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Abstract

Besides standardynamicalschemes to realize a quantum computer, there are partiaptar
proaches which are based on intrinsic properties of quarstystems, leading to the definition of
topological computation andiolonomi¢ or geometri¢ computation. The holonomic approach can
be viewed as the application abn-Abelian geometric phasés quantum information processing,
it is believed to bdault-tolerantwith respect of certain kind gbarametric noise Here we discuss
the issue of robustness of holonomic quantum gates undamgednic noise: we distinguish between
geometricanddynamicaleffects of cancelation, which can appear in different cxisteA so-called
standard argumenin favor of the stability of noisy holonomic quantum gatesasiewed and ex-
tended to more general settings. New geometric effectsltfsatribe the behavior of noisy holonomic
gates are presented. These effects leadr&dimng of the optimal strategyto achieve a robust com-
putation.






[...] I have no illusions of power, as to the scope and prospéeny attitude.

But, the minor role of my act and statement is a simple wayfiofrahg that
in the face of a growing enormity which | consider intolemgbl

| will exercise my own tiny act of disobedience to be able o Istraight

into the eyes of my grandchildren and my students and say thétnow.

DANIEL AMIT
(from the letter to the American Physical Society, April 200
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Preface

The present Dissertation collects part of the activity ddunéng the doctorate at the University of
Napoli "Federico II” regarding the issue of thebustness of holonomic computatiorhat is not the
only subject to which my research activity was devoted dythre last three years: two other main
research interests were ttlgaracterization of bi-partite and multi-partite entaeghentand the study
of linear-optical schemes for quantum computation
Finally, in order to allow a more concise and self-contaipegsentation, | decided to devote my Dis-
sertation to a single topic.

The activity devoted to the characterization of quantunretations started during my Master
Thesis, when, under the supervising of Giuseppe Marmo, weiest bi-partite entanglement in
the framework of the geometric approach to quantum mecbkanitie collaboration with Volodya
Man’ko yielded three joint publications adournal of Physics ALu05, Lu06, Lu07]. In [LuO5],
together with George Sudarshan, we proposed and studiedpdesgeneralization of the operation
of the partial transpose, called tpartial scaling transformwhich was considered for the study of
bi-partite and multi-partite entanglement. In [Lu06] andi)7], we made use of the tomographic
description of quantum mechanics to analyze the violatairigell-like inequalities for systems with
discrete levels. After my visiting period at the Max Plannoktitute for quantum optics, discussions
about the entanglement in Matrix Product States led to teysaf theRealignment Criteriorand its
possible generalizations; some preliminary results orsihigject are available on the web in [LUO7+].
Further developments of are now in progress in collabanatith Paolo Aniello (see [An077]).

The activities regarding linear-optical schemes for quamtomputing started in our group with
Ruben Coen Cagli, who wrote his Master Thesis and publiskegéapers on that subject. With Paolo
Aniello and Mario Napolitano, we continued that line of rasd which led to the publication of the
paper [An06] in a special issue Gfpen System and Information Dynamietated to the conference
TQMFA, hosted in Palermo in 2005. The collaboration with datParis also led to the publication
of another paper [An07] on that subjectiairopean Physical Journal D

The holonomic approach to quantum computing can be viewexhagpplication of geometric
phases to quantum information processing. The interestlonbmic computation began with a se-
ries of seminar lectures given by Paolo Zanardi at the Usixeof Napoli in the early 2004. The
interest turned into activity after the appearance of a papesiuseppe Florieet al. [FI06]. That
paper yielded the right inspiration that led me, togethéhwaolo Aniello, Mario Napolitano and
Giuseppe Florio, to the publication of the paper [Lu07’]Rimysical Review Aconcerning the issue
of the robustness of holonomic computation under paramediise. The content of that paper is con-
tained in the chapter 3 of the present Dissertation. Othiginad considerations and results regarding
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that subject are presented here for the first time in the ehsgtand 5.

Few months ago, during a conference in Palermo, while | wasdy working at that subject,
| had the opportunity to know that there is a planned expertmehose aim will be to experimen-
tally verify the robustness of geometric phases (see thB.Rbissertation by Stefan Filipp [Fi06],
now working at the Atominstitut de®sterreichischen Universitaten in Wien, in the group of-He
mut Rauch). | sincerely hope that the ideas and the calongfresented here can be useful for the
interpretation of the experimental results.
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Introduction

The word "holonomy” comes from the Greek rodislosandnomos literarily meaning a "global
rule”. In differential geometry a holonomy in a principal fébbundle is a consequence of the pres-
ence of a connection one-form with a non-vanishing cureafNia05]. In physics, holonomies are a
manifestation of gauge theories, example are the geonpdtases described by S. Pancharatnam in
[Pa56], by M. Berry and B. Simon in [Be84, Si83], by Y. Aharerend J. Anandan in [AA87].

The application of quantum holonomies to the scopeguahtum information processiriyC00,
Be04] leads to a particular approach which is knowrha®nomic or geometricquantum compu-
tation. One of the most important challenges for the retiineof quantum information tasks is the
implementation of quantum logic gates that emeustin the presence of perturbations. An important
issue is the analysis of the various kinds of errors than ffeetecomputations or communications.
In general, one can consider sources of error that can redumesn destroy the efficacy of a specific
operation.

The holonomic approach presents several complicatiorsresipect to other standard, dynamical
schemes. The proper balance is determined by the fact tloatejec phases are believed to be
intrinsically fault tolerantwith respect to some kind of errors.

Two kinds of source of errors can be distinguished: the fired ks a quantum noise, which is a
consequence of the interaction of the system of interest antenvironment of quantum degrees of
freedom; the second kind is a classical noise, emerging fhenmteraction of the classical fields that
are used to experimentally control the system with an enuirent of classical degrees of freedom.
That kind of classical noise will be also callpdrametric noise The subject of the present contri-
bution is the study of the behavior of holonomic gates in ttesence of parametric noise. To take
in consideration only the classical noise can be viewed agat ¢imitation, since the most general
noise is of quantum nature. Nevertheless, the restrictiadhe classical noise is motivated by the fact
that it is with respect of that kind of errors that the holomoiwomputation is believed to be robust.
A critical analysis of the issue of robustness of holononaimputation in the presence of parametric
noise is indeed the main task of the present Dissertation.

The Thesis is organized in the following way:

e The first chapter contains a brief introduction to quantufarmation science. There is no am-
bition of giving a complete presentation of the field. The aiinthe chapter is to communicate
to the reader the flavor of some general ideas on which thediglJdantum information science
is based. We will review the Deutsch’s algorithm as an exampthe computational speed-up
that can be obtained to solve classical problems with a guamipproach. The emphasis is
on the role played by quantum interference. If it is true,tongoRichard Feynman, that the
double-slit experiment contains all the mystery of quantbheory, it can be as well useful to
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explain the core of quantum parallelism.

In the second chapter, we present the main topic of the Dagmr, which is theholonomic
scheme for quantum computing. Since that scheme is a sfi@ighard application of quantum
geometric phases (non-Abelian Berry’s phases) to quanampating, the chapter will review
how geometric phases can be observed in quantum (and eldssechanics. That will lead to
the applications in quantum information processing. Bignvith the description of geomet-
ric phases in classical optics, after we consider the gemghases that appear in quantum
mechanics in correspondence with a cyclic evolution andénadiabatic case. The case of
non-Abelian holonomies will lead to the applications foagtum information tasks. The pro-
posal of a fully geometric computation with trapped iond Wwé considered in more details as
a case study. The chapter ends with a review of the argumeabo$tness of holonomic gates,
and in general geometric phases, in the presence of parameise and in the adiabatic limit.
It is worth remarking that that robustness argument isedlab the perturbations induced by
the noise at the first order in its amplitude.

Chapter three is devoted to the discussion of the behavinpwfadiabatic geometric phases.
We discuss a peculiar example, in which a holonomic but rhakatic gate mimics the dy-
namics in the adiabatic regime. The attention will be fodusa the efficacy of the gate in
the presence of parametric noise, and we will pose the questhether the robustness of the
geometric phases can be stated also in the non-adiabadic That will lead to the distinction
between geometric and dynamical effects of cancelatiomehbise. This chapter is mainly
based on the paper [Lu07’].

