798

NICSY 8580 8425 7534 512 7023 7535

NICAT 329 324 312 11 301 312

CAPAN 31089 28664 15703 3474 12262 15736

CAPCH 372 372 343 11 332 343

P
e
tu
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PETHY 10670 10336 7004 1166 5842 7008

COFCA 46907 38308 16121 4494 11713 16207

COFAR 1071 1059 1007 42 965 1007
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Table 14. Summary of gene indices of Nicotiana, Capsicum, Petunia and Coffea species. 

TOBAC: Nicotiana tabacum; NICBE: Nicotiana benthamiana; NICLS: Nicotiana langsdorffii x 

Nicotiana sanderae; NICSY: Nicotiana sylvestris; NICAT: Nicotiana attenuata; PETHY: Petunia x 

hybrida; CAPAN: Capsicum annuum; CAPCH: Capsicum chinense; COFCA: Coffea canephora; 

COFAR: Coffea arabica; nr EST: non-redundant ESTs. It is the number of EST sequences in the 

collection after the removal of over-represented EST; gene indices are created by grouping overlapping 

EST sequences into clusters. Each cluster corresponds to an unique gene. TC: tentative consensus; TCs 

are generated from multiple sequence alignments of ESTs (assembling process). sEST: singleton EST. 

The total transcripts are created by combining the TCs and sESTs. 
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3.4 Gene hunting: ESTs and gene model building 

The use of huge amount of ESTs to facilitate gene finding in genomic sequence is 

challenging. Several efforts are known to identify gene structure in long stretches of 

genomic sequences (Jiang and Jacob, 1998; Schlueter et al., 2003). In an effort to 

produce a reliable and considerable collection of gene models, we have developed 

GeneModelEST (D’Agostino et al., 2007b) a software that supports the process of gene 

model building by aligning source-native or non-native ESTs and TCs to genome 

sequences (see Methods 2.3.3). The definition of a good quality and representative data 

set of gene models is one of the tasks of the international Tomato Annotation Group 

(iTAG) which we are part of, and it is a preliminary requirement for the training of ab 

initio gene predictors for tomato. Tomato and potato ESTs/TCs mapped onto the 493 

BAC (Bacterial Artificial Chromosome) sequences, released by the Tomato Genome 

Sequencing Consortium up to date (November 2007), are considered. 

In figure 21 we report the number of TCs per each species that GeneModelEST 

classified as optimal or acceptable, and that have been selected as candidate gene 

models (see Methods 2.3.3). Different colours are used in the figure to discriminate 

distinct functional classes as they are determined as a consequence of comparisons 

between TCs and a protein database (see Methods 2.3.3). Only the candidate gene 

models which nearly cover the complete protein (green and yellow boxes) are 

considered “reliable” since they permit to describe the gene structure in a trustworthy 

way. The actual release accounts to 482 reliable gene models from native and non-

native sources. 

 
 
Figure 21. The bar chart describing the number of gene models per each species. Different colours 

are used to discriminate the functional classes which gene models are grouped into. 
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3.5 Arabidopsis proteome information for interpreting sequence 

conservation and divergence between tomato and potato 

To gain an overall insight into how similar the S. lycopersicum and S. tuberosum 

transcriptomes are and to begin to investigate the extent to which the S. lycopersicum 

and S. tuberosum transcriptomes overlap, the tomato and potato unique transcripts were 

compared. A recent report of sequence conservation within the Solanaceae family 

(Ronning et al., 2003; Rensink et al., 2005), revealed high degree of sequence 

conservation between tomato and potato. The 78% of the tomato sequences had 

nucleotide sequence similarity with a sequence in the potato gene index, using a 

BLAST threshold of significance of e
-10

. 

We decided to go beyond a pair-wise sequence comparison strategy, by applying an 

Arabidopsis-based gene and gene family annotation. 

The classification schema proposed in figure 22 is useful to build a backbone for 

Solanaceae comparative genomics studies. This approach permitted the tomato and 

potato transcriptomes to be compared to a reference plant species and to identify 

putative ortholog sequences in both of the Solanaceae species. 

The protein complement of Arabidopsis thaliana (30,482 proteins) annotated by the 

TIGR was analysed to cluster related protein sequences according to their biological 

function(s). 

 

Figure 22. The Arabidopsis-based classification schema used as backbone for Solanaceae 

comparative genomics analysis. 

 

The 30,482 proteins are grouped into 6,248 functional classes ranging from 1 to 547 

protein members. The “Unknown protein” class, which amounts to a total of 12,873 

proteins, is considered apart. 
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In addition, for a sub-group of these proteins, we can refine the functional annotation by 

exploiting the superfamily/family classification available at the TAIR (Rhee et al., 

2003). 

A nodal point, we ran against, was the redundancy of gene families at the TAIR due to 

the fact that researchers are independently curating specific gene family data. As a 

consequence, a manual inspection of the TAIR gene families is needed and the original 

996 gene families were reduced to 895 ones. 

As an example we report the case of WRKY trascription factor superfamily. On one 

hand, 74 members split in 8 distinct families have been deposited, on the other hand 72 

members belonging to the same family have been submitted. As ground rule, we 

decided to discard the less informative classification. 

Initially BLASTx searches (see Methods 2.4) were performed to identify tomato as well 

as potato TCs with significant sequence similarity to the Arabidopsis protein 

complement. The analysis was restricted to TC sequences, since both the sequence 

quality and possibly dubious origin (intronic, chimeric or contaminant) of singletons are 

impossible to assess. Therefore the TCs represent more stable group of sequences than 

the singletons. 

The purpose of this large-scale sequence comparison analysis is to support an 

immediate identification of proteins or classes of proteins (grouped according to their 

biological function) which are common among the plant species considered, or, on the 

other hand, to estimate the magnitude of protein divergence among the same species. 

We are well aware that this is not an exhaustive strategy, since the limiting factor is how 

much of the tomato as well as of the potato transcriptome has been sampled by the EST-

based analysis. 

15,807 (89.6%) tomato TCs are mapped onto the Arabidopsis proteome while just 

4,331(24.5%) have correspondences to proteins classified into families. On the other 

hand, 16,924 (85.75%) potato TCs match Arabidopsis proteins, a part of them 

consisting of 4,593 (23.3%) sequences is mapped onto Arabidopsis protein families. 

However, to summarize thousands of BLAST comparisons we propose the visualization 

in figure 23. The figure is made up of 14 distinct panels, each of them representing the 

set of functional classes which are constituted by the exact number or a range of protein 

members indicated at the base of each panel. A panel can be viewed as an horizontal 

multiple bar histogram whose height is logarithmic-scaled and is proportional to the 

number of functional classes. 
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Figure 23. Summary of the large-scale sequence similarity analysis performed by comparing 

tomato and potato TCs against the Arabidopsis protein complement. 
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Each bar represents a functional class and is scaled to 100%. Each bar can be split at 

most into 4 segments which are coloured in different ways. Each coloured segment in a 

bar represents one of the four different types of BLAST results. The colour codes are 

the following: all the Arabidopsis proteins which match neither tomato nor potato TCs 

are indicated in blue; Arabidopsis proteins which match only tomato TCs are in red, 

while those Arabidopsis proteins which match only potato TCs are in green; in yellow 

are those Arabidopsis proteins which match both tomato and potato TCs. 

