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Introduction

Do I Dare disturb the universe?

The Love Song of J. Alfred Prufrock
T. S Eliot

Why the automorphic universe

The automorphic universe could be called in alternative ways the arithmetic
universe or the chaotic universe [130]. We will try to explain both attributes
in the following chapters. The word automorphic goes to add to an already
established property of the universe, i.e. its chaotic behavior. The goal of
this work is to explain how automorphic properties and chaotic ones are
intimately related. We hope that the adjective automorphic with which we
like describing our universe helps in unrevealing it.

Plan of the thesis

This work is divided in two main parts.
The first part deals mostly with mathematical aspects. The first chapter

describes classical and quantum dynamical systems, in particular geodesic
flows on the hyperbolic plane, the Selberg trace formula, and other topics
like quantum chaos and quantum unique ergodicity. This chapter should
be read in parallel with Appendices A and B. The second chapter contains
an overview of Kac-Moody algebras and some results I derived about the
hyperbolic Kac-Moody algebra HA(1)

1 and the primitive periodic orbits inside
the fundamental domain of its Weyl group.
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The second part deals mostly with applications to physics, in particular
we review the known fact the dynamics of Einstein equations close to the
cosmological singularity shows a chaotic behavior which can be studied in
many similar ways (we describe some of them). We focus on the billiard
representation for this dynamics, give its classical properties and carry on a
quantum analysis using general arguments valid for quantum billiards. The
result is that the wave function of the early universe is a certain automorphic
L-function, specifically a Maass cusp form for the modular group. Some
speculations are given together with the Conclusions.

Precise statements are given in each chapter; finally, some comments and
a hopefully helpful bibliography are included at the end of each chapter. The
last appendix explains the picture on the front cover.

Disclaimer : All the statements which sound like “this is new” implicitly
contain the expression “modulo ever-present ignorance”.

Part of this work has been done during my visits at ULB under the
supervisions of F. Englert, M. Henneaux, L. Houart, and at IHES under the
supervision of T. Damour. I wish to express my gratitude to all of them and
especially to my supervisor prof. A. Sciarrino for giving me the freedom to
study many different topics, the freedom to think and to be wrong.
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Part I

Mathematical Structures
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Chapter 1

Chaotic Dynamical Systems

One is struck by the complexity of
this figure that I am not even
attempting to draw. Nothing can
give us a better idea of the
complexity of the three-body
problem and of all the problems of
dynamics in general
. . .

Collected Works
H. Poincaré

In this chapter we review standard facts about chaotic dynamical systems,
focusing on the ones which have the highest degree of chaos (Anosov flows),
especially geodesic and billiard flows. We deal also with the quantum version
of them.

1.1 Ergodicity, Mixing, Hyperbolicity and All
that

Here we briefly review basic notions of chaos theory, an important part of
physics which for many years was just a prerogative of mathematicians under
the less fancy name of ergodic theory (the branch of mathematics which
studies transformations which preserve some measures). This theory strongly
uses concepts from measure theory and probability theory. For more details
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and bibliography see the last section of this chapter.
Let (X,B) a measurable space. A transformation T : X → X is said to be
measurable if T−1(B) ∈ B for every B ∈ B. A transformation T : X → X is
called an automorphism if it is a bijection and both T, T−1 are measurable.
Positive iterations {T n}, n ≥ 0, of a measurable transformation T make a
semi-group.; all iterations {T n}, n ∈ Z, of an automorphism make a group.
For any point x ∈ X the sequence T nx is called the trajectory or the orbit of
x. Measurable transformations with continuous time (flows) will be described
later. Given a measurable space (X,B), let us denote by M(X) the set of
all probabilities (that is normalized to 1) measures on it. It is a convex set,
as for any µ, ν ∈ M(X) and 0 < p < 1 we have pµ + (1 − p)ν ∈ M(X).
A measurable transformation T induces a map (which we still denote by
T ) T : M(X) → M(X) defined by (Tµ)(B) = µ(T−1B) (sometimes it is
denoted by T∗). We say that T preserves a measure µ or that µ is T−invariant
if Tµ = µ. If, in addition, T is an automorphism, then Tµ = µ is equivalent
to T−1µ = µ , so that T and T−1 preserve the same measures (eventually
more than one). Let us also denote by MT (X) the set of all T−invariant
probability measures; it is still a convex subset of M(X) 1.

1Let us only enunciate some properties of the setM(X). If µ1 and µ2 belong toM(X),
then

- µ1 is absolutely continuous with respect to µ2 (and we write µ1 << µ2) if ∀B ∈ B,
µ2(B) = 0 ⇒ µ1(B) = 0

- µ1 and µ2 are equivalent (µ1 ∼ µ2) if µ1 << µ2 and µ2 << µ1, that is if they have the
same sets of zero measure

- µ1 and µ2 are singular (µ1⊥µ2) if ∃B ∈ B such that µ1(B) = 0 and µ2(B) = 1

If µ1 << µ2, then the Radon-Nikodym theorem says that there exist f ∈ L1(X,B, µ2)
such that µ1(B) =

∫
B

fdµ2 ∀B ∈ B. In this case one writes f = dµ1
dµ2

.
Note also that M(X) is not empty, in fact it always contains the Dirac measure

δx(B) =
{

1 x ∈ B
0 x /∈ B

(1.1)

concentrated on a single point. If X is a compact topological space, we can define more
structures for M(X). First, we define the support of µ ∈M(X) (denoted supp(µ)) to be
the smallest closed set C with µ(C) = 1.

For example, let us consider the unit interval with B the usual Borel σ−algebra. Let
µ1 the usual Lebesgue measure and µ2 = δ0, the Dirac measure concentrated on the point
x = 0. These two measures are singular, in fact for B = (0, 1] µ1(B) = 1, µ2(B) = 0.
Moreover, supp(µ1) = [0, 1] and supp(µ2) = {0}.
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A measure µ is T−invariant iff for any measurable function f : X → R
we have ∫

X

f ◦ T dµ =

∫

X

f dµ (1.2)

that is if one integral exists, so does the other and they are equal. More
generally, for any µ ∈M(X) its image µ1 = Tµ is characterized by

∫

X

f ◦ T dµ =

∫

X

f dµ1 (1.3)

A measurable transformation T : X → X induces a linear map UT on the
space of measurable functions f : X → R defined by

(UT f)(x) = (f ◦ T )(x) = f(T (x)) (1.4)

For any T−invariant measure µ and p > 0 the map UT : Lp(X,µ) → Lp(X,µ)
preserves the norm || · ||p, and in the case p = 2 it preserves also the scalar
product in L2(X, µ). If T is an automorphism, then UT is a bijection, thus a
unitary operator on L2(X, µ) (Koopman operator).

In the following T will always denote a measurable transformation T
(sometimes an automorphism) preserving a measure µ ∈M(X). The quadru-
ple (X,B, T, µ) is called a measure-preserving transformation or a (time-
discrete) dynamical system.

The fist result in chaos theory is perhaps Poincaré’s recurrence theorem
2. Let T preserve a measure µ ∈MT (X) and µ(A) > 0 for some measurable
set A ⊂ X. Then for µ−almost any point x ∈ A we have

T ni(x) ∈ A for some sequence n1 < n2 < · · · (1.5)

In this situation, the map

TA(x) := T nA(x)(x) , nA(x) = min{n ≥ 1 : T n(x) ∈ A} (1.6)

We can define a topology on M(X), called the weak∗ topology, by µn → µ as n → ∞
⇔ ∫

Fdµn →
∫

Fdµ as n →∞, for some test functions, for example ∀F ∈ C0(X). With
this topology, M(X) is a compact topological space. The weak∗ topology will be used in
the section dedicated to the quantum unique ergodicity problem.

2The sentence at the beginning of this chapter alludes to Poincaré’s theorem about
eternal returns, and it expresses how complicated the evolution of a dynamical system
may be.
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is defined a.e. on A and is called the Poincaré return map. It preserves the
conditional measure µA on A defined by µA(B) = µ(A ∩B)/µ(A).

A measurable set B is T−invariant if T−1B = B; if in addition T preserves
a measure µ, then a measurable set B is said to be T − invariant (mod 0)
if T−1B = B (mod 0). In this case, there exist a T − invariant set B̃ such
that B̃ = B (mod 0). A function f : X → R is T−invariant if UT f = f ,
i.e. f ◦ T = T . In this case, f is constant on every trajectory of the map T .
Again, if T preserves a measure µ, then we say that f is T−invariant (mod 0)
if f(x) = f(T (x)) for µ−a.e. point x ∈ X. Then there exist a T−invariant
function f̃ such that f̃ = f (mod 0).

Let us come now the most important examples of measures. A measure µ
is called ergodic if it is T−invariant (µ ∈MT (X)) and if for any T−invariant
set B ⊂ X we have µ(B) = 0 or µ(B) = 1. Equivalently, for any T−invariant
(mod 0) set B ⊂ X we have µ(B) = 0 or µ(B) = 1. A T−invariant measure
µ is ergodic iff any T − invariant function f : X → R is a.e. constant,
i.e. µ(x : f(c) = c) = 1 for some c ∈ R. Equivalently, µ is ergodic iff any
T−invariant (mod 0) function f is a.e. constant, i.e. µ(x : f(c) = c) = 1 for
some c ∈ R. We usually say that T is ergodic if it is clear from the context
which invariant measure is associated with T . A T−invariant measure is
ergodic iff it is an extremal point in the convex setMT (X). Any two distinct
ergodic measures µ, ν are mutually singular (orthogonal). If a measurable
transformation T has a unique invariant measure µ, this will be automatically
ergodic. Then T is said to be uniquely ergodic.

Let us now introduce the notion of isomorphism between dynamical sys-
tems. Two measure-preserving transformations (X1,B1, T1, µ1) and (X2,B2, T2, µ2)
are said to be isomorphic if for each i = 1, 2 there is a Ti−invariant set
Bi ⊂ Xi of full µi measure and a bijection φ : B1 → B2 such that (a) φ pre-
serves measurable sets and measures, and (b) φ preserves the dynamics, i.e.
φ◦T1 = T2◦φ on B1. The map φ is called an isomorphism. As usual one does
not distinguish between isomorphic dynamical systems, and we will describe
many important properties invariant under isomorphism. For example, µ1 is
ergodic iff µ2 is ergodic.

Let us now come to the first important result in ergodic theory, which
dates back to Birkhoff, about the equality between spatial and time averages
in certain cases of physical interest. Given a measurable function f : X → R,
we can think of it as an observable (physical) quantity. For every x ∈ X, the
sequence {f(T nx)} of values of f on the trajectory of x plays an important
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role, it is the value of f at time n. then {f(T nx)} can be regarded as a time
series. Its partial sums

Sn(x) = f(x) + f(TX) + f(T 2x) + · · ·+ f(T n−1x) (1.7)

are called ergodic sums and the limit

f+(x) = lim
n→∞

1

n
Sn(x) (1.8)

if it exists, is called the forward time average of the observable f along the
orbit of x. If T is an automorphism, one can define also the backward time
average

f−(x) = lim
n→∞

1

n
S−n(x) (1.9)

where S−n(x) = f(x) + f(T−1x) + f(T−2x) + · · · + f(T−n+1x). We have
now the ingredients to state Birkhoff ergodic theorem. Let (X,B, T, µ) be a
measure-preserving transformation and f ∈ L1(X, µ). Then

• for almost any point x ∈ X the limit f+ exists

• the function f+(x) is T−invariant, more precisely: if f+ exists, then
f+(T nx) exists for all n and f+(T nx) = f+(x)

• f+ is integrable (f+(x) ∈ L1(X, µ)) and
∫

X
f+dµ =

∫
X

fdµ

• if µ is ergodic, then f+(x) is a.e. constant and its value is
∫

X
fdµ

If T is an automorphism, then the limit f−(x) exists as well and the two
limits coincide a.e., f+(x) = f−(x) (mod 0). The integral

∫
X

fdµ is the space
average of the observable f . The last part of the theorem (that is when µ
is ergodic) asserts the time averages are equal to the space averages. The
theorem admits a generalization (Lp Von Neumann ergodic theorem): for
every p ≥ 1 and f ∈ Lp(X, µ) we have ||Sn/n− f+||p → 0 as n →∞. A first
application of the ergodic theorem is the following. For any measurable set
A ⊂ X and x ∈ X, define the quantity

rA(x) := lim
n→∞

]{0 ≤ i ≤ n− 1 : T i(x) ∈ A}
n

(1.10)

called the asymptotic frequency of visits (returns) of the point x to the set A
(when it exists). It immediately follows from the ergodic theorem that rA(x)
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exists for a.e. x ∈ X (in this case, the function f is of the characteristic
function of the set A, rA). Moreover, rA(x) > 0 for a.e. x ∈ A by Poincaré
recurrence theorem. If µ is ergodic, then rA(x) = µ(A) for a.e. x ∈ X.
Hence the orbit of a point x ∈ X spends time in the set A proportional to its
measure µ(A). In this sense, the ergodic measure µ describes the asymptotic
distribution of almost every orbit {T nx}, n ≥ 0, in the space X.

Given two measurable sets A and B, ergodicity of a transformation T can
be also reformulated as

lim
n→∞

n−1

n∑

k=1

µ(A ∩ T kB) = µ(A)µ(B) (1.11)

which means that after a large number of applications of the mapping T
moving B forwards in time, one approaches the statistical independence on
the average. Ergodicity is not a very strong statistical property: it just
indicates that a measurable set of a system is visited by a trajectory with a
frequency proportional to its measure. Ergodic systems do not need to have
sensitive dependence on initial conditions.

Let us now state a stronger property than ergodicity. We say that a
measure-preserving transformation T : X → X is mixing or strongly mixing
if for all pairs of measurable sets A,B ⊂ X

lim
n→∞

µ(T−nA ∩B) = µ(A) µ(B) (1.12)

i.e. if the events T−nA and B become asymptotically independent as n →∞.
Note that x ∈ T−nA is equivalent to T n(x) ∈ A, i.e. we are speaking about
the events x ∈ B (characterizing x at time 0) and T n(x) ∈ A (character-
izing the image of x at time n). Thus mixing is commonly interpreted as
asymptotic independence of the distant future from the present, but without
averaging. Mixing says that if we fix B and let A evolve in time, then A will
spread out and mix through the entire phase space , eventually intersecting
the fixed set B. As the mixing become more thorough, any part of B will
locally resemble the whole space and memory of the initial conditions will
eventually be lost. Mixing is also equivalent to

lim
n→∞

〈f · (g ◦ T n)〉 = 〈f〉 〈g〉 ∀f, g ∈ L2(X, µ) (1.13)

where 〈f〉 =
∫

X
fdµ. Given two observable functions f and g, the quantity

Cf,g(n) = 〈f · (g ◦ T n)〉 − 〈f〉 〈g〉 (1.14)
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is called the correlation between f and g at time n (it the covariance of the
random variables f and g ◦ T n). Mixing is equivalent to the convergence of
correlations to zero, Cf,g(n) → 0, a property called the decay of correlations.
A map T is weak mixing (with respect to an invariant measure µ) if for all
pairs of measurable sets A,B ⊂ X

lim
n→∞

1

n

n−1∑
i=0

∣∣µ(T−iA) ∩B − µ(A)µ(B)
∣∣ = 0 (1.15)

In terms of correlations, this is equivalent to

lim
n→∞

1

n

n−1∑
i=0

|Cf,g(n)| = 0 (1.16)

There is also another notion of mixing (multiple mixing) which we do not
really need here. Mixing properties are invariant under isomorphism. It
is clear that strong mixing implies weak mixing (but not viceversa), weak
mixing implies ergodicity (but not viceversa). A graphic illustration of the
properties due originally to Gibbs envisages a fluid mixture of 10% rum and
90% cola (gin and martini in the book by Arnold and Avez [4], but I prefer
rum and cola). If now one considers the proportion of rum in any fluid
volume, then an ergodic cocktail ensures this proportion is 10% on the time
average. A weakly mixed cocktail ensures that this proportion is eventually
10% except on occasional, infrequent moments, while a strongly mixed cocktail
has the property that after some time the proportion of rum is always 10%.
Mixing systems tend to an equilibrium as time goes to ∞.

Let us give now some examples of measure-preserving transformations.
Perhaps the most popular one is the a circle rotation. Let X = R/Z be
the unit 1-torus, or a circle of length one, with a cyclic angular coordinate
x ∈ [0, 1] with the points 0 and 1 identified. The rotation through an angle
α is defined by

T (x) = x + α (mod 1) (1.17)

It preserves the standard Lebesgue measure m on X. If α = p/q is rational,
then every point x ∈ X is periodic with the same period q. If α is irrational,
then the trajectory of any x is dense and uniformly distributed in X, i.e. for
any A ⊂ X rA(x) = m(A). In this case the Lebesgue measure is ergodic but
not mixing (not even weak mixing). Finally, m is the only invariant measure
for T , hence T is uniquely ergodic. The higher-dimensional generalization
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Figure 1.1: A mixed cocktail! Figure from [4], ϕnA is what we call T nA.

of the circle rotation is the linear translations of tori. Let X = Rd/Zd be
the unit d−torus with angular coordinates x = (x1, . . . , xd) ∈ [0, 1]d (d ≥ 2).
The translation of X along a fixed vector a = (a1, . . . , ad) ∈ Rd is defined by

Ta(x) = x + a (mod 1) (1.18)

The translation Ta is ergodic iff the components (a1, . . . , ad) of the vector a
are rationally independent, i.e.

m0 + m1a1 + · · ·+ mdad 6= 0 (1.19)

for any integers m0,m1, . . . ,md ∈ Z unless m0 = m1 = · · · = 0. The map Ta
is never weakly mixing. So in dimensions d ≥ 2, the translations of the tori
are less chaotic than the circle rotations in d = 1.

A still more powerful random property is the Bernoulli shift. This de-
scribes systems which are completely random. Roughly, their phase space
can be partitioned into n sections each labelled by some ki and having a
probability pi of rising during the evolution. If the system evolves at discrete
intervals of time, then the dynamics are coded by a a random sequence of ki.
The simplest example would be a tossing coin with two possible outcomes

13



k1, k2 and p1 = p2 = 0.5. Let us formalize this concept and define an impor-
tant object for our work, the so-called symbolic space. Let S = {1, . . . , r}
a finite alphabet whit r letters. Let Σ+ = Σ+,r = SZ+ denote the space
of infinite sequences of letters; a point ω ∈ Σ+ is a sequence ω = {ωn}∞n=0

with ωn ∈ S for each n ≥ 0. Define also Σ = Σr = SZ, the space of double
infinite sequences of letters, i.e. Σ consists of sequences ω = {ωn}+∞

n=−∞ with
ωn ∈ S for any n ∈ Z. The spaces Σ+ and Σ are examples of symbolic spaces
(the suffix r to remind the cardinality of our alphabet S is suppressed for
brevity). We equip the set S with the discrete topology, where each subset
of S is open, and the spaces Σ+ and Σ with the product topology. The
corresponding Borel σ−algebras are denoted by B+ and B. The (left) shift
homeomorphism σ : Σ → Σ is defined by ω′ = σ(ω) with ω′i = ωi+1. Simi-
larly, the (left) shift σ+ : Σ+ → Σ+ is defined by ω′ = σ+(ω) with ω′i = ωi+1

for all i ≥ 0; it is a continuous r−to-1 map on Σ+. Let us define the mea-
sures preserved by these transformations. Let µ0 be a probability measure
on the finite set S (different from a Dirac measure). Denote by µ+ the cor-
responding product measure µ

Z+

0 on Σ+ and by µ the corresponding product
measure µZ0 on Σ. The measure space (X,B, µ) corresponds to a sequence
of independent identically distributed random variables each of which takes
finitely many values, a classical object of study in probability theory. The
shifts σ+ and σ preserve respectively the measures µ+ and µ. Both shifts
are ergodic and mixing. The dynamical system (X,B, σ, µ) is said to be a
Bernoulli shift. This is completely characterized by the measure µ0 on S,
once we fix the number r of letters and the shift transformations.

Given an abstract measure-preserving transformation (X,B, T, µ), one
can associate to it a symbolic representation. Let X = A1 ∪ · · · ∪ Ar a finite
partition of X into disjoint measurable subsets. For every point x ∈ X, we
can define its itinerary

ω(x) = {ωn}+∞
n=0 ∈ Σ+ : T n(x) ∈ Aωn ∀n ≥ 0 (1.20)

X =
⋃

i Ai is said to be a generating partition if distinct points have dis-
tinct itineraries. Then the map φ : X → Σ+ defined by φ(x) = ω(x) is
one-to-one; it induces a measure µX = φ(µ) on Σ+ which is σ+−invariant.
The map φ is an isomorphism between the given system (X,B, T, µ) and
(Σ+,B+, σ+, µX), which is called the symbolic representation of the former.
If T is an automorphism, then the itinerary of x is defined by

ω(x) = {ωn}+∞
n=−∞ ∈ Σ : T nx ∈ Aωn ∀n ∈ Z (1.21)
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The same concept of generating partition applies, the map φ : X → Σ defined
by φ(x) = ω(x) is one-to-one and induces a measure µX = φ(µ) on Σ which is
σ−invariant, and again we obtain an isomorphism between (X,B, T, µ) and
(Σ,B, σ, µX). Finally, an automorphism T : X → X preserving a measure
µ is said to be Bernoulli (or have Bernoulli property or B-property) if it
is isomorphic to a Bernoulli shift. Equivalently, there is a finite generating
partition ξ = {A1, . . . , Ar} of X such that the corresponding symbolic rep-
resentation of T is a Bernoulli shift, i.e. the induced measure µX on Σ is the
product measure µZ0 we defined above (this is the main point).

There exist also in literature the notion of Kolmogorov automorphism
(or K-mixing transformation): this is a stronger notion of mixing but weaker
than Bernoulli property. In particular, Bernoulli property implies (K-property
which implies) mixing. In some known systems (in particular billiard flows)
it is also true that the K-property implies the B-property, but this is not true
in general. The K-property is invariant under isomorphisms.

To describe a system, it is useful to introduce some numerical quantities
which characterize its chaotic behavior. The first important concept is en-
tropy. Given a measure-preserving transformation (X,B, T, µ), the entropy
of a finite partition ξ = {A1, . . . , Ar} of X is given by

H(ξ) = −
r∑

i=1

µ(Ai) ln µ(Ai) (1.22)

with the convention 0 ln 0 = 0. We have 0 ≤ H(ξ) ≤ ln r, with the mini-
mum 0 attained on the trivial partition and the maximum ln r attained on
equipartitions, which are characterized by µ(A1) = . . . = µ(Ar) = 1/r. Since
the measure µ is T−invariant, the partition T−nξ = {T−nA1, . . . , T

−nAr}
has the same entropy, H(T−nξ) = H(ξ) for every n ≥ 1. It T is an automor-
phism, this is true for all n ∈ Z. The entropy of T with respect to a finite
partition ξ

h(T, ξ) = lim
n→∞

1

n
H

(
n−1∨
i=0

T−iξ

)
(1.23)

this limit always exists and is non-negative, indeed the sequence on the right
hand side decreases monotonically. Finally, the metric entropy of T is

h(T ) = sup
ξ

h(T, ξ) (1.24)
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where the supremum is taken over all finite partitions ξ of X. Note that this
entropy (also known as the Kolmogorov-Sinai entropy) has nothing to do with
the dynamical entropy (the macroscopic one), which evolves in time; given
the dynamical system, h(T ) is a fixed number, its range is 0 ≤ h(T ) ≤ ∞.
The metric entropy is invariant under isomorphisms, i.e. two isomorphic
dynamical systems have the same metric entropy (the converse is not true in
general, but it is true for Bernoulli shifts where the K-S entropy is a complete
invariant). We have h(T n) = nh(T ) for any n ≥ 1. If T is an automorphism,
then h(T n) = |n|h(T ) for every n ∈ Z, in particular h(T−1) = h(T ). An
automorphism is K−mixing iff its entropy is positive, h(T, ξ) > 0 for any
nontrivial finite partition ξ.

Let us now come to dynamical systems with continuous time. The sin-
gle transformation T (which counts the discrete time) is replaced by a one-
parameter group {St}, where each St is a measure-preserving transformation.
Given a measurable space (X,B), a dynamical system with continuous time
or a flow is a one-parameter family {St}t∈R of measurable transformations
St : X → X that satisfies two condition: (a) St+s = St ◦ Ss (group prop-
erty), S0 is the identity, (b) the map X × R → X defined by (x, t) → Stx
is measurable. For every point x ∈ X the set {Stx}, t ∈ R, is called the
orbit of x. In most of applications, X is a topological space and {Stx} is a
continuous curve for every x ∈ X. The flow preserves a measure µ ∈M(X)
if µ(St(A)) = µ(A) for all measurable subsets A ⊂ X and all t ∈ R. In
other words, µ is a common invariant measure for all the automorphisms St

included in the flow.
The previous properties of automorphisms extend to flows with some

trivial modifications. A measurable set B ⊂ X is invariant under a flow {St}
if B = StB for every t ∈ R. If the flow {St} preserves a measure µ, then a
measurable set B is said to be invariant (mod 0)under the flow if B = StB
(mod 0) for every t ∈ R. If B is invariant (mod 0), then there exists an
invariant set B̃ such that B̃ = B (mod 0). A function f : X → R is invariant
under {St} if f = f ◦ St for all t ∈ R. In this case, f is constant on every
orbit of the flow {St}. If {St} preserves a measure µ, then we say that a
function f : X → R is invariant (mod 0) under the flow if for every t ∈ R
we have f(x) = f(Stx) for µ−a.e. point x ∈ X. In that case there exists an
invariant function f̃ such that f̃ = f (mod 0).

A flow {St} is ergodic with respect to an invariant measure µ if any
{St}−invariant (mod 0) set A ⊂ X has measure 0 or 1. Equivalently, a
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flow {St} is ergodic if any invariant (mod 0) function f is a.e. constant,
i.e. µ(x : f(x) = c) = 1 for some c ∈ R. It turns out that if at least one
automorphism St in the flow is ergodic, then the whole flow {St} is ergodic.
Conversely, if the flow is ergodic, then the automorphism St is ergodic for all
but countably many t ∈ R.

Let us give the version of Birkhoff ergodic theorem for flows. Given a
measurable function f : X → R, its (forward and backward) time averages
are defined by

f±(x) = lim
T→±∞

1

T

∫ T

0

f(St(x)) dt (1.25)

Suppose as before that the flow preserves a measure µ and that f ∈ L1(X,µ).
Then

• for almost every point x ∈ X the above limits exist and f+(x) = f−(x)

• the function f±(x) is T−invariant, more precisely if f±(x) exists, then
f±(Stx) exists for all t ∈ R and f±(Stx) = f±(x)

• f± is integrable and
∫

X
f±dµ =

∫
X

fdµ

• if {St} is ergodic, then f±(x) is a.e. constant and its value is
∫

X
fdµ

A flow St : X → X is mixing with respect to an invariant measure µ if for
any A,B ⊂ X we have

lim
t→±∞

µ(A ∩ St(B)) = µ(A)µ(B) (1.26)

If a flow {St} is mixing, then every map St,t 6= 0, is also mixing. The flow
is a K-flow iff any map St, t 6= 0, is a K-automorphism. Finally, the flow is
Bernoulli (B-flow) if at least one automorphism St, t 6= 0, is Bernoulli (in
this case any other St is Bernoulli too). As in the discrete case, Bernoulli
property implies K-property, which implies mixing which implies ergodicity
(all of them are one-way implications).

The metric entropy of the map St of any flow {St} is a linear function of
time: h(St) = |t|h(S1). Thus the entropy of the flow is defined by h({St}) =
h(S1).

For an integrable Hamiltonian system {St}, h({St}) = 0; but the converse
is not true, i. e. a dynamical system with zero entropy is not necessarily
integrable.
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Generally, a dynamical system with positive metric entropy is chaotic, in
the sense that nearby trajectories in phase space diverge at an exponential
rate, contrary to what happens in integrable systems where the separation is
a power of time.

1.1.1 The Gauss map

With the term continued fraction we mean the “infinite” fraction

a0 +
1

a1 + 1
a2+ 1

a3+ 1
a4+···

(1.27)

where the ai are positive integers (a0 is allowed to be 0). Such a frac-
tion is also denoted by [a0; a1, a2, a3, . . .]. For the finite fraction we write
[a0; a1, a2, . . . , an], that is

a0 +
1

a1 + 1
a2+···+ 1

an−1+ 1
an

(1.28)

Thus, for example

[a0; a1, a2, . . . , an] = a0 +
1

[a1; a2, a3, . . . , an]
(1.29)

A continued fraction is not just a formal object, in fact it converges to a real
number. Namely,

u = [a0; a1, a2, . . .] = lim
n→∞

[a0; a1, . . . , an] (1.30)

= lim
n→∞

pn

qn

= a0 +
∞∑

n=1

(−1)n+1

qn−1qn

is absolutely convergent, because q0 = 1, q1 = a1, q2 ≥ 2 and generally
pk ≥ 2(k−2)/2, qk ≥ 2(k−2)/2 since an ≥ 1 for all n. By construction, we have

[a0; a1, a2, . . .] = a0 +
1

[a1; a2, . . .]
(1.31)
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We say that [a0; a1, . . . , ] is the continued fraction expansion for u, and u is
irrational. Conversely, for any irrational number u, this expansion always
exists and is unique (see below). The rational numbers

pn

qn

= [a0; a1, . . . , an] (1.32)

with coprime numerator and denominator, are called the convergents of the
continued fraction for u and provide very rapid rational approximations for
u. A continued fraction in which some of the digits are allowed to be zero
(but that is not allowed to end with infinitely many zeros) can always be
rewritten with digits in N.

Let X be the set of irrational numbers in the unit interval, X = [0, 1]\Q,
and define a map T : X → X by

T (x) =
1

x
−

⌊
1

x

⌋
(1.33)

where btc denotes the greatest integer less than or equal to t. In other words,
T (x) is the fractional part

{
1
x

}
of 1

x
. This map is called the Gauss map (see

the picture for the graph).

Figure 1.2: The Gauss map
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Gauss observed that T preserves a probability measure (Gauss measure)
on [0, 1] given by

µ(A) =
1

ln 2

∫

A

1

1 + x
dx (1.34)

for any measurable set A ⊆ [0, 1]. The connection with continued fractions
is the following. Fixed any x ∈ X and n ≥ 1, define the sequence of natural
numbers {an} = {an(x)} by

1

1 + an

< T n−1(x) <
1

an

(1.35)

or equivalently

an(x) =

⌊
1

T n−1x

⌋
∈ N (1.36)

Then for any irrational x in [0, 1], the sequence {an(x)} gives the continued
fraction expansion of x, i.e.

x = [a0(x); a1(x), a2(x), . . .] (1.37)

It turns out that the Gauss measure is equivalent to the usual Lebesgue mea-
sure m on the unit interval (i.e. they have the same sets of zero measure),
and moreover T is ergodic respect to µ. The Gauss map belongs to the class
of so-called expanding transformations of the interval [0, 1], that is transfor-
mations T : x → Tx = f(x) with |f ′(x)| > 1 on any interval between two
discontinuities. For such expanding transformations, one can show that the
metric entropy is given by

h(T ) =

∫ 1

0

ln |f ′(x)| ρ(x) dx (1.38)

where ρ(x) is the density of the invariant measure, the one preserved by T
(in our case, the Gauss measure). The Gauss map has a countable number
of discontinuities (which form a set of zero measure), but the above formula
is still valid, so its metric entropy is

h(TGauss) =
2

ln 2

∫ 1

0

| ln x|
1 + x

=
π2

6 ln 2
(1.39)

The Gauss map is isomorphic to a Bernoulli shift with the same metric
entropy, and in general expanding transformations possess the property of
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exponential instability which leads to the appearance of strong stochastic
properties.

A famous example is given by the golden ratio and its inverse

1 +
√

5

2
= [1; 1, 1, 1, 1, . . .]

−1 +
√

5

2
= [0; 1, 1, 1, 1, . . .] (1.40)

Note that these continued fraction expansions are periodic. This is a indeed
a theorem. In fact it is possible to prove [98] that any irrational quadratic
number (i.e. any number which satisfies a quadratic equation with integral
coefficients) is represented by a periodic continued fraction and viceversa. A
continued fraction

[a0; a1, a2, . . .] (1.41)

is periodic if there exist positive integers k0 and h such that for arbitrary
k ≥ k0

ak+h = ak (1.42)

We sill see that the fixed points of hyperbolic transformations on the hyper-
bolic plane lie on the real axis and are irrational quadratic. The continued
fraction expansion for these points gives a code (see below) for all hyperbolic
matrices in SL(2,Z) and we will use this fact to code the imaginary root
system of the hyperbolic Kac-Moody algebra HA(1)

1 .

1.1.2 Geodesic Flows and Billiards

Mathematical billiards describe the motion of a mass point in a domain with
elastic reflections from the boundary. The theory of billiards is not a single
one, but it is a mathematician’s playground where various methods and ap-
proaches are tested. Indeed, very simple dynamical problems can be reduced
to the investigation of billiards in polygons or polyhedrons. Following [144]
consider the mechanical system of two point-masses m1 and m2 of coordi-
nates x1 and x2 on the positive half-line x ≥ 0. The collisions between the
two masses and with the rigid wall at x = 0 are elastic. Then this mechan-
ical system is isomorphic to the the billiard in the angle arctan

√
m1/m2.

Similarly, the configuration space of two (or more) points moving inside a
segment is a simplex, and collisions between the particles and/or the two
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hard walls correspond to geometric reflections from the the boundary of this
simplex according to the law “the angle on incidence equals the angle of re-
flections”. It is clear that the theory of billiards has many relations with the
geometrical optics too. We will show in this thesis that billiards appear in
general relativity in a particular regime of the gravitational theory described
by Einstein equations3. In order to define rigorously billiard games, we need
first the notion of geodesic flows.

Let Q be a smooth compact d−dimensional Riemannian manifold. For
each point q ∈ Q, we can define the tangent space TqQ and the cotangent
space T ∗

q Q. The main object is the unit tangent bundle M on Q, M = SQ =
{(q, v)|q ∈ Q, v ∈ TqQ, ||v|| = 1}. If Q is a compact smooth manifold with
piecewise smooth boundary, then M is also a manifold with the boundary
∂M = π−1(∂Q) and dim M = 2d − 1. The geodesic flow on Q is a group
{T t} of transformations of M such that a specific transformation T t consists
in moving an element (q, v) of M along the geodesic line which it determines
by a distance t. If dσ(q) is the element of the Riemannian volume and ωq is
the Lebesgue measure on the unit sphere Sd−1 in TqQ, the measure µ on M
given by dµ = dσ(q)dωq is invariant under {T t}.

