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p53 family membersAt the end of the last century, the discovery of p53 protein 

homologues named p63 and p73, engendered the concept of a new family of p53-like 

transcription factors. The research focus expanded from a single protein named the “ 

guardian of the genome” to a family of transcription factors that likely have distinct 

roles through the diverse collection of genes they regulate. p53 was discovered 25 

years ago as a protein interacting with the oncogenic T antigen from SV40 virus. P53 

transcription factor is the product of a pivotal tumor-suppressor gene, whose 

inactivaction is the most frequent single gene event in human cancer, and germline 

mutation in human p53 gene are cause of enhanced risk of developing cancer ( Li-

Fraumeni syndrome) .  The p53 gene encodes a protein with a central DNA binding 

domain, flanked by an N-terminal transactivation domain, and a C-terminal  

tetramerization domain ( Levine et al;1997). The active form of p53 is a tetramer and, 

consistent with its tetrameric state, p53 binds DNA sites that contain four repeats of 

the pentamer sequence motif 5’-Pu-Pu-Pu-C-A/T-3’. Until now, the p53 gene 

structure was considerate much simpler, with only one promoter and transcribing 

three mRNA splicing variants encoding, respectively, full-length p53, p53i9 ( Flaman 

et al;1996), and ∆40p53 ( Courtois et al.2002; Ghosh et al.2004). Recent studies have 

proposed for the p53 gene a structure more complex  than has been previously 

thought. The p53 gene, as the other two family members p63 and p73, contains two 

promoters and can generate six different mRNAs, that encode at least six p53 

isoforms ( Bourdon et al. 2005). P53 isoforms are expressed in several normal  

human tissue. The functions of p53 are primarily the regulation of cell cycle 
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checkpoints, apoptosis, and genome stability. A substantial number of genes, 

involved in cell cycle arrest or in induction of apoptosis, are activated by p53. These 

include MDM2, p21WAF, GADD45, bax and IGF-BP3. p53 has also been reported 

to negatively regulate the transcription of a number of genes such as presenilin 1, 

topoisomerase IIα, bcl2 and hsp70.  The transcriptional activity and stability of p53 

are highly regulated by posttranslational mechanisms involving protein-protein 

interaction, phosphorylation, acetylation, ubiquitination, and sumoylation.  

MDM2 is an ubiquitin ligase and a p53 transcriptional target; it binds to the p53 

transactivation domain, and inhibits its transcriptional activity. MDM2 shuttles p53 

out of the nucleus targeting the protein for ubiquitin-mediated proteolysis ( 

Vogelstein et al. 2000).  MDM2, thus, is assumed to be the principale regulatorof p53 

protein levels. The p14ARF tumor suppressor protein, one of the alternative products 

of the INK4A locus, antagonizes MDM2 activity leading to p53 stabilization. Several 

mechanisms have been postulated to inactivate p53 such as amplification of MDM2 

gene, deletion of ARF gene, expression of some viral oncogenes that stimulates p53 

degradation or missense mutation in DNA binding domain that disrupt the DNA 

binding capability of p53.   

P63 and p73 are genes structurally related to p53. In fact, also p63 and p73 proteins 

contain an N-terminal transactivation domain, which shares 25% homology with N-

terminal part of p53, the DNA binding domain, which shares 65% of homology with 

the corresponding p53 domain, and the tetramerization domain, which shares 35% of 

homology with the oligomerization domain of p53. The p63 and p73 genes are 
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transcribed from two distinct promoters, giving rise to proteins that either contain ( 

TA isoforms) or lack ( ∆N isoforms) the N-terminal transactivating domain. In 

addition, both p63 and p73 genes, are subject to alternative splicing event that 

generate three ( α, β, γ )  and seven ( α, β, γ, δ, ε, ζ,η )  different C-termini 

respectively for p63 and p73 encoded proteins ( Yang and McKeon; 2002). The α 

isoforms contain a sterile α motif ( SAM ) and a transactivation inhibitory domain ( 

TID ). The SAM domain, which is absent in p53, is a protein-protein interaction 

domain also found in other developmentally important protein, such as several Eph 

receptor tyrosine kinase ( Schultz et al; 1997 ). 
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the OD domain are highly homologous to the corresponding domain in p53. The SAM domain and the TID are not contained

in the p53 protein. 
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The Transactivation inhibitory domain of p63 binds to the N-terminal TA domain 

masking residues that are important for transactivation ( Serber et al; 2002 ). In fact,  

p63 isoforms that contain the γ and β C-termini are associated with higher 

transactivation competency that ones with α terminus ( Shimada et al; 1999 ). The 

lack of TA domain in ∆Np63 isoforms suggest that they are transcriptionally 

competent. Since ∆Np63 isoforms retain the oligomerization and DNA binding 

domains, it is plausible that they act as dominant negative inhibitorsof p53 and TA-

containing p53 family members ( Yang et al;1998. Westfall et al; 2003) . Indeed, 

numerous studies show that co-expression of ∆Np63 with either TAp63, TAp73, or 

p53 has inhibitory effect on TAp63-mediated transcription. A plausible mechanism is 

the formation of transcriptionally inactive ∆N-TA heterotypic or  homotypic 

tetramers (composed of either all-TA or all-∆N monomers) that compete for the same 

DNA binding sites. Despite the well-documented role of ∆Np63 as a dominant 

negative transcriptional repressor, several studies have shown that ∆Np63 isoforms 

directly transactivated a set of genes including Hsp70 and p57Kip ( Beretta et al; 

2005; Wu et al; 2005; King et al; 2003 ). This is possible thanks to existence of two 

cryptic transactivation domains in ∆Np63 isoforms: a region encompassing the first 

26 N-terminal amino acids named TA2 domain and a prolin rich sequence 

corresponding to exon 11/12 present in p63 β and α isoforms ( Ghioni et al; 2002 ). 

Surveillance of cellular integrity might be achieved throught a network of these p53-

like tumor suppressors. This speculation was, further, fueled by the observation that 

the p73 gene is localized to chromosome 1p36.3, a region that is frequently lost in 
 10



neuroblastomas and in other types of cancers ( Kaghad et al; 1997; Takahashi et al; 

1998 ), while the p63 chromosomal location, 3q27-29, is deleted in some bladder 

cancers and amplified in some cervical, ovarian, lung , and squamous cell carcinoma 

( Yang et al; 1998 ) where ∆Np63 was the predominant isoform expressed at protein 

level ( Cui R et al; 2005). Moreover, both p73 and p63 can bind to p53 DNA-binding 

sites and activate transcription of genes that mediates cell cycle arrest  or apoptosis in 

vivo. Despite all this circumstantial evidence, however, only a very few mutation in 

p63 and in p73 have been found in human tumors, and a direct link to carcinogenesis 

similar to that for p53 has so far not established ( Ichimiya et al; 2001; Nomoto et al; 

1998 ). Moreover the analysis of p63 and p73 deficient mice and studies on human 

tumors  have often led to conflicting results with regards to its role in tumorigenesis ( 

Westfall et al; 2004; Flores et al; 2005; Keyes et al; 2006).  
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p63 knock-out and transgenic mouse models: toward a comprehension of p63 

physiological function. 

Target gene disruption studies in mice have established an important role for p63 in 

development and differentiation. Mice lacking p63 are born alive but have striking 

developmental defects. Their limbs are absent or truncated, defects that are caused by 

a failure of the apical ectodermal ridge ( AER ) to differentiate. 
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p63-/- mice on postnatal day have hypoplastic upper and lower

jaws, and have no eyelids, whisker pads, skin and related

appendages, including vibrissae, pelage follicles and hair shaft.

Homozygous mutants lack distal components of the forelimb,

including the radius, carpals and digits, as well as all

components of the hindlimb.   
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a)Defects in stratified epithelial differentiation in p63-deficient mice. p63-/- mice lacking

squamous stratification in the epidermis (top) and tongue epithelium (bottom) 

.b) Immunohistochemical staining with the 4A4 anti-p63 antibody, showing p63 protein

expression in the apical ectodermal ridge. The AER is absent in the p63-/-. 
, p63-deficient mice have striking and visible skin defects, in fact, they die 

a day of birth from dehydration. Structures dependent upon epidermal-

hymal interactions during embryonic development, such as hair follicles, teeth 

mmary glands, are also absent in p63 deficient mice. The surface of the skin is 

 by a single layer of flattened cells, without the spinosum, granulosum and 

 corneum. Two contrasting models have been advanced to explain the absence 

fied epithelia ( McKeon et al; 2004). One model posits that p63 is required for 

epithelial cells to commit to a stratified epithelial lineage during development 

et al; 1999). The second model argues that the primary defect resides not in 

uisition of stratified epithelial cell fate but rather in an inability of epidermal 

lls to sustain epidermal self-renewal ( Yang et al; 1999).  
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Model for p63 in maintaining the proliferative capacity of epithelial progenitor cells. Stem cells in the basal layer of

stratified squamous epithelia express high levels of p63 and undergo asymmetric division to enable both selfrenewal

and progression to transient amplifying cells (TACs). TACs, which may express less p63, are also capable of limited

proliferation and self-renewal, but are ultimately destined for terminal differentiation. The absence of p63 results in the

failure to maintain a basal cell population, suggesting a requirement for p63 in the regenerative aspect of stem cell

division. 
he finding that p63 is specifically expressed in epithelial cells that have adopted an 

pidermal fate suggested that p63 is involved in development of the embryonic basal 

ayer, the first layer of embryonic epidermis.  

he epidermis is an example of stratified epithelium. It functions as a barrier 

rotecting the organism from dehydration, mechanical trauma, and microbial insults. 

his barrier function is established during embryogenesis through a complex and 

ightly controlled stratification program. The epidermis, the outermost component of 

he skin, is the primary barrier that protects the body from dehydration, mechanical 

rauma, and microbial insults. The epidermis is separated from the underlying dermis 

y the basement membrane, which consists of proteins secreted by epidermal 

eratinocytes and by dermal fibroblasts (McMillan et al. 2003). The two 

ompartments of the skin, the dermis and the epidermis, function cooperatively and 
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together are responsible for the development of epidermal appendages, including hair 

follicles and mammary glands (Chuong et al; 1998). Therefore, a failure to properly 

develop either the dermis or the epidermis may result in defects in appendage 

development. This is, for example, illustrated by ectodermal dysplasias, in which 

primary defects in epidermal development are the cause of subsequent defects in 

epidermal appendages (Koster and Roop; 2004; Priolo et al; 2000). 

The barrier function of the epidermis is established during embryogenesis and is the 

result of a complex and precisely coordinated stratification program. In mice, the 

execution of this program occurs in a period of approximately 10 days, between E8.5 

and E18.5, and initiates when cells of the surface ectoderm commit to an epidermal 

fate. 
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(a) Schematic illustrating epidermal

morphogenesis. During epidermal

morphogenesis, the single-layered surface

ectoderm that initially covers the developing

embryo initiates a stratification program

culminating in the formation of the epidermal

barrier. (b) In wild-type mice, epidermal

stratification and barrier formation are

completed by birth. The surface ectoderm of

mice lacking the transcription factor p63 fails

to adopt an epidermal fate, and therefore

stratification and barrier formation do not

occur. As a consequence, mice lacking p63

are born with a single layer of ectodermal

cells covering their bodies and die shortly

after birth due to dehydration. (c) Images of 

p63−/− and wild-type mice. 



After this initial commitment step, keratinocytes in the newly established embryonic 

basal layer give rise to a second layer of cells, the periderm (M’Boneko and Merker; 

1988). The periderm is shed before birth in conjunction with the acquisition of 

epidermal barrier function (Hardman et al. 1998). The next layer of the epidermis to 

form is the intermediate cell layer, which develops between the basal layer and the 

periderm (Smart et al; 1970). Development of this layer is associated with 

asymmetric cell division of embryonic basal keratinocytes (Lechler and Fuchs; 2005, 

Smart et al; 1970).  

Like basal keratinocytes, intermediate cells undergo  proliferation, and the loss of this 

proliferative capacity is associated with the maturation of intermediate cells into 

spinous cells (Koster et al. 2007, Smart 1970). 

Spinous cells subsequently undergo further maturation into granular and cornified 

cells. The morphological changes that are a hallmark of epidermal stratification are 

associated with changes in the expression of keratin differentiation markers (Koster 

and Roop; 2004).  

 

 

 

 

 

 

 

 

Primary p63−/− surface epithelial cells are blocked in their commitment to a stratified epithelial lineage. Differentiation 

markers K5 and K14, which are expressed in epithelia that have committed 

to a stratification program, are not expressed in primary p63−/− cells. These cells do, however, express K18, a marker 

for singlelayered epithelia 
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For example, whereas the uncommitted surface ectoderm expresses keratins K8 and 

K18 (Moll et al. 1982), K5 and K14 are induced as these cells commit to an 

epidermal fate (Byrne et al. 1994). Subsequently, the initiation of terminal 

differentiation results in the induction of K1 and K10 expression in the newly formed 

suprabasal keratinocytes (Bickenbach et al. 1995, Fuchs and  Green; 1980). 

The final step in epidermal stratification involves the formation of the epidermal 

barrier. During normal development, barrier acquisition is patterned and initiates at 

the dorsal surface, spreading laterally to the ventral surface in approximately one day 

(Hardman et al; 1998). The process of barrier formation is characterized by the 

formation of cornified cell envelopes, composed of proteins crosslinked into a rigid 

scaffold and of lipids covalently attached to the exterior surface (Rice and Green; 

1977, Steven and Steinert;  1994). Although established in utero, the barrier function 

of the epidermis is maintained during postnatal life owing to the continuous 

selfrenewal of the epidermis, a process mediated by epidermal stem cells (Blanpain 

and Fuchs; 2006). Under homeostatic conditions, the epidermal stem cells that are 

located in the interfollicular epidermis are responsible for the maintenance of this 

structure (Ito et al. 2005). 

These stem cells represent a small proportion of basal keratinocytes and, through 

asymmetric cell division, give rise to a daughter stem cell and a transit-amplifying 

cell, which ultimately undergoes terminal differentiation (Dunnwald et al. 2003, 

Potten andMorris; 1988, Schneider et al. 2003). 
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Attempts to establish unequivocally the role of p63 in epithelial development are 

complicated by the fact that this protein exists in multiple isoforms with different, 

often contradictory, biological activities. Koster and Roop reported that TAp63 was 

expressed earlier than ∆Np63 ( Koster et al; 2004 ) during epidermal development. 

Thus, TAp63, but not ∆Np63α, was proposed to be required for the initiation of 

epidermal stratification. TAp63 was reputed to be the molecular switch responsible 

for epithelial stratification while ∆Np63 was believed to counteract the TAp63 

isoform allowing keratinocytes terminal differentiation( Koster et al; 2006 ). 

Accordingly, studies on transgenic mice, demonstrate that upregulated TAp63α 

expression resulted in skin hyperplasia and a failure of keratinocytes to properly 

differentiate (Candi et al; 2006 ). 

These data are in contrast with  other works where  ∆Np63 was reported to be the 

only isoform expressed in epidermal development, until E13 embryonal stage ( 

Mikkola et al; 2007. Laurikkala et al; 2006 ), and that ∆Np63 is expressed in the 

basal undifferentiated layer of the skin, in particular in the stem cell compartment, 

and was rapidly degraded when keratinocytes are induced to differentiate ( Yang et 

al; 1998. Pellegrini et al; 2001. Rossi et al; 2006 ). 

 18



 

The down-regulation of ∆Np63 in suprabasal keratinocytes was recently shown to be 

mediated, at least in part, by signalling through Notch, which induces terminal 

differentiation of keratinocytes ( Nguyen et al; 2006 ). In vitro studies suggested that, 

in basal keratinocytes, ∆Np63α induces proliferation and prevents premature entry 

into terminal differentiation ( King et al; 2003. King et al; 2006). Consistent with this 

hypothesis, many currently identified ∆Np63 target genes are involved in 

proliferation or in preventing differentiation ( Westfall et al; 2003. Nguyen et al; 

2006. Wu et al; 2005. Sbisa et al; 2006). In particular ∆Np63α was reported to repress 

the expression of p21 and 14-3-3σ, two genes induced during epidermal terminal 

differentiation, and the expression of genes required for cell cycle progression 

including cyclin B2 and cdc2 ( Testoni et al; 2006). 
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In addition to maintaining the proliferative state of a subset of basal keratinocytes 

∆Np63α may also maintain the expression of the basal keratins K5 and K14. 

(Westfall et al; 2003. Nguyen et al; 2006. Missero et al; 1995).  

Later one, data from different groups have demonstrated coexpression of  ∆Np63 and 

TAp63α isotypes during embryonic development and differentiation of 

developmentally mature keratinocytes. Karin Nylander, using antibodies directed 

against specific p63 proteins, detected TAp63 in normal stratified epidermis ( 

Nylander et al; 2002 ). Paul Khavari’s group, using a siRNA approach directed 

against p63 in regenerating human epidermis, demonstrated that ∆Np63 isoforms 

downregulation was responsible for the majority of the skin defects while TAp63 

isoforms appeared to be relevant for late differentiation ( Truong et al; 2006). Our 

group has recently demonstrated that TAp63 starts to be expressed, together with 

∆Np63, at stage 11.5 of mouse embryo development in the skin of anterior and 

posterior limbs. Remarkably, the Dlx3 homeobox gene, a gene specifically expressed 

in the granular layer of the epidermis,  was found regulated by p63 during ectoderm 

development. Further underlying, the role of TAp63 in the epidermal stratification 

program. 

Two recent studies ( Carroll et al; 2006. Ihrie et al; 2005 ) have revealed a role for 

p63 in the transcriptional regulation of adhesion programs affecting both cell-cell and 

cell matrix interaction suggesting that p63 may direct the development of stratified 

epithelia by orchestrating a series of different programs important for tissue integrity 

and function. The first epithelial cell-cell adhesion protein identified as a direct target 
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of p63 transcriptional control was Perp. Perp knockout mice exhibited postnatal 

lethality associated with the presence of epithelial blistering, particularly in the skin 

and oral cavity. Further investigation into the cause of the observed lethality and 

epithelial integrity defects in the Perp knockout mice demonstrated that Perp is highly 

expressed in stratified epithelia, where it is a constituent of desmosomes, and further, 

that marked structural defects were present in the desmosomes of Perp-/- mice. A 

connection between p63 and Perp was identified, as expression of Perp depends on 

p63 during the epidermal stratification program, and p63 can directly regulate Perp. 

All isoforms of p63 can transactivated Perp, and further, chromatin 

immunoprecipitation (ChIP) analyses demonstrated p63 occupancy of p53/p63 sites 

in the Perp gene in vivo, in the epidermis. These studies revealed that p63 controls 

aspects of cell-cell adhesion through induction of Perp expression. It has suggested 

that p63 can regulate the expression of an entire axis of cellular adhesion. Multiple 

genes, such as integrins 3,4, 5 and 6, laminin, two cadherins, plakoglobin and other 

can be, directly or indirectly, regulated by ∆Np63 or TA isoforms. Interestingly, 

ablation of both integrin α3 and α6 genes causes severe bilateral hypoplasia and limb 

malformation, resulting from a defect in the morphogenesis of the apical ectodermal 

ridge ( AER ) ( De Arcangelis et al; 1999). The defects in limb formation and the 

AER observed in the double knockout model bear some resemblance to those seen in 

the p63 null mice. Since p63 can directly regulate the expression of both of these 

integrins ( Carroll et al; 2006; Kurata et al; 2004 ), the failure to establish and 
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differentiate the AER in the p63 null mice could be at least partially caused by the 

reduction or loss of α3 and α6 integrin expression in these animals. 
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P63 human associated disorders  

 

Mutations in the p63 gene can cause at least five different syndromes: Ectrodactyly, 

Ectodermal dysplasia and Cleft lip/palate syndrome (EEC, OMIM 604292), 

Ankyloblepharon - Ectodermal defects - Cleft lip/palate syndrome (AEC, OMIM 

106260), Limb Mammary Syndrome (LMS, OMIM 603543), Acro-Dermato-Ungual-

Lacrimal-Tooth syndrome (ADULT, OMIM 103285) and Rapp-Hodgkin Syndrome 

(RHS, OMIM 129400). Furthermore, two non-syndromic human disorders are caused 

by p63 mutations: isolated Split Hand/Foot Malformation (SHFM4, OMIM 605289) 

and recently non-syndromic cleft lip ( Leoyklang et al; 2006). Human phenotypes 

caused by mutation in p63 gene resemble that of p63-knockout mice and are 

characterized by ectodermal dysplasia, split hand/foot malformation and orofacial 

clefting.  
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 Distribution of mutation in p63, revealing a striking genotype-phenotype correlation. The 

approximate positions of truncating mutations and aminoacid correlation are indicated. 

 

 The localization and functional effects of the mutations that underlie these 

syndromes establish a striking genotype-phenotype correlation.  