The proposed plot show possible specificity within a functional class (i.e. bar). As an 

example, one-colour bars are representing functional classes which are identifying 

100% correspondence to a given colour code. The overall view in figure 23 is helpful 

for investigators interested in specific protein functionalities. 

In order to support the plant community, we set up a Web search engine, which allows 

users to browse the Arabidopsis-based annotations of the tomato and the potato 

transcriptomes (Figure 24). This work is still underway and improvements are still 

needed. However, it provides a quick route to decipher the function of tomato and 

potato protein products and to identify ortholog sequences. 

 

Figure 24. Snapshot of the search engine we developed to browse the results obtained by comparing 
tomato and potato transcriptomes to the model plant Arabidopsis. The search by using the key word 

“MYB” resulted into 158 A. thaliana references. In a row are shown the protein RefSeq accession 

number; the AGI (Arabidopsis Genome Initiative) gene model ID; the TAIR superfamily and family 

which the protein has been classified into; the TIGR functional class, the list of the tomato and potato 

unique transcripts (both TCs and sESTs) matching the Arabidopsis protein. 

 

7,417 Arabidopsis proteins are also annotated into TAIR families as well as functional 

groups. This kind of classification-driven annotation is critical for a preliminary 
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organization of tomato and potato transcripts into protein families. To this end BLASTx 

searches (see Methods 2.4) were performed to associate tomato and potato TCs to those 

Arabidopsis proteins which have already been classified into families. Also in this case, 

it is needed to fall back upon a user-friendly graphical visualization in order to make 

sense of thousands of BLAST results. We thought that an easy way to represent our 

results is a rooted graph (Figure 25). Each small black node in the graph represents a 

superfamily which is, in its turn, connected to one or more nodes representing the 

protein families. The size of each family node is proportional to the number of proteins 

in the family, while the chromatic tones encodes the results of BLAST comparisons. So 

in green are those families whose protein members match mainly potato TCs; in yellow 

are those families whose protein members match fairly potato and tomato TCs; in red 

are those families whose protein members match mainly tomato TCs. Finally different 

black colour tones are used to identify those Arabidopsis families whose protein 

members do not match neither tomato nor potato TCs. This representation, though 

immediate, does not provide the fine grained protein terms. Therefore the interpretation 

of the chromatic scale, which passes from green through yellow to red, is referred to a 

protein family as a whole. 

 

Figure 25. The rooted graph shows the Arabidopsis protein superfamily/family organization. Close 

to some of the external clouds the name of the superfamilies are indicated. The cloud “NULL” groups all 

the families not compiled into any superfamily. Small black nodes corresponding to superfamilies while 

the remaining nodes, whose size is variable and proportional to the number of proteins in the family, are 

coloured according to a chromatic scale, which passes from green through yellow to red. The 

interpretation of colours is strictly linked to the results of the comparisons. 
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All the tomato and potato tentative consensus sequences, which did not match 

Arabidopsis proteins, were filtered out and were used to perform an all-against-all 

comparison. In this step of the analysis we considered also the set of tomato and potato 

singleton ESTs with no match against the Arabidopsis proteins. 

Results are summarized in table 15. 

VS

% aligned onto 

498 tomato 

BACs

sESTs 1714 13.77

TCs 534 11.24

sESTs 192 5.73

TCs 118 9.32

sESTs 120 16.67

TCs 22 9.09

same UniProt sbjct 165

different  UniProt sbjct 82

same UniProt sbjct 63

different  UniProt sbjct 73

sESTs 391 14.58

TCs 227 19.82

sESTs 31 13.64

TCs 22 16.13

sESTs 35 22.86

TCs 14 28.57

same UniProt sbjct 57

different  UniProt sbjct 30

same UniProt sbjct 53

different  UniProt sbjct 21

87

74

142

383

618

sESTs

24.32

15.44

17.41

3083

881

2558

525

no match found vs 

UniProt

no match found vs 

UniProt

136

match found vs 

UniProt

671

210

53

no match found vs 

UniProt

match found vs 

UniProt

match found vs 

UniProt

sESTs

TCs

no match found vs 

UniProt

19.54

49

161

247

TCs

sESTs

match found vs 

UniProt

no match found 

vs UniProt

TOMATO

TCs

match found vs 

UniProt

POTATO

no match found 

vs UniProt match found vs 

UniProt

2248

310

 

Table 15. Summary of the results obtained by performing the tomato against potato comparison. 
The tomato as well as the potato collections are made up of both TCs and sESTs (singletons) and are 

cleaned out from those sequences that have been mapped onto the Arabidopsis proteome. Each set of 

sequences (i.e. TCs and sESTs) are split into different sub-groups according to the annotation type 

categories provided by both TomatEST and PotatEST databases. 

 

The 9970 tomato sequences, that have neither similarity in Arabidopsis databases nor a 

potato counterparts, are made up of 1112 TCs and 8858 sESTs. 

On the other hand, the 19826 potato sequences, that did not match any Arabidopsis 

proteins or did not have tomato counterparts, are made up of 2808 potato TCs and 

17018 sESTs. Their function assignments are determined by tacking advantage of the 

sequence annotation provided by both TomatEST and PotatEST databases. Functional 

annotations are grouped into 10 arbitrary categories of data sources as indicated in 

figure 25. The reason of still finding Arabidopsis matches is because the EST 

annotation procedure, which I am referring to, was carried out by BLASTx with an e-

value cut-off ≤ 10
-3 

(Methods 2.1.5). However, in case of tomato TCs and sESTs 

matching Arabidopsis proteins, the most of them are hypothetical proteins, transposase 

or retroelements polyproteins (data not shown). 

As evident from the panel A of the figure 26, the TCs most represented (85%) are those 

that have no function assigned (i.e. NULL category). Among these 147 have been 

successfully aligned onto the 498 available tomato BACs. 
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The same trend is observed if tomato sESTs are considered. Indeed, the more sizeable 

slice of the cake graph is referred to sESTs that have no function assigned (87%) 

(Figure 26B). However, at least 914 out of 7582 are certainly no sequencing artefacts or 

chimeras since they were fully splice-aligned along the tomato genome sequences 

(Methods 2.3.2). 

Comparable results are obtained if the 19826 potato sequences are taking into account. 

Once more the most represented category, evaluating both TC (Figure 26C) and sEST 

(Figure 26D) sub-sets, is the NULL one. Also in this case, 64 TCs and 224 sESTs with 

no function assigned have been fully mapped onto tomato genome sequences. 

This facet provides insight into how still poorly annotated are the protein databases and 

how much important is the integration of data in order to identify molecular information 

and to focus on specific genes for which a reliable annotation is still needed. 

 

Figure 26. The figure shows four cake graphs, each of them summarizes the functional annotation 
results with respect to the data source of origin. A and C concern tomato and potato TCs respectively. 