The robustness of geometric gates under parametric notiscigssed in the chapter four fo-
cusing on a simpléoy model The system under consideration is a semi-classical faitic
the presence of a static magnetic field. If the particle maesg a closed loop, it acquires a
phase factor which is only determined by the gauge poteatidlthe given loop. Despite its
simplicity, that model presents all the features that aijier of holonomic transformations.
Indeed, that discussion is useful to understand the behalgeometric phases in the presence
of parametric noise, since in the adiabatic limit the dyrendan be completely determined
by the underlying geometry. That geometric behavior isdBrgndependent of the details of
the system under consideration. The results, obtainegtaraly and numerically, leads to the
individuation and the comprehension of the perturbatifect$ of the parametric noise at the
second order in the noise amplitude.

Finally, in chapter five, we analyze the behavior of georngihiases in the presence of para-
metric noise with respect to a given case study. The casg sturdesponds to the proposal of
the geometridNOT gate with trapped ions. The results obtained for the toy magenumeri-
cally confirmed in that model.

Finally, few indications to the reader. Part of my effortstie development of the present Dis-

sertation was in order to make it understandable for a vadieace. Sadly, that task was rather
demanding for the scope of a Ph.D. Thesis. More realisficathay say that the only skills required
to understand this Dissertation are a basic knowledge ofr@lativistic quantum mechanics, some
elements of differential geometry and, of course, the tgtidi read English at least at same level the
author can write.

12



Chapter 1

Processing quantum information

The aim of this chapter is to give a general introductiomé@ntum information processingr
guantum computatiom a lose sense. The presentation will be brief and far to Ingpbete or self-
consistent. The emphasis will be given on some of the bapecés of quantum computation, the
ambitious of the writer is not to be clear or exhaustive, batersimply to communicate tH&vor of
what a quantum computation is without going in the detailthefrich field of quantum information
theory. Hence, the presentation is rather general andasdet for a reader with a basic knowledge
of non-relativistic quantum mechanics.

The basic idea iguantum information sciends that information can be encoded in the state of a
guantum mechanical system (read: a physical system whoswibeis explained by the principle of
quantum theory at the best of our knowledge). Hence, giviepuat state|:;, ), which expresses the
configuration of some quantum system in a pure staggiaamtum algorithms nothing more than the
physical transformation that the system experiences. &{diycthe principles of quantum mechanics,
a quantum algorithm is a unitary transformation which mapmput state into aroutputstate:

|¢in> — |77Z)out> = U|w1n> . (11)

The evolution of an ideally isolated quantum system is diesdrby the non-autonomous Schrodinger
equation

() = H(i(s)) 1.2)

with the initial condition|)(0)) = |¢i,). Hence the unitary evolutor is formally written as

U =Texp <—% /OT H(t)dt) , (1.3)

whereT stands for the time-ordering, afidis theoperational timeof the computation.

1.1 Isinformation physical?

Encoding, storing, processing, sharing and decodingnmétion have a fundamental role for the
personal and cultural growth of the single human beings #isaswéor the development of the human
societies. Through the history and in several contexts amibeings and communities have made use
of different physical supports to encode, store and shdoenmation. In each context, each of those
activities is motivated by some specific social problem. €areask whether there is any relationship
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between the physical support and the social content ofnméition. Mural painting in prehistoric era
had some important social meaning which we can only imagoveadays. From a certain point of
view, one may say that that social content is independefiiteofihemistry of the organic colors or the
techniques used to obtained them. On the other hand, what iselevant for the social content was
the knowledge that people had and that allowed them to takenéabe of those techniques to paint
the walls of a cave, hence allowing the community to encofterimation with a social relevance in
the physical medium, communicate and share that informatiith their contemporaries and with
us after thousands of years. That kind of consideration @extended to any kind of situation
furnished by our history, without substantial differengdsether we are talking about ink and paper,
press, vinyl, magnetic tape or digital support. We can athjaethere is a dialectic exchange between
science and society also from the information point of vighe physical support and the available
technologies do influence what kind of information people aad need to encode, to process and
share.

Hence, a (rather philosophical) question that may be paselddut the social potentialities of en-
coding information in quantum systems. At the moment, alislip we don’t know how that techno-
logical opportunity could change the paradigm of inforroatin the present (so-called) information-
society. The easiest answer is to mention quantum cryptbgrar the computational potentialities
of quantum algorithms. Nevertheless, | can imagine thaathantages, or the changes, caused by
the entrance of quantum mechanical systems in the evergdanadlogy can be even more deep and
unpredictable. The Moore’s law is often mentioned to jystiife entrance of the quantum theory in
the framework of information technology as following frohretextrapolation of an exponential law.
Nevertheless, it is worth noticing that the paradigmatitedence between classical and quantum
physics suggests a radical change whiatualitative prior than merelyquantitative

A brief introduction to some aspects of these qualitativengfes is the subject of the following
sections.

1.2 Digital or analog? Particle or wave?

Digital systems make use of a set of discrete variables todsnmformation, a typical example
is a binary variable which takes discrete valueg(nl}, often physically realized by voltage levels.
An elementanybit of information can be also realized by a quantum mechanysiém in a straight-
forward way. One can for instance take in consideration ag@mwith spin /2, to which a Hilbert
spaceH = C? is associated. A pair of orthogonal vectorsHncan in principle be used to codify a
classical bit of information. If the particle is in the prese of a static magnetic field oriented along
the z direction, the system Hamiltonian is written as

H = Bo, , (1.4)

as a consequence, the natural choice is to select the twaséédes ob, as a basis for the information
encoding. Having in mind the quantum realization of a ctaddbit, we denote the ground and the
excited states respectively @ and|1). Thus, we can realize a classical bit on a quantum supibort:
the energy is measured, the system is either in the [State |1).

The peculiarities of the quantum theory start to play a rofemone takes in consideration a
second observable which does not commute with the Hamaltoriror instance, an observable pro-
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portional too, defines a different notion of a classical bit, namely:

! _ ’0> B ‘1>

0 = 7 (1.5)
) 10) +11)

1) N (1.6)

A more general operator is written 85 = Vo, V', whereV is a unitary operator in the corre-
sponding Hilbert space. If has the following matrix expression

a B
V= 1.7
in the basig{|0), |1)} determined by ., the basis of eigenvectors 4&f is written as
0v) = «l0) = 57[1) (1.8)
[lv) = Bl0) + 1) (1.9)

That ambiguity in the choice of the basis is at the core of #findion of the quantum analogue of
the classical bit, commonly known as thebit

The usual way to deal with a qubit is to fix a preferred basig {$&), |1) }), hopefully determined
by the eigenstates of a physically relevant observable as¢he Hamiltonian. In thatomputational
basis a generic (pure) state of the qubit is determined bhareat superposition of the computational
states:

) = al0) +b|1) with a,be C?. (1.10)

Hence, while the measurement of any observable selectei@iset of states which are the corre-
sponding eigenvectors, the family of possible configuretiof a qubit is a continuous set. From that
point of view, we can say that the quantum theory is wbjital andanalogin its nature, though it is
neither digital nor analog, as well as the funding fathertheftheory said that an electron is both a
particle and awave although being neither particle nor wave.

The consequence of that duality, from an information thiwak point of view, is the feature
commonly known agjuantum parallelism That is more apparent if one considers a registen of
classical bits and its quantum analogue. In the classic®,ca string ofn bits can be in one of
2™ different configurations. Each possible configuration @idated with an integer number =
0,1,...2" — 1, as for example

x =1001...10100 . (1.11)

In the quantum case, a systemmofjubits has a continuous family of possible states:

2m—1

W) =Y calr), (1.12)

z=0

where|z) indicates a vector in the computational basis:ajubits, which has an expression of the
following kind
|z) = [1)[0)[0)[1) ... [1)[0)[1)[0)|0) , (1.13)
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or [z) € {|0),|1)}*", and lives in the tensor product spakles H ® ... ® H. Hence, we can say
that the quantum state experiences all the classical statese. By linearity, the action of a unitary
transformation produces the the output state

Yout) = UlY) = > cxUlx) . (1.14)

If parallelism in classical computation is realized by ieplenting one operation at the same time
over several registers of bits, in the quantum case the shysical operation can realize several dif-
ferent computations at the same time overghmeregister of qubits. More precisely the number of
parallel quantum computations equals the number of orthaligeectors in the computational space,
which isexponentiain the number of qubits.

