
Universit̀a degli Studi di Napoli “Federico II”
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Abstract

Besides standarddynamicalschemes to realize a quantum computer, there are particularap-
proaches which are based on intrinsic properties of quantumsystems, leading to the definition of
topological computation andholonomic, or geometric, computation. The holonomic approach can
be viewed as the application ofnon-Abelian geometric phasesto quantum information processing,
it is believed to befault-tolerantwith respect of certain kind ofparametric noise. Here we discuss
the issue of robustness of holonomic quantum gates under parametric noise: we distinguish between
geometricanddynamicaleffects of cancelation, which can appear in different contexts. A so-called
standard argumentin favor of the stability of noisy holonomic quantum gates isreviewed and ex-
tended to more general settings. New geometric effects thatdescribe the behavior of noisy holonomic
gates are presented. These effects lead to arefiningof theoptimal strategyto achieve a robust com-
putation.
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[...] I have no illusions of power, as to the scope and prospect of my attitude.
But, the minor role of my act and statement is a simple way of affirming that

in the face of a growing enormity which I consider intolerable,
I will exercise my own tiny act of disobedience to be able to look straight

into the eyes of my grandchildren and my students and say thatI did know.

DANIEL AMIT

(from the letter to the American Physical Society, April 2003)
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Preface

The present Dissertation collects part of the activity doneduring the doctorate at the University of
Napoli ”Federico II” regarding the issue of therobustness of holonomic computation. That is not the
only subject to which my research activity was devoted during the last three years: two other main
research interests were thecharacterization of bi-partite and multi-partite entanglementand the study
of linear-optical schemes for quantum computation.
Finally, in order to allow a more concise and self-containedpresentation, I decided to devote my Dis-
sertation to a single topic.

The activity devoted to the characterization of quantum correlations started during my Master
Thesis, when, under the supervising of Giuseppe Marmo, we studied bi-partite entanglement in
the framework of the geometric approach to quantum mechanics. The collaboration with Volodya
Man’ko yielded three joint publications onJournal of Physics A[Lu05, Lu06, Lu07]. In [Lu05],
together with George Sudarshan, we proposed and studied a simple generalization of the operation
of the partial transpose, called thepartial scaling transform, which was considered for the study of
bi-partite and multi-partite entanglement. In [Lu06] and [Lu07], we made use of the tomographic
description of quantum mechanics to analyze the violationsof Bell-like inequalities for systems with
discrete levels. After my visiting period at the Max Planck institute for quantum optics, discussions
about the entanglement in Matrix Product States led to the study of theRealignment Criterionand its
possible generalizations; some preliminary results on that subject are available on the web in [Lu07+].
Further developments of are now in progress in collaboration with Paolo Aniello (see [An07’]).

The activities regarding linear-optical schemes for quantum computing started in our group with
Ruben Coen Cagli, who wrote his Master Thesis and published two papers on that subject. With Paolo
Aniello and Mario Napolitano, we continued that line of research which led to the publication of the
paper [An06] in a special issue ofOpen System and Information Dynamicsrelated to the conference
TQMFA, hosted in Palermo in 2005. The collaboration with Matteo Paris also led to the publication
of another paper [An07] on that subject inEuropean Physical Journal D.

The holonomic approach to quantum computing can be viewed asan application of geometric
phases to quantum information processing. The interest in holonomic computation began with a se-
ries of seminar lectures given by Paolo Zanardi at the University of Napoli in the early 2004. The
interest turned into activity after the appearance of a paper by Giuseppe Florioet al. [Fl06]. That
paper yielded the right inspiration that led me, together with Paolo Aniello, Mario Napolitano and
Giuseppe Florio, to the publication of the paper [Lu07’] onPhysical Review A, concerning the issue
of the robustness of holonomic computation under parametric noise. The content of that paper is con-
tained in the chapter 3 of the present Dissertation. Other original considerations and results regarding
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that subject are presented here for the first time in the chapters 4 and 5.

Few months ago, during a conference in Palermo, while I was already working at that subject,
I had the opportunity to know that there is a planned experiment, whose aim will be to experimen-
tally verify the robustness of geometric phases (see the Ph.D. Dissertation by Stefan Filipp [Fi06],
now working at the Atominstitut der̈Osterreichischen Universitäten in Wien, in the group of Hel-
mut Rauch). I sincerely hope that the ideas and the calculations presented here can be useful for the
interpretation of the experimental results.
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Introduction

The word ”holonomy” comes from the Greek rootsholosandnomos, literarily meaning a ”global
rule”. In differential geometry a holonomy in a principal fibre bundle is a consequence of the pres-
ence of a connection one-form with a non-vanishing curvature [Na05]. In physics, holonomies are a
manifestation of gauge theories, example are the geometricphases described by S. Pancharatnam in
[Pa56], by M. Berry and B. Simon in [Be84, Si83], by Y. Aharonov and J. Anandan in [AA87].

The application of quantum holonomies to the scopes ofquantum information processing[NC00,
Be04] leads to a particular approach which is known asholonomic, or geometricquantum compu-
tation. One of the most important challenges for the realization of quantum information tasks is the
implementation of quantum logic gates that arerobustin the presence of perturbations. An important
issue is the analysis of the various kinds of errors than can affect computations or communications.
In general, one can consider sources of error that can reduceor even destroy the efficacy of a specific
operation.

The holonomic approach presents several complications with respect to other standard, dynamical
schemes. The proper balance is determined by the fact that geometric phases are believed to be
intrinsically fault tolerantwith respect to some kind of errors.

Two kinds of source of errors can be distinguished: the first kind is a quantum noise, which is a
consequence of the interaction of the system of interest with an environment of quantum degrees of
freedom; the second kind is a classical noise, emerging fromthe interaction of the classical fields that
are used to experimentally control the system with an environment of classical degrees of freedom.
That kind of classical noise will be also calledparametric noise. The subject of the present contri-
bution is the study of the behavior of holonomic gates in the presence of parametric noise. To take
in consideration only the classical noise can be viewed as a great limitation, since the most general
noise is of quantum nature. Nevertheless, the restriction to the classical noise is motivated by the fact
that it is with respect of that kind of errors that the holonomic computation is believed to be robust.
A critical analysis of the issue of robustness of holonomic computation in the presence of parametric
noise is indeed the main task of the present Dissertation.

The Thesis is organized in the following way:

• The first chapter contains a brief introduction to quantum information science. There is no am-
bition of giving a complete presentation of the field. The aimof the chapter is to communicate
to the reader the flavor of some general ideas on which the fieldof quantum information science
is based. We will review the Deutsch’s algorithm as an example of the computational speed-up
that can be obtained to solve classical problems with a quantum approach. The emphasis is
on the role played by quantum interference. If it is true, quoting Richard Feynman, that the
double-slit experiment contains all the mystery of quantumtheory, it can be as well useful to
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explain the core of quantum parallelism.

• In the second chapter, we present the main topic of the Dissertation, which is theholonomic
scheme for quantum computing. Since that scheme is a straightforward application of quantum
geometric phases (non-Abelian Berry’s phases) to quantum computing, the chapter will review
how geometric phases can be observed in quantum (and classical) mechanics. That will lead to
the applications in quantum information processing. Starting with the description of geomet-
ric phases in classical optics, after we consider the geometric phases that appear in quantum
mechanics in correspondence with a cyclic evolution and in the adiabatic case. The case of
non-Abelian holonomies will lead to the applications for quantum information tasks. The pro-
posal of a fully geometric computation with trapped ions will be considered in more details as
a case study. The chapter ends with a review of the argument ofrobustness of holonomic gates,
and in general geometric phases, in the presence of parametric noise and in the adiabatic limit.
It is worth remarking that that robustness argument is related to the perturbations induced by
the noise at the first order in its amplitude.

• Chapter three is devoted to the discussion of the behavior ofnon-adiabatic geometric phases.
We discuss a peculiar example, in which a holonomic but non-adiabatic gate mimics the dy-
namics in the adiabatic regime. The attention will be focused on the efficacy of the gate in
the presence of parametric noise, and we will pose the question whether the robustness of the
geometric phases can be stated also in the non-adiabatic case. That will lead to the distinction
between geometric and dynamical effects of cancelation of the noise. This chapter is mainly
based on the paper [Lu07’].

• The robustness of geometric gates under parametric noise isdiscussed in the chapter four fo-
cusing on a simpletoy model. The system under consideration is a semi-classical particle in
the presence of a static magnetic field. If the particle movesalong a closed loop, it acquires a
phase factor which is only determined by the gauge potentialand the given loop. Despite its
simplicity, that model presents all the features that are peculiar of holonomic transformations.
Indeed, that discussion is useful to understand the behavior of geometric phases in the presence
of parametric noise, since in the adiabatic limit the dynamics can be completely determined
by the underlying geometry. That geometric behavior is largely independent of the details of
the system under consideration. The results, obtained analytically and numerically, leads to the
individuation and the comprehension of the perturbative effects of the parametric noise at the
second order in the noise amplitude.

• Finally, in chapter five, we analyze the behavior of geometric phases in the presence of para-
metric noise with respect to a given case study. The case study corresponds to the proposal of
the geometricNOT gate with trapped ions. The results obtained for the toy model are numeri-
cally confirmed in that model.

Finally, few indications to the reader. Part of my efforts inthe development of the present Dis-
sertation was in order to make it understandable for a vast audience. Sadly, that task was rather
demanding for the scope of a Ph.D. Thesis. More realistically, I may say that the only skills required
to understand this Dissertation are a basic knowledge of non-relativistic quantum mechanics, some
elements of differential geometry and, of course, the ability to read English at least at same level the
author can write.

12



Chapter 1

Processing quantum information

The aim of this chapter is to give a general introduction toquantum information processing, or
quantum computationin a lose sense. The presentation will be brief and far to be complete or self-
consistent. The emphasis will be given on some of the basic aspects of quantum computation, the
ambitious of the writer is not to be clear or exhaustive, but more simply to communicate theflavor of
what a quantum computation is without going in the details ofthe rich field of quantum information
theory. Hence, the presentation is rather general and is intended for a reader with a basic knowledge
of non-relativistic quantum mechanics.

The basic idea inquantum information scienceis that information can be encoded in the state of a
quantum mechanical system (read: a physical system whose behavior is explained by the principle of
quantum theory at the best of our knowledge). Hence, given ainput state|ψin〉, which expresses the
configuration of some quantum system in a pure state, aquantum algorithmis nothing more than the
physical transformation that the system experiences. Hence, by the principles of quantum mechanics,
a quantum algorithm is a unitary transformation which maps an input state into anoutputstate:

|ψin〉 −→ |ψout〉 = U |ψin〉 . (1.1)

The evolution of an ideally isolated quantum system is described by the non-autonomous Schrödinger
equation

i~
d

dt
|ψ(t)〉 = H(t)|ψ(s)〉 , (1.2)

with the initial condition|ψ(0)〉 = |ψin〉. Hence the unitary evolutor is formally written as

U = T exp

(

− i
~

∫ T

0
H(t)dt

)

, (1.3)

whereT stands for the time-ordering, andT is theoperational timeof the computation.

1.1 Is information physical?

Encoding, storing, processing, sharing and decoding information have a fundamental role for the
personal and cultural growth of the single human beings as well as for the development of the human
societies. Through the history and in several contexts, human beings and communities have made use
of different physical supports to encode, store and share information. In each context, each of those
activities is motivated by some specific social problem. Onecan ask whether there is any relationship
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between the physical support and the social content of information. Mural painting in prehistoric era
had some important social meaning which we can only imagine nowadays. From a certain point of
view, one may say that that social content is independent of the chemistry of the organic colors or the
techniques used to obtained them. On the other hand, what is not irrelevant for the social content was
the knowledge that people had and that allowed them to take advantage of those techniques to paint
the walls of a cave, hence allowing the community to encode information with a social relevance in
the physical medium, communicate and share that information with their contemporaries and with
us after thousands of years. That kind of consideration can be extended to any kind of situation
furnished by our history, without substantial differenceswhether we are talking about ink and paper,
press, vinyl, magnetic tape or digital support. We can arguethat there is a dialectic exchange between
science and society also from the information point of view:the physical support and the available
technologies do influence what kind of information people can and need to encode, to process and
share.

Hence, a (rather philosophical) question that may be posed is about the social potentialities of en-
coding information in quantum systems. At the moment, obviously, we don’t know how that techno-
logical opportunity could change the paradigm of information in the present (so-called) information-
society. The easiest answer is to mention quantum cryptography, or the computational potentialities
of quantum algorithms. Nevertheless, I can imagine that theadvantages, or the changes, caused by
the entrance of quantum mechanical systems in the everyday technology can be even more deep and
unpredictable. The Moore’s law is often mentioned to justify the entrance of the quantum theory in
the framework of information technology as following from the extrapolation of an exponential law.
Nevertheless, it is worth noticing that the paradigmatic difference between classical and quantum
physics suggests a radical change which isqualitativeprior than merelyquantitative.

A brief introduction to some aspects of these qualitative changes is the subject of the following
sections.

1.2 Digital or analog? Particle or wave?

Digital systems make use of a set of discrete variables to encode information, a typical example
is a binary variable which takes discrete values in{0, 1}, often physically realized by voltage levels.
An elementarybit of information can be also realized by a quantum mechanical system in a straight-
forward way. One can for instance take in consideration a particle with spin-1/2, to which a Hilbert
spaceH ∼= C2 is associated. A pair of orthogonal vectors inH can in principle be used to codify a
classical bit of information. If the particle is in the presence of a static magnetic field oriented along
thez direction, the system Hamiltonian is written as

H = Bσz , (1.4)

as a consequence, the natural choice is to select the two eigenstates ofσz as a basis for the information
encoding. Having in mind the quantum realization of a classical bit, we denote the ground and the
excited states respectively as|0〉 and|1〉. Thus, we can realize a classical bit on a quantum support:if
the energy is measured, the system is either in the state|0〉 or |1〉.

The peculiarities of the quantum theory start to play a role when one takes in consideration a
second observable which does not commute with the Hamiltonian. For instance, an observable pro-
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portional toσx defines a different notion of a classical bit, namely:

|0′〉 =
|0〉 − |1〉√

2
(1.5)

|1′〉 =
|0〉+ |1〉√

2
. (1.6)

A more general operator is written asX = V †σzV , whereV is a unitary operator in the corre-
sponding Hilbert space. IfV has the following matrix expression

V ≡
[

α β

−β∗ α∗

]

, (1.7)

in the basis{|0〉, |1〉} determined byσz, the basis of eigenvectors ofX is written as

|0V 〉 = α|0〉 − β∗|1〉 (1.8)

|1V 〉 = β|0〉 + α∗|1〉 . (1.9)

That ambiguity in the choice of the basis is at the core of the definition of the quantum analogue of
the classical bit, commonly known as thequbit.

The usual way to deal with a qubit is to fix a preferred basis (say {|0〉, |1〉}), hopefully determined
by the eigenstates of a physically relevant observable suchas the Hamiltonian. In thatcomputational
basis a generic (pure) state of the qubit is determined by a coherent superposition of the computational
states:

|ψ〉 = a|0〉+ b|1〉 with a, b ∈ C2 . (1.10)

Hence, while the measurement of any observable selects a discrete set of states which are the corre-
sponding eigenvectors, the family of possible configurations of a qubit is a continuous set. From that
point of view, we can say that the quantum theory is bothdigital andanalogin its nature, though it is
neither digital nor analog, as well as the funding fathers ofthe theory said that an electron is both a
particle and awave, although being neither particle nor wave.

The consequence of that duality, from an information theoretical point of view, is the feature
commonly known asquantum parallelism. That is more apparent if one considers a register ofn

classical bits and its quantum analogue. In the classical case, a string ofn bits can be in one of
2n different configurations. Each possible configuration is indicated with an integer numberx =

0, 1, . . . 2n − 1, as for example

x ≡ 1001 . . . 10100 . (1.11)

In the quantum case, a system ofn qubits has a continuous family of possible states:

|ψ〉 =

2n−1
∑

x=0

cx|x〉 , (1.12)

where|x〉 indicates a vector in the computational basis ofn qubits, which has an expression of the
following kind

|x〉 = |1〉|0〉|0〉|1〉 . . . |1〉|0〉|1〉|0〉|0〉 , (1.13)
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or |x〉 ∈ {|0〉, |1〉}⊗n
, and lives in the tensor product spaceH ⊗ H ⊗ . . . ⊗ H. Hence, we can say

that the quantum state experiences all the classical statesat once. By linearity, the action of a unitary
transformation produces the the output state

|ψout〉 = U |ψ〉 =
∑

x

cxU |x〉 . (1.14)

If parallelism in classical computation is realized by implementing one operation at the same time
over several registers of bits, in the quantum case the same physical operation can realize several dif-
ferent computations at the same time over thesameregister of qubits. More precisely the number of
parallel quantum computations equals the number of orthogonal vectors in the computational space,
which isexponentialin the number of qubits.

To conclude, let us mention that, as in the classical case onecan make computation in other basis
as the decimal or the hexadecimal system, in the quantum caseone can define a qudit as a system
which presentsd stationary levels, with an associated Hilbert spaceH ∼= Cd.

1.3 Interference and algorithms

The features of the so-called quantum parallelism might notbe of any practical help for the scopes
of computation without the phenomenon of quantuminterference. After the general introduction
given above, in this section we discuss a simple but significative example of a quantum algorithm. The
first proposal of aquantum algorithmto solve a specific problem in an efficient way was formulated
by David Deutsch and Richard Jozsa in 1992 [DJ92]. Even though the considered problem was not
of a particular interest by itself, that was the first exampleof a quantum algorithm that allows to solve
a problem more efficiently than any known classical algorithm. Other important proposals followed,
such as the Grover’s and the Shor’s algorithm. As we will see,the algorithm takes advantage of a
clever utilization of quantum interference.

The problem under consideration is the following, known as the Deutsch’s problem. A dichotomic
functionf is defined over a register ofn bits

f : x −→ f(x) ∈ {0, 1}, (1.15)

where a state of the register ofn bits is indicated withx, with x = 0, 1, . . . 2n − 1. Moreover, the
function is constrained to be eitherconstantor balanced. The problem is to determine if the function
is constant or balanced. The ’classical’ way to deterministically solve that kind of problem is to
evaluate the function at least2n/2 + 1 times. On the other hand, the ’quantum’ approach requires
only a singleevaluation of the functionf .

Here, we will describe the case in which the register is composed of only one bit,x ∈ {0, 1}.
Classically, one needs to evaluate the function twice to determine whether it is constant (f(0) = f(1))

or balanced (f(0) = 1⊕ f(1), where⊕ indicates the sum modulo2). We will try to put the emphasis
on the crucial role played by interference in thecomputational speedupwhich can be reached with
quantum algorithms. For that purpose, we will review the structure of the algorithm and, in order to
emphasize its physical interpretation, we will formulate asimple analogy with two relevant physical
examples. The first analogy is with thedouble-slit thought experiment, the second one is with a
Mach-Zehnderinterferometer. The latter is a variation on the example discussed in [Ek98] based on
the Aharonov-Bohm effect [AB59].
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1.3.1 The Deutsch’s algorithm

Let us consider a register ofn qubits with the computational states|x〉 ∈ {|0〉, |1〉}⊗n

. The
realization of the dichotomic function as a unitary transformation requires, besides the register state
|x〉, an ancillary qubit, denoted|y〉 ∈ {|0〉, |1〉}, that encodes the output of the function. In other
words, a unitary transformationUf is associated to the functionf , in such a way that its action on the
computational states is:

Uf : |x〉|y〉 −→ Uf |x〉|y〉 = |x〉|y ⊕ f(x)〉 . (1.16)

It is important to notice that, because of the linearity of quantum transformations, the definition in
(1.16) allows to compute the action ofUf over a generic state which is a coherent superposition of
the computational states:

Uf
∑

x

cx|x〉|y〉 =
∑

x

cxUf |x〉|y〉 =
∑

x

cx|x〉|y ⊕ f(x)〉 . (1.17)

Hence, an initial state without any correlation, such as|ψin〉 =
∑

x cx|x〉|y〉, is mapped byUf into a
state which presents correlations between the register qubits and the ancillary qubit, such as|ψout〉 =
∑

x cx|x〉|y ⊕ f(x)〉. That is indeed anentangledstate.
Coming back to theDeutsch’s algorithm, we consider the case of a single-qubit register, with

|x〉 ∈ {|0〉, |1〉}. The system, composed of one register and one ancillary qubit, is initially prepared
in the state

|ψ0〉 = |0〉|1〉 . (1.18)

The first step is to apply a Hadamard gate to both the qubits. That unitary transformation is defined
in the single-qubit computational basis by the following matrix:

H =
1√
2

[

1 1

1 −1

]

. (1.19)

That yields the following intermediate state:

|ψ1〉 = H ⊗H|ψ0〉 =

[ |0〉+ |1〉√
2

]

⊗
[ |0〉 − |1〉√

2

]

. (1.20)

After that local change of basis, we can apply the function of interest, which is realized through the
corresponding unitary transformation, to obtain

|ψ2〉 = Uf |ψ1〉 =

{

|0〉
[

|f(0)〉 − |f̄(0)〉
]

2
+
|1〉

[

|f(1)〉 − |f̄(1)〉
]

2

}

, (1.21)

wheref̄(x) = 1 ⊗ f(x) indicates the logical negation. Notice that the functionf is defined on the
computational states|0〉 and|1〉, while in (1.21) it is evaluated on a coherent superpositionof them.
One can say that the function is evaluated both on|0〉 and |1〉 at the ’same time’; the presence of
coherent superpositions in the quantum theory is at the heart of what is often called thequantum
parallelism. At this point, one has to distinguish the two cases. If the function is constant (f(0) =

f(1) = f ), the expression in (1.21) simplifies to

|ψ2〉 =

[ |0〉+ |1〉√
2

]

⊗
[ |f〉 − |f̄〉√

2

]

. (1.22)
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q

Figure 1.1: The double-slit experiment with a pair of ideal solenoids ’hidden’ behind the slits. The
magnetic flux carried by the solenoids can assume two possible values, determining a shift in the
interference pattern.

Otherwise, if the function is balanced (f(0) = f̄(1)), we obtain

|ψ2〉 =
[ |0〉 − |1〉√

2

]

⊗
[ |f(0)〉 − |f(1)〉√

2

]

. (1.23)

The last step is to apply again a Hadamard transformation on both qubits to obtain (apart of an
irrelevant global phase factor):

|ψ3〉 = H ⊗H|ψ2〉 =

{

|0〉 ⊗ |1〉 if f is constant
|1〉 ⊗ |1〉 if f is balanced

(1.24)

In conclusion, the output state is|ψ3〉, which — in principle with unit probability — has the first
qubit in the state|0〉 if f is aconstantfunction, while it is in the state|1〉 if the function isbalanced
(non-constantin the single-bit case). On the other hand, the second qubit ends in the state|1〉 in both
the cases, hence being in principle used as a ’control’ qubitto check the presence of possible errors.

We can say that the Deutsch’s algorithm computes the functionF (f) = f(0)⊕f(1). The function
F (f) describes a ’global’ feature off . Here we have described how the quantum algorithm can
compute aglobal property of the function, such asF (f), with only oneevaluation of the functionf ,
instead of the two evaluations needed in the classical case.That efficiency of the quantum algorithm
becomesexponentiallymore relevant increasing the number of qubits in the register, moving from the
Deutsch’s algorithm to the Deutsch-Jotza’s algorithm.

At that point of the discussion, it could be unclear, becausehidden in calculations, what is the
physical interpretationof that kind of algorithm. Often it is commented thatinterferenceis respon-
sible for the computational speedup, since it is ’sensible’to global features of the function. It can be
also argued that the perfect constructive — or destructive —interference which appears in correspon-
dence with a constant or balanced function is responsible for the efficiency of the algorithm. In the
following subsections we will try to further motivate that kind of argumentations with the help of two
familiar thought experiments.

1.3.2 The double-slit experiment

Quoting Richard Feynman, we may say that the double-slit experiment contains all the strangeness,
as well as the mystery, of the quantum theory. If that is true,we can argue that it can as well contain
the features of quantum mechanics which lead to thecomputational efficiencyof quantum algorithms.
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As it is well known, a particle moving towards a double-slit produces aninterference pattern. If a
monochromatic beam, with wave lengthλ, impacts on the screen containing the two slits, which are
separated by a distanced (we assume that the slits are infinitely narrow), the probability of finding a
particle moving along the directionθ (see figure 1.1) is proportional to

χ(θ) =
1

2

∣

∣

∣
1 + eikd sin θ

∣

∣

∣

2
= 1 + cos (kd sin θ) , (1.25)

wherek = 2π/λ is the corresponding wave number. Hence, the principal maximum of probability
(or intensity) is atθmax = 0, while the first point of destructive interference is in correspondence with
kd sin θmin = π.

If the beam is composed ofcharged particles, with an electric chargeq, and if an infinite solenoid
is situated behind the slits, the interference pattern isshifted. If the magnetic flux trapped in the ideal
solenoid isΦ, an additional phase shift does appear in (1.25), and the probability of finding a particle
at angleθ turns to be proportional to

χ̃(θ) =
1

2

∣

∣

∣
1 + ei(kd sin θ+δ)

∣

∣

∣

2
= 1 + cos (kd sin θ + δ) , (1.26)

where the additional phase shift, due to the Aharonov-Bohm effect [AB59], is

δ =
qΦ

~
. (1.27)

If the magnetic flux is aneven multipleof one-half the elementary flux quantum, namely ifδ =

2nπ, the interference pattern is left unchanged. On the other hand, if it is anodd multiple, namely if
δ = (2n+ 1)π, the pattern is shifted in such a way that the maxima and minima areinterchanged.

Let us now consider the case in which two parallel lines of fluxare situated behind the double-slit
(see figure 1.1), with corresponding magnetic fluxΦ0 andΦ1. Let us also suppose that the modulus
of the flux is constrained to be one-forth of the elementary flux, namely

|Φ0| = |Φ1| =
π

2

~

|q| . (1.28)

In that setting, the corresponding shift in the interference pattern is given by the sum of two
contributions:

χ̃(θ) = 1 + cos (kd sin θ + δ0 + δ1) , (1.29)

whereδ0, δ1 = ±π/2.
Now we can state theanalogy with the Deutsch’s algorithm. One can consider the function

’magnetic flux in the solenoid’, that function can assume only two values, and can be estimated on
the solenoid labeled as ’0’ and on the one labeled as ’1’. The classical solution of the problem of
determining whether the function is constant or not, requires two ’classical’ measures of the magnetic
flux in each solenoid, or of the corresponding current. On theother hand, we argue that, if the function
is constant — i.e. the two fluxes are parallel — the interference maxima arenot shifted; while if the
function is balanced, the positions of the maxima and the minima areinterchangedin the interference
pattern. Assuming that one can consider the evaluation of the interference maxima — the principal
maximum is sufficient — as asingle operation, we obtain the analogy with the Deutsch’s algorithm.
As in the Deutsch’s algorithm one has to perform a change of basis between the computational basis
{|0〉, |1〉}, in which the functionf is realized through the unitaryUf , and the basis{ |0〉+|1〉√

2
, |0〉−|1〉√

2
},

in the double-slit experiment one has to change between themomentumbasis, in which the incoming
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D2

Figure 1.2: The scheme of a Mach-Zehnder interferometer with a pair of lines of magnetic flux
trapped in it. The particle flux at the detector is changed depending on the total magnetic flux through
the loop.

and the outgoing beams are prepared and measured, and thepositionbasis. Where the basis of particle
positions is determined by the location of the two slits. Also, it is the particle position that determines
— depending on whether the particle passaboveor belowthe flux lines — the additional phase shift
due to the Aharonov-Bohm effect.

Of course, we may say that the analogy is not complete, since the observables that determine the
bases have continuous spectrum, as well as the determination of the interference maximum needs a
great number of ’spots’ detected on the screen, which is something more than a single operation. In
the next section, we consider a more direct example, which isa variation of that discussed in [Ek98].

1.3.3 A Mach-Zehnder interferometer

The analogy presented in the previous section is not complete and several differences with the
Deutsch’s algorithm are present. These differences are mainly related to the fact that it deals with
continuousvariables, instead ofdiscreteones. The interference pattern gives the probability of finding
a spot on the screen, which cannot be as sharp as in the discrete-variable case. Hence, in this section
we consider another physical example, in which the analogy is with aMach-Zehnder interferometer.
An analogous example was discussed in [Ek98]. Also in this example, we are dealing with a beam of
charged particle and the Aharonov-Bohm effect will play an important role.

The scheme of the thought experiment is depicted in the figure1.2. Working in the Heisenberg
picture, the input is described by field operatorâ entering in the symmetric beam slipperBS1. The
beam splitter acts over the incoming mode in the following way:

BS1 : â −→ ĉ =
â+ ib̂√

2
. (1.30)

If a pair of solenoids enters in the interferometric loop, the field operator acquires an additional
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phase, which leads to the following operator

ĉ′ =
â√
2

+ i
b̂√
2
ei(δ0+δ1) . (1.31)

After the second symmetric beam splitter,BS2, the field operator becomes

d̂ =

[

1− ei(δ0+δ1)

2

]

â+ i

[

1 + ei(δ0+δ1)

2

]

b̂ . (1.32)

Finally, the probability of detecting a particle at the detector D1 is given by

χ(δ0, δ1) =
1

2
[1 + cos (δ0 + δ1)] . (1.33)

As in the previous example, if the fluxes in the solenoids are such thatδ0, δ1 = ±π/2, one
can easily recognize the analogy with the Deutsch’s algorithm. If the function ’magnetic flux of the
solenoid’ is balanced, there will be aclick at the detectorD1, with probability equal to one. Otherwise,
if the function is constant it is the detectorD2 that will produce aclick with unit probability.

1.4 Universal computation

While in the classical case the number of logic gates of one bit are in afinite number, in the
quantum case the possible one-qubit gates are acontinuous set. That set is theunitary groupU(2) for
one qubit, orU(N) for n = log2N qubits. Hence, a quantum logic gate can be engineered with in
principle arbitrary high, butfinite accuracy.

In other words, given a gateU , one has to find another unitaryV , which is a good approximation
for U . For instance, one can consider aworst-case scenario, and for a givenǫ > 0, determine a
suitable unitaryV , such that

sup
ψ
|U − V |ψ〉| < ǫ . (1.34)

A set of gates is said to beuniversalif it has the remarkable property that any quantum gate can
be approximated with arbitrary accuracy with a circuit involving only the elements in that set.

It has been shown (see [Di95, Ba95]) that a universal set of gates can be composed by one non-
trivial two-qubit gate together with the one-qubit gates. The non-trivial two-qubit gate can be chosen
to be the controlled-NOT gate, which is expressed by the following matrix in the two-qubit compu-
tational basis:

UCNOT =











1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0











, (1.35)

or the controlled-phase gate, which has the matrix expression

Uχ =











1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 eiχ











. (1.36)
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On the other hand, a generic one-qubit transformation can befor instance obtained composing the
Hadamard gate, which is defined in the computational basis bythe matrix in (1.19), and the so-called
π/8-gate, which has the matrix expression

T =
1√
2

[

e−iπ/8 0

0 eiπ/8

]

. (1.37)

Hence the gatesH andT define auniversal setfor the computation over a single qubit, while the
gatesH, T , andUCNOT are universal for the computation overN -qubits.

1.5 Error correction and prevention

In the discussion of the Deutsch’s algorithm, we have assumed a perfect control on the quantum
system, from thestate preparationand thequantum evolution, to themeasurement process. Of course
that might not be a reasonable assumption in a realistic description since the presence oferrors and
noiseis unavoidable in the real world.

We can distinguish two kinds of perturbations with qualitatively different features: the first kind
has a purelyquantumnature, and it is induced by the interaction of the quantum system implement-
ing the logic gate with the environment; the second kind has instead aclassicalnature, and it is
caused by the presence of instrumental noise in the ‘external parameters’ used tocontrol the system.
The undesired interaction with the environment is the source of the phenomenon known as quantum
decoherence[BP02]. The effects of this interaction can be modeled by means of suitable ‘master
equations’ (i.e. evolution equations) for the density matrix of the quantum system implementing the
logic gate; at least in the Markovian regime, they are negligibly small if theoperational timeof the
logic gate is short enough. On the other hand, the classical perturbations stem from an unavoidable
noisy component intrinsic in the external driving fields (e.g. laser beams [Wi98]) that can be usually
regarded as classical fields; hence, it is essentially due toinstrumental instability. In other words, it is
caused by the interaction of the classical fields with an environment of classical degrees of freedom.

In order to preserve the efficacy of the quantum algorithm even in the presence of noise, one
needs to build afault-tolerant computation (see [Pr98]). Without entering in the details,we only
mention that one can individuate two possible strategies inorder to protect the quantum algorithm
from the action of the noise. The first kind of strategy is based onerror correcting codes(see [Sh95,
Ca95, St96, Go96]) and can be viewed as ana posterioriapproach. The second kind ofstrategyis to
prevent the effects of the noise on the efficacy of the gate taking advantages of thesymmetriesof both
the system under consideration and the noise affecting it. Among that kind ofa priori approaches, we
can individuate dynamical schemes, based on the use ofdecoherence free subspaces[ZR97, Li98],
or of thequantum Zenoand similar effects [Fa05], and geometric scheme, including topogical[Ki03,
Og99] andholonomiccomputation [ZR99, Pa99].

22



Chapter 2

The holonomic way

A quantum algorithmis nothing more than thephysical evolutionof a quantum system, which
can be either free or experimentally driven. In full generality, an algorithm transforms an input state
|ψ(0)〉 into an output state|ψ(T )〉 = U |ψ(0)〉 after a certain operational timeT . If the system evolves
according to the time-dependent HamiltonianH(t), the output state is given by the solution of the
corresponding Schrödinger equation, which is formally expressed by the evolutor

U = Te−i
R T

0
H(t)dt , (2.1)

(here and in the following we put~ = 1) whereT stands for the time ordered product. In particular
situations, the unitary transformationU can be factorized as the product of two unitaries

U = V (T )× Γ, (2.2)

whereV (T ) is often referred to as thedynamical phaseandΓ as thegeometric phase. These can be
Abelian (V (T ), U ∈ U(1)), or non-Abelian (V (T ), U ∈ U(N)) phases. The appellativegeometric
is justified by the fact that the factorΓ does not depend on any dynamical quantity, such as the
instantaneous energy, the operational timeT , or the rate of changes of the Hamiltonian. On the other
hand, the geometric phase is completely determined by the underlining geometry of the space of
quantum states, and is interpreted as aholonomyphenomenon.

In this introductory chapter, we will briefly discuss how geometric phases do appear in physics
and outline the role that they can play in the framework ofquantum information processing. There
are several ways to present that topic. Historically, geometric phases were discussed in [Be84, Si83]
as emerging in thequantum adiabatic limit. Soon after, it was recognized that geometric phases can
appear in more general conditions, in particular without requiring the adiabatic limit. The adiabatic
limit being not needed, it was substituted by the hypothesisof acyclic evolution of the quantum state
[AA87]. It was recognized that an earlier investigation in [Pa56], about relative phase of polarized
beams of classical light, could be interpreted in the context of geometric phases, also leading to the
definition of the geometric phase fornon-cyclicevolution [SB88]. Here, we will follow a different
rute, trying to put the emphasis on how geometric phases arise fromphysicalandmathematicalcon-
siderations, starting from the phenomenon of quantum and classical interference, to the analysis of
the dynamical equations of a non-relativistic quantum system. The exposition of the topic is oriented
to the main subject of the present Dissertation, which is therobustnessof holonomic gatesunder
parametric noise. Hence the introduction to quantum holonomies and holonomic computation is far
to be complete, we only hope that it might be clear and, as muchas possible, self contained.

23



2.1 Introduction

One of the most important challenges through the realization of quantum information tasks is the
implementation of quantum logic gates that arerobustagainst unwanted perturbations [NC00, Be04].
As we have also recalled in the previous chapter, two kinds ofperturbation with qualitatively different
features can be distinguished. We distinguish aquantumnoise, emerging from the interaction of the
system with an environment of quantum degrees of freedom, and a classical, or parametricnoise,
which arises from the interaction of the quantum system withan environment of classical degrees of
freedom. Being of classical nature, the effects of these perturbations can be evaluated by studying
standard (non-autonomous) Schrödinger equations where the parametric noise is taken into account
by suitably modeling the noisy components of the classical parameters (e.g. the field amplitude)
associated with the external fields.

Among the several strategies for realizing quantum logic gates discussed in the literature, a promi-
nent position is held byholonomic gates. The so-calledholonomic computationwas first proposed by
Paolo Zanardi and Mario Rasetti in [ZR99] (see also [Pa99]),and relies on the theory of holonomy in
principal fibre bundles[Na05], a subject which is familiar to theoretical physicists due to the central
role played ingauge theories[Ma92] and in the well-known phenomenon of Abelian [Be84, Si83]
and non-Abelian [WZ84] adiabatic phases. Actually, a holonomic gate can be regarded as a straight-
forward application of the theory of non-Abelian adiabaticphases to quantum computation.

As we will discuss below, the holonomic approach to quantum computing requires to work in
the adiabatic regime. Hence, one can argue that longer operational time are needed, leading to a
less efficient computation. On the other hand, the major advantage of theholonomic approachwith
respect tostandard dynamical schemesis that, because of its geometric nature, it is expected to be
particularyrobustin the presence of a certain kind ofparametric noise. Thus, a longer computational
time can be balanced by a stronger robustness.

2.2 A taste of the geometry of quantum mechanics

As it is well known, in quantum mechanics a physical system isdescribed by means of a properly
chosen Hilbert space, that we generically indicate asH. A pure stateof the quantum system can
be associated to a non-vanishing vector|ψ〉 ∈ H0, whereH0 = H − {0}. On the other hand, the
mathematical information contained in the vector|ψ〉 is physically redundant, since the probabilistic
interpretation requires the normalization of the vector,〈ψ|ψ〉 = 1, and because two vectors which
differ by a numerical phase factor,|ψ′〉 = eiα|ψ〉, are physically indistinguishable. In the presentation
of quantum algorithm, or in general quantum information processing, one often makes use of the
vectors to represent thepure states of the system. This representation is justified by thesake of
simplicity, but it is obviously not the completely correct way of dealing with quantum states. The
faithful way is to consider the equivalence classes of vectors with respect to the relation∼, defined
as follows: |φ〉 ∼ |ψ〉 if and only if |φ〉 = z|ψ〉 for some non-vanishing complex numberz =

|z|eiα. Thus, when one says that a system is in the state|ψ〉, the vector has to be consider just as a
representative elementof its equivalence class. The quotient spaceH/ ∼ is thecomplex projective
space associated withH, which we will indicate asHP . For a system withn stationary levels, one
hasH ∼= Cn, and the associated projective space will be denoted asCPn−1. While Cn is a n-
dimensional complex vector space, the projective space is a(n−1)-dimensional complex differential
manifold, which is also a2(n − 1)-dimensional real manifold, in particular it is endowed which a
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rich structure which yieldsCPn−1 to be a Kähler manifold (see for instance [CJ04] for a complete
discussion). The complex projective space is also called the space of the raysassociated toH. From
the definition, it follows that a ray is nothing more than a one-dimensional subspace ofH, hence a
way to represent the element of the rays’ space is by means of the map

|ψ〉 −→ Π(|ψ〉) = ρψ =
|ψ〉〈ψ|
〈ψ|ψ〉 , (2.3)

which associates to each vector the projector on the corresponding one-dimensional subspace, that
projector is commonly called thedensity operatoror density matrix. Obviously,Π(|ψ〉) = Π(|φ〉) if
and only if|ψ〉 ∼ |φ〉. Even though a pair of equivalent vectors describe the same physical configura-
tion, it is well known that the relative phase plays a fundamental role in the interference phenomena.
If the state of the system is splitted into two branches, in such a way that each branch acquires a
different, but coherent, phase shift, once the branches arerecombined one has|ψ′〉 ≃ |ψ〉 + eiα|ψ〉,
and the relative phaseα modulates the interference pattern.

The discussion of above concerns the kinematics offinite-dimensionalquantum mechanics. From
adynamical point of view, in the Hilbert space one has to consider the Schrödinger equation

i
d

dt
|ψ(t)〉 = H(t)|ψ(t)〉 (2.4)

with an initial condition|ψ0〉. If the Hamiltonian operator is hermitian, the modulus of the wave
function is preserved at each subsequent time〈ψ(t)|ψ(t)〉 = 〈ψ0|ψ0〉. Under the action of the map
(2.3), the Schrödinger equation projects into the von Neumann equation

i
d

dt
ρ(t) = [H(t), ρ(t)] (2.5)

with initial condition ρ0 = |ψ0〉〈ψ0|. In that case, the trace of the density operator is preserved
tr (ρ(t)) = tr (ρ(0)).

Example 1 (A two-level quantum system)For a two-level system,H ∼= C2. One can chose a log-
ical basis{|0〉, |1〉} to represent the vectors, namely|ψ〉 = a|0〉 + b|1〉. If 〈ψ|ψ〉 = R2, we have
|a|2 + |b|2 = R2, and a representative element for the corresponding equivalence class can be chosen
and parameterized as follows

|ψ〉 = Reiα
(

cos
θ

2
|0〉 + sin

θ

2
eiφ|1〉

)

. (2.6)

Notice that the range of parameters can be chosen to beφ ∈ [0, 2π[ andθ ∈ [0, π]. The corre-
sponding rank-one projector is written as

ρψ =
|ψ〉〈ψ|
〈ψ|ψ〉 = ρψij|i〉〈j| (2.7)

where the indexesi andj assume values{0, 1}, and the matrix representation of the projector is

ρψij ≡
1

2

[

1 + z x+ iy

x− iy 1− z

]

(2.8)
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where










x = sin θ cosφ

y = sin θ sinφ

z = cos θ

, (2.9)

that explicitly shows that the rays’ spaceCP 1 is a two dimensional sphere, known in this context as
the Bloch sphere.

2.2.1 Quantum mechanics on the fibre bundle

The discussion of above suggests how the physical interpretation infers a particulargeometric
structureon the carrier Hilbert space. From a geometrical point of view, we are dealing with aprin-

cipal fibre bundleH Π−→ HP , with the groupR+ which plays the role of thestructure groupas well
as of thetypical fibre (see for instance [Na05], or [CJ04] for a complete discussion). Analogously,
indicating withB = {|ψ〉 ∈ H | 〈ψ|ψ〉 = 1} the sphere of unit radius in the Hilbert space, it can be
useful, for physical reasons and for the simplicity of the exposition, to divide the projectionΠ in two
steps. We can writeΠ = π ◦ Π′, whereΠ′(|ψ〉) = |ψ〉

〈ψ|ψ〉 is a map fromH to B, andπ(|ψ〉) = |ψ〉〈ψ|
is a map fromB toHP . Hence we have decomposed

H Π−→ HP = H Π′

−→ B π−→ HP . (2.10)

In correspondence with that, the bundleB π−→ HP is also a principal fibre bundle, with structure
groupU(1), which expresses to thephase ambiguity. In other words, a pair of normalized vectors,
such that|ψ2〉 = eiα|ψ1〉, belong to the same fibre. The structure groupU(1) acts on the fibre
as |ψ1〉 → eiθ|ψ1〉. The relative phase between|ψ2〉 and |ψ1〉 corresponds to the unique element
u ∈ U(1) which transforms|ψ1〉 in |ψ2〉, that is to say,u|ψ1〉 = |ψ2〉.

2.3 The Pancharatnam connection

Shivaramakrishnan Pancharatnam, in 1956, considered the problem of defining a relative phase
between two beams of polarized light with non-parallel polarization. Notice that for a pair of beams
with the same polarization, the relative phase is immediately defined, the question arises when one
considers pairs of non-parallel polarizations. If the two vectors are non-orthogonal a relative phase
can be defined used a prescription introduced by him in [Pa56]. This prescription was physically
inspired and motivated by the phenomenon of interference. Let us consider two polarized beams of
light, expressed by the complex vectorsψ1 andψ2, which are superimposed coherently giving rise to
the vectorψ = ψ1 + ψ2. The overall square intensity isI2 = |ψ1|2 + |ψ2|2 + 2ℜ{(ψ1, ψ2)}, and
the interference fringes are modulated by∆ = arg (ψ1, ψ2). Hence, the interference is completely
constructivewhen the scalar product(ψ1, ψ2) is real, i.e.∆ = 0, and completelydestructiveif the
scalar product is purely imaginary. The idea of Pancharatnam was to define the relative phase for
non-orthogonal polarizations as

∆ = arg (ψ1, ψ2) . (2.11)

On the contrary, in the case the two vectors are mutually orthogonal, the interference pattern dis-
appears and the relative phase cannot be defined. A way to compare two phases, or in other words, to
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compare two points belonging to different fibres in the corresponding fibre bundle is called aconnec-
tion.

Example 2 (A two-level quantum system)For our limited purposes, and from a purely mathemat-
ical point of view, a beam of light is completely equivalent to a two-level quantum system. While
the states of polarization are defined by points on the Poincaré sphere (or the Poincaré ball if the
polarization is non-complete), the pure states of a two-level quantum system are defined by the points
on the Bloch sphere (or the Bloch ball if the states are mixed). Let us consider a beam of spin-1/2

particles which is splitted in two branches, polarizers anddelay plates are disposed along the paths in
order to handle the polarization of each beam and their relative phase. As an example, let us consider
three different states of polarization:

|ψ1〉 = eiχ1 |0〉 (2.12)

|ψ2〉 = eiχ2
|0〉 + |1〉√

2
(2.13)

|ψ3〉 = eiχ3
|0〉 + i|1〉√

2
. (2.14)

Using the definition (2.11), two states with different polarization can always be chosen to be in
phase by adjusting the global phase of one with respect to theother. With a phase shifter one can
adjust the differencesχi − χj . For the pair|ψ1〉, |ψ2〉 the relative phase is

β12 = arg 〈ψ1|ψ2〉 = χ2 − χ1 . (2.15)

For the second pair|ψ2〉, |ψ3〉, one obtains

β23 = arg 〈ψ2|ψ3〉 = χ3 − χ2 + π/4 . (2.16)

Finally, for the third pair|ψ3〉, |ψ1〉:

β31 = arg 〈ψ3|ψ1〉 = χ1 − χ3 . (2.17)

It follows that the relative phases are constrained to satisfy β12 + β23 + β31 = π/4. Hence, it is
not possible to make them vanish jointly. In other words, if one adjusts the global phases in order
to set the scalar products〈ψ1|ψ2〉 and〈ψ2|ψ3〉 to be real-valued, the scalar product〈ψ3|ψ1〉 cannot
be real-valued at the same time. The corresponding relativephase is constrained to take the value:
β31 = arg 〈ψ3|ψ1〉 = π/4.

Let us now consider the Pancharatnam rule from aninfinitesimalpoint of view. In order to com-
pare the phases of|ψ〉 and|ψ + dψ〉 = |ψ〉 + |dψ〉 one has to consider the scalar product

〈ψ|ψ + dψ〉 = 〈ψ|ψ〉 + 〈ψ|dψ〉 . (2.18)

The relative phase is given by the argument

β = arg 〈ψ|ψ + dψ〉 ≃ ℑ〈ψ|dψ〉〈ψ|ψ〉 , (2.19)
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that yields to identify aone-formwhich computes the relative phase of neighbor vectors. The linear
form

A ≡ ℑ〈ψ|dψ〉〈ψ|ψ〉 (2.20)

is called aconnectionone-form (in this framework, it is the Pancharatnam connection). A curveγ on
the total space (now the Hilbert spaceH) is said to behorizontalif the connection one-form identically
vanishes on it, namelyA|γ = 0. As a consequence, the vectors along a horizontal curve arelocally in
phaseone with the other. A connection one-form can be in general defined on aprincipal fibre bundle.
It takes values in thealgebra of the structure group. Starting from vectors inH, the connection takes
value in the complex line, while, in the case one restricts tonormalized vectors, i.e|ψ〉 ∈ B (the
sphere of unit radius), it is real-valued and reads as follows:

A = ℑ〈ψ|dψ〉 = −i〈ψ|dψ〉 . (2.21)

The last equality holds true since

1 = 〈ψ + dψ|ψ + dψ〉 = 1 + 〈ψ|dψ〉 + 〈dψ|ψ〉 , (2.22)

and〈ψ|dψ〉 is purely imaginary.

Let us consider three vectors:|ψ0〉, |ψ1〉 = |ψ0〉 + |dψ10〉, and|ψ2〉 = |ψ0〉 + |dψ20〉. Also we
have|ψ2〉 = |ψ1〉+ |ψ21〉 = |ψ1〉+ |dψ20〉 − |dψ10〉. The relative phases are:

β10 = 〈ψ0|dψ10〉 (2.23)

β20 = 〈ψ0|dψ20〉 , (2.24)

while

β21 = 〈ψ1|dψ20 − dψ10〉 = β20 − β10 + 〈dψ10|dψ21〉 . (2.25)

The extra term is given by thedifferential of the connection one-form, which is the associated
curvature, or field strength:

F = dA = −i〈dψ|dψ〉 . (2.26)

Example 3 (A two-level quantum system)For a two level system, one can parametrize normalized
vectors in the following way

|ψ〉 = eiχ
(

cos (θ/2)|0〉 + sin (θ/2)eiφ|1〉
)

, (2.27)

and compute a small variation

|dψ〉 = idχ|ψ〉 + eiχ
[

− sin (θ/2)
dθ

2
|0〉+

(

cos (θ/2)
dθ

2
+ idφ sin (θ/2)

)

eiφ|1〉
]

. (2.28)

Hence, one obtains:

A = −i〈ψ|dψ〉 = dχ+
1

2
(1− cos θ) dφ . (2.29)
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Let us consider three vectors:|ψ0〉, |ψ1〉 = |ψ0〉 + |dψ10〉, and |ψ2〉 = |ψ0〉 + |dψ20〉. Also we
have|ψ2〉 = |ψ1〉+ |ψ21〉 = |ψ1〉+ |dψ20〉 − |dψ10〉. The relative phases are:

β10 = dχ10 +
1

2
(1− cos θ0) dφ10 (2.30)

β20 = dχ20 +
1

2
(1− cos θ0) dφ20 , (2.31)

while
β21 = β20 − β10 −

1

2
sin θ1dθ10dφ21 . (2.32)

And the extra term corresponds to the curvature associated to the connection,

F =
1

2
sin θdθdφ = dA . (2.33)

2.3.1 Observations

To conclude this section, following [SB88], we will show howthe relative phase between two
non-orthogonal vectors can be calculated as the integral ofthe connection one-form along aproper
curve. That result will be used in the following chapters, where we discuss the efficacy of holonomic
computation under non-perfect experimental control.

Let us consider a curve|ψ(s)〉 ∈ B (the total space in that case), fors ∈ [0, 1]. The curve projects
on the base spaceHP in theshadowcurve|ψ(s)〉〈ψ(s)|. By definition, the projected curve isgauge
invariant, i.e. it is invariant under local phase transformations

|ψ′〉 = eiα(s)|ψ(s)〉 . (2.34)

On the other hand, the derivative|u〉 = ˙|ψ〉 of the (normalized) state vector with respect of the
curve parameter is not gauge invariant:

|u〉 −→ eiα(s) (|u〉+ α̇(s)|ψ(s)〉) , (2.35)

whereα̇(s) = dα(s)
ds . That yields the rule for the connection one-form, that transformscovariantlyas

follows:
A −→ A′ = A+ α̇(s)ds . (2.36)

One can consider thecovariant derivative|u′〉:

|u′〉 ≡ D(|ψ〉) = |u〉 − 〈ψ|u〉|ψ〉 , (2.37)

that changes covariantly by construction and represents the horizontal component of the derivative
along the curve. The covariant derivative can be exploited to define a gauge invariantmetric as
follows:

dl =
√

〈u′|u′〉ds . (2.38)

Thegeodesiccurves, with respect to that metric, satisfy the following geodesic equation:

D2|ψ〉 =

(

d

ds
− iA

)

|u′〉 = 0 . (2.39)

Notice that the geodesic curve is defined in the total space, nevertheless, since the metric is gauge
invariant by construction, all the curves which have the same shadowon the base space are equally
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solutions of the equation (2.39). Hence we can say that the property of a curve to be a geodesic is
determined by its shadow.

Let us consider a pair of vectors|ψ1〉 and|ψ2〉, and ageodesiccurve|γ(s)〉 connecting them (with
|γ(0)〉 = |φ1〉 and|γ(1)〉 = |φ2〉). An important result, contained in [SB88], is that the relative phase
β = arg 〈φ1|φ2〉 is given by

β =

∫

γ
A =

∫

γ
〈φ(s)|dφ(s)〉 . (2.40)

To prove that statement, the authors of [SB88] considered ahorizontal geodesic̃γ, namely|γ(s)〉 =

eiα(s)|γ̃(s)〉, with eiα(0) = 1. As a consequence, since the connection one-form vanishes along a hor-
izontal curve, it fulfills the equation

d2

ds2
|γ̃(s)〉 = 0 . (2.41)

One can consider the relative phase between the initial vector |ψ1〉 and the one along the horizontal
curve|γ̃(s)〉: that defines a function

g(s) = ℑ〈ψ1|γ̃(s)〉 . (2.42)

The derivativeġ(0) = ℑ〈ψ1| dds γ̃(s)〉 vanishes since the curve is horizontal. On the other hand,
the second derivative identically vanishes fors ∈ [0, 1]

g̈(s) = ℑ〈ψ1|
d2

ds2
|γ̃(s)〉 = 0 , (2.43)

because of equation (2.41). Hence the function is constant and, in particular,g(0) = g(1). In other
words, the initial vector|ψ1〉 is in phase with|γ̃(1)〉, and one obtains

β = arg 〈ψ1|ψ2〉 = arg 〈γ̃(1)|ψ2〉 . (2.44)

Along the geodesic curveγ, one has that

A|γ = A|γ̃ + α̇ds , (2.45)

and finally
∫

γ
A = α(1) , (2.46)

which proves (2.40).

A corollary of that result is that, given three state vectors|ψ1〉, |ψ2〉 and|ψ3〉, with arg 〈ψ1|ψ2〉 =

arg 〈ψ2|ψ3〉 = 0, the relative phase betweenψ3 andψ1 is given by the integral of the Pancharatnam
connection along a curve which is piecewise made of three geodesic curves connecting them, hence
giving the flux of the curvature through the geodesic triangle.

2.4 Appearance of geometric phases in quantum dynamics

In this section we will show how the Pancharatnam connection, in its quantum interpretation, can
naturally appear in the study of the dynamics of a non-relativistic quantum system, leading to the
emerging of ageometric phase.
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Initially, we will recall how the connection one-form arises in correspondence ofcyclicevolutions
of a quantum system [AA87]. In that case, the evolutorU is factorized as a product of two terms,
namelyU = V (T ) × Γ, whereV (T ) is called the dynamical phase, andΓ is a unitary transforma-
tion which is determined only by the geometry of the quantum system and it is commonly called
thegeometric phase. The same phenomenon arises in the limit ofadiabaticevolution of the system
[Be84, Si83]. That is the regime which is of interest for the applications in view of quantum infor-
mation tasks [ZR99]. Finally, it is recalled that both the adiabatic and non-adiabatic settings can be
discussed in the case ofAbelianU(1) andnon-AbelianU(N) phase factors [WZ84, An88].

2.4.1 Geometric phase after cyclic evolution

Let us consider a time-dependent HamiltonianH(t) and a solution of the corresponding Schrödinger
equation, indicated as|ψ(t)〉, in the time windowt ∈ [0, T ]. The solution of the Schrödinger equation

i
d

dt
|ψ(t)〉 = H(t)|ψ(t)〉 (2.47)

defines a curve
C : t ∈ [0, T ] −→ |ψ(t)〉 ∈ H . (2.48)

That curve is projected on the space of rays by the map

Π : |ψ(t)〉 −→ |ψ(t)〉〈ψ(t)| (2.49)

onto the curveC ′ = Π(C). The projected curve is the solution of the corresponding von Neumann
equation, with the initial condition|ψ(0)〉〈ψ(0)|. Taking a representative|φ(t)〉 along the curve, it is
related to the solution via alocal gaugetransformation

|ψ(t)〉 = eiχ(t)|φ(t)〉 . (2.50)

One can rewrite (2.47) as follows:

i
d

dt

[

eiχ(t)|φ(t)〉
]

= eiχ(t)H(t)|φ(t)〉, (2.51)

and
−χ̇(t)eiχ(t)|φ(t)〉+ ieiχ(t)|φ̇(t)〉 = eiχ(t)H(t)|φ(t)〉 . (2.52)

Multiplying by 〈ψ(t)| from the left, we obtain

χ̇(t) = i〈φ(t)|φ̇(t)〉 − 〈φ(t)|H(t)|φ(t)〉 , (2.53)

which yields

χ(T )− χ(0) =

∫ T

0
i〈φ(t)|φ̇(t)〉dt −

∫ T

0
〈φ(t)|H(t)|φ(t)〉dt . (2.54)

The first term on the right hand side is invariant under time parametrizationt → t′(t), thus it is
a function only of the support of the curve|φ(t)〉. It can be written as

∫

i〈φ|dφ〉, where the same
expression defining the Pancharatnam connection can be recognized. The second term in (2.54)
is invariant under gauge transformations|φ(t)〉 → eiα|φ(t)〉, but it is not invariant under time re-
parametrizationt → t′(t). That term is the instantaneous expectation value of the energy E(t)

computedalong the solution. Finally, the equation (2.54) reads

χ(T )− χ(0) = −
∫

φ(t)
A−

∫

φ(t)
E(t)dt . (2.55)
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A special case arises when the evolution of the system in the rays space iscyclic, i.e. |ψ(T )〉 =

eiα|ψ(0)〉. Selecting a representativeclosedcurve |φ(t)〉, with |ψ(t)〉 = eiχ(t)|φ(t)〉 and |φ(T )〉 =

|φ(0)〉 = |ψ(0)〉, we obtain

α = −
∮

φ(t)
A−

∮

φ(t)
E(t)dt . (2.56)

Notice that, for a closed curve, the quantity
∮

A is gauge invariant. The corresponding phase
factore−i

H
A is called theholonomy. The holonomy is determined only by the specific expression of

the connection one-form, and by the shadow of the closed curve |φ(t)〉. Being gauge invariant, the
holonomy is a property of the projected loop on the rays’ space — theshadowof the path — and not
of the path itself. Hence, taking a coherent superposition of the initial and the final state

|ψ(0)〉 + |ψ(T )〉 = (1 + eiα)|ψ(0)〉 , (2.57)

one could in principle observe an interference pattern which is made of two contributions: the dy-
namical phase which is determined by the instantaneous energy as

∫

E(t)dt, and an additional phase
shift which is the holonomye−i

H
A. Since the additional factore−i

H
A depends only on the support

of the curve in the rays’ space and on the details of the connection one-form, it is called thegeometric
phase.

2.4.2 Adiabatic evolution

In the previous section, we have recalled how a geometric phase arises in correspondence with
a cyclic evolution in the space of rays, this being related tothe non-trivial geometry of the complex
projective space. On the other hand, a cyclic evolution appears in correspondence with a peculiar
expression of the system Hamiltonian, of its time dependence and for a certain value of the opera-
tional timeT . Since the cyclicity of the dynamics appears as a special feature of the solution of the
Schrödinger equation, it can only be determineda posterioriand, in general, the time dependence of
the Hamiltonian does not give any transparent information about it as, for instance, it might not be
cyclic,H(T ) 6= H(0).

The idea of a cyclic evolution in the rays’ space is indeed a rather abstract concept, in the sense
that one is not directly dealing with the rays’ space when designing, planning or performing any
experiment. It would be preferable to have a way to control the system and determinea priori if
the evolution of the system will be cyclic. That can be done easily if one works in theadiabatic
regime. With this term, here and in the following, we indicate a physical setting in which the adiabatic
approximation of quantum mechanics is reliable.

Since the quantity that can in principle be experimentally controlled is not the state of the system
but at most its Hamiltonian, it would be interesting, in viewof the applications, to design a strategy
that allows toinfer a cyclic evolution of the state through the instantaneous control of the system
Hamiltonian, for instance a cyclic evolution should appearin correspondence with a cyclic Hamilto-
nian.

Let us consider a time-dependent Hamiltonian with the following instantaneous spectral decom-
position

H(t) =
∑

n

ǫn(t)Pn(t) , (2.58)

for t ∈ [0, T ], whereǫn(t) are distinctinstantaneouseigenvalues andPn(t) the corresponding eigen-
projectors. Here, we are going to consider the case in which all the eigenvalues are not-degenerate at
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eacht ∈ [0, T ]. In that case, each eigenprojector has unit rank,Pn(t) = |n(t)〉〈n(t)|, where we have
chosen instantaneous representative vectors|n(t)〉 (with |n(T )〉 = |n(0)〉). In the reference frame
{|n(t)〉}, one can write a generic solution of the Schrödinger equation as follows:

|ψ(t)〉 =
∑

n

an(t)e
−i

R
ǫn(t)dt|n(t)〉 , (2.59)

where the dynamical phases are factorized. Omitting to explicitly indicate the time dependence, one
can write

H|ψ〉 =
∑

n

ane
−i

R
ǫndtǫn|n〉 , (2.60)

and

|ψ̇〉 =
∑

n

ȧne
−i

R
ǫndt|n〉+−i

∑

n

anǫne
−i

R
ǫndt|n〉+

∑

n

ane
−i

R
ǫndt|ṅ(t)〉 . (2.61)

Hence, the Schrödinger equation reads:

∑

n

ȧn|n〉+
∑

n

an|ṅ〉 = 0 . (2.62)

Multiplying on the left by〈m| we obtain

ȧm = −an〈m|ṅ〉 . (2.63)

The term on the right hand side can be evaluated by differentiation of the instantaneous eigenvalue
equation

H|n〉 = ǫn|n〉 . (2.64)

Taking the scalar product with|m〉 yields

〈m|Ḣ |n〉+ ǫm〈m|ṅ〉 = ǫ̇n〈m|n〉+ ǫn〈m|ṅ〉 , (2.65)

and one obtains, form 6= n,

〈m|ṅ〉 =
〈m|Ḣ|n〉
ǫn − ǫm

. (2.66)

Coming back to the equation (2.63), we have obtained:

ȧn = −an〈n|ṅ〉 −
∑

m6=n
am
〈n|Ḣ|m〉
ǫm − ǫn

ei
R
(ǫn−ǫm)dt . (2.67)

In the adiabatic limit, the instantaneous eigenvectorsdecoupleeach other

~

∣

∣

∣
〈n|Ḣ |m〉

∣

∣

∣

(ǫm − ǫn)2
−→ 0 , (2.68)

and we can write

ȧn = −an〈n|ṅ〉 , (2.69)

whose solution reads:

an(t) = e−
R
〈n|dn〉an(0) . (2.70)
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As a consequence, if the system is initially in an eigenstate, sayan(0) = δnm, it remainsin the
corresponding eigenstate at each subsequent time:

H(0)|ψ(0)〉 = ǫ(0)|ψ(0)〉 −→ H(t)|ψ(t)〉 = ǫ(t)|ψ(t)〉 . (2.71)

In particular, if the Hamiltonian is cyclic,H(T ) = H(0), the dynamics in the rays’ space is also
cyclic, and the state vector acquires a geometric and a dynamical phase

|ψ(T )〉 = e−
R
〈n|dn〉e−i

R
ǫndt|ψ(0)〉. (2.72)

Let us consider a quantum system with a finite number of levels, sayH ∼= CN . The system
Hamiltonian can always be written asH =

∑

α hαλα, where the operators{λα}N2

α=1 are a basis
in the linear space of hermitian operators (a set of generalized Gell-Mann matrices, or the Pauli
matrices forN = 2), with real coefficientshα. From that point of view, a Hamiltonian operator
is nothing more than an element of aN2-dimensional real vector space. Hence, a time dependent
Hamiltonian,H(t) =

∑

α hα(t)λα, defines a path inRN2

, and a cyclic Hamiltonian a closed loop.
On the other hand, a Hamiltonian operator can be determined by a set of parameters{x}, which, for
instance, correspond to classical fields that determines the interactions and that in principle might
be experimentally controlled. In particular, these classical parameters can be subjected to a set of
physical constraints. In that case one can writex ∈ M, whereM is a suitable manifold. From that
point of view, the system Hamiltonian can be seen as a function

H : x ∈M −→ H[x] . (2.73)

In the following, we describe the idea that the quantum system can be controlled through that set
of classical parameters that, for this reason, will be also calledcontrol parameters, as well as we will
refer toM as thecontrol manifold.

As the Hamiltonian is a function onM, the same holds for its spectral decomposition

H[x] = ǫn[x]Pn[x] . (2.74)

In the case of non-degenerate eigenvalues, one can writePn[x] = |n[x]〉〈n[x]|. A closed path over
the control manifold

γ : t ∈ [0, T ] −→ x(t) ∈M, (2.75)

with x(T ) = x(0), corresponds to a loopH[x(t)] in the space of Hamiltonian. The loopH[x(t)]

determines an associated time-dependent Schrödinger equation:

i
d

dt
|ψ〉 = H[x(t)]|ψ〉 . (2.76)

In the adiabatic limit, if the system is initially in the ray|n[x(0)]〉〈n[x(0)]|, it remains into the
corresponding instantaneous eigenspace (determined by|n[x(t)〉〈n[x(t)]|) at each subsequent time.
Hence, a loop in the Hamiltonianinfersa loop in the space of rays, and one can write:

|ψ(T )〉 = e−
H
γ
〈n|dn〉e−i

R
γ
ǫndt|ψ(0)〉 , (2.77)

with |n[x(0)]〉 = |ψ(0)〉, and|n[x(0)]〉 = |n[x(T )〉. Hence we can introduce theadiabatic connec-
tion:

A = −i〈n[x]|dn[x]〉 = −i〈n[x]|∂µn[x]〉dxµ . (2.78)
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Which can also be expressed by means of its component in the local set of coordinates, namely

Aµ = −i〈n|∂µn〉 . (2.79)

Notice that, in contrast to the Pancharatnam connection, this one-form is indeed defined on the
control manifold, and not on the Hilbert space. In the present case, we are dealing with a fibre bundle
with total space corresponding to the family of spaces of degeneracy labeled by the indexn[x], while
thebase spaceis the control manifoldM, and the structure group isU(1).

2.4.3 Example: a spin-1/2 in a quasi-static magnetic field

Let us consider a spin-1/2 in an adiabatically changing magnetic field. The time-dependent
Hamiltonian is

H(t) = −1

2
B(t)σ (2.80)

whereσ indicates the Pauli matrices. Notice that the Hamiltonian is determined by the value of the
instantaneous magnetic field, hence the corresponding control manifold isM ∼= R3. In the basis
{|0〉, |1〉}, with σz|0〉 = |0〉 andσz|1〉 = −|1〉, the instantaneous ground state can be written as

|ψ0〉 = cos
ϑ

2
|0〉 + eiϕ sin

ϑ

2
|1〉 (2.81)

where the instantaneous magnetic is written in polar coordinates as

B = |B|(sin ϑ cosϕ, sin ϑ sinϕ, cos ϑ) . (2.82)

The ground state energyE0(t) = −1
2 |B(t)|, and the energy gap with the excited state isΩ =

|B(t)|. With the choice (2.81), the corresponding connection one-form has the following form:

A = −i〈ψ0|dψ0〉 =
1

2
dϕ (1− cos ϑ) . (2.83)

After an adiabatic loop γ followed by the magnetic field in theoperational timeT , the ground
state acquires a phase factor:

eiΦ = e−iΦg × e−iΦd (2.84)

whereΦd =
∫ T
0 E0(t)dt gives the dynamical phase, and the geometric phase is expressed by:

Φg =

∮

γ
A =

1

2

∮

dϕ (1− cos ϑ) =
ω

2
, (2.85)

whereω is the solid angle spanned by the magnetic field.

For non-adiabatic loop, the evolution of the system might benon-cyclic, even in correspondence
of a cyclic magnetic field. With the initial condition|ψ(0)〉 = |ψ0〉, one has to solve the corresponding
Schrödinger equation in order to obtain the final state|ψ(T )〉. The relative phase between the final
and initial states is defined byarg 〈ψ0|ψ(T )〉. The plot in figure 2.1 shows theaverage gate fidelity
(see the appendix B) between theadiabaticevolution and thedynamicalevolution as a function of
the operational timeT , in correspondence of loops with the same support.
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F

Figure 2.1: Average gate fidelity between the adiabatic and the dynamical transformation for the
spin-1/2 in an changing magnetic field, as a function of the adimensional operational timeΩT . The
adiabatic dynamics is approached in the limitΩT ≫ 1.

2.4.4 Non-Abelian holonomies

In the previous sections, we have considered the case of Abelian, U(1), phase factors, both for
the adiabatic and the non-adiabatic setting. The discussion can be naturally extended to the situation
in which multiple eigenvalues are present, and one can observe a non-Abelian ,U(d), phase factor.
The spectral decomposition (2.74), can present eigenprojectors with rank greater than one. The main
difference, from a geometric point of view, is that one is dealing with a principal fibre bundle with
structure groupU(d).

In order to fix the ideas, let us consider the case ofadiabaticgeometric phases. Let us select a
d-dimensional subspace, corresponding to the eigenprojector Pn[x], and the eigenspaceHn[x]. One
can consider an initial vector|ψ0〉 ∈ Hn[x], and an adiabatic loopγ in the control manifold. At the
end of the loop, the eigenspace will come back to itself,Hn[x(T )] = Hn[x(0)], followed by the final
state|ψ(T )〉 ∈ Hn[x(T )]. Hence, in general, the system will acquire a non-Abelian phase factor:

|ψ(T )〉 = U |ψ(0)〉, (2.86)

whereU ∈ U(d), is aunitary matrixacting in thed-dimensional eigenspaceHn[x(0)].
Let us chose a frame inHn[x(0)], denoted with{|ηa[x(0)]〉} and let it evolves according to the

Schrödinger equation. Hence, the corresponding solutions {|ηa[x(t)]〉}, with

i
d

dt
|ηa[x(t)]〉 = H[x(t)]|ηa[x(t)]〉 , (2.87)

define an orthonormal basis inHn[x(t)] at each timet ∈ [0, T ]. Another basis{|φa[x(t)]〉} in
Hn[x(t)] can be chosen such that|ηa[x(t)]〉 = Uab[x(t)]|φb[x(t)]〉, and|ψa[x(T )]〉 = |ψa[x(0)]〉 =

|ηa[x(0)]〉, corresponding to a time-dependent unitary matrixUab[x(t)] ≡ U ∈ U(d). Omitting to
indicate explicitly the dependence fromx(t), equation (2.87) reads:

HUab|φb〉 = idUab|φb〉+ iUabd|φb〉 . (2.88)

36



Multiplying from the left by〈ηc| = 〈φd|Ucd∗ one obtains

Ucd
∗Uab〈φd|H|φb〉 = iUcd

∗dUab〈φd|φb〉+ iUcd
∗Uab〈φd|dφb〉 . (2.89)

Since the|φa〉 are eigenvectors of the instantaneous Hamiltonian, one canwrite

Ucd
∗Uabǫnδdb = iUcd

∗dUabδdb − Ucd∗UabAdb , (2.90)

where we have defined thematrix-valuedconnection one form

Adb = −i〈φd|dφb〉 . (2.91)

The expression in (2.90) has a matrix form:

ǫI = i~dUU † − ~UAU † . (2.92)

Multiplying by U † from the left andU from the right we obtain

ǫI = iU †dU −A . (2.93)

The latter is a differential equation for the unitaryU , that we can rewrite explicitly as

iU †
dU

dt
= ǫ+A . (2.94)

The formal solution, with initial conditionU(0) = I is

U(T ) = e−i
R T

0
ǫ(t)dt ×Te−i

R
A . (2.95)

Notice that the first factor is the dynamical contribution tothe phase inside the degenerate eigenspace,
it corresponds to an irrelevantU(1) global phase factor. On the other hand, the second factor, as in
the Abelian case, is independent of the parametrization of the curve and of the operational time and is
interpreted as the geometric contribution, ornon-Abelian holonomy. The matrixAab = −i〈φa|dφb〉,
or the operatorAab = −i〈φa|dφb〉|φa〉〈φb| is the corresponding non-Abelian connectionone-form.
Since the instantaneous degenerate space is determined by apoint on the control manifold, we can
write the connection as a one-form overM, with component expressionA = Aµdxµ, where

Aµ ≡ −i〈φa|∂µφb〉 . (2.96)

Neglecting the dynamical part (for example, puttingǫn = 0), we obtain a holonomic non-Abelian
gate, which has the following expression

Γ = Pe−i
R
A . (2.97)

Since the holonomy is independent of the particular parametrization of the loopx(t), we have
substituted the time-ordering with the path-ordering symbol P.
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2.5 Universal computation with the holonomic group

The observation of non-Abelian holonomies naturally leadsto theapplicationof geometric phases
for the scopes ofquantum computingor, in general, forquantum information processing. Since a
quantum algorithm is realized as a unitary evolution of a quantum system, one can argue that the
geometric phases can be regarded as aspecial classof unitary transformations. In the present section,
we recall how geometric phases can be exploited in order to realize universal quantum computation.

Let us consider a quantum system, together with a family of isodegenerate Hamiltonian functions

H : x ∈M −→ H[x] , (2.98)

with a point-wise spectral decomposition

H[x] =
∑

k

ǫk[x]Pk[x] . (2.99)

The corresponding Hilbert space factorizes as a direct sum of (sub)spaces

H = ⊕kHk[x] , (2.100)

each corresponding to a different eigenenergy. A loop on thecontrol manifold

γ : t ∈ [0, T ] −→ γ(t) ∈M , (2.101)

with starting pointx0 = γ(0) = γ(T ), is said to be adiabatic if

γ̇/γ ≪ inf
h 6=k
|ǫh[γ]− ǫk[γ]| , (2.102)

If the control parameters evolve in time along an adiabatic loop, the overall unitary transformation
factorizes in the following way:

U(T ) = ⊕ke−iφk(T )Γk(γ)Pk[x0] , (2.103)

whereφk(T ) =
∫ T
0 ǫk[γ(t)]dt are the dynamical contributions to the phase, and

Γk(γ) = Pe−i
R
γ
Ak (2.104)

are the holonomies associated to each subspace. Thus, the dynamics in each degenerate subspace
Hk[x0] at the initial pointx0 are decoupled. In each of the subspace, the adiabatic connection is in
general matrix valued, and takes values in the Lie algebrau(dk), wheredk is the dimension of the
corresponding subspace. For the scope of geometric quantumcomputation, one needs to pick up one
degenerate subspace, sayHk of dimensiond = dk, that will play the role of acomputational space.
By itself, this subspace hasn’t any tensor product structure, nevertheless it is mathematically equiva-
lent to — and can be used tosimulate— a register ofN qubits, withN = log2 d. From that point
of view, one can notice that the dimension of the degenerate subspace growsexponentiallywith the
number of qubits. Neglecting the dynamical phase, the holonomy can be exploited in order to pro-
duce a quantum gate in acompletelygeometric fashion. Furthermore, the quantum gate is determined
through the control of the classical parametersx.
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After the introduction of adiabatic geometric phases, it should be clear that in correspondence to
a givenadiabaticloop in the control manifold one obtains an unitary gate which is the corresponding
holonomy. On the other hand, one cannot in principle avoid that, for a given loop, the holonomy
is trivial , i.e. it is a numerical phase factor in the computational space, or that different holonomies
obtained by different loops docommuteeach other. Changing the loop in the parameter space cor-
responds to change the obtained holonomic gate, also in thiscase we cannot in principle avoid the
situation in which all the loop give rise to the same gate — or the samesubgroupof gates — hence
not allowing to take advantage of the full computational potentialities of the system. In other words,
there is need to identifies the conditions under which an universal quantum computation is possible
using only holonomic transformations in the selected computational subspace. That kind of problem
was proposed and solved by Paolo Zanardi and Mario Rasetti in[ZR99]. In the following we will
give a short survey of their results.

Two ingredientsenter in the definition of the holonomic transformation: theselectedloop γ over
the control manifold, and the explicit expression of theconnectionone form. First of all, one has to
notice that the set of loops over the manifold with fixed starting pointx0 is endowed with a law of
composition. Since the adiabatic holonomy does not depend on the operational time, we can put

γ : s ∈ [0, 1] −→ γ(s) ∈M . (2.105)

Hence, one can notice that two loops can be composed in the following way

γ2 · γ1(t) = θ(1/2− t)γ(2t) + θ(t− 1/2)γ(2t − 1) (2.106)

(whereθ is theheavy-sidefunction). In correspondence with that, an inner product can be defined on
holonomies as follows

Γ(γ2)Γ(γ1) = Γ(γ2 · γ1) . (2.107)

Notice that the trivial loopγ0(t) = x0 corresponds to the trivial holonomyΓ(γ0) = I, and the
inverse holonomy corresponds to the loop preformed in the opposite wayΓ−1(γ) = Γ(γ′), where we
have definedγ′(t) = γ(1− t). Hence, the set of the corresponding holonomies is a group, called the
holonomy groupassociated to the adiabatic connection. That group is denotedhol(A).

The holonomy grouphol(A) is in general aproper subgroup of the whole unitary groupU(d)

acting in thed-dimensional subspace chosen as computational subspace. In order to obtain universal
holonomic computation, one has to require that the holonomy(sub)group isnot a proper subgroup,
i.e.hol(A) = U(d). If that condition holds true, it is possible to approach anyunitary transformation
with arbitrary high accuracy, with afinitesequence of holonomic transformations which corresponds
to a sequence of loops. In that case, the connection one-formA is said to beirreducible. Hence,
the universality of holonomic computation is equivalent tothe irreducibility of the corresponding
connection one-form.

The irreducibility of the connection can be determined studying the associatedcurvature, or field
strength,F = dA. Its component expression, in a local set of coordinates{xµ} onM, reads

Fµν = ∂νAµ − ∂µAν − [Aµ, Aν ] . (2.108)

The important result, for our purpose, is that the connection is irreducibleif and only ifthe compo-
nents of the curvaturespanthe whole Lie algebrau(d) of the unitary group [Na05]. As was discussed
in [ZR99], irreducibility can be proven to be thegeneric case(in the sense that the set of irreducible
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Figure 2.2: On the left: structure of the levels for a single ion with the coupling fields. On the right:
blue and red de-tuned laser fields related to the realizationof the two-qubit geometric gate.

connections is an open subset which is dense in the set of all possible connection one-forms). On the
other hand, that result leaves the problem of explicitly identify a physically reliable Hamiltonian over
a suitable manifold of control parameters with an associated irreducible connection one-form.

To conclude, one can notice that the approach we have outlined in this section take in consider-
ation a system ofd-levelsas a whole, without taking in account (and even without requiring it),that
a system ofN = log2 d qubits has a precisetensor productstructure. Also from that point of view,
as the name says, the holonomic approach can be interpreted as aglobal approach to quantum com-
putation. On the other hand, as also recalled in the chapter 1, in contrast to thistop-downapproach,
one can take abottom-uppoint of view and obtain anyN -qubit gate as the composition of simple
one-qubit and two-qubits gates.

In the next section, we will discuss the proposal that was presented in [Du01] that involves a
physically reliable Hamiltonian and exploit the bottom-uppoint of view.

2.6 Physical realizations

The first experimentally feasible proposal for the realization of an all-holonomic computation
was given by Luming Duan, Ignacio Cirac and Peter Zoller in [Du01]. A possible physical system is
an array of ions in a Pauli trap, which can be manipulated withappropriate laser beams. The same
physical setting has been discussed in order to realize standarddynamicalscheme for quantum com-
puting [Ci95, So99, Mo99, Ci00], and the single and multi-qubit operations have been experimentally
demonstrated [Mo95, Ro99]. Even if other models have been proposed in the literature [Fa00], the
model of Duanet al. is probably the one most extensively studied also with reference to different
physical systems, as Josephson junctions [Fa03] and semiconductor quantum dots [So03], and can be
regarded as areference pointfor the subject.

2.6.1 Geometric manipulation of trapped ions

All the ions are assumed to have the same structure of electronic levels (see the scheme on the
left hand side of figure 2.2). For thejth ion, it is composed of two degenerate stable or metastable
state|0〉j and|1〉j which, as the notation suggests, identify the computational space of thejth qubit
Hj0 = span{|0〉j , |1〉j}; an excited state|e〉j and an ancillary low-energy state|a〉j . In such a way,
one-qubit degrees of freedom are attached to each ion. In order to obtain universal computation, the
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Figure 2.3: The level scheme and the control manifold for the(second) single-qubit geometric gate.

ability to realize a pair of non-commuting single-qubit unitary gates and one nontrivial two-qubit
transformation is required.

The gates that can be generated in a complete geometric fashion can be chosen in the following
way:

1. The first one-qubit gate is
U j1 = eiΦ1|1〉j〈1| , (2.109)

which is a single-qubitphasegate, that has the matrix expression

U j1 ≡
[

1 0

0 eiΦ1

]

(2.110)

in the computational basis.

2. The second one-qubit gate is
U j2 = eiΦ2σ

j
y , (2.111)

whereσjy = i (|1〉j〈0| − |0〉j〈1|) is the Pauli matrix in the computational basis. The corre-
sponding matrix expression of the gate is:

U j2 = cos Φ2Ij + i sin Φ2σ
j
y ≡

[

cos Φ2 sin Φ2

− sin Φ2 cos Φ2

]

. (2.112)

3. The two-qubit gate, acting on thejth andkth qubit, is

U jk3 = eiΦ3|11〉jk〈11| . (2.113)

Its matrix expression in the computational basis of the pairof qubits j andk (the two-qubit
computational states are{|00〉jk, |01〉jk, |10〉jk, |11〉jk}) is

U jk3 ≡











1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 eiΦ3











. (2.114)

The argumentsΦ1, Φ2 andΦ3 are adjustable parameters depending on the chosen loop in the
parameter manifold.
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In order to realize the single-qubit gates, an ion in the trapis addressed with three laser beams
corresponding to the three possible transition from the low-energy levels to the excited level. The
degenerate levels are supposed to have different angular momentum in such a way that the corre-
sponding transitions can be addressed with laser beams which differ in polarization. In the rotating
frame, the interaction picture Hamiltonian reads as follows:

H = (Ω0|0〉〈e| + Ω1|1〉〈e| + Ωa|a〉〈e| + h.c.) (2.115)

whereΩ0,Ω1 andΩa are the three, in general complex, Rabi frequencies, andh.c. denotes the Her-
mitian conjugate, and we have omitted the index labeling theions.

The first one-qubit gate

To generate the holonomic gateU1 one has to setΩ0 = 0. In such a way, the|0〉 level is
completely decoupled. Also, we choose the following parametrization: Ω1 = −Ω sin (ϑ/2)eiϕ and
Ωa = Ω cos (ϑ/2). The common factorΩ gives the total ”intensity” of the interactionΩ2 = Ω2

1 +Ω2
a.

Its value is relevant in order to validate the adiabatic approximation, while it is the relative amplitude
betweenΩ1 andΩa that determines the dynamics in the adiabatic limit. Hence,the manifold of con-
trol parameters is a two-dimensional sphere. With that parametrization, the system presents a dark
state, i.e. a state with zero energy:

|ψ〉 = cos
ϑ

2
|1〉+ sin

ϑ

2
eiϕ|a〉 . (2.116)

The initial configuration of the system has to be chosen in correspondence with the pointϑ = 0

(the North pole), in which the state|ψ〉 = |1〉 has zero energy. The connection one-form is written as

A1 = −i〈ψ|dψ〉 = sin2 θ

2
dϕ =

1

2
(1− cos ϑ) dϕ . (2.117)

After an adiabatic loop in the parameter space, the acquiredgeometric phase equals one-half of
the solid angle spanned by the loop. For a given loop, which identifies a solid angleω1, we obtain the
holonomic gateei

ω1
2
|1〉〈1|.

The second one-qubit gate

In the following chapters, we will consider the following holonomic gate as a case study. In order
to realize the one-qubit gateU2, we need to constraint the three Rabi frequency to be real-valued,
furthermore, the parameters are constrained to take valueson a two-sphere. It is thus convenient
to introduce polar coordinates. Puttingx = Ω0, y = Ω1, andz = Ωa, we write the following
parametrization:











x = Ω sinϑ cosϕ

y = Ω sinϑ sinϕ

z = Ω cosϑ

. (2.118)

In that case, the spectrum of (2.115) is threefold:

σ = {0,±Ω} , (2.119)
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with the null eigenvalue which is doubly degenerate. The twodegenerate eigenstates with vanishing
energy can be chosen as follows:

|ψ0〉 = cos ϑ (cosϕ|0〉 + sinϕ|1〉) − sinϑ|a〉 ,
|ψ1〉 = − sinϕ|0〉+ cosϕ|1〉 . (2.120)

Hence, while the eigenenergy is fixed, the corresponding eigenspace is a function of the control
parameters, i.e. a function on the two-sphere.

The corresponding connection one-form is matrix-valued and reads as follows:

A2 = −i〈ψα|dψβ〉 = − cos ϑdϕσαβy , (2.121)

whereσαβy are the components of the Pauli matrix. After anadiabatic loopin the parameter space,
which spans asolid angleω2 (see the figure 2.3), one obtains the non-Abelian holonomy

U2 = e−iω2σy . (2.122)

The two-qubit gate

The realization of the two-qubit gate requires to exploit the interactions between two ions. Ions
interact between themselves via the Coulomb force. For small deviations from the equilibrium po-
sition, this interaction can be modeled by a set of collectives modes which describe the vibrational
degrees of freedom of the array of ions.

In order to realize the two-qubit gateU3, one vibrational mode with frequencyν is selected,
typically it corresponds to the vibrational motion of the center of mass of the chain. Both thejth
and thekth ions are addressed with the same combination of laser fields. While the|0〉 levels are
decoupled (Ω0 = 0), the|1〉 and|a〉 levels are independently coupled to the excited state with alaser
field composed of two beams, a blue and red de-tuned components. More precisely, the de-tuning for
the transition|1〉 ↔ |e〉 is chosen to be±(ν+ δ), whereδ is an additional shift, and±(ν− δ′) for the
other transition, whereδ′ can be chosen to beδ′ = −δ (see the scheme depicted in figure 2.2). In this
way, only the second order transitions are resonant. In the Lamb-Dicke regime (η ≪ 1), the system
Hamiltonian reads:

H =
η2

δ

(

−|Ω1|2σφ1

j1 σ
φ1

k1 + |Ωa|2σφa

ja σ
φa

ka

)

(2.123)

where
σ
φµ

jµ = eiφµ |e〉〈µ|+ h.c. , (2.124)

with µ = 1, a. One can take the parametrization|Ω1|2 = |Ω|2 sin (ϑ/2) and|Ωa|2 = |Ω|2 cos (ϑ/2)

andφ1 − φa = ϕ. Starting from the pointϑ = 0, the vector|11〉 adiabatically follows|ψ〉 =

cos (ϑ/2)|11〉 + eiϕ sin (ϑ/2)|aa〉, while the vectors|00〉, |01〉 and|10〉 are decoupled. Also in this
case, if the loop spans a solid angleω3, the corresponding gate isU3 = ei

ω3
2
|11〉〈11|.

2.7 The argument of robustness of geometric phases

In the adiabatic case, the geometric phase acquired in correspondence of a closed loopγ on the
control manifold is given by the integral of the adiabatic connection:

Φ =

∮

γ
A . (2.125)
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In the examples discussed above, one can invoke the (Abelian) Stokes’ theorem and write:

Φ =

∫

S
F , (2.126)

whereS is a surface withboundaryγ, andF is the curvature field associated toA.
In the presence of parametric noise, the loop is changed to the noisy loopγn:

γ −→ γn . (2.127)

As a consequence, in correspondence of a noisy adiabatic path, one obtains a noisy geometric phase:

Φn =

∫

γn

A , (2.128)

which can be also written as the integral of the curvature over the surfaceSn spanned by the noisy
path:

Φn =

∫

Sn

F . (2.129)

It is worth noticing that the quantity in (2.129) is a stochastic variable, defined as a stochastic
integral. Thefluctuationsin Φn are determined by the fluctuations in the noisy loop and by thefact
that in general the noisy path mightnot be closed. The non-closure of the path makes the integral in
(2.128) no more gauge invariant. Following [SB88] and [DP03], one can ”close” the loop following
ageodesicrule. Obviously, that approach makes sense only for small perturbations.

Corresponding with the noisy path, one has a holonomic transformation, or geometric phase

Γn = exp (−iΦn) , (2.130)

which is itself a stochastic variable. The geometric phase is fault-tolerant, with respect to parametric
noise, if the integral in (2.129) is stable with respect to the fluctuation induced by the noise affecting
the loop in the parameter manifold. Hence the issue is to determine in which conditions, regarding
the noise and the system, the stochastic integral in (2.129)[or in (2.128)] has negligible fluctuations.

2.7.1 Berry phase in a fluctuating magnetic field

Following Gabriele De Chiara and Massimo Palma in [DP03], inthis section we describe the ar-
gument infavorof the robustness of the geometric phase with respect to parametric noise. Obviously
the robustness is not an absolute property of geometric phase, the claim is that it can be more robust
than its dynamical counterpart.

The system under consideration is a spin-1/2 degree of freedom in the presence of anoisy adia-
batic magnetic field. With reference to the example discussed in the section 2.4.3, here we consider a
noisy magnetic field and the corresponding Schrödinger equation:

i
d

dt
|ψ〉 = −1

2
B(t)σ|ψ〉 . (2.131)

In the presence of parametric noise, the magnetic field is thesum of two parts:

B(t) = B0(t) + K(t) , (2.132)

whereB0(t) identifies and ideal (noiseless) closed loop experienced bythe magnetic field during an
operational timeT , andK(t) is a noisy contribution to the magnetic field which can be modeled as a
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stochastic processwith vanishing mean value. For instance, we will take in consideration a stationary
Ornstein-Uhlenbeck process (see for instance [Ga83]) withamplitudeε and band-widthΓ, along each
of the three components ofK(t). In particular, the two-times correlation function has thefollowing
form:

C(|t− s|) = 〈Kj(t),Kl(s)〉noise = δjlε
2e−Γ|t−s| , (2.133)

whereKj indicates thejth components of the field.
In the discussion below we explicitly require that the noiseis adiabatic, hence generating an

adiabatic sample path. This condition can be stated by requiring that the band-width of the noise is
sufficientlynarrow, in our case that condition readsΓ≪ |B|. That ensures that the high frequencies
give a sufficiently small contribution.

If, in correspondence of the ideal loopγ, the instantaneous magnetic field is written in polar
coordinates as

B0(t) = |B0(t)| (sinϑ0(t) cosϕ0(t), sinϑ0(t) sinϕ0(t), cos ϑ0(t)) , (2.134)

the noisy magnetic field, which follows the noisy pathγn has an analogous expression

B(t) = |B(t) + K(t)| (sinϑ(t) cosϕ(t), sinϑ(t) sinϕ(t), cos ϑ(t)) . (2.135)

For small amplitude of the noise, the angular variables can be expressed by their first-order Taylor
expansion:

ϑ(t) ≃ ϑ0(t) + δϑ(t)

ϕ(t) ≃ ϕ0(t) + δϕ(t) .
(2.136)

Without noise, the geometric phase isΦ =
∫

γ A, and the dynamical phase is denotedΦd. In the
presence of noise, the adiabatic connection

A =
1

2
(1− cos ϑ) dϕ (2.137)

has to be evaluated along the noisy loop. One can write a first-order perturbative expansion for the
integral of the connection of the following kind:

Φn =

∫

γn

A ≃
∫

γ
A+ δΦ . (2.138)

Using the expression in (2.136), one has:

δΦ =

∫ T

0

(1− cos ϑ0(t))

2
dδϕ(t) +

∫ T

0

sinϑ0(t)

2
δϑ(t)dϕ0(t) +

∫ T

0

sinϑ0(t)

2
δϑ(t)dδϕ(t) .

(2.139)
Hence, we have written the perturbative term in (2.138) as a stochastic integral, in which one can
distinguish three contributions:

• A term which is of the first order in the amplitude of the noise,and is determined by the
component of the noise along the angleϕ:

δΦ1 =
1

2

∫ T

0
(1− cosϑ0(t)) dδϕ(t) . (2.140)
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• A second term of the first order in the noise amplitude, determined by the component of the
noise along the angleϑ:

δΦ2 =
1

2

∫ T

0
sinϑ0(t)δϑ(t)dϕ0(t) . (2.141)

• A term of the second order in the amplitude of the noise, whichis determined by the correlations
between the noise components along the angleϑ andϕ:

δΦ3 =
1

2

∫ T

0
sinϑ0(t)δϑ(t)dδϕ(t) . (2.142)

The philosophy adopted in [DP03] was to neglect the second-order term, hence writing

Φn ≃ Φ + δΦ1 + δΦ2 . (2.143)

At this point, they did several assumption. They consider anideal loop in whichϑ0(t) = ϑ0 is
constant, they putϕ(t) = 2π t

T , and choice the unperturbed magnetic field with constant modulus,
|B0(t)| = B. They neglect the termδΦ1 by noticing that it is responsible of the fact that the noisy
path might be in general non-closed, making use of the discussion in [SB88] about geometric phases
in the non-cyclic setting (see also the section 2.3.1 in thischapter). The remaining termδΦ2 was
finally written in the following way:

δΦ2 =

∫

1

2
sinϑ0δϑ(t)dϕ0(t) =

∫ T

0

1

2

(

B03

B3
B0 ·K−

K3

B

)

2πdt

T
, (2.144)

whereB0j andKj indicate thejth component of the fields, and we have omitted the time dependence.
Finally, the geometric phase in the presence of the noise is given by the following stochastic integral:

Φn = Φ +
π

T

∫ T

0

(

B03

B3
B0 ·K−

K3

B

)

dt . (2.145)

They computed the mean value and the varianceσΦ of that stochastic integral. While the mean
value is zero, the mean square has the following expression (in the limit ΓT ≫ 1):

σ2
Φ = 2

ε2

B

[

(π cos ϑ0 sinϑ0)
2 +

(

π sin2 ϑ0

)2
] 1

ΓT
. (2.146)

Notice that the quantityN = ΓT can be interpreted as the averagenumber of statistically inde-
pendent fluctuationsmade by the noise component during the operational timeT . That quantity turns
to be a crucial parameter for the description of noisy geometric phase. In particular, we can see from
the expression in (2.146) that the variance of the geometricphase vanishes (at the first order in the
noise amplitude) in the limitN → ∞. In other words, the geometric phase is stable if the noise is
allowed to experiencesufficiently manyadiabatic oscillation during the operational time.

The expression in (2.146) has to be compared with the variance of the corresponding dynamical
phase. Notice that the dynamical phase is written as a stochastic integral of the following form:

Φd =

∫ T

0
|B(t)| ≃ BT +

∫ T

0

B0 ·K
B

dt . (2.147)

The mean value of the dynamical phase vanishes, while its mean square has the following form:

σ2
d =

ε2

B

∫ T

0
dt

∫ T

0
ds

[

sin2 ϑ cos (ϕ0(t)− ϕ0(s)) + cos2 ϑ0

]

e−Γ|t−s| , (2.148)
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that, as can be easily checked, in the limitΓT ≫ 1 scales linearly with the operational timeT .

The total phaseacquired at the end of the adiabatic loop is the sum of the dynamical and the
geometric contribution. The overall variance is not the sumof the variances because the two phases
are not independent, since both are determined by the stochastic processK. Nevertheless, since the
variance of the geometric phase scales asT−1, while the one of the dynamical phase scales asT , the
main contribution to the fluctuations of the phase comes fromthe dynamical part in the limit of long
operational time.

2.8 Strategies for fault-tolerant holonomic gates

It is clear that the first-order analysis reviewed in the previous section suggests a possiblestrategy
in order to obtain afault-tolerantquantum computation in the context of the holonomic approach.

The argument of robustness of the holonomic gates states that the fluctuations in the geometric
phase becomenegligible (at first order in the noise amplitude) increasing the parameter N , which
expresses the average number of statistically independentoscillations of the noise. Hence, for agiven
noise, identified by itsamplitudeand itsband width(or its correlation time), one can reduces the
fluctuations of the noise by increasing the operational timeT . Hence the cost of a longer operational
time is compensated by a more robust computation.

The first-order analysis suggest to take the limitT → ∞ in order to ideally obtain vanishing
fluctuations in the holonomic gate. More realistically, onehas to consider a feasible operational time
which results from abalancebetween different physical and computational aspects.

The main idea of the present Thesis, that will be discussed indetails in the chapters 4 and 5 is to
refine that strategy taking into account the effects of the noise on the geometric phase at the second
order in the perturbative expansion. One can indeed argue that, if for longer operational time the
first-order contribution to the variance of the geometric phase is negligible, one has to consider the
terms of the second order. The dependence of the second ordercorrection from the operational time
— or the number of noise fluctuationsN — will hence determine the optimal strategy in order to
achieve a robust holonomic gate.
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Chapter 3

Robustness of non-adiabatic holonomic
gates

This chapter is mainly based on the paper [Lu07’], in which wehave studied the behavior of a
non-Abelian andnon-adiabaticholonomic gate in presence of parametric noise. That kind ofgate
was presented in a recent paper [Fl06] in the context of the non-Abelian one-qubit gate which was part
of the proposal for a fully holonomic computation in [Du01] (also recalled in the previous chapter,
section 2.6). The main result, contained in [Lu07’] and reviewed in this chapter, is that for non-
Abelian fast gates, the adiabatic condition might not be reached in the presence of noise, hence
the standard argument of robustness of holonomic gates cannot be applied. On the other hand, a
different kind of mechanism which leads to an effect of cancelation of the noise can be observed. That
kind of effect is completely dynamical and is not related to the geometric features of the holonomic
transformation.

3.1 Introduction

Since the very beginning, holonomic gates were considered to be intrinsically robust against clas-
sical noise [Pa01], thanks to the geometric features of holonomy in Hilbert bundles. As we will briefly
recall below, three main ingredients are needed in order to realize such holonomic gates.

The first ingredient is a suitable physical system describedby a quantum Hamiltonian depending
on some set of parameters, these parameters being associated with the external (classical) driving
fields that are assumed to be experimentally controllable functions of time; the unavoidable instru-
mental instability (stochastic noise) affecting the fieldsis the source of the kind of classical noise, that
has been mentioned above.

The second ingredient consists in selecting a suitable eigenspace of the given Hamiltonian — an
eigenspace depending smoothly on the external parameters,hence actually an iso-degenerate family
of eigenspaces; and in fixing in the parameter space an ‘initial point’ and a loop through this point. To
such a loop corresponds an excursion of the parameter-dependent Hamiltonian (hence, of its eigenpro-
jectors) and a certainideal unitary transformationin theencoding eigenspace, namely, that particular
relevant eigenspace fixed by the initial (and final) point of the loop in the parameter space. This ideal
transformation is determined byKato’s adiabatic evolutorassociated with the given Hamiltonian and
with the chosen loop in the parameter space, and it has a simple geometric interpretation as a holon-
omy phenomenon (geometric phase). The ideal unitary transformation plays a central role in Kato’s
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formulation of the adiabatic theorem [Ka51] applied to our context. Indeed, the external parameters
are controllable functions of time and, in theadiabatic limit, thereal evolution over the operational
time determined by the given physical Hamiltonian becomescyclic in the encoding eigenspace and
(apart from an irrelevant overall ‘dynamical phase factor’) coalesces in this subspace with the ideal
unitary transformation. We stress that the ideal unitary transformation should be thought, in our con-
text, as anideal quantum gatewhose behavior can be, in general, only approached by anon-ideal
quantum gatecorresponding to the real evolution over a suitably large, but finite, operational time.

Accordingly, the third ingredient is the choice of a suitable operational time — which will be
calledbalanced working time, in the following — for the real quantum gate. This time span must
be short enough to achieve a fast quantum computation and to avoid the ravages of decoherence, but
long enough to justify the adiabatic approximation (i.e. toapproach the behavior of the ideal quantum
gate) which is at the root of the appearing of geometric phases 1. Hence, a balanced working time is
determined by a touchy trade-off between two competing and not necessarily compatible demands.
On the other hand, the drawback of a longer operational time of a holonomic gate with respect to
standard dynamical gates can be balanced by the robustness that can be achieved in the holonomic
setting, leading to less computational time spent in error correction. Also from that point of view, one
has to determine a balanced working time taking in account the computational time and the resistance
to noise.

The problem of robustness of holonomic gates against parametric noise has been studied both in
the Abelian [DP03] and in the non-Abelian case [So04]. In these papers, the effects of random pertur-
bations of the control parameters are considered. It is worth noticing, however, that such effects are
evaluated with the adiabatic limit already being performed, thus essentially confirming quantitatively
the standard qualitativegeometric argumentusually adopted to support the robustness of holonomic
gates, argument which was recalled in the previous chapter (see the section 2.7). We emphasize that,
on the other hand, the operational time (in particular, the balanced working time) of a quantum gate
is obviously always finite; hence, in principle, the mentioned geometric argument can be applied only
with a certain degree of approximation in concrete devices.A critical analysis of this simple, but
somewhat subtle, issue was the main contribution of the paper [Lu07’].

As holonomic gates are generally considered to bea priori robust against parametric noise, at-
tention has mainly focused on the study of decoherence effects [Ca03, Ca04, Fu05, Pa06] and on the
possibility of partially suppressing them [Wu05]. These investigations show that for certain physical
systems, and for certain models and regimes of the coupling with the environment, one is able to esti-
mate the typical time-scale within which the effects of decoherence can be neglected. Hence one can
determine, in principle, a balanced working time for these systems. At this point, according to what
has been observed above, one should actuallycheckwhether this balanced working time guarantees
a suitable robustness of the quantum gate against parametric noise, namely, whether the effects of
this kind of noise on the fidelity of the non-ideal quantum gate with respect to the ideal one can be
neglected or not.

Recently, a new ingredient has been proposed for the implementation of a holonomic quantum
gate [Fl06] (see also [Tr06, Fl06’]). Indeed, some authors have observed — for the model of a ion-trap

1We recall that geometric phases arise also in the context of (non-adiabatic) cyclic evolutions [AA87, An88], but only
adiabaticphases are relevant for our purposes.
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geometric quantum gate proposed by Duanet al. [Du01], model which is also central in the present
Dissertation — the existence of anoptimal working time, namely, of a specific operational time for
which the non-ideal (i.e. finite-time) gate behavesexactlyas the ideal (i.e. adiabatic) gate; they show,
furthermore, that over the optimal working time the effectsof the environment are negligible. Thus,
such a optimal working time turns out to be also a balanced working time. Again we stress that,
anyway, the fact that the non-ideal gate behaves, in correspondence to the optimal working time, as
the ideal one cannot be used to rule out the influence of parametric noise on the base of the standard
geometric argument. Indeed, one should not expect that, perturbing the loop in the parameter space,
the non-ideal gate will still mimic the behavior of the idealone. Hence, once again, one cannot apply,
in principle, the standard geometric argument to support the robustness of this kind of holonomic gate
against parametric noise.

In the present chapter, we will try to illustrate this assertion by means of quantitative arguments,
focusing on the ion-trap model proposed by Duanet al. [Du01].

3.2 Adiabatic versus finite time gates

The main aim of this section is to review critically the standard argument that is commonly used in
the literature in order to support the robustness of holonomic gates against noise. As already stressed
in the introduction, non-ideal holonomic gates — i.e., holonomy-based devices that can be concretely
realized in a laboratory — must necessarily have a finite working time which should be short enough
in order to avoid the perturbing effects of decoherence. This issue has been carefully analyzed in a
recent paper [Fl06], where it is shown explicitly, on the base of a concrete model of adiabatic holo-
nomic gate, that decoherence effects can prevent the possibility of achieving a faithful holonomic
gate when the adiabatic limit is approached. This result is coherent with theoretical speculations (see
[SL05, SL05+]) on the failure of the adiabatic theorem in presence of dissipative terms in the master
equation governing the dynamics of the physical system implementing the quantum gate.

In [Fl06, Fl06’] it has been also shown that there may existspecificoperational times (‘optimal
working times’) for non-ideal holonomic gates allowing to obtain a high fidelity together with a good
robustness against decoherence. It is then worth studying the robustness of non-ideal holonomic gates
against instrumental noise.

Even though there are several approach to the adiabatic theorem (see for instance [BF28, Me62]),
as a first step we will consider the Kato’s proof of the adiabatic theorem [Ka51]. This proof was orig-
inally formulated in order to go beyond some limitations imposed by previous proofs [BF28], such as
the requirement of a Hamiltonian withnon-degenerateeigenvalues. However, the most remarkable
idea in Kato’s proof is the introduction of anideal evolution operator— that we may call the ‘Kato
evolutor’ — reproducing the typical adiabatic behavior of aquantum system; one can then prove that,
under suitable hypotheses, in the proper limit thereal evolution of the quantum systemcoalesceswith
the ideal adiabatic evolution.

In the standard construction of holonomic gates, a quantum system is considered with a Hamil-
tonian which depends on pointsr on a suitable manifoldM. For the sake of simplicity, here we
consider the case in which the family of Hamiltonian functionsH(r) is isodegenerate with a pure dis-
crete spectrum. A local set of coordinates{xµ} onM plays the role of parameters that are supposed
to be experimentally controllable. The control parametersare allowed to perform a cyclic evolution
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in the operational timeT
γ | t ∈ [0, T ] −→ r(t), (3.1)

with r(T ) = r(0).
As usual, we defines ≡ t/T , in terms of this parameter the Schrödinger equation readsas follows:

ψ′T (s) = −iTH(r(s))ψT (s), s ∈ [0, 1], (3.2)

where we have re-definedr(s) ≡ r(sT ). Here and in the followingX ′(s) ≡ dX(s)/ds.
In view of the case study that will be considered below, we restrict our discussion to the special

case in which the distinct eigenvalues ofH(r(s)) are a finite set and do not depend on time. In these
hypotheses, the time dependent Hamiltonian has a spectral decomposition

H(r(s)) =

n−1
∑

l=0

λlPl(s). (3.3)

Whereλl are all distinct eigenvalues andPl(s) are the corresponding instantaneous eigenprojectors,
we also assume that the eigenprojectors are at least piecewise twice continuously differentiable fors ∈
[0, 1]. In the following we pick up one eigenprojectors, sayP0, that corresponds to the computational
subspace that will be introduced below. In order to neglect an overall phase factor the dynamical
contribution to the adiabatic transformation and to simplify the notation we setλ0 = 0 and rename
P (s) ≡ P0(s).

The solution of the Schrödinger equation (3.2) reads

ψT (s) = Vτ (s)ψT (0). (3.4)

VT (s) is the unitary operator which describes the dynamical transformation that obeys:

V ′T (s) = −iTH(r(s))VT (s), (3.5)

with the initial conditionVT (0) = I.
On the other hand, the adiabatic transformation is defined asa solution of the equation

U ′(s) = iA(s)U(s), (3.6)

where
iA(s) = [P ′(s), P (s)] = P ′(s)P (s)− P (s)P ′(s). (3.7)

The solution of (3.6) is completely determined once the initial condition is given. The solutionU(s),
with the initial conditionU(0) = I, is unitary and has the property

P (s)U(s) = U(s)P (0). (3.8)

This last relation indicates thatU(s) transforms isometrically the eigenprojector at initial timeP (0)

onto the instantaneous eigenprojectorP (s). In order to look closely at the computational space, we
consider the operator

W (s) ≡ U(s)P (0), (3.9)

sinceW (s)P (0) = U(s)P (0), U(s) is equivalent toW (s) when restricted on functions of the eigen-
projectorP (0). It is easy to see thatW (s) obeys the equation

W ′(s) = P ′(s)W (s). (3.10)
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The adiabatic theorem states that the dynamical transformation, restricted to the eigenspace with
eigenprojectorP (0), asymptotically approaches the adiabatic transformation. Since we are interested
in the final transformation, definingW ≡ W (1) andVT ≡ VT (1), the following relation holds
[Ka51]:

[VT −W ]P (0) = iVT
∑

l 6=0

∆l(T )

λlT
, (3.11)

where

∆l(T ) =
[

V †T (s)Pl(s)W
′(s)

]1

0
−

∫ 1

0
dσV †T (σ)

(

Pl(σ)W ′(σ)
)′

(3.12)

It is easy to show [Ka51] that the operators∆l(T ) are bounded uniformly with respect toT , i.e. there
exists a positive numberM ∈ R such that

‖ VT∆l(T ) ‖≤M, (3.13)

where‖ · ‖ indicates a suitable operator norm. Hence

‖ [VT −W ]P (0) ‖≤M
∑

l 6=0

1

|λlT |
. (3.14)

Notice that∆l(T ) depend on the gate operational timeT through the unitary operatorVT (s).
Thus we can expect, before the asymptotic limit, an oscillatory behavior of a suitably defined gate
fidelity as a function ofT . The fidelity revivals described in [Fl06] are a particular case of this general
oscillatory behavior at finite operational time.

Equation (3.10) defines a notion of parallel transport whichcorresponds to the adiabatic transfor-
mation. Let us choose a basis{ψα(s)} in the instantaneous subspace

P (s) =
∑

α

|ψα(s)〉〈ψα(s)|. (3.15)

The adiabatic connection is defined as follows [WZ84]:

A ≡ Aαβ(s) = 〈ψβ(s)|
d

ds
ψα(s)〉 (3.16)

The adiabatic transformation at the end of a loop in the parameter manifold can be written as
W = Wαβ|ψβ(1)〉〈ψα(1)| and is obtained as the integral of the connection one-form has follows:

W = P exp−i
∫

γ
Ads , (3.17)

whereP stands for the path ordered product. In a local chartAds = Aµdx
µ. By means of the (in

general non-Abelian) Stokes’ theorem, the holonomy is determined by the curvature tensor, whose
component expression is

Fµν = ∂νAµ − ∂µAν − [Aµ, Aν ] . (3.18)

In most of the applications for quantum information tasks, the path ordered integral in (3.17)
reduces to a simple exponential and the Abelian version of the Stokes’ theorem can be applied:

W = exp

(

−i
∫

C
Fµνdx

µ ∧ dxν
)

, (3.19)
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whereC is a region whose boundary is the loopγ. The usual argument in favor of the robustness
of holonomic gates follows directly from expression (3.19). Since the integral of the curvature is
supposed to depend weakly on the details of the loop, the adiabatic transformation is considered to
be robust against a certain kind oflocal perturbations in the loopγ which weakly affect the integral
in (3.19).

To conclude this section, we emphasizes that what is really needed in order to obtain a trans-
formation with a geometrical character is a cyclic evolution of the eigenspace(P (1) = P (0)). The
adiabatic theorem ensures that this cyclic evolution appears in correspondence with a loop in the pa-
rameters manifold in the adiabatic limit (hence in correspondence of a cyclic Hamiltonian). Only in
this limit the argument of robustness of holonomic gate can be applied.

3.3 A case study

It was observed in [Fl06], that in particular situations theholonomic transformation appearing in
the adiabatic limit can be mimed by a non-adiabatic holonomic transformation. That corresponds to
a cyclic evolution attained in correspondence of an operational timeT far before the adiabatic regime
is reached.

That kind of situation was observed in [Fl06] with respect ofone of the non-Abelian one-qubit
holonomic gates which is part of the proposal for a fully geometric computation in [Du01] (see also
the chapter 2 of the present Dissertation). We recall that the system under consideration is made of a
single ion in a Pauli trap, which presents the following structure of stationary levels:

• A doubly degenerate low-energy level, which identifies a two-dimensional subspace which is
used for encoding information. A computational basis{|0〉, |1〉} is selected. These levels define
the computational space of one qubit.

• A high-energy level, denoted|e〉.

• An ancillary, quasi degenerate level, which is denoted as|a〉.

All the transitions between the low-energy levels and the high-energy level are considered to be
singularly addressed with resonant laser fields. A schematic picture is depicted in figure 3.1(a). The
corresponding Hamiltonian, in the interaction picture andin the rotating frame, can be written as
follows:

H = Ω [x|0〉〈e| + y|1〉〈e| + z|a〉〈e| + h.c.] . (3.20)

In general, the Rabi’s frequenciesΩx,Ωy,Ωz can take complex values, nevertheless, here we are
interested in the case they are real-valued. The Hamiltonian in (3.20) is indeed a family of Hamilto-
nian functions depending on the real parametersx, y, z. Its spectrum isσ = {0,±Ω

√

x2 + y2 + z2},
with the vanishing eigenenergy which is doubly degenerate.The form of the spectrum suggests to
introduce the constraintx2 + y2 + z2 = 1 on the amplitude of the laser fields. With that constraint,
one is dealing with a family of Hamiltonian functions which is defined on a two-dimensional sphere.
Hence the control manifold isS2. Notice that, while the eigenenergies are constant functions on the
two-sphere, the corresponding eigenprojectors depends onthe values of the control parameters. In-
troducing polar coordinates, one can write an instantaneous eigenprojectorP (ϑ,ϕ) corresponding to
the doubly degeneratedark states. One can choose a corresponding basis in the degenerate space in
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Figure 3.1: Structure of the atomic levels and resonant lasers (a); unperturbed loop (3.25) in the
parameter manifold (b).

the following way:
{

|ψ0〉 = cosϑ (cosϕ|0〉+ sinϕ|1〉) − sinϑ|a〉 ,
|ψ1〉 = − sinϕ|0〉 + cosϕ|1〉 . (3.21)

Notice that, forϑ = 0, π (at the north and south pole), the computational space is uncoupled and
the dark states corresponds to the computational basis, namely |ψ0〉 = |0〉 and |ψ1〉 = |1〉. These
points can be used as starting points for the system evolution.

As one can check immediately, the connection one-form has the following, matrix valued form:

A ≡ Aαβ = −i〈ψα|dψβ〉 = − cos ϑσyαβ , (3.22)

whereσy is the Pauli matrix in the computational basis{|0〉, |1〉}. Hence, after an adiabatic excursion
of the control parameters along a closed path on the control manifold, one obtains the transformation
in the computational space

|ψin〉 −→ |ψout〉 = W |ψin〉 (3.23)

with
W = exp (−iωσy) (3.24)

whereω is the solid angle spanned by the loop in the parameters’ spaces.
Here we consider the closed path in the parameter manifold that was studied in [Fl06]. For

s ∈ [0, 1] we take (see figure 3.1(b)):

ϑ(s) =











3sπ/2 s ∈ [0, 1/3]

π/2 s ∈ [1/3, 2/3]

3π/2 (1− s) s ∈ [2/3, 1]

ϕ(s) =











0 s ∈ [0, 1/3]

3π/2
(

s− 1
3

)

s ∈ [1/3, 2/3]

π/2 s ∈ [2/3, 1]

(3.25)

The solid angle related to the loop (3.25) isω = π/2, hence the corresponding holonomic gate is
W = −iσy. As was observed in [Fl06], the remarkable property of this path is that it presents perfect
revivals of the gate fidelity at finite operational time. The same behavior was predicted for all the

55



loops constructed by moving from the north pole to the equator through a meridian and back to the
north pole through another meridian with piecewise constant velocity. In the case of the loop (3.25)
there is a perfect revival of fidelity in correspondence of the operational times:

T ∗k =
3π

2Ω

√

16k2 − 1, k = 1, 2, . . . (3.26)

In the following we are mostly concerned with the first optimal operational timeT ∗ = T ∗1 .
To conclude this section we notice that a geometric phase appears in correspondence to a non

adiabaticcyclic dynamics [AA87, An88]. In particular, for our case study, ithappens that, in corre-
spondence to an optimal operational time, the evolution becomes cyclic and the acquired geometric
phase is equal to the adiabatic holonomy.

3.4 Models of parametric noise and perturbation

In order to study the robustness of non ideal holonomic gates, we consider the response of the
system under parametric noise in the ideal loop (3.25). In order to quantify the robustness of the gate,
the noisy finite time evolution of the system is solved with numerical methods and the average gate
fidelity (see the appendix B) is calculated. In the following, several models of noise are taken into
account: in section 3.4.1 we consider the response of the system under a monochromatic perturbation
of the three Rabi frequencies in (3.20); in section 3.4.2 we discuss the response of the system under
a telegraphic perturbation in the three Rabi frequencies. An additional model was also discussed in
[Lu07’], leading to analogous results.

3.4.1 Monochromatic perturbation

In this section we consider the behavior of the system in the presence of a small random perturba-
tion in the control parameters. As a first approach to the problem of the robustness of the non-adiabatic
holonomic gate, we consider a simple monochromatic perturbation instead of a more realistic model
for the parametric noise. That kind of perturbation can be viewed as a smallprobefunction used to
test the stability of the gate. A generic noisy path can be written as follows:

rn(t) = r(t) + ǫ(t), t ∈ [0, T ], (3.27)

where the vectorr(t) describes the unperturbed loop andǫ(t) is a three component vector including
the perturbation of the path. We have chosen a monochromaticperturbation at frequencyη and
considered a noisy path obtained from (2.118) and (3.25):











xn(s; η, ǫη , T, φ1) = x(s) + ǫηe
iηTs+iφ1

yn(s; η, ǫη , T, φ2) = y(s) + ǫηe
iηTs+iφ2

zn(s; η, ǫη , T, φ3) = z(s) + ǫηe
iηTs+iφ3

, (3.28)

wherern(s) ≡ (xn(s), yn(s), zn(s)), φ ≡ (φ1, φ2, φ3) are random initial phases uniformly dis-
tributed in [0, 2π) andǫη is the strength of the noise (chosen to be equal for the three component).
Notice that this model of noise acts on both the amplitude andthe de-tuning of the lasers. Strictly
speaking, it does not preserve the control manifold, since it is incompatible with the constraint of real
valued Rabi’s frequencies in the Hamiltonian (3.20). From (3.28), it is clear that at finite operational
time the perturbation doesnot reduces to a geometric perturbation of the loop in the parameters space
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WT

Figure 3.2: Average gate fidelity as a function of the adimensional operational timeΩT for several
noise frequencies for the model in section 3.4.1. Black boxes: ǫη = 0; circles:ǫη = 0.1Ω, η = 0.1Ω;
triangles:ǫη = 0.1Ω, η = 0.2Ω; squares:ǫη = 0.1Ω, η = 0.3Ω.

since the perturbed path itself depends on the operational time. In the presence of the noise, different
values of the operational timeT correspond to different loops in the parameters manifold.

For given values ofη, ǫη , T andφ, we consider the solution of the Schrödinger equation

V ′T (s; η, ǫη , φ) = −iTH(rn(s))VT (s; η, ǫη , φ), s ∈ [0, 1]. (3.29)

where, in presence of noise, the re-scaled HamiltonianH(rn(s)) depends onT too. Since we are
mainly interested in the transformation emerging at the endof the loop, we setVT (η, ǫη , φ) ≡
VT (1; η, ǫη , φ).

Notice that, for all practical purposes, taking the averageon the random phases corresponds to the
action of the completely positive map

ρ −→ E(ρ) =
1

(2π)3

∫

dφVT (η, ǫη , φ)ρVT (η, ǫη , φ)† . (3.30)

This completely positive map has to be compared with the ideal adiabatic unitary dynamics. To do
that, we have evaluated the average gate fidelity by means of the formula in [Ni02] (see equation B.7
in the appendix B).

For several values ofη, ǫη andφ, equation (3.29) is numerically solved using the relation:

VT (η, ǫη , φ) = lim
N→∞

←
∏

k=0...N
exp

[

−iτH(rn(k/N))
1

N

]

, (3.31)

where
←−∏

stands for the path ordered product. The effective completely positive map (3.30) is evalu-
ated taking the average over50 or more choices of the initial phasesφ. Figure 3.2 shows the estimated
average gate fidelity plotted as a function of the adimensional operational timeΩT , for several values
of the noise amplitude and frequency. The unperturbed dynamics corresponds toǫη = 0 and can be
compared with the analytical results in [Fl06], it exhibitsperfect revivals of the average gate fidelity
at finite time, in particular the first optimal operational time is atΩT ∗1 ≃ 18.25. The numerical re-
sults show that the pattern of the gate fidelity as a function of the operational time can be completely
different in presence of noise.
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Figure 3.3: Average gate fidelity at the first optimal operational time as a function of adimensional
noise frequency (η/Ω) and amplitude (ǫη/Ω) for the model in section 3.4.1.

The average gate fidelity at the first optimal operational time T ∗1 in the presence of parametric
noise is plotted in the figure 3.3 as a function of both amplitude and frequency of the noise. This
plot suggests that the gate can indeed present high fidelity also for rather large noise amplitude (ǫη =

0.4Ω). It is worth to notice that this is true unless the perturbation frequency is in a particular range
approximatively aboutη ≃ 0.15Ω. The presence of a typical frequency scale in the pattern of the
fidelity is a feature that will be reencountered in the other models of noise considered below.

We have also studied, with the same methods, the response of the system in presence of analogous
perturbations which have different symmetries. We have considered the case in which only the real
part of (3.28) is taken; in this case the perturbation acts only in the amplitude of the coupling but
not in the de-tuning. The corresponding average gate fidelity at the first optimal operational time is
plotted in figure 3.4. We have also analyzed the case of a perturbation which is square wave shaped;
in this case aprobe function is identified by its half period and initial phase. Also in this case, the
corresponding pattern of the average gate fidelity is exactly analogous to the one shown in figure 3.3
and 3.4. That leads to the conclusion that the pattern of fidelity is largely independent of the details
of the chosen probe function and a rather general behavior asfunction of the typical frequency is
observed.

Analogous results are also found for other loops of the same kind, such as the loop with the angle
ϕ varying from0 to π/4 in (3.25) which is related to the Hadamard gate.

3.4.2 Telegraphic noise

In this section, we consider a more realistic model for a noisy perturbation. Here we study the
robustness of the non-adiabatic holonomic gate in attainedcorrespondence of the first optimal opera-
tional timeT ∗ in the presence of a telegraphic noise acting on the control parameters.

Taking in consideration the ideal loop (3.25), here we studythe noisy paths of the following kind:










xn(s; τstep, ǫ, T ) = x(s) + ξ1(s, τstep, T )

yn(s; τstep, ǫ, T ) = y(s) + ξ2(s, τstep, T )

zn(s; τstep, ǫ, T ) = z(s) + ξ3(s, τstep, τ)

, (3.32)
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Figure 3.4: Average gate fidelity as a function of both the average number of independent fluctuation
of the noiseN = ηT ∗ and the amplitude of the noiseε for a monochromatic perturbation (section
3.4.1), that affects only the amplitude of the fields, in correspondence with the first optimal operational
timeΩT .

whereξi(s, τstep, T ) ∈ [−ǫ, ǫ] are three real random variables, uniformly distributed in the chosen
interval, which are piecewise constant for(j − 1)τstep ≤ sT ≤ jτstep.

Hence, the model of noise considered here is characterized by two parameters: its amplitudeǫ,
and the typical timeτstep. The corresponding two-times correlation function presents an exponential
decayC(t, s) ≃ e−Γ|t−s| for |t− s| ≤ τstep, where the correlation time is of the order of typical time
of the noise mode, namelyτ = Γ−1 ≃ τstep.

It is interesting to compare the behavior of the gate at the first optimal operational time to the
case of longer operational time in presence of noise. It is possible to see [Fl06, Fl06’] that the fidelity
oscillations shown in figure 3.2 in absence of noise are strongly suppressed ifk ≥ 3 in equation (3.26)
(we are near the adiabatic regime). A good approximation of the adiabatic regime can be already
obtained for the fourth optimal operational time.

In order to study the behavior of the gate at finite operational time, we have evaluated the average
gate fidelity for a fixed value of the noise amplitudeǫ = 0.1Ω as a function of the noise typical
frequency(Ωτstep)−1 in correspondence of the first four optimal working times (the forth operational
time corresponds toΩT ∗4 ≃ 75.21) in the same range of values for the ratio(Ωτstep)

−1 between the
noise typical frequency and the system typical frequency. The results are shown in figure 3.5. The data
plotted in this figure lead us to formulate two kind of considerations: first of all we notice again the
unexpected result that the non-adiabatic optimal working times (the first, for instance) appears to be
more robust than longer operational times (the forth optimal operational time, for instance); secondly,
we observe the same qualitative behavior of the pattern of fidelity for all the optimal operational times
under study, that suggests the presence of a common mechanism which account for the cancelation
of the effects of the noise.

In apparent contrast to the intuition related to the usual argument of robustness of holonomic gates
we notice that, in the same range of frequencies of the non adiabatic case (and, therefore, for a larger
number of fluctuations),F reaches lower values. Moreover, the adiabatic gate needs higher values
of the frequency of noise for recovering the ideal behavior.We conclude that the (approximately)
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Figure 3.5: Average gate fidelity as a function of the noise typical frequency for the noise model in
section 3.4.2 for the first four optimal operational times. Triangles, circles, full triangles and squares
correspond respectively to the first, second, third and fourth optimal operational time.ǫ = 0.1Ω.

adiabatic (purely geometric)NOT transformation is more sensitive to parametric noise than the non-
adiabatic one.

The average gate fidelity ia also plotted in figure 3.6 as a function of both the operational time and
the number of fluctuations of the noise (hence for different values of the parameterτstep) for a fixed
value of the noise amplitude.

We have also analyzed the case of a noise which include de-tuning by considering complex ran-
dom variablesξi(s, τstep, T ). The result are completely analogous and the introduction of a noise in
the de-tuning does not introduce new elements in the patternof fidelity.

3.5 Analysis of the results

The aim of this section is to furnish a physical explanation for the observed behavior of the average
gate fidelity. Due to the fact that all the models of noise induce the same qualitative behavior of the
fidelity, in the following we are going to consider in more details the model presented in section 3.4.2.

As already recalled, the relevant parameter for the geometrical cancelation usually related to
holonomic gates in the adiabatic regime is the number of fluctuations of the noise during the gate
operational time (denotedN ). This effect is related only to the swept solid angle and is independent
of the chosen operational time. If the number of cycles of thenoise is large enough, the fluctuations
in the solid angle spanned by the loop are expected to become negligible. To be more specific. let us
suppose that, after a noisy loop, the swept solid angle isω and the mean square over the realizations
of the noise is〈∆ω2〉. In figure 3.7 the mean square is plotted as a function of the number of cycles of
the noise; since, in the adiabatic limit, the gate depends only on the swept solid angle, the fluctuations
of the gate are expected to have the same behavior as the fluctuations in the solid angle.

As already explained in the previous section, figure 3.5 shows the average gate fidelity as a
function of the adimensional typical noise frequency(Ωτstep)−1 for several values of the evolution
time which correspond to the first four optimal operational times. The plot shows an analogous
behavior of the fidelity as a function of the typical noise frequencyindependentlyof the particular
value of the operational time; moreover, the minimum of the fidelity is reached in correspondence of
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Figure 3.6: Average gate fidelity as a function of both the average number of independent fluctuation
of the noiseN and the operational timeΩT , for the telegraphic noise with real components discussed
in the section 3.4.2. The amplitude of the noise isǫ = 0.1Ω
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Figure 3.7: Fluctuations in the solid angle spanned by a noisy loop as a function of the number of
perturbations of the noiseN , for the noise model in section 3.4.2.ǫ = 0.1Ω.
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Figure 3.8: Average gate fidelity as a function of the number of fluctuations of the noiseN for
the noise model in section 3.4.2 for the first four optimal operational times. Triangles, circles, full
triangles and squares correspond respectively to the first,second, third and fourth optimal operational
time. ǫ = 0.1Ω. Compare with figure 3.5 and 3.7.

(Ωτstep)−1 ≃ 0.5 for all the considered values of the operational time. In order to cast some light on
the nature of the cancelation effect, the same data are plotted in figure 3.8 as functions of the number
of fluctuations of the noise (notice thatN = ΩT (Ωτstep)

−1). A direct comparison of figures 3.5 and
3.8 suggests that the relevant quantity which accounts for the mechanism of cancelation of the effects
of the noise is its typical frequency(Ωτstep)−1 andnot only the number of fluctuationsN . On the
other hand, the fluctuations of the solid angle around the ideal value (π/2) start to be negligible for
N > 20; a comparison with the curve for the fourth optimal working point (squares in figure 3.8)
suggests that the recovery of the fidelity for long cyclic evolution times is given also by geometric
cancelation.

For non adiabatic evolution times one can imagine the existence of a different mechanism which
accounts for the observed cancelation of the noise effects for sufficiently fast noise which is related
to adynamicalinstead of geometrical cancelation. A dynamical effect could not be directly related
to the swept solid angle: in this case the relevant parameteris expected to be the typical time of the
noiseτstep and a dynamical cancelation of the noise should appear if itstypical frequency is suffi-
ciently large compared to the system frequency, namely(Ωτstep)−1 ≫ 1. Of course this condition
implies, for fixed operational timeT , thatN ≫ 1 (the usual condition for geometric cancelation);
nevertheless, as figure 3.5 shows, a cancelation of the noiseeffects appears on a frequency scale
(Ωτstep)−1 ≃ 1 independentlyof the chosen value of the operational time, thus suggestinga dynami-
cal mechanism for the noise cancelation at least for the firstfour optimal operational times.

The fact that in the non adiabatic regime the robustness has adynamical origin can also explain
why the minimum value of the fidelity tends to decrease for increasing values ofT ∗: if the geometric
cancelation is not present, the noise is less effective in disturbing the system when the evolution time
is short.
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3.6 Final comments

In this chapter we have considered the influence of parametric noise on the efficacy of a non-
adiabatic holonomic gate which is expected to be robust in the ideal (adiabatic) case. Two models of
parametric noise or disturbance have been discussed in the case of finite operational time. The average
gate fidelities for all the models of noise considered here present an analogous qualitative behavior.
For each of the three models the non-ideal gate presents a breakdown of the average gate fidelity
for small frequencies of the noise (compared to the system Bohr frequency), while a high value of
the fidelity is reached for noise with higher frequencies. This can lead to say that the presence of a
“resonant frequency” for the breakdown ofF is a rather general feature in the presence of parametric
perturbations.

We want to stress again that the usual argument in favor of therobustness of holonomic quantum
computation is based on the purely geometric nature of the holonomy group that describes the adia-
batic transformations. Since the dynamics has acompletelygeometric characteronly in the adiabatic
limit, the robustness of adiabatic gates is, in this sense, just a consequence of the adiabatic theorem.
Despite these considerations, our calculations show that,at least in certain situations, the first optimal
operational time can be preferable to longer operational times with regards to the robustness of the
corresponding gate against parametric noise.

Nevertheless, our results lead to the conclusion that the observed revivals of the fidelity for suffi-
ciently fast noises is mainly due todynamicalinstead of geometrical effects. Our conclusion is that,
in the range of operational times considered here, the observed cancelation effects are mainly related
to a dynamical average over fast oscillations of the noise(Ωτstep)−1 ≫ 1 and there is no relevant
connection with the ‘geometric’ robustness of the swept solid angle which plays a crucial role for the
usual argument in favor of robustness of the holonomic computation in the adiabatic regime.

In other words, not only the loop in the parameter space is non-adiabatic in correspondence of
the optimal working giving rise to a non-adiabatic holonomy, but also the noise fluctuations cannot
be adiabatic since the operational time is not long enough. In that setting, one can observe an effect
of cancelation which correspond to an opposite situation with respect to the usual adiabatic-noise
setting. The transformation is indeed robust if the noise ismuch faster than the the typical system
time-scale. While in the adiabatic case the geometric cancelation happens when the noise is adiabatic
with respect to the system dynamics, in the non-adiabatic case the dynamical cancelation appears
when the system internal dynamics is adiabatic with respectof the fluctuations of the noise.
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Chapter 4

Robustness of geometric phases: A
toy-model

In the chapter 2, we have presented theholonomic approachto quantum computation and the
argumentation that is commonly used to state itsrobustnesswith respect toparametric noise. In the
chapter 3, we have studied the robustness of a non-adiabaticholonomic gate, described its behavior
and compared it to the standard argument which can be appliedonly to adiabatic gates.

The aim of the present chapter is to consider the standard argument in favor of the robustness of
holonomic gates in the presence of parametric noise and analyze it in further details. It is important to
notice that the robustness argument of holonomic computation isneitherstrictly related to any pecu-
liar properties of quantum mechanics,nor to any details of the physical system under consideration.
The only ingredient which enters in the argument of robustness of holonomic gates is thegeometric
natureof the holonomic transformation. That geometric behavior physically appears in the adiabatic
limit, in which the dynamical transformation is described by a holonomy.

For that reason, in this chapter we discuss a simpletoy-modelwhich represents the simplest
physical set in which a holonomy phenomenon can appear. Thatsimple model is a system composed
of a semiclassical charged particle which is constrained tomove in a plane in the presence of a
transverse stationarymagnetic field. It is worth noticing that that is essentially equivalent tothe
case of a particle confined in a box which is moved around a lineof magnetic flux, example that was
originally discussed in [Be84]. Using that model, we can easily study the robustness of the holonomic
transformation and obtain general indications about the robustness of holonomic computation in the
more interesting situations.

4.1 Geometric phase in the simplest setting

Thestandard argumentin favor of the robustness of holonomic gates under parametric noise is a
simplegeometricargumentation which, by itself, hasnothing to dowith quantum mechanics and with
the peculiar features of the physical system which implements the holonomic computation. For these
reasons, in this section we will concentrate onthe simplest examplein which the geometric argument
can be applied, namely a system composed of asemiclassicalparticle moving in a static magnetic
field. The interest here is on thestatisticalproperties of the area of the surface spanned by a noisy
loop. The fact that it is physically related to the phase acquired by the particle gives us a physical
motivation to study this system but, by itself, that doesnot play any particular role in our context.
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So, let us consider a semiclassical particle endowed with anelectric chargeq which is constrained
to move in the plane, in the presence of a transverse static magnetic field. Let us also suppose that
the position of the particle can be experimentallycontrolled, and the particle is constrained to move
along a given closed loop:

γ : s ∈ [0, 1] −→ γ(s) (4.1)

with γ(1) = γ(0). We consider a situation in which the particle is allowed to move along the path in
theoperational timeT . Hence, in the time intervalt ∈ [0, T ], the position of the particle a timet is
given byγ(t/T ).

Also, we suppose that the particle is in aninternal stationary level, with corresponding energy
E0. If initially the particle is in the state|ψ0〉, at the end of the loop it will be in

|ψ〉 = e−iΦe−iE0T |ψ0〉 . (4.2)

Where the acquired phase factor is the product of two terms: thedynamicalparte−iE0T , and the
geometricparteiΦ. The latter is given by the flux of the magnetic field through the surface spanned
by the loop:

Φ = q

∫

S
BdS = qBS , (4.3)

whereS is the surface spanned by the loop, andS is its oriented area. Equivalently, it can be written
by means of the line integral of the gauge potential:

Φ = q

∮

γ
A . (4.4)

In order to focalize on geometric aspects, one has to neglectthe dynamical contribution to the
overall phase factor. That can be obtained, for instance, working in a gauge with a vanishing ground
state energy, namelyE0 = 0.

One can notice that that simple toy-model is essentially equivalent to the system originally con-
sidered by Michael Berry in [Be84], where he described the geometric phase acquired by a charged
particle confined in a box which is adiabatically moved around a line of magnetic flux. The holon-
omy transformation induced at the end of the loop is mainly independent of the details of the path, but
depends on a global quantity which is the integral in (4.4). In other words, if we consider a perturbed
path

γn(t) = γ(t/T ) + ǫ(t) , (4.5)

the argument of the geometric phase changes in

Φ −→ Φn =

∫

γn

A . (4.6)

The acquired phase factor will remain unchangedif the perturbationpreservesthe integral:
∫

γn

A =

∮

γ
A . (4.7)

By virtue of the Stokes’ theorem, one can write
∫

γn

A = BSn (4.8)
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whereSn indicates the oriented area of the surfaceSn spanned by thenoisy path. Thus, if one
is dealing with a perturbation whichpreservesthe area of the surface spanned by the loop — i.e.
Sn = S — the holonomy associated to the loop remains unchanged.

It is worth noticing, however, that in the presence of the noise, the path might not be closed,
leading to agauge not-invariantintegral in (4.8). What is needed is a rule to define the geometric
phase for a non-closed loop or, in other words, one needs a rule to close the path. Taking inspiration
by the work of Pancharatnam [Pa56] about phases in classicaloptics, one can for instance use the
geodesicrule to close the open loop (see [SB88, DP03] and the chapter 2). Obviously, that kind of
approach can be meaningful only locally, that is to say, onlyfor small amplitude of the noise.

On the other hand, one can argue that the fact that the path is non-closed gives rise to anaddi-
tional source of errorin the corresponding geometric phase, the error depending essentially on the
chosen rule used to close the loop. For non-pathological potentials and for a small amplitude of the
perturbation, the error in the evaluation of the integral along the open path is expected to be propor-
tional to thesquareof the amplitude of the noise and, in particular, to beindependentof the number
of fluctuations of the noise during the time evolution.

Let us now consider the following situation. The particle isexternally driven in order to follow
the given loopγ. Nevertheless, the experimental control on the particle position is not perfect. As
an physical example, one can imagine that the particle is immersed in a classical fluid. That yields
an additional component in the particle position that can betreated as a Brownian motion which is
superimposed to the unperturbed loop.

A perturbation in the loop can be modeled as a stochastic processǫ(t), which can be character-
ized by its correlation functions. For the case of a Markov process, one can consider the two-times
correlation function

C(t, s) = 〈ǫ(t)ǫ(s)〉 (4.9)

and the corresponding correlation timeτ . In the case of a stationary process with exponentially
decaying correlation function:

C(t, s) ≃ e−K|t−s|, (4.10)

the correlation time is defined as the inverse of the real partof K, namelyτ ≡ ℜ(K)−1. If the noisy
loop isdrawnby the particle in an operational timeT , the ratioN = T/τ can be interpreted as the
average number of statistically independent fluctuationsof the noise during the operational time. In
this setting, the heuristic argument of robustness of holonomic gates says that ifN ≫ 1 — i.e. if
the correlation function of the noise decaysfast enoughcompared with the operational time — the
changes in the area of the surface spanned by the loop are negligible, that is to say:Sn ≃ S. In order
to develop the analysis of the phase acquired in the noisy case, one needs to be more specific, hence
considering suitable models for the noise and selecting a specific loop.

4.2 Geometric phase in the presence of parametric noise

In this section, we will discuss the behavior of the simple geometric evolution of our toy-model
in the presence of several kinds of parametric perturbations and noises.

The setting is the following. The dynamics of the particle inthe operational timeT is associated
with the unperturbed loop

γ(t/T ) = (x(t), y(t)) . (4.11)
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To fix the ideas and for the sake of simplicity, here we select two different sample loops:

• The first sample loop has the shape of asquare, namely:

t ∈ [0, Ta] −→
{

x(t) = x0 + t/Ta
y(t) = y0

t ∈ [Ta, 2Ta] −→
{

x(t) = x0 + 1

y(t) = y0 + (t− Ta)/Ta

t ∈ [2Ta, 3Ta] −→
{

x(t) = x0 + 1− (t− 2Ta)/Ta
y(t) = y0 + 1

t ∈ [3Ta, 4Ta] −→
{

x(t) = x0

y(t) = y0 + 1− (t− 3Ta)/Ta ,

(4.12)

whereT = 4Ta is the operational time corresponding to thewhole loop.

• The second loop has the shape ofcircle, namely:

t ∈ [0, T ] −→
{

x(t) = x0 + 1
π cos (2πt/T )

y(t) = y0 + 1
π sin (2πt/T ) .

(4.13)

Notice that, in both cases, the loops span a surface with oriented areaS = 1. Hence the corre-
sponding phase, acquired by the charged particle, is equal to eiqB . One can consider a noise with
components

ǫ(t) ≡ (ǫx(t), ǫy(t)) , (4.14)

to which the following noisy path is associated:

γn(t) = γ(t) + ǫ(t) = (x(t) + ǫx(t), y(t) + ǫy(t)) . (4.15)

The noisy phase (4.6) can be expanded in the following way:

Φn =

∫

γn

ydx =

∫ T

0
(y(t) + ǫy(t))(dx(t) + dǫx(t))

=

∮

γ
ydx+

∫ T

0
ǫy(t)dx(t) +

∫ T

0
y(t)dǫx(t) +

∫ T

0
ǫy(t)dǫx(t) . (4.16)

One can recognized the unperturbed integral:

Φ0 =

∮

γ
ydx , (4.17)

two perturbative contributions of thefirst order in the noise amplitude:

Φ1 =

∫ T

0
ǫy(t)dx(t) , (4.18)

and

Φ2 =

∫ T

0
y(t)dǫx(t) , (4.19)
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and one term which is of thesecond orderin the noise amplitude:

Φ3 =

∫ T

0
ǫy(t)dǫx(t) . (4.20)

Each of these perturbative terms, a well as the whole perturbed phase, are defined as stochastic
integral.

The section is now divided in three subsections: in the first subsection we consider a monochro-
matic perturbation acting on the coordinates of the chargedparticle; in the second one we analytically
examine the behavior of the considered toy-model in the presence of a more realistic source of noise
which is modeled by a continuous stochastic process (a Ornstein-Uhlenbeck process, see for instance
[Ga83]); finally in the third subsection, we present some numerical calculations corresponding to two
different models for the noisy component, a Ornstein-Uhlenbeck process and a telegraphic noise. All
the calculations, both analytical and numerical, are done in the asymmetric gauge

A ≡ −B y dx . (4.21)

4.2.1 A monochromatic perturbation

Prior to consider a more realistic model of perturbation, inthis section we describe the behav-
ior of the geometric phase in the presence of a simple, monochromatic perturbation. The following
discussion can look rather academic, nevertheless, it willturn to be useful to understand the main
features appearing in correspondence with the slightly more elaborated and probably more realistic
situations that will be described in the following sections.

Let us take in consideration the sample unperturbed path which has the shape of a square, per-
formed with piecewise constant velocity. The operational time, needed by the particle to move along
the loop, is indicated withT , while the time needed to move along one of the segments of theloop is
Ta = T/4.

For the sake of simplicity, we consider a perturbed path in which the perturbation acts only on one
of the segments that compose the loop. With reference to the square-shaped loop defined in (4.12),
we take in consideration the following perturbed loop:

γn(t) =

{

γ(t/T ) for t ∈ [0, Ta]

γ(t/T ) + ǫ(t) for t ∈ [Ta, 4Ta] .
(4.22)

Hence, the perturbation isturned ononly in correspondence of the first segment of the squared
loop.

The monochromatic perturbation is written in the followingform:
{

ǫx(t) = ε cos (ηt+ φx)

ǫy(t) = ε cos (ηt+ φy) ,
(4.23)

whereφx andφy are random initial phases. Since that perturbation haslong range correlations, it is
not a good model of noise. On the other hand, the perturbationin (4.23) can be intended as aprobe
function, useful to test the efficacy of the geometric transformationin the presence of disturbance in
the classical control parameters. These probe functions have a statistical nature only since the phase
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factorsφx andφy are random variables. We take these random phases to be statistically independent
and uniformly distributed in[−π, π[. As a result, the integral in (4.16) is itself a stochastic variable.
The perturbation (4.23) is identified by two parameters, theamplitudeε and the characteristic fre-
quencyη. In the following, we compute the mean and variance of the stochastic integral in (4.16) in
the presence of the perturbation (4.23) as functions ofε andη.

At this point, we distinguish to cases: the first one corresponds to a very peculiar situation in
which the perturbation istransverseto the segment, i.e. only theǫy(t) component is present; the
second case is the generic one, in which both the transverseǫy(t) and the parallel componentǫx(t) of
the noise are present.

Transverse monochromatic perturbation

In order to obtain a transverse perturbation, one has to putǫx(t) = 0 in (4.23). Hence the expres-
sion in (4.16) reduces to

Φ =

∮

γ
ydx+

∫ T

0
ǫy(t)dx(t) . (4.24)

With the monochromatic perturbationǫy(t) = ε cos (ηt+ φ). Taking the average over the real-
izations of the perturbation — i.e. over the choice of the random initial phaseφ — one obtains that
the mean value is left unchanged, namely:

〈Φ〉 = Φ0 =

∮

γ
ydx . (4.25)

On the other hand, the variance is given by:

〈∆Φ2〉 = 〈(Φ − Φ0)
2〉 = 〈Φ2

1〉 , (4.26)

where

Φ1 =

∫ Ta

0
ǫy(t)dx(t) = ε

∫ Ta

0
cos (ηt+ φ)ẋ(t)dt = ε

∫ Ta

0
cos (ηt+ φ)

dt

T
. (4.27)

Hence,

Φ1 =
ε

Ta

∫ Ta

0
cos (ηt+ φ)dt =

ε

ηTa
(sin (ηTa + φ)− sin (φ)) , (4.28)

and

Φ2
1 =

ε2

(ηTa)2
[

sin2 (ηTa + φ) + sin2 (φ)− 2 sin (ηTa + φ) sin (φ)
]

. (4.29)

Taking the average overφ, one obtains:

〈∆Φ2〉 = 〈Φ2
1〉 =

ε2

(ηTa)2
(1− cos (ηTa)) . (4.30)

The variance〈∆Φ2〉 is a measure of the fluctuations in the perturbed flux of the magnetic field.
Analogously, one can compute directly the variance of the phase, which reads:

〈∆(eiΦ)2〉 = 〈|eiΦ − eiΦ0 |2〉 = 2 (1− 〈cos ∆Φ〉) ≃ 〈∆Φ2〉 , (4.31)

and
〈eiΦ〉 = eiΦ0 . (4.32)
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One can formulate two observations from the result expressed in (4.30). The first observation is
that the amplitude of the fluctuations in the perturbed integral scales asε(ηTa)−1. That can be inter-
preted as a simple application of theRiemann-Lebesgue lemma. The consequence which is relevant
for quantum computation is that, for given amplitude and frequency of the perturbation, the variance
of the surface spanned by the perturbed loop can be made negligible increasing the operational time
Ta. The result of this simple situation is inagreementwith the standard argumentof robustness of
holonomic gates, since the fluctuations decrease with increasingN = ηTa. Notice that that behavior
corresponds to the fact that the noise has only a transverse component. The second observation is that,
if one considers only closed perturbed path, one has to select the allowed frequencies which satisfy
νTa = 2kπ, for k ∈ Z, and equation (4.30) simplifies:

〈∆Φ2〉 =
ε2

(ηTa)2
. (4.33)

In other words, the term proportional tocos (ηTa) in (4.30) corresponds to the fact that in the
presence of the perturbation the path might not be closed.

Generic monochromatic perturbation

It is more interesting to consider the case in which a perturbation is present both along thex and
y components:

{

ǫx(t) = ε cos (ηt+ φx)

ǫy(t) = ε cos (ηt+ φy) .
(4.34)

In this case, one has to consider all the terms contained in (4.16), which read as follows:

Φ1 =
∫ Ta

0 ǫy(t)dx(t) = − ε

Ta

∫

cos (ηt+ φy)dt (4.35)

Φ2 =
∫ Ta

0 y(t)dǫx(t) = −ε(y0 + 1)η

∫

sin (ηt+ φx)dt (4.36)

Φ3 =
∫ Ta

0 ǫy(t)dǫx(t) = −ε2η
∫

cos (ηt+ φy) sin (ηt+ φx)dt . (4.37)

It is immediate to distinguish betweenΦ1 andΦ2, which are corrections of the first order in the
amplitude of the noise, andΦ3 which is a correction of the second order. In analogy to what has
been done in [DP03], one couldneglectthe higher order correction. Nevertheless we will keep the
second-order term during all the calculations and show thatits contributioncan be relevant. Indeed,
the description of the consequence of that second order termin the overall integral along the noisy
path is the main contribution of the present chapter.

Taking the average over the random initial phases, one obtains:

〈ǫx(t)〉 = 〈ǫy(t)〉 = 0

〈ǫ2x(t)〉 = 〈ǫ2y(t)〉 = ǫ2

2 ,
(4.38)

and

〈ǫx(t)ǫx(s)〉 = 〈ǫy(t)ǫy(s)〉 = ǫ2

2 cos (η(t− s))
〈ǫx(t)ǫy(t)〉 = 0 .

(4.39)
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From which it follows that:

〈Φ1〉 = 〈Φ2〉 = 〈Φ3〉 = 0 . (4.40)

Hence, the mean value of the perturbed integral remains unchanged〈Φ〉 = Φ0. Its variance reads
as follows:

〈∆Φ2〉 = 〈Φ2
1〉+ 〈Φ2

2〉+ 〈Φ2
3〉 − 2〈Φ1Φ2〉 − 2〈Φ2Φ3〉 − 2〈Φ3Φ1〉 . (4.41)

As we will show below, only thediagonal terms do contribute, while theoff-diagonalterms do
vanish. About the diagonal terms, they give the following contributions:

• For the first perturbative term, as in the previous example, we obtain:

Φ1 = − ε

Ta

∫ Ta

0
cos (ηt+ φ)dt (4.42)

that yields

〈Φ2
1〉 =

ε2

(ηTa)2
(1− cos (ηTa)) . (4.43)

• For the second term, we have:

Φ2 = (y0 + 1) (ǫx(Ta)− ǫx(0)) = (y0 + 1)∆ǫx . (4.44)

If ǫx(Ta) andǫx(0) are statistically independent one obtains:

〈Φ2
2〉 = 2(y0 + 1)2〈ǫ2x〉 . (4.45)

However, for the monochromatic perturbation, they are not statistically independent and so we
have:

〈Φ2
2〉 = (y0 + 1)2ε2 (1− cos ηTa) . (4.46)

• The last, second-order, term is:

Φ3 = −ε2η
∫ Ta

0
cos (ηt+ φy) sin (ηt+ φx)dt . (4.47)

Its mean square reads

〈Φ2
3〉 = η2ε4

∫ Ta

0
dt

∫ Ta

0
ds〈cos (ηt+ φy) sin (ηt+ φx) cos (ηs+ φy) sin (ηs + φx)〉 .

(4.48)

This expression can be simplified, since

〈cos (ηt+ φy) sin (ηt+ φx) cos (ηs+ φy) sin (ηs + φx)〉 =

〈cos (ηt+ φy) cos (ηs + φy)〉〈sin (ηt+ φx) sin (ηs + φx)〉 =

〈cos (ηt+ φy) cos (ηs+ φy)〉2 , (4.49)

and

〈cos (ηt+ φ) cos (ηs+ φ)〉 = 1

2
cos (η(t− s)) , (4.50)
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to obtain:

〈Φ2
3〉 =

η2ε4

4

∫ Ta

0
dt

∫ Ta

0
ds cos (η(t− s))2 =

ǫ4

8
(ηTa)

2 . (4.51)

It is important to notice that the last term is of the forth order in the noise amplitude, but it
also depends quadratically on the operational timeTa through the number of cycles of the
perturbationN = ηTa.

• It remains to show that the off-diagonal terms vanishes. Forthe statical independence ofǫx and
ǫy, one obtains:

〈Φ1Φ2〉 =
y0 + 1

Ta

∫

dt〈∆ǫxǫy(t)〉 = 0 (4.52)

〈Φ2Φ3〉 =
y0 + 1

Ta

∫

dt

∫

ds〈ǫy(t)ǫy(s)ǫ̇x(s)〉 = 0 (4.53)

〈Φ3Φ1〉 =

∫

dt〈∆ǫxǫy(t)ǫ̇x(t)〉 = 0 . (4.54)

To summarize, we get the following expression for the mean square of the integral along the
perturbed path:

〈∆Φ2〉 = ε2

2

[

1

(ηTa)2
(1− cos (ηTa)) + (y0 + 1)2 (1− cos ηTa) +

]

+
ε4

8
(ηTa)

2 . (4.55)

Let usemphasizewhat is the main result of this section, i.e. the form of the second-order contribu-
tion Φ3, which is not in agreement with the heuristic argument in favor of the robustness of holonomic
gates. The important fact is that the fluctuations of the second order increase with increasing number
of cycles of the noise. Though that contribution is of higherorder in the noise amplitude, even for
ε2 ≪ ε, it can become relevant for sufficiently high values ofN or, in other words, for fixed noise
frequency and long operational timeT .

4.2.2 Noise as a random process

In the previous section, we have considered the behavior of the geometric phase in the presence
of a monochromatic perturbation in the loop. The statistical properties of the perturbed integral were
obtained taking the average over the choice of the initial phases. In this section, we are going to work
with a more realistic model for the noise affecting the control parameters.

Contrary to what was done in the previous section, here we will consider a model for the noise
which is described by a stationary random process, characterized by anexponential decayof the
two-times correlation function.Also we assume that the relation (A.4) holds true.

We consider the same unperturbed loop used in the section 4.2.1, the particle is moving with
piecewise constant velocity in an operational timeT . Each segment of the loop is ran in a time
Ta = T/4. The noise, acting along both the directionx andy, gives rise to a noisy loop:

γ −→ γn = γ(t/T ) + ǫ(t) . (4.56)

Let us recall that the noisy phase

Φ = −
∫

γn

ydx , (4.57)
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can be expanded as:

Φ = −
∫

[y(t) + ǫy(t)] d [x(t) + ǫx(t)]

= −
∫

y(t)dx(t)−
∫

y(t)dǫx(t)−
∫

ǫy(t)dx(t) −
∫

ǫy(t)dǫx(t) ,

We can distinguish the three contributions:

Φ1 = −
∫ T

0
y(t)dǫx(t) (4.58)

Φ2 = −
∫ T

0
ǫy(t)dx(t) (4.59)

Φ3 = −
∫ T

0
ǫy(t)dǫx(t) . (4.60)

For the noise component along thex and they directions, we put (see also the discussion in the
appendix A):

〈ǫx,y(t)〉 = 0 (4.61)

〈ǫx,y(t)ǫx,y(s)〉 = ε2C(t, s) (4.62)

〈ǫ̇x,y(t)ǫ̇x,y(s)〉 = ε2K(t, s) (4.63)

〈ǫx(t)ǫy(s)〉 = 0 , (4.64)

with the two-times correlation function:

C(t, s) = e−Γ|t−s| . (4.65)

It is instructive to consider the integration only along thefirst segment [as in (4.22)]. In this case,
we write the perturbative terms in (4.58,4.59,4.60) as follows:

Φ1 ≡ −
∫ T

0
y0ǫ̇x(t)dt (4.66)

Φ2 ≡ − 1

T

∫ T

0
ǫy(t)dt (4.67)

Φ3 ≡ −
∫ T

0
ǫy(t)ǫ̇x(t)dt . (4.68)

It is immediate to show that:
〈Φ〉 = Φ0 , (4.69)

and
〈∆Φ2〉 = 〈(Φ − Φ0)

2〉 = 〈Φ2
1〉+ 〈Φ2

2〉+ 〈Φ2
3〉 , (4.70)

and we obtain:

〈Φ2
1〉 = y2

0〈(ǫx(Ta)− ǫx(0))2〉 (4.71)

〈Φ2
2〉 = ε2

y2
0

T 2
a

∫ Ta

0
dt

∫ Ta

0
dsC(s, t) (4.72)

〈Φ2
3〉 = ε4

∫ Ta

0
dt

∫ T

0
dsC(s, t)K(s, t) . (4.73)
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To evaluate these integrals, we assume the following expressions for the correlations functions:

C(t− s) = e−Γ|t−s| (4.74)

K(t− s) = Γ [2δ(t − s)− Γ] e−k|t−s| . (4.75)

Using the relations in (A.22, A.23, A.24, A.25), in the limite−ΓTa ≪ 1, one obtains the following
expressions:

〈Φ2
1〉 = 2ε2y2

0 (4.76)

〈Φ2
2〉 = ε2y2

0

(

1

ΓTa
− 2

(ΓTa)2

)

(4.77)

〈Φ2
3〉 = ε4

(

ΓTa +
1

2

)

. (4.78)

Notice that the three contributions to the total mean squareof the noisy integral have different
interpretations and behavior:

• The contribution ofΦ1 is related to the fact that the noise in general does not preserve the initial
and the final point of the path, if one requires thatǫ(T ) = ǫ(0) this term vanishes while in the
general case it gives a contribution of orderε2 and is independent of the operational timeT .

• The contribution ofΦ2 is related to the fluctuations of the noise in a direction which is trans-
verse to the unperturbed loop, this contribution is of orderε2 but it depends on the average
number of statistical independent fluctuations of the noiseduring the operational time, denoted
N = ΓT ; in particular the mean square ofΦ2 goes to zero in the limitN →∞.

• The contribution ofΦ3 is related to the combination of noise along orthogonal direction. The
term 〈Φ2

3〉 is of higher order (proportional toε4), nevertheless, it isunboundedas function of
N = ΓT . We have that for fixedε the mean square diverges in the limitN →∞.

Let us now consider the case in which the noise isturned onduring all the operational timeT ,
namely

γn(t) = γ(t/T ) + ǫ(t) for t ∈ [0, T ] . (4.79)

In analogy to what we have obtained for the one-segment contribution, for the complete loop we
have:

Φ1 = −
∫ Ta

0
y0dǫx(t)−

∫ 2Ta

Ta

4(t− T/4)(y1 − y0)

T
dǫx(t) (4.80)

−
∫ 3Ta

2Ta

y1dǫx(t)−
∫ T

3Ta

4(t− 3T/4)(y0 − y1)

T
dǫx(t)

Φ2 = −
∫ Ta

0

4(x1 − x0)

T
ǫy(t)dt −

∫ T

3Ta

4(x0 − x1)

T
ǫy(t)dt (4.81)

Φ3 = −
∫ T

0
ǫy(t)dǫx(t) . (4.82)

It is immediate to recognize that the off-diagonal terms〈ΦhΦk〉, for h 6= k, do vanish.
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One can neglect the correlation terms between the addends ofΦ1 andΦ2, which are negligible if
the correlation time of the noise decays sufficiently fast with respect to the operational timeT . Hence
we can write:

〈Φ2
1〉 = ε2

∫ Ta

0
dt

∫ Ta

0
ds

[

(y2
0 + y2

1)K(t− s) +
32(y1 − y0)

2

T 2
tsK(t− s)

]

〈Φ2
2〉 = 32ε2

∫ Ta

0
dt

∫ Ta

0
ds

(x1 − x0)
2

T 2
C(t− s)

〈Φ2
3〉 = ε4

∫ T

0
ds

∫ T

0
dtC(t− s)K(t− s) .

Using the relations in (A.22, A.23, A.24, A.25, A.26) we obtain, in the limit e−ΓT ≪ 1:

〈Φ2
1〉 = 2ε2

[

(y2
0 + y2

1) +
16(y1 − y0)

2

T 2

(

T 2

16
− 2

Γ2

)]

(4.83)

〈Φ2
2〉 = 2ε2

[

16(x1 − x0)
2

T 2

2

Γ

(

T

4
− 1

Γ

)]

(4.84)

〈Φ2
3〉 = ε4

[

ΓT +
1

2

]

. (4.85)

Finally, we have found the following general expression forthe mean square of the noisy integral
(in the limit e−ΓT ≪ 1):

〈∆Φ2〉 = ε2
(

a+ b
1

(ΓT )
+ c

1

(ΓT )2

)

+ ǫ4 (d(ΓT ) + e) . (4.86)

That result shows that the terms of orderε2 andε4 in the mean square of the geometric phase give
contributions of different nature to the mean square of the noisy integral. While the corrections of
orderε2 are bounded from above, the term of orderε4 is unbounded. PuttingN = ΓT , for fixed value
of ε, one obtains that the lower-order correction decreases with increasingN , while the higher-order
terms grows linearly with the number of fluctuations of the noiseN .

4.2.3 Comments and interpretations

Let us notice that the leading term at the second order, whichis proportional toǫ4N in (4.86) and
(4.78), comes from a stochastic integral of the kind

S =

∫ T

0
α(t)dβ(t) , (4.87)

where bothα(t) andβ(t) are stochastic processes with two-times correlation function C(t, s) =

e−Γ|t−s|. The stochastic integral can be defined as the root mean square limit (see for instance [Ga83])
of the sum

S =
N−1
∑

j=0

α(tj)(β(tj + δt)− β(tj)) (4.88)

whereδt = T/N . The variance of the integral (4.87) is the limit of

∆S2 =
∑

i

∑

j

〈α(ti)α(tj)〉〈(β(ti + δt)− β(ti))(β(tj + δt)− β(tj))〉 , (4.89)
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where the average ofα andβ factorizes for the statistical independence of the processes. We have

∆S2 =
∑

ij

〈α(ti)α(tj)〉 {〈β(ti+1)β(tj+1)〉+ 〈β(ti)β(tj)〉 − 〈β(ti+1t)β(tj)〉 − 〈β(tj+1)β(tj)〉} .

(4.90)
Evaluating the two-times correlation functions, one obtains:

∆S2 =
∑

ij

〈α(ti)α(tj)〉
{

2e−Γ|i−j|δt − e−Γ|i−j+1|δt − e−Γ|j−i+1|δt
}

. (4.91)

The term in curled brackets is










2(1 − e−Γδt) ≃ 2Γδt for |i− j| = 0

−(1− e−Γδt)2 ≃ −Γ2(δt)2 for |i− j| = 1

e−Γ|i−j|δt(2− eΓδt − e−Γδt) ≃ e−Γ|i−j|δtΓ2(δt)2 for |i− j| > 1

, (4.92)

and〈α(ti)α(tj)〉 = e−γ|i−j|δt.
Taking the limitδt→ 0, only the terms with|i− j| = 0 do not vanish, leading to

∆S =
∑

j

2Γδt ≃
∫ T

0
2Γdt = 2ǫ4ΓT = 2ǫ4N , (4.93)

whereN = ΓT is, as before, theaverage number of statistical independent fluctuations.

Interpretation

In the previous section, we have obtained the following kindexpression (forN ≫ 1) for the
variance of the geometric phase up to the second order in the amplitude of the noise:

σ2 ≃ aε
2

N
+ bε4 + cε4N . (4.94)

The terms appearing in (4.94) have a simple interpretation:

• The first-order term gives a contribution to the variance proportional to

σ1 =
ε√
N
. (4.95)

That corresponds to the fluctuations which are transverse tothe loop. Each transverse fluc-
tuation gives a contribution to the area (the stochastic integral) which is proportional toε. If
the noise experienceN statistically independent fluctuations during the operational time, the
contribution of each fluctuation to the area of the surface isproportional toε/N . Since theN
fluctuations are in average statistically independent, onehas a total variance:

σ1 =
ε

N

√
N =

ε√
N
. (4.96)

• The constant second-order term is related to the fact that the noisy loop is in general non closed,
hence yielding an additional fluctuation in the stochastic integral which is proportional to the
square of the amplitude of the noise. That contributes to thetotal variance with a term:

σ2 = ε2 . (4.97)
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• Finally, the second-order term which is proportional toN is interpreted as follows. A generic
oscillation of the noise with amplitudeε contributes to the area of the noisy surface with a term
proportional toε2. SinceN is the average number of statistically independent fluctuations, one
has a contribution to the total variance proportional to

σ3 = ε2
√
N . (4.98)

Analogously, for a monochromatic perturbation (as the one discussed in section 4.2.1), the
fluctuations are not statistically independent, hence one has to sumN coherent fluctuations,
giving rise to the termσ′3 = ε2N [see equation (4.55)].

The three terms have different origins and can be consideredto be mutually independent, hence
they have to be summed in quadrature, yielding the expression in (4.94).

4.2.4 Numerical evaluations

In this section, we present several results formnumerical calculationsinvolving few different
settings. In particular, we consider two models for the noise affecting the control parameters.

4.2.5 Telegraphic noise

The simplest model is a telegraphic noise. Here we consider atelegraphic noise with correlation
timeτ (see the appendix A) which perturbs a given loop. We considerthe two sample loops introduced
above, the first one is a loop which has the shape of a square [asin (4.12)], while the second one is a
circular loop [as in (4.13)].

For each loop, which is drawn in the operational timeT , we have numerically computed the
average〈Φ〉, and the normalized root mean square

∆Φ/Φ =

√

〈∆Φ2〉
〈Φ〉 (4.99)

of the noisy integral. We have considered a fixed value of the noise amplitudeε = 0.1, which
corresponds to the10 per cent of the linear dimension of the loop. The results are plotted as a function
of the average number of statistically independent fluctuations of the noise, namelyN = T/τ . For
the square-shaped loop, the mean value and the normalized root mean square are plotted in figure 4.1.
For the circle-shaped loop, they are showed in figure 4.2.

4.2.6 Ornstein-Uhlenbeck process

One could notice that the telegraphic noise produces a sample path which isdiscontinuous. A
continuoussample path is for instance produced by the Ornstein-Uhlenbeck model. In order to visu-
alize the effects of this kind of noise on a given loop, we haveplotted some examples of noisy paths
for several values ofN and of the noise amplitude. For a square-shaped loop, the sample paths are
plotted in figure 4.3, while the same is plotted in figure 4.4 for the circle-shaped loop.

For the Ornstein-Uhlenbeck model of noise, the mean value〈Φ〉, and the normalized root mean
square∆Φ/〈Φ〉 are plotted in figure 4.5 for the square-shaped loop, and in figure 4.6 for a circular
shaped loop for a noise amplitudeε = 0.1.
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<F>

DF/<F>

Figure 4.1: (a) For a telegraphic noise, the plot shows the mean value of the integral for the noisy loop
related to a square-shaped unperturbed loop as a function ofthe average numberN of fluctuations
of the noise. (b) Rescaled root mean square of the integral along the noisy loop as a function of the
average numberN of fluctuations of the noise.ε = 0.1.

<F>

DF/<F>

Figure 4.2: (a) For a telegraphic noise, the plot shows the mean value of the integral for the noisy loop
related to a circle-shaped unperturbed loop as a function ofthe average numberN of fluctuations of
the noise. (b) Rescaled root mean square of the integral along the noisy loop related to a circle-shaped
unperturbed loop as a function of the average numberN of fluctuations of the noise.ε = 0.1.
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Figure 4.3: Unperturbed square-shaped loop (a), and noisy paths for a Ornstein-Uhlenbeck model of
noise, withε = 0.1 andN = 10 (b),N = 100 (c), andN = 200 (d), and withε = 0.01 andN = 100

(e), andN = 1000 (f).
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Figure 4.4: Unperturbed circle-shaped loop (a), and noisy paths for a Ornstein-Uhlenbeck model of
noise, withε = 0.1 andN = 10 (b),N = 100 (c), andN = 200 (d), and withε = 0.01 andN = 100

(e), andN = 1000 (f).

Figure 4.5: (a) Mean value of the integral for the noisy loop related to a square-shaped unperturbed
loop as a function of the average numberN of fluctuations of the noise, for a noise modeled by
a Ornstein-Uhlenbeck process. (b) Rescaled root mean square of the integral along the noisy loop
related to a square-shaped unperturbed loop as a function ofthe average numberN of fluctuations of
the noise, for a noise modeled by a Ornstein-Uhlenbeck process.ε = 0.1.
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Figure 4.6: (a) Mean value of the integral for the noisy loop related to a circle-shaped unperturbed
loop as a function of the average numberN of fluctuations of the noise, for a noise modeled by
a Ornstein-Uhlenbeck process. (b) Rescaled root mean square of the integral along the noisy loop
related to a circle-shaped unperturbed loop as a function ofthe average numberN of fluctuations of
the noise, for a noise modeled by a Ornstein-Uhlenbeck process.ε = 0.1.

The variance of the noisy integral increases with increasing N because of the contribution of the
term which is of second order inε. Decreasing the value ofε, the second order effects becomes
relevant only for higher value of the average number of fluctuations of the noiseN . The mean value
and the normalized root mean square are plotted in figure 4.7 for the square-shaped loop, and in
figure 4.8 for the circular-shaped one, for a smaller noise amplitudeε = 0.01 of about1 per cent of
the linear dimension of the loops. These plots can be compared with their homologous for a larger
noise amplitudeε = 0.1. The second order effects are still present, but become relevant for larger
values ofN .

At least qualitatively, the numerical results presented here are in agreement with the analytic
results and are qualitatively independent of the details ofthe chosen unperturbed loop and noise
model.

4.3 Final comments

In this chapter we have made use of asimple modelin order to study thestability of thegeometric
phase. The appearance of geometric phases is not strictly relatedto any dynamical quantity deter-
mining the specific physical system, but it is mainly a consequence of general geometric features.
For that reason, we argue that the simple toy-model can be used to describe thegeneral behaviorof
geometric phases in the presence ofparametric noise.

The principal result presented in this chapter is the form ofthe mean square of the geometric phase
at the second order in the noise amplitude. We can indeed write the following kind of expression of
the mean square as a function of the average number of statistically independent fluctuations of the
noiseN :

σ2 ≃ aε
2

N
+ ε4 (b+ cN) . (4.100)
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Figure 4.7: (a) The mean value of the integral for the noisy loop related to a square-shaped unper-
turbed loop as a function of the average numberN of fluctuations of the noise, for a noise modeled
by a Ornstein-Uhlenbeck process. (b) Rescaled root mean square of the integral along the noisy loop
related to a square-shaped unperturbed loop as a function ofthe average numberN of fluctuations of
the noise, for a noise modeled by a Ornstein-Uhlenbeck process.ε = 0.01.

<F>

DF/<F>

Figure 4.8: (a) The mean value of the integral for the noisy loop related to a circle-shaped unperturbed
loop as a function of the average numberN of fluctuations of the noise, for a noise modeled by
a Ornstein-Uhlenbeck process. (b) Rescaled root mean square of the integral along the noisy loop
related to a circle-shaped unperturbed loop as a function ofthe average numberN of fluctuations of
the noise, for a noise modeled by a Ornstein-Uhlenbeck process.ε = 0.01.
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Besides of the first-order contribution (proportional toε2 in the mean square), one can notice two
terms which are of higher order. The constant term is relatedto the fact that the noisy path is in
general non-closed, giving rise to an additional uncertainty due to the lost of the gauge invariance.
The important term, from our point of view, is the one which isproportional toN . Even ifε4 ≪ ε2,
that term can become relevant forN ≫ 1. That observation leads to arefinementof the argument
of robustness of the geometric phase(see section 2.7.1) and of the correspondingstrategyto obtain
robust holonomic gates(see the section 2.8). Taking into account the perturbativecontributions at the
second order, one has to find theoptimalvalue of theoperational timewhich minimizes the variance
in (4.100). The usual argument, based on the first-order term, suggests that the optimal strategy is
to approach the limitT → ∞. On the other hand, the second-order analysis states that itis useless
to increase the operational time above a certain threshold,and suggests to reach a finite value of the
optimal operational time,T = Topt.
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Chapter 5

Robustness of geometric phases: A case
study

In the previous chapter we presented a discussion about theargument of robustnessof holonomic
computation based a toy-model that, probably, is the simplest physical example in which geometric
phases appear. Moreover, the argument of robustness of holonomic gates ispurely geometricand, as
a matter of fact, as nothing to do with quantum mechanics. In the following, we consider the fact
that the geometric behavior can appear inquantum mechanicsin the adiabatic limit, giving rise to
holonomies, or geometric phases.

We take in consideration a representative example that is considered in literature and discuss the
behavior of the corresponding geometric phase in the presence of parametric noise. The case study
is one of thesingle-qubit holonomic gatespresented in [Du01] (also reviewed in the chapter 2). In
particular, we considernumerical solutionsof the corresponding Schrödinger equation in compar-
ison with the ideal gate which is expected in the adiabatic limit and in the absence of noise. The
second-order effectsthat appeared in the discussion of the toy-model in the previous chapter will
play a role also in the case study analyzed here. It is worth noticing that the standard argument of
robustness refers to the behavior of the noisy geometric phase at thefirst order in the amplitude of
the noise. Hence, once the first-order term becomes negligible, the leading contribution corresponds
to thesecond-orderterms. At this point, the study of the second-order terms becomesrelevant.

5.1 Single-qubit holonomic gate

As a case study, in this section we consider one of the single-qubit holonomic gates proposed in
[Du01]. That gate is reviewed in chapter 2 and it is also central in the discussion of non-adiabatic gate
in chapter 3. The system under consideration is a single trapped ion with a structure of stationary or
metastable states as depicted in the figure (5.1). Transitions between the levels are driven by resonant
lasers fields, hence the system is described, in the rotatingframe, by the following Hamiltonian:

H =
Ω

2
(x|0〉〈e| + y|1〉〈e| + z|a〉〈e| + h.c.) . (5.1)

In order to obtain the geometric gate, one has to chose the control parameters to be real-valued,
namelyx = x∗, y = y∗, andz = z∗. The additional constraintx2 + y2 + z2 = 1 is also needed.
Hence the corresponding control manifold is a two-dimensional sphere. Under these conditions, the
system presents a doubly degenerate subspace with vanishing eigenenergy. The system is initialized

85



0 1

a

e

x

y

z

x y

z

w

Figure 5.1: On the left: structure of the levels of the singletrapped ion, with the relevant laser fields.
On the right: a loop on the control manifold.

with x = y = 0, hence the initial Hamiltonian corresponds to theNorth poleon the control manifold.
The computational space, defining the qubit, is determined as the linear span of the twodark states,
H0 = span{|0〉, |1〉}, which is initially decoupled.

It is easy to check that the corresponding connection one-form for the degenerate space is

A = cos ϑdϕσy (5.2)

expressed in polar coordinates on the two-sphere, namely

tanϕ =
y

x
(5.3)

cos ϑ =
z

√

x2 + y2 + z2
, (5.4)

whereσy is the Pauli matrix in the computational subspace.
In correspondence with agenericpath on the control manifold:

γ : t ∈ [0, T ] −→ x(t) , y(t) , z(t) , (5.5)

one has to solve the Schrödinger equation (with~ = 1):

i
d

dt
|ψ(t)〉 = H(t)|ψ(t)〉 (5.6)

with

H(t) = H|γ =
Ω

2
[x(t)|0〉〈e| + y(t)|1〉〈e| + z(t)|a〉〈e| + h.c.] , (5.7)

and a suitable initial condition belonging to the computational subspace,|ψ(0)〉 = |ψin〉 ∈ H0. The
solution, after the operational timeT , is written as

|ψout〉 = U |ψin〉 , (5.8)

where, formally:

U = T exp

(

−i
∫ T

0
H(t)dt

)

. (5.9)

On the other hand, in the adiabatic limit, the evolution in the computational space, is completely
described by the connection one-form in (5.2). In correspondence with anadiabatic loopon the
control manifold

γad : t ∈ [0, T ] −→ x(t) , y(t) , z(t) , (5.10)
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satisfyingγad(T ) = γad(0), and

sup
t∈[0,T ]

|γ̇ad(t)|
Ω|γad(t)| ≪ 1 ; (5.11)

one obtains that

|ψout〉 = W |ψin〉 , (5.12)

where

W = P exp

(

−i
∫

γad

A

)

. (5.13)

Thus, taking the connection as in (5.2), we can write

W = exp

(

−i
∫

A

)

= exp

(

i

∫

cos ϑdϕσy

)

= exp (−iωσy), (5.14)

whereω is the solid angle spanned by the loopγad.

In particular we focalize on the special class of loops identified in [Fl06] and further studied in
[Tr06, Fl06’, Lu07’]. The peculiarity of that family of loops is that they present perfect fidelity at
finite operational time, i.e. long before the adiabatic regime is reached. These perfect revivals of
the fidelity appears in correspondence with special values of the operational timeT (see also the
chapter 3 for a review). The presence of the so-calledoptimal working timesis a peculiar feature
of a specific gate and loop which does not play any particular role in the discussion of the adiabatic
regime. Nevertheless, by taking in consideration that class of holonomic gates, we are allowed to
make a direct comparison between different effects of cancelation, due todynamicalor geometric
features.

5.1.1 Adiabaticity of the path

A crucial point concerning holonomic computation is the assumption that the adiabatic limit is
reached. Only in the adiabatic limit one can assume that the physical evolution of the quantum
system is properly described by a holonomic transformation, or geometric phase. Although quantum
holonomies can also appear in correspondence with non-adiabatic cyclic transformation (see chapter
2 and the references therein), only in the adiabatic limit a cyclic Hamiltonian yields a cyclic evolution.
On the other hand, it is as well apparent that the transformation achieved in the adiabatic limit is an
idealization, corresponding with an ideal gate. From that point of view, it is the adiabatic theorem
that ensures that the ideal transformation is approached bythe real one under suitable conditions.

In the absence of the instrumental noise, the holonomic computation requires the adiabaticity
of the loop. On the other hand, one has to consider how the presence of the noise can affect the
adiabaticity conditions. In the generic case, the noise canpreserveor evendestroythe adiabaticity
of the unperturbed loop. Abstracting from the details of thenoise model, the effects of the noise
on the adiabaticity of the loop can depend on two physical quantities: the operational time of the
gateT and the noise typical timeτ . Notice that hereτ does not indicate the correlation time of the
noise, but the typical time under which the noisy component in the path changes. In order to have
a (semi)quantitative measure of the adiabaticity of the unperturbed or noisy path, we consider the
following quantity:

α = sup
t∈[0,T ]

|γ̇(t)|
Ω|γ(t)| , (5.15)
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whereΩ is the relevant Bohr’s frequency. More precisely, this quantity defines anan-adiabaticity
parameter: in theadiabatic regime(both in the ideal and noisy case) one hasα ≪ 1, conversely for
α ≫ 1 one is in the opposite regime offast noisewhich yields a highly non-adiabatic path. The
quantity in (5.15) will be used in the following sections to characterize a given path in the parameter
space with respect of its adiabaticity.

5.1.2 Noise models

In the previous chapter, we have discussed the geometric argument of robustness of holonomic
gates using an over simplified model, which nevertheless is able to grasp all the essential features of
the holonomic gates. On the other hand, for any feasible application, the geometric behavior of a
gate is not givena priori, but is a consequence of dynamical constraints and appears only in special
physical situations. An essential request for a gate to behave geometrically is that the adiabatic limit
is reached, i.e. the adiabatic approximation is justified. Though, for a certain value of the operational
time, that is true for the unperturbed gate, in order to exploit the geometric argument of robustness,
one has to require that the loop is still adiabatic even when the noise is present. In other words, one
has to require that the gate presents a fully geometric behavior also in the presence of the noise.

In the previous chapter, describing thestandard argumentof robustness of holonomic computa-
tion, and itsrefinements, we considered a typical time describing the noise component. The typical
time-scale was the correlation time of the noise. That is therelevant time-scale to describe the ge-
ometric effects of cancelation of the consequences of the noise. It is important to notice that the
correlation time is no more the relevant parameter when considering the feasibility of the adiabatic
approximation for the noisy loop. For instance, let us considered the random processes used in the pre-
vious chapter, both the telegraphic noise and the Ornstein-Uhlenbeck process have a finite correlation
time, nevertheless a loop perturbed with this noise models can never be adiabatic. For instance, the
sample paths generated by the telegraphic noise are not continuous, while even though the Ornstein-
Uhlenbeck process generates continuous paths, they are notdifferentiable. As it is easy to check,
the (an-)adiabaticity parameter introduced in (5.15) is unbounded for those models of noise. In the
discussion of the toy-model in chapter 4, the use of the telegraphic noise and the Ornstein-Uhlenbeck
process was justified by the fact that the geometric character of the physical transformation was as-
sumeda priori and was not a consequence of the adiabatic limit. In the present chapter, in which we
consider the physical conditions under which the system evolves geometrically, it is worth introducing
another model of noise that can produceadiabatic sample-paths.

In order to do that, we consider a noise determined by itspower spectrum. In other words, we are
going to consider a noise with exponentially decaying two-times correlation function,

C(t) = εeiηt−Γt, (5.16)

and a corresponding Lorentzian power spectrum

S(ω) =
1

π

ω

(ω − η)2 + Γ2
(5.17)

with band widthΓ and typical correlation timeτ = Γ−1. Formally, one can write the random process
as

ǫ(t) = ε

∫ +∞

0
dω

√

S(ω)ei(ωt+φω), (5.18)
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whereφω are random phases. We can take advantage of the expression in(5.18) in order to simulate
a random process by means its power spectrum. In particular,we introduce a frequency cut-off at
ω = 2Γ. Furthermore, we make the assumption that the noisy path is still closed. This assumption
is rather unphysical, but it simplifies both the numerical calculation that the interpretation of the
results. Indeed, in that setting, the term which corresponds to the fact that the noisy path is in general
non-closed (see the analytical discussion in the chapter 4)does not appear, and the effect of the
noise is to induce acontinuous deformationof the loop. That assumption corresponds to select only
the frequencies which are integer multiple of the fundamental frequency of the loop, leading to the
expression:

ǫ(t) =
ε

N
kν<2Γ
∑

k=0

√

S(ω)ei(kνt+φω) , (5.19)

whereN is a normalization factor. If the gate operational time isT , the fundamental frequency is
ν = 2π/T . The random process is thus determined by its amplitudeε, its band widthΓ and the drift
frequencyη.

We are going to consider two different settings.

In the first case we take only the real part of (5.19): this choice preserves the control manifold,
since the control parameter are real even in the noisy case. In this case, the noise component can be
written in the following way:

ǫ(t) =
ε

N ′
kν<2Γ
∑

k=0

√

S(ω) cos (kνt+ φω) . (5.20)

Notice that the physical interpretation of that assumptionis that the noise affects only theampli-
tudeof the laser fields, without introducing anyde-tuning. As example, some sample loops, including
the ideal loop, corresponding toη = 0 and several values ofε andΓ are showed in figure 5.2.

The second setting corresponds to a complex-valued noise, which is interpreted as a noise affect-
ing both theamplitudeand thede-tuningof the laser fields. One can compute the noise component
using the expression in (5.19). In that case, the control parameters do not belong any more to the
ideal control manifold.

5.2 Numerical analysis

One can distinguish between two different mechanisms that account for a cancelation of the ef-
fects of the noise in holonomic gates. The first kind of cancelation is due to the geometric behavior
of the gate in the adiabatic limit. As pointed out above, a crucial point is that the adiabatic approxi-
mation holds true, not only for the ideal unperturbed loop, but also for the perturbed one in presence
of noise. If that condition is not verified, one cannot apply any argument of robustness which relies
on the geometric character of the gate. On the other hand, if the noisy path is highly non-adiabatic,
one can observe as well an effect of cancelation which has a dynamical instead of geometric nature.
This second kind ofdynamicalcancelation was also discussed in [Lu07’] and reviewed in the chapter
3. Here we recall those argumentations and add new examples and discussions.
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Figure 5.2: Several sample loops. Unperturbed loop (a). Noisy loops withε = 0.01Ω andΓ = 100Ω

(b); ε = 0.1Ω andΓ = 10Ω (c); ε = 0.1Ω andΓ = 50Ω.

In the following sections, we are going to present some results obtained with a numerical analysis
of the case study under consideration. We consider the idealloop

γ : t ∈ [0, T ] −→ γ(t/T ) = (x(t/T ), y(t/T ), z(t/T )), (5.21)

which in polar coordinates reads as follows:

ϑ(s) =











3sπ/2 s ∈ [0, 1/3]

π/2 s ∈ [1/3, 2/3]

3π/2 (1− s) s ∈ [2/3, 1]

ϕ(s) =











0 s ∈ [0, 1/3]

3π/2
(

s− 1
3

)

s ∈ [1/3, 2/3]

π/2 s ∈ [2/3, 1] .

(5.22)

That coincides with the ideal loop discussed in the chapter 2. The ideal loop, that spans a solid
angleω = π/2, gives rise, in the adiabatic limit to the idealgeometricevolutor

W = −iσy (5.23)

acting in the computational subspace.
We consider a noise affecting the path, giving rise to the noisy loop

γn(t) =











xn(t) = x(t) + ǫx(t)

yn(t) = y(t) + ǫy(t)

zn(t) = z(t) + ǫz(t) .

(5.24)

Hence, the equation for the quantum evolutorU(t)

i
d

dt
U(t) = Hn(t)U(t) (5.25)
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is numerically solved with the initial conditionU(0) = P0 whereP0 indicates the projector on the
computational subspaceH(0). The Hamiltonian in (5.25) corresponds to the noisy loop, namely:

Hn(t) =
Ω

2
[xn(t)|0〉〈e| + yn(t)|1〉〈e| + zn(t)|a〉〈e| + h.c.] . (5.26)

Finally, theaverage gate fidelityF(E ,W ) between the ideal adiabatic (noiseless) transformation
and the actual dynamical evolution in the presence of noise is computed (the definition of this quantity
is recalled in the appendix B). Eventually, a completely positive mapE is defined as

E : ρ −→ 〈U(T )ρU(T )†〉noise, (5.27)

where the average is taken over the realizations of the noise.

5.2.1 Real-valued noisy loop

In this section, we consider a noise which affects only the amplitude of the laser fields, hence
modeled by a real-valued noisy component in the control parameters:

ǫj(t) =
ε

N ′
kν<2Γ
∑

k=0

√

S(ω) cos (kνt+ φ{ω,j}) , (5.28)

with a Lorentzian power spectrum, andj = x, y, z. Some sample paths arising from that kind of
noise are shown in the figure (5.2).

Non-adiabatic noise

For the first five values of the optimal operational time, figure 5.3 shows the behavior of the gate in
the presence of noise. The amplitude is fixed toε = 0.1Ω. In the figure 5.3a, the average gate fidelity
is plotted, while in the figure 5.3b, the (an-)adiabaticity parameter defined in (5.15) is plotted for the
corresponding working times. These quantities are plottedas functions of the ratioΓ/Ω. The plot
shows the revival of the fidelity which happens for fast noises, while the lowest value of the fidelity is
reached in correspondence with a noise with aresonantfrequency. It is also important to notice the
high value of the (an-)adiabaticity parameter showed in figure 5.3b, from which it is apparent that in
this regime the perturbed loop is highly non-adiabatic.

In the regime of fast noise, the effects of cancelation are related to the average of thefastdegree of
freedom of the noise over theslow internal dynamics of the system. In this regime, no connection is
expected to exist with the geometry of the noisy loop spannedby the system during the time evolution
(see also the discussion in [Lu07’] and in chapter 3).

Adiabatic noise

In the adiabatic setting, one needs to compare the efficacy ofthe actual gate with the one of the
geometric gate. To be more specific, one can assume that the adiabatic approximation is justified not
only for the ideal noiseless loop, but also for the noisy one.Hence, given a noisy loop, it spans a
certain solid angleω to which the corresponding holonomic transformation

Wn = e−iωσy (5.29)
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Figure 5.3: (a) Average gate fidelity as a function of the re-scaled typical frequency of the noiseΓ/Ω,
plotted for the first five value of the optimal working time, from the first optimal working time (blue
line) to the fifth one (violet line). (b) The corresponding an-adiabaticity parameter as a function of
the re-scaled frequency of the noise.

is associated. Since the solid angleω, is itself a random variable, determined by the noise, one
has to take the average over the realizations of the noise, which leads to definition of the following
completely positive map

L : ρ −→ 〈WnρW
†
n〉noise . (5.30)

Finally, one can compute the average gate fidelity between the ideal geometric gateW and the
completely positive map in (5.30), denoted asF(W,L). We will refer to that quantity as thegeomet-
ric fidelity. In other words, one has to compare two average gate fidelities: the first fidelity is between
the ideal gate (adiabatic limit, no noise) and the actual gate (computed by numerically solving the
Schrödinger equation in presence of noise); the second fidelity compares the ideal gate with a ficti-
tious gate which is the one that would be obtained for a perfectly adiabatic noisy loop. It is worth to
notice that, in the presence of adiabatic noise, the fidelitywhich is expected to approach the unit is
F(E ,L), whilst that cannot be said for the average gate fidelityF(W, E). Also, we expect that in the
adiabatic regimeF(W, E) ≃ F(W,L).

Coming back to the equation (5.30), the completely positivemap can be written as

ρ −→ L(ρ) =
∑

ω

pωe
−iωσyρeiωσy , (5.31)

wherepω is the probability (or relative frequency) of the solid angle valuedω.

Using the definition in (5.30), it can be immediately checkedthat thegeometric fidelityhas the
following expression:

F(W,L) = 〈sin2 ω〉noise . (5.32)
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Figure 5.4: (a) Comparison between the average gate fidelitybetween the ideal gate and the actual
gate (solution of the Schrödinger equation) for several values of the operational time:ΩT = 500

(blue line),ΩT = 1000 (green line),ΩT = 3000 (violet line) and the average gate fidelity between
the ideal gate and the fictitious geometric gate (dashed red line) as a function of the average number
N of fluctuations of the noise. (b) The corresponding an-adiabaticity parameter for several values of
the operational time as a function ofN .

For small amplitude of the perturbations, ifω ≃ π/2 + δ, one can write

F(W,L) ≃ 〈sin2 (π/2 + δ)〉noise ≃ 1− 〈δ2〉noise . (5.33)

The figure 5.4a shows thegeometric fidelitytogether with theaverage gate fidelityfor several val-
ues of the operational time as functions of the average number of statistical independent fluctuations
of the noise,N = ΓT . The plot refers to values of the operational time ranging from ΩT = 500 to
ΩT = 3000. The average gates fidelity can be compared with the geometric fidelity. The geometric
fidelity depends only onN and is it independent of the operational timeT . The dynamical transforma-
tion is expected to coalesces with the geometric transformation only if the noise is adiabatic, hence
the average gate fidelity follows the geometric fidelity onlyfor small values of the an-adiabaticity
parameter, which is plotted in figure 5.4b.

In contrast with the case of the dynamical cancelations, as long as the noisy loop remains adia-
batic, the relevant parameter to describe both the gate in the presence of the noise is the number of
fluctuationsN . On the other hand, the adiabaticity of the loop is determined by the noise typical
frequency, high values of the band width of the noise do breakthe adiabaticity of the loop, that situ-
ation corresponding to high values of the an-adiabaticity parameter in figure 5.4b. Also, for a higher
value of the operational time, the same number of noise fluctuations is reached in correspondence of
a slower noise.
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Figure 5.5: (a) Comparison between the average gate fidelitybetween the ideal gate and the actual
gate (solution of the Schrödinger equation) (solid blue line) and the average gate fidelity between the
ideal gate and the fictitious geometric gate (dashed red line). (b) The corresponding an-adiabaticity
parameter as a function of the operational time.ε = 0.1Ω, Γ = 0.03Ω

It is worth noticing, in the pattern of the geometric fidelity, the existence of the first-order geo-
metric effect of cancelation of the noise (leading to increase in the fidelity), together with the second
order contribution that enhances the effects of the noise and is relevant for higher values ofN (leading
to decreasing fidelity).

A different point of view is described by the plot in figure 5.5a, where the gate fidelity and the
geometric fidelity are plotted as functions of the operational time, for fixed values of the amplitude
ε and the band widthΓ. The amplitude and the typical frequency of the noise are chosen in order
to guarantee the adiabaticity of the noisy loop, as can be checked in 5.5b where the corresponding
an-adiabaticity parameter is plotted. The plot in figure 5.5a shows how, for a fixed noise, the gate
fidelity is a function of the operational time. The gate has a completely geometric behavior in that
setting, hence one can observe the effect of the noise both atthe first and the second order. Notice that
for fixed Γ, the number of independent fluctuations of the noiseN is proportional to the operational
timeT , hence the expected behavior of the gate fidelity is of the following form:

F ≃ 1− a ε
2

ΓT
− bε4ΓT , (5.34)

which is compatible with the pattern in figure 5.5a. The geometric fidelity is also plotted in fig-
ure 5.6 as a function of both the amplitude of the noise and thenumber of statistically independent
fluctuations.

5.2.2 Complex-valued noisy loop

Here we take in consideration a more general noise, which affects both the amplitude and the
de-tuning of the laser fields, hence it is modeled by a complex-valued noisy component in the control
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Figure 5.6: Average gate fidelity of the geometric gate as a function of both the amplitude of the noise
ε and the average number of fluctuations of the noiseN .

parameters:

ǫj(t) =
ε

N
kν<2Γ
∑

k=0

√

S(ω)ei(kνt+φ{ω,j}), (5.35)

with a Lorentzian power spectrum, andj = x, y, z.

With respect to that kind of noise, theaverage gate fidelityis plotted in the figure 5.7 as a function
of the operational time, for a fixed value of the noise band-width, Γ = 0.03Ω, and for several values
of its amplitude, ranging fromε = 0.01Ω to ε = 0.1Ω. The plot shows thetypical behaviorof
the fidelity in theadiabatic regime, where the different trends, corresponding to the first and second
order perturbative terms, are clearly shown. Finally, the presence is apparent, for a given noise, of
anoptimal operational timewhich presents the maximum gate fidelity. Thatoptimal working point
appears in correspondence with the maximum of the fidelity inequation (5.34).

5.3 About the optimal working point

One of the most interesting features of the holonomic approach to computation is its believed
robustness against parametric noise affecting the controlparameters. We have seen that that can be
motivated by thestandard argumentof robustness of geometric gates, which was reviewed in chapter
2. That argument is based on the first-order contribution of the noise on the geometric phase.

A possible strategy to minimize the effects of the noise is suggested by the standard argument
of robustness. Given an experimental setting, one deals with some source of noise, which is charac-
terized by the amplitudeε and the correlation timeτ , or the band widthΓ ≃ τ−1. The geometric
behavior, depends only on the number of fluctuationsN ≃ ΓT .

Hence the value ofN can be changed by changing the operational timeT . By modifying the
value of the operational time, one could in principle be ableto find a working time for the quantum
logic gate which isoptimalwith respect to the issue of robustness under the given parametric noise.
In other words, one has to find the value ofT which maximize the gate fidelity.

Considering only the first-order terms in the perturbative expansion, one is led to conclude that
the ideal optimal point is reached for high values of theT (ideally, the fidelity reaches one in the limit
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Figure 5.7: Average gate fidelity in presence of a noise affecting both amplitude and de-tuning as
a function of the adimensional operational timeΩT . The noise has bandwidthΓ = 0.03Ω. The
amplitude of the noise areε = 0.01Ω, ε = 0.05Ω, ε = 0.07Ω, ε = 0.08Ω, ε = 0.09Ω, andε = 0.1Ω.

ΩT → ∞). On the other hand, taking into account the second-order inthe perturbative expansion,
one obtains arefinement of that strategy. The pattern of the average gate fidelity shown in the plots
confirms the results obtained in the chapter 4 using the toy-model. According to them, the best
strategy to optimize the fidelity of the holonomic gate is notto approach the limitN →∞, but rather
to find an optimal valueN = Nopt, which corresponds to anoptimal operational timeT = Topt, that
maximizes the fidelity in (5.34).

5.4 Trade off between geometric and dynamical cancelation

In the previous sections, we have distinguished between geometric and dynamical effects of can-
celation of the noise. For the sake of simplicity and readability, we have described the dynamical
cancelation for fast gates — at the first five optimal operational working times — while the geometric
effects are illustrated for adiabatic gates correspondingto longer operational time. It is worth re-
marking that the two different effects are not determined bythe specific value of the operational time,
conversely the presence of the one or the other (or none of thetwo) is only determined by the typical
frequency of the perturbation.

In other words, geometric effects (of the first or higher order) appear for adiabatic noisy loop,
while the dynamical effects of cancelation happen for non-adiabatic one. Hence the relevant param-
eter which discriminates between the two regimes is the an-adiabaticity parameter (5.15), which is
determined by both the value of the operational time and the typical time-scale of the noise. In other
words, for an ideally adiabatic holonomic gate, one can observe both dynamical and geometric effects
of cancelation, depending on the value of the typical frequency of the noise.

To discuss that issue, we have considered a (quasi)monochromatic perturbation, with drift fre-
quencyη and band widthΓ≪ η. The behavior of the system under this kind of perturbation is shown
in the figure 5.8a, in which the average gate fidelity and the geometric fidelity are compared, together
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Figure 5.8: (a) Average gate fidelity of the actual gate (bluetick line) compared with the average
fidelity of the geometric gate (narrow red line) as a functionof the rescaled typical frequency of the
noiseη/Ω for a quasi monochromatic perturbation. (b) the corresponding (an-)adiabaticity parameter.
The plot shows the trade off between geometric (forη ≪ Ω) and dynamical (forη ≫ Ω) cancelation
effects. The operational time is fixed atΩT = 2000 and the amplitude of the noise isε = 0.1Ω.

with the corresponding an-adiabaticity parameter in figure5.8b. In the adiabatic regime (correspond-
ing toα ≪ 1, or η/Ω ≪ 1), the gate fidelity follows the fidelity of the geometric gate. On the other
hand, in the highly non-adiabatic regime (corresponding toα ≫ 1, or η/Ω ≫ 1) the two patterns
become different. While the geometric fidelity approaches1/2, the gate fidelity approaches one for
of the dynamical effects of cancelation.
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Conclusions

Dans la vie tout d́ebut a une fin
Tout n’est que souvenir

Donc efforcer vous pour que ça soit un bon souvenir

(it should be) a Senegalese motto.

The main result presented in this Thesis is based on asimpleas well assubtleobservation. The
so-calledstandard argumentof robustness of holonomic gates (or geometric phases) in the presence
of parametric noiseis based on a perturbative analysis which is truncated at thefirst-order in the noise
amplitude. That argument can lead to the individuation of astrategyto obtain holonomic gates which
areoptimal from the point of view offault-tolerance.

It is thus natural to ask about the role played by thehigher-order terms in the perturbative ex-
pansion of the noisy geometric phase. With the help of some specific models, we have analyzed the
terms which are of the second-order in the amplitude of the noise. We have shown that these contri-
butions cannot be in general neglected since they can play arelevant rolewith respect of the issue
of robustness. The contributions of the noise in the geometric phase have aprecise as well as simple
interpretationboth at the first and at the second perturbative order.

In particular, our considerations and results lead to arefinementof the optimal strategywhich
takes into account also the higher order contributions in the perturbative expansion of the geometric
phase. We think that this observation can be of certain interest for the realization of afault-tolerant
quantum computation.
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Appendix A

About perturbations and noise

In order to study the behavior of holonomic gates and geometric phases in the presence of classical
noise we need, for both the analytical and numerical calculations, suitable models describing the
parametric noise.

From our point of view, a model for a noise component in the control parameters is a random
processǫ(t) characterized by its correlation functions. One can consider the two-times correlation
function:

C(t, s) = 〈ǫ(t)ǫ(s)〉 (A.1)

where the average is taken over the realizations of the process. For a stationary processC(t, s) =

C(|t− s|). The random function can also be characterized by means of its power spectrum:

S(ω) =

∫ +∞

0
C(τ) cos (ωτ)dτ . (A.2)

If the stochastic process has differentiable sample paths,one can consider the function:

K(t, s) = 〈ǫ̇(t)ǫ̇(s)〉 , (A.3)

which is the two-times correlation of the derivative of the process. In that case, one can write the
following identity:

K(t, s) =
∂2

∂s∂t
C(t, s) . (A.4)

In the calculations presented in the chapter 4, we make use ofthe hypothesis that the relation (A.4)
holds true. If this is the case, we may say that the sample paths of the random process are differentiable
in aweaksense.

Exponential decay of correlations

For a stationary process with exponential two-times correlation function

C(t, s) = e−k|t−s| (A.5)

we have

K(t, s) = k [2δ(t − s)− k] e−k|t−s| (A.6)
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Ornstein-Uhlenbeck process

A Ornstein-Uhlenbeck processβ(t) is a stochastic process (see for instance [Ga83]) that fulfills
the following differential equation:

dβ(t) = −kβ(t)dt +
√
Dξ(t)dt, (A.7)

whereξ(t) is a delta-correlated noise,D andk are respectively the diffusion and damping coefficient.
For a stationary process, the two-times correlation function reads as follows:

C(t, s) =
D

2k
e−k|t−s|. (A.8)

On the other hand, we have:

〈β̇(t)β̇(s)〉 = k2〈β(t)β(s)〉 +D〈ξ(t)ξ(s)〉 − k
√
D [〈ξ(t)β(s)〉 + 〈β(t)ξ(s)〉] . (A.9)

To evaluate the last term, notice that:

〈ξ(s)β̇(t)〉 = −k〈ξ(s)β(t)〉+
√
D〈ξ(s)ξ(t)〉. (A.10)

Hence, puttingZ(t, s) := 〈ξ(s)β(t)〉 we find:

∂

∂t
Z(t, s) = −kZ(t, s) +

√
Dδ(t − s), (A.11)

which has solution:

Z(t, s) =
√
De−k(t−s)θ(t− s). (A.12)

(Whereθ indicates the heavy-side function.) We have

〈ξ(t)β(s)〉 + 〈β(t)ξ(s)〉 = Z(t, s) + Z(s, t) =
√
De−k|t−s|, (A.13)

that yields:

〈β̇(t)β̇(s)〉 = Dδ(t− s)− Dk

2
e−k|t−s|. (A.14)

Finally, one can write

K(t, s) =
∂

∂t∂s
C(t, s). (A.15)

Telegraphic noise

For the numerical calculations, we also consider a telegraphic noise. In that case, the random
processǫ(t) can assume two values, say{−ε, ε}with equal probability. The function has a probability
per unit timeπ of changing its value. It follows that the probability of having n changes in a timeτ
is given by the Poisson distribution:

Pn(λ) = e−λ
λn

n!
, (A.16)

whereλ = πτ . Hence one obtains that:

ǫ(t)ǫ(t+ τ) =

{

ε2 for n even
−ε2 for n odd

(A.17)
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The corresponding two-times correlation function has an exponential decay:

〈ǫ(t)ǫ(s)〉 = ε2
∑

n

(−1)ne−λ
λn

n!
= ε2e−2λ = ε2e−2π|t−s|. (A.18)

In the chapter 3, we make use of a simplified version of the standard definition of the telegraphic
noise. In that case there is a typical time scaleτstep which characterized the process. As a conse-
quence, the process is no more invariant under continuous time translation, but it is symmetric only
under finite translations (by integer multiples of the typical time τstep). The two-times correlation
function can be written as an exponential only for a sufficiently large time interval, namely

C(t, s) ≃ e−|t−s|/τstep for |t− s| ≫ τstep . (A.19)

Some useful integrals

In the following we calculate some integrals which are useful for the discussion in the chapter 4.
Taking in consideration the case in which the two-times correlation function decays exponentially

C(t− s) = e−k|t−s|, (A.20)

and

K(t− s) = k [2δ(t − s)− k] e−k|t−s|, (A.21)

it is straightforward to obtain the following relations:

∫ τ

0
ds

∫ τ

0
dtC(t− s) =

τ

k
− 2

k2

(

1− e−kτ
)

(A.22)
∫ τ

0
ds

∫ τ

0
dtK(t− s) = 2

(

1− e−kτ
)

(A.23)
∫ τ

0
ds

∫ τ

0
dttK(t− s) = τ

(

1− e−kτ
)

(A.24)
∫ τ

0
ds

∫ τ

0
dtC(t− s)K(t− s) = kτ +

1

2

(

1− e−2kτ
)

(A.25)
∫ τ

0
ds

∫ τ

0
dttsK(t− s) = τ2 − 2

k2
+ 2

kτ + 1

k2
e−kτ , (A.26)

that are taken in consideration in the chapter 4.

Quasi-monochromatic perturbation

In the chapter 5, in order to obtain an adiabatic noise, we consider the followingformalexpansion
of the stochastic process:

ǫ(t) ≃ ε
∫ +∞

0
dω

√

S(ω)ei(ωt+φω), (A.27)

whereS(ω) is the corresponding power spectrum, andφω are randomly chosen initial phases. The
integral in (A.27) can be ill-defined, nevertheless, one canconsider the expression

ǫ(t) ≃ ε

N

kν<k0
∑

k=0

√

S(ω)ei(kνt+φω), (A.28)
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whereN is a normalization factor, and we have introduced a fundamental frequencyν and a cutoff at
ν0 = k0ν.

In particular, taking a Lorentzian power spectrum:

S(ω) =
1

π

Γ

(ω − ω0)2 + Γ2
(A.29)

we also consider a quasi-monochromatic perturbation, obtained in correspondence withΓ≪ ω0.
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Appendix B

Figures of merit

One of the tasks faced in the present Dissertation is to make comparison between pairs of quan-
tum states, or between pairs of quantum transformation. In order to make a quantitative comparison,
one needs to identify a definition of a suitable ”distance” between a pair of quantum states or trans-
formation.

In order to compare two pure states|ψ〉 and|φ〉 of a quantum system, one can consider the overlap

F (ψ, φ) = |〈φ|ψ〉|, (B.1)

which is know as quantumfidelity. The fidelity is insensible to a global phase, hence it is defined on
the corresponding pure state density matrix and we can as well write

F (ψ, φ) =
√

tr (|φ〉〈φ|ψ〉〈ψ|). (B.2)

The generalization to mixed states is not as intuitive as it can be imagined to be. The following is the
correct definition of the mixed state fidelity:

F (ρ, σ) = tr

(

√

ρ1/2σρ1/2

)

, (B.3)

which finds its proper justification in the Uhlmann’s theorem[Uh76, Jo94]. If[ρ, σ] = 0, the quantity
in (B.3) reduces to the classical fidelity

f(p, q) =
∑

k

√
pkqk, (B.4)

whereqk andpk are respectively the eigenvalues ofρ andσ.
In our discussions, we often need to compare the output states |ψout〉 corresponding to an ideal,

noiseless, transformation, with the output|ψnoise〉 of a non-ideal, noisy gate. Since one is mainly
interested in the transformation by itself, and not in one output state in particular, it is needed to
consider all the possible input states. Among several possibilities, we have chosen the quantity known
asaverage gate fidelityas a figure of merit to compare quantum transformations. (Another possible
choice could have been theworst case fidelity.)

Following the discussion of Michael Nielsen in [Ni02], we define the average gate fidelity be-
tween aquantum channel1 E and an unitary transformationU as

F(U, E) =

∫

dψ〈ψ|U †E(|ψ〉〈ψ|)U |ψ〉, (B.5)

1a completely positive and trace-preserving map [NC00]
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wheredψ is the normalized Fubini-Studi measure over the set of (input) states. In order to evaluate
the quantity in equation (B.5) it is indeednot necessaryto explicitly compute the average over the
set of input states. An useful formula was provided in [Ni02](see also [Bo02, Ho99]), which allows
to compute it directly without passing through the average over the set of input states. For a quan-
tum system withd levels, given an orthogonal basis{Xα}α=0...d2−1 in the space of Hilbert-Schmidt
operators, hence satisfying

tr[X†αXβ ] = dδαβ , (B.6)

one can write the following formula:

F(U, E) =
tr

[

UX†αU †E(Xα)
]

+ d2

d2(d2 + 1)
. (B.7)

Example 4 (Average gate fidelity for sigle-qubit transofrmations) For a qubit system,d = 2, and
one can choseXα to be composed by the Pauli matrices together with the identity matrix, and write
(B.7) in the following way:

F(U, E) =
1

2
+

1

12

∑

k=1,2,3

tr
[

UσkU
†E(σk)

]

. (B.8)

Analogously, if one is dealing with a two-dimensional computational spaceH0 = span{|0〉, |1〉},
which is a subspace of a larger space in which the dynamics is defined, one can consider the Pauli
matricesσα in the computational basis:

σ0 = |0〉〈0| + |1〉〈1|
σ1 = |0〉〈1| + |1〉〈0|
σ2 = i|0〉〈1| − i|1〉〈0|
σ3 = −|0〉〈0| + |1〉〈0|

(B.9)

In this case the formula (B.7) reads:

F(U, E) =
1

3
+

1

12
tr

[

Uσ0U
†E(σ0)

]

+
1

12

3
∑

k=1

tr
[

UσkU
†E(σk)

]

. (B.10)
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