Instead, the B and D panels are about sESTs.  
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3.6 ISOL@: an Italian SOLAnaceae genomics resource 

Our effort of sampling and analysing the Solanaceae transcriptomes as well as of 

providing a structural and functional annotation of the tomato genome, drove us to 

develop the computational platform ISOL@ (Italian SOLAnaceae genomics resource; 

Chiusano et al., 2007). ISOL@ is originated from the idea to develop a suitable 

computational platform to gather, converge and integrate the overwhelming amounts of 

‘-omics’ data generated worldwide and useful to address key questions risen by the 

vision of the international Solanaceae Genomics Project. These data (genome 

sequences; information on gene expression; information on the cell metabolic status; 

and other…) represent multiple aspects of a biological system and need to be 

investigated for understanding the biological system as a whole, shedding light on the 

mechanisms which underpin the system functionality. To this end we conceived ISOL@ 

as a multi-level computational environment where the multi-level structure summarizes 

the semantics of the biological data entities (Figure 27). 

ISOL@ currently consists of two main levels: the genome and the expression levels. 

The cornerstone of the genome level is represented by the S. lycopersicum genome draft 

sequences produced by the International Tomato Genome Sequencing Consortium. 

Instead, the basic element of the expression level is the transcriptome information from 

different Solanaceae species, in the form of species-specific comprehensive collections 

of expressed sequence tags. Each level can be independently accessed through specific 

Web applications which allow user-driven data investigation (Figure 28). The cross-talk 

between the genome and the expression level is based on the sharing of data sources and 

on tools classified as “basic” or “subsidiary”. These tools enhance data quality, extract 

information content from the levels' under-parts and aim to produce valued-added 

biological knowledge. The existing multilevel environment has been designed to be 

extended to the proteome and metabolome levels (Figure 28), through pre-defined entry 

points, as soon as results in standard formats will be provided to the SOL community. 

ISOL@ is daily accessed by scientists from different countries (Figure 29) because it 

provides a preliminary annotation of the tomato genome while awaiting for the official 

annotation by the international Tomato Annotation Group. Furthermore, the platform 

collects and distributes the Solanaceae transcripts, provides their functional annotation 

and classification, allows EST-based investigations on genome functionalities and 

supports expression pattern analysis. 
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Figure 27. ISOL@ multi-level environment.  
Data sources and tools are reported. The genome and the expression levels are respectively indicated in 

the light and dark grey backgrounds. Shared data are located in the gridded area. 

Entry points for proteome and metabolome data are shown. 
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Figure 28. Snapshot of the Web-based application to navigate through ISOL@. 
ISOLA is accessible through two different gateways. The Genome Browser gateway let the user explore 

the list of the tomato BAC sequences grouped by chromosome and visualize the tracks displayed along 

each BAC. Each track is cross-linked to other local or external resources. Cross-references to the tomato 

genome annotation pages at the SOL Genomics Network are part of the ‘genome level’ too. The 

Solanaceae EST database gateway let the user investigate Solanaceae transcriptomes as revealed by EST 

sampling. The EST database can be queried to identify functional annotations associated to a single EST 

or a TC. Cross-links to the UniProt external resource are established. In case an expressed sequence is 

associated to an enzyme function, a cross-link to the corresponding KEGG metabolic pathway(s) is 

provided. These links permit data from proteomics and metabolomics approaches to be integrated in the 

existing multi-level environment. In addition, the association of the tomato ESTs to the probes from the 

Affymetrix or from the TED database expands information concerning the ‘expression level’ and 

provides the opportunity to integrate data from expression profiling into the platform. 
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Figure 29. Number of hits on our Web server since December 2006 until November 2007. Every 

time a browser hits our Web sites it leaves a trail in our access log. The number of hits is grouped by 

country.
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3.7 Saffron genes: an EST database from saffron stigmas 

Saffron (Crocus sativus L., Iridaceae) flowers have been used as a spice and medicinal 

plant ever since the Greek-Minoan civilization. The edible part – the stigmas - are 

commonly considered the most expensive spices in the world and are the site of a 

peculiar secondary metabolism responsible for the characteristic colour and flavour of 

saffron. The characterization of the transcriptome of saffron stigmas is likely to shed 

light on several important biological aspects: the molecular basis of flavour and colour 

biogenesis in spices, the biology of the gynoecium, and the genomic organization of 

Iridaceae. For these reasons, in the frame of a collaboration with the group directed by 

Mr. Giuliano, we have undertaken the sequencing and bioinformatics characterization 

of Expressed Sequence Tags from saffron stigmas. 

3.7.1 Construction and functional annotation of saffron unigene set 

9,769 electropherograms produced by Mr. Giuliano’s team were analysed in order to 

remove low quality sequences from the 5’ and 3’ ends of EST reads (see Methods 

2.1.1). The sequences were further processed to remove vector contaminations and to 

mask low complexity and/or repeat sub-sequences (see Methods 2.1.3). This process 

reduced the original dataset to 6,603 high-quality sequences longer than 60 nucleotides. 

Only 6,202 EST fragments, whose length is more than or equal to 100 nucleotides, were 

considered for the submission to the NCBI dbEST division. They are accessible under 

the accession numbers from EX142501 to EX148702. 

The EST dataset was subjected to the ParPEST clustering/assembling module in order 

to group overlapping ESTs which tag the same gene in a single gene index. The total 

number of clusters generated are 1,893. 

1,376 clusters are made up of a single EST and are therefore classified as singletons. 

The remaining 517 clusters are made up of 5,324 ESTs, assembled into 534 distinct 

TCs (Table 16). 

N. of sequences 1376

Avg. EST length (nt) 239

N. of sequences 5324

Avg. EST length (nt) 427

N. of TCs 534

Avg. length (nt) 552

Singleton ESTs

ESTs  in TCs

TCs

 

Table 16. Assembly statistics. 
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In 11 clusters, ESTs are assembled so that multiple TCs are defined (ranging from 2 to 

6). Identification and assignment of function to each transcript was performed by the 

ParPEST annotation module. Of 1,910 transcripts, 1,158 (60.6%) have no protein 

similarities. This highlights the relevance of studying Iridaceae for the lacking of 

molecular information on this plant species. The remaining 752 (39.4%) have at least 

one significant match in the protein database. Within this latter set, 131 (6.9%) are 

described as hypothetical, unknown or expressed proteins. In this way, they are not 

confirming an effective functional role of the transcript products and consequently they 

are remarking how much still magre is the annotation of plant proteomes. The protein 

annotation can be switched to the GO terms for just 157 sequences. In many cases, 

multiple gene ontology terms could be assigned to the same sequence, resulting in 210 

assignments to the molecular function, 944 to the biological process and finally 2,192 

to the cellular component GO areas. The GO annotation were further reduced using 

plant GO-slim terms (Figure 28). In the molecular function ontology area, the most 

represented terms describe catalytic (33.3%) and hydrolase activity (20.0%) (Figure 

30A). The remaining categories are less represented. Considering the biological process 

area, the vast majority of the GO assignments corresponds to the transport category 

(~78.8%) (Figure 30B). Finally, for the cellular component area the assignments were 

mainly given to the plastid (36%), mitochondrion (33%), and cytoplasmic membrane-

bound vescicle (29%) components (Figure 30C).  