To conclude, let us mention that, as in the classical caseamenake computation in other basis
as the decimal or the hexadecimal system, in the quantumocesean define a git as a system
which presents! stationary levels, with an associated Hilbert space: C¢.

1.3 Interference and algorithms

The features of the so-called quantum parallelism mighbeaif any practical help for the scopes
of computation without the phenomenon of quantunterference After the general introduction
given above, in this section we discuss a simple but sigtifieaxample of a quantum algorithm. The
first proposal of ajuantum algorithnmo solve a specific problem in an efficient way was formulated
by David Deutsch and Richard Jozsa in 1992 [DJ92]. Even thdkig considered problem was not
of a particular interest by itself, that was the first exangfla quantum algorithm that allows to solve
a problem more efficiently than any known classical algamittOther important proposals followed,
such as the Grover’s and the Shor’s algorithm. As we will see,algorithm takes advantage of a
clever utilization of quantum interference.

The problem under consideration is the following, knowrhasReutsch’s problem. A dichotomic
function f is defined over a register afbits

f+x — f(x)e{0,1}, (1.15)

where a state of the register ofbits is indicated withe, with z = 0,1,...2" — 1. Moreover, the
function is constrained to be eitheonstantor balanced The problem is to determine if the function
is constant or balanced. The ’classical’ way to deterniga#lyy solve that kind of problem is to
evaluate the function at lea8t/2 + 1 times. On the other hand, the 'quantum’ approach requires
only a singleevaluation of the functiorf.

Here, we will describe the case in which the register is caagdof only one bitz € {0,1}.
Classically, one needs to evaluate the function twice terd@he whether itis constanf (0) = f(1))
or balanced {(0) = 1 f(1), whered® indicates the sum moduly). We will try to put the emphasis
on the crucial role played by interference in t@mputational speeduwhich can be reached with
quantum algorithms. For that purpose, we will review thacttire of the algorithm and, in order to
emphasize its physical interpretation, we will formulatsiraple analogy with two relevant physical
examples. The first analogy is with tli®uble-slitthought experiment, the second one is with a
Mach-Zehndeinterferometer. The latter is a variation on the examplewised in [EK98] based on
the Aharonov-Bohm effect [AB59].
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1.3.1 The Deutsch’s algorithm

Let us consider a register of qubits with the computational statés) € {|0),|1)}®". The
realization of the dichotomic function as a unitary tramsfation requires, besides the register state
|z), an ancillary qubit, denotefl)) € {|0),|1)}, that encodes the output of the function. In other
words, a unitary transformatiaii, is associated to the functigfy in such a way that its action on the
computational states is:

Ur : |0)ly) — Uslo)ly) = lx)ly © () . (1.16)

It is important to notice that, because of the linearity ouigiwm transformations, the definition in
(1.16) allows to compute the action bf; over a generic state which is a coherent superposition of
the computational states:

Up > calndly) = exUsla)ly) = )|y & f(x)) . (1.17)

Hence, an initial state without any correlation, suclvas) = >, c.|z)|y), is mapped by/; into a
state which presents correlations between the registetscatm the ancillary qubit, such ag,,) =
>, cx|)|y @ f()). Thatis indeed aentangledstate.

Coming back to théeutsch’s algorithmwe consider the case of a single-qubit register, with
|x) € {]0),|1)}. The system, composed of one register and one ancillary,dsinitially prepared
in the state

[Y0) = [0)]1) - (1.18)

The first step is to apply a Hadamard gate to both the qubitat Oitary transformation is defined
in the single-qubit computational basis by the followingtrixa

1 1 1
H:ﬁll _1]. (1.19)
That yields the following intermediate state:
_ _ (o) +11) 0) —[1)
Iw1>—H®H|wo>—[ 7 ]@[ 7 ] (1.20)

After thatlocal change of basjsve can apply the function of interest, which is realizeatiyh the
corresponding unitary transformation, to obtain

0) = Uyli) = {|o> [|f<o>>2 —1fon] , Iy [|f<1>>2 —1F()] }

, (1.21)

wheref(x) = 1 ® f(z) indicates the logical negation. Notice that the functjois defined on the
computational statel®) and|1), while in (1.21) it is evaluated on a coherent superpositibthem.
One can say that the function is evaluated both®@rand |1) at the 'same time’; the presence of
coherent superpositions in the quantum theory is at thet loéavhat is often called theuantum
parallelism At this point, one has to distinguish the two cases. If thecfion is constantf{(0) =
f(1) = f), the expression in (1.21) simplifies to

o = [0 (12 1D), .22
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Figure 1.1: The double-slit experiment with a pair of idealesoids ’'hidden’ behind the slits. The
magnetic flux carried by the solenoids can assume two pesgdiles, determining a shift in the
interference pattern.

Otherwise, if the function is balanced (0) = f(1)), we obtain

o = [ 1]  [LEOL—11CD], (123

The last step is to apply again a Hadamard transformationotim dubits to obtain (apart of an
irrelevant global phase factor):

|0) ® 1) if fis constant

1.24
1) ®|1) if fis balanced (1.24)

|¢3>=H®H|¢2>:{

In conclusion, the output state|igs), which — in principle with unit probability — has the first
qubit in the statg0) if f is aconstantfunction, while it is in the statél) if the function isbalanced
(non-constantn the single-bit case). On the other hand, the second qob# i the statél) in both
the cases, hence being in principle used as a 'control’ qaluibheck the presence of possible errors.

We can say that the Deutsch’s algorithm computes the fumétig') = f(0)@ f(1). The function
F(f) describes a 'global’ feature of. Here we have described how the quantum algorithm can
compute gylobal property of the function, such ds( f), with only oneevaluation of the functiorf,
instead of the two evaluations needed in the classical ddsa. efficiency of the quantum algorithm
become®xponentiallymore relevant increasing the number of qubits in the registeving from the
Deutsch’s algorithm to the Deutsch-Jotza’s algorithm.

At that point of the discussion, it could be unclear, becdudden in calculations, what is the
physical interpretatiorof that kind of algorithm. Often it is commented thaterferenceis respon-
sible for the computational speedup, since it is 'sensitalgjlobal features of the function. It can be
also argued that the perfect constructive — or destructiviaterference which appears in correspon-
dence with a constant or balanced function is responsibléhéoefficiency of the algorithm. In the
following subsections we will try to further motivate thah#l of argumentations with the help of two
familiar thought experiments

1.3.2 The double-slit experiment

Quoting Richard Feynman, we may say that the double-sligiéx@nt contains all the strangeness,
as well as the mystery, of the quantum theory. If that is tremcan argue that it can as well contain
the features of quantum mechanics which lead ta@tmputational efficiencygf quantum algorithms

18



As it is well known, a particle moving towards a double-slibguces amnterference patternif a
monochromatic beam, with wave lengthimpacts on the screen containing the two slits, which are
separated by a distandgwe assume that the slits are infinitely narrow), the prdigitif finding a
particle moving along the directioh(see figure 1.1) is proportional to

1 2
x(0) = 3 ‘1 + etkdsin0\ " — 9 4 cos (kdsin6) , (1.25)

wherek = 27 /) is the corresponding wave number. Hence, the principal maxi of probability
(or intensity) is ab,.x = 0, while the first point of destructive interference is in @spondence with
kdsin 0, = 7.

