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Introduction.

Transition-metal oxides with a perovskite-like structure form a very wide class of
materials, whose physical features can be very variable. High-Tc¢ superconductivity,
colossal magnetoresistence, ferroelectricity, high dielectric constant, Mott insulator
phase, antiferromagnetism are some of the many remarkable properties these fasci-
nating materials could present. Two among them have been chosen as main targets
of the present work: the yttrium-barium cuprate ¥ BasCusOg1, (YBCO) and the
strontium titanate Sr7%i03 (STO).

YBCO is an high Tc superconductor (HTCS) and probably the most widely
studied one. STO is well-known perovskite oxide, whose electronic properties can
appear deceptively simple, but they are not, as we will show in this work. In
order to investigate the fundamental physics of these materials, two different optical
techniques have been used: the Coherent Raman Spectroscopy (CRS), on YBCO,
and Photoluminescence (PL), on STO. The latter is a rather common technique
on solid state: we used its time-resolved version in order to investigate the kinetics
and the lifetime of a very interesting room temperature blue band, which has been
recently discovered in n-doped STO by Kan and coworkers [82]. The interest in
this discovery is mainly due to the possible use in electro-optical applications, since
only few blue emitting sources are nowadays available and the possibility to convert
the light-induced emission into an electric-induced emission will open the route to
many novel devices, entirely based on perovskites. We were motivated by two main
purposes: to set the intrinsic bandwidth of a future possible device and to help
the understanding of the recombination mechanisms, which are responsible for this
luminescence, since the discussion on this subject is still open.

The Coherent Raman Spectroscopy has been used mostly in liquids, gases and
flames. Only very few works have been carried out on solid state until now. In
particular, there is a lack in literature about applying this technique to high Tc
superconductors. The CRS was proposed by B. Fainberg in 1991 ([85],[89]) with
the name of “biharmonic pumping technique”, and the first experiment has been
performed one year after by V.N. Bagratashvili and coworkers [1]. To our knowledge,
no other works followed. More recently, a similar nonlinear technique (not frequency-
resolved) was applied to HTCS by N. Gedik and coworkers in order to directly
measure the recombination and diffusion lifetimes of quasiparticles [27]. The key
point of our experimental approach is the choice of a “reflection” geometry, as will
be explained in the first part of this work. This non-trivial experimental geometry
overcomes many problems which make this technique quite hard to be applied on this
class of materials. Here we would like to stress that the present work, although giving
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some interesting physical informations on the elementary excitations of YBCO, is
mainly devoted to proving the feasibility of this technique on this class of materials
and the many advantages it brings: a better signal-to-noise ratio, the possibility
to select a specific excitation and, especially, the possibility to make Pump&Probe
time-resolved measurements.

In this work, we have demonstrated that CRS spectra can measure the phase
of different terms of the third order susceptibility of YBCO. This information is
not present in the linear Raman spectra, which have been used from the beginning
on HTCS. Phase-information has been obtained only at room temperature, but the
main goal will be the study of the phase changes above and below the critical tem-
perature. Besides this result, the CRS technique is suitable for measuring directly
the lifetime of a selected low-energy excitation. This might help shedding light on
the 20-years-old high temperature superconductivity puzzle.

Let us now briefly illustrate the contents of the present work.

This dissertation is divided in two Parts, which reflect the two distinct subjects
of our investigation, and in this Introduction a brief overview is given for both.

The first Part is composed of five Chapters. Each Chapter focuses on a different
aspect of the matter of discussion. In the first two Chapters a general overview is
given on the basic CRS theory, which is useful in order to understand what the CRS
technique measures, and on the main physical features of HTCS, and in particular
YBCO, which is the target of this study. We will start from the basic concepts
of the linear Raman scattering and, from there, we will get into the Nonlinear
Optics formalism, which is the natural framework of the CRS theory in the Four
Wave Mixing (FWM) formulation. In the first Chapter, we will also set out the
semiclassical model used for the subsequent best-fit of our first measurements. At
the end of this Chapter a brief description of an alternative formulation, the so-called
Dynamic Gratings theory, is given too. In the second Chapter, we tried to give to the
reader a brief and simplified review of the huge literature about HTCS. The lattice,
as well as the electronic, structures are described in some detail. The transport
properties and some of the possible non-BCS models, which have been proposed
by several authors, are roughly explained, without the claim of completeness. In
the third Chapter, we will focus our attention on the YBCO phonons and their
symmetries, which are the subjects of the main results obtained from our first room
temperature measurements. The fourth Chapter is dedicated to a detailed analysis
of the CRS experimental setup and its principal features. Here we would like to
stress that this is a quite complex apparatus, and we will give some information
about its critical points and also about the several procedures which are requested
in order to obtain a reliable measurement. Finally, the fifth Chapter contains our
theoretical and experimental results: the complete theory of the radiated FWM
field, as it is revealed in the “reflection” geometry, and some test measurements
on different reference materials. In the final section, the CRS spectrum of YBCO
is discussed in detail. It will be shown how the CRS technique can be used to
measure the phase-shift between resonant and non-resonant terms of the third order
nonlinear dielectric susceptibility.

The second Part is dedicated to the time-resolved PL analysis of pure and doped
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STO. Within this Part, the sixth Chapter is focused on the principal features of the
Photoluminescence emission in solid state. The main purpose of this Chapter is
to introduce the reader to this subject. The seventh Chapter contains an overview
about the principal features of STO, with a particular regard to its photoluminescent
properties. Many experimental results are available in this field, and the knowledge
of the principal ones can be very useful in order to compare them with the mea-
surements and the models which are reported in the following Chapter. Besides a
detailed explanation of the experimental setup and the step-by-step description of
the best-fit procedure used to interpret our data, the last Chapter contains our main
experimental results and an accurate description of the theoretical models we used
to interpret them. We have investigated the time as well as the frequency domain,
and we have found a non-trivial kinetics in the electron-hole recombination and a
quite interesting behaviour of the PL spectrum with temperature.

Finally, in the Appendix it is possible to find some background information
about some specific topics. In App. A there are some recalls on the Group Theory,
which can be useful in reading the third Chapter. In App. B a short account on the
relaxation times theory is given. In App. C the main concepts of BCS theory are
summarized. In the last Appendix (App. D), it is reported the full Matlab program
we used to make the numerical analysis of the PL data.

Finally, our main results and perspectives are summarized in the last concluding
section.



Part 1

Coherent Raman Spectroscopy
of YBCO.



Chapter 1

The Four Waves Mixing
Theory: an introduction.

In this Chapter, we will give the bases of the Nonlinear Optics concepts which are
used in the first part of this work. The Chapter will be thus focused on the Raman-
light generation. For a detailed treatment of this and other features of Nonlinear
Optics, see in particular refs [3] and [4].

1.1 Linear and nonlinear phenomena.

Everyone of us has to deal, everyday, with several optical phenomena: mirrors,
glasses, rainbows are some examples. All these phenomena are described with great
accuracy in the framework of the Linear Optics Theory. This theory arises naturally
(within certain hypotheses) from the Maxwell laws, which rule every electromagnetic
phenomenon. Actually, the hypotheses on the base of Linear Optics are valid only in
“usual” situations, where the intensity of the electromagnetic waves which interact
with matter is “small”. The sense of the word “small”, in this framework, will be
defined in the following. If this circumstance does not take place, it is necessary to
get into a new formalism: the Nonlinear Optics Theory.

A nonlinear wave coupling, in the acoustic field, is known since 1714, when the
Italian violinist Giuseppe Tartini discovered the phenomenon of the “third sound”
[2]. He noted that, when two vibrations (as musical notes) are combined in a sound-
box (as an empty room or the human ear), a third vibration comes out, even if
it was not generated by the source. This “third sound” has a frequency given by
the difference between the two initial frequencies. In the optical field, this phe-
nomenon corresponds to the so-called Difference Frequency Generation (DFG). The
third sound is the strongest, but not the only sound which can be generated by the
nonlinear coupling of two notes: the generation of the cubic difference sound, having
a frequency equal to 2 f1 — fo, is the exact acoustic correspondent of the optical effect
known as “Raman effect”, described in the present Chapter.

Before the discovery of lasers (Maimen, 1960), it was not possible to reach light
intensities so strong to invalidate the hypothesis on which the Linear Optics is based.
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The observation of the first nonlinear optical effect was made by Franken in 1961.
He used a ruby laser of frequency 694.2 nm in order to produce an ultraviolet beam
of frequency 347.1 nm. This is now known as Second Harmonic Generation (SHG).
Actually, the optical pumping on the base of the laser inversion of population is
a nonlinear phenomenon too, but the Franken experiment was the first in which a
coherent input produces a coherent output.

Soon, the Nonlinear Optics was found to be a very powerful tool for spectroscopic
investigations, beside being a fascinating stand-alone research field.

In this Chapter some theoretical guidelines will be briefly provided, in order
to better clarify the framework in which the experimental results of the present
dissertation will be presented.

1.2 A short account on Nonlinear Optics.

The polarization and magnetization vectors (]3 and M respectively) completely
describe the electromagnetic response of every material, while Maxwell equations
rule the propagation of the electromagnetic wave through the material medium
itself. Let us write down these laws, for simplicity, without charges and currents:

= 3 9B
VAE = g
= 7 0D
VAH=87
V-B=0
V-D=0

In order to close this system, it is necessary to define the constitutive relationships
of the material, i.e. to specify the dependence of the two inductions D and B from
the electric and magnetic fields E and H. In the case of optical electromagnetic
waves, i.e. with a frequency in the range (3.84 + 7.69) x 10'* Hgz, it is almost
always possible to neglect the magnetic response of the material, as it depends on
the Lorentz force acting on the electron, in its motion around the nucleus. Since the
Lorentz force is proportional to the vector (¥./c) A B, being the ratio between the
electron speed ad the light velocity . /c of the order of 10~%, the approximation B=
MOH almost always holds true. The constitutive relatlonshlp between the electrical
induction D and the electric field E i is, in turn, D =ceoE+ P(E) The vector P(E)
in its general form is a functional of the electric field, and it has to vanish in the
absence of the inducing field, since there is not any material with a spontaneous
optical polarization. If the field intensity is “small”, with respect to the atomic
coulomb potential, it is almost always possible to write the polarization as a linear
functional of the applied electric field. In this case the most general form is an
integral operator, and its kernel depends both on the relative positions and times:

B(7,t) :/X(F—F',t—t’) E(7,¢) dfdt.

If this kernel is proportional to a time delta function, the material will present an
instantaneous response, and the dielectric constant € will be, thus, independent of
the excitation frequency w. If the kernel is proportional to a space delta function,
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the material will have a local response, i.e. the polarization in a given space point
will depend only on the local field, as it happens at optical frequencies in almost all
materials.

If the tensor has degenerate eigenvalues, the material will be uniaxial or bire-
fringent in the case of second order degeneration, and isotropic in the case of third
order degeneration.

This is the framework of Linear Optics.

Nevertheless, when the light intensity is sufficiently high, the linear approxima-
tion for ﬁ(E) is no longer valid. More orders are needed in the power expansion:

PE) =eo(xV - E + xP:EE + x®:EEE) + o]| E|Y] = (1.1)
= P = co(() By + XA BB+ X EsEvE) + o EY) (1.2)
P(E) = P*(E) + PN!(E), (1.3)

where PE (E) is the usual linear polarization while the vector PNL (E) contains, for
brevity, the second and the third order polarizations. The main reason why it is
convenient to expand until the third order, instead of the second, is that the second
order term vanishes if the material has a center of inversion'.

Assuming Eq. 1.1, the Maxwell Equations become a coupled nonlinear system
of differential equations, which does not admit a general exact solution.

However, with the help of an appropriate hypothesis, it is possible to find an
analytical solution in many cases of great interest.

Nevertheless, such a great mathematical effort is not necessary to understand
intuitively what the insertion of a nonlinear polarization into Maxwell equations
means, from a physical point of view. Actually, the wave-equation has the time
second derivative of ]3(5) as a source term. It is possible to obtain the usual
vacuum wave equation using the position &, = (1 + X(l)), following the same route
of the linear theory. If the polarization is given by Eq. 1.1, one obtains

.10 - 0? -
V?E — < +5erE = po=5 PNV 1.4
2o~ Mop (1.4)
Let us now consider a simple monochromatic electric field, and the nonlinear polar-
ization it induces:

1
E o cos(wt) = PN  cos?(wt) = 5(1 + cos(2wt)).

One can see that the presence of a quadratic behaviour in the field produces a
source term in the wave-equation which oscillates at the double frequency. This
example allows to show very directly one of the most relevant aspects of the nonlinear
phenomena: the possibility to generate output frequencies which are different from
the input ones.

Lthe proof is: . Lo .
F— —F=FE— —EP— —P
—P, = _EOXZ(‘?IZ;(_EJ)(_E]“) =F = 50Xz(‘]2'1)cEjEk =

2 2 2
= Xz(jl)c = _Xz('jlz: = Xz(j) =0
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In the general case of a third order process, we have to deal with four different
frequencies. Thus, the general theory is known as Four Wave Mixing (FWM).

The nonlinear susceptibility Xz('j')l)cl is, in general, a 4-rank tensor having 81 com-
plex elements, which are, in turn, the sum of 48 terms [3]. The number of non-
vanishing terms in this tensor is greatly reduced by the symmetries and the res-
onances of the material, but a symmetry which makes the whole tensor vanishes,
does not exist.

Let us write Eq. 1.1 in a component notation:

PZ(E’ W): Z XS})lk(_Ev Ena Emv Ep7 —W, W, wmva)'

n,m,p
Bk, wn) B (ks wim) B (K, wp),

where the sum is made on the indices n, m, p which satisfy the relationships wy, +
Wm + wp = w and En + Em + Ep — k. This means that the third order susceptibility
actually does not depend on k and w, but the dependence was introduced only for
notational symmetry reasons: in this way, we have one variable pair corresponding
to each index, including both input and output fields.

In general, the following index permutation symmetry of the () tensor always
holds true:

3 gl bad —
XZ(]})lk?(_k’ kn’ km? kpﬂ —W, Whp, Wy wp) =

= ngzk(_lga Enw En? Epa
Ay

n’

W, Wiy, Wiy wp) =

pr Fms —W, wnvavwm)’

Moreover, since the electric field and the optical polarization have to be real vectors,
the condition

— — -

X (R B o, By

o (3)* — — — — .
- thk(kv _kna _kmv _kp7 Wy, =Wy, =Wy, _wp)'

m» _w7wn’wm7wp):

holds true.
Some other very useful symmetry properties can be achieved within some addi-
tional hypotheses. For non-disspative loss-less materials is possible to prove that

k

P

—

3 - =
ng})lk(_kaknakmv _wawnvwmawp) =

3 — - — —
- Xg'ﬁ)m(kna ks ki i w0y —w, W, W)

Finally, in most cases it is possible to assume a point-by-point local relationship, in

order to neglect any spatial dispersion, i.e. the dependence on the wave-vector k;.

The optical polarization is, thus, a function of the position # inside the material:

— 3
PZ'(T,W): Z ngzlk(_wawnvwmawp)' (15)
n,m,p
'Ej (Fn’ wn)Eh(Fm7 wm)Ek(Fw wp)

®3)

In literature, the complete calculation of all the x; ikl elements is present, but
here we will calculate only those terms which are involved in the case of our interest,
i.e. the Stokes and anti-Stokes Raman light generation.
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g |
iy Wy Wy,

:

Figure 1.1: Quantum diagrams of the anti-Stokes scattering [4].

1.3 Raman Spectroscopy.

The Raman effect can be regarded as an interaction between the material and the
beating of two photons, and not between the material and the single photon, as
normally happens in absorption and emission phenomena.

In Fig 1.1 a quantum picture and the level diagram is showed. Let us imagine
to deal with a simple system, for instance a molecule, with a vibrational level of
frequency hw,. When a very intense and monochromatic beam of frequency w; in-
teracts with the molecule, a spectral analysis of the emitted light shows the presence
of distinct and equally spaced series of lines, on the right side as well as on the left
side of the “pump” frequency w;. These series are called Stokes lines (below wy)
and anti-Stokes lines (above wy).

This effect is known as Spontaneous Raman Scattering (SRS). It is an isotropic
effect, since the scattered light is diffused in all directions. Its complete description
requires the use of a quantum theory of the electromagnetic field.

This obstacle can be easily overcome using the concept of “vacuum photon”, i.e.
assuming that the quantum fluctuations of the electromagnetic field produce the
presence of one photon for each mode. This vacuum photon can act as a seed for
the scattering process, and it allows a classical treatment of this effect, as shown in
the following.

The stimulated Raman effect is, on the contrary, strongly anisotropic: the scat-
tered light has a well-defined direction, according to the so-called “phase-matching”
relationship, as shown in the following. Two pump beams of frequencies wy and wo
are sent on the molecule and a third beam of frequency 2w; — ws is collected at the
output. The intensity of the output beam as a function of the frequency wy will
give the stimulated Raman spectrum, where the Stokes lines will be observed for
wo > wi and the anti-Stokes lines for we < wi. This spectrum has different features
compared with the spontaneous one, as will be shown in the following.

In the Stokes case, the molecule absorbs a photon of frequency w; reaching a
virtual high-energy level, and gives out back a photon of frequency ws, which is in
fact the first line of the Stokes series. It reaches the final excited vibrational level
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with energy Aw,. In the anti-Stokes case, the excited molecule absorbs the pump
photon and reaches the ground level by the emission of a photon with frequency wq,
i.e. the first anti-Stokes line.

The algebraic relationship between these frequencies is

Wy + Wy = wy Wy — Wy = W1 Wy = 2wy — wa (1.6)

The other lines of the two series are due to a subsequent scattering with a Stokes
photon acting as a pump photon for a new process, giving, in this way, a photon
of frequency wos = we — wy, = w1 — 2wy, i.e. the second Stokes line. Each line will
be weaker than the previous one. Both series come from a single resonance of the
molecule. It is, thus, easy to imagine that the Raman spectrum of a real complex
system will be an extremely complicated object, and its analysis can be an hard
task.

The study of the Raman spectrum gives, thus, many information on the vibra-
tional or rotational levels in the case of gases and liquids, or on the elementary
excitations in the case of our interest: the solid state. In this case, it is further to
note that only & ~ 0 (where k is the lattice wave-vector) excitations can be induced
by the anelastic scattering with photons, since the photon carries an almost zero ki-
netic momentum, compared with a phonon one. Thus, only the k~0 point (called
I'—point) of the Brillouin zone can be investigated by means of this technique.

The usual Raman-based spectroscopic techniques use its spontaneous version,
and the spectroscopic analysis is made with very high sensitivity spectrometers.
In a stimulated Raman experiment, the resonances are investigated by means of a
tunable laser source and a high-sensitivity detector, as a photomultiplier. In this
case, the signal beam is strongly anisotropic, and this makes easier the separation
between the signal and the scattered background.

We should note that, in the spontaneous effect, the Stokes lines often show a
very much higher intensity than the anti-Stokes ones. This happens since the anti-
Stokes process needs to start from an excited level, which is less populated than
the ground level. In the stimulated effect, on the contrary, the excited population
is induced by the beating of the two pump beams, and so the two series have a
comparable intensity. This nonlinear optical technique is known as Coherent Raman
Spectroscopy (CRS). Usually, one distinguishes the Stokes and the anti-Stokes cases,
leading to the so-called Coherent Stokes Raman Spectroscopy (CSRS) and Coherent
anti-Stokes Raman Spectroscopy (CARS).

1.4 The semiclassical model.

The probability per unit time (P;) of a photon to be emitted into a Stokes mode? is
a function of the pump intensity. In the case of a stimulated emission, it will be a
function of the Stokes beam intensity too, so that the hypothesis on the base of this
semi-classical theory of Raman scattering is very similar to the one usually assumed
in the case of the stimulated emission of a photon by an atom, which is

Psg = Dmy, (ms—l—l) (17)

2For clarity, let us now limit the discussion to the Stokes case.



1.4 The semiclassical model. 8

where mj, is the mean value of the pump mode photon number, mg is the Stokes
mode one, D is a constant which depends on the material, and the unity hides
behind itself the quantum vacuum fluctuations, as mentioned before.

This hypothesis can be strictly proved in a complete quantum formalism, where
the electromagnetic field is a quantum vector too.

By its definition, the emission probability per unit time is

p _dmg_gdms
ST T n dz

where % is the propagation direction of the Stokes light®. Thus, we have

dmg
dz

= %DmL (ms +1). (1.8)

Eq. 1.8 admits a general solution, but it is more instructive to solve it in two
opposite limits. This approach have the merit to stand out the main features which
distinguish the spontaneous from the stimulated Raman process.

dm, n
mg < 1 sz = ZDmL
d
mg > 1 ;ZS = %Dmng.

Assuming that the pump intensity is not greatly affected by the process, i.e. the
fraction of the pump photons converted into Stokes photons is small, we have the
following two solutions:

mg <K 1 mgs (z) :%DmLz
mg > 1 ms (z) = ms (0) exp (Gz)

where G = (n/c) Dmy, is the Raman gain factor and mg (0) is the input number
of Stokes photons. The distinction between the spontaneous and the stimulated
process is now clear: the presence or not of a Stokes photons number sufficiently
higher than the vacuum fluctuations, deeply changes the nature of the differential
equations which rule the process. This leads to have two very different solutions:
in the first case, the number of emitted photons scales linearly with the length z,
which is the path of the light along the medium?, while, in the second, it scales
exponentially, with a gain factor which varies, in turn, linearly with the pump
intensity.

In Eq. 1.7, we introduced the constant D in order to account for the features of
the material. This features are present in the Maxwell equations inside the electrical
susceptibility, being it linear or not. For this reason, a simple classical model is
proposed, here, in order to get a quantitative estimate of the nonlinear susceptibility
which takes part into the Raman scattering.

3note that it is not needed that the pump-light has the same direction.
this case is also known as Linear Raman Scattering.
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Let us consider, for clarity, a molecular material, and let us call ¢ a vibrational
coordinate which characterizes an internal degree of freedom. The dipole moment
induced by an electric field will be p'= ocE, where « is the optical polarizability.

The total polarization can, thus, be written as

—

P(E) = NaE, (1.9)

where IV is the number of molecules per unit volume of the medium. The postu-
late of the model is that the polarizability « depends linearly from the vibrational
coordinate g:

where g is the polarizability at the equilibrium point ¢ = 0, while the behaviour of
q itself is given by

2

a2l (t) + 27%q (t) + wiq (t) = F (t) /m, (1.10)

which is a simple forced oscillator equation of the motion: v is a dumping factor,
wy is the proper frequency of the oscillator, m is the reduced nuclear mass, and the
forcing term F'(t) is given by the presence of the electric field.

In order to achieve an explicit relationship between the forcing term and the
applied field, let us consider the interaction energy between the single dipole moment
and the electric field, which is

1, - 1 =
W = _§<p (Zat) : E(Z,t)> = _§a<E >7
where the average is done over a time scale larger than the optical period, but shorter
than the vibration period of the molecule.
The Coulomb force applied on the vibrational degree of freedom, thus, is

Assuming the following form for the total electric field E (z,1t)

—

E (z,t) = Ay exp (ik1z —iwit) + Ag exp (iksz — iwgt) + c.c.

where w; is the pump frequency, wg the Stokes frequency, k1 s and A; g are the
wave-vectors and amplitudes, respectively, one obtains

F(z,t) = L 9a [A1 AG exp (ikz — iwt) + c.c.] + cost.
2 0q |,
where k = k1 — kg and w = w1 — wg.
Here, it can be better understood what was mentioned before: the Raman effect
emerges from the coupling between an internal degree of freedom of the material
and the beating of two photons, which appears, just here, as the forcing term in
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the harmonic oscillator equation of the motion. Now, Eq. 1.10 can be solved by
searching a solution of the form:

q(t) = q(w)exp (ikz —iwt) + c.c. (1.11)
From Eq. 1.10 and Eq. 1.11, we have

AL A%
0 w2 —w?— 2wy’

- 1 O«
Q(w)zﬁa—q

From Eq. 1.9, this solution leads immediately to an explicit expression for the
total polarization, which is

P(z,t)=N <a0 + Z—Z

Oq(z,t)) E (z,1).

The term «q is the usual linear polarization form, in which the polarizability is
a constant, while the remaining part gives the nonlinear polarization

[

PNL(y )= N
(2,1) 94

[(j (w) eliks—iwt) c.c.} . [Ale(iklzfiwlt) + Agelibsz—iwst) 4 C.C.] .

0

This is, thus, the sum of several terms which oscillate at different frequencies,
and every term will appear into the wave-equation as a source term (Eq. 1.4). We
have to separate this terms, and calculate the contribution of each term to the total
solution.

Since w = wy — wg, the Stokes term is

PNL(z,1) = P(wg) exp (iwst) + c.c.
with
Blug) = YA As (6_a>2 !
o 9q) w2 — (w1 —wg)?— 2 (w1 —ws)y

5 exp (tkgz) . (1.12)

Now, writing the wg component from Eq. 1.1 in the frequency domain® we have
P(ws) = 6xr (ws) |A1]*> Ag exp (ikgz) . (1.13)

Finally, by comparison of Eq. 1.12 and Eq. 1.13, we have

N <8a>2 1
12m \9q ) w2 — (w1 —ws)? — 2 (w1 —wg)y
(1.14)
The behaviour of the real and imaginary parts of xr (ws) has, thus, a typical
resonance structure, as shown in Fig 1.2.
Once an explicit form for the susceptibility is obtained, is possible to solve the
wave-equation (Eq. 1.4), which can be written as

Xr (ws) = X (Ws) +ixp (Ws) =

the factor 6 accounts for the symmetry Xijkl = Xijlk = Xikjl = Xiklj = Xilkj = Xiljk, (the
simultaneous permutation of the frequencies is omitted).
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Zg(@g)

Figure 1.2: Real and immaginary part of the Raman susceptibility [4].

dizAS =GAs = Ag = As(0)exp (Gz), (1.15)
with
G o iwsxr (ws) [ALl®.

Here, the second derivative of the amplitude Ag is neglected, since it is assumed
a very slow energy transfer with respect to the field oscillations.

In correspondence of the resonance wg = w; — wy, Xr(wg) assumes a pure
imaginary negative value, and so G is a positive real number. Eq. 1.15 describes,
thus, an amplification of the Stokes light during its path along the medium; this
gain is independent from the direction of propagation® ES.

Let us now analyze the nonlinear polarization term which oscillates at the anti-
Stokes frequency. Since any hypothesis on the sign of w3 — wg was done until now,
Eq. 1.14 is immediately applicable to the anti-Stokes case, with the substitution

wl—wgz—(wl—wa),

so that
XR (Wa) = X (ws) -

Near the resonance w, = wy + wy, Xr (We) is a positive imaginary number (Fig
1.3), and so the gain-factor G is a negative real number. This means that the anti-
Stokes light will be depleted instead of being amplified. Actually, this holds true
in linear Raman scattering experiments, in which the anti-Stokes light is very hard
to be revealed, but, nevertheless, experimental evidence clearly show that in the
stimulated process, both channels have a comparable intensity. This discrepancy
will be solved in the Nonlinear Optics formalism, as shown in the next section.
The anti-Stokes light is produced as a pure three waves beating between two pump
photons and one Stokes photon, as shown in the quantum diagrams of Fig 1.1.

®This means that the Stokes process is automatically "phase-matched". The concept of phase-
matching will be shown in the next paragraph.



1.5 The FWM in the Nonlinear Optics formalism. 12

T T T T —
, ”(w )
Zg (@) r (%
of ="
x5 (@) 2g(@,)
N 1 ' 1 ]
® - ® ® +o
1 \' 1 b § v

Figure 1.3: Stokes and Anti-Stokes resonances of the Raman susceptibility [4].

Eq. 1.14 has a direct dependence on the vibrational frequency w,, but the
dumping factor «y shifts the observed resonance frequency wy to the value wg = w2 —
72, as easily proved by solving the dumped harmonic oscillator equation. Writing
Eq. 1.14 in terms of wp and the so-called “Raman shift” Aw = w; —wg, one obtains

a very short and useful form of the Raman susceptibility:

1 1
Aw+wo+i1y Aw—wy+ iy’

Xr(Aw) o (1.16)
In this relationship, the Stokes and the anti-Stokes resonances are explicated in each
term, in which the sign of wy is inverted. Eq. 1.16 will be the relationship we will
use to interpret the CRS spectra in Ch. 5.

1.5 The FWM in the Nonlinear Optics formalism.

The stimulated Raman effect is a third order nonlinear process, in which three pho-
tons interact inside the material to generate a fourth, and so it has to be framed in
the general formalism of the third order Nonlinear Optics [4]. This theory describes
the coupling between three travelling waves and so it takes the name of Four Wave
Mixing (FWM). The Raman effect is a particular case of FWM, in which two of the
three input waves are coincident. Nevertheless, in this section the general formalism
of the non-degenerate FWM will be shown, since the experiment presented in Part
I is degenerate in frequency but not in the wave-vectors.

As mentioned before, the third order nonlinear term, in the expression of the po-
larization as a function of the applied field, generates the coupling between the four
waves, each having a proper direction of propagation, polarization and frequency.
Let us now analyze in detail how this interaction takes place, and what features it
has.

Let us write the wave-equation with a nonlinear third order source term

. n2 82 R 82 o
—VXVXE—C—Q@EZIMO—P s
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with

PNY(E) = ¢gx®:EEE = PN = soxgjlllEjEkEl, (1.17)
where the indexes i, 7, k, [ = x, ¥y, z indicate the qtotal electric field components.
Let us assume the following form for the field E, which is present in Eq. 1.4:

E(7t) = Ey + Ey + E3 + Ey, (1.18)
where
E = 3é1- (& exp[i(l_ﬁ 7 —wit)] + e
Ey = §éa - [E2expli(ky - 7 — wat)] + c.c (1.19)
E3 = gé3 - [Eexpli(ks - 7 — wat)] + c.c] |
Ey = jéq - [Exexpli(ky - 7 — wat)] + c.c]
From Eq. 1.19 and Eq. 1.17, we have
1 j I
PN on, 1) = SeonDhy elekél 858y oxp [i (Ba-7—wat) +ec] . (120)
with
Wi = W1 — W + ws. (1.21)

Here the unit-vectors é; represent the polarizations, & the complex amplitudes,
EZ-, w; the wave-vectors and the frequencies of each applied field”.

Eq. 1.20 is the term which forces the anti-Stokes oscillations, while the other
terms in Eq. 1.17 will give a different mixing of the three frequencies w;. By the
insertion of Eq. 1.19, Eq. 1.18 and Eq. 1.20 in Eq. 1.4 one obtains a nonlinear
coupled system of differential equations.

The condition of Eq. 1.21 is nothing but the total photon energy conservation
law, during the interaction. Note that Eq. 1.6 and Eq. 1.21 coincide, if a partial
degeneration of frequencies is present, i.e. w; = ws:

Wi = Wy = Wy — Wy + w3 = 2w — ws. (1.22)

A first simplification of the system is possible by means of the so-called “slow
varying amplitude approximation”, which is a common hypothesis in Nonlinear
Optics. The approximation is to neglect the second derivative of the amplitudes
of the fields in Eq. 1.19, since it is assumed that the energy transfer between the
involved wave is slow compared to the field oscillations. This idea is supported by
experimental evidence in a very large number of cases.

"here, the fields are written inside the material. Reflection and refraction laws would be taken
into account in a complete calculation.
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1.5.1 The phase-matching relationship.

The slow-varing amplitude approximation brings down the order of the system from
the second to the first, but it is not able to decoupling its equations. The system
becomes decoupled within the so-called “non-depletion approximation”, in which
one assumes that this energy transfer is “small”, beside being slow.

This means that the ratio between the total energy and the energy given by
the pump beams to the FWM beam is close to zero. Within this hypothesis, the
wave-equation is very easy to integrate, and it gives a FWM beam intensity I4;(L)
which is

N N 2/1— AEL
(w212 [\ elebed & 08 0 & 0 (<5 ).

(AkL)?

where L is the superposition length of the four beams, and Ak = ‘El — EQ + 123 — lg4‘

is the so-called “mismatch” factor.
Note that the factor (1 — cos(AkL))/(AkL)? makes the FWM beam intensity
significantly strong only when®

Ak~0=ky=Fk —ky+ ks (1.23)

This condition (Fig 1.4) is the so-called “phase-matching”.

The phase-matching is a crucial point in all nonlinear phenomena of the third,
as well as the second, order, simply because it is, from a physical point of view, the
total kinetic momentum conservation law of the interacting photons.

Another point of view is to pay attention to the coherent nature of this energy
transfer: each of the four involved waves have to keep a well defined and constant
relative phase, in order to have a positive (constructive) interference. This condition
is, thus, on the base of the strong anisotropy which characterizes the FWM process,
which is one of the advantages of the CRS technique. Actually, in the experimental
practice of a spontaneous process, the initial electric field E4 is given by the quantum
vacuum oscillations, so that only those photons which have a wave-vector k4 which
satisfy the relationship Ak = ki — ko + kg —ky~ 0, will be amplified, and they will
generate a small cone of light around the k4 direction. In the stimulated scattering
experiment, we have to achieve the minimization of the phase-mismatch, in order
to have a stronger signal and to avoid it can oscillate.

1.5.2 The Raman tensor.

In case of a perfect phase-matching, the FWM signal as a function of frequency
and polarizations is a direct measurement of the square modulus of the third order
susceptibility tensor: each particular combination of input and output polarizations
will measure a particular component of that tensor. It is, thus, interesting to com-
pare the Raman tensor, which is defined in the case of linear Raman scattering,
with the third order susceptibility, which gives the efficiency of the FWM process.

8 Actually, we could also choose L =~ 0, but, in this case, the intensity would be very much
reduced by the factor L2.
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Figure 1.4: Vectorial form of the phase-matching factor.