 

Figure 30. Assignments of Plant Gene Ontology terms to the Crocus putative transcripts. A. 
Molecular function; B. Biological process; C. Cellular component. 

 

All the data reported were used to construct the Saffron Genes database accessible at 

http://saffrongenes.org and published on BMC Plant Biology (D’Agostino et al., 2007c). 
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3.7.2 TCs composed of most abundant ESTs 

Analysis of EST abundance comprising a TC can provide insights with respect to gene 

expression levels occurring in the stigma tissue. Therefore to identify genes that were 

highly expressed, we detected those TCs that are composed of 20 ESTs or more. (Table 

17). The most highly expressed TC, Cl000057:2 (547 ESTs), bears homology to short 

chain dehydrogenases (PF00106.12). This protein family comprises members involved 

in hormone biosynthesis, like the ABA2 gene of Arabidopsis which catalyzes the 

conversion of xanthoxin into ABA aldehyde (Gonzalez-Guzman et al., 2002), or in 

sexual organ identity, like the TASSELSEED2 (TS2) gene of maize (Figure 31). TS2 is 

expressed in pistil primordia cells of maize, where it activates a cell death process 

eliminating these cells from male reproductive organs (Calderon-Urrea and Dellaporta, 

1999). 

TC # ESTs length (nt) BLASTx annotation e-value

Cl000057:2 547 1242 Q7XL00_ORYSA -OJ000315_02.17 protein 0

Cl000837:2 122 1528 Q8VZY2_MUSAC -Cytochrome P450-1 0

Cl000799:2 114 711 - -

Cl001953:2 109 755 O80821_ARATH -Hypothetical protein At2g41470 1,00E-16

Cl001114:3 104 770 HSP13_ARATH -18.2 kDa class I heat shock protein (HSP 18.2) 1,00E-32

Cl000299:1 104 570 Q9XHD5_IPOBA -B12D protein 2,00E-32

Cl000870:1 94 592 Q6ZX06_ORYSA -Lipid transfer protein 3,00E-26

Cl001582:1 61 600 - -

Cl000209:1 61 1071 Q5G1M8_9POTV -Polyprotein (Fragment) 0

Cl001173:1 56 785 Q6H452_ORYSA -Putative monoglyceride lipase 0

Cl000220:1 55 831 Q94HY3_ORYSA -Putative gamma-lyase 0

Cl000348:1 54 955 Q9AVB7_9LILI -LhMyb protein 0

Cl001319:1 47 460 Q8RVT5_PANGI -Acyl-CoA-binding protein 1,00E-35

Cl001051:1 45 665 Q8H293_ANACO -Cytochrome b5 0

Cl000246:1 45 537 - -

Cl000336:1 44 685 GPAT6_ARATH -Glycerol-3-phosphate acyltransferase 6 (EC 2.3.1.15) (AtGPAT6) 0

Cl000468:2 42 1021 Q70SZ8_9ASPA -Carboxyl methyltransferase 0

Cl000482:1 38 730 Q84P95_ORYSA -Disulfide isomerase 0

Cl000982:1 38 230 - -

Cl001040:1 37 734 Q8GZR6_LYCES -GcpE 0

Cl001329:1 36 384 Q4LEZ4_ASPOF -MADS-box transcription factor 1,00E-29

Cl001815:1 34 992 BGAL_ASPOF -Beta-galactosidase precursor (EC 3.2.1.23) (Lactase) 0

Cl000113:1 33 634 Q6VAB3_STERE -UDP-glycosyltransferase 85A8 9,00E-16

Cl000687:1 33 782 Q9XGS6_PRUDU -Cytosolic class II low molecular weight heat shock protein 0

Cl000887:1 33 802 Q9FVZ7_ORYSA -Putative steroid membrane binding protein 0

Cl001463:1 32 605 Q9FE65_ARATH -60S ribosomal protein L34, putative 0

Cl000932:1 32 974 Q652L6_ORYSA -Putative monodehydroascorbate reductase 0

Cl001812:1 30 554 Q42338_ARATH -B12D-like protein 5,00E-32

Cl001134:1 29 569 Q8W453_ARATH -Hypothetical protein (DIR1 protein) (At5g48485) 7,00E-14

Cl001906:1 28 602 Q4TES1_TETNG -Chromosome undetermined SCAF5157, whole genome shotgun sequence. 9,00E-07

Cl001988:1 25 1446 Q8VX49_WHEAT -Cytochrome P450 reductase (EC 1.6.2.4) 0

Cl001107:1 24 783 Q9SGA5_ARATH -F1C9.14 protein (At3g02070) 0

Cl001447:1 24 453 Q5VS45_ORYSA -Hypothetical protein P0425F02.23 1,00E-12

Cl000515:1 24 506 Q6ZCF3_ORYSA -Putative copper chaperone 8,00E-15

Cl000762:1 24 247 - -

Cl001114:2 23 748 HSP13_ARATH -18.2 kDa class I heat shock protein (HSP 18.2) 1,00E-32

Cl001894:1 23 312 - -

Cl000057:1 23 740 TRXH1_ARATH -Thioredoxin H-type 1 (TRX-H-1) 1,00E-36

Cl001263:1 22 667 Q9XH76_ARATH -Zinc finger protein-like (PMZ) 0

Cl001010:1 21 1066 Q8H2A7_ANACO -PFE18 protein (Fragment) 0

Cl000300:1 21 506 Q93WW3_NARPS -Metallothionein-like protein type 2 6,00E-12

Cl000057:3 21 183 - -

Cl000885:2 21 753 Q41067_PINSY -Polyubiquitin 0

Cl001397:1 20 798 Q9LSQ5_ARATH -1,4-benzoquinone reductase-like; Trp repressor binding protein-like 0

Cl001774:1 20 457 Q9SN96_ARATH -Hypothetical protein F18L15.150 (Hypothetical protein MTH12.17) 7,00E-19

Cl000185:1 20 397 Q84LB7_MALDO -Cysteine protease inhibitor cystatin (Fragment) 2,00E-12

Cl001935:1 20 673 SRP19_ARATH -Signal recognition particle 19 kDa protein (SRP19) 4,00E-38

Cl000333:1 20 418 Q7F6G0_ORYSA -Putative metallothionein-like protein 6,00E-20

Cl000594:1 20 1145 SUS1_TULGE -Sucrose synthase 1 (EC 2.4.1.13) (Sucrose-UDP glucosyltransferase 1) 0  

Table 17. Saffron TCs composed of the most redundant ESTs. 
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Biochemical studies suggest that the TS2 protein is a hydroxysteroid dehydrogenase 

(Wu et al., 2007). It will be interesting to determine the function and substrate 

specificity of the saffron Cl000057:2 product. 

 

Figure 31. ClustalW alignments of deduced protein sequences expressed in Crocus stigmas. 

 

A large number of Cytochrome P450 sequences are expressed in saffron stigmas, some 

of which at very high levels (Tables 17 and 18). Also, lipid metabolism seems to be 

very active, judging from the TCs encoding proteins involved in this process (Table 18). 