If the beam is composed charged particleswith an electric charge, and if an infinite solenoid
is situated behind the slits, the interference patteghified If the magnetic flux trapped in the ideal
solenoid isd, an additional phase shift does appear in (1.25), and thHeapiiity of finding a particle
at angled turns to be proportional to

>~<(9) _ % 1+ ei(kdsin9+6) 2

where the additional phase shift, due to the Aharonov-BofiettgAB59], is

=1+ cos (kdsinf +9) , (1.26)

_q®
=7
If the magnetic flux is amven multipleof one-half the elementary flux quantum, namely &
2nm, the interference pattern is left unchanged. On the othed hH#it is anodd multiple namely if
0 = (2n + 1)m, the pattern is shifted in such a way that the maxima and nairsireinterchanged

Let us now consider the case in which two parallel lines of #tesituated behind the double-slit
(see figure 1.1), with corresponding magnetic fleixand ®,. Let us also suppose that the modulus
of the flux is constrained to be one-forth of the elementary, fhamely

5 (1.27)

m h
2 gl

In that setting, the corresponding shift in the interfeeepattern is given by the sum of two
contributions:

|Po| = |P1| = (1.28)

X(0) =1+ cos (kdsinf + oy + 1) , (1.29)

wheredy, §; = £7/2.

Now we can state thanalogy with the Deutsch’s algorithm. One can consider the function
'magnetic flux in the solenoid’, that function can assumeydwlo values, and can be estimated on
the solenoid labeled ag”and on the one labeled a$'’ The classical solution of the problem of
determining whether the function is constant or not, rexpiiwo 'classical’ measures of the magnetic
flux in each solenoid, or of the corresponding current. Orother hand, we argue that, if the function
is constant — i.e. the two fluxes are parallel — the interfeeemaxima ar@ot shiftec while if the
function is balanced, the positions of the maxima and thémarareinterchangedn the interference
pattern. Assuming that one can consider the evaluationeointierference maxima — the principal
maximum is sufficient — as single operationwe obtain the analogy with the Deutsch’s algorithm.
As in the Deutsch’s algorithm one has to perform a change sislizetween the computational basis
{10),[1)}, in which the functiony is realized through the unitaiy, and the basig 212 10—y

V2 V2
in the double-slit experiment one has to change betweemtmentunbasis, in which the incoming
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BS1

Figure 1.2: The scheme of a Mach-Zehnder interferometen wipair of lines of magnetic flux
trapped in it. The particle flux at the detector is changeaddmg on the total magnetic flux through
the loop.

and the outgoing beams are prepared and measured, goakitienbasis. Where the basis of particle
positions is determined by the location of the two slits.cAlsis the particle position that determines
— depending on whether the particle pas®veor belowthe flux lines — the additional phase shift
due to the Aharonov-Bohm effect.

Of course, we may say that the analogy is not complete, sireceliservables that determine the
bases have continuous spectrum, as well as the deternmiradtibe interference maximum needs a
great number of 'spots’ detected on the screen, which is gongemore than a single operation. In
the next section, we consider a more direct example, whiatvagiation of that discussed in [Ek98].

1.3.3 A Mach-Zehnder interferometer

The analogy presented in the previous section is not complet several differences with the
Deutsch’s algorithm are present. These differences aralynialated to the fact that it deals with
continuousvariables, instead afiscreteones. The interference pattern gives the probability oftfigd
a spot on the screen, which cannot be as sharp as in the disar@ble case. Hence, in this section
we consider another physical example, in which the analsgyith aMach-Zehnder interferometer
An analogous example was discussed in [Ek98]. Also in thisrgde, we are dealing with a beam of
charged particle and the Aharonov-Bohm effect will play mportant role.

The scheme of the thought experiment is depicted in the figjle Working in the Heisenberg
picture, the input is described by field operatoentering in the symmetric beam slipd@$1. The
beam splitter acts over the incoming mode in the followingwa

a+ib
N

If a pair of solenoids enters in the interferometric loog fleld operator acquires an additional

BSI : 4 — ¢= (1.30)
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phase, which leads to the following operator

= % + z'%ei@o”l) . (1.31)

After the second symmetric beam splittB§2, the field operator becomes

N
C

R _ i(d0+01) i(do+01) |
= [167] ati L] b (1.32)
2 2
Finally, the probability of detecting a particle at the atte D1 is given by
1
X((so, (51) = 5 [1 -+ cos ((50 + (51)] . (1.33)

As in the previous example, if the fluxes in the solenoids aghghatdy,d; = +7/2, one
can easily recognize the analogy with the Deutsch’s algwritlf the function 'magnetic flux of the
solenoid’ is balanced, there will bechck at the detectoD1, with probability equal to one. Otherwise,
if the function is constant it is the detectoR that will produce &alick with unit probability.

1.4 Universal computation

While in the classical case the number of logic gates of oheurei in afinite number in the
quantum case the possible one-qubit gates aomtinuous setThat set is thenitary groupU(2) for
one qubit, oftU(N) for n = logy N qubits. Hence, a quantum logic gate can be engineered with in
principle arbitrary high, bufinite accuracy.

In other words, given a gaté, one has to find another unitaby, which is a good approximation
for U. For instance, one can considewarst-case scenarjoand for a givere > 0, determine a
suitable unitaryl’, such that

S?pp U —-VI]Y)| <e. (1.34)

A set of gates is said to haiversalif it has the remarkable property that any quantum gate can
be approximated with arbitrary accuracy with a circuit imag only the elements in that set.

It has been shown (see [Di95, Ba95]) that a universal settelsgaan be composed by one non-
trivial two-qubit gate together with the one-qubit gatebeon-trivial two-qubit gate can be chosen
to be the controlledNOT gate, which is expressed by the following matrix in the twidsitj compu-
tational basis:

1 0 00
0100
= 1.35
UcnoT 0001l (1.35)
0010
or the controlled-phase gate, which has the matrix expressi
100 0
010 0
U, = 1.36
X 001 0 (1.36)
0 0 0 eX
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On the other hand, a generic one-qubit transformation cdorbestance obtained composing the
Hadamard gate, which is defined in the computational basibdynatrix in (1.19), and the so-called
m/8-gate, which has the matrix expression

1 e~in/8 0
T=—"— [ 0 /8 ] ) (2.37)

Hence the gateH andT define auniversal sefor the computation over a single qubit, while the
gatesH, T, andUcnoT are universal for the computation ov&rqubits.

1.5 Error correction and prevention

In the discussion of the Deutsch’s algorithm, we have asdum@erfect control on the quantum
system, from thetate preparatiorand thequantum evolutionto themeasurement proces®f course
that might not be a reasonable assumption in a realistiaigésa since the presence efrors and
noiseis unavoidable in the real world.

We can distinguish two kinds of perturbations with qualely different features: the first kind
has a purelyguantumnature, and it is induced by the interaction of the quantustesy implement-
ing the logic gate with the environment; the second kind Imasead eclassical nature, and it is
caused by the presence of instrumental noise in the ‘extpamameters’ used toontrol the system.
The undesired interaction with the environment is the smofcd¢he phenomenon known as quantum
decoherencgBP02]. The effects of this interaction can be modeled by meeaf suitable ‘master
equations’ (i.e. evolution equations) for the density matf the quantum system implementing the
logic gate; at least in the Markovian regime, they are négiigsmall if the operational timeof the
logic gate is short enough. On the other hand, the classa#@lnpations stem from an unavoidable
noisy component intrinsic in the external driving fieldg(daser beams [Wi98]) that can be usually
regarded as classical fields; hence, it is essentially distaumental instability. In other words, it is
caused by the interaction of the classical fields with anrenment of classical degrees of freedom.