Geodesic flows belong to the class of the so-called Hamiltonian dynamical
systems. In fact, an alternative way to introduce the geodesic flow is the fol-
lowing. The tangent bundle TQ = {(q, v)|q ∈ Q, v ∈ TqQ} can be naturally
identified with the cotangent bundle T ∗Q = {(q, p)|q ∈ Q, p ∈ T ∗

q Q}. Each
point p ∈ T ∗

q Q is uniquely determined by its components (p1, . . . , pm). The
non-degenerate canonical 2-form ω =

∑d
i=1 dqi ∧ dpi induces the symplectic

structure on T ∗Q and the geodesic flow {T t} which we have just introduced
is naturally isomorphic to the restriction to the unit tangent bundle of the
Hamiltonian dynamical system with Hamiltonian H(p, q) = 1

2
||p||2.

Important properties of the geodesic flow on negatively curved Riemannian
manifolds Q will be stated after we introduce the hyperbolic plane.

Generalizations of geodesic flows are billiard flows. Suppose Q is a closed
d−dimensional manifold of class C∞ and Q0 is a subset given by the systems
of inequalities of the form fi(q) ≥ 0, q ∈ Q, fi ∈ C∞(Q), 1 ≤ i ≤ r. The

3Note that the relation between general relativity and geometric optics is well known,
thus the relation between Einstein’s theory and billiards is perhaps not completely sur-
prising. The big question would be to understand if one can reformulate the full theory as
a billiard problem in any regime, with different billiard tables of course depending on the
specific symmetries (remember that Einstein’s theory is theory with constraints). More
will be said in the following.
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phase space of the billiard in Q is the set M whose points are the pairs
x = (q, v), q ∈ Int Q, v ∈ Sd−1, as well as those x = (q, v) for which x ∈ ∂Q,
v ∈ Sd−1 and v is directed inside Q. The motion of a point x = (q, v)
under the billiard flow is the motion with unit speed along the trajectory
of the geodesic flow until the boundary ∂Q is reached. At such moments,
the point reflects from the boundary according to the “incidence angle equals
reflection angle” rule and then continues its motion. As before, the measure
dµ = dσ(q)dωq is invariant under {T t}. Thus, a billiard in a region Q0 can
also be defined as the Hamiltonian system with a potential V (q) = 0 inside
Q0 and V (q) = ∞ if q ∈ ∂Q.

If Q is not compact but of finite area, like in the case of the hyperbolic
surfaces Γ(N)\H (see below), one can define the geodesic flow in a similar
way, but the structure of the fiber bundle is violated in a certain number of
points.

Let Q ⊂ Rd a convex polyhedron, that is a closed bounded set Q =
{q ∈ Rd : fi(q) ≥ 0, i = 1, . . . , r} where the functions fi(q) are linear. The
boundary of the billiard is the union of the faces Γi, i = 1, . . . , r. Denote
by ni the unit vector orthogonal to each face Γi, directed inside Q. The
trajectories of billiards in domains contained in Euclidean space are broken
lines (segments). Let us consider the isometric mapping σi : Sd−1 → Sd−1

acting on every point x = (q, v), q ∈ Γi, according to the mirror reflection

σi(v) = v − 2 (ni, v) ni (1.43)

where (, ) is the standard Euclidean scalar product and (ni, ni) = 1. We
assume that there are trajectories in Q which have vertices in the faces
with numbers i1, i2, . . .. Then by means of successive reflections in the faces
of Q, we can obtain a straight line instead of the broken one (unfolding
of a billiard trajectory). The straight line intersects with the polyhedrons
Q,Qi1 , Qi1i2 , . . ., where Qi1···ik is the result of successive reflections of Q, rel-
ative to the faces Γi1 , . . . , Γik , where Γil is a face of Qi1···il−1

. Given a point
x0 = (q0, v0), the vector v0 ∈ Sd−1 defines the initial velocity of the billiard
trajectory originating from the point q0 ∈ Q. The velocity vector becomes
vk = (σikσik−1

· · ·σi1)v0 between the k−th and the (k+1)−th reflections. Let
us now consider the group GQ generated by the reflections σi, . . . , σr; it is a
subgroup of all isometries of Sd−1. The ergodicity of the billiard depends on
the group GQ, precisely: if GQ is a finite group, then the billiard flow inside
Q is not ergodic. For d = 2, the finiteness of the group is equivalent to the
commensurability of all angles on the polygon Q.
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The situation for generic polyhedra is still open, in particular one knows
that the entropy of a billiard inside an arbitrary, not necessarily convex,
polyhedron is zero

h( inside a polyhedron ) = 0 (1.44)

One can think that the every trajectory of a billiard in a convex polygon
must be periodic or everywhere dense, but a result due to G. A. Galperin
shows that this is not always the case: in his example there is a trajectory
which is everywhere dense in some proper sub-domain of Q.

Let us give some more examples in dimension 2. Let Ω ⊂ R2 be a compact
domain with boundary ∂Ω. If one imagines hard walls at the boundary
∂Ω, we obtain a planar billiard. The trajectories of the particle consist of
segments of straight lines with elastic reflections at ∂Ω. The Hamiltonian of
such a planar billiard is not smooth, but rather discontinuous

H(p,q) =

{
p2/2m q ∈ Ω

0 q /∈ Ω
(1.45)

It turns out that the billiard dynamics depends very sensitively on the shape
of the boundary ∂Ω. In fact, if the boundary is a circle, an ellipse or a
square, the system is integrable while a boundary of the shape of a stadium
leads to a strongly chaotic system, the well known Bunimovich billiard. Note

Figure 1.3: The Bunimovich stadium

that after the introduction of the Sinai billiard, it was believed that convex
billiards were too focusing to be chaotic, contrary to the dispersive behavior
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of Sinai-like billiards (see the figure at the end of this chapter). But the
Bunimovich stadium is an example of focusing billiard which is also chaotic;
if the two horizontal lines collapse to points, the stadium becomes a circle,
and we have a transition from a chaotic to an integrable billiard. Note also
the boundary of the stadium is not smooth (we mean C∞). Usually, one
assumes that the each arc in the boundary of a billiard is of class C3, i.e. the
curvature is continuously differentiable. This a technical assumption which
ensures that there are no trajectories having an infinite number of collisions
in a finite time interval.

For smooth strictly convex domains, there is an important result due to
V. F. Lazutkin. First remember that by caustic for a billiard Ω, we mean a
smooth closed curve γ ⊂ Ω such that if one link of the billiard trajectory is
tangent to γ, then every other link of this trajectory is also tangent to γ. For
a circle, there is a unique family of caustics, namely the concentric circles.
For ellipses, one has two different families, confocal ellipses and hyperbolas.
It is not known if only ellipses have this property. Lazutkin proved that there
exist an uncountable set of caustics, of positive measure in Ω, if the boundary
∂Ω is convex and sufficiently smooth. A billiard inside a sufficiently smooth
convex figure is not ergodic. Lazutkin also constructed quasi-eigenfunctions
(quasi-modes) and quasi-eigenvalues for the Dirichlet problem in Ω. The
support of any such eigenfunction is localized in a neighborhood of one of
the invariant sets of a billiard defined by caustics. For ergodic flows and
billiards, the situation is different, see the last sections of this chapter for the
quantum ergodicity theorem.

1.2 Quantum chaology, not quantum chaos

The most striking property of deterministic chaos is the sensitive dependence
on initial conditions such that neighboring trajectories in phase space sepa-
rate at an exponential rate. As a result, the long-time behavior of a strongly
chaotic system is unpredictable. There arises the basic question whether this
well established phenomenon of classical chaos manifests itself in the quan-
tum world in an analogous phenomenon which could be called quantum chaos.
By this we mean the following: given a classical dynamical system which is
strongly chaotic, is there any manifestation in the corresponding quantum
system which betrays its chaotic behavior? The first place where one should
seek for a possible chaotic behavior in quantum mechanics seems to be the
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long-time behavior in analogy to the classical case. It turns out, however,
that the large-time limit in quantum mechanics is well under control due
to the fundamental fact tat the time-evolution operator e−i bH t /~ is unitary
and thus its spectrum lies on the unit circle. This is in contrast to classical
systems whose time-evolution is ruled by the Liouville operator. If the classi-
cal system is mixing and chaotic, the spectrum of the Liouville operator has
a continuous part on the unit circle and thus the time-evolution in unpre-
dictable for large times. This fundamental difference is the main reason of
the absence of chaos in quantum mechanics (together with the linearity of the
Schrödinger equation), in the sense of exponential sensitivity to initial condi-
tions. The study of semiclassical, not classical, limit of systems which exhibit
classical chaos has been called quantum chaology by M. Berry [21]. Semi-
classical means as Planck’s constant ~ tends to zero. This limit is non trivial
because quantum mechanics, considered as depending on a complex para-
meter ~, is essentially singular at the origin ~ = 0, in ways that differ from
system to system. Because of the essential singularity at ~ = 0, the semi-
classical limit of quantum mechanics (and also the geometrical-optics limit
of electromagnetism) is complicated and conceals a rich variety of phenom-
ena. Quantum theory is a non-perturbative extension of classical mechanics,
unlike, say, special relativity, which grows out of Newtonian mechanics by a
convergent perturbation expansion in velocity v/c.

Let us give some more remarks about quantum chaos. Chaos is prob-
lematic because the way a quantum wave develops in time is determined by
the associated energy levels. A mathematical consequence of the existence
of energy levels is that quantum time development contains only periodic
motions with definite frequencies - the opposite of chaos. Therefore there
is no chaos in quantum mechanics, only regularity. How then, can there be
chaos in the world? There are two answers. One is that as the semiclassical
limit is approached - as objects get bigger and heavier - the time taken for
chaos to be suppressed by quantum mechanics gets ever longer, and would
be infinite in the strict limit. However, this explanation fails because the
chaos suppression time is often surprisingly short: just a few decades even
for Hyperion (a satellite of the planet Saturn), which has an erratic rotation.

The true reason for the prevalence of chaos is that large quantum systems
are hard to isolate from their surroundings. Even the patter of photons from
the Sun (whose re-emission gives the light by which we see Hyperion) destroys
the delicate interference underlying the quantum regularity. This effect, of
large quantum systems being dramatically sensitive to uncontrolled exter-

26



nal influences, is called decoherence. In the semiclassical limit, the quantum
suppression of chaos is itself suppressed by decoherence, allowing chaos to
re-emerge as a familiar feature of the large scale world. Smaller quantum sys-
tems, such as atoms in strong magnetic fields, molecules vibrating strongly,
or electrons confined in quantum dots with unsymmetrical boundaries, can
be effectively isolated. Therefore decoherence is irrelevant and there is no
quantum chaos, even though the corresponding classical systems are chaotic.
Nevertheless, these quantum systems reflect classical chaos in several ways,
whose systematic study is quantum chaology. With this premise, we also
adopt the term quantum chaos as usual in the literature.

For integrable systems with N degrees of freedom, one has the so-called
EBK quantization rules. Each orbit of the dynamical system lies on a
N−dimensional sub-manifold which has the topology of a torus. In this
case it is possible to introduce new coordinates, the so called action-angle
variables (I,w), through a canonical transformation. The angles wk vary
from 0 to 2π and are interpreted as new coordinates, the actions Ik play the
role of new conjugate momenta. If wk runs from 0 to 2π, it defines a loop Lk

in the original (p,q) phase space, where Lk is the k−th irreducible homotopy
circuit of the torus. The Ik’s are the new constants of motion. Then the EBK
quantization condition reads

Ik = (nk + βk/4) ~ (1.46)

where the nk ≥ 0 are integer quantum numbers and the integers βk ≥ 0
are the Maslov indices (the motion takes place on a so-called Lagrangian
manifold, and the Maslov index, which can be understood as the number
of conjugate points of the Morse index of a trajectory, is determined by the
topology of the Lagrangian manifold in phase space with respect to configura-
tion space). These quantization rules are contained in a paper by A. Einstein
in 1917 [46], without the integers βk. In fact, it was in the fifties that the
mathematician J. Keller rediscovered Einstein’s paper (forgotten for almost
40 years) and found that the most general semiclassical quantization rules
turned out to be exactly Einstein’s torus quantization rules plus corrections
coming from Maslov indices.

Contrary to what is commonly believed, in this paper Einstein did not
consider ergodic systems ([62] contains an Italian translation of this impor-
tant work).

Anyhow, for ergodic systems, the EBK quantization rules can not be
applied, because there are no invariant tori in phase space. In fact, for a
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chaotic system, the phase space carries two mutually transverse foliations,
each leave of dimension N . Every trajectory is the intersection of two man-
ifolds, one from each foliation. The distance between two neighboring tra-
jectories increases exponentially along the unstable manifold and decreases
exponentially along the stable one (see below for the definition of an Anosov
system). Thus, there remains the task to find a semiclassical quantization
rule for generally chaotic systems. The formulas one can build in these cases
are trace formulas which typically relate the level density of a quantum sys-
tem to classically periodic orbits.

The first answer in this direction came from the work by M. Gutzwiller
[67] with the introduction of the Gutzwiller trace formula. This is a formal
formula, since it is divergent, we discuss it in the next section.

1.3 The Gutzwiller Trace Formula

The general framework is Feynman’s formulation of quantum mechanics in
terms of his sum over histories or path integrals. In the semiclassical limit
when ~ tends to zero, it is well known the leading contribution to the path in-
tegral comes from the classical orbits. Taking the trace of the time-evolution
operator, the contribution comes from those classical orbits which are closed
in coordinate space. Gutzwiller made the important observation that the
trace of the energy-dependent Green’s function (which is the Fourier trans-
form of the time-evolution operator) is given by formal sum over all classical
orbits which are closed in phase space, i.e. all periodic orbits. The sum
has only a formal meaning because there are infinitely many periodic orbits
whose growth in number as a function of the period is exponential for chaotic
systems (see Margulis asymptotics for Anosov systems below), and thus the
sum is in general not even conditionally convergent for physical energies.

As an illustration of the semiclassical theory for chaotic systems, let us
consider (Euclidean) planar billiards. For the quantum Hamiltonian Ĥ we
get Ĥ = −(~2/2m)∇ where ∇ = ∂2/∂q2

1 + ∂2/∂q2
2 is the Euclidean Lapla-

cian. The hard walls at the billiard boundary ∂Ω are incorporated by de-
manding that the quantum wave functions ψn(q) should vanish at ∂Ω. Then
the Schrödinger equation for the given quantum billiard is equivalent to the
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following eigenvalue problem of the Dirichlet Laplacian

− ~
2

2m
∇ψn(q) = Enψn(q) q ∈ Ω (1.47)

ψn(q) = 0 q ∈ ∂Ω∫

Ω

ψm(q) ψn(q) d2q = δmn

The following properties of this eigenvalue problem are standard: there exist
a discrete spectrum corresponding to an infinite number of bound states
whose energy levels {En} are strictly positive, 0 < E1 ≤ E2 ≤ . . ., and
En → ∞. The eigenvalues scale in ~,m, R in the form En = − ~2

2mR2 εn,
where εn is dimensionless and independent of ~,m, R (R is an arbitrary but
fixed length scale). This implies that the semiclassical limit corresponds to
the limit En → ∞ and thus requires a study of the highly excited states,
i.e. of the high energy behavior of the quantum billiard. Notice that the
semiclassical limit is identical to the macroscopic limit m → ∞ where the
mass of the atomic bouncing ball is becoming so heavy that one is dealing
with a macroscopic point particle.

The Dirichlet problem for compact domains is an old one. It described
a vibrating membrane with clamped edges (Helmholtz). The cases in which
one can solve exactly this problem correspond to the integrable billiards
inside a rectangle, an equilateral triangle and a circle (and other domains
corresponding to affine Weyl chambers, see the book by M. Berger [18]).
The problem turns out to be highly non trivial in cases when the billiard
table is chaotic; indeed, in these cases, no explicit formula is known for the
energy levels or for the the wave functions.

Thus, let us assume that the billiard domain Ω has been chosen in such
a way that the corresponding classical systems is strongly chaotic, i.e. with
positive metric entropy. All periodic orbits are unstable and isolated. The pe-
riodic orbits are characterized by their primitive length spectrum {lγ} where
lγ denotes the Euclidean length of the primitive periodic orbit (ppo) γ. Mul-
tiple traversals of γ have lengths klγ, where k = 1, 2, . . . counts the number
of repetitions of the ppo γ. Let Mγ be the monodromy matrix of the p.p.o.
γ, where | Tr Mγ| > 2, since all orbits are (direct or inverse) hyperbolic
(this implies that all Lyapunov exponents are strictly positive, see the book
by Gutzwiller [67] for more details). Moreover, let us attach to each ppo
γ a character χγ ∈ {±1} depending on the Maslov index of γ. Then the
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Gutzwiller trace formula for the trace of the resolvent of Ĥ (i.e. the trace of
the Green’s function) reads

Tr (Ĥ − E)−1 =
∞∑

n=1

1

E − En

∼ g(E) + gosc(E) (~→ 0) (1.48)

where g(E) denotes the so-called zero length contribution which comes from
direct trajectories going from q′′ to q′ whose length tends to zero if q′′ → q′.
The contribution from the periodic orbits is given by the formal sum

gosc(E) =
i

2 ~
√

E

∑
γ

∞∑

k=1

lγ χk
γ ei k

√
E lγ/~

|2− Tr Mk
γ|

(1.49)

The first problem with this trace formula comes from the fact that the re-
solvent operator (Ĥ − E)−1 is not of trace class. This follows directly from
Weyl’s asymptotic formula which reads for two-dimensional planar billiards
with area A

lim
n→∞

En

n
=

4π

A
~2 (1.50)

Thus En = O(n) for n →∞ and the sum over n in (1.48) diverges. In order
to cure this problem, one could simply consider the trace of a regularized
resolvent, for example the trace of [(Ĥ −E)−1 − (Ĥ −E ′)−1] where E ′ is an
arbitrary but fixed subtraction point. The real problems with the original
trace formula arise, however, from the sum over the periodic orbits. Due to
the exponential increase

N(l) ∼ eτ l

τ l
l →∞ (1.51)

of the number N(l) of ppo γ whose lengths lγ are smaller or equal to l, the
infinite sum over γ is in general divergent. Since the divergence problems are
a consequence of the exponential law and thus of the existence of a topolog-
ical entropy τ > 0, they are not just of a formal mathematical nature but
rather a direct signature of classical chaos in quantum mechanics. A positive
entropy τ is the most important global property of a strongly chaotic sys-
tem which expresses the fact that the information about the system is lost
exponentially fast. We therefore see that the periodic-orbit expression has
only a formal meaning. One can calculate corrections in ~ (as in the paper
by P. Gaspard [58]) to the Gutzwiller trace formula. We do insist on this.
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In fact, as noted by the same Gutzwiller, if one considers the free geodesic
motion on constant negative curvature manifolds (which is a strongly chaotic
motion being Bernoullian and Anosov, see below), then the Gutzwiller trace
formula becomes exact and corresponds to the Selberg trace formula, which
is absolutely convergent (if the curvature is negative but not constant the
motion is still chaotic, but there is no analog of the Selberg trace formula).
Note that there exist an improved version of the Gutzwiller trace formula
due to F. Steiner et al, which is convergent; in fact, the test functions satisfy
the same conditions as in the Selberg trace formula (see below). This gen-
eral trace formula establishes a striking duality between the quantum energy
spectrum {En} and the length spectrum {lγ} of the classical periodic orbits.
The class of test functions satisfying the conditions in order to make the
trace formula convergent is rather large, thus the trace formula represents
an infinite number of periodic-orbits sums rules. That is, an infinite number
of semi-classical quantization rules, which, at the moment, provide the only
substitute for quantum systems whose classical limit is strongly chaotic. This
will be more transparent when we deal with the Selberg trace formula, but
before we need some notions of hyperbolic geometry in 2 dimensions.

1.4 Hyperbolic Geometry and Fuchsian Groups

In this section we review hyperbolic geometry and Fuchsian groups. As it is
well known, Euclid’s fifth postulate was noticeably more complicated than
the other axioms, looking more like a theorem than a self-evident propo-
sition. For centuries, starting with Archimedes, mathematicians tried to
prove it from the other axioms. Hyperbolic geometry was discovered by C F.
Gauss, who never published his results because at the time it was not clear if
non-Euclidean geometries were consistent. Finally, in 1868 the Italian math-
ematician E. Beltrami established its independence by finding models for the
hyperbolic plane, proving the conjecture of Gauss, Boylai and Lobachevski
as to the existence (i.e. internal consistency) of this non-Euclidean geometry.
Today we know that in 2 and 3 dimensions, hyperbolic geometry is far more
important than Euclidean geometry. We will see that Fuchsian groups are
similar to lattices in Rn which are discrete groups of orientation-preserving
Euclidean isometries. However, for n = 2, while the quotients of the lat-
ter are always compact surfaces homeomorphic to the torus, the quotient of
Fuchsian group acting on the hyperbolic plane H may not be a torus. Indeed,
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all orientable surfaces (compact or not) other than the sphere, torus, plane or
punctured plane, are quotients of Fuchsian groups acting on H without fixed
points (in other words, for any integer g > 1, there exists a Fuchsian group
Γ acting on H without fixed points such that Γ\H has genus g). In 3 dimen-
sions, the situation is much more complicated as shown by W. Thurston; his
geometrization conjecture roughly states that 3-dimensional manifolds allow
for 8 different geometric structures.

The reader can consult the books by S. Katok [91] and by J. Ratcliffe
[127] for more details. We will mainly use the upper-half plane as a model
for hyperbolic geometry, see the previous books for formulas on the Poincaré
disk and [9].

The best way to introduce hyperbolic geometry is to think of it as the dif-
ferential geometry on a Riemannian manifold. In particular, let us introduce
the upper-half plane or Poincaré plane

H = {z = x + iy ∈ C | Im z = y > 0} (1.52)

endowed with the metric

ds2
H =

dx2 + dy2

y2
(1.53)

which is conformally flat, ds2
H = ds2

Eucl/y
2 (thus hyperbolic angles on H are

the same as the Euclidean ones). More generally, one can consider

ds2
H = R2ds2

Eucl/y
2 (1.54)

which has Gaussian curvature K = −1/R2. We will always put R = 1, that is
H is the unique connected, simple connected hyperbolic surface with negative
constant Gaussian curvature K = −1. It is a non-compact Riemannian
manifold (of infinite volume) of dimension 2. But it is also a Riemann surface.

The hyperbolic distance between two points z, w ∈ H is defined by

ρ(z, w) = inf lH(γ) (1.55)

where the infimum is taken over all γ joining z and w. lH(γ) is the hyperbolic
length of the curve γ

lH(γ) =

∫ 1

0

√
(dx

dt
)2 + (dy

dt
)2

y(t)
=

∫ 1

0

∣∣dz
dt

∣∣
y(t)

(1.56)
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A useful expression for the distance between two points is the following

cosh ρ(z, w) = 1 +
|z − w|2

2 Im z Im w
(1.57)

The geodesics in H are semi-circles and straight (vertical) lines orthogonal to
the real axis R. Observe also that every hyperbolic circle {z ∈ H|ρ(z, z0) =
r2} is a Euclidean circle (with different center of course) and viceversa. This
implies the topology on H induced by the hyperbolic metric is the same as
the topology induced by the Euclidean metric.

Let us consider the group of linear fractional transformations of Ĉ =
C ∪ {∞} (the Riemann sphere) given by

g z =
az + b

cz + d
a, b, c, d ∈ R, ad− bc > 0 (1.58)

and denote by GL+(2,R) the group of 2×2 real matrices of positive determi-

nant. A linear fractional transformation g determines the matrix
(

a b
c d

)
∈

GL+(2,R) up to a scalar because the matrices
(

α 0
0 α

)
with α 6= 0 give the

identity transformation. Dividing by a scalar, we can always represent g by a
matrix of determinant 1. We can thus identify the factor group PSL(2,R) =
SL(2,R)/{±1} with the linear fractional transformations. This is called the
Mobius group 4 and it is isomorphic to the group of the positive isometries
(i.e. the transformations of H which preserve the hyperbolic distance) of the
hyperbolic plane

Isom+(H) = PSL(2,R) (1.59)

All these positive (i.e. orientation-preserving) isometries are analytical au-
tomorphisms of the upper-half plane. The negative isometries (which do not
form a group of course) are generated by the reflections z → −z, which are
orientation-reversing, not analytic maps

g ∈ Isom−(H) = 〈z → −z〉 ⇔ g z =
az + b

cz + d
, ad− bc = −1 (1.60)

Thus we have the disjoint union

Isom(H) = Isom+(H) ∪ Isom−(H) = PSL(2,R) ∪ 〈z → −z〉 (1.61)
4In the following we do not usually distinguish between the matrices and the linear

transformation that they define.
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and PSL(2,R) is a subgroup of Isom(H) of index 2. Positive isometries are
conformal, while negative ones are anti-conformal, i.e. they preserve the
absolute values of angles but change the signs.

The Mobius transformations transform a circle into a circle subject to
the convention that a straight line is a circle passing through ∞. Of course,
the center of a circle may not be mapped onto the center, save for the g =

±
(

1 ∗
0 1

)
which is a translation.

For a subset A ⊂ H, we define by µ(A) the hyperbolic area of A

µ(A) =

∫

A

dx dy

y2
(1.62)

when the integral exists. It is clear that this notion of area (when it exists) is
invariant under PSL(2,R), that is µ(gA) = µ(A) for any g ∈ PSL(2,R). As in
elementary Euclidean geometry, one can define hyperbolic n-sided polygons,
which are closed subsets of H ∪ R ∪ {∞} bounded by hyperbolic geodesic
segments. A vertex is a point where two sides meet; we allow vertices on
R̂, but no segment of the real axis can belong to a hyperbolic polygon. The
simplest polygons are the hyperbolic triangles, whose area is given through
the Gauss-Bonnet theorem only in terms of the angles

µ(triangle) = π − α− β − γ (1.63)

thus in hyperbolic geometry the angles of a triangle sum up to a quantity
less than π (greater than π in spherical geometry). For a polygon with n
sides and n angles θi

µ(n− gon) = (n− 2)π −
n∑

i=1

θi (1.64)

This formula also shows that in hyperbolic geometry rectangles do ont exist.
In all the previous expressions an overall factor R2 is implicit, if one considers
general hyperbolic metrics as described above. Finally, given three numbers
α, β, γ whose sum is less than π, then there exist a unique (up to isometries)
hyperbolic triangle with angles α, β, γ.

The linear fractional transformations are rigid motions of the hyperbolic
plane and they move points in distinct ways. Given g ∈ PSL(2,R) we denote
its conjugacy classes by

{g} = {h g h−1 |h ∈ PSL(2,R)} (1.65)
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Conjugate motions act on H similarly, so the classification will be invariant
under conjugation. The identity motion forms a class by itself, since every

z ∈ H is a fixed point. Any other motion g =

(
a b
c d

)
has one or two fixed

points in Ĉ. Three cases are possible

1. g has one fixed point on R̂ = R ∪ {∞}

2. g has two fixed points on R̂

3. g has one fixed points in H and the complex conjugate one in H = {z ∈
C|Im z < 0}

Accordingly g is called parabolic, hyperbolic or elliptic. By conjugating, we
can bring g to one of the following types

1. z → z + t (translation, fixed point ∞)

2. z → pz (dilation, fixed points 0,∞)

3. z → k(θ)z (rotation, fixed point i)

where t ∈ R, p ∈ R+ and k(θ) is the usual rotation matrix
(

cos θ sin θ
− sin θ cos θ

)

The number of fixed points of a rigid motion is invariant under conjugation,
therefore the above classification applies naturally to the conjugacy classes.
The same classification can be also described in terms of the trace (which is

an algebraic invariant under conjugation), namely if g =

(
a b
c d

)
6= ±1,

then we can classify the positive isometries in the following way

1. g is parabolic iff |a + d| = 2

2. g is hyperbolic iff |a + d| > 2

3. g is elliptic iff |a + d| < 2

A parabolic motion moves points along horocycles (circles in H tangent
to R̂). An elliptic motion moves points along circles centered at its fixed
point in H. The geodesic in H joining the two fixed points of a hyperbolic
transformation g is called the axis of g (hypercycles); such a geodesic is
globally invariant under the action of g, but not pointwise (except of course
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for the two fixed points of g). A hyperbolic motion moves points along its
axis. Of the two fixed points u,w, one, say u, is repelling, the other, w, is
attracting, g′(u) > 1 and g′(w) < 1. These two fixed points are the roots of
the equation

cz2 − (d− a)z − b = 0 (hyperbolic fixed points) (1.66)

For Fuchsian groups (which we define below), a, b, c, d are integer, so the two
fixed points are irrational quadratic. We will see that the invariant axis of a
hyperbolic g belonging to a Fuchsian group Γ, oriented from the repelling to
the attracting point, becomes a closed geodesic in the quotient space Γ\H.
Moreover, if g1 and g2 are conjugate in Γ, i.e. g1 = gg2g

−1 for some g ∈ Γ,
then g maps the axis of g2 to the axis of g1, hence they represent the same
oriented closed geodesic in Γ\H. Conversely, every oriented closed geodesic in
Γ\H represents the conjugacy class of a primitive hyperbolic transformation
in Γ.

As concerns negative isometries, they are the product of a positive isom-
etry with a pure symmetry across a geodesic. The latter is a hyperbolic
reflection in a geodesic γ, that is a negative isometry which fixes pointwise
γ (unlike a positive hyperbolic transformation, which fixes its axis globally).
Every hyperbolic reflection R has order 2, R2 = I. In order to classify neg-
ative isometries A, it is convenient to consider the square of these A2. Each
matrix cancels its characteristic polynomial

A2 − (Tr A)A + (det A)I = 0 (1.67)

A2 is a positive isometry, whose trace will be Tr A2 = (Tr A)2 + 2. First, A2

can never be elliptic. If Tr A 6= 0, then A2 is hyperbolic and A corresponds
to the product of a positive hyperbolic isometry with a hyperbolic reflection.
If Tr A = 0, then A2 = I, which means that A is a pure hyperbolic reflection
in a geodesic pointwise fixed by the action of A. This classifies negative
isometries.

Given a Mobius transformation T (z) = az+b
cz+d

, we can define a norm || · ||
on PSL(2,R)

||T || = (a2 + b2 + c2 + d2)1/2 (1.68)

which makes PSL(2,R) into a topological group with respect to the metric
||T−S||. The full group of Isom(H) is topologized similarly. A subgroup Γ of
Isom(H) is called discrete if the induced topology on Γ is a discrete topology,
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that is if Γ is a discrete set in the topological space Isom(H). Γ is discrete
iff for any sequence {Tn} of elements of Γ converging to the identity I, then
Tn = I for n sufficiently large.

Let us now come the main object of our applications. A Fuchsian group
is a discrete subgroup of PSL(2,R). Discrete subgroups of Lie groups are are
sometimes called lattices by analogy with lattices in Rn which are discrete
groups of isometries of Rn. The latter have the following important property:
their action on Rn is discontinuous in the sense that every point of Rn has
a neighborhood which is carried outside itself by all elements of the lattice
except for the identity. In general, discrete groups of isometries do not have
such discontinuous behavior, for if some elements have fixed points these
points cannot have such a neighborhood. However, they satisfy a slightly
weaker discontinuity condition called a properly discontinuously action (for
the precise definition see [91]). It turns out that a subgroup Γ of PSL(2,R)
is a Fuchsian group iff its action on H is properly discontinuous.

Remember the notion of fundamental region. If X is a metric space and G
a group of homeomorphisms acting properly discontinuously on X, a closed
region F ⊂ X is said to be a fundamental region (or domain) for the action
of G on X if

• ⋃
T∈G T (F) = X

• Int F ∩ T (Int F) = ∅
The set ∂F = F−Int F is called the boundary of the fundamental region.
The family {T (F)|T ∈ G} is called the tessellation (or tiling) of X under
the action of X. Each copy T (F) of the fundamental region is a tile.

When the area of a fundamental region is finite, then it is a numerical
invariant of the group, that is µ(F1) = µ(F2) for two fundamental regions
F1 and F2, when µ(Fi) exists. Note also that a fundamental region is not
uniquely determined by the group. A Fuchsian group with a fundamental
region of infinite area is the group generated by z → z+1 (each vertical strip
of length 1 is a fundamental region). Indeed, one usually classifies Fuchsian
groups according to the properties of their fundamental regions. A Fuchsian
group is said to be of the first kind or co-finite if a fundamental region has
finite hyperbolic area, and of the second kind if a fundamental region has
infinite hyperbolic area. Moreover, the fundamental region of a Fuchsian
group of the first kind can be compact (co-compact group) or not compact.
The compactness of the fundamental region implies that the corresponding
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Fuchsian group does not contain parabolic elements. Moreover, a co-compact
group is said to be a strictly hyperbolic Fuchsian group if it contains only
hyperbolic elements. These are the ones which behave in the best possible
way (see below).

The following theorem is useful in applications. Let Γ be a discrete sub-
group of Isom(H) (thus Γ can be a Fuchsian group or also contain negative
isometries) and Λ be a subgroup of Γ of index n. If

Γ = ΛT1 ∪ ΛT2 ∪ · · · ∪ ΛTn (1.69)

is a coset decomposition of Γ into Λ−cosets and if F is a fundamental region
for Γ, then

• FΛ = T1(F) ∪ T2(F) ∪ · · · ∪ Tn(F) is a fundamental region for Λ

• if µ(F) is finite and µ(∂F) = 0, then µ(FΛ) = n µ(F)

We show now that each Fuchsian group Γ possesses a nice (connected and
convex) fundamental region. Let us define the Dirichlet region for Γ centered
at p

Dp(Γ) = {z ∈ H| ρ(z, p) ≤ ρ(z, T (p)) ∀ T ∈ Γ} (1.70)

where p is not fixed by any element of Γ− {I} (such elements always exist).
Since ρ is invariant under PSL(2,R), we can also write

Dp(Γ) = {z ∈ H| ρ(z, p) ≤ ρ(T (z), p)} (1.71)

Fix an element T1 ∈ PSL(2,R) and consider the geodesic segment joining p
and T1p. The line given by the equation

ρ(z, p) = ρ(z, T1p) (1.72)

is the geodesic orthogonal to the middle-point of the geodesic segment joining
p and T1p (perpendicular bi-sector); let us call it Lp(T1). Consider now the
hyperbolic half-plane Hp(T1) bounded by Lp(T1) and containing the point p.
It is not difficult to show that

Dp(Γ) =
⋂

T ∈Γ−{I}
Hp(T ) (1.73)

that is the Dirichlet region is an intersection of closed half-planes, hence it
is closed and convex. Moreover, it is path-connected, hence connected.
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The shape of a Dirichlet region can be quite complicated, since it is
bounded by geodesics in H and possibly by segments of the real axis. It
two geodesics intersect in H, their point of intersection is called a vertex. It
can be shown that vertices are isolated, thus a Dirichlet region is bounded
by a union of (possibly infinitely many) geodesics and possibly segments of
the real axis.

In general, two points u, v ∈ H are congruent if they belong to the same
Γ−orbit; in a fundamental region F this means that the two points belong
to the boundary ∂F . Let us choose for F a Dirichlet region and consider
congruent vertices of F . The congruence is an equivalence relation on the
vertices of F and the equivalence classes are called cycles. If one vertex of
the cycle is fixed by an elliptic element, then all the vertices of that cycle are
fixed by conjugate elliptic elements. Such a cycle is called an elliptic cycle
and the vertices are called elliptic vertices. The number of elliptic cycles is
equal to the number of non-congruent elliptic points in F .