Several TCs encode putative carotenoid metabolism enzymes (Table 18): Cl000944:1 

encodes non-heme -carotene hydroxylase (PF03897), which is highly expressed in 

saffron stigmas (Castillo et al., 2005). Cl000627:1 encodes a putative 

glucosyltransferase, very similar to UGTCs2, which is able to glycosylate crocetin in 

vitro (Moraga et al., 2004) (Figure 31). Cl001532:1 and Cl001032:1 also, encode 

putative isoprenoid GTases, one of which could represent the still missing enzyme 

responsible for the glycosylation of picrocrocin. Cl001432:1 encodes a protein similar 

to plastid terminal oxidase, involved in phytoene desaturation (Carol and Kuntz, 2001), 

while EST cr36_B21 encodes a protein similar to fibrillin, which is a carotenoid-

binding protein in pepper chromoplasts (Deruere et al, 1994). Cl000468 encodes a 

carboxyl methyltransferase very similar to the one catalyzing the synthesis of bixin 

(Bouvier et al., 2003a) (Figure 31). This TC seems to encode a “short” form of the 

annatto and crocus methyltransferases from GenBank, possibly derived from alternative 

splicing (Figure 31). 



 - 67 -  

Although a methyltransferase reaction has not been described in saffron stigmas, the 

biosynthesis of bixin and that of crocin share some features in common, since both 

pigments are derived from the oxidative cleavage of a carotenoid (Giuliano et al., 2003). 

 

Transcript ID length (nt) # ESTs BLASTx annotation e-value

Cl000837:2 1528 122 Q8VZY2_MUSAC -- Cytochrome P450-1 0

Cl001988:1 1446 25 Q8VX49_WHEAT -- Cytochrome P450 reductase (EC 1.6.2.4) 0

Cl000837:3 674 17 Q8L5Q2_CICAR -- Putative cytochrome P450 monooxygenase 2,00E-27

Cl000414:1 752 5 Q9AVM1_ASPOF -- Cytochrome P450 0

Cl000150:1 406 3 Q9ATU9_LOLRI -- Putative cytochrome P450 4,00E-17

Cl000166:1 710 3 Q6EP96_ORYSA -- Putative cytochrome P450 9,00E-16

Cl001887:1 248 2 Q6H516_ORYSA -- Putative cytochrome P450 0.0004

Cl000837:1 600 2 Q8VZY2_MUSAC -- Cytochrome P450-1 3,00E-16

cr13_O11 360 1 Q8S7S6_ORYSA -- Cytochrome P450-like protein 7,00E-35

cr21_F05 448 1 Q8S7S6_ORYSA -- Cytochrome P450-like protein 1,00E-37

cr28_M16 533 1 Q6Z0U4_ORYSA -- Putative cytochrome P450 reductase 0

cr34_J15 509 1 Q8S7S6_ORYSA -- Cytochrome P450-like protein 0

Cl000870:1 592 94 Q6ZX06_ORYSA -- Lipid transfer protein 3,00E-26

Cl001173:1 785 56 Q6H452_ORYSA -Putative monoglyceride lipase 0

Cl000787:1 743 10 Q94GF2_ORYSA -- Putative phospholipase 0

Cl001992:1 637 5 Q52RN7_LEOAR -- Non-specific lipid transfer protein-like 2,00E-28

Cl001009:1 667 5 O04439_ALLPO -- 3-ketoacyl carrier protein synthase III 0

Cl001749:1 635 5 Q9NCL8_DICDI -- Phosphatidylinositol transfer protein 1 5,00E-30

Cl000344:1 704 5 O49902_NICRU -- 1-phosphatidylinositol-4,5-bisphosphate phosphodiesterase 0

Cl000816:1 677 2 Q6K7T9_ORYSA -- Peroxisomal fatty acid beta-oxidation multif. protein 0

Cl000294:1 707 2 Q84Z91_ORYSA -- Oxysterol-binding protein-like 0

Cl000741:1 734 2 STAD_ORYSA -- Acyl-(acyl-carrier-protein) desaturase, chloroplast precursor 0

cr13_F23 350 1 Q8S459_LYCES -- Putative sphingolipid delta 4 desaturase DES-1 0

cr15_P04 306 1 GPX4_MESCR -- Probable phospholipid hydroperoxide glutathione peroxidase 5,00E-16

cr27_P08 74 1 Q5N7U2_ORYSA -- Phospholipid/glycerol acyltransferase-like protein 4,00E-06

cr35_M17 437 1 GPX4_MESCR -- Probable phospholipid hydroperoxide glutathione peroxidase 1,00E-24

Cl000944:1 645 11 Q8VXP2_9ASPA -- Beta-carotene hydroxylase 4,00E-17

Cl001432:1 602 2 Q9FZ04_CAPAN -- Plastid terminal oxidase 0

Cl001532:1 420 7 GT_CITUN -- Limonoid UDP-glucosyltransferase 2,00E-06

Cl001032:1 426 2 5CD69_9MYRT -- Monoterpene glucosyltransferase 2,00E-08

Cl000627:1 611 2 69UF5_ORYSA -- Putative anthocyanin 5-O-glucosyltransferase 0

Cl000468:2 1021 42 Q70SZ8_9ASPA -- Carboxyl methyltransferase 0

Cl000468:1 767 6 70SZ8_9ASPA -- Carboxyl methyltransferase 0

cr9_J02 69 1 Q9FEC9_LYCES -- Plastid quinol oxidase (Plastid terminal oxidase) 1,00E-05

cr36_B21 706 1 PAP2_ORYSA -- Probable plastid-lipid associated protein 2, chloroplast precursor (Fibrillin-like protein 2) 0

Cl000045:1 746 14 Q9FKF4_ARATH -- Hypothetical protein At5g61670 0

Cl000348:1 955 54 Q9AVB7_9LILI -- LhMyb protein 0

Cl001329:1 384 36 Q4LEZ4_ASPOF -- MADS-box transcription factor 1,00E-29

Cl000348:2 669 6 Q70RD2_GERHY -- MYB8 protein 0

Cl000712:1 714 6 Q6Z8N9_ORYSA -- Putative AT-hook DNA-binding protein 0

Cl000359:1 593 5 O82115_ORYSA -- Zinc finger protein 5,00E-19

Cl000502:1 565 3 ULT1_ARATH -- Protein ULTRAPETALA1 4,00E-37

Cl000652:1 537 2 Q6ZG02_ORYSA -- Putative DNA-binding protein WRKY2 0

cr17_J15 567 1 Q6Q6W8_9ASPA -- Agamous MADS-box transcription factor 1a 0

cr26_B12 653 1 Q8LAP4_ARATH -- Contains similarity to MYB-related DNA-binding protein 2,00E-23

cr6_B13 312 1 Q9M7F3_MAIZE -- LIM transcription factor homolog 0

Cyt. P450

Transcription factors

Lipid metabolism

Carotenoid metabolism

 

Table 18. Expressed sequences grouped by putative function. 