In order to preserve the efficacy of the quantum algorithrmewethe presence of noise, one
needs to build dault-tolerant computation (see [Pr98]). Without entering in the detais, only
mention that one can individuate two possible strategiesrdier to protect the quantum algorithm
from the action of the noise. The first kind of strategy is lda@eerror correcting codegsee [Sh95,
Ca95, St96, G096]) and can be viewed asgmosterioriapproach. The second kind stiategyis to
prevent the effects of the noise on the efficacy of the gaiagekdvantages of theymmetrie®f both
the system under consideration and the noise affectingmiorg that kind ok priori approaches, we
can individuate dynamical schemes, based on the udeatdherence free subspad@f97, Li98],
or of thequantum Zenand similar effects [Fa05], and geometric scheme, inclytbpogical [Ki03,
0g99] andholonomiccomputation [ZR99, Pa99].
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Chapter 2

The holonomic way

A quantum algorithms nothing more than thphysical evolutiorof a quantum system, which
can be either free or experimentally driven. In full genigyaln algorithm transforms an input state
|1(0)) into an output statg)(7")) = U|y(0)) after a certain operational tinfe If the system evolves
according to the time-dependent Hamiltoni&rt), the output state is given by the solution of the
corresponding Schrodinger equation, which is formallgressed by the evolutor

U =Te i lo HOdL 2.1)

(here and in the following we put = 1) whereT stands for the time ordered product. In particular
situations, the unitary transformatiéhcan be factorized as the product of two unitaries

U=V(T)xT, (2.2)

whereV (7)) is often referred to as thdynamical phasandI" as thegeometric phaseThese can be
Abelian (V(T),U € U(1)), or non-Abelian V(T"),U € U(N)) phases. The appellatigeometric

is justified by the fact that the factdr does not depend on any dynamical quantity, such as the
instantaneous energy, the operational timer the rate of changes of the Hamiltonian. On the other
hand, the geometric phase is completely determined by tderlimng geometry of the space of
guantum states, and is interpreted dmbbnomyphenomenon.

In this introductory chapter, we will briefly discuss how geetric phases do appear in physics
and outline the role that they can play in the frameworkje&ntum information processing here
are several ways to present that topic. Historically, gddmphases were discussed in [Be84, Si83]
as emerging in thguantum adiabatic limitSoon after, it was recognized that geometric phases can
appear in more general conditions, in particular withogureng the adiabatic limit. The adiabatic
limit being not needed, it was substituted by the hypothekéscyclic evolution of the quantum state
[AA87]. It was recognized that an earlier investigation Rap6], about relative phase of polarized
beams of classical light, could be interpreted in the cdméxjeometric phases, also leading to the
definition of the geometric phase fapn-cyclicevolution [SB88]. Here, we will follow a different
rute, trying to put the emphasis on how geometric phases iam physicalandmathematicaton-
siderations, starting from the phenomenon of quantum asskidlal interference, to the analysis of
the dynamical equations of a non-relativistic quantumesystThe exposition of the topic is oriented
to the main subject of the present Dissertation, which isrtfeistnesof holonomic gatesinder
parametric noise Hence the introduction to quantum holonomies and holona@oimputation is far
to be complete, we only hope that it might be clear and, as raagiossible, self contained.
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2.1 Introduction

One of the most important challenges through the realizatfaquantum information tasks is the
implementation of quantum logic gates that erleustagainst unwanted perturbations [NC0O0, Be04].
As we have also recalled in the previous chapter, two kingeedlrbation with qualitatively different
features can be distinguished. We distinguigquantumnoise, emerging from the interaction of the
system with an environment of quantum degrees of freedoihaaassical or parametricnoise,
which arises from the interaction of the quantum system waitkenvironment of classical degrees of
freedom. Being of classical nature, the effects of theswgmtions can be evaluated by studying
standard (non-autonomous) Schrodinger equations wherparametric noise is taken into account
by suitably modeling the noisy components of the classieabimeters (e.g. the field amplitude)
associated with the external fields.

Among the several strategies for realizing quantum logiegdiscussed in the literature, a promi-
nent position is held bjrolonomic gatesThe so-calledholonomic computatiowas first proposed by
Paolo Zanardi and Mario Rasetti in [ZR99] (see also [Pa28iy, relies on the theory of holonomy in
principal fibre bundlegNa05], a subject which is familiar to theoretical physisidue to the central
role played ingauge theoriegMa92] and in the well-known phenomenon of Abelian [Be8483i
and non-Abelian [WZ84] adiabatic phases. Actually, a hotait gate can be regarded as a straight-
forward application of the theory of non-Abelian adiabgimses to quantum computation.

As we will discuss below, the holonomic approach to quantemputing requires to work in
the adiabatic regime Hence, one can argue that longer operational time are deésiling to a
less efficient computation. On the other hand, the majorradge of theholonomic approachwith
respect testandard dynamical schemesthat, because of its geometric nature, it is expected to be
particularyrobustin the presence of a certain kind gdirametric noiseThus, a longer computational
time can be balanced by a stronger robustness.

2.2 Ataste of the geometry of quantum mechanics

As itis well known, in quantum mechanics a physical systedescribed by means of a properly
chosen Hilbert space, that we generically indicaté4asA pure stateof the quantum system can
be associated to a non-vanishing vedtor € H,, whereH, = H — {0}. On the other hand, the
mathematical information contained in the vedtoy is physically redundant, since the probabilistic
interpretation requires the normalization of the vectgry) = 1, and because two vectors which
differ by a numerical phase factdr;’) = e'*|+), are physically indistinguishable. In the presentation
of quantum algorithm, or in general quantum informationcessing, one often makes use of the
vectors to represent thgure states of the system. This representation is justified bys#ke of
simplicity, but it is obviously not the completely correcaywof dealing with quantum states. The
faithful way is to consider the equivalence classes of veatath respect to the relatior, defined
as follows: |¢) ~ |¢) if and only if |¢) = z|¢)) for some non-vanishing complex number=
|z|e’™. Thus, when one says that a system is in the statethe vector has to be consider just as a
representative elemeuwnf its equivalence class. The quotient sp&té ~ is thecomplex projective
space associated wiftf, which we will indicate as{P. For a system wit stationary levels, one
hasH = C", and the associated projective space will be denote@A8~!. While C" is an-
dimensional complex vector space, the projective spacéis-al )-dimensional complex differential
manifold, which is also (n — 1)-dimensional real manifold, in particular it is endowed efhia
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rich structure which yield€P"~! to be a Kahler manifold (see for instance [CJ04] for a comeple
discussion). The complex projective space is also calledjiace of the rayassociated t@{. From
the definition, it follows that a ray is nothing more than a-alimensional subspace &, hence a
way to represent the element of the rays’ space is by meahg ofidp

|90) (¥
) — T([¥) = py o (2.3)
which associates to each vector the projector on the camelipg one-dimensional subspace, that
projector is commonly called thdensity operatoor density matrix Obviously,II(|¢)) = II(|¢)) if
and only if[¢)) ~ |¢). Even though a pair of equivalent vectors describe the sdysiqal configura-
tion, it is well known that the relative phase plays a fundatakrole in the interference phenomena.
If the state of the system is splitted into two branches, ichsa way that each branch acquires a
different, but coherent, phase shift, once the brancheseaanbined one hds’) ~ |) + [v)),
and the relative phase modulates the interference pattern.
The discussion of above concerns the kinematidsdé-dimensionatjuantum mechanics. From
adynamical point of viewin the Hilbert space one has to consider the Schrodingeatim

i—|(8) = H(#)[$(t)) (2.4)

with an initial condition|vyy). If the Hamiltonian operator is hermitian, the modulus o thave
function is preserved at each subsequent tii@)|v(t)) = (Yo|1o). Under the action of the map
(2.3), the Schrodinger equation projects into the von Naumequation

i-20(t) = [H(2), p(t)] 25)

with initial condition py = |10)(¢0|. In that case, the trace of the density operator is preserved
tr (p(t)) = tr (p(0)).

Example 1 (A two-level quantum system)For a two-level systent{ = C2. One can chose a log-
ical basis{|0),|1)} to represent the vectors, namély) = a|0) + b|1). If (1[s)) = R?, we have
la]? +|b|> = R?, and a representative element for the corresponding etprica class can be chosen
and parameterized as follows

: 9 0 .
|Y) = Re'® (cos §|0> + sin §€Z¢|1>> . (2.6)

Notice that the range of parameters can be chosen t¢ be[0, 27| andd € [0, 7]. The corre-
sponding rank-one projector is written as

W
Py = <¢|7/)> = pwij| ><]| (2.7)

where the indexesand j assume value§), 1}, and the matrix representation of the projector is

142z x4y

. (2.8)
r—1y 1—2z

1
Pij =5
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where

r = sinfcos¢
y = sinfsing (2.9)
z = cosf

that explicitly shows that the rays’ spa@&P! is a two dimensional sphere, known in this context as
the Bloch sphere.