It is clear that every point w ∈ H fixed by an elliptic element S ′ of Γ lies on
the boundary of T (F) for some T . Hence u = T−1(w) lies on the boundary
of F and is fixed by the elliptic element S = T−1S ′T . This element has
finite order k (remember that elliptic elements are conjugate to rotations). If
k ≥ 3, then as S is an isometry fixing u which maps geodesics to geodesics, u
must be a vertex whose angle θ is at most 2π/k. The hyperbolically convex
region F is bounded by a union of geodesics. The intersection of F with
these geodesics is either a single point or a segment of a geodesic. These
segments are called sides of F . If S has order 2 (k = 2), then its fixed point
u might lie on the interior of a side of F . In this case, S interchanges the
two segments of this side separated by the fixed point. We will include such
elliptic fixed points as vertices of F , the angle at such a vertex being π. Thus
a vertex of F is a point where two bounding geodesics meet or a fixed point
of an elliptic element of order 2.

A parabolic element can be considered as an elliptic element of infinite
order, it has a unique fixed point on R̂. If Γ contains parabolic elements
(then F is not compact) and µ(F) < ∞, then F has at least one vertex at
infinity ; such a vertex is a parabolic fixed point.

Let us now consider the congruence of sides of F , a Dirichlet region for a
Fuchsian group Γ. If s is a side and T (s) is also a side of F (T ∈ Γ − {I}),
then s and T (s) are called congruent sides. But T (s) is also a side of T (F), a
copy of the Dirichlet region under T , so that T (s) ⊆ F ∩T (F). If a side of F
has a fixed point of an elliptic element S of order 2 on it, then S interchanges
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the two segments of this side. It is convenient to regard these two segments
as distinct sides separated by a vertex. With this convention, for each side
of F there exist another side of F congruent to it. Thus the sides of F fall
into congruent pairs. Hence, if the numbers of sides of a Dirichlet region is
finite, it is always even. These considerations allow to show that if {Ti} is
the subset of Γ consisting of those elements which pair the sides of some fixed
Dirichlet region F , then {Ti} is a set of generators for Γ.

The most important class of groups containing negative isometries are
the so-called hyperbolic reflection groups. Let mi (i = 1, 2, 3) be positive
integer or ∞ such that 1

m1
+ 1

m2
+ 1

m3
< 1 and let r be a hyperbolic triangle

with vertices v1, V2, v3, angles π/m1, π/m2, π/m3 at these vertices and sides
M1,M2,M3 opposite to these vertices. Such a triangle always exist and
is unique up to isometry 5. Moreover, a generic hyperbolic triangle tiles
the hyperbolic plane iff its angles are of the form π/n, π/m, π/l with n,m, l
positive integers (one of them is allowed to be ∞). The triangle groups we
are going to define are often indicated with (n,m, l).

Let Ri the hyperbolic reflection in the geodesic containing the side Mi

and let Γ∗ be the group generated by the reflections {Ri}. Since hyperbolic
reflections are negative isometries, Ri /∈ PSL(2,R), Γ∗ is not a Fuchsian
group; it is called a triangle reflection group. Let us consider the intersection
Γ = Γ∗∩ PSL(2,R). It is clear that Γ∗ = Γ ∪ ΓR1, since the composition of
two orientation-reversing isometries is orientation-preserving. If we denote
by τ the region inside the triangle, then {T (τ)|T ∈ Γ∗} forms a tessellation
of H, that is every point of H belongs to some Γ∗−image of τ and any
two images of τ may overlap only on the boundary. It follows that τ is a
fundamental region for Γ∗. For any point p inside τ , the Γ∗−images of p are
points of other triangles of the tessellation, hence they form a discrete set.
As the Γ−orbit of each point of H is a discrete set, Γ is a Fuchsian group
called a triangle group (it does not contain reflections). From what we said
above, τ ∪ R1(τ) is a fundamental region for Γ (see the picture). The sides
v2v1 and v2v

′
1 are paired by R1R3 and the sides v3v1 and v3v

′
1 are paired by

R1R2. Finally, {v1, v
′
1} is an elliptic cycle and both vertices are stabilized by

cyclic groups of order m1, {v2} and {v3} are elliptic cycles whose vertices v2

and v3 are stabilized by cyclic groups of order m2 and m3 respectively.
5This is different from Euclidean geometry, where there exist similar, but not isometric

triangles with the same angles. The reason is that on the hyperbolic plane the Gaussian
curvature K is strictly negative, in particular different from zero, thus in hyperbolic geom-
etry there exists a preferred length scale.
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Figure 1.4: A triangle group generated by hyperbolic reflections (figure from
[91]).

Before giving some examples, let us mention an important sub-class of
Fuchsian groups, the so-called arithmetic Fuchsian groups. In full generality,
the notion of an arithmetic subgroup of a semisimple Lie group uses tools
from the theory of linear algebraic groups. We are not so ambitious, for
precise definitions see the last chapter of [91]. Here we will be happy with an
intuitive idea. A first example of arithmetic group is PSL(2,Z) (see below),
obtained by PSL(2,R) just restricting the field R to the ring Z. The same
construction, restriction to integers, applies equally well to obtain arithmetic
subgroups of larger matrix groups, e.g. SL(n,Z) in SL(n,R), Sp(2n,Z) in
Sp(2n,R) etc. In order to have an arithmetic Fuchsian group, let g → T (g) be
a finite-dimensional representation of PSL(2,R). The elements of PSL(2,R)
which correspond to matrices T (g) with integer coefficients form a discrete
subgroup of PSL(2,R). All subgroups thus obtained and also their subgroups
of finite index are called arithmetic Fuchsian groups. This is not easy to
check. A result of A. Weil states that the list of all arithmetic subgroups
of SL(2,R) is exhausted up to commensurability by Fuchsian groups derived
from quaternion algebras over totally real number fields. The list of all
arithmetic Fuchsian groups can be found in a paper by K. Takeuchi and it is
reproduced in [25].

To finish this section, let us introduce the concept of hyperbolic surface.
Let Γ be a Fuchsian group and F a fundamental region. The group Γ induces
a natural projection (continuous and open) π : H → Γ\H and the points of
Γ\H are the Γ−orbits. The restriction of π to F makes Γ\H into a oriented
surface (Γ does not contain reflections) with possibly some marked points
(which correspond to elliptic cycles) and cusps (which correspond to non-
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congruent vertices at infinity of F). Such a surface is known as an orbifold.
If we take for F a Dirichlet region, Γ\H is homeomorphic to Γ\F . It is
clear that if µ(F) is the area of a fundamental region F , this induces an
area on the hyperbolic surface Γ\H, and one has µ(Γ\H) = µ(F). Moreover,
Γ\H is compact iff F is compact, i.e. if Γ is a co-compact Fuchsian group.
If, in addition, Γ acts on H without fixed points, then Γ\H is a compact
Riemann surface. Thus for any strictly hyperbolic Fuchsian group Γ , Γ\H is
a compact Riemann surface whose genus g is ≥ 2 and its fundamental group
is isomorphic to Γ. If Γ is co-compact with elliptic elements, then Γ\H is
a compact Riemann surface with punctures. If Γ is co-finite with parabolic
elements, then Γ\H is a Riemann surface with punctures and cusps.

If Γ contains elliptic elements, the structure of the fiber bundle is violated
in a finite number of points, the ones we have called marked points. Finally,
Γ\H is compact iff S(Γ\H) is compact.

1.4.1 The regular octagon

An example of chaotic billiard studied in [9] is a free particle moving in a
particular domain of the Poincaré disc, the regular octagon. This is a fun-
damental domain for the discrete group generated by the hyperbolic trans-
formations which pair the opposite sides (see the figure). The octagon is
compact, thus it is associated to a compact Riemann surface of genus 2,
i.e. the double torus. This discrete group is an example of a co-compact
group and moreover it contains only hyperbolic elements, i.e. it is a strictly
hyperbolic Fuchsian group.

1.4.2 The modular group and some of its distinguished
subgroups

Let Γ the triangle group (2,m,∞). According to the construction described
above, we first generate a reflection group Γ∗ by hyperbolic reflections in the
sides of the triangle with vertices v1, v2 = i and v3 = ∞ and angles π/m, π/2
and 0 respectively. Explicitly, R1(z) = −z, R2(z) = −z + 2 cos π

m
, R3(z) = 1

z

(see the picture). The triangle group Γ (the Fuchsian group) is generated by
R1R3 = −1

z
and R2R1 = z + 2 cos π

m
which identify the sides v′1v2 with v1v2,

and v′1v3 with v1v3 respectively. The corresponding group is called a Hecke
triangle group and is denoted by Γ(2 cos π

m
). [91] proves that Γ(2 cos π

m
) is
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Figure 1.5: A regular octagon on the Poincaré disc and the exponential
divergence of two nearby trajectories (figure from [9]). The figure on the
right shows the trajectories of a particular point starting from the origin of
the Poincaré disc with an angular deviation of 10−3 from a periodic trajectory.

arithmetic only for m = 3, 4, 6.
The most important Hecke triangle group is the modular group PSL(2,Z)

or in the previous notation Γ(2 cos π
3
). Its fundamental domain (see the

picture) is

F(PSL(2,Z)) =

{
z ∈ H : |z| ≥ 1, |x| ≤ 1

2

}
(1.74)

The modular group derives from the reflection group Γ∗ ∼= PGL(2,Z) (some-
times known as the extended modular group). Its domain is the halved-
modular domain, in agreement with the general construction for triangle
groups. PGL(2,Z) contains PSL(2,Z) as a subgroup of index 2. In fact the
standard generators for PSL(2,Z)

T =

(
1 1
0 1

)
S =

(
0 1
−1 0

)
(1.75)

are given in terms of the hyperbolic reflections of PGL(2,Z) by the general
formulae above with m = 3

T (z) = z + 1 = R2R1 (1.76)

S(z) = − 1

z
= R1R3 (1.77)
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Figure 1.6: The typical fundamental domain of a Hecke triangle group (from
[91])

Figure 1.7: The standard modular domain (from [137]).
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It is easy to show that the modular domain is the Dirichlet region centered
at p = ki , k > 1 (the point p is not fixed by any element in PSL(2,Z)). This
region has 4 vertices, including the point i, which is an elliptic point of order
2 fixed by S . The other elliptic fixed points are ρ and ρ+1, of order 3. With
this convention, the modular domain has 4 sides: T pairs the two vertical
sides, S pairs the two semi-arcs, thus T and S generate PSL(2,Z). The area
of the fundamental domain is easily calculated by the Gauss-Bonnet theorem

µ(F(PSL(2,Z)) =
π

3
= 2 µ(F(PGL(2,Z)) = 2

π

6
(1.78)

The most important subgroups of SL(2,Z) are its congruence subgroups. For
any N ≥ 1, the principal congruence subgroup of level N is

Γ(N) = {γ ∈ SL(2,Z)| γ ≡ I (mod N)} (1.79)

where I is the 2× 2 identity matrix; SL(2,Z) is identified with Γ(1). Finally
a congruence group Γ is a subgroup of SL(2,Z) for which there exist an
integer M such that Γ contains the principal congruence group of level M ,
i.e. Γ(M) ⊂ Γ ⊂ Γ(1). Some importance also have the groups Γ0(N) defined
as

Γ0(N) =

{(
a b
c d

)
∈ SL(2,Z) : c ≡ 0 (mod N)

}
(1.80)

It is clear that
Γ(N) ⊂ Γ0(N) ⊂ SL(2,Z) (1.81)

and that Γ(1) = Γ0(1) = SL(2,Z). The principal congruence groups are the
kernel of the applications

Γ(N) = ker (PSL(2,Z) → PSL(2,Z/NZ)) (1.82)

which explains the term congruence, and they are normal subgroups of finite
index in SL(2,Z) (note that not all subgroups of SL(2,Z) can be described
by congruence relations). Thus Γ(N) is arithmetic for any N . For N prime,
Γ0(N) is also of finite index in SL(2,Z) (and thus arithmetic). In fact, for
N prime and for every V ∈ SL(2,Z) such that V /∈ Γ0(N), there exist an
element P ∈ Γ0(N) and an integer 0 ≤ k < N such that

V = PST k (1.83)
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where S and T are the standard generators for SL(2,Z). Moreover, if F(1)
is a fundamental region for SL(2,Z) and N is a prime, then

F(1) ∪
N−1⋃

k=0

ST k(F(1)) (1.84)

is a fundamental region for Γ0(N).

In this thesis, we will be mainly concerned with SL(2,Z) and GL(2,Z).

As we mentioned, a hyperbolic surface is the quotient of the hyperbolic
plane by a Fuchsian group 6. We are mainly interested in the hyperbolic sur-
faces X(N) = Γ(N)\H, especially the modular surface X(1) = PSL(2,Z)\H.
Each X(N) is a finite area, non-compact surface. It is also a Riemann sur-
face (with the complex structure inherited by H) whose genus grows like N3

when N gets large. X(1) has a cusp at infinity, which corresponds to the

Figure 1.8: The modular surface (from [137]).

fixed point i∞ of the parabolic transformation T : z → z + 1. In the next
section, we describe the spectral problem for the surfaces X(N).

6To be honest, the Fuchsian group must be torsion-free, that is there are no non-trivial
elements of finite order. PSL(2,Z) is not torsion-free, because S2 = 1 and S 6= 1, while the
principal congruence groups are torsion-free and each X(N) with N ≥ 2 is a well-defined
hyperbolic 2-manifold.
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1.5 Maass automorphic forms and the Selberg
Trace Formula

The fundamental spectral problem of quantum chaos is the following




∆φ + λφ = 0
φ(γz) = φ(z) ∀ γ ∈ Γ(N)∫

X(N)
|φ(z)|2dµ(z) < +∞

(1.85)

Here, ∆ is the hyperbolic Laplacian, ∆ = y2(∂2
x+∂2

y). The numbers 0 = λ0 <
λ1 ≤ λ2 ≤ . . . for which the spectral problem has solutions form a discrete
set (eigenvalues), the discrete spectrum of X(N). The only eigenvalue known
is λ0 = 0, the corresponding eigenfunction φ0(z) is a constant (the surface
has finite hyperbolic area). We call a solution to (1.85) a Maass form, after
the mathematician H. Maass who first introduced them. Their existence is
not obvious at all, since the surface is not compact. In particular, no explicit
eigenvalues are known or expected for X(1), although, for example, for Γ(4)
Maass himself produced an explicit subsequence of eigenvalues [137].

Regarding the existence of Maass waveforms, let us first remember a
classical result of H. Weyl. Let Ω be a compact domain in R2, with smooth
boundary ∂Ω. The Dirichlet problem for the Euclidean Laplacian ∆ = ∂2

x+∂2
y

is

∆φ(z) + λφ(z) = 0 for z ∈ Ω

φ|∂Ω = 0 (1.86)

If we denote by NΩ(R) the number of eigenvalues λ counted with their mul-
tiplicity such that λ ≤ R, then Weyl’s law says that

NΩ(R) ∼ Area(Ω)

4π
R as R →∞ (1.87)

This result has been generalized to compact Riemannian manifolds of any
dimension. Usually the favorite way to prove it is by analyzing the small time
asymptotics of the heat kernel on R×Ω; the propagation of singularities for
the wave kernel allows of get some reminder terms for such Weyl asymptotics.

Let us now come back to finite area hyperbolic surfaces. As we said, since
these surfaces are not compact, it is not clear that there exist solutions to the
problem (1.85) for λ > 0. In fact, the discrete spectrum we are looking for is
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embedded in the continuous spectrum, and this makes difficult to isolate the
eigenvalues analytically. A. Selberg found that the continuous spectrum is the
whole interval [1

4
,∞), with multiplicity equal to the number of cusps of XΓ =

Γ\H. Here we can consider a general hyperbolic surface XΓ (not necessarily
some X(N)). The corresponding (not-normalizable) eigenfunctions are given
by the Eisenstein series. For X(1) they read as follows [135]

E(z, s) =
∑

g∈Γ∞\Γ(1)

ys

|cz + d|s for Re s > 1 (1.88)

they extend meromorphically to C and are analytic on Re s = 1/2 (Γ(∞) is
the stabilizer in Γ(1) of ∞, which is the only cusp). Thus, the continuous
spectrum is furnished by these generalized eigenfunctions E

(
z, 1

2
+ it

)
, t ≥ 0,

∆E

(
z,

1

2
+ it

)
+

(
1

4
+ t2

)
E

(
z,

1

2
+ it

)
= 0 (1.89)

and of course they are Γ(1)−periodic
E(gz, s) = E(z, s) for any g ∈ Γ(1) (1.90)

The constant term in the Fourier expansion of the Eisenstein series, φΓ(s),
is meromorphic in C and is called the determinant of the scattering matrix
in the Lax-Phillips scattering theory for automorphic functions [101]. The
pole of φΓ(s) in Re s ≥ 1

2
are in (1

2
, 1] and the residues at these poles furnish

solutions to (1.85), called the residual spectrum of XΓ. The poles of φΓ(s) in
Re s < 1

2
instead give resonances for problem (1.85).

If we now take the orthogonal complement in L2(XΓ, µ) of the continuous
and residual spectrum, we obtain the cuspidal space L2

cusp(XΓ). It is invariant
under the (hyperbolic) Laplacian and the resolvent (∆−λ)−1 is compact when
restricted to L2

cusp(XΓ). A Maass form, i.e. a solution to (1.85), which also
lies in L2

cusp is called a Maass cusp form. These particular cusp forms are the
building blocks of the theory of automorphic forms. Their existence is tied
to the size of L2

cusp, in fact L2
cusp(X) 6= {0} is not obvious at all for a general

hyperbolic surface X.
For the modular surfaces X(N), Selberg was able to show using his trace

formula that there is an abundance of Maass cusp forms. For these surfaces,
φΓ(N)(s) can be expressed through Dirichlet L−functions; for example for
Γ(1)

φΓ(1)(s) =
ζ∗(2s− 1)

ζ∗(2s)
(1.91)

48



where ζ∗(s) is the completed Riemann zeta-function (see Appendix A). For
any N , φΓ(N) has no poles in (1

2
, 1), which means that there is no residual

spectrum (besides λ = 0) and any Maass form is automatically is a cusp
form. Selberg proved that for the modular surfaces using the expression of
φΓ(N)(s) in terms of Dirichlet L−functions the contribution of the continuous
spectrum to the Weyl law is negligible, that is

N cusp
Γ(N)(R) :=

∑

0<λj≤R

1 ∼ µ(X(N))

4π
R (R →∞) (1.92)

Thus, solutions to (1.85) exist and in abundance, at least for the modular
surfaces X(N).

It is of course of interest to understand when solutions exist for more
general hyperbolic surface. We do not discuss that here, but we may ask if
there is a characterization of those Γ which have many Maass cusp forms.
This question was addressed by Phillips and Sarnak and the answer lies in
the arithmeticity of the group. In fact, it is believed that there are infinitely
many solutions to the problem ∆u + λu = 0, u ∈ L2(Fq), ∂nu|∂Fq = 0
(Neumann boundary conditions) if and only if q = 3, 4, 6, that is iff one
considers the arithmetic Hecke triangle groups Γ(2 cos π

q
) with fundamental

domain Fq. q = 3 corresponds of course to even Maass cusp forms for Γ(1),
q = 4, 6 to other congruence subgroups of SL(2,Z). All other integer values
of q give, via reflections in the sides of the triangle, non-arithmetic subgroups
of SL(2,R). One can also consider the case q /∈ Z, then the reflections in the
sides of Fq do not generate a discrete group any more, but the eigenvalue
problem still makes sense. The numerical evidence supports the absence of
eigenvalues (and thus of Maass forms) in these cases. In conclusion, the
Maass forms for X(N) are very fragile objects and their existence is tied to
the arithmeticity of Γ(N).

Regarding the low-energy spectrum of the X(N), the lowest eigenvalue is
λ0 = 0. Let λ1(X(N)) be the next eigenvalue. A deep conjecture (still open)
due to Selberg state that

λ1(X(N)) ≥ 1

4
(1.93)

for any N ≥ 1. Since for X(N) there is no residual spectrum, we could
take for λ1(X(N)) the smallest eigenvalue of a Maass cusp form on X(N).
Remember that the continuous spectrum is the interval

[
1
4
,∞)

and that a
result of H. McKean shows that the spectrum of ∆ the universal covering
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L2(H) is
[

1
4
,∞)

, thus λ0(H) ≥ 1
4
. Besides, the cuspidal spectrum of ∆

becomes dense in
[

1
4
,∞)

as N → ∞. Finally, the assumption that Γ is a
congruence subgroup of SL(2,Z) can not be dropped: in fact there exist finite
index subgroups Γ′ of SL(2,Z) for which λ1(XΓ′) < ε given any ε > 0.

Finally, it is expected that the cuspidal spectrum of ∆ on X(1) is simple,
a conjecture first stated by P. Cartier. The numerical computations support
this, the situation for the other X(N), N ≥ 2, may be different. Let us
mention also that all the numerical analysis supports the fact the high-energy
spectrum follows a Poissonian distribution (see Appendix B), because the
geodesic flow on X(1) is chaotic, but arithmetic as well.

In order to motivate the Selberg trace formula, it is useful to briefly
recall the spectral theory on the torus Tn, which is the quotient of Rn by the
translation group Zn viewed as a discrete and torsion-free subgroup of the
group G = Rn acting on the Euclidean space by translations. The group G
makes the Euclidean space a homogeneous space. The Euclidean space can
be endowed with a Riemannian metric

ds2 = dx2
1 + · · ·+ dx2

n (1.94)

coming from the scalar product x · y = x1y1 + · · · + xnyn. This metric has
null curvature and induces a flat Riemannian metric on the torus Tn. All the
elements of G are isometries for the Euclidean metric.

Let ∆ = −∂2
x1
− · · · − ∂2

xn
be the Laplacian on Rn; it commutes with the

action of G on the Euclidean space and defines a second-order differential
operator on the torus Tn. It is obvious that the exponential functions

φ(x) = exp [2πi (x1ξ1 + · · ·+ xnξn)] ≡ e(x · ξ) (1.95)

are eigenfunctions of ∆ on the torus

∆ φ = λφ , λ = 4π2||ξ||2 (1.96)

The spectral resolution of the Laplacian is given through the classical Fourier
inversion

f̂(ξ) =

∫

Rn

f(x) e(−x · ξ) dx (1.97)

f(x) =

∫

Rn

f̂(x) e(−ξ · x) dξ (1.98)

where the functions obey some regularity conditions (rapid decay at infinity
etc).
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The Selberg trace formula can be understood as a non-Abelian general-
ization of the classical Poisson summation formula

∑

n∈Z
f(n) =

∑

m∈Z
f̂(m) (1.99)

with f ∈ S(R). This formula is proven by considering the periodic function
F (x) =

∑
n f(x + n), taking its Fourier series and putting x = 0. For

n = 1, harmonic analysis on R/Z is an important step in understanding the
Riemann zeta function

ζ(s) =
∞∑

n=1

n−s =
∏

p

(1− p−s)−1 (1.100)

in fact the Poisson summation formula allows to define the completed zeta-
function, for more details see Appendix A.

The modern theory on automorphic functions is concerned in part with
spectral problems associated with quotients of more general (non-abelian)
groups, their homogeneous and symmetric spaces and the formation of related
zeta functions.

Selberg discovered that Poisson summation formula of classical analysis
had a non-commutative generalization (now referred to as the Selberg trace
formula) with important applications to number theory and the theory of
automorphic functions. The similarity between this trace formula and an
explicit formula due to A. Weil let Selberg to introduce the Selberg zeta
function. Let us briefly discuss these objects.

As we said, the eigenvalue problems studied by Maass turns out to be a
problem of upmost complexity. Precise results about the individual eigen-
values of the fundamental spectral problem are lacking, but asymptotic re-
sults can be derived from the Selberg trace formula. This formula is as
simple as possible for co-compact groups which moreover do not have ellip-
tic elements (think of the regular octagon). Let Γ be such a group, with
λ0 = 0 ≤ λ1 ≤ λ2 ≤ . . ., λn = 1/4 + r2

n, the eigenvalues of ∆. Let h : C→ C
be an even function, which is holomorphic and satisfies the growth condition
h(r) = O((1 + |r|2)−1−δ) for |r| → ∞ uniformly in the strip |Im r| < 1

2
+ δ

(δ > 0). Let g(u) be the Fourier transform of h(r)

g(u) =
1

2π

∫ +∞

−∞
h(r) e−iru dr (1.101)
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Then the Selberg trace formula for Fuchsian groups having only hyperbolic
elements is

+∞∑
n=0

h(rn) =
µ(F)

4π

∫ +∞

−∞
r h(r) tanh(πr) dr

+
∑

{P}

ln N(P0)

N(P )1/2 −N(P )−1/2
g(ln N(P )) (1.102)

where the sum on the right-hand side extends over all Γ−conjugacy classes
{P} of hyperbolic elements P ∈ Γ\{I}. N(P ) denotes the norm of P , that is
N(P ) is equal to the square of the eigenvalue of the matrix which defines P
with larger absolute value. P0 is the primitive hyperbolic element associated
with P , that is there exist no P ∈ Γ, no integer m ≥ 1 such that P0 = Pm.
All the sums and the integrals in the above trace formula are absolutely
convergent.

For Fuchsian groups which do have parabolic and elliptic elements too,
one has to compute also the contributions of these elements. Besides, the
right-hand side must contain also the continuous spectrum. The trace for-
mula for X(1) reads as follows. Let g ∈ C∞

0 (R) be an even smooth function
of compact support and let h(ξ) = ĝ(ξ/2π) (h is an entire function). Then
the Selberg trace formula for PSL(2,Z) is

∑
tφ

h(tφ)− 1

2π

∫ ∞

−∞
h(t)

φ′Γ(1)

φΓ(1)

(
1

2
+ it

)
dt

=
µ(X(1))

2π
,

∫ +∞

−∞
tanh(πt) th(t) dt− 1

π

∫ +∞

−∞
h(t)

Γ′

Γ
(1 + it) dt

− 2 ln 2g(0) + h(0)

+
∑

{R}

∑
1≤ν≤m−1

2

m sin πν
m

∫ +∞

−∞

h(r)e−
πν
m

1 + e−2πr
dr

+ 2
∑

{P}

+∞∑

k=1

ln N(P )

N(P )k/2 −N(P )−k/2
g(k ln N(P )) (1.103)

The tφ’s run through the discrete spectrum of X(1) (as usual λφ = 1
4

+ t2φ).
φΓ(1) is the constant term in the Eisenstein series as before given in terms of
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ζ∗(s); Γ is the Euler gamma function. The sum {R} is over elliptic conjugacy
classes, for SL(2,Z) there are two of them, one of order m = 2 and one of
order m = 3. Again, the sum {P} is over primitive hyperbolic conjugacy
classes of Γ(1). Remember that a hyperbolic A ∈SL(2,R) can be conjugated

into the form ±
(

(N(A))1/2 0
0 (N(A))−1/2

)
with N(A) > 1. A fixes a

unique geodesic γ in H, whose length (on X(1)) is ln N(A). Thus, as we
already said, the set {P} corresponds to the set of primitive closed geodesics
on X(1) 7.

The left-hand side of this formula is the spectral one, it contains a sum
over the discrete and the continuous spectrum. It is the quantum-mechanical
side. The right-hand side is geometrical, because it contains a sum over all
closed geodesics. Thus it the classical side. The equality, somehow, sanctions
an equivalence between classical mechanics and quantum mechanics

quantum mechanics = classical mechanics

in the semiclassical limit. As we already mentioned, unlike the divergent
Gutzwiller trace formula, the Selberg trace formula is absolutely convergent,
but its contents depend on the test function h. The class of test functions is
pretty large, so the Selberg trace formula gives an infinite number of semi-
classical quantization rules, which, at the moment, are the only tools for
quantum systems whose semi-classical limit is chaotic.

Note two more things. First, the Selberg trace formula is valid for mani-
folds whose curvature is constant. There is no generalization of this result to
surfaces of non-constant negative curvature. Second, the Poisson summation
formula is a one-dimensional formula, in the sense that in higher dimen-
sions one simply considers the product of one-dimensional Poisson formulas
to get the spectral resolution of the Laplacian on, say, the torus Tn. For
the Selberg trace formula, things are more complicated. Yet, there exist a
higher-dimensional generalization of it, due to J. Arthur [7], known as the
Arthur trace formula. This formula uses the adelic language, unfortunately
explaining that would lead us too far.

7To be more precise, for X(1), the lengths of primitive closed geodesics are the numbers
2 ln εd where 0 < d ≡ 0 or 1 mod 4 is square-free and εd is the fundamental solution t0+

√
du0

2
to the Pell equation t2−du2 = 4, with multiplicity the class number h(d) of integral binary
quadratic forms of discriminant d.
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1.6 The geodesic flow on the hyperbolic plane
In this section, we state some important results about the geodesic flow on
a d−dimensional Riemannian manifold Q of negative curvature. We assume
that Q is compact (like the double torus associated with the regular octa-
gon) or of finite volume (like any X(N)). The curvature does not need to
be constant. Then the geodesic flow on Q is a so-called Anosov flow 8 in
any dimension d. Anosov flows are examples of the most chaotic dynamical
systems known. In particular, let {gt} the geodesic flow on Q. Then the
following holds

• The flow {gt} is isomorphic to a Bernoulli flow; in particular {gt} is
ergodic, mixing, has positive entropy and K-property;

• the flow {gt} is topologically mixing, in particular topologically transi-
tive;

• periodic orbits of {gt} are dense in M = SQ; the number P (T ) of
8A dynamical system is called an Anosov system if every trajectory is uniformly com-

pletely hyperbolic and the constants C and λ below can be chosen independently of
the point. A trajectory {St} is completely uniformly hyperbolic if there exist subspaces
Es(St(x)) and Eu(St(x)) and constants C > 0, λ, µ such that

0 < λ < 1 < µ

and for all t and τ ≥ 0, one has

TSt(x) = Es(St(x))⊕ Eu(St(x))⊕X(St(x))

dStEs(x) = Es(Stx) dStEu(x) = Eu(St(x))

||dSτv|| ≥ Cλτ ||v|| v ∈ Es(St(x))

||dSτv|| ≤ C−1µτ ||v|| v ∈ Eu(Stx)

γ(St(x)) ≥ const.

where γ here is the angle between the subspaces Es(St(x)) and Eu(St(x)), respectively
called stable and unstable subspaces. X(St(x)) is the subspace generated by the flow
(and invariant under it). In other words, the notion of (uniform) hyperbolicity means that
the tangent space is split into a direct sum of three subspaces invariant under dSt, where
dSt|Es is a contraction and dSt|Es is an expansion. The presence of the unstable subspace
is at the origin of the exponential divergence of nearby trajectories in phase space. The
remaining subspace is neutral, in the sense that vectors lying in it may contract and expand
but not too fast.

54



periodic orbits of period ≤ T is finite and

P (T ) ∼ ehT

hT
, T →∞ (1.104)

where h is the topological entropy of the flow.

The last statement is due to G. A. Margulis [106]; it turns out that for a
d−dimensional manifold Q of constant negative curvature K, the topological
entropy is given by

h = (d− 1)
√
−K (1.105)

In this thesis, we are interested in the case d = 2, especially the modular
surface X(1) = PSL(2,Z)\H for which h = 1 (we always put R = 1 in the
hyperbolic metric, so K = −1/R2 = −1). Note that the geodesic flow on the
whole hyperbolic plane is not ergodic, indeed it is integrable.

Note that the same asymptotic relation is valid considering only primitive
periodic orbits (ppo) γ0, that is

]{γ0|T (γ0) ≤ T} ∼ ehT

hT
(1.106)

Now we can use the Pesin formula, which for strongly chaotic systems (in par-
ticular Anosov flows) gives the entropy as the sum of the positive Lypaunov
exponents. Since on H there is only one Lyapunov exponent λ, h = λ = v/R
[9], where v is the speed and in our units R = 1. Thus hT = vT/R = l/R
with l the hyperbolic length of the orbit, and we can write down an asymp-
totic formula for the counting function of ppo γ0 labelled by their lengths
l(γ0)

R0(l) = ]{γ0| l(γ0) ≤ l} ∼ el/R

l/R
(1.107)

as l → ∞. This asymptotic behavior can also be derived from the Selberg
trace formula. Again, the counting function for the lengths of all orbits,
primitive or repeated, has exactly the same exponential growth

R(l) = ]{γ| l(γ) ≤ l} ∼ el/R

l/R
(1.108)

Indeed, an orbit of length l is either primitive or twice a primitive orbit of
length l/2, etc, hence R(l) =

∑∞
n=1R0(l/n) and in this sum the first term

R0(l) exponentially dominates the others. This means that the exponential
proliferation of longer primitive orbits overwhelms by far the increase brought
by the iteration of shorter orbits.
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1.6.1 Artin modular billiard

E. Artin [8] studied the case of a billiard flow inside the halved modular
domain, that is the geodesic flow on Q = PGL(2,Z)\H. Let us state Artin’s

Figure 1.9: The figure represents the fundamental domain of PSL(2,Z) and
PGL(2,Z) (one of the two hatched parts). Artin billiard corresponds to the
geodesic flow inside one of the two fundamental domains for PGL(2,Z).

main theorem. Let γ be a geodesic in Q and γ̃ one of its liftings to H.
Denote by x̃ = γ̃(−∞) and ỹ = γ̃(+∞). Suppose that x̃ > 0 and ỹ < 0
and let x̃ = [ñ1, ñ2, . . .] and −ỹ = [m̃1, m̃2, . . .] be the continued fraction
expansions of x̃ and ỹ with ni,mi > 0. Now let γ̂ another lifting of γ in H,
x̂ = γ̂(−∞) and ŷ = γ̂(+∞). As before, suppose that x̂ > 0, ŷ < 0 and
x̂ = [n̂1, n̂2, . . .], −ŷ = [m̂1, m̂2, . . .]. Then γ̂ = gγ̃ for some g ∈ PGL(2,Z).
Artin theorem says that (x̃, ỹ) and (x̂, ŷ) define the same geodesic in M = SQ
if and only if

σk(. . . , m̃2, m̃1, ñ1, ñ2, . . .) = (. . . , m̂2, m̂1, n̂1, n̂2, . . .) (1.109)

for some integer k, where σ is the shift in the space Σ of two-sided infinite
sequences of positive integers. Thus we obtain a coding map ψ : SQ → Σ.
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Now it is possible to show that the ergodicity of the geodesic flow {T t}
with respect to the Riemannian volume µ on SQ is equivalent to the ergodic-
ity of σ with respect to induced measure ψ∗µ. This, in turn, is equivalent to
the ergodicity of σ in the space Σ+ of one-sided infinite sequences of positive
integers (Σ is the natural extension of Σ+) with respect to the measure ν
which is the projection of ψ∗µ. The ergodicity of the latter can be studied
with the help of the Gauss map

T (x) =
1

x
−

⌊
1

x

⌋
(1.110)

It is easy to see that if x = [n1, n2, . . .], then T (x) = [n2, n3, . . .] so that T is
conjugate to the shift σ in Σ+; let χ be the corresponding conjugacy map.
The measure χ−1

∗ ν coincides with the Gauss measure on [0, 1], whose density
dx

ln 2 (1+x)
is T−invariant. As we said, this measure is ergodic with respect to

T , and consequently the geodesic flow on Q is ergodic.
We have just seen that there is a deep mathematical relation between the

geodesic flow on a fundamental domain of PGL(2,Z) and the Gauss map.
We will see in Part II that this relation can be physically realized in the
dynamics of general relativity close to the cosmological singularity, in par-
ticular the Gauss map will describe the asymptotic evolution of a Bianchi
IX universe whereas the geodesic flow for PGL(2,Z) will describe the as-
ymptotic evolution of a generic inhomogeneous universe. From the Artin
theorem, perhaps it is not so surprising that the asymptotic evolution occurs
inside the fundamental Weyl chamber of the hyperbolic Kac-Moody algebra
HA(1)

1 , whose Weyl group is precisely PGL(2,Z). Finally, all the numerical
simulations (see later on) suggest the behavior of the generic singularity is
captured by a Bianchi IX cosmological model: as we have just seen, this is
supported also by the Artin theorem.