The prototype of the p63 syndrome family is the EEC syndrome characterized by 

ectrodactyly dysplasia, ectodermal dysplasia and facial clefts. Ectodermal dysplasia 

affects the skin and other ectodermal derivates such as teeth, hair and nails. Clefting 

affects the lip, sometimes in combination with palate. Other symptoms are lacrimal-

duct abnormalities, urogenitals problems and facial dysmorphism. EEC syndrome is 

mainly caused by point mutations in the DNA binding domain (DBD) of the p63 

gene. Altogether 34 different mutations have been reported, and 20 different amino 

acids are involved. Only two mutations are outside the DNA binding domain: one 

insertion (1572 InsA) and one point mutation (L563P) in the Sterile Alpha Motif 

domain (SAM). Five frequently mutated amino acids were found in the EEC 
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population: R204, R227, R279, R280 and R304, all located in CpG islands. The five 

p63 arginine hotspot mutations and probably also other DNA binding domain 

mutations that are found in EEC syndrome appear to affect the DNA binding capacity 

of p63, which results in impaired transactivation activity and altered regulation of 

transactivation. The autosomal dominant inheritance of EEC syndrome suggests that 

the EEC mutations have a dominant negative effect. However, recent genotype-

phenotype analyses for the five hotspot mutations revealed significant differences 

between the corresponding phenotypes. For instance cleft lip/palate is present in the 

R304 mutation population (80%), whereas R227 patients seldom have cleft lip/palate. 

Syndactyly is completely absent in R227 population, while 30-60% of the other 

hotspot mutation population have syndactyly. It thus seems that these hotspot 

mutations exert specific effects. Such specificity might be brought about by different 

effects of these mutations on promoters for p63 transcriptional target genes. 

Alternatively, these hotspot mutations may exhibit gain-of-function effects, similar as 

for the p53 hotspot mutations.  

AEC syndrome, which is also known as “ Hay-Wells syndrome” has little or no limb 

involvement but instead includes ankyloblepharon, which is a partial or complete 

fusion of the eyelids that is very rare in other EEC- like syndrome. In addition to 

these major features, eroded skin at birth and recurrent scalp infection are important 

sign. The other Ectodermal Dysplasia symptoms, such as nail and teeth defects are 

present in more than 80% of patients, and hair defects and/or alopecia are almost 

constant features. AEC syndrome is caused by missense mutation within the SAM 
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domain of p63 ( McGrath et al; 2001). These mutation are predicted to disrupt 

protein-protein interaction, by either destroying the compact globular structure of the 

SAM domain or substituting amino acids that are crucial for such interaction ( 

McGrath et al; 2001).  

Rapp-Hodgkin syndrome (RHS) mimics AEC very much. Such AEC, even RHS is 

caused by mutation in SAM domain, and for this reason affecting only the α isoforms 

(Kantaputra et al; 2003). RHS has characterized by ankyloblepharon and the more 

severe skin phenotype in AEC ( Rinne et al; 2006 Bertola et al; 2004). Other ED 

symptoms, such as orofacial clefting and the near absence of limb malformations are 

similar to AEC. Although, the severity of the skin phenotype is obvious and much 

more severe in AEC patients than in RHS patients, the strong overlap between AEC 

and RHS suggest, that they are variable manifestations of the same clinical entity. 

LMS syndrome is caused by mutations located in the N- and C-terminus of the p63 

gene. A large LMS family (29 affected members) has a point mutation in the exon 4 

(G76W) in the putative second transactivation domain (TA2) ( vanBokhoven et al; 

2002;  Duijf et al; 2002). One other point mutation (S90W) is also located between 

the TA domain and DBD. Other LMS mutations are reported in the C-terminus: a TT 

deletion in the exon 13 and a AA deletion in exon 14. These will affect only the p63α 

protein isoforms, where they are predicted to cause a frame shift and a premature stop 

codon. Also a stop mutation in the transcription factor inhibitory domain (TI) 

(K632X) has been identified in a sporadic LMS patient.11  
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The LMS phenotype resembles the EEC syndrome phenotype, but the ectodermal 

manifestations are milder ( vanBokhoven et al; 1999) A consistent feature of LMS is 

the mammary gland and/or nipple hypoplasia, moreover lacrimal duct obstruction and 

dystrophic nails are frequently observed. Hypohydrosis and teeth defects are 

detected, but other ectodermal defects such as hair and skin defects are rarely 

detected if at all. About 70% of LMS patients have similar limb malformations as in 

EEC syndrome, and about 30% orofacial clefting, notably always in form of cleft 

palate ( Rinne et al; 2006). 

 ADULT syndrome phenotype is most similar to LMS syndrome, although clear 

differences can be seen when observing larger families or patient populations. The 

main difference is the absence of orofacial clefting and the presence of hair and skin 

defects in the ADULT syndrome. Teeth, skin and nail defects are constantly present 

in ADULT syndrome, but only rarely in LMS. Hair (53%) and lacrimal duct defects 

(67%) are observed in ADULT patients more frequently than in LMS.  

ADULT syndrome is characterized by point mutation in exon 8, changing R298 in 

the DNA binding domain into either a glutamine or a glycine. While EEC syndrome 

mutations in the DNA binding domain impair the binding of p63 protein to DNA, 

arginine 298 is not located close to the DNA-binding interface, and mutation of this 

arginine does not affect DNA binding. Instead, earlier studies have shown a gain-of-

function effect for the mutated ∆Np63γ isoform, which usually does not have a 

transactivation activity in assays using an optimized p53-responsive element ( Duijf 

et al; 2002. Rinne et al; 2006).Two other mutations are located in the N-terminus: 
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N6H mutation affects only the ∆N-isoforms and in another isolated patient a 

missense mutation G134D is located just front of the DBD in exon 4 ( Slavotinek et 

al; 2005).  

Split Hand/Foot Malformation type 4 (SHFM4) is a “pure” limb malformation 

(ectrodactyly and syndactyly) condition, thus without orofacial clefting or ectodermal 

dysplasia. The non-syndromic SHFM4 is caused by several mutations, which are 

dispersed throughout the p63 gene: a point mutation in the Transactivation domain 

(TA) (R58C), a splice-site mutation in front of exon 4, four missense mutations in the 

DNA binding domain (K193E, K194E, R280C, R280H), and two nonsense mutations 

in the TI-domain (Q634X, E639X). It is still unclear how these widely dispersed 

mutations cause the limb defect. Interestingly, several SHFM4 mutations are reported 

to cause alteration in the p63 protein activation and stability: Q634X and E639X are 

known to disrupt the sumoylation site, and therefore increase the stability and 

transcriptional activity of the p63alpha isoform (Huang et al; 2004. Ghioni et al; 

2005). Furthermore, amino acids K193 and K194 are required for ubiquitin 

conjugation by E3 ubiquitin ligase (Itch) and naturally occurring mutations in those 

amino acids cause more stable p63 protein ( Rossi M et al; 2006). Possibly, SHFM is 

caused by altered protein degradation, even though different degradation routes are 

involved.  
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P63 protein regulation 

 
Very little is known of the molecular mechanisms underlying the regulation of p63 

protein steady-state levels. In response to different extrinsic and intrinsic cell signals, 

sophisticated molecular mechanisms must operate in order to activate one or the other 

p53 family member and to switch on the particular isoform whose specific activity is 

required. These mechanisms are expected to finely operate keeping a right balance 

among these proteins either in a physiological or stress condition. 

 Following oncogenic and stress signals, p53 is stabilized and biochemically 

activated, leading to transcriptional upregulation or repression of a multitude of target 

genes. The principal regulator of p53 protein levels is assumed to be the E3 ubiquitin 

ligase MDM2. MDM2 binds to and ubiquitinates p53, driving it to degradation by the 

26S proteasome. In addition to MDM2, other E3 ligases, such as Pirh2 and COP1, 

have been shown to regulate p53 levels. The p14ARF tumor suppressor protein 

antagonizes MDM2 activity leading to p53 stabilization. 

Data from our lab and others show that p63 protein level is mainly regulated by 

Itch/AIP4, a HECT E3-ubiquitin ligase that drives p63 to lysosome-mediated 

degradation (Rossi et al; Cell Cycle 2006; Rossi et al; PNAs 2006). Furthermore, 

sumoylation of ∆Np63α affects protein stability and transcriptional activity (Ghioni 

et al; 2005). Recent data have indicated that PML protein interacts with p63 

increasing its protein level as well as its transcriptional ability ( Bernassola et al; 

2005), such as SSRP1 and p300 that function as p63 co-activators ( Zeng et al; 2002; 

MacPartlin et al; 2005).  
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Moreover, work in our lab has demonstrated that MDM2 and p14ARF, two 

components of the principal p53 regulatory pathway, are also involved in the control 

of p63 stability and activity, although their effects on p63 appear to be quite different 

(Calabrò et al; 2002; Calabrò et al; 2004). In particular, it has been shown that 

p14ARF physically associates with p63 (Calabrò et al; 2004) and, unexpectedly, it 

has a negative function on p63 activity, suggesting that p14ARF might not only 

stabilize p53 but also sequester and store p63, in an inactive complex.  Thus, the 

molecular mechanisms regulating p53, and p63 appear to have largely diverged even 

though they share some components.  
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Preliminary data and aim of the thesis 

 

 

 

 

 

 

 

 

 

 

 

 

 31



 

Unequivocal establishment of the role of p63 in the pathogenesis of human 

ectodermal syndromes is complicated by the fact that this protein exists in multiple 

isoforms with different often contradictory biological activities. The roles of TA and 

∆N isoforms in stratified epithelia have still remained enigmatic. Their spatial and 

temporal expression pattern suggests that the regulation of p63 function must be 

much more complex than that believed so far and that sophisticated molecular 

mechanisms must operate in order to switch on the particular isoform whose specific 

activity is required in a particular context and in the response to specific extrinsic and 

intrinsic cell signal. 

 The profile of identified p63 proteins partners, that may modulate its transcriptional 

activity, as well as its transcriptional target genes,  is currently limited. 

My research activity, during the last three years, has been focused on the clarification 

of  the molecular mechanisms  through which p63 exerts its function  using two 

different but complementary approaches, i.e. the identification of p63 specific 

transcriptional targets and the study of the mechanisms regulating p63 protein 

transcriptional activity and stability.  

1)As several developmental disorders associated to ectodermal dysplasia are caused 

by p63 mutation in humans  I decided first to identify p63 specific transcriptional 

targets that were relevant for the pathogenesis of human AEC syndromes.  

All the naturally occurring AEC mutations occur  in the p63 SAM-domain and model 

structure has been used to divide  AEC mutations in two groups. The first (L518V, 
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I541T, C526W) includes mutations in amino acids that are predicted to be buried 

inside the protein and are believed to affect its overall structure and stability. The 

second (G534V, T537P and Q540L), whose direct effect on the protein is less 

obvious, contains all the other amino acids that have a larger solvent accessible 

surface and are not predicted to cause gross conformational changes ( Brunner et al; 

2002). These AEC mutations may disrupt the structural integrity of the SAM domain 

or interfere with particular protein-protein interactions. They have, in fact, already 

been shown to disrupt the interaction of p63 with the Apobec-1 binding protein-

1(ABPP1) and thus alter the splicing mechanism of fibroblast growth factor receptor-

2, FGFR2( Fomenkov et al; 2003). 

To gain information about the effects of the Q540L mutation on p63 functions I 

generated stable cell lines that express wild type TAp63α, ∆Np63α or the 

TAp63αQ540L mutant under the control of a TET inducible promoter. I used this 

experimental system to systematically compare the effects of the mutant and wild 

type p63 proteins on cell proliferation and to generate, by microarrays analysis, a 

comprehensive profile of differential gene expression. I found that the Q540L 

substitution affects the transcriptional activity of TAp63α and it causes misregulation 

of genes involved in the control of cell growth and epidermal differentiation. 

2) Interestingly, our group has also demonstrated that AEC-derived TAp63 proteins 

exhibit an impaired ability to transactivate Dlx3, thus suggesting that the 

misregulation of the Dlx3 gene is involved in the pathogenesis of AEC.  
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Dlx3 is a transcription factor belonging to the Distal-less family of homeodomain 

proteins. It plays a central roles in embryonic pattern and regulation of different 

developmental processes. The Distal-less family of proteins are all related to 

Drosophila Distalless homeodomain gene. 

Dlx3, in mouse, is expressed in terminally differentiated epidermal cells, and there is 

evidence to support an essential role as a transcriptional regulator of the terminal 

differentiation process. Dlx3 is activated in primary mouse keratinocytes cultured in 

vitro by increasing the level of extracellular Ca2+.  

Like p63, mutations in the DLX3 gene have been directly linked with human 

ectodermal dysplasias. Dlx3 molecular alteration causes tricho-dento osseous 

syndrome (TDO) and amelogenesis imperfecta hypoplastic-hypomaturation with 

taurodontism (AIHHT). TDO is characterized by defects in the development of hair 

and teeth, increased bone density in the cranium, and absence of overt limb 

malformations (Wright et al., 1997;Price et al., 1998). The mutation is due to a 4-bp 

deletion immediately downstream of the homeobox region (DNA binding domain), 

resulting in a truncated DLX3 protein C-terminus that can potentially still bind DNA 

but is functionally altered. In humans, the TDO mutation results in a dominant 

phenotype. It is interesting to note that p63 and Dlx3 mutations resulted in partial-

overlapping phenotypes characterized by defects in the same structure, such as hair, 

teeth and bone, and by absence of limb malformation ( Price et al; 1998). suggesting 

that these genes belong to a common signaling cascades regulating epidermal 

development.  
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In the attempt to clarify the relationship between Dlx3 and p63, I performed  transient 

expression assays of Dlx3 in immortalized human HaCaT keratinocytes. The results 

clearly have shown a reduction of endogenous ∆Np63α protein. Such reduction was 

also observed on exogenously expressed p63 protein thus suggesting that p63 

downregulation occurs at protein level. I have thus focused on the elucidation of the 

pathway and players through which Dlx3 regulates the p63 protein turnover. 

3) Finally, as in our lab has been demonstrated that p63 directly interacts with 

p14ARF and that throught this interaction ARF inhibits p63-mediated transactivation 

and transrepression I decided to try to elucidate the mechanism through which 

p14ARF is able to inhibit p63 transcriptional activity. 
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1) DIFFERENTIAL GENE EXPRESSION ANALYSIS TO IDENTIFY P63 

SPECIFIC TRANSCRIPTIONAL TARGETS  

   

1.1) Production and characterization of TAp63α, TAp63αQ540L and ∆Np63α 

stable cell lines. 

To investigate on the effects of the Q540L mutation on p63 protein functions I 

generated stable H1299 cell lines, expressing TAp63α, ∆Np63α or 

TAp63αQ540L, under a tetracycline/doxycycline (dox)-inducible promoter using 

Tet-On Gene Expression System (see materials and methods). The Tet-On system 

has several advantages over other regulated gene expression systems that function 

in mammalian cells. In fact, Tet-On  system assures no pleiotropic effects, 

extremely tight on/off regulation, high inducibility and fast response times.  

I first analysed, by Western blot, the timing and level of expression of TAp63αwt, 

TAp63αQ540L and ∆Np63α proteins in stable clones upon dox induction. Results 

from representative cell lines for TAp63αwt, TAp63αQ540L and ∆Np63α are 

shown in Figure 1. Without dox in the medium p63 proteins were undetectable. 

Following addition of 1 µg/ml doxycycline in the culture medium, p63 proteins 

were induced in a time-dependent manner (fig. 1). At 24 hrs of induction, p63 

proteins were already abundant and their expression levels were comparable . 
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Figure 1. Expression of p63 isoforms in H1299 stable clones.  

Western Blot analysis for detection of the p63 protein expression levels in Dox-inducible H1299 cells. Cells were

harvested  and p63 expression level was analized at the indicated time points and  with different amounts ( 0.5, 1

and 2µg ) of inductor. Equal amounts of soluble lysates ( 30µg)  from uninduced and induced clones expressing

wild-type TAp63α, ∆Np63α or the mutant TAp63Q540Lprotein were evaluated for p63 protein levels by western

blotting using an anti-p63 antibody ( 4A4, Santa Cruz). A) The timing of expression was assessed at 48 hours

after inductor, while B) expression upon addition  of different amounts of doxicycline into the medium was

assessed at 1µg.  
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The high degree of similarity between p53, and p63 DNA-binding domains, as well 

as transactivation and oligomerization domains, suggested that p63 could regulate 

p53 target genes. Actually, It has been reported that some p63 isoforms such as 

TAp63, are able to regulate the transcription of p53 target genes such as p21WAF 

and MDM2 ( Yang et al; 2000). In order to verify the transcriptional activity of 

∆Np63α as well as the effect of Q540L point mutation on the activity of TAp63α I 

tested the effect of TAp63α, ∆Np63α and the Q540L mutant expression on p21WAF 

and MDM2 endogenous gene expression. Stable cell lines expressing, respectively, 

TAp63α, ∆Np63α and TAp63Q540L were induced for 48 hours with different 

amounts of doxycycline. The results of Western Blot analysis showed an increase of 

p21WAF and MDM2 protein expression levels upon TAp63α and ∆Np63α induction, 

though to a different extent. In contrast, AEC mutant Q540L appeared to reduce p21 

and MDM2 expression ( Figure 2A). I have also analyzed the effect of Q540L point 

substitution on the ability of TAp63α wt protein to transactivate the expression of a 

CAT reporter gene under the control of the p21WAF gene promoter. A fixed amount 

of p21/WAF promoter-CAT construct was transiently transfected in H1299 cell lines 

along with increasing amounts of plasmids encoding p63α proteins. As shown in 

Figure 2B, the Q540L mutation strongly impairs the ability of TAp63α to induce the 

p21/WAF gene promoter, whereas ∆Np63α is a mild activator. 
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Figure 2. TAp63αQ540L has lost the ability to activate p21/WAF and MDM2 gene expression.  

A) Western Blot analysis showing expression of TAp63α wt, TAp63αQ540L and ∆Np63α proteins in stable clones at 48h 

upon induction with the indicated amounts of doxycycline. The expression of endogenous MDM2 and p21/WAF proteins 

was also evaluated by specific immunodetection. MDM2 and p21/WAF protein levels increase in parallel with TAp63α and

∆Np63α induction, but decrease upon TAp63αQ540L induction. β-Actin was used as a protein loading control. 

B)H1299 were transiently transfected with 2µg of p21/WAF-CAT reporter plasmid/dish alone or with different amounts of

each p63expressing plasmid ( 1, 2 or 3 µg). After 48h, cells were harvested, and CAT acivity was determined. The basal 

activity of the reporter was set at 1. The data are presented as fold induction relative to the sample without effector ( white

bar). Each histogram bar represent the mean of triplicate assays from three independent experiments. Standard deviation are

also indicated.  
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1.2) Subcellular localization of mutant TAp63αQ540L 

 
 
 TAp63α and ∆Np63α proteins are located in the nucleus where they act as 

transcriptional factors ( Calabrò et al; 2004). 

For this reason, we have supposed that the lack of transcriptional activity of the 

TAp63αQ540L protein could to be due to its inability to relocate in the nucleus. 

So, I performed subcellular immunolocalization assay on induced or uninduced stable 

clones expressing TAp63α , ∆Np63α and mutant Q540L protein to compare TA,  

∆Np63α wild type and TAp63αQ540L subcellular distribution in Tet-On stable 

H1299 cells. Fourty-eihgt hours after induction, cells were fixed and immunorevealed 

with antibody to detect p63 protein. Inspection of the subcellular localization of 

TAp63α, ∆Np63α and TAp63αQ540L protein expressed in our inducible clones, by 

immunofluorescence, showed that, both p63α wild type and mutant Q540L proteins 

were uniformly distributed in the nucleus with nucleolar sparing ( Figure 3). 

Therefore, the Q540L amino acid substitution does not alter TAp63α subcellular 

distribution. 
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Figure 3. The Q540L AEC-mutant  localize into the nucleus.  Subcellular localization assay are 

performed in TAp63α , ∆Np63α and TAp63αQ540L stable cell line under induced ( +dox) condition. 

The cells were examined under a fluorescence microscope. As shown, both p63α wild type and Q540L 

mutant protein localize into the nucleus. 
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1.3) Functional analysis of stable clones expressing TAp63α, ∆Np63α and 

TAp63αQ540L 

 

To test the effects of wild type TAp63α, ∆Np63α and mutant TAp63αQ540L 

protein on cell proliferation, I compared the cell growth profile of H1299 cells, 

expressing wild type TAp63α, ∆Np63α, or  TAp63αQ540L. Interestingly, cells 

expressing wild type TA or ∆Np63α showed a reduction of cell growth rate while 

the cell growth profile was completely unaffected by TAp63αQ540L expression 

(fig. 4A, B and C). By the trypan blue dye exclusion assay, I could estimate that 

at 72 hrs after induction, TAp63α expression induced a 9.2% of cell death while 

∆Np63α a 3.4 %. Again TAp63αQ540L had completely no effect on cell viability 

(fig. 4D). Then, I performed flow cytometric analysis on p63 inducible clones. In 

a dox free culture medium, the cell cycle profile of the three p63 stable cell lines 

and parental H1299 cell line were comparable (fig. 4E and data not shown). 

However, at 48 hrs upon addition of 1 µg/ml of dox, both wild type TA and 

∆Np63α caused a G1 cell cycle arrest, with a parallel reduction in S and G2/M 

phases and a significant increase of sub-G1 events (fig.4E). In contrast, when the 

TAp63αQ540L mutant was induced, the percentage of cells in G1 phase was 

unaffected and a slight increase in S phase with a corresponding decrease in G2-

M phase was observed (fig. 4E).  
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Figure 4. The Q540L aminoacid substitution impairs the ability of wild type TAp63α to induce a G1 cell 

cycle arrest and cell death.   

Cell growth profiles of TAp63α (A), ∆Np63α (B) and TAp63αQ540L (C) stable cell lines under induced (+ 

dox) or uninduced (-dox) conditions. The growth rate was measured as described in Materials and methods. 

(D) TAp63α, ∆Np63α and TAp63αQ540L stable clones, induced (+dox) or uninduced (-dox) to express the 

respective p63 proteins for 3 days, were analysed for the percentage of dead cells (blue cells/total cells) by 

trypan blue dye staining as described in Materials and methods. (E) DNA content distribution of TAp63α, 

∆Np63α and TAp63αQ540L cells, expressing (+dox) or not (-dox) the respective p63 proteins, analysed for 

DNA content by propidium iodide staining of fixed cells. Standard deviations are also indicated. 
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1.4) Microarray analysis  

 

The finding that TAp63α inhibits cell proliferation and induces cell death, 

whereas the TAp63αQ540L mutant lacks these capabilities prompted us to  

generate a comprehensive profile of differential gene expression by Microarray 

analysis. I extracted and purified total RNA from stable H1299 cell lines ( see 

Matherial and Methods). Microarray analysis was performed in the lab of Prof. 

Calogero in Turin. Four prototypic situation were evaluated: a) TAp63α wt 

without induction, b) TAp63α wt with induction, c) TAp63αQ540L without 

induction, d) TAp63αQ540L with induction. Three biological replicas generated 

for all four situation were used to synthesize biotinylated cRNA for hybridization 

on arrays containing 54675 probes. Microarray data have shown that there is a 

clear up-modulation of the wild type and mutant p63 proteins upon induction with 

doxycycline (fig. 5). Up-modulation of p63 was also confirmed by real-time PCR 

(data not shown). A total of 45 probe set ids were identified as differentially 

expressed and associated to 36 gene IDs. Quantitative RT real-time PCR (QPCR) 

validation was done for 11 out of 36 genes. A total of 10 annotated genes, that 

were transactivated upon induction of wild type TAp63α (fig. 5D), resulted not to 

be responsive to the TAp63αQ540L mutant. Among this set of genes, 4 of them 

(GDF15, CDKNIA/p21WAF, MDM2, ARX) were selected to be also 

investigated by QPCR for their responsiveness to TAp63α, ∆Np63α and 

TAp63αQ540L (fig. 6). GDF15 and CDKNIA-p21WAF appeared to be 
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significantly transactivated by TAp63α only. GDF15 was already activated at 12 

hrs of induction (fig. 6A) while p21WAF after 24 hrs (fig 6B). MDM2 and ARX 

were similarly transactivated by wild type TA and ∆Np63α (fig. 6C and D) but 

none of these four genes were  modulated by the TAp63αQ540L mutant (fig 6A 

and D). According to data that I obtained from both CAT reporter assay and 

western blot analysis, also Microarray data have showed no increase of p21/WAF 

and MDM2 endogenous proteins in TAp63αQ540L stable cells upon induction. 
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Probe QPCR Symbol GeneID Chr Loc. 

Wt 229399_at --- C10orf118 55088 10q25.3 
242134_at --- --- --- --- 
237105_at --- --- --- 2q31.2 
1557257_at --- BCL10 8915 1p22 
210310_s_at T FGF5 2250 4q21 
211022_s_at --- ATRX 546 Xq13.1-q21.1 
214390_s_at --- BCAT1 586 12pter-q12 
1561939_at --- DNCH2 79659 11q21-q22.1 
241955_at --- HECTD1 25831 14q12 
231791_at --- ASAH2 56624 --- 
222891_s_at --- BCL11A 53335 2p16.1 
206112_at --- ANKRD7 56311 7q31 
236356_at --- NDUFS1 4719 2q33-q34 
1555153_s_at --- FCHO2 115548 5q13.2 
215092_s_at --- NFAT5 10725 16q22.1 
241765_at T CPM 1368 12q14.3 
204622_x_at --- NR4A2 4929 2q22-q23 
233320_at --- TCAM1 146771 17q22 
235009_at --- FAM44A 259282 4p16.1 
224568_x_at --- MALAT1 378938 11cen-q12.3 
1552368_at T CTCFL 140690 20q13.31 
227510_x_at --- --- --- 11cen-q12.3 
224917_at --- VMP1 81671 17q23.2 

-3 A
1
3
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Probe            QPCR      Symbol       GeneID       Chr 206463_s_at --- DHRS2 10202 14q11.2         
214079_at --- DHRS2 10202 14q11.2 B

221042_s_at      ---        CLMN             79789        
14q32.13 
207714_s_at      ---        SERPINH1     871            11q13.5
1557948_at        ---        PHLDB3         284345      
19q13.31 
1554140_at        ---           ---                  ---            1p31.2 
1552519_at        ---        ACVR1C        130399      2q24.1 
223044_at          ---        SLC40A1       30061        2q32 

C

221577_x_at Y GDF15 9518 19p13.1-13.2 
238878_at Y ARX 170302 Xp22.1-p21.3 
205386_s_at Y MDM2 4193 12q14.3-q15 
217373_x_at Y MDM2 4193 12q14.3-q15 
236937_at --- KIAA0804 23355 3q27.2 
202284_s_at Y CDKN1A (p21) 1026 6p21.2 
242183_at --- --- 126298 19q13.31 
1559322_at N PTP4A1 7803 6q12 
231307_at --- ---  ---  Xp11.22 
209732_at --- CLECSF2 9976 12p13-p12 
204286_s_at Y PMAIP1 5366 18q21.32 
223853_at Y BVES 11149 6q21 
207813_s_at Y FDXR 2232 17q24-q25 
238733_at  ---  ---  ---  --- 

D

211834_s_at Y      TP73L        8626       3q27-q29  
           (p63) 

 

 
Figure 5. Clustering of probe sets differentially expressed between TAp63α wt and Q540L mutant 

stable cell lines. Cluster A refers to genes which are not significantly modulated upon induction of 

TAp63α wild type and are instead down-modulated by TAp63αQ540L expression. Cluster B includes 

only one gene which is down-modulated by TAp63α wild type expression and not significantly 

modulated by TAp63αQ540L. Cluster C encloses genes which are not significantly modulated upon 

induction of TAp63α wild type and are instead up-modulated by the TAp63αQ540L mutant protein. 

Cluster D refers to genes transactivated by the wild type TAp63α protein and characterized by a loss of 

regulation by the TAp63αQ540L mutant.  

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6. QPCR data related to 4 genes transactivated by TAp63α wild type and 

characterized by a loss of control by the Q540L mutant.  Gene expression was analyzed at 

12 and 24 hours upon addition of doxycycline to ∆Np63α, TAp63α and Q540LTAp63α 

inducible cell lines. Target gene mRNA levels were normalized for ACTB (white bars) and 

POL2 (black bars) and expressed as –DDCt (i.e. not-induced cell line-induced cell line Cts).  
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1.5) TAp63αQ540L binds to p21 promoter sequences in vitro and interacts with 

Sp1 in vivo. 

 

 The absolute inability of the TAp63αQ540L protein to transactivate the p21WAF 

promoter prompted us to verify whether the mutant protein was still capable to 

bind to the p53-consensus sequence of the p21WAF promoter.  Thus I compared 

the DNA binding capacity of wild type and mutant TAp63α proteins by an in 

vitro DNA-binding assay. A radiolabeled duplex oligonucleotide representing a 

p53-binding site previously identified in the p21/WAF promoter, was used as 

target DNA (Calabrò, Mansueto et al. 2004). Incubation of the radiolabeled 

oligonucleotide with in vitro translated TAp63α or TAp63αQ540L mutant, led to 

the formation of specific protein-DNA complexes (Fig.7 A, lanes 2 and 6). The 

specificity of the TAp63-DNA complexes was tested by a competition 

experiment: a 100x cold molar excess of the same oligonucleotide used as probe 

completely abolished the binding, while an unrelevant control oligonucleotide 

had no effect (Figure 7, lanes 3 and 4; 7 and 8). The identity of the TAp63α-DNA 

complexes was confirmed by a supershift experiment (Figure 7, panel A, lanes 5 

and 9) by incubating the in vitro translated TAp63α proteins prior to the binding 

reaction, with an antibody recognizing the p63 DNA-binding domain. By 

Western blot analysis we verified that the relative abundance of the in vitro 

translated TAp63 proteins was comparable (data not shown). These observations 

indicate that the wild type TAp63α protein specifically binds to a p53 consensus 
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sequence of the p21/WAF promoter and that the Q540L mutation does not affect 

this binding, at least in this in vitro assay. 
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Figure 7. TAp63αQ540L binds to p53 consensus site in the p21/WAF target promoter and it is 

able to associate with the Sp1 transcription factor.  

(A) The indicated p63 proteins were in vitro translated by using TnT reticulocytes from Promega and 

0.5 µg of each p63 plasmid DNA. Equal amounts of the individual reactions were subjected to EMSA 

using a 32P-labelled oligo containing a p53-binding site present in the p21 promoter (p21.1 probe). Cold 

competition was performed using either the 100-fold molar excess of the same oligonucleotide (lanes 3 

and 7) or an oligonucleotide containing a consensus binding site for E2F1 (lanes 4 and 8). For the 

supershift anti-p63 antibodies (4A4; SantaCruz) were used, adding them to the sample prior to the 

binding reaction (lanes 5 and 10). 
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The promoter of the human p21/WAF gene is characterized by a set of six Sp1 

binding sites located in the proximal region (nucleotides –120 to –40) and two 

distal p53 binding sites. These proximal Sp1 binding sites were shown to be 

essential for the activation of p21/WAF promoter by p53 ( Koutsodontis et al; 

2005). Since it has previously been reported that the γ isoform of TAp63 directly 

interacts with Sp1, we decided to investigate on whether TAp63α was also able to 

interact with Sp1 and, in this case, which was the effect of the Q540L substitution 

on this interaction. I performed co-immunoprecipitation experiments in TAp63α 

and TAp63αQ540L expressing cell lines induced or not with doxycycline. As 

shown in fig. 8, both wild type and mutant TAp63α proteins were 

immunoprecipitated using a Sp1 polyclonal antibody. The reciprocal 

immunoprecipitation, detecting Sp1 protein using the p63 monoclonal antibody 

did result in Sp1 being immunoprecipitated (data not shown). 
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Figure 8. TAp63αQ540L associates with Sp1 transcription factor. 

Coimmunoprecipitation in TAp63α and TAp63αQ540L expressing cell lines. Both wt and mutant

TAp63α proteins were immunoprecipitated by a Sp1 polyclonal antibody only upon their induction

with doxycycline. 
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1.6) TAp63αQ540L does not bind  to p21 promoter sequences in vivo 

 

In vitro DNA-binding assay suggested  that the Q540L mutation does not affect the 

ability of the p63 protein to bind DNA. However, given the important role of 

chromatin structure in the regulation of gene expression by transcription factors and 

cofactors I would verify if the Q540L mutant protein was still able to bind p53-

consensus sites of the p21/WAF promoter, also an in vivo context. Thus, I performed 

Chromatin Immunoprecipitation Assay in H1299 cells transfected with TAp63α wild 

type or mutant Q540L encoding plasmids. Cross-linked chromatin was extracted and 

immunoprecipitated with anti-p63 antibody. DNA was purified and appropriately 

primers designed to amplify the p53-response element in p21/WAF, Dlx3, Jagged 2 

and IKK  promoters. In contrast with the previous reported data, obtained with an in 

vitro assay, in vivo cromatin Ip revealed that the AEC mutation impairs the ability of 

p63 to bind DNA. As shown in figure 9, wild type TAp63α protein specifically binds 

to promoter region of assayed genes, while the Q540L mutant shown significantly 

reduced ability to bind DNA. A Western Blot analysis of the transfected proteins 

have showed no significant differences in the relative abundance of p63α wild type 

and mutant protein ( data not shown).  
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Figure 9. The Q540L substitution impairs DNA binding ability of p63. H1299 cells

were transfected with TAp63α wild type or mutant Q540L encoding plasmids.

Formaldeyde cross-linked chromatin was immunoprecipitated with anti-p63 4A4 antibody.

Eluted DNA was PCR amplified with primers specific for different p63 ( JAG 2, DLX 3)

and p53 ( p21WAF, IKK ) target promoters genes.  
 

54



2) INVESTIGATION ON P63 PROTEIN DEGRADATION Dlx3-MEDIATED. 

  

2.1) Dlx3 downregulates  p63 protein level.  

Our group has also demonstrated that AEC-derived TAp63 proteins exhibit an 

impaired ability to transactivate Dlx3, thus suggesting that the misregulation of the 

Dlx3 gene is involved in the pathogenesis of AEC. It is interesting to note that p63 

and Dlx3 mutations resulted in partial-overlapping phenotypes characterized by 

defects in the same structure, such as hair, teeth and bone, and by absence of limb 

malformation ( Price et al; 1998) suggesting that these genes belong to a common 

signaling cascades regulating epidermal development.  

A recent work published by our group in collaboration with Dr. Morasso, has 

previously reported that calcium-induced differentiation of primary keratinocytes 

resulted in induction of Dlx3 gene expression that parallels a decrease of ∆Np63α 

specific transcripts (Radoja N. et al. 2007). Furthermore, transient expression of Dlx3 

induced a remarkable decrease of endogenous ∆Np63α protein expression both in 

primary Human Embryonic keratinocytes (HEK) ( data obtained in lab of Dr.  

Morasso from NIH of Bethesda) and immortalized HaCaT keratinocytes (Fig.10, 

panels A and B). As we suspected that Dlx3 was down-regulating ∆Np63α at the 

protein level, I transfected ∆Np63α or TAp63α expression vector alone, or in 

combination with increasing amount of Dlx3, in Saos2 cells, a human osteosarcoma-

derived cell line where p63 is not normally expressed. I transfected Saos2 cells with 

the indicated amount of expression vector by LipofectAMINE 2000 reagent and, after 

 55



24 hours, cells were lysated and protein concentrations determined using the Bio-Rad 

protein assay. Western blot of whole extracts and specific immunodetection with 

anti-p63 (4A4) antibodies and anti-Flag antibodies showed that Dlx3 caused a 

remarkable decrease of ∆Np63α  protein (Fig. 10 C). This effect was at protein level, 

since no difference in ∆Np63α specific transcript was detected when I performed 

semiquantitative RT-PCR on total RNA from Saos2 cells transfected with ∆Np63α 

alone or with Dlx3 (Fig.10 C). Compared to ∆Np63α, the abundance of TAp63α 

protein was less affected by Dlx3 expression (Fig.10 C).  I obtained similar results in 

different cellular context such as U2OS, HeLa, and H1299 cells. It has been 

previously demonstrated that p53 itself was able to associate with ∆Np63α inducing 

its degradation by a caspase-dependent mechanism ( Ratoviski et al; 2001), so, in 

order to investigate on whether Dlx3-mediated p63 degradation was involving p53 

activity, I performed experiments in (p53-/-mdm2-/-) Mouse Embryo Fibroblasts, 

MEFs (Fig.10 D). Thus I transfected MEFs with p63 alone or along with increasing 

amount of Dlx3 expression vector. Even in MEFs, I observed a decrease of p63 

protein, in response to Dlx3, indicating that the mechanism responsible for the 

reduction of ∆Np63α  protein, was independent from both p53 and MDM2.  

 56



 

 

 

 

In order to verify to what extent Dlx3 was altering ∆Np63α protein level, I measured 

∆Np63α protein half-life in Saos2 cells, with or without Dlx3, by treating cells with 

Figure 10. Dlx3 reduces p63 protein level.  

(A) NHEK stable cell lines were induced for Dlx3 expression and cellular lysate were analyzed for ∆Np63α 

expression. (B) Western Blot analysis of HaCaT  cell extracts 48 hrs upon transfection  with increasing amounts

(0.5; 1.0 and 1.5 µg) of Flag tagged Dlx3 expression vector. Endogenous ∆Np63a was revealed with 4A4 

antibodies, Dlx3 with anti-Flag antibodies. Actin was checked as loading control. (C) Saos2 cells were

cotransfected with 0.2 µg of ∆N or TAp63α  plasmid DNA and increasing amounts (0.5; 1.0 and 1.5 µg) of Flag-

Dlx3 expression vector. 48 hrs after transfection cell extracts were analyzed by Western blot and specific 

immunodetection. RT-PCR. Level of exogenous ∆Np63α  mRNA upon cotransfection with increasing amount ( 

1.0 and 1.5µg) of Dlx3-Flag expression plasmid in Saos2 cells.  (D) Mouse Embryo Fibroblasts (p53-/- MDM2-/-

) were transfected with 0.2 µg of ∆Np63α alone or together with 1.0 µg of Flag-Dlx3 expression vector. At 48 hrs 

after transfection cell extracts were analyzed by Western blot and specific immunodetection.  
 57



the protein synthesis inhibitor cycloheximide. I transfected Saos2 cells with p63 

encoding vector alone or with Dlx3 expression plasmid, and 16 hours after 

transfection, cells were treated with cycloheximide to block protein synthesis. At the 

indicated times after exposure to the drug, cells were harvested and the extracts 

analyzed by Western Blot and probed with an anti-p63 and anti-flag antibodies.  

Transfected ∆Np63α protein was very stable with a half-life being greater than 9 

hours; expression of Dlx3 reduced ∆Np63α protein level and the decay was faster, 

with a half-life between 5 to 7 hours ( fig. 11).  
 

 

 

 

Figure 11. Dlx3 affects ∆Np63α protein half-life.  

Saos2 cells were transfected with 0.2 µg of ∆Np63α, expression plasmid alone or along with a fixed

amount (1µg) of Dlx3-Flag encoding plasmid. 16 hours after transfection cells were treated with 40µg/ml

of  cycloheximide. At the indicated times, cells were lysated and cellular extract were analyzed by

Western Blot and specific immunodetection. Saos 2 cells were also transfected with Dlx3-Flag expression

plasmid alone to determine Dlx3 protein half-life. 
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As it has been reported that both proteasome and lysosome are involved in p63 

protein degradation (Ghioni et al. 2005, Rossi et al. 2006), I decided to investigate 

whether Dlx3-driven p63 degradation was proteasome or lysosome-dependent. 

Reduction of p63 by Dlx3 was efficiently reversed by the proteasome inhibitors 

MG132 and ALLnL while no effect was observed treating cells with the lysosome 

inhibitor chloroquine or ammonium chloride (Figure 12 A  and data not shown). 

Finally, to determine if a physical association between p63 and Dlx3 protein was 

required to induce p63 protein degradation, I immunoprecipitated ∆Np63α from 

lysates of Saos2 cells expressing p63, Dlx3 or both. Whole extracts were subjected to 

Western blot and specific immunodetection with anti-p63 (4A4) antibodies. Dlx3 was 

revealed with anti-Flag antibodies. I also performed the reciprocal experiment and, in 

both cases, I failed to see interaction between p63 and Dlx3 (Figure 12 B and data not 

shown). These data suggest that Dlx3 is activating a protein degradation pathway that 

leads to the reduction of p63 level and that this molecular mechanism does not 

require a direct interaction between the two proteins. 
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Figure 12. Dlx3 mediates proteasome-dependent degradation of p63 and its function does not

require p63-Dlx3 physical association. 

(A) Saos 2 cells were transfected with the expression vector for ∆Np63α ( 0.2µg) with or without a fixed amount

(1µg) of Dlx3 expression vector in the presence or absence of 10µM of MG132 or ALLnL. Total lysates were

separated by SDS-PAGE and blotted with antibodies against p63 ( 4A4) or Flag to detect Dlx3 protein. (B)

Coimmunoprecipitation of ∆Np63α with Dlx3. Saos2 cells were transfected with 0.2µg of ∆Np63α plasmid

alone or togheter with Dlx3-Flag expressing plasmid. Cellular extract were immunoprecipitated with anti p63

4A4 antibody and immunocomplex were analyzed with anti-p63 and anti-Flag antibodies. 
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2.2) Dlx3-induced ∆Np63 degradation requires specific Serine and Threonine 

residues located in the p63 α and β carboxyterminal tails.  

 

 Although ∆Np63α is the most abundantly expressed p63 isoform in adult skin, I 

wished to investigate whether Dlx3 could also reduce the level of the remaining 

∆Np63 isoforms. Thus, I overexpressed ∆Np63β or γ, in Saos2 cells, along with 

increasing amount of Dlx3. Interestingly, the levels of ∆Np63β was significantly 

reduced by Dlx3 while ∆Np63γ was almost completely unaffected (Fig. 13 A). These 

results suggested that aminoacid residues located in the α and β tail of p63, could 

confer the sensitivity to the degradation mechanism triggered by Dlx3 expression. To 

identify these residues , I tested two constructs expressing carboxyterminal truncated 

∆Np63 proteins, named ∆Np63∆408 and ∆373 (a schematic representation is shown 

in Fig. 12 B), kindly provided by Dr. Guerrini ( University of Milan). I transfected 

each of them into Saos2 cells, with or without Dlx3 and compared with wild type 

∆Np63α for the sensitivity to Dlx3-mediated degradation. Interestingly, the 

∆Np63α∆373 protein was almost unaffected by Dlx3, while ∆Np63α∆408 was 

efficiently degraded (Fig. 13 B).  

Thus, I concentrated my attention on the region encompassing aminoacid 373 to 408 

of ∆Np63; by the NetPhos 2.0 bioinformatic analysis I identified two potential 

phosphoacceptor sites, located in this region, a Serine at position 383 (score 0.866) 

and a Threonine at position 397 (score 0.6). Furthermore, using the ELM 
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bioinformatic resource (http://www.elm.eu.org), we found that  Serine383 was 

included in a PIKK (PI3K related kinases) phosphorylation motif, while Threonine 

397 was a potential MAPK phosphorylation site. Interestingly, Serine383 and 

Threonine397 also belong to the Phospho Cluster IV, as described by Finlan and 

Hupp (Lee E. Finlan and Ted R. Hupp; 2007). In the laboratory of  Dr. Guerrini at the 

University of Milan it was generated, by site-directed mutagenesis, the 

∆Np63αS383A construct bearing a Serine to Alanine substitution at position 383 and 

the ∆Np63αT397A expression plasmid, bearing a Threonine to Alanine substitution 

at position 397. Strikingly, substitution of either Ser383 or Thr397 caused a 

remarkable decrease of  ∆Np63α sensitivity to Dlx3-driven degradation (Figure 13 

B). In addition, it was generated the ∆Np63αS383AT397A protein bearing both 

aminoacid substitutions. As expected, the S383T397 double mutant was almost 

completely resistant to Dlx3-mediated degradation (Figure  13 B). These results 

indicate that the mechanism through which Dlx3 causes p63 protein degradation is 

dependent on specific serine/threonine residues located in the p63 carboxyterminal α 

and β tails. Consistently, ∆Np63γ lacking these residues, was almost completely 

refractory to Dlx3-induced degradation (Figure 13 B).  
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Figure 13. Carboxyterminal α and β tails of p63 confer to ∆Np63 sensitivity to Dlx3 elicited

degradation.  

(A)  ∆Np63α, β and γwere compared for their sensitivity to Dlx3-mediated degradation by cotransfection and

immunoblot experiments in Saos2 cells. for their sensitivity to dlx3-mediated degradation by cotransfection

and immunoblot experiments in Saos2 cells. 0.2 µg of p63 expression vectors were transfected in Saos2 cells

along with increasing amount of Dlx3 plasmid (0.5, 1.0 and 1.5 µg). P63 and dlx3 were revealed with 4A4 and

anti-Flag antibodies, respectively. ( B) Schematic representation indicating the positions where stop codons

were inserted to generate the ∆373, ∆390 and ∆408 truncated version of ∆Np63α , the Ser383 and Thr397 that

have been replaced with Alanine have also been indicated. ∆Np63α was compared with deletion (∆373, ∆390

and ∆408)  and point mutants (∆NaS383A, ∆Np63αT397A, and ∆NαS383T397A)  for their sensitivity to

Dlx3-mediated degradation. 0.2 µg of each ∆Np63α construct was transfected in Saos 2 cells along with

increasing amount of Dlx3 plasmid (0.5, 1.0 and 1.5 µg). P63 and dlx3 were revealed with 4A4 and anti-Flag

antibodies, respectively. Actin was used as a loading control. 
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To confirm that S383 and T397 were involved in Dlx3-mediated p63 degradation  I 

expressed the ∆Np63αS383AT397A double mutant in Saos2 cells, with or without 

Dlx3, and measured p63 protein half-life in cycloheximide-treated cells.  The half-life 

of ∆Np63αS383AT397A mutant, in presence of Dlx3, was greater than 9 hours 

(Fig.14) while that of the wild type protein was among 5 and 6 hours (Figure 11) 

implying that Dlx3-induced p63 protein degradation was impaired preventing 

phosphorylation of Serine383 and Threonine397.  On the other hand, ∆Np63αS383A 

and ∆Np63αT397A proteins also exhibited increased half-life in presence of Dlx3, 

confirming that both residues were involved in the mechanism of Dlx3-mediated p63 

degradation (data not shown). Next, I tested if replacement of Serine383 and 

Threonine397 with Alanine, was dramatically changing their subcellular localization. 

To answer this question I performed immunofluorescence microscopy and I could 

verify that the ∆Np63αS383AT397A protein was normally distributed into the 

nuclear compartment, both in absence and presence of Dlx3 exogenous expression 

(data not shown). 
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Figure 14. The ∆Np63αS383AT397A mutant  increase half-life in presence of Dlx3. 
Saos2 cells were transfected  with the ∆Np63αS383AT397A double mutant with or without 

Dlx3, and p63 protein half-life was measured in cycloheximide-treated cells ( 40µg/ml). At 

the indicated times, cells were lysated and cellular extract were analyzed by Western Blot 

and specific immunodetection. 
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2.3) Dlx3-mediated p63 degradation is impaired by inhibiting Raf signaling 

pathway.  
 

Dlx3 is induced in primary mouse keratinocyte by increasing the level of 

extracellular calcium and in parallels a reduction of  ∆Np63α protein is observed 

(Radoja N. et al. 2007). As substitution of Threonine397 and Serine383 with Alanine 

prevented the reduction of  ∆Np63α protein level upon Dlx3 transfection, we 

hypothesized that phosphorylation of these specific residues was a prerequisite for 

Dlx3-induced ∆Np63α protein degradation. Park and Morasso reported that Dlx3 is 

activated through a protein kinase C-dependent (PKC) pathway (Park GT and 

Morasso MI; 2001). As PKC can signal to MAP kinases  through Raf1 ( Seo HR et 

al; 2004) I examined the status of the Raf signalling major components upon 

transfection of increasing amount of Dlx3 in HaCaT keratinocytes. By using 

antibodies that specifically recognize the phosphorylated active forms of Raf1 and 

MAPKs (ERKs and p38MAPK) I found that phosphorylated Raf1 and ERKs 

increased markedly in response to Dlx3 expression (Figure 15). By contrast, 

phosphorylated p38MAPK was reduced (Figure 15). Similar results were obtained in 

Saos2 cells (data not shown). I examined the possible contribution of Raf and the 

other components of its pathway on Dlx3-mediated p63 degradation by using specific 

pharmacological inhibitors ( figure 16 ). I transfected Saos2 cells with a fixed amount 

of p63 and Dlx3 expression vectors exposed to 10µM GW5074 for 3, 6 and 8 hours. 

As shown in Figure 16 B, incubation of cells with GW5074, a specific Raf inhibitor, 

resulted in a substantial recover of p63 protein levels and a clear decrease of Dlx3 
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protein level suggesting that p63 degradation, induced by Dlx3, was mediated by Raf 

activity. It has to be noted that incubation of cells with GW5074 did not result in 

change of  ∆Np63α level if ∆Np63α was transfected without Dlx3. However, as 

shown in figure 16 D, treatment of p63 and Dlx3 transfected Saos2 cells with 

PD98059, the specific ERK inhibitor, appears to reduce exogenous p63 protein level 

when ∆Np63α was transfected both alone and with Dlx3. This observation suggests 

that ERKs are involved in a pathway of p63 protection independently from Dlx3. 

Conversely, specific inhibition of p38MAPK with SB203580 had absolutely no effect 

on dlx3-mediated p63 degradation (Figure 16 C).  
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Figure 15. Raf1 and ERKs increased markedly in response to Dlx3 expression. 
HaCat cells were transfected with an increasing amount ( 1  and 1.5µg) of Dlx3-Flag

expression plasmid. 24 hours after transfection, cells were lysate and extract was

analyzed by Western Blot analysis and immunodetection with specific antibodies. 
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Figure16. Dlx3-mediated p63 degradation is impaired by inhibiting Raf signaling pathway. (A)

Schematic representation of specific pharmacological inhibitors of the Raf signalling pathway and their

target . (B)  Saos2 cells were transfected with p63 encoding plasmid (0.2µg) alone or togheter with a

fixed amount ( 1µg) of Dlx3-Flag expression plasmid. 16 hours after transfection cells were treated with

10µM of GW5074. At the indicated the indicated times, cells were lysated and cellular extract were

analyzed by Western Blot and specific immunodetection. 

(C)  Saos2 cells transfected with p63alone or along with Dlx3 were treated  for 15 hours with two

different amount ( 25 and 50µM) of SB203580, a specific p38MAPK inhibitor and (D) with a fixed

amount ( 50µM) of PD98059, a specific ERKs inhibitors. Cells were lysated and extract was analyzed by

Western Blot and specific immunodetection. 
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To further explore the role of Raf kinase activity in p63 degradation induced by Dlx3, 

I transfected, in Saos2 cells,  increasing amount of a construct expressing the kinase 

active domain of Raf1, Raf(BxB) (Pearson et al. JBC 2000), with a fixed amount of 

Dlx3. As shown in Figure 17 B, coexpression of Dlx3 with activated Raf resulted in a 

dose-dependent increase of Dlx3 protein level and, as expected, in a significant 

increase of phosphorilated ERKs. Moreover, when we transfected Saos2 cells with 

Raf BxB and ∆Np63α along with a fixed amount of Dlx3 I observed again an 

increase of Dlx3 protein and a more pronounced ∆Np63α protein degradation ( fig. 

17 A). Interestingly, in absence of Dlx3, Raf BxB seems to cause an increase of  the 

∆Np63α ( fig. 17 A) . This effect might, presumably, be the conseguence of  ERKs 

activation upon transfection of constitutively activated Raf BxB. Altogheter, these 

observations suggested that the effect of activated Raf on p63 protein levels was 

actually dependent on Dlx3. To confirm the relevance of Serine 383 and Threonine 

397 of ∆Np63α in Dlx3-induced p63 degradation, I transfected the 

∆Np63αS383AT397A mutant protein with a fixed amount of Dlx3 and increasing 

amounts of Raf(BxB).  As shown in Figure 17 C, despite the remarkable increase of 

Dlx3 level caused by Raf(BxB) coexpression, the p63 double mutant protein 

remained unaffected.  
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Figure 17. Involvment of Raf kinase activity in Dlx3-induced p63 degradation. 

(A) Raf BxB increase Dlx3-dependent p63 degradation. Saos 2 cells were transfected with a fixed

amount ( 0.2µg) of p63 expression plasmid alone ( lane 1),  p63 and increasing amount ( 0.5, 1, 1.5µg)

of Dlx3-Flag expression plasmid ( lanes 2-4), p63 and increasing amount ( 0.5,1,1.5µg)  of Raf BxB (

lanes 5-7), p63 with a fixed amount ( 1µg)  of Dlx3( lane 8)  and increasing amount (1and1.5µg)  of

RafBxB ( lanes 9and 10). 24 hours after transfection cells were lysated and cellular extract was

analyzed by Western Blot and specific immunodetection. (B) Effect of Raf BxB on Dlx3 expression

levels. Saos2 cells were transfected with a fixed amount ( 1µg) of Dlx3-Flag encoding plasmid alone

and along with increasing amount ( 1 and 1.5µg) of RafBxB expression plasmid. 24 hours after

transfection cells were lysated and extract aanalyzed by Western Blot. (C) The ∆Np63αS383AT397A

mutant protein  is unaffected by coexpression of Dlx3 and Raf BxB. Saos 2 cells were transfected with

a fixed amount ( 0.2µg) of ∆Np63αS383AT397A expression plasmid alone ( lane 1),  mutant p63 and 

increasing amount ( 0.5, 1, 1.5µg) of Dlx3-Flag expression plasmid ( lanes 2-4), mutant p63 and

increasing amount ( 0.5,1,1.5µg)  of Raf BxB ( lanes 5-7), mutant p63 with a fixed amount ( 1µg)  of

Dlx3( lane 8)  and increasing amount (1and1.5µg)  of RafBxB ( lanes 9and 10). 24 hours after

transfection cells were lysated and cellular extract was analyzed by Western Blot and specific

immunodetection 
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Finally I sought to determine whether  p63 natural mutants associated to distinct 

human hereditary syndromes, exhibited different sensitivity to dlx3-mediated 

degradation. I tested the ∆Np63αK194E and ∆Np63αQ639X mutants both derived 

from Split Hand and Foot Malformation 4 (SHFM4), as well as the  the Hay-Wells 

syndrome derived ∆Np63αQ540L and the EEC-derived ∆Np63αC306R. Actually, all 

of the mentioned mutants were efficiently degraded by Dlx3 ( fig. 18). 

 

 
 

 

 

 

 

Figure 18. p63 natural mutants associated to distinct sindrome were efficiently degraded by Dlx3. 

Saos2 were transfected with different p63 mutant constructs alone or with increasing amount ( 0.5,1 and 

1.5µg) of Dlx3-Flag expression plasmid. 24 hours after transfection cells were lysate and extract analyzed

by Western Blot and specific immunodetection. 
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3 ) Investigation on mechanisms throught which p14ARF regulates p63 

transcriptional activity. 

 

Recently, in the lab where I worked it has been demonstrated that there is a physical 

and functional relationship  between p63 and p14ARF. First, already pubblished data 

( Calabrò et al; 2004)  indicate that, unlike p53, p63 is able to associate with p14ARF, 

both in TA and ∆N version, in different mammalian cell lines. Remarkably, 

overexpression of TAp63, but not ∆N, promotes the exclusion of p14ARF from the 

nucleus. Finally, p14ARF inhibits both transactivation and transrepression activity. 

To better investigate the mechanism throught which ARF inhibits p63-driven-

transcription, I decided to examine whether p14ARF was able to impair the binding 

of p63 to a canonical p53 consensus sequence. EMSA experiments gave preliminary 

indications that  p14ARF was able to decrease the binding of p63 to p53 consensus 

sequence. To gain further  insights in this mechanism I performed Chromatin Ip 

assays to test the effect of ARF on the p63 DNA binding activity on different p53 and 

p63 target gene promoters. For ChIP analysis, I transfected H1299 cells with p63 

alone or along p14ARF expression plasmid. Formaldeyde cross-linked chromatin was 

immunoprecipitated with anti-p63 4A4 antibody. Eluted DNA was PCR amplified 

with specific primers for different p63 ( JAG 2, DLX 3) and p53 ( p21WAF, 14-3-3σ 

) target promoters. As shown in figure 17, when cotransfected with p14ARF, 

TAp63α appeared to bind to the tested promoters with a lower affinity. This effect 

was less evident with ∆Np63α isoform. To confirm the specificity of this effect, I 

transfected H1299 cells with p53 and p14ARF expression plasmids and I 
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immunoprecipitated the chromatin with anti p53 antibody.  PCR analysis of p21WAF 

promoter showed that ARF does not affect  p53 DNA binding activity in this 

experimental condition.  

My results suggest that when coexpressed, ARF is able to modify the DNA binding 

activity of p63 on different promoters thereby it might potentially alter the pattern of 

expression of genes regulated by p63. 
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Figure 17. p14ARF impairs DNA binding ability of p63. H1299 cells were transfected with p63 alone or with 

p14ARF expression plasmids. Formaldeyde cross-linked chromatin was immunoprecipitated with anti-p63 4A4 

antibody. Eluted DNA was PCR amplified with primers specific for different p63 ( JAG 2, DLX 3) and p53 (

p21WAF, 14-3-3σ) target promoters genes. H1299 cells were also transfected with p53 alone or with p14ARF 

encoding plasmids and chromatin immunoprecipitated with anti p53 antibody.  Eluted DNA was PCR amplified

with primers specific for p21WAF promoter. 
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I have also performed experiments to better define the region of p63 required for the 

physical association with ARF. Previously, it has been demonstrated that p63-

p14ARF interaction requires the first 38 N-terminal aminoacids of p14ARF and the 

first 26 aminoacids of ∆Np63α. Twelve aminoacids ( encompassing 15 to 26 of 

∆Np63 and 109 to 120 of TAp63) among the first 26 aminoterminal residues of 

∆Np63α ( TA2 domain), are in common between TA and  ∆N p63 isoforms. We 

have supposed that this stretch of 12 aminoacids contains residues that might be 

crucial for p63-p14ARF association. To better identify the region that mediates the 

interaction I took advantage of some natural occurring p63 mutations. In particular, I 

used the G76W point mutation that is found in Limb Mammary Sindrome (LMS) 

affected patients, that falls in the region under study and, precisely, in the TA2 

domain of p63 ( fig. 18A).  The mutation was inserted both in the TA and 

∆Nα isoforms and tested for the interaction with ARF. Both TA and ∆Nα isoform 

carrying  the G76W point mutation were a kind gift of Dr. Hans vonBokhoven. I 

transfected NIH3T3, a murine ARF-/- cell line, with plasmid encoding the different 

p63 constructs alone or in combination with a plasmid encoding p14ARF. Cellular 

extracts were immunoprecipitated with an antibody against p14ARF, blotted and 

incubated with anti p63 and anti ARF antibody. As shown in figure 18 B, while the 

G76W substitution completely impairs the ability of  ∆Np63 to bind ARF protein, the 

TA isoform retains the ability to interact with ARF suggesting that  TA1 and TA2 

domains could contain regions involved in p63-p14ARF association.  
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Figure 18. Identification of p63 domains involved in p14ARF interaction. a) Schematic representation of

the p63 G76Wmutant construct. b) NIH3T3 cells were transfected with 1µg of expression plasmids encoding

wild-type TAp63α, ∆Np63α or the indicated p63 mutant isoforms alone or togheter with 2µg of p14ARF

expressing plasmid. Cellular extracts were immunoprecipitated with anti-p14ARF antibody and

immunorevealed with anti-p63. 
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Discussion 
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Epithelial development and differentiation in embryo rely on a set of temporally and 

spatially regulated molecular events. Recent observations designate p63 as a driving 

force of this process: the ∆Np63α isoform maintains the proliferative potential of 

basal keratinocytes in mature epidermis, whereas the TAp63α isoform is believed to 

act as a molecular switch required for commitment to epithelial stratification.The 

existence of malformations due to p63 gene mutations suggests that this gene might 

be component of signaling cascades regulating epidermal and ectodermal appendage 

development. The severity of the phenotype in p63-null mice suggests that it is an 

upstream crucial regulator of these signaling pathway. A broad spectrum of p63 

mutations are responsible for several human ectodermal, craniofacial and limb 

malformation. EEC and ADULT mutations are located in the DB domain of p63. 

They abolish p63 DNA-binding and produce higly stable, but transactivation-inert 

TAp63 proteins ( Ying et al; 2005). AEC mutations are confined to the SAM domain. 

Their effect on p63 transcriptional functions are less predictable and they only affect 

the α isoforms.  

Very few genes that are directly regulated by p63 to modulate differentiation and 

very few p63 protein partners that could modulate its transcriptional activity are 

currently known. Therefore, during my doctoral studies I have explored some of the 

molecular pathways that regulate p63 protein function. First, I decided to identify p63 

specific transcriptional targets that were relevant for the pathogenesis of human AEC 

syndromes.  
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The Q540L mutation impairs p63 transcriptional ability. 

My studies provides evidence that the Q540L amino acid substitution strongly 

impairs the transcriptional activity of TAp63α. 

Our genome-wide transcriptional profiles comparing the transcriptional response 

induced by wt and TAp63αQ540L expression show that 14 out of 45 differentially 

modulated probe sets (ten annotated genes), are characterized by a loss of control 

(activation or repression) by the Q540L mutant. As indicate by my reported 

experiments, the lack of transactivation ability of TAp63αQ540L cannot be attributed 

to a decrease in its expression, nor to alteration of its subcellular location. It is well 

documented that, p63, like p73, can bind to the p53 consensus DNA-binding motif 

and activate a number of p53-regulated genes. In principle, the Q540L mutation, even 

though it is predicted to not destroy the overall structure of the SAM domain, could 

alter the DNA-binding affinity of the mutant protein. As regulation of p21/WAF was 

severely impaired in cells expressing the Q540L mutant, I tested whether the mutant 

protein was still capable of interacting with a p53-binding motif of the p21/WAF 

promoter. My results indicate that both wt TAp63α and its Q540L mutant are equally 

active in binding to this sequence, in our in vitro system. However, my data obtained 

through ChIP assays indicate that the Q540L mutation affects the ability of p63 to 

bind its target promoters in a chromatin context. A possible explanation is that such 

mutation might affect the binding of p63 to a particular coactivator that could 

increase the affinity of the protein for its target promoters. The observation that the 

binding to p21/WAF, IKK, JAG and Dlx3 promoters is affected by the AEC-derived 
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mutation suggest that a common factor is required for the control of the expression of 

these genes by p63. For instance, it has been reported that Sp1 cooperates with p53, 

p63 and p73 in synergistic transactivation of the p21/WAF promoter.36 and my data 

clearly indicate that TAp63Q540L is still able to interact with Sp1 (Fig. 6B). Other 

transcriptional factors may thus be crucial for p63-driven transcription and the Q540L 

amino acid substitution may affect the interaction between the p63 SAM domain and 

a still undefined factor.  

Finally, microarray analysis has revealed that specific probe sets are up or down-

regulated by the mutant protein alone. These seemingly conflictual results might 

again be explained as a consequence of a loss of transcriptional function 

assuming that the above mentioned genes are p63 secondary targets, which are 

repressed or activated by p63 primary targets.  Alternatively, we cannot exclude 

that the Q540L aminoacid substitution confers new transcriptional regulative 

properties to the TAp63α protein altering its affinity to interact with particular 

coactivators or corepressors.  

Differentially expressed genes and their implication in AEC pathogenesis. An 

extensive search of the published literature to find links between the physiological 

functions of the deregulated genes and their role in AEC showed that, with the 

exception of p21/WAF and MDM2, they were the subject of very few publications 

and littlewas known about their functions. It was, however, found that GDF15, 

BVES, CLMN and CPM are involved in the mechanisms of cell differentiation,42-45 

while ARX and FGF5 are associated with embryonic development ( Clase KL et al; 
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2000; Collombat et al; 2003; Yoshihara et al; 2005).  GDF15 is the murine ortholog 

of the human immunoregulatory cytokine macrophage inhibitory cytokine-1 (MIC-1) 

also known as PDF (prostate derived factor), a divergent TGF-β superfamily 

member. It has proapoptotic and antimitotic activities and is involved in the control 

of prostatic cell growth ( Uchida et al; 2003). Interestingly, the GDF15 promoter 

contains two putative p53 responsive elements and is upregulated by p53, though its 

expression in response to injury also appears to be induced p53-independently.50,51 

GDF15 seems to be a p63 target, specifically upregulated by TAp63. This regulation 

is completely abolished by the Q540L amino acid substitution. The lack of GDF15 

expression in epithelia may contribute to the abnormal differentiation of epithelia-

derived structures observed in AEC patients. 

Another gene closely involved in development is ARX ( Collombat et al; 2003). Its 

expression profile is highly complex and dynamic in the mouse embryo brain, where 

it peaks at embryonic (E) day 9.5 just after the TAp63α expression peak (E. 8.5).3 It 

is also a marker of adult neuronal stem cells( Collombat et al; 2003). Interestingly, 

both TAp63α and ARX transcripts decrease at E 13.5, which corresponds to the 

switch from TAp63α to ∆Np63α expression ( Koster et al; 2004). Our transcriptional 

profiling combined with the published data on ARX suggests that p63 and ARX may 

be linked in a common regulatory pathway. The information available, however, is 

not sufficient to allow a direct connection to be made between the function of p63 

and ARX in AEC. Calmin (CLMN) is a protein with calponin homology (CH 

domain) and transmembrane domains expressed in maturing spermatogenic cells. The 
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cDNA encoding CLMN was isolated by RNA differential display applied to 

developing mouse skin. The region covering the CH domain showed a high level of 

homology with β-spectrin, α-actinin, and dystrophin. The CLMN transcript was 

detected in adult testis, liver, kidney, and large intestine; the expression in testis was 

by far the strongest ( Ishisaki et al; 2001). CLMN is linked to skin development. In 

mice, its mRNA starts to be detectable in the epidermis at 15.5–16.5 dpc (days post-

coitum) and its expression increases as theskin develops. The timing of CLMN gene 

expression corresponds to the switch from the TA to the ∆N isoform. CLMN is only 

transactivated by the Q540L mutant. Since induction of CLMN expression fits in 

nicely with the timing of the switch from TAp63α to ∆Np63α expression in the 

epithelial stratification program ( Koster et al; 2004), TAp63α may be supposed to 

act as a transcriptional repressor of this gene, with the result that expression of mutant 

TAp63α might improperly anticipate CLMN expression during skin development.  

BVES/Pop1 is the prototype of a new class of cell adhesion molecules. It is expressed 

in the epithelial components of retina, lens and cornea ( Ripley et al; 2004), during 

blood vessel development, in the gut endoderm and the epicardium and in all three 

germ layers during avian organogenesis ( Osler et al; 2004). BVES is transactivated 

by TAp63α and not modulated by the Q540L mutant, and hence may be required to 

promote cell adhesion and translocation during early embryogenesis.  

Another interesting gene that is only transactivated by the mutant p63 is SERPINH1, 

also known as HSP47. Hsp47 protein is involved in skin wound regeneration and 

immunohistochemistry has demonstrated Hsp47-positive cells in the epidermal cell 
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layer of fetal and neonatal rat skin. Hsp47 may be an important determinant of scar 

formation, since scarless healing of fetal skin wounds correlates with a lack of change 

in HSP47 expression ( Wang et al; 2002).  p21/WAF has long been known to arrest 

the cell cycle. In the epithelium it is involved in maintenance of the stem cell 

compartment ( Okuyama et al; 2004). 

p21 null mice are unable to limit the production of stem cells and their proliferative 

potential.55 p21/WAF is strongly transactivated by the TAα wild-type isoform and 

its promoter is not or only mildly responsive to the ∆Nα isoform (Westfall et al; 

2003).  By inducing p21/WAF, TAp63α breaks the cell cycle by restraining stem cell 

proliferation: the overall system is committed to the formation of stratified epithelia. 

The parallel increase of ∆Nα and decrease of TAp63α expression redirects the 

system to terminal differentiation ( Westfall et al; 2003).  Our qPCR data and 

expression studies support this scenario since the p21/WAF promoter is strongly 

activated by the TAp63α wt isoform and p21/WAF upmodulation is reduced if 

∆Np63α is expressed. Interestingly, while ∆Np63α seems less efficient than 

TAp63α as a p21/WAF activator, they both induce a similar G1 cell cycle arrest. The 

aminoterminal-deleted isoform should not be generally defined as a transactivation-

defective isoform. Our and other published data indicate that ∆Np63α modulates 

transcription40 and this ability is rather dependent on the specific gene promoter. In 

conclusion, the difference in the growth rate profiles of cells expressing either the TA 

or the ∆Np63α isoforms is likely to be the result of the relatively higher efficiency of 

TAp63α with respect to ∆Np63α in inducing cell death.  
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The growth rate profiles and cell cycle distribution of cells expressing the AEC-

derived TAp63α protein are undistinguishable from those of uninduced cells, 

indicating that the Q540L amino acid substitution affects both the cell cycle arrest 

and cell death inducing properties of p63. Finally, we suggest that deregulation of 

p21/WAF associated with the Q540L mutation will produce a defect in the process of 

commitment to epithelial stratification that simultaneously allows premature 

expression of skin differentiative markers. A defect of this kind would explain the 

skin fragility and chronic scalp erosions complicated by infections, which are a 

hallmark of AEC. In conclusion, further investigation of the differentially regulated 

genes identified in this study will result in a better understanding of the molecular 

mechanism underlying the AEC phenotype. 
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Dlx3 regulates p63 protein levels. 

AEC-derived TAp63 proteins and in particular the Q540L mutant exhibits an 

impaired ability to transactivate Dlx3, thus suggesting that the misregulation of the 

Dlx3 gene is involved in the pathogenesis of AEC.  

The Dlx3 gene, a target of p63, is expressed in the suprabasal layer of skin. 

Expression of Dlx3 in keratinocyte is activated, through a PKC-dependent pathway, 

by increasing the level of extracellular Ca2+. The increase of extracellular Ca2+ is an 

important trigger of epidermal terminal differentiation that contributes to the decrease 

of ∆Np63α expression by reducing ∆Np63α gene transcription (Radoja et al; 2007   

). My reported data indicate that Dlx3 reduces also protein half-life and steady-state 

levels. I have observed this phenomenon in several cell contexts, including  p53-/- 

and MDM2-/- mouse fibroblasts indicating that neither p53 nor MDM2 were 

involved in this mechanism. Interestingly, Dlx3 overexpression resulted in efficient 

∆Np63α/β, but not γ, protein degradation. The evidence that ∆Np63γ is completely 

resistant to Dlx3-mediated degradation means that residues located exclusively in the 

p63 α and β, but not in the γ tail, are absolutely required for the mechanism of Dlx3-

mediated p63 degradation. Although I have not provided direct evidence that Ser383 

and Thr397 are phosphorylated upon Dlx3 expression, I have shown that their 

substitution with alanine impairs Dlx3-mediated ∆Np63α degradation, thus 

demonstrating that these residues are relevant for this phnomenon. However, I cannot 

rule out the hypothesis that additional serine/threonine residues may also have a 

minor contribution to this mechanism. Furthermore, I have observed that TAp63α 
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appears to be more resistant than the corresponding ∆N isoform, thus suggesting that 

the N-terminal region of p63 in some way interferes either with the phosphorylation 

or degradation mechanism of p63, possibly due to the minor accessibility of the 

TAp63α three-dimensional conformation. TAp63α expression  is completely absent 

in the basal layer of epidermis while it becomes detectable in the soprabasal layers of 

epidermis where it contributes to activate Dlx3 gene expression. Interestingly, my 

observation that TAp63α shows a lower sensitivity to Dlx3-mediated degradation 

compared to ∆Np63α, provides a possible explanation to its persistence in the 

granular layer of epidermis where Dlx3 is actually expressed. Moreover, since 

terminally differentiated keratinocytes lack completely p63 expression I can speculate 

that Dlx3 might also contribute to TAp63α protein degradation.  

Multisite phosphorylation is a common feature of many protein kinase substrates, 

which may enable docking interactions, integration of different kinase pathway 

signals or changes in the subcellular localization. Concerning this aspect, we have 

been able to exclude that substitution of serine 383 and treonine 397 with alanine 

could cause differences in the subcellular localization of p63, either in absence or 

presence of Dlx3 expression.  

Interestingly, I have shown a direct involvement of Raf1 in Dlx3-mediated p63 

degradation. Pharmacological inhibition of Raf activity was able to partially restore 

the basal level of p63 that was reduced upon Dlx3 expression. Moreover, the 

constitutively activated Raf was able to increase p63 degradation induced by Dlx3. 

On the basis of my data, I cannot conclude that Raf1 is the kinase responsible for p63 
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phosphorylation, however I have provided evidences that constitutively activated Raf 

enhances the levels of Dlx3 protein indicating at least one mechanism, strictly 

depending on Raf activity, that might significantly contribute to p63 protein 

degradation. In addition to Raf1 phosphorylation I have observed considerable 

increase of phosphorylated ERKs upon Dlx3 transfection. Activation of Raf1 by Dlx3 

can signal to ERKs through MEK kinases. Normal human epidermal keratinocytes 

(NHEK) respond to the autocrine activated ERK signaling pathway, which 

contributes to the survival of keratinocytes. According to the proposed pro-survival 

role for ERKs, it has been demonstrated that autocrine ERK activation, at early stage 

of differentiation, plays a role in the regulation of cell cycle rather than the expression 

of the keratinocyte differentiation markers ( Park et al; 2006).  Autocrine activation 

of ERKs is not interrupted by calcium-induced differentiation but it rapidly declines 

in absence of EGFR ligands (Park et al; 2006). We speculate that Dlx3 while 

inducing p63 degradation  might substain ERKs activation thereby delaying 

keratinocyte terminal differentiation. Alternatively, activation of ERKs might 

counteract apoptotic stimuli triggered by the detachment of keratinocytes from the 

epidermal basal layer as long as they move in the suprabasal layer of epidermis (   ). 

On the other side, we have found that ERKs inhibition enhances p63 protein 

degradation, confirming that ERKs activation protects ∆Np63α thus playing a 

positive role on keratinocyte survival during differentiation (Park et al; 2007). 

The Raf kinase activity appears to play a crucial role in epidermal differentiation 

being at the cross road between signals driving cell proliferation and differentiation. 

 88



The mammalian Raf family of serine/threonine kinases consists of three highly 

conserved members, i.e., A-Raf, B-Raf and Raf1 (Hagemann et al; 1999). Whereas 

Raf1 is ubiquitously expressed, A-Raf and B-Raf display a more tissue-specific 

expression.  The role of Raf1 in the epidermal differentiation is demonstrated by the 

phenotype of Raf1 targeted knock-out mice. Mice homozygous for a hypomorphic 

Raf1 allele (Raf1tm1Zim) die during organogenesis. Only 5% of homozygotes are 

viable and display underdeveloped hair follicles, thin epidermis and abnormal 

epidermal layer morphology (  Mikula et al; 2001 ). Interestingly, they also show 

abnormal placental labyrinth morphology strongly reminding the phenotype of Dlx3 

null mice (Morasso et al; 1999 ). Our data indicate that Dlx3 induces Raf1 

phosphorylation and moreover that inhibition of Raf kinase activity impairs p63 

degradation. Although we cannot exclude the role of other member of the Raf family, 

Raf1 appears to be clearly involved. Further studies are currently in progress in our 

laboratory to understand the molecular mechanism through which Dlx3 activates 

Raf1 and to identify whether Raf1 or a different serine/threonine kinase is directly 

responsible for p63 phosphorylation.  

It has been already reported that  K194E and E639X mutations associated to Split 

Hand and Foot Malformation syndrome do not affect the ability of  TAp63 to 

transactivate Dlx3 ( Radoja et al; 2007). I have here reported that these substitutions 

do not alter the sensitivity of ∆Np63α to the Dlx3-dependent degradation. This is in 

agreement with the lack of skin phenotype of patients affected by SHFM syndrome. 

On the other side, the EEC-derived C306R mutation, located in the p63 DNA binding 
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domain, and the AEC-derived Q540L substitution, located in the p63 SAM domain, 

both affect the ability of p63 to transactivate a set of target genes, including Dlx3 

(Radoja  et al; 2007). Thus, since p63 lies upstream to Dlx3 in the molecular pathway 

leading to skin differentiation patients affected by EEC and AEC exhibit a severe 

skin phenotype.  

In conclusion, my data revealed the existence of a regulatory network between p63 

and Dlx3 providing new clues for thee understanding of the molecular mechanism 

underlying skin differentiation.  

Lastly, I have also investigated on the mechanism responsible for the p14ARF-

dependent counteraction of p63 transcriptional activity. My data suggest that 

overexpression of p14ARF  is able to inhibit the ability of p63 to bind to several 

promoters. Respect to previously reported data ( Calabrò et al; 2004)  my ChIP assays 

indicate that p14ARF contribute to the regulation of transcription of p63/p53 target 

genes in their natural setting, given the important role of chromatin structure in the 

regulation of gene expression. Moreover, my data clearly show that ARF impairs the 

binding of TA and ∆Np63α also to promoters specifically regulated by p63 and not 

by p53 ( such as Dlx3).  

Hence, we could speculate that under mitogenic stimuli p14ARF physically 

associates with TA and ∆Np63 isoforms removing them from p63/p53-responsive 

promoters kepting p63 proteins  inactive in a p63-p14ARF complex . This process 

might turn on p53 transcriptional function activating the p53-dependent checkpoint 

control. The physiological relevance of my observation need to be further 
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investigated. In particular, it will be necessary to verify my results in  keratinocyte 

cell culture.  

I have also reported that the G76W substitution associated to LMS syndrome abolish 

the ability of ∆Np63α, but not of TAp63α, to interact with p14ARF, confirming that 

residues located in the TA domain might increase the binding affinity between 

p14ARF and p63. Further work is necessary in order to estabilish the relevance of 

this finding for the comprehension of molecular mechanism responsible for the LMS 

syndrome,  
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Plasmids 

All of the p63 wild type cDNAs in the pcDNA3 vector were kindly provided by Dr. Hans van 

Bokhoven. The mutation Q540L was created in the lab of prof. Calogero in Turin by PCR, 

using the NdeI site-containing upstream primer, p63NdeI_FW (CCA TCT TCA TAT GGT 

AAC AGC TCC CCA CCT C) and the downstream primer p63NcoI_RW (ATC ATC CAT 

GGA GTA ATG CTC AAT CAG ATA GA) containing the NcoI site and the substitution A->T 

that introduces the mutation. The mutated fragment was replaced in the TAp63α wild type 

sequence, digested with NdeI/NcoI to generated the TAp63αQ540L sequence and then cloned 

in pcDNA3. 

To create the plasmids encoding the p63 proteins under the control of the rtTA responsive promoter 

the cDNA fragments were extracted from pcDNA using Hind III and Xba I, blunted and cloned into 

the pBIG-βgal Not I site. The pTet-On, pTK-Hyg, and pBIG-βgal constructs were provided by 

Clontech. The Bp100CAT and p21WAF/CAT reporter plasmids have already been described 

(Calabrò et al. 2002; Ghioni et al. 2002).  

Plasmids. Raf1(BxB) encoding plasmid was kindly provided by Dr. A. Costanzo. Plasmid encoding 

carboxyterminal truncated p63 proteins, the ∆Np63αS383A and Thr397A point mutants and the 

∆Np63αS383T397A double mutant were produced using the GeneEditor in vitro Site-Directed 

Mutagenesis System (Promega) following the manufacturer’s instruction in the lab of Dr. Guerrini 

in Milan.  

 

 

Cells culture, transfection and reporter  assays. 

Human lung carcinoma H1299 cells (p53 null, no p63 expression) were obtained from 

American Tissue Culture Collection and grown at 37°C in humidified 5% CO2 in DMEM 

medium supplemented with 10% fetal calf serum. H1299 cells (5x104) were plated and 

transfected by calcium-phosphate precipitation with 20 µg of pTet-On plasmid (Clontech). 48 

hrs after transfection, cells were selected adding G418 (100 mg/ml) to the colture media. After 

4 weeks, single G418-resistant clones (H1299-rtTA) were picked up and expanded. The 

presence of the rtTA regulator in G418-resistant clones was checked performing a β-

galactosidase assay on H1299-rtTA cell extracts after transient transfection with the pBGI-βgal 

empty construct with or without doxycyline (Sigma-aldrich) addition (1 µg/ml).    

Tet-On/TAp63α, Tet-On/∆Np63α, Tet-On/TAp63Q540L cell lines were produced as follows:  

7 x 104 H1299-rtTA cells were co-transfected with each of the pBIG-p63 constructs and the pTK-

Hygro vector (20 to 1 rate) by calcium-phosphate precipitation. 24 hrs after transfection each 
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100mm plate was splitted (1:2) and cells were selected adding 800 µg/ml of hygromycin (Sigma-

Aldrich). After 4 weeks, single hygro-resistant clones were picked up, expanded and subjected to 

the analysis of p63 inducible gene expression by Western blot and specific immunodetection. p63 

stable clones were maintained in DMEM medium supplemented with 10% Tet-Approved serum 

(Hyclone). CAT assays with the WAFCAT or BP100CAT reporter plasmids were performed as 

previously described (Calabrò et al. 2004).  

The human osteosarcoma-derived Saos2 cells were maintained in RPMI 1640 medium and 10% 

fetal calf serum. HaCaT, Hela, and U20S cells were grown in Dulbecco’s modified Eagle medium 

supplemented with 10% fetal bovine serum (Euroclone) at 37°C in a humidified atmosphere of 5% 

(v/v) CO2 in air. Cells seeded at a density of about 70% confluence were transfected with the 

indicated amount of expression vector with LipofectAMINE reagent (Life Technologies. Inc.) for 

H1299 or LipofectAMINE 2000 for Saos2, HeLa, HaCaT and U2OS. The total amount of 

transfected DNA was kept constant by using the “empty” expression vector when necessary. P63 

half-life was determined by addition of 40 µg/ml cycloheximide (Sigma), 16 hours upon 

transfection. MG132, ALLNL, Bafilomycin, NH4Cl and Chloroquine treatments were performed 

the day after transfection with 10 and 20 µM MG132, 10 and 20 µM ALLN, 100 nM bafilomycin 

A, 20 mM NH4Cl, 100 µM chloroquine or solvent alone for 6 hours. Pharmacological inhibition of 

serine/threonine kinases was obtained by adding 25 and 50µM PD98059 (Calbiochem), 25 and 

50µM SB203580 (Calbiochem), 5 and 10 µM GW5074 ( Calbiochem).  

 

 

CAT assay 

H1299 were transiently transfected with 2µg of p21/WAF-CAT reporter plasmid/dish alone or with 

different amounts of each p63 expressing plasmid ( 1, 2 or 3 µg). Cells were collected 48h after 

transfection; equal amounts of cell extracts ( 50µg), determined  by the Bradford method ( BioRad), 

were assayed for CAT activity using 0,1mCi of [14C] chloramphenicol and 4mM acetyl-CoA. 

Separeted products were detected and quantified by Phosphorimager and Quantity One software. 
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Growth rate analysis 

To determine the rate of cell growth, approximately 6 x 104 cells were seeded in 60 mm-

diameter plates in presence or absence of doxycycline (1µg/ml) for five days to regulate 

exogenous protein expression. Medium was replaced every 48 hrs. At the indicated time points, 

two plates were rinsed twice with PBS to remove dead cells and debris. Live cells on the plates 

were trypsinized and collected separately. Cells from each plate were counted three times using 

a Burker chamber. The average number of cells from two plates was used for determination of 

growth rate. 

 

 

DNA histogram analysis 

Cells were counted and seeded at 2 x 105/100mm plate with or without doxycycline (1µg/ml). 

At the indicated time points, live cells on the plates were trypsinized and both floating dead 

cells in the medium and trypsinized live were centrifuged and washed twice with PBS. 

Approximately 106 cells were incubated in 1 ml of 0.1% NaCitrato, 50 µg/ml propidium iodide  

(Sigma Chemical Co., St. Louis, MO, USA), 20 µg/ml RNase A and 0.1% Nonidet P-40. Cells 

were incubated for 40’ at RT in a dark box. Stained cells were analysed in a fluorescence-

activated cytometer (FACSCalibur-BD, Menlo Park, CA, USA) within 1 hr. Data on DNA cell-

content were acquired using the CellQuest program (Beckton-Dickinson) on 20000 total events 

at a rate of 150+/-50 events/second and the percentages of cells in the SubG1, G0-G1, S and 

G2-M phases were quantified with the ModFit software (Beckton-Dickinson). The percentage 

of dead cells/total cells was determined by the trypan blue dye staining. Briefly, aliquots of 

cells were mixed with an equal volume of 0.4% Trypan blue dye solution (Sigma Chemical 

Co., St. Louis, MO, USA) and incubated for 15’at RT. Stained (dead) and unstained (live) cells 

were counted using a hemocytometer and the percentage of dead cells/total cells was 

determined by scoring an average of over 300 cells, twice per plate. 

 

 

Subcellular immunolocalization assay  

Immunolocalization in Tet-On stable cell lines was performed on doxycycline (1µg/ml) induced or 

uninduced condition, 105cells/35mm plate were grown on micro cover glasses (BDH). 48 hrs after, 

cells were washed with cold phosphate-buffered saline (PBS) and fixed with 4% paraformaldehyde 

(Sigma-Aldrich), for 15’ at 4°C. For immunolocalization in Saos-2 cells, 5.0 x105 were plated in 35 
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mm dish and grown on micro cover glasses (BDH). At 24 hrs after induction or transfection with 

the indicated vectors, cells were washed with cold phosphate-buffered saline (PBS) and fixed with 

4% paraformaldehyde (Sigma) for 15 min at 4°C. Cells were permeabilized with ice-cold 0.1% 

Triton X-100 for 10 min and then washed with PBS. P63 or Dlx3 subcellular localization were 

determined by using a 1:200 dilution of a monoclonal antibody against p63 ( 4A4) or an anti-FLAG 

monoclonal antibody against Dlx3-Flag ( Sigma) diluted 1:2000. After extensive washing in PBS, 

the samples were incubated with a Cy3-conjugated anti-mouse immunoglobulin G 

(ImmunoResearch Laboratory) at room temperature for 30 min. After PBS washing, the cells were 

incubated with DAPI (4’,6’-diamidino-2-phenylindole; 10 mg/ml [Sigma-Aldrich]) for 3 min. After 

PBS washing, the glasses were mounted with Mowiol (Sigma-Aldrich) and examined under a 

fluorescence microscope (Nikon). Images were digitally processed by Adobe Photoshop software. 

After a rinse with PBS, fixed cells were permeabilized with ice-cold 0.1% Triton X-100 for 10 

min and rinsed again with PBS. Cells were than incubated with DAPI (4,6-diamidino-2-

phenylindole; 10mg/ml Sigma-Aldrich) for 3 min, and washed again with PBS. Finally, the 

glasses were mounted with Moviol (Sigma-Aldrich) and cells examined under a fluorescence 

microscope (Nikon). To detect p63 protein the H137 (Santa Cruz) and the CyTM 3-conjugated 

anti-rabbit IgG  (ImmunoResearch Laboratories) antibodies were used, at room temperature for 

30 min. Images were digitally processed using Adobe Photoshop software.  

 
Western immunoblot analysis 

At the indicated time after transfection cells were lysed in 10 mMTris-HCl (pH 7.5), 1 mM 

EDTA, 150 mM NaCl, 0,5% NP-40, 1 mM dithiothreitol, 1 mM phenylmethylsulfonyl fluoride, 

0.5% sodium deoxycholate, and protease inhibitors. Cell lysates were incubated on ice for 30 

min, and the extracts were centrifuged at 13,000 rpm for 10 min to remove cell debris. Protein 

concentrations were determined by the Bio-Rad protein assay. After the addition of 2x loading 

buffer (2% sodium dodecyl sulfate [SDS], 30% glycerol, 300 mM 96-mercaptoethanol, 100 

mM Tris-HCl [pH 6.8]), the samples were incubated at 95°C for 5 min and resolved by SDS-

polyacrylamide gel electrophoresis. Proteins were transferred to a polyvinylidene difluoride 

membrane (Millipore) and probed with the following primary antibodies MDM2 (SC-965; 

Santa Cruz); p63 (H137; Santa Cruz); p63 (4A4; Santa Cruz); anti p21/WAF1 (Ab-11, CP74; 

Neomarkers), actin (1-19; Santa Cruz); anti-goat IgG/HRP (Santa Cruz); anti-mouse IgG/HRP 

(Amersham); anti-rabbit IgG/HRP (Bio-Rad), anti-FLAG M2 (Sigma), anti-p-ERK (Cell 

Signaling), anti-p38 (Cell Signaling), anti-pp38 (Cell Signaling), anti-pRaf1 ( Cell Signaling), 
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anti-ppRaf1(Cell Signaling). Proteins were visualized by an enhanced chemiluminescence 

method (Amersham).  

Coimmunoprecipitations were carried out in Saos2 cells and in 5.0 x105 cells were plated in 60 

mm dishes and transfected with the indicated vectors. Cells were harvested 24 hrs post-

transfection, and cell lysates were prepared as described above. One mg of whole cell extract 

was precleared with 30 µl of protein A-agarose (50% slurry; Roche) and then incubated 

overnight at 4°C with 2µg of anti-p63 (4A4; Santa Cruz) at 4oC o.n.. Immunocomplexes were 

collected by incubation with protein A-agarose (Roche) at 4 o C for 4 hrs. The beads were 

washed with Co-IP buffer (50 mM Tris-HCl pH 7.5; 150 mM NaCl; 5 mM EDTA; 0.5% NP40; 

10% glycerol), resuspended in 2X loading buffer (Sigma) and loaded in a SDS-10% 

polyacrylamide gel.  Proteins were then transferred onto a PVDF membrane (Millipore) and 

probed with the indicated primary antibodies. Proteins were visualized with an enhanced 

chemiluminescence detection system (Amersham).  

 
EMSA 

EMSA experiments were performed as already described (Parisi, Pollice et al., 2002). P63 

proteins were in vitro translated by using TnT reticulocytes from Promega with 0.5 µg of p63 

plasmid DNA. Next, 10 µl of the individual reactions was used either for the binding reaction 

or for Western blot analysis. The probe is a radiolabeled oligonucleotide duplex containing a 

p53-binding site present in the p21 promoter (p21.1 described in Westfall, Mays et al., 2003). A 

100-fold molar excess of the same cold oligonucleotide or an oligonucleotide containing a 

consensus binding site for E2F1 was used for competition experiments. For the supershift anti-

p63 antibodies (4A4; SantaCruz) or unrelated polyclonal anti-p21 antibodies (C-19; SantaCruz) 

were used, adding them to the sample prior to the binding reaction (30 min in ice). 

 

Microarray sample preparation.  

Total RNA (ttlRNA) was extracted and purified from stably transfected H1299 cell lines using 

the Concert Cytoplasmic RNA Purification Reagent (Invitrogen, Carlsbad, CA) as suggested by 

the manufacturer. ttlRNAs were then quantified and inspected by Bioanalyzer (Agilent 

Technologies) analysis. cRNAs were generated and hybridized on 12 HGU133plus2 

Affymetrix DNA chips according to the Affymetrix protocol, ttlRNA (8 µg) was used for the 

preparation of double-stranded cDNA using the one cycle cDNA sysnthesis kit (Affymetrix, 

USA). The cDNA was then used as a template to synthesize a biotinylated cRNA (16 hrs, 

37°C) with the IVT kit (Affymetrix, USA). In vitro transcription products were purified with 
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the IVT cleanup module and approximately 35 µg of cRNA were treated with the 

fragmentation buffer (35 min at 94°C). Affymetrix 12 HGU133plus2 array chips were 

hybridized with biotinylated cRNA (20 µg/chip, 16 hrs, 45°C) using the hybridization buffer 

and control provided by the manufacturer (Affymetrix Inc.). GeneChip Fluidics station 400 

(Affymetrix Inc.) was used to wash and stain the arrays. The standard protocol suggested by the 

manufacturer was used to detect the hybridized biotinylated cRNA. The chips were then 

scanned with a specific scanner (Affymetrix Inc.) to generate digitized image data (DAT) files. 

 

 

 

Microarray data analysis. 

DAT files generated for the four prototypic situations under analysis (TAp63α wt without 

induction, TAp63α wt with induction, TAp63αQ540L without induction, TAp63αQ540L with 

induction) were analyzed by GCOS (Affymetrix, USA) to generate background-normalized 

image data (CEL files). The presence of hybridization/construction artefacts was evaluated with 

the fitPLM function (Bioconductor package affyPLM). The probes (PM) intensity distribution 

was evaluated using hist function (Bioconductor package affy). Only an array from the 

TAp63αQ540L with induction group was found characterized by a narrow distribution of the 

probe (PM) intensities and was discarded. 

Probe set intensities were obtained by means of GCRMA, robust multiarray analysis method 

(Wu, Z and Irizarry, RA, Stochastic Models Inspired by Hybridization Theory for Short 

Oligonucleotide Arrays Proceedings of RECOMB 2004 

http://www.biostat.jhsph.edu/~ririzarr/papers/p177-irizarry.pdf). The full data set was 

normalized according to quantiles method (Bolstad, Irizarry et al. 2003). The hug133plus2 

54675 probe sets were filtered to have an interquantile range (IQR) for each probe set greater 

then 0.25 (A. von Heydebreck, W. Huber, and R. Gentleman Differential Expression with the 

Bioconductor Project, In Bioconductor projects working papers June 18, 2004). This filtering 

yielded 11857. Subsequently, “Significant analysis of microarrays” (SAM) software (Tusher, 

Tibshirani et al. 2001) was used to identify probe sets differentially expressed between wt and 

mutant p63 isoforms. The identification of differentially expressed probe sets was initially done 

using the multi class method (900 permutations, 50 false significants). This test requires one 

user-set parameter: a threshold value that can be adjusted to maximize the number of 

significant genes while minimizing the predicted false discovery rate. This analysis produced a 

total of 4000 differentially expressed probe sets. Subsequently, probe sets were filtered in order 
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to select only those characterized by a fold change≥|2| between not induced and induced cell 

lines in wt or mutant experiments. This filtering yielded a total of 100 probe set ids (Additional 

information table A). 87 out of 100 probe sets were associated to 81 Entrez Gene identifiers 

(gene ID; Maglott D, Ostell J, Pruitt KD, Tatusova T. Entrez Gene: gene-centered information 

at NCBI. Nucleic Acids Res. 2005, 33 Database Issue:D54-8.) and the remaining 13 

Affymetrix ids were not assigned to any gene ID. The IQR filtered data set was also analysed 

using the SAM two class unpaired method (Tusher, Tibshirani et al. 2001), to highlight probe 

set transactivated only by the wt or mutant isoforms. This test requires two user-set parameters: 

a minimal fold change value and a threshold value that can be adjusted to maximize the number 

of significant genes while minimizing the predicted false discovery rate. We conducted a 

blocked, two-class unpaired test using a 2-fold-change cut-off and a threshold allowing a false 

significant number about 1. This analysis produced a total of 18 differentially expressed probe 

sets for TAp63α wt (16 up-modulated and 2 down-modulated) and a total of 7 probe sets for 

the Q540L mutant isoform (1 up-modulated and 6 down-modulated) (Fig. 1, additional 

information table B). Probe sets found differentially expressed using the two class unpaired 

method were all included in set identified as differentially expressed with the multi class 

method. Since a certain amount of leaking of the tet-ON system was observed in our 

experiments (data not shown), it is possible that differential expression between not induced 

and induced cell lines might be under-estimated. Therefore, a two class unpaired test (2-fold-

change cut-off and false significant number about 1) between induced wt and mutant cell lines 

was also performed. The differentially expressed probe set were 441 (Additional information 

table C).  

To generate a robust set of differentially expressed genes to be further investigated the 

intersection between the 100 probe sets derived from the multi class analysis and the 441 probe 

sets derived by the two class analysis was selected. This intersection contains 45 probe sets 

linked to 36 annotated genes and 7 unmapped est  (fig. 3).  

The search of over expressed geneontology Biological Process themes was performed using 

Bioconductor GOstats package (Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, 

Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry 

R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang 

JY, Zhang J. Bioconductor: open software development for computational biology and 

bioinformatics. Genome Biol. 2004;5:R80.). Gene annotation was performed using 

Bioconductor annaffy library and hgu133plus2 annotation package (version 1.6.8). 
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Real-time RT quantitative PCR expression validation: 

Total RNA was reverse transcribed to cDNA with the Omniscript RT Kit following the 

manufacturer’s instructions (QIAGEN GmbH, Hilden, Germany, EUROPE). The primer 

sequences are shown in Table II. Primers were designed using the sequence identified by the 

Affymetrix identifier and Primer Express 2.0 software (Applied Biosystems, Foster City, CA, 

USA). Real-time quantitative PCR, 20 ul contained 2 ul of the cDNA, 1X SYBR GREEN PCR 

Master Mix (PE Applied Biosystems, Foster City, CA, USA) and 150 mM of each primers 

were performed with an ABI PRISM 7900HT Sequence Detection System using the following 

cycle conditions: 50°C for 2 min , 95°C for 10 min. , and 95°C for 15 s followed by 60°C for 1 

min 40 cycles. 384 plates were assembled by QIAGEN 8000 BIOROBOT (QIAGEN GmbH, 

Hilden, Germany, EUROPE). Negative cDNA controls (no cDNA) were cycled in parallel with 

each run. Fluorescence data were analyzed by the SDS 2.1 software (Applied Biosystems, 

Foster City, CA, USA) and expressing as Ct, the number of cycles needed to generate a 

fluorescent signal above a predefined threshold. Target gene mRNA levels were expressed as 2-

DCt, normalized for ACTB and POL2B, and fold changes were evaluate as 2-DDCt using as 

calibrator the non induced corresponding cell line, according to Livak and Schmittgen. (Livak 

and Schmittgen 2001). 

 

Formaldehyde Cross-linking and Chromatin Immunoprecipitation. 

H1299 ( 1x106 in 100mm) cell line were transfected with 5µg of  TAp63α encoding plasmid or 

5µg of pcDNA3-p53, alone or togheter with 5µg  HA-p14ARF expression plasmid. For ChIP 

assay with p63α wild type and mutant Q540L, H1299 cell line ( 1x106 in 100mm) were 

transfected with 5µg TAp63α encoding plasmid or 5µg of TAp63αQ540Lexpression plasmid. 

24 hours after transfection DNA and proteins were cross-linked by the addition of 

formaldehyde ( 1% final concentration) 10 min at RT before harvesting, and cross-linking was 

stopped by the addition of glycine pH 2.5 ( 125µM final concentration) for 5 min at RT. Cells 

were scraped off the plates, resuspended in hypotonic buffer for 5min in ice. Nuclei were spun 

down, resuspended in 400µl of SDS lysis buffer ( 1% SDS, 10mM EDTA, 50mM Tris-HCl 

pH8, and a protease-inhibitor mixture), ans sonicated to generate 500-2000 bp fragments. After 

centrifugation, the cleared supernatant was diluited 10-fold with immunoprecipitation buffer (  

50mM Tris-HCl pH8, 150mM NaCl, 5mM EDTA, 0,5% Nonidet P-40). The cell lysate was 

precleared by incubation at 4 °C with 20µl of protein-A beads preadsorbed with Salmon 

Sperma-DNA. The  cleared lysate were incubated overnightwith anti-p63 4A4 antibody ( Santa 

Cruz)  anti-p53 DO1 or without any antibody. Immunocomplex were precipitated with 30µl of 

 100



protein A beads preadsorbed with salmon sperma sonicated DNA. After centrifugation the 

beads were washed and the antigen was elueted with 2% SDS in Tris EDTA. DNA-protein 

cross-links were reversed by heating at 65 °C ON, and DNA was phenol-extracted and ethanol-

precipitated. Fragmented DNA was analyzed with the following primers : 

 p21/WAF: (F) 5’ CGTGGTGGTGGTGAGCTAGA          (R)  5’  CTGTCTGCACCTTCGCTCCT ,  

JAG 2      : ( F) 5’ CAAGTGGTGAACAAGGGAGACT    (R) 5’ ACTGCTGCCTTCTGGAAACTC 

Dlx3         : (F) 5’ AGAGAGGCGGAAGAGACGAG        (R)  5’ GAGGAGGGAGGAGAGAAGGA       

IKK          :(F)  5’ GCAGGAGTCATGGGAGAAAA         (R)  5’ TTTATTTGAAGCAAAGGGAGA 

 

 

 

Decay Rate Analysis 

 Saos2 cells (2.5 x105 in 35 mm) were transfected with ∆Np63α expression vector (0,2 µg) alone or 

along with pcDNA Dlx3-Flag (1µg). 18 hrs after transfection, cycloheximide (Sigma) was added to 

the medium at a final concentration of 40 µg/ml. Cells were harvested at the indicated time points. 

Total cell extracts were prepared as described above. 10 µg of cell extract was subjected to Western 

Blot and probed with anti-p63 and anti-FLAG antibodies and, as control, with anti-actin as a 

control. 

 

 

RT-PCR  

Saos-2 cells were transfected with a fixed amount of ∆Np63α expression vector 0.2 µg alone or 

with increasing amount of pcDNA Dlx3-Flag 1 and 1.5 µg. Total RNA was isolated using the RNA 

Extraction Kit (Quiagen). 1µg of total RNA was used to generate cDNA from each sample using 

one-step RT-PCR Kit (InVitrogen). Reverse-transcripts were amplified with the following p63 

specifi-primers primers:   

(F) 5’CCACAGTACACGAACCTGGGG                                  (R) 5’ CCGGGTAATCTGTGTTGGAG 

As an internal loading control we amplified a region from HPRT gene using the following primers: 

(F)  5’ CCTGCTGGATTACATTAAAGC                                  (R) 5’ CTTCGTGGGGTCCTTTTC 

PCR products were resolved by 2% agarose electrophoresis. RT-PCR amplification results were 

analyzed by Quantity One software ( Biorad). 
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Report  

The Hay Wells Syndrome-Derived TAp63αQ540L Mutant Has Impaired
Transcriptional and Cell Growth Regulatory Activity

ABSTRACT
p63 mutations have been associated with several human hereditary disorders charac-

terized by ectodermal dysplasia such as EEC (ectrodactyly, ectodermal dysplasia, clefting)
syndrome, ADULT (acro, dermato, ungual, lacrimal, tooth) syndrome and AEC (ankyloble-
pharon, ectodermal dysplasia, clefting) syndrome (also called Hay-Wells syndrome). The
location and functional effects of the mutations that underlie these syndromes reveal a
striking genotype-phenotype correlation. Unlike EEC and ADULT that result from missense
mutations in the DNA-binding domain of p63, AEC is solely caused by missense mutations
in the SAM domain of p63. In this paper we report a study on the TAp63α isoform, the
first to be expressed during development of the embryonic epithelia, and on its naturally
occurring Q540L mutant derived from an AEC patient. To assess the effects of the Q540L
mutation, we generated stable cell lines expressing TAp63α wt, ∆Np63α or the TAp63α-
Q540L mutant protein and used them to systematically compare the cell growth regulatory
activity of the mutant and wt p63 proteins and to generate, by microarray analysis, a
comprehensive profile of differential gene expression. We found that the Q540L substitution
impairs the transcriptional activity of TAp63α and causes misregulation of genes involved
in the control of cell growth and epidermal differentiation.

INTRODUCTION
The p63 protein is a transcription factor homolog of the p53 tumor suppressor. Unlike

p53, p63 functions primarily in epidermal-mesenchymal development during embryoge-
nesis. Mice in which p63 was inactivated displayed a fundamental defect in epithelial
lineage development and failed to develop stratified epithelia and epithelial appendages,
such as teeth, hair follicles and mammary glands.1,2 The role of p63 in the development
and differentiation of stratified epithelia, remains controversial. Indeed, recent studies
indicate that p63 may act as a molecular switch required for initiation of epithelial strati-
fication, or for maintaining the proliferative potential of basal keratinocytes in the mature
epidermis.3-5 It also seems to play a substantial role in the induction of apoptosis and
chemosensitivity.6-8

The p63 gene displays a high sequence and structural homology to p53.9 Like p53, the
p63 protein contains a transcriptional activator domain (TA) to induce transcription of
target genes, a DNA-binding (DB) domain and an oligomerization domain (OD), used
to form tetramers.10 In contrast to p53, multiple protein products are produced by the
p63 gene. Two promoters are present at the 5' end of the gene. The first produces TA-p63
proteins, while transcription from the second creates ∆N-p63 products lacking the
aminoterminal TA domain. In addition three alternative splicing routes at the 3' end gen-
erate proteins with different C-termini, denoted α, β and γ. The TA and ∆Np63α isoforms
alone contain a Sterile Alpha Motif (SAM) domain absent in p53: this is the most remarkable
structural difference between p63 and p53. This domain is a 65–70 amino acid residue
sequence found in many proteins, from yeast to human, whose functions range from signal
transduction to transcriptional repression.11 It is a protein-protein interaction domain also
found in p73, another member of the p53 gene family, as well as in other developmentally
important proteins, such as several Eph receptor tyrosine kinases.12 Recent studies have
identified a transcriptional inhibitory (TI) domain located between the SAM domain and
the C-terminus of p63α isoforms that is believed to be responsible for the lack of transac-
tivation ability of TAα compared to TAβ and γ on several different p53 target promoters.13

The analysis of the functions of the multiple p63 isotypes are complicated by the existence
of several mechanisms regulating their expression levels. Such mechanisms are still under
investigation.14-19
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A broad spectrum of mutations found in several ectodermal,
craniofacial and limb syndromes, namely EEC (ectrodactyly,
ectodermal dysplasia, clefting), AEC (ankyloblepharon, ectodermal
dysplasia, clefting), LMS (limb-mammary syndrome), ADULT
(acro-dermato-ungual-lacrimal-tooth) and SHFM (split-hand/split-foot
malformation) have been mapped in distinct p63 domains.20

The location of mutations in the p63 protein domains and their
functional implications reveal a striking genotype-phenotype corre-
lation: EEC and ADULT result from missense mutations in the DB
domain and SHFM from mutations in either the DB or the C-ter-
minal domain,21 whereas AEC is solely caused by missense mutations
in the SAM domain. Unlike the other ectodermal dysplasia syndromes,
AEC does not comprise ectrodactyly or other major limb defects,
but has ankyloblepharon and severe scalp dermatitis as its distin-
guishing features.22

A p63 SAM-domain model structure has been used to divide the
naturally occurring AEC mutations into in two groups. The first
(L518V, I541T, C526W) includes mutations in amino acids that are
predicted to be buried inside the protein and are believed to affect
its overall structure and stability. The second (G534V, T537P and
Q540L), whose direct effect on the protein is less obvious, contains
all the other amino acids that have a larger solvent accessible surface
and are not predicted to cause gross conformational changes.22 These
AEC mutations may disrupt the structural integrity of the SAM
domain or interfere with particular protein-protein interactions.12

They have, in fact, already been shown to disrupt the interaction of
p63 with the Apobec-1 binding protein-1(ABPP1)23 and thus alter
the splicing mechanism of fibroblast growth factor receptor-2,
FGFR2.11

Here, we report data from a study on the TAp63α isoform, which
is the first to be expressed during the development of embryonic
epithelia,3 and on the AEC-derived TAp63αQ540L (1607 A to T)
mutant protein. This was described by Hay and Wells in their case
no. 5.24 It is located within exon 13 and is predicted do not destroy
the overall structure of the SAM domain.22

To study the effects of the Q540L mutation on p63 functions we
generated stable cell lines that express wild-type (wt) TAp63α,
∆Np63α or the TAp63αQ540L mutant under the control of a
TET-inducible promoter and used them to compare the effects of
the mutant and wt p63 proteins on cell proliferation and generate,
by microarray analysis, a comprehensive profile of differential gene
expression. We found that the Q540L substitution affects the tran-
scriptional activity of TAp63α and causes misregulation of genes
involved in the control of cell growth and epidermal differentiation.

MATERIALS AND METHODS
Plasmids. Wt p63α in pcDNA3-His expression vector has been

described.15 Mutation Q540L was created by PCR, using the NdeI site-
containing upstream primer, p63NdeI_FW (CCA TCT TCA TAT GGT
AAC AGC TCC CCA CCT C) and the downstream primer p63NcoI_RW
(ATC ATC CAT GGA GTA ATG CTC AAT CAG ATA GA) containing
the NcoI site and the substitution A → T that introduces the mutation. The
mutated fragment was replaced in the TAp63α wt sequence,15 digested with
NdeI/NcoI to generate the TAp63αQ540L sequence and then cloned in
pcDNA3.

To create the plasmids encoding the p63 proteins under the control of
the rtTA responsive promoter, the cDNA fragments were extracted from
pcDNA using Hind III and Xba I, blunted and cloned into the pBIG-βgal
Not I site. The pTet-On, pTK-Hyg, and pBIG-βgal constructs were provided
by Clontech. The Bp100CAT and p21/WAF/CAT reporter plasmids have
already been described.15,25

Cells, transfection and reporter assays. Human lung carcinoma H1299
cells (p53 null, no p63 expression) were obtained from the American Tissue
Culture Collection and grown at 37˚C in humidified 5% CO2 in DMEM
supplemented with 10% fetal calf serum. H1299 cells (5 x 104) were plated
and transfected by calcium-phosphate precipitation with 20 µg of pTet-On
plasmid (Clontech). Fourty-eight hours later, the cells were selected by
adding G418 (100 µg/ml) to the medium. After four weeks, single
G418-resistant clones (H1299-rtTA) were picked up and expanded. The
presence of the rtTA regulator in these clones was checked by performing a
β-galactosidase assay on H1299-rtTA cell extracts after transient transfection
with the pBGI-βgal empty construct, with or without doxycycline (Sigma-
Aldrich) (1 µg/ml).

Tet-On/TAp63α, Tet-On/∆Np63β, Tet-On/TAp63αQ540L cell lines
were produced as follows:

7 x 104 H1299-rtTA cells were cotransfected with each of the pBIG-p63
constructs and the pTK-Hygro vector (20 to 1 rate) by calcium-phosphate
precipitation. Twenty-four hours later, each 100 mm plate was split (1:2)
and cells were selected by adding 800 µg/ml hygromycin (Sigma-Aldrich).
After 4 weeks, single hygro-resistant clones were picked up and expanded,
and their p63-inducible gene expression was determined by Western blot
and specific immunodetection. p63 stable clones were maintained in DMEM
supplemented with 10% Tet-Approved serum (Hyclone). CAT assays with
the WAFCAT or BP100CAT reporter plasmids were performed as previously
described.16

Growth rate determination. Approximately 6 x 104 cells were seeded in
60 mm-diameter plates in the presence or absence of doxycycline (1 µg/ml)
for five days to regulate exogenous protein expression. Medium was replaced
every 48 hrs. At the indicated time points, two plates were rinsed twice with
PBS to remove dead cells and debris. Live cells on the plates were trypsinized
and collected separately. Cells from each plate were counted three times in
a Burker chamber. The average number from two plates was used to deter-
mine the growth rate.

DNA histogram analysis. Cells were counted and seeded at 2 x 105/
100 mm plate with or without doxycycline (1 µg/ml). At the indicated time
points, live cells on the plates were trypsinized and both floating dead cells
in the medium and trypsinized live cells were centrifuged and washed twice
with PBS. Approximately 106 cells were incubated in 1 ml of 0.1% Na citrate,
50 µg/ml propidium iodide (Sigma Chemical Co., St. Louis, MO, USA),
20 µg/ml RNase A and 0.1% Nonidet P-40. Cells were incubated for 40' at
RT in a dark box. Stained cells were analysed in a fluorescence-activated
cytometer (FACSCalibur-BD, Menlo Park, CA, USA) within 1 hr. Data on
DNA cell-content were acquired with the CellQuest program (Beckton-
Dickinson) on 20,000 events at a rate of 150 ± 50 events/second and the
percentages of cells in the SubG1, G0–G1, S and G2–M phases were quan-
tified with the ModFit software (Beckton-Dickinson). The percentage of
dead cells/total cells was determined by trypan blue dye staining. Briefly,
aliquots of cells were mixed with an equal volume of 0.4% trypan blue dye
solution (Sigma Chemical Co., St. Louis, MO, USA) and incubated for 15'
at RT. Stained (dead) and unstained (live) cells were counted with a hemo-
cytometer and the percentage of dead cells/total cells was determined by
scoring an average of over 300 cells, twice per plate.

Subcellular immunolocalization assay. Immunolocalization was performed
on doxycycline (1 µg/ml) induced or uninduced Tet-On cells, 105 cells/ 35 mm
plate were grown on micro cover glasses (BDH). Fourty-eight hours later,
cells were washed with cold phosphate-buffered saline (PBS) and fixed with
4% paraformaldehyde (Sigma-Aldrich), for 15' at 4˚C. After a rinse with
PBS, fixed cells were permeabilized with ice-cold 0.1% Triton X-100 for 10'
and rinsed again with PBS. Cells were than incubated with DAPI
(4,6-diamidino-2-phenylindole; 10 mg/ml Sigma-Aldrich) for 3' and washed
again with PBS. Lastly, the glasses were mounted with Moviol (Sigma-
Aldrich) and cells were examined under a fluorescence microscope (Nikon).
To detect p63 protein the H137 (Santa Cruz) and the CyTM 3-conjugated
anti-rabbit IgG (ImmunoResearch Laboratories) antibodies were used at RT
for 30'. Images were digitally processed with Adobe Photoshop software.

Western immunoblot analysis. At the indicated time after transfection,
cells were lysed in 50 mM Tris-HCl pH 7.5, 150 mM NaCl, 0.5%
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Nonidet-P40, 10 mM glycerol, 5 mM EDTA, 0.5% NaDOC and 1 mM
PMSF. Proteins were separated on 8% SDS-PAGE and blotted onto PVDF
membrane. Filters were incubated with the following primary antibodies
MDM2 (SC-965; Santa Cruz); p63 (H137; Santa Cruz); p63 (4A4; Santa
Cruz); anti-p21/WAF1 (Ab-11, CP74; Neomarkers), actin (1-19; Santa Cruz);
anti-goat IgG/HRP (Santa Cruz); anti-mouse IgG/HRP (Amersham);
anti-rabbit IgG/HRP (Bio-Rad).

EMSA. EMSA experiments were performed as already described.26 P63
proteins were translated in vitro by using TnT reticulocytes from Promega
with 0.5 µg of p63 plasmid DNA. Next, 10 µl of the individual reactions
was used for the binding reaction and for Western blot analysis. The probe
is a radiolabeled oligonucleotide duplex containing a p53-binding site present
in the p21 promoter (p21.1 described in ref. 27). A 100-fold molar excess
of the same cold oligonucleotide or an oligonucleotide containing a consensus
binding site for E2F1 were used for competition experiments. For the super-
shift anti-p63 antibodies (4A4; SantaCruz) or unrelated polyclonal anti-p21
antibodies (C-19; SantaCruz) were added to the sample prior to the binding
reaction (30' in ice).

Microarray sample preparation. Total RNA (ttlRNA) was extracted and
purified from stably transfected H1299 cell lines with the Concert
Cytoplasmic RNA Purification Reagent (Invitrogen, Carlsbad, CA), as sug-
gested by the manufacturer. ttlRNAs were then quantified and inspected
with a Bioanalyzer (Agilent Technologies). cRNAs were generated and
hybridized on 12 HGU133plus2 Affymetrix DNA chips according to the
Affymetrix protocol, ttlRNA (8 µg) was used to prepare double-stranded
cDNA with the one-cycle cDNA synthesis kit (Affymetrix, USA). The
cDNA was then used as a template to synthesize a biotinylated cRNA (16 hr,
37˚C) with the IVT kit (Affymetrix, USA). In vitro transcription products
were purified with the IVT cleanup module and approximately 35 µg of
cRNA were treated with the fragmentation buffer (35' at 94˚C). Affymetrix
12 HGU133plus2 array chips were hybridized with biotinylated cRNA
(20 µg/chip, 16 hr, 45˚C using the hybridization buffer and control provided
by the manufacturer (Affymetrix Inc.). GeneChip Fluidics station 400
(Affymetrix Inc.) was used to wash and stain the arrays. The standard protocol

suggested by the manufacturer was used to detect the hybridized biotinylated
cRNA. The chips were then scanned with a specific scanner (Affymetrix
Inc.) to generate digitized image data (DAT) files.

Microarray data analysis. DAT files generated for the four prototypic
situations (TAp63α wt without induction, TAp63α wt with induction,
TAp63αQ540L without induction, TAp63αQ540L with induction) were
analyzed by GCOS (Affymetrix, USA) to generate background-normalized
image data (CEL files). The presence of hybridization/construction artifacts
was evaluated with the fitPLM function (Bioconductor package affyPLM).
The probes (PM) intensity distribution was evaluated using hist function
(Bioconductor package affy). Only one array from the TAp63αQ540L
with induction group was characterized by a narrow distribution of PM
intensities and was discarded.

Probe set intensities were obtained by means of GCRMA, a robust
multiarray analysis method (http://www.biostat.jhsph.edu/~ririzarr/papers/
p177-irizarry.pdf ).28 The full data set was normalized according to the
quantiles method.29 The HGU133plus2 54675 probe sets were filtered to
provide an interquantile range (IQR) for each probe set greater then 0.25.30

This filtering yielded 11857. Subsequently, “Significant analysis of microar-
rays” software (SAM-software)31 was used to identify probe sets differentially
expressed between wt and mutant p63 isoforms. Differentially expressed
probe sets were initially identified with the multi class method (900 permu-
tations, 50 false significants). This test requires one user-set parameter: a
threshold value that can be adjusted to maximize the number of significant
genes while minimizing the predicted false discovery rate. This analysis
produced 4000 differentially expressed probe sets, which were then filtered
to select those characterized by a fold change ≥ |2| between not-induced and
induced cell lines in wt or mutant experiments. This filtering yielded 100
probe set ids (Additional information Table A): 87 were associated with 81
Entrez Gene identifiers (gene ID)32 and the remaining 13 probe sets were
not assigned to any gene ID. The IQR filtered data set was also analysed
with two-class unpaired method, implemented in the SAM-software,31 to
highlight probe sets transactivated only by the wt or mutant isoforms. This
test requires two user-set parameters: a minimal fold change value and a
threshold value that can be adjusted to maximize the number of significant
genes while minimizing the predicted false discovery rate. We conducted a
blocked, two-class unpaired test using a 2-fold-change cut-off and a threshold
allowing a false significant number of about 1. This analysis produced 18
differentially expressed probe sets for TAp63α wt (16 upmodulated and 2
downmodulated) and 7 probe sets for the Q540L mutant isoform (1
upmodulated and 6 downmodulated) (Fig. 1, additional information Table B).
All these 18 probe sets included in sets identified as differentially expressed
with the multi class method. Since a certain amount of leaking, at tran-
scriptional level, of the tet-ON system was observed in our experiments
(data not shown), differential expression between not-induced and induced
cell lines could have been underestimated. Therefore, a two-class unpaired
test (2-fold-change cut-off and false significant number about 1) between
induced wt and mutant cell lines was also performed. The differentially
expressed probe sets were 441 (Additional information Table C).

To generate a robust set of differentially expressed genes for further
investigation, the intersection between the 100 probe sets derived from the
multi class test and the 441 from the two-class test was selected. This inter-
section contains 45 probe sets linked to 36 annotated genes and 7 unmapped
est (Fig. 3).

Overexpressed Gene Ontology Biological Process themes were searched
with the Bioconductor GOstats package.33 Gene annotation was performed
by using the Bioconductor annaffy library and the HGU133plus2 annotation
package (version 1.6.8).

Real-time RT quantitative PCR (qPCR) expression validation. Total
RNA was reverse transcribed to cDNA with the Omniscript RT Kit following
the manufacturer’s instructions (QIAGEN GmbH, Hilden, Germany,
EUROPE). The primer sequences are shown in Table 1. Primers were
designed by using the sequence identified by the Affymetrix identifier and
Primer Express 2.0 software (Applied Biosystems, Foster City, CA, USA).
Real-time quantitative PCR, 20 µl contained 2 µl of the cDNA, 1X SYBR
GREEN PCR Master Mix (PE Applied Biosystems, Foster City, CA, USA)
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Figure 1. Expression of p63 isoforms in H1299 stable clones. Western blot
analysis for detection of the p63 protein expression levels in Dox-inducible
H1299 cells. Cells were harvested at the indicated time points after induc-
tion with 1 µg/ml doxycycline. Equal amounts of soluble lysates (30 µg)
from uninduced and induced clones expressing wild-type TAp63α, ∆Np63α
or the mutant TAp63αQ540L protein were evaluated for p63 protein levels
by Western blotting using an anti-p63 antibody (4A4; Santa Cruz
Biotechnology).
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and 150 µM of each primer were performed with an ABI PRISM 7900HT
Sequence Detection System in the following cycle conditions: 50°C for 2
min, 95°C for 10 min., and 95˚C for 15 s followed by 60°C for 1 min 40
cycles. 384 plates were assembled by QIAGEN 8000 BIOROBOT (QIA-
GEN GmbH, Hilden, Germany, EUROPE). Negative cDNA controls (no
cDNA) were cycled in parallel with each run. Fluorescence data were analyzed
with the SDS 2.1 software (Applied Biosystems, Foster City, CA, USA) and
expressed as Ct, the number of cycles needed to generate a fluorescent signal
above a predefined threshold. Target gene mRNA levels were expressed as
2-∆Ct, normalized for ACTB and POL2B, and fold changes were evaluates
as 2-∆∆Ct with the corresponding noninduced cell line as the calibrator
according to Livak and Schmittgen.34

Additional informations. Probe sets intensities and additional information
tables are available at http://www.bioinformatica.unito.it/bioinformatics/p63.

RESULTS
Production of TAp63α, TAp63αQ540L and ∆∆Np63α stable cell lines.

To investigate the effects of the Q540L mutation on p63 protein functions,
we generated stable H1299 cell lines, expressing TAp63α, ∆Np63α or
TAp63αQ540L, under a tetracycline/doxycycline (Dox)-inducible promoter
(see materials and methods). H1299 cells are p53 negative and show no
detectable levels of p63 and/or p73 (and data not shown).35

We first analysed by Western blot the timing and level of expression of
TAp63α wt, TAp63αQ540L and ∆Np63α proteins in our clones upon Dox
induction. Results from representative cell lines for TAp63α wt,
TAp63αQ540L and ∆Np63α are shown in Figure 1. Without Dox in the

medium, p63 proteins were undetectable. Addition of 1 µg/ml Dox led to
time-dependent induction of p63 proteins (Fig. 1). At 24 hrs of induction,
p63 proteins were already abundant and their expression levels were com-
parable as shown by immunodetection of actin as a loading control (data not
shown).

TAp63αQ540L is unable to induce a G1 cell cycle arrest. We first
decided to test the effects of wt TAp63α, ∆Np63α and mutant TAp63α-
Q540L protein on H1299 cell proliferation. TA and ∆Np63α were already
known to induce H1299 cell cycle arrest and apoptosis, though to a different
extent.35 According to these data, H1299 cells, expressing wt TAp63α or
∆Np63α showed a reduction of cell growth rate while non-induced cells
grew normally (Fig. 2A and B). The cell growth profile was completely
unaffected by TAp63αQ540L expression (Fig. 2C). The trypan blue dye
exclusion assay showed that TAp63α expression induced 9.2% of cell death
and ∆Np63α 3.4 % 72 hr after induction, whereas TAp63αQ540L had
completely lost this ability (Fig. 2D). Our p63-inducible clones were then
examined by flow cytometry. In a Dox-free culture medium, the three p63
stable cell lines and the parental H1299 cell lines maintained a similar cell
cycle phase distribution of DNA content (Fig. 2E and data not shown). At
48 hr, addition of 1 µg/ml of Dox resulted in G1 cell cycle arrest by both wt
TA and ∆Np63α with a parallel reduction in S and G2/M phases and a
significant increase of sub-G1 events (Fig. 2E). In contrast, when the
TAp63αQ540L mutant was induced, the percentage of cells in G1 phase
was unaffected and a slight increase in S phase with a corresponding decrease
in G2-M phase was observed (Fig. 2E).

Microarray and expression analysis. The finding that wt TAp63α inhibits
cell proliferation and induces cell death, whereas the TAp63αQ540L mutant

Figure 2. The Q540L amino acid substitution impairs the ability of wild-type TAp63α to induce a G1 cell cycle arrest and cell death. Cell growth profiles of
TAp63α (A), ∆Np63α (B) and TAp63αQ540L (C) stable cell lines under induced (+ Dox) or uninduced (- Dox) conditions. The growth rate was measured
as described in Materials and methods. (D) TAp63α, ∆Np63α and TAp63αQ540L stable clones, induced (+ Dox) or uninduced (- Dox) to express the respective
p63 proteins for 3 days, were analysed for the percentage of dead cells (blue cells/total cells) by trypan blue dye staining, as described in Materials and
methods. (E) DNA content distribution of TAp63α, ∆Np63α and TAp63αQ540L cells, expressing (+ Dox) or not (- Dox) the respective p63 proteins, analysed
for DNA content by propidium iodide staining of fixed cells. Data are the mean of three independent experiments. Standard deviations are also indicated.
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lacks these capabilities prompted us to generate a comprehensive profile of
differential gene expression by microarray analysis. Four prototypic situations
were evaluated: (a) TAp63α wt without induction (b) TAp63α wt with
induction (c) TAp63αQ540L without induction (d) TAp63αQ540L with
induction. The quality of the ttlRNA extracted from H1299 stable clones
was assayed by Bioanalyzer (Agilent). Three biological replicas generated for
all four situations were used to synthesize biotinylated cRNAs for hybridiza-
tion on 12 HGU133plus2 arrays containing 54675 probesets. Microarray
data show that there is a clear upmodulation of the wt and mutant p63α
proteins upon induction with doxycycline (Fig. 3, additional tables A and
B). Upmodulation of p63α was also confirmed by qPCR (data not shown).
A total of 45 probe set ids (Fig. 3) were identified as differentially expressed
and associated with 36 gene ids, whereas the other 7 have not been assigned.

QPCR validation was done for 11 out of 36 genes. Seven (Fig. 3, Y label)
showed a perfect overlap between microarray and qPCR data, both qualita-
tively and quantitatively (i.e., same trend and similar fold change variation),
three (Fig. 3, T label) were in agreement with microarray data, except that
the fold change variation was lower, and one (Fig. 3, N label) could not be
confirmed by qPCR.

A total of ten annotated genes transactivated upon induction of wt
TAp63α (Fig. 3D) did not respond to TAp63αQ540L. Four (GDF15,
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Table 1 Primers designed to validate microarray data 
by qPCR

ACTB_FW (Endogenous control) GAGTCCGGCCCCTCCAT
ACTB_RW (Endogenous control) GCAACTAAGTCATAGTCCGCCTAGA
ARX_FW CTCGGAGCGGCAGTGTTC
ARX_RW AAAAGAGCCTGCCGAATGC
BVES_FW GGCATCTCCAAATACATTGAAAGTC
BVES_RW CGTCTTGGTAACCTGAATTCTCTCT
CDKN1A_FW CAGCGACCTTCCTCATCCA
CDKN1A_RW GCTGCTAATCAAAGTGCAATGAA
CPM_FW TGGGATTCCAGAGTTCAAATACG
CPM_RW CAGCTCCCGCCCAACAG
CTCFL_FW TGTACTTTTTCATAATGCCCAGTGA
CTCFL_RW GAGGGTGGAAAAATCTTGTCAACT
FDXR_FW TGGATGTGCCAGGCCTCTAC
FDXR_RW TGGTTGTGGCTATGACACCTGTA
FGF5_FW GCCCAGAATCAGCCCTACAA
FGF5_RW GGAGGAAGGACAAGCTCATTCTT
GDF15_FW AAACATGCACGCGCAGATC
GDF15_RW CGGTCTTTTGAATGAGCACCAT
MDM2_FW ACCACCTCACAGATTCCAGCTT
MDM2_RW GCACCAACAGACTTTAATAACTTCAAA
PMAIP1_FW TGAACTTCCGGCAGAAACTTC
PMAIP1_RW GTTTTTGATGCAGTCAGGTTCCT
POLR2B_FW (Endogenous control) CCTGATCATAACCAGTCCCCTAGA
POLR2B_RW (Endogenous control) GTAAACTCCCATAGCCTGCTTACC
PTP4A1_FW CCCTAGCATTAATTGAAGGTGGAA
PTP4A1_RW CACGCCGCTTTTGTCTTATG

Figure 3. Microarray data clustering. Hierarchical clustering, (parameters:
Euclidean distance, average linkage clustering) was performed on average
log2 fold change variation between induced and not-induced TAp63α wt
and Q540L mutant stably transfected cell lines. (A) refers to genes which are
not significantly modulated upon induction of TAp63α wt and are instead
downmodulated by TAp63αQ540L expression. (B) includes only one gene
which is downmodulated by TAp63α wt expression and not significantly
modulated by TAp63αQ540L. (C) encloses genes not significantly modulated
upon induction of TAp63α wt, but upmodulated by TAp63αQ540L. (D)
refers to genes transactivated by TAp63α wt and characterized by a loss of
regulation by TAp63αQ540L.

                                        



CDKNIA/p21/WAF, MDM2, ARX) were
selected for qPCR to determine their responsive-
ness to TAp63α, ∆Np63α and TAp63αQ540L
(Fig. 4). GDF15 and CDKNIA-p21/WAF were
significantly transactivated by TAp63α only.
GDF15 was already activated at 12 hr of induc-
tion (Fig. 4A) and p21/WAF after 24 hr (Fig. 4B).
MDM2 and ARX were similarly transactivated
by wt TA and ∆Np63α (Fig. 4C and D), but none
of these four genes were modulated by TAp63α-
Q540L (Fig. 4A and D).

We also compared the transactivation poten-
tial of TAp63α, ∆Np63α and TAp63αQ540L
protein by CAT reporter assay in H1299 cells. A
fixed amount of p21/WAF promoter-CAT
construct was transiently transfected along with
increasing amounts of plasmids encoding p63α
proteins. As shown in Figure 5A, the Q540L
mutation strongly affects the ability of TAp63α
to induce the p21/WAF gene promoter, whereas
∆Np63α is a mild activator. Western blot analysis
of the protein lysates used in this assay demon-
strated that the mutant protein was expressed at
equal, if not greater, levels than wt TAp63α
These results suggest that the difference in activity
between wt and mutated TAp63α protein was
not due to differences in protein expression (data
not shown).

The microarray data showed no increase of
p21/WAF and MDM2 endogenous proteins in
TAp63αQ540L stable cells upon induction
(Fig. 5B). Moreover, the higher the expression
of TAp63αQ540L protein in our stable clone,
the lower was the level of endogenous p21/WAF
and MDM2 proteins compared to noninduced
cells (Fig. 5B). On the other hand, both wt
TAp63α and ∆Np63α enhanced p21/WAF and
MDM2 protein levels, though to a different extent
(Fig. 5B). The same results were obtained when these
experiments were repeated on two additional inde-
pendent TAp63αQ540L stable clones isolated during
our screening (data not shown).
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Figure 5. TAp63αQ540L has lost the ability to activate
p21/WAF and MDM2 gene expression. (A) H1299
were transiently transfected with 2 µg of p21/WAF-
CAT reporter plasmid/dish alone or with different
amounts of each p63-expressing plasmid (1, 2 or 3 µg).
After 48 h, cells were harvested, and CAT activity was
determined. The basal activity of the reporter was set
at 1. The data are presented as fold induction relative
to the sample without effector (white bar). Each
histogram bar represents the mean of triplicate assays
from three independent experiments. Standard
deviations are also indicated. (B) Western blot analysis
showing expression of TAp63α wt, A p63αQ540L
and ∆Np63α proteins in stable clones at 48 h upon
induction with the indicated amounts of doxycycline.
The expression of endogenous MDM2 and p21/WAF
proteins was also evaluated by specific immunodetec-
tion. MDM2 and p21/WAF protein levels increase in
parallel with TAp63α and ∆Np63α induction, but
decrease upon TAp63αQ540L induction. β-Actin was
used as a protein loading control.

Figure 4. QPCR data related to four genes transactivated by TAp63α wt and characterized by a loss of
control by the Q540L mutant. Gene expression was analyzed at 12 and 24 hours upon addition of
doxycycline to ∆Np63α, TAp63α and TAp63αQ540L inducible cell lines. Target gene mRNA levels
were normalized for ACTB (white bars) and POL2 (black bars) and expressed as -∆∆Ct (i.e., not-induced
cell line—induced cell line Cts).
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TAp63α and ∆Np63α proteins are solely located in the nucleus where
they act as transcriptional factors.16 The lack of transcriptional activity of the
TAp63αQ540L protein may stem from its inability to relocalate in the
nucleus. Inspection of the subcellular location of wt TAp63α and
TAp63αQ540L in our stable clones, by immunofluorescence showed that
both proteins were uniformly distributed in the nucleus with nucleolar
sparing. Therefore the Q540L amino acid substitution does not alter
TAp63α subcellular distribution (data not shown).

TAp63αQ540L binds to p21 promoter sequences in vitro and vivo and
interacts with SP1. The absolute inability of TAp63αQ540L to transactivate
the p21/WAF promoter prompted us to find out whether it can still bind to
the p53-consensus sequence of the p21/WAF promoter. We thus compared
the DNA binding capacity of wt and mutant TAp63α isoforms by an in
vitro DNA-binding assay. A radiolabeled duplex oligonucleotide representing
a p53-binding site previously identified in the p21/WAF promoter was used
as target DNA.16 Incubation of this oligonucleotide with in vitro translated
TAp63α or TAp63αQ540L mutant led to the formation of specific protein-
DNA complexes (Fig. 6A, lanes 2 and 6). The specificity of the TAp63-
DNA complexes was tested by a competition experiment: a 100-fold cold
molar excess of the oligonucleotide completely abolished the binding, while
an irrelevant control oligonucleotide had no effect (Fig. 6, lanes 3 and 4; 7
and 8). The identity of the TAp63α-DNA complexes was confirmed by a
supershift experiment (Fig. 6A, lanes 5 and 9) in which the in vitro translated
TAp63α proteins was incubated, prior to the binding reaction, with an anti-
body recognizing the p63 DNA-binding domain. Western blot analysis
showed that the relative abundance of these proteins was comparable (data
not shown). These observations indicate that wt TAp63α specifically binds
to a p53 consensus sequence of the p21/WAF promoter and that the Q540L
mutation does not affect this binding, at least in this in vitro assay.

The promoter of the human p21/WAF gene is characterized by a set of
six proximal Sp1 binding sites located in the proximal region (nucleotides
-120 to -40) and two distal p53 binding sites. These proximal sites have
been shown to be essential for the activation of p21/WAF promoter by
p53.36 Concerning the MDM2 gene promoter, a series of five consecutive
nnGGGGC repeats, bearing similarity to the Sp1 consensus, have been
identified (nucleotides -415 to -318). These conserved GC elements contribute
to the basal activity of the p53-inducible MDM2 promoter.37 Since it has
previously been reported that the γ isoform of TAp63α directly interacts

with Sp1, we decided to determine whether TAp63α is also able to interact
with Sp1 and, if so, the effect of the Q540L substitution. We performed
coimmunoprecipitation experiments in TAp63α and TAp63αQ540L
expressing cell lines, both Dox-induced and not. As shown in Figure 6B,
both wt and mutant TAp63α proteins were immunoprecipitated by a Sp1
polyclonal antibody. Reciprocal immunoprecipitation, which detects Sp1
protein with the p63 monoclonal antibody, did not immunoprecipitate Sp1
(data not shown).

DISCUSSION
Epithelial development and differentiation in embryo rely on a

set of temporally and spatially regulated molecular events. Recent
observations designate p63 as a driving force of this process: the
∆Np63α isoform maintains the proliferative potential of basal
keratinocytes in mature epidermis, whereas the TAp63α isoform,
which is the first to be expressed in mouse embryo, is believed to act
as a molecular switch required for commitment to epithelial stratifi-
cation.3 A broad spectrum of p63 mutations are responsible for
several human ectodermal, craniofacial and limb malformations.20

EEC and ADULT mutations are located in the DB domain of p63.
They abolish p63 DNA-binding and produce highly stable, but
transactivation-inert TAp63 proteins.38 AEC mutations are confined
to the SAM domain.22 Their effects on p63 transcriptional functions
are less predictable and they only affect the α isoforms.

The Q540L mutation impairs p63 transcriptional ability. Our
study provides evidence that the Q540L amino acid substitution
strongly impairs the transcriptional activity of TAp63α (Figs. 3 and 4).
Our genome-wide transcriptional profiles comparing the transcrip-
tional response induced by wt and TAp63αQ540L expression show
that 14 out of 45 differentially modulated probe sets (ten annotated
genes), are characterized by a loss of control (activation or repression)
by the Q540L mutant (Fig. 3D). As demonstrated (see Fig. 2, qPCR
and data not shown) the lack of transactivation ability of
TAp63αQ540L cannot be attributed to a decrease in its expression,
nor to alteration of its subcellular location. It is well documented
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Figure 6. TAp63αQ540L binds to p53 consensus site in the p21/WAF target promoter and associates with the Sp1 transcription factor. (A) The indicated
p63 proteins were in vitro translated by using TnT reticulocytes from Promega and 0.5 µ of each p63 plasmid DNA. Equal amounts of the individual
reactions were subjected to EMSA using a 32P-labeled oligo containing a p53-binding site present in the p21 promoter (p21.1 probe). Cold competition
was performed with either the 100-fold molar excess of the same oligonucleotide (lanes 3 and 7) or an oligonucleotide containing a consensus binding
site for E2F1 (lanes 4 and 8). For the supershift, anti-p63 antibodies (4A4; SantaCruz) were added to the sample prior to the binding reaction (lanes 5 and 9).
(B) Coimmunoprecipitation in TAp63α and TAp63αQ540L expressing cell lines. Both wt and mutant TAp63α proteins were immunoprecipitated by a Sp1
polyclonal antibody only upon their induction with doxycycline.
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that, p63, like p73, can bind to the p53 consensus DNA-binding
motif and activate a number of p53-regulated genes. In principle,
the Q540L mutation, even though it is predicted to not destroy the
overall structure of the SAM domain, could alter the DNA-binding
affinity of the mutant protein. As regulation of p21/WAF was
severely impaired in cells expressing the Q540L mutant, we tested
whether the mutant protein was still capable of interacting with a
p53-binding motif of the p21/WAF promoter. Our results indicate
that both wt TAp63α and its Q540L mutant are equally active in
binding to this sequence, at least in our in vitro system. On the other
hand, several data argue that particular coactivators expressed in
specific cell types and factors bound to the promoters confer speci-
ficity of gene regulation on the members of the p53 family and their
isoforms.39 For instance, ∆Np63α negatively regulates transcription
of the hsp70 promoter through its interaction with the CCAAT-
binding and NF-Y transcription factors,40 while Sp1 cooperates with
p53, p63 and p73 in synergistic transactivation of the p21/WAF
promoter.36 As a physical interaction between TAp63α and Sp1
takes place and is required for the regulation of EGFR gene expres-
sion,41 we determined whether TAp63α also interacts with Sp1 and,
if so, the effect of the Q540L substitution. Our data clearly indicate
that TAp63Q540L is still able to interact with Sp1 (Fig. 6B). Other
transcriptional factors may thus be crucial for p63-driven transcription
and the Q540L amino acid substitution may affect the interaction
between the p63 SAM domain and a still undefined factor.

Furthermore, we also found probe sets that are specifically up or
downregulated by the mutant protein alone (Fig. 3A and C). These
apparently conflicting results, too, may be a consequence of a loss of
transcriptional function, assuming that the above-mentioned genes
are p63 secondary targets repressed or activated by p63 primary targets.
Alternatively, the possibility that the Q540L aminoacid substitution
confers new transcriptional and cell growth regulating properties on
the TAp63α protein by altering its ability to interact with particular
coactivators or corepressors cannot be ruled out.

This possibility needs investigated by comparing the activity of
wt and mutant proteins directly on the promoters of these TAp63α-
Q540L-regulated genes by means of transient reporter assays.
Furthermore, other technologies, such as in vivo DNA-binding
assays and mass spectrometry, will aid in the identification of key
proteins involved in the regulation of p63’s transcriptional activities.

Differentially expressed genes and their implication in AEC
pathogenesis. An extensive search of the published literature to find
links between the physiological functions of the deregulated genes
and their role in AEC showed that, with the exception of p21/WAF
and MDM2, they were the subject of very few publications and little
was known about their functions. It was, however, found that GDF15,
BVES, CLMN and CPM are involved in the mechanisms of cell
differentiation,42-45 while ARX and FGF5 are associated with
embryonic development.46-49 GDF15 is the murine ortholog of the
human immunoregulatory cytokine macrophage inhibitory cytokine-1
(MIC-1) also known as PDF (prostate derived factor), a divergent
TGF-β superfamily member. It has proapoptotic and antimitotic
activities and is involved in the control of prostatic cell growth.44

Interestingly, the GDF15 promoter contains two putative p53
responsive elements and is upregulated by p53, though its expression
in response to injury also appears to be induced p53-independently.50,51

GDF15 seems to be a p63 target, specifically upregulated by
TAp63α (Fig. 4D). This regulation is completely abolished by the
Q540L amino acid substitution (Fig. 3D). The lack of GDF15
expression in epithelia may contribute to the abnormal differentiation
of epithelia-derived structures observed in AEC patients.

Another gene closely involved in development is ARX.47 Its
expression profile is highly complex and dynamic in the mouse
embryo brain, where it peaks at embryonic (E) day 9.5 just after the
TAp63α expression peak (E. 8.5).3 It is also a marker of adult neu-
ronal stem cells.47 Interestingly, both TAp63α and ARX transcripts
decrease at E 13.5, which corresponds to the switch from TAp63α
to ∆Np63α expression.3 Our transcriptional profiling combined
with the published data on ARX suggests that p63 and ARX may be
linked in a common regulatory pathway. The information available,
however, is not sufficient to allow a direct connection to be made
between the function of p63 and ARX in AEC.

Calmin (CLMN) is a protein with calponin homology (CH
domain) and transmembrane domains expressed in maturing sper-
matogenic cells. The cDNA encoding CLMN was isolated by RNA
differential display applied to developing mouse skin. The region
covering the CH domain showed a high level of homology with
β-spectrin, α-actinin, and dystrophin. The CLMN transcript was
detected in adult testis, liver, kidney, and large intestine; the expression
in testis was by far the strongest.42 CLMN is linked to skin develop-
ment. In mice, its mRNA starts to be detectable in the epidermis at
15.5–16.5 dpc (days post-coitum) and its expression increases as the
skin develops. The timing of CLMN gene expression corresponds to
the switch from the TA to the ∆N isoform. CLMN is only transacti-
vated by the Q540L mutant (Fig. 3C). Since induction of CLMN
expression fits in nicely with the timing of the switch from TAp63α
to ∆Np63α expression in the epithelial stratification program,3

TAp63α may be supposed to act as a transcriptional repressor of this
gene, with the result that expression of mutant TAp63α might
improperly anticipate CLMN expression during skin development.

BVES/Pop1 is the prototype of a new class of cell adhesion
molecules. It is expressed in the epithelial components of retina, lens
and cornea,52 during blood vessel development, in the gut endoderm
and the epicardium and in all three germ layers during avian organo-
genesis.53 BVES is transactivated by TAp63α and not modulated by
the Q540L mutant, and hence may be required to promote cell
adhesion and translocation during early embryogenesis.

Another interesting gene that is only transactivated by the mutant
p63 is SERPINH1, also known as HSP47. Hsp47 protein is involved
in skin wound regeneration and immunohistochemistry has demon-
strated Hsp47-positive cells in the epidermal cell layer of fetal and
neonatal rat skin. Hsp47 may be an important determinant of scar
formation, since scarless healing of fetal skin wounds correlates with
a lack of change in HSP47 expression.54

p21/WAF has long been known to arrest the cell cycle. In the
epithelium it is involved in maintenance of the stem cell compart-
ment:55 p21 null mice are unable to limit the production of stem
cells and their proliferative potential.55 p21/WAF is strongly transac-
tivated by the TAα wild-type isoform (Fig. 4A) and its promoter is
not or only mildly responsive to the ∆Nα isoform.27 By inducing
p21/WAF, TAp63α breaks the cell cycle by restraining stem cell
proliferation: the overall system is committed to the formation of
stratified epithelia. The parallel increase of ∆Nα and decrease of
TAp63α expression redirects the system to terminal differentiation.27

Our qPCR data (Fig. 4B) and expression studies (Figs. 3D and 5B)
support this scenario since the p21/WAF promoter is strongly
activated by the TAp63α wt isoform and p21/WAF upmodulation
is reduced if ∆Np63α is expressed. Interestingly, while ∆Np63α
seems less efficient than TAp63α as a p21/WAF activator (Figs. 4B
and 5B), they both induce a similar G1 cell cycle arrest. The
aminoterminal-deleted isoform should not be generally defined as a
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transactivation-defective isoform. Our and other published data
indicate that ∆Np63α modulates transcription40 and this ability is
rather dependent on the specific gene promoter (see Fig. 4C and D).
In conclusion, the difference in the growth rate profiles (Fig. 2A and
B) of cells expressing either the TA or the ∆Np63α isoforms is likely
to be the result of the relatively higher efficiency of TAp63α with
respect to ∆Np63α in inducing cell death, as shown in Figure 2D.

The growth rate profiles and cell cycle distribution of cells
expressing the AEC-derived TAp63α protein are undistinguishable
from those of uninduced cells (Fig. 2C and E), indicating that the
Q540L amino acid substitution affects both the cell cycle arrest and
cell death inducing properties of p63. Finally, we suggest that dereg-
ulation of p21/WAF associated with the Q540L mutation will produce
a defect in the process of commitment to epithelial stratification that
simultaneously allows premature expression of skin differentiative
markers. A defect of this kind would explain the skin fragility and
chronic scalp erosions complicated by infections, which are a hallmark
of AEC. In conclusion, further investigation of the differentially
regulated genes identified in this study will result in a better under-
standing of the molecular mechanism underlying the AEC phenotype.
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