In Ch. 1.4 the behaviour of the Raman susceptibility with respect to the Raman
shift Aw was obtained. The same semiclassical model can be used again, taking into
account each combination of polarizations of the incident and emitted waves, as in
the case of linear Raman scattering. The Raman scattering efficiency is found to be
proportional to the square modulus of the so-called “Raman tensor”, defined as

~ 3)(
R=¢5-—=-¢

S 0q L,
where ég and ér, indicate the Stokes and the pump-light polarizations unit-vectors,
respectively, while y is the linear dielectric susceptibility tensor. Writing Eq. 1.17

in the case of a partial degeneration of frequencies, as given by Eq. 1.22, one obtains
Py(wa) = 30Xy (wa = w1 + w1 — w2) By (w1) B (w1) By (wa), (1.24)

where the index N L is omitted for clarity and 3 is a numerical factor which collects
three identical terms.

Now, following the above discussed semiclassical model, we assume that the
linear susceptibility tensor is not constant in time, but modulated because of the
variation of the oscillator degree of freedom ¢(t). From this assumption, the following
form of the induced polarization can be found:

o ((Oxij OXy
2mwy \ dq Oq

where F(Aw,wp) is the resonance factor as defined by Eq. 1.16, the apex on y
denotes the real part and the numerical index in the electric field expressions is a
short form to indicate the frequency of each field oscillation wq, we. By comparison
between Eq. 1.24 and Eq. 1.25 and taking into account the symmetry between j
and k indices, one obtains

H-(w4) = ) F(Aw, WO)ElelkESb (1.25)

®3)

X@'jkl(w4 =wi t+w— w2) =

g0 1 (0xij Oxly | OXik Xy
6mwg 2 ( 0q Oq + dq Oq F(Aw, wo).



1.6 The optically induced Dynamic Gratings. 16

Here we used an explicit symmetrized form. Finally, the effective susceptibility,
for a given input-output combination of polarizations, is

€0 8X8X/ N
. < 0; a;le4i61jelk62l F(Aw,wy),

Xeff =

where the symmetrized form is no longer necessary, since it is assumed the sum over
mute indices. The polarization unit vector €; is referred to the w; frequency, and,
thus, it plays the role of the pump-light polarization é;, of the linear case. The unit
vectors é4 and é; play instead the role of the Stokes polarization ég.

Finally let us note that the Raman tensor depends on the first derivative of the
linear susceptibility, while, in the nonlinear case, the effective susceptibility depends
on the square of that derivative. This means that x.rs could be written as the
product between two different Raman tensors, one referred to és = é4 and one to
és = éo. In order to compare linear and nonlinear spectra, it would be useful to
keep these two vectors parallel between them. In this case, the effective susceptibility
Xesf Will be proportional to R2.

1.6 The optically induced Dynamic Gratings.

The Four Wave Mixing phenomena could be understood within another formalism
too, completely equivalent to the Nonlinear Optics, which has, perhaps, the merit to
be more intuitive and physically concrete: the optically induced Dynamic Gratings
[5].

In this framework, two waves interact inside the material and change its index
of refraction. This change is periodic and it follows the behaviour of the interference
pattern generated by the waves. This pattern could be permanent, as in the case
of a photo-sensitive material, or dynamic, i.e. it vanishes in some time, once the
incident waves are vanished.

A periodic change of the index of refraction is nothing but a diffraction grating,
whose presence can be, thus, verified by sending on the material a third beam which
will be diffracted by the grating into another direction.

The two beams which produce the pattern (Pump beams) and the beam which
has to probe the grating amplitude (Probe beam) play the same role as the fields
El,2 and Eg respectively in the Nonlinear Optics formalism, while the diffracted
beam will be the fourth field, i.e. the FWM signal.

A change in the optical properties of a material is caused, in general, if an
element of the system goes out from the thermal equilibrium, and this element can
couple with the index of refraction or with the absorption coefficient.

For instance, the light absorption can populate many electronic excited states,
and these populations will follow, in turn, the periodic interference pattern. This
case is called population density grating. During the decay of these electronic excited
states, many other lower energy states can be populated, leading to a secondary
grating, and, at higher times, the system can locally thermalize, and a thermal
grating can be achieved too. In this case, the change of the index of refraction is
induced by its dependence on temperature.
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Figure 1.5: Scheme of a dynamic grating [5].

If this changes in the optical properties are not permanent, the system will come
back to the initial state, after the disappearance of the applied fields, with a certain
characteristic time (see App. B). It can be, for instance, related to the excited level
lifetime, or to some other, more complex, mechanisms.

This characteristic time can be easily measured by delaying the third beam
(Probe) with respect to the first two (Pumps). A progressive decreasing of the
diffracted beam intensity will be observed as the delay increases, and this is a direct
measurement of the decreasing rate of the optically induced dynamic grating.

This is a kind of Pump&Probe technique, which, in general, consists of causing
an excitation with a very strong laser beam (Pump) and to subsequently probe its
temporal decay by a second, weaker and delayed, beam (Probe).

Let us, now, give a brief overview on the formalism of the Dynamic Gratings.

In Fig 1.5, an interference grating picture is shown. It is formed by two beams
whose intensities are I; and I. Let us suppose, for the moment, that these beams
have parallel polarizations and the same wavelength A,. Their wave-vectors are El
and Eg, and they form an angle 6. The grating vector is thus

(T: El - EZ?
and so the grating-step is
. 2 . )\p 020 )\p
|q] 2sin & 0"

2

Assuming that the electric field, in the superposition volume, is a plane-wave, we
have

—

]. -
E(7)t) = §A expli (kzz — wpt)] + c.c.

with
A = Ay explikyz] + Az exp[—ikgx],
where k, and k, are the absolute values of the components of the wave-vectors
k1 and ks, according to the Cartesian reference shown in the figure.
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The intensity of the total field will be

= ggoc ([f 4*) =11 + I + 2AI cos(2k, ),

where

Al = ggoc (ffl . ff;) .

The AI parameter represents the amplitude of the interference oscillations, and
it is directly proportional to the photo-induced gratlng amplitude, in the case of
isotropic media. Note that A vanishes when A; L A , and so the grating cannot
be formed if the two beams have orthogonal polarlzatlons. This is strictly true for
an isotropic medium, but in an anisotropic one, the coupling between orthogonal
polarizations is possible, because of the tensor nature of the dielectric constant.

Thus, it is more correct and complete to define an interference tensor as follows:

AM;; = ;eoc (Al) (AQ)
AT = |Tr {AM}].

Moreover, it is possible to generalize the interference tensor in the case of pulsed
beams, with a standard Gaussian time-shape:

1172(t) = IALQ exp[— (t + 7/2)2 /ti],

where 7 is the relative delay between the two pulses, t, is its time-constant, equal
for both, and I1 2 = %50014%72 are the peak intensities. The interference tensor, in
this case, will be

1 A A T2 t?
AMZ'j(t) = 5500141,2‘1427]' exp |: it 2:| exp [—%] .

Note that the tensor has the same Gaussian time-shape of the pulses which
induced it, but its amplitude depends on the factor —72 /475120, i.e. on the time
superposition of the two pulses.

Let us call X any quantity (as temperature, population density, a spatial dis-
tribution of excited molecules and so on), which is coupled with the applied field
and with the index of refraction. We can imagine, as a first approximation, a linear
relationship? between a variation of X and the variation of the grating amplitude:

AXi; = gijriAMyy,

where g;;r; is an appropriate coupling tensor. It is possible, finally, to write the
index variation'® which corresponds to the variation of X:
(9n

%the relationship can be scalar or tensorial depending on the nature of X.
10the variation of 7 is more complicate if X is a tensor.
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where 7 is a complex index of refraction. The imaginary part of n represents the
absorption coefficient, which takes part, in turn, to the formation of the grating.
Keeping in mind the well-known relationships

it is clear that the grating can be regarded as a variation of 7 as well as € or Y.
At this point, we can find the link with the Nonlinear Optics formalism. The
variation of the polarization, which is induced by the grating, can be written as

Pi = onijEj = AR = EoAXijEj.

It becomes the third order correction of the polarization (Eq. 1.1), by assuming
the following relationship
3
Axij = XS BrEy.

Let us now consider a third beam, having a wave-vector Eg which will be dif-
fracted by the grating. From the Bragg law, we have

km — k3 =m@  m=0,1,2,3... (1.26)

Eq. 1.26, limited to the first diffraction order (m = 1), is nothing but the
phase-matching relationship between the four involved waves (Eq. 1.23).

If the two pump beams have different frequencies, the only change which must
be made is that the amplitude of the grating will vary with time, and this will result
into a moving grating:

_ 1 .
Era(rt) = 5 A1z exp {z (kl,z - w172t>] + c.c.
— = |2 — —
IO(‘El‘i"EQ‘ ocIl—I—Ig—i—(Al-A2>eXpi[(j'-f'—Qt]+c.c.

where ¢ = El — EQ and 2 = w; — wy. Note that the probe beam, which is diffracted
by the grating, will be frequency shifted by the quantity €2, according to Eq. 1.21.
This shift is interpretable, within the Dynamic Gratings formalism, as a Doppler
shift. It is due to the motion of the grating itself, which acts as a moving light
source.

In this case too, the intensity modulations bring to a dielectric constant variation:

Ae = xO) (A1 45) expi []- 7 — Q] + c.c. (1.27)

Inserting Eq. 1.27 into the linear wave-equation, we have

s e+Ae 0?5
<v- o) E=0

This wave-equation leads to the same nonlinear coupled system just discussed
in the previous sections.



Chapter 2

Superconducting Cuprates: an
overview.

Since their discovery, many theories have been proposed in order to explain the
remarkable features of cuprates superconductors. Notwithstanding these efforts,
and the huge number of experimental data which have been collected in these years,
many questions are still open. For these reasons, this Chapter cannot be a clear
report on a closed subject. It has to be taken, instead, as a brief overview on this
fascinating matter, in order to understand what we know and what we do not know
about the high T, superconductivity. Most of the notions presented here can be
found in refs [7] and [8].

2.1 The discovery of high-Tc superconductors.

In 1986, Bednorz and Muller [43] discovered that a perovskite-like compound, based
on the copper and lanthanum oxides and rightly doped with calcium atoms, shows
a superconductive behaviour with a very high critical temperature (7;): about 30K.

Such a temperature was already sufficiently high to be hard to explain it in the
framework of the BCS theory (see App. C), but very soon, on the wave of this
discovery, many other similar compounds were found, whose critical temperatures
were even higher. The following year, a compound, based on yttrium and barium,
was found [6], whose critical temperature was higher than the liquid nitrogen tem-
perature: this had a huge impact on the scientific community, since this compound
opened the route to every future concrete applications of the superconductive tech-
nologies. Before this discovery, the cooling equipment were too much expensive to
allow a large scale use of the superconductive technology.

These new materials took the name of High-Tc¢ Superconductors (HTCS) or
Cuprates Superconductors, since the copper-oxide is present in all of them.

Beside the anomalous value of T., the cuprates present a very wide range of
common features which make them very different from the normal BCS supercon-
ductors: first of all, they have a layer structure, i.e. they contain lattice planes
with the chemical formula CuQOs, orthogonal to the c—axis. In these planes there
is the most part of the conductive charge carriers. The strong localization of the
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Figure 2.1: The unit cell of YBCO and its normal modes [25].

mobile carriers in these planes makes the contact between a plane and the other
very weak, and this is the reason of the strong anisotropy of many properties of
cuprates. Up till now, it is believed that these planes are the “natural” place of the
high temperature superconductivity.

Secondly, the charge density in cuprates is very much smaller than in normal
metals, so that the carriers are less screened and more sensitive to the Coulomb
interaction between them.

Moreover, they have a coherence length very much shorter than normal super-
conductors (about 2 nm in the planes and 0.3 nm along the c—axis). This makes
the thermal fluctuations and the scattering from impurities, or imperfections, more
important.

Finally, all cuprates are very sensitive to the doping, which allows them to go
through several phases and to change dramatically their conductive behaviour, even
above T, as will be shown in the following.

2.2 The structure of cuprates.

In Fig 2.1 and 2.2 a schematic picture of the unit-cell of Y BasCusO;_s (YBCO),
one of the most studied superconductive cuprates, is shown as a typical example of
a cuprate-like structure.

Generally speaking, all cuprates have a tetragonal perovskite-like structure!.
The main feature of the unit-cell is, as previously mentioned, the CuOy supercon-
ductive planes in the lattice plane a — b, which are bidimensional square lattices with
a side-length of approximately 0.38 nm. This value, slightly lower than expected for
ionic bonds, suggests that the nature of these planes would be, at least partially,
covalent.

la=b#c¢ a=F=v=mu/2
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Figure 2.2: Planar development of the YBCO unit cell [25].

The CuOy planes are separated by some AX planes (where X is usually an
oxygen atom) so that the oxygen coordinates the copper atoms of the CuQOs planes
as happens into a typical perovskite unit-cell.

The electronic state of the CuOs planes depends on doping. Let us consider first
the so-called “parent-compound”, i.e. the undoped compound. Its copper atoms of
the CuOy planes have a +2 valence, while oxygens have —2, so that each plane has
a net —2 charge for each unit-cell. Usually, the AX planes have a positive charge
which compensates the negative charge of the copper-planes.

There are two possible kind of doping: if an excess of negative charges (electrons)
is provided to the system, the material will be n-doped (Ndy_,Ce;CuO,4_s5 or NCCO
is a prototype material of this class), while p-doped materials are doped with an
excess of holes.

In this work, we will point our attention exclusively on the last case, since the
increase of a negative charge concentration makes the material more similar to a
normal metal, and thus less interesting from the superconductive point of view. For
instance, n-doped materials have critical temperatures very much lower than the
p-doped ones.

The doping is usually made by the substitution of cations in the AX planes with
others having different valence (for instance putting Sr?* in the place of La3") or
by changing the oxygen concentration, as in the case of YBCO.

Since the AX planes have a ionic nature, the doping modifies the valence of the
copper atoms in the CuQOs planes so that the charge carriers density, in that planes,
is modified.

The case of YBCO and related compounds is slightly different, since their struc-
ture can be sketched as (BaO)(CuOz)(BaO) and the doping is done by changing
the = value. The stable configuration of the CuQO, planes have some Cu — O chains
along the crystal axis b, with some oxygen vacancies along them. Thus, the chain
carriers are free, and they give a contribution to the conduction.
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Figure 2.3: The twinned structure of a — b planes.

The copper-oxygen chains make the lattice orthorhombic (with b > a), but, at
high temperatures and low oxygen concentrations, the oxygen position in the planes
and chains becomes disordered, and the lattice becomes tetragonal (with a = b).

Since the growth of these materials is done at very high temperatures, the cross-
ing from the tetragonal to the orthorhombic structure generates a strong internal
stress. This results in an orthorhombic domains crystallization: each domain have
a and b axis exchanged, compared to adjacent domains. This phenomenon, whose
schematic picture is shown in Fig 2.3, takes the name of “twinning”.

Using some rather complex techniques, it is even possible to obtain an “un-
twinned” sample, i.e. with a unique (a,b) orientation along the whole crystal.

In the last years, the knowledge about the growth of these materials, bulk
monocrystals or thin films, made a very fast progress, and high quality single crystals
(with some millimeters side) or very thick films (about 1 pum) are now available.

2.3 Electronic states and phase diagrams.

The largest difficulties in the understanding of the mechanism leading to the high-
Tc superconductivity in cuprates derive from the poor knowledge we have about
their “normal state”. For them, the expression “Non-Fermi Liquid”, whose sense
will be clarified in the following, was coined. In particular, one has to understand
that the very strong correlations between the quasi-particles (electron and holes)
play a crucial role in the physics of such complex systems ([7],[8]).

Outside the CuO4 planes, experimental evidence suggests the presence of strong
ionic bonds. Electron are, thus, strongly localized near their atoms, into orbitals
whose energies is lower than the Fermi level. Their role into the conductive dynamics
seems to be completely negligible.

In the planes, as well as in the CuQO chains, it is reasonable to start from the
standard electronic configuration of the copper and oxygen atoms as it is in the
parent compound. The copper is in the Cu?* state, while the oxygen is in the O?~
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il

state. The external electronic configuration is, thus, 3d° (with one hole) and 2p°
(full shell) respectively. In total, we have 11 orbitals (5 d-orbitals from the oxygen
atoms and 3 p-orbitals from the copper) for each unit-cell and they have to be used
as the fundamental bricks in order to build the electronic state of the system.

Beside removing the degeneration, the surrounding lattice creates many bands
(even superimposed), but, since there is only one hole per unit-cell, only one of these
bands can be partially filled. It is, thus, reasonable to expect that the Fermi energy
intersects only the highest energy band. Since the charge carriers are localized
almost solely in the (a, b) plane, it is logic to consider those orbitals, whose lobes lie
in that plane, as participants in the building of a concrete depiction of the normal
state electronic structure (as shown in Fig 2.4). In this framework, the doping has
mainly the effect of removing one electron (or hole, in the case of n-doping) from
the CuQO planes. For instance, in the Las_,Sr,CuO4 compound the substitution
of a La**t ion with a Sr?* one creates ng = 1 — x holes, placed in each CuOs plane.
The same can be done by filling the oxygen vacancies with O?~ ions. In the case of
YBCO, the situation is slightly complicated by the presence of the Cu — O chains.
Assuming an equal distribution of the holes between planes and chains, we have
ng =4/3 —2§/3 holes per unit-cell.

We have already said that the electronic properties of cuprates are extremely
sensitive to the doping. In Fig 2.5 the phase diagram of YBCO is shown as a
function of the oxygen concentration. This diagram is qualitatively very similar in
all cuprates. For low oxygen concentrations, the material has a tetragonal structure
and it is an antiferromagnetic insulator. As the oxygen concentration increases, the
Neel temperature (i.e. the antiferromagnetic transition temperature) decreases until
a critical doping value is reached. Above this value, the material becomes mainly
orthorhombic, and its conductive behaviour is closer to a normal metal than an
insulator. In this phase, the material become a low temperature superconductor.
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Figure 2.5: Phase-diagram of YBCO [7].

Continuing to increase the doping, the metallic features become more marked and
the critical temperature rises more and more until it reaches its peak at about 93K
for x ~ 1. In this case the material is called “optimal doped”. After the peak, the
critical temperature decreases until it vanishes.

A quite accurate description of this behaviour is given by the empirical formula

in Eq. 2.1
E:l— <L115>2 (2.1)
T 0.10

Nevertheless, the tetragonal-orthorombic transition has not clear connection
with the insulator-metal transition, and it appears in different positions, depending
on the sample.

Such a strong dependence of the inmost nature of the material on its chemical
composition makes, thus, evident that the first experimental difficulty in studying
the cuprates, is just to have a good sample-to-sample reproducibility, i.e. to obtain a
controlled procedure which allows a good reproducibility between different samples.

All these considerations prevent from a passive application of the free-electrons
model, as it is applied in normal metals. The presence of the insulator-antiferromagnet
transition makes very clear that the interaction between electrons is nothing but
negligible.

Suffice it to say that the parent compound, having an empty half upper band,
would be a metal, in the free-electron gas theory. Actually, the parent compound
is not strictly an insulator. This kind of insulators are known as “Mott insulators”.
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In a Mott insulator, the not negligible Coulomb interaction opens a gap inside the
conduction band, so that it is divided into two parts, one full and one empty. This
confers the insulating nature to the material. The intuition can help to have a
naive image of what happens into a Mott insulator: each electronic site contains
only one electron, so that another one, with opposite spin, could be added to the
system without breaking the Pauli principle. This does not happen, because of the
excessive energetic cost caused by the strong Coulomb repulsion. Moreover, this
means that the electron has the possibility to freely change its spin, leading to some
very particular magnetic features of cuprates.

Nevertheless, it is true that, for some doping levels, the cuprates show several
quite marked metallic features (for instance, the specific heat follows the typical
free electron gas behaviour). Thus, it can be useful to have an idea of what the free
electron theory predicts in these materials.

The electronic wave-function is made mainly by the copper orbitals 3d,2_,2,
strongly hybrided with the oxygen orbitals 2p, and 2p,: looking at Fig 2.4, it is
possible to see that these orbitals present quite superimposed lobes. This leads to a
quite large bandwidth (about 2 eV) and an effective mass quite similar to the free
electron mass me.

The upper zone of the band is close to the reciprocal lattice limits ak, = bk, = ,
where the superposition of the orbitals forms an anti-binding combination; this
produces, in the Fermi surface, an approximately cylindrical hole. These holes are
centered in the Brillouin zone (BZ) angles, and their area is about the half of the
BZ area (as shown in Fig 2.6).

By means of the Hartree-Fock method, it is possible to consider the averaged
effect of the electron-electron interaction and also the spin correlation effects, but
not the correlations effects due to the effective instantaneous positions. The highest
energy band is very similar in all cuprates: the superposition between a CuO5 plane
and the other is very small, and the charge carrier density is concentrated mainly
into those planes; the energy band and the electron scattering cross-section are
almost independent of the z component k., of the crystal momentum E, and this
can explain the experimental evidence of a strong anisotropy in all the transport
properties.

In YBCO, and related compounds, we have a similar situation for the CuO»
planes, but there are also the electronic states of the Cu — O chains. In this chains,
the energy is almost independent both of £, and k,. The electrons are, thus, strongly
localized into an almost monodimensional system.

In Fig 2.6, it is seen that the band (i) is nothing but an monodimensional version
of the previously mentioned CuOy planes band, while the band (ii), which has a
smaller orbital superposition, has a lower energy and bandwidth. In this case too,
anti-bonding combinations of adjacent orbitals are found near the maxima of the
band. Finally, the Fermi energy can intersect the band (ii) only when the hole
density value crosses the optimal doping value. This induces to think that this band
plays a minor role in the superconductive dynamics.

These are only qualitative features, which should be roughly valid also taking
into account the electronic correlations. This correlations will play, instead, a crucial
role into the real dynamics inside planes and chains.
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Figure 2.6: Band structures, Brillouin zones and orbitals of planes (a) and chains

(b) [7].

In an ideal free-electron gas, it is important to distinguish between two different
regimes: high and low electronic densities. Being r the mean electronic distance,
the Coulomb interaction energy is e?/4mwegr, while the zero-point kinetic energy is
R2k?/2m, ~ h?/2m.r?. This means that the kinetic energy prevails for small values
of r. In other words, at high densities, the electron has a well-defined momentum
and it has a large wave-function. It extends over the whole available volume, since
it has enough energy to overcome, by means of a tunnel effect, the potential barrier
formed by its neighbours. At low density, the electron is confined into the potential
hole created by the interaction with its neighbours and it has a very much localized
state: this localization generates a Mott insulator. The cross point between these
two regimes is for r ~ ag, i.e. when the mean distance between two electrons is of
the order of magnitude of the Bohr radius. This is exactly the case of the hole gas
of cuprates.

Into a crystal, we should take into account the presence of the lattice too, i.e.
the atomic potential, generated by the lattice ions. This can be obtained with the
Hubbard model, which makes provision for only one atomic orbital for each lattice
site. The Hubbard Hamiltonian is

H= —th;facja + UZniTnil, (2.2)

,5,0 i
where i is the reticular site index, j is the first neighbour index, o is the spin index,
the operator CIU inserts an electron into the atomic orbital of the i-site with spin o.
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Figure 2.7: Scheme of the Hubbard-to-conduction band transition [7].

U is the Coulomb energy which must be added when two electrons are on the same
site with opposite spins and —t is the tight-binding theory superposition integral.
Often, this model is substituted by the so-called “t — J” model, where J = 2t2/U is
the magnetic interaction strength.

Note that, for U = 0, one obtains the usual tight-binding band with a bandwidth
equal to 2Nt where N is the number of first neighbours in the lattice, while for U >t
one obtains an antiferromagnetic ground-state. This is in quite good agreement with
what observed in the parent compound. Thus, the Hubbard model can include both
the high and low densities regimes.

Nevertheless, it is not clear what happens at the cross point, i.e. how an apparent
metallic state could emerge with a very slight addition of holes. Once more, the
model can give us only a qualitative picture of what is going on. In Fig 2.7, the
occupation number (g) as a function of the energy (¢) at three different doping
levels (a,b,c) is shown. At low doping (a), we have the so-called Mott Hubbard
bands: when an electron is added to the system, it will go into an occupied orbital
(since the external orbital of copper is 3d” it has only one free hole) and the energy
will be positive shifted by a quantity equal to U. It is possible to prove that an
opportune linear combination of these states leads to an extended band with a well-
defined momentum (upper Hubbard band). A removal of an electron from its site
will correspond to the creation of a hole in the lower Hubbard band.

At higher doping (b), we can expect something similar to what happens in a
doped semiconductor, i.e. the appearance of bound states inside the gap. These
states can form the so-called “impurity band”, since the excess of doping-charges
are preferentially localized near some impurities. As the doping increases (c), the
intersection between these bands increases, and the bound states can lead to an
“hopping conduction”, i.e. the electron can jump from a state to another, being, in
practice, almost a free-carrier.

Viceversa, we can start from a tight-binding theory, without interactions, and
ask ourselves what happens as the electronic interaction becomes more and more
important. It is not clear at what level of interaction the theory falls down: it is
possible that some hole band is formed with a gradual transition from the Fermi
liquid (c) to the Hubbard bands. In this case, it is necessary a theory which must
describe quite in detail the mobility near the Fermi energy.
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It is also possible that in this doping range, the quasi-independent particles
model could be definitively useless, and that a new theory of superconductivity could
emerge solely from the inter-electronic interaction, without the phonon-mediated
attraction, as prescribed by the BCS theory (see App. C).

Unfortunately, up till now the experimental data are not able yet to clarify if
the doped material has a Fermi surface in agreement with the one we can calculate
from the free-electron gas model. ARPES (Angular Resolved Photo-Emission Spec-
troscopy) measurements [9] seems to be in good agreement with this hypothesis, but
EELS (Electron Energy Loss Spectroscopy) data indicate, with some clarity, that
the low-doping Hubbard bands are partially superimposed, but the Mott insulator
behaviour does not vanish completely at higher doping level. Another apparent
paradox is given by some thermodynamical measurements: in the doping range
where ARPES data show the presence of a Fermi Liquid, the ratio between the
electronic specific heat and the temperature is constant (equal to ) as expected,
but the ratio between the entropy and the temperature is not constant at all, since
it depends again on temperature and on the doping. This could be explained only if
one supposes that the fermion density of states changes abruptly in correspondence
to the Fermi level.

This experimental evidence gave birth to the concept of “pseudogap”. On
this subject, see §2.7. Also the neutron scattering measurements gave unexpected
results. For instance, there is a characteristic peak of a spin-excitation in the
antiferromagnet-phase which remains visible, although very weak, also at those dop-
ing values where the antiferromagnetic behaviour is completely vanished, as shown
in Fig 2.8 (a).

Also the neutron absorption spectrum has a particular feature: it seems that,
below 1., neutrons can generate magnetic fluctuations only above a certain energy
threshold. This threshold took the name of “spin gap” and its value is very close to
the one predicted for the usual BCS gap (3.52kT,).

2.4 Transport properties.

The transport properties of superconductive cuprates have many remarkable fea-
tures.

First of all, the spatial charge distribution is strongly anisotropic. In order to
simplify the problem, let us start from the assumption that the conduction is ruled
by one kind of charge carrier, and that it is almost isotropic in the (a,b) plane. In
this plane, the conductivity is usually given by

o = ne’r/m*,
where n is the carrier density, m* is the effective mass and 7 is relaxation time of
the current density, due to lattice scattering.

The electric resistivity p(7T") as a function of temperature, shown in Fig 2.9
for several doping values, scales linearly with 7', when it is far from 7., only if
the doping value is near the optimal doping. For lower values, p(T) assumes a
positive curvature until, in the antiferromagnetic zone, it increases abruptly, as the
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Figure 2.8: Neutronic scattering measurements on YBCO [7].

temperature decreases. This is not surprising if the material is enough doped to
be an antiferromagnetic insulator (when the low-temperature hopping-conduction
is “freezed”), but a positive curvature remains visible even for doping regions where
we are used to think at the material as a metal. Even if the optimal doping is
exceeded, p(T') has a positive curvature. It obeys to a perfectly quadratic behaviour
only when the superconductivity has now vanished.

In the YBCO-like compounds there is also a small anisotropy in the (a,b) plane
due to the C'u — O chains. Very fine measurements, on untwinned crystals, showed
that the b—axis conductivity is about double compared to the a—axis one in a opti-
mal doped sample, but its variation with temperature is the same in both directions.

The resistivity along the c—axis is, as expected, higher than the one in the plane.
Moreover, it is very sensitive to the doping variation and to the inter-planes distance:
different compounds having different inter-planes distances may have five orders of
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Figure 2.9: Electric resistivity as a function of temperature [7].

magnitude different c—conductivity.

Along this direction, it is likely to suppose a tunnel effect conductivity between
two planes. The major difficulty in direct measurements of this kind, is that the
c—conductivity is strongly sensitive also to small inter-planes defects.

In order to understand the transport properties of cuprates, the crucial problem
lies, once more, on the charge carrier density. In particular it is necessary to un-
derstand if this density varies strongly with doping or not. On the one hand, Hall
effect measurements and infrared conducibility data show that the charge carrier
density varies strongly both with doping and temperature. This suggests a transi-
tion between the Hubbard and the conduction band. On the other hand, ARPES
measurements on the Fermi surface, supported by thermal capacity and magnetic
susceptibility data, seem to show that the charge carrier density is almost constant
in a wide range of doping.
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This remarkable discrepancy can be partially overcome by keeping in mind that
the weak-bound states contributes to the ARPES reconstruction of the Fermi sur-
face but not to the pure electronic properties, as the Hall effect does. Nevertheless,
these considerations are not sufficient to quantitatively match this two aspects. A
possible suggestion was made by Cooper [10], in order to have an almost constant
Fermi surface, without requiring the localized states: its assumption is that the
electrons can have different kind of scattering in different zones of the Fermi sur-
face. In particular, the so-called “nested Fermi surface” would be made by several
faces, more or less flat and parallel, with strong variations of the curvature in some
points (“angles”). The model’s hypothesis is that, in the flat zones, the electron
scattering is mainly ruled by the spin-fluctuations (being proportional to "), while
in the angles it is a normal electron-electron scattering (being proportional to T2).
This model seems to work quite well, but it depends on a “special combination” of
several different effects. Moreover, it does not match completely with some EELS
measurements and it leaves open the question about the Hubbard—to-conduction
band transition. Nowadays, this question is still open.

2.5 BCS theory and cuprates.

When the BCS theory (App. C) is applied to cuprates superconductors, one has
to note first that it cannot be applied in its usual form, even in the roughest ap-
proximation. The reason is that the usual BCS theory is an s—wave theory (fully
isotropic) and, thus, it cannot account for the strong anisotropy of these systems.
Moreover, in the YBCO-like compounds we should understand if the chain-electrons
(which are, as seen before, almost decoupled from the plane ones) participates in
the condensation and, if yes, in which way.

Since the coherence length along the c—axis is very small (of the same or-
der of magnitude of a unit-cell), one can regard this system as an almost pure
bidimensional, one with a weak plane-to-plane interaction described mainly as a
superconductor-superconductor Josephson junction. Nevertheless, since the tun-
nelling based experiments give informations which are averaged on several coherence
lengths, it is a quite hard task to compare the theory with this kind of data.

Note that a real bidimensional superconductivity theory is excluded a priori from
the general Mermi-Wagner theorem, which asserts that the generic bidimensional
system cannot present a symmetry-breaking at a finite temperature. It is possible
to prove that the phase-fluctuations of the order parameter below T, go as 1/k?: the
sum of these fluctuations on a set of bidimensional modes diverges, while this does
not happen in three dimensions. In other words, the phase of the order parameter is
intrinsically incoherent in two dimension, and the system loses its superconductive
properties.

The weak coupling between the planes has to be considered far from being a
small perturbation. It plays, instead, a crucial role in the condensation; it allows
the locking of the order parameter phases between different planes, and it preserves
the coherence of the whole system.
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Also the a—b plane coherence length &, is very much lower (~ 2.5 nm), compared
to the normal superconductors one. This makes very much important the thermal
fluctuations effects as well as the local defects of the compound. The superconductive
properties must have, thus, many local variations, while the normal superconductors
are almost insensitive to the defects or impurities, in the superconductive phase.

The usual BCS theory requires a well-defined energy-gap (where the density of
states has a well-delineated peak), while experimental evidence in cuprates shows the
presence of bound states near the Fermi energy. Moreover, a possible d— or p—wave
BCS theory would lead to a strong variability of the gap-value, which should vanish
in the nodal points, and this is not supported by any experimental evidence. The
magnetic order have to play an important role too, since the antiferromagnetism
(due to a long range magnetic order) disappears as the doping increases, but a
certain short range magnetic order seems to persist. Finally, also if it should be
possible to write a BCS like wave-function, we have to keep in mind that the attrac-
tive mechanism will be very much different from the weak electron-phonon-electron
interaction which is usually accepted as the base of the Cooper’s pairs creation.

The thermal capacity, measured as a function of temperature in YBCO for dif-
ferent oxygen concentrations, clearly shows that the electronic entropy is abruptly
reduced below T.. This could mean that all electrons, including the chain-electrons,
participate to the condensation. But the same measurements show that the entropy
is not so reduced as the s—wave BCS theory predicts, and this could be a first sup-
port to a d—wave theory. The same measurements on zinc-doped YBCO show that a
certain fraction of electrons are in the normal state also for T' = 0, and thus they are
not involved in the condensation. This leads to think that the zinc atoms create elec-
tronic states, localized near the zinc sites, whose energy is lower than the energy-gap
value. The low carrier density of cuprates produces a large magnetic field penetra-
tion length A (for instance, in optimal doped YBCO at T = 0, Ay ~ 1.3 x 1077
m and even larger \.). This means that cuprates are always in the London limit
€ < X and, thus, A & A\, = y/mc?/4mnse?, where A\ is the London length and
ns is the carrier density. This allows to link the measurements of the penetration
length as a function of temperature with the ratio ng(T)/ns(0) = (As(0)/Xs(T))%.
These measurements are in qualitative agreement with the weak-bond BCS theory,
but the low-temperature data show a strong bound behaviour, where the A/kgT
ratio is 2.2 instead of the usual value 1.76.

Moreover, in the BCS theory the available number of excitation levels at low
temperatures is proportional to e 2/¥57 while in zinc-doped samples the behaviour
is quadratic.

The behaviour of A\, and A is in perfect agreement with the fact that the num-
ber of charge carriers along b is double compared with a, since the chain-electrons
contribute only along the b—direction, and both A, and )y scales linearly with T
(as predicted by a d—wave theory). This seem to confirm that the chain-electrons
participate to the condensation with an energy-gap not so far from the one of the
planes.

The c—axis penetration length A, is very much larger than A, and A,. This is
not surprising, since the band structure is almost independent from k,. Moreover,
if the sample is doped with cobaltous, whose effect is to ruin the chain structure,
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the values of ). increases, suggesting that the chains have a crucial role into the
plane-to-plane coupling.

The large coherence length in normal superconductors is due to the large wave-
function of the pair, and not to the interaction distance between the pairs, which
is smaller. The value of this parameter in cuprates resembles the one of superfluid
helium He4, in which the condensation happens between small bosons.

Actually, cuprates are into a particular condition in which the wave-function
width and the interaction distance are quite similar. Their coherence length is not
completely out of the BCS theory predictions, since the well-known relationship
& = hvp/mAg can give the correct value, if the strong bound A/kpT ratio is used
instead of the weak bound one?. The value of & is, however, still larger than the
interaction distance of several boson excitations proposed as possible mediators of
the electron coupling.

In normal superconductors, the wavelength which corresponds to the energy-
gap is in the range of the millimeters. For cuprates, it falls into the far infrared.
This is the reason why it is very convenient to study the infrared response of these
materials, being them bulk crystals, thin films of powders. Introducing a complex
index of refraction n = n’ + in” (i.e. a dielectric constant ¢ = &’ + "), whose
imaginary part accounts for the absorption and the real part for the refraction, the
reflection coefficient is given by

"1 2 "2
R= w (2.3)
(n/ + 1) + n//2

Measuring this quantity in several cuprates, one finds three different ranges of fre-
quencies: below 102 cm™! the reflectivity is very large, as expected for a metal.
Over this value, R decreases, since the dielectric constant is no longer ruled by the
free-carriers terms: in this zone the opening of the gap is expected. Near 103 cm™!
there are the optical phonon sharp peaks and, finally, above 10* cm™! the plasma
frequency is overcome, and the material is transparent.

Using the Kramers-Kronig relationships in order to extract n’ and n” from R,
one observes a strong slope, below T}, near 750 cm™!. It is natural to interpret this
spectral feature as the opening of the superconductive gap, but such interpretation
gives rise to several difficulties: firstly, its value is larger than those obtained from
other independent methods, secondly, this slope persists, although weaker, above T
too. A much more accurate fit of these data can be achieved by means of the sum
of three effects: a Drude-like contribution from the free-carriers, a small range of
optical phonon resonances, and a large absorption peak in the middle infrared.

The last contribution is not, up till now, fully clarified. It seems to have a
Lorentzian behaviour, peaked at about 1800 cm™!, and it is independent of tem-
perature. These feature can represent some kind of excitation, not directly linked
to the free-carriers, but the fact that its width scales with temperature as T, does,
seems to suggest that such excitation plays a role in the superconductivity. The

2the Fermi velocity vp can be calculated from the band structure to be about 1.7 x 10° m/s.
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“presumed gap” could, thus, be an artifact, due to the simultaneous presence of
these three factors.

Actually, the superconductivity is revealed by the infrared absorption spectra,
keeping in mind that their integral is a measure of the total number of electrons
which respond to the applied field, and it is thus a constant. This integral is really
a constant above T, but its value decreases dramatically below this threshold, sug-
gesting that the most part of electrons has gone in the condensate. This approach
is not, however, a suitable tool in order to measure the numeric value of the super-
conductive gap, since the value of n is quite small, and it is hard to extract it from
IR data using the Kramers-Kronig relationships.

Since the energy-gap along the c—axis is much larger, it should be possible to
extract it from this kind of measurements, but any structure is seen, below T, in
the IR-spectrum. These seems to confirm what previously mentioned: the carrier
density in the superconductive state of cuprates does not thicken near the Fermi
energy, but presents some kind of underlying localized states.

Another proof is that the so-called “coherence peak” is absent in the high-
frequency conductivity measurements. In normal superconductors, this very broad
peak is due to the presence of a narrow peak of the BCS density of states, just below
the Fermi energy, which produces an enhancement of the scattering rate.

Nevertheless, this result does not have to be read as a trivial failure of the BCS
theory, since a d—wave theory or a strong electron coupling or spatial unhomogeni-
ties can lead to the disappearance of this peak.

On the other hand, as seen before, it is likely that the wave-function has a non-
trivial symmetry, since the phonon mediation can carry upon the gap Ay the lattice
symmetry, giving to it a weak anisotropy. Nowadays, is is accepted that the gap has
a dy2_,2 symmetry, having the nodes at 45° with respect to the a and b axes (in the
case of a tetragonal lattice).

2.6 Phonons and other attraction mechanisms.

The phonon spectra of several cuprates have been measured with great accuracy
from neutronic scattering measurements for several ¢ vectors and with infrared and
Raman spectroscopy for ¢ = 0. The results are well-approximated by the lattice
dynamics calculations. Since in the unit-cell there are a lot of atoms, it is easy to
expect that the phonon spectrum will be quite complicate.

In the optimally doped YBCO, for instance, we have 36 different vibrational
modes for every ¢ vector. For ¢ = 0, we have 15 Raman-active modes and 21
infrared-active modes. The high-frequency modes involve the lightest atom of the
unit-cell, the oxygen. For a detailed treatment of the calculation of the YBCO
vibrational modes, see Ch. 3.

In normal superconductors, the strongest evidence of the phonon nature of the
electron-electron coupling are the tunnelling measurements and the isotopic substi-
tutions.

The tunneling measurements in cuprate are, unfortunately, very hard to be per-
formed and the isotopic substitution gave unusual results, hard to be understood.
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There is not any direct evidence of the involvement of phonons in the pairs creation.

The more interesting modes for this analysis are the so-called “soft modes”, i.e.
those modes which are not stable when the temperature or the doping level are
varied. These modes do exist, actually, at the tetragonal-orthorombic transition
doping level, but in that zone of the phase diagram the superconductivity is almost
absent, so that the soft modes seems to be not involved in the condensation. There
are, moreover, some anomalous features of the phonon spectrum which suggest some
kind of more complex attractive mechanism: in the BCS theory the frequency of
the under-gap phonons is red-shifted by the condensation and the over-gap modes
are blue-shifted by some percentage point. In cuprates, all infrared phonons are
red-shifted, being them above or below any known gap value.

On the other hand, before the HTCS discovery, the highest predicted critical
temperature was about 30K. A strong electron-phonon interaction should produce a
strong instability of the lattice itself, and this happens for very much lower values of
the exchange forces compared to those required to have a phonon-coupled electron
pair in cuprates [14]. Moreover, it is not possible, despite all efforts, to explain
the peak of T, in the phase diagram as a function of doping in terms of a phonon
interaction, and that peak is doubtless the main feature of these compounds.

Within the hypothesis that the anelastic scattering of electrons is not ruled by
phonons, it can be ruled by some other kind of excitation, and it is likely that such
excitation has an electronic nature.

Actually, the matrix element V'(k1, ke, q), which gives the electron scattering
probability from a k; momentum to ki + ¢ and, simultaneously, from ks to ko + ¢ is
given by

62

4q%e0e, (q,w)’
where w = (¢ (K1 + q) — €(k1))/h. The relative dielectric constant &,(q,w) &r(q,w)
includes all the vibrational modes of the electric polarization, not only the phonon
ones. Interband transitions or electron-hole transitions could be, for instance, good
candidates.

Since the energy-gap in cuprates is about 250 cm™", one has, first of all, to in-
vestigate the range where €,(q,w) is dominated by the low-frequency modes. But
for ¢ = 0 phonons are the only modes, together with the plasma resonance. This
resonance gives a positive sign, and thus a repulsive mechanism, to &,, in the fre-
quency range below the plasma frequency (i.e. below 8000 cm™! for (a,b) plane
carriers). We have to keep in mind, however, that each low-frequency mode will
contribute to the final form of €, and so the phonons will add their contribute too,
since their energy is comparable with kpT.. It is possible that all contributes are
equally important, and that a single dominant factor could not be found.

Finally, the antiferromagnet nature of cuprates for certain doping values, and
the magnetic fluctuations which vanish only for doping values well above the optimal
doping, place the magnetic excitations (as, for instance, the spin interactions) among
the most relevant candidates.

V(g,w)

1
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2.7 Recent developments.

One of the most complete and recent work in the wide literature on HTCS was
written by Orenstein and Millis in 2000 [16]. The authors underline that the An-
derson hypothesis seems to be right. Shortly afterwards the discovery of Bednorz
and Muller, Anderson predicted that the nearness of a Mott insulator phase with
the bidimensional features of cuprates would bring to a real new behaviour, which
cannot be understood in the old framework of the physics of metals.

From the beginning, it was recognized that the spin plays a non-trivial role in
the problem: in a Mott insulator, the highest energy band has one electron for
each unit-cell, and the quantum spin-number is, thus, indeterminate. This is not
affected by doping, since it creates extra-sites, allowing the charge motion without
the need to pay a large energetic cost, due to the Coulomb interactions. In a fermion
bidimensional system, the spins of neighbour sites are in a anti-parallel alignment,
in order to minimize the energy of the system [17]. They are “coupled” into a
sort of singlet state, two by two, forming a so-called “spin liquid”. The motion
of singlets is similar to the motion of the electrons of a resonant bound of the
m—benzene ring. For this reason, they are called RVB (Resonating Valence Bond).
This theory was soon refuted by some experimental evidence which clearly showed
that the spin liquid does not exist. Nevertheless, this simple idea takes the essence
of some kind of features which will be exposed in the following, and, up till now, the
doping range which goes from the disappearance of the antiferromagnet-phase to
the superconductive one is considered as the most interesting. Neutronic scattering
experiments on high quality single crystal samples, showed a very unhomogeneous
distribution of charge and spin.

In these experiments, the Bragg peaks are in correspondence of the lattice vectors
Q = (i%,i%). Note that these vectors, the so-called “nesting vectors”, are the
normals to the flat and parallel regions of the nested Fermi surface.

As the doping increases, every Bragg peak is divided into four peaks, each with
a distance from @ equal to the doping value = (in units 27/a). This effect can be
explained with a stationary or slow varying spin-density wave (SDW), whose phase
is m—shifted in correspondence of a periodic sequence of linear domains. Further
measurements on Nb-doped LASCO samples showed [18] that the spin has this
behaviour, while the vacant sites, induced by the doping, are placed just on the
phase-change lines, forming a sort of “charged stripes”. These stripes are separated
by a distance equal to a/2z while the SDW wavelength is a/x. Also these stripes
give a contribution to the neutron scattering which was experimentally proved [19].
It is not clear at all what kind of implications such an unusual charge distribution
can have in the superconductivity.

The d—wave-like nature of the order parameter is, nowadays, no more a matter
of discussion: the gap has a d,2_,2 symmetry, with its maxima along the bond
directions and its minima (nodes) at 45° with respect to them. This means that, in
the linear combination of the order parameter 1) on the base vectors, the elements
with a nodal wave-vector have to vanish. As a proof of this, it was noted that the
nodal particles dominate the thermal behaviour of cuprates. The biggest effort is



2.7 Recent developments. 38

1l
", *non-Fermi liquid” "
M regime i
II‘III |I|illl
pseudogap II"|.| |"II
regime ' ‘”.F' Fermi liquid?

Temperature

Carrier concentration

Figure 2.10: YBCO phase-diagram [16].

now dedicated to the estimate of the lifetimes of the quasi-particles, which can give
valid informations on the BCS or not-BCS nature of the order parameter.

Since a d—wave symmetry requires only four nodal point on the Fermi surface,
the volume of the phase-space available for the scattering is quite small. A BCS-like
theory predicts that the lifetime of the nodal quasi-particles at low temperature
diverges as 1/T° [20].

Absorption measurements in the microwaves range confirm this behaviour, while
ARPES data show a 1/T behaviour below T,. If this result will be confirmed by
independent measurements, it could be explained by means of the strong quantum
fluctuations created by a quantum critical point in the cuprates phase diagram.

However, in this work we will not face the wide field of the “Quantum Criticality”
applied to HTCS (see ref [21]).

Recent ARPES measurements [22] showed, with even more clarity, another im-
portant feature of the phase diagram, shown in Fig 2.10: the pseudo-gap regime. In
Fig 2.11 the ARPES spectrum in the low-doping zone above and below T, is shown.
It is easy to see that the quasi-particle peak, which is clearly seen for T < T,
disappears, while the gap behaviour (i.e. the removal of the carrier density from
the region near Er) remains well above T., and reaches, in some case, very high
temperatures too (300K).

This behaviour allows to hope that, in the future, critical temperatures higher
than the present will be achieved.

A possible explanation of this phenomenon can be found in the peculiar spin
structure present in the doping regions near the antiferromagnet-phase, where the
material has, a little longer, the “memory” of the previous Mott insulator phase.
The antiferromagnetic arrangement can take place because of the presence of one
electron for each unit-cell: when each electron see an opposite spin in every neigh-
bour site, it can move into another site for an infinitesimal time, increasing its
dislocation and decreasing its potential energy. When an hole is inserted into an
antiferromagnetically oriented spin-lattice, it is clear that it cannot move itself with-
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Figure 2.11: ARPES spectra of YBCO above and below Tc [16].

out greatly increasing the Coulomb interaction with its neighbours. This opens two
possibilities: two holes move together so that they compensate each other (this hy-
pothesis is quite similar to the Anderson’s RVB singlets) or the holes are placed into
equally spaced linear domains, or “charge stripes”.

Thus, it seems that the cessation of the superconductivity has not to be related
to the pairs breaking, as happens in BCS superconductors, rather than the loss of
long-range phase correlations. In other words, in the BCS theory the main energy
scale is given by the gap A, while in cuprates what is more important is the “phase
stiffness” ps, i.e. the zero-temperature superfluid density. In this scenario, when
the temperature rises above the critical value, the Cooper’s pairs do exist, but
they cannot superconduct since they lost their coherence. For this reason, the

superconductive gap in cuprates is now called, by many researchers, “coherence
2

gap-.

Nevertheless, the transport properties in the CuOs planes do not show any sign
of the presence of a gap. This experimental evidence lead many researchers to invoke
a separation between charge and spin. The latter would be coupled into electrically
neutral singlets, so that the plane transport properties should not be affected by
them. On the contrary, the c—axis conduction shows the presence of a gap as it
requires an hopping of an electron from a plane to another, and, thus, it requires
a spin pair breaking. Nevertheless, the question “if and when” charge and spin
could be separated into a bidimensional system is far from being solved, also if it is
well-known in the case of monodimensional systems [23].

Besides the large theoretical efforts [24], the pseudo-gap phenomenon and the
quasi-particles lifetimes were studied in great detail from an experimental point of
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Figure 2.12: Pseudogap (dark gray) and coherence-gap (pale gray) behaviour in
underdoped (a) and optimally doped (b) samples [26].

view too.

Apart from the photoemission techniques described before, there is, of course,
the Raman Spectroscopy [25], [26]. With the help of this technique, it was, in
particular, possible to follow the pseudo-gap behaviour with respect to the coherence
gap, varying several parameters, and it was found that these are two uncoupled
quantities: the pseudo-gap is likely to be a “spectral deficit” between 0 and 800
cm™!, which corresponds to an energy E*. This energy does not depend on doping
or temperature (until the “critical temperature” 7*), while it is confirmed that the
coherence gap has a d,2_,2 symmetry and it scales with 7T¢.. In Fig 2.12, the pseudo-
gap (dark gray) and the coherence gap (pale gray) behaviour in the phase-space is
shown for underdoped samples (a) and optimal doped samples (b).

In the last case, the pseudo-gap is confined around the principal axes, while the
coherence gap is well defined over the whole Fermi surface. In the first case, the
pseudo-gap covers a wide area of the phase-space. The Fermi surface is present only
in the nodal directions, and, in these directions, the superconductive gap scales as
T..

More refined optical techniques were made (see refs [27], [28], [29]) in order to
investigate the anti-nodal particles lifetime. These lifetimes are harder to be investi-
gated since they require an extremely k-sensitive experiment, in order to distinguish
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them from the nodal ones. These experiments, however, are still controversial.

At the moment, it seems clear that the quasi-particles lifetime problem (joined
with the understanding of the “normal” state, which, up till now, escapes from a
clear description) is crucial in order to understand these exotic and elusive materials.
More measurements in this direction can tell us if we can maintain a quasi-particle
picture (even if modified) or if it is necessary to completely change our mind, as
proposed by some more “brave” theories.



Chapter 3

Spatial Groups and YBCO
vibrational modes.

In this Chapter, we will give the brief description of the Spatial Groups Theory,
which is the basic tool in the study of the crystal symmetries, and we will calculate
the number of YBCO vibrational modes in the framework of this theory. In refs [30]
and [36] is possible to find an accurate treatment of the subjects discussed here. To
have a brief overview of the main concepts used in this Chapter, see App. A.

3.1 Spatial Groups.

A point-group structure completely defines the symmetry of the equilibrium con-
figuration of any molecule. In order to study the symmetry of crystals, we should
introduce some new operations, which will define the so-called “Spatial Group”.

3.1.1 Crystal classes.

Identity F, rotations C),, reflection o, inversion ¢ and improper rotation S,, oper-
ations are still valid symmetries in a crystal, below the condition that C), and S,
can have only certain values of their parameter, i.e. rotations are allowed only for
certain angles ¢ = 27 /n. It is possible to prove that the only admitted angles are
given by

n=1,23,4,6. (3.1)

This lead to the fact that we have only 32 point groups which can give the symmetry
of a crystal. These 32 groups are called “Crystal Classes”. All possible point groups,
relative to different kind of crystals, are listed into every text-book.

As in the case of molecules, the generic symmetry operation on the vector & is

—/ —
r =R2x,

where
cos¢p —sing
R=| sin¢g cos¢
+1
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is the proper (+1) or improper (—1) rotation matrix, and the angle ¢ = 27 /n has
to satisfy Eq. 3.1.

This matrix leaves the rotation-point unmoved. Thus, the translation symmetry
of infinite crystals has to be obtained by a generalization of the rotation matrix:

¥=RT+T,

i.e.

# = [R|r} .

which is the so-called Seitz notation.

The properties of {R|7} are:

L. the product {R/|7'} {R|7} = {R'R|R/T + 7'} is associative.

2. The inverse element is given by {R|r} ! = {R7!|-R™7}.

3. The identity is {E|0}.

4. The operator {R'R|R/T 4+ 7'} is still a {R|7}-like operator.

The {R|7}-operations are, thus, a group. Moreover, the pure translations {E|7}
are a subgroup.

Limiting to the primitive (or elementary) pure translations given by

Tn, = N1ty + nato + nats,

where n123 € Z and 7123 are three independent lattice vectors, the group G
{R|7} is called the Space Group of the crystal, while the abelian subgroup Z
{E|7,} is called Translation Group.

Groups G and 7 are, of course, infinite groups. Nevertheless, keeping in mind
the crystal periodicity conditions

(ni + Nz) ti = niti

where V; is an arbitrary number of primitive cells in the t;-th direction, the group Z
has dimension N1 N2 N3, which is the total number of primitive cells in the cycle-unit
made by Ny X Ny X N3 primitive units. The crystal can be regarded as the infinite
reproduction of this cycle-unit cell.

Finally, we can define the Factor Group U, i.e. the group of the unit-cell, as

U: G=URT.

The irreducible representations of U include all irreducible representations of G
which are invariant under a primitive translation. Since the primitive translation
lattice of the space group is invariant under the operation of its factor group, the
number of operations of the translation group will be limited too. These 14 different
kinds of lattices are called “Bravais lattices”. A number of space groups can be
associated with each Bravais lattice, so that the total number of the possible space
groups is 230 [30].

Let us now make a simple but important consideration: writing the generic
translation 7 as the sum of a primitive (7,) and a not-primitive translation (v (R)),
we have

{R|7} = {R[v(R) + 7} = {E[7.} {R[v (R)} .
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Figure 3.1: Screw-axes 2.

In 73 of the 230 space groups it happens that v (R) = 0 and, thus, an unique
association between each operation R of the point group and the operation {R|0}
of the space group exists, so that the point group is a subgroup of G. These are the
so-called “symmorphic” groups. The non-symmorphic groups usually contains the
symmetry elements called “screw-axes” and “glide-planes”.

3.1.2 Screw-axes and glide-planes.

Because of the translation symmetry, there are two more symmetry operations,
whose corresponding symmetry elements are called screw-axes (roto-translations)
and glide-planes (reflection-translations).

The screw-axis is a clockwise rotation by an angle of ¢ = 27/n with n =
1,2,3,4,6, followed by a non-primitive translation into the same direction of the
rotation-axis. The international symbol is n, where p =1,2,3,...(n — 1) and p/n is
the fraction of the primitive translation made during the symmetry operation.

A glide-plane is a reflection on a plane, followed by a non-primitive translation
along a in-plane-lying direction. It is represented by the symbols a, b, ¢ (axial planes

@, b,@), n (diagonal planes (d’ + E) /2 and (d’ +b4 6’) /2) and d (“diamond planes”

(d’ + E) /4 and (d’ +b+ 5’) /4), depending on the crystal symmetry. In Fig 3.1 and
3.2 a schematic picture of these two operations is shown.

3.1.3 The symmetry of the lattice sites.

Let us consider a generic point of the lattice. A group operation can move that point
or not. The point which can be generated from a given one are called “symmetrically
equivalent” and their number is the “multiplicity” of the starting point. A site of
the crystal can be, thus, characterized by the point group which leaves it unmoved,
which is, in turn, a subgroup of the factor group. The site group is, thus, the
group which characterizes the symmetries of the electromagnetic crystal field which
surrounds that site. This can be very useful, for instance, in the case of a molecule
which occupies a certain reticular site: even if the free molecule has its own point
group, its symmetry will be lowered by the crystal in order to let it assumes the
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Figure 3.2: Glide-plane b.

symmetry of the site where it is. In this case the site group must be a subgroup of
the free molecule point group.

3.1.4 The Translation group.

Let us consider, for simplicity, a symmorphic group, with a translation group {E|t,,} =
Z. The cycle-bound conditions are

{E[t:}™ = {El2}™ = {E|ts}" = {E|0}.

Since the vector sum is commutative, the translation group will be commutative,
and, thus, abelian. In such a group, each element is a class by itself, the number
of irreducible representations (each of one dimension) is equal to the order of the
group and, for each representation, it is possible to prove that:

y*) = exp[27rz'l$ Tl

Tn

where < < <
> 17 2 37
k=—0b + —=by+ —bs.
N 1+ N 2 + N 3

Here b is a reciprocal lattice vector and s; = 1,..., (N; — 1).

Let us consider a finite crystal, made by Ny X Ng X N3 unit-cells, having m
atoms for each cell. It is clear that the total number of vibrational modes will be
3mN1NoN3. 1t is also clear that the unique translation which leaves a given point
unmoved is the identity element. This implies that the characters of the reducible
representation of the site translations will vanish for each not-identical operation,
while the character of the identity F is

3mN1N2N3
Z 1= 3mN1N2N3,
=1

which is the order of E. It is possible to expand these characters on the irreducible
representations of the group, and find that every representation contains 3m vibra-
tional modes. The acoustic modes, in particular, are pure translation modes, and
they all belong to the total-symmetric representation.
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It can be also shown that the dipole moment as well as the polarizability (i.e. the
infrared and Raman activities, respectively) belong to the total-symmetric represen-
tation of the translation group too. This means that they are all! k=0 transitions,
i.e. in the T-point of the Brillouin zone (BZ).

3.1.5 The Factor group.

The factor group has, in general, the crystal base informations besides the kind of
its lattice. The symmetries of the lattice (without base) and of the crystal (lattice
and base) coincide, of course, only for monoatomic compounds.

The vibrational modes are calculated by means of the Winston and Halford
method, which is very similar to the molecule method. It is possible to prove that
the “magic formula” (see App. A) for the space group irreducible representation
expansion is equivalent to the one of the only factor group (i.e. it is possible to draw
out the contribution of the translation group), and, thus, the crystal vibrations will
be classified according to the factor group irreducible representations. It is as if the
unit-cell could be considered as a stand-alone molecule.

In order to find the characters of the reducible representation which have to be
expanded, one has to count how many atoms go in themselves for each operation.
Then, one has to sum the number of atoms which go into the same position, but
into another unit-cell.

In this way, the translation symmetry is automatically satisfied, and the molecule
method works “as if” the translation symmetry does not exist. Moreover, one has
to weigh the contribution of each atom with the inverse of the number of unit-cells
which contain the atom, as usually done in the physics of crystals. Finally, the
last important difference between the molecule and the crystal method is to not
subtract the translation and rotational characters from the displacement reducible
representation characters.

In facts, the translational characters give the three acoustic phonon branch (i.e.
the vibrations which move the crystal center of mass), and the rotational characters
do not exist, since crystal atoms are fixed in the space, and they have not any
rotational degree of freedom.

3.1.6 The parity of states: gerade and ungerade.

It is possible to prove, as mentioned before, that, into a given symmetry group,
if ¢q, ¢p are the base-functions for the irreproducible representations I'y, I, of the

group, the integral
[ou-onir
S

defined over the whole space S, vanish if the decomposition of the direct product
I'y ® Ty does not contain the total-symmetric representation. The reason is that
the integral of the odd part of the integrating function vanishes for symmetry when
integrated on the whole space, while the even part vanishes if the direct product

"The k # 0 vibrational modes treatment is more complicate and it will not be faced here.
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I'y ® I'y does not contain the total-symmetric representation. For instance, in the
perturbative calculation of the matrix element (¢;, H'ty), the transition will be
permitted (i.e. the matrix element is not vanishing) if this element acts as a scalar
number (i.e. in according to the total-symmetric representation) under the operation
of the symmetry group. This is equivalent to say that, being I'; the symmetry of
the interaction Hamiltonian H’, the total-symmetric representation is present in
the direct product I'; ® I'; ® I'y, i.e. the base-function ¢; is not orthogonal to
all the base-functions which are present in the function H’t,. Thus, in order to
calculate the selection rules of a given problem, all things we need are the irreducible
representations of the initial and final state as well as the interaction Hamiltonian
one. With this tools, one can calculate the triple direct product I'; @ I'; ® I',, expand
it on the irreducible representations of the group and look if the total-symmetric
representation is present or not.

Since the infrared (IR) interaction Hamiltonian has the usual dipole moment
form, it must have the same parity of 7, i.e. it is odd. On the contrary, the Raman
interaction Hamiltonian must have the parity of 7 - 7, since it is composed by an
absorption to a virtual level and a simultaneous emission to a real level (see Ch. 1.3
and App. A), and so, it will be even. The IR and Raman transitions couple two
states with different (IR) or equal (Raman) parity, and the base functions will be
x, y, z for IR-transitions and 22, y2, 22, 2y, vz, yz for Raman-transitions (see App.
A).

Moreover, it can be proved that the ground-state always changes in according
to the total-symmetric representation. These considerations leads to the result that
the even levels will be IR-active, and the odd levels will be Raman-active, if the
discussion is limited to the ground-to-excited levels transitions.

For those molecules, or crystals, which have an inversion center, each irreducible
representation can be only even (symbol g, from German “gerade”) or odd (u,
“ungerade”) under the inversion operation.

As a consequence, an explicit calculation of the selection rules is no longer re-
quired, when the vibrational modes are singled out: the transitions between the
ground-state and an excited vibrational level will be IR-active if this level has the u
symmetry or Raman-active if this level has the g symmetry. Thus, IR- and Raman-
spectra are complementary: the same vibration cannot be present in both. On the
contrary, if there is not any inversion center, the generic vibration can be both IR-
and Raman-active, and the selection rules have to be calculated separately for each
level. In any case, IR and Raman spectra are not equivalent, and a complete study
of the vibrational modes of a system requires to have both of them.

What said until now is strictly true for perfectly depolarized light. In other
words, the parity conservation allows to calculate all the possible IR- and Raman-
transitions. If the light has a well-defined polarization, not all modes will be excited.
In order to understand what vibrations will be excited, one has to give a look at the
tables of characters, and find the irreducible representation which is in correspon-
dence with that oscillation direction.

A generic polarization direction, different from any principal axes, will be ex-
pressed as a linear combination of them. When the symmetry of the incident light
is found, one can proceed to the calculation of the selection rules, as previously
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Figure 3.3: The YBCO unit cell.
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3.2 YBCO vibrational modes.

Let us here briefly recall what showed in §2.2 about the YBCO structure. YBCO,
whose unit-cell is showed in Fig 3.3, has a perovskite-like structure, with a principal
axis ¢, passing through the yttrium-atom and the two barium-atoms. This is the
main symmetry element of the cell, as shown in the following.

There are to Cu — Oy planes, orthogonal to the c—axis. They pass between
the yttrium and the two barium-atoms (the Cu-atoms of these planes have, for
convention, the label 2, the O-atoms have label 2 along 2z and 3 along y). There
is a linear Cu — O chain (label 1), lying in the y direction. Finally, there are some
“bridge” oxygens (label 4) between planes and chains. The chains are fully complete
only in the optimal doped orthorhombic Y BasCu3O7 while they are absent in the
tetragonal parent compound Y BasCuzOg. In this work, we will be focused on the
optimal doped material. For an orthorhombic lattice (a #b# ¢, a =0 =~ =n/2)
the possible symmetry groups are only three: Da, Doy, Ca, [30]. Carefully looking
at the unit-cell in Fig 3.3, it is possible to immediately observe a m—rotational
symmetry around the 2" axis, Cy (z): under this transformation, the Cul-atoms go
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into the Cul-site opposite to them (i.e. their displacement is the vectorial sum @+b),
the O1-atoms go into the opposite site, and the Cu2-, O2-, O3- and O4-atoms do the
same; the yttrium and the two barium-atoms lie on the rotation axis, and thus they
are unmoved. In the same way, it is possible to find two other rotational axes (z and
y), both passing on the yttrium, but both having lower symmetries (Cs (y) , Ca (z)):
these two rotations leave only Y unmoved and exchange the Ba positions (note that
the positions of the two barium atoms is not linked by any integer multiple of a
lattice vector). The CuOs planes are exchanged too. Also them are not linked by
a lattice vector, while chains-atoms are linked by ¢. The same holds true for the
inversion operator i (whose center of inversion in on the yttrium site), and for the
reflection o (zy). Finally, there are two more reflections by the two vertical planes
where 2 lies, which are o (zz) and o (yz). They link the atoms of the same plane
or chain. Also in this case, as well as for the C (z) rotation, all atoms go into
equivalent sites. The symmetry group we have to consider will be, thus, Dsj, which
has order 8. Its characters table is:

Don | E | Co(2) | Co(y) | Cafx) | i|o(zy) | o(zz)]|0o(yz)
A, ] 1 1 1 1] 1 1 1 1| 22,92, 2>
By, | 1 1 —1 1] 1 1 —1 —1| R.,ay
By, | 1 -1 1 —1] 1 —1 1 —1| R,z
Bs, | 1 -1 —1 1] 1 —1 —1 1 Ry, yz
A, |1 1 1 1] -1 -1 —1 —1
Bi, | 1 1 —1 —1] -1 -1 1 1 2
Bay, | 1 —1 1 —1] -1 1 —1 1
Bs, | 1 —1 —1 1] -1 1 1 —1 T
Toy. | 3 —1 —1 1] -3 1 1 1

In order to calculate the vibrational modes, we have to write, first of all, the char-
acters of the reducible representation I'y,;, which contains all possible displacements
of each atom in every equivalent lattice site. From the previous considerations, it is
clear that the number of the unchanged sites is 13 (i.e. all the atoms of the unit-cell)
for Cy (2), o (x2), o (yz) and, of course, the identity E. For the other symmetries,
we have to be careful and count each atom as a part of more than one unit-cell: for
instance Cul weighs 1/8, O2 weighs 1/2 and so on. The number of unchanged site
is, thus, 3 for all remaining symmetries. Therefore, the characters y are:

x=131333331313.

Since the character of the direct product of two representations is the algebraic
product of their characters, the I't,; characters will be given by the product between
x and the I'; , . characters:

Iyt =39 —13 =3 —3 —931313.
Now, we have to decompose I';; on the irreducible representations of Dagy,:

Ttot = 5Agy + 5Bag + 5B3g + 8B1y + 8 B2y, + 8By
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Figure 3.4: Irriducible representations of the Raman tensor [94].

Looking at the characters table, we can assign the three acoustic modes to the three
B, modes, since they correspond to the base functions z,y,z. It remains 7 x 3
“ungerade” optical modes (IR-active) and 5 x 3 “gerade” optical modes (Raman-
active). Thus, we have 36 optical modes, as mentioned in §2.6.

The same calculation, in the case of the parent compound Y BasCusOg (Dap,
group, tetragonal lattice a = b # ¢, a = f =y = 7/2), leads to:

Tiot = 441y + By + 5E, + 6As, + 8By, + Ba, + TE,,.

Here we have two E,, (z,y) acoustic phonons and one As, (z) acoustic phonon,
11 IR~active and 10 Raman-active phonons.

From these simple calculations, is possible to see how the appearance of the
copper-oxygen chains, changes significantly the lattice structure of the material (by
changing the values of a and b axes) and, thus, its vibrational modes.

In Fig 3.4, it is possible to directly have the polarizations of each Raman-active
symmetry in both cases: for instance, in the Dyj, group, the A; modes will be excited
only if the incident light and the scattered light have parallel polarizations, while
B, and E,; modes are excited into a cross-polarizations geometry. For a detailed
treatment of the polarized Raman scattering, see ref [36]. From an experimental
point of view, these selection rules are of use to give to each phonon line its own
symmetry. This information, joined with the isotopic substitution data, is a focal
point in order to understand what atoms are involved in a given vibration.

For instance, in the optimal doped YBCO, only 5 Raman phonons are actually
seen in normal Raman experiment instead of 15, and they are all c—polarized modes.
Their frequencies are: 115, 150, 330, 430, 500 cm~!. The (a,b) planar modes are
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too weak to be easily seen. This five modes were assigned as follows [31]: the lower
frequency one is mainly due to the barium vibrations, since it is the largest atom of
the cell; the second to the plane-copper vibrations; the third and the fourth to the
plane-oxygens and the last to the chain-oxygens, which are the most mobile atoms
of the cell. All belong to the total-symmetric representation A, but the 330 cm™?
mode have a peculiarity: it belongs to A, in the orthorhombic phase, but in the
tetragonal phase it belongs to By,4. Since the orthorhombic distortion of the crystal
axes is very small, this vibration follows approximately the Bi,4 selection rules and
can be, thus, located unambiguously from the cross-polarization spectra.

In Fig 3.5, all IR- and Raman-optical modes are shown. Each mode have three
frequencies values: the theoretical value (calculated using the method described in
ref [31]), one measured by IR- and Raman-spectra, and one by neutron scattering
experiments.
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Figure 3.5: Summary scheme of the YBCO normal modes [94].



Chapter 4

The CRS experimental setup
and its optimization.

As previously said, the Four Wave Mixing is given by three interacting waves into a
nonlinear medium, in order to give a fourth wave. This phenomenon was treated in
Ch. 1.5, assuming a plane-wave expression for all fields involved in the process. The
plane-waves are abstract quantities, which are present in every point of the space
at each time. The real experimental light is, on the contrary, composed of Gaussian
pulses, with a certain direction and a finite duration, which is, in our case, about
20 ps.

Nevertheless, this does not change the theoretical approach given before, since
the TE Myy Gaussian beams have a flat wave-front in their focus, and they are, thus,
well-approximated by a plane-wave. Moreover, the interaction area on the sample is
very much larger than the unit-cell dimension and the pulse duration is very much
longer than the electromagnetic oscillation period.

We should note that our reflection geometry allows to study thin films samples,
without the need to take into account the substrate contribution to the FWM sig-
nal, since the penetration length at these frequencies is usually lower than the film
thickness.

There are two main experimental issues to be faced when pulsed beams are used:
the spatial superposition of the beams, and their temporal synchronization. In the
following, a detailed description of the experimental setup will be given and the
optimizing procedures will be shown.

4.1 Setup description.

The experimental setup in Fig 4.1 is made by three light-lines, called Pump, Probe
and Tune, and a revelation-line.

The Pump and the Tune are synchronized during all kind of measurements. The
dynamic grating described in Ch. 1.6 is created by these two beams, while the Probe
(which has always the same frequency of the Pump) has to be diffracted by it, in
order to investigate its amplitude as a function of the Tune frequency (to measure
the CRS spectrum) or the Probe delay (to measure the quasi-particles lifetime).



54

4.1 Setup description.

afejs [suBLL

£

I

I

afe]s TaURI]

WZEe="1

2Bpafs A

Fllhes

Figure 4.1: Experimental setup for the Coherent Raman Spectroscopy in a “reflec-

tion” geometry.
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The light-source we used is a Nd** — Y AG mode-locked laser (mod. PL214,
Ekspla Ltd) and its second and third harmonics. Its repetition rate is 10 Hz, it
has three light-outputs, whose highest pulse energy is 80 mJ (£2.5%) at 1064 nm
(fundamental, IR), 20 mJ (£5%) at 532 nm (II harm., Vis), 10 mJ (£7.5%) at 355
nm (III harm., UV). The 532 nm-output goes into a long-focal telescope (lenses L1
and L2, with 1 m and 0.5 m focal length, respectively), in order to keep the beam
waist constant during all its path. The beam is then divided in two by a beam splitter
polarizer (PBS): these two beams are the Pump (the stronger) and the Probe (the
weaker). An half wavelength wave-plate is before the PBS, in order to control the
percentage of light intensity to be sent in the Pump or in the Probe beams. The
UV-output goes through mirrors m12 and m13 into an optical parametric generator
(OPG). The OPG generates tunable light pulses, whose frequency is in the range
410 =+ 680 nm, in our case. Its spectral width is about 6 cm™!.

In Fig 4.1, some other components, as control photodiodes and pin-holes, are
not shown for clarity. Let us now discuss the four lines one by one.

Pump-line:

The Pump beam (green thick line in figure) goes through the mirror m6 into
a delay line made by mirrors m7 and m8, mounted on a translation stage, whose
extension is about 3 mm. This line is used in the synchronization procedure only.
The beam goes, then, through a line made by a \/2 wave-plate and the polarizer
P1. This line can control the Pump intensity. The last wave-plate is used to change
the Pump polarization.

Probe-line:

The Probe beam (green thin line in figure) goes into the corner reflector (CR),
placed on a electric sledge, whose length is about 30 cm. The sledge is moved by
a personal computer, with an position error of about 0.5 us, which corresponds to
about 1.7 fs delay'. The corner reflector is an useful tool to be mounted on mobile
supports, since it gives back the light into the same direction from which it comes,
in order to preserve the alignment of the beam and, thus, the superposition on the
sample surface. The mirror m9 sends back again the beam into the CR so that the
A/4 wave-plate acts twice, and allows the beam to pass through the PBS. Finally,
some other optics are used, as in the case of the Pump, in order to adjust the Probe
direction, intensity and polarization.

Tune-line:

The OPG-output (red line in figure), having a variable wavelength )\, is filtered
by filter f1, in order to remove the UV residual, and goes through the mirror m14
into a delay line similar to the Pump one, and made by mirrors m15 and m16. Also
this line has some intensity and polarization control optics.

Revelation-line:

The FWM signal (blue line in figure), comes out from the sample with a differ-
ent wave-vector and different frequency, with respect to the reflected beams. The
revelation line can, thus, separate with great efficiency the signal from the back-
ground noise, since it can work both in the space-domain (blocking the other beams
with a pin-hole) as well as in the frequency-domain (by filtering the light before the

Lit is, thus, negligible, with respect to the pulse duration.
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detector’s head).

The three beams go through the achromatic lens L3 to the sample. Actually, it is
possible to not use this lens in order to maximize the interaction area. The sample is
into a thermal controlled stage, and its temperature can, thus, be varied in the range
—190+600 °C with 0.1 °C accuracy. In the thermal stage chamber the pressure can
be fixed at about 1072 torr. The revelation line has, as usual, a wave-plate polarizer
series in order to investigate the polarization of the signal. The signal is, finally,
filtered by means of a double-gratings monochromator (MCR, Jobin-Yvon mod.
Gemini-180) and sent to a side-on photomultiplier (PMT, Hamamatsu mod. R928,
185900 nm). The electric signal is time-integrated by a gated integrator (Stanford,
mod. SR250) and the digital output reaches, finally, the personal computer.

4.2 Alignment procedures and optimization techniques.

The main problem to be faced with a setup of this kind, is, of course, the time and
spatial superposition of the beams. The procedure we used is based on a nonlinear
crystal for the second harmonic generation (SHG): the beta-barium borate, or BBO.
Its great nonlinear efficiency, allows to direct measure the SHG-signal as a function
of the alignment or of the Probe delay, even starting from an unfavourable position.
Moreover, the time-resolved SHG measurement gives another fundamental quantity,
which is the time-resolution of the setup, as shown in the following. Finally, the
BBO crystal shows a great third order response too: one of its phonon resonance,
near 600 cm™!, is so strong to be visible with the naked eye, and, thus, it is an
invaluable tool, in order to align the revelation-line.

The fundamental requirement that this system has to satisfy, in order to have
reliable measurements, are two: one in the time-domain and one in the frequency-
domain.

In the time-domain, the FWM intensity is measured as a function of the CR
position on the sledge. It is, thus, needed to verify that the CR movements do not
change the beam superposition. This was made by means of the manual point-to-
point maximization of the signal along a delay range of 40 ps, and no difference from
the automatically moved CR data was found.

In the frequency-domain, the FWM intensity is measured as a function of the
Tune frequency. Since the FWM wave-vector depends on the Tune frequency, is not
possible to keep it fixed during the measure. The only thing which can be done,
is to minimize the revelation-line path. Then, an estimate of the angular disper-
sion of the FWM signal have to be compared with the angular acceptance of the
monochromator. It is further to note that the phase-matching relationship of Eq.
1.23 is valid only inside the material, while, in order to calculate the exact beam
direction in the “reflection” geometry, the material surface discontinuity has to be
taken into account. Eq. 1.23 is, thus, valid only for the surface-plane-lying compo-
nents of the involved wave-vectors. The normal component can be after obtained
from the energy (i.e. frequency) conservation law. The y—axis is the normal to the
sample surface, 0 is the angle between y and the Pump wave-vector El (positive in
an anti-clockwise direction), o is the angle between the Pump and Probe ( k3) or
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Figure 4.2: FWM angles.

Pump and Tune ( Eg) beams, and ~ is the exit angle of the FWM signal (positive in
a clockwise direction). The phase-matching and energy conservation laws are, thus:

— — — —
(ka)w = (kl)w =+ (kQ)J: - (k?))a:a
We = 2w — Wy,

where w is the Pump-Probe frequency and w; the Tune one. If the air refraction
index is equal to the unity, the system gives the solution:

B . (sinf +sin(0 — a) — (A/A) sin(0 + «)
7—&rcsm< 3= O )

For ao ~ 0.05 rad, A = 532.1 nm and A\ = 410 <+ 680 nm, we have that the exit
angle does not depend strongly on the incident angle 6 for § < 1 rad. Choosing an
almost normal geometry (6 ~ 0, & ~ 0) we have v ~ 6, and thus independent on ;.
Moreover, one can remove the lens L3 in order to enhance the interaction area on
the sample, and, thus, one obtains, as a secondary result, that the incident angles
are even smaller, and the exit angle is than almost constant. In the frequency-
domain measurements, we preferred also to use the Probe-line as both Pump and
Probe beams, in order to maximize their time and space superpositions. In this case,
the Pump is self-diffracted by the dynamic grating formed by itself and the Tune.
The exit angle calculation in this modified geometry is given in the next Chapter.
Actually, all frequency-domain measurements in the present work are taken within
this simplified geometry.

4.2.1 Time resolution and spectral corrections.

In the time-domain measurements, the most important factor to be know is, of
course, the time-resolution of the setup.

The direct measurement of the pulse durations of the Pump-Probe beams as
well as the Tune beam was performed by means of the SHG of the BBO crystal.
The estimated Gaussian time-constant from the auto-correlation curve of the two
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Figure 4.3: Autocorrelation curve of the Pump-Probe beams and correlation curve
between Probe and Tune beams compared to the FWM signal intensity of the 640
cm ™! line of the BBO crystal.

green beams is 7, = (11 +0.1) ps and, thus, their Full Width at Half Maximum
(FWHM,) is (26.1 £0.2) ps. The estimate of the Tune pulse duration, from the
correlation between the Probe and the Tune, using the previously measured value,
gives 7v = (9.1 £ 0.2) ps, and, thus, FWHM,; = (21.4 +0.4) ps.

Actually, this is an over-estimate of the setup time-resolution: the FWM process,
indeed, shortens the pulse. In Fig 4.3 the FWM signal as a function of the Probe
delay is shown, in the case of the 640 cm™! line of the BBO crystal. The FWM
signal (black points) is fully under the correlation curves, since the FWM intensity
goes as the cube of the field, while the SHG one goes as the square.

The Gaussian fit of this curve, leads to a full width at half maximum that is
FWHMym = (19.1 £0.2) ps, and, thus, this is the value of our estimated time-
resolution.

In the frequency-domain measurements, the frequency step we chose is 1 nm,
which is actually larger than the intrinsic laser bandwidth as well as the OPG
minimum step (0.1 nm). This choice was done in order to have a reasonable time
of measurement (few hours). In order to correct the measurements, the spectral
efficiencies of all revelation optics, as well as the monochromator and photomultiplier
efficiencies, were taken into account. The main efficiency to be considered, is the
OPG generation one: the direct measurement of it by means of a control-photodiode
was made. Nevertheless, the shot-by-shot OPG efficiency correction to the spectra
was found to greatly enhance the spectral noise, and thus an interpolating curve
was used to correct only the slow variation of the Tune energy.
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Figure 4.4: Contour plot of a Germanium spectrum. The color scale ranges from
white (zero) to blue (low) up to yellow and red (high values). On the y-axis, the
MCR (Gemini) displacement, referred to the theoretical expected wavelength.

4.2.2 Spectral synchronization.

Another important factor to be considered in order to maximize the detected FWM
signal, is the spectral synchronization between the OPG and the monochromator
frequency. The Tune frequency is strictly related to the FWM one, as shown in the
first Chapter. If the nominal frequency emitted by the OPG does not correspond to
the real one, the signal could be artificially depleted, since the monochromator would
be set to the wrong wavelength. In order to study the spectral displacement of the
parametric generator, we register several spectra from different samples, scanning
with the monochromator each single line of the spectrum. We obtained always the
same displacement. In Fig 4.4 the spectrum of germanium is shown, as an example:
the FWM intensity is given in a color scale (red—high values, blue-white—low-zero
values), as a function of the Raman shift on the z—axis, while on the y—axis there
is the MCR (Gemini) displacement, referred to the theoretical expected frequency.
It was found that the OPG spectral displacement is never more than +0.5 nm from
the expected one.

Even if in principle we can use these measurements to automatically correct the
MCR wavelength, the simplest method we used to overcome this difficulty, is to open
the monochromator slits and thus to slightly lower the MCR, resolution in order to
obtain the complete detection the whole signal within +0.5 nm.



Chapter 5

Results and discussion.

In the first Chapter we have seen in some detail how the FWM theory works into
a nonlinear medium. Nevertheless, in this work, our CRS spectra are collected in
a “reflection geometry”, as shown in the previous Chapter. This means that the
detected beam is not the one generated inside the medium: it goes into the opposite
direction, even if there is not any nonlinear interaction in that space region. To
our knowledge, there is a shortage of works on this subject, since in the past CRS
spectroscopy was mainly employed on gasses or liquids. Moreover, in the previous
treatment, we always neglected the absorption, while, in this work, we are interesting
in metallic or semiconducting materials, all showing a strong absorption in the visible
range. In this Chapter we will develop a simple theory to account for the presence
of the “reflected” FWM wave, and we will show our first CRS spectra on solid state
and in particular on YBCO.

5.1 “Reflection” FWM.

When the FWM wave is created by a nonlinear interaction inside an ideal infinite
material, it exist in every point of the space. But, in a real finite sample, light has to
enter from an empty region of the space inside the material, crossing its surface. The
generated FWM wave will exist, thus, only in the half space beyond the surface. In
the other half space, where vacuum or air is present, the surface will act as a source
term into the wave-equation which rules that part of the space. In other words, the
boundary conditions on the surface can be satisfied only if a FWM plane-wave is
supposed to be outside of the medium, with an opposite wave-vector compared to
the usual FWM wave. Let us show the mechanism which rules this effect.

5.1.1 The Fresnel tensor.

Since the input waves of the FWM interaction, inside the material, are linked to the
external input waves by reflection and refraction laws, it can be useful to introduce
a tensor which can relate directly the electric field components of the incident and
transmitted waves. However, when the absorption, although small, is not negligible,
some attention has to be paid.
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Let us consider an isotropic absorbing semi-infinite medium and a plane wave of
frequency w, forming an angle $ with the normal Z to the sample surface defined by
the zy plane. Because of the optical losses, the refracted wave-vector k=K +ik"i
complex, with real and imaginary parts having different directions. From the surface
boundary conditions it is clear that the imaginary part, which gives the absorption,
have to lie on the z axis, since the input component outside is a real wave-vector.
Moreover, they fix the x and y components of k: kj, = (w/c)sin 3, ky = ky = k; =
0. The real and imaginary parts of the normal component k, = k. 4+ ik} can be
obtained from the combination of the other components with the dispersion law
k? =&, (w?/c?) and the relation e, = &, + e}l

K, = _f\/% (e — sin? B) + %\/(e; — sinQB)2 + 2

c
" w 1 / 192 1 / 02 3)2 12
k, = -\ 3 (gl —sin® B) +§ (e}, — sin® B)" 4 ¢!
which, in the small absorption limit £/ < ¢/, leads to
w .
K, ~ - (e}, — sin® B) (5.1)
! w E’Il’/

~ S

T2 (E/T —sin2ﬁ)‘

Because of the transverse waves condition E - k = 0, the electric field inside the
material will be a complex field too. In order to obtain the usual reflection and
refraction laws, it is useful to introduce the s and p unit-vectors é; = (0,1,0) and
ép = (—k./k,0,k;/k) where k = /é;w/c. Note that, since ¢, is a complex number,
the orthogonality relationships é; - €, = és - k= €p - k = 0 are relations between
complex numbers, but the scalar product definition in this case is given without the
complex conjugation of one of the factors, as usually done in the complex number

scalar product. The electric field can be, thus, decomposed on the | €, €, E) vector

base. Assuming, in general, an interface between two different absorbing materials
A and B, we can write the s and p transmission coefficients ¢ and t,:

E(B) 9.(A) g 9 \/EA—EB;C(A)
tS = 5 = z 7 tS = = z
ED B P B epht +eakl?

This two coefficients give the percentage of transmitted and reflected waves across
the AB interface (going from A to B). The same can be done for the three Cartesian
components of the electric field, leading to the following relationships:

Lo B oe,k” 5.2
BN epkt 4 eakl?
, _EBP
9y Eg(/A) kgA) —|—k§B)
L EP 20 Y

A) T

E! epk + e kP
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These are the diagonal components of the so-called “Fresnel tensor” L. Into an
isotropic medium, the out-diagonal terms are vanishing, as in this case. Note that
L depends on the frequency as e does. Let us consider, from now on, the case of a
vacuum-sample interface.

The Fresnel tensor can be useful also in writing the nonlinear polarization, as
defined in Eq. 1.5, inside the medium. Let us consider two input waves, having
frequencies wi 2 and incident angles 1 2, as shown in Fig 5.1. The term of Eq. 1.5
given by Eq. 1.22, which oscillates at the Stokes (anti-Stokes) frequency, is

Pi(7, w1) = 3X\ i (—wa, w1, w1, —w2) B (7, w1) By (7, w1 ) B (7, wa).
Inside the medium, a refracted input wave can be written as E(7,t) = Eg exp(i(k -

7 —wt)), where Ey = (f} : é) E. Here é is the polarization unit-vector of the external

field, F is its amplitude and k is the wave-vector inside the medium as given by Eq.
5.1. The nonlinear polarization, thus, become:

Pypi(F) = Pi(7,wi) = Po;exp (z‘z;’p : F)

where
- - o kpe = 2k1z — kop = (2wy sin f1 — we sin Ba) /¢
k, = 2]{31 — kg = { b o .
v kpz = (lelz - kl2z) +1 (lellz + kgz)
and
Poi = 3% EoriEoin Etor = X2 Lyiit L Ly eq i € E2ES 5.3
0i = IXijnk 015 01hE02k = Xijhk 155" L1 L2kk €15 €10 €k 21 L2 (5.3)

where Li1;; and Lo;; are the Fresnel tensors relative to the frequencies wi 2. Note
that in the imaginary parts of k. are summed instead of being subtracted.

5.1.2 The radiated FWM field.

In order to calculate the radiated external field, we have firstly to find the complete
expression of the electric and magnetic internal fields and then to apply the surface
boundary conditions. The Maxwell equations which rules the internal fields are

—

. B .
VxE= —%—t N (5.4)
- ﬁﬁNL oF was (1 =
V x o5, + [10€0E4 T U <€o NI + €4 )

where 4 is the relative dielectric constant at frequency w4. The solution will be the
sum between the solution of the associated homogeneous equation and a particular
solution. The former is an usual plane-wave (or a linear combination of plane-waves)
of the form

Eo(7) = Aexp(iky - 7) (5.5)

- )
ka exp(ikyq - T)
wW4q

Bo(7) =



5.1 “Reflection” FWM. 63

Figure 5.1: Wave-vectors directions of incident waves and radiated FWM wave.

where E4 is, for the moment, a generic wave-vector, and A is a constant vector,
normal to E4, which has to be fixed by the boundary conditions. A particular
solution of Eq. 5.4 can be found by assuming that all fields depend on space as the
driving polarization does, i.e. as exp(iEp -r). This approach leads to

B Pok2— (ky - Po) k

Ep(f) = <2 2)
€04 (kp - k4)

= kzlgp X ﬁo

B.(7) =
»(7) eocawy (k2 — k3

exp(iky - 7) (5.6)

) exp(ilgpf’r)

The total solution is, thus, the sum of Eq. 5.5 and 5.6. Since there is not any input
wave at frequency wy, the boundary conditions will give A = 0 for each k4 which
is not matched with the driving term, i.e. k4 have to satisfy the phase-matching
relation (Eq. 1.23), which is, in our notation:

kaz = kpe = 2k1z — kog = (2w sin 1 — wa sin fa) /¢
and, thus, the exit angle 54 is given by

ks  2wisinB; —wasin By

sin B4 = =
fa wy/c 21 — Woy

The z component if the FWM wave-vector is given by the phase-matching and the
dispersion relationships:

2
w w
_ 4 2 _ 4 -2
kyr = — 5462 —ky, =— - \/ €4 — sin” Sy.

Note, here, that the opposite solution have to be excluded since it diverges for
z — —00.

As previously mentioned, the vector constant A has to be determined from the
xy surface boundary conditions. It is easy to see that such conditions cannot be
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satisfied if there is not any generated field outside the medium. This external field
can be informally called “reflected FWM wave” even if one has to keep in mind that
it is not a reflected wave at all. Its presence is actually due to the material surface
acting as a wave-source.

Let us write, now, the radiated external field as a normal plane-wave expression,

which holds for z > 0:
ER(7) = Apexp(ikg - 7)
- kg A .
Bgr(T) = 4w R exp(ikp - T)
4

where k R is the wave-vector in vacuum, fixed by the boundary condition kg, = k4.,
which satisfies the vacuum dispersion law kr = w4/c. The field amplitude /TR has
to be determined by the boundary conditions, and it is always normal to k R. Since
the tangential (zy) electric and magnetic fields have to be continuous across the
boundary, the bulk value of the vector constant is
A = wz (kpz — kRZ) B
Y eoc? (K2 = k2) (kpe — kaz)”

@ _ k4z [(kzz - 54kRzkpz) PO:r + k4:r (54kRz - kpz) POZ]

Ay =—
k4x €4€0 (kg - ki) (54kRz - k4z)
and the radiated field amplitude is given by
Apy = wi (kps — kaz) wi Py

Y gpe? (k]% — k) (k. — k4z)P0y - e0c? (kpz + kaz) (kre — kaz)
Ap, = _@ARZ _ Fre (kpz — kaz) (ka2 Pow + kaaPoz)
kR eo (k2 — k3) (cakrz — kaz)
B kr. (ks Poy + kaz Poz)
" eo (kps + Kaz) (e4kps — kaz)

Introducing an analysis polarizer, with a polarizing unit-vector é4 (even complex in
the case of a circular polarization), one can find the field amplitude Er = éz-ff g from
the vector amplitude A r. In particular the s and p components of the radiated field
can be found from the positions é4 = €45 = (0,1,0) and é4 = é4p = (—kg:,0,kR.) =
(— cos B4, 0,sin By).

The radiated field can be written in an useful and compact form with the help
of the vacuum-to-medium Fresnel tensor L4 at frequency ws and incident angle f4,
as defined in Eq. 5.2, with A = vacuum and B = medium:

B =y (B 1) - By = i LusiPo (.7
4€0

where \y = 2mwc/wy. The “oblique coherence length” ( is given by

kg

C - _kR (k4z + kpz) B

™

cos (4 [\/m +24/e1 —sin? By — (\/52 — sin? 62) *]




5.2 First CRS spectra. 65

x 10°

i 800 1200 1600

FWM intensity (arb. un.)

200 400 600 800 1000 ,1200 1400 1600
Raman shift (cm™)

Figure 5.2: CARS spectrum of a BBO single crystal. The well-known phonon line
at 640 cm™! is clearly seen, without any electronic background. Inset: zoom of the
same spectum, a possible second order line appears at about 1200 cm™!.

It is further to note that the vector l~}4-éj‘1 is normal to the vector k £ = (kaz, 0, —kag).
This wave-vector corresponds to that of a wave travelling from inside the medium
toward positive z, which would get refracted into the radiated wave direction at the

medium surface. Therefore, the scalar product <E4 . éZ) . Py in the radiated field

expression corresponds to the physical fact that only the transverse component of
the polarization vector can radiate, as expected.
Inserting Eq. 5.3 into Eq. 5.7 we can get the final expression of the radiated
field:
3¢

_ 2 Tk
Er = s XefrETE3
with .
3
Xeff = €xir LairiX;jpp (—wa, w1, w1, —w2) Lajje Lipp Lyjpr€150 €10 €54

5.2 First CRS spectra.

The first material we used as a test for our experimental setup was again the BBO
crystal. In Fig 5.2 the CARS spectrum of BBO is shown. The spectrum shows a
single very strong line at about 640 cm™!, which corresponds to a well-known BBO
phonon-line. No background noise is present, and no non-resonant background is
seen. The most interesting feature of this spectrum, is the presence of a second
broader line at about 1200 cm~!. We ascribe it to the second order scattering
from the same resonance. This possibility was almost skipped in the theoretical

treatment of the FWM, since it is usually very difficult to see it. In this case, the
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very strong nonlinear behaviour of the BBO crystal, and the complete absence of
the non-resonant background, makes possible to reveal it, even if it is three orders
of magnitude less intense. In a second order scattering process, two phonons are
created in a single scattering event. This means that the phase-matching condition
holds for the vector sum of the two wave-vectors, so that the single phonon wave-
vector is no longer constrained to be almost vanishing, as in the case of the first
order process. This is the reason why the second order line is usually broader than
the first order one, as in this case. The second order process, indeed, can investigate
the whole Brillouin zone, and not only the I’ (k ~ 0) point.

A second test measurement was performed on a material which is closer to the
target of this work: a bulk germanium crystal, with unknown crystal axes orientation
and purity degree. To our knowledge, very few works have been dedicated to the
nonlinear spectroscopy on this material [84]. Germanium has only one Raman-
active phonon, it is a semiconductor without any marked nonlinear property, and it
is, thus, a good trial of both the experimental setup as well as the best-fit procedure.
We tried different polarization combinations. Each combination of the four beams is
related to a different element of the third order susceptibility Xz(j’})lk In the simplified
geometry (i.e. when the Pump beam acts as a Probe beam too) the Pump and the
Probe polarizations are, of course, the same. Moreover, we found that the FWM
intensity is always vanishing if the Tune and the revelation polarizations are not
parallel. This lowers the possible combinations to four: HH, VV, HV and VH,
where H means horizontal and V means vertical compared to the setup plane. Since
in our geometry the incident angles are very small, the approximation HH=VV
and HV=VH holds true. However, we tested this approximation by comparing
the “parallel” (HH, VV) spectra between them as well as the “crossed” (HV,VH)
spectra, and we did not find any difference (HH=VV, HV=VH). In Fig 5.3 the
crossed (a) and parallel (b) spectra of bulk germanium are shown. In the crossed-
polarization spectra, a ~ 310 cm™! phonon-line is clearly seen both in CSRS and
CARS spectra. The difference in their relative height may be due to a different
scattering efficiency on the two side, even if we can not exclude some minor effects
caused by an imperfect spectral correction. In the parallel-polarization spectra, the
same phonon resonance is seen on both sides, together with a strong non-resonant
background. The phonon-line have not the same shape on the Stokes and anti-Stokes
sides: this is due to the coherent interference between them and the background.
This background can only be ascribed to an electronic response, and it is found
to decrease approximately as the Raman shift Aw. The ~ 310 cm™! phonon line
has the 75, symmetry, and, thus, its off-diagonal matrix elements in the dielectric
susceptibility are not vanishing, and that line is visible in the crossed-polarization
spectra. The electronic continuum, on the contrary, has a A, symmetry, its matrix
is diagonal, and it is present only in the parallel-polarization spectra. This allows
us to use a two-step fitting procedure: the cross-polarization spectra are used to
fit very easily the resonance frequency and its spectral width. These two values
are then used as fixed parameters in the parallel spectra best fit. Being I(Aw) the
measured FWM intensity, the CRS spectrum near a resonance wy is given by Eq.
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Figure 5.3: CRS spectra of bulk germanium in a crossed (a) and parallel (b) polar-
ization geometry. Gray curves are the data, black solid line is the best-fit curve.

1.16:

1 1 2
Aw + wy + iy B Aw — wy + iy
where wg is the phonon frequency and « is its spectral width. From the crossed
polarization spectra (fitted together) we have wy = 311 cm™! and v = 3.2 em™!.
Actually, one has to note that the value of 7 is too close to the spectral resolution
to be taken as a reliable measurement; it is rather an upper limit. In order to take
into account for the electronic background, a zero-resonance, having a Lorentzian
shape too, was used. The whole spectrum fitting formula is, thus:

(o . (i¢)
- X
Aw + il Aw—+wo+iy  Aw—wy+ iy eXPUY

where A, B, C' are constants, I' is the spectral width of the zero-resonance and ¢
is the relative phase between the phonon and the non-resonant background (whose
phase is set to zero). This second fit gives I' = 220 cm~! and ¢ = 7. Although some
minor features of the background shape are not correctly reproduced, the major
part of the qualitative features are taken into account by this model. We take it,
therefore, as a reference model for the YBCO spectra fitting procedure.

I(Aw) o [xr(Aw)[* o

2

I(Aw) ‘

Finally, Fig 5.4 shows the first CRS spectra of an HTCS thin film. To our
knowledge only very few works have been dedicated to this subject [85], [86], [89].
The studied samples are two optimally doped twinned YBCO commercial thin films
(provided by the German company “Theva”), grown on 10 x 10 mm? MgO sub-
strate, and with the c—axis normal to the sample surface. Samples have a thickness
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Figure 5.4: CRS spectra of an optimally doped YBCO thin film in a parallel po-
larization geometry. Gray curves are the data, black solid lines are the best-fit
curves.

of 500 and 600 nm and a critical temperature of 84.5 and 87 K, respectively. All
spectral features are found to be reproducible in each sample and very similar be-
tween different samples. No damage was seen after each measure session. Since the
optical absorption length (~ 100 nm) at our wavelengths is smaller than the sample
thickness, no substrate contribution to the FWM signal is expected to be seen.

Unlike germanium, the YBCO crossed polarization spectra are almost vanish-
ing, and, thus, they are not shown here. The parallel polarization spectra show,
similarly to germanium, a broad continuum on which narrow spectral features are
superimposed. The spectral positions of all these features correspond to four of the
five Raman-active phonons of YBCO we studied in Ch. 3. All of them have the
same symmetry of the continuum, i.e. the A;4 symmetry. This can explain why the
crossed polarization spectra are vanishing. The only missing phonon is the ~ 350
cm ! one. It is too much weak to be seen, with respect to the strong background,
probably because its symmetry properties (~ Big) are slightly different from those
of the other phonons, as shown in Ch. 3. The shape of the CSRS and the CARS
spectra is very different in this case, because of the different interference between
each phonon and the background and also (since this time there are more than one
phonon) between close phonon pairs: the ~ 115 and ~ 150 cm~! phonons are found
to be clearly present in both side, the ~ 440 and ~ 500 cm~! phonons are much
less intense. The ~ 440 cm ™! line, in particular is almost absent (except for a very
slight bump) in the CARS spectrum, but it is present as a “step” in the Stokes side.
The same “step shape” is found for the ~ 500 cm™! line on the anti-Stokes side.
The spectral shape of the underlying electronic background is different in the two
sides too. As a consequence, it is not possible to fit these spectra as previously done
for germanium: some changes have to be made.

In order to take into account for the different spectral shape of the zero-resonance,
we used two distinct functions having two different widths in the Stokes and anti-
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Stokes sides. Moreover, each phonon resonance must have its own phase in the
Stokes and anti-Stokes sides (pg # ¢,). Stokes and anti-Stokes lines have the same
width ~. Finally, in order to have a stable fit with respect to the initial parameters,
the observed resonance frequencies are fixed.

Within these hypotheses, we found the following values for the involved para-
meters:

wo (em™') s Yo 7 (em™)
110 /2 T 11.9
148 —n/3 —x/3 39
40 —m/3 —2r/3 184
505  —x/3 0 20.1

The zero-resonance width was found to be I'g = 172.5 cm™! in the Stokes side and
I, = 231.6 cm™! in the anti-Stokes one. Some attempt to directly measure the
phonon lifetimes was made, but our time resolution does not allow us to find out a
reliable value, since the typical phonon lifetime is of the order of few picoseconds.

In ref [89], the zero-resonance is possibly ascribed to the electron-phonon ther-
malization process, but the linewidth is not consistent with our results.

The Raman electronic continuum was found to have some “anomalous” features
([87], [88]) in linear Raman spectra too. In principle, the addition of a complex
constant in the fitting formula could take into account for the zero-resonance asym-
metry, since the interference between this constant and the background can distort
its shape, but this approach is unable to give a good fit. More and deeper inves-
tigations have to be done in order to better clarify the microscopic nature of this
electronic background. In particular, it is necessary to study different samples hav-
ing different c—axis orientations, in order to find the missing 350 cm ™' phonon, and
to study the temperature dependence of the electronic continuum, as already done
with linear Raman scattering in the above mentioned references.