As we mentioned, for a free motion generated by discrete groups the
periodic orbits correspond to conjugacy classes of hyperbolic transformations;
this means that if A and B are two hyperbolic transformations of the discrete
group, then A and BAB−1 define the same periodic orbit. The length l of
this orbit can be expressed in terms of the trace of these matrices

2 cosh
l

2
= TrA (1.111)

for positive hyperbolic transformations. If the group contains also hyperbolic
reflections, as in the case of PGL(2,Z), then a different formula holds for
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negative hyperbolic transformations A

2 sinh
l

2
= TrA (1.112)

Now, the trace of a hyperbolic transformation fixes the hyperbolic length
of the orbit, but there may be different orbits with the same length corre-
sponding to hyperbolic transformations not conjugate. Thus it makes sense
to speak of the degeneracy of lengths of periodic orbits. Let us denote by
g(l) the multiplicity of periodic orbits with fixed length l. We consider now
the case of an arithmetic group, like PSL(2,Z) or PGL(2,Z); then [25] the
mean multiplicity for an arbitrary arithmetic group is

〈g〉 =
2

C0

el/2

l
(1.113)

where the constant C0 depends on the group. Thus, for an arithmetic system,
we have an exponential degeneration for the multiplicities of the lengths of
periodic orbits.

For generic systems, one usually does not expect such a degeneracy, ex-
cept for eventual symmetries of the model. For example, systems with time-
reversal invariance have in general mean multiplicity equal to 2, which corre-
sponds to the same orbit run in two different directions. Arithmetic systems
are exceptional, since they display exponentially large multiplicity of periodic
orbits; in this case, one speaks of arithmetical chaos. Note, however, that
for any Riemann surface this degeneracy is unbounded [126], but the degen-
eracies connected with this theorem are much smaller then exponential. It
is this exponential degeneracy which made me think of a possible link with
the (multiplicities of the) roots of a hyperbolic Kac-Moody algebra, which
we explore a little bit in the following chapter.

Let us also observe that for the large degeneracy of length of periodic
orbits in arithmetical systems seems to have no importance in the classical
dynamics: they are chaotic as any other model on compact negatively curved
surfaces. Does the arithmetic property characterizes the quantum behavior of
the system? The answer to this question is affirmative and the deep reason for
that is the existence of the Hecke operators for arithmetic groups: this leads
to anomalous statistics (see Appendix B) and to the arithmetic quantum
unique ergodicity theorem, which we briefly describe in the following section.
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1.7 Quantum Unique Ergodicity

Figure 1.10: The tree of quantum chaos as drawn by A. Terras [146]: in this
thesis we explain only a part of this figure.

Let Q = Γ\H be a hyperbolic manifold and F a fundamental domain for
Γ. Suppose first Q is compact, and let {φn}∞n=0 be the eigenfunctions of the
Laplacian, which form an orthonormal basis for L2(Q, µ). Then a classical
result by H. Weyl for the Dirichlet problem for the Laplacian ∆ says that

]{n : λn ≤ N} ∼ µ(F)

4π
N , n →∞ (1.114)

where the eigenvalues λn are counted with their multiplicity. If the geodesic
flow on Q is ergodic, then one can go further and prove the quantum ergodicity
theorem, originally due to A. I. Shnirelman. The theorem states that if the
flow is ergodic, then there exist a density one sequence of integers (jk)k∈N
such that for each Borel subset B ⊂ F , one has

lim
k→∞

∫

B

|φjk
(z)|2 dµ(z) =

µ(B)

µ(F)
(1.115)

Let us explain in more details. First, a strictly monotonic sequence of integers
(jk)k∈N is said to be of density a (0 ≤ a ≤ 1) if the following is true

lim
J→∞

1

J
]{k ∈ N| jk ≤ J} = a (1.116)
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So saying that a sequence is density a means that the fraction of integers that
belong to the sequence equals a. Now, having normalized to 1 the eigenfunc-
tions, in particular

∫
F |φjk

|2dµ(z) = 1, it is cleat that each eigenfunction
defines a probability measure µj with density |φj|2 on F

µj(B) =

∫

B

|φj|2dµ(z) (1.117)

The Shnirelman theorem says that there exist a density one sequence of
integers jk so that the measure µjk

converge to the normalized Lebesgue
measure on F , the standard hyperbolic measure. Since we can write

µ(B)

µ(F)
=

∫

B

1

µ(F)
dµ(z) (1.118)

the Shnirelman theorem, deleting the integrals, can also be re-written as

lim
k→∞

|φjk
|2 =

1

µ(F)
(1.119)

This is statement of equidistribution, that is one often says that the eigen-
functions equidistribute because the probability densities |φjk

|2 tendo to a
constant, independent of any point z ∈ F . Thus, for non exceptional λn, the
mass of φn can never localize to, say, just a finite number of closed geodesics
on Γ\H.

This theorem has been improved by Y. Colin de Verdiere [32] and S.Zelditch
[160], in particular Zelditch [161] showed that eigenfunctions still equidis-
tribute for non-compact manifolds with Γ = PSL(2,Z) or its congruence
subgroups.

The presence of an exceptional set is clearly a bit troubling. In fact, the
so-called scarring effect has been observed in stadium-like domains in R2.
It happens that for numerous n, the topography of φn is found to contain
clear ridges of mass of scars, situated roughly along what would appear to be
closed geodesics. The location of these scars change with n (see the book by
Gutzwiller [67] and the paper by Heller [77]). Scars is what is left of periodic
orbits.

The situation is different for hyperbolic arithmetic manifolds. Let us
state the important results. Let X = Γ\H a compact hyperbolic surface,
with Γ a discrete compact subgroup of PSL(2,R), and SX the unit tangent
bundle. As we said, the geodesic flow on SX is an Anosov flow and displays
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chaotic features. We want to address the question of the behavior of the
eigenfunctions φn and eigenvalues λn of ∆, which is a quantization of the
Hamiltonian generating the geodesic flow, in the semi-classical limit, i.e. n →
∞. The central question is whether the φn’s behave like random waves or if
they display some localization related to classical trajectories. In the case of
billiards in the Bunimovich stadium (which is a chaotic domain in R2), Heller
found that certain states are enhanced on a finite union of periodic unstable
orbits and he called this phenomenon scarring. In the case of hyperbolic
manifolds, the numerical evidence points to eigenstates behaving like random
waves, although the semi-classical limit is chaotic as well. Besides, regarding
the statistics of the spectrum, one must distinguish between arithmetic and
non-arithmetic manifolds.

As before, define the probability measures µj on X

dµj = |φj(z)|2 dvol(z) (1.120)

where dvol(z) is the Riemannian volume element on X. It is well known that
these probability measures give the probability density for finding a particle
in the state φj at the point z. We say that ν is a quantum limit if it is
the limit in the weak∗ topology of the sequence µj. The Shnirelman-Colin
de Verdiere-Zelditch theorem says that if the geodesic flow is ergodic, then
µj → dvol(z) for almost all j. If fact, one can define an appropriate ex-
tension µ̃j of µj to the phase space T ∗X and show that any limit ν̃ of µ̃j

is invariant under the geodesic flow. From one side, this restricts the set of
the possible quantum limits ν̃, but on the other side it is known that for
chaotic systems the set of these invariant measures is large and complicated,
as are its typical members. The simplest and most localized such measure
is the arc-length measure supported on a union of periodic geodesics. The
question is if these can occur as quantum limits and it is related of course
to Heller’s scarring in its strongest form. Following [131], we can say that a
subsequence µjk

is said to scar strongly to a closed subset S ⊂ X if µjk
→ ν

and ∅ 6= singsupp ν ⊂ S. Now, if Γ is arithmetic, we said that there exist a
commutative self-adjoint algebra of Hecke operators which commute with ∆.
Hence we may assume that φj are also Hecke eigenfunctions of the Hecke op-
erators. This is probably automatic since the spectrum of ∆ is very probably
simple (even in the case of X = X(1) which is non-compact). The existence
of Hecke operators allows to prove that scarring on closed geodesics is impos-
sible for arithmetic surface X, i.e.: if X is an arithmetic hyperbolic surface, ν
a quantum limit and σ the support of its singular part νs, and σ is contained
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in the union of a finite numbers of points and closed geodesics, then σ = ∅.
This means that ν is absolutely continuous with respect to dvol. This a first
step towards proving that the µj are individually equidistributed. In fact,
we have the following important Quantum Unique Ergodicity conjecture due
to Rudnick and Sarnak

QUE Conjecture [131] Let X be a compact manifold of negative curvature.
Then the measures µj converge to dvol.

If this conjecture is true, it is remarkable, because it asserts that at the
quantum level and in the semiclassical limit, there is no manifestation of
chaos from this point of view. In particular, one would have quantum unique
ergodicity, that is only one possible quantum limit, while classical unique
ergodicity, i.e. uniqueness of the invariant measure for the Hamiltonian flow,
is never satisfied for chaotic systems.

The proof of the conjecture for arbitrary manifolds (i.e. not necessarily
arithmetic) is still out of reach, but progress has been made for arithmetic
hyperbolic surfaces thanks to E. Lindenstrauss [102]. He has shown, using
Ratner’s theorems on unipotent flows, that for a compact arithmetic quo-
tient X the quantum unique ergodicity conjecture is true. Moreover, the
conjecture is essentially proven also in the case of the modular surface X(1).

To conclude, we can say that for the modular surface (which is the subject
of this thesis) there is no scarring.

1.8 Notes and Comments on Chapter 1

The literature on (integrable or chaotic) dynamical systems is now huge. A
very good reference for the theory of integrable systems is the classical book
by V. I. Arnold [5]. The discovers of chaos were H. Poincaré (the influence of
Poincaré is very deep also today, although often forgotten: there are still a
lot of published or unpublished works due to the French mathematician that
await continuation by the next generation of mathematicians, see [6]) and J.
Hadamard9.

9“ . . . each stable trajectory can be transformed, by an infinitely small variation in
the initial conditions, into a completely unstable trajectory extending to infinity, or, more
generally, into a trajectory of any of the types given in the general discussion: for example,
into a trajectory asymptotic to a closed geodesic.”
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Remember that given a dynamical systems

ẋ = F (x) x = (x1, . . . , xn) (1.121)

any solution of this differential equation corresponds to a trajectory (a flow)
in some n−dimensional phase space. An old program dating back to Poincaré
seeks to determine the general behavior of the solution x(t) as t goes to ∞,
but the problem is solved only when n = 2. In this latter case, trajectories
can not intersect in phase space and the two-dimensional topology limits the
asymptotic behavior to two generic states: either trajectories approach a sta-
ble attractor (stationary solution) or a limit cycle (periodic solution) after
an infinite time. In the first case the attractor has dimension 0 (a point),
in the second it has dimension 1 (a closed curve). When n > 2, trajectories
can cross and develop complicated knotted configurations without actually
intersecting. The detailed behavior of the solution is not known for n ≥ 3.
A theorem of D. Ruelle and F. Takens [134] says that in the higher dimen-
sional case the fate of generic trajectories is to approach a non-empty, finite
(measure) region of the phase space, containing neither attracting points nor
limit cycles and in which neighbouring trajectories rapidly diverge from each
other when evolved backwards or forwards in time. Trajectories will enter
this attracting set and then wander around it in chaotic fashion. Ruelle and
Takens termed this set a strange attractor. A strange attractor is defined
to be a set which attracts all nearby solution trajectories and which has the
structure of M × C where M is a smooth manifold and C is a Cantor set
with non-integral Hausdorff dimension. Such a fractal structure emerges in
the limit of Einstein’s theory to the Big-Bang singularity. It is well known
that this work by Ruelle and Takens opened the door to the modern theory
of turbulence: in fact they showed that Landaus’theory of turbulence was
wrong, because it was mainly based on the assumption that turbulence or
chaos derived from the excitation of a large number of degrees of freedom.
The common belief was that the presence of random behavior in a deter-
ministic system derived from prescribing random initial data or exciting a
large number of degrees of freedom. These are sufficient conditions for the
onset of chaos, but they are not necessary. There are very simple dynamical
systems which are intrinsically chaotic, for example iterated maps of the in-
terval, with regular initial data, no stochastic forcing and a minimal number
of degree of freedom.

Hadamard’s great achievement was that he could prove that all trajecto-
ries in his system (the free motion on a compact negatively curved manifold)
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are unstable and that neighboring trajectories diverge in time at a rate eω t

where ω =
√

2E/mR2 is the Lyapunov exponent (R is the length scale fixed
by the constant negative curvature, K = −1/R2). Thus he was the first who
could show that the long-time behavior of a dynamical system can be very
sensitive to the initial conditions and therefore unpredictable, even though
the system is governed by deterministic laws (Newton’s equations). Today
this sensitivity to initial data is recognized as the most striking property
of systems with deterministic chaos (an expression coined by Chirikov, Za-
slavskii, and Ford [143]). It appears that Hadamard should be considered
the true discover of chaos, without ever using the word chaos in his works.

The word chaos was used much later with the discovery of Lorenz of
the “butterfly effect” (recently S. Luzzatto et al have shown that the Lorenz
attractor is mixing). Classical texts on ergodic theory are the books by V.I.
Arnold and A. Avez [4], I. P. Cornfeld, S. V. Fomin and Ya. G. Sinai [33] and
by P. Walters [156]; the book edited by L. A. Bunimovich, Ya. P. Pesin and
Ya. G. Sinai [142] is very complete and full of information (but no details
of proofs) and is highly recommended. The book edited by C. Series et al
[13] covers many topics related to this thesis (hyperbolic geometry, ergodic
theory, symbolic dynamics). Modern texts are the book by B. Hasselblatt
and A. Katok [69], which is a kind of encyclopedic treatise, the book by M.
Pollicott and M. Yuri [124]. Finally the book in progress by T. Ward and
M. Einsiedler [45] is a very promising book and it should contain also topics
about unipotent flows, equidistribution theory, quantum unique ergodicity
etc.

Good and quick introductions to the subject are the reviews by J. P.
Eckmann and D. Ruelle [44], and many lecture notes and papers by L. S.
Young available on her web site

http://www.cims.nyu.edu/~lsy/

About ten years ago, she developed the notion of Markov towers, which
are more powerful of Markov partitions in deriving statistical properties of
dynamical systems.

The notion of entropy was introduced by A. N. Kolmogorov (and refined
by Ya. G. Sinai) after the work of Shannon on information theory. The
metric entropy was the first example of a numerical invariant for dynamical
systems and it allowed different dynamical systems to be distinguished. In
particular the American mathematician D. Ornestein showed that Bernoulli
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shifts are isomorphic iff they have the same metric entropy, a news which
arrived as a shock for the Russian school [90].

Many people claim the chaos theory is a kind of a new science, a new
paradigm and that its implications will be as important as the revolutions
of quantum mechanics and general relativity have been. This is very likely
true. I suggest other easy readings on chaos I found very useful: the book by
D. Ruelle [133], the classical text by J. Gleick [61] (a must) and for Italian
readers [10].

For billiards the book by S. Tabachnikov [144] is a good introduction (it
mostly deals with for integrable billiards and classical geometry): this book
and a previous one on billiards can be found on his web site

http://www.math.psu.edu/tabachni/

For the reader who wants to learn all the details of the proofs (especially
concerning chaotic billiards) we suggest the new book by N. Chernov and R.
Markarian [28]. The first chapters of this book and a previous one on ergodic
billiards can be found on Chernov’s web site

http://www.math.uab.edu/chernov/

The talk by Chernov “Chaotic Billiards” at the MSRI is very good:

http://www.msri.org/communications/vmath/VMathVideos/VideoInfo/2958/show_video

We nave not even mentioned the first example of chaotic billiard, which is also
the most famous one, the Sinai billiard. It has a convex scatterer, thus it is
a dispersive billiard (see [55] for an introduction). After this seminal work of
Sinai in 1963, only a few years ago N. Simanyi has shown that Boltzmann’s
ergodic hypothesis is true for typical hard ball systems and typical hard
disks systems (for almost every initial configuration!). This is a great step
in proving Boltzmann’s ergodic hypothesis [26] in full generality. Recently,
G. Gallavotti has suggested to extend the ergodic hypothesis to the chaotic
hypothesis [56], that is to regard chaotic dynamical systems not only ergodic,
but fundamentally hyperbolic (say Anosov).

For quantum chaos standard books are the classical book by M. Gutzwiller
[67] (a very informative book), a volume of École de Physique Les Houches
[59], the book by K. Nakamura [119] and the book by F. Haake [68] (and all
the references inside all of them). Sir M. Berry has all his papers on his web
site, also the very first ones
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Figure 1.11: A typical Sinai billiard

http://www.phy.bris.ac.uk/people/berry_mv/index.html

The old review by N. L. Balas and A. Voros [9] is excellent, but it does not
contain the phenomenon of arithmetical chaos which is instead described for
mathematicians in [136] by P. Sarnak (who also coined the term arithmetical
chaos) and for physicists by E. B. Bogomolny, B. Georget, M. J. Giannoni
and C. Schmit [25]. The problem of scarred states in quantum mechanics was
faced for the first time in a paper by E. J. Heller [77], see also the book by
Gutzwiller; results on the absence of scarred states for the situation we are
interested in were derived from P. Sarnak et al in a series of papers [103]-[104],
[131]. The paper by D. Hejhal [76] on the topography of Maass waveforms is
also useful.
The bibliography on the Selberg trace formula, its applications and and its
generalizations à la Arthur [7] is huge too. The original paper by A. Selberg
is [141]; the Selberg trace formula was then interpreted as a sum over periodic
geodesics by Huber [79] (in German). We suggest the classical treatise by
D. Hejhal in two volumes [75], the books by J. Fischer [52], the books by H.
Iwaniec [85]-[86], the book by A. Terras [145], the paper by H. McKean [111]
and especially the one by D. Hejhal [74].
The Schnirelman theorem appears in [140], but see also the papers by Y.
Colin de Verdiére [32] and S. Zelditch [160].
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Chapter 2

Kac-Moody Algebras

It is a well kept secret that the theory of
Kac-Moody algebras has been a disaster.

The idea of locality
V. G. Kac

In this chapter we review the theory of Kac-Moody algebras (briefly
touching also Borcherds algebras), focusing our attention on the hyperbolic
Kac-Moody algebras HA(1)

1 and E10, the canonical hyperbolic extensions
of A1 and E8. We state a theorem which codes a part of the imaginary
root lattice of HA(1)

1 in terms of the periodic orbits on the modular surface
X(1) =PSL(2,Z)\H; this is possible because the positive Weyl group of HA(1)

1

is precisely PSL(2,Z). We speculate also on a new possible interpretation of
the Selberg trace formula and the Selberg zeta-function for PSL(2,Z) as a
sum over the root lattice of the hyperbolic Kac-Moody algebra HA(1)

1 .
The easiest way to think about Kac-Moody algebras is to consider them as

generalizations of classical simple Lie algebras. It is known that any complex
finite-dimensional simple Lie algebra can be put in the following form (the
so-called Weyl-Cartan basis)

[Hi, Hj] = 0 [Hi, Eα] = α(i) Eα (2.1)

[Eα, E−α] =
∑

i

α(i) Hi

[Eα, Eβ] = Nαβ Eα+β if α + β is a root 6= 0
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The numbers appearing in the right hand side in the previous formulae can
be chosen to be all integer by a change of basis, the result being the so-called
Serre-Chevalley form:

[hi, hj] = 0 [hi, ej] = aij ej [hi, fj] = −aij fj (2.2)

[ei, fj] = δij hi

where aij is called the Cartan matrix of the algebra and the other commu-
tators are given by the Serre-Chevalley relations: (ad ei)

1−aij (ej) = 0 , (ad
fi)

1−aij (fj) = 0 for i 6= j.
It is also true also the viceversa: every definite positive Cartan matrix

A (in the sense that every principal minor is > 0) defines a complex finite-
dimensional simple Lie algebra (Serre theorem). This is the starting point to
search for generalizations of the classical Lie algebras.

2.1 Overview of Kac-Moody Algebras

At the end of the ’60s, V. G. Kac and R. V. Moody independently and for
different reasons extended the Serre-Chevalley result to the case of a more
general matrix, considering in particular the case of semi-positive definite
and indefinite matrices. One obtains infinite-dimensional algebras to which
some of the finite-dimensional structure theory can be applied.

In this section we review basic facts about Kac-Moody algebras, for more
details see the book by Kac [87] and the last section of this chapter.

Let I be a finite set let A = aij be a generalized Cartan matrix 1, that is
a |I| × |I| matrix subject to the conditions

aii = 2 , aij is a non-positive integer for i 6= j , aij = 0 ⇔ aji = 0 .
(2.3)

We say that A is indecomposable when it is not possible to put A in a diagonal
block form by reordering the set I (otherwise the Kac-Moody algebra g(A),
to be defined below, decomposes into a direct sum of Kac-Moody algebras
associated to the indecomposable components of A) and symmetrizable when
there exists an invertible diagonal matrix D such that DA is symmetric.

1In the following we will avoid to use expressions like generalized Cartan matrix or
Borcherds-Cartan matrix and just say Cartan matrix, the type of algebra will be clear
from the context.
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Let h be a complex vector space whose dimension is |I| + corank A, and
h∗ its dual. Then there exist linearly independent indexed sets

Π := {αi} ⊂ h∗ , and Π∨ := {hi} ⊂ h , (2.4)

such that αj (hi) = aij (i, j ∈ I). The αi (hi) are called simple roots (dual
simple roots). The sets Π and Π∨ are uniquely determined by A up to
isomorphism.

Then the Kac-Moody algebra g(A) associated to A is the complex Lie
algebra generated by h ∪ {ei, fi} with defining relations:

[ei, fj] = δij hi , [h, h′] = 0 for h, h′ ∈ h (2.5)

[h, ei] = αi(h) ei , [h, fi] = −αi(h) fi

(ad ei)
1− aij ej = 0 , (ad fi)

1− aij fj = 0 for i 6= j .

h is the maximal abelian subalgebra of g(A) (Cartan subalgebra). The de-
rived subalgebra g′(A) := [g(A), g(A)] is generated by the elements ei, fi and
g(A) = g′ (A) + h. The center of g(A) is c := {h ∈ h|αi(h) = 0 for all i ∈ I}
and has dimension corank A. The order |I| of the Cartan matrix is also called
the rank of the algebra, not to be confused with the rank of the matrix A.
Remark : Usually the Kac-Moody algebra is defined to be the quotient of
our g(A) by the sum of all ideals intersecting h trivially. The two definitions
coincide when A is symmetrizable (because any ideal of g(A) either contains
g′ (A) or is contained in c provided that A is symmetrizable and indecompos-
able). We will only be concerned with symmetrizable (and indecomposable)
matrices, so we prefer this definition.

If we denote by n+ (n−) the subalgebra of g(A) generated by {ei} ({fi}),
we obtain the vector space decomposition (triangular decomposition)

g(A) = n− ⊕ h⊕ n+ . (2.6)

Furthermore, we have the root space decomposition of g(A) with respect to
its Cartan subalgebra:

g(A) =
⊕

α∈ h∗
gα (2.7)

where gα := {x ∈ g(A)|[h, x] = α(h) x for all h ∈ h} is the root space. If
α 6= 0 and gα 6= 0, then α is called a root of multiplicity mult α := dim
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gα (this is always finite). Note that ±αi are roots of multiplicity 1 since
gαi

= C ei and g−αi
= C fi. Let us denote by ∆ the set of all roots.

The Z−span Q of the set Π is called the root lattice, Q =
⊕

i∈ I Zαi ⊃ ∆.
Any lattice vector α =

∑
i ki αi ∈ Q (root or not) has a height given by

htα :=
∑

i ki. With Q+ :=
∑

i Z≥ 0 αi, we can introduce a partial ordering
on h∗ by

λ ≥ µ ⇔ λ− µ ∈ Q+ . (2.8)

In this way we can define the positive roots as the ones in the set ∆+ =
∆ ∩Q+. Then the negative roots belong to the set ∆− = −∆+ and we have
∆ = ∆+ ∪∆− (disjoint union).

Given a g(A), it is possible to define the dual Kac-Moody algebra g(Atr).
We will identify the Cartan subalgebra h∨ of g(Atr) with h∗, so that the set
of simple roots of g(Atr) (resp. dual simple roots) is identified with Π∨ (resp.
Π). Notions like Q∨, ∆∨ etc are defined in an obvious way.

For each i ∈ I, let us define the fundamental reflection ri ∈ GL(h) by

ri (h) := h− αi(h) hi (2.9)

with h ∈ h. Note that ri operates contragrediently in h∗, i.e. ri (α) :=
α− α(hi) αi. The Weyl group W is the subgroup of GL(h) generated by the
fundamental reflections ri; we can identify ri with r∨i and W with W∨ via the
contragredient action. The operators (ad ei) and (ad fi) are locally nilpotent
and r̃i := (exp ad ei)(exp ad (−fi))(exp ad ei) ∈ Aut g(A) and satisfies

r̃i(gα) = g ri(α) and r̃i|h = ri. (2.10)

In particular, the root system ∆ is W-invariant, mult α = mult w(α) for
every w ∈ W and ri permutes the set ∆+/{αi}.

The Weyl group allows to distinguish roots into real roots and imaginary
roots. A root is real if it is W -equivalent to a simple root (so its multiplicity
is 1), otherwise it is imaginary. Thus we have ∆ = ∆re ∪ ∆im. If α ∈ ∆re,
then w(α) = αi for some i and we can define the dual root α∨ ∈ ∆∨

α∨ = w−1(hi) ∈ h (2.11)

It is also possible to define reflections with respect to real roots: if α ∈ ∆re
+

we define
rα(h) = h− α(h)α (2.12)
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so that r2
α = 1, rα(β) = β − β(α∨)α with β ∈ h∗, wrαw−1 = rw(α) and

rαi
= ri.
The symmetrizability of the matrix A is a very important condition, being

equivalent to the existence of a non-degenerate g(A)-invariant symmetric
bilinear form (, ) on g(A). The restriction of this form to h is non-degenerate
and W -invariant. Conversely, any non-degenerate W -invariant symmetric
bilinear form (, ) on h can be uniquely extended to a non-degenerate g(A)-
invariant symmetric bilinear form (, ) on g(A). We will always assume that
A is symmetrizable. In this case we can choose a non-degenerate invariant
bilinear form (, ) on g(A) such that (hi, hj) is positive rational for all i ∈ I
(standard bilinear form) and identify h with h∗ via (, ). A real root is then
described by the condition (α, α) > 0, an imaginary one by (α, α) ≤ 0.
Furthermore, the generalized Cartan matrix can be written in the form

aij = 2
(αi, αj)

(αi, αi)
(2.13)

as in the classical case, and the Weyl reflections are

rα(λ) = λ− (λ, α∨)α = λ− 2
(λ, α)

(α, α)
α (2.14)

for α ∈ ∆re, and for any root α ∈ ∆ we have [gα, g−α] = Cα which gives a
non-degenerate pairing of gα and g−α.

Let us set hR = {h ∈ h|αi(h) ∈ R for all i ∈ I}. This is a W -stable real
subspace of h. We can define h∗R similarly. The fundamental Weyl chamber
is the set C ⊂ hR defined by

C = {h ∈ hR|αi(h) ≥ 0} (2.15)

each w(C) is a chamber, whose union gives the Tits cone X = ∪w∈W w(C).
Also define the imaginary cone Z to be the closure of the convex hull of
{0} ∪∆im

+ .
In particular, the Tits cone is a convex cone and the set C is a fundamental

domain for the action of W on X, i.e. any orbit W · h with h ∈ X intersect
C in exactly one point; finally W operates simply transitively on chambers.
In the finite-dimensional case, one has the following equivalent properties

|W | < ∞⇔ X = hR ⇔ |∆| < ∞ (2.16)
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The Weyl group of a Kac-Moody algebra is always a Coxeter group 2. Yet,
the Coxeter exponents of the Weyl group are restricted to the following values

aijaji 0 1 2 3 ≥ 4
mij 2 3 4 6 ∞

More on this will be said at the end of this chapter. Also note that different
Kac-Moody algebras, say g(A1) and g(A1), may have the same Weyl group
W (A1) ∼= W (A2). Since this is Coxeter group, it is identified by its Coxeter
exponents. It may happen that a

(1)
ij a

(1)
ji = a

(2)
ij a

(2)
ij = mij, so the two Weyl

groups are isomorphic.
Let us finish this section with some remarks about the subalgebras of

Kac-Moody algebras. The structure of regular and singular subalgebras of
(genuine) Kac-Moody algebras is much more involved compared to the finite-
dimensional case, where a folding technique developed by Dynkin allows to
find all the subalgebras.

Generally, indefinite Kac-Moody algebras contain infinitely many non-
isomorphic subalgebras which are of indefinite type, of equal or less rank, and
each of these subalgebras is infinite-dimensional too! In particular Feingold
and Nicolai [51] found a very simple general construction which allows to
locate the simple root system of an indefinite algebra inside the root system
of a given indefinite Kac-Moody algebra; the resulting subalgebra may not
be hyperbolic even if the starting algebra is hyperbolic. Their work also
shows that indefinite algebras contain even Borcherds subalgebras, perhaps
a surprising fact. More on this will be said in the sections dedicated to HA(1)

1

and E10.
Embeddings of Borcherds algebras into Kac-Moody algebras were studied

by S. Naito [120] who was the first to find locate Borcherds algebras in Kac-
Moody algebras.

2A Coxeter group is a discrete group generated by n reflections ri with the following
defining relations

r2
i = 1 , (rirj)mij = 1 (2.17)

where the Coxeter exponents mij are positive integers or ∞ (in this case we put x∞ = 1).
Every Coxeter group defines a Coxeter polytope, which is the polyhedron whose faces are
pointwise-fixed by the fundamental reflections. When the Coxeter group is the Weyl group
of a Kac-Moody algebra, this polyhedron corresponds to the dual Weyl chamber C∨, which
is out main object of interest, i.e. the fundamental Weyl chamber of the dual Kac-Moody
algebra. In the following, we simply use the term Weyl chamber to mean the polytope
whose faces are orthogonal (with respect to the metric given by the Cartan matrix) to the
simple roots of the algebra; thus it is contained in h∗R.
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Let us define the compact form k(A) of a Kac-Moody algebra g(A). De-
note by ω0 the antilinear automorphism (compact involution) of g(A)

ω0(ei) = −fi , ω0(fi) = −ei , ω0(h) = −h for all h ∈ hR (2.18)

Then k(A) is defined as the fixed point set of ω0 and it is a real Lie alge-
bra whose complexification gives g(A). This definition of the compact form
coincides with the usual one in the finite-dimensional case. Note also that
this algebra is not necessarily a Kac-Moody algebra. A partial classification
of compact real forms is given in [112] for affine Kac-Moody algebras and in
[113] for hyperbolic Kac-Moody algebras. These papers are important in view
of the fact in many cases of physical interests one has to consider split and
not-split real forms of hyperbolic algebras to describe certain supergravity
billiards [78].

2.1.1 On Kac-Moody groups: A remark on terminology

It is known that working with infinite dimensional Lie groups is a hard task
(see [114]). For example, there is a good theory parallel to the theory of
finite-dimensional Lie groups for infinite-dimensional Lie groups modelled on
Banach algebras. But for more general topological vector spaces, these is no
such a theory: most of theorems about Lie groups do not hold. It is possible
to give numerous examples of Lie algebras which do not correspond to any
Lie group and of Lie groups whose exponential maps are not locally bijective
(which is really a bad behavior for physical applications). For example, if
X is a real finite-dimensional compact smooth manifold, the group Diff(X)
of all smooth diffeomorphisms X → X is a Lie group, whose Lie algebra
is Vect(X), the vector space of all smooth vector fields on X endowed with
the usual bracket operation. The exponential map exp: Vect(X) → Diff(X)
assigns to every vector field the unique (X is compact) flow that it generates.
The complexification of the Lie algebra Vect(X) does not correspond to any
Lie group, that is there is no Lie group whose Lie algebra is VectC (X) [125].

In the case of Kac-Moody algebras the situation is the following. Affine
algebras are realized as central extension of loop algebras, so every affine Lie
algebra comes from a Lie group (a loop group). At the moment of writing
this work, we do not know if this is true for indefinite Kac-Moody alge-
bras: the question is open since their fist discovery (almost 40 years). No
concrete realizations of these algebras are known. The case of a (genuine)
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Borcherds algebra is even worse for the presence of imaginary simple roots.
In the physical applications we have in mind [37]-[38],[47], the term Kac-
Moody group is used to mean the infinite-dimensional Lie group (if any) cor-
responding to the infinite-dimensional Kac-Moody Lie algebra. In particular
the Kac-Moody algebra is studied with a level decomposition with respect to
a finite-dimensional Lie algebra, that is one sums infinite finite-dimensional
representations of a classical Lie algebra (often su(n)) to recover the Kac-
Moody algebra. This decomposition is of course infinite and “converges” at
the level of the algebra; but, we do not know if it “converges” also to an
infinite-dimensional Lie group whose Lie algebra is our beloved Kac-Moody
algebra. In the applications, one usually truncates the decomposition at some
low level and exponentiates the corresponding finite-dimensional representa-
tions to get a manageable Lie group and write a Lagrangian invariant under
it. This Lagrangian often coincides with (part of) the Lagrangian of some im-
portant physical theory, like pure gravity in 4 dimensions or 11-dimensional
supergravity.

Yet, it is possible to define in a very precise way what a Kac-Moody group
is: it is not a manifold, its construction (due to J. Tits [147]-[148]) is based
on the concepts of chambers and buildings in terms of a so-called BN-pair.
It is this discrete structure which appears in the limit of general relativity to
the cosmological singularity (not a smooth group!), and I believe that this
direction should be explored better and in more details, because it should
contain information about the birth of the universe.