2.2.1 Quantum mechanics on the fibre bundle

The discussion of above suggests how the physical intatpatinfers a particulageometric
structureon the carrier Hilbert space. From a geometrical point ofvyvige are dealing with arin-
cipal fibre bundleH A, H P, with the groupR ™ which plays the role of thetructure groupas well
as of thetypical fibre (see for instance [Na05], or [CJ04] for a complete discugsid\nalogously,
indicating withB = {|y) € H | (¢|¢) = 1} the sphere of unit radius in the Hilbert space, it can be
useful, for physical reasons and for the simplicity of thpasition, to divide the projectiofl in two
steps. We can writll = 7 o II', wherelT'(|))) = %L is a map front to B, andr(|v))) = [1) (|

— @ly)
is a map fromB to H P. Hence we have decomposed

H Y wp=H" B " HpP. (2.10)

In correspondence with that, the bunéle ™~ P is also a principal fibre bundle, with structure
groupU(1), which expresses to thghase ambiguity In other words, a pair of normalized vectors,
such that|i,) = €™@|y,), belong to the same fibre. The structure grdid) acts on the fibre
as|y) — elp1). The relative phase betweén,) and |¢;) corresponds to the unique element
u € U(1) which transformsgy ) in |12), that is to sayu|y1) = |2).

2.3 The Pancharatnam connection

Shivaramakrishnan Pancharatnam, in 1956, consideredrdiiéem of defining a relative phase
between two beams of polarized light with non-parallel pe&tion. Notice that for a pair of beams
with the same polarization, the relative phase is immelyiatefined, the question arises when one
considers pairs of non-parallel polarizations. If the tveztors are non-orthogonal a relative phase
can be defined used a prescription introduced by him in [Pa®@]s prescription was physically
inspired and motivated by the phenomenon of interfereneg.uk consider two polarized beams of
light, expressed by the complex vect@rsand1),, which are superimposed coherently giving rise to
the vectory) = 11 + 1. The overall square intensity & = || + |¢2]? + 2R{(¢¥1,42)}, and
the interference fringes are modulated Ay= arg (¢1,12). Hence, the interference is completely
constructivewhen the scalar produ¢t);, ¢2) is real, i.e.A = 0, and completeldestructiveif the
scalar product is purely imaginary. The idea of Panchamatnas to define the relative phase for
non-orthogonal polarizations as

A = arg (¢1,12) . (2.11)

On the contrary, in the case the two vectors are mutuallyogdhal, the interference pattern dis-
appears and the relative phase cannot be defined. A way tcacertvpo phases, or in other words, to
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compare two points belonging to different fibres in the cgpoading fibre bundle is calledcannec-
tion.

Example 2 (A two-level quantum system)For our limited purposes, and from a purely mathemat-
ical point of view, a beam of light is completely equivalem@attwo-level quantum system. While
the states of polarization are defined by points on the Poinaphere (or the Poincérball if the
polarization is non-complete), the pure states of a twellguantum system are defined by the points
on the Bloch sphere (or the Bloch ball if the states are mixé@} us consider a beam of spif2
particles which is splitted in two branches, polarizers alethy plates are disposed along the paths in
order to handle the polarization of each beam and their ieaphase. As an example, let us consider
three different states of polarization:

1) = eX10) (2.12)
lpa) = e"m% (2.13)
lihs) = e""37|0>\+/§|1>. (2.14)

Using the definition (2.11), two states with different pa@ation can always be chosen to be in
phase by adjusting the global phase of one with respect totier. With a phase shifter one can
adjust the differenceg; — x;. For the pair|i1), [1)2) the relative phase is

Bia = arg (1|t2) = x2 — X1 - (2.15)

For the second paifis), [13), one obtains

[z = arg (Ya|v3) = x3 — x2 + /4. (2.16)

Finally, for the third pair|vys), |¢1):

f31 = arg (¥s3|v1) = x1 — X3 - (2.17)

It follows that the relative phases are constrained to $atigs + (23 + $31 = 7/4. Hence, it is
not possible to make them vanish jointly. In other wordsné adjusts the global phases in order
to set the scalar product&/ |vy,) and (1»|13) to be real-valued, the scalar produ¢ts | ) cannot
be real-valued at the same time. The corresponding relgthase is constrained to take the value:

f31 = arg (Y3|vn) = m/4.

Let us now consider the Pancharatnam rule fronméinitesimalpoint of view. In order to com-
pare the phases @) and |y + di) = [¢) + |dy) one has to consider the scalar product

(Yl + dip) = (Y[v) + (l|dy) . (2.18)
The relative phase is given by the argument

B = arg (4] + o)) = % , (2.19)
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that yields to identify aone-formwhich computes the relative phase of neighbor vectors. ifiea
form

4= SWidv) (2.20)

(¥]¥)

is called aconnectiorone-form (in this framework, it is the Pancharatnam corinaft A curvey on
the total space (now the Hilbert spaig@is said to beéhorizontalif the connection one-form identically
vanishes on it, namely|, = 0. As a consequence, the vectors along a horizontal curvecatty in
phaseone with the other. A connection one-form can be in generfahelé on gorincipal fibre bundle

It takes values in thalgebra of the structure grougstarting from vectors ift{, the connection takes
value in the complex line, while, in the case one restrictadomalized vectors, i.¢)) € B (the
sphere of unit radius), it is real-valued and reads as faiow

A = S(|dp) = —i(|d) . (2.21)
The last equality holds true since

L= (¢ +dplp + dip) = 1+ (Pldp) + (dpl) (2.22)

and(«y|dy) is purely imaginary.
Let us consider three vectorgho), |¢1) = o) + |diio), and|a) = [vg) + |dipag). Also we
have|ys) = |¢1) + |21) = |1) + |dibao) — |dibio). The relative phases are:

Bro = (Yo|diro) (2.23)
Boo = (to|diba) , (2.24)

while
Bo1 = (Y1 |dibag — dip1o) = Bao — Bro + (dibio|dipar) - (2.25)

The extra term is given by theifferential of the connection one-form, which is the associated
curvature or field strength

F =dA = —i(d|di) . (2.26)

Example 3 (A two-level quantum system)For a two level system, one can parametrize normalized
vectors in the following way

) = e'X (cos (6/2)|0) + sin (9/2)ei¢]1>> , (2.27)
and compute a small variation
. ; . do a . ;
|dip) = idx|y) + eX [—sm (9/2)7|0> + <cos (9/2)7 + id¢ sin (9/2)> e’¢|1>] . (2.28)

Hence, one obtains:
A= —i(y|dy) =dx + % (1 —cosf)de . (2.29)
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Let us consider three vector$dy), |v1) = |vo) + |diio), and|ie) = [1o) + |dipeg). Also we
have|ys) = |11) + |[121) = [¢1) + |dipag) — |dip10). The relative phases are:

1
Bio = dxio+ 3 (1 —cosbp) dprg (2.30)
1
B0 = dxa0+ 3 (1 —cosby) depog , (2.31)
while !
B21 = B2 — Pro — 5 sin 01d01odpar - (2.32)

And the extra term corresponds to the curvature associatellet connection,

F= %sin 0d0dep = dA . (2.33)

2.3.1 Observations

To conclude this section, following [SB88], we will show hdhe relative phase between two
non-orthogonal vectors can be calculated as the integrtleofonnection one-form alongpaoper
curve. That result will be used in the following chaptersenehwe discuss the efficacy of holonomic
computation under non-perfect experimental control.