 

Finally, Cl000045:1 encodes a protein highly similar to the cauliflower Or gene 

product, a plastid-associated protein with a cysteine-rich DnaJ domain. A dominant Or 

mutation induces -carotene accumulation in cauliflower inflorescences, suggesting that 

Or is somehow involved in the control of chromoplast differentiation (Lu et al., 2006).  
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Several TCs encode putative transcription factors (Table 18). The most abundantly 

expressed, Cl000348:1, encodes a Myb-like protein with high similarity to LhMyb ( 

from Lilium, GenBank accession BAB40790) Myb8 (from Gerbera (Elaoma et al., 

2003) – also showing similarity to Cl000348:2) and Myb305 (From Antirrhinium 

(Jackson et al., 1991)). All three factors are highly expressed in flowers. Also highly 

expressed is Cl001329:1, encoding a putative MADS box transcription factor. This 

protein shows high similarity to AODEF, a B-functional transcription factor from 

Asparagus expressed in stamens and inner tepals (Park et al., 2003) and to LMADS1, a 

lily protein whose ectopic expression in dominant negative form causes an ap3-like 

phenotype in Arabidopsis (Tzeng and Yang, 2001). 

Finally, several TCs - Cl000209:1 (61 ESTs) Cl000582:1 (18 ESTs) Cl001827:1 (5 

ESTs) and Cl000731(2 ESTs) - show similarity to potyviral sequences, indicating that 

the sequenced library likely derives from potyvirus-infected tissue. Potyviruses like Iris 

Mild Mosaic Virus are known to infect Crocus (Navalinskijene and Samuitiene, 2001). 

The sequences of these TCs will prove useful for diagnostic and phytosanitary purposes. 
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3.8 On the Gluthatione S-transferase gene family in Citrus sinensis 

Glutathione S -transferases (GSTs; EC 2.5.1.18) are an ancient and ubiquitous gene 

family encoding ~ 25- to 29-kD proteins that form both homodimers and heterodimers 

in vivo.  

Historically, GST enzymes were first discovered in animals in the 1960s for their 

importance in the metabolism and detoxification of drugs (Wilce and Parker, 1994). 

Their presence in plants was recognized shortly afterwards, in 1970, when a GST 

activity from maize was shown to be responsible for protecting the crop from injury by 

the chloro-S-triazine atrazine herbicide (Frear and Swanson 1970). 

Thereby, GSTs were thought as detoxification enzymes which are liable for the 

inactivation of toxic chemical compounds by catalysing their conjugation to glutathione 

(GSH). GSTs recognize not only reactive electrophilic xenobiotic molecules (i.e. drugs 

or herbicides) but also compounds that are of endogenous origin. In plants, many 

secondary metabolites are phytotoxic, even for the cells that produce them, and thereby 

the targeting to the vacuole is crucial (Martinoia et al. 1993). Anthocyanin pigments, for 

example, require GSH conjugation for transport into vacuole since their cytoplasmic 

retention is toxic to the cells and prevents the synthesis of new anthocyanins. 

This was demonstrated first in 1995 by Marrs et al. who suggested the maize gene 

Bronze-2 to be a glutathione S-tranferase involved in vacuolar transfer of anthocyanins. 

Furthermore Mueller et al. (2000) evidenced that the glutathione S-transferase AN9 

from Petunia hybrida is a flavonoid-binding protein required for efficient anthocyanin 

export into the vacuole, where it is permanently stored. 

Herein we characterized the Citrus sinensis GST gene family by screening a large 

collection of expressed sequence tags. We focused our attention on Citrus sinensis (L. 

Osbeck) glutathione S-transferase because of the role of this gene family on 

anthocyanins vacuolarization. The accumulation of anthocyanins confers to blood 

oranges (cultivar Tarocco, Moro, Sanguinello) the typical dark red colour (the most 

important characteristic of Sicilian and Italian oranges), softness and eyes good quality. 

In addition to these characteristics, the presence of anthocyanins in orange fruits have a 

deep impact on human health since these molecules act as scavenger of free radicals and 

prevents inflammatory and cardiovascular diseases. 
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3.8.1 In silico identification and tissue expression profiling of GST 

encoding transcripts 

Different members of the C. sinensis GST gene family were identified by the in silico 

screening procedure described in Methods 2.5. Only 25 GST sequences, which we 

classified as full length mRNAs (see Methods 2.5.3 and Figure 12) were analysed by 

Semi-Quantitative RT-PCR experiments. First of all these experiments are valuable 

because they let the in silico defined GST transcripts be confirmed. In addition, they 

point out other findings such as differences in the gene expression levels between the 

blood (Moro nucellare) and the common (Blonde cadenera) orange and tissue specific 

expression profiles. These findings may be relevant for the comprehension and the 

characterization of phenotype differences between the orange cultivars that we are 

investigating on. 

Tissue expression profiling was performed on 6 different tissues. Furthermore, DNA 

band patterns are obtained by analysing as a pigmented (blood) as a non-pigmented 

(blond) orange cultivars (Figure 32, 33 and 34). This in order to point out differences in 

the DNA band patterns with respect to the different tissue analysed, as well as 

substantial changes in gene expression level due to different genotypes we investigated. 

In the RT- PCR panel which refers to the PCR amplification performed on the Phi class 

GST sequences, we point out that the CITSI29:1 seems to be a tissue specific GST 

because DNA band patterns are evident exclusively in the ‘young leaf’ and ‘adult leaf’ 

lanes (red box in Figure 32). However, this evidence contrasts whit the one inferred by 

evaluating EST-based tissue information. Indeed, the sequence CITSI29:1 is generated 

by assembling 4 ESTs (2 from flavedo, 1 from flower and 1 from callus) (see Methods 

2.5.1 Table 5). In addition a consistent difference in the gene expression levels in the 

young leaf tissue is observed between the 2 genotypes. 

Remarkable difference in gene expression levels between the two genotypes are also 

observed in the lane ‘flesh’ concerning the sequence CITSI02:1+CITSI00:1. This gene 

has a higher expression in the Moro Nucellare cultivar as shown in the figure 32 (green 

box).  



 - 71 -  

 

 

Figure 32. Tissue expression profile analysis on Phi class GST sequences. 
SemiQ RT-PCR experiments are performed considering the 6 following tissues: fruit tissues (albedo, 

flavedo and flesh) in ripening time, young and adult leaf and ovaries. Two different orange genotypes are 

considered: Blond Cadenera (BC) and Moro Nucellare (MN). PCR amplifications are reported at cycle 

20, 25, 30 and 35. 

 

In the panel that reports the PCR amplification performed on the Tau class GST 

sequences (Figure 33), it is manifest an over-expression of the sequence CITSI51:1 in 

the genotype Blond Cadenera and in all the tissue considered apart the young leaf tissue 

where no amplification occurred in both of the genotypes (red box). In addition, in some 

cases, double bands can be observed in the lane “ovaries” (Figure 33 blue arrows). This 

is not surprising if we take into account the ovary as an organ rather than a tissue. 

Furthermore, some bands in the “ovaries” lanes are of a size longer than the expected 

ones. It is likely that these bands can be the results of PCR amplifications of intron 
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retaining mRNAs whose expression can be regulated during the development or in a 

tissue-specific manner (ovaries comprise multiple tissues). 

 

 

 

Figure 33. Tissue expression profile analysis on Tau class GST sequences. 
SemiQ RT-PCR experiments are performed considering the 6 following tissues: fruit tissues (albedo, 

flavedo and flesh) in ripening time, young and adult leaf and ovaries. Two different orange genotypes are 

considered: Blond Cadenera (BC) and Moro Nucellare (MN). PCR amplifications are reported at cycle 

20, 25, 30 and 35. 

 

The PCR amplification results concerning the remaining GST sequences are reported in 

figure 34. Multiple bands are observed for the sequence zeta (red box) because of no 

specific primer selection. 
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Figure 34. Tissue expression profile analysis on Theta, Zeta, Lambda, MAPEG class GST 

sequences. 
SemiQ RT-PCR experiments are performed considering the 6 following tissues: fruit tissues (albedo, 

flavedo and flesh) in ripening time, young and adult leaf and ovaries. Two different orange genotypes are 

considered: Blond Cadenera (BC) and Moro Nucellare (MN). PCR amplifications are reported at cycle 

20, 25, 30 and 35. 
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4 DISCUSSION 

4.1 The significance of EST in the 'omics' era 

Shotgun sequencing of genomes through Expressed Sequence Tags has proved to be a 

rapid method of identifying a significant proportion of genes of a target organism. EST 

sequencing, on the one hand certainly avoids the biggest problems associated with 

genome size and the accompanying repetitiveness, on the other hand does not yield 

sequences for all of the expressed genes of a target organism. Some genes, in fact, may 

not be expressed under the sampled conditions, others may be expressed at very low 

levels and missed through the random sampling that underlies the library design and the 

sequencing strategy. However the creation of EST libraries from a range of conditions 

such as different tissues, developmental stages or environmental exposures, supports a 

closer examination of the biology of the species under investigation. 

As the ability of scientific investigations to produce large amounts of "EST sequence 

data" has become mainstream, the need to handle, gather, store, process and analyse 

them has made the role of bioinformatics essential for biological or plant science 

projects. 

The notion of an “analysis pipeline” for processing and analysing large batches of EST 

sequences has become familiar. Appropriate individual bioinformatics tools and 

pipelines pertaining to EST analysis have been built and actively used 

(http://biolinfo.org/EST/). 

During the first year of my PhD program, the “analysis pipeline” ParPEST (D’Agostino 

et al., 2005) was implemented to integrate all the consecutive steps of the analysis (i.e. 

EST pre-processing, clustering, assembling, consensus generation and tools for DNA 

and protein annotation) into a single procedure. It has a modular organization and each 

module corresponds to each step of the analysis. 

ParPEST have been designed in a parallel environment because parallel computing is 

effective in reducing the execution time of the different steps of the EST analysis. Run-

time efficiency, in fact, is a fundamental task considering that EST data are in 

continuous upgrading. 

High-throughput analyses of ESTs often encounter data management challenges and the 

presentation of these data to the scientific community can be rather challenging. The 

first logical step is to define a database architecture in order to properly organize the 

biological data entities and relationships among biological data sources. Then, 

immediate and clear ways of visual representation of data are needed for the 
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dissemination of the information produced to the scientific community. To this end, the 

design and the building of a database-driven Web applications is strongly required. 

To accomplish these requirements, I designed an entity-relationship diagram, a data 

modeling tool that is worthwhile in organizing the data into entities and in defining their 

relationships, in whatever EST project. It expresses the overall logical structure of each 

dedicated database that we built for data storage. In addition, a browsing data system 

has been intended to support non-expert users. The search engine underpins on Web-

based application and the results returned for each query are displayed in a user-friendly 

manner. Different systems of classification are used to describe features and functions 

and categorize all information referred to each expressed sequence. HTML-based tree 

menus are the facilities we selected for graphical listing of enzymes as well as of 

metabolic pathways associated to each expressed sequence. Furthermore, we 

implemented the “on-the-fly” mapping of specific data, as they issued from the user-

selected criteria, onto metabolic pathways which can be accessed as GIF images. 

Bioinformatics analysis of Solanaceae sequence data and the leveraging of these data 

are the main goals of my PhD program. The large-scale production of ESTs from 

different Solanaceae species goes with the International Tomato Genome Sequencing 

Project. Since, complete sequencing of the tomato genome is ongoing, an affordable 

solution to study the Solanaceae biology is to develop Expressed Sequence Tag 

databases which provide a wealth of information in a relatively short time. The long 

term goal is to establish a well-characterized, non-redundant EST resource for the 

Solanaceae genomics community. 

For this reason, during the three years of my PhD program, Expressed Sequence Tag 

databases for different Solanaceae species have been built. They will serve as the most 

abundant source of new coding sequences available today as well as a source of genes 

of value to agriculture. Furthermore they will support the study of Solanaceae biology 

and certainly provide a consistent resource for gene discovery, genome annotation, gene 

expression studies and comparative genomics. All EST sequence data from multiple 

tomato species are compiled in the TomatEST database (D’Agostino et al., 2007a). 

They are powerful tools in the hunting for known genes and can be used to help the 

identification of unknown genes and to map their positions within the tomato genome 

sequences. This facilitates the structural and the functional annotation of the tomato 

genome sequences, the international Tomato Genome Sequencing Consortium is 

releasing. 
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As members of the international Tomato Annotation Group (iTAG) we will provide the 

public with a high quality and homogeneous annotation of the whole tomato genome. 

We are committed, within the tomato genome annotation pipeline, to generate EST-to-

genome alignments. We included in the analysis ESTs of non-native origin (i.e. EST 

data compiled in the PotatEST database and other Solanaceae ESTs) because they will 

improve the accuracy of gene annotation (genes, which lack source-native EST 

evidence, should remain otherwise undiscovered) and will help to identify orthologs 

conserved among different species. 

Tracks showing EST/TC-to-genome alignments are released to the scientific community 

through the Gbrowse Web application (Stein et al., 2002) at 

http://biosrv.cab.unina.it/GBrowse/. Each track is cross-linked to local or external 

databases so as to associate the predicted gene structure to a preliminary biological 

function. In addition, the availability of large numbers of EST-to-genome sequence 

alignments represents a valuable source in the task of defining a consistent number of 

reliable gene models. A reference set of species-specific gene models is needed to train 

ab initio gene finder and is one of the primary goal of the iTAG. On one hand, the 

definition of a reliable set of gene models is performed manually by expert annotators 

who filter out all the possible conflicts and inconsistencies which could sidetrack the 

training of gene-finder tools. On the other hand, the vast amount of data to analyse 

represents a drawback for the human annotation. In this reference frame, we developed 

GeneModelEST (D’Agostino et al., 2007b), a "pipeline analysis" which aims to 

automatically build a reliable set of gene models. GeneModelEST permits the tentative 

consensus sequences of source-native as well as of non-native origin to be properly 

classified (see Methods 2.3.3) and, therefore, to be selected as candidate gene models. 

EST data are helpful also to establish the viability of alternative transcripts such as 

alternative splicing, initiation, polyadenylation, and intron retention. Alternative 

transcription is an important mechanism of modulating gene expression and function as 

well as of expanding proteome diversity. To investigate how frequent alternative 

transcription is in each data-set, we checked on all the clusters which are assembled into 

multiple tentative consensus sequences (assemblies). Indeed, since the clustering 

process is a simple ‘tentative closure’ procedure, the clustering program will 

incorporate overlapping ESTs which tag the same gene in a single cluster, not 

considering if they make sense all together. When sequences in a cluster cannot be all 

reconciled into a consistent multiple alignment, during the much more rigorous 
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assembly phase, they are accordingly split into multiple assemblies. The foremost 

interpretation of multiple assemblies from a cluster is precisely alternative transcription. 

However, other possible interpretations could be paralogy or protein domain sharing. To 

corroborate this kind of evidence, we exploited the tomato genome sequences and 

evaluated if multiple assemblies from the same cluster resulted aligned in the same 

tomato genomic region. As an example we discussed the instance about the cluster 

SOLLCCl018639 from S. lycopersicum (Figure 35) This EST cluster is made up of 18 

sequences which have been split into 3 distinct assemblies. The SOLLCCl018639:1 

sequence is generated by assembling 13 ESTs from different tissue types (such as: root, 

flower, leaf...). On the contrary, the remaining 2 sequences, SOLLCCl018639:2 and 

SOLLCCl018639:3, seem to be tissue-specific transcripts since the first is generated by 

assembling 3 ESTs from the carpel tissue, while the second is generated by assembling 

2 ESTs from the pericarp tissue. All the transcripts are mapped in the same genomic 

regions of a BAC anchored to the chromosome 10. 

 

Figure 35. Example of alternative transcription established by S.lycopersicum EST data. 
Panel A shows the three TCs (SOLLCCl018639:1; SOLLCCl018639:2 and SOLLCCl018639:3). from 

the cluster SOLLCCl018639 aligned in the same genomic region of a BAC anchored to tomato 

chromosome 10. The TC SOLLCCl018639:1 has a S. tuberosum counterpart represented by the sequence 

SOLTUCl035134:1. 

Panel B shows the representation of the multiple alignments of the EST reads (green and blue bars) which 

generate the three TCs (orange bars). In correspondence to each EST the tissue/developmental stage 

origin is reported. 
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ESTs are helpful not only to identify a set of genes but also to gain an understanding of 

when, where, and how a gene is turned on. This process is commonly referred to as 

gene expression. Gene expression profiling holds tremendous promising for dissecting 

the regulatory mechanisms and transcriptional networks that underlie biological 

processes. Furthermore the identification of genes differentially expressed in different 

tissues, during development, during specific biotic or abiotic stress, is of foremost 

interest to both basic and breeder researches. 

We used the so-called in silico transcriptional profiling, which is performed by counting 

the number of sequenced ESTs for a given gene within the whole sequenced EST 

population, to identify Crocus sativus genes that were highly expressed in the stigma 

tissue. By querying the Saffron genes database (D’Agostino et al., 2007c), tentative 

consensus sequences composed of most abundant ESTs can be retrieved. A series of 

interesting sequences, such as putative sex determination genes, lipid and carotenoid 

metabolism enzymes and transcription factors have been identified. They underlie the 

molecular biology of stigma biogenesis as well as biochemical functions occurring in 

saffron secondary metabolism. 

Particularly important is the fact that this type of data-mining can be used to corroborate 

and extend upon the expression data obtained from micro-array experiments. For this 

reason, we established, for example, correspondences between S. lycopersicum EST 

data set and the Affymetrix Tomato Genome Array probe-sets. Forthcoming approaches 

will consider a comprehensive data mining of EST and expression arrays data. 

A further relevant application of EST data concerns comparative genomics studies. 

The enormous biological sequence data thus flooding into the EST databases 

necessitates the development of efficient tools for comparative genome sequence 

analysis as starting point to understand species diversification and evolution. 

Comparative genomic analysis, which involves the comparison of two complete 

genomes or sets of gene products from two different organisms, is the cornerstone of in 

silico-based approaches to understanding biological systems and processes across plant 

species. Since tomato and potato ESTs are the most number-consistent data-sets we 

collected in our Solanaceae repository, comparison of gene inventories (from EST 

collections) allows us to address a fundamental question about what makes tomato 

species different from potato and to investigate the evolutionary relationships between 

related Solanaceae species. 
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Here we presented the results of systematic analysis of the tomato and potato non-

redundant EST sets so that gene families in common between the two species as well as 

species-specific genes could be identified. The protein complement of the model plant 

Arabidopsis thaliana, is used as first attempts to estimate common proteins (orthology) 

among the three species. It is likely that these sequences represent, according to their 

pattern of sequence similarity, plant-specific proteins. All the unique transcripts from 

tomato and potato with no match to the Arabidopsis proteome, are then analysed by a 

pair-wise comparison strategy. This two-step combined strategy permitted to estimate 

the extent to which the S. lycopersicum and S. tuberosum transcriptomes overlap and to 

isolate those sequences that are likely to be species-specific genes. 

This facet can be explored in a meaningful way also considering the data from EST-to-

genome mapping analysis, so that to evaluate if each tomato transcript have a potato 

counterpart mapped onto tomato genome. 

Last but not least, we have developed a comprehensive expressed sequence tag database 

search method and used it for the identification of new members of the Gluthatione S-

transferase superfamily in Citrus sinensis. 

The research topic of “taking a group of related sequences and compare them to 

investigate on the enzymes that they encode and on their expression patterns”, expands 

the interface between bioinformatics and experimental biology and highlights that 

computation coupled with experiments will still provide the most reliable way of 

performing research. SemiQ RT-PCR experiments propped up results from 

bioinformatics analyses and showed the effectiveness as well as the mere existence of 

the in silico defined GST transcripts. In addition GST tissue-specific expression 

patterns, inferred by querying the dbEST database with respect to the different tissues, 

are comparable to those revealed by SemiQ RT-PCR. Thus, this is a clear example on 

how "united we stand, divided we fall", and on how the challenge of integration 

concerns not only large amount of data but also skills and expertise. 

The most of the data-mining tools, which have been developed for the EST applications 

we discussed, are converged into the computational platform ISOL@ (Chiusano et al., 

2007). ISOL@ meets the need to collect, integrate and explore high-throughput and 

heterogeneous biological data and aims to enhance the quality of the data gathered. 

Since it is designed as a multi-level computational environment, its is thought to be 

flexible and to easily evolve in consideration of the continuous production of new data 

and novel analysis methods. We believe that the need to investigate on the structure, the 
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function and the evolution of plant genomes represents a suitable test bench to challenge 

and expand this effort. 

5 CONCLUSION 

High-throughput EST analysis requires integrated and automated approaches enabling 

EST data mining. Furthermore ad hoc methods for data storage, data warehousing, data 

integration, data visualization and data modeling are fundamental. So bioinformatics 

becomes pre-eminent and is directly dependent on the efficiency of data integration and 

on the value added information which they produce. This is, in turn, determined by the 

diversity of data sources and by the quality of the annotation they are endowed with.  

Suitable bioinformatics methods permits the undeniable value of ESTs to be exploited 

to address different and complex biological questions crossing
 
the ‘-omics’ barrier for 

“whole-istic biology” interpretations (Chong and Ray, 2002). The importance of 

exploring the data as a whole is recognized as the scope of contemporary science. 

.
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