2.2 Classification of Kac-Moody Algebras
Generalized Cartan matrices can be classified thanks to a theorem of E.
Vinberg. The result if that only one of the following three possibilities holds:

• (Fin) detA 6= 0; there exists u > 0 such that Au > 0; Av ≥ 0 implies
v > 0 or v = 0;

• (Aff) corankA = 1; there exists u > 0 such that Au = 0; Av ≥ 0
implies Av = 0;

• (Ind) there exists u > 0 such that Au < 0;Av ≥ 0, v ≥ 0 imply v = 0

We say that A is of finite, affine or indefinite type respectively. It turns
out that generalized Cartan matrices of finite of affine type are always sym-

74



metrizable. Moreover, the algebras of finite type correspond precisely to
finite-dimensional simple Lie algebras (this being equivalent also to |W | < ∞
or |∆| < ∞ or (, )hR positive-definite). Affine and indefinite Lie algebras are
always infinite-dimensional3.

2.2.1 Affine Kac-Moody Algebras

A matrix A is affine iff all its proper principal minors are positive and det
A = 0 (thus corank A = 1). Affine Dynkin diagrams are listed in the book
by Kac. Without entering the details, affine Kac-Moody algebras can be
easily constructed from the finite-dimensional Lie algebras. In particular,
there exist a standard mechanism of affinization of every simple Lie algebra
XN , which gives all untwisted affine algebras X(1)

N . The procedure consists
in using the highest root θ of each XN and to consider the lattice II1,1 ∼= Z2

with basis k+ = (1, 0), k− = (0,−1) and scalar product
(

0 −1
−1 0

)
. From

this one can define the vector α0 = k+ − θ, the affine simple root, which
together with the simple roots of XN gives the affine Dynkin diagram of X(1)

N .
One can show that the only imaginary roots of these affine algebras are the
integer multiples of k+ (considered as vectors of Q(XN)⊕II1,1)

∆im
+ = {nk+ , n = 1, 2, . . .} (2.19)

In particular, the imaginary roots of affine algebras are always isotropic (k2
+ =

0). Finally, the multiplicities of imaginary roots for untwisted affine Lie
algebras is |I| = rk A. This result and many others can be deduced using
a concrete realization of the affine algebras: they are isomorphic to central
extensions of loop algebras. This also clarifies the geometric structure of
these algebras: the corresponding Lie group in an infinite-dimensional loop
group.

Affine Kac-Moody algebras were initially also called Euclidean Lie alge-
bras, the term affine refers to the structure of their Weyl group, which is the
so-called affine Weyl group of the underlying finite Lie algebra XN .

3Note that the whole class of infinite-dimensional Lie algebras is perhaps too big to be
classified; in the infinite-dimensional setting Levi’s theorem (according to which any finite-
dimensional Lie algebra is the semi-direct sum of a solvable Lie algebra, called radical, and
a semi-simple Lie algebra) is not valid, so in particular there exist infinite-dimensional Lie
algebras which do not admit a structure based on a (generalized or not) Cartan matrix.
For example, the Virasoro algebra is another famous infinite-dimensional Lie algebra which
does not belong to the class of Kac-Moody or Borcherds algebras.
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2.2.2 Lorentzian and Hyperbolic Kac-Moody Algebras

Note that an indefinite matrix is not necessarily symmetrizable. There is not
a general theory of indefinite Kac-Moody algebras, mostly because a concrete
realization is missing. Indefinite Kac-Moody algebras are not of finite growth,
that is the dimension of each imaginary root space (a homogeneous piece)
is not of polynomial growth, but rather of exponential one. The indefinite
Lie algebras we are interested in have a Cartan matrix A with det< 0 and
are generically called Lorentzian Kac-Moody algebras; they can be defined
by requiring that the Cartan matrix has Lorentzian signature − + + · · ·+.
This is probably not enough to have an interesting theory of these algebras,
as suggested by V. Nikulin and V. Gritsenko (see the comments at the end
of this chapter). Anyhow, we will deal only with hyperbolic Kac-Moody
algebras, which belong to the class of the indefinite algebras defined by the
condition that any connected proper sub-diagram is of finite or affine type.
A hyperbolic matrix is not necessarily symmetrizable, but if it is then the
symmetrized matrix has Lorentzian signature −+ + · · ·+.

It is possible to classify hyperbolic Kac-Moody algebras. The only rank-
1 Kac-Moody algebra is A1, which is the building block of all Kac-Moody
algebras (Borcherds algebras need something more). In rank 2, the matrix(

2 −a
−b 2

)
is finite, affine, or hyperbolic iff ab ≤ 3, ab = 4 or ab > 4.

Symmetrizable Kac-Moody algebras of rank 3 were classified by Yoshida in
[159]. Finally the highest rank for hyperbolic Kac-Moody algebras is 10 and
one can list all hyperbolic Dynkin diagrams.

There are not many results about hyperbolic Kac-Moody algebras: there
is not a single case where the root system and the multiplicities are known
explicitly! A theorem due to Moody states that in the (symmetrizable) hy-
perbolic case the imaginary roots are precisely all the vectors (6= 0) in the
root lattice with 0 or negative squared length

∆im = {α ∈ Q|α2 ≤ 0} − {0} (hyperbolic symmetrizable) (2.20)

We will discuss in some details the hyperbolic algebras HA1
(1) and E10 (both

of them have a symmetric Cartan matrix). Regarding the multiplicities of
imaginary roots for hyperbolic algebras, I. Frenkel (see the original reference
in the book by Kac) made an interesting conjecture according to which

dim gα ≤ prk−2

(
1− (α, α)

2

)
(2.21)
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where prk−2 (n) is the number of partitions of the integer n into parts of
(rk− 2) colours (with rk the rank the the Cartan matrix of the correspond-
ing hyperbolic algebra). This conjecture turned out to be wrong (see below).
We can say in full generality that in all indefinite cases (hyperbolic or not),
the multiplicity of imaginary roots is given by an arithmetic function (i.e.
with values in N) mult: ∆im → N; note that this is not necessarily a function
of the squared norm of an imaginary root, but it may be a much more com-
plicated function on the imaginary part of the root lattice. Understanding
this function is the holy grail of theory of Kac-Moody algebras.

Let us finish this section with further comments on imaginary roots. For
real roots α ∈ ∆re, mult(±α) = 1 and nα is never a root for n 6= ±1 (i.e.
mult(nα) = 0). For imaginary roots, nα is always a root for any non-zero
integer n 6= 0 (imaginary roots are the real difference with respect to classical
Lie algebras and also the major difficulty in understanding indefinite Kac-
Moody algebras). Any isotropic (that is (α, α) = 0) root α is W -equivalent
to an imaginary root of an affine Lie subalgebra, hence mult α < |I| (from
the table in Kac and in [121] one can check for example that all the isotropic
roots have multiplicities 1 and 8 for the algebras HA(1)

1 and E10 respectively,
see below). For non-isotropic ((α, α) < 0) imaginary roots the situation
changes drastically. In this case, ⊕n>0 gnα is a free Lie algebra, mult(nα)

is a non-decreasing sequence and moreover limn→∞
ln mult(nα)

n
exists and is

positive. Here we follow [89]. For any positive imaginary root α =
∑

i kiαi,
we define the Kac-Peterson function

ψ : α ∈ ∆im
+ −→ ψ(α) := lim sup

n→∞

ln mult (nα)

n
(2.22)

More specifically, Kac and Peterson have shown that:

• the limit exists without the sup: ψ(α) = limn→∞
ln mult (nα)

n
; if (α, α) <

0, then ψ(α) = supn≥1
ln mult (nα)

n

• if (α, α) = 0, ψ(α) = 0; if (α, α) < 0, then 0.48 < ψ(α) ≤ ht(α) ln
ht(α)−∑

i ki ln ki

• if n is a positive integer, ψ(nα) = nψ(α); ψ is W−invariant, ψ(w(α)) =
ψ(α) for any w ∈ W

• if α, β, α + β ∈ ∆im
+ , then ψ(α + β) ≥ ψ(α) + ψ(β)
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If A is indecomposable, the ψ function extends uniquely to a concave function
on the interior of the imaginary cone Z such that ψ(tα) = tψ(α) for t > 0.

To prove this, one first considers free Lie algebras. In fact, let L be a free
abelian group on generators β1, . . . , βr, let L+ =

∑
i Z+βi and J = J1∪· · ·∪Jr

a disjoint union of non-empty finite sets. Let a =
⊕

α∈L aα be a free Lie
algebra on generators ej (j ∈ J) graded by deg ej = βi for j ∈ Ji. For
α =

∑
kiβi ∈ L+ and k =

∑
ki, define the function

ψ0(α) = k ln k −
∑

i

ki ln(ki/|J |) (2.23)

Then for all α ∈ L+\{0}, one has

lim
n→∞

ln(1 + dim anα)

n
= ψ0(α) (2.24)

For a free Lie algebra a on N generators e1, . . . , eN of linearly independent
degrees α1, . . . , αN and α =

∑
i kiαi with all ki > 0, one has

dim anα ∼ C(α) n(−N+1)/2 enψ0(α) as n →∞ (2.25)

where C(α) = (2π)(1−N)/2(
∑

i ki)
−1/2

∏
i k
−1/2
i . This led Kac and Peterson to

the following conjecture: with A indecomposable and α in the interior of the
imaginary cone Z, there exists C(α) > 0 such that

mult(nα) ∼ C(α) n−(|I|+1)/2 en ψ(α) as n →∞ (2.26)

The multiplicities of imaginary roots for indefinite algebras is still mys-
terious: there is not a single case where one can compute them analytically.

The fact that the Kac-Peterson function is zero on isotropic roots and pos-
itive on non-isotropic imaginary roots and the presence of some ln functions
reminds an entropy function (consider also that its asymptotics is similar to
Margulis asymptotics for periodic orbits especially in the arithmetic case and
that −ψ is convex). In fact, it is known that affine algebras have to do with
integrable dynamical systems, and we have said that isotropic roots are al-
ways conjugate to imaginary roots of affine subalgebras. And for integrable
systems, the metric entropy is zero, exactly as the Kac-Peterson function.
The fact that ψ(α) > 0 on non-isotropic roots and a relation we describe in
the next sections between periodic orbits and imaginary roots make very rea-
sonable a relation between hyperbolic algebras and chaotic (say hyperbolic)
dynamical systems.
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2.3 The Character Formula and the Denomi-
nator Identity

For any Λ ∈ h∗, there exist an irreducible g(A)−module L(Λ), unique up to
isomorphism, satisfying

There exist a non-zero vector vΛ ∈ L(Λ) such that n+(vΛ) = 0 and
h(vΛ) = Λ(h)vΛ for all h ∈ h.

L(Λ) is called the irreducible highest weight module with highest weight Λ.
We have the weight space decomposition of L(Λ) with respect to h

L(Λ) =
⊕

λ∈ h∗
L(Λ)λ (2.27)

where L(Λ)λ = {v ∈ L(Λ)|h(v) = λ(h)v, for all h ∈ h}. Now let us define
the Konstant function K(β) through the formal expansion

∏
α∈∆+

(
1− e−α

)mult α
=

∑

β ∈ h∗
K(β)e−β (2.28)

K(β) is the number of partitions of β into a sum of positive roots, where each
root is counted with its multiplicity, since (1−e−α)−1 = 1+e−α +e−2α + · · · .
We say that λ ∈ h∗ is a weight of L(Λ) if L(Λ)λ 6= 0 and we put multΛ(λ) :=
dim L(Λ)λ; the latter is always finite. We denote by P (Λ) the set of weights
of L(Λ).

For any λ ∈ h∗, define the function eλ on h by eλ(h) := eλ(h). This allows
to introduce the character chL(Λ) of L(Λ)

h → chL(Λ)(h) =
∑

λ∈ h∗
multΛ(λ) eλ(h) (2.29)

This is a function defined on a certain domain YΛ of all h ∈ h such that
the series converges absolutely. One can show that YΛ is convex from the
convexity of |eλ|, and that the convergence of chL(Λ) is uniform on compact
subsets of the interior of YΛ, thus chL(λ) is holomorphic on the interior of YΛ.

We say that λ ∈ h∗ is an integral weight if λ(hi) in integral for all i ∈ I. An
integral weight is dominant if λ(hi) ≥ 0 and regular dominant if λ(hi) > 0.
We denote by P , P+, P++ the sets of integral, dominant, regular dominant
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weights respectively. Note that Q ⊂ P . Fix also ρ ∈ h∗ such that ρ(hi) = 1
(the Weyl vector).

Then for a symmetrizable Cartan matrix A, one has the following char-
acter and denominator formulas

(∑
w∈W

(det w) ew(ρ)

)
chL(Λ) =

∑
w∈W

(det w) ew(Λ+ρ) (2.30)

∑
w∈W

(det w) ew(ρ)−ρ =
∏

α∈∆+

(
1− e−α

)mult α

2.4 Generalized Kac-Moody algebras à la Borcherds

A kind of last generalization of Kac-Moody algebras are the so-called Borcherds
algebras, which allow for the presence of imaginary simple roots in the root
system. The starting point as usual is a Cartan matrix which satisfy cer-
tain conditions, in particular the main differences with respect Kac-Moody
algebras are that in a Borcherds algebra

I may be countably infinite rather that finite
aii may not be positive and need not lie in Z

2aij/aii is only assumed to lie in Z when aii > 0

thus the Cartan subalgebra may be infinite-dimensional and the aii’s zero
or negative on the diagonal of the Cartan matrix correspond to the squared
norms of imaginary simple roots.

We do not insist too much on their definition here. Many statements
about Kac-Moody algebras continue to hold, the Weyl group is defined only
in terms of fundamental reflections with respect only to real simple roots and
there is a denominator identity which accounts for imaginary simple roots
(whose multiplicity can be bigger than 1, although they are simple)

eρ
∏

α∈∆+

(1− e−α)mult α =
∑
w∈W

(det w) w

(
e(ρ)

∑
Ψ

(−1)Ψe(−
∑

Ψ)

)
(2.31)

where Ψ runs over all finite subsets of mutually orthogonal imaginary simple
roots and (ρ, αi) = 1 only for real simple roots.
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2.5 The hyperbolic Kac-Moody algebra HA(1)
1

The hyperbolic Kac-Moody algebra HA(1)
1 is defined by the following Dynkin

diagram 4

m mm
α2 α1α3

@
¡@

¡

or equivalently by its Cartan matrix



2 −2 0
−2 2 −1
0 −1 2


 (2.32)

This is in a certain sense the simplest hyperbolic Kac-Moody algebra of rank
3, being the canonical hyperbolic extension of A1

5. Let us write down the
scalar products between the simple roots (αi, αj) = aij for future convenience

(α1, α2) = −2 , (α1, α3) = 0 , (α2, α3) = −1 (2.33)

Its Weyl group W is generated by the reflections r1, r2, r3 subject to the
Coxeter relations

r2
i = (r1r3)

2 = (r2r3)
3 = 1 (2.34)

and it is thus isomorphic to the extended modular group PGL(2,Z). Its even
subgroup W+ is generated by r2r1 and r1r3 and is isomorphic to PSL(2,Z)
(in fact one can put T = r2r1 and S = r1r3 with T, S the standard generators
of PSL(2,Z), as we have already said).

General results about indefinite Kac-Moody algebras are lacking; still
something is known for HA(1)

1 . As we said, Moody’s theorem says that the

4This algebra is often denoted by Â
(1)
1 or A++

1 (the latter is used especially in the
physical literature).

5The canonical hyperbolic extension consists in adding a single link to the affine root
of an untwisted affine algebra. The algebras so obtained are also known as over-extended
or G++ algebras in the physical literature. One can go further and add another single link
the the last one of a G++ algebra and get a (still) Lorentzian very-extended G+++. Note
that this is not the only way to produce indefinite algebras starting from finite-dimensional
ones. A different, non-standard mechanism of extension (studied in [53]) allows to produce
higher rank indefinite algebras using the fundamental weights instead of the highest root.
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imaginary roots are precisely all the vectors in the root lattice with squared
length 0 or < 0

α = k1α1 + k2α2 + k3α3 ∈ ∆im ⇔ α2 = 2(k2
1 + k2

2 + k2
3)− 4k1k2 − 2k2k3 ≤ 0

(2.35)
The structure of its subalgebras was investigated recently by Feingold and
Nicolai [51], who found that it contains all rank-2 symmetric indefinite Kac-

Moody algebras, all rank-3 algebras with Cartan matrix




2 −m 0
−m 2 −2
0 −2 2




with m > 2 and also Borcherds algebras.
Perhaps the most important and inspiring paper about HA(1)

1 was written
by Feingold and Frenkel [50], who found that its Weyl group W is isomorphic
to the discrete group PGL(2,Z), which contains the modular group PSL(2,Z)
(isomorphic to the positive Weyl group W+) as a subgroup of index 2. They
also found that the denominator identity can be interpreted as a Siegel mod-
ular form on the Siegel upper-half plane (which is a matrix generalization
of the hyperbolic plane, that is one replaces points with matrices). This is
another example of some modularity property contained in the denominator
identity of Kac-Moody algebras. The isomorphism constructed by Feingold
and Frenkel realizes the root system of the algebra HA(1)

1 in the following
way. Let us introduce another basis in h∗ by

γ1 = α1/2 γ2 = −α1 − α2 − α3 γ3 = −α1 − α2 (2.36)

and let S(2,C) the complex symmetric 2×2 matrices. Let us define the map

ν : (z1γ1 + z2γ2 + z3γ3) ∈ h∗ →
(

z3 z1/2
z1/2 z2

)
∈ S(2,C) (2.37)

and the group homeorphism ν : W → PGL(2,Z) determined by ν(ri) =
Wi(z) where Wi are the standard generators of PGL(2,Z) (the hyperbolic
reflections in the three sides of the fundamental domain). Then Feingold
and Frenkel show that the map ν is a vector space isomorphism h ' S(2,C)
and lattice isomorphism Q ' S(2,Z). ν extends to a group isomorphism
W ' PGL(2,Z) and W+ ' PSL(2,Z). In particular, the real and imaginary
roots can be realized, simply by their definition, as

ν(∆re) = {g ∈ S(2,Z)| det g ≥ 0}
ν(∆im) = {g ∈ S(2,Z)| det g = −1} (2.38)
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Some of the multiplicities of the imaginary roots were computed on a
computer with the help of Peterson’s recurrent formula and are listed in the
book by Kac, page 215 6. We report the table here for convenience

6From the general theory it is known that isotropic roots are W−equivalent to imagi-
nary roots of an affine subalgebra of HA(1)

1 . This affine subalgebra must have rank 2, so
dim gα = 1 for all α isotropic, and we do not consider them in the following discussion.
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Figure 2.1: The table shows a list of some imaginary roots for HA(1)
1 .

(k1, k2, k3) denotes the root α = k1α1 + k2α2 + k3α3, α ∈ C∨ (C∨ is
the dual Weyl chamber, i.e. the Weyl chamber in the h∗ space) and
(α|α) := 1

2

∑
aijkikj.
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Looking at the table, one can note that these multiplicities are close the
values of the classical partition function p(n) 7. If we identify the integer n

7p(n) is the number of partitions of the integer n, where a partition of n is a finite
non-decreasing sequence of positive integers p1, · · · , pk whose sum is n (we put p(0) = 1
and p(n) = 0 if n is a negative integer). The first values of p(n) are

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
p(n) 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176

n 16 17 18 19 20 21 22 23 24 25 26 27
p(n) 231 297 385 490 627 792 1002 1255 1575 1958 2436 3010

n 28 29 30 31 32 33 34 35 36 37
p(n) 3718 4565 5604 6842 8349 10143 12310 14883 17977 21637

The following result is the culmination of an intense research effort that took place in the
first half of the twentieth century

p(n) =
1

π
√

2

∞∑

k=1

Ak(n)
√

k


 d

dx

sinh π
k

√
2
3

(
x− 1

24

)
√(

x− 1
24

)




x=n

(2.39)

where
Ak(n) =

∑

h mod k, (h,k)=1

ωh,k e−2πinh/k

and ωh,k is a certain 24-th root of unity. This formula is not one of those mathematical
formulas that elicits the response “Just as I expected!” and it is due to the genius of
Hardy, Ramanujan and Rademacher. The formula is not only an asymptotic series, it is
a finite, exact formula for p(n). It can be shown that if we sum the first c

√
n terms in

this expansion for some constant c, then the nearest integer to that sum will be the exact
value of p(n) [3]! The method that they used to find and to prove the validity of their
formula is called the circle method, because the successive terms in the expansion arise
from singularities of the generating function in a certain ordering of the rational points
on the unit circle. The circle method is nowadays considered one of the most difficult
problem in mathematics. By taking only the first term of this expansion, we obtain the
asymptotic behavior of p(n)

p(n) ∼ 1
4
√

3 n
eπ
√

2n/3 (2.40)

which shows that the growth of p(n) is sub-exponential. Probably, the fact that the
partition function p(n) is asymptotically sub-exponential rather that exponential is a rapid
way to discard it as a (complete) multiplicity function.
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with
(
1− (α,α)

2

)
, then some of these multiplicities obey

mult α = p

(
1− (α, α)

2

)
for some imaginary roots (2.41)

a fact already checked in [50] for all imaginary roots of the form
(

n 0
0 1

)
for

which mult
(

n 0
0 1

)
= p(n) (using Feingold-Frenkel realization of the root

lattice). But there are also cases which violate this relation; for example,
reading from the previous table, the roots (8, 9, 4) and (11, 12, 2) have both
squared length −38 but

mult (8, 9, 4) = 627 = p(20) , mult (11, 12, 2) = 626 = p(20)− 1 (2.42)

This example also shows that there are imaginary roots with the same squared
norm but with different multiplicity, because, as we said, in general the mul-
tiplicity of an imaginary root is not a function of α2.

In the listed cases, one has always mult α = p
(
1− (α,α)

2

)
or mult α <

p
(
1− (α,α)

2

)
, which experimentally confirms Frenkel’s conjecture. We will

see that for E10 computer calculations support the reverse inequality. The
way mult α fails to be equal to p

(
1− (α,α)

2

)
is perhaps interesting. Let us

also call the defect of a root the difference p
(
1− (α,α)

2

)
− mult α. In fact,

one can check that in all the cases listed one always has

p

(
1− (α, α)

2

)
−mult α = integer combinations of

{
p

(
1− (βi, βi)

2

)}

i
(2.43)

where βi is a finite set of imaginary roots with β2
i < α2. Let us illustrate

this point with some examples. Comparing the table in [87] and the values
of p(n), one can read the following
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root mult defect
(8,9,4) 627 0

(11,12,2) 626 1
(8,10,4) 792 1
(12,12,2) 791 0
(13,13,2) 1253 2
(9,10,4) 1574 1
(13,14,2) 1571 4 p(1) + p(3), p(2) + p(2)
(9,10,5) 1957 1
(11,11,3) 1956 2
(14,14,2) 1953 3
(10,10,5) 2434 2
(14,15,2) 2429 7
(9,11,5) 3007 3
(11,12,3) 3005 5
(9,12,6) 3712 6 p(1) + p(4), p(3) + p(3)
(10,11,4) 3713 5
(12,12,3) 3710 8 p(1) + p(5), p(3) + p(4)
(10,12,4) 4557 8 p(1) + p(5), p(3) + p(4)
(10,11,5) 5593 11
(12,13,3) 5587 17 p(2) + p(7)
(11,11,5) 6826 16 p(1) + p(7), p(4) + p(6)
(13,13,3) 6818 24 p(2) + p(8)
(10,12,5) 8326 23 p(1) + p(8)
(11,12,4) 8322 27 p(4) + p(8)
(10,12,6) 10111 32 p(2) + p(9)
(11,13,4) 10108 35 p(4) + p(9)
(12,12,4) 10107 36 p(1) + p(4) + p(9), p(3) + p(6) + p(8)
(13,14,3) 10096 47 p(4) + p(10), p(2) + p(7) + p(9), p(3) + p(5) + p(7) + p(8)

As shown, the defect always corresponds to an exact value of p(n) (for exam-
ple 1, 2, 3, 5, 7, 11) or to (different) combinations of different values of p(n) (we
exclude all the trivial sums 4 = 1+1+1+1 = 4p(1), 6 = 1+1+1+1+1+1 =
6p(1) etc).

All these considerations suggests a likely number theoretic interpretation
for the multiplicities of imaginary roots of HA(1)

1 and motivate the following
conjecture about the explicit form of the multiplicity function

87



Conjecture 1 The multiplicities of the imaginary roots for the hyperbolic
algebra HA(1)

1 are given by the classical partition function p(n) or mult α =
p(n) − ∑l

i=1 mi where each term mi is the value of the partition function
p(m) for some m.

To prove or disprove this, one must understand how the root α is related to
the integers n and mi, in particular if n is always

(
1− (α,α)

2

)
and which are

the roots βi corresponding to the integers mi = p
(
1− (βi,βi)

2

)
. It is also likely

that the number of terms entering the defect increases with −α2. Indeed, in
full generality, studying this defect phenomenon

∣∣∣dim gα − prk−2

(
1− (α,α)

2

)∣∣∣
could help understanding the problem of imaginary roots.

Feingold and Frenkel also showed that the multiplicity of the imaginary

roots of the form
(

n 0
0 2

)
and

(
n 1
1 2

)
is given respectively by p′(2n+1)

and p′(2n), where p′(n) is a modified partition function

∑
n≥0

p′(n) tn =

[∏
n≥1

(1− tn)−1

]
(1− t20 + t22 − t24 + . . .) (2.44)

and p(n) = p′(n) for 0 ≤ n ≤ 19, for higher values of n we have the de-
fect phenomenon we have described. Evidently, partition functions know
about the multiplicities of imaginary roots for this algebra. Regarding these
multiplicities, Feingold and Frenkel suggested a number-theoretical meaning
connected with ideal classes of imaginary quadratic fields. I do not know
of any development in this direction (except for computer calculations). As
we have mentioned, Feingold and Frenkel found a relation between the char-
acters of the algebra and the works on automorphic forms by Siegel and
Maass, and we have also described the way Maass automorphic forms solve
the Laplacian problem for PGL(2,Z) which is isomorphic to W .

Finally, using a kind of generalized vertex operator, a vertex operator
construction for HA(1)

1 has been built in [107] by A. Sciarrino and V. Marotta,
who also developed some attempts of realizations of Borcherds algebras in
[108].
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2.6 The hyperbolic Kac-Moody algebra E10

There exist 4 rank-10 hyperbolic algebras, E10, BE10, CE10 and DE10 (see the
book by Kac, page 57). Of these E10 is a distinguished one because its root
lattice Q(E10) is the unique even Lorentzian self-dual lattice II1,9 = Q(E8)⊕
II1,1 in dimension 10 (this is probably the most striking evidence for any
eventual role played by E10 in string theory). Furthermore, E10 is the only
hyperbolic symmetric matrix with determinant -1. It is given by the following
Dynkin diagram

m m m m m m m m m
α9 α8 α7 α6 α5 α4 α3 α2 α1

mα10

Simple roots linked by a segment have scalar products −1, otherwise they are
orthogonal. The simple roots {α3, . . . , α10} give an E8 algebra, and together
with affine root α2 (often denoted as α0 or α+1) one has the affine algebra E9

according to the standard mechanism of affinization of a finite Lie algebra.
Finally with the root α1 (often denoted by α−1 or α+2), one obtains the
hyperbolic algebra E10 according to the canonical hyperbolic extension of a
finite Lie algebra.

Following Feingold and Frenkel’s approach for HA(1)
1 , attempts to under-

stand E10 in terms of a level decomposition with respect to its affine E9 =E(1)
8

algebra were made by Kac, Moody and Wakimoto [88]. They found the fol-
lowing

dim gα =





p8

(
1− (α,α)

2

)
if α is of level 0 or 1

ξ
(
3− (α,α)

2

)
if α is of level 2

(2.45)

where the level of a root α is the number of times the affine root α1 appears
in the decomposition of the root α in basis of simple roots and p8(n) 8 is the

8The generating function for the partition function is the Euler φ function
∑

n≥0

p(n)qn =
∏

n≥1

(1− q)−1 := φ(q) (2.46)

while in general ∑

n≥0

pk(n)qn =
1

φ(q)k
(2.47)
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number of partitions of the integer n into parts of 8 colours

1

φ(q)8
=

∑
n≥0

p8(n)qn (2.49)

and
1

φ(q)8

[
1− φ(q2)

φ(q4)

]
=

∑
n≥0

ξ(n)qn (2.50)

In particular expanding the second series as

q2
[∑

p8(n)qn + q4
∑

p8(n)qn − q6
∑

p8(n)qn + . . .
]

(2.51)

we see that ξ(6) = p8(4) + 1 > p8(4) which disproves Frenkel’s conjecture
about multiplicities of imaginary roots for hyperbolic algebras. Indeed, for
E10, in all the cases known, the reverse inequality occurs (compare the tables
in [88] and [121]), which somehow goes in the opposite direction with respect
to HA(1)

1 . Anyhow, the same kind of defect phenomenon (with a + sign)
occurs for E10

Conjecture 2 The multiplicities of the imaginary roots for the hyperbolic
algebra E10 are given by the partition function p8(n) or mult α = p8(n) +∑l

i=1 mi where each term mi is the value of the partition function p8(m) for
some m.

We can check this conjecture looking at the table in [121]. The multiplicities
of some imaginary roots are

• up to level l = 8: 8, 44, 192

• l = 9: 8, 44, 192, 727

• l = 10: 8, 44, 192, 727, 2472, 7749

• l = 11: 8, 44, 192, 727, 2472, 7749

I do not know of any asymptotic formula for p8(n), although there exist exact formulae
for pk(n) for small k

p2(n) = b(n + 1)/2c , p3(n) = {(n + 3)2/12} (2.48)

where bxc is the largest integer not exceeding x and {x} (only here) is the nearest integer
to x.
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• l = 12: 8, 44, 192, 726, 727, 2472, 7747, 7749, 22725

• l = 13: 8, 44, 192, 726, 727, 2472, 7747, 7749, 22712, 22725, 63085,
167116

• l = 14: 8, 44, 192, 726, 727, 2472, 7747, 7749, 22712, 22725, 63085,
167116, 167133

• l = 15: 8, 44, 192, 726, 727, 2464, 2472, 7747, 22712, 22725, 63020,
63085, 167099, 167116, 425156, 425227, 1044218

If we now write the first values of p8(n)

1, 8, 44, 192, 726, 2464, 7704, 22528, 62337, 164560, 417140, 1020416 (2.52)

we can make the following combinations:

727 = 1 + 726 , 2472 = 8 + 2464 , 7749 = 1 + 44 + 7704 (2.53)

A first analysis of subalgebras of E10 was carried in a joint paper with my
supervisor A. Sciarrino [53], where we found the following theorem

Theorem 1 The indefinite Kac-Moody algebras of rank 10 described by the
Dynkin diagrams, obtained by adding to the diagram of the affine algebra
E9, a dot, connected with a simple link to the j−th dot of E9 (j 6= 2), is a
subalgebra of E10.

In the same paper, we also prove a similar statement for E11, which has a
physical relevance too [157], and show that the simply-laced over-extended
and very-extended Kac-Moody algebras contain all the non-simply laced ones
by a straightforward generalization of Dynkin’s folding.

E10 has often been indicated as the ultimate symmetry for string theory.
I believe that if E10 has anything to do with string theory in 10 dimensions
or M-theory, a decisive role must be played by fermions too. From this
point of view, one should instead consider the Fake Monster Lie Superalgebra
constructed by Nils R. Scheithauer [139]. This is a generalized Kac-Moody
superalgebra realized as the physical states of a 10 dimensional superstring
moving on a torus, thus it contains all the superstring spectrum. If E10 has
any role for superstrings in 10 dimensions, one should be able to locate E10

inside the fake Monster Superalgebra or viceversa; this would give a further
hint of an E10 symmetry in string theory. Indeed, the situation could be
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more subtle. One could find that E10 is (or is not) a subalgebra of the fake
Monster superalgebra, but the role of an E10 symmetry could be different,
for example E10 could be just a symmetry of the space of solutions of a
theory (full or bosonic); this means that different solutions of the theory are
transformed into each other through Weyl reflections of E10 or something
like that. Anyhow, understanding the way E10 is or is not related in the
fake Monster superalgebra is not only important from a mathematical point
of view, but it could also shed new light on the possible role played by
E10 and clarify the meaning of such a symmetry. A further consideration
is the following. Recently, there has been a lot of interest in K(E10), the
(formal) compact real form of E10 defined through the Chevalley involution
as described before. If E10 is a symmetry of string theory in 10 dimensions,
fermions should live in a spinorial representation of K(E10)

9. Given the role
of the fake Monster superalgebra, there must be a relation between K(E10)
and fake Monster superalgebra if K(E10) has to contain fermions inside. This
is indeed an interesting way to explore, using for example Naito’s theorems
[120] about embeddings of Kac-Moody algebras into Borcherds algebras. A
first simple observation is the following. From [139], one knows that the
simple roots of the Fake Monster superalgebra are the zero norm vectors in
the closure of the positive cone of II9,1. Since it is possible to write down
explicitly the denominator identity (which turns out to be an automorphic
form of weight 4 for a subgroup of O10,2(R)), one knows the multiplicity of
the roots of the Fake Monster superalgebra, in particular the simple roots
have multiplicities 8, which is exactly the multiplicity of all isotropic (i.e.
zero norm) roots of E10 as one can check from the table in [121].

2.7 Imaginary roots and periodic geodesics

In this section we focus our attention on the hyperbolic algebra HA(1)
1 , in

particular we find a correspondence between its imaginary roots and the
periodic geodesics inside the fundamental domain of its positive Weyl group
W+ ∼= PSL(2,Z). This relation seems to be new and due to the author.
Let us also stress that this seems to be the first geometric interpretation

9In order to include the fermions, one can think to consider hyperbolic Kac-Moody su-
peralgebras, but note that the maximum rank for them is 6, whereas it is 10 for hyperbolic
algebras. A classification of hyperbolic Kac-Moody superalgebras has been obtained very
recently by L. Frappat and A. Sciarrino in [54].
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of the imaginary roots of an indefinite Kac-Moody algebra, but we are not
claiming this is the general case. Moreover, this relation also gives a physical
interpretation of the imaginary roots: these correspond to periodic orbits,
thus to classical periodic solutions of a certain theory. The Weyl reflections
with respect to the real roots transform solutions into other solutions, so
we could conclude that the hyperbolic algebra HA(1)

1 is a symmetry of the
space of the solutions of a particular physical theory. This theory is classical
Einstein gravity in 4 dimensions close to a the cosmological singularity, as
we will describe in Part II of this thesis.

As before, let T and S be the standard generators for PSL(2,Z), that is:

T =

(
1 1
0 1

)
S =

(
0 −1
1 0

)
(2.54)

T (z) = z + 1 , S(z) =
−1

z
(2.55)

Let W1, W2 and W3 be the three hyperbolic reflections in the sides of a funda-
mental domain of PGL(2,Z), that is the three fundamental Weyl reflections
10

W1(z) = −z , W2(z) = −z + 1 , W3(z) =
1

z
(2.56)

then we have 11

T = W2W1 6= W1W2 = T−1 (2.57)

S = W1W3 = W3W1 (2.58)

First let us associate to any Wi the corresponding simple root

Wi ∈ PGL(2,Z) → αi ∈ ∆(HA(1)
1 ) (2.59)

Let n1, . . . , nm ≥ 2 be integers. Then the matrix

A = T n1S T n2S · · · T nmS (2.60)

is always hyperbolic (with a positive trace), reduced and its arithmetic code is
(A) = (n1, . . . , nm) (this is proved in [92]); with this we mean that (n1, . . . , nm)

10We use the letter Wi instead of the previous one Ri to stress that these are Weyl
reflections, i.e. the domain derives from as Weyl chamber.

11Also W2W3 =
(

1 −1
1 0

)
6= W3W2 =

(
0 1
−1 1

)
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is the minus ‘-’ continued fraction expansion of the fixed points of the invari-
ant geodesic of A, the fixed points are irrational quadratics so the continued
fraction expansion is eventually periodic.

Now, let us write the matrix A in terms of W1,W2,W3

A = [(W2W1)
n1 W1W3] [(W2W1)

n2 W1W3] · · · [(W2W1)
nm W1W3] (2.61)

and count the number of hyperbolic reflections in its expression

]W1 = (n1 + n2 + · · ·+ nm) + m (2.62)
]W2 = (n1 + n2 + · · ·+ nm) (2.63)
]W3 = m (2.64)

We can associate to each A the following lattice vector α(A) just counting
the number of Weyl reflections in A and putting this number equal to the
coefficient of the corresponding simple root, i.e.

α(A) := (n1 + · · ·+ nm + m) α1 + (n1 + · · ·+ nm) α2 + mα3 (2.65)

we say that α(A) is coded by the primitive hyperbolic matrix A.
Then all the (reduced) hyperbolic matrices in PSL(2, Z), that is all prim-

itive periodic geodesics in the modular domain, give rise to imaginary roots
for HA(1)

1 , thus we can establish the following theorem

Theorem 2 α(A) is an imaginary root for HA(1)
1

The proof is very simple. Since HA(1)
1 is hyperbolic, it is enough to check

that all such vectors have squared length 0 or negative (because this is a nec-
essary and sufficient condition for symmetrizable hyperbolic root systems).
Let us call n :=

∑m
i ni and note that n ≥ 2m (because each ni is ≥ 2). Thus

we have to calculate the norm of the vector

α(A) = (n + m) α1 + nα2 + m α3 (2.66)

Remembering the scalar products between the simple roots, one easily arrives
at the following expression

α2
(A) = 4 m2 − 2 mn (2.67)
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and since n ≥ 2m one always has

α2
(A) ≤ 0 (2.68)

Note that the isotropic case α2
(A) = 0 occurs for the minimum value n = 2m.

Let us now analyze some specific cases, considering also ni = 0, 1.

For m = 1, we have A(n1) = T n1S =

( −n1 1
1 0

)
, which is hyperbolic

only for n1 ≥ 3. For n1 = 0, we have A(n1 = 0) = S = W1W3, to which we
would associate the lattice vector α1 + α3, which is not a root. For n1 = 1,
we have A(n1 = 1) = TS = W2W1W1W3, to which we would associate
2α1 + α2 + α3 which has squared norm +2 and it is a real root 12. For
n1 = 2, we have A(n1 = 2) = T 2S = (W2W1)

2W1W3, to which we would
associate 3α1 + 2α2 + α3 which is a isotropic imaginary roots. For n1 ≥ 3,
A(n1) is always hyperbolic with Tr A(n1) = −n1 and the lattice vector
(n1 + 1)α1 + n1α2 + α3 is always an imaginary roots with strictly negative
squared norm 2(2 − n1) < 0. In this case the periodic geodesic γ invariant
under A(n1 ≥ 3) has hyperbolic length lγ = 2 cosh−1

(
n1

2

)
and we can express

this geometrical quantity in terms of the squared norm of the root, because
n1

2
= 1

2
4−α2

2
, thus lγ = 2 cosh−1

(
4−α2

4

)
.

Let us now consider the case m = 2, then we have A(n1, n2) = T n1ST n2S =(
n1n2 + 1 −n1

−n2 1

)
, which is hyperbolic for n1, n2 ≥ 1. For n2 = 0, A(n1, n2 =

0) = T n1SS = (W2W1)
n1W1W3W1W3, to which we would associate (n1 +

2)α1 + n1α2 + 2α3 which has squared norm 4(2 − n1). It is clear that
for n1 = 0 too, we obtain 2(α1 + α3) which is not a root, as previously
stated. For n1 = 1, we have 3α1 + α2 + 2α3 which is not a root. For
n1 ≥ 2, (n1 + 2)α1 + n1α2 + 2α3 is always an imaginary root (isotropic for
n1 = 2), even if the matrix A(n1 ≥ 2, n2 = 0) is never hyperbolic. Now
let us consider the cases n1 = n2 = 1, with A(n1 = 1, n2) = TSTS, to
which we would associate 4α1 + 2α2 + 2α3, which is not a root (as stated
for A(n1 = 1) = TS). Now, let us fix n2 = 1, and let us increase n1. For
n1 = 2, we have A(n1 = 2, n1 = 1) = T 2STS, to which we would associate

12The real roots of hyperbolic Kac-Moody algebras are

∆re = {α =
∑

j

kjαj ∈ Q|α2 > 0 and kj α2
j/α2 ∈ Z for allj}
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5α1 + 3α2 + 2α3 which is not a root, even if A(n1 = 2, n1 = 1) is hyperbolic.
For n1 ≥ 3, A(n1 ≥ 3, n1 = 1) = T n1STS is always hyperbolic and the
vector (n1 + 3)α1 + (n1 + 1)α2 + 2α3 is always an imaginary root (isotropic
for n1 = 3). For bigger values of n1, n2, A(n1, n2) is always hyperbolic and
the corresponding vector is an imaginary root as in the theorem. Note in the
case m = 2, we have Tr A(n1, n2) = n1n2 + 2, thus for n1, n2 ≥ 2 the length
of a periodic orbit is lγ = 2 cosh−1(n1n2+2

2
), while the squared norm of the

root αA is 4[2− (n1 + n2)] and I do not see a way to express lγ in terms of a
quantity which identifies the hyperbolic algebra.

Note that in general the correspondence is not 1-1. For example, the root
(8, 6, 2) can arise from the combinations n1 = 3, n2 = 3 or n1 = 2, n2 = 4
or n1 = 4, n2 = 2 which give different hyperbolic matrices but the same
imaginary root. Moreover, any non-primitive periodic geodesic (i.e. a peri-
odic geodesic run k times) gives an imaginary root which is a k−th multiple
of the imaginary root corresponding to the primitive periodic geodesic. In
fact, given a non-primitive hyperbolic matrix Ak, one can form the vector
α(Ak) := k α(A) which has squared norm k2 α2

(A) ≤ 0 and so it is again an
imaginary root, in agreement with the general fact that integer multiples of
imaginary roots are still imaginary roots.

This seems to be the first result which codes the root system of an indef-
inite Kac-Moody algebra and in particular it gives a geometric flavor to the
imaginary roots.

This construction gives all the imaginary roots with any value for coeff(α3) =
m and coeff(α1) = (n + m) > coeff(α2) = n. It is clear that there exist other
imaginary roots which do not have this form, for example the ones with
coeff(α2) =coeff(α3). The question is, of course, if it is possible to obtain
all the imaginary roots (or even all the roots) from a construction similar
to this, for example using Weyl reflections in real roots, or using a differ-
ent presentation for the matrices of PGL(2,Z). In fact, up to now, we have
only considered hyperbolic matrices in PSL(2,Z), while the Weyl group is
PGL(2,Z). Thus if we consider also matrices with det = −1, following [25],
we can write any hyperbolic matrix in PGL(2,Z) as

A = W3 (W1W2)
n1 W3 (W1W2)

n2 · · · W3 (W1W2)
nm (2.69)

Exactly as above, the numbers ni give the (usual) continued fraction expan-
sion of the hyperbolic fixed point in (0, 1) determined by the primitive closed
geodesic invariant under A. Defining n = n1 + n2 + · · ·+ nm as before, again
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all the roots of the form

α(A) = nα1 + nα2 + mα3 (2.70)

are imaginary provided that each ni is greater than 1. For example, in the

case where we have only the first block, A(n1) =

(
0 1
1 −n1

)
, which is

hyperbolic for n1 ≥ 3, the corresponding root

α(A) = n1α1 + n1α2 + α3 (2.71)

is imaginary as soon as n1 ≥ 1. This gives all the roots with coeff(α1) =coeff(α2)
and coeff(α3) = 1 (and their multiple integers considering A(n1)

k). This fur-
ther observation strongly supports the idea that a better presentation exists
in order to code the root system.

Finally, one can try to compare the multiplicities of these imaginary roots
with the multiplicities of the periodic orbits from which they derive, since,
as we said, for arithmetic systems, there is an exponential degeneration for
the multiplicities of the lengths of periodic orbits (with fixed trace). This is
compatible also with the asymptotic behavior of the Kac-Peterson function.

2.8 A new interpretation for the Selberg Trace
Formula and the Selberg Zeta-function?

In analogy with the Riemann zeta function which is defined as a product
over the primes, the Selberg zeta function Z(s) is defined as the product
over all primitive periodic orbits (ppo) for the motion on the hyperbolic
surface considered

Z(s) =
∏
ppo

∞∏
m=0

(1− e−lp (s+m)) (2.72)

where lp is the hyperbolic length of the primitive orbit, s is a complex pa-
rameter and m counts how many times an orbit is run. Note that for the
Selberg zeta-function, it does not exist an equivalent expression in terms of
a sum over something, while classical L−functions are given equivalently by
an Eulerian product over the primes or a sum (Appendix A). This makes
the Selberg zeta-function somehow different from classical L−functions.

According to our result, primitive periodic orbits inside the standard mod-
ular domain for PSL(2,Z) give rise to imaginary roots for HA(1)

1 , so it is
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reasonable to suppose that the Selberg zeta function may also be expressed
a product over a suitable subset of imaginary roots

Z(s) ∼
∏

imaginary roots coded by ppo

(1− e−lp(Aij)(s+m)) (2.73)

where lp(Aij) is the hyperbolic length as a function of the Cartan matrix Aij

of HA(1)
1 . Of course, one has to find the relation between the length lp of a

ppo and some quantity given in terms of the Cartan matrix of HA(1)
1 (this

has been done in the previous section for all imaginary roots coming from
the matrices A(n1) = T n1S with n1 ≥ 3).

This expression reminds the product part of the denominator identity
∏

α∈∆+

(
1− e−α

)mult α (2.74)

although in the latter the exponent is mult α, whereas it is 1 in the Selberg
zeta function. We repeat that Feingold and Frenkel showed that a certain
subspaceM′

k of weight k PSL(2,Z)−invariant A
(1)
1 −characters is isomorphic

to the space M2
k of genus 2 Siegel modular forms of weight k. It would be

remarkable if part of the denominator identity contained the Selberg zeta
function too, or even information on the Maass waveforms with respect to
the Weyl group W ' PGL(2,Z).

These speculations apply also to the Selberg trace formula, which was first
derived by Selberg as a sum over primitive hyperbolic conjugacy classes, then
interpreted by Huber a sum over periodic orbits. We suggest a new possible
interpretation in terms of the sum over the root system of a Lie algebra. In
saying this I am probably influenced by the following words in M. Berger’s
book [18] (page 391, chapter 9): “. . . There are at least two ways to compute
the spectra of the remaining KP n. One is to use a very general formula due
to Hermann Weyl, and valid for all symmetric spaces. But the formula is
explicit only in the sense that it is a summation over the roots of a certain
Lie algebra. To get explicit expressions is hard. The other way is to use
the general link between periodic geodesics and the spectrum, a quite deep
result (unavoidably using the wave equation)which we will meet in 9.9 . . . ”.
The second formula is the Selberg trace formula, but I never heard about the
first one. I had the opportunity to meet M. Berger at IHES on March 2007
and I asked him about this Weyl formula, but he did not remember exactly
it. Then I asked P. Cartier and we spent a couple of hours in the library
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of IHES looking for something like that in Weyl’s collected works. Most of
them are in German, I do not speak German, Cartier does. We did not find
anything. Then I wrote to G. Besson (following Berger’s suggestion) and to
V. S. Varadarajan, but this formula did not show up. It does not likely exist.

Anyhow, trying to relate the Selberg trace formula to a certain sum over
the root system of a Lie algebra is very interesting in my opinion and prob-
ably it is already in the mind of some more talented mathematician. We
note that this would be possible if the whole root system (simple, real and
imaginary roots) could be coded by using parabolic, elliptic and hyperbolic
transformations of PSL(2,Z), because in the Selberg trace formula all three
kinds of contributions appear.

2.9 Notes and Comments on Chapter 2

Kac and Moody introduced the algebras that carry their names in a differ-
ent way. It is instructive to remind how they were led to the discovery of
this beautiful part of mathematics. For the theory of finite-dimensional Lie
algebras we suggest the books by Humphreys [80] or Varadarajan [150].

Let us remember that theWeyl groups corresponding to the finite-dimensional
simple Lie algebras are precisely the finite crystallographic Coxeter groups.
Moody asked what is the class of Lie algebras which correspond more gen-
erally to any Coxeter group (most Coxeter groups are infinite). The partial
answer to Moody’s question is that the Lie algebras corresponding to the
(possibly infinite) crystallographic Coxeter groups are the Kac-Moody alge-
bras. Note that we still do not know which are (or if exist) the Lie algebras
corresponding to the non-crystallographic Coxeter groups, that is the ones
which have Coxeter exponents mij different from 2, 3, 4, 6,∞ [81].
Kac’s road to these algebras was quite different (mostly using the machin-
ery of filtered and graded Lie algebras developed by Guillemin, Singer and
Sternberg). Let g be a complex Lie algebra. By a Z−grading we mean
that we can write the underlying vector space g as g = ⊕∞n=−∞gn such that
[gn, gm] ⊆ gn+m for all n,m ∈ Z. We call g a simple Z−graded Lie algebra if
in addition g does not contain any non-trivial Z−graded ideal.
It is probably hopeless to classify all simple Z−graded Lie algebras, there
are too many of them. However, decades earlier, Cartan had studied vector
fields on polynomial algebras and found four infinite families that were simple
Z−graded, with the dimension dim gn bounded above by some polynomial

99



in n. We say that these Z−graded algebras have polynomial growth. Kac
conjectured that if g is a simple graded Lie algebra of finite growth, then g

is isomorphic to one of the following algebras:

• a finite-dimensional Lie algebra, or

• a loop algebra, or

• a Cartan algebra, or

• the Virasoro algebra.

This conjecture has been shown recently by O. Mathieu. Note also that
for affine algebras the dimension of each root space is bounded by a unique
constant.

The standard reference is the book by Kac [87]; other references (which
contain also the theory of Borcherds algebras and more advanced topics)
are the more recent books by M. Wakimoto [154], R. Carter [27], T. Gan-
non [57], U. Ray [128], and A. Pressley and G. Segal [125] for loop algebras
(also known as current algebras in the physics literature). The theory of
generalized Kac-Moody algebras developed by R. E. Borcherds at the end
of the ’80s allows for a the presence of imaginary simple roots in the simple
root system. These algebras play a key role in the Borcherds proof of the
Monstrous Moonshine Conjecture, together with the notion of vertex alge-
bras introduced by Borcherds too. For this topic see the beautiful book by
Gannon [57] (the original papers by Borcherds are all available on his web
site http://math.berkeley.edu/~reb/). The work of Borcherds also shows
that in a certain sense these generalized Kac-Moody algebras represent the
last possible generalization through the hi, ei, fi formalism and their defini-
tion through generators and relations is essentially the same as the definition
given by Kac for arbitrary (i.e. not Cartan-like) matrices. Kac and Peterson
[89] showed that, in the affine case, the denominator identity gives a modular
form for some Γ(N), indeed a vector-valued Jacobi form.

The work of Borcherds also shows that there are interesting relations be-
tween generalized Kac-Moody algebras, automorphic forms and hyperbolic
reflection groups, but there is no general theory unfortunately. In particular,
reversing the point of view, V. Gritsenko and V. Nikulin [66] (and references
therein) asked (and found) which are the good Lorentzian Kac-Moody al-
gebras which admit an automorphic correction, that is whose denominator
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identity can be put in relation with an automorphic form (the improved al-
gebras have different Cartan matrices and are often indefinite or generalized
Kac-Moody algebras, or super-algebras). They used a variant of Borcherds
lift to find automorphic forms.

What we have shown in this chapter is that there is a relation between
dynamical quantities (periodic geodesics) and algebraic quantities (root sys-
tems) for billiards flows in particular domains corresponding to the projec-
tions of hyperbolic Weyl chambers on the hyperbolic plane. If this correspon-
dence is deep and generalizable to more indefinite Kac-moody algebras, then
one could hope for a (still lacking) geometric interpretation for the imaginary
roots, especially for their multiplicities. I believe that the multiplicities of
imaginary roots is related to the length spectrum of periodic geodesics on
the corresponding hyperbolic surface (thus to the eigenvalues of the Lapla-
cian problem too through the Selberg trace formula). General links between
graded infinite dimensional Lie algebras and dynamical systems were stud-
ied, for example, by A. Vershik in [151]. Is it possible that our analysis is
related to Vershik’s work. We hope to investigate this point in the future.
The message is that hyperbolic Kac-moody algebras (or even all the indef-
inite ones?) have to do with chaotic dynamical systems (in particular the
ones exhibiting hyperbolicity), whereas it is known that affine algebras are
deeply related to the theory of integrable dynamical systems (KdV equation,
Calogero-Sutherland models etc). In fact, the Kac-Peterson function is zero
on isotropic imaginary roots and positive on non-isotropic imaginary roots.
This function resembles an entropy function, which is zero for integrable
systems and positive for chaotic systems; besides, its concavity and the ln
functions which it contains and which remember a metric entropy could mo-
tivate the notion of an algebraic entropy. Also the asymptotics is similar
to Margulis asymptotics. As isotropic imaginary roots are W−equivalent
to imaginary roots of affine subalgebras (which describe integrable systems),
one can say that non-isotropic imaginary roots are related to hyperbolic dy-
namical systems. This new idea deserves certainly further investigation.
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Part II

Physical Applications
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Chapter 3

The Mixmaster Universe and
Beyond

Thoughtland, Fletch, the cosmos. Pure
mentation. Abstract possibility. Infinite
dimensions. The class of all sets. God’s
mind. The pre-geometric substratum.
Hilbert space. Penultimate reality. White
. . .

Master of Space and Time
R. Rucker

In this chapter, we describe the BKL’s approach to the study of a cosmo-
logical singularity in terms of a never-ending sequence of Kasner eras and we
state DHN’s recent result about the asymptotic dynamics of general relativ-
ity in terms of a billiard motion in the Weyl chamber of the algebra HA(1)

1 (we
comment on this specific billiard law). We carry on a quantum analysis of
the problem, derive the properties of the wave functions of the system in this
limit and prove the absence of scarred states in quantum cosmology in the
billiard representation. We suggest also an interpretation of the imaginary
roots of HA(1)

1 as periodic solutions to Einstein’s equations in the asymptotic
regime.
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3.1 General Considerations

The following considerations follow verbatim [117] (page 813), and, although
written in 1972, are still very modern and explain some features of the prob-
lem of the cosmological singularity. I could not have found better words.

The cosmological singularity involves infinite curvature and infinite den-
sity. What abhors is the fact that these infinities occurred at a finite proper
time in the past and would occur again at some finite proper time in the
future. The prediction of a singularity would be more tolerable if the infi-
nite densities could be pushed to an infinitely distant past. In this case, the
universe could find its natural state to be one of expansion, so every finite
density will have been experienced at some suitably remote past time, but
infinite density becomes a formal abstraction never realized in the course of
evolution.

To push infinite curvature out of the finite past might be achieved in two
ways. One way is to change the physical law which require the singularity,
perhaps stating the laws of gravity in a proper quantum language. Nowadays,
it is not clear at all if quantum geometry can actually remove the singularity
problem 1.

Another way to discard the singularity is to accept the mathematics of
the classical Einstein equations but reinterpret it in terms of an infinite past
time. A coordinate transformation such that t = ln τ moves the singularity
from τ = 0 to t = −∞; but an arbitrary coordinate is without significance.
The problem is that the singularity occurs at a finite proper time in the
past, and proper time is the most physically significant, most physically real

1On the question of whether theories containing gravity and matter, like string theory,
may actually resolve singularities there is at the moment no consensus. Moreover, the
meaning of resolving a singularity is not clear, too (what should replace a singularity?).
“Many people believe that the resolution of the problem of singularities will come from
the modifications of the Einstein equations due to Quantum Gravity at the Planck scale
, but this is by no means obvious. The necessary modifications could, in principle, have
nothing to do with quantum mechanics. It might for example entail the introduction of
higher curvature terms . . . ”[60]. The same kind of criticism can be applied to the common
belief that amplitudes in supergravity theories are, generally, infinite. Recently, works of
M. Green et al. [64] (see also the works of Zvi Bern et al. [19]) have shown that some
amplitudes which were considered infinite are actually finite. If true, this means that the
popular saying that it is not possible to quantize gravity using only QFT techniques is not
reliable any more. The discovery of novel cancellations in the calculation of amplitudes (not
predicted by traditional superspace power-counting arguments) suggests that supergravity
theories may be perturbatively finite theories of quantum gravity.
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time we know. It corresponds to the ticking of physical clocks and measures
the natural rhythms of actual events. To reinterpret finite past time as
infinite, one must attack proper time on precisely these grounds and claim it
inadequately physical. On a local basis, where special relativity is valid, no
challenge to the physical significance of proper time can succeed. It is on a
global scale that the physical primacy of proper time needs to be reviewed.

Let us consider the following statement “The cosmological singularity oc-
curred ten thousand million years ago” and take time to mean the proper
time along the worldline of the solar system. Then the statement would have
a most direct physical significance if it meant that the earth had completed
1010 orbits around the sun since the beginning of the universe. But proper
time is not that closely tied to actual physical phenomena. The statement
merely implies that those 5× 109 which the earth may have actually accom-
plished give a standard of time which is to be extrapolated in prescribed ways,
thus giving theoretical meaning to the order 5× 109 years which are asserted
to have preceded the formation of the solar system. A hardier standard clock
changes the details of the argument, but not its qualitative conclusion. To
interpret 1010 years in terms of the SI seconds assigns a past history con-
taining some 3×1027 oscillations of a hyperfine transition in neutral Cesium.
But again the critical early ticks of the clock are missing. The time needed
for stellar nucleosynthesis to produce the first Cesium disqualifies this clock
on historical grounds, and the still earlier high temperatures nearer the sin-
gularity would have ionized all Cesium even if this element has predated
stars.

The conclusion is that proper time near the singularity is not a direct
counting of simple and actual physical phenomena, but an elaborate mathe-
matical extrapolation. Each actual clock has its ticks discounted by a suitable
factor, 3× 107 seconds per orbit from the earth-sun system, 1.1× 10−10 sec-
onds per oscillation for the Cesium transition. No single clock (because of
its finite size and strength) is conceivable all the way back to the singular-
ity, so a statement about the proper time since the singularity involves the
concept of an infinite sequence of successively smaller and sturdier clocks
with their ticks then discounted and added. Finite proper time then need
not imply that any finite sequence of events was possible. It may describe a
necessarily infinite number of events (ticks) in any physically conceivable his-
tory, converted by mathematics into a finite sum by the action of a non-local
convergence factor, the discount applied to convert ticks into proper time.

Here one has the conceptual inverse of Zeno’s paradox. One rejects Zeno’s
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suggestion that a single swing of a pendulum is infinitely complicated (being
composed of a half period plus a quarter period, plus 2−n ad infinitum)
because the terms in his infinite series are mathematical abstractions, not
physically achieved discrete acts in a drama that must be played out. By a
comparable standard, one should ignore as a mathematical abstraction the
finite sum of the proper time series for the age of the universe, if it can be
proved that there must be an infinite number of discrete acts played out
during its past history. In both cases, finiteness would be judged by counting
the number of discrete ticks on realizable clocks, not by assessing the weight
of unrealizable mathematical abstractions.

Whether the universe is infinitely old by this standard remains to be de-
termined. The quantum influences remain to be determined. The decisive
question is whether each present epoch event is subject to the influence of
infinitely many previous discrete events. In that case statistical assumptions
(large numbers, random phase) could enter in stronger ways into theories of
cosmology. The Mixmaster cosmological model does have an infinite past
history in this sense, since each bounce from one Kasner-like motion to an-
other is a recognizable cosmological event, of which infinitely many must be
realized between any finite epoch and the singularity.

3.2 The Kasner solution
All the cosmological observations confirm that the universe is homogeneous
and isotropic to high accuracy on large scales. The question is: why is the
unverse so symmetric? After all, homogeneity and isotropy is only a very
idealized situation. We would like to understand what would have happened
if the universe had started out highly irregular, so we allow large deviations
from the symmetry of the FLRW universes and put asymmetries into only a
few degrees of freedom.

The prototype for cosmological models with great asymmetry in a few
degrees of freedom is the the Kasner metric or Kasner solution

ds2 = −dt2 + t2p1 dx2 + t2p2 dy2 + t2p3 dz2 (3.1)

where the Kasner exponents pi are constants satisfying

3∑
i=1

pi =
3∑

i=1

p2
i = 1 (3.2)
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Each t =constant hypersurface is a flat 3-dimensional space. The worldlines
of constant x, y, z are timelike geodesics along which galaxies or other matter,
treated as test particles, can be imagined to move. This model represents an
expanding universe since the volume element

√−g =
√

(3)g = t (3.3)

is increasing. It is a homogeneous universe, anisotropically expanding uni-
verse (because in each space direction the three scale factors t2pi expand at
a different rate). The relations (3.2) require that one of the pi, say p1 to be
non-positive:

−1

3
≤ p1 ≤ 0 (3.4)

A consequence of this is that if black-body radiation were emitted at one
time t and never subsequently scattered, later observers would see blue shifts
near one pair of antipodes on the sky and red shifts in most other directions.
The fundamental cosmological question is why the FLRWmetrics should be a
more accurate approximation to the real universes than this Kasner metric is.
We can ask what would become of a universe that starts our near t = 0 with
a form described by the Kasner metric. This metric is an exact solution of
Einstein’s equations in vacuum. It approximates a situation where the matter
terms are negligible by comparison with typical non-zero components of the
Riemann tensor. In the case of a pressureless fluid, the curvature of empty
spacetime dominates both the geometry and the expansion rate at early
times t → 0, but after some characteristic time tm the matter terms become
more important and the metric reduces asymptotically to the homogeneous,
isotropic model with k = 0, i.e. the Kasner model with matter becomes
isotropic in old age.

This example illustrates the possibility that the universe might achieve
a measure of isotropy and homogeneity in old age, even if it were born in
a highly irregular state. Whether the symmetry of our universe can be ex-
plained along these lines is not yet clear. The model universe just mentioned
is only a hint, especially since the critical parameter tm can be given any
value whatsoever.

This mechanism can also be described by ascribing the the anisotropic
motion of empty spacetime an effective energy density ρaniso, which enters
the G00 component of the Einstein equations on an equal footing with the
matter-energy density, and thereby helps to account for the expansion of the
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universe

H2 =

(
1

3

d

dt
ln

√
(3)g

)2

=
8π

3
(ρaniso + ρmatter) (3.5)

The anisotropy energy density is found to have an equation of state

ρaniso ∝(3) g−1 = (volume)−2 (3.6)

while
ρmatter ∝(3) g−γ/2 = (volume)−γ (3.7)

where γ = 1, 4/3, 5/3 for pressureless matter, a radiation fluid, a non-relativistic
ideal gas respectively. This arrangement of the Einstein equations allows one
to think of the anisotropy motions as being adiabatically cooled by the ex-
pansion of the universe, just as the thermal motion of an ideal gas would
be.

The conclusion is that, in principle, the mechanism of adiabatic cool-
ing of anisotropy (together with other dissipative mechanisms which convert
anisotropy energy in thermal energy and considering especially the quantum
pair production effect through virtual quanta near the initial singularity)
could explain the high homogeneity and isotropy of the present universe
even if were born in a very irregular state.

The model universe considered above is homogeneous although anisotropic.
It is also crucial to study inhomogeneous cosmological models, in which the
metric has a non-trivial dependence on the space coordinate. The first at-
tempt to understand the behavior of inhomogeneous and anisotropic solu-
tions of Einstein equations had been developed by Belinskii, Khalatnikov
and Lifshitz. Rather than truncating the Einstein theory by limiting atten-
tion to specialized situations where exact solutions can be obtained, they
have sought to study the widest possible class of solutions, but to describe
their behavior only in the immediate neighborhood of the singularity. These
studies give a greatly enhanced significance to some of the exact solutions, by
showing that phenomena found in them are in fact typical of much broader
classes of solutions. In the first large class of solutions studied, it was found
that near the singularity solutions containing matter showed no features not
already found in the vacuum solutions. Furthermore, space derivatives in
the Einstein equations become negligible near the singularity in these solu-
tions with the consequence that a metric of the Kasner form described the
local behavior of spacetime near the singularity, but with a different set of
pi values possible at each point of the singular hypersurface. Subsequently,
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broadened studies of solutions near a singularity showed that the Mixmaster
universe is a still better homogeneous prototype for singularity behavior than
the Kasner metric.

The Mixmaster universe is a generalization (still homogeneous) of the
Kasner metric (3.1) to the case where the Kasner exponents pi are functions
of time. A convenient parametrization, due to BKL (see section 3.3), is the
following

p1(u) =
−u

1 + u + u2
(3.8)

p2(u) =
1 + u

1 + u + u2

p3(u) =
u + u2

1 + u + u2

where u is a parameter greater than 1. As one extrapolates backward in
time toward the singularity, one finds that the expansion rates in the three
principal directions correspond to those of the Kasner metric, with pi values
corresponding to some fixed u parameter. In these Mixmaster models, the
metric is not independent on the space coordinates.

The Kasner-like behavior at fixed u can persist through many decades
of volume expansion before effects of the spatial derivatives of the metric
come into play. The role played by the space curvature is brief and decisive.
The expansion is converted from a type corresponding to a parameter value
u = u0 to a type corresponding to the value u = −u0 (which is equivalent to
the value u = u0 − 1 after relabelling the axes). Extrapolating still farther
back toward the singularity, one finds a previous period with u = u0 − 2.
Throughout an entire sequence u = u0, u0− 1, u0− 2, u0− 3 . . ., with u0 À 1,
nearly the entire volume expansion is due to expansion in the 3-direction,
whereas the 1- and 2-directions change very little, alternating at each step
between expansion and contraction. Sufficiently far in the past, however,
such a sequence leads to a value of u between 0 and 1. This value can be
interpreted as the starting point for another, similar sequence, through the
transformation u → 1/u, which interchanges the names of axes 2 and 3.

The extrapolation of the universe’s evolution back toward the singularity
at t = 0 therefore shows an extraordinarily complex (quasi-periodic) behav-
ior, in which similar but not precisely identical sequences of behavior are
repeated infinitely many times. In the generic example to which the BKL
methods lead, one has a metric whose asymptotic behavior near the singu-
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larity is at each spatial point on the singular hypersurface described by a
Mixmaster-type behavior, but with the principal axes of expansion changing
their directions as well as their roles (as characterized by the u parameter)
at each step, and with the Mixmaster parameters spatially variable.

We can ask if there are important solutions or classes of solutions, relevant
to the cosmological problem, with asymptotic behavior not described by the
BKL generic case, i.e.: are there any other generic types of behavior near
singularities? The answer to this question is negative in the case of quiescent
singularities (as shown rigorously in [1]) and seems to be negative also in
the case of oscillating (chaotic) singularities, as indicated by the numerical
simulations [17], by the theoretical work of Uggla et al. [73], and of H.
Ringstrom [129].

3.3 BKL’s metric approach

As we mentioned, some of the simplest nonlinear dynamical systems can
have very complicated (even stochastic) behavior in spite of the fact that the
equations are deterministic.

We will show that the evolution of the relativistic cosmological models to-
wards the singularity undergoes spontaneous stochastization. The statistical
parameters of this evolution can be calculated exactly. The knowledge of the
source of stochasticity makes it possible to develop a quantitative statistical
theory with appreciable completeness.

The evolution of a generic singularity can be described as an infinite suc-
cession of interchanging Kasner epochs with a certain law of replacement of
the Kasner exponents when passing over from one epoch to the next one.
This kind of behavior was first discovered for a vacuum homogeneous model
of the Bianchi type VIII and IX and then generalized to the presence of
matter. This latter introduces a new property in the evolution of the model:
rotation of the Kasner axes (i.e. directions to which the scale factors a, b, c
refer) during the interchange of Kasner epochs, but the law of interchange
of the exponents remains the same. The solutions for Bianchi IX and VIII
homogeneous models serve as a prototype for the construction of the gen-
eral solution of the Einstein equations in the case of a generic cosmological
singularity.

The law of replacement of the Kasner exponents remains the same also
in the general inhomogeneous case. This law leads to an important property:
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spontaneous stochastization of the behavior of the model on approach to
singularity and the loss of memory of the initial conditions prescribed at
some instant of time t = t0 > 0. Thus stochasticity turns out to be a
general property of relativistic cosmological models in the neighborhood of
the singularity.

For the sake of concreteness, let us consider the Bianchi IX homogeneous
model (in vacuum), which is governed by the the following equations

2 α′′ = (b2 − c2)2 − a4 (3.9)
2 β′′ = (a2 − c2)2 − b4

2 γ′′ = (a2 − b2)2 − c4

α′β′ + α′γ′ + β′γ′ − 1

4
(a4 + b4 + c4 − 2a2b2 − 2a2c2 − 2b2c2) = 0 (3.10)

where a(t), b(t), c(t) are the 3 scale factors and α, β, γ are their natural log-
arithms respectively. The prime ′ denotes the derivative with respect to a
time variable τ related to the synchronous time t by the equation

dt = abc dτ (3.11)

The equation (3.10) contains only the first derivatives and thus plays the role
of an additional restriction, imposed on the initial conditions for equations
(3.9). It is easy to verify that the derivative of the expression (3.10) with
respect to τ is indeed identically zero due to equations (3.9); thus if the
solution of (3.9) satisfies the condition (3.10) in an initial instant of time, the
latter will always be satisfied.

From a formal point of view, we deal with a deterministic dynamical
model, governed by a system of three ordinary differential equations with one
additional condition, so the phase space is actually not 6- but 5-dimensional.
Apart from the profound cosmological significance of this system, we en-
counter here a specific mode of spontaneous stochastization of a deterministic
system!