Let us consider a cunie(s)) € B (the total space in that case), foe [0, 1]. The curve projects
on the base spadé P in the shadowcurve |y (s)) () (s)|. By definition, the projected curve gauge
invariant, i.e. it is invariant under local phase transformations

W) = e[y (s)) . (2.34)

On the other hand, the derivative) = |v)) of the (normalized) state vector with respect of the
curve parameter is not gauge invariant:

[u) — € (Ju) + ) (s) (2.35)
wherea(s) = dc;(s). That yields the rule for the connection one-form, that¢farmscovariantlyas

S
follows:

A — A =A+d(s)ds. (2.36)

One can consider thepvariant derivativeu'):

[w') = D)) = |u) — (D[} [¥) , (2.37)

that changes covariantly by construction and representhiahizontal component of the derivative
along the curve. The covariant derivative can be exploiteddfine a gauge invariamhetric as

follows:
dl = /(W |u')ds . (2.38)

Thegeodesiacurves, with respect to that metric, satisfy the followirapdesic equation:
D2y = (di - ¢A> W'y =0 . (2.39)
S

Notice that the geodesic curve is defined in the total spamertheless, since the metric is gauge
invariant by construction, all the curves which have the sahadowon the base space are equally
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solutions of the equation (2.39). Hence we can say that thpepty of a curve to be a geodesic is
determined by its shadow.

Let us consider a pair of vectorg, ) and|«), and ageodesicurve|y(s)) connecting them (with
|7(0)) = |¢1) and|y(1)) = |¢2)). Animportant result, contained in [SB88], is that the telaphase

B = arg (¢1|¢2) is given by
o= [ A= [l (2.40)
il Y
To prove that statement, the authors of [SB88] considetestiaontal geodesi§, namely|v(s)) =

e'()|5(s)), with ¢!(0) = 1. As a consequence, since the connection one-form vani&meg ahor-

izontal curve, it fulfills the equation
a2
@W(S» =0. (2.41)

One can consider the relative phase between the initiabvget) and the one along the horizontal
curve|y(s)): that defines a function

9(s) = I{[7(s)) - (2.42)

The derivativeg(0) = %wlyd%fy(s» vanishes since the curve is horizontal. On the other hand,
the second derivative identically vanishes faf [0, 1]

2
(5) = S{r () =0, (243

because of equation (2.41). Hence the function is constahtia particularg(0) = g(1). In other
words, the initial vectofi; ) is in phase with5(1)), and one obtains

B = arg (¢1]pe) = arg (Y(1)|¢2) - (2.44)
Along the geodesic curve, one has that
Al, = Al5 +dds | (2.45)
and finally
/A =a(l), (2.46)
.

which proves (2.40).

A corollary of that result is that, given three state vectgrs, |12) and|ys), with arg (11 |19) =
arg (o|1p3) = 0, the relative phase between and+); is given by the integral of the Pancharatnam
connection along a curve which is piecewise made of thredego curves connecting them, hence
giving the flux of the curvature through the geodesic triang|

2.4 Appearance of geometric phases in quantum dynamics

In this section we will show how the Pancharatnam connegtioits quantum interpretation, can
naturally appear in the study of the dynamics of a non-relativisticnquim system, leading to the
emerging of ayeometric phase
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Initially, we will recall how the connection one-form arssm correspondence of/clic evolutions
of a quantum system [AA87]. In that case, the evolutois factorized as a product of two terms,
namelyU = V(T') x I, whereV (T) is called the dynamical phase, afids a unitary transforma-
tion which is determined only by the geometry of the quantystesn and it is commonly called
the geometric phaseThe same phenomenon arises in the limiadfabaticevolution of the system
[Be84, Si83]. That is the regime which is of interest for tipplécations in view of quantum infor-
mation tasks [ZR99]. Finally, it is recalled that both theah@tic and non-adiabatic settings can be
discussed in the case AbelianU(1) andnon-AbelianU(N') phase factors [WZ84, An88].

2.4.1 Geometric phase after cyclic evolution

Let us consider a time-dependent Hamiltonfa(r) and a solution of the corresponding Schrodinger
equation, indicated dg(¢)), in the time windowt € [0, T']. The solution of the Schrodinger equation

d
i [V (1)) = HO)b (1)) (2.47)
defines a curve
C : te0,T] — [Yi)eH. (2.48)
That curve is projected on the space of rays by the map
IL 2 g(2)) — [(8) ()] (2.49)

onto the curvel” = TI(C). The projected curve is the solution of the corresponding Neumann
equation, with the initial conditiofy)(0))((0)|. Taking a representativie(t)) along the curve, it is
related to the solution vialacal gaugetransformation

W(t) = eXD]e(t)) . (2.50)

One can rewrite (2.47) as follows:

P2 [O1()] = SO HDIo), (251)
and
—X(BEXO|§(1) + i XD (1)) = eXO ()| (1)) (2.52)
Multiplying by (« ()| from the left, we obtain
%(1) = i6(1)|0(1)) — (GMIH D)) (2.53)
which yields . .
A(T) = x(0) = /0 H{O|B(0) dt /0 (O(0) (1) 6(t))dt . (2.54)

The first term on the right hand side is invariant under timeapeetrizationt — ¢'(¢), thus it is

a function only of the support of the curyg(t)). It can be written ag i(¢|d¢), where the same
expression defining the Pancharatnam connection can bgniged. The second term in (2.54)
is invariant under gauge transformatiogt)) — e*|¢(t)), but it is not invariant under time re-
parametrizationt — ¢'(¢). That term is the instantaneous expectation value of theggn@(t)
computedalongthe solution. Finally, the equation (2.54) reads

T) — x(0) = — A— E(t)dt . 2.55
(T) = x(0) /W) /W) (t) (2.55)
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A special case arises when the evolution of the system inayee space isyclic, i.e. [(T))
e'[1)(0)). Selecting a representatiatosedcurve [4(t)), with [1(t)) = eX®|p(t)) and |p(T'))
[¢(0)) = [1(0)), we obtain

a= —7{ A— ¢ E(t)dt. (2.56)
o(t) 0

Notice that, for a closed curve, the quantifyd is gauge invariant. The corresponding phase
factore—# 4 is called theholonomy The holonomy is determined only by the specific expressfon o
the connection one-form, and by the shadow of the closededu(v)). Being gauge invariant, the
holonomy is a property of the projected loop on the rays’ spactheshadowof the path — and not
of the path itself. Hence, taking a coherent superpositidheinitial and the final state

[(0)) + [¥(T)) = (1+ €)[¥(0)) (2.57)

one could in principle observe an interference pattern wvisomade of two contributions: the dy-
namical phase which is determined by the instantaneougyeasy E(t)dt, and an additional phase
shift which is the holonomy ¢ 4. Since the additional factar—*# 4 depends only on the support
of the curve in the rays’ space and on the details of the cdimmegne-form, it is called thgeometric
phase

2.4.2 Adiabatic evolution

In the previous section, we have recalled how a geometrisghgses in correspondence with
a cyclic evolution in the space of rays, this being relatethteonon-trivial geometry of the complex
projective space. On the other hand, a cyclic evolution apgp@ correspondence with a peculiar
expression of the system Hamiltonian, of its time depenelena for a certain value of the opera-
tional timeT'. Since the cyclicity of the dynamics appears as a specialrieaf the solution of the
Schrodinger equation, it can only be determiaggbsterioriand, in general, the time dependence of
the Hamiltonian does not give any transparent informatiooué it as, for instance, it might not be
cyclic, H(T') # H(0).

The idea of a cyclic evolution in the rays’ space is indeedtlaeraabstract concept, in the sense
that one is not directly dealing with the rays’ space wherigihsg, planning or performing any
experiment. It would be preferable to have a way to contrel ghstem and determiree priori if
the evolution of the system will be cyclic. That can be donsilgaf one works in theadiabatic
regime With this term, here and in the following, we indicate a gbgksetting in which the adiabatic
approximation of quantum mechanics is reliable.

Since the quantity that can in principle be experimentadigtolled is not the state of the system
but at most its Hamiltonian, it would be interesting, in viefwthe applications, to design a strategy
that allows toinfer a cyclic evolution of the state through the instantaneougrobof the system
Hamiltonian, for instance a cyclic evolution should appearorrespondence with a cyclic Hamilto-
nian.