We have to note that the phonon phases can be drawn out by means of the
linear Raman spectroscopy too, as done, for instance, in ref [25] for SmBaCuO.
In that case, it is possible to measure the relative phase-shift between different
matrix elements of the Raman tensor. These results cannot be compared, thus, with
the ones here reported, since in our experiment, the relative phase-shift between
a given phonon and the electronic background is measured. However, it is not
possible to exclude that there is a link between these phase shifts. Finally, in linear
Raman spectra of YBCO, there is an electronic background, and phonons interfere
with it, but we found quite different behaviours, suggesting that the CRS non-
resonant background may have a different nature from the so-called “anomalous
Raman continuum”.

Besides these results, our work demonstrates the feasibility of this kind of tech-
nique. CRS can investigate the low-energy excitations of HTCS, which are the
most interesting spectral features for superconductivity. It preserves the informa-
tion about the phases. It is very sensitive to the electronic response and it can
selectively excite one excitation and study its lifetime. All these features make the
CRS a very promising tool for a better understanding of the underlying mechanism
of high-Tc superconductivity.
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Chapter 6

Photoluminescence in solid
state.

In order to introduce the time-resolved measurements presented in Ch. 8, a brief
overview on the main features of the phenomena on which the experiment is based, is
given in this Chapter. We will try to give a theoretical description of the principal
photoluminescent transitions, and of the main elementary excitations which are
involved in this process.

6.1 Absorption of light.

In order to reach an understanding of the principal features of the photoluminescence
process, let us start with a brief summary on the optical properties of solids: we
want to stress, in particular, the direct (indirect) transitions and the concept of
exciton and polariton.

6.1.1 The Drude-Lorentz Model.

The simplest theory describing the general optical properties of a solid is the Drude-
Lorentz model. The assumption is that the solid contains charged particles which
behave like dumped classical harmonic oscillators, with mass m, charge e and proper
frequency wy = v/ K/m, where K is the Hook constant. Introducing an electric field
in the y direction, with frequency w, the equation of these oscillators is

Ly

m
dt?

d .
+ mfyd—‘z + wimy = eFpe™ ™t | (6.1)

where v is the dumping coefficient. The stationary solution of this equation is

E —iwt
coc (6.2)

T - ) — ]

Now, we introduce the number of oscillators per unit volume N so that the
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Figure 6.1: Frequency behaviour of the dielectric function [32].

polarization vector induced by them is

Ne? 1
m (Wi —w?) —iyw
Ne? 1

m (w§ —w?) —iyw

P = Ney = Fpe ' = oF (6.3)

a =

and finally, since € (w) = 1 + 47a, we can find the real and imaginary parts of the
dielectric constant:

4 N e? wi —w?
g1 (w) =1 . 02 R (6.4)
Mmoo (wg —w?)” +wy
47 N 2 w
£2(w) = 1

mo (w2 - w2)2 Fu2y?

As it is possible to see from Fig 6.1, there are four different regions in the
frequency domain: the transparent regions (I and IV), the absorbing region (II)
and the reflective region (III). In region II, the absorbing peak has a Lorentzian
lineshape.

It is also possible to take into account the presence of many oscillators, with
different proper frequencies w;. KEach oscillator has its own weight, in the sum,
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called “oscillator strength” f; so that

D fi=N
J

In the case of a metal, free-electrons can be treated as harmonic oscillators with
K =0 so that Vj w; =0, f; =1, and v; = v . The dielectric constant becomes

2
“p W

w2 + 2 e w3+w7

e(w)=1- , (6.6)

where wg = 41e?N/m is the plasma frequency, which depends only on the charged
particles density. For lower frequencies, the metal has a reflective behaviour, for
higher frequencies the metal is transparent, and for frequencies near wj, it exhibits

an absorbing behaviour, the absorbing coefficient 7 being proportional to 1/w?.

6.1.2 Quantum Theory.

Let us now look at the transition rates between stationary states |0) (ground state)
and | f) (final state) of the system, induced by the electromagnetic perturbation H'.
From the Fermi golden-rule, we know that this transition rates are

Wo.r (k,w) = == |(f|H'|0)* 6 (Bf — Eo — w) . (6.7)

)

The perturbative term, at the first order, is
H’:—e(g-ﬁ) /me |
and the electric field, polarized in the é direction, is

B = epyeir—n — 104 1w &
c ot c
being A the vector potential, p the electron momentum and ¢ the field wave-vector.
Since Wy ¢ (k,w) is the number of transitions per unit time and volume, the total
absorbed energy is >, Wo,r (k,w) fiw, while the mean energy flux of the electric field
is < (W), with (W) = % (E*). The absorption coefficient 7 is, then, the ratio
between the absorbed and incident energy:

S Wor (kyw) hw 2¢2
n== %JEW> an ZK

i " >‘ (Ef — By —hw) . (6.8)

In this case the line-shape of the absorption curve is a Dirac delta function, because
we have assumed stationary states with infinite lifetime. Taking into account the
spontaneous emission, and calling 7 the level lifetime, we have again a Lorentzian
line-shape, with a width T' = h/7.
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6.1.3 Direct Interband Transitions.

In the case of electronic transitions in a solid, calling ¢, a conduction band state
and 1, , a valence band state, the matrix element of this transition is

<¢c,kf

From the momentum conservation law, we have Ef = Eo +q+ G where G is
a reciprocal lattice vector. Writing it in the first Brillouin zone (BZ), and keeping
in mind that the radiation momentum ¢ ~ 10°c¢m™! is very much lower than the
typical dimension of the BZ (=~ 10%¢m™!), we can conclude that only “vertical”
transition (i.e. lgf o~ lgo) are possible!. The matrix element becomes, therefore

6i(TFA ﬁ‘ T/Jv,k0> .

(e |&- Plbus) =& / i (/2 F) (—mﬁ) b (E F) dr . (6.9)

6.1.4 Indirect Transitions.

From the momentum conservation law, radiative transitions are not allowed if the
maximum of the valence band and the minimum of conduction band have not the
same k-vector, as happens in indirect gap materials (as Si or Ge, for instance).
Nevertheless, these transitions can occur in a second order process, in which a large
k-vector particle (as a phonon) is involved. In this case, the transition rate depends
both on the electromagnetic perturbation and electron-lattice coupling.

The electron-lattice perturbation can be written as

= |V (7 Ra—oRa) - v (- Ra)| (6.10)

Ra

where éa and 5ﬁa are the ions positions in the lattice and their variations and V'
is the atomic potential. By retaining only the first order term in Eq. 6.10 as a
function of 5ﬁa, and using the expansion on normal modes, is possible to show that
this Hamiltonian can be written as

H!, =a(q)e ™"V,(q,7) +c.c. , where (6.11)
h P — —
60 = gk T 5 o)
q Ra

Here w, is the phonon frequency, ¢ its momentum vector, é its polarization
unit-vector, and a (¢) ,a' (¢) are the destruction an creation operators for phonons.

The first term in Eq. 6.11 generates a phonon destruction and its complex
conjugate the creation, both having momentum and energy transfer hg and hwy,
respectively.

The electron-phonon interaction in metals can produce intraband transitions be-
tween full and empty states with different k-vector (these transitions are responsible

'a second, perhaps trivial, selection-rule is the spin-number conservation, since the electromag-
netic perturbation does not depend on spin.
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for the electrical resistivity), but it cannot produce by itself interband transitions
in insulating or semiconducting materials, because it has not enough energy. If this
energy is supplied by an electromagnetic perturbation H., the process may happen,
and its probability is given by the second order Fermi golden-rule:

2

(2) _2m | (S H ) (n | He | 0) | (f[He[n) (n|He | 0)]
Woj (kw) =213 B h o he BB ihe (6.12)
-6 (Ep — Eo — hw + hw,) . (6.13)

Note that the energy is conserved only in the whole transition going from v, z,
to Ye i ; and not in all virtual transitions through virtual states v, ;. The creation
and destruction operators depend on the number of phonons n,, so that the optical
constants for indirect transitions depends on the temperature according to the Bose-
Einstein distribution. This dependence of the absorption constant on temperature
is the clearest sign of an indirect transition.

The absorption coefficient, as defined in Eq. 6.8, is made by two different terms,
one which concerns the emission of a phonon and the other which concerns an
absorption:

n (w) = Tlem (w) + Nab (w)

The exact calculation of these quantities requires the knowledge of the band
structure.

From an experimental point of view, in all indirect semiconductors it is observed
a low-intensity tail in the absorption spectrum just before the beginning of the
intense absorption peak of direct interband transitions. This tail is due to the
indirect transitions, and it is possible to find it in some insulating materials with a
particular electronic structure: this is useful in some photographic processes, where
the light is absorbed via an indirect process so that the final state has a very long
lifetime, because electrons have a very different k-vector compared to holes, so that
they cannot relax directly. This fact is responsible for the creation of Ag—clusters,
and these clusters will form the picture on the photographic film.

These transitions are important in metallic intraband transitions too, where two
states (one above and the other below the Fermi energy) with very different k-vector
are coupled by the lattice vibrations: in this case, the radiation frequencies are very
low (little energy transfer) and the k-vector needed for the transition is almost
always given by an acoustic phonon. This calculation of the transition rate can be
still applied, but we have to keep in mind that the starting and the final band are
the same. At higher frequencies very intense direct interband transitions appear in
metals too.

6.1.5 Excitons.

Optical transitions always produce an electron-hole pair. We are used to regard this
pair as a free-electron in the conduction band and a free-hole in the valence band.
Nevertheless, it is also possible that one electron and one hole, attracting each other
by the Coulomb force, behave as a single neutral particle with integer spin: this
particle is the so-called “excited bound state” or “exciton”.
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Figure 6.2: Excitons in-gap levels [32].

The first evidence of the existence of these particles (suggested by Frenkel and
Peierls) was found in the absorption spectra of pure semiconductors, where there are
absorption peaks at energies lower than the energy-gap. The exciton in-gap levels
are shown in Fig 6.2.

Because of the binding energy, the energy required to form the exciton is lower
than the energy-gap: it means that the bound state is energetically more favoured
than the free-pair. Excitons can transport energy, but not current, as they are
neutral. They can also be destroyed (electron-hole recombination), producing a
photon.

The binding energy of the pair is calculated quite well within a simple two-body
model with a Coulomb potential which gives the well-known hydrogenoic levels:

pet 1
2h2e2n2 ’

where n is the principal quantum number, ¢ is the static dielectric constant, and p
(~ 0.5m,) the reduced mass of the pair (calculated using the effective masses of both
electron and hole). In semiconductors (¢ ~ 10), this energy is typically of the order
of magnitude of few millielectronVolt, so this is a weak bound and electron-hole
distance in the lattice is usually about ten times the lattice parameter (Wannier-
Mott excitons); on the contrary in insulators, since € ~ 2 — 3, this energy is higher
(~ 1eV), the electron-hole distance is about one lattice parameter, and the exciton
is much more localized (Frenkel-Peierls excitons).

In order to set out the quantum description of the bounded pair, we can start
from the ground-state 1y which is given by a Slater determinant with all N electrons
occupying the whole valence band. The excitations produce a final state ¢y made
from the same Slater determinant with N — 1 electrons in the valence band, and
just one electron in the conduction band. This state must solve the Schroedinger
equation H.1; = Ev)y, where H, contains four terms: the kinetic energy of electrons,
the spin-orbit term, the Coulomb potentials between each electron and between
electrons and ions. This N-particles equation can be reduced to a two-particles
equation since the N — 1 electrons of the valence band behaves as a single particle

Ep = Egap — (6.14)
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(hole) with charge, spin and momentum opposite to the missing electron. Calling
e (and 93,) the state of the electron (hole), we can write ¢¢ as a linear combination
of products ¥, and the effective Hamiltonian resulting in this way is

Hefyp (rir2) = Hy(r1) — Hy(r2) — €*/e|r1 — ra| + eVer (6.15)

where Hj is the single-particle Hamiltonian, which gives the energy band for non-
interactive particles, the third term is the Coulomb interaction and the last term is
the (in most cases negligible) exchange-potential, due to the form of the Slater deter-
minant, which ensures the correct anti-symmetrization of the total wave-function.

It is possible to solve the eigenvalues problem in the so-called “effective mass
approximation”, where the energy bands are approximated at the second order near
their stationary points, and, thus, to find out the binding energy given in Eq. 6.14.
In order to obtain the total energy of the exciton, we have, of course, to add the
kinetic energy of the center of mass (hQQQ) /2 (me + my,), where Cj is the momentum
of the center of mass, and an additional term, due to the exchange-potential: this
term have two different values according to the direction (parallel or normal) of the
dipole momentum of the exciton with respect to Cj

6.1.6 Polaritons.

In the anomalous dispersion region, where the dielectric constant varies very rapidly
with w with a negative slope, photons strongly couple with the polarization of the
material. This means that we can no longer think of “photons” in the same way
we are used to do in the vacuum: we have to think about them as “polaritons”.
This happens for every resonance of the system, so that we have to specify which
kind of polariton we are referring to. For instance, there are phonon-polaritons if
we are near a phonon resonance, or there are exciton-polaritons if we are near an
exciton resonance. In the last case, for transverse excitons, we can write the exciton
contribution to the dielectric constant given in Eq. 6.5:

B 4me? fn
e (w, k) =1+— Z(wg(k)—w)—m : (6.16)

n

where

R2k?
2 (me +myp,)
is the energy of the transverse exciton (note that the k-dependence, i.e. the dis-
persion, is held by the free motion of the center of mass) and f,, are the oscillator
strengths which drive the polarization of the medium. These quantities can be
calculated, for each resonance, starting from the dipole momentum of the exciton,
which is the matrix element of the dipole operator between the ground-state and
the excited-state:

fuwoy, (k) ~ B, +

2m (Ey — Ey) 2
f =TS0 o)
In the case of longitudinal excitons, it is quite the same, but we have to add a
term Az, proportional to f and very much lower than the binding energy, because
of the exchange-potential.
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Figure 6.3: Polaritons dispersion curves [32].

Inserting the dielectric constant of Eq. 6.16 in Maxwell equations, we can finally
solve the dispersion equation

w2

e (w, k) = ng

for transverse modes, and
e(w,k)=0

for longitudinal modes.

These curves, together with the free-exciton dispersion curves (dashed lines),
are plotted in Fig 6.3, where UP/LP is the upper/lower polariton and LE/TE is
the longitudinal/transverse free-exciton. Note that the transverse-exciton and the
photon are always coupled near the excitation frequency, where two polariton modes,
upper and lower, appear: both modes are present in the crystal for w > wy,.

The concept of polariton modifies the way we think of light absorption in crys-
tals: when a photon enters the crystal, it becomes a polariton and this polariton
changes gradually its k-vector, interacting with the lattice vibration; during these
interactions it loses energy, according to the dissipative term ~ in Eq. 6.16, which
goes into the lattice as thermal energy. The absorption peak is, thus, due to the fact
that, in the anomalous dispersion region, the group-velocity decreases very rapidly,
as the collision process effectiveness increases.

6.1.7 Two-Photon Transitions.

This kind of processes are characterized by an absorption peak at frequency

,ue4 1

h(UJ1 +(.U2) :Egap_ Wﬁ .
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It is interesting to make some considerations on the selection rules. If the crystal
has not a center of inversion, s—states are excitable both with one or two photons,
but, in this case, some other transitions are allowed, as, for instance, longitudinal
excitons. If the crystal has a center of inversion, the parity conservation law holds
true. S—states are the accessible with one photon, but are forbidden with two; in
this case the final state must be even, since the product of two dipole operators is
even.

Moreover there is the possibility to directly verify the polaron nature of excitons,
looking at the dispersion curve due to the motion of the center of mass. From the
momentum conservation law, we have

G+H=Fk,

where k is the momentum of the center of mass and ¢1,2 the momenta of photons.
In this way, we can find the resonance frequency at different k by varying the
angle between the two beams which produce the transition, and have, directly,
the dispersion curve. This experiment can reveal, for instance, the presence of two
distinct peaks, which became more and more separated, as the angle is reduced (as
k increases): they are the upper polariton and the longitudinal exciton we showed
before.

6.2 Photoluminescence.

We have seen how a crystal can absorb light. Let us, now, look at the opposite effect:
how a crystal can emit light. There are, basically, two processes: luminescence,
where the light is absorbed and then emitted (involving real states) and inelastic
light-scattering, where the light is absorbed and scattered away at the same time
(involving virtual states, as in the Raman, Brillouin, etc. effects). We will focus on
the first case.

When an electronic excited-state is filled because of some kind of energy transfer
(optical/photoluminescence PL, thermal /thermoluminescence TL, etc...), after some
time, it will relax to the ground-state, via two different kind of channels: radiative
and non-radiative. In the first case, we have again the creation of a photon from an
electron-hole recombination, while, in the second, we have a sequence of anelastic
collisions with phonons in order to reach the thermal equilibrium.

At thermal equilibrium, the carrier population decreases exponentially with the
energy and, therefore, the lower energy the state has, the stronger emission it gives:
luminescence is, thus, a sensitive probe of low-lying energy levels, and it can be
represented in a three-step-process (excitation-thermalization-recombination). The
visible emission produced by a thermalized body at room temperature is very small,
so that the most part of the experiments have to be carried out in a non-equilibrium
condition. One possibility to make this, is to excite the medium with light, as
shown in §6.1, reaching a non-equilibrium distribution of electron-hole pairs (I step:
excitation). In most cases, these pairs will thermalize among themselves and reach
the “quasi-thermal” equilibrium in a time shorter than the recombination time (II
step: thermalization). Here we emphasize that “quasi-thermal” means that the
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Fermi sea is in a thermal equilibrium, but the whole system (charge carrier and
lattice) does not. Finally we have the recombination, and spontaneous emission of
light (III step: recombination).

Since luminescence is produced by thermalized pairs, the emitted photons are
not correlated with the excitation process: the energy of the emitted photons de-
pends only on the band structure and energy levels of the material. Since the pairs
accumulates in conduction and valence bands extrema before recombination, the
emission is quite strong in direct band-gap materials (as GaAs, 7 ~ 2.8 us), where
the electric dipole transitions are allowed, and it is much lower in indirect band-gap
materials (as Si, 7 ~ 4.6 h, and Ge, 7 ~ 0.6 ), where they can recombine radiatively
only via phonon-assisted transitions.

Indirect emission can be increased by means of the pairs localization, as happens
in GaP or in Si nano-crystals, because, in this case, the k-vector is undetermined.

Let us define the radiative recombination time 7,: if the free-electron and hole
concentrations are n, and ny, the emission rate is, then, neny /7. (assumed that 7,
is the same for all possible choices of recombining pairs), otherwise we have to use its
average value (7). For a thermalized pair distribution, 7,. depends on the electron
and hole energies, so it changes with the photon energy. In photoluminescence
experiments, we always excite an equal number of electrons and holes (n = n, = ny,),
so that the radiative recombination rate for a single photoexcited charge carrier is

1 n

Trad B m

The total decay rate is, then, the sum of the radiative and the non-radiative

terms:
1 1 1
I + .
Ttot Trad Tnonrad

6.2.1 Band-to-Band Transitions.

Let us now calculate the photoemission line-shape, in case of a direct band-gap. The
photo-emitted spectral intensity I (fuv) is proportional to the population of charge
carriers, i.e. the product between the joint-density of states and the Fermi function.

The joint-density of states for conduction (c¢) and valence (v) bands is defined as

1 dSi
DJ(EC_E”)_R/M(EC—EUM ’

where Sy is the surface on which E. — E,, = const. Taking the difference E. — E,
near the band-gap E; we can expand it in power series, and stop at the second order
term B, — E, = E4 + (h2 / Q/L) k?, where p is the reduced mass of electron-hole pair.
Thus, Eq. 6.17 becomes

D(E —E): [\/2#3/(7{'277‘3)] (EC_E’U_Eg)% for EC_E'U>Eg
T ’ 0 for E. — B, < Ey

(6.17)

Since, for low photo-excitation density, the electron and hole Fermi function f, and
fn can be approximated with the Boltzmann distribution, we obtain the emission
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(a)

Figure 6.4: Luminescence transitions and lineshape [32].

spectral shape
1
I (hw) o< (hw — E4)2? exp [—hw/kpT] , (6.18)

where hw = E. — F, is the emitted photon energy, as shown in Fig 6.4.

For higher excitation beam intensity, the electron-electron and hole-hole interac-
tion may be stronger than the electron-phonon or hole-phonon interaction, so that
the carrier temperature is higher than the lattice one. Photoluminescence is, thus,
a way to directly measure the carrier temperature.

The temperature dependence of the lifetime 7, of a free-carrier for a direct band-
to-band recombination can be inferred from

_ 1
-~ 20m;v’

Tr

where n; is the intrinsic free-carrier density, o is the direct recombination cross-
section and v is the electronic speed. The last two quantities depends on tempera-
ture. At high temperatures, the measured lifetimes are often found to approach this
value, while at lower temperatures, a free-to-bound recombination may be dominant.
In general, impure insulators and wide band-gap semiconductors at room temper-
ature will be characterized by a carrier lifetime which is limited predominantly by
free-to-bound or bound-to-bound transitions. This should not be surprising since, in
band-to-band recombinations, a considerable momentum transfer as well as energy
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Figure 6.5: Emission lineshapes changing with doping [33].

transfer is usually taking place. Free electrons and holes have, thus, to meet each
other with opposite velocities, in order to conserve the momentum.

6.2.2 Free-to-Bound Transitions.

At low-temperatures, some carriers are frozen on impurities, so that it is possible
to have a recombination between a band and a bound state. In this case fiwpeqar =
E, — E4, where E4 is the binding energy of the impurity-site, so that this kind of
emission is a good way of directly measuring the impurity binding energy.
In Fig 6.5, several emission spectra are shown for various doping concentrations
in p-GaAs. Starting from the lower concentrations of acceptors Ny = 3.7 x 107
+1.9 x 10'®, which can be assigned to free-to-bound transition, we have many fea-
tures by changing the doping: broadening, changing of the line-shape and redshift.
The spectra broaden because, as the acceptors become closer to each other, their
wave-functions overlap, forming an impurity band. When the band is so broad that
it overlaps the valence band, holes are no longer localized and become free-carrier.
This is called Mott transition?. The shape for higher doping concentrations devi-
ates from the Boltzmann form, to reach the Fermi-Dirac one: this is due to the spin
degeneration. Finally the redshift is due to a many-body effect, called “band-gap
renormalization”, but here we will not face this subject.
The free-to-bound radiative recombination rate, as calculated by Dumke [40], is
232
L 64+/2mn,eh?w PPN | (6.19)
Am2y/(mpEa)?

TeA

where my, is the averaged hole mass and P, is the averaged electron-momentum
matrix element, between conduction and valence bands. For instance, GaAs with
N4 ~ 10" acceptors per cubic centimeter have a lifetime of about 2ns, comparable
with the band-to-band lifetimes.

2 A Mott transition can, actually, take place before the ovelapping too, because of spin degener-
ation.
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Figure 6.6: Free excitons emission spectra, asymmetrical lineshape [33].

6.2.3 Excitons and Bound-Excitons.

At low-temperatures, photoexcited electrons and holes form excitons, and the emis-
sion spectra are dominated by their radiative annihilation, producing a “free-exciton
peak”. But there is the possibility to have bounded excitons too, near some neutral
impurity, attracted by Van der Waals forces, since this attraction lowers the exciton
energy.

6.2.4 Free-Exciton Emission.

As we saw in §6.1.6, we should refer to exciton-polaritons rather than excitons, but,
in order to better understand the importance of the polaritons approach, let us
neglect this effect for the moment.

In this case, we have a simple radiative decay of excitons into photons. By
the momentum conservation law, only k& ~ 0 excitons can be converted into pho-
tons. This leads to a delta function or, taking into account the finite exciton life-
time, a Lorentzian line-shape. But the observed free-exciton spectra always have an
asymmetric line-shape, quite different from a Lorentzian, plus a shoulder for higher
energies, as shown in Fig 6.6.

In the polariton approach [41], external photons are converted inside the medium
into exciton-polaritons which can relax towards lower energies by means of the
scattering with phonons via their exciton-component, since the photon-term has a
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very weak interaction with phonons. Some polaritons will be back-scattered and
will emerge from the sample as luminescence photons.

In order to understand experimental spectra, we have to refer to the polariton
dispersion curve in Fig 6.3. In the lower polariton curve there are not energy minima,
where thermalized particles are usually accumulated, so that, in principle, there
should not be a peak in the spectrum.

Actually, polaritons do not accumulate near an energy minimum, but near the
group-velocity (dw/dk) minimum, which is located in the transverse-exciton energy
Ep = hwyp, called “bottle-neck”. Lower polaritons which are above the bottle-neck
have a large exciton-component. They rapidly relax towards lower energies, since
their interaction with phonons is very strong. Lower polaritons which are below the
bottleneck have short lifetime too, because of their high group-velocity, so they can
escape easily from the sample as photons.

For these reasons, we observe a peak of the lower polaritons distribution function
near the bottle-neck energy Erp.

Besides the distribution function, we need also the transmission coefficient in the
sample surface, in order to know how many polaritons will be transmitted or reflected
back inside the medium. Unfortunately this coefficient cannot be computed from
Maxwell boundary conditions as usual. One needs to introduce some Additional
Boundary Conditions (ABCs), in order to describe the behaviour of excitons near
the sample surface.

The ABCs choice is a quite complex problem, and, perhaps, it depends on the
sample surface details. Nevertheless, the large peak at Er is not so sensitive to the
ABCs, while the shoulder at higher energies is very sensitive to them. It is possible
to show that the shoulder is due to a change in the transmission coefficient near the
longitudinal exciton energy E; = fwy, corresponding to the growth of the upper
polariton.

The agreement between experimental data and theoretical calculation (dashed
curves) in Fig 6.6 is quite good in three of four samples, providing the addition
of a background, probably due to defects scattering. In GaAs, the behaviour is
completely different from what expected: there is a dip at Awr because there the
group-velocity have a minimum, so that the scattering process from impurities is
more probable. The dip disappears in very high quality pure samples.

6.2.5 Bound-Exciton Emission.

In the emission spectra of many semiconductors, it is possible to see very sharp
peaks, due to bound-excitons recombinations. An exciton can be bound to a donor
(D) or an acceptor (A) in their neutral state at low temperature, resulting in the
complexes (D°X) and (AYX) respectively. These complexes can be regarded as
an hydrogen molecule Hs with an hole placed instead of a proton. Since the hole
effective mass is smaller than the proton mass, the complex binding energy will be
smaller than the Hy one.

Is possible to show that the bound-exciton binding energy, in unit of the binding
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energy of a free-exciton, depends on the ratio

*

m
r= T
me

for (D°X) and on 1/r for (A°X), where m , are the effective masses of electron
and hole. In general the bound-exciton binding energy decreases as r decreases®.

Excitons can also bind to ionized impurities, forming (D*X) and (A~ X) com-
plexes. In principle, one can regard the complex (D' X), for instance, as a hole
bound to a neutral donor (giving the electron of the e — h pair entirely to the donor,
and, thus, forming a (D°h) complex), but it is not so, because the binding energy
for the (D X) complex is bigger than the (DYh) one.

Since the complex (DT X) is not stable for r < 1.4 (or (A~ X) is not stable for
1/r < 1.4) it follows that, in a given material, excitons can bind either to ionized
donors or acceptors, but not with both.

Infrared illumination is usually an helpful tool in order to enhance the ions
density and to measure this kind of bound-excitons recombinations.

Finally, there is the possibility to have (D%) or (A°h) complexes too (or D~ and
AT respectively), but, in this case, the binding energy is very small. To have an idea,
just think that D~ is similar, for instance, to the H~ ion where the extra-electron
has a binding energy of 0.75eV only, and for D~ it is even smaller. However D~
peak is, actually, observed, for instance, in n-doped Si.

% All proofs, omitted in this section, can be found in ref [39].



Chapter 7

Main features of strontium
titanate.

The perovskites are a family of crystals made of three different chemical elements,
which are, in general, denoted by A, B, X. Their chemical general formula is ABX3.

Such crystals have a cubic unit-cell, where A-atoms (Ba, Ca, Y ...) are sur-
rounded by twelve X-atoms and B-atoms (Cu, T4, Tl ...) are surrounded by six
X-atoms, as show in Fig 7.1. In most cases, they are oxides, i.e. X is an oxygen.
Some examples of perovskites are BaSnOs, SrZrQOs, SrTiOs.

The crystal structure of perovskites can be significantly deformed, and change
its macroscopic features, by means of slight changes in the relevant parameters, as
temperature, pressure or doping. The extent of these changes depends mainly on
the size of the A-atom, which is into an empty space between the eight octahedral
cages made by the oxygens: the bigger A-atom, the smaller lattice deformations.

These crystals have a great scientific interest in applications as well as in the
fundamental research: they play an important role in the fields of corrosion, friction
and lubrication, but, above all, they completely change their electric and optical
behaviour even if very small changes in their chemical composition are made. For
instance, they can be opaque or transparent and they can present an insulator phase,
as well as a superconductor phase, as shown previously for cuprates, which are, as
mentioned, a particular class of perovskites.

In the following, we will give some informations, in open order, on the physics
of the perovskite crystal which is the subject of the second part of this work, the
strontium titanate SrTi03 or STO.

7.1 General properties.

The principal features of the strontium titanate descend from its very high polariz-
ability.

A cubic-to-tetragonal transition in the STO lattice structure is found at 105K+110K
by means of several different kind of measurements [50] [51] [52]. STO is a para-
electric material until very low temperatures. An incipient ferroelectric state is
prevented by the quantum fluctuations for 7' < 10K [44]. As a result, its dielectric
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Figure 7.1: Perovskite unit-cell.

constant increases as the temperature decreases, following a modified Curie law,
e ~ C/T7, and reaching very high values. For instance, at 4K its value is about
5000 [45], or even very much higher [54], while between 0.3K and 4K it was found
to be almost temperature independent. Its room temperature value is about 300.
Such a high dielectric constant is one of the main features of this compound.

This feature is usually attributed to the presence of the T3, (or TO) type soft-
mode [55]. Since the Ti-atom has a small radius, it is weakly boxed into the octahe-
dral oxygen cages, leading, thus, to the presence of this odd and soft phonon mode.
However, a simple harmonic (or even enharmonic) description of this soft-mode
seems to be quite inadequate to explain such a quantum-para-electricity [56].

In 1964, Kahn and Leyendecker [48], whose results were experimentally sup-
ported by Cardona in 1965 [70], calculated the electronic energy bands within the
tight-binding approximation. From this assumption, the empty conduction band
is derived predominantly from the titanium 3d-orbitals and the filled valence band
mainly from oxygen 2p-orbitals. The lowest energy conduction band was predicted
to form six ellipsoidal equi-energy surfaces at the BZ boundaries in the (100) di-
rection. Such many-valley structure is confirmed also by the magneto-resistance
measurements [49)].

The symmetry of the conduction band is due mainly to the 1% 3d 15, and E,
bands, followed by the bands of Sr 4d 15, and E, states. Free-electron-like bands
dominate at energies from 15 eV above the valence band maximum on.

The upper valence band consists of 18 electrons in dominantly O-2p states, hy-
bridized with 7% and Sr states, and it has a bandwidth of about 5 eV. The lower
valence band consists of 12 electrons in Sr-4p and O-2s states, which are separated
by 2 eV, and the bandwidth is about 5 eV. Some shallow core-levels are found to
be related to the Sr-4s and T'-3p states [63].

7.2 'Transport properties and elementary excitations.

STO is an insulator, with a direct absorption edge of about 3.75 eV and an indirect
energy-gap of about 3.27 eV [69]. Nevertheless, n-doped samples of various kinds
present a very small resistivity between 4K and room temperature (about 10~1+-1073
2 cm) [47]. The electrical transport properties of STO were first investigated by
Frederiske and coworkers in 1964, who measured the conductivity and the Hall and
Seebeck coefficient of a conductive samples. The Hall mobility (Fig 7.2) was found
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Figure 7.2: Hall mobility of STO [46].

to be 7 cm?/volt-sec at room temperature and to reach values as large as 5 x 103
em?V~1s7! at 10K [46]. Doped samples were even found to be superconductive [62].

While an n-doping is quite simple to be achieved (by means, for instance, of
the oxygen vacancies creation, or Nb°* — Ti*t | La3T — Sr?t substitutions), the
p-doping is harder to be done, even if some progresses in that sense were made [61].
Actually, many works seem to demonstrate that the holes (or, better, hole-polarons)
are easily self-trapped, also in a perfect lattice structure [60].

The charge carrier mobility is one of the most debated subjects. According
to the Hall measurements, the electron effective mass m* in STO is about ten
times the free-electron one m,, suggesting that electrons are highly mobile large
polarons [64], while optical absorption data are described using a small polaron
picture [72]. Holes are expected to be localized near the oxygens [65]. Moreover, the
effective mass increases from 6m,. to 16m, between 77K and 300K [46]. Nowadays,
although it is quite accepted that charge carriers have a strong polaron nature [66],
and many unusual properties can be explained in the framework of the so-called
“mixed-polaron theory” [71], the discussion on this subject is still open. In the
mixed-polaron theory, in which the lowest energy state of the charge carriers is
a superposition of a comparable number of large and nearly small polarons, the
transport mass of the mixed-polarons is determined by a weighted average of the
reciprocal masses of the two types of polaron. It is, thus, dominated by the lighter
component, while the temperature dependence of the effective mass arises because
the proportion of nearly small polaron states in the carrier wave-functions increases
with temperature.
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It was found that the electronic properties of this compound present a lot of new
and interesting aspects. For instance, in such an highly polarizable compound, there
are many nonlinear unharmonicities, due to the strong vibrionic interaction, and,
hence, some new polaron-like excitons are found to be likely to exist in the material.
An example is given by the so-called charge-transfer vibrionic exciton (CTVE) [58],
[59]. CTVE is a spatially well-correlated pair of electron and hole polarons or
“bipolaron”. The main driving force of its formation is the charge transfer between
the oxygen and the titanium atoms. The lattice deformations which are caused by
this charge transfer create a new minimum in the lattice potential, while the ground-
state remains stable with respect to the charge transfer lattice effects. The reduction
of the potential energy in the CTVE state due to the lattice relaxation can lead to the
CTVE self-trapping. The main experimental evidence of the CTVE manifestation
can be obtained from optical measurements rather than transport ones, since, of
course, the CTVE is not conductive. But the probably most surprising discovery
in this field was the creation of a conducting quasi-two-dimensional electron gas at
the interface between STO and another dielectric perovskite insulator, LaAlO3 or
LAO [67]. The electrons at this interface were found to be highly mobile (more
than 10* cm?V~!s~! at 4.2K) and their density is order of magnitude higher than
a semiconductor-interface electron-gas. Moreover, this interface can be dynamically
tuned across a metal-insulator transition by applying an external gate-field . The
result is a system which can be easily switched from highly insulating to highly
conducting for a wide range of possible devices and applications, as, for instance,
an “high electron mobility transistor” (HEMT).

7.3 Optical properties.

Recently, a prominent enhancement of € has been observed under ultraviolet light
irradiation [53], leading many researchers to use the word “giant” to describe it.

It was also pointed out that this enhancement remains only during the illumina-
tion, and disappears as the UV-light is switched off. Thus, one can think that this is a
kind of photoinduced phase-transition, and it is expected to come from the coupling
between the photo-excited electrons and the soft-phonons modes. An UV-photon
excites a valence band electron to the conduction band, in which its interaction
with phonons leads to a polaron. Since the conduction band is mainly composed by
the titanium 3d-orbitals, the excited electron could find in the T%-oscillations (hav-
ing the Ty,-symmetry) its “natural” coupling partner. But, for symmetry reasons,
the coupling between them is allowed only at the second order. At the first order,
i.e. through the ordinary electron-phonon interaction, instead, it can couple with
the Ay mode of O? -ions. This results in the formation of two distinct kinds of
polarons: the super-para-electric (SPE) large polaron and a strongly localized self-
trapped polaron. In the SPE state, the quadratic electron-phonon coupling results
in the phonon-softening of T7,-mode. This phonon-softening is supposed to cause a
giant enhancement of the static dielectric constant [57].

In the next section, we will focus on the wide range of photoluminescence studies
available on this material, since this is the subject of the present work too.
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Figure 7.3: The behaiviour of NBE, A and B bands with laser-intensity [79].

7.3.1 Previous photoluminescence studies on STO.

The pioneer paper on the STO photoluminescence (PL) is the work of L. Grab-
ner, in 1968 [73]. He found a near-infrared narrow band at 1.6 eV and a broad
“green” low-temperature (4K) luminescent band at 2.4 eV (about 500 nm), whose
lifetime was found to be 5 x 1072 s. These PL bands have a considerable Stokes
shift. The author found to be unlikely that such emission band could come from
extrinsic impurities. Subsequently, authors of ref [74] proposed to attribute it to
an exciton self-trapping. These idea was supported by other works too. This band
was assumed to be of excitonic origin, since it was observed in many compound
containing titanate octahedra and it was found to be not related with any particu-
lar impurity. Time-resolved measurements [75] showed that both unimolecular and
bimolecular processes were involved: electrons form small polarons, while the holes
interact with them to form a Self-Trapped Exciton (STE), either immediately or
after being trapped for a certain time by impurities or defects. Also PL-studies on
STO nano-particles were supposed to confirm the STE origin of the green band. In a
more recent paper [77], electron beam luminescence from bulk STO was studied, and
the green band is, on the contrary, attributed to some defect-trapped polarons (al-
though these defects were supposed to be intrinsic), and another blue band, peaked
at 2.8 eV, whose intensity was found to increase in the range 80K-+300K, was at-
tributed to the charge transfer vibrionic exciton (CTVE, §7.2). In this picture, the
photoinduced carriers are small polarons. The phonon interaction can overcome the
potential barrier between electron and hole polaron, in order to reach a CTVE state.
The temperature dependence of the PL intensity seems to confirm the CTVE origin
of this band.

A very complete and detailed study on these bands and their features, can be
found in refs [78], [79] and [80]. In those papers, Mochizuki and co-workers clarified
that the 2.4 eV band (B-band in the notation of that paper) is due to excitons
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Figure 7.4: The behaiviour of NBE, A and B bands with temperature [79].

trapped near oxygen-defects, and not to a self-trapped exciton. Their fundamental
observation was that the green band grows under a 325 nm laser-line irradiation in
vacuum, while it disappears in oxygen atmosphere under the same irradiation. The
band is, thus, closely related to the oxygen defects creation under the irradiation.
The same does not happen when 355 nm laser-line is used. Moreover, they found
two other bands: a near-band-edge (NBE) band at 3.2 eV and a blue band (A-band)
at 2.9 eV. These two bands were found to have a different nature with respect to the
green band. First of all, if the laser flux increases, the B-band saturates, while the
A and the NBE bands continue to grow (Fig 7.3). Secondly, the B-band disappears
as the temperature rises to the room temperature, while the NBE band become
weaker and broader, but still visible, and the A-band remains clear even at room
temperature (Fig 7.4). Finally, the B-band has a long lifetime (> 1 ms), while both
the NBE and A bands have short lifetimes (< 50 ns). Their room temperature
spectral structures are hardly changed by changing the excitation wavelength from
325 to 355 nm. The authors suggest that the NBE and A bands have the same origin
and arise from same kind of phonon-assisted or intrinsic-defect-assisted electron-hole
recombination. The NBE-band is assigned to one of the optical phonon-lines, while
the A-band, since it displays an almost smooth and continuous shape, is assigned
to the creation of many transverse and longitudinal acoustic phonons, beside the
optical ones. Another tentative explanation for NBE and A bands is a defect-
induced resonant Raman scattering, although other possible explanations are not
excluded by the authors.

Recently, the interest in the field of STO photoluminescence was renewed by the
works of Kan and colleagues [82], [83], also highlighted in ref [81]. In those works, it
was showed that creating oxygen vacancies turns on a new radiative pathway, giving
a blue light emission at room temperature. Moreover, since the oxygen vacancies
can be created also by means of Ar™-ion bombardment, the photoluminescent region
can be patterned into any size and shape, using the conventional photolithography:
this possibility opens the route to a wide range of possible applications. The authors
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Figure 7.5: An illustration of the oxygen-vacancy assisted e-h recombination [81].

propose that the oxygen vacancy creates a defect-site where an electron and a hole
can recombine, to generate a radiative event, as depicted in Fig 7.5. Let us describe,
briefly, the first work. The He-Cd laser line at 325 nm was used, and a 430 nm (2.9
eV) PL-band is observed in Ar*-irradiated samples. The PL intensity increases as
the Art-irradiation time increases, and saturates after about ten minutes. The non-
irradiated sample was found to show no emission (Fig 7.6 a). In the same irradiation
time range, the sample was found to become conductive. This is an indication that
the ion irradiation creates oxygen vacancies. In order to prove that these vacancies
are responsible for the PL emission, oxygen deficient STO thin films were studied,
and a linear behaviour of the integrated PL intensity versus the film thickness was
found (inset of Fig 7.6 b). The authors assert that this is a proof of the oxygen
vacancy involvement, but they do not explain why the interception value for a zero-
nm thick film is not consistent to zero. Besides the blue band, the authors found the
green and the near-the-band-edge bands, having the same temperature dependence
of the bands seen by Mochizuki. In this work, however, the NBE band is seen only
for oxygen deficient samples for low-intensity photo-excitation, while it is present
in stoichiometric samples too for intense photo-excitation. This result is in partial
agreement with the one of Mochizuki, since, in that work, the blue band was found
to follow the same NBE-band behaviour with the excitation intensity.

Finally, in the second work, Kan and coworkers found the same spectral features
in La and Nb doped samples, concluding that the PL emission is strongly connected
to the presence of conduction electron, and not with the defect type.
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Figure 7.6: PL spectra at different irradiation times (a) and film thickness (b) [82].



Chapter 8

Results and discussion.

In this Chapter, the PL experimental setup is described in quite detail and the main
experimental problems are faced. The principal experimental results are described
within a bimolecular-unimolecular kinetic model, and some other possible models
are ruled out, with the help of an accurate best-fit procedure. This procedure, here
called “Global fit”, is described in detail, and the full Matlab program is enclosed in
App. D. A tentative model of the underlying microscopic recombination mechanism
is given in the last section.

8.1 Description of the experiment.

The photoluminescence (PL) experimental setup is shown in Fig 8.1. Our UV-light
source is the third harmonic of a mode-locked Nd:YAG laser, whose wavelength is
355 nm, which corresponds to a photon energy of about 3.49 eV. This value is well
above the STO indirect band-gap (3.26 eV) and just above its direct transition edge
(3.46 eV). Its repetition rate is 10 Hz and its pulse duration is about 25 ps (full
width at half maximum). The UV-beam is slightly focused on the sample surface
by means of a 20 cm lens (L) and the spot size on the sample was directly measured
to be 1.2 & 0.1 mm (radius at 1/e? of the maximum). The UV scattered light is
blocked by a long-pass filter (cutoff wavelength of 375 nm), not shown in the figure.
The emitted light is then collected by a lens system (LS) made of three lenses which
reproduces the image of the illuminated sample on the detector’s head. The setup
is designed to make both time-resolved or spectral resolved measurements. In the
former kind of measurement, the PL intensity is recorded as a function of time
with the help of a very fast oscilloscope, while, in the latter, the same PL signal is
measured at different wavelengths by using a monochromator-photomultiplier series.
Let us describe in detail the experimental instruments we used for these two kind
of measurements.

Time-decay curves are measured by means of a fast photodiode (PH), whose
rise-time is about 150 ps. The signal is, thus, spectrally integrated with the spectral
efficiency of the photodiode. The electric signal is then recorded by a 20 Gsample/s
digital oscilloscope (DO), which has an analog bandwidth of 5 GHz. The response
function of the revelation instruments is measured by sending in the revelation
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Figure 8.1: PL experimental setup. L is a lens, LS is a lens system, PH is a fast
photodiode, MC is a monochromator, DO is a digital oscilloscope and PC is a
personal computer.

lens system the UV residual scattered light. Since the pulse duration is very short
compared to the PH rise-time, the resulting curve is a very good approximation of
the instrumental response function. Moreover, since the pump frequency is not far
from the measured luminescence band peak and the investigated frequency range
corresponds to an almost flat zone of the PH spectral efficiency curve, we exclude
that the UV response function is different from the one in the visible domain. To
reinforce this statement, a response function was measured by means of the second
harmonic line of the Nd:YAG laser (532 nm), which is almost in the middle of the
STO PL-spectrum, and we found that 355 and 532 nm response functions present
only negligible discrepancies. A new response function and dark-current signal were
recorded before each measurement.

Frequency resolved curves are measured by means of a photomultiplier (Hama-
matsu mod. R928, 185 + 900 nm) and a monochromator (MC), whose spectral
resolution limit is 0.1 nm. However, the spectral resolution we chose, in order to
have a reasonable (~ 40 min) time of measurement, is 1 nm. The electric signal is
then time-integrated by a gated integrator (Stanford, mod. SR250) and recorded
on a personal computer. The photomultiplier time-response is very much slower
than the photodiode one (several nanoseconds) and the time windows of the gated
integrator was set to about 50 ns.

Time and frequency resolved curves were recorded as a function of the pump-
pulse intensity and as a function of the sample temperature. The former was mea-
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sured with a large head power meter (Ophir, mod. PE9) and adjusted by using a
set of neutral filters. The latter was controlled by a thermal controlled stage (In-
stec, mod. HCS600V). The sample temperature can, thus, be varied in the range
—190 + 600 °C with accuracy +0.1 °C. The final spectrum is corrected with the
detection instruments spectral efficiencies. All measurements, both in the time or
frequency domain, are taken in air and were found to be reproducible. No visible
damage was seen on the sample surface at the end of each measure session.

8.1.1 Samples.

We investigated several STO samples, all having (100) orientation, here called “I”
(intrinsic), “Nb” (niobium doped) and “O” (oxygen deficient). I samples are six
nominally pure, transparent , stoichiometric, 5 x 5 x 1 mm? samples from four dif-
ferent companies (Surface Net, Escete, Crystal, Crystec). All I samples have nominal
impurity concentration below 150 ppm. Nb samples are four commercial Nb-doped,
dark blue samples (all supplied by Crystal) with 0.2% mol Nb concentration. Fi-
nally O samples are four annealed dark blue samples. They were obtained from pure
samples, of the same kind of I samples, by annealing for 1 h at 950 °C and 10~
mbar (base pressure 107! mbar).

8.2 Experimental results: time domain.

In this section we will expound our main experimental result: the presence of a
mixed kinetics in the PL emission decay. Besides this, the PL emission behaviour
with temperature can add other interesting informations about the nature of the
underlying recombination mechanism which is responsible for the photoluminescent
band under investigation.

8.2.1 Time-resolved decays.

In Fig 8.2 the normalized time-resolved decay curves of I, Nb and O samples are
shown in a semilogarithmic vertical scale. Some preliminary considerations can be
done.

First of all, although we did not perform an absolute quantum yield measure-
ment, it is clear that non-radiative processes are dominant, since the photolumines-
cence, as seen with naked eyes, is weak compared to the very high pump intensity.

Since the experimental conditions are the same in each measurement session, the
relative yield can be measured from the integral of the decay curves in time. It was
found that all samples of the same kind have a roughly comparable fluorescence yield.
The maximum sample-to-sample variation is found in I samples and it is within the
80%, while the initial emission intensity is even more stable (30%). The Nb and
O samples yield is found to be slightly lower, but the not negligible absorption of
doped samples in the visible range could account for this feature.

The overall dynamics is very similar in each kind of sample, indicating that the
doping plays a minor role in the kinetics too, and some minor differences can be found
only in the values of the best fit parameters, as shown in the following. Background
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Figure 8.2: Time-resolved normalized decay curves of I (red dashed line), Nb (black
solid line) and O (blue dotted line) samples in a semilogarithmic vertical scale.

oscillations and other minor features are due to the instrumental response function
and it will be taken into account by the best fit procedure.

The PL emission is very fast: it has almost vanished after 25 — 30 ns in all
samples. These values are in agreement with the upper limit value (50 ns), which
is reported in ref [79]. On a deeper look, it should be noted that the decay is not
a simple exponential one. It is possible to use several exponential functions, and
we found that the minimum number of different functions, in order to obtain a
reasonable best-fit curve, is three. The last qualitative consideration is that STO
has a quite high damage threshold. In our experiment, the maximum pump-pulse
energy is 2 mJ, which means a maximum spot center flux of about 90 mJ/cm?.

Since at a wavelength of 355 nm the optical penetration depth is about 1 pum
and the reflectance is about 25% [69], the estimated peak energy density absorbed
in the material surface layer is 600 J/cm3. Even at the highest pump-pulse intensity,
no photoinduced damages are seen on the sample surface of pure as well as doped
samples. All measurements were repeated increasing and decreasing the pump in-
tensity, in order to find the presence of possible irreversible signal variations, but all
measurements were found to be perfectly reproducible.

The most remarkable feature of those decay curves is shown in Fig 8.3. The
experimental time-constant 7exp, is defined here as the full width at half maximum
of the decay curve. This empirical lifetime was found to decrease as the excitation
pulse energy increases, i.e. as the photoinduced carrier density increases. As a con-
sequence, the intrinsic bandwidth of a possible emitting device, calculated as the
inverse of Texp, can increase to a value as high as ~ 2 GHz. There are several recom-
bination mechanisms which can lead to a carrier density dependent characteristic
lifetime. In particular the bimolecular recombination and the Auger effect could
lead to this result. In the next section, some possible kinetic models will be tested,
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Figure 8.3: Experimental time-constants versus the pump-pulse energy. Red data
are experimental points. The blue solid curve is a guide for the eye.

in order to find out the correct dynamics.

Another important experimental result is that the PL emission was found to
have a very high saturation threshold. In Fig 8.4, a typical measurement of the
time-integrated PL intensity is shown (in the case of an I sample) as a function of
the pump-pulse energy. The usual saturated intensity formula [(E) x E/(1+E/Ej)
gives the saturation energy best-fit parameter Es > 1 mJ for all samples (Fs = 1.3
mJ in the case of Fig 8.4), while a linear best-fit in the range 0 + 1 mJ (also shown
in the figure) is a good approximation of the behaviour of the curve in the first half
of the energy range. This holds true for each kind of sample.

A pump-pulse energy of 1 mJ corresponds to a peak density of photo-generated
electron-hole pairs (e — h) of about 6 x 102 cm™3. In this sense, the expression
“photoinduced plasma” can be used here to stress that the photoexcited carrier
density is extremely high compared with the typical impurity density, which is less
than 10'® cm™3. This definition does not regard the strength of the electrostatic
interactions or many-body effects, which are usually connected to the concept of
“plasma”. For these reasons, it is clear that such an high saturation threshold
cannot be ascribed to the filling of the impurity levels. It may be rather related with
Auger recombination effect or with plasma screening effects. The estimated plasma
frequency of the photo-generated carriers at the highest pulse energy, assuming free
electron masses for both electrons and holes, is about 6 x 104 Hz, i.e. 500 nm.
Therefore, it is possible that some partial screening of the UV excitation light is
taking place, and it is decreasing the absorption efficiency. For this reason, the
discussion and the model-test, in the following sections, will be focused on the non-
saturated energy range (0 =+ 1 mJ).
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Figure 8.4: Time-integrated PL intensity (I sample) as a function of the pump pulse
energy: blue solid curve is a linear fit in the range 0 + 1 mJ. Dashed curve is the
saturated behaviour in the whole energy range (Es = 1.3 mJ). Inset: the same
saturation behaviour for the unimolecular and bimolecular components (see next
sections).

8.2.2 Kinetic models.

As mentioned before, a simple exponential decay cannot describe our data. This
excludes, thus, the presence of a simple “unimolecular” recombination mechanism
or unimolecular decay (UD), as happens, for instance, in a typical impurity-assisted
emission. In that case, the fluorescence is due to the recombination of the charge
carriers which are trapped near an impurity level. The trapped carrier has its own
characteristic lifetime 7;7p and the intensity I(¢) of the luminescent emission at any
instant t is proportional to the rate of recombinations through a quantum yield
constant. If n(t) is the photoinduced carrier population of the fluorescent level or
band, we can write the following rate equation:

(1) = ~Qn(t); “nlt) = (), (8.1)

where @ is the quantum yield constant, which has to account for the quantum
efficiency of the emission process, and 3 is the recombination probability per unit
time.

The solution of Eq. 8.1 is

I(t) = Ipexp(—t/T), (8.2)

where 7yp = 1/ is the characteristic lifetime and Iy = Qng is a constant, and it
depends of the initial carrier density ng = kU, where k is the absorption coefficient
and U is the laser flux. In summary, the UD intensity as a function of the laser flux
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U has a constant lifetime while the initial peak has a linear behaviour with the laser
flux.

This kind of recombination mechanism cannot lead to a carrier density dependent
lifetime.

If the electron-hole recombination takes place between mobile carriers (electron,
hole or both), one has to take into account a partner-capture probability per unit
time. This means that the mobile electron, for instance, needs some time to find
a recombination center (hole), but, once it happened, the mobile carrier suddenly
recombines. The capture event is, thus, the rate-limiting step for the electron-hole
recombination. Let us note that the final recombination process can correspond to
a direct recombination as well as a recombination via an intermediate short-lived
state. This leads to a so-called “bimolecular” recombination rate equation.

In a bimolecular decay (BD), the recombination rate is, thus, proportional to
the product between the density of electrons (n.) and the density of available re-
combination sites (n). Both quantities depend on doping: in our case (n-doping)
we have n, = ng + D and nj, = ng, where D is the doping-induced carrier density.
Let us assume that the doping level is negligible, since, if it is not true, only slight
changes have to be considered in the following results. In the case of photoinduced
electron-hole pairs in a pure material, these two quantities are both equal to the
number of absorbed photons n, and, thus, we have:

(1) = ~Qun(t); “en(t) = —(1). (8.3)

where v is so-called “bimolecular constant”.
The solution of Eq. 8.3 is

Iy

I(t) = ———.
®) 1+ noyt

(8.4)

The value 75p = 1/(ngy) = 1/(kU~) can be thus defined as the bimolecular
carrier density dependent lifetime. The amplitude Iy = Qyn3 = Qvk?U? scales as
the square of the laser flux U.

Another mechanism which can lead to a variable lifetime is the so-called Auger
effect. Auger recombination occurs predominantly at very high carriers injection,
since three charge carriers are involved in it. Since it is a non-radiative process,
the quantum yield constant ) has to vanish, and the emitted intensity is therefore
I(t) = 0. The third carrier gets the energy and momentum in order to let the
electron-hole recombination happen. The recombination rate-equation which rules

this process is, thus, cubic in the carrier density:
dn
— =’ 8.5
dt ) ( )

where ¢ is the Auger constant. The solution of Eq. 8.5 is:

n3
)= ¢ 21 (8.6)

1+ 2n6t)
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The Auger lifetime 74 = (2n3(5) ! is, again, dependent on the carrier density, but
it scales as the inverse square of ng. If there is a radiative decay channel too, whose
carriers belong to the same population n(t) which is emptied by Auger effect, it will
be possible to see the Auger dynamics through the radiative decay, superimposed
with the radiative dynamics of that channel. If the latter is much slower, only the
Auger effect will be seen.

8.2.3 Best-fit procedure and program.

In order to discriminate between several different kinetic models, one needs a very
accurate and careful numerical analysis of the data. In this section we will expose
the best-fit procedure we used to this purpose.

Since more than one model was found to give a quite good best-fit result on a
single curve, for a given pump-pulse energy, we measured many decay curves (8—10)
in the same experimental conditions, at different energies: the measured pump-pulse
energy, relative to each decay curve, is given to the best-fit program as an external
parameter. Many test-functions are calculated with these energies, and compared
with the data. The final x? function is then the sum of all the x? functions obtained
by this comparison. In this way, we can understand how much the test-function is
capable to predict the energy behaviour of the decay curves rather than the quality
of the single best-fit. We called this procedure “Global fit”.

The major difficulties which can arise from this approach are linked to the pre-
cision of the measured pulse-energy, since even a small error on it can prevent the
test-function to correctly predict the curve slope.

In order to avoid this, one can note that the integral of the decay curve itself
can be a good measure of the pulse energy, since a linear relationship exists between
these two quantities, at least in the non-saturated regime (01 mJ). Thus, for each
data set, the measured energies are used to make a linear fit of the decay curve
integrals and to find out the linear coupling constant. The decay curve integrals
are then used as a direct measurement of the pulse energy. Finally, these values are
given to the best-fit program as input parameters.

A further test of our proposed kinetic model can be obtained from the energy
behaviour of the linear coefficients too. If the test-function is made by several terms,
each of them must have an amplitude with a well defined energy behaviour. The
amplitude best-fit values are found separately for each curve by a linear regression,
and their behaviour can be compared with the predicted one.

Another subtle problem which has to be considered with great attention is the
deconvolution procedure of the as-recorded PL signal with the instrumental response
function.

In Fig 8.5 the instrumental response function (RF) is compared to a typical
decay curve. Although it is evident that the PL decay is slower than the RF, the
difference is not so strong to allow the approximation of the RF with a simple Dirac
delta function. The PL signal has to be deconvolved in order to extract the correct
waveform. Being S(t) the PL signal, and r(¢) the response function, the recorded
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Figure 8.5: A comparison between the UV response function (black solid curve)
and a typical STO PL decay curve (red points). Each curve is normalized to its
maximum.

signal I(t) is, actually, a convolution product between S(t) and r(t):

(e o]

I(t) / r(t — 7)S(7)dr.

—00

In order to obtain S(t) from I(¢) one should deconvolve the recorded function. Since
numerical deconvolutions are known to amplify the noise of high-frequency data, this
approach was found to be not the more suitable one.

A convolution product becomes an algebraic product in the Fourier space. Start-
ing from this fundamental theorem, it is possible to choose the following approach:
called F(t) the theoretical function under test, we can calculate the Fourier trans-
formed function F'(t) by a Fast Fourier transform (FFT) algorithm. For input vector
x having N elements, the FFT is a N—vector X:

N
X(k) _ Z x(n)e—Qjﬂ'(k:—l)(n—l)/N’

n=1

while the Inverse Fast Fourier transform (IFFT) is given by
1 N

_ —2jn(k—1)(n—1)/N

z(n) = N kg_l X(k)e 7™ " :

The function F'(t) can be, then, multiplied with the Fourier transform p (w) of the
response function r(¢) and the final convolved function will be the inverse transform
of that product. In Fig 8.6 the real and imaginary parts of p(w) are shown. In
this way, it is possible to directly compare the as-recorded function I(t) with the
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Figure 8.6: Real and imaginary parts of the Fourier transform p (w) of the response
function r(t).

convolution product of F(t) and r(t) in the time-domain. The x? function can be,
thus, calculated in this domain and eventually minimized in order to find the best-fit
parameters. Besides the theoretical test-function, each curve has to be fitted with
two non-physical parameters: the background shift and the zero-time point. The
former is easily set to zero, before starting the fitting procedure. To fit the time-shift
constant ty represents the main difficulty. The problem resides in the discrete time-
sampling: in the continuous Fourier transform theory, a time-shift constant ¢y would
result into a phase-shift e of the transformed function. This statement is not true
for the discrete Fourier transform. In this case, the time-shift constant has to be a
integer multiple of the time-step At. If it is not so, the amplitude of the transformed
function will be affected by an “interference” effect, which can result in the vanishing
of the whole function for ¢y = At/2. Moreover, in the time-domain, an adjustment
of the time-shift constant, which is not a integer multiple of the time-step, should
require an interpolation of the time-scale, introducing some unwanted troubles. In
order to avoid all these problems, the time-shift constant ¢ is not best-fitted within
the minimization command for the x? function, as the other parameters are. The
best-fit program starts from the initial value ¢y = 0, since the data-set is forced to
have its maximum in the ¢ = 0 point. After the best-fit procedure is finished, the
program calculates the half-rise point of the fitted curve and compare it with the
half-rise point of the data set. If the difference between this value is higher than the
unit time-step, the program gives a “true” output (bit 1), in the other case it gives
a “false” output (bit 0). Since there are several curves (one for each pump-pulse
energy), the final output is a vector. The number of its non-vanishing elements is
called #tgp,. If this number is higher than a threshold number N*, the program
shifts that curves which corresponds to the non-vanishing elements of the time-shift
vector and the procedure is repeated over again until the condition #ts, < N* is
true. The usual value of N* is 1. The choice of the half-rise point rather than the
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Figure 8.7: Flux diagram of the Global Fit Program (see text).

maximum was done since that is the point at which the derivative of the curve is
larger. This allows the highest precision in the choice of the time-shift constant.

In Fig 8.7, a simplified flux diagram is shown: the RF and the theoretical
test function are passed to the Fast Fourier Transform function (FFT), they are
convolved together (CONV.) and then transformed again with the Inverse Fourier
Transform function (IFFT). The input data (i.e. the set of all PL emission curves)
is initialized in the INIT. module, where the energies relative to each curve are cal-
culated from the time-integral of each curve as explained before, the background is
set to zero, and some other technical initializations have been done. The initialized
data and the convolved theoretical test function are then passed to the function MIN
EXZZ, in which the X? functions are calculated for each curve (label ¢) and the sum
of all x? functions is minimized by the Matlab “fminsearch” function. In the next
block, the tgz, vector is calculated, and the number of its non-vanishing elements
#tgp is compared to the threshold N*. If the logic value is false, the DATA SHIFT
block provides to shift only those curves which correspond to the non-vanishing ele-
ments of the vector £z, and the best-fit procedure starts again. The ITER. CHECK
block stops the procedure when a certain threshold of iterations is exceeded.

The complete best-fit program is reported in App. D.
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Figure 8.8: Global fit on a set of decay curves (Nb sample) within the Auger decay
model. This is a zoom on the first part of the decay curve in a semilogarithmic
vertical scale. Red points are data, black solid lines are the best-fit curves.

8.2.4 Data analysis.

The first theoretical test function we used to interpret our data, is the Auger de-
cay model, since in a high carrier density regime it is usually the most important
contribution in semiconductors [90],[91]. In Fig 8.8 an example of the result of the
Global fit is shown: it is clear that the Auger model cannot follow correctly the
behaviour of the first part of the PL emission curves with the pump-pulse energy.
In particular it seems that the Auger model is “too fast”, with respect to the data.
Moreover, since the Auger effect is entirely non-radiative, its presence should also
result into a saturated quantum yield, which, in our, case starts to appear only
above a pump-pulse energy of 1 mJ. We can infer that the Auger effect is negligible
at least below this threshold, and this sets an upper limit for the Auger coefficient
o:
5§ <1033 cmf 71

This value is two or three orders of magnitude smaller than the usual Auger
coefficient value in normal semiconductors, which is about 1073° — 1073! c¢m® s7!
([90],[91]). The reason can be found, probably, in the large band-gap of the STO,
since the Auger coefficient is known to decrease exponentially as the band-gap width
increases [92].

We have seen that the Auger lifetime scales as the inverse square of the laser
flux. Since this behaviour is not confirmed by our data, the next attempt was to
put a pure bimolecular decay model to the test. The result of the Global fit for the
BD model is shown in Fig 8.9: it is seen that the model reproduces correctly the
behaviour of the first part of the curve, where the Auger model failed, but it is not
able to correctly fit the longer “tail” of the curve, which starts after about 3 — 5 ns.
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Figure 8.9: Global fit on a set of decay curves (O sample) within the bimolecular
decay model. The plot is in a semilogarithmic vertical scale. Red points are data,
black solid lines are the best-fit curves.

To a deeper investigation, it is possible to see that the initial decay becomes
clearly faster as the pulse energy increases, but the slower “tail” changes only its
amplitude and not its decay rate. This excludes an interpretation as a simple uni-
molecular (UD), bimolecular (BD) or Auger decay.

It has to be noted that Eq. 8.4 holds true under the hypothesis that the electron
and hole density are equal. It is possible to prove that the presence of a doping term
into the BD recombination rate equation, i.e. n, = ny+D, where n,_j, is the electron
(hole) density and D is the doping carrier density, produces an exponential “UD-
like” term in the final form of the PL emission. Despite this result, this model was
found to not give a correct best-fit, even in doped samples, where the approximation
ne =~ ny, is surely false.

Starting from these considerations, a combination between different kinetic mod-
els has to be invoked. The hypothesis is that there is a mixed kinetics, i.e. there is
the presence of two different decay channels.

In particular we can choose a BD model to account for the faster initial peak
and an UD model which could account for the slower tail, where the bimolecular
contribution is vanishing.

If both UD and BD decay channels are present in the material, several ways are
possible to mix them.

One is to write a rate equation of the form:

d
Zn(t) = —yn* —n/

in which a single balanced population n(t) obeys to a single UD-BD rate equation,
where 7y is the bimolecular coefficient and 7 is the unimolecular exponential time.
This model leads to a PL intensity form which is able to fit the single decay curve.
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Nevertheless, the Global fit procedure ruled out this model, since it cannot fit the
whole set of curves.

Finally, the model which gave the best results is based on the assumption that
there is a very rapid initial branching of the charge carrier population into two
separate non-communicating channels. Each channel obeys, then, to a different
rate equation. This means that, immediately after the UV-excitation, two different
electron-hole populations are formed: one shall follow an unimolecular decay law
while the other a bimolecular one. We assume that, in each population, the number
of electrons and holes is the same (even in doped samples) and that the branching
ratio is not dependent on the pulse energy, so that at time ¢ = 0 we have nyp(0) =
kupU and npp(0) = kppU, where U is the excitation energy density and kyp,sp
are two constants which account for both the branching ratio and the UV absorption
coefficient (the latter being common to both channels). The rate equations will be,
thus:

d

anUD(t) = —nyp/TUD,
d
Zep(t) = —n3p.

Being Qup and @pp the UD and BD channels quantum yields, the resulting
PL intensity is given by:

d d
I(t) = _QUDETLUD - QBDanBD =

= cupexp(—t/Tup) + cep (1 +t/m8D) 2,

where Tpp = 1/vkppU is the energy dependent bimolecular time-constant and

cup = QupkupU/tup ; csp =vQppkEpU?

are the UD-BD amplitudes.

This model can fit very well the whole set of decay curves, both in pure and
doped samples. Let us note that 7yp and 7pp are independently constrained by
each single decay curve, so that they are independent of the excitation energy.
Thus, they provide a strong confirmation of this model. In Fig 8.10 an example of
the Global fit procedure, which tests this model, is shown.

Let us note that the initial decay follows very well the predicted behaviour. In
Fig 8.11 the UD and the BD decays and their sum are plotted separately. The
UD and BD amplitudes are found to follow quite well the predicted behaviour too,
as shown in Fig 8.12. Besides confirming the model, this result leads also to the
conclusion that the BD channel is not sensitive to the doping level, since cgp scales
as U? without any linear term in doped samples too, while it is easy to prove that
the doping constant D in the carrier density n. should result into a linear term in
the cpp expression. Moreover, both channels are not saturated in the investigated
range, while, in the whole range (0 < 2 mJ), we observe the onset of saturation in
both (see the inset of Fig 8.4).

Let us now compare the quantitative results in I, Nb and O samples. In Fig
8.13 the UD and BD PL-integrals are shown as a function of the pulse energy. The
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Figure 8.10: Example of a Global fit on a set of decay curves (I sample). Pulse
energies are given on the right of each curve. Black solid lines are the best-fitting
curves. Inset: zoom of the peak in the same set on a semilogarithmic vertical scale.
Some curves are not shown for clarity.

behaviour is almost linear for all, and the BD (UD) yield is the slope. The differences
are very small, and they are smaller than the sample-to-sample variations. The
doped samples yield was found to be almost systematically smaller with respect to
the pure samples one, probably because of optical absorption in the visible range.
The measured yield ratios of the BD to UD channels are in the range 0.6 < 0.8 for
all samples. The most relevant differences between I, Nb and O samples are found
in the UD lifetimes: I and O samples show an UD lifetime in the range 11 + 24 ns,
while the Nb samples lifetime is systematically lower, with 7yp ~ 5 — 6 ns. The
BD dynamics of Nb samples is found to be faster too, but the difference is less
pronounced: in every kind of sample the BD lifetime is in the range 300 <+ 600 ps
for the highest pump-pulse energy (1 mJ).

Since the ratio kyp/kpp is unknown, we cannot extract the value of v from
these data. However, assuming a balanced branching ratio (i.e. kyp/kpp ~ 1)
we can get a rough estimate of the bimolecular constant: y ~ 10~ c¢m3/s. This
value is two-three orders of magnitude larger than those reported for indirect semi-
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Figure 8.11: UD (blue dashed) and BD (blue dot-dashed) curves are drawn sepa-
rately for a particular decay curve (I sample). Black solid curve is the best fit curve,
defined as the sum of the UD and BD contributions.
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Figure 8.12: UD (a) and BD (b) amplitudes versus the pulse energy. Red squares
are data, blue solid lines are a linear (UD) and pure-quadratic (BD) best-fit curves.
UD and BD amplitudes are on the same scale, but the former is multiplied by a
factor 30.



8.3 Experimental results: frequency domain. 110

= N\b °
| | = O |
—_ 2
= °
5 (
o [ )
0 A B
E . N
A
§ g “AAA
8 x [ ) A...
i A ° A BD |
e) ub
0 0.2 0.4 0.6 0.8 1

Pulse energy (mJ)

Figure 8.13: BD (triangle) and UD (circles) PL integrals versus the pulse energy in
I, Nb and O samples.

conductors, usually ascribed to phonon-assisted radiative or defect-assisted Auger
recombinations [91], but it is one-two orders of magnitude smaller than the values
which have been found in direct band-gap semiconductors [93].

8.3 Experimental results: frequency domain.

The typical photoluminescence spectra of I, Nb and O samples are shown in Fig
8.14. The spectra were collected with pulse energies ranging from 50 pJ up to 1 mJ
and it was found that the spectral integral scales linearly with the energy at room
temperature. All spectra have their peak at about 425—430 nm (2.9 V) with a long
tail reaching about 650 nm (1.9 V). These spectra are quite similar to those reported
in literature (for instance in Fig 7.6), although they seem to present a slightly more
pronounced green-red tail. A very pronounced difference, with respect to that work,
is that we saw a roughly equal emission yield from each kind of sample, while Kan
and coworkers [82] found a strong difference between pure and doped samples. This
discrepancy will be discussed in the last section of this Chapter.

Since the time-domain study revealed the presence of two distinct decay channels,
we tried to resolve some possible spectral differences between UD and BD channels
by inserting some additional filters in the detection line and checking for variations
in the yield ratio or in the decay lifetime. In particular we use a 390 — 480 nm band-
pass filter and a 495 nm long-pass filter, in order to select the blue and the green
part of the spectrum, respectively. In both cases, no significant changes were found.
Let us note that the time-resolved measurements are sensitive to the radiative as
well as the non-radiative channels, while the spectral features depends entirely on
the radiative recombinations. This result could, thus, suggest that the UD and BD
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Figure 8.14: Normalized PL spectra of I, Nb and O samples. Spectra are vertically
shifted for clarity.

channels emission spectra are largely overlapping or, alternatively, one of the two
decay channels can be a non-radiative one.

8.3.1 Temperature investigation.

The most remarkable differences between pure and doped samples can be obtained
from an investigation of both spectra and decay curves at different temperatures.
The investigated temperature range is 300 —~ 900 K and all measurements were
performed in air. Since it is known that STO is very sensitive to the oxygen con-
centration, and since the annealing at such temperatures can change this value, we
performed several measures by increasing, decreasing and “randomizing” the tem-
peratures, in order to be sure that all measurements are perfectly reproducible, i.e.
that the air exposure at these temperatures does not change significantly the optical
behaviour of the sample. This was found to be true for I and Nb samples, but not
for O samples, which completely change their nature, and become white-transparent
insulators. In other words, O samples return to their original status before the an-
nealing in vacuum. This is expected, since the oxygen present in the air has the
effect to reverse the annealing in vacuum which was used to prepare them. For this
reason, O samples were not investigated, and, in this section, only measurements on
I and Nb samples are reported.

In Fig 8.15, several I sample spectra at different temperatures are shown: the
pump pulse energy is about 50 pJ. These spectra exhibit many remarkable features,
common to all pure samples. First of all, we can easily see a progressive depletion of
the overall PL generation efficiency. This is not surprising, since thermally activated
non-radiative decay channels become stronger and stronger as the temperature in-
creases. This depletion does not take place as a decreasing amplitude for the whole
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Figure 8.15: T sample spectra at different temperatures. Pulse energy: 50 puJ.

PL intensity (arb. un.)

A (nm)

Figure 8.16: I-sample spectra at different temperatures. Pulse energy: 500 pJ.
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spectrum: the shape of the spectrum clearly changes. The PL color, as seen with
naked eyes, changes from blue to green. In particular it is possible to resolve two
bands: a blue band peaked at about 430 — 440 nm (2.8 — 2.9 V) and a green band
at about 490 — 500 nm (~ 2.4 eV). These bands have the same energies of those
observed by Mochizuki and coworkers [78]. The temperature behaviour of the two
bands is different: the green band shows an usual depletion of its amplitude, while
the blue band presents a “high frequency edge shift” effect. Moreover, a blue band
residual still remains visible, although weak, at the highest temperature too.

In Fig 8.16 we can see the same spectra, on the same I sample, but with a pulse
energy of about 0.5 mJ, i.e. ten times higher. All the previous considerations are still
valid, but the ratio between the high and the room temperature spectra is different:
the high-energy high-temperature spectrum is weaker than the low-energy high-
temperature one, with respect to the relative low-temperature spectra. This seems
to concern in particular the green band. Although the room temperature spectra
are very similar in both cases, it is possible to see that the low-energy spectrum has
a more pronounced green shoulder than the high-temperature one. We cannot relate
directly this evidence with the presence or absence of a bimolecular decay channel,
since the lowest energy at which we can perform a time-resolved measurements is
about 200 pJ, but it can be an useful indication in order to spectrally resolve the
BD and UD contributions, if possible.

The model we used in order to account for these features, is based on the presence
of three bands: two blue bands and one green band. The green and one of the blue
bands (label 1) are Gaussian bands. The other blue band (label 2) is a Gaussian
band too, but it is multiplied by the Fermi distribution, in order to account for
the spectral shape changes. The Fermi function cannot correctly account for them
unless the chemical potential p can change its value with temperature. Let us make
an important consideration about this statement: the chemical potential, as it is
usually defined, is referred to a system which is in a thermodynamical equilibrium.
It can change with temperature, but usually, unless a very high temperature is
reached, its variations have only a minor importance and are often negligible.

In our case, the photoinduced electron-hole plasma is, obviously, in a non-
equilibrium condition. Thus, an effective chemical potential can be correctly defined
only if the relaxation of the system to the original equilibrium condition happens
on a time-scale which is larger than the time-scale of the thermalization of the pho-
toinduced plasma. In our case the former time-scale is, as seen before, of the order
of few tens of nanoseconds, while the thermalization of the carrier plasma usually
happens in few picoseconds. The effective chemical potential can be thus defined
as referred to a quasi-equilibrium condition of the photoexcited charge carriers. In
this case, a stronger variation with temperature can be expected.

In order to put this empirical model to the test, we successfully tried to fit the
whole set of spectra with a single minimization procedure, in a similar way to that
exposed in the previous section for the time-resolved decays. Working in the energy
domain, rather than wavelengths, the energy positions, the widths and the chemical
potential values of each band are obtained, from the whole set, from the following



8.3 Experimental results: frequency domain. 114

PL intensity (arb. un.)

1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4
Photon energy (eV)

Figure 8.17: An example of the Global fit of spectra: the same low-energy spectra of

Fig 8.15 are best-fitted by the three-bands model. Inset: the three bands are drawn
separately for a particular spectrum.

relationship:

I(E) = exp + exp + exp

(E-E,\? (E-E}V
o o]

f(E) = [1 + exp <—<E ;(MT(T))H h

is the Fermi function at temperature T', E, is the green band energy, o, is its width,

where

E; 2 and O'; 2 are the energies and widths of the two blue bands. In order to account
for the chemical potential changes with temperature, one can assume, as a first
approximation, a linear dependence: p(7) ~ A-T + B. If the temperature is given
as an external parameter, the best-fit program will give the linear parameters A, B
best-fit values.

In Fig 8.17 the result of this best-fit procedure is shown, while in the inset the
three bands are plotted separately for a particular spectrum. In all samples the
variation of the chemical potential falls in the range between 3.1 — 3.2 eV at room
temperature and 2.6 — 2.7 eV slightly below 900 K. This means that we observe a
15% decreasing on a temperature range of 600 K. The green band peak lies between
2.4 and 2.45 eV and its width is about 0.3 — 0.4 eV. The blue band 1 peaks at
about 2.9 — 2.97 eV with Jg ~ 0.2 — 0.3 eV. Finally, the blue band 2 peaks at
about 2.87 — 2.89 eV, and ag ~ 0.2 — 0.3 eV. These results are very similar both
in the high and low energies measurements, while the main difference can be found
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Figure 8.18: Band integral of the green, blue 1 and blue 2 bands as a function of
the temperature in the low energy regime.
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Figure 8.19: Band integral of the green, blue 1 and blue 2 bands as a function of
the temperature in the high energy regime.
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Figure 8.20: Low energy spectra of a Nb sample at different temperatures. Inset: the
same spectra at higher energy. The highest temperature, not shown in the legend,
is 870 K (black solid curve).

looking at the band integrals plotted in Fig 8.18 and 8.19: in the high energies
regime the green band yield is larger but comparable with the blue bands yields,
while in the low energies regime the difference is more pronounced since the green
yield is comparable with the sum of the two blue yields. We have to mention that
the measurements reported in Fig 8.18 and 8.19 are referred to a particular I sample
in which these features are more marked than in other samples. However, this
behaviour is qualitatively similar in all pure samples. The best-fit results seem to
indicate that the peak energy of the two blue bands is the same. This suggests that
we can assume a single energy band composed by two distinct populations, and, in
turn, this could suggest a direct link between these two populations and the UD and
BD populations. Nevertheless, the doped samples spectra go towards the opposite
direction.

Doped samples, i.e. Nb samples, show a quite different behaviour, as can be seen
in Fig 8.20. The overall yield is still decreasing, as for pure samples, but in this case
the “high frequency edge shift” effect does not take place. However, it is still clear
that the spectra are composed by the same two bands we have seen before. The
high-to-low temperature integral ratio at high energy is smaller than the low energy
one, but, in this case, the blue band remains slightly stronger than the green band
even at the highest temperature. The green shoulder of the low energy spectra is
more pronounced than in the high energy spectra, as in the case of pure samples.

For these reasons, we used a simplified best-fit model, with only two bands and
without the Fermi function contribution. An example of the results of these best fit
is given in Fig 8.21. The best-fit value of the green band peak is about 2.5 eV with
o4 = 0.40 eV, while the one of the blue band is about 2.9 eV with o, = 0.25 eV. On
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Figure 8.21: An example of the Global fit of spectra: the same N sample low-energy
spectra of Fig 8.20 are global fitted within the two-bands-model. Inset: the two
bands are drawn separately for a particular spectrum.

a deeper glance, it can be seen that all best-fit curves are above the experimental
data in the very extreme high-frequency part of the spectra (above 3.2 V). This is
possibly due to the presence of the Fermi function, but its effect is very weak, and
it is not possible to extract some reliable value of the effective chemical potential
from these data.

8.3.2 Activation energies.

Non-radiative decay channels are usually thermally activated. When the PL emis-
sion kinetics is dominated by a non-radiative activated channel, the PL lifetime
decreases as the temperature increases, since the fluorescent band is emptied by
that activated channel. A radiative PL lifetime, on the contrary, is almost inde-
pendent of temperature, since its value depends on the bandwidth. For this reason,
if the activation energy of the total PL emission is found to be equal to the acti-
vation energy of its lifetime, this is a proof that non-radiative channels dominate
the recombination kinetics. The probability per unit time to have a non radiative
recombination event Pyp is ruled by an Arrhenius law:

Pyp =vNgexp|[—FE,/kpT|

where vy R is a constant, kg is the Boltzmann constant and 7T is the lattice temper-
ature. The total probability P per unit time to have a recombination event, being
it radiative or not, is P = Pr + PnyRr, where Pg is the radiative probability, and its
inverse is the PL radiative lifetime 7 = 1/Pg. The total PL lifetime 7, i.e. the
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inverse of P, is thus:

1 TR
= Prp+ Pyexp[—FE,/kgT] 1+ vngrTrexp|[—FE,/ksT]’

(8.7)

Here vy can be now regarded as a non-radiative recombination rate.

A similar relation holds true for the PL yield Y, since the radiated intensity is
proportional to the ratio between the radiative probability Pr and the total recom-
bination probability P:

v Pe 1
o PR+PNR - 1—|—I/NRTReXp [—Ea/k'BT]'

(8.8)

We used Eq. 8.8 in order to fit the green, blue 1 and blue 2 yields and find the
activation energies of the three processes. The band activation energy was found to
lie in the range 140 — 160 meV for the green band, 180 — 195 meV for the blue 1
band (100 meV in one sample only) and 230 — 290 meV for the blue 2 band. An
example, in the case of the blue band 1, is given in Fig 8.22. We have to mention
that these results hold for the high energy spectra, while Eq. 8.8 was not be able
to correctly fit the low-energy data. The same relationship was applied on doped
samples spectra: the activation energy best fit values are ~ 115 meV and ~ 155
meV for the green and the blue band, respectively.

8.4 Lifetime temperature dependence.

In this section, we report on the decay curves behaviour of pure and doped samples in
the temperature range 300900 K. These measurements are performed by recording
a set of several different decay curves, at different energies, for each temperature.
The Global fit procedure is applied, as previously mentioned, on each set, and
the BD-UD parameters are then analyzed as functions of temperature. Let us
now illustrate the results of this investigation on I samples. The behaviour of the
unimolecular and bimolecular lifetimes (at fixed pulse energies) is shown in Fig 8.23
and 8.24. The activation energies, 130 and 123 meV, respectively, are found to be
very similar. The UD yield activation energy (~ 130 meV) is found to be very
similar to the UD lifetime activation energy, while the BD yield activation energy
(~ 50 meV) strongly differs from the BD lifetime one. This result suggests that
the bimolecular kinetics could be non-radiative (or not visible) and it would be
revealed indirectly through a radiative channel. UD and BD yields as a function of
temperature are shown in Fig 8.25.

The UD lifetime activation energies of doped samples (Fig 8.26, E, ~ 500 — 700
meV) are very different from the I samples values as well as BD lifetime activation
energies (~ 80 — 220 meV). The value of the UD lifetime is almost constant below
700 K, and than it decreases abruptly. The same does not happen for the BD
lifetime, as shown in Fig 8.27. The activation energies of the doped samples yields
are in the range 195 — 250 meV for the UD channel and 130 — 180 meV for the
BD channel. Both channel integrals are plotted together in Fig 8.28. These results
seem to suggest that more than one activated channel is actually present, but a
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Figure 8.22: Activation energy best-fit curve (blue solid line) of the blue band 1 of

a pure sample. Red points are the data. The best-fit value of the activation energy
is 180 meV.
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Figure 8.23: Temperature behaviour of the UD lifetime of an I sample. The acti-
vation energy is 130 meV. Red points are the data, blue solid line is the best-fit
curve.
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Figure 8.24: Temperature behaviour of the BD lifetime of an I sample. The acti-
vation energy is 123 meV. Red points are the data, blue solid line is the best-fit
curve.
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Figure 8.25: Temperature behaviour of BD and UD yields in the case of an I sample.



8.4 Lifetime temperature dependence. 121

2.5+ E_=705 meV ] i

T (ns)

1+ 4

0.5r i

L L L L L L
300 400 500 600 700 800 900
Temperature (K)

Figure 8.26: UD lifetime of a Nb doped sample as a function of temperature. The
activation energy is 705 meV. Red points are the data, blue solid line is the best-fit
curve.
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Figure 8.27: BD lifetime of a Nb doped sample as a function of temperature. The
activation energy is 219 meV. Red points are the data, blue solid line is the best-fit
curve.
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Figure 8.28: UD and BD yields as a function of temperature in a Nb sample.

conclusive statement cannot be proposed on the base of them. Finally, we made some
preliminary measurements at low temperatures (between room and liquid nitrogen
temperatures). Although a systematic study has not been performed yet, we can
here report that both BD and UD lifetimes remain of the same order of magnitude in
all studied samples. This statement, although qualitative, can be useful to compare
these results with the one reported in literature, where the low temperature PL
lifetime was found to lie in the range of several milliseconds [78].

8.5 Discussion.

First of all, let us note that frequency and time domain results are not directly
comparable, since the spectrum is completely ruled by the radiative channels, while
time-domain decay curves are ruled by both radiative and non-radiative channels,
which dominate the recombination kinetics, as we have seen in the previous sections.

In order to obtain a reliable microscopic model of the PL emission in strontium
titanate, many observed features have to be explained. Let us summarize briefly the
main experimental results which have to be considered. The first is, of course, the
presence of two distinct and mixed kinetics, the bimolecular and the unimolecular.
The second is that the BD and UD contribution seem to be not spectrally resolved.
The saturation energy threshold is extremely high. The BD-UD kinetic model af-
firms that two distinct and not interacting populations are formed few instants after
the excitation. On the other hand, there is no reason to think that both channels
have to be radiative. Pure and doped samples spectra, decays and yields are very
similar (at room temperature). The temperature dependence of the spectra shows
an “edge shift” effect in pure samples which is absent in Nb doped samples. The
green band seems to saturate with the pulse energy before than the blue band, in
both kind of samples.
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The observed BD kinetics is likely to be ascribed to the direct non-radiative
recombination of conduction band electrons (-polarons) and valence band holes (-
polarons). At least one of them has to be mobile, in order to obtain a bimolecular
kinetics. This process has to be defect- or phonon-assisted, because of the indirect
band-gap of STO.

The observed peak of the PL spectra is shifted of about 0.35 eV (Stokes shift)
with respect of the indirect band-gap, and the tail is extended over more than 1 eV
below the excitation energy. These features cannot be explained by the emission of
some phonons, since the highest phonon energy in STO is about 0.1 eV, neither by
midgap impurity levels, which would be surely saturated in the investigated high
excitation density regime. On the contrary, the lattice relaxation due to the forma-
tion of polarons can account for the observed Stokes shift. Intrinsic lattice defects
can play a crucial role too, since they can enhance to local lattice polarizability,
allowing a polaron-like self-trapping of the charge carriers.

The UD kinetics is typical of some kind of bound excitations, or excitons. Such
excitation can be defect-induced or not. In the second case we have the self-trapped
vibrionic exciton (STVE) we saw in the previous Chapters. The STVE was claimed
to account for the 2.4 eV band in some works, and it could be a possible candidate
to explain our results.

Let us now speak about the model of the spectral temperature dependence. In
this model, the “edge shift” effect is due to the variation of the effective chemical
potential with the temperature. The chemical potential value is set by the conser-
vation law of the number of charge carriers. In the investigated temperature range,
only the last tail of the Fermi function is observed. Since the population is given
by the product between this tail and the density of state of the conduction band
(electrons) or the valence band (holes), this makes some difference between the elec-
tron and hole populations. It is known, indeed, that the conduction band in STO
is quite flat, and thus the density of states is very large, while the density of states
of the valence band, which has a usual quadratic shape, is very much lower. This
means that the variation of the chemical potential is different for the electron and
hole populations. Starting from these considerations, let us assume that the “edge
shift” effect concerns only the electron population.

Secondly, in order to account for the UD and BD spectral similarities, the sim-
plest hypothesis is to assume that there is only one radiative decay channel (the
unimolecular one), while the non-radiative channels (bimolecular) can interact with
the population of the radiative channel in order to stimulate the unimolecular re-
combinations. This hypothesis is in contrast with the BD-UD model assumption
that the UD and BD populations are not interacting. However, an alternative
“stimulated emission” model can be developed, and it was found to fit the data as
well as the BD-UD model, or even slightly better in some cases. The “stimulated
emission” model is based on the idea that the photoexcited carriers are divided
very rapidly into two populations: a small fraction is trapped (or self-trapped) into
bound-excitons while the most part is composed of free charges, which have to be
regarded as polarons because of the strong polarizability of the STO lattice.

These two populations follow two different decay channels: bound trapped ex-
citons will decay radiatively, following an unimolecular law, while the free polarons
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will decay non-radiatively, following a bimolecular law. These populations can be
coupled if the UD decay is assisted by the interaction with a free polaron. This is
different from an Auger effect, in which the third charge carrier takes the energy
excess of the transition. In this case the third charge carrier is subjected to an elas-
tic scattering with the exciton, and these scattering leads to the radiative exciton
relaxation. This model results in the following rate equations:

d
anUD(t) = —nyp/Tup — Bnupnep (8.9)
d
%nBD(t) = —nkp. (8.10)

The solution is:

npp(t) =1/ (vt + C1)
nUD(t) =y (’)/t + Cl)iﬁ/’y exp (—t/TUD) ,
where C 2 are two integration constants which can be found from the usual initial

conditions nyp,pp(0) = kyp,ppU. The PL intensity is given, now, by the nyp(t)
population alone:

d n t
I(t) = _QUDEnUD = Quonup(t) + Quppnup(t)nep(t),
TUD
and, thus
kypU kypkgpU?
1) = Qupkup BQupkupksp exp(—t/7up).

D (1 +t/TBD)B/’Y (14 t/TBD)ﬁ/7+1

Although it is not equivalent to the BD-UD model, the “stimulated emission”
model resembles the BD-UD one in the limit S < ~, and the model was found to
correctly reproduce the data within this hypothesis. Also in this model, the BD
term scales as U? and the UD term scales as U. The main advantage of this model
is to easily explain why the BD and UD channels have the same spectrum.

Besides this, we have to account for the “edge shift” effect. Why is it present in
pure samples and not in doped ones? Looking at Fig 8.29 a possible explanation can
be found: starting from the left, we can see the UV excitation, which creates the
e — h pair. The pair can be bound near a lattice defect as a trapped exciton. The
high saturation threshold seems to indicate that the trap levels can be photoinduced.
The same trap can present two distinct levels, with two different UD transitions,
which are indicated with blue and green arrows, but it is also possible that we
have to deal with two distinct kind of traps. In this case it seems unrealistic that
many features are so similar in so different kind of samples. The UD transition is
stimulated by the interaction with free pairs which can recombine non-radiatively
(dotted arrow). The measured energies (2.8 and 2.4 eV, respectively) are related to
the gap between e and h levels, but they are independent of the absolute positions
of the electron and hole levels. This position depends on the kind of traps which
are present in the material. Let us assume that, in Nb doped samples, the niobium
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Figure 8.29: The proposed PL microscopic model. The fundamental scheme of the
recombination levels is shown in the case of a Nb doped material (left side), and of
pure material (right side). UV is the excitation light, NR is a non-radiative channel.

atoms force the e and h levels to have a well defined energy, as depicted on the left
side of Fig 8.29. When the temperature increases, nothing changes in this picture
but the non-radiative channels effectiveness, as results from the temperature yields
behaviour as well as the time and yield activation energies.

In pure samples, the situation can be different, since there is not a “special”
trap center (the niobium atoms in case of Nb samples). The absolute energies of
the bound-excitons can be spreaded, leading to the situation depicted on the right
side of Fig 8.29. When the temperature increases, a certain fraction of the highest
electron levels (shown in gray above the dotted line in the figure) is emptied by
thermal fluctuations, and, thus, an increasing fraction of excitons are destroyed.
This can lead to the observed “edge-shift” effect.

Let us now compare our model with the one proposed by Kan and coworkers
in Fig 8.30 (ref [82]). First of all, let us note that the 3.2 ¢V band (NBE band,
in the notation of Mochizuki) is not present in our measurements, probably since
its frequency lies in the filtered frequency range. We will not speak, thus, about
the transition depicted in Fig 8.30 b). The main discrepancy between our results
and what reported in ref [82] is that we observed a significant PL yield from pure
samples, while the authors of ref [82] found almost no emission from them. We can
ascribe this difference to two experimental conditions: the intensity regime (a CW
laser with a flux of 5 W cm™2 was used in ref [82]) or the excitation wavelength
(325 nm). Further measurements will help to understand which of them could be
the more relevant one.

Looking at the a) and c) parts of Fig 8.30, another interesting hypothesis (sketched
in Fig 8.31) can be formed. In this alternative framework, it is no longer needed to
have some ad hoc levels to obtain the observed PL bands: one can assume only that



8.5 Discussion. 126

a certain fraction of the photoexcited carriers goes into an in-gap level placed at
0.4 eV below the conduction band (electrons) and above the valence band (holes).
This shift could be related possibly with the lattice relaxation due to the formation
of small polarons. The main interest of this model is that it could explain the BD-
UD mixed kinetics without requiring the “stimulated emission” model, since each
PL band would be filled (or emptied) following a bimolecular process due to the
conduction and valence band mobile carriers and an unimolecular one, due to the
formation of a polaron exciton, whose binding energy is 2.4 eV. The presence of a
lower saturation threshold of the green band with the carrier density, as shown in the
previous sections, suggests that the polaron exciton can be not really self-trapped,
but it can be formed preferentially near a lattice defect rather than a real trap level.

On the other hand, the main disadvantage of this model is the difficulty in
explaining the “edge-shift” effect.

At the moment, we have not enough informations to discriminate between these
and several other possible models.
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Figure 8.30: The recombination mechanism as proposed by Kan and coworkers [82].
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Figure 8.31: An alternative model for the microscopic recombination mechanism.



Appendix A

Brief recall on the Group
Theory.

In this Appendix, some elements of the Group Theory will be exposed (without the
proofs), starting from the basic definitions and arriving to the relations between
a group, its irreducible representations and the characters table. The aim of this
Appendix is to give those tools which can be useful for the reading of Ch. 3.

A.1 Finite Groups Theory.

A.1.1 Starting definitions.

A finite set of elements A, B, C, ... from a finite group G when the following
conditions are satisfied:

1. The product between two generic elements of the group is still an element of
the group: AB = CeG.

2. The product is associative: (AB)C = A(BC).

3. It exists the neutral element, called E (identity), and the product between E
and each element of the group coincides with that element: EA = AFE = A.

4. For each generic element A, it exists the inverse element: A~! : AA™! =
ATTA=E.

The product is not in general commutative: AB # BA. When it is, the group
is called “abelian”.

An example of a group is the set of permutation of three elements P (3), made
by 3! = 6 elements we can list as follows:

12 3 12 3 12 3
E‘<123 A=\2 1 3) B= 132)
12 3 12 3 12 3
C‘<321> D_<312> F‘<231>
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A group is identified by its product table. The following table, for instance, is
associated to the permutation group P (3):

PB)|E A B C D F
E |E A B C D F
A |A E D F B C
B |B F E D C A
c |c b F E A B
D |D C A B F E
F |F B C A E D

A.1.2 Basic definitions and fundamental theorems.

Order or dimension of the group: is the number of the elements of the
group. If the number of the elements is infinite, the group is called Infinite
Group, but the Infinite Group Theory will not be faced here.

Subgroup: is the set of elements of a group which preserves its properties.
The order of a subgroup is always a divisor of the order of the group. A
subgroup always contains, of course, the identity element F.

Rearrangement theorem: if F, Ay,...,A;, are the element of a finite group,
being Ay a generic element, the set ApFE, ApAj,...,ApA; contains each ele-
ment only once. Looking at the product table, it means that the elements
will be rearranged in such a way to occur along each row or column without
repetitions.

Conjugation and classes: an element B is called “conjugate” of the element
A if an element of the same group X such that B = X AX ! exists. A “class”
is the set of all elements which can be obtained by conjugation, starting from
a given element. Is clear that E forms a class by itself. Moreover, in every
abelian group, each element is auto-conjugated, i.e. forms a class by itself.

Isomorphic Groups and representations: two groups are “isomorphic”
if they have the same order and a one-to-one correspondence between the
elements that preserves the product operation exists. This implies that all
isomorphic groups are represented by the same product table, in which all
properties of the group is included. Thus, a “representative” group can be
choose. In particular, it is possible to choose a square matrix set, the so-called
“representation” of the group. Of course, the representation of a given group
is not unique.

Irreducible representations: if the matrices of a given representation can
be “blocked”, i.e. written as made of several diagonal sub-matrices, is called
“reducible”, otherwise it is called “irreducible”. An irreducible representation
cannot be given in terms of lower dimension representations.

Wonderful Orthogonality Theorem (WOT): if two irreducible represen-
tations I'1 and I'y are not equivalent, i.e. not corresponding to a pure coordi-
nate transformation, being D) (R) and D) (R) their matrices relative to a
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generic element R of the group G of dimension h, the following orthogonality
relation holds:

h
S "D (R) D,(,l/lu)/ (R) = o STy, 06 O -
R

It can be proved that Dl(jl/lﬂ), (R7Y) = Dl(,l,lu)/* (R), where the star * indicates the
complex conjugate. From this, generalizing the index of the representation
from 1 and 2 to j and j/, we have:

> D (B) D" (B) = 1 658t
R

This orthogonality relationship, the so-called “Wonderful theorem” (WOT),
deserves a brief comment. It is an orthogonality relation between h—dimensional
vectors:

v = D% (Ay),...DE (an)].

The indices /; , p and v identify a particular vector. Fixed [;, there are ZJQ-
orthogonal vectors (by varying x4 and v), and they are, in turn, orthogonal to
the l;? vectors with l;- # l;. Since the whole number of independent vectors is
h, the inequality y lj2 < h must hold true. Actually, it is possible to prove
that > y lj2 = h, and, thus, to introduce a very strong relationship between the
number of irreducible representations and the dimension of the group.

e Characters: the “character” x(R) of a matrix representation D(R), asso-
ciated with a symmetry operator R, is the track of the element associated
matrix. Since the track is unchanged under a coordinate transformation, the
character can identify a class.

e Wonderful Orthogonality Theorem for characters: when a group is
divided into its classes, the WOT can be written, for the characters of those
classes, as follows:

SN [\ @)] =k
k

where C, and IV, is the number of elements of the class and k is the class index.
Moreover, it is possible to prove that two representations are equivalent if and
only if they have the same characters.

e Reduction of a reducible representation: it is possible to prove that the
reduction of a representation into irreducible representations is unique. The
relationship between the reducible representation characters x(Cr) and the
irreducible ones ) (Cy) is:

x(Ck) = Zaj X (Cr),
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where j denotes the irreducible representation index.

The coefficients a; are the number of times in which the j-th representation is
present in the blocking of the reducible representation. Their values are given
by:

0= 1 3 N [ e)] xew
k

e Number of irreducible representations: it is possible to prove that the
number of irreducible representations is equal to the number of classes.

e Second orthogonality relationship for characters: the sum over all pos-
sible irreducible representations leads to a new orthogonality rule for characters
of different classes:

S B cy) [x(l”(Ck/)] "N = h Ok, k-
j

A.1.3 Characters table.

With this tools, we can now build the characters table, i.e. a table where the rows are
indexed by the irreducible representations associated to the group and the columns
are indexed by the different classes of the group. Note that the two orthogonality
theorems becomes orthogonality relations between rows (the first) and columns (the
second).

Let us now summarize the rules to build this table:

1. The number of irreducible representations is equal to the number of classes.
The classes can be taken directly by the product table. In general, the classes
are associated with the symmetry operators.

2. The dimension of an irreducible representation can be found with the rule

S B =h

3. The identity representation, i.e. the representation made by monodimensional
identical unitary matrices, is always present, since it is clear that this repre-
sentation satisfies all properties of any group described in the product table.
Thus, in the character table there is always a row made by only the number
1.

4. The first column of the table is the track of the identity matrix, and, thus,
each element of that column it is equal to the dimension of the relative repre-
sentation.

5. By the application of the WOT between the first row and the others, the
characters of the irreducible representations different from the identity will

follow the rule:
> NexW(cr) =o.
k
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6. The WOT is a normalization relation too:

> xBe) [ @) N =D N (ol = b
k k

7. In the same way, working on columns with the second orthogonality relation-
ship, and keeping in mind that, for the class of F, the respective character
is equal to the dimension of the representation (x(4)(E) = I;), we have the
following relations:

S LxW(C)l; =0 and Y [xW(C)? = .
J J

As an example, the following classes belong to the permutation group P(3):
Cy ={FE}, Co ={A,B,C}, C3 = {D, F}. With the rules just showed, it is easy to
find that the characters table of this group is:

P3) | 3C 2Cs
b, [1 1 1
o1 -1 1
'y |2 0 -1

A.2 Symmetry Groups.

A.2.1 Base functions.

Every physical system have a finite number of symmetries. It is, thus, possible to
associate it with a finite group structure, which will collect the whole number of its
symmetry operations, i.e. it is a complete set. One has to be sure that the set is
really complete: for instance, in the hydrogen atom study, the spin-orbit interaction
is not negligible at all. A symmetry operation R acts on a physical system by moving
its points in such a way to place every point into an equivalent one. If a function
is defined into a geometrical space, being 7 the generic position vector, the same
considerations can be made when the symmetry operation acts on this function.
Let us think, for instance, to the rotations: it is clear that a rotation of an angle «
around an axis is equivalent to the rotation of an angle —« of the coordinate system,
i.e. of the space in which the function is defined. Thus, a symmetry operation R
which brings a function f(7) into the function f/(#) can be expressed as:

£ =B p(#) = fr).

We can use a set of functions f1, fa..., f, as a base for a group representation if
the following relationship is satisfied:

fi fé 1
A R G s
In In fn

I'(R) is the group representation in the n-dimensional base fi, fa..., fa.



A.2 Symmetry Groups. 133

A.2.2 Wave-functions.

Let us suppose to be interested in the symmetry properties of the wave-functions
which solves the following Schrédinger equation :

Hap = Ep.

Let R be a symmetry operation of the system. Since R transforms the system
into an equivalent one, we expect that the associated operator R commutes with
the Hamiltonian. This has some important consequences for the eigenfunctions of

H:

1. Not-degenerate case: 7'11/%' = E;1;.

By the application of the commutation property, we have:
H (sz) = RH; = REpb; = E; (7%%)

The function R; is still an eigenfunction of the Hamiltonian and this means
that v; is a base function for a monodimensional irreducible representation of
the group.

2. k-degenerate case: ﬂwil = Eiy Vit ke
As before, we have
H (Rwil) = E; (7%%'1) :
7@1[1,-1 is an eigenstate of the k-degenerate subspace relative to F;, and, thus, it
R k
can be expanded over the eigenfunctions base {1}, i.e. Ry = > Dg(R)is.
s=1

In this case, the k-dimensional T'(R) representation is defined l;y the k£ x k
matrices D(R) in the eigenfunctions base, and it can be proved that it is an
irreducible one.

To summarize, the eigenfunction of the Hamilton operator are base functions
for the representations of the symmetry group of the physical system, ruled by the
Hamiltonian itself. The fixed energy subspaces are associated with the group irre-
ducible representations whose dimension is equal to the degeneration of the energy
level. Thus, the irreducible representation T' () is associated with the /;-dimensional
subspace of energy E;. The matrices of this representation D (“)(R) can be obtained
using the eigenfunctions as base functions.

A.2.3 Base functions orthogonality.

Let us consider two base functions of the same or different irreducible representa-
tions: such representations will be, thus, orthogonal. The proof is that, let w&li) and

wg,i) be the base functions of two I' and I irreducible representations, with [; and
I} dimensions respectively, the following relationships holds true:
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l; l
A . l; l; 3 lfbv o l; l{L
Ryl =3 wMDIN®) o Rl = D wl Dl ().
Jj=1 j'=1
The scalar product ( Ef” , wg;)) does not depend of the coordinate system, so
that we have

: 7 AN () 1) ¢ oy (L) I; I
(), w0?) = (Rel) RelY) = > DL Ry DL (R) (0 4))7),
73!
with R a generic operation. Taking the average value over the whole set of
coordinate transformations of the h symmetries of the group, we have

(v 00) = 3 o o pl oy (v 7).

J3i" R

By means of the WOT theorem, we arrive, finally, to the desired orthogonality

relationship:
l;

(w0, i) = l—lial“l;aa,a, z; (8, 90).
pm

A.2.4 Direct product of two irreducible representations.

The direct product between two irreducible representations is the first step in order
to study the selection rules. Let us start with the definition of the matrix direct
product A, xn @ Bnxm = Cix; where [ = m - n and the matrix elements are

AijBiy = Ci ji.-

This relationship defines the direct product between the matrices of two different
representations. It can be proved that the product between two representations of
the same group, is still a representation of that group, as well as that the direct
product of two irreducible representations will be a reducible one.

The characters of the direct product.

It can be proved that the direct product of two representations T and T of the
same group is the algebraic product of the characters of these representations:

XN (R) = XV (R)XW(R).

Since the product will be, in general, reducible, one can expand its characters
on the irreducible representations characters:

XA (R) = XD (RIXW(R) = 3 anux " (R),



A.3 Selection rules: IR and Raman transitions. 135

in which the coefficients ay,, are given by:
1 v *
anw = 5 2 New X (Calx ™ (Ca)| X (Ca)",
Co
where C, indicates the group class and N¢, its dimension.

A.3 Selection rules: IR and Raman transitions.

Let us consider the generic interaction H’, which acts on a system described by the
Hamiltonian H, whose eigenstates are w&j ). We can, now, use the mathematical
background achieved in the previous sections, in order to obtain the selection rules
for the matrix elements (¢g 2 JH' w[gli)). This elements are transformed as scalars,
i.e. they have to transform as the total-symmetric representation of the group. This
request implies that the direct product of the two representations which corresponds
to the matrix elements have to contain the total-symmetric representation, as shown
in the following.

A.3.1 Radiation-matter interaction.

We want to stress, now, our attention on the roto-vibrational modes of a molecule
under the presence of an electromagnetic wave. The interaction energy of the mole-
cule (being i its dipole moment), excited by the incident radiation E, is given by
the perturbative term:
H =—E-[i
There are two kinds of dipole transitions: infrared (IR) and Raman, and they
are related with two different definitions of the dipole moment f.

IR transitions.

The absorption spectrum of the roto-vibrational states of a molecule, is in the in-
frared region. In this case, we can define i as follows:

ﬁIR = quﬁ’ (Al)
A

where ¢; is the charge and r; is the displacement from the equilibrium position of
the :—th nucleus.

Let us, now, consider the electric-dipole transitions, as described by the matrix
element (wéf ) JH! wg)), where the indices f and ¢ indicates the final and initial state.

Let I'¥) and T'® be the irreducible representations associated with that states. In
order to have a not-vanishing matrix element, the total-symmetric representation
have to be present in the direct product I') @ T(W) @ T where T'®) is the electric-
dipole representation. In order to have its characters, it is sufficient to note that,
from Eq. A.1, the IR-dipole moment is transformed as a position vector 7, so that
its components p,, i, and p, are transformed as the base functions z, y and z.
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The character x(R) of the perturbation T'(*1r) will be, thus, the character of the
representation written on the base functions x, y, z, which can be found in the
tables.

Raman transitions.

For Raman transitions, the dipole moment is given by:

/:’: =a- Ea
where a is the dielectric polarizability tensor. The induced momentum /i can be

expanded around the equilibrium position gp of the molecule (let us consider, for
simplicity, only one dimension):

do 1 (d?a
= aF — ) gE+=(—-— ) ¢PE+..
fr=ao +<dQ>oq +2<dq2>oq "

If the incident radiation is Ejcos(wt) and only the first order of the series is
considered, we have:

do

= apEy cos(wt) + <d—> qo cos(wot) Eg cos(wt) =
4/ 0

da

= apFp cos(wot) + <d_q> o {cos[(w — wo)t] + cos[(w + wo)t]} ,
0

where wg is the proper frequency of the vibrational mode and w is the radiation

frequency. The first term is the so-called Rayleigh radiation, while the second and

the third are the Stokes and anti-Stokes terms, respectively.

In general, we can expand the dielectric tensor around the equilibrium position
along a vibrational mode of frequency w, as follows:

a = Qg + Aa coswyt,

and get the dipole moment ji:

—

—

— - - A
= (ao + A« cos wvt)-Eo coswt = ap-Ey cos w—i—Ta [cos(w — wy) + cos(w + wy)]- Eo.

The Raman perturbative Hamiltonian, thus, is:

R v
H o yan = —H-E= — EFEcos(w £ wy).
Such perturbation is characterized by the so-called Raman tensor ZE, which is
symmetric and contains the symmetries of the molecule states. Let us see how the
Raman tensor elements are transformed under a symmetry operation:

- a1 2 o3
Aa=| a axp a3 |,

Q31 (32 (33
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/
of; = RiRjou,
kl
and thus:

0y = R2, 000 + R 0y + R2. 0z + 2Roq ReyOay + 2Rea oz 0z + 2Roy Ry oy,

Let us compare the last equation with the transformation of the function z?:

($,)2 = (me + nyy + Rzzz)Q =
= Rix z? + RQy y? + Riz 22+ 2R pRyy 2y + 2Ryp Ry w2 + 2Ry Ry y 2.

T

If one repeats the comparison with the other matrix elements, one finds that the
Raman tensor components are transformed as the quadratic forms 2, 32, 22, xv,
Tz, Yz.

As in the IR case, the character of the representation '™ can be found from
the characters of the group representation written on the z, y, z base functions. In
this base, one has to know the characters of R as well as R? operators. Being x(R)
and x(R?) these characters, it can be proved that

1
X(R)Raman = 5 [X(R)Q + X(RQ)] :
With the Raman characters, one can expand the Raman perturbation represen-
tation into the irreducible representations of the group, and find the symmetries of
all Raman modes, as seen in Ch. 3.1.6.
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Relaxation times.

Nonlinear optical susceptibilities are characteristic features of the material, and,
thus, they depend on its electronic and molecular structure. The most suitable tool
in order to give a microscopic expression of them is, thus, the Quantum Mechanic.
In particular it is convenient to refer to the formalism of the density matrix.

B.1 The density matrix.

Given a pair formed by a statistical ensemble of quantum data of the system {|2)},
and by a classical distribution of probabilities on this ensemble Py, the density
matrix is defined as the average over the whole ensemble of the projection operator:

p =[P} (l.

The mean value of a generic observable is

(P) = (¢[P[yp) = Tr(pP).
If the wave-function |¢) satisfies a Schroedinger equation, with an Hamiltonian H,
the density matrix will satisfy the Liouville equation
dp 1
% 7 [H ).

B.2 Longitudinal and transverse lifetimes.

Let us now consider a material system, subjected to a electromagnetic stress, and
in contact with a thermal reservoir. The Hamiltonian which describes this system
is

H= HO +Hznt +Hran )

where Hj is the unperturbed Hamiltonian (being |n) its eigenvectors and E,, its
respective eigenvalues), H;,; = erF - E represent the interaction with the electromag-
netic radiation and H,.,, accounts for the random perturbation acting on the system
because of the thermal reservoir. The Liouville equation, thus, becomes:

ap 1

1 1 Op
ot %[HO‘FHmt,P] + %[Hrandvp] = %[H0+Hlnt7p] + < >ril )

ot
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The Hamiltonian H.,., is, thus, responsible for the relaxation of the system, i.e. for
its return, after some times, to the thermal equilibrium. Since the eigenvectors set
|n) is a complete set, it is possible to express the wave-function of the system |¢)) as
a linear combination of eigenstates: [¢)) = )" an|n). In this base, it is possible to
give a physical interpretation of the density matrix elements. The diagonal elements
pan = (n|p|n) = |a,|? represent the populations of the eigenvectors |n), while the
out-diagonal elements p,,, = (n|p|n’) = a,a’, give informations on the coherence of
the superposition between the states |n) and |n’); in the thermal equilibrium, the
elements p7(1072 are given by the Boltzmann distribution, while all the out-diagonal
elements vanish (strictly incoherent superposition): /’7(1072/ = Vn #n'.

If W, is the transition rate from the state |n) to the state |n'), due to Hyqn,
the time-variation of the diagonal elements is given by

0
. Pnn = Wn%n’ n'n! — Wn’%n nn|
< T )l > p Prn]

TLI

and, since in the thermal equilibrium it holds the following expression

dpan = 3 Wty = Warmansl)] = 0
o 4 n—n'Ppin’ n'—nkFnn ’

one obtains
2 [oundoi = 62] = 3 Wt (o = %) = Wata (pn — Q)]

In most cases, the equation which rules the variation of the population compared

to the equilibrium population (Ap),, = (pnn),i — p£32 can be written as

5 @0 == () @0,

The relaxation mechanism of the out-diagonal elements are quite more complex,
but we can expect an exponential decay of the form

9 (L
atpnn’ . - T2 . Pnn’ -

The characteristic times T7 and T5 are called respectively longitudinal and trans-
verse relaxation times.



Appendix C

Brief reminder on
superconductivity.

C.1 Experimental evidence.

The phenomenon nowadays known as “superconductivity” was discovered by H.
Kamerling Onnes in 1911, and a first complete theory was proposed in 1957 by
Bardeen, Cooper and Schrieffer. It took the name of BCS theory [42]. The first
experimental evidence of this phenomenon was that the resistivity as a function of
temperature has a quite pronounced “step-like” behaviour in correspondence of a
particular temperature in many common metals, as mercury or aluminium. Below
that temperature threshold, the resistivity is found to be definitely zero.

To give an idea of the orders of magnitude, suffice it to say that a supercurrent
flowed into a superconductive ring for many years, and experimentalist were not able
to measure a significant decrease of the charge flow. Magnetic resonance experiments
gave a lower limit to the current decay time which is about 10° years, while this
time was theoretically estimated to be 1010 years!

Such an abrupt variation of the resistivity happens below a well precise temper-
ature, the so-called “critical temperature” (7¢), which is of the order of few Kelvin
degrees. The critical temperature is a characteristic of the material.

Nevertheless, this is not their unique features. They are also perfect diamagnets,
i.e. in the presence of a magnetic field the magnetic induction inside the material is
perfectly zero.

Note that this does not descend automatically from the perfect conductivity,
which, alone, requires only that the variation of the magnetic flux inside the material
has to vanish. In other words, if one inserts a magnetic field inside a superconductor
when the temperature is above T, and after cools the sample below it, the magnetic
field will be expelled outside the sample!

But when the external field exceed a certain limit, the magnetic induction goes
abruptly into the material, and, from this moment on, the superconductivity ends
and the relationship between the field and the induction will follow a linear behav-
iour, as happens in normal metals. These are the so-called “type I” superconductors.

Very soon, it was discovered that there is another different behaviour: the ex-
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Figure C.1: Magnetic behaviour of type I and type II superconductors [7].

ternal magnetic field can have, actually, two distinct critical values.

The magnetic flux starts to enter the material above a first critical value of
the external field H.; and reaches the linear behaviour B o« H in correspondence
of a second critical value Hg (as showed in Fig C.1). Between these two values
the magnetic flux lines enter as vortex-like quanta. These current-vortices do not
prevent the superconductivity, although the portion of material inside a vortex is
not superconductive. The density of the vortices increases as the external magnetic
field increases, until it destroys the superconductivity in correspondence of H.o.
This kind of materials are called “type II” superconductors.

C.2 Cooper’s pairs.

In order to understand these phenomena, it is needed to investigate the microscopic
behaviour of the elementary particles inside the crystal lattice. In 1956, Cooper
showed that the electronic Fermi sea becomes unstable when even only one pair
of bounded electron is formed, and this happens independently from the weakness
of the binding energy. The only requirement is that the interaction potential in
the Hamilton operator have a negative sign, i.e. it is an attractive potential. The
origin of this attractive force was singled out from the electron-phonon interaction,
inside the crystal lattice. It is, actually, easy to prove that the Coulomb interaction
cannot give in any case, as expected, a negative potential. But a phonon can act
as an agent of the interaction between two electrons, giving the birth to a so-called
Cooper’s pair. Beyond the mathematical formalism, a physical interpretation of
this interaction is the following: the first electron induces a polarization inside the
lattice, attracting the positive ions, and this excess of positive carriers can attract,
in turn, another electron. If this attraction is strong enough to be able to overcome
the Coulomb force, the pair will be formed.

The generation of a Cooper’s pair is the keystone to understand the physics of
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superconductors. Because of its fermion nature, an electron cannot condensate into
a Bose-Einstein condensate as a boson particle does. But, since it is possible to
prove that a Cooper’s pair is already made by two electrons having anti-parallel
spins, the total spin of a single pair always vanishes, so that it can be regarded as a
boson, and it can condensate, as happens, for instance, for liquid helium.

When the stability of the Fermi sea is broken by the formation of a single pair,
the system will evolve until it reaches a new equilibrium. This condition takes place
when the binding energy requested for the formation of a new pair vanishes.

One of the most relevant quantities, which characterize a Cooper’s pair, is its
mean radius, the so-called “coherence length”. An easy but rough estimate can be
made, starting from the Heisenberg principle: the electrons, whose energy is close to
the Fermi energy within kg7, (where kp is the Boltzmann constant), are the most
involved in the process, and their kinetic momentum is approximately

kT

Ap ~ ,
(U

where vp is the Fermi velocity. The Heisenberg principle can be written, thus, as
follows

h hvp
Axr > — =~
T2 Ap T kgl
and so
€= a hvgp
* " “kpT,

where &y is the coherence length and a is a constant close to the unity. This quantity
is the analogous of the mean free-path of charge carriers in the non-local electrody-
namics of metals. Another fundamental quantity is the so-called “superconductive
gap” A (T): it is the minimum energy the single bounded electron needs to break
its pair.

Its value is equal to zero when T' = T, and increases rapidly below the threshold
until it reaches the value

E, =2A(0) = 3.528 kpT,

when T' — 0. Ej is, thus, the pair-breaking energy.



Appendix D

PL best-fit program.

D.1 Main program: Ganasto.

clear all
close all
cle
cd savedirectory
delete *.*
cd ..
nomedire="\Intensity’;
cd(nomedire);
nomefiler="\F1STObs+50Crisposta00000.dat’;
cd("E:\FotoLuminescenza\tempi\Ganasto old’);
afile=dir(nomedire);
nfiles=length(afile);
EAR=1; % EAR=0;
decisione=0 % 0= measured energies, 1=integral
temp=[];
fileind=[J;
for j=1:nfiles
nomefile=afile(j).name;
posmis=findstr(nomefile,’mis’);
l=isempty(posmis);
if 1==0
possegno=findstr(nomefile,’+’);
ll=isempty(possegno);
if l1I==0
templ=afile(j).name(possegno:posmis-2);
temp=[temp str2num(templ)];
fileind=[fileind j];
tit1=strtok(afile(j).name,’+’);
tit=tit1(3:length(tit1));
elseif ll==1
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possegno=findstr(nomefile,’-’);
templ=afile(j).name(possegno:posmis-2);
temp=[temp str2num (templ)];
fileind=[fileind j];
tit1=strtok(afile(j).name,’-’);
tit=tit1(3:length(tit1))

end

end

end

npunti=length(temp);
[temp_mis,riord]=sort(temp);
fileind=fileind (riord);
energia=temp mis’*1e-3;

if decisione==1

for kk=1:npunti;
nomefiled=[nomedire,’\’afile(fileind (kk)).name];
dt=dlmread (nomefiled,” ’);
d=dt(:,2);

t=dt(:,1)*1e9;

[maxf nmax]=max(d);
nb=fix(2/3*nmax);
bkg=mean(d(1:nb));

d=d-bkg;
dint(kk,1)=trapz(t,d);

end
[energia2,riord2]=sort(dint);
conversione=(sum(dint.*energia))/(sum(dint."2));
energia=energia2*conversione;
elseif decisione==0
[energia2,riord2]=sort(energia);
energia=energia2;

end

% Initializations

% starting values
tauOstart=10;

alpha0=4;

if EAR==1
bamma0=0.2;
end

t0=0.1;

if EAR==0

parl=[tauOstart alpha0];
elseif EAR==1
parl=[tauOstart alpha0];
end

for kk=1:npunti;
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nomefiled=[nomedire,’\’afile(fileind (kk)).name];
titl(:,kk)=cellstr(strcat(tit,” E = ’,num2str(energia(kk)),” mJ’));
titfig(:,kk)=...

cellstr(strcat(tit, E’ ,num2str(energia(kk)), mJ’,’ fig’));
% DATA

dt=dlmread (nomefiled,” ’);
sizedt=size(dt);

d=dt(:,2);

n=length(d);

t=dt(:,1)*1e9;

[maxf nmax]=max(d);
nb=fix(2/3*nmax);

bkg=mean(d(1:nb));

d=d-bkg;

dint(kk)=trapz(t,d);
dmax(kk,1)=max(d);
np=2"nextpow2(d);

d=[zeros(1,np-n) d’]’;

deltat=t(2)-t(1);
t=[t(1)-deltat*(np-n+1)+deltat*(1:np-n) t’]’;
11=nb+np-n;

12=np;

d=d/max(d);

halfl=find(d>max(d)/2);

half=half1(1);
tshd=t(half-1)+(t(half)-t(half-1))/...
(d(half)-d(half-1))*(max(d)/2-d(half-1));
if abs(t(half)-tshd)<abs(t(half-1)-tshd);
tshift(kk)=t(half);

else

tshift (kk) =t (half-1);

end

dati(:,kk)=d;

end

rt=dlmread (nomefiler,’ ’);

tr=rt(:,1)*1e9;

r=rt(:,2);

[maxr nrmax]=max(r);
nb=fix(2/3*nrmax);

bkg=mean(r(1:nb));

r=r-bkg;

if abs(tr(2)-tr(1)-(t(2)-t(1)))>1e-10
msgbox(’Attenzione: la base dei...

tempi della funzione risposta e dei dati...
sono diversi’’ ERRORE’);

return
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end

if n>length(r)

r=[r’ zeros(1,n-length(r))’;
elseif n<length(r)
msgbox(’Attenzione: gli intervalli...
temporali della funzione risposta e...
dei dati sono diversi’, ERRORE);
return

end

r=[zeros(1,np-n) r']’;

[maxr nrmax]=max(r);

r=r/maxr;

halfl=find(r>max(r)/2);
half=half1(1);
tshr=t(half-1)+(t(half)-t (half-1))/...
(r(half)-r(half-1))*(max(r) /2-r(half-1));
r=[r(nrmax:np)’ r(1l:nrmax-1)’]’;

tshiftr=0;

dati=dati(:,riord2);

tshift=tshift(riord2);

titl=titl(riord2);

titfig=titfig(riord2);

dint=dint(riord2);

dmax=dmax(riord2);

% CALLING OF THE FIT PROGRAM Gfitflsto
[par,depar,c_mat,dec,chi2,teom,teolm, teo2m,tshiftnew]=...
Gfitflsto(energia,dati,r,t,tshift,...
tshiftr,11,12,tit] titfig, parl,t0,EAR);
chi2s=num2str(chi2);

tau0=par(1);

tau0s=num2str(tau0);

alpha=par(2);

alphas=[num2str(alpha)];

if EAR==

bamma=0

end

cl=c_mat(1,:)’;

c2=c_mat(2,:)’;

pcent=.2;

figure(npunti+1)

plot(energia, c¢1.*dmax,’0:’)

xlabel(’energy (mJ)’)

ylabel(’cl * dmax - coeff ricerca’)

title(strcat(’ \chi~2 = ’,chi2s,” \tau_0 =...

",tau0s,” ns \alpha =’,alphas))

axis([0 max(energia)+max(energia)*pcent O...
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max(cl.*dmax)+max(cl.*dmax)*pcent));
figure(npunti+2)
plot(energia, ¢2.*dmax,’0:”)
xlabel(’energy (mJ)’)
ylabel(’c2 * dmax - coeff exp’)
title(strcat(’ \chi~2 = ’,chi2s,” \tau 0 =...
",tau0s,” ns \alpha =’ alphas))
axis([0 max(energia)+max(energia)*pcent 0...
max(c2.*dmax)+max(c2.*dmax)*pcent));
figure(npunti+3)
plot(energia, dint,’o:’)
xlabel(’energy (mJ)’)
ylabel("Integral’)
title(strcat(’ \chi~2 = ’,chi2s,” \tau_0 =...
’;tau0s,” ns \alpha =’ alphas))
axis([0 max(energia)+max(energia)*pcent 0...
max(dint)+max(dint)*pcent]);
figure(npunti+4)
plot(energia, dmax,’o:")
xlabel(’energy (mJ)’)
ylabel"Maximum’)
title(strcat(’ \chi~2 = ’,chi2s,” \tau_0 =...
’,tau0s,” ns \alpha =’ alphas))
axis([0 max(energia)+max(energia)*pcent O...
max(dmax)+max(dmax)*pcent]);
figure(1000)
title(strcat(tit,” \chi~2 = ’,chi2s,” \tau_0...
=’ tau0s,” ns \alpha =’ alphas))
figure(1001)
title(strecat(tit,” \chi~2 = ’,chi2s,” \tau_O0...
= ’tau0s,” ns \alpha =’,alphas))
cd savedirectory
save results
saveas(npunti+1, ’cl.fig’)
saveas(npunti+2, ’c2.fig’)
saveas(npunti+3, ’integral.fig’)
saveas(npunti+4, maximum.fig’)

(1000, ’global.fig”)
saveas(1001, ’semiloglobal.fig’)
cd ..

saveas

D.2 First function: Gfitflsto.

function [par,depar,c_mat,dec,chi2...
,beom,teolm,teo2m,tshiftnew|=...
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fitflsto(energia,dati,r,t,tshift,...
tshiftr,11,12,tit] titfig, parl,t0,EAR);

% Initialization

i=sqrt(-1);
colors="bgrcmykbgrcmykbgrecmyk’;
sized=size(dati);

n=sized(1);

npunti=sized(2);

dt = t(2)-t(1);

deomega=2%pi/(n*dt);
om=((1m/2+1)-1)*deomega;

rf=fft(r);

aggiustamenti=10;

while aggiustamenti>0

% FIT PROGRAM CALL
options=optimset(’Display’, Final’,...
"TolX’,1e-6,"TolFun’,1e-11,...
"MaxFunEvals’,10000,"MaxIter’,10000);
par=fminsearch(’Gchi2sto’,parl,...
options,n,11,12,t...

,tshift energia,dati,rf,tshiftr,t0,EAR);
last=length(par);

tau0=par(1);

alphaO=par(2);

if EAR==

bamma=0;

end

for kk=1:npunti
theta=(1+sign(t-t0-tshift(kk)+tshiftr+dt*1e-9))/2;
if EAR==0
flnorm=theta./(1+energia(kk)*alpha0*...
(t-t0-tshift (kk)+tshiftr)).~2;
finorm=(theta.*exp(-2*(t-t0-tshift(kk)+tshiftr) /...
tau0))./(1+energia(kk)*alpha0*tau0*...
(1-exp(-(t-t0-tshift (kk)+tshiftr) /tau0))). " 2;
elseif EAR==
finorm=(theta.*exp((-t+t0+tshift (kk)-tshiftr)/...
tau0)).*(1./(14-energia(kk)*alpha0*...
(t-t0-tshift (kk)+tshiftr)).~ (bamma+1));
end

finorm{=fft(flnorm);

flnormfr=rf. *flnormf;
flnormr=real(ifft(lnormfr));

if EAR==0

flexpl=theta.*...

exp((-t+t0-+tshift (kk)-tshiftr) /tau0);
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elseif EAR==1

flexpl=(theta.*...
exp((-t+t0-+tshift(kk)-tshiftr) /tau0)).*...
(1./(14energia(kk)*alphaO*...
(t-t0-tshift (kk)+tshiftr)). ~ (bamma));
end

flexpf1=fft(flexpl);

flexpf=rf.*flexpfl;
flexp=real(ifft(flexpf));

A(:,1)=flnormr;

A(:,2)=flexp;
c=A(11:12,:)\dati(11:12,kk);

teo=A*c;

teom(:,kk)=teo;

chiquadro mat(kk)=((norm(teo(11:12)...
-dati(11:12,kk))) ~2);

¢_mat(:kk)=c;

teol=c(1)*flnormr;

teolm(:,kk)=teol;

teo2=c(2)*flexp;

teo2m(:,kk)=teo2;

end

chiquadro=sum(chiquadro _mat)/...
(npunti*(12-114+-1-length(c))-last);
depar=zeros(last,1);

dec=0;

chi2=chiquadro;

tshiftold=tshift;

for kk=1:npunti

d=dati(:,kk);

halfl=find(d>max(d)/2);
half=half1(1);
tshd=t(half-1)+(t(half)-t(half-1))/...
(d(half)-d(half-1))*...
(max(d)/2-d(half-1));

teo=teom(:,kk);
halfl=find(teo>max(d)/2);
halfteo=half1(1);
tshdteo=t(half-1)+(t(half)-t(half-1))/...
(teo(half)-teo(half-1))*...
(max(teo)/2-teo(half-1));
Dt=tshd-tshdteo;

tshift(kk)=tshift (kk)+dt*round(Dt/dt);
end
aggiustamenti=length(find([tshiftold-tshift]))
end
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for kk=1:npunti
teol=teolm(:,kk);
teo2=teo2m(: kk);
teo=teom(:,kk);

figure(kk);
plot(t,dati(:,kk),” .1 t,te0l, ...
-b’jt,te02,’-m’ t,teo,-k’);
legend(’data’, ’bimoulecular’; ...
‘unimoulecular’, "best fit’)
xlabel("Time (ns)’);
ylabel(’Normalized Signal’);
tit=tit] (Ick);
titolfig=char(titfig(kk));
title(tit);

t1=t-tshift(kk);

figure(1000)
plot(t1,dati(:,kk)+(npunti-kk)*.3,”.r" t1,...
teo+(npunti-kk)*.3,”-k’);
hold on

xlabel(’t (ns)’);
ylabel(’signal’);

warning off

figure(1001)

semilogy (t1,dati(:,kk),strcat(’.’,colors(kk))...
b1, teo,streat (- colors(kk)));
hold on

xlabel(’t (ns)’);
ylabel(’signal’);

warning off

cd savedirectory

saveas(kk, titolfig)

cd ..

close(kk)

end

tshiftnew=tshift;

return

D.3 Second function: Gchi2sto.

function chiquadro=...
chi2sto(par,n,11,12,t,tshift,energia,...
dati,rf,tshiftr,t0,EAR)
sized=size(dati);
npunti=sized(2);
last=length(par);
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tau0=par(1);

alphaO=par(2);

if EAR==

bamma=0;

end

dt=t(2)-t(1);

for kk=1:npunti
theta=(1+sign(t-t0-tshift(kk)+tshiftr+dt*1e-9))/2;
if EAR==0
flnorm=theta./(1+energia(kk)*alpha0*...
(t-t0-tshift (kk)-+tshiftr)). ~2;
flnorm=(theta.*exp(-2*(t-t0-tshift (kk)+tshiftr) /tau0)...
)./ (1+energia(kk)*alpha0*tau0*...
(1-exp(-(t-t0-tshift (kk)+tshiftr) /tau0))). " 2;
elseif EAR==1 flnorm=(theta.*...
exp((-t+t0-+tshift (kk)-tshiftr) /tau0)...
).*(1./(1+energia(kk)*alphaO*...

(t-t0-tshift (kk)+tshiftr)). ~ (bamma+1));
end

flnormf=fft(flnorm);

flnormfr=rf.*flnormf;
flnormr=real(ifft(flnormfr));

if EAR==
flexpl=theta.*exp((-t+t0+tshift(kk)-tshiftr) /tau0);
elseif EAR==
flexpl=(theta.*exp((-t+t0+tshift (kk)-tshiftr)...
/tau0)).*(1./(14energia(kk)*alpha0*...
(t-t0-tshift (kk)+tshiftr)). ~ (bamma));

end

flexpf1=fit(flexpl);

flexpf=rf.*flexpfl;

flexp=real (ifft(flexpf));

A(:,1)=flnormr;

A(:,2)=flexp;

c=A(11:12,:)\dati(11:12,kk);

teo=A*c;

chiquadro_mat(kk)=((norm...
(teo(11:12)-dati(11:12,kk))) ~2);

end

chiquadro=sum(chiquadro _mat)/...
(npunti*(12-11+1-length(c))-last);



Conclusions.

As always happens, the final point of a scientific investigation can be regarded as
the starting point of the subsequent one. This is true in our case too. Some results
have been achieved by the present work, and many prospects arise from them. In
this final section, we would like to stress both of them. Let us, here, summarize
our principal experimental results and the possible future developments of the two
experimental tecniques we performed.

For what concerns the Coherent Raman Spectroscopy experiment, we would like
to emphasize that the presence of a significant “reflected” CRS signal, without dam-
aging the sample, should not be given for granted. We demonstrated that this route
can be followed. The use of the “reflection” geometry can avoid many experimental
problems, which are mostly related to the substrate contribution and the phase-
matching condition. These were the main difficulties in the past attempts to use
this technique on HTCS. Besides this, the investigation of the Cuprate supercon-
ductors by means of the CRS has revealed to be a very powerful tool in order to
study the coherent spectrum of phonons and their relative phases. Although we were
able to interpret our data within a simple semiclassical model, a deeper theoretical
investigation about the measured values of the phonon phases should be done, in
order to achieve a better understanding of the underlying physics. The possibilities
of this spectroscopic technique should be further investigated, in particular in the
superconductive phase, since the role of phonons in the phenomenon of the high
temperature superconductivity is far from being understood. The CRS technique
could be also useful in order to study many other materials in the wide class of
the high-correlated electron systems. However, this is not the unique advantage of
the CRS. Our work opens the route to the measurement of a selected quasiparti-
cle lifetime, which is quite difficult to manage with other optical techniques. This
time-resolved study may help clarifying the coupling mechanism at the root of the
Cooper’s pair formation and it still remains the main goal of our work.

If the results presented here can be regarded, without doubt, as a preliminary
work, we are nonetheless confident that the main difficulties have been overcome and
that the CRS apparatus we developed will be able to give an invaluable information
about the fundamental physics of cuprate superconductors.

For what concerns the time-resolved photoluminescence experiment on strontium
titanate, we obtained many quite strict experimental results.

First of all, we would like to stress that the photoinduced high charge-density
regime we have studied can be generated and probed without any sample damage,
thus opening the way to several other possible investigations of this interesting
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regime. Our results set the upper bandwidth limit of STO-based emitting devices
above 1 GHz, opening some interesting prospects on the fabrication of integrated
optoelectronic devices based on titanates, where the growth of epitaxial hetero-
structures allows integrating emitting elements with tunable filters, optical switches,
and ultrawide bandwidth modulators.

Moreover, we found a non-common recombination kinetics: the time-resolved
luminescence decay is well explained by assuming the presence of two separate decay
channels, one associated with a direct recombination of unbound mobile electron-
hole charge carriers and the other with the recombination of bound electron-hole
pairs. Very strong overall similarities were found in the emission spectrum, the yield
and the decay dynamics of the photoluminescent response of pure, oxygen deficient
and Nb-doped STO. This results point to a very minor role of donors and doping
induced electrons both on the states involved in the transition, and at least on the
most relevant decay mechanism, i.e., the bimolecular one.

Finally, an interesting behaviour of the photoluminescence spectrum at different
temperatures was found, and its correct interpretation will help choosing between
several possible recombination models.

The microscopic recombination mechanisms taking place in this system remain
uncertain, although the polaron character of the charge carriers and the presence of
intrinsic crystal defects are both likely to be involved in these processes.

The renewed attention on an old and possibly not-so-well-known compound, such
as STO, can be, thus, justified since many electronic features of this “evergreen”
material still have to be fully explained. We hope to have contributed to their
understanding as much as we could.
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