Let us denote by p1, p2, p3 the Kasner exponents arranged in a fixed order
with respect to their magnitude: p1 < p2 < p3. These three numbers, subject
to the Kasner relations (3.2), can be parameterized in the form

p1(u) = −u/f(u), p2(u) = (1 + u)/f(u), p3(u) = (u + u2)/f(u) (3.12)

f(u) = 1 + u + u2
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where the real parameter u ∈ [1,∞). The values 0 < u < 1 can be reduced
again to the interval [1,∞) using the formulas

p1(1/u) = p1(u), p2(1/u) = p3(u), p3(1/u) = p2(u) (3.13)

As u decreases monotonically from∞ to 1, the exponent p1 decreases monoton-
ically, while p2, p3 increase monotonically in the ranges

−1

3
≤ p1 ≤ 0, 0 ≤ p2 ≤ 2

3
,

2

3
≤ p3 ≤ 1 (3.14)

so the exponent p1 is always negative, while p2 and p3 are always positive,
and p3 > p2.

The Kasner regime is a solution of (3.9)-(3.10) when all terms in the right-
hand side can be neglected; we call a Kasner epoch the time interval during
which it is admissible. Such an interval is certainly short with decreasing
t since the right-hand side of eqs. (3.9) always contain an increasing term.
For instance, if the negative exponent refers to the function a(t) (pa = p1),
the perturbation of the Kasner regime will be due to the terms α4; the
remaining terms decrease with decreasing t. This perturbation leads after a
brief transitional period to an establishment of a new Kasner epoch with the
following rule of replacement of the exponents: if

pa = p1(u), pb = p2(u), pc = p3(u) (3.15)

then

pnew
a = p2(u− 1), pnew

b = p1(u− 1), pnew
c = p3(u− 1) (3.16)

The function a(t) acquires a positive exponent and starts to decrease (with
decreasing t, the singularity is at t = 0); the function b(t) acquires a negative
exponent and starts to increase, the function c(t) continues to decrease.

The subsequent evolution with the increasing function b(t) leads in an
analogous way to the next interchange of the Kasner epochs and so on. The
successive interchanges according to the rule (3.16), accompanied by a bounc-
ing of the negative exponent between the functions a(t) and b(t), continues
as long as the integral part of the initial value of u is exhausted, that is until
u becomes less than unity. The value u < 1 transforms into u > 1 according
to (3.13); at this moment either the exponent pa or pb is negative and pc

becomes the smaller one of the two positive exponents (pc = p2). The next
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sequence of changes will bounce the negative exponent between the functions
c and a or between c and b. For an arbitrary irrational initial value of u the
process continues indefinitely.

Thus the evolution of the model on approaching the singularity consists of
successive periods (which we call eras) during which two of the scale functions
oscillate and the third one decreases monotonically. On passing from one era
to another the monotonic decrease is transferred to another of the three scale
functions (see the picture).

Figure 3.1: Evolution of the logarithms of the scale factors in terms of the
logarithmic time Ω = − ln t.

To each s−th era there corresponds a series of values of the parameter
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u starting with a certain largest one, u
(max)
s and reaching the smallest one,

u
(min)
s < 1, via the values u

(max)
s − 1, u

(max)
s − 2, . . . . We can put

u(max)
s = ks + xs, u(min)

s = xs (3.17)

where
ks =

⌊
u(max)

s

⌋
, xs =

{
u(max)

s

}
(3.18)

are the integer and fractional part of u
(max)
s respectively. The number ks

determines the length of the era measured in terms of the number of Kasner
epochs it contains. For the next era

u
(max)
s+1 = 1/xs, ks+1 = b1/xsc (3.19)

The sequence of the lengths of the successive eras has a character of a random
process. The source of stochasticity is just the rule (3.19). This rule states
that if the entire infinite sequence begins with a certain initial value u

(max)
0 =

k0 + x0, then the lengths of the eras k0, k1, k2, . . . are the numbers in the
continued fraction expansion

u
(max)
0 = k0 +

1

k1 + 1
k2+···

(3.20)

As we said in Part I, this expansion is related to the Gauss map (1.33),
which is highly chaotic. In particular, T also satisfies the criteria for Poincaré
recurrence, this means that each Kasner solution is visited an arbitrary large
number of times during the infinite sequence of oscillations.

In particular, this dynamical system has a metric entropy given by

h(TGauss) =
π2

6 ln 2
(3.21)

and it is isomorphic to a Bernoulli shift with the same entropy.
Note that the Gauss map accounts only for the transitions between suc-

cessive Kasner epochs. One can do better, in fact following [34], it is possible
also to consider the oscillations in two of the scale factors inside a single
Kasner epoch and include them in a more complete map which describes
the discrete evolution (still approximated). This can be realized through the
Farey map, whose entropy is given by

h(TFarey) = 2 ln 2 (3.22)
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This map accounts for oscillations (one pair of axes oscillates while the third
one decreases monotonically) and bounces (when the roles of the three axes
are interchanged and a different axis decreases monotonically), according
to a chaotic Farey tale [35]. These papers use fractal techniques (which are
observer independent) to show that the Mixmaster universe is indeed chaotic.

Note that the Farey tree appears also in recent works on the entropy
of black holes based on the string theory approach [42]-[43]. These papers
explore somehow the idea of spacetime modular invariance, which is exactly
what we deal with in this thesis.

In Part I, we have described Artin’s theorem which relates the ergodicity
of the geodesic flow on X(1) to the ergodicity of the Gauss map. We have
here an example of a physical system described by the Gauss map: the
asymptotic behavior of a homogeneous Bianchi IX universe. We can ask if
there is a similar physical systems described by the geodesic flow on X(1).
As we see in the next sections, such a system exists and it is precisely the
asymptotic behavior of a generic inhomogeneous singularity. Thus, Artin’s
result supports the conjectures that the behavior of a generic singularity is
somehow well described by a Bianchi IX homogeneous cosmological model.

3.4 DHN’s Approach

In this section we describe the result due to DHN in the study of a general
cosmological (spacelike) singularity without any symmetry assumption for
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the metric 2.
As usual we consider only the case of pure gravity in 4 dimensions. For

more details, proofs and the case of higher dimensional theories see the paper
[37].

DHN’s result is the following. The BKL oscillatory behavior of pure
gravity in 4 spacetime dimensions (in particular the billiard representation)
is valid also for other physical theories. In the case also studied by BKL
(pure gravity in 4 dimensions), the dynamics of Einstein equations close to
the cosmological singularity is equivalent to a null geodesic motion inside
a billiard given by a Coxeter polytope in a 3-dimensional Minkowski space.
What is remarkable is that the billiard is the Weyl chamber of the hyper-
bolic algebra HA(1)

1 (whose Weyl group is PGL(2,Z)). The reflections at the
walls are elastic. Each Kasner epoch is represented by the null geodesic seg-
ment between two successive reflections. In particular, given a Kasner epoch
and the wall where this epoch crashes/ends, the following one is obtained
by Weyl reflection with respect to simple root orthogonal to that face of
the Weyl chamber. In other words, Weyl reflections with respect to simple
roots send null geodesic segments into null geodesic segments, i.e. transform
Kasner solutions into Kasner solutions (with different values of the Kasner

2If accidental symmetries are present in the metric, the analysis is not valid. For
example, it is known that the Schwarzschild solution

ds2 = −
(

1− 2m

r

)
dt2 +

(
1− 2m

r

)−1

dr2 + r2dΩ2 (3.23)

has a spacelike singularity at r = 0; moreover, inside the horizon (r < 2m) the r coordinate
is time-like (there is a minus sign in front of dr2). If we take the limit r → 0, we obtain

lim
r→0

ds2 =
2m

r
dt2 − r

2m
dr2 + r2 dΩ2 (3.24)

which is a Kasner metric

−dτ2 + τ−2/3dσ2 + τ4/3(sin(θ)dφ)2 (3.25)

once we put τ = 2r3/2

3
√

2m
, σ = (4m/3)1/3t, θ = (9m/2)1/3θ and φ = (9m/2)1/3φ, i.e. the

Schwarzschild solution corresponds (in the neighbourhood of the singularity) to a single
Kasner epoch, not to a never-ending succession of Kasner eras.

Finally, the analysis does not apply to time-like (like the one in the Reissner-Nordström
solution, the charged black hole) or null singularities where a causal decoupling of spa-
tial points does not occur. The question about the general behavior of not-space-like
singularities is still open.
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exponents). Note that in this formalism, only null geodesics are physical
and correspond to Kasner solutions. The role of the spacelike and timelike
geodesic flow inside the billiard is not clear. Note that the walls of the Weyl
chamber are timelike, that is their orthogonal vectors are spacelike, since for
the simple roots one has (αi, αi) = 2 > 0. Because of this, every reflection
conserves the null character of the velocity vector.

Figure 3.2: Null geodesic motion inside the Weyl chamber of HA(1)
1 and its

projection on the Poincaré disc. The basis of the billiard is chaotic, being a
non-compact region of finite hyperbolic area.

Let us stress that the motion occurs in aMinkowskian (or pseudo-Riemannian)
3-dimensional space, not in a Euclidean space. This space is indeed h∗R, in
the notation of Chapter 2, endowed with the metric given by the Cartan ma-
trix of HA(1)

1 . The walls are the hyperplanes orthogonal to the simple roots,
the incoming trajectories are null and the reflected ones are null too, as we
have just said. Thus the billiard flow is a null flow in a pseudo-Riemannian
space. This situation is different from the typical billiards which are embed-
ded in Riemannian spaces. Indeed, in pseudo-Riemannian manifolds, one
has three kinds of geodesics: timelike, null, spacelike. Consequently, one
should first define (and this is not trivial) the corresponding geodesic flows,
then study then billiard flows, which have different properties from the usual
Euclidean billiard, because each reflection depends on the character of the
wall and on the character on the incoming trajectory. We know that the
Weyl group of HA(1)

1 is PGL(2,Z), and the flow on the standard (extended
or not) modular domain on the hyperbolic plane is chaotic, being an Anosov
flow. But this does not imply the chaoticity of the null billiard flow in the full
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Weyl chamber. In fact, the latter could be less chaotic or even integrable 3.
Let us conclude saying that there are no results (perhaps not even studies)
on geodesic/billiard flows in pseudo-Riemannian manifolds, and this is an
interesting topic of future research.

Let us also observe that the metric entropy of the geodesic flow inside the
fundamental domain of PGL(2,Z) can be explicitly calculated4

h({St} on PGL(2,Z)) = 1 (3.26)

thus the billiard representation on the hyperbolic plane (or disc) and the
BKL approach based on the Gauss map are not equivalent, that is they are
not isomorphic as dynamical systems as their entropies are different. In fact,
the first describes the behavior of a generic inhomogeneous singularity, the
second the fate of a Bianchi IX homogeneous universe.

3.5 Quantum Birth of the Universe

Following [63], let us consider the Universe close to the initial singularity.
We have mentioned many times that the physics of this process is generically
captured by a Bianchi IX homogeneous metric

ds2 = −dt2 + gij(t) ωiωj (3.27)

3For example, the Bunimovich stadium is a 2-dimensional chaotic Euclidean billiard,
but if we consider a 3-dimensional Euclidean billiard raising the stadium as a basis in
the z−direction, then the billiard is integrable, because of a translation symmetry in
the z−direction. That is, a 3-dimensional billiard with a chaotic basis is not necessarily
chaotic. Our case is even more complicated, because the billiard (a Coxeter polytope)
does not live in a Euclidean space, but in a Minkowskian space.

4if we put the Gaussian curvature K = −1
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with t the standard cosmic time. Limiting ourselves to the case of closed
non-rotating universes 5, ωi are a basis of 1-forms on the 3-sphere

ω1 = cos ψ dθ + sin ψ sin θ dφ

ω1 = sin ψ dθ − cos ψ sin θ dφ

ω3 = dψ + cos θ dφ (3.28)

0 ≤ θ < π , 0 ≤ φ < 2π , 0 ≤ ψ < 4π

and we use Misner’s parametrization

gij(t) = a2(t)
(
e2β(t)

)
ij

(3.29)

β = diag (β+ +
√

3β−, β+ −
√

3β−,−2β+)

with Trβ = 0. Let us put g =det gij and R the scalar curvature of the full
metric (both of them are functions of time t). The usual Einstein-Hilbert
action

S =
1

16πG

∫
L(t) dt (3.30)

with Lagrangian L(t) = (4π)2R(t)
√

g(t) can be expressed in the coordinates
a, β+, β− in the following form

1

12π2
L = a3

(−ȧ2

a2
+ β̇+

2
+ β̇2

−

)
− a [V (β+, β−)− 1] (3.31)

where V is the potential

V (β+, β−) =
1

3
Tr

(
1− 2e−2β + e4β

)
(3.32)

Let us now change the temporal coordinate, dt = N(t′)dt′; we will mostly
use

dt = 12π2a3 dtf (3.33)

5If one considers Bianchi IX with rotation of axes, then the billiard is identified with
a fundamental domain for Γ0(2): in fact M. Marcolli [105] shows that every geodesic on
the hyperbolic surface X(Γ0(2)) (which is also a 1-dimensional complex curve) not ending
at cusps determines a Mixmaster universe. She also suggests to study the flow on the
(singular) quotient space Γ0(2)\H considering the latter a (non-singular) non-commutative
space in the sense of A. Connes rather than a classical (singular) topological space.
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Consequently L is changed too, in particular with respect to the previous
choice we have

Lf = −
(

ȧ

a

)2

+ β̇+
2
+ β̇2

− −
(

a

a0

)4

[V (β+, β−)− 1] (3.34)

with a0 = 1/2π
√

3 and the dot is the time derivative with respect to tf .
We thus have a model of minisuperspace with metric tensor G̃; the kinetic
term of L, ġ · G̃ · ġ, is subject to conformal transformations G̃

′
= N−1G̃ by

redefinition of time. The choice (3.33) we have made leads to a flat realization
of minisuperspace (the f in the subscript stands for flat).

Let us now study the quantum system. Following Misner, we ask that
the free choice of time coordinate must be preserved in the quantum the-
ory, thus all conformally equivalent realizations of minisuperspace must be
quantum-mechanically equivalent. This is simplified by using the present flat
realization and writing the gravitational action S = 1

16πG

∫
Lf (tf )dtf for the

Schrödinger equation as

Lf (tf ) =

∫
da

a
dβ+ dβ−

[∣∣∣∣
∂ψ

∂ ln a

∣∣∣∣
2

−
∣∣∣∣

∂ψ

∂β+

∣∣∣∣
2

−
∣∣∣∣

∂ψ

∂β−

∣∣∣∣
2

−
(

a

a0

)4

[V (β+, β−)− 1] |ψ|2
]

(3.35)
The corresponding wave equation is

∂2ψ

∂Ω2
− ∂2ψ

∂β2
+

− ∂2ψ

∂β2−
+ e−4Ω [V (β+, β−)− 1] ψ = 0 (3.36)

where we have introduced a new (time) coordinate Ω = − ln(a/a0) (the au-
thors of [63] consider the presence of a positive cosmological constant λ too).
To ensure conformal invariance in the present 3-dimensional minisuperspace
model the wave function ψc corresponding to the use of cosmic time t must be
related to the wave function ψ for general time dt′ = dt/N via ψ = N1/4ψc.
In the flat case

ψc = (12π2a3)−1/4ψ (3.37)

We want now to understand equation (3.36) in the limit (−Ω) → −∞ (the
initial singularity). It is very useful to perform the following coordinate
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transformation

β+ = ln
1

ρ
sinh ζ cos φ

β− = ln
1

ρ
sinh ζ sin φ

Ω = ln
1

ρ
cosh ζ (3.38)

The wave equation becomes

− 1

ρ(ln ρ)2

∂

∂ρ

[
ρ(ln ρ)2

] ∂ψ

∂ρ
+

1

ρ2(ln ρ)2
[∆LB − U(ρ, ζ, φ)] ψ = 0 (3.39)

where ∆LB is the Laplace-Beltrami operator

∆LB =
1

sinh ζ

∂

∂ζ

[
sinh ζ

∂

∂ζ

]
+

1

sinh2 ζ

∂2

∂φ2
(3.40)

and U(ρ, ζ, φ) is a potential term containing the potential V

U(ρ, ζ, φ) = (ln ρ2)
[
ρ4 cosh ζ(V − 1)

]
(3.41)

For fixed ζ we have

−∞ < −Ω < 0 ⇔ 0 < ρ < 1 (3.42)

Note that up to here we have done no approximations, the wave equation
(3.39) is directly derived from the original Bianchi IX metric only by coor-
dinate transformations. Let us now consider the asymptotic limit ρ → 0+.
Then the potential U vanishes inside and is +∞ outside the triangular do-
main bounded by

tanh ζ = −1

2
sec

(
φ + m

2π

3

)
m = 0,±1 (3.43)

This makes possible to factorize solutions of equation (3.39) as

Ψ = ψ(ρ)φ(ζ, ϕ) (3.44)

and one has first to consider the eigenvalue problem for the Laplacian

−∆LB φ(ζ, ϕ) = λφ(ζ, ϕ) (3.45)
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Figure 3.3: Billiard table for a Bianchi IX universe on the Poincaré disc and
the hyperbolic plane (from [63]). This domain is non-compact, but still of
finite hyperbolic area, thus it is a chaotic domain.
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with suitable boundary conditions at the walls.
This equation is better solved mapping the problem on the Poincaré disk

through the transformation

r = tanh
ζ

2
(3.46)

which leads to a quantum billiard problem on the Poincaré disk in the co-
ordinates (r, ϕ). Classically trajectories are broken geodesics reflected at the
boundary and as we said many times the motion is known to be strongly
chaotic. Finally, it is useful to go to the Poincaré upper-half plane (with
coordinates (x, y)) using the fractional linear transformation

x + iy =
31/2

2

−iz eiπ/6 + i

z eiπ/6 + 1
, z = r eiϕ (3.47)

The Laplacian problem on the hyperbolic plane becomes

−y2

(
∂

∂x2
+

∂

∂y2

)
Z(x, y) = λZ(x, y) (3.48)

which is the problem studied by Maass as we said in Part I. Dirichlet bound-
ary conditions are not good in this case, since the domain is not compact, and
one must use Neumann boundary conditions. We explore the consequence of
this in the next section.

3.6 The wave function of the Universe
As we said, the general inhomogeneous case is modelled on a billiard problem
inside the fundamental Weyl chamber of the hyperbolic algebra HA(1)

1 . As in
the previous section, we can decompose the motion in a chaotic motion inside
a fundamental domain for PGL(2,Z) plus a radial part. This means that the
angular part of the wave function of the early universe (considering only the
case of pure gravity in 4 dimensions) is an automorphic L-function (indeed
a Maass waveform) for the modular group. Actually, since the projected
billiard is PGL(2,Z) and not PSL(2,Z), one should instead consider the
spectral problem with Neumann boundary conditions

−∆φ = λφ

φ ∈ L2(F3, µ)

∂nφ|∂F3 = 0 (3.49)
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where F3 is the halved standard modular domain (remember that one of the
angle is π/3), ∆ is the hyperbolic Laplacian and µ is the usual measure on the
hyperbolic plane. Thus solutions to the Neumann problem for PGL(2,Z) are
given by even Maass cusp forms for PSL(2,Z). The precise statement, then,
is that the wave function of the universe is an even Maass cusp form for the
modular group PSL(2,Z). Actually, more is true. In fact, since PSL(2,Z) is
arithmetic and the cuspidal spectrum is very likely simple, one can diago-
nalize the hyperbolic Laplacian and the Hecke operators simultaneously (see
Appendix A). Thus it turns out that the wave function is a Maass-Hecke
eigenform. This is an even more interesting statement. In fact, Hecke eigen-
values are multiplicative (see Appendix A), i.e. λ(mn) = λ(m)λ(n), and this
should put some conditions on the physical interpretation of them. These
eigenvalues are the energy levels too (because they are eigenvalues of ∆),
thus if we denote by En the Hecke eigenvalue λn and take the logarithms, we
have

ln Emn = ln(EmEn) = ln(Em) + ln(En) (3.50)

for m,n co-primes. This should give some information on the entropy of the
system, since we expect this proportional to the logarithms of the density of
states, according the Boltzmann formula. In recent years, in string theory,
a lot of work has been done on counting the entropy of black holes (see for
example [123] for a review). It turns out that in some cases this entropy is
counted by the Fourier coefficients of certain automorphic functions. In the
present case, the question would be the following: is the gravitational en-
tropy computable from the Fourier coefficients of Maass-Hecke eigenforms?
Another remark is the following. In the semi-classical limit, the expected
statistics for the level spacing distributions for X(1) (or E10) is the Poisson
distribution. This should, in principle, allow to compare with the observa-
tions.

The inclusion of matter changes the shape of the billiard and also in-
creases the number of dimensions of the billiard. The most interesting case
is perhaps supergravity theory in 11 dimensions, which is believed to be a
kind of ultimate theory unifying all fundamental interactions. The super-
gravity billiard is the fundamental Weyl chamber for E10, thus in this case
the statement is that the wave function is a Maass waveform with respect to
the (discrete) Weyl group of E10 (which is not known). In this case, we can
not speak safely of Maass cusp forms, and we must use only the general term
Maass waveform, because we do not know if the residual spectrum is empty
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as in the cases of each Γ(N). Besides, the discrete spectrum could also be
degenerate. The existence of Maass forms with respect to W(E10) should be
guaranteed by the fact W(E10) is arithmetic [152].

Usually in quantum mechanics, one has a discrete and a continuous spec-
trum for a self-adjoint Hamiltonian and these are separated. Bound states
are the proper eigenfunctions of the discrete spectrum, whereas the continu-
ous part is interpreted as a free motion. Our model of quantum cosmology
is different from this usual situation. In fact, from the Selberg theory for
the automorphic Laplacian inside a fundamental domain of some Γ(N), we
know that the discrete spectrum is not separated from the continuous one
[1
4
,∞) (whose improper eigenfunctions are given by the Eisenstein series),

but it is embedded in the continuous part 6. Moreover, apart from the triv-
ial eigenvalue λ0 and the corresponding constant eigenfunction φ0, the first
eigenvalue is very likely λ1 = 1

4
. Is the ground state of quantum cosmology

given by a constant eigenfunction? Remember that the full wave function Ψ
is a solution of some kind of wave equation 7 in the Coxeter 3-dimensional
billiard. What we call the angular part is a Maass cusp form (i.e. it is zero
at the cusps) on the hyperbolic plane. As we wrote above, the remaining
part depends of the coordinate ρ. We used the term radial part, but this
is not quite correct physically, because the ρ variable is a time coordinate,
thus ψ(ρ) should give the time evolution of the wave function close to the
cosmological singularity. I do not expect that the ρ−dependence may change
the features of the physical spectrum, which is thus contained in the angular
part φ (for Bianchi IX this function is calculated in an approximated way in
[63]).

We believe this says something about the nature of quantum gravity,
i.e. this suggests that quantum gravity/cosmology is a non-trivial mixing
of discrete and continuous concepts, whereas it is commonly believed that

6There are cases in scattering problems where points of the discrete spectrum lie in the
continuous spectrum (I thank prof. G. Marmo for informing me on that), but our situation
is distinguished, because the whole discrete spectrum is embedded in the continuous one.

7We have considered a mini-superspace model following Misner’s insight. It is known
the physical interpretation of the Wheeler-DeWitt equation is problematic, because it
contains a second-order differential operator in the time variable. Even if one could in
principle think of another wave equation to describe the quantum system, I believe this
should still be of the second order in time, considering the fact the the classical evolution
is described by null segments, i.e. rays of lights reflected at the walls. Moreover, I
believe that the angular part should still satisfy the eigenvalue problem for the hyperbolic
Laplacian, thus the Maass problem is relevant anyway.
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quantum gravity means discretization of spacetime.
It would be interesting to understand if other approaches to the problem

of quantum gravity like the formalism of loop quantum gravity or string
theory say something like that.

Let us now come to the interpretation of the imaginary roots of the hy-
perbolic algebra HA(1)

1 . As we showed in Part I, all the periodic orbits for
X(1) can be put in correspondence with a subset of imaginary roots of HA(1)

1 .
In the DHN formalism, we have seen that the simple roots define reflections
in the walls, in particular each null geodesic is interrupted at a wall and then
reflected through Weyl reflections

wαi
(β) = β − 2

(αi, β)

(αi, αi)
αi (3.51)

(compare with the general billiard reflection formula in Part I, where the
vectors orthogonal to each face of the billiard have norm 1, in our case
(αi, αi) = 2). Remember that each null segment between two reflections
corresponds to a Kasner solution. This means that the fundamental Weyl
reflections transform Kasner solutions into Kasner solutions, i.e. the Weyl
group seems to act on the space of solutions of Einstein’s equations. Indeed,
this Weyl group should be an algebraic technique to generate solutions to
Einstein equations 8. It is also very likely that the other Weyl reflections,
defined in terms of real (not simple) roots also transform solutions into solu-
tions (see comments at the end of this chapter). The imaginary roots do not
define reflections, but they are related to periodic orbits of the billiard flow
for X(1). Thus, as the real roots transform solutions of Einstein equations,
the imaginary roots can be interpreted as periodic (non-singular) solutions to
Einstein equations. As the number of ppo is infinite, this gives an algebraic
proof that in the BKL limit to the singularity, there are infinitely many peri-
odic solutions to Einstein equations. Note that the cosmological singularity
(the singular hyper-surface) has not disappeared: in fact, the billiard table
has a cusp at infinity. If we had found some compact billiard table, the in-
terpretation would have been a little bit problematic. The interpretation of
the imaginary roots as periodic solutions is reasonable considering also that
Margulis asymptotics for the number of periodic orbits is very similar to the

8This is not new. R. Geroch found an infinite-dimensional Lie group transforming
solutions to Einstein theory among them in the case of pure gravity reduced to 3=2+1
dimensions. The Geroch group was then proved to be the loop group A(1)

1 .
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asymptotics of imaginary roots. Besides, the positivity of the Kac-Peterson
function on imaginary roots is, in my opinion, another indication of that,
since this function resembles an entropy function a lot.

This is an attempt of an answer to the question “what is the role of
imaginary roots in the Kac-Moody formulation of gravity/string theories?”,
at least for the imaginary roots coded by the periodic orbits and for the case
of HA(1)

1 and supports the idea the algebra HA(1)
1 is a symmetry of the space

of solutions of pure gravity in 4 dimensions, as it contains also infinitely
many periodic solutions. This seems to be reasonable at least in the billiard
regime. If the hyperbolic Kac-Moody algebra is a hidden symmetry of the full
theory, the role of real and imaginary roots can be different; in fact writing
a Lagrangian formally invariant under an infinite-dimensional group, at low
levels the roots have the right symmetry properties in order to be associated
to the fields of the theory, not to solutions.

Note that periodic solutions to Einstein equations were also found by S.
W. Hawking in [72] in the case of gravity coupled to scalar fields. See also
the papers by D. N. Page [122] and by A. Yu. Kamenshchik [97].

Finally, remember that each ppo γ0 is given by the reduced matrix

A = T n1S T n2S · · · T nmS (3.52)

or in terms of Weyl reflections by

A = [(W2W1)
n1 W1W3] [(W2W1)

n2 W1W3] · · · [(W2W1)
nm W1W3] (3.53)

This means that if we consider an alphabet of 3 letters {W1,W2W3} with a
grammar given by the commutation rules of the Wi’s (see Part I), then we
can construct infinitely many periodic solutions to Einstein equations with
just these three letters subject to the previous constraint. That is, in this
regime, the periodic solutions can be coded through the Weyl reflections. The
shortest periodic orbits derive from hyperbolic matrices A with Tr A = 3;
the corresponding hyperbolic length is

lmin = 2 cosh−1(TrA/2) = 2 cosh−1(3/2) = 2 ln

(
1 +

1 +
√

5

2

)
(3.54)

Thus, the length of the shortest periodic orbit is related to the golden ratio,
and, of course,one can make numerous aesthetic comments about that. Any-
how, note that the same formula appears in a paper by A. Yu. Kamenshchik
[97] in a different context (they consider scalar fields too).
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The difficult part is how to write down explicitly the metric of these
periodic solutions, because our result is only an existence results and uses the
tools of symbolic dynamics to code these periodic solutions. The interesting
and physical part is how these periodic metrics look like.

3.7 Scarred States in Quantum Cosmology and
Counting of Quantum States

In [12], Barrow and Levin have analyzed the case of a finite universe studying
the case of a universe emerging from a compact octagon on the hyperbolic
plane. They found a fractal structure which, in the classical to quantum
transition, can persist in the form of scars, ridges of enhanced amplitude in
the semiclassical wave function. They conclude that if the universe is finite
and negatively curved, the cobweb of luminous matter might be a residue of
primordial quantum scars.

Of course, we can never know if our universe is finite or not. Yet, in the
case of a generic singularity, we have seen that the interesting fundamental
domain is the one for PGL(2,Z), for which there is no scarring. Thus the
conclusions by Barrow and Levin do not apply, and it remains to understand
the physical (cosmological) meaning for the absence of scarred states. Again,
results in this direction given by loop quantum gravity or string theory would
be interesting, in order to confirm or discard the roles of scarred states in
quantum cosmology.

Note one more thing. Our analysis is limited to the case of pure gravity
in 4 dimensions, thus the conclusion about the absence of scarring states
in quantum cosmology is valid only in this context. Thus one may think
that the inclusion of matter or extra dimensions could change the situation.
If we consider the case of supergravity theory in 11 dimensions (or a not
well defined quantum version of it, like M-theory or whatever), then the
cosmological billiard is the Weyl chamber of E10 (the role of the fermions
is still matter of debate). Its Weyl group is not known, but it is known
[152] that is it still arithmetic. Thus for the hyperbolic manifold W (E10)\H9

the quantum unique ergodicity theorem should be true and, again, there
is no scarring effect. 11-dimensional supergravity is a candidate theory to
describe the universe and all of its interactions. The message is that, with
the knowledge we have today, it does seem that in the early universe scarred
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states are absent. And, in my opinion, quantum gravity has to cope with
quantum chaos.

Finally, regarding the asymptotic number of quantum states, let us write
again the Selberg result for PSL(2,Z)

NΓ(1)(λ) =
∑

0<λj≤λ

1 ∼ µ(X(1))

4π
λ (3.55)

for λ →∞. This gives the asymptotic number of eigenvalues/eigenfunctions,
thus it counts the asymptotic number of discrete states in quantum cosmol-
ogy. Again, a confirmation of this from other approaches to the problem to
quantum cosmology would be extremely interesting. For E10, there is no such
a result.

3.8 Notes and Comments on Chapter 3
The singularity theorems of S. W. Hawking and R. Penrose state that (under
very general and reasonable assumptions) the solution to Einstein equations
is not singularity free (see [71], [70], [155]). This is a result in differential
topology (using Morse theory for Lorentzian manifolds) and does not account
for effects of quantum physics at some small length scale: the general belief
is that quantum effects must be incorporated in order to cope with gravity at
the Planck energy scale (EP ∼ 1019 GeV) 9. However, the beautiful theorems
due to Hawking and Penrose do not say anything about the nature of the
singularity.

The first attempt to understand what happens in the case of a cosmo-
logical singularity dates back to the Russian physicists V. A. Belinski, I. M.
Khalatnikov and E.M. Lifshitz (BKL). In a series of works (see [15]-[16] for
reviews and other older references), after a wrong statement by Khalatnikov
and Lifshitz about the absence of a singularity in the solutions to Einstein
equations, BKL showed that the generic solution to Einstein equations in vac-
uum admits never ending oscillations in the spacetime metric and exhibits
chaotic behavior. Their analysis was limited to the case of pure gravity in
4 dimensions and to homogeneous cosmological models. The coupling of
the gravitational field to a scalar field was also studied [14] and the result

9There is always the problem of the falsification of a theory of quantum gravity, since
it deals with Planck scale physics.
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was that oscillations disappear: chaos is replaced by a monotonic power law
evolution (Kasner-like solution). Other studies, mostly due to C. W. Misner
[115]-[116], J. D. Barrow [11], [29] focused on the case of Bianchi IX, renamed
by Misner the “ Mixmaster Universe ” for its chaotic behavior. A definitive
answer to the question of chaoticity of the Mixmaster universe was given
by N. Cornish and J. Levin [34]-[35]. In fact, in general relativity, because
of the general covariance of the theory, care must be used in order to state
the presence or the absence of chaos only using the positivity of Lyapunov
exponents, because these quantities can depend on the particular choice of
the coordinate systems. Lyapunov exponents are not reliable indicators of
chaos in general relativity. Good discussions can be found in the book edited
by A. Coley and D. Hobill [31]. Cornish and Levin used coordinate inde-
pendent, fractal techniques to show that the Mixmaster universe is indeed
chaotic. A fractal set of self-similar universes is uncovered by numerically
solving Einstein’s equations. These universes form fractal boundaries in the
space of initial conditions. Such fractal partitions are the result of a chaotic
dynamics.

The analysis of BKL has been improved in the last very years by T.
Damour, M. Henneaux and H. Nicolai [37] (DHN) especially in the case of
supergravity/string theories. These authors extend previous results to the
case of pure gravity in D ≥ 4 dimensions, the bosonic sector of the low
energies effective actions of string theories in 10 dimensions and the bosonic
sector of supergravity in 11 dimensions. Under no symmetry assumptions
(unlike the homogeneous cases previously discussed), using only the existence
of a foliation of spacetime by spacelike hypersurfaces Σ t in the limit to the
singularity, they show that the generic solution to (generalized, with matter)
Einstein equations is still oscillatory in the asymptotic limit (except for pure
gravity for D ≥ 11 where it becomes Kasner-like). In particular, they show
that the asymptotic dynamics is equivalent to a geodesic motion of a massless
particle which moves at the speed of light as a free ball inside a billiard (in an
auxiliary Minkowski space) with elastic reflections on the walls 10. The shape
of the billiard and the dimension of this auxiliary Minkowski space depend on

10The billiard representation on the hyperbolic plane is originally due to Misner [115],
Chitre [30] and appears also in various works of A. A. Kirillov, V. D. Ivashchuk, V. N.
Melnikov [99]-[100], [83]-[84], G. Imponente and G. Montani [82]. The analysis of DHN
deals with more degrees of freedom at the same time (gravitational field, matter) and is
more general. The analysis makes use of the Hamiltonian formalism for general relativity
and of an Iwasawa decomposition for the metric.
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the theory (number of spacetime dimensions, scalar fields, p-forms). For any
“relevant” physical theory, it has been found that the billiard can always be
identified with the fundamental Weyl chamber of a suitable hyperbolic Kac-
Moody algebra. Excellent reviews of these approaches are the PhD thesis of
my friend S. De Buyl [41] and the very recent review by M. Henneaux, D.
Persson, P. Spindel [78].

Finally, the work of C. Uggla et al [2], [49] has shown that in a generic
cosmological model asymptotic silence holds, that is particle horizons shrink
to zero along all timelines in the limit to the singularity (in Uggla’s [149]
words at the last MG11 “ Everybody dies alone ”). These works also give some
evidence to the fact that spatial derivatives become dynamically insignificant
along generic timelines, supporting the initial BKL’s conjecture. A past
attractor, the cosmological billiard attractor, has been identified in [73], but
this billiard is not the same as the Kac-Moody billiard. A good background
reading to understand these works is the book by J. Wainright and G. F. R.
Ellis [153] on dynamical systems in cosmology.