Let us consider a time-dependent Hamiltonian with the failhg instantaneous spectral decom-
position

H(t) = Z €n(t)Pa(t) , (2.58)

for t € [0, 7], wheree, (t) are distincinstantaneougigenvalues an#, (t) the corresponding eigen-
projectors. Here, we are going to consider the case in whiitheaeigenvalues are not-degenerate at
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eacht € [0,T7]. In that case, each eigenprojector has unit rdiKt) = |n(t))(n(t)|, where we have
chosen instantaneous representative vegtdrg) (with [n(7)) = [n(0))). In the reference frame
{In(t))}, one can write a generic solution of the Schrodinger eqoais follows:

(1) = 3 an(t)e i DU n(e)) (2.59)

where the dynamical phases are factorized. Omitting ta@iplindicate the time dependence, one
can write

Hp) =Y " ane /e n) (2.60)
and
) = Z ane T endtin) 4 i Z anene” S nd|n) 4 Z ane (1)) . (2.61)
Hence, the Schrodinger equation reads:
> )+ an|n) =0. (2.62)
Multiplying on the left by(m| we obtain
am, = —an(m|n) . (2.63)

The term on the right hand side can be evaluated by diffexéoti of the instantaneous eigenvalue
equation
H|n) = €yln) . (2.64)

Taking the scalar product withn) yields
(m|H|n) + em(mli) = énfmln) + en(mli) (2.65)

and one obtains, fan # n, '
(m|Hln)

) = 2.66
(ml) = "= (2.66)
Coming back to the equation (2.63), we have obtained:
ap = —ap(n|n) — Z amMeiI(e"_E7’L)dt . (2.67)
€Em — €n
m¥#n
In the adiabatic limit, the instantaneous eigenvectiersoupleeach other
|l )|
_— 0 2.68
(Em _ En)z I ) ( )
and we can write
whose solution reads:
an(t) = e~ S g, (0) . (2.70)
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As a consequence, if the system is initially in an eigens&dga,,(0) = d,,,, it remainsin the
corresponding eigenstate at each subsequent time:

H(0)[4(0)) = €(0)|(0)) — H(®)|1(1)) = e(t)|4(2)) - (2.71)

In particular, if the Hamiltonian is cyclidi (T') = H(0), the dynamics in the rays’ space is also
cyclic, and the state vector acquires a geometric and a dgaaphase

[W(T)) = e J{nldm) e =i [ endty (). (2.72)

Let us consider a quantum system with a finite number of lewslgH = CV. The system
Hamiltonian can always be written @ = )" hoAo, Where the operator§), }\” | are a basis
in the linear space of hermitian operators (a set of geredlGell-Mann matrices, or the Pauli
matrices foriV = 2), with real coefficientsh,. From that point of view, a Hamiltonian operator
is nothing more than an element of\&-dimensional real vector space. Hence, a time dependent
Hamiltonian, H (t) = > ha(t) A4, defines a path iiR™*, and a cyclic Hamiltonian a closed loop.
On the other hand, a Hamiltonian operator can be determipedset of parameterse }, which, for
instance, correspond to classical fields that determiresntieractions and that in principle might
be experimentally controlled. In particular, these clealsparameters can be subjected to a set of
physical constraints. In that case one can write M, where M is a suitable manifold. From that
point of view, the system Hamiltonian can be seen as a fumctio

H :zeM — Hl. (2.73)

In the following, we describe the idea that the quantum systan be controlled through that set
of classical parameters that, for this reason, will be atdled control parametersas well as we will
refer to M as thecontrol manifold

As the Hamiltonian is a function an, the same holds for its spectral decomposition

Hz] = e,[x] P[] . (2.74)

In the case of non-degenerate eigenvalues, one can ®yitg¢ = |n[z])(n[x]|. A closed path over
the control manifold
v o tel0,T] — z(t) € M, (2.75)

with z(T") = x(0), corresponds to a loofl [xz(¢)] in the space of Hamiltonian. The lodf|[x(t)]
determines an associated time-dependent Schrodingati@gu

i— ) = Hlz(t)]|4) . (2.76)

In the adiabatic limit, if the system is initially in the ray[x(0)])(n[z(0)], it remains into the
corresponding instantaneous eigenspace (determinéd[bft))(n[z(t)]|) at each subsequent time.
Hence, a loop in the Hamiltonianfersa loop in the space of rays, and one can write:

() = e~ =i endt iy g)) 2.77)

with |n[z(0)]) = |¥(0)), and|n[z(0)]) = |n[z(T)). Hence we can introduce tlaliabatic connec-
tion:
A = —i(n[z]|dn[z]) = —i(n[z]|0,n|x])dx,, . (2.78)
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Which can also be expressed by means of its component in¢hkdet of coordinates, namely
A, = —i(n|Oyn) . (2.79)

Notice that, in contrast to the Pancharatnam connectios otie-form is indeed defined on the
control manifold, and not on the Hilbert space. In the presase, we are dealing with a fibre bundle
with total space corresponding to the family of spaces oédegacy labeled by the indexXx], while
thebase spacés the control manifold\, and the structure group 1$(1).

2.4.3 Example: a spini/2 in a quasi-static magnetic field

Let us consider a spih/2 in an adiabatically changing magnetic field. The time-dejean
Hamiltonian is

H(t) = —%B(t)a (2.80)

whereo indicates the Pauli matrices. Notice that the Hamiltonsgadeatermined by the value of the
instantaneous magnetic field, hence the correspondingatananifold is M = R2. In the basis
{|0), 1)}, with 0,]|0) = |0) ando,|1) = —|1), the instantaneous ground state can be written as

) - 0
|1g) = cos §|O> + e'?sin §|1> (2.81)
where the instantaneous magnetic is written in polar coatds as
B = |B|(sin ¥ cos p, sin ¥ sin @, cos 1) . (2.82)

The ground state energyy(t) = —%]B(t) , and the energy gap with the excited stat€is=
|B(¢)|. With the choice (2.81), the corresponding connection foner has the following form:

A = —i(to|diby) = %dcp (1 —cos?) . (2.83)

After an adiabaticloop « followed by the magnetic field in theperational timeT’, the ground
state acquires a phase factor:

e'® = 79 x ¢7i®a (2.84)

whered,; = fOT Ey(t)dt gives the dynamical phase, and the geometric phase is erprby:

<I>g:?{A:%?{dcp(l—cosﬁ):g, (2.85)
v

wherew is the solid angle spanned by the magnetic field.

For non-adiabatic loop, the evolution of the system mighhde-cyclic, even in correspondence
of a cyclic magnetic field. With the initial condition(0)) = |1/), one has to solve the corresponding
Schrodinger equation in order to obtain the final stat€l”)). The relative phase between the final
and initial states is defined byg (vo|¢(T")). The plot in figure 2.1 shows theverage gate fidelity
(see the appendix B) between thdiabatic evolution and thelynamicalevolution as a function of
the operational tim&’, in correspondence of loops with the same support.
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Figure 2.1. Average gate fidelity between the adiabatic &eddynamical transformation for the

spin-1/2 in an changing magnetic field, as a function of the adimesioperational timé&27". The
adiabatic dynamics is approached in the litaif > 1.

2.4.4 Non-Abelian holonomies

In the previous sections, we have considered the case ofahbél(1), phase factors, both for
the adiabatic and the non-adiabatic setting. The discussia be naturally extended to the situation
in which multiple eigenvalues are present, and one can wbsenon-Abelian [J(d), phase factor.
The spectral decomposition (2.74), can present eigergtoofewith rank greater than one. The main
difference, from a geometric point of view, is that one isliofgawith a principal fibre bundle with
structure groufJ(d).

In order to fix the ideas, let us consider the casadifibaticgeometric phases. Let us select a
d-dimensional subspace, corresponding to the eigenpoojéitz], and the eigenspadg,,[z]. One
can consider an initial vectdt)y) € Hy,[z], and an adiabatