UNIVERSITÀ DEGLI STUDI DI NAPOLI "FEDERICO II"

Scuola di Dottorato in Medicina Molecolare

Dottorato di Ricerca in Genetica e Medicina Molecolare

"Il peptide Htl1: interazione con Rsc8, subunità fondamentale del complesso, rimodellatore della cromatina, RSC, e suo ruolo nella riparazione del DNA"

Coordinatore: Prof. Carmelo Bruno Bruni Candidata: Dott. Carolina Florio

Anno Accademico 2007

UNIVERSITÀ DEGLI STUDI DI NAPOLI "FEDERICO II"

"Dipartimento di Biologia strutturale e funzionale"

Dottorato di Ricerca in Genetica e Medicina Molecolare

Coordinatore Prof. Carmelo Bruno Bruni

Sede amministrativa: Dipartimento di Biologia e Patologia Cellulare e Molecolare "Luigi Califano"

UNIVERSITÀ DEGLI STUDI DI NAPOLI

"FEDERICO II"

"Dipartimento di biologia strutturale e funzionale"

Tesi di Dottorato di Ricerca in Genetica e Medicina Molecolare XIX ciclo

"Il peptide Htl1: interazione con Rsc8, subunità fondamentale del complesso, rimodellatore della cromatina, RSC, e suo ruolo nella riparazione del DNA"

Candidata: Carolina Florio

Docente guida: Prof. John Pulitzer Finali

Indice

INDICE

Premessa	1
Introduzione.	6
a. Il complesso RSC di Saccharomyces cerevisiae: componenti strutturali	6
b. Il gene HTL1	9
c. Struttura di HTL1	11
d. Struttura del complesso RSC.	12
e. Funzioni del complesso RSC.	13
f. I DSBs	13
g. DSBs programmati.	13
h. Meccanismi di riparazione dei Double Strand Breaks	15
i. Riparazione mediante HR	16
j. Riparazione per NHEJ	18
k. Efficienza e precisione dei meccanismi di riparazione dei DSBs	20
l. Ruolo del complesso RSC durante la riparazione dei DSBs	22
<u>Risultati</u>	26
1. Interazione fisica tra Htl1p e Rsc8p	26
2. Mutanti puntiformi del gene HTL1.	26
3. Costruzione del triplo mutante puntiforme del gene HTL1	
4. Analisi dell'interazione fisica tra il triplo mutante puntiforme Htl13P e il comp	plesso
RSC in estratti di lievito	30
4.1. Analisi dell'interazione tra Htl13P e RSC mediante co-espressione	31
4.2. Analisi dell'interazione tra Htl13P e RSC mediante pull down	33
5. Analisi in vitro dell'interazione fisica tra Htl13P e la proteina Rsc8	34
6. Stabilità di Rsc8p in assenza di HTL1	
7. HTL1 e la riparazione del DNA.	
7.1. Saggio di riligazione del plasmide (EJ/HR).	
8. Riparazione in presenza di omologia: scoperta di un nuovo percorso nella ripa	razione
dei DSBs, HDEJ o Homology Dependent End-Joining.	41
9. Riparazione in assenza di omologia(NHEJ).	46
Discussione	48
Materiali e metodi	58
Bibliografia	71
<u>Allegato</u>	79

Premessa

Premessa

Nei nuclei delle cellule eucariotiche il DNA è strettamente associato a proteine istoniche e non-istoniche in una struttura detta cromatina, il cui modulo base è il nucleosoma. L' impaccamento del DNA nei nucleosomi e nelle strutture di ordine superiore costituisce generalmente un ostacolo al legame delle proteine coinvolte nei processi metabolici a carico del DNA e questo effetto inibitorio deve essere superato da fattori regolatori.

Esistono due principali attività enzimatiche in grado di regolare l'accesso al DNA: complessi che utilizzano l'energia ottenuta dall'idrolisi di ATP per alterare la connessione fra istoni e DNA (Vignali, 2000), e complessi responsabili delle modificazioni covalenti delle estremità istoniche. Le due attività funzionano in maniera concertata.

In questa tesi tratterò dei rimodellatori ATP-dipendenti, una famiglia di complessi multiproteici costituiti da due a venti o più subunità diverse (Figura 1). Il denominatore comune di tutti i complessi di rimodellamento risiede nella subunità ATP-asica (Eisen, 1995) e sulla base di omologie per questa subunità è stato possibile suddividere tali complessi in quattro gruppi distinti: il gruppo SWI2/SNF2, il gruppo ISWI, INO80.com e il gruppo Mi-2/CHD.

La prima subunità ATP-asica ad essere identificata è stata Swi2/Snf2 che fa parte del complesso SWI/SNF (Cairns, 1994; Cote, 1994). Nel lievito *Saccharomyces cerevisiae* esiste un altro complesso correlato a SWI/SNF, il complesso **RSC** "**R**emodel the Structure of Chromatin" la cui subunità ATP-asica è Sth1. Complessi omologhi a SWI/SNF sono presenti anche negli eucarioti superiori. Le cellule umane possiedono almeno due complessi correlati a SWI-SNF, PBAF(o hBRM) e BAF (o complesso BRG) le cui subunità catalitiche sono rispettivamente BRM e BRG. Caratteristica comune delle subunità catalitiche tipo SWI2/SNF2 è la presenza nella porzione carbossi-terminale del bromodominio che può legare i residui di lisina acetilati degli istoni.

INO80																					
Subfamily INO80 SW											SWR1										
Species		Yeas	st		Fly		Human		Yeast			Human	Fly	Huma	Human		ast				
Complex		IN08	0		Pho-dlN	1080	INO80					SW	SWR1 SRCAP		SRCAP	Tip60	ip60 TRRAP/Tip60		NuA	4	
Homologous		Ino80 dino80					hino80					Swi	1		SRCAP	Domino	P400				
subunits ^a	t	Rvb1, Rvb2 Reptir			Reptin,	Pontin	Tip49a, Tip49b				Rvb	1, Rvb2		Tip49a, Tip49b	Reptin, Pont	n Tip49a,	Tip49b				
	İ	Arp4,5,8, Act1 dArp5,8				, dActin	BAF53a, Arp5,8					Arp	4,6, Act1		BAF53a, Arp6	BAP55, Act8	7E BAF53a	, Actin	Arp	4, Act1	
	Ī	Taf14	Ļ									Yaf9 GAS41		dGAS41	GAS41		Yaf9)			
		les2					hles2														
		les6					hles6														
												Swc4/Eaf2			DMAP1	dDMAP1	DMAP1	DMAP1		:4/Eaf2	
+ INOPO regulater	, trana	orintio	n and is	inuo	luad in						Swc2/Vps72			YL-1	dYL-1	YL-1					
 INO80 regulates cycle checkpoint 	adapta	ation.	it has A	TP-de	epende	nt nucleos	some mobi-				Bdf	1			dBrd8	Brd8/T	Cp120				
 Ization activity in SWR1 regulates 	vitro. s transc	riptio	n and is	also i	involveo	l in deposi	tion of his-				H2AZ, H2B			H2AZ, H2B	H2Av, H2B						
tone H2AZ, chron	nosome	e stab	ility, and	cell-	cycle cł	eckpoint a	adaptation.					Sw	:6/Vps71		ZnF-HIT1						
H2AZ-H2B dimer	s in an	ATP-c	lepende	nt ma	inner.	12A-H2D U	inners with								dTra1	TRRAP	TRRAP		1		
 NuA4 acetylates progression, and 	biston DNA r	ie H4 1 epair:	tails and in vitro	regu it als	lates tra o acety	inscription lates histo	, cell-cycle ne H2A. In									dTIP60	Tip60		Esa	1	
higher organisms	, TIP60) may	integrat	e bot	h NuA4	and SWR	1 functions								dMRG15	MRG15	, MRGX	Eaf3	3		
control, and apop	otosis.	, uie	DINA-Ua	unage	e respo	rise, cellu	iar growui									dEaf6	FLJ117	30	Eafe	3	
	ł							_								dMRGBP	MRGB		Eaf7	7	
	ł													_		E(Pc)	EPC1,	PC-like	Epi1	1	
Halana adam		lead	lee0 E	_	Dha		Amida NEDI				100650	0	0.5.7	_		dING3	ING3		Yng	2	
Unique subun	its	Nhp1	les3-5, 0		Pho		FLJ20309	KB,	MC	H51, FL	.J90652,	SW	3,5,7						Eaft Eaf1	o, 1/ Vid21	
														_							
ISWI													• ACF (and	I CHRAC are involv	ed in transcri	ption. DNA re	plication t	hroug	ah hetero-	
Subfamily	ACF/	CHR	AC					NU	URF	F			chrom	atin	, and proper chror	natin assemb interacts wil	ly. Drosophil	CHRAC p	orom	otes repli-	
Species	Yeast	t Ye	east \	'east	Fly	Huma	an	Fly	y		Huma	n	indepe	end	ident of ATP, assembling nucleosomes into regularly spaced chromatin.						
Complex	ISW1a	a ISN	W1b k	SW2 ^b	ACF	ACF ^d		NU	JRF	NURF • NURF		Fre hig	eguiates expression of homeotic genes, modulates Wht-signaling, and igher-order chromatin structure; in vitro NURF catalyzes formation of regu								
Homologous	lsw1	Isw1 Isw2 Itc1		sw2	ISW	hSNF2	hSNF2H		ISWI		hSNF2L larly spa BPTF		ace	ed nucleosomal arr	ays and facilitates transcription activation.			-			
subunits ^a				tc1	ACF1 WCR		F180/hACF1 N		JRF	301			_								
								NU	JRF	55/p55 RbAP46		i, Rb/	P48	1	SWI/SNF						
Unique	loc3		2, 4					NU	JRF	3F38					Subfamily	SWI/SNF	•				
subunits					_										Species	Yeast	Yeast	Fly		Human	
Mi-2/CHD														0	Complex	SWI/SNF	RSC	BAP*		BAF	
Subfamily	С	HD1				Mi-2/CH	ID								Homologous	Swi2/	Sth1	BRM		BRG1 or	
Species	Ye	east	Fly	Hu	Human Fly		Human			_		subunitsa			subunits ^a	Snf2			_	NBRM	
Complex	Cł	HD1	CHD1	CH	ID1	Mi-2/	NuRD9			• Yea	ast SWI/S	NF re	regulates transcription, mitotic			Swi1/ Adr6		OSA/ eyelid		BAF250/ hOSA1	
						NURD		_		In vi	tro it bind	is hy	peracetyl	late	d nucleosomes,		Rsc1 or				
Homologous subunitsª	Cr	Chd1 aCHD1		CHD1		dMI-2	Mi-2α/CHD3, Mi-2β/CHD4			mob tiona	ilizes nuc al DNA tra	leoso anslo	mes, an case. Yea	id a ast	acts as a direc- RSC is involved		Rsc2, Rsc4				
	-			-		dMBD2/3	MBD3			in transcription, sister chr			nron	natid cohesion,	Cu da	Dec.9	MOR/	_	DAE155		
CHD1 promotes transcription elongation; in vitro it promotes the formation of regularly					dMTA	MTA1,2,3			cnromosome segregation, a gression. RSC and SWI/SNF					lay distinct roles	50015	naco	BAP15	5	BAF155, BAF170		
spaced nucleosomal arrays.				dRPD3	HDAC1,2			in DNA repair. • Drosophila BAP activates			transcription, pro-		Swp73	Rsc6	BAP60		BAF60a				
transcription, and regulates development; in vitro				p55	RbAp46,48			mote	motes homeotic gene expression, and is involved					Arp7,	Arp7, Arp9	BAP55	,	BAF53			
MI-2/CHD also promotes nucleoso			osome s	Iding		p66/68	ρ66α,β			•Hu	man BAF	regu	lates ger	ne e	expression, cell-	Arp9		BAP47			
Unique subunits					DOC-1?			cycle progression, organ de immune responses. In vitro, hu			de\ hum	velopment, and nan BAF disrupts	Snf5	Sfh1	SNR1/ BAP45		hSNF5				
Footnotes The second se										BAP11 dalao	1/	BAF57									
^b A variant ISWI2 complex also contains DIs1 and Dpb4 in addition to Isw2 and Itc1. ^c Droscophile CHARC also contains CHARC14/n14. CHARC16/n16 in addition to ISWI and ACE1.										β-actin		β-actin									
"Human CHARC also contains hCHARC15, hCHARC17 in addition to hSNP2H and hACF1, hSNP2H has Unique Swr also been found in other human ISW1 complexes: R9F, WICH, B-WICH, and SNP2h/NuRD/cohesion complexes. PEAP complex contains Polynom and BAP170 rather than OSA. Tait Swr Swr <td< td=""><td>Swp82, Taf14, Snf6, Snf11</td><td>Rsc3,5,7,9, 10,30, Htl1, Ldb7, and Rtt102</td><td></td><td></td><td></td></td<>									Swp82, Taf14, Snf6, Snf11	Rsc3,5,7,9, 10,30, Htl1, Ldb7, and Rtt102											

Figura 1. **Composizione dei differenti complessi di rimodellamento della cromatina ATP-dipendenti**. Da SnapShot: Chromatin Remodeling Complexes. Bao, 2007.

Alla famiglia ISWI appartengono tre complessi: CHRAC (*chromatin accessibility complex*), ACF (*ATP-utilizing chromatin assembly and remodeling factor*) e NURF (*nucleosome remodeling factor*), isolati in *Drosophila melanogaster* contenenti l'ATP-asi ISWI dotata di un dominio **SANT** (Swi3, Ada2, N-Cor, TFIIIB), motivo di legame al DNA comune a numerosi co-attivatori e co-repressori trascrizionali.

Il complesso INO80 è stato identificato più recentemente (Shen, 2000) sulla base di omologie tra la sua componente centrale, Ino80, e le proteine Iswi di Drosophila e Swi2/Snf2 di lievito. Tuttavia Ino80 non contiene il bromodominio, che caratterizza Swi2, e non contiene il dominio SANT presente in Iswi.

L'ultima categoria di "rimodellatori" è rappresentata dai complessi CHD con subunità catalitica Mi-2, dotata di due cromodomini che legano gli istoni metilati. Il complesso NURD, *nucleosome remodeling and deacetylation complex*, è un rappresentante di questa famiglia. E' molto interessante notare che il complesso NURD contiene anche due deacetilasi istoniche HDAC1/2 e che il rimodellamento operato da NURD può aumentare il livello di deacetilazione degli istoni nei nucleosomi. E' pertanto possibile combinare le due attività, modificazione covalente e rimodellamento, in un unico complesso.

La subunità catalitica ATP-asica presenta delle somiglianze con le DNAtranslocasi suggerendo che il processo di translocazione è alla base del meccanismo di azione dei "rimodellatori". Tale ipotesi è supportata dal fatto che molti rimodellatori possiedono attività di DNA-translocasi (Saha, 2002; Jaskelioff, 2003; Whitehouse, 2003; Alexeev, 2003; Durr, 2005; Saha, 2006).

Secondo un recente modello la subunità catalitica ATP-asica si dividerebbe in due subdomini uno di torsione e uno di scorrimento necessari per la rottura dei contatti istone-DNA e per lo scivolamento, "sliding", dei nucleosomi (Figura 2). Sono stati proposti quattro passaggi. Inizialmente il complesso lega il "core " nucleosomale attraverso il dominio ATP-asico. Inoltre la porzione carbossi-terminale del complesso Iswi, ma non di SWI/SNF, prende contatto con il DNA linker. In seguito un cambiamento conformazionale dipendente da ATP dà inizio al processo di translocazione mediato dal subdominio di torsione che tira il DNA dalla regione linker verso il nucleosoma. Questo movimento sposta il DNA nello spazio compreso tra il subdominio di torsione e quello di scorrimento determinando la formazione di un *loop* di DNA, che si propaga intorno al nucleosoma. Alla fine di questi passaggi il dominio di torsione è pronto per un nuovo ciclo di translocazione.

Figura 2. Modello proposto per il meccanismo di translocazione, adattato a SWI/SNF (a) e ISWI (b). I contatti istone –DNA sono indicati con i cerchietti blu(intatti) rossi(rotti). Da Saha, 2006.

La mia tesi tratta della composizione e delle funzioni del complesso multiproteico RSC, un rimodellatore ATP-dipendente della cromatina.

Ho studiato in particolare:

A) Le interazioni in *vivo* ed in *vitro* del peptide Htl1p con la subunità Rsc8p del complesso RSC. Questa ricerca è anche descritta nella pubblicazione allegata (Florio, 2007).

 B) Il ruolo di Htl1p e RSC nella riparazione di un taglio a doppia elica del DNA. Questa ricerca estende le osservazioni del collega Moscariello descritte nella sua tesi di dottorato.

(http://www.medicinamolecolare.scudo.unina.it/editorfiles/tesi/tesi23/File/T esi Moscariello.pdf).

Introduzione

Introduzione.

a. Il complesso RSC di *Saccharomyces cerevisiae*: **componenti strutturali.** Il complesso RSC, il più abbondante dei complessi rimodellatori, è stato identificato nel 1996 sulla base di omologie con il complesso SWI/SNF(Cairns, 1996). Come il complesso SWI/SNF, RSC ha un'attività ATP-asica DNA dipendente, stimolata sia dal DNA allo stato libero che organizzato in nucleosomi e la capacità di alterare la struttura nucleosomale. Tuttavia, contrariamente a quanto finora noto per i geni SWI/SNF, la maggior parte dei geni che codificano per le subunità di RSC sono essenziali; inoltre, mentre gli elementi SWI/SNF sono molto rari, presenti in circa cento, duecento molecole per cellula, RSC invece é presente in circa un migliaio di molecole per cellula.

Il complesso RSC comprende almeno 17 subunità per una dimensione complessiva di 1.1 MDa (Tabella 1).

Tutti i complessi RSC contengono un nucleo di elementi conservati costituito da Sth1p, Rsc6p, Rsc8p (Treich, 1998) e Sfh1p (Cao, 1997).

STH1 codifica per una proteina nucleare essenziale per la progressione del ciclo cellulare attraverso le fasi G2/M (Tsuchiya, 1998) e per l'attivazione dell'espressione genica all'inizio della meiosi (Yukawa, 1999). Anche SFH1 interviene nel ciclo cellulare; infatti, mutazioni in questo gene bloccano le cellule nelle fasi G2 /M (Cao, 1997). E' stato descritto un altro componente essenziale RSC9, che copurifica con il nucleo strutturale del complesso RSC (Damelin, 2002).

Altri elementi quali Rsc1, Rsc2, Rsc3 e Rsc30 sono presenti in forme diverse del complesso (Cairns, 1999). Le due proteine omologhe Rsc1 e Rsc2 si associano con altri elementi di RSC, ma con modalità mutuamente esclusive. Contrariamente a quanto osservato per altri componenti del complesso, i singoli mutanti delezione o per Rsc1 o per Rsc2 non sono letali, sebbene i ceppi risultanti presentino specifici difetti di crescita. La delezione di RSC2, ma non di RSC1, determina sensibilità all'idrossiurea (un inibitore della ribonucleotide reduttasi). La perdita di entrambi i geni causa letalità, suggerendo che ci sono isoforme del complesso RSC che hanno simili, ma non identiche funzioni e che i due geni svolgono funzioni parzialmente ridondanti (Cairns, 1999).

Le subunità Rsc3 e Rsc30 interagiscono funzionalmente e fisicamente attraverso la formazione di un complesso eterodimerico (Angus-Hill, 2001). L'eterodimero Rsc3/Rsc30 si associa preferenzialmente con isoforme di RSC che contengono Rsc1p. RSC3 è un gene essenziale. Al contrario, delezioni nel gene RSC30 sono vitali e provocano un rallentamento della crescita su terreno contenente alte concentrazioni di sale (1,2 M NaCl), o su terreno contenente formamide (2%).

La proteina Rsc58 interagisce con il fattore trascrizionale Swi6. Swi6 è un componente comune ai due fattori di trascrizione SBF(Swi4-Swi6 cell cycle box binding factor) e MBF (*MluI* binding factor) che sono coinvolti nella regolazione di numerosi geni implicati nella transizione G1/S del ciclo cellulare (Iyer, 2001). Mutazioni termosensibili in RSC58 sono soppresse dall'iperespressione di Rsc4 un'altra subunità essenziale di RSC che collega il complesso al macchinario trascrizionale. Rsc4, infatti, interagisce fisicamente con Rbp5, una subunità conservata e comune a tutte le RNA polimerasi nucleari(Soutourina, 2006).

Rtt102 è una subunità comune sia al complesso SWI/SNF sia a RSC. Mutazioni nulle in RTT102 sono vitali, ma mostrano un incremento della frequenza di trasposizione.

Le subunità Rsc7 e Rsc14 sono state identificate nel 2006 interagiscono fisicamente e funzionalmente con Rsc3, Rsc30 e Htl1 nella formazione di un modulo proteico specifico presente nei funghi (Wilson, 2006). In assenza di questi geni il complesso RSC non si assembla in maniera corretta. La delezione del gene RSC7 determina un abbassamento dei livelli proteici di Rsc8p e riduce notevolmente l'interazione tra Rsc8p e Rsc3p. Inoltre i fenotipi che si osservano in mutanti rsc7 e rsc14 (tabella 1) ricapitolano molti dei fenotipi riscontrati mutando singole subunità del complesso RSC, convalidando il dato biochimico, di un significato funzionale più ampio e generale di queste due subunità nella stabilizzazione del complesso.

Htl1 è un peptide di soli 78 amminoacidi. Descriverò in seguito e nella pubblicazione allegata (Florio, 2007) i criteri che hanno permesso a noi ed ad altri di identificarlo come la più piccola subunità di RSC (Romeo, 2002; Florio, 2007).

SUBUNITA'	omologhi	Fenotipi associati a delezione del gene	Fenotipi associati a mutanti letali condizionali del gene o a deplezione inducibile del prodotto genico.
Sth1	Swi2/Snf2	letale	T ^s Cromatina centromerica alterata, arresto G2/M.
Sfh1	Snf5	<u>letale</u>	T^{s} Cromatina centromerica alterata, arresto G2/M T^{d} arresto de ciclo cellulare eterogeneo G1 e G2/M. T^{d} aumento ploidia cellulare
Rsc6	Swp73	<u>letale</u>	
Rsc8	Swi3	letale	T ^s sensibilità alla formammide T ^d arresto del ciclo cellulare eterogeneo G1 e G2/M.
Rsc1		vitale Delezione: sensibilità all'idrossiurea Crescita lenta in terreni contenenti caffeina o 1M NaCl.	
Rsc2		vitale Delezione: crescita lenta in terreni contenenti caffeina o 1M NaCl. Sensibilità alla formammide	
Rsc3		letale_	T^{s} arresto del ciclo cellulare in G2/M. T^{d} arresto del ciclo cellulare eterogeneo G1 e G2/M. T^{d} aumento ploidia cellulare.
Rsc4		letale	T ^s deregolazione trascrizionale di numerosi geni trascritti dalle RNA polimerasi II e III.
Rsc30		vitale Delezione: crescita lenta in presenza di alte concentrazioni di sale (1,2 M NaCl), e in presenza di formammide(2%).	
Rsc9		letale	
Rsc7		vitale	A 26°C sensibili a NaCl (0.5 M), congo red (800 μ g/ml), formammide (2%), caffeina(15mM), radiazioni ultraviolette (UV,8000 μ J/cm2),metilmetanosolfonato (MMS; 0.03%), idrossiurea (HU; 150 mM), e benomyl (12.5%).

Rsc14	vitale	Sensibili a NaCl (1.2 M) e caffeina (15 mM) a 30°C formammide (2%) e congo red (800 μ g/ml) a temperature più elevate (38°C).
Arp7/Rsc11	letale	
Arp9/Rsc12	letale	
Rsc58	letale	T ^d arresto eterogeneo G1 e G2/M T ^d aumento ploidia cellulare T ^s sensibilità alla caffeina, formammide e idrossiurea
RTT102	vitale	Aumento della frequenza di trasposizione
Htl1	vitale	Aumento ploidia cellulare T ^s arresto eterogeneo G1 e G2/M Sensibilità:formammide(2%) idrossiurea, MMS, radiazioni ionizzanti.

Tabella 1. **Componenti del complesso RSC**. T^s mutanti termosensibili, T^d degradazione proteica inducibile basata sulla fusione all'estremità N-terminale della ORF di interesse di un peptide bersaglio per l'ubiquitina ligasi inducibile dal calore (N-degron).

b. Il gene HTL1.

Il gene HTL1 codifica per un peptide di 78 amminoacidi. Sia i livelli di proteina che di RNA di HTL1 sono relativamente bassi (Lanzuolo, 2001; Romeo, 2002; Florio 2007). L'incubazione dei mutanti htl1 a temperature comprese tra i 26°C e i 37°C determina direttamente, o indirettamente per accumulo di alterazioni genetiche secondarie, molteplici anomalie fenotipiche che comprendono alterazione della stabilità cromosomica o della replicazione (Lanzuolo, 2001), riarrangiamenti cromosomici incontrollati che portano alla formazione di supercloni a crescita più rapida (Figura 3), perdita del silenziamento trascrizionale a 26°C (Florio, 2007), difetti nel meccanismo di riparazione dei danni al DNA, rilevati da ipersensibilità alla formamide, idrossiurea, MMS a 30°C, fino alla morte cellulare a 37°C (Lanzuolo, 2001; Florio, 2007).

Questo ampio spettro di fenotipi, alcuni a penetranza variabile, riproduce anche gli effetti di mutazioni in geni codificanti molte delle subunità essenziali o accessorie del complesso RSC.

Figura 3. Aumento di ploidia e riarrangiamenti cromosomici associati alla delezione di HTL1. Pannello A. Contenuto in DNA determinato per FACS.Scan in cloni derivati dalla crescita di quattro spore ottenute per sporulazione di un asco HTL1/htl1. Pannello B. Confronto della velocità di crescita su piastra di cellule selvatiche(WT) e di subcloni aploidi e diploidi di mutanti htl1. Le cellule sono tutte ade2 e accumulano nei vacuoli un caratteristico pigmento rosso durante la crescita.

A livello popolazionistico la crescita di cloni htl1 crea condizioni che favoriscono l'accumulo di alterazioni genetiche secondarie che ne aumentano la "fitness". Abbiamo così identificato subcloni mutanti nel gene SIR3 (Florio, 2007) e diploidi Mata/Mata (Lanzuolo, 2001 e Pulitzer unpublished observation) formatisi entro cloni Mata per coniugazione con subcloni Mata generati per conversione illegittima del tipo sessuale(vedi Introduzione, paragrafo g).

c. Struttura di HTL1.

L'analisi della sequenza della traduzione "concettuale" di HTL1 prevede una struttura prevalentemente ad alfa-elica (Figura 4). Il tratto ad alfa elica è conservato in tutti i lieviti gemmanti: questa caratteristica strutturale mi ha fornito una chiave sperimentale per studiare l'interazione fisica di Htl1p con RSC.

Figura 4. Struttura secondaria prevista per Htl1p.

d. Struttura del complesso RSC.

Le analisi di microscopia elettronica descrivono il complesso RSC come un anello proteico consistente di due lobi, superiore ed inferiore, separati da una cavità centrale capace di contenere un nucleosoma (Asturias, 2002). Il lobo superiore è flessibile e può adottare diverse posizioni; il lobo inferiore può essere presente in forma retratta (chiusa) o estesa (aperta) rispetto al lobo superiore (Figura 5). La cavità centrale può ospitare un nucleosoma solo quando il lobo inferiore è nella conformazione aperta (Figura 6).

Recentemente è stato dimostrato che l'acetilazione degli istoni può stabilizzare la conformazione chiusa suggerendo che le subunità all'interfaccia tra i due lobi sono in grado di legare gli istoni acetilati (Skiniotis, 2007). La presenza di lisine acetilate negli istoni potrebbe essere necessaria per rafforzare l'interazione dei nucleosomi con elementi di RSC dotati del bromodominio che è presente in almeno quattro subunità del complesso: Sth1p, Rsc1p, Rsc2p e Rsc4p(Cairns, 1999).

Figura 5. Differenti conformazioni del complesso RSC. Da Skiniotis, 2007

Figura 6. La cavità centrale del complesso RSC nella conformazione aperta può ospitare un nucleosoma. Da Skiniotis, 2007.

e. Funzioni del complesso RSC.

Si attribuiscono a RSC ruoli nella progressione del ciclo cellulare, nella regolazione della coesione cromatinica (Huang, 2004), nel trasporto nucleocitoplasmatico(Damelin, 2002) e nel controllo della trascrizione (Ng HH, 2002; Damelin, 2002; Soutourina, 2006; Angus- Hill, 2001; Xcarey, 2006). Inoltre, è stato dimostrato il coinvolgimento di alcune sue subunità non essenziali nell'allungamento (Rsc7, Htl1, e Rsc14) o nell'accorciamento (Rsc2) dei telomeri, un processo che avviene in tarda fase S del ciclo cellulare (Askree, 2004). Ad amplificare la complessità delle funzioni svolte da RSC recentemente sono stati pubblicati diversi lavori che hanno evidenziato un ruolo diretto di RSC nei meccanismi di riparazione di tagli a doppia elica del DNA, i Double Strand Breaks (DSBs) (Chai, 2005; Shim, 2005; Shim 2007).

f. I DSBs.

I DSBs sono generati quando due filamenti complementari di DNA sono rotti simultaneamente. Tra le varie forme di danno al DNA le lesioni a doppia elica sono probabilmente le più pericolose e possono essere generati dal metabolismo ossidativo della cellula e dall'azione di mutageni chimici e fisici esogeni. Lesioni a doppia elica del DNA possono anche formarsi durante la replicazione del DNA per effetto di blocchi o cedimenti delle forche di replicazione (Branzei, 2005).

g. DSBs programmati.

In alcune condizioni le cellule possono indurre uno specifico DSB al fine di riorganizzare o di ristrutturare il proprio genoma; il processo di *mating type switching* in lievito (Rudin, 1989; Malkova, 2000) i crossing over meiotici e mitotici e la ricombinazione delle immunoglobuline nei vertebrati(Fugmann, 2000; Gellert, 2002) sono esempi classici di induzione spontanea e controllata di DSBs.

Come è noto le cellule aploidi di lievito possono essere di due tipi sessuali (mating type) diversi, **a** e α . Il sesso, **a** o α è conferito da un locus MAT localizzato in prossimità del centromero del cromosoma III e che può contenere uno dei due rispettivi alleli (Herskowitz, 1992). L'accoppiamento per generare un individuo diploide avviene tra cellule aploidi di sesso

opposto. In opportune condizioni ambientali i ceppi diploidi vanno incontro a meiosi e producono aschi contenenti quattro spore aploidi, due di tipo sessuale **a**, due di tipo sessuale α ; le spore aploidi germinano e danno dei cloni aploidi, i quali possono riprodursi indefinitamente come tali oppure accoppiarsi e ridare il diploide.

Le cellule aploidi possono cambiare il proprio tipo sessuale, mediante un processo noto come *mating type switching*. Il *mating type switching* è dovuto ad un meccanismo di conversione genica che sostituisce un allele sessuale con quello dell'altro tipo (interconversione del tipo sessuale). Tale cambiamento avviene ad ogni generazione cellulare, esclusivamente nelle cellule che hanno gemmato almeno una volta (cellule madri), durante la fase G1 del ciclo cellulare, prima della replicazione del DNA (Figura 7).

Figura 7. Ciclo vitale di Saccharomyces cerevisiae. Le spore aploidi germinano ed entrano in mitosi. La cellula madre(M, mother), che ha dimensioni maggiori della cellula figlia (D, daughter) può interconvertire il proprio tipo sessuale prima della duplicazione. L'interconversione può avvenire in entrambe le direzioni($a \rightarrow \alpha$; $\alpha \rightarrow a$), ma esclusivamente nella cellula madre e nella fase G1 del ciclo cellulare. Da Cosma, 2004.

L'allele presente in MAT è sostituito da quello presente in una delle due cassette silenti poste ai lati di MAT, ossia HML α e HMRa (Figura 8). L'evento di conversione è iniziato da un taglio all'interno della cassetta MAT operato da un endonucleasi specifica, HO (Strathern, 1982). Il *mating type switching* è normalmente inibito nei ceppi di laboratorio mediante delezione dell'endonucleasi HO.

Figura 8. Interconversione del tipo sessuale in S. cerevisiae. La sequenza donatrice per la conversione genica è localizzata nei loci $HML\alpha$ e HMRa, rispettivamente a sinistra e destra rispetto al locus MAT. Questi loci sono trascrizionalmente silenti e non possono essere tagliati da HO. Da bio.brandeis.edu/haberlab

h. Meccanismi di riparazione dei Double Strand Breaks.

Nelle cellule eucariotiche, i DSBs sono riparati attraverso due distinti meccanismi: Homologous recombination, HR, e Non Homologous End Joinig, NHEJ (Jackson, 2002; Van Gent, 2001). Nella riparazione realizzata mediante ricombinazione omologa l'informazione perduta è copiata da una molecola stampo di DNA complementare alla sequenza danneggiata. Questo processo dipende dall'attività di proteine in grado di catalizzare i processi di appaiamento e di scambio di filamenti tra molecole di DNA che presentano una estesa regione di omologia. Il meccanismo di NHEJ prevede il ricongiungimento delle estremità della rottura e può richiedere la presenza di alcuni nucleotidi complementari in prossimità della lesione.

HR e NHEJ sono evolutivamente conservati, ma il ricorso preferenziale all'uno o all'altro meccanismo varia da specie a specie ed è funzione della fase del ciclo cellulare in cui si verifica il danno(Sonoda, 2006; Delacote, 2004). Le cellule di lievito ricorrono preferenzialmente al meccanismo della ricombinazione omologa, sebbene in assenza della sequenza complementare possono riparare efficientemente il DSB utilizzando la NHEJ, che, invece, è attivamente inibita in cellule diploidi (Frank-Vaillant, 2001). Nelle cellule di mammifero la NHEJ ha un ruolo dominante durante la fase G1 del ciclo cellulare, mentre la ricombinazione omologa è utilizzata prevalentemente durante le fasi del ciclo cellulare in cui il DNA si sta replicando o ha completato la duplicazione(Rothkamm, 2003).Ciò permette ad un cromosoma danneggiato di essere riparato con l'impiego, come stampo, di un cromatide fratello neosintetizzato.

i. Riparazione mediante HR.

Il processo di HR richiede tutte le proteine trascritte dai geni del gruppo epistatico di RAD52 di lievito, e le loro controparti omologhe negli altri eucarioti. Il gruppo epistatico di RAD52 comprende il complesso MRX(MRN nell'uomo), e il gruppo dei geni RAD51, RAD52, RAD54, RAD55, RAD57, RAD59. Un evento precoce della riparazione mediata da HR è la degradazione nucleolitica in direzione 5'--> 3'(reazione definita di "resection") con la produzione di un lunga estremità 3' a singolo filamento(3'ssDNA ends) (White, 1990; Aylon, 2003; Fishman-Lobell, 1993). Tale reazione è catalizzata dal complesso MRX, un complesso eterotrimerico formato dalle proteine Rad50, Mre11 e Xrs2 (Nbs1 nell'uomo). Le code di DNA a singola elica (3' ssDNA ends)sono rivestite dal complesso RP-A(Replication Protein A, RPA) reclutato in prossimità della lesione pochi minuti dopo MRX. Il probabile ruolo di RPA è quello di eliminare le strutture secondarie dal filamento a singola elica per favorire la formazione di un filamento nucleoproteico continuo durante l'associazione di Rad51, l'omologa eucariotica della recombinasi RecA di Escherichia coli. Una volta assemblato il filamento nucleoproteico Rad51 è capace di ricercare la sequenza del locus omologo e di "invadere" la relativa doppia elica (reazione detta di "strand invasion"). In vivo e in vitro Rad52(Sung, 1997; Wolner, 2003), Rad54(Wolner, 2003) e l'eterodimero Rad55/Rad57

promuovono questo primo passaggio favorendo la sostituzione di RPA con Rad51. A questo punto la coda di 3'ssDNA é utilizzata come primer per la sintesi del tratto di DNA che è andato perso con il DSB utilizzando la sequenza omologa come stampo. Il processo di riparazione termina con la risoluzione dei filamenti di DNA incrociati (Figura 9) che porta ad avere due doppie eliche intatte (Symington, 2002).

Figura 9. Rappresentazione schematica delle principali fasi previste durante la riparazione dei DSBs mediata dalla ricombinazione omologa. La fase presinaptica include il processamento delle estremità e la successiva associazione di Rad51. Segue la ricerca di omologia e la reazione di strand invasion nella fase di sinapsi. La fase postsinaptica con la sintesi riparativa termina l'evento di ricombinazione. Da microbiology.ucdavis.edu/heyer.

j. Riparazione per NHEJ

In lievito la NHEJ richiede l'eterodimero Ku70/Ku80 (Doherty, 2001; Bertuch, 2003; Boulton, 1998), la DNA ligasi IV e il suo cofattore Lif1(Wilson, 1997; Herrmann, 1998), e il complesso Mre11/Rad50/Xrs2 (Trujillo, 2001, 2003; Hopfner, 2001). L'evento iniziale nel processo di NHEJ prevede il legame dell'eterodimero Ku70/Ku80 all'estremità libere del DNA. Tale associazione limita la degradazione nucleolitica delle estremità del taglio e recluta in prossimità della lesione le altre componenti del macchinario di riparazione. Nel 2001 è stata risolta la struttura cristallografica dell'eterodimero Ku (PDB code 1JEQ and 1JEY, Walker, 2001). La struttura dell'eterodimero Ku assomiglia ad una cesta con una larga base ed uno stretto manico descritto dagli autori come un ponte (Figura 10). Quando l'eterodimero è legato al DNA un segmento di circa 14bp, compreso tra la base della cesta e il manico, risulta accessibile agli enzimi deputati al processamento delle estremità (Jones, 2001).

Figura 10. Legame dell'eterodimero Ku alle estremità del DSB. Da Jones, 2001

Il complesso MRX, dotato di attività nucleasica, si associa con l'eterodimero Ku. Tale complesso, che partecipa anche al processo di riparazione per ricombinazione omologa, ha un ruolo importante nel processamento di estremità non direttamente riligabili e nel checkpoint del danno (Petrini and Stracker, 2003), ma si ritiene che rivesta una funzione chiave durante la NHEJ nel promuovere la connessione fisica tra le due estremità del taglio (Hefferin, 2005). L' eterodimero Ku e il complesso MRX formano un ponte proteico capace di connettere e allineare le due estremità della lesione. Tuttavia non è attualmente ancora nota l'esatta cinetica attraverso cui Ku e MRX si associano al DSB. Secondo un recente modello il complesso MRX potrebbe legare il DNA nelle immediate adiacenze del DSB, ma in una posizione più interna rispetto a Ku (Figura 11). In seguito Dnl4 e il suo cofattore Lif1 sono reclutati in prossimità del danno dove promuovono il processamento delle estremità e la polimerizzazione dell'interruzione (*gap filling*) attraverso il reclutamento dell'endonucleasi Rad27 e di Pol4, una polimerasi specifica della NHEJ. Quando sono generate estremità riligabili Dnl4 ripara la lesione.

Figura 11. Modello proposto per la NHEJ in S. cerevisiae. Da Daley, 2005

E' stato identificato un gene aploide specifico, LIF2/ NEJ1, che interagisce con Lif1 ed è richiesto per un efficiente NHEJ (Kegel, 2001). La trascrizione del gene LIF2/ NEJ1 è repressa in cellule diploidi e in ceppi aploidi che presentano mutazioni nelle proteine Sir2p, Sir3p, Sir4p, notoriamente coinvolte nel silencing trascrizionale ai telomeri e alle cassette del mating type (Guarente, 1999; Hope, 2002). La delezione dei geni SIR2, SIR3 e SIR4, riduce severamente l'efficienza della NHEJ riproducendo i fenotipi difettivi osservabili in mutanti ku70 (Tsukamoto, 1997). Il difetto nella NHEJ dei mutanti sir è largamente attribuibile alla repressione trascrizionale di NEJ1 (Lee, 1999; Valencia, 2001). Tuttavia è stato osservato che in seguito all'induzione di un DSB la proteina SIR3 e l'eterodimero Ku70/Ku80, normalmente localizzati ai telomeri, rilocalizzano in prossimità della lesione(Martin, 1999; Mills, 1999). Pertanto è probabile che accanto al ruolo indiretto espletato a livello trascrizionale dalle proteine Sir, esse siano direttamente coinvolte nel meccanismo di riparazione per NHEJ.

k. Efficienza e precisione dei meccanismi di riparazione dei DSBs.

La precisione, in qualsiasi sistema di riparazione, dipende dalla disponibilità di una sequenza complementare alla sequenza danneggiata che possa guidare la riparazione. Da questo punto di vista la ricombinazione omologa può essere considerata un meccanismo di riparazione preciso e non mutagenico. La NHEJ tipicamente utilizza corte regioni di omologie, definite micro omologie, per guidare la riparazione. Spesso le micro omologie sono contenute nelle estremità a singolo filamento del DSB e sono utilizzate per promuovere una riparazione non conservativa (Microhomology mediated end joining, MMEJ).

L'efficienza e la precisione del meccanismo di NHEJ dipendono, almeno in parte, dal tipo di taglio generato che può direttamente influire sull'abilità di riparare la lesione determinando le particolari attività enzimatiche richieste per il processamento delle estremità non direttamente riligabili. La dipendenza della efficienza di riparazione dal tipo di taglio generato è stata a lungo indagata inducendo diversi tipi di DSB mediante l'utilizzo di enzimi di restrizione(Baumann, 1998; Feldmann, 2000; Sandoval, 2002). Nella figura 12 sono schematicamente descritte le attività richieste per il processamento e la saldatura di differenti DSBs, generati con enzimi di restrizione.

Figure 12. Processamento di differenti tipi di estremità generate con enzimi di restrizione. A. estremità complementari o nette possono essere riparate da un singolo evento di ligasi B. La riparazione di un'estremità netta e un coda 5' a singolo filamento richiede un passaggio addizionale di sintesi al fine di creare due estremità nette che possano essere direttamente ricucite. C. una coda 5' a singolo filamento e una coda 3' a singolo filamento richiedono l'intervento di un fattore di allineamento che stabilizzi le estremità consentendo la sintesi e la saldatura.(Pastwa, 2003).

In lievito se il DSB ha delle corte sequenze complementari le cellule promuovono rapidamente la riligazione mediante NHEJ. Viceversa la riparazione di tagli netti è inefficace e può richiedere il processamento del taglio con formazione di filamenti a singola elica per azione dell'endonucleasi Rad27, e successiva ricerca di tratti di micro omologia su cui alla fine si compie la saldatura con conseguente delezione, anche estesa, di sequenza. Le cellule di mammifero sono in grado di riparare con alta efficienza anche i tagli netti. Tagli netti si formano durante la ricombinazione V(D)J, che porta alla formazione dei recettori antigenici e durante la *class switch recombination*(CSR) che determina il cambio di produzione di classe immunoglobulinica (*switch isotipico*), da IgM ad IgG o altre classi (Lieber, 2006).

Durante la ricombinazione V(D)J una ricombinasi specifica, i cui componenti principali sono i prodotti dei geni RAG1 e RAG2, riconosce i siti di ricombinazione e induce un taglio della doppia elica fra la sequenza segnale e la regione codificante. Si producono degli intermedi di ricombinazione, ossia le sequenze segnale o signal joint, ad estremità nette o 'blunt', e le sequenze codificanti, che terminano a forcina o 'hairpin'. La formazione del signal joint richiede l'attività delle proteine Ku70 e Ku80 che media la fusione delle estremità nette senza perdita o aggiunta di nucleotidi (McBlane, 1995; Sawchuk, 2004).

Si pensa che nei vertebrati l'efficienza di riparazione dei tagli di tipo "blunt end" dipenda oltre che dall'eterodimero Ku, dall'attività della DNA dependent protein kinase, DNA-PKcs, che si associa all'eterodimero Ku per formare il complesso DNA-PK. Tale complesso fornisce un'impalcatura proteica che allinea e avvicina le due estremità (Cary, 1997; De Fazio, 2002; Yoo, 1999).

In lievito manca la DNA-PKcs e si è pensato che fosse proprio questa carenza a rendere inefficace la riparazione di estremità "blunt".

I. Ruolo del complesso RSC durante la riparazione dei DSBs.

Poiché un DSB si verifica in un contesto altamente condensato, la il macchinario di riparazione, indipendentemente cromatina, dal meccanismo utilizzato, funziona in maniera concertata con i complessi di rimodellamento e di modificazione della cromatina (Belmont, 1997). Numerosi studi supportano un ruolo della cromatina nei processi di riparazione dei DSBs (Peterson, 2004; Petrini, 2005; Thiriet, 2005; Van Attikum, 2005).E' stato osservato che in seguito all'induzione di un DSB la cromatina in prossimità della lesione è sottoposta ad un'intensa attività di modificazione e di rimodellamento, come evidenziato dall'aumento della sensibilità alle nucleasi che si osserva nelle regioni di DNA danneggiate. In S.cerevisiae le proteine chinasi Tel1p e Mec1p, omologhe nell'uomo rispettivamente ad ATM e ATR, sono rapidamente reclutate in prossimità del DSB dove fosforilano la serina in posizione 129 dell'istone H2A(Down, 2000; Shroff, 2004); tale modificazione può propagarsi intorno alla lesione arrivando a ricoprire ampie regioni di cromatina (circa 50kb in lievito) (Rogakou, 1999).Una modificazione analoga si osserva nei mammiferi a

carico della variante istonica H2AX (Bassing, 2002; Celeste, 2002). Studi successivi hanno evidenziato l'importanza dell'evento di fosforilazione per il reclutamento del complesso multiproteico delle coesine (Unal, 2004), del complesso di rimodellamento Ino80 e del complesso NuA4, dotato di attività acetiltransferasica. Esa1, la subunità catalitica del complesso NuA4 è responsabile dell'acetilazione dell'istone H4 e tale modificazione è importante per promuovere un'efficiente riparazione (Bird, 2002; Tamburini, 2005). L'acetilazione degli istoni è, inoltre, necessaria per il reclutamento di altri complessi di rimodellamento (Tsukuda, 2005).

Recentemente sono stati pubblicati diversi lavori che coinvolgono il complesso RSC nei meccanismi di riparazione del DNA.

Ceppi mutanti nei geni RSC1 e HTL1 sono stati isolati durante un'analisi globale per la ricerca di nuovi geni responsabili della resistenza alle radiazioni ionizzanti(Bennet, 2001). In assenza dei geni RSC30 e RSC8 l'efficienza di riparazione per NHEJ diminuisce sensibilmente (Shim, 2005). Altri autori (Chai, 2005) hanno dimostrato che i mutanti rsc1, rsc2 e sth1 risultano difettivi nella riparazione mediata dalla ricombinazione omologa, ma non nella NHEJ, suggerendo un difetto in uno o più stadi finali della ricombinazione omologa (fase post-sinaptica). Poiché é stato dimostrato, con analisi per microarrays, che queste mutazioni non determinano una de-regolazione né di geni implicati nella riparazione né di geni implicati nell'attivazione dei checkpoint da danno al DNA(Bennet, 2001; Angus-Hill, 2001), si ritiene che RSC abbia un ruolo diretto nel processo di riparazione. Recentemente è stato osservato che i nucleosomi vicini al DSB sono riposizionati e tale attività dipende da RSC (Shim, 2007). Sth1 la subunità catalitica di RSC si accumula nelle immediate adiacenze del DSB (distanza 0,2 Kb), mentre mostra una bassa affinità per le regioni cromatiniche più distanti (1,1 Kb e 4,6 Kb). RSC partecipa in fasi precoci del processo di riparazione rimodellando la cromatina in prossimità della lesione e preparandola per il legame del complesso MRX e dell'eterodimero Ku. Inoltre le proteine Rsc1 e Rsc2 interagiscono fisicamente con Mre11 e Ku80 (Shim, 2007).

Il coinvolgimento precoce di RSC nella riparazione dei DSBs spiega bene perchè subunità di questo complesso possono essere alternativamente

23

richieste sia nei meccanismi di NHEJ sia nei meccanismi di riparazione per ricombinazione omologa.

E' stato osservato che RSC è anche necessario per il mantenimento dei normali livelli di fosforilazione dell'istone H2A, in particolare la subunità Rsc2 regola questa precoce e fondamentale modifica, promuovendo il reclutamento delle chinasi Tel1 e Mec1 al DSB (Figura 13). La fosforilazione dell'istone H2A, come detto, è necessaria per il reclutamento del complesso delle coesine in prossimità del DSB e RSC è richiesto per l'associazione della coesina sulle braccia dei cromosomi (Huang, 2004). Inoltre sia RSC che il complesso delle coesine sono coinvolti nella HR. Più recentemente è stato dimostrato che i livelli di Mdc1 (la subunità essenziale del complesso delle coesine) associati al DSB si riducono sensibilmente in assenza di Rsc2 (Liang, 2007).

In conclusione in presenza di un DSB RSC coopera con il complesso MRX, un importante sensore del danno, nel rimodellare la cromatina adiacente al DSB.

L'associazione di Mre11 e di RSC ai DSBs facilita il reclutamento di sensori addizionali quali Tel1 e Mec1. RSC, inoltre, promuove l'associazione di RPA al filamento a singola elica di DNA che a sua volta contribuisce al reclutamento di Mec1.

Figura 13. Eventi di rimodellamento e di modificazione in presenza di un DSB in S. cerevisiae. a. formazione di un DSB. b. RSC rimodella la cromatina adiacente al DSB. c. Mec1 e Tell fosforilano l'istone H2A ed RSC si accumula nelle regioni fiancheggianti il DSB. d. SWI/SNF rimodella la molecola di DNA stampo. e. Il complesso Nu4A acetila gli istoni H2A e H4 f. il complesso delle coesine interagisce con la forma fosforilata dell'istone H2A tenendo connessi i due cromatidi fratelli. g. Il complesso HDAC sin3p-Rpd3 rimuove l'acetilazione dall'istone H4 che è in seguito fosforilato dalla proteina chinasi CK2. h. Infine Ino80 entra nella regione del DSB e rimuove alcuni nucleosomi promuovendo l'adattamento al danno, un processo che conferisce alla cellula la capacità di rientrare nel ciclo cellulare e dividersi anche in presenza di un danno persistente al DNA. (Da Down, 2007).

Risultati

<u>Risultati</u>

1. Interazione fisica tra Htl1p e Rsc8p.

Per la mia tesi di laurea avevo dimostrato mediante esperimenti di coimmunoprecipitazione, condotti sia con estratti di lievito sia con proteine prodotte in batteri, l'esistenza di un'interazione diretta tra Ht11p e Rsc8p. Sebbene la procedura di purificazione comportasse condizioni di iperespressione delle due proteine, solo una piccola frazione di Ht11p iperespressa copurifica con Rsc8p, suggerendo che Ht11p è un componente transitorio o substechiometrico di RSC. Anche altri autori (Romeo, 2002) in condizioni di iperespressione descrivono un debole legame di Ht11p con il complesso RSC. L'espressione di HTL1 a partire dal suo promotore naturale è troppo bassa per poterne rilevare l'interazione con RSC, pertanto la condizione d'iperespressione è obbligatoria per poter visualizzare l'interazione.

Alcune evidenze sulla interazione diretta tra Htl1p e Rsc8p derivano dai risultati ottenuti da un altro gruppo di ricercatori (Lu, 2003) che hanno utilizzato il saggio del doppio ibrido. I cloni positivi isolati in questo saggio contengono la porzione carbossi-terminale di Rsc8p.

Come altri autori (Romeo, 2002) abbiamo rilevato interazioni genetiche tra HTL1 e RSC (Florio, 2003. Atti AGI). In particolare abbiamo visto che un mutante condizionale di RSC8, rsc8ts16 (Treich, 1998), forma un letale sintetico in combinazione con delezioni in HTL1. Inoltre l'iperespressione di Htl1p sopprime il fenotipo termosensibile del mutante rsc8ts16 (Tesi Michela Garofano, 2002).

2. Mutanti puntiformi del gene HTL1.

Come detto, gli studi condotti nel corso della mia tesi di laurea hanno evidenziato l'esistenza di una interazione fisica tra Htl1p e RSC. Tuttavia poiché i miei esperimenti di co-purificazione prevedono l'iperproduzione dei due reagenti, Htl1p e Rsc8p, si pone la questione della rilevanza fisiologica dell'interazione osservata. A supporto dell'analisi biochimica avevo pertanto indotto, per mutagenesi mirata con PCR, mutanti puntiformi del gene HTL1 che potessero servire a chiarire aspetti del funzionamento di Htl1p e delle sue interazioni con il complesso RSC.

Per la costruzione dei mutanti avevo tenuto conto sia dalla struttura di Htl1p sia della conservazione evolutiva del gene. Il gene HTL1 non ha omologhi negli eucarioti superiori, ma risulta altamente conservato in alcuni lieviti gemmanti (S.cerevisiae, S.mikatae, S.bayanus, S.kluyveri, Ashbya gossypii, Kluyveromyces lactis).

Avevo identificato una estesa regione amminoacidica, presumibilmente strutturata in α elica e ampiamente conservata. Assumendo che la regione strutturata in α elica possa avere un importante ruolo funzionale, ho costruito mutanti puntiformi operando proprio all'interno di questa regione (Figura 14).

			3P							
			$ \sim$							
	1		'P PP		50					
cerevisiae	MSQNNTISSM NPER/	AYNNVT E	KNLTAFQLL	SQRENICELL	NLVESTERHN	SII.NPERQR	MSLEEMKKML	DALKNERKK		
mikatae	MSQNNPVGQM NPERT	FYNNVT L	KNLTAFQLL	SQRENICELL	NLVESTERHD	SII.NPERQR	NSLEEMKKML	DLIRNEKQN		
bayanus	MSQNNSTGLV NAERS	SYNNIT L	KNLTAFQLL	SQRENICELF	DLVEDTKRHS	IIV.DPERQK	RNLEEMKTML	DDLKNEGRK		
kurdiavenzi	MSQNNSTGLI NPERT	LINNYT L	KNLTAFQLL	SQRENICELF	DLVEGTERHD	GII.NPATQR	SNLEKMKKML	DGLKKEVKK		
castelli.	STKPAT SSQK	WYDTVT L	KTLTAYQLL	SQRENMCELF	HLVDESERQR	SNNT	EMLSDLKKRL	EAAKNENK		
kluyveri	MTQN	VYNSIT L	KTLTAHQLL	SSRENMCELF	HLLDDSERQE	KAI.IREDRE	SVLEAMTKRL	EQLRSE		
A.gossypii	MTH	PEPKIN L	KTITAHQVL	SHREKMCELF	QLLDDSERHE	LIIGTAEQRE	RRLNEFRERR	DALRRELGK		
kluyveromyces		VN L	KTITAEDLL	SRRANMVELF	NLLDDSSRTE	LFLGSSEDRE	KKLASLRKRL	QSVQQE		
TI										
Р										

Figura 14. Allineamento delle sequenze amminoacidiche derivate dalla traduzione concettuale delle sequenze nucleotidiche di vari lieviti gemmanti. In figura sono indicati i residui amminoacidici oggetto di mutagenesi. Modificato da Florio, 2007.

Avevo ottenuto i mutanti sostituendo la leucina in posizione 30 con l'amminoacido triptofano (Leu³⁰ \rightarrow Trp), la stessa leucina con un residuo di prolina (Leu³⁰ \rightarrow Pro) e la Serina in posizione 31 con un residuo di leucina (Ser³¹ \rightarrow Leu).

Dall'analisi funzionale dei mutanti è emerso che le sostituzioni $(\text{Leu}^{30} \rightarrow \text{Trp})$ e $(\text{Ser}^{31} \rightarrow \text{Leu})$ non influenzavano la funzionalità di Htl1. La sostituzione della leucina in posizione 30 con prolina, invece, ha ridotto in maniera significativa l'attività di Htl1. E' noto che la prolina può indurre una distorsione nell'alfa elica, poiché il suo residuo laterale impedisce al gruppo amminico di formare il legame idrogeno. L'effetto destabilizzante è particolarmente rilevante in un' alfa elica corta. Tuttavia, sebbene la funzionalità di Htl1 appare ridotta, essa viene ripristinata quando la proteina

mutata è iperespressa. Inoltre negli esperimenti di co-purificazione non ho osservato una riduzione nell'associazione della forma mutata ad RSC.

3. Costruzione del triplo mutante puntiforme del gene HTL1.

Ho deciso di perturbare ulteriormente la stabilità dell'alfa elica di Htl1p costruendo un triplo mutante puntiforme (Htl13P) in cui ho sostituito tre residui di leucina all'interno del tratto strutturato ad alfa elica, con residui di prolina (Leu²⁴ \rightarrow Pro, Leu²⁹ \rightarrow Pro, Leu³⁰ \rightarrow Pro, Figura 14). Il triplo mutante è stato generato per PCR e controllato per sequenza (Materiali e Metodi). Dall'analisi della complementazione è emerso che il triplo mutante è recessivo e completamente incapace di complementare, anche in condizione di iperespressione, il fenotipo termosensibile a 37°C (Figura 15), e la sensibilità alla formammide (Figura 16) e all'idrossiurea (Figura 17) a 30°C associati alla distruzione del gene HTL1.

Figura 15. Effetti della tripla mutazione (3P) sulla capacità di complementare il fenotipo termosensibile di htll. Il ceppo distrutto in HTL1 è stato trasformato con il vettore pSEGAL-3 (PGALHTL1, con copia allelica funzionale di HTL1 sotto promotore inducibile Gal1) e con il vettore pSEGAL-4 (PGAL-htl13p, con copia allelica non funzionale di HTL1 sotto promotore inducibile Gal1).L'incubazione si è protratta per 72 ore a 30°C su terreno ricco contenente glucosio (assenza di induzione) e su terreno ricco contenente glucosio (contenente glucosio (presenza di induzione).

Figura 16. Effetti della tripla mutazione (3P) sulla capacità di complementare il fenotipo formammide sensibile di htll. Il ceppo distrutto in HTL1 è stato trasformato con il vettore pSEGAL-3 (PGALHTL1, con copia allelica funzionale di HTL1 sotto promotore inducibile Gal1) e con il vettore pSEGAL-4 (PGAL-htl13p, con copia allelica non funzionale di HTL1 sotto promotore inducibile Gal1). L'incubazione si è protratta per 72 ore a 30° C su terreno ricco con glucosio (assenza di induzione) e su terreno ricco contenente galattosio (presenza di induzione). Entrambi i terreni contengono formammide(2%). Il ceppo Δ htl1 trasformato con il vettore vuoto è utilizzato come controllo.

Figura 17. Effetti della tripla mutazione (3P) sulla capacità di complementare la sensibilità all'idrossiurea di htll. Il ceppo distrutto in HTL1 è stato trasformato con il vettore pSEGAL-3 (PGALHTL1, con copia allelica funzionale di HTL1 sotto promotore inducibile Gal1) e con il vettore pSEGAL-4 (PGAL-htl13p, con copia allelica non funzionale di HTL1 sotto promotore inducibile Gal1). L'incubazione si è protratta per 72 ore su terreno ricco con glucosio (assenza di induzione) e su terreno ricco contenente galattosio (presenza di induzione).

4. Analisi dell'interazione fisica tra il triplo mutante puntiforme Htl13P e il complesso RSC in estratti di lievito.

I risultati ottenuti dagli esperimenti di complementazione indicavano che la tripla mutazione abolisce le funzioni di Htl1p. Ho deciso, quindi, di analizzarne l'interazione fisica con RSC.

La procedura che ho utilizzato sfrutta l'interazione altamente selettiva tra il peptide Strep-tag II, un peptide di nove amminoacidi(Ala-Trp-Arg-His-Pro-Gln-Phe-Gly-Gly), e la strep-Tactina, una forma ingegnerizzata della streptavidina (Voss e Skerra, 1997). Il peptide Strep-tag II lega reversibilmente la strep-Tactina e consente in un unico passaggio di purificare la proteina di interesse, preservandone l'attività biologica. La strategia di purificazione prevede l'utilizzo di microbiglie magnetiche coniugate alla strep-Tactina (IBA). L'intera procedura di purificazione è descritta in dettaglio nella sezione Materiali e Metodi.

Per poter utilizzare questo sistema la proteina Rsc8 è stata dotata di un epitopo Strep-tag II all'estremità ammino-terminale. L'approccio sperimentale prevede di purificare la proteina Rsc8 e verificare se nella frazione eluita sia possibile visualizzare, mediante Western blot, Htl1p. A tal fine la porzione carbossi-terminale di Htl1p è stata fusa a tre copie dell'epitopo myc, mentre all'estremità ammino-terminale è presente un epitopo flag. La funzionalità delle versioni "taggate" delle proteine Rsc8 e Htl1 è stata verificata per complementazione.

Va rilevato che questa procedura di purificazione di Rsc8strep non dissocia complessi multiproteici. Pertanto Rsc8p immobilizzato alle microbiglie dovrebbe essere associato anche ad altri componenti del complesso RSC.

Poiché la condizione di iperespressione è una condizione necessaria per poter visualizzare l'interazione, ho utilizzato per gli esperimenti di copurificazione estratti proteici provenienti da ceppi di lievito in cui le due proteine, Htl1, Htl3P e Rsc8 sono espresse dal promotore galattosio (coespressione).

Ho analizzato l'interazione tra Htl13P e RSC utilizzando due approcci sperimentali diversi. In un caso, co-purificazione mediante co-espressione, le proteine Rsc8, Htl1 selvatica o mutata sono co-espresse nello stesso ceppo di lievito. In un secondo caso, co-purificazione mediante pull down, le proteine Rsc8, Htl1 selvatica e Htl13P sono espresse in ceppi di lievito differenti.

4.1. Analisi dell'interazione tra Htl13P e RSC mediante co-espressione.

Per questo esperimento ho utilizzato estratti proteici preparati da ceppi che co-esprimono le proteine Rsc8strep, FlagHtl1trimyc o la versione mutata FlagHtl1trimyc3P. Il ceppo aploide 3031 Δ rsc8 Δ htl1, mantenuto in vita dal plasmide pBM272RSC8strep(pSEGAL-5), e il ceppo aploide 3031 Δ rsc8 Δ htl1, mantenuto in vita dal plasmide pBM272RSC8 (pSEGAL-6) sono stati trasformati con il plasmide pRS314flagHTL1trimyc(pSEGAL-3) contenente la copia selvatica di HTL1 o con il plasmide pRS314flag HTL1trimyc**3P**(pSEGAL-4) contenente la versione mutata del gene. Il ceppo Δ rsc8, Δ htl1 trasformato con il plasmide pBM272RSC8, in cui la proteina Rsc8 è priva dell'epitopo Strep-Tag II, è stato utilizzato come controllo negativo, per dimostrare la specificità dell'interazione tra Htl1p e RSC.

Da questi ceppi ho preparato gli estratti proteici, in condizioni non denaturanti, e ne ho determinato la concentrazione mediante il sistema Biorad. Ho quindi proceduto alla purificazione incubando le microbiglie con 3 mg di estratto proteico ottenuto da ciascun ceppo.

I prodotti della co-purificazione sono stati rilevati dopo elettroforesi su gel di poliacrilammide per Western blot.

Gli esperimenti di co-purificazione hanno dimostrato che la tripla mutazione abolisce la capacità di Htl1p di legare i complessi RSC contenenti Rsc8p (Figura 18).

L'assenza di segnale per Htl1p quando la proteina Flag-Htl1ptrimyc è coespressa con Rsc8 privo dell'epitopo Strep-tag II dimostra che il legame di Htl1p alle microbiglie è specifico e dipende dal legame di Rsc8p.

Figura 18. **Co-purificazione in lievito di Htl13P e RSC mediante co-espressione.** 3mg di estratti proteici derivati da ceppi Δrsc8, Δhtl1 contenenti i plasmidi che co-esprimono Rsc8strep e Flag-Htl1ptrimyc selvatico (WT) o mutato(3P) sono incubati con le microbiglie magnetiche Strep-Tactin(IBA). Gli input corrispondono ad aliquote di 50 µg di estratto. I prodotti della co-purificazione sono stati rilevati dopo elettroforesi su gel di poliacrilammide (15%) per Western blot con Strep-Tactin coniugata alla fosfatasi alcalina (IBA) o con anti-Flag (SIGMA).

Le proteine Rsc8(NS) e Htl1(NF) prive di epitopi sono state incluse come controlli.

4.2. Analisi dell'interazione tra Htl13P e RSC mediante pull down.

In questo esperimento le proteine Rsc8, Htl1 selvatica e Htl13P sono espresse in ceppi di lievito differenti. La strategia di purificazione è suddivisa in due tappe. Le microbiglie magnetiche sono pre-incubate con estratti che esprimono solo la proteina Rsc8 taggata o la forma priva di epitopo (controllo negativo), e dopo estensivi lavaggi incubate con estratti proteici esprimenti la proteina Htl1selvatica o il triplo mutante.

Gli esperimenti di pull down confermano i risultati ottenuti mediante coespressione: il triplo mutante non è più capace di legare RSC (Figura 19).

Figura 19. **Co-purificazione in lievito di Ht113P e Rsc8 mediante pull down.** 3mg di estratti proteici derivati da ceppi Δ rsc8, Δ htl1 contenenti i plasmidi che esprimono Rsc8strep o Rsc8 privo di epitopo (corsia 7) sono incubati con le microbiglie magnetiche Strep-Tactin(IBA). Dopo una serie di lavaggi, le stesse microbiglie sono incubate con estratti proteici derivati dai ceppi Δ htl1 contenenti i plasmidi che esprimono FlagHtl1trimyc o FlagHtl13Ptrimyc. I prodotti della co-purificazione sono stati rilevati dopo elettroforesi su gel di poliacrilammide (15%) per Western blot con Strep-Tactin coniugata alla fosfatasi alcalina (IBA) o con anti-Flag (SIGMA).

5. Analisi in vitro dell'interazione fisica tra Htl13P e la proteina Rsc8.

Per verificare se la tripla mutazione (Htl13P) ricade in una regione di Htl1p che è direttamente coinvolta nell'interazione con Rsc8p ho clonato in un vettore di espressione batterica (pASK IBA) il DNA codificante la forma mutata ed ho utilizzato le proteine Rsc8, Htl1 e Htl13P in un saggio di legame in *vitro*. Il clonaggio, l'espressione e la preparazione degli estratti batterici sono descritti in dettaglio nella sezione Materiali e Metodi.

Per questo esperimento ho scelto di utilizzare la tecnica del pull down. La scelta di utilizzare questa tecnica di purificazione è dettata da alcune osservazioni emerse durante la mia tesi di laurea. Avevo, infatti, osservato che in seguito alla co-espressione di Htl1p e Rsc8p in cellule batteriche l'interazione tra le due proteine risultava aspecifica (tesi di laurea Florio, 2003). L'artefatto sperimentale era probabilmente dovuto all'altissima concentrazione delle due proteine presenti in un'unica cellula.

La tecnica del pull down utilizzata per questo esperimento è analoga a quella utilizzata con estratti di lievito. Le microbiglie magnetiche sono dapprima incubate con estratti batterici (500 μ g) che esprimono solo la proteina Rsc8strep(pASK-IBA5-Rsc8strep) o contenenti il vettore vuoto (controllo negativo), e in seguito ad estensivi lavaggi, incubate con estratti batterici (500 μ g) esprimenti la proteina Htl1selvatica o la versione mutata.

I risultati ottenuti indicano l'esistenza di un legame specifico e diretto tra le proteine Htl1 e Rsc8 che viene alterato, così come già osservato in lievito, dall'introduzione della tripla mutazione(Figura 20).

Figura 20. **Pull down di Rsc8p e Htl1p selvatica o mutata (Htl13P) espresse in cellule batteriche.** Estratti batterici (500 µg) che esprimono solo la proteina Rsc8strep(pASK-IBA5-Rsc8strep)o contenenti il vettore vuoto (pASK-IBA5) sono incubati con le microbiglie magnetiche Strep-Tactin (IBA). Dopo una serie di lavaggi, le stesse microbiglie sono incubate con estratti batterici che esprimono Htl1 selvatica (WT) o il triplo mutante (Htl13P). Gli input corrispondono ad aliquote di 10 µg di estratto. I prodotti della co-purificazione sono stati rilevati dopo elettroforesi su gel di poliacrilammide (15%) per Western blot con Strep-Tactin coniugata alla fosfatasi alcalina (IBA) o anticorpo anti-myc (Invitrogen).

6. Stabilità di Rsc8p in assenza di HTL1.

Nel 2006 Wilson e collaboratori hanno identificato un nuovo componente di RSC, Rsc7. La distruzione di RSC7 conferisce sensibilità alle alte temperature, alla formammide e agli agenti che inducono danni al DNA (MetilMetanoSolfonato, Idrossiurea). E' stato dimostrato che Rsc7p interagisce fisicamente con Rsc8p (Uetz, 2000) e che l'iperespressione di Rsc7 sopprime mutazioni termosensibili in RSC8 (Wilson, 2006). Nei distrutti rsc7 i livelli di proteina di Rsc8p diminuiscono sensibilmente e risulta compromessa l'interazione tra Rsc3p e Rsc8p. Le caratteristiche fenotipiche dei mutanti rsc7 e le sue interazioni genetiche e biochimiche sono molto simili a quelle che si osservano in seguito a delezione di HTL1.

Partendo da queste considerazioni ho deciso di analizzare gli effetti della delezione di HTL1 sulla stabilità della proteina Rsc8. Ho confrontato mediante Western blot i livelli proteici di Rsc8 presenti in un estratto proteico ottenuto da un ceppo distrutto in RSC8 e in HTL1 (Δ rsc8, Δ htl1) con i livelli di proteina presenti in un estratto ottenuto da un ceppo deleto solo per RSC8(Δ rsc8).

Entrambi i ceppi sono tenuti in vita dal plasmide pBM272Rsc8strep in cui Rsc8p è dotato dell'epitopo Strep-tag II che ne consente la rapida rivelazione per Western blot.

Non ho osservato variazione nei livelli di Rsc8p in assenza e in presenza di Htl1p (Figura 21).

Questo dato indica che Htl1p non ha un ruolo importante per la stabilità di Rsc8p.

Figura 21. **Stabilità di Rsc8p in assenza di Htl1p**. Estratti proteici (10 μ g) derivati da un ceppo Δ rsc8 e un ceppo Δ rsc8, Δ htl1 contenenti il plasmide pBM272RSC8strep rilevati dopo elettroforesi su gel di poliacrilammide (10%) per Western blot con Strep-Tactin coniugata alla fosfatasi alcalina (IBA). CP è una proteina di controllo inclusa nel Kit di rivelazione Strep. La colorazione del filtro con Ponceau S, che precede la fase di rivelazione, ha accertato che i quantitativi di proteina trasferiti fossero equivalenti.

7. HTL1 e la riparazione del DNA.

I miei esperimenti di co-purificazione indicano che Htl1p è un componente fisiologicamente rilevante di RSC. Ho, pertanto, deciso di analizzare gli effetti della delezione di HTL1 sulle funzioni cellulari RSC dipendenti.

L'attività di rimodellamento operata da RSC è importante per numerosi processi cellulari. Solo recentemente, però, sono aumentate le evidenze che supportano un ruolo di RSC anche nei meccanismi di riparazione dei tagli nella doppia elica del DNA (DSBs).

I mutanti htl1 sono ipersensibili all'idrossiurea, al metilmetanosolfonato (Florio, 2007), e alle radiazioni ionizzanti (Bennet, 2001). Questi agenti genotossici generano DSBs, che possono essere riparati o mediante ricombinazione omologa, (HR), o mediante riparazione non-omologa (NHEJ). Il complesso RSC è coinvolto in entrambi questi processi di riparazione. Mutazioni a carico dei geni RSC8 e RSC30 determinano, infatti, difetti nella NHEJ (Shim, 2005), mentre i mutanti rsc1, rsc2 e sth1 sono difettivi nella HR (Chai, 2005).

Lo studio condotto dal collega Moscariello nel corso del suo dottorato di ricerca ha evidenziato nei mutanti htl1 un difetto nella NHEJ (Tesi di dottorato Moscariello, 2006).

Partendo da queste evidenze mi sono chiesta se la proteina Htl1 potesse essere anche implicata nei processi di riparazione mediati dalla ricombinazione omologa (HR).

7.1. Saggio di riligazione del plasmide (EJ/HR).

Per valutare il coinvolgimento di HTL1 nella riparazione mediata dalla ricombinazione omologa ho utilizzato un saggio di riligazione del plasmide (EJ/HR) in cui meccanismi di HR e NHEJ sono simultaneamente disponibili come forme alternative di riparazione (Ahne, 1997; Jha, 1993).

Per poter realizzare questo saggio ho costruito un vettore chimerico p316-KAN, derivato dal plasmide pRS316 (Sikorski e Hieter, 1989), dotato di due marcatori di selezione: il gene URA3, che possiede la sua controparte omologa in lievito, e il gene KAN che conferisce resistenza all'antibiotico G418 e che non ha omologhi in lievito (per la costruzione del vettore vedi Materiali e Metodi). Nel saggio di riligazione del plasmide posso utilizzare entrambi i marcatori, URA e KAN, per selezionare gli eventi di riparazione. Tagliando il plasmide all'interno di regioni omologhe alla sequenza di lievito(URA3) e selezionando per G418 resistenza (Figura 22) la riparazione potrà procedere per ricombinazione omologa (gap repair) o anche, almeno in teoria, per saldatura delle estremità (EJ).

Figura 22. **Rappresentazione schematica del saggio di riligazione EJ/HR.** HincII (H) genera un taglio blunt nel marcatore URA che ha la sua controparte omologa in lievito. La descrizione del saggio è nel testo.

Tagliando il plasmide nel marcatore KAN, una regione che non trova omologia nel genoma di lievito, e selezionando per prototrofia per uracile (URA), la riparazione del taglio può avvenire esclusivamente mediante NHEJ (Figura 23).

Figura 23. **Rappresentazione schematica del saggio di riligazione per NHEJ.** Nru genera un taglio blunt nel marcatore KAN che non ha controparte omologa in lievito. La descrizione del saggio è nel testo.

Negli esperimenti con il plasmide p316-KAN posso eseguire i seguenti saggi:

1) Efficienza di riparazione in presenza ed assenza di omologia.

2) Frequenza di "gap-repair" in presenza di omologia misurata come frequenza di URA tra i trasformanti ottenuti dopo digestione con HincII e selezione con G418.

3) Precisione della riparazione tra i trasformanti ottenuti dopo digestione con HincII e selezione con G418 con un saggio di digestione con HincII dei DNA ottenuti dai trasformanti G418 resistenti, prototrofi per uracile.

4) Precisione della riparazione tra i trasformanti ottenuti dopo digestione con NruI e selezione per URA con un saggio di resistenza al G418 tra i trasformanti URA.

8. Riparazione in presenza di omologia: scoperta di un nuovo percorso nella riparazione dei DSBs, HDEJ o Homology Dependent End-Joining.

Ho tagliato il plasmide p316-KAN con l'endonucleasi HincII che genera estremità tronche, "blunt", e inattiva il gene URA3 rimuovendo un tratto di 142bp della sua sequenza dalla posizione 563 alla posizione 678(Figura 22). In questo saggio la sequenza complementare al gene URA3, comprendente i siti di taglio di HincII, è disponibile nel genoma di lievito e può permettere il gap repair. Il gap repair dovrebbe essere il principale percorso di riparazione perchè in lievito la saldatura di estremità non coesive è molto inefficiente e richiede un'estesa digestione esonucleolitica delle estremità fino alla generazione di filamenti ad elica singola che presentino tratti di micro-omologia (Boulton, 1998). In realtà come vedremo non è proprio così. La ricircolarizzazione del vettore (saggio 1 e saggio 2) avviene per recupero del tratto deleto sfruttando la ricombinazione omologa (trasformanti G418 resistenti, prototrofi per uracile, URA) con la porzione non mutata della sequenza ura3-52 (Rose e Winston, 1984) sul cromosoma. Almeno in linea teorica si potrebbe anche avere saldatura delle estremità tronche HincII, che determina una delezione interna della sequenza URA3 (trasformanti G418 resistenti, auxotrofi per l'uracile, ura).

Nel ceppo selvatico (W303a) l'efficienza di riparazione in presenza di omologia (taglio generato da HincII nel marcatore URA) è relativamente

alta (Saggio 1), mediamente 42% (Figura 24, Pannello A) e dovrebbe essere dovuta prevalentemente al gap-repair. Ho pertanto analizzato il gap repair (Saggio 2). Sorprendentemente, in media il 60% dei trasformanti sono risultati auxotrofi per l'uracile indicando che i plasmidi sono stati riparati mediante saldatura diretta dell'estremità piuttosto che per gap-repair (Figura 24, Pannello B). Ancora più inattesa è stata la constatazione che la precisione della riligazione (Saggio 3) è alta. Il sito HincII, infatti, si ristabilisce mediamente nel 70% dei trasformanti del ceppo selvatico (Figure 25 e Figura 26).

La capacità di saldare fedelmente e con alta efficienza le estremità tronche dipende dalla presenza di sequenze genomiche complementari a quelle fiancheggianti il DSB. Infatti, se taglio il plasmide p316-KAN con l'enzima NruI, nel marcatore KAN, che ricordo non trova omologia nel genoma di lievito, e seleziono per URA, l'efficienza di riparazione è bassa (5%, Figura 27) come precedentemente descritto (Boulton, 1998). Abbiamo quindi a che fare con un nuovo percorso di riparazione che ho chiamato HDEJ (Homology dependent end-joining).

L'analisi genetica dimostra che HDEJ dipende sia da fattori coinvolti nella ricombinazione omologa (HR) sia da fattori coinvolti nella NHEJ. Una mutazione in RAD52 (gene essenziale per la ricombinazione omologa) inibisce (come atteso) sia la riparazione mediante gap repair (0 gap repair), sia la HDEJ. Una mutazione in KU70 (gene essenziale per la NHEJ) inibisce fortemente la HDEJ. In un mutante ku70, infatti, la riparazione avviene quasi esclusivamente per gap-repair (85% gap repair). Nei mutanti htl1 l'efficienza di riparazione è notevolmente ridotta a 30°C (mediamente 10%). Inoltre, metà dei pochi plasmidi riparati sono il prodotto del gap repair e l'altra metà dell'EJ, indicando che in htl1 risultano ugualmente inibiti entrambi i meccanismi di riparazione.

Figura 24. Saggio di riligazione del vettore EJ/HR. Pannello A. Efficienze di riligazione espresse come frazione percentuale del numero dei trasformanti ottenuti con il vettore linearizzato rispetto a quello ottenuto con quantità equivalenti di vettore circolare chiuso. I dati si riferiscono ad almeno quattro saggi di riligazione indipendenti(in figura sono riportate le deviazioni standard) realizzati con il vettore p-316KAN linearizzato con l' endonucleasi HincII, che genera estremità tronche nel marcatore URA. Per controllo il ceppo selvatico è stato trasformato con lo stesso vettore linearizzato con l'endonucleasi BstB1, che genera un taglio coesivo nel marcatore URA, e con un vettore differente, pBMT16 linearizzato con l'endonucleasi SmaI, che genera un taglio netto nella cassetta procariotica (LexA) che non presenta corrispettivi omologhi sulle sequenze cromosomiche di lievito. Il mutante htl1 mostra un abbassamento dell'efficienza di ricircolarizzazione del vettore a partire dalla temperatura di 30°C. Pannello B. Frequenza di "gap-repair" misurata come frequenza di URA tra i trasformanti ottenuti dopo digestione con HincII e selezione con G418. Mediamente il 60% dei trasformanti sono risultati auxotrofi per l'uracile indicando che i plasmidi sono stati riparati mediante saldatura diretta dell'estremità piuttosto che per gap-repair.

Il dato emerso dal presente saggio è in accordo con i risultati recentemente ottenuti dal collega Moscariello che ha dimostrato che nei mutanti htl1 la NHEJ è fortemente inibita a 30°C.

La HDEJ, a differenza della NHEJ, è poco dipendente dall'eterozigosità sessuale. Nei ceppi diploidi Mata/Mat α e nei mutanti sir3 (pseudodiploidi) la co-espressione di regolatori a (a1) ed alpha (α 2) specifici, che si associano nel fattore a1/ α 2, inibisce Nej1 un fattore associato alla Ligasi IV necessaria per la NHEJ. E' possibile che la Ligasi I, non attiva durante la NHEJ (Ma, 2003), possa sopperire alla Ligasi IV nella HDEJ.

Figura 25. Analisi della precisione della riligazione. Digestione dei prodotti di amplificazione del sito di giunzione HincII ottenuti mediante PCR condotta sui DNA genomici preparati da trasformanti del ceppo selvatico, resistenti al G418 e prototrofi per l'uracile. Gli oligo utilizzati (U-HincII/L-HincII) sul ceppo 3031, auxotrofo per l'uracile, ma in cui è presente il gene URA3, producono due amplificati: un prodotto di 523 bp, gene URA sul cromosoma, e un prodotto di 389 bp marcatore URA presente sul plasmide riparato (vedi Materiali e Metodi). I prodotti di amplificazione sul plasmide p-316KAN e p-316KAN riligato(ottenuto dal plasmide p-316KAN digerito con HincII e riligato) sono utilizzati come controlli. In questo esperimento i tre amplificati ottenuti sui DNA dei trasformanti del ceppo selvatico sono risultati tutti sensibili al taglio con HincII, indicando che la riparazione delle estremità tronche è stata precisa.

Figura 26. **Analisi della precisione della riligazione**. Digestione con HincII delle miniprep batteriche del plasmide p-316KAN riparato ottenute recuperando il plasmide da trasformanti indipendenti del ceppo selvatico, resistenti al G418 e prototrofi per l'uracile(vedi Materiali e Metodi). Il vettore p-316KAN riligato è utilizzato come controllo. In questo esperimento su cinque miniprep digerite solo una è risultata insensibile al taglio con HincII. Anche in questo esperimento la precisione della riligazione è alta.

9. Riparazione in assenza di omologia(NHEJ).

Nel ceppo selvatico e nei mutanti, la riparazione del taglio con l'endonucleasi Nru è, come atteso, poco efficiente (Figura 27).

La variabilità e l'efficienza media di riparazione aumentano in maniera significativa nei mutanti ku70 e nel mutante htll sia a 26°C che a 30°C. La più alta efficienza nei mutanti ku70 è stata già descritta (Boulton, 1998). L'eterozigosi per i fattori sesso-specifici a1/ α 2 (ceppo diploide e mutante sir3) ha, invece, poco effetto sull'efficienza di riparazione.

Sebbene poco efficiente, in mano nostra la precisione della risaldatura (Saggio 4) del taglio "blunt" è piuttosto alta; mediamente, infatti, il 70% dei trasformanti del ceppo selvatico e del mutante rad52 sono risultati resistenti al G418, indicando che il marcatore KAN è stato riparato con precisione. La precisione è invece bassa e variabile nel mutante ku70 e in condizioni di eterozigosi in cui è inibito NEJ1. Questa osservazione è coerente con l'idea che il legame dell'eterodimero Ku alle estremità libere del taglio e la successiva associazione del complesso di Dnl4, Lif1, e Nej1 proteggono le estremità blunt dall'azione di esonucleasi (complesso MRX) che le trasformerebbero in tratti ad elica singola favorendo appaiamenti per micro-omologia (Klein, 2000) e saldature non conservative.

Il gene HTL1 sembra avere un effetto nell'impedire la riparazione di tagli "blunt", quando manca un supporto omologo, ma quando è rimosso, anche se aumenta l'efficienza di saldatura (fenotipo simile a quello che si osserva nel mutante Ku70) gli effetti sulla precisione sono minori. Presumibilmente la precisione non risente dell'assenza di HTL1, perché il ruolo di protezione delle estremità continua ad essere svolto dall'eterodimero Ku e dagli altri fattori coinvolti nella NHEJ.

Figura 27. **Saggio di riligazione del vettore mediante il meccanismo della NHEJ. Pannello A.** Efficienze di riligazione ottenute trasformando i differenti ceppi di lievito con il plasmide p-316KAN linearizzato con l' endonucleasi Nru, che genera estremità tronche nel marcatore KAN. I dati si riferiscono ad almeno quattro saggi di riligazione indipendenti(in figura sono riportate le deviazioni standard). I mutanti ku70 e ht11 mostrano un aumento delle efficienze di riligazione. Pannello B. Precisione dell' evento di riligazione. La precisione è stata analizzata mediante un saggio di resistenza all'antibiotico G418 condotto sui trasformanti ottenuti dopo digestione con NruI e selezione per URA. Tutti i geni coinvolti nella NHEJ mostrano un significativo abbassamento della precisione. La delezione di HTL1 ha ,invece, un effetto minore sulla precisione della riligazione.

Discussione

Discussione

Nella prima parte di questo studio ho dimostrato che il peptide Htl1 (78 amminoacidi), è un componente del complesso rimodellatore della cromatina RSC. Il complesso RSC comprende più sottogruppi caratterizzati da un nucleo strutturale comune, costituito dalle proteine Sth1, Sfh1, Rsc6 e Rsc8, a cui si associano differenti subunità accessorie. Ho dimostrato mediante esperimenti di co-purificazione condotti con estratti proteici di lievito, che Htl1p lega subcomplessi RSC contenenti la proteina Rsc8(Risultati, figure 18-19). Ho inoltre dimostrato, utilizzando le due proteine prodotte in E. coli, che in vitro Htl1p e Rsc8p interagiscono direttamente (Risultati, figura 20). Altri autori hanno osservato che Htl1p copurifica con complessi RSC contenenti la proteina Sth1, la subunità catalitica del complesso(Romeo, 2002). Sia Rsc8p che Sth1p prendono parte alla formazione del nucleo strutturale essenziale e comune a tutte le forme canoniche di RSC.

Htl1p co-precipita solo con un piccola frazione di RSC e l'associazione Htl1/RSC è rilevabile per co-precipitazione solo in condizioni in cui i due reagenti sono iperespressi. Mi restavano, quindi, dei dubbi sulla rilevanza fisiologica delle interazioni osservate. Per valutare la rilevanza ho cercato mutanti puntiformi del gene HTL1 che lo inattivassero funzionalmente e mi sono chiesta se queste stesse mutazioni potessero interferire anche sulla capacità di Htl1p di legare RSC. Ho individuato una regione della proteina Htl1, conservata in tutti i lieviti gemmanti, che risulta strutturata ad alfa elica. Ho immaginato che una regione strutturata e conservata potesse essere importante per le attività biologiche di Htl1p e che quindi fosse un bersaglio appropriato per la mutagenesi. Utilizzando mutagenesi mirata con PCR ho perturbato l'alfa elica di Htl1p sostituendo in questa regione residui amminoacidici conservati con l'amminoacido prolina, che notoriamente destabilizza l'alfa elica (Risultati, figure 18-19-20). Il triplo mutante htl13p, in cui ho operato una tripla sostituzione (Leu²⁴ \rightarrow Pro, Leu²⁹ \rightarrow Pro Leu³⁰ \rightarrow Pro), è risultato incapace di complementare i fenotipi difettivi associati alla delezione di HTL1 ed incapace di legare la proteina Rsc8 (Risultati, paragrafi 5, 6). Queste osservazioni, confermano che la struttura ad alfa elica di Htl1p ha un ruolo critico per la funzione della proteina e rafforzano le indicazioni genetiche (Risultati , paragrafi 1, 2) che il legame di Htl1p a RSC sia specifico e fisiologicamente rilevante. Il dominio ad alfa elica potrebbe favorire le interazioni proteina-proteina e DNA-proteina.

Il fatto che solo una piccola frazione dei complessi RSC si trovi legata a Htl1p si può spiegare in almeno due maniere:

1) Htl1p si lega **stabilmente** solo a una frazione dei complessi RSC regolandone una specifica funzione (Romeo, 2002).

2) Htl1p si lega **transitoriamente** alla maggior parte o a tutti i subcomplessi RSC.

Abbiamo visto che la delezione di HTL1 influenza numerose funzioni cellulari ricapitolando gli effetti fenotipici che caratterizzano molte mutazioni in subunità essenziali o accessorie del complesso RSC (Tabella 2).

Queste osservazioni sono a supporto della seconda ipotesi e lasciano supporre che Htl1p abbia un ruolo "catalitico" nella sua interazione con RSC. Ad esempio Htl1p potrebbe avere un ruolo nel corretto assemblaggio e/o stabilità strutturale del complesso; è possibile che il peptide Htl1 legandosi specificamente ad Rsc8p possa regolare l'interazione del nucleo strutturale con altre componenti di RSC.

Mutanti htl1	Subunità di Rsc con fenotipo comune
	ai mutanti htl1
Fenotipo terminale eterogeneo con cellule bloccate in fase G1 e in fase G2/M (Florio,2007)	Rsc3p, Rsc8p e Rsc58p(Logie, 2007).
Termosensibilità	Rsc3p(Angus-Hill,2001)
Sensibilità alla formammide	Rsc2p (Cairns1999) Rsc8p (Treich,1999) Rsc30p(Angus-Hill,2001) Rsc7p, Rsc14p(Wilson, 2006) Rsc58 (Iyer,2001)
Sensibilità all' idrossiurea	Rsc7p(Wilson, 2006) Rsc58p(Iyer , 2001) Rsc1p (Hill, 2001)
Sensibilità Metilmetanosolfonato	Rsc7p(Wilson, 2006)
Difetti nella NHEJ(tesi dottorato Moscariello, 2006)	Rsc30p e Rsc8p(Shim, 2005).
Difetti nella HR (tesi dottorato Florio)	Rsc1p, Rsc2p e Sth1p(Chai, 2005).
Aumento di ploidia cellulare (Lanzuolo, 2001)	Rsc3 Sfh1(Campsteijn, 2007)
Perdita di silenziamento trascrizionale (Florio, 2007 tesi dottorato Moscariello, 2006)	Sth1, Rsc8 (Moreira ,1999)

Tabella 2 : **Fenotipi associati alla delezione del gene HTL1.** I colori diversi si riferiscono a diverse temperature sperimentali: ■ 37°C ■ 30°C ■ 26°C.

Htl1 partecipa alla riparazione per HR e alla HDEJ.

Nella riparazione "in vivo" di un taglio a doppia elica, come nella riparazione di altri tipi di danni al DNA, si innesca una sequenza di reazioni:

A(Accesso)

R (Riparazione)

R(Restaurazione)

Figura 28. Modello a tre step (ARR) proposto per spiegare gli eventi di riparazione a livello nucleosomale. La prima fase nel processo di riparazione (A, access) prevede la rimozione o il rimodellamento dei nucleosomi (indicati in blu) che permette al macchinario deputato alla riparazione di accedere alla regione di DNA danneggiata (stella). Seguono la fase di riparazione(R, repair) e la fase di ripristino della struttura cromatinica originaria (R, restore). Da Green, 2002

Alla fase di Accesso partecipano fattori che segnalano la rottura per interrompere il ciclo cellulare (checkpoint) e rimodellano la cromatina mantenendo però la contiguità delle estremità; alla fase di **Riparazione** partecipano fattori che elaborano le estremità per la risaldatura del taglio; nella fase di **Restaurazione** sono coinvolti fattori che riportano la cromatina allo stato originario ripristinando l'informazione epigenetica iniziale. Alcuni geni ad esempio, MRE11, hanno un ruolo in differenti passaggi del percorso. Anche RSC ha un ruolo importante nella riparazione dei DSBs, sia durante la fase di **Accesso** sia durante la fase di **Riparazione**. Mutazioni a carico dei geni RSC8 e RSC30 determinano, infatti, difetti nella NHEJ

(Shim, 2005), mentre i mutanti rsc1, rsc2 e sth1 sono difettivi nella HR (Chai, 2005). Il ruolo di RSC nella riparazione dei DSBs sembra essere diretto in quanto Rsc8p come la subunità catalitica Sth1p sono reclutati ai DSBs e Rsc1p e Rsc2p, subunità che caratterizzano i due principali subcomplessi RSC, interagiscono fisicamente con Mre11.

L'associazione ai DSBs di RSC e Mre11 è mutuamente agevolata e a sua volta facilita il reclutamento di Ku e di Tel1 (ATM) e Mec1 (ATR) che sono i due principali sensori di danno al DNA per il funzionamento del checkpoint.

Coerentemente con la partecipazione di Htl1p alle funzioni RSC dipendenti, i mutanti htl1 sono difettosi nei meccanismi di riparazione dei DSBs mediati dalla NHEJ (Tesi di dottorato Moscariello, 2006).

In questa tesi ho utilizzato un saggio di riligazione di un plasmide (EJ/HR) in cui meccanismi di HR e NHEJ sono simultaneamente disponibili come forme alternative di riparazione (AHNE, 1997; JHA, 1993). Ho così verificato il coinvolgimento di HTL1 anche nella ricombinazione omologa e ne ho saggiato la funzione in un nuovo percorso di riparazione: la Homology Dependent End Joining, HDEJ.

Nel saggio di riparazione con plasmide il DNA purificato è linearizzato in vitro e quindi trasfettato in cellule "wild-type" o mutanti. I plasmidi trasfettanti possono replicarsi e, quindi conferire alle cellule trasfettate il fenotipo selezionato (URA o KAN^r), solo se il taglio indotto viene riparato in vivo. L'efficienza di trasformazione è quindi una misura della frequenza di riparazione.

Il processo di riparazione sarà in qualche modo diverso da quello che si verifica in vivo(Accesso, Riparazione, Restaurazione, Figura 28).

Il DNA trasfettato dopo essere entrato nella cellula deve circolarizzare. Il primo passaggio A(Accesso) non comporta più l'apertura della cromatina per rimodellamento, ma prevede il caricamento dei fattori di riparazione alle estremità del taglio e il loro allineamento ("bridging") "ex novo". Nella NHEJ il "bridging" è molto efficace se le estremità del taglio sono coesive.

Nei saggi di riparazione plasmidica il ponte proteico è probabilmente realizzato mediante l'associazione dell'eterodimero Ku70/Ku80 e del complesso eterotrimerico MRX alle estremità della lesione. Secondo un recente modello Ku lega e protegge le estremità libere del taglio, mentre MRX lega il DNA nelle immediate adiacenze del DSB, ma in una posizione più interna rispetto a Ku (Figura 29).

In prossimità della lesione i due complessi dimerizzano fornendo un'impalcatura proteica che allinea e stabilizza le estremità della rottura. In seguito Dnl4 (Lig4) e il suo cofattore Lif1 sono reclutati in prossimità della rottura dove in presenza di estremità riligabili Dnl4 ripara la lesione.

Figura 29. Effetti dell'assenza di Ku sulla riparazione di un DSB. In presenza di Ku l'associazione di Ku e MRX determina la formazione di un ponte proteico che allinea e avvicina le estremità. L'assenza di Ku favorisce il meccanismo della MMEJ.

In assenza di Ku le estremità non sono protette e le attività eso ed endonucleasiche di MRX determinano la formazione di estremità 3' a singolo filamento. Se il bridging è efficace, è sufficiente che siano presenti brevi sequenze di micro-omologia perchè le estremità siano saldate dalla ligasi I (MMEJ).

Ricordo che il plasmide utilizzato è dotato di due marcatori di selezione: il gene URA3, che possiede la sua controparte omologa in lievito, e il gene KAN che conferisce resistenza all'antibiotico G418 e che non ha omologhi

in lievito. Un taglio "blunt" generato nel marcatore URA3, in presenza di omologia, potrà essere riparato per ricombinazione omologa (gap repair) Rad52 dipendente, o, in maniera minoritaria, mediante NHEJ (Ku dipendente). Un taglio generato nel marcatore KAN, in assenza di omologia, potrà essere riparato esclusivamente per NHEJ (Ku dipendente).

In contrasto con le mie aspettative, in presenza di omologia metà dei plasmidi con taglio "blunt" in URA3 sono riparati con percorso di riparazione sia Rad52 dipendente che Ku dipendente(Risultati,figura 24). Ho definito questo nuovo percorso Homology dependent end joining, HDEJ, per la sua dipendenza da sequenze omologhe fiancheggianti il DSB(Figura 30). La presenza di omologia potrebbe facilitare la connessione fisica tra le due estremità del taglio compatibili (anche se "blunt") e determinare l'aumento delle efficienze di riparazione e l'alta precisione della riligazione.

La HDEJ dipende, oltre che da uno stampo omologo, da fattori coinvolti sia nella ricombinazione omologa (HR) sia nella NHEJ (Risultati, figura 24). Nel mutante rad52 (gene essenziale per la ricombinazione omologa) sono inbite sia la riparazione omologa(come atteso) sia la HDEJ. Una mutazione in KU70 (gene essenziale per la NHEJ) inibisce fortemente la HDEJ. In un mutante ku70, infatti, la riparazione avviene quasi esclusivamente per gaprepair (85% gap repair). A differenza della NHEJ il meccanismo della HDEJ non sembra influenzato dal tipo cellulare che, invece, regola negativamente il percorso della NHEJ. Sia nei diploidi che negli pseudodiplodi(sir3), infatti, gli eventi di riparazione che ho osservato sono per metà il prodotto del gap repair e per metà il prodotto della HDEJ. Una spiegazione plausibile è che la reazione di ligasi sia catalizzata dalla Ligas1 (CDC9) che non funziona nella NHEJ, ma è attiva, quando è presente omologia (HR e MMEJ). La Ligasi I inoltre, non risente della regolazione negativa che inibisce la Ligasi IV nelle cellule diploidi e negli pseudodiploidi.

Sia la HR che la HDEJ sono fortemente ridotte nel mutante htll che quindi partecipa alle funzioni RSC dipendenti, sia nella NHEJ classica (Moscariello tesi di dottorato, 2006) sia nella HR, sia nella HDEJ.

Figura 30. **Rappresentazione schematica dei meccanismi di HR e di HDEJ.** In nero è indicato il plasmide linearizzato con HincII, che genera un taglio blunt nel marcatore URA, che trova la controparte omologa in lievito, il gene URA3 sul cromosoma, indicato in rosso. La sequenza omologa potrebbe stabilizzare l'impalcatura proteica(Ku-MRX) che avvicina e allinea le estremità del taglio, favorendo la saldatura precisa e ad alta efficienza del taglio blunt (HDEJ). In assenza di Ku le estremità del taglio, non più protette, vanno incontro a degradazione nucleolitica che attraverso la formazione del filamento a singola elica favorisce la ricombinazione omologa. Da notare che a differenza della HDEJ, il meccanismo di HR determina conversione genica.

Riparazione di un taglio "blunt" in assenza di omologia.

Come atteso (Boulton, 1996), invece, il taglio "blunt", generato nel marcatore KAN con l'endonucleasi NruI, quindi in assenza di un corrispettivo omologo nel genoma di lievito, è riparato a bassa efficienza (efficienza media 5% nel ceppo selvatico W303) (Risultati, figura 27).

Differentemente dai risultati ottenuti da Boulton (1996) e da Moscariello (tesi di dottorato, 2006) nei miei esperimenti la precisione della riparazione di tagli blunt è piuttosto alta (mediamente 70%). Questa differenza potrebbe dipendere dal protocollo sperimentale: nei saggi di riligazione plasmidica Boulton e Moscariello utilizzano cellule in fase esponenziale, mentre io ho usato cellule in fase stazionaria (Materiali e Metodi).

La delezione di KU70 e di HTL1 determina, nei miei esperimenti, un significativo, anche se assai variabile, aumento delle efficienze di riparazione (fino al 35% in alcuni esperimenti). Come già osservato da Boulton, l'aumento dell'efficienza a seguito della delezione di KU70 è a

scapito della precisione che subisce una significativa, sebbene variabile, riduzione(0.05-0.3).Anche nel mutante htl1 ho osservato una variabile riduzione della precisione nella riparazione del DSB, sebbene tale riduzione sia meno marcata di quella osservata nel mutante ku70(Risultati, figura 27). Boulton e collaboratori hanno ipotizzato che Ku possa inibire percorsi di riparazione imprecisi. Questa idea è coerente con l'osservazione che Ku70 legandosi alle estremità libere della lesione le protegga dalla degradazione nucleolitica necessaria per la Micro-homology Mediated End Joining MMEJ (Figura 29). La MMEJ è indipendente da KU70 e da RAD52 e dipende dai fattori Mre11, Rad50 e Rad1 e solo parzialmente da LigIV (Ma, 2003). Questo percorso di riparazione è "error prone", poiché determina la delezione di sequenze circostanti il punto di taglio per azione dell'attività esonucleolitica di MRX.

Nei diploidi e nei mutanti sir3 è inibita la NHEJ per repressione trascrizionale di Nej1, un cofattore di LigIV (Kegel, 2001) e quindi anche nei diploidi l'utilizzo della MMEJ spiega l'abbattimento della precisione della riligazione.

In conclusione, mentre Htl1 (RSC) è necessario per un'efficiente HR e HDEJ, similmente a Ku contrasta la MMEJ forse facilitando (come osservato per RSC) il legame di Ku70 e di Mre11 alle estremità del DSB.

Significato fisiologico della riparazione di un DSB con estremità "blunt".

Processi che portano alla formazione di tagli blunt in vivo sono rari.

Nei vertebrati tagli blunt sono naturalmente prodotti durante la ricombinazione V(D)J da una ricombinasi specifica, i cui componenti principali sono i prodotti dei geni RAG1 e RAG2. La riparazione del taglio blunt dipende da Ku ed è efficiente e precisa (McBlane, 1995; Sawchuk, 2004).

Nei vertebrati l'eterodimero Ku si associa con la chinasi DNA-PK (DNA dependent protein kinase) per formare un complesso. La DNA-PK che non ha omologhi in lievito, fa da ponte ("bridging") tra le due estremità del DSB in un complesso contenente due molecole di DNA-PK; si ritiene che una

funzione della DNA-PK sia avvicinare e allineare le estremità della rottura facilitandone la saldatura(Cary, 1997; Yoo, 1999; Walker, 2001).

Un altro fattore richiesto per la NHEJ nei vertebrati è la proteina Artemis dotata di attività esonucleasica. Artemis interagisce fisicamente con DNA-PK che ne regola, mediante fosforilazione, le proprietà nucleasiche (Moshous, 2001; Wang, 2005).

Presumibilmente i DSBs con estremità blunt non si formano in vivo in lievito. L'utilizzo di enzimi che producono DSBs blunt mi ha, però, permesso di individuare un processo riparativo sconosciuto in lievito. Inoltre, ho osservato che nel ceppo di lievito utilizzato (W303) la riparazione di un DSB blunt per quanto a bassissima efficienza, è riagonevolmente precisa. In un altro ceppo da me studiato (Sc288c) la riparazione oltre che precisa è anche efficiente (Florio dati non pubblicati). Queste osservazioni indicano che anche in lievito è presente un meccanismo efficace di "bridging" (comprendente Ku e Htl1) che allinea le estremità di un DSB indipendentemente dal tipo di taglio, coesivo o blunt, favorendo così la NHEJ (o HDEJ) intramolecolare rispetto a processi di saldatura intermolecolari (HR). Questo tipo di salvaguardia delle identità ha importanti implicazioni, poiché impedisce possibili scambi e traslocazioni tra le estremità libere di un DSB e regioni di omologia o di micro-omologia nel genoma. Inoltre, nei diploidi, sebbene sia inibita (per repressione di Nej1) la NHEJ classica, il "bridging" stabilizzato, in maniera Rad52 dipendente, da sequenze omologhe fiancheggianti favorisce la saldatura intramolecolare. In questo processo (HDEJ), il cromosoma omologo fornisce solo un'impalcatura. Nella figura 30 mostro il differente risultato di una riparazione con saldature intermolecolari (HR) e di una riparazione con saldatura intramolecolare, (HDEJ). Nella prima, per scambio con il cromosoma omologo, si ha un tratto di conversione genica con perdita di eterozigosi (LOH) (Loss Of Heterzygosity), mentre nella seconda l'eterozigosi è mantenuta. La LOH somatica può comportare l'espressione di fenotipi recessivi. Così nei vertebrati rende manifesta difetti in geni oncosoppressori. Un caso classico è la LOH per il gene Rb1 che causa la formazione di retinoblastomi (Hurwitz, 2003).

57

Materiali e Metodi

<u>Materiali e metodi</u>

Ceppi di lievito adoperati

Серро	Genotipo	Origine
W303-1a	MATa ade2-1 trp1-1 leu2-3,112 his3-11,15 ura3-52, can1-100, ssd1-d	Thomas e Rothstein, 1989
W303-1a/b	MATa/α ade2-1 trp1-1 leu2-3,112 his3-11,15 ura3-52 , can1-100, ssd1-d	Lanzuolo et al., 2001
∆htl-1	W303-1a htl1::HIS3pRS303	Lanzuolo et al., 2001
∆htl-1 (S) sterile	W303-1a htl1∷HIS3pRS303 subclone di ∆htl-1	Lanzuolo et al., 2001
Δsir3	W303-1a sir3::LEU2	Pulitzer, 2006
∆ku70	W303-1a ku70::HIS3	Pulitzer, 2006
Δrad52	W303-1a rad52::TRP1	Lucchini
MCY3890(rsc8TS16)	S288C MATa his3 • 200 lys2-801, leu2-3,112 ura3-52	Treich e Carlson, 1997
YJP5	W303-1a htl1::HIS3pRS303, Rsc8::LEU2(p-SEGAL-5(RSC8))	Pulitzer, 2002

Batteri DH5q.supE-44, lacU169(80 lacZM15), hsdR17, recA, endA1, gryA96, thi-1, relA1;

Vettori adoperati

Nome	Origine	Inserto	Utilizzo
pBM272	pBM272 Johnston, 1984	Marcatore selettivo URA3 promotore Gal1/Gal10	Espressione in lievito
pRS314	pRS314 Sikorsky, 1989	Marcatore selettivo TRP1	Clonaggio
pRLGAL-1	pBM272 Lanzuolo 2001	ORF di HTL-1 fiancheggiata da 700 paia di basi a valle dell'estremità 3' clonata sotto il promotore Gal1	Espressione in lievito
pSEGAL-2	pBM272 (Johnston e Davis, 1984)	ORF di HTL-1 che presenta all'estremità N-aminica l'epitopo FLAG e l'epitopo Myc all'estremità C- terminale. Clonato come frammento BamHI/Sal1 ottenuto sull'amplificato PCR con gli oligo U-Flag HTL1/I trimyc	Espressione in lievito
pSEGAL-3	pRS314 (Sikorski e Hieter, 1989)	Frammento EcoRI/SalI (contiene promotore Gal1) recuperato dal vettore PSEGAL-2 e inserito nel vettore pRS314	Espressione in lievito
pSEGAL-4	pRS314 (Sikorski e Hieter, 1989)	ORF del gene HTL-1 mutata con tre residui di prolina	Espressione in lievito
pSEGAL-5	pBM272 (Johnston e Davis, 1984)	ORF del gen RSC8 clonata sotto il promotore Gal1 che presenta all'estremità N- aminica l'epitopo Strep tag	Espressione in lievito
pSEGAL-6	pBM272 (Johnston e Davis, 1984)	ORF del gen RSC8 clonata sotto il promotore Gal1	Espressione in lievito
pASK-IBA3		TET _{p/0} + 3' Strep tag (IBA GmbH)	Espressione in E.coli
pASK-IBA5		$\begin{array}{c} \text{TET}_{p/o}+5^{\circ} \text{ Strep tag} \\ \text{(IBA GmbH)} \end{array}$	Espressione in E.coli
pCF1	pASK-IBA5	ORF del gene RSC8 Clonato come frammento SacII/Sal1 nel vettore pASK- IBA5 che presenta all'estremità N-aminica I'epitopo Strep tag sotto il controllo del promotore TET.	Espressione in E.coli

pCF2	pASK-IBA3	ORF del gen HTL1 Clonato come frammento BsaI/HindIII nel vettore pASK-IBA3, che presenta all'estremità C-terminale tre copie dell'epitopo myc	Espressione in E.coli
pCF3	pASK-IBA5	ORF del gen HTL13P Clonato come frammento Bsal/HindIII,nel vettore pASK-IBA5 che presenta all'estremità C-terminale tre copie dell'epitopo myc	Espressione in E.coli
PRS316	PRS316 Sikorski,R.S. and Hieter,P 1989		Clonaggio
p316-KAN	p316-KAN Florio, 2007	frammento Eco/Sal da pF6A-Kan in Eco/XhoI di pRS316	Saggio di riligazione

OLIGONUCLEOTIDI UTILIZZATI

UGAL X 314: 5'- GAA AGG CCT TAG ATC tGA ATT CGA ATT TTC AAA AAT TCT TAC TTT -3'

L-HTL1-3p: 5'- GAA AGG CCT GCA TAT GTT TTC TCT TTG AGA TGG TGG CTG AAA TGC TGT TGG ATT TTT CAG CGT -3'

U-Strep-IBA3/HTL1: 5'- GAA AGG CCT AGG TCT CAA ATG TCA CAG AAC AAC ACA ATCA GCT CAAT -3'

L-TRIMYC: 5'- CCT TTC GTC GAC CTA CAA GTC TTC TTC AGA AAT AAG TTT TTG TTC CAA GTC TTC TTC AGA AAT AAG TTT TTG TTC CAA GTC TTC TTC AGA AAT AAG TTT TTG TTC CTT TTT CCT TTC ATT TTT CAA AGC ATC -3'

U-Xba-HTL1: 5'- GAA AGG CCT AAT CTA GAT AAC GAG GGC AAA AAA TGT CAC AGA ACA ACA CAA TCA GCT CAA -3'

U-HincII: 5'- GAA AGG CCT GAA GAC AGA AAA TTT -3'

L- HincII: 5'- GAA AGG CCT TTC CCA GCC TGC TTT -3'

1. Costruzione del triplo mutante Htl13P.

Ho utilizzato gli oligo U-Galx314 e L-HTL1-3p per amplificare un frammento da 863bp dal vettore pSEGAL2(che contiene FlagHTL13myc) linearizzato con KpnI. L'amplificato ottenuto è digerito con Stu e clonato in pGEM4. Il vettore risultante è digerito con BglII e Nde e clonato nel vettore pSEGAL2 digerito BamHI - Nde.

2. Clonaggio di htl1-3P nel vettore di espressione batterica pASK-IBA5.

Amplificazione mediante PCR con gli ologo U-Xba-HTL1 e L-TRIMYC di un frammento di 359bp dal plasmide pSEGAL-4 (contenente la ORF del gene HTL1mutato in tre resiui amminoacidi con Prolina) linearizzato KpnI. Il prodotto ottenuto è digerito con StuI e clonato in pGEM4. Il vettore risultante è quindi digerito con gli enzimi XbaI/Sal e clonato nel vettore pASKIBA5 digerito con Xba e XhoI.

4. Costruzione del vettore p316-KAN.

Il frammento Eco/Sal (1500bp)contenente il marcatore di selezione KAN, che conferisce resistenza all'antibiotico G418, è stato ottenuto per digestione del plasmide pF6A-Kan e clonato nel plasmide pRS316 digerito Eco/Xho.

5. Saggio di sensibilita' per trasformanti di lievito.

Le colonie di lieviti trasformati vengono strisciate su una piastra selettiva per la presenza del plasmide, in modo da eliminare le cellule non trasformate ancora vive. Da quest' ultima piastra vengono prese circa 10^7 cellule con la punta di uno stuzzicadenti e risospese in 1ml di H₂0dd sterile. Quindi vengono eseguite delle diluizioni seriali in modo da piastrare quantita' diverse di cellule. Si procede, dunque, facendo diluizioni crescenti in appositi "microwell". Infine vengono piastrati in duplicato 5 µl di ogni diluizione (lo spot più diluito conterrà circa 10^2 cellule, quello più concentrato circa 10^5 cellule) su terreno ricco YPDA e YPGaIA. Le piastre vengono poi incubate a 26° C e a 37° C.

La stessa metodica è stata utilizzata per analizzare la sensibilità alla formammide e all'idrossiurea associati alla delezione di HTL1.

7. Crescita di cellule di lievito per la preparazione degli estratti proteici.

- Strisciare il ceppo su piastra di terreno minimo contenente glucosio, selettivo per la presenza del plasmide. Crescere a 26 °C.

Inoculare in 10 ml dello stesso terreno, utilizzando un tubo da 50 ml.
Crescere a 26 °C per tutta la notte, su agitatore

- Conta delle cellule; le cellule devono raggiungere la fase esponenziale $(3-5 \times 10^7 \text{ cellule/ml})$. Diluizione dell'inoculo, in 50 ml di terreno contenente galattosio, selettivo per la presenza del plasmide, contenuto all'interno di una beuta da 250 ml sterile, in modo da avere al mattino cellule in fase esponenziale.Crescere la coltura in costante agitazione per tutta la notte.

- Conta delle cellule.

- Raccogliere le cellule centrifugando 5' a 4000 rpm a 4°C. Lavare con H₂0 ghiacciata e centrifugare nelle condizioni precedentemente descritte.

 Risospendere le cellule ad una densità di 2,8 x10⁹cellule/ml in Breaking buffer. Congelare a -80.

SOLUZIONI

Breaking buffer, **BB**, (50mM Tris HCl pH 7.5, 12% glicerolo, 200mM NaCl, 0,1% Triton-X100, 5 mM DTT, 5mM EDTA ,cocktail di inibitori di proteasi [SIGMA] , 1mM PMSF).

8. Preparazione di estratti proteici in condizioni non denaturanti

- Scongelare le aliquote di cellule centrifugando per pochi secondi a 13000 rpm a 4°C.
- Risospendere il pellet in 70µl di buffer BB + cocktail di inibitori +PMSF (il volume non dovrebbe superare i 100µl) e introdurre in un tubo Falcon da 14ml, precedentemente raffreddato, contenente 1.5 ml di glass beads(SIGMA).
- Vortex 1'; mettere 4' in ghiaccio; Vortex 1' (ripetere il ciclo di rottura per tre volte). Aggiungere 1ml di BB e mescolare invertendo il tubo.
- Controllare la rottura al microscopio e assicurarsi che si siano rotte almeno il 60 % delle cellule.
- Centrifugare 10' a 10000 rpm a 4°C.
- Determinare la concentrazione di proteine totali con il saggio Bio-Rad.
- Congelare gli estratti a -80.

9. Induzione di proteine ricombinanti in cellule batteriche.

- Inoculare 4 ml di TYE + 4 μl di ampicillina [100γ/μl] con colonia singola di *E.coli* esprimente il plasmide di interesse e proveniente da una piastra fresca.
- Mettere a crescere a 26°C per tutta la notte.
- Diluire l'inoculo 1:50 (2 ml di inoculo in 100 ml di TYE pre-riscaldato + 100µl di ampicillina) in beuta da 500 ml.
- Mettere a crescere a 37°C in agitazione costante. La densità ottica (OD) deve essere monitorata a 550 nm. Quando OD₅₅₀= 0,5 ,generalmente dopo 2 ore di crescita, iniziare l'induzione aggiungendo 10µl di anidrotetraciclina [2 mg/ml in dimetilformammide, DMF] Prima di far partire l'induzione prelevare 1 ml di coltura, *aliquota non indotta* (centifugare 15' a 3500 rpm a 4°C, eliminare supernatante e risospendere in 40µl di sample buffer).
- Continuare la crescita per 3 ore.
- Raccogliere le cellule centrifugando 15' a 7000 rpm a 4°C.
- Risospendere in 1 ml buffer W^{*} (100 mM Tris HCl pH 8, 150 mM NaCl, 1mM EDTA , 1mM PMSF, cocktail di inibitori di proteasi [SIGMA]).
- Prelevare 10µl di coltura e aggiungere 90µl di buffer W e 100µl di sample buffer, *aliquota indotta non sonicata*. La rimanenete sospensione è sonicata fino a lisi completa attraverso 3 cicli di sonicazione da 60".
- Centrifugare 15' a 14000 rpm a 4°C per rimuovere i componenti insolubili.
- Trasferire il supernatante in un tubo pulito.

10. Purificazione di proteine ricombinanti *strep-tag* mediante *Magstrep*. <u>10.1 Purificazione di Htl1p (selvatica o mutata) ed RSC in lievito in</u> <u>condizione di coespressione di Htl1p e Rsc8p</u>.

Attivazione delle microbiglie magnetiche

- Aggiungere al tubo di reazione 400µl di microbiglie (100µl = 5 mg palline capacità di legame = 90-110 pmol/mg palline).
- Spostare il tubo di reazione nel separatore magnetico. Rimuovere il supernatante.
- Lavare le microbiglie 3 volte con 0,5 ml di Attivation buffer(1X [IBA GmbH]).
- Equilibrare le microbiglie con 0,5 ml di *Washing buffer*(IBA GmbH).
- Spostare il tubo di reazione nel separatore magnetico. Rimuovere il supernatante.
- Le microbiglie sono pronte per l'uso.

Purificazione

- Aggiungere 3mg di estratto proteico in IP buffer ottenuto da cellule che coesprimono FlagHtl1trimyc e Rsc8strep dal promotore Gal a 400µl di microbiglie magnetiche strep-Tactin.
- Incubare su ruota a 4°C per un'intera notte.
- Mettere il tubo di reazione sul separatore magnetico.
- Rimuovere il supernatante.
- Lavare le microbiglie per due volte con buffer IP e due volte con buffer A.
- Incubare le microbiglie per 2 ore a 4°C in Eluition buffer(Buffer A contenete 10mM biotina).
- Incubare per 1h su ruota a 4°C e per 30' in ghiaccio, vortexando ogni 5' per 10".
- Trasferire il tubo di reazione sul separatore magnetico.
- Rimuovere il supernatante contenente la proteina ricombinante di interesse.

Le frazioni eluite sono precipitate con TCA-DOC (1/100 vol. TCA 2% DOC) risospese in 20 μ l di loading buffer, caricate su gel di poliacrilammide al 15%, e analizzate per western blotting rivelando con anticorpo antiflag (INVITROGEN) o con Strep-Tactin coniugato alla fosfatasi alcalina (IBAGmbH).

SOLUZIONI

Buffer IP (50mM Tris Hcl pH 7.5, 10% glicerolo, 100mM NaCl, 10 mM DTT, 2mM EDTA ,cocktail di inibitori di proteasi [SIGMA] , 1mM PMSF). Buffer A (50mM Tris Hcl pH 7.5, 10% glicerolo, 250mM NaCl, 10 mM DTT, 2mM EDTA , 0,05% Tween-20, cocktail di inibitori di proteasi (SIGMA), 1mM PMSF).

Eluition buffer (Buffer A contenete 10mM biotina).

10.2 Purificazione in lievito di Htl1p(selvatica o mutata) e RSC (via Rsc8p) utilizzando la tecnica del pull down .

La procedura di purificazione è analoga a quella descritta al punto 10.1 fino alla fase dei lavaggi delle microbiglie.

Dopo i lavaggi (prima serie) le microbiglie, precedentemente legate da Rsc8p, sono incubate con 3mg di estratto proteico che esprime la proteina FlagHtl1trimyc o le versione mutata FlagHtl1trimyc3P e incubate su ruota a 4°C per un ulteriore notte.

Segue una seconda serie di lavaggi e la fase di eluizione.

10.3 Pull down delle proteine Htl1 e Rsc8 espresse in cellule batteriche.

Dopo la fase di attivazione delle microbiglie gli estratti batterici che esprimono la proteina ricombinante Rsc8strep (500µg) sono incubati con 100µl di microbiglie.

La procedura di pull down eseguita è identica a quella realizzata al punto 10.2. Le microbiglie preincubate con Rsc8strep sono lavate e reincubate con l'estratto batterico espimente Htlp selvatica o mutata.

11. Saggio di riligazione EJ/HR utilizzando il plasmide p316-KAN.

Questo saggio di riligazione del plasmide si compone di più fasi:

FASE 1. Preparazione del costrutto lineare.

- Il vettore p316-KAN è digerito con l'enzima di restrizione desiderato.
- Dopo aver controllato l'avvenuta digestione del plasmide su gel di agarosio la digestione è precipitata, risospesa in H2O, e caricata su un gel preparativo di agarosio.
- Il vettore linearizzato è elettroeluito (paragrafo 12), precipitato e quantizzato con Bromuro di etidio al transilluminatore.
- La preparazione di DNA lineare è controllata per la completa digestione mediante trasformazione in cellule calcio competenti di E.coli.

FASE 2. Trasformazione dei ceppi di lievito.

Ho trasformato il ceppo (W303) auxotrofo per uracile (ura-) e ho selezionato alternativamente per la resistenza al G418(dopo digestione di p316-KAN con HincII nel marcatorte URA) o per la prototrofia per l'uracile(dopo digestione con Nru nel marcatore KAN). La ricircolarizzazione del plasmide è necessaria per ottenere trasformanti G418 resistenti(tagliando con HincII) o prototrofi per l'uracile(se il taglio è stato generato con Nru). Per la normalizzazione delle efficienze di trasformazione, in parallelo ho trasformato il ceppo con un quantitativo equivalente di plasmide circolare. La trasformazione con il plasmide circolare mi permette di correggere le possibili differenze nelle efficienze di trasformazione imputabili alle preparazioni di DNA e ai diversi ceppi di lievito analizzati.

La tecnica utilizzata per le trasformazioni é comunemente nota come "Lazy bones" a cui ho apportato alcune modifiche:

- Prendere un'ansata di cellule da una piastra, servendosi di uno stuzzicadenti dalla punta piatta. In ogni esperimento le cellule sono prelevate da ceppi conservati a -80°C, e fatte crescere su piastre di terreno ricco per 48 ore a 26°C prima di procedere alla trasformazione.
- Risospendere le cellule in 1ml di H20dd sterile. Contare le cellule, controllando la fase di crescita; le cellule in fase stazionaria sono risospese ad una concentrazione di 10⁸ cellule/ml.

- Centrifugare per 1' a 4000 rpm, e risospendere le cellule in 20µl di H20.
- Suddividere la sospensione cellulare in due eppendorf ciascuna contente 10µl di cellule.
- Ad entrambi i tubi aggiungere 10 µl di DNA carrier (10µg/µl) più 100 ng di DNA plasmidico lineare in un tubo e 100ng di DNA plasmidico circolare nell'altro tubo e mischiare con il vortex.
- Aggiungere 0.5 ml di "PLATE solution" e mischiare con il vortex. Incubare per tutta la notte a 26°C.
- Incubare a 42°C per 15'.
- Centrifugare per pochi secondi a 10000 rpm. Rimuovere delicatamente il surnatante. Aggiungere al pellet 200 µl di YPDA e risospendere.
- Trasferire le cellule risospese in un falcon da 50ml contenente 5 ml di YPDA.
- Incubare per 2 ore a 26°C o a 30°C.
- Centrifugare le cellule per 2' a 4000 rpm. Risospende in 1ml di YPDA.
- Piastare su terreno contenente G418, o su terreno minimo contenente tutti i nutrienti tranne l'uracile . Incubare le piastre a 26°C o 30°C. L'incubazione è protratta per 3 giorni nel caso di piastre di terreno ricco contenete G418, per 5 giorni per la selezione del marcatore URA.
- Calcolo dell'efficienza di riparazione ottenuta dividendo il numero di trasformanti ottenuti dalla preparazione di DNA lineare per il numero di trasformanti ottenuti trasformando con il DNA circolare.

SOLUZIONI

PLATE solution (40% PEG 3350 0.1M LiAc, 10Mm Tris-HCl pH 7.5, 1mM EDTA).

FASE 3. Analisi della frequenza di Gap repair.

Dopo trasformazione con il plasmide linearizzato HincII i trasformanti resistenti all'antibiotico G418 sono isolati su piastre conteneti G418 e replicati su piastre di terreno minimo contenenti tutti i nutrienti tranne l'uracile a 26°C.

I trasformanti G418 resistenti, che risultano prototrofi per l'uracile, sono il prodotto del Gap repair.

Fase 4. Analisi della precisione dell'evento di riparazione

4.1 <u>Analisi della precisione dopo digestione con NRU nel marcatore KAN</u>. In questo esperimento il taglio con l'enzima di restrizione cade nel marcatore KAN, che conferisce resistenza al G418. E' possibile determinare la precisione dell'evento di riparazione semplicemente isolando i trasformanti prototrofi per l'uracile e replicandoli in presenza di G418. Se ,infatti, il marcatore KAN si ristabilsce correttamente (riparazione precisa) i trasformanti URA risulteranno anche G418 resistenti.

4.2 <u>Analisi della precisione dopo digestione con HincII nel marcatore URA.</u>
In questo esperimento la verifica della precisione della riparazione è stato ottenuto utilizzando due metodiche diverse:

4.2.1.*Digestione dei DNA con l'endonucleasi HincII*. Ho seguito il seguente schema:

- Preparazione dei DNA genomici (punto 13) dei trasformanti G418 resistenti, ura.
- Ciascuna preparazione di DNA genomico é utilizzata per trasformare, in maniera indipendente, cellule batteriche elettrocompetenti, mediante elettroporazione.
- Preparazione dei plasmidi ottenuti dai trasformanti batterici e digestione delle miniprep con l'endonucleasi HincII.

4.2.2. Amplificazione per PCR della sequenza del sito di giunzione e digestione dei prodotti di amplificazione con HincII.

Ho seguito il seguente schema:

- Preparazione dei DNA genomici(punto 13) dei trasformanti G418 resistenti, ura.
- Amplificazione mediante PCR condotta sulle preparazioni di DNA genomico utilizzando gli oligo U-HincII L-HincII che si appaiano in regioni prossime al sito di giunzione(Figura 31).
- o Digestione dei prodotti amplificati con l'endonucleasi HincII.

Figura 31. Gli oligo U-HincII e L-HincII, quando utilizzati su DNA genomici proveniente da trasformanti G418 resistenti, ura del 3031, ceppo auxotrofo per l'uracile, ma in cui è presente il gene URA3, producono due amplificati. **Pannello A**. Prodotto di amplificazione su cromosoma di 303 (523 bp). **Pannello B**. Prodotto di amplificazione su plasmide(389bp). In figura sono indicati i siti di taglio di HincII che determinano la rimozione del tratto da 142bp.

12. Elettroeluizione da gel di agarosio.

Il campione di DNA plasmidico digerito con enzimi di restrizione viene caricato su un gel preparativo di agarosio. Una volta raggiunta una buona separazione elettroforetica, la banda corrispondente al vettore linearizzato è tagliata dal gel con bisturi sterili e introdotta in tubi da dialisi contenenti circa 300 µl del tampone TAE 1X.

- Elettroeluire per circa 20' a 100 volt. Invertire la polarità per 3'' e recuperare la soluzione presente nel tubo da dialisi.
- o Portare la soluzione a 0.1 M Tris HCl.
- Aggiungere 1 volume di alcool isoamilico, vortex e centrifugare 2' a 13000 rpm. Recuperare la fase inferiore.
- Aggiungere 1Volume di Fenolo-Cloroformio vortex e centrifugare 5'
 2' a 13000 rpm. Recuperare la fase superiore. Precitare con etanolo e sodio acetato.

13. Preparazione di DNA genomici da Saccharomyces cerevisiae.

Crescere le cellule in 5 ml di terreno liquido YPD a 26 °C fino al raggiungimento della saturazione.

- o Centrifugare 5' a 4000 rpm.
- o Risospendere le cellule in 200 μl della soluzione 1
- Trasferire in tubi eppendorf da 1.5 ml, precedentemente riempiti con 400 μl di palline di vetro (425-600 micron).
- Aggiungere 200 μl di fenolo-cloroformio. Mischiare per 2' con il vortex.
- Centrifugare 5' a 4000 rpm.
- Prelevare il sopranatante e precipitarlo con etanolo.

SOLUZIONE 1: (2 %Triton X-100, 1 % SDS, 100 mM NaCl, 10 mMTris pH 8.0, 1 mM EDTA).

Bibliografia

Bibliografia (premessa):

Alexeev, A., Mazin, A. and Kowalczykowski, S. C. (2003). Rad54 protein possesses chromatin-remodeling activity stimulated by the Rad51-ssDNA nucleoprotein filament. *Nat. Struct. Biol.* **10**, pp. 182-186.

Cairns, B.R., Kim, Y.J., Sayre, M.H., Laurent, B.C. and Kornberg, R.D(1994). A multisubunit complex containing the SWI1/ADR6, SWI2/SNF2, SWI3, SNF5 and SNF6 gene products isolated from yeast. *Proc. Natl. Acad. Sci.* USA 91, pp. 1950-1954.

Côté, J., J. Quinn, J. L. Workman, and C. L. Peterson. (1994). Stimulation of GAL4 derivative binding to nucleosomal DNA by the yeast SWI/SNF complex. *Science* 265, pp. 53-60.

Durr H, Korner C, Muller M, Hickman V, Hopfner K-P. (2005). X-Ray structure of the *Sulfolobus solfataricus* SWI2/SNF2 ATPase core and its complex with DNA. *Cell* **121**, pp.363–373.

Eisen, J. A., Sweder, K. S. and Hanawalt, P. C. (1995). Evolution of the SNF2 family of proteins: subfamilies with distinct sequences and functions. *Nucleic Acids Res.* 23, pp.2715-2723.

Jaskelioff, M., van Komen, S., Krebs, J. E., Sung, P. and Peterson, C. L. (2003). Rad54p is a chromatin remodeling enzyme required for heteroduplex DNA joint formation with chromatin. *J. Biol. Chem.* **278**, pp. 9212-9218.

Saha, A., Wittmeyer, J. and Cairns, B. R. (2002). Chromatin remodeling by RSC involves ATP-dependent DNA translocation. *Genes. Dev.* 16, pp.2120-2134

Saha, A., Wittmeyer, J., and Cairns, B.R. (2006). Chromatin remodeling: the industrial revolution of DNA around histones. *Nat. Rev. Mol. Cell Biol.* 7, pp. 437–447.

Shen X, Mizuguchi G, Hamiche A, Wu C (2002). A chromatin remodeling complex involved in transcription and DNA processing. *Nature* **406** pp. 541-544.

Vignali M., Hassan A., Neely E., Workman J. (2000). ATP-Dependent Chromatin-Remodeling Complexes. *Molecular and Cellular Biology*, **20**, pp. 1899-1910.

Whitehouse I, Stockdale C, Flaus A, Szczelkun MD, Owen-Hughes T. (2003). Evidence for DNA translocation by the ISWI chromatin-remodeling enzyme. *Mol. Cell. Biol* 23, pp. 1935–1945.

Bibliografia (introduzione):

Angus-Hill ML, Schlichter A, Roberts D, Erdjument-Bromage H, Tempst P, Cairns BR. (2001).A Rsc3/Rsc30 zinc cluster dimer reveals novel roles for the chromatin remodeler RSC in gene expression and cell cycle control. *Mol. Cell*, 7, 741–751

Askree SH, *et al.* (2004) A genome-wide screen for Saccharomyces cerevisiae deletion mutants that affect telomere length. *Proc Natl Acad Sci U S A*,23, pp.8658-63.

Asturias J., Wen-Hsiang Chung, Roger D. Kornberg, and Yahli Lorch. (2002). Structural analysis of the RSC chromatin-remodeling complex. *Proc Natl Acad Sci U S A.*, **99**, pp.13477–13480.

Aylon Y., Liefshitz B., Bitan-Banin G. and Kupiec M. (2003). Molecular dissection of mitotic recombination in the yeast *Saccharomyces cerevisiae*. *Mol. Cell Biol.* 23, pp. 1403–1417.

Bassing, C.H., K.F. Chua, J. Sekiguchi, H. Suh, S.R. Whitlow, J.C. Fleming, B.C. Monroe, D.N. Ciccone, C. Yan, K. Vlasakova. (2002). Increased ionizing radiation sensitivity and genomic instability in the absence of histone H2AX. *Proc. Natl. Acad. Sci. USA.* **99**, pp. 8173–8178.

Baumann P, West SC. (1998) DNA end-joining catalyzed by human cell-free extracts. *Proc Natl Acad Sci U S A*.; **95**, pp.14066–70.

Belmont AS. (1997). Large-scale chromatin organization in *Genome Structure and Function*. Edited by Nicolini C. Dordrecht: Kluwer Academic Publishers 261-276

Bertuch AA, Lundblad V. (2003). The Ku heterodimer performs separable activities at double-strand breaks and chromosome termini. *Mol. Cell Biol.* **23**, pp.8202–15.

Bird, A.W., Yu, D.Y., Pray-Grant, M.G., Qiu, Q., Harmon, K.E., Megee, P.C.(2002). Acetylation of histone H4 by Esa1 is required for DNA double- strand break repair. *Nature* **419**, pp. 411–415.

Boulton SJ, Jackson SP. (1998). Components of the Ku-dependent non-homologous end joining pathway are involved in telomeric length maintenance and telomeric silencing. *EMBO J.* **17**,pp. 1819–28.

Branzei D, Foiani M. (2005). The DNA damage response during DNA replication. *Curr Opin Cell Biol.* **17(6)**, pp.568-75.

Cairns B.R, A. Schlichter, H. Erdjument-Bromage, P. Tempst, R. Kornberg, F. Winston. Two Functionally Distinct Forms of the RSC Nucleosome-Remodeling Complex, Containing Essential AT Hook, BAH, and Bromodomains (1999).*Molecular Cell*, **4**, pp. 715-723.

Cairns, B.R., Lorch, Y., Li, Y., Zhang, M.C., Lacomis, L., Erdjument- Bromage, H., Tempst, P., Du, J., Laurent, B., and Kornberg, R.D.(1996). RSC, an essential, abundant chromatin-remodeling complex. Cell 87, pp.1249–1260.

Cao, B R Cairns, R D Kornberg, and B C Laurent (1997). Sfh1p, a component of a novel chromatin-remodeling complex, is required for cell cycle progression. *Mol Cell Biol.*, 17, pp. 3323–3334.

Carey M., Li B., Workman J. (2006) RSC Exploits Histone Acetylation to Abrogate the Nucleosomal Block to RNA Polymerase II Elongation. *Molecular Cell*, **24**, pp.481-487,

Cary R.B., Peterson S.R., Wang J., Bear D.GBradbury E.M., Chen D.J. (1997) Dna looping by Ku and the DNA-dependent protein kinase. *Proc. Natl. Acad. Sci. U.S.A.*, 94, pp.4267-4272.

Celeste, A., S. Petersen, P.J. Romanienko, O. Fernandez-Capetillo, H.T. Chen, O.A. Sedelnikova, B. Reina-San-Martin, V. Coppola, E. Meffre, M.J. Difilippantonio. (2002). Genomic instability in mice lacking histone H2AX. *Science*. **296**, pp. 922–927.

Chai B, Huang J, Cairns BR, Laurent BC. (2005) Distinct roles for the RSC and Swi/Snf ATP-dependent chromatin remodelers in DNA double-strand break repair. *Genes Dev.* **19**, pp. 1656-61.

Craig B. Bennett, L. Kevin Lewis, Gopalakrishnan Karthikeyan, Kirill S. Lobachev, Yong H. Jin, Joan F. Sterling, Joyce R. Snipe & Michael A. Resnick. (2001)Genes required for ionizing radiation resistance in yeast. *Nature Genetics* **29**, pp. 426 – 434.

Cosma MP (2004) Daughter-specific repression of Saccharomyces cerevisiae HO: Ash1 is the commander. *EMBO Rep* 5, 10, pp. 953-7.

Damelin M, Simon I, Moy TI, Wilson B, Komili S, Tempst P, Roth FP, Young RA, Cairns BR, Silver PA (2002). The genome-wide localization of Rsc9, a component of the RSC chromatin-remodeling complex, changes in response to stress. *Mol Cell*, 9, pp. 563-73.

De Fazio L.G., Stansel R.M., Griffith J.D., Chu G.(2002). Synapsis of DNA ends by DNA-dependent protein kinase. *Embo J.*, **21**, pp. 3192-3200.

Delacote F., Guirouilh-Barbat J., Lambert S. and B.S. Lopez.(2004). Homologous Recombination, Non-Homologous End-Joining and Cell Cycle: Genome's Angels. *Current Genomics*, **5**, pp. 49-58(10).

Doherty AJ, Jackson SP, Weller GR. (2001). Identification of bacterial homologues of the Ku DNA repair proteins. *FEBS Lett.* **500**, pp.186–88.

Downs, J. A., S. Allard, O. Jobin-Robitaille, A. Javaheri, A. Auger, N.Bouchard, S. J. Kron, S. P. Jackson, and J. Cote. (2004). Binding of chromatin-modifying activities to phosphorylated histone H2A at DNA damage sites. *Mol. Cell* **16**, pp. 979–990.

Feldmann E, Schmiemann V, Goedecke W, Reichenberger S, Pfeiffer P. (2000) DNA double-strand break repair in cellfree extracts from Ku80-deficient cells: implications for Ku serving as an alignment factor in non-homologous DNA end joining. *Nucleic Acids Res.*; 28, pp.2585–96.

Fishman-Lobell J., Rudin N. and Haber J.E. (1992). Two alternative pathways of double-strand break repair that are kinetically separable and independently modulated. *Mol. Cell Biol.* **12**, pp. 1292–1303.

Florio C, Moscariello M, Ederle S, Fasano R, Lanzuolo C, Pulitzer JF (2007) A study of biochemical and functional interactions of Htl1p, a putative component of the Saccharomyces cerevisiae, Rsc chromatin-remodeling complex. *Gene* **395**, pp. 72-85.

Frank-Vaillant M., Marcand S.(2001). NHEJ regulation by mating type is exercised through a novel protein, Lif2p, essential to the Ligase IV pathway. *Genes Dev*, **15**, pp. 3005-3012.

Fugmann SD, Lee AI, Shockett PE, Villey IJ, Schatz DG. (2000). The RAG proteins and V(D)J recombination: complexes, ends, and transposition. *Annu. Rev. Immunol.* **18**, pp. 495-527.

Gellert, M., 2002. V(D)J recombination: RAG proteins, repair factors, and regulation. *Annu. Rev. Biochem.* **71**, pp. 101–132.

Guarente L. (1999). Diverse and dynamic functions of the Sir silencing complex. *Nature Genetics* 23, pp. 281 – 285.

Hefferin M. Tomkinson A. (2005). Mechanism of DNA double-strand break repair by non-homologous end joining. *DNA Repair*, 4, pp. 639–648.

Herrmann G, Lindahl T, Schar P. (1998). *Saccharomyces cerevisiae LIF1*: a function involved in DNA double-strand break repair related to mammalian XRCC4. *EMBO J.* 17, pp.4188–98.

Herskowitz I., J. Rine and J. Strathern. (1992). Mating type determination and matingtype interconversion in *Saccharomyces cerevisiae*. In: The Molecular and Cellular Biology of the Yeast Saccharomyces: Gene Expression, pp. 583-656.

Hopfner KP, Karcher A, Craig L, Woo TT, Carney JP, Tainer JA. (2001). Structural biochemistry and interaction architecture of the DNA double-strand break repair Mre11 nuclease and Rad50-ATPase. *Cell* **105**, pp.473–85.

Hoppe G. H., Tanny, J. C., Rudner, A. D., Gerber, S. A., Danaie, S., Gygi, S. and Moazed, D. (2002). Steps in assembly of silent chromatin in yeast: Sir3-independent binding of a Sir2/Sir4 complex to silencers and a role for Sir2-dependent deacetylation. *Mol. Cell Biol.* 22, pp. 4167-4180.

Huang J, Hsu JM, Laurent BC. (2004). The RSC nucleosome-remodeling complex is required for Cohesin's association with chromosome arms. *Mol Cell*. **13**, pp. 739-50.

Iyer VR, Horak CE, Scafe CS, Botstein D, Snyder M, Brown PO. (2001) Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF. *Nature* 409(6819):533-8

Jackson S.P.(2002). Sensing and repairing DNA double-strand breaks .*Carcinogenesis*, 23, 687-696.

Jones J.M., Gellert M., Yang W. (2001). A Ku Bridge over Broken DNA Structure, 9, pp. 881–884.

Kegel A, Sjostrand JO, Astrom SU. (2001). Nej1p, a cell type-specific regulator of non homologous end joining in yeast. Curr. Biol. 11, pp. 1611-1617.

Lanzuolo C., Ederle S., Pollice A., Russo F., Storlazzi A., Pulitzer JF. (2001). The *HTL1* gene (YCR020W-b) of *Saccharomyces cerevisiae* is necessary for growth at 37°C, and for the conservation of chromosome stability and fertility. *Yeast*, **18**, pp. 1317-1330.

Lee SE, Paques F, Sylvan J, Haber JE. (1999). Role of yeast SIR genes and mating type in directing DNA double-strand breaks to homologous and non-homologous repair paths. *Curr. Biol.* 9, pp. 767–70.

Liang B., Qiu J., Ratnakumar K., Laurent C. (2007). RSC Functions as an Early Double-Strand-Break Sensor in the Cell's Response to DNA Damage. *Curr Biol* 7, pp. 1432-7.

Lieber MR, Yu K, Raghavan SC (2006). Roles of non homologous DNA end joining, V(D)J recombination, and class switch recombination in chromosomal translocations. *DNA Repair (Amst.)* **5**, pp. 1234-45.

Malkova, A., F. Klein, W. Y. Leung, and J. E. Haber(2000). HO endonuclease-induced recombination in yeast meiosis resembles Spo11-induced events. *Proc. Natl. Acad. Sci.* USA 97, pp.14500-14505.

Martin S.G., Laroche T., Suka N., Grunstein M. and Gasser S.M. (1999). Relocalization of telomeric Ku and SIR proteins in response to DNA strand breaks in yeast, *Cell* 97, pp. 621–633.

McBlane J.F., van Gent,D.C., Ramsden,D.A., Romeo,C., Cuomo,C.A., Gellert,M. and Oettinger M.A. (1995) Cleavage at a V(D)J recombination signal requires only RAG1 and RAG2 proteins and occurs in two steps. *Cell*, **83**, pp. 387–395.

Mills K.D., Sinclair D.A. and Guarente L.(1999). MEC1-dependent redistribution of the Sir3 silencing protein from telomeres to DNA double-strand breaks, *Cell* **97**, pp. 609–620.

Ng, H. H., Robert, F., Young, R. A. & Struhl, K. (2002)Genome wide location and regulated recruitment of the RSC nucleosome-remodeling complex. *Genes Dev.* 16, 806–819.

Peterson, C. L., and J. Cote. (2004). Cellular machineries for chromosomal DNA repair. *Genes Dev.* **18**, pp.602–616.

Petrini, J. H. (2005). At the end, remodeling leads to eviction. *Nat. Struct. Mol. Biol.* 12, pp.1028–1029.

Petrini, J.H. and Stracker, T.H.(2003). The cellular response to DNA double-strand breaks: Defining the sensors and mediators. *Trends Cell. Biol.* **13**, pp. 458–462.

Rogakou, E.P., Boon, C., Redon, C., and Bonner, W.M. (1999). Megabase chromatin domains involved in DNA double-strand breaks in vivo. J. Cell Biol. **146** pp. 905–916.

Romeo, Melinda L. Angus-Hill, Andrew K. Sobering, Yoshiaki Kamada, Bradley R. Cairns, 2 and David E. Levin. (2002) *HTL1* Encodes a Novel Factor That Interacts with

the RSC Chromatin Remodeling Complex in *Saccharomyces cerevisiae*. *Mol Cell Biol*. December; **22**, pp.8165–8174

Rothkamm K, Krüger I, Thompson LH, Löbrich M.(2003). Pathways of DNA doublestrand break repair during the mammalian cell cycle. *Mol Cell Biol.* **16**, pp.5706-15.

Rudin N, Sugarman E, Haber JE (1989). Genetic and physical analysis of double-strand break repair and recombination in Saccharomyces cerevisiae. *Genetics* **122(3)**,pp. 519-34.

Sandoval A, Labhart P. (2002) Joining of DNA ends bearing non-matching 3'-overhangs. *DNA Repair.*; 1, pp. 397–410.

Sawchuk, D. J., Mansilla-Soto, J., Alarcon, C., Singha, N. C., Langen, H., Bianchi, M. E., Lees-Miller, S. P., Nussenzweig, M. C., Cortes, P. (2004). Ku70/Ku80 and DNA-dependent Protein Kinase Catalytic Subunit Modulate RAG-mediated Cleavage: implications for the enforcement of the 12/23 rule. *J. Biol. Chem.* **279**, pp. 29821-29831.

Shim EY, Ma JL, Oum JH, Yanez Y, Lee SE. The yeast chromatin remodeler RSC complex facilitates end joining repair of DNA double-strand breaks. (2005) *Mol Cell Biol.*, **25**, pp.3934-44.

Shim , Hong S.J , Oum H. Yanez Y., Zhang Y., Lee S. (2007) RSC Mobilizes Nucleosomes To Improve Accessibility of Repair Machinery to the Damaged Chromatin. *Molecular and Cellular Biology*, 27, pp. 1602-1613,

Skiniotis, G., Moazed, D. & Walz, T. Acetylated histone tail peptides induce structural rearrangements in the RSC chromatin remodeling complex. (2007). *J. Biol. Chem.* 282, 20804–20808

Shroff, R., A. Arbel-Eden, D. Pilch, G. Ira, W. M. Bonner, J. H. Petrini, J E.Haber, and M. Lichten. (2004). Distribution and dynamics of chromatin modification induced by a defined DNA double-strand break. *Curr. Biol.* 14, pp.1703–1711.

Sonoda E, **Hochegger H**, **Saberi A**, **Taniguchi Y**, **Takeda S.** (2006). Differential usage of non-homologous end-joining and homologous recombination in double strand break repair. *DNA Repair*, **5**, pp. 1021-1029.

Soutourina J, et al. (2006) Rsc4 connects the chromatin remodeler RSC to RNA polymerases. *Mol Cell Biol* 26(13):4920-33

Strathern JN, Klar AJ, Hicks JB, Abraham JA, Ivy JM, Nasmyth KA, McGill C (1982) Homothallic switching of yeast mating type cassettes is initiated by a double-stranded cut in the MAT locus. *Cell* 31(1):183-92

Sung, P. (1997). Function of yeast Rad52 protein as a mediator between replication protein A and the Rad51 recombinase. *J. Biol. Chem.* 272, pp. 28194-28197.

Symington L.S. (2002). Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. *Microbiol. Mol. Biol. Rev.* **66** pp. 630–670.

Tamburini, B.A., and Tyler, J.K. (2005). Localized histone acetylation and deacetylation triggered by the homologous recombination pathway of double-strand DNA repair. *Mol. Cell. Biol.* **25**, pp. 4903–4913.

Thiriet, C., and J. J. Hayes. (2005). Chromatin in need of a fix: phosphorylation of H2AX connects chromatin to DNA repair. *Mol. Cell* **18**, pp.617–622.

Treich I., Ho L., Carlson M., (1998) Direct interaction between Rsc6 and Rsc8/Swh3,two proteins that are conserved in SWI/SNF-related complexes. Nucleic Acids Research, **26**, pp. 16 3739-3745.

Trujillo KM, Roh DH, Chen L, Van Komen S, Tomkinson A, Sung P. (2003). Yeast Xrs2 binds DNA and helps target Rad50 and Mre11 to DNA ends. *J. Biol. Chem.* 278, pp.48957–64.

Trujillo KM, Sung P. (2001). DNA structure-specific nuclease activities in the *Saccharomyces cerevisiae* Rad50-Mre11 complex. *J. Biol. Chem.*, **276**, pp.35458–64

Tsuchiya E, et al. (1998) A mutation in NPS1/STH1, an essential gene encoding a component of a novel chromatin-remodeling complex RSC, alters the chromatin structure of Saccharomyces cerevisiae centromeres. *Nucleic Acids Res* 26(13):3286-92

Tsukamoto, Y., Kato, J. & Ikeda, H. (1997). Silencing factors participate in DNA repair and recombination in *Saccharomyces cerevisiae*. *Nature* 388, pp. 900-903.

Tsukuda, T., Fleming, A.B., Nickoloff, J.A., and Osley, M.A. (2005). Chromatin remodelling at a DNA double-strand break site in *Saccharomyces cerevisiae*. *Nature* (*London*), **438** pp. 379–383.

Unal, E., Arbel-Eden, A., Sattler, U., Shroff, R., Lichten, M., Haber, J.E., and Koshland, D. (2004). DNA damage response pathway uses histone modification to assemble a double-strand break-specific cohesin domain. *Mol. Cell* 16, pp. 991-1002.

Valencia M, Bentele M, Vaze MB, Herrmann G, Kraus E. (2001). *NEJ1* controls non-homologous end joining in *Saccharomyces cerevisiae*. *Nature* 414, pp.666–69.

Van Attikum, H., and S. M. Gasser. (2005). The histone code at DNA breaks: a guide to repair? *Nat. Rev. Mol. Cell. Biol.* 6, pp. 757–765.

Van Gent D.C., Hoeijmarkers J.H. e Kanaar R.(2001). Chromosomal stability and the DNA double-stranded break connection. *Nat. Rev.Genet.*, **2**, pp.196-206.

Walker JR, Corpina RA, Goldberg J. (2001). Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. *Nature* **412**, pp.607–14.

White C.I. and Haber J.E.(1990).Intermediates of recombination during mating type switching in Saccharomyces cerevisiae. *EMBO J.* 9, pp. 663–673.

Wilson TE, Grawunder U, Lieber MR. (1997). Yeast DNA ligase IV mediates non homologous DNA end joining. *Nature*, **388**, pp. 495–98.

Wilson B, Erdjument-Bromage H, Tempst P, Cairns BR. (2006). The RSC chromatin remodeling complex bears an essential fungal-specific protein module with broad functional roles. *GeneticsFeb*;172, pp. 795-809.

Wolner B, van Komen S, Sung P, Peterson CL. (2003). Recruitment of the recombinational repair machinery to a DNA double-strand break in yeast. *Mol Cell*, 12, pp. 221-32.

Yoo S., Dynan W.S.(1999).Geometry of a complex formed by double strand break repair proteins at a single DNA end: recruitment of DNA-PKcs induces inward translocation of Ku protein. *Nucleic Acid Res.*, **27**, pp. 4679- 4686.

Yukawa M, et al. (1999) Nps1/Sth1p, a component of an essential chromatin-remodeling complex of Saccharomyces cerevisiae, is required for the maximal expression of early meiotic genes. *Genes Cells* 4(2):99-110

Bibliografia (risultati):

Ahne, F., B. jha, and F. Eckardt-Schupp, (1997). The *RAD5* gene product is involved in the avoidance of nonhomologous end-joining of DNA double-strand breaks in the yeast *Saccharomyces cerevisiae*. *Nucleic Acids Res.* **25**, pp.:743-749.

Bennett, C.B, Lewis K, Karthikeyan G, Lobachev K, Jin Y. H. *et al.*, (2001). Genes required for ionizing radiation resistance in yeast. *Nat. Genet.* **29**, pp. 426–434

Boulton SJ and Jackson SP (1996) *Saccharomyces cerevisiae* Ku70 potentiates illegitimate DNA double strand break repair and serves as a barrier to error prone DNA repair pathways. *EMBO J*, **15**, pp.5093–5103.

Chai B, Huang J, Cairns BR, Laurent BC. (2005) Distinct roles for the RSC and Swi/Snf ATP-dependent chromatin remodelers in DNA double-strand break repair. *Genes Dev.* **19**, pp. 1656-61

Florio C., Moscariello M., Ederle S. e Pulitzer J.F. "Interazioni tra Htl1 ed il complesso Rsc in Saccharomyces cerevisiae" 5° Convegno FISV 10-13 Ottobre 2003- Rimini. pag 13

Hegde V, Klein H (2000) Requirement for the SRS2 DNA helicase gene in nonhomologous end joining in yeast. *Nucleic Acids Res* 28, pp.2779-83.

Jha B., Ahne F. Eckardt-Schupp (1993) The use of a double-marker shuttle vector to study DNA double-strand break repair in wild-type and radiation-sensitive mutants of the yeast *Saccharomyces cerevisiae*. *Current Genetics*, **23**, Numbers 5-6.

Lu, Y.M., Lin, Y.R., Tsai, A., Hsao, Y.S., Li, C.C., Cheng, M.Y., (2003). Dissecting the pet18 mutation in Saccharomyces cerevisiae: HTL1 encodes a 7-kDa polypeptide that interacts with components of the RSC complex. *Mol. Genet. Genomics.*, **269**, pp.321-330.

Ma Jia-Lin, Kim Eun Mi HaberJ., Lee S.(2003) Yeast Mre11 and Rad1 Proteins Define a Ku-Independent Mechanism To Repair Double-Strand Breaks Lacking Overlapping End Sequences *Molecular and Cellular Biology* **23**, pp. 8820–8828.

Romeo, Melinda L. Angus-Hill, Andrew K. Sobering, Yoshiaki Kamada, Bradley R. Cairns, and David E. Levin. (2002). *HTL1* Encodes a Novel Factor That Interacts with the RSC Chromatin Remodeling Complex in *Saccharomyces cerevisiae*. *Mol Cell Biol.* 22, pp.8165–8174.

Rose, M. and F. Winston, (1984) Identification of a Ty insertion within the coding sequence of the *S. cerevisiae URA3* gene. *Mol. Gen. Genet.* **193**, pp. 557-560

Shim EY, Ma JL, Oum JH, Yanez Y, Lee SE. The yeast chromatin remodeler RSC

complex facilitates end joining repair of DNA double-strand breaks. (2005) *Mol Cell Biol.*, **25**, pp.3934-44.

Sikorski RS, Hieter P (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. *Genetics* 122(1) pp. 19-27.

Treich I., Carlson M. (1997). Interaction of a Swi3 Homolog with Sth1 Provides Evidence for a Swi/Snf-Related Complex with an Essential Function in *Saccharomyces cerevisiae*. *Mol. and cellular Biology*, **17**, pp. 1768–1775

Treich, Ho L., Carlson M., 1998. Direct interaction between Rsc6 and Rsc8/Swh3,two proteins that are conserved in SWI/SNF-related complexes. Nucleic Acids Res. 26(16): 3739–3745.

Uetz, P., L. Giot, G. Cagney, T. A. Mansfield, R. S. Judson *et al.*, (2000). A comprehensive analysis of protein-protein interactions in *Saccharomyces cerevisiae*. *Nature* **403**, pp. 623–627.

Voss, S. & Skerra, A. (1997) Mutagenesis of a flexible loop in streptavidin leads to higher affinity for the *Strep*-tag II peptide and improved performance in recombinant protein purification, *Protein Eng.* 10, pp. 975-82.

Wilson B, Erdjument-Bromage H, Tempst P, Cairns BR. (2006). The RSC chromatin remodeling complex bears an essential fungal-specific protein module with broad functional roles. *Genetics. Feb*;172, pp.795-809.

Bibliografia (discussione):

Ahne, F., B. Jha, and F. Eckardt-Schupp, (1997). The *RAD5* gene product is involved in the avoidance of nonhomologous end-joining of DNA double-strand breaks in the yeast *Saccharomyces cerevisiae*. *Nucleic Acids Res.* **25**, pp.:743-749.

Boulton SJ and Jackson SP (1996) *Saccharomyces cerevisiae* Ku70 potentiates illegitimate DNA double strand break repair and serves as a barrier to error prone DNA repair pathways. *EMBO J*, **15**, pp.5093–5103.

Campsteijn C, Wijnands-Collin AMJ, Logie C (2007) Reverse Genetic Analysis of the Yeast RSC Chromatin Remodeler Reveals a Role for RSC3 and SNF5 Homolog 1 in Ploidy Maintenance. *PLoS Genet* **3(6)**: e

Cary R.B., Peterson S.R., Wang J., Bear D.G., Bradbury E.M., Chen D.J. (1997): Dna looping by Ku and the DNA-dependent protein kinase. *Proc. Natl. Acad. Sci. U.S.A.*, 94, pp.4267-4272.

Chai B, Huang J, Cairns BR, Laurent BC. (2005) Distinct roles for the RSC and Swi/Snf ATP-dependent chromatin remodelers in DNA double-strand break repair. *Genes Dev.* **19**, pp. 1656-61.

Green M., Almouznia G. (2002). When repair meets chromatin First in series on chromatin dynamics *EMBO Rep.* 15, pp. 28–33.

Iyer VR, Horak CE, Scafe CS, Botstein D, Snyder M, Brown PO. (2001) Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF. *Nature* 409(6819):533-8.

Hegde V, Klein H (2000) Requirement for the SRS2 DNA helicase gene in non-homologous end joining in yeast. *Nucleic Acids Res* 28, pp.2779-83.

Hurwitz R., Chévez-Barrios P, Boniuk M., Chintagumpala M., and Hurwitz M. (2003) Retinoblastoma: from bench to bedside. *Exp. Rev. Mol. Med.* Vol. 5, DOI: 10.1017/S1462399403005520

Jha B., Ahne F. Eckardt-Schupp (1993) The use of a double-marker shuttle vector to study DNA double-strand break repair in wild-type and radiation-sensitive mutants of the yeast *Saccharomyces cerevisiae*. *Current Genetics*, 23, Numbers 5-6.

Kegel A, Sjostrand JO, Astrom SU. (2001). Nej1p, a cell type-specific regulator of non homologous end joining in yeast. Curr. Biol. 11, pp. 1611-1617

McBlane JF, van Gent DC, Ramsden DA, Romeo C, Cuomo CA, Gellert M, Oettinger MA. Cleavage at a V(D)J recombination signal requires only RAG1 and RAG2 proteins and occurs in two steps. *Cell.* 1995, **83**, pp. 387–395.

Moreira, J. M. & Holmberg, S. (1999). Transcriptional repression of the yeast *CHA1* gene requires the chromatin-remodeling complex RSC. *EMBO J.* **18**, pp. 2836–2844.

Moshous D, Callebaut I, Fischer A, de Villartay JP (2001). Artemis, a novel DNA double-strand break repair/V(D)J recombination protein, is mutated in human severe combined immune deficiency. *Cell*, 105, pp.177-86.

Romeo, Melinda L. Angus-Hill, Andrew K. Sobering, Yoshiaki Kamada, Bradley R. Cairns, and David E. Levin. (2002) *HTL1* Encodes a Novel Factor That Interacts with the RSC Chromatin Remodeling Complex in *Saccharomyces cerevisiae*. *Mol Cell Biol*. December; **22**, pp.8165–8174.

Sawchuk D., Mansilla-Soto J., Alarcon C., Langen H., Singha C., Bianchi M., Lees-Miller S., Nussenzweig C., Cortes P. (2004) Ku70/Ku80 and DNA-PKcs modulate RAGmediated cleavage . Implications for the enforcement of the 12/23 rule. *J. Biol. Chem.*, 28, pp.29821-29831.

Shim EY, Ma JL, Oum JH, Yanez Y, Lee SE. The yeast chromatin remodeler RSC complex facilitates end joining repair of DNA double-strand breaks. (2005) *Mol Cell Biol.*, **25**, pp.3934-44.

Treich I., Ho L., Carlson M., (1998) Direct interaction between Rsc6 and Rsc8/Swh3,two proteins that are conserved in SWI/SNF-related complexes. Nucleic Acids Research, **26**, pp. 16 3739-3745.

Walker J.R., Corpina R.A., Goldberg J. (2001). Structure of the ku heterodimer bound to DNA and its implications for double-strand break repair. *Nature*, **412**, pp. 607-614.

Wang J., Pluth J., Cooper K., Cowan M., Chen D., Yannone S., (2005). Artemis deficiency confers a DNA double-strand break repair defect and Artemis phosphorylation status is altered by DNA damage and cell cycle progression .*DNA Repair* <u>5</u>, pp. 556-570.

Wilson B, Erdjument-Bromage H, Tempst P, Cairns BR. (2006). The RSC chromatin remodeling complex bears an essential fungal-specific protein module with broad functional roles. *GeneticsFeb*;172, pp. 795-809.

Yoo S., Dynan W.S. (1999): Geometry of a complex formed by double strand break repair proteins at a single DNA end: recruitment of DNA-PKcs induces inward translocation of Ku protein. *Nucleic Acid Res.*, **27**, pp.4679-4686.

Allegato

Available online at www.sciencedirect.com

Gene 395 (2007) 72-85

www.elsevier.com/locate/gene

A study of biochemical and functional interactions of *Htl1p*, a putative component of the *Saccharomyces cerevisiae*, *Rsc* chromatin-remodeling complex

Carolina Florio¹, Mario Moscariello¹, Sara Ederle, Rossella Fasano, Chiara Lanzuolo², John F. Pulitzer*

Università degli Studi di Napoli Federico II, Dipartimento di Biologia, Via Cinthia-80126-Naples, Italy

Received 3 October 2006; received in revised form 23 January 2007; accepted 5 February 2007 Available online 20 February 2007 Received by R. Di Lauro

Abstract

HTL1, a small gene of Saccharomyces cerevisiae, encodes a 78-aminoacid peptide that influences the performance of a wide range of cellular processes [Lanzuolo, C., Ederle, S., Pollice, A., Russo, F., Storlazzi, A., Pulitzer, J.F., 2001. The HTL1 gene, YCR020W-b of Saccharomyces cerevisiae is necessary for growth at 37 °C, and for the conservation of chromosome stability and fertility. Yeast, 18, 1317–1330]. Genetic interactions and co-immunoprecipitation experiments indicate a role for Htl1p in functions controlled by RSC, a multiprotein, ATP-dependent, chromatin-remodeling complex [Lu, Y.M., Lin, Y.R., Tsai, A., Hsao, Y.S., Li, C.C., Cheng, M.Y., 2003. Dissecting the pet18 mutation in Saccharomyces cerevisiae: HTL1 encodes a 7-kDa polypeptide that interacts with components of the RSC complex. Mol. Genet. Genomics., 269, 321-330] [Romeo, M.J., Angus-Hill, M.L., Sobering, A.K., Kamada, Y., Cairns, B.R., Levin, D.E., 2002. HTL1 encodes a novel factor that interacts with the Rsc chromatin-remodeling complex in Saccharomyces cerevisiae. Mol. Cell. Biol., 22, 8165-8174]. Htl/p and RSC components, share the property of associating with TBP a component of general multiprotein transcription factor TFIID [Sanders, S.L., Jennings, J., Canutescu, A., Link, A.J., Weil, P.A., 2002. Proteomics of the eukaryotic transcription machinery: identification of proteins associated with components of yeast TFIID by multidimensional mass spectrometry. Mol. Cell. Biol. 22, 4723–4738]. We confirm, by integrating genetic and biochemical experiments, that Htl1p binding to the RSC complex is direct and physiologically relevant and show that it is mediated by Rsc8p, a core component of the RSC complex. Deletion of HTL1, like depletion of RSC core subunits [Moreira, J.M., Holmberg, S., 1999. Transcriptional repression of the yeast CHA1 gene requires the chromatin-remodeling complex Rsc. Embo J., 18, 2836–2844], leads to constitutive transcription of the CHA1 locus. This transcriptional phenotype exhibits variable penetrance. Deletion of HTL1 also leads to hydroxyurea hypersensitivity at 30 °C, suggesting a defect in replication/repair. This defect leads, during cell growth, to selection of mutations at the SIR3 locus that suppress hydroxyurea sensitivity. © 2007 Elsevier B.V. All rights reserved.

Keywords: Silencing; Hydroxyurea; Rsc8; SIR3

1. Introduction

The Saccharomyces cerevisiae HTL1 gene encodes a 78 amino acid peptide. Both protein and RNA are present at

relatively low levels (Lanzuolo et al., 2001; Romeo et al., 2002), (this paper). Essential only at temperatures above 35 °C, *HTL1* plays an important role in controlling the stable function of a wide range of cellular processes. Incubating *htl1* mutants at temperatures ranging from 26 °C to 37 °C causes an assortment of phenotypic abnormalities, graded in severity from alteration of chromosome segregation and/or replication, and progressive loss of fertility at 26 °C (Lanzuolo et al., 2001), to formamide, hydroxyurea hypersensitivity (see below), and impaired nonhomologous end joining (Moscariello et al., in preparation) at 30 °C, to cell death at 37 °C. Some defective phenotypes exhibit

Abbreviations: RSC, Remodel the Structure of Chromatin; HU, hydroxyurea.

^{*} Corresponding author. Tel.: +39 081679092; fax: +39 081679233.

E-mail address: pulitzer@unina.it (J.F. Pulitzer).

¹ C.F. and M.M. contributed equally to the work reported here.

² Present address: Dulbecco Telethon Institute, Institute of Genetics and Biophysics "Adriano Buzzati-Traverso" CNR, Via Pietro Castellino 111, 80131 Napoli, Italy.

^{0378-1119/\$ -} see front matter © 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.gene.2007.02.002

Table	1
Yeast	strains

Table 2

Strain	Genotype	Source
KY117	MATahis3-del200, ade2–101, trp1-del1ura3–52lys2–801	Struhl (1982)
YCL1	MATahis3-del200, ade2-101, trp1-del1ura3-52,lys2-801 htl1::URA3pRS306	Lanzuolo et al. (2001)
W303-1a	MATaade2-1 trp1-1 leu2-3,112 his3-11,15 ura3-52,can1-100, ssd1-d	Thomas and Rothstein (1989)
W303-1b	the isogenic $MAT\alpha$ counterpart of W303–1a.	Thomas and Rothstein (1989)
YJP1	W303–1a htl1::HIS3pRS303	Lanzuolo et al. (2001)
YJP3	W303–1b htl1::URA33pRS306	This study
YJP4	W303–1a rsc8::LEU2	This study
YJP5	W303–1a htl1::HIS3pRS303, Rsc8::LEU2[pSEGAL-5(RSC8)]	
D 273 -2A	$MAT\alpha$, $ade1$, $his1$	ColdSpringHarbor
YJP2	$MAT\alpha$, $lys2-801$	Lanzuolo et al. (2001)
W301-1a /b	MATa/\alpha ade2-1 trp1-1 leu2-3,112 his3-11,15 ura3 can1-100, ssd1-d)	Lanzuolo et al. (2001)
YJP5	W303-1a /b htl1::HIS3pRS303/W303-1bhtl1::URA33pRS306	By separate gene disruption of HTL1 alleles in W301-1a /b

incomplete penetrance (Lanzuolo et al., 2001). Although Htl1p is non-essential for growth at temperatures below 35 °C, genetic and biochemical experiments (Romeo et al., 2002; Lu et al., 2003b) indicate transient or substoichiometric interaction with RSC, an essential, abundant SWI/SNF-related, multiprotein chromatin-remodeling complex, (Cairns et al., 1999). Htllp is detected by mass spectrometry in affinity-purified complexes in combination with RSC components and TBP (an essential subunit of all three eukaryotic RNA polymerases) (Graumann et al., 2004; Sanders et al., 2002). RSC, a 1.1 MDa complex composed of up to 18 subunits, uses ATP catalysis to remodel chromatin by loosening the association of DNA to nucleosomes. Four proteins (Sth1p, Rsc8p/Swh3p, Sfh1p and Rsc6p) compose a structural core (Treich et al., 1998) common to all canonical RSC subgroups. Other components Rsc1p, Rsc2p, *Rsc3p* and *Rsc30p* are present in distinct forms of the complex (Cairns et al., 1999). Crystallographic analysis of RSC reveals a cavity that may accommodate the nucleosome (Asturias et al., 2002). The various RSC subunits besides providing collectively an appropriate surface for nucleosome interaction exhibit individually conserved domains for chromatin, protein-protein and DNA interactions. RSC promotes transcriptional silencing (Moreira and Holmberg, 1999), segregation, by regulating the association of cohesin with chromosomes arms (Huang et al., 2004) and, as recently observed, DNA repair (Chai et al., 2005; Shim et al., 2005; van Attikum and Gasser, 2005). In this paper we present new data that extend the range of

In this paper we present new data that extend the range of htl1 defective phenotypes to DNA replication/repair and transcriptional repression, covering the gamut of defective phenotypes associated with many of the RSC subcomplexes. In addition, we reexamine and validate the physiological relevance of Htl1p binding to RSC in vitro. Our data suggest that a conserved helical domain in Htl1p is important for function and for binding to Rsc8p, a component of the core of RSC subcomplexes. In addition we uncover an unexpected interaction between HTL1 and SIR3. Mutations in the SIR3 locus enhance a transcriptional effect of HTL1 inactivation and apparently suppress defects in replication/repair.

2. Materials and methods

2.1. Strains, plasmids, and growth conditions

Saccharomyces strains used in this study (Table 1) are isogenic derivatives of W303–1A or W303–1B (Thomas and Rothstein, 1989) or of KY117 (Struhl, 1982). HTL1 mutants disrupted with HIS3 (YJP1) or URA3 (YJP3) have been described (Lanzuolo et al., 2001). RSC8 mutant swh3ts was a

Plasmids			
Name Backbone Features		Features	Use
pBM272		URA3 GAL1/GAL10 promoter {Johnston and Davis, 1984 #301}	Yeast expression
pRS314		TRP1 {Sikorski and Hieter, 1989 #149}	Cloning
pRLGAL-1	pBM272	P_{GAL} HTL1 ORF flanked by 700 bp downstream sequence (PCR fragment) served by GAL promoter. (Lanzuolo et al., 2001)	Yeast expression
pSEGAL-2	pBM272	P_{GAL} HTL1 ORF fused to 5' FLAG and 3' myc epitope by PCR (oligos OSE5 and OSE7). BamH1-Sal1 fragment	Yeast expression
pSEGAL-3	pRS314	EcoR1-Sal fragment (including P_{GAL} promoter and downstream sequence) from pSEGAL-2 into pRS314	Yeast expression
pSEGAL-4	pRS314	P _{GAL} htl13P HTL1 ORF, with three Proline replacements, fused to 5' FLAG and 3' Myc tags	Yeast expression
pSEGAL-5	pBM272	P_{GAL} RSC8 ORF fused with 3' Strep tag	Yeast expression
pSEMET-2	pSEGAL-2	Eco-Bgl2 fragment containing P _{MET} promoter replaces EcoR1-BamHIGAL promoter	Yeast expression
pASK-IBA3		$\text{TET}_{p/o}$ +3' Strep tag (IBA GmbH)	E. coli expression
pASK-IBA5		$\text{TET}_{p/o}$ +5' Strep tag (IBA GmbH)	E. coli expression
pCF1	pASK-IBA5	RSC8 ORF as a SacII Sal1 by PCR (oligos OSE1, OSE2) fused to 5' Strep tag	E. coli expression
pCF2	pASK-IBA3	TET _{p/o} HTL1 ORF fused to 3' Myc tags by PCR (oligos OSE5 and OSE6)	E. coli expression
pCF3	pASK-IBA5	$\text{TET}_{p/o}$ <i>htl13P HTL1</i> ORF fused to 3' Myc tag	E. coli expression
pRSE334		SIR3 ORF flanked by native sequences {Enomoto et al., 2000 #677}	Gap repair

gift from Marion Carlson. *RSC8* disruptants were constructed by one step gene replacement of the entire gene by *LEU2* (*YJP4*).

Yeast growth media and protocols are as described (Burke et al., 2000). The *Escherichia coli* strain was $DH5\alpha$.

For expression, DNA fragments were cloned in yeast or bacterial expression vectors (Table 2). In yeast, *pBM272* (Johnston and Davis, 1984) was used when uracil was required as a selective marker. When tryptophan was required as a selective marker, constructs in *pBM272* were recloned with the adjacent *GAL1* promoter, as EcoR1-SalI fragments into EcoRI XhoI digested *pBR314* (*pSEGAL-3*). For expression in *E. coli*, fragments were cloned into *pASK-IBA3* or *pASK-IBA5* (IBA GmbH). In these plasmids transcription is induced from the tetA promoter/operator, by the addition of anhydrotetracycline (Voss and Skerra, 1997).

2.2. Competition experiment

A 1/1 mixture of $\Delta htl1(F)$ and $\Delta htl1(S)$ were inoculated into YPD medium at a concentration of approximately 10⁵ cells/ml, grown by agitation for about 48 h at 26 °C and diluted by a factor of 10³ into fresh media. Dilutions were repeated every 48 h 15 times. Periodically cells were plated, patched and crossed to an appropriate tester strain by replica plating. Diploid formation was monitored on appropriate SD selective medium.

2.3. Molecular biology and genetic techniques

Cloning and epitope tagging were performed by PCR based techniques. PCR products were cloned into expression vectors that drive transcription from the *GAL1* promoter (*pSEGAL-2*, *pSEGAL-3*, *pSEGAL-4*, *pSEGAL-5*) or the *MET3* promoter (*pSEMET-2*). For bacterial expression PCR products were cloned into vector *pASK IBA-3* or -5, following instructions accompanying the Strep-tag 2 reagent kit (IBA GmbH). The following PCR primer pairs were used.

For *RSC8-strep* in *pBM272* (*pSEGAL-5*): 5'GAAAGGCCT-GGATCCGTATGGCTAGCTGGAGCCACCCGCAGTT3'; 5' GAAAGGCCTGCCCCATTTTTCCAAGAACGCGTGAATC3'.

For *RSC8* in *pASK-IBA5* (*pCF1*): 'GAAAGGCCTCCGCG-GTGAGCGACACTGAAAAGGATA'3; 5'GAAAGGCC-TCTCG AGATTACAATGACCACGGTTTGTACACCT GGGCTGCAATTT'3.

For *FLAG-HTL1-myc* in *pBM272* (*pSEGAL-2*): 5'GAAAGGC-CTGGATCCTATGGACTACAAGGATGACGATGACAAGT-CACAGAACAACAACAATCAGCTC3'; 5'GAAAGGCC-TTTCGT CGACCTA(CAAGTCTTCTTCAGAAATAAG TTTTGTTC)_{X3}CTTTTTCCTTTCATTTTCAAAGCATC3'.

For *HTL1-myc* in *pASK-IBA3* (*pCF2*): 5'GAAAGGCCTAG-GTCTCAAATGTCACAGAACAACAAAACACAATCAGCTCAAT3'; 5'GAAAGGCCTTTCGTCGACCTA(CAAGTCTTCTT-CAGAAATAAGTTTTTGTTC)_{X3}CTTTTTCCTTT-CATTTTTCAAAGCATC3'.

For *htl1–3P-myc* (*pCF3*): 5'GAAAGGCCTGGATCC-TATGGACTACAAGGATGACGATGACAAGTCACAGAA-CAACAAATCAGCTC3'; 'GAAAGGCCTGCATATGTT-

TTCTCTTTGAGATGGTGGCTGAAATGCTGTTGGAT-TTTTCAGCGTTACATTGTTGTAAGCT3'.

All constructs were tested by sequencing and (when applicable) by complementation.

2.4. Hydroxyurea sensitivity

Cells were grown in YPD or SD liquid media and 10-fold serial dilutions of cells spotted on appropriate plates containing from 0 to 40 mM hydroxyurea, and incubated for 3–4 days at 30 °C.

2.5. Rescue of fertility

 $htl1\Delta$ (SG33) (*MATa*) was transformed with a multicopy *YEp24*-based genomic *S. cerevisiae* library. Fertility was tested by crossing to appropriate *MATa* strains.

2.6. RNA analysis

Total RNA was isolated from yeast cells grown in buffered supplemented minimal media (Moreira and Holmberg, 1998) extracted and resolved on agarose–formaldehyde gels as previously described (Lanzuolo et al., 2001). Probes for transcript detection were ³²P-labelled PCR fragments covering positions 1300 to 1554 for *CHA1* and – 18 to 618 for a1/ α 2 and 72 to 1237 for *PDA1* (Wenzel et al., 1995). *PDA1* hybridization was used for normalization.

2.7. Preparation of whole cell extract

For overexpression of tagged proteins in yeast, strains were grown at 26 °C in selective minimal media containing galactose at 26 °C to a concentration of $3-5 \times 10^7$ cell/ml. Extracts were prepared according to the protocols in the Nurse Lab Fission Yeast Manual (www.sanger.ac.uk/PostGenomics/S_pombe/ docs/nurse_lab_manual.pdf), with minor modifications. Cells were harvested, washed with water and resuspended to a density of 2.8×10^9 cell/ml in Breaking buffer (50 mMTris [pH 7.5], 12% glycerol, 200 mMNaCl, 0.1% Triton X-100, 5 mM DTT, 5 mM EDTA, protease inhibitor cocktail (SIGMA) (1/100 dilution) and PMSF 1 mM). Cells were pelleted by centrifugation at 13 K rpm and resuspended in twice the cell volume of breaking buffer, placed in 14 ml polypropylene tubes, and disrupted with 1 ml of 0.5 mm acid washed glass beads (Sigma), by vortexing at high speed for three 1 min intervals interrupted by 4 min of cooling on ice. Extracts were clarified with a 10 min spin at 10 K rpm in a microfuge at 4 °C. Protein concentrations were determined with the Bio-Rad protein assay kit.

2.8. Preparation of E. coli extracts

E. coli DH5 α was used for bacterial expression of tagged fusion proteins cloned in vector *pASK IBA-3* or *-5*, following instructions accompanying the Strep-tag 2 reagent kit (IBA GmbH). Cells were grown in LB medium containing 50 µg/ml ampicillin at 37 °C to an OD550 of 0.5. Induction with

anhydrotetracycline and extract preparation was according to the instructions of the manufacturer (IBA GmbH).

To test for association of *Htl1p* with *Rsc8p* containing complexes in yeast extracts we used immunoprecipitation assays of co-expressed tagged proteins and *in vitro* pull-down assays of individually expressed proteins.

To test for association of bacterially expressed *Htl1p* with *Rsc8p* we used in vitro pull-down assays of individually expressed proteins.

2.9. Co-precipitation with Strep-tactin magnetic beads

Strep-tactin is an engineered streptavidin (Voss and Skerra, 1997). 3 mg of protein extracts from yeast cells coexpressing Flag-Htl1pmyc and Strep-Rsc8p or Flag-Htl1pmyc and Rsc8 driven from Gal promoters (control extract), in IP buffer (50 mM Tris-Cl [pH 7.5], 10% glycerol, 100 mM NaCl, 2 mM EDTA, 10 mM DTT) was loaded onto 400 µl of Strep-Tactin Magnetic Beads (IBA). Levels of input Flag-Htl1pmyc and Strep-Rsc8p were determined by Western blotting of 50 µg aliquots of extracts. After over night incubation at 4 °C the beads were washed twice with IP buffer, twice with A buffer containing 250 mM NaCl and 0.05% Tween-20. Beads were then incubated for 2 h at 4 °C in A buffer containing 10 mM Biotin. The eluate was precipitated with TCA-DOC (1/100 vol. of 2% DOC (Na deoxycholate),1/10 vol of TCA), resuspended in 20 µl of SDS sample buffer, loaded on a 15% SDSpolyacrylamide gel and analyzed by western blotting with anti-Flag antibodies (Sigma) for immunoblot detection of Flag-*Htl1p* and Steptavidin alkaline phosphatase conjugate (IBA) for detection of Strep-Rsc8p.

We also performed reciprocal immunoprecipitations of coexpressed proteins using FLAG beads. Because of the lower background, Strep-magnetic beads were preferred for the experiments described.

2.10. Pulldown assay

Bait *Strep-Rsc8p* from crude yeast or bacterial extracts was pre-bound to Strep-Tactin Magnetic Beads (IBA): 500 μ g (bacterial) to 750 μ g (yeast) extract/100 μ l Strep-Tactin magnetic beads (IBA).

Level of input bait *Strep-Rsc8p* in extract was determined by Western blotting of 50 μ g (yeast) or 10 μ g (bacterial) aliquots.

After washing, 400 μ l (yeast) or 100 μ l (bacteria) immobilized *Rsc8p* bait was incubated over night at 4 °C, on a roller drum, with 500 μ g (bacterial) to 3000 μ g (yeast) of extracts expressing *Htl1p* prey. Level of input prey in extract was determined by Western blotting of 10 μ g (bacterial) or 50 μ g (yeast) aliquots. Beads were then washed and processed as described above. The source of yeast extracts was strain *YJP4*, expressing tagged Strep-*Rsc8p* (*pSEGAL-5*), and strain *YJP1* transformed with *pSEGAL-3* expressing either tagged wild-type *FLAG-Htl1p-myc* or *pSEGAL-4* expressing tagged mutant *FLAG-Htl1-3P-myc*.

The source of bacterial extracts was strain $DH5\alpha$ transformed with *pCF1* expressing tagged *Strep-Rsc8p*, *pCF2* expressing tagged wild-type *Htl1p-myc*, pCF3 expressing tagged mutant *Htl1p-3P-myc*.

3. Results

3.1. Cell death at 37 °C

Exponentially growing, but not stationary phase, *htl1* mutants die when transferred to 37 °C. (Fig. 1A). In contrast,

Fig. 1. Survival at 37 °C. A) Differential survival of early and late log cultures of *YJP1* ($\Delta htl1$) shifted to 37 °C. Yeast cultures were grown, in YPDA at 26 °C, to a concentration of either 1.1 10⁷ cells/ml (early log:EL) or 6.10⁷ cells /ml (late log:LL) and shifted to 37 °C. At the times indicated cells were counted and survival was determined by counting colony forming units (CFU after plating appropriate dilutions). EL: cells $\rho \Delta$, CFU \blacktriangle ; LL: cells O, CFU \blacklozenge . B) Comparing survival, at 37 °C, of early log cultures (2.10⁷/ml of *YJP1* ($\Delta htl1$) and *MCY3890 swh3-ts16* (*rsc8*)). Yeast cultures were grown, in YPDA at 26 °C, and processed as in A. YJP1 ($\Delta htl1$): cells \blacksquare , CFU \blacklozenge ; MCY3890 *swh3-ts16* (*rsc8*):cells \Box , CFU \bigcirc .

a temperature sensitive allele of *RSC8* survives prolonged incubation at the non-permissive temperature (Fig. 1B).

By microscopy, the terminal phenotype at 37 °C of $\Delta htl1$ mutants appears to vary in different yeast strains. Romeo et al (2002) report a prevalently cell-cycle specific G2 arrest in strain EG123 (Siciliano and Tatchell, 1984).We fail to observe this phenotype in three different $\Delta htl1$ strains (Lanzuolo et al., 2001) (*W303* haploid, *W303* diploid and *KY117* backgrounds). In Fig. 2A we show a representative micrograph of the terminal phenotype observed in $\Delta htl1$ *W303a*. The asynchronous arrest of $\Delta htl1$ is further confirmed by FACS analysis in strain *W303a* (Fig. 2B).

3.2. Htl1 mutants are hydroxyurea sensitive

The fact that actively dividing htl1 cells die at 37 °C, while non-dividing cells survive, suggest an irreparable malfunction at cell division or replication. To test for malfunction at replication we treated htl1 cells with hydroxyurea.

Hydroxyurea, an inhibitor of ribonucleotide reductase, depletes the dNTP DNA precursor pools resulting in the accumulation of short single stranded DNA intermediates and double-stranded DNA breaks. These DNA intermediates activate the DNA synthesis and G2/M checkpoints, delaying progression through S- and G2 phases enabling repair before entry into mitosis. Many yeast mutants defective in replication or repair fail to grow in the presence of relatively low concentrations of hydroxyurea 10–200 mM that only slow down growth of wild-type cells. Although *htl1* mutants are insensitive to hydroxyurea at 26 °C, they fail to grow at 30 °C in the presence of concentrations of hydroxyurea greater than 20– 40 mM (Fig. 3A).

Htl1p is reported to bind to the *RSC* complex (Romeo et al., 2002). As described later, we have prepared a mutant allele of HTL1 which bears amino acid replacements of three leucines

Table 3	
Hydrovyuroo	synchronization

a. :	Wild-type			4.1.11				
Strain				$\Delta htll$				
% budded cells	at 30 °	C (200 m	MHU)					
Hours at 30°	0	3	6	0	3	6		
-HU			9	25	31	34		
+HU 200 mM			96			89		
% survival at 30) °C (2	00 mMH	U)					
Hours at 30°	3	6	9	24	3	6	9	24
-HU	100	100	100	100	84	71	65	63
+HU 200 mM	81	63	58	43	46	30	7.7	0.05
% budded cells	at 37 °	C (200 m	(MHU					
Hours at 37°	0	2.5	6	0	2.5	6		
-HU		31	31		20	36		
+HU 200 mM	30	80	76	15	40	46		
% survival at 37	7 °C (2	00 mM H	!U)					
Hours at 37°	4	6	8	4	6	8		
-HU	100	100	100	17.6	5	1.8		
+HU 200 mM	100	100	76	21.4	4.2	4.0		

Fig. 2. The terminal phenotype of *Htl1* deletion mutants shifted to 37 °C is heterogeneous. A) Inverted image obtained by fluorescence microscopy (DAPI) staining of log-phase cultures of *YJP1* (Δ *htl1*) arrested for 6 h at 37 °C. B) Flow cytometry of log-phase culture of *YJP1* (Δ *htl1*) incubated at 26 °C or shifted to 37 °C for 18 h.

with prolines (3P-*htl1*). As shown below this derivative, a strong *htl1* hypomorph, fails to bind to *RSC* allowing us to test if *Htl1p/RSC* interactions affect hydroxyurea sensitivity. Hydroxyurea hypersensitivity is complemented by expression of the wild-type *HTL1* allele but not by expression of 3P-*htl1*, (see below), demonstrating that hypersensitivity is specifically due to the lack of *Htl1* (Fig. 3B).

Hypersensitivity to hydroxyurea may indicate that repair is compromised, yet could also be caused by inefficient checkpoint activation. Wild-type cells and mutants involved in DNA replication and repair, recover after removal of inhibitory concentrations of hydroxyurea. However, mutants that impair checkpoint activation proceed inappropriately into mitosis and die. Although microscopy indicates that *htl1* mutants are synchronized by treatment with 200 mM hydroxyurea at 30 °C, the cells die after prolonged incubation at 30 °C (0.05% survival after 24 h, Table 3) suggesting that the checkpoint eventually fails. At 37 °C the $\Delta htl1$ terminal

Fig. 3. Hydroxyurea (HU) sensitivity. Aliquots (5 μ 1) of serial 10-fold dilutions of wild-type (*W303a*) and mutant *Δhtl1* (*YJP1*) cultures were spotted onto YEPD plates, with or without 20–40 mM hydroxyurea, and were grown for 48 h at 26 °C or 30 °C as indicated. A) Deletion of *HTL1* leads to HU sensitivity at 30 °C in haploid and diploid strains. B) Plasmid bearing functional *HTL1* alleles complement HU sensitivity. *YPJ1* (*Δhtl1*) was transformed with *pSEGAL-3* (*P_{GAL}*) FLAG/myc tagged *HTL1* (a functional allele) or *pSEGAL-4* (*P_{GAL}*) FLAG/myc tagged *htl13P* (a non functional allele (see below)) and grown for 72 h at 30° on YEPD or YEPG plates.

phenotype prevents HU synchronization and more than 90% of the cells die within 6 h (Table 3).

Hydroxyurea sensitivity is a distinctive feature of *RSC1* disruptants (Cairns et al., 1999) encoding an auxiliary component of the *RSC* complex.

3.3. Formamide sensitivity

Deletion mutants of *HTL1* are formamide sensitive, a characteristic they share with point mutations in *RSC8* (Treich et al., 1998) and null mutations of auxiliary gene *RSC2* (Cairns et al., 1999). Formamide sensitivity is complemented by expression of the wild-type *HTL1* allele but not by expression

of the 3P-*htl1 allele*, demonstrating that hypersensitivity is specifically due to the lack of *Htl1p* (Fig. 4).

3.4. Effects of Htl1p disruption and Rsc8p depletion on transcription of CHA1

The reported HTL1 genetic interactions with RSC8 led us to posit that Htl1p is accessory to one or more cellular functions affected by Rsc8p. In search of a function that might involve the interplay of Htl1p and Rsc8p, we directed our attention to the transcriptional state of the CHA1 locus on chromosome III.

CHA1 transcription is induced about a hundred fold by serine or threonine. Activation requires the *Cha4*p activator, and

COMPLEMENTATION IN 2% FORMAMIDE (30°C)

Fig. 4. Formamide sensitivity. Plasmids bearing functional HTL1 alleles complement formamide sensitivity. YPJ1 ($\Delta htl1$) was transformed with pSEGAL-3 (P_{GAL}) FLAG/myc tagged HTL1 (a functional allele) or pSEGAL-4 (P_{GAL}) FLAG/myc tagged htl13P (a non functional allele (see below)) and grown for 72 h at 30° on YEPD or YEPG plates containing 2% formamide.

Fig. 5. Transcriptional derepression of *CHA1* and *HML* in fertile and sterile subclones of *YJP1* ($\Delta htl1$). A) In sterility prone disruptants 50% of the cells were sterile after 160 divisions. Sterile (htl1S1, htl1S2, htl1S3 subclones of $\Delta htl1$ and fertile clones (htl1F1, htl1F2, htl1F3 were analyzed in three different experiments. Northern analysis was performed on total RNA as described (Materials and methods). *PDA1* hybridization was used for loading normalization. *CHA1* RNA induced by growth of wild-type cells in the presence of serine (1 g/L is shown for comparison). B) *CHA1* in *YJP4* ($\Delta rsc8$, harboring plasmid *pSEGAL-5* expressing GAL1 driven-*Rsc8p* was shifted to Glucose containing media leading to the arrest of *RSC8* transcription. Cell division continues for 6–8 generations, leading to progressive depletion of *Rsc8p*. Time in hours after shift to glucose is indicated. *CHA1* RNA induced by growth of wild-type cells in the presence of serine (1 g/L is shown for comparison).

induction results in the displacement of a nucleosome, that overlaps the TATA element under non-inducing conditions. *Cha4*p, constitutively bound to the *CHA1* promoter, is prevented from functioning by histone H3 (Sabet et al., 2003). Basal transcription in wild-type cells, in absence of inducers is somewhat idiosyncratic. In our hands, it is raised by incubation at 37 °C and inhibited by growth in galactose at 26 °C or methionine (data not shown).

Depletion of *Rsc8p* leads, perhaps indirectly (Ng et al., 2002), to *CHA1* derepression (Moreira and Holmberg, 1999).

If *Htl1p* is a coadjutant of *Rsc8* in *CHA1* repression, deletion of *HTL1* should directly or indirectly affect *CHA1* transcription. Our results are consistent with a role of *Htl1p* in *CHA1* repression. Deletion of *HTL1* leads to an increase in *CHA1* basal transcription (Fig. 5). We show results obtained with two different subclones of $\Delta htl1$: fertile $\Delta htl1$ (F) and sterile $\Delta htl1$ (SG33). Sterile subclones emerge after repeated cell divisions (Lanzuolo et al., 2001). While in fertile $\Delta htl1$ (F) subclones transcript levels of *CHA1* vary extensively between experiments, perhaps reflecting fluctuations in the fraction of cells transcribing *CHA1*, in $\Delta htl1(SG33)$ *CHA1* transcript levels are more consistent. Since incomplete penetrance leads to ambiguous results in complementation experiments we used a sterile strain, $\Delta htl1$ (SG33), to confirm *Htl1p* dependence of *CHA1* transcription. In contrast to the effect of *Rsc8p* depletion and to fertile *HTL1* disruptants, in sterile $\Delta htl1$ (SG33) transcriptional derepression extends from *CHA1* to the adjacent *HML* silent mating type locus. Expression of plasmid borne wild-type *Htl1p* in $\Delta htl1$ (SG33) abolishes *CHA1* serine independent derepression confirming that *Htl1p* does indeed play a role in *CHA1* repression (Fig. 6A lane 4 and B, lane 4). However *HML* silencing is not recovered by expression of wild-type *Htl1p* (Fig. 6B) indicating that $\Delta htl1$ (SG33) has acquired an additional mutation (see below).

In sum, null mutations of the *HTL1* gene appear to reproduce the effects of mutations in genes encoding both auxiliary and core *Rsc* subunits. *HTL1* disruptants are sensitive to hydroxyurea and formamide. Hydroxyurea sensitivity is a distinctive feature of auxiliary gene *RSC1* disruptants (Cairns et al., 1999), while formamide sensitivity is characteristic of auxiliary gene

Fig. 6. *CHA1* repression depends on *Htl1p*. Sterile subclones clones (*htl1S1* and *htl1S3*) were transformed with plasmid *pSEMET2* (*P_{MET}-HTL1*) and grown for a few generations under inducing conditions. Northern analysis was performed on total RNA as described (Materials and methods). *PDA1* hybridization was used for loading normalization. *CHA1* RNA induced by growth of wild-type cells in the presence of serine (1 g/L) is shown for comparison.

RSC2 disruptants and some core gene *RSC8* point mutants. Furthermore *htl1* deletion, like *Rsc8p* depletion, affects transcriptional silencing (Moreira and Holmberg, 1999). In addition, as we show elsewhere (Moscariello et al., in preparation) double-strand break repair (DSB) is defective in $\Delta htl1$. Impairment of double-strand break repair by NHEJ is a feature of *rsc8* and *rsc30* mutants (Shim et al., 2005).

The non-synchronous terminal phenotype of $\Delta htl1$ at 37 °C (at least in our strains) appear to differ from that observed (G2/M arrest) in mutants of individual *RSC* core components. However, since deletion of *HTL1* simultaneously recapitulates the effect of mutations in multiple *RSC* subunits, this difference is perhaps to be expected.

3.5. Point mutants that abolish HTL1 function prevent Htl1p/Rsc physical interactions

The range of phenotypic effects of *HTL1* mutants suggests that *Htl1p* associates, at least transiently, with diverse *RSC* sub-

complexes, presumably by interaction with a single *RSC* core component. Genetic interactions and the results of a two-hybrid assay suggest that Rsc8p is the most likely interactor for Htl1p. We searched for structural features of the peptide that might be responsible for specific protein–protein interaction with the *RSC* complex. Mutational disruption of the structure should simultaneously abolish Htl1p binding to Rsc and impair function.

The choice of mutants was based on two observations:

- Although *Htl1p* is not present in most eukaryotes, it is highly conserved among many distantly related budding yeasts (*S. cerevisiae*, *S. mikatae*, *S. bayanus*, *S. gossypi*, *S. kluyveri*, *Ashbya gossypii*, *Kluyveromyces lactis*) (Fig. 7).
- 2) Two putative helical tracts are apparent within the extended region of amino acid identities. Assuming that helicity was likely to be important for function, we compared the effects of amino acid replacements (leucine, tryptophan), expected to be chemically compatible, with proline replacements that were likely to disrupt helical structure in the conserved region.

3P D PP cerevisiae MSQNNTISSM NPERAYNNVT LKNLTAFQLL SQRENICELL NLVESTERHN SII.NPERQR MSLEEMKKML DALKNERKK MSQNNPVGQM NPERTYNNVT LKNLTAFQLL SQRENICELL NLVESTERHD SII.NPERQR NSLEEMKKML mikatae DLIRNEKON MSQNNSTGLV NAERSYNNIT LKNLTAFQLL SQRENICELF DLVEDTKRHS IIV.DPERQK RNLEEMKTML bayanus DDLKNEGRK kurdiavenzi MSQNNSTGLI NPERTYNNVT LKNLTAFQLL SQRENICELF DLVEGTERHD GII.NPATQR SNLEKMKKML DGLKKEVKK castelliSTKPAT SSQKNYDTVT LKTLTAYQLL SQRENMCELF HLVDESERQR S.....NNT EMLSDLKKRL EAAKNENK kluyveriMTQNNYNSIT LKTLTAHQLL SSRENMCELF HLLDDSERQE KAI.IREDRE SVLEAMTKRL EQLRSE.MTHPEPKIN LKTITAHQVL SHREKMCELF QLLDDSERHE LIIGTAEQRE RRLNEFRERR DALRRELGK A.gossypiiVN LKTITAEDLL SRRANMVELF NLLDDSSRTE LFLGSSEDRE KKLASLRKRL kluyveromyces OSV00E...

Fig. 7. *Htl1p* is conserved in budding yeasts. Alignment of aminoacid sequences obtained by conceptual translation of nucleotide sequences of various budding yeast strains. The three conserved leucines mutated to proline in the 3P mutant studied are shown.

Leu30 in the conserved helical tract was replaced with either Trp or Pro (structural constraints usually exclude proline from alpha helical domains) and Ser31 was replaced with Leu. Function of the resulting *htl1* mutants driven from either GAL or MET promoters was tested by complementation of temperature sensitivity (Fig. 8A). Replacement with Trp had no effect while replacement with Pro strongly impaired complementation driven form the MET promoter. Disappointingly no impairment in complementation was observed when mutant proteins were expressed from the GAL promoter (Fig. 8B) (galactose driven overproduction is required to visualize Rsc/Htl1p interaction). The single mutations do not affect protein stability and have little effect on Rsc binding under our experimental conditions. (Fig. 8C). We further disrupted the helical tract by replacing three leucines (Leu24, Leu29, Leu30) (Fig. 7) with prolines. The triple mutant (htl1-3P) is recessive and inactive in complementation of temperature sensitivity (Fig. 9A) as well as hydroxyurea and formamide sensitivity, even when transcription is driven by the GAL promoter (Figs. 3B and 4B).

Crude extracts of cells coexpressing 3P-FLAG/myc and FLAG/myc derivatives of *Htl1p* were incubated with *Rsc8*-Strep containing *Rsc* complexes bound to magnetic Strep-tactin beads. The triple proline substitution does not affect protein level but completely abolishes binding of *Htl1p* to the *Rsc*

complex (Fig. 9B). Pulldown experiments performed by incubating *Rsc8*-Strep beads with extracts of cells expressing *Htl1p*-Flag confirm this result (Fig. 9C).

3.6. In vitro binding of bacterially produced Htl1p and Rsc8p

Previous evidence (Lu et al., 2003a; Romeo et al., 2002) and our own experiments suggest genetic interaction between *RSC8* and *HTL1*. We tested for direct binding to of *Htl1p* to *Rsc8p* using bacterially produced proteins in an *in vitro* binding assay. *Htl1p* wild-type and mutant *Htl1p-3P* were expressed as fusion proteins to myc epitopes (*Htl1p-myc*) and *Rsc8p* as a fusion to the Strepavidin binding Strep-tag II epitope (*Strep-Rsc8p*).

Strep-Rsc8p protein was immobilized on magnetic Strep-tactin beads and incubated with an *E. coli* extracts expressing wild-type and mutant *Htl1p-myc* proteins. Bound proteins were eluted with biotin and analyzed by western blotting. Binding of *Htl1p-myc* to Strep-tactin beads depends on pre-bound *Strep-Rsc8p* and is abolished in the *Htl1p-3P* mutant (Fig. 10). The in vitro binding of bacterially synthesized *Rsc8p* and *Htl1p* retain binding properties observed in yeast extracts, strongly suggesting that *Rsc8p* is an important vehicle for the interaction of *Htl1p* with the *Rsc* complex in yeast cells.

In summary, although a single Leu30-Pro replacement has little effect on binding to *Rsc* it significantly impairs *Htl1*p

Fig. 8. Effect of single aminoacid replacements on complementation of temperature sensitivity and on binding to *RSC*. *HTL1* disruptants were transformed with plasmid borne wild-type or mutant alleles of *HTL1*. Individual single mutants and the wild-type control were transcribed from the MET3 promoter (A) or GAL promoter (B). Serial dilutions (10-fold) were spotted on complete SD medium with or without methionine at the temperatures indicated (A) or on Galactose plates at 37 °C (B). Coimmunoprecipitation of *Rsc8p* and *Htl1p* with Strep-tactin magnetic beads (C). Protein extracts (3 mg), derived from *htl1*, *rsc8* strains, harboring plasmids coexpressing Strep-*Rsc8* and Flag-*Htl1p*-trimyc wild-type (WT) or mutant (Leu³⁰-Pro) protein, were bound to of Strep-Tactin Magnetic Beads (IBA). Lack of an *Flag*-*Htl1p* signal when Flag-*Htl1p*-trimyc is co-expressed with *Rsc8p* lacking the Strep tag (NS, No Strep) shows that binding of *Htl1p* to the Strep-Tactin magnetic beads is *Rsc8p* dependent.

Fig. 9. Effect of the htl1–3P mutations on complementation and binding of Htl1p to the RSC complex. A) YPJ1 ($\Delta htl1$) was transformed with pSEGAL-3 (P_{GAL}) FLAG/myc tagged HTL1 or pSEGAL-4 (P_{GAL}) FLAG/myc tagged htl3P and grown for 72 h at 26 °C or 37 °C on YEPD or YEPG plates. B) Coimmunoprecipitation of Rsc8p and Htl1p WT or Htl1p-3P with Strep-tactin magnetic beads. Protein extracts (3 mg), derived from $htl1\Delta$, $rsc8\Delta$ strains, harboring plasmids coexpressing Strep-Rsc8p and Flag-Htl1p-myc wild-type protein (WT) or mutant 3P protein (3P), were bound to Strep-Tactin Magnetic Beads (IBA). Levels of input Flag-Htl1pmyc and Strep-Rsc8p were determined by Western blotting of 50 µg aliquots of extracts. Non tagged Rsc8p (NS) and Htl1p (NF) were included as controls. C) Pulldown of Rsc8p and Htl1p WT or Htl1p-3P expressed in yeast Protein extracts (3 mg), derived from $htl1\Delta$, $rsc8\Delta$ strains, harboring plasmids expressing Strep-Rsc8 were bound to of Strep-Tactin Magnetic Beads (IBA). Yeast extract (3 mg) expressing FlagHtl1p-myc was added to the beads and allowed to bind at 4 °C over night. Bound proteins were detected on 15% SDS-polyacrylamide gels by western analysis with a Steptavidin alkaline phosphatase conjugate (Rsc8p-Strep) (IBA) or anti-Flag antibodies (Sigma) (FlagHtl1p-Trimyc).

function. A more extensive disruption of the helix, by a triple proline replacement, completely abolishes both *Htl1p* function and binding to the *RSC* complex in yeast cells and to *Rsc8p in vitro*.

These results show that the putative helical domain in Htl1p has an important role both in Htl1p function and in Htl1p binding to Rsc8p.

3.7. Rsc8 stability

While this work was in progress Rsc7, a new component of the Rsc complex was identified (Wilson et al., 2006). Disruption of RSC7 leads to Rsc8 instability and confers sensitivity to temperature and to agents that cause DNA damage, microtubule depolymerization, and cell wall integrity. Rsc7p, a 58 kDa non-

essential subunit of Rsc (Wilson et al., 2006), displays functional similarities to Htl1p. Rsc7p interacts in a two hybrid screen with Rsc8p (Uetz et al., 2000). Wilson et al (Wilson et al., 2006) have shown that Rsc7p is involved in both core and accessory Rscfunctions. Akin to Htl1p, overexpression of Rsc7p, suppresses a temperature sensitive mutation of Rsc8p. The decrease in the protein level of Rsc8p in RSC7 disruptants impairs the interaction of Rsc8p with Rsc3. This interaction is important in promoting the association of the Rsc3p/Rsc30p heterodimer with the RSCcomplex. Although Htl1p co-precipitates with only a small fraction of Rsc8p, the phenotypic properties of htl1 disruptants suggest that Htl1p affects many if not most RSC dependent functions perhaps by transitory binding to Rsc8p, a core subunit of all described RSC subcomplexes. With these considerations in

Fig. 10. Pulldown of $Rsc\delta p$ and Htl1p WT or Htl1p-3P expressed in E. coli. Proteins were expressed and prepared in E. coli DH5 α as described in Materials and methods. Bacterial extracts (500 µg) expressing Strep- $Rsc\delta p$ or the empty vector were bound to Strep-Tactin magnetic beads (IBA). Protein extracts (500 µg) expressing (wild-type) or -3P Htl1p-myc were added to the beads and allowed to bind at 4 °C over night. Bound proteins were detected by western analysis with a Streptavidin alkaline phosphatese conjugate (*Strep-Rsc\delta p*) (IBA) and an alkaline phosphatase conjugate anti-Myc antibody (Invitrogen. Levels of input Htl1pmyc) (wild-type) and -3P and *Strep-Rsc\delta p* were determined by Western blotting of 10 µg aliquots of extracts.

mind we tested the effect of *HTL1* on *Rsc8p* levels by disruption of *HTL1* in a strain expressing *Rsc8p* tagged with the Strep epitope. As shown in Fig. 11, *Rsc8p* levels are not affected.

3.8. A secondary mutation in sterile $\Delta htl1$ (SG33) clones is a partial suppressor of htl1 and maps at the SIR3 locus

Sterility is a frequent occurrence during outgrowth of MATa haploid *htl1* disruptants. Sterile $\Delta htl1$ sublclones are either Mata/Mata diploids or, like Ahtl1 (SG33), haploids (Lanzuolo et al., 2001). In reconstruction experiments, sterile $\Delta htll$ subclones, including haploid Ahtl1 (SG33) are at a distinct advantage over $\Delta htll$ (F). While the selective advantage of Mata/Mata derivatives may be attributed the faster growth kinetics of diploid strains, the selective advantage of haploid $\Delta htl1$ (SG33) suggests the emergence of a suppressor mutation (Fig. 12). To identify the suppressor, we screened for recovery of fertility in $\Delta htll$ (SG33) clones transformed with a multicopy YEP24 based genomic library. We isolated two independent plasmid clones, suppressing the sterile phenotype, both of which carried the SIR3 gene. This gene encodes a protein involved in establishing and maintaining transcriptional silencing by interaction with Sir2p and Sir4p, and histone H3 and H4 tails. To determine if a single copy of the SIR3 gene alone would cure

Fig. 11. Rsc8p is stable in a absence of Htl1p. 10 µg of protein extracts HTL1 wildtype or $htl1\Delta$ strains, harboring a plasmid encoding Strep-Rsc8p, were resolved on an SDS-polyacrylamide gel. Levels of Strep-Rsc8pin, were detected by Western analysis with a Streptavidin alkaline phosphatase conjugate. Equivalent transfer of protein was checked by staining the membrane with Ponceau S.

sterility we transformed $\Delta htl1$ (SG33) with centromeric plasmid pRSG.3 (Palladino et al., 1993) which carries the *SIR*3 gene flanked by its native promoter. Fertility was fully recovered (data not shown). *Sir3p* is apparently detrimental in *htl1* mutants. In conclusion, inactivation of *SIR*3 leads to loss of silencing at *HML* (as previously established) and apparently stabilizes transcriptional derepression of *CHA1* in $\Delta htl1$ (SG33). Since *CHA1* is very close to HML, cooperation of *SIR*3 and *HTL1* in *CHA1* repression is plausible. Previous work had shown that full *CHA1* transcriptional repression is dependent on *SIR*4 (Moreira and Holmberg, 1998), but not on *SIR*3 (Wyrick et al., 1999).

3.9. Null mutants in SIR3 suppress hydroxyurea sensitivity of *htl1 mutants*

As shown above (Fig. 3) $\Delta htl1$ mutants are very sensitive to the ribonucleotide reductase inhibitor hydroxyurea (HU). Remarkably, $\Delta htl1$ (SG33) is resistant to HU. Resistance is

Competition of htl1 Δ (SG33) and ht1 Δ (F)

Fig. 12. Competition of $htll\Delta$ (*SG33*) and $htl\Delta$ *F*. A $htll\Delta$ (SG33) strains outcomplete $htll\Delta$ (*F*) after many generations of mitotic growth (Section 2.2). The experiment was repeated twice with different isolates: \blacktriangle (*htll*::*HIS3*), \blacksquare (*htll*:: *URA3*).

Fig. 13. Hydroxyurea (HU sensitivity and its suppression by mutations in *SIR3*. Aliquots (5 μ l of serial 10-fold dilutions of wild-type (*W303a*) and mutant *htl1* (*YJP1*) cultures were spotted onto SD or YEPD plates, with or without 40 mM hydroxyrea, and were grown for 48 h at 30 °C. A) $\Delta htl1$ (*SG33*) strains were transformed with centromeric plasmid *pRSE334*, bearing a functional copy of the *SIR3* locus. Serial dilutions were spotted on SD plates, with or without 40 mM hydroxyurea as indicated. B) Disruption of *SIR3* in an $\Delta htl1$ (F) background suppresses hydroxyurea sensitivity. Ten-fold serial dilutions were spotted on YEPD plates, with or without 40 mM hydroxyurea sensitivity.

due to the sir3 mutation since HU resistance is lost and fertility is restored in *SIR*3 transformants (Fig. 13).

Conversely, curing of the plasmid results in loss of fertility and restoration of hydroxyurea resistance. Sir3 is probably limiting and a single extra copy of *SIR*3 has been known to partially suppress mutant phenotypes associated with non-*sir3* mutations. To ensure that suppression of *htl1* hypersensitivity to hydroxyurea is actually due to a *sir3* deficiency we disrupted *SIR*3 by insertion of a LEU2 fragment. The $\Delta htl1$, $\Delta sir3$ double mutant is more resistant to hydroxyurea than the individual single mutants (Fig. 13B).

Hydroxyurea resistance might be due to loss of transcriptional silencing in *htl1*, *sir3* strains. Since $\Delta htl1$, $\Delta sir3$ mutants coexpress *Mata/Mata* they are subject to diploid-like regulation, which alters DNA repair pathways in yeast, inhibiting nonhomologous end joining (NHEJ) (Astrom et al., 1999; Lee et al., 1999). However as we have seen (Fig. 3A), a diploid strain, homozygous for the $\Delta htl1$ mutation is even more hypersensitive to hydroxyurea, than the haploid $\Delta htl1(F)$ strain. Resistance of $\Delta htl1$ (SG33) to hydroxyurea does not depend on cell-type.

In conclusion, a recessive mutation in the *SIR3* gene is responsible for recovery of hydroxyurea resistance in *htl1* sterile subclones, perhaps by attenuating a replication defect due to lack of *Htl1p*.

4. Discussion

Co-precipitation of *Htl1p* with *Rsc*, in yeast extracts, suggests that *Htl1p* is stably associated with only a specific

subclass of the S. cerevisiae chromatin-remodeling complex (Romeo et al., 2002). Alternatively, Htllp binding might be transitory and concern all or most Rsc subclasses. Low affinity binding in vitro to Rsc8p, a core component of all Rsc subcomplexes (Sections 3.5 and 3.6), is consistent with this idea. Also suggestive is the observation that deletion of HTL1 leads to impairment of a wide range of functions, recapitulating phenotypic effects of mutational alteration or depletion of diverse Rsc subunits: Rsc8p (formamide sensitivity, nonhomologous end joining and impairment of transcriptional silencing), Rsc1p (hydroxyurea sensitivity, DNA repair), Rsc2p (formamide sensitivity) and Rsc3p (cell death at 37 °C). Rsc8p is a core component presumably shared by all subcomplexes, Rsc1p is an auxiliary component, defines one subcomplex, while Rsc2p also an auxiliary component defines another (Cairns et al., 1999). Rsc3p, present in 80-90% of Rsc complexes, co-precipitates with both Rsc2 and Rsc1 (Angus-Hill et al., 2001) (and presumably the *Rsc8p* core component). Genetic data support these interactions: $\Delta htl1$ displays synthetic lethality with conditional mutants of RSC3 and RSC8 while temperature sensitivity of $\Delta htl1$ is suppressed by Rsc3p overproduction. The simultaneous impairment of multiple functions, affected by the four components in different Rsc subcomplexes would be a plausible explanation for the nonsynchronous terminal phenotype of $\Delta htl1$ at 37 °C.

Disturbance of the putative conserved helical structure of Htl1p by proline substitution impairs function and, in the case of a triple proline substitution, abolishes both function and binding to Rsc8p. These observations, besides validating the

biological relevance of the binding experiments, suggest that the helical structure of Htl1p is critical. A small α -helix may be well suited for interaction with a binding pocket buried in the interaction surfaces involved in protein–protein and protein– DNA interactions. Perhaps the Htl1p peptide, by way of its specific binding to Rsc8p, regulates the interaction of the Rsccore with other Rsc components.

Alternatively *Htl1p* might affect binding to DNA. A special domain (SWIRM), found in *Rsc*8 and its homologue *Swi*3, has been shown to exhibit a helix-turn-helix DNA-binding motif and that both SWIRM domains are essential for the proper assembly and in vivo functions of their respective complexes (Da et al., 2006). Recombinant peptides bearing Swi3p and *Rsc8p* SWIRM domains bind DNA, but the *Rsc8p* domain binds with ten-fold lower affinity. Perhaps *Htl1p* increases *Rsc8p* affinity for DNA by providing an additional stabilizing helix.

We have uncovered an unexpected connection between *HTL1* and *SIR3*. Mutations that inactivate *SIR3* increase the fitness of $\Delta htl1$ and suppress hydroxyurea sensitivity of $\Delta htl1$ (Sections 3.8, 3.9). *Sir3p* is a component of the silencing complex that includes *Sir2p*, *Sir4p*, *Rap1p*, *ABF1*, and the conserved N-termini of histones H3 and H4, all of which are required for heterochromatin formation and transcriptional inactivation at telomeres and the silent mating loci.

While mutations in the SIR genes have been previously shown to partially suppress lethality of DNA repair mutants (Schild, 1995), the connection between silencing and repair is intricate. SIR inactivation leads to coexpression of MATa and MAT α and the formation of the Matal-Mat α 2 corepressor that turns off the expression of haploid-specific genes involved in "illegitimate", non-homologous end joining (NHEJ). MATa/ $MAT\alpha$ cells are more resistant to radiation and radiomimetic drugs than haploid cells. Paradoxically, biochemical experiments suggest a more direct involvement in repair, showing that Sir3p relocalizes from the telomeres to sites of DNA damage (Mills et al., 1999). In some cases, a change in the mating status of the cell does not explain suppression. For instance, partial suppression of checkpoint rad53 mutants depicts a more direct connection between chromatin structure and repair. Checkpoint mutants may have problems coping with heterochromatin replication barriers. We can only speculate about the mechanism for hydroxyurea resistance of $\Delta htl1$, sir3. As discussed above (Section 3.2), checkpoint control may be impaired in $\Delta htll$. Condensed heterochromatin is a barrier to replication and must be unraveled to allow penetration by the DNA replication machinery. Rsc may play a role in this unraveling. It has been shown that in vitro Rsc cooperates with histone chaperones ASF1 and Nap1 in disassembling nucleosomes (Lorch et al., 2006). In mammalian cells ACF (an ATP-utilizing chromatin assembly and remodeling factor) is required for DNA replication through heterochromatin (Collins et al., 2002).

Since both *HTL1* (Section 3.4) and *SIR3* inactivation lead to transcriptional alteration, hydroxyurea sensitivity might be the indirect result of these changes. *SIR3* inactivation leads to simultaneous expression of *MATa/MATa*, that in turn affects the expression of genes involved in DNA repair (Valencia et al.,

2001). However, coexpression of *MATa/MATa* is not responsible for hydroxyurea resistance of $\Delta htl1$, *sir3* (Section 3.9). Impairment of the expression of genes involved in ribonucleotide reductase (RNR) activity would also be a plausible cause for hydroxyurea sensitivity. However we find no alteration of *RNR4* regulation in $\Delta htl1$ or $\Delta htl1$, sir3 (data not shown).

Acknowledgments

We thank M. Carlson, D. Shore, J.Berman, S.Gasser and M.P. Longhese for plasmids and strains. We acknowledge support from CNR Programma Biomolecole per la Salute Umana and COFIN-2001 (MURST). CL, C.F. and M.M. were supported by pre-doctoral fellowships from the University of Naples cofinanced by the Fondo Sociale Europeo.

References

- Angus-Hill, M.L., Schlichter, A., Roberts, D., Erdjument-Bromage, H., Tempst, P., Cairns, B.R., 2001. A *Rsc3/Rsc30* zinc cluster dimer reveals novel roles for the chromatin remodeler *Rsc* in gene expression and cell cycle control. Mol. Cell 7, 741–751.
- Astrom, S.U., Okamura, S.M., Rine, J., 1999. Yeast cell-type regulation of DNA repair. Nature 397, 310.
- Asturias, F.J., Chung, W.-H., Kornberg, R.D., Lorch, Y., 2002. Structural analysis of the RSC chromatin-remodeling complex. PNAS 99, 13477–13480.
- Burke, D.T., Dawson, D., Searns, T., 2000. Laboratory Course Manual for Methods in Yeast Genetics, 2000 ed.
- Cairns, B.R., Schlichter, A., Erdjument-Bromage, H., Tempst, P., Kornberg, R.D., Winston, F., 1999. Two functionally distinct forms of the *Rsc* nucleosome-remodeling complex, containing essential AT hook, BAH, and bromodomains. Mol. Cell 4, 715–723.
- Chai, B., Huang, J., Cairns, B.R., Laurent, B.C., 2005. Distinct roles for the *Rsc* and Swi/Snf ATP-dependent chromatin remodelers in DNA double-strand break repair. Genes Dev. 19, 1656–1661.
- Collins, N., Poot, R.A., Kukimoto, I., Garcia-Jimenez, C., Dellaire, G., Varga-Weisz, P.D., 2002. An ACF1-ISWI chromatin-remodeling complex is required for DNA replication through heterochromatin. Nat. Genet. 32, 627–632.
- Da, G., Lenkart, J., Zhao, K., Shiekhattar, R., Cairns, B.R., Marmorstein, R., 2006. Structure and function of the SWIRM domain, a conserved protein module found in chromatin regulatory complexes. PNAS 103, 2057–2062.
- Enomoto, S., Johnston, S.D., Berman, J., 2000. Identification of a novel allele of SIR3 defective in the maintenance, but not the establishment, of silencing in Saccharomyces cerevisiae. Genetics 155, 523–538.
- Graumann, J., Dunipace, L.A., Seol, J.H., McDonald, W.H., Yates 3rd, J.R., Wold, B.J., Deshaies, R.J., 2004. Applicability of tandem affinity purification MudPIT to pathway proteomics in yeast. Mol. Cell. Proteomics 3, 226–237.
- Huang, J., Hsu, J.M., Laurent, B.C., 2004. The *Rsc* nucleosome-remodeling complex is required for Cohesin's association with chromosome arms. Mol. Cell 13, 739–750.
- Johnston, M., Davis, R.W., 1984. Sequences that regulate the divergent GAL1-GAL10 promoter in Saccharomyces cerevisiae. Mol. Cell. Biol. 4, 1440–1448.
- Lanzuolo, C., Ederle, S., Pollice, A., Russo, F., Storlazzi, A., Pulitzer, J.F., 2001. The HTL1 gene, YCR020W-b of Saccharomyces cerevisiae is necessary for growth at 37 °C, and for the conservation of chromosome stability and fertility. Yeast 18, 1317–1330.
- Lee, S.E., Paques, F., Sylvan, J., Haber, J.E., 1999. Role of yeast SIR genes and mating type in directing DNA double-strand breaks to homologous and nonhomologous repair paths. Curr. Biol. 9, 767–770.
- Lorch, Y., Maier-Davis, B., Kornberg, R.D., 2006. Chromatin remodeling by nucleosome disassembly in vitro. PNAS 103, 3090–3093.

- Lu, Y.M., Lin, Y.R., Tsai, A., Hsao, Y.S., Li, C.C., Cheng, M.Y., 2003. Dissecting the pet18 mutation in Saccharomyces cerevisiae: HTL1 encodes a 7-kDa polypeptide that interacts with components of the *Rsc* complex. Mol. Genet. Genomics 269, 321–330.
- Mills, K.D., Sinclair, D.A., Guarente, L., 1999. MEC1-dependent redistribution of the Sir3 silencing protein from telomeres to DNA double-strand breaks. Cell 97, 609–620.
- Moreira, J.M., Holmberg, S., 1998. Nucleosome structure of the yeast CHA1 promoter: analysis of activation-dependent chromatin remodeling of an RNA-polymerase-II-transcribed gene in TBP and RNA pol II mutants defective in vivo in response to acidic activators. EMBO J. 17, 6028–6038.
- Moreira, J.M., Holmberg, S., 1999. Transcriptional repression of the yeast CHA1 gene requires the chromatin-remodeling complex *Rsc.* EMBO J. 18, 2836–2844.
- Ng, H.H., Robert, F., Young, R.A., Struhl, K., 2002. Genome-wide location and regulated recruitment of the *Rsc* nucleosome-remodeling complex. PG-806–19. Genes Dev. 16.
- Palladino, F., Laroche, T., Gilson, E., Axelrod, A., Pillus, L., Gasser, S.M., 1993. SIR3 and SIR4 proteins are required for the positioning and integrity of yeast telomeres. Cell 75, 543–555.
- Romeo, M.J., Angus-Hill, M.L., Sobering, A.K., Kamada, Y., Cairns, B.R., Levin, D.E., 2002. HTL1 encodes a novel factor that interacts with the *Rsc* chromatin remodeling complex in *Saccharomyces cerevisiae*. Mol. Cell. Biol. 22, 8165–8174.
- Sabet, N., Tong, F., Madigan, J.P., Volo, S., Smith, M.M., Morse, R.H., 2003. Global and specific transcriptional repression by the histone H3 amino terminus in yeast. Proc. Natl. Acad. Sci. U. S. A. 100, 4084–4089.
- Sanders, S.L., Jennings, J., Canutescu, A., Link, A.J., Weil, P.A., 2002. Proteomics of the eukaryotic transcription machinery: identification of proteins associated with components of yeast TFIID by multidimensional mass spectrometry. Mol. Cell. Biol. 22, 4723–4738.
- Schild, D., 1995. Suppression of a new allele of the yeast RAD52 gene by overexpression of RAD51, mutations in srs2 and ccr4, or mating type heterozygosity. Genetics 140, 115–127.

- Shim, E.Y., Ma, J.L., Oum, J.H., Yanez, Y., Lee, S.E., 2005. The yeast chromatin remodeler *Rsc* complex facilitates end joining repair of DNA double-strand breaks. Mol. Cell. Biol. 25, 3934–3944.
- Siciliano, P.G., Tatchell, K., 1984. Transcription and regulatory signals at the mating type locus in yeast. Cell 37, 969–978.
- Sikorski, R.S., Hieter, P., 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122, 19–27.
- Struhl, K., 1982. The yeast his3 promoter contains at least two distinct elements. Proc. Natl. Acad. Sci. U. S. A. 79, 7385–7389.
- Thomas, B.J., Rothstein, R., 1989. Elevated recombination rates in transcriptionally active DNA. Cell 56, 619–630.
- Treich, I., Ho, L., Carlson, M., 1998. Direct interaction between *Rsc6* and *Rsc8*/ Swh3,two proteins that are conserved in SWI/SNF-related complexes. Nucleic Acids Res. 26, 3739–3745.
- Uetz, P., et al., 2000. A comprehensive analysis of protein–protein interactions in *Saccharomyces cerevisiae*. Nature 403, 623–627.
- Valencia, M., et al., 2001. NEJ1 controls non-homologous end joining in Saccharomyces cerevisiae. Nature 414, 666–669.
- van Attikum, H., Gasser, S.M., 2005. ATP-dependent chromatin remodeling and DNA double-strand break repair. Cell Cycle 4, 1011–1014.
- Voss, S., Skerra, A., 1997. Mutagenesis of a flexible loop in streptavidin leads to higher affinity for the Strep-tag II peptide and improved performance in recombinant protein purification. Protein Eng. 10, 975–982.
- Wenzel, T.J., Teunissen, A.W., De Steensma, H.Y., 1995. PDA1 mRNA: a standard for quantitation of mRNA in *Saccharomyces cerevisiae* superior to ACT1 mRNA. Nucleic Acids Res. 23, 883–884.
- Wilson, B., Erdjument-Bromage, H., Tempst, P., Cairns, B.R., 2006. The *RSC* chromatin remodeling complex bears an essential fungal-specific protein module with broad functional roles. Genetics 172, 795–809.
- Wyrick, J.J., et al., 1999. Chromosomal landscape of nucleosome-dependent gene expression and silencing in yeast. Nature 402, 418–421.