All of these analyses support the fact that the generic solution to Einstein
equations in vacuum in the asymptotic limit towards a cosmological singu-
larity is oscillatory and chaotic; moreover, in this limit, the spatial points
decouple and the evolution of each spatial point is Mixmaster-like. This has
also been checked trough many numerical simulations, see the recent report
by B. K. Berger [17]. Unfortunately, a rigorous proof of the BKL limit is
lacking in the chaotic case (infinite oscillations of the metric), whereas there
are rigorous results in the Kasner-like case (gravity coupled to scalar fields,
sub-critical systems) [1], [39]. A mathematical proof of the BKL limit is a
very important point, especially regarding the possibility of ignoring the spa-
tial gradients, whose occurrence transforms the nonlinear partial differential
equations of general relativity in nonlinear ordinary differential equations in
the time variable t (ordinary differential equations which mimic homogeneous
models). The idea is to prove in a rigorous way that this limit exists and
corresponds to the BKL limit. Some experts in nonlinear PDEs could like
the problem and solve it for us. The reward is a journey into the cosmological
singularity! Any volunteer?

In this work, we have studied the case of pure gravity in 4 dimensions,
which is described by the null-geodetic motion inside the Weyl chamber of
HA(1)

1 . We deal with this case only because it can shed some light on gravity
in the asymptotic limit (where quantum effects and/or other unknown phe-
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nomena should be considered) and also because HA(1)
1 is the simplest hyper-

bolic Kac-Moody algebra about which we know something more with respect
to other hyperbolic or Lorentzian Kac-Moody algebras like E10 or E11. The
key hypothesis is that the symmetry (the Weyl chamber of HA(1)

1 ) survives
any kind of transition from classical to quantum (or whatever) phenomena in
approaching the singularity. We support this assumption (which can be com-
pletely wrong) because we believe that in a neighbourhood of the cosmolog-
ical singularity it is more natural to describe the physics in terms of discrete
and arithmetic mathematical objects rather that in terms of smooth objects.
In our case, this means that rather considering the infinite-dimensional Lie
group 11 corresponding to the infinite dimensional Lie algebra (an indefinite
Kac-Moody algebra) we want instead to study what happens in the Weyl
chamber of the algebra (which is a well defined discrete structure): in a cer-
tain sense this approach is complementary to the one developed by DHN, P.
West, F. Englert and L. Houart, and others, based on the level decomposition
of the corresponding Kac-Moody algebra with respect to a finite-dimensional
Lie algebra.

We have shown in particular that the imaginary roots of the algebra HA(1)
1

can be interpreted as periodic solutions of the billiard flow in its chamber once
projected on the hyperbolic plane. As concerns the real roots, at the moment
I think that their roles is to define Weyl reflections which transform solutions
of Einstein equations into other solutions. This is basically the point of view
adopted in [47], where the question is faced in relation to supergravity theory
and BSP solutions.

So what is the role of imaginary roots?
We believe the other part of the algebra, i.e. the imaginary roots spaces,

which in some sense is the biggest one, is associated to periodic solutions.
It is clear that if we believe the billiard representation for gravity close

to the singularity, then the periodic orbits must have a role, since these are
classical solutions to the Hamiltonian flow on the hyperbolic plane. Remem-
ber also that these trajectories are very important because they are dense,

11The fact that in the study of the singularity it is the Weyl chamber which appears
(and so naturally, the Kac-Moody group) as a symmetry can be a hint that chambers,
buildings, apartments and all that are the right language to describe physics in the prox-
imity of a singularity. This of course suggests a discretization of spacetime in this regime
and somehow reminds of the approaches to quantum gravity based on triangulations of
spacetime, though in our case the Weyl chamber does not live on the spacetime as we have
a kind of holographic description.
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thus they can approximate any other trajectory. It is reasonable that these
periodic geodesics are solutions to Einstein’s equations in the BKL limit and
that they are related to the imaginary roots. The Weyl reflections are used
to code these periodic orbits. The symbolic coding of cosmological solutions
is not new, see [34]-[35] and [97] for example. But the fact that we can use
an alphabet of Weyl reflections to code periodic orbits supports the role of
the algebra HA(1)

1 as a symmetry of the gravitational theory in the limit to
the singularity.

As we have briefly mentioned, the entropy of certain black holes can be
computed by the Fourier coefficients of certain automorphic forms. In partic-
ular [123], a holographic description allows to quantize BPS black holes. The
case we have studied, the limit of gravity near a cosmological singularity, also
reveals a kind of holography, since the behavior of Einstein equations in this
regime is equivalent to a null motion in an auxiliary Minkowski space. And
as we have seen, the wave function in this auxiliary description is an auto-
morphic form with many arithmetic properties, exactly as the wave function
of these black hole is an automorphic function. This is an example of what
I have in mind for “The Automorphic Universe”. These connections deserve
to be investigated in depth, especially in relation to the many holography
conjectures which are today stated.
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Conclusions and Some
Speculations

The old problems have not been solved, but
little by little they make less sense, they are
forgotten, they disappear . . .

Chance and Chaos
D. Ruelle

In this thesis, we have assumed DHN’s result according to which the
dynamics of classical general relativity in 4 dimensions (and in absence of
matter) is equivalent, in the BKL limit, to a null geodetic motion inside the
fundamental Weyl chamber of the hyperbolic Kac-Moody algebra HA(1)

1 with
elastic reflections at the walls (billiard representation). The evolution of the
spacetime metric in this limit can be represented as an infinite succession of
Kasner epochs: each Kasner epoch can be mapped to a geodesic segment
inside the fundamental domain of PGL(2,Z), which is the Weyl group of
HA(1)

1 . This fundamental domain also contains infinitely many periodic or-
bits (which are solutions of the classical Hamiltonian flow) which we have
put in relation with the imaginary roots of the hyperbolic Kac-Moody alge-
bra HA(1)

1 . These periodic orbits correspond to classical periodic solutions
to Einstein equations and escape the cosmological singularity since they are
periodic. Periodic orbits can be coded through symbolic dynamics, i.e. to
each periodic orbit we can associate a finite set of letters from an alphabet.
The letters are the Weyl reflections and the alphabet is given by the commu-
tation rules of these reflections. At the moment, I can not think of a more
primitive tool than symbolic dynamics (i.e. grammar) to describe gravity
close to a cosmological singularity.
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Regarding the question of integrability/chaoticity of the null billiard flow
inside the Weyl chamber of HA(1)

1 , one can not claim anything, as there are
no results for such flows in pseudo-Riemannian manifolds. In fact, from the
Anosov property of the flow on the basis of the billiard (the fundamental
domain for PGL(2,Z)), it does not follow the chaoticity for the dynamics in
the full 3-dimensional Weyl chamber, since from the ergodicity of a dynamical
system in a proper subset of the phase space one can not infer the ergodicity
of the system in the full phase space. I do hope to study billiards and flows in
pseudo-Riemannian manifolds in the near future, since these are the natural
evolution of classical billiards towards considering the problem of ergodicity
in special/general relativity. The next step, in fact, should be the study of
relativistic billiards confined in some polyhedron in a Minkowski spacetime
(think of a relativistic gas).

We have also carried on for the first time the quantum analysis for the
billiard representation. The result is that, for pure gravity in 4 dimensions,
the wave function of the universe (or better, the angular part projected on
the hyperbolic plane) is an automorphic form for PGL(2,Z), precisely an
even Maass cusp form for PSL(2,Z). Indeed, since PSL(2,Z) is arithmetic,
the wave function is a Maass-Hecke eigenform, being also eigenfunction of
the Hecke operators (which commute with the Hamiltonian). The arithmetic
nature of PGL(2,Z) allows also to state that in the early universe scarred
states are absent. This conclusion, true for pure gravity in 4 dimensions if we
believe the billiard representation, is very likely valid also in the case of 11-
dimensional supergravity close to the singularity, whose billiard is modelled
on the E10 hyperbolic Kac-Moody algebra. Finally, we have pointed out that
the Selberg trace formula for PSL(2,Z) gives a semiclassical quantization rule
for pure gravity in 4 dimensions, as typically occurs for the Gutzwiller trace
formula in quantum chaos. But the difference is that the Gutzwiller trace
formula is divergent, whereas the Selberg trave formula is convergent. Thus,
in the BKL limit to the singularity, a semiclassical quantization of gravity is
well defined. Indeed, the Selberg trace formula is a kind of path-integral. This
point of view is emphasized in the book by C. Grosche [65]. But remember
that indeed we have an infinite number of semi-classical quantization rules,
since the class of test functions entering the trace formula is very large. This
is the best one can do in a rigorous/convergent way for the quantum systems
whose semi-classical limit is a Hamiltonian flow for which the Selberg trace
formula is valid.
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Moreover, as it happens in all situations in which quantum chaos exists,
that is whose underlying classical dynamical system is chaotic, one should
face the question of decoherence. In our situation, this would be very impor-
tant, since we are speaking of decoherence in quantum gravity/cosmology
and this means to enter the debate whether it is more correct to consider
quantum mechanics as a collapse of the wave function or a many-worlds in-
terpretation. Some work on decoherence in quantum gravity and the role of
time has been done recently by R. Gambini and J. Pullin.

This is what we have found for the case of pure gravity in 3+1 dimensions,
where spatial points decouple and the dynamics involves only a single (time)
variable. The question now is: what could be the analog for a quantum the-
ory when all 4 (time and space) variables must be considered? A very simple
(and possibly wrong) answer to this question can be the following. Classical
general relativity in 4 dimensions is a covariant theory, where all physical
quantities must be invariant under the diffeomorphism GL(4,R). Then one
could suggest (and we do) that the corresponding quantum system is de-
scribed by a wave function which is an automorphic form with respect to a
discrete group which has something to do with GL(4,Z), which is the simplest
choice just to start. Moreover, we have seen that the Selberg trace formula
for PGL(2,Z) gives a natural and well-defined path-integral to quantize the
system in the asymptotic limit. For GL(4,Z) (or some other group) one can
invoke a generalized trace formula, the Arthur trace formula, which does the
same job. One can also try to build a quantum gravity from quantum cos-
mology by invoking some lifting of automorphic forms, that is a technique
which allows to extend our Maass waveform to be an automorphic function
with respect to a higher-dimensional discrete group 12. It is likely that in
this lifting procedure, some discrete group is naturally selected. Everything
is mathematically well defined and beautiful, and leads, unavoidably, to the

12Note that this proposal is different from the one contained for examples in [37] or in
[157] or in [47] (and references therein). DHN’s approach is based on the assumption (for
which there is indeed evidence) that supergravity theory in 11 dimensions (or a quantum
extension of it) exhibits a hidden E10 symmetry at the level of the Lagrangian, i.e. there
should exist a formulation of this theory invariant under the infinite-dimensional Lie group
E10\K(E10), where K(E10) is the formal maximal compact subgroup of the E10 Lie group.
In this setting, the discrete group one looks for to build the quantum theory is a discretized
version of E10, E10(Z). Our proposal is different: we suggest to look at a discrete group
which is, naively, related to GL(4,Z), not to some HA(1)

1 (Z). Building automorphic forms
for GL(n,Z) groups (and subgroups) is a well-established technique, while automorphic
forms for E10(Z) or HA(1)

1 (Z), at the moment, are out of reach.
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Langlands program. Very recently, E. Witten et at have given a physical
interpretation of the geometric Langlands program in terms of gauge theory.
This construction uses a lot Hecke eigensheaves, whose classical counterpart
is Hecke operators and Hecke eigenfunctions. It is remarkable, in my opinion,
that these objects appear in general relativity in a different context and with
a different language. It could be another subtle indication of the so-called
gauge-gravity correspondence.

Regarding this last point, nowadays, a lot of research is focused on holog-
raphy conjectures (AdS-CFT etc). The general belief is that a gauge theory,
i.e. a theory without gravity, is “dual” to a theory containing gravity. Many
efforts are also concentrated to prove the integrability of a Yang-Mills the-
ory, although all the arguments given so far are not conclusive. Of course,
in some approximation scheme, for example large N−expansion, one obtains
the integrability. Gauge theories are non-linear, thus it is reasonable to think
that Yang-Mills theory is not integrable, although one knows stable solutions
(solitons etc) to the non-linear equations. In fact, chaoticity in gauge theory
must not be surprising, see the book by S. G. Matinyan et al [23]. In [138], G.
K. Savvidy shows that Yang-Mills classical mechanics can be reformulated
in terms of dynamical systems theory, in particular it has positive metric
entropy and it is isomorphic to a Kolmogorov system, thus it has strong
statistical properties (see also [23], from the analysis of the problem there
is a billiard representation too). It would be very interesting to reformulate
Yang-Mills theory in any regime as a dynamical system and try to compare
it with general relativity in some specific situation. We thus suggest to study
the problem of the gauge/gravity duality as a problem of isomorphism of
gravity and gauge theories reformulated according to the dynamical systems
theory, in particular looking at the correlation functions of these two systems
for which one can say something for isomorphic dynamical systems.

Finally, the role of chaos in gauge theory should be investigated more, in
view of possible implications for the problem of confinement (see [23]).

I do hope to study all these points in depth in the near future.
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Appendix A

The zoo of L-functions

In this appendix, we give a glimpse at the beautiful theory of zeta-functions,
L-functions, automorphic L-functions and all that. There are plenty of books
and survey articles on the subject, we suggest the book by H. Davenport [40].

The Riemann zeta-function

ζ(s) =
+∞∑
n=1

1

ns
=

∏
p

(1− p−s)−1 (A.1)

is the mother of all zeta-functions. It was first studied by Dirichlet for real s,
while Riemann considered the case of complex s. The identity is equivalent
to the unique factorization of integers into primes and was proven by Euler.

Applying Poisson summation formula and using Euler Γ-function, one
arrives at the functional equation for ζ(s)

ζ∗ := π−s/2 Γ
(s

2

)
ζ(s) = ζ∗(1− s) (A.2)

ζ∗(s) is called the completed zeta-function, it has a meromorphic continuation
to the entire s−plane and it is analytic except for simple poles s = 0, 1. We
observe that ζ∗ has no zeros outside the critical strip 0 ≤ Re s ≤ 1. In
fact, since Γ(s) is never zero and ζ(s) is analytic and non-zero in the region
of convergence Re s > 1, the completes zeta-function ζ∗(s) is 6= 0 in Re
s > 1; by the functional equation, the same is true for Re s < 0. Moreover,
since Γ(s) is analytic except for simple poles at s = 0,−1,−2, . . ., ζ(s) is
non-zero in Re s < 0 except for simple zeros at the negative even integers
s = −2,−4,−6, . . ., to make up for the simple poles of Γ(s/2) at these
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points. These are called the trivial zeros of ζ(s). The non-critical ones are
the zeros of ζ∗(s) and they all lie in the critical strip. The first few zeros
were computed by Riemann himself, and all lie on the critical line Re s = 1

2
.

They are ρn1/2 + iEn with E1 = 14.13 . . ., E2 = 21.02 . . ., E3 = 25.01 . . . etc
(by symmetry we only need to consider positive E). The famous Riemann
hypothesis (RH) is that all non-trivial zeros of ζ(s) lie on the critical line Re
s = 1/2.

The RH has been checked extensively and is widely believed to be true,
though an explanation and proof are still missing to date.

If one defines the function

Λ(n) =

{
ln p if n = pk for some k ≥ 1
0 otherwise (A.3)

and let h and g functions as in the Selberg trace formula, then

∑
E

h(E) =
1

2π

∫ +∞

−∞
h(r)

Γ′

Γ

(
1

4
+

1

2
ir

)
dr + h

(
i

2

)
+ h

(
− i

2

)
+ (A.4)

−g(0) ln π − 2
∞∑

n=1

Λ(n)√
n

g(ln n)

which is sometimes called Weil explicit formula. The sum is over all non-
trivial zeros. Note the similarity between this formula and the Selberg trace
formula for a co-compact group (see Part I). This is clearer is one puts

Λ(P ) =
ln N(P0)

1−N(P )−1
(A.5)

This similarity led Selberg to the definition of the Selberg zeta-function Z(s)
as a product over all primitive periodic orbits as ζ(s) is a product over all
primes.

Generalizations of the Riemann zeta-function are the Dirichlet L−functions

L(s, χ) =
∞∑

n=1

χ(n)

ns
(A.6)

which converge for Re s > 1. χ(n) is a Dirichlet character modulo q, that is
it is a function on the integers satisfying
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• χ is q−periodic: χ(n + q) = χ(n) where q is an integer > 1

• χ(n) = 0 if n is not co-prime to q

• χ(n) is multiplicative: χ(nm) = χ(n)χ(m)

• χ(1) = 1

In particular χ(−1) = ±1 and we say that χ is even (odd) if χ(−1) = 1
(χ(−1) = −1). In general, there are precisely φ(q) Dirichlet character modulo
q. They satisfy some orthogonality relations. L(s, χ) is analytic for Re s > 0.
By using factorization for primes and multiplicativity of χ, one shows that
there is an Eulerian product

L(s, χ) =
∏

p

(
1− χ(p)

ps

)−1

(A.7)

Similarly, there is a functional equation connecting L(s, χ) with L(s, χ−1).
The L−function associated to a non-trivial character χ has an analytic con-
tinuation, with no poles, and all its non-trivial zeros are in the critical strip.
The generalization of the RH is that all non-trivial zeros are on the critical
line; in this case too a proof is lacking.

Riemann zeta-function and Dirichlet L−functions all belong to a wide
class of number theoretic objects called automorphic L−functions. We do not
explain what they are, but we give an example: the L−functions attached
to the eigenfunctions of the Laplacian on the modular domain. Let Γ =
PSL(2,Z). The spectrum of ∆ on the space of odd functions on Γ\H is
purely discrete, but on the even space there is continuous spectrum (the
infinite interval

[
1
4
,∞)

) and discrete spectrum. As we said in Part I, the
corresponding eigenfunctions are the Maass waveforms, which are Γ−periodic
eigenfunctions of the Laplacian, square-integrable on F(1).

The space of such forms splits up into odd/even forms under the symme-
try W1 : z → −z

ψ(−z) = ±ψ(z) (A.8)

The discrete spectrum is embedded in the continuous one, so that the eigen-
values E satisfy E = 1

4
+ t2 > 1

4
. Since the translation T : z → z + 1

is in Γ, an even/odd Maass waveform ψ(z) has a Fourier expansion ψ(z) =
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∑
n Wn(y)e2πinx. Considering that ∆ψ+Eψ = 0 and the square-integrability

condition, one can derive a more explicit form

ψ(z) =
∑

n 6=0

aψ(n) y1/2 Kit(2π|n|y) e2πinx (A.9)

where Kit(y) are modified Bessel functions; as y → ∞, Kit(y) << e−2πy.
ψ is an eigenfunction with eigenvalue λ and t is such that λ = 1

4
+ t2.

The coefficients aψ(n) are the Fourier coefficients for ψ(z). For even forms,
aψ(−n) = aψ(n), while for odd ones aψ(−n) = −aψ(n). More explicitly, for
Hecke triangle groups which have an obvious symmetry with respect to the
imaginary axis, one can write

ψ =
∞∑

n=1

cn y1/2 Kit(2πny)

{
cos(2πinx)
sin(2πinx)

(A.10)

depending on whether ψ is even or odd. Since Γ is arithmetic, there are
additional symmetries, the Hecke operators. These are defined for n > 0 as

Tnψ(z) :=
1√
n

∑

ad=n,b mod n

ψ

(
az + b

d

)
(A.11)

the sum going over all positive integers a, d with ad = n and 0 ≤ b < d. The
Hecke operators {Tn} are a commutative algebra of self-adjoint operators
on L2(Γ\H) and commute with ∆ and with the reflection W1. Thus they
preserve the even/odd eigenspaces of ∆ and each eigenspace has a basis
consisting of simultaneous eigenfunctions of all Hecke operators (remember
also that for Γ all numerical evidences support that the cuspidal spectrum
is simple). Such eigenfunctions are called Maass-Hecke eigenforms. Given
such an eigenfunction ψ, Tnψ = λnψ, its Fourier coefficients are given by

aψ(n) = aψ(1)λ(n) (A.12)

thus we can normalize the first Fourier coefficient aψ(1) = 1 and then the
n−th Fourier coefficient is the Hecke eigenvalue λ(n). The Hecke eigenvalues
are multiplicative

λ(mn) = λ(m)λ(n) m, n co-prime (A.13)
λ(pk)λ(p) = λ(pk+1) + λ(pk−1) p prime
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Since the ψ are bounded in the fundamental domain, one can infer that for
any Maass form aψ(n) << n1/2. For Hecke eigenforms, it is conjectured
that the Fourier coefficients are essentially bounded, more precisely that for
prime p, |λ(p)| ≤ 2 and consequently |λ(n)| << nε for any ε > 0. This is the
Ramanujan conjecture for Maass forms and is still open. Furthermore, it is
believed that the signs of λ(p)/

√
p are distributed according to the Sato-Tate

law, i.e. equidistributed with respect to the semi-circle distribution

dµ(x) =
2

π

√
1− x2dx (A.14)

The L−function attached to a normalized Maass-Hecke eigenform ψ with
Fourier coefficients a(n) = λ(n), a(1) = 1 is defined by

L(s, χ) =
∞∑

n=1

λ(n)

ns
(A.15)

and it is absolutely convergent for Re s > 1. Since the Hecke eigenvalues
λ(n) are multiplicative, we have an Euler product expansion

L(s, χ) =
∏

p

1

1− λ(p)p−s + p−2s
, Re s > 1 (A.16)

This L−function allows for an analytic continuation and satisfies a functional
equation of the kind

L∗(s, ψ) = L∗(1− s, ψ) (A.17)

The trivial zeros are at s = ±it+k, with k = 0,−2,−4, . . .. For the modular
group all the Laplace eigenvalues lie above 1/4, so t is real and there are no
trivial zeros in the critical strip. All the non-trivial zeros ρn = 1/2 + iEn lie
inside the critical strip and the analogue of the RH is that they all have Re
s = 1

2
.

In the following appendix, we describe the spectral statistics of the zeros
of L−functions with the tools of random matrix theory and make connections
with quantum mechanics.
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Appendix B

Random Matrix Theory

Random matrix theory was introduced to the theoretical physics community
as a subject of intensive study by E. Wigner [158] in his work on nuclear
physics in the 1950s (for random matrix theory see the excellent book by M.
L. Mehta [118]). Wigner was concerned with scattering resonances for neu-
trons off heavy nucleii. For any given nucleus there could be hundreds, even
thousands, of such resonances, and many researchers realized that the only
hope to bring some order to the subject was through a statistical approach.
It was Wigner, however, who first proposed that the local statistical behav-
ior of the resonance levels (i.e. the energy levels of complex Hamiltonians
describing many nucleons) be modelled by the local statistical behavior of
the eigenvalues of a large random matrix.

Let us consider a sequence of numbers x1 ≤ x2 ≤ · · · ≤ xn ≤ · · · , normal-
ized so that xn ∼ n as n → ∞. We want to understand the fluctuations of
the levels xn from their mean. For instance, the nearest-neighbor level spac-
ings are sn := xn+1−xn, whose mean is unity. The level spacing distribution
P (s) measures the distribution of the spacings sn

P (s) = lim
N→∞

1

N

∑
n≤N

δ(s− sn) (B.1)

that is we want that for any test function f ∈ C0(0,∞)

1

N

∑
n≤N

f(sn) −→
∫ ∞

0

f(s)P (s)ds as N →∞ (B.2)

The first example of such a sequence of numbers xn is given by the zeros of
the L−functions previously described, ρn = 1

2
+ iEn; here we assume also the
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relevant RH, thus the En are all real. We want to understand the fluctuations
of these zeros in an interval [E, 2E] with E >> 1. The number of these
levels En in this interval is asymptotically equal to d E ln E/2π as E → ∞,
with d = 1 in the case of ζ(s) (a result already known to Riemann) and
Dirichlet L−functions, while d = 2 for the L−functions attached to the Maass
waveforms (thus the density of zeros for these automorphic L−functions is
twice the density for ζ(s) or Dirichlet L−functions). A standard procedure
allows to have a sequence of normalized levels xn ∼ n

xn :=
d ln E

2π
En (B.3)

this is known as unfolding the spectrum.
One model for such a sequence is to take xn as random, uncorrelated num-

bers. In this case the level spacing distribution if P (s) = e−s, a Poisson dis-
tribution. Other models come from Random Matrix Theory. For instance, we
can take the eigenvalues λ1 ≤ · · · ≤ λN of an N×N Hermitian matrix H cho-
sen from the Gaussian Unitary Ensmble (GUE), which is the set of Hermitian
matrices endowed with a probability measure dµ(H) = cNe−Tr H2

dH. The
Gaussian profile for the measure explains the term Gaussian ensemble; be-
sides, the measure is invariant under unitary transformations, which explains
the term unitary. Then one can form the unfolded eigenvalues xn :=

√
2N
2π

λn;
in the limit N → ∞ (i.e. for large random matrices), the expected level
spacing distribution of xn is given in terms of a Fredholm determinant

PGUE(s) =
d2

ds2
det (I −Qs) (B.4)

where Qs is the integral operator in L2(−1, 1) with kernel

Qs(x, y) =
sin π(x− y) s/2

π(x− y)
(B.5)

For small s, PGUE(s) ∼ π2

3
s2.

The same level spacing distribution arises if we consider the eigenphases
of an N × N unitary matrix, chosen at random with respect to the Haar
measure on the unitary group U(N) (Dyson’s CUE). Similarly, if we take
any of the families compact classical groups such as the unitary symplec-
tic group USp(2N). In these compact examples, Katz and Sarnak [93]-[94]
proved that the ensemble averages converge to PGUE(s) for a class of test
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functions. This is the only rigorous results about expected level spacings dis-
tributions, together with another similar result by Rudnick and Sarnak [132]
which say that the n−level correlation functions for the zeros of L−functions
for any cuspidal automorphic form (like Maass waveforms) agree with the
GUE predictions, at least for a restricted class of test functions. In fact,
it is easier to study correlations between all n−tuples of levels, the n−level
correlation functions, rather than studying spacings between adjacent levels.
For example, the pair correlation function (n = 2) of an unfolded sequence
xn is defined as

R2(f,N) =
1

N

∑

j 6=k≤N

f(xj − xk) (B.6)

where f is an even test function. The goal is to understand the limit N →∞

R2(f,N) −→
∫ +∞

−∞
f(x)R2(x)dx (B.7)

For uncorrelated levels, we clearly have R2(x) = 1, while for the GUE case,
F. Dyson found that RGUE

2 (x) = 1 − (sin πx/πx)2. At this point it is good
to remind an event which took place at the Institute for Advanced Study in
Princeton in the early 1970s. H. Montgomery had been working for a number
of years on the problem of the zeros of the Riemann zeta function. Assuming
the RH, Montgomery rescaled (unfolded) the imaginary parts γ1 ≤ γ2 ≤ . . .
of the zeros {1/2 + iE} of ζ(s)

Ej → Ẽj =
Ej ln Ej

2π
(B.8)

to have a mean spacing of 1. He obtained, modulo certain technical as-
sumptions, an expression for the limiting form for the distribution of pairs
of zeros

R(a, b) = lim
N→∞

1

N
] {pairs (j1, j2) : 1 ≤ j1 j2 ≤ N , Ẽj1 − Ẽj2 ∈ (a, b)} (B.9)

for any interval (a,b). Montgomery gave a talk on his work, but it turned
out that Dyson was unable to attend his lecture. However, at tea that after-
noon Montgomery met Dyson and told him about his work. Before he could
describe his formulae for R(a, b), Dyson astounded him by asking whether
he found

R(a, b) =

∫ b

a

(
1−

(
sin 2πu

2πu

)2
)

du (B.10)
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which was exactly Montgomery’s hard-earned result! When Montgomery
asked Dyson how he knew this, Dyson made the extraordinary remark that
this is what one would obtain if the zeros of the Riemann zeta function
behaved like the eigenvalues of a random matrix chosen from a particular
Hermitian ensemble, the Gaussian Unitary Ensemble (GUE).

It took the mathematicians another fifteen years to pick up on this ex-
traordinary result. In 1987, A. Odlyzko computed the spacing distribution
for the Ẽj’s using highly accurate computations on millions of zeros of ζ(s)
and confirmed Montgomery’s result with extraordinary accuracy. Moreover,
he also considered other statistics for the spacing distribution. In particular,
he computed

1

N
] {sj := Ẽj+1 − Ẽj , 1 ≤ j ≤ N : sj ∈ (a, b)} (B.11)

and found to extreme accuracy that as N →∞
1

N
] {sj := Ẽj+1 − Ẽj , 1 ≤ j ≤ N : sj ∈ (a, b)} →

∫ b

a

p(x) dx (B.12)

where p(x)dx is the distribution PGUE(s) of normalized spacings of eigen-
values of large random matrices from GUE. As we mentioned, up to some
technical restrictions, these results have now been verified rigorously by N.
Katz, Z. Rudnick and P. Sarnak. It is now commonly believed that the
spectral statistics of the zeros of these L−functions follow the GUE.

Let us now describe the second example of such a sequence xn, in relation
to the energy levels of a quantum system. As we know, the spectrum of a
system E1 ≤ E2 ≤ · · · ≤ En ≤ · · · is characterized by the level density

d(E) =
∑

n

δ(E − En) (B.13)

or the counting function

N(E) =
∑

n

θ(E − En) (B.14)

It is useful to divide these two functions into two parts, a smooth part and
an oscillatory part, the latter having mean value zero

d(E) = d(E) + dosc(E)

N(E) = N(E) + N osc(E) (B.15)
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d(E) does not depend on whether the underlying classical system is chaotic
or not; in fact Weyl’s law says that this quantity depends only on the volume
of the systems, at first order. Therefore, if one wants to compare spectra
of different systems, one must compare spectra with the same mean level
density; as we already said, this is achieved unfolding the spectrum. That
is, one simply replaces the energy eigenvalues Ei by the sequence λ1 ≤ λ2 ≤
· · · ≤ λn ≤ · · · with

λi = N(Ei) (B.16)

This new sequence has mean density one, but it has the same fluctuations as
the energy eigenvalues. At this point, one can compare the remaining vari-
ations between different spectra, the spectral fluctuations, i.e. fluctuations
around the mean level density. These can be compared to theoretical distri-
butions. As before, the simplest one is the Poisson distribution, which simply
corresponds to uncorrelated levels. Another possibility is to consider the ran-
dom matrix theory distributions. According to a conjecture due to Berry and
Tabor [22], the spectral fluctuations of classically integrable systems should
follow the Poisson law (the harmonic oscillator is an exception), while Bo-
higas, Giannoni and Schmit [24] have conjectured that classically chaotic
systems which possess the time-reversal symmetry should correspond to the
fluctuations of the Gaussian orthogonal ensemble GOE (that is an ensem-
ble of symmetric matrices where the measure is invariant under orthogonal
transformations). Chaotic systems without time-reversal symmetry should
instead follow the GUE predictions 1. The random matrix theory GUE and
GOE present level repulsion at short distance and rigidity at long distance,
while the Poisson distribution exhibits the clustering property.

However, it is known today that the predictions of random matrix theory
agree only for short- and medium-range correlations of the quantum spec-
tra, but fail completely for long-range correlations. This was analyzed by
M. Berry using the semiclassical trace formula. Berry’s semiclassical argu-

1From this point of view, one is tempted to say that the zeros of the Riemann zeta-
function, which experimentally follow the GUE predictions, can be interpreted (when
rotated of 90 degrees to make them real) as the eigenvalues of a classically chaotic Hamil-
tonian system which does not have time-reversal invariance. This system should be the
prototype of chaotic system , like the harmonic oscillator is the father of all integrable sys-
tems. The spectral interpretation of the zeros of ζ was suggested long ago by Hilbert and
Polya independently, and nowadays random matrix theory makes it very reliable. There
is a big evidence the these zeros are vibrations of a dynamical system, but we do not know
what is that is vibrating [20].
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Figure B.1: The Poisson and the GOE distributions.

ments suggest that one of the commonly studied spectral statistics , the
so-called Dyson-Metha spectral rigidity ∆3(L), should saturate for large L in
contrast to the logarithmic behavior predicted by random matrix theory. It
thus appears that the properties of the spectral rigidity provide no universal
signature of classical chaos in quantum mechanics.

Moreover, there are chaotic systems whose quantum spectra behave like
a Poisson distribution (thus resembling more classical integrable systems)
rather than following GUE/GOE predictions, that is they violate univer-
sality in energy level statistics even in the short-range regime. This is the
case of arithmetical chaos [25]. As we said in Part I, arithmetical systems
satisfy the Quantum Unique Ergodicity conjecture of Rudnick and Sarnak.
Numerically, the spectrum of X(1) follows a Poissonian law, which is unex-
pected because the geodesic flow is chaotic and one would expect a GOE-type
behavior (because the system is time-reversal invariant). In this sense, arith-
metical systems present anomalous statistics. And there is no doubt, again,
that the reason for this anomaly is that the Laplacian ∆ commutes with the
Hecke operators; these make an arithmetical systems mimic an integrable
systems at the quantum level, because there exists an infinite family of oper-
ators commuting with the Hamiltonian as it happens in classical integrable
systems. This phenomenology about the spectrum of X(1) is very fascinat-
ing, but at the moment very little can be proven.

On the subject of random matrix theory, zero of L−functions and quan-
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tum mechanics, there are a lot of very good video-lectures on the MSRI web
site. On the top, I would suggest the lecture by F .J. Dyson,

F. J. Dyson, Random matrices, neutron capture levels, quasicrystals and
zeta-function zeros,

http://www.msri.org/publications/ln/msri/2002/rmt/dyson/1/index.html

by E. Bogomolny

E. Bogomolny, Spectral Statistics,
http://www.msri.org/publications/ln/msri/1999/random/bogomolny/1/index.html

and some video-lectures by P. Sarnak

P. Sarnak, Random matrix theory and zeroes of zeta functions - a survey,
http://www.msri.org/publications/ln/msri/1999/random/sarnak/3/index.html

Random Matrix Models,
http://www.msri.org/publications/ln/msri/1999/random/sarnak/1/index.html,

0’s of Zeta Functions and Random Matrices,
http://www.msri.org/publications/ln/msri/1999/random/sarnak/2/index.html
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Appendix C

M. C. Escher and H. S. M.
Coxeter

In this appendix, we explain why we have chosen the picture on the front
page to represent the gist of our thesis.

It is a beautiful panting by M. C. Escher, drawn when he was in Holland
(1952) [48]. The title of the work is Gravity and it represents an icosahedron.
The why of this title is a mystery to me, but it clearly resembles the Coxeter
billiard we have spoken in this thesis, although it is not the right one. I like
thinking that Escher already had in his mind a picture of gravity in terms
of polytopes. The influence of the mathematicians D. Hilbert and H.S.M.
Coxeter on him was very deep as it is shown in his works. Coxeter dedicated
a beautiful paper [36] to one of his paintings, Circle Limit III, explaining the
underlying regular tessellation of that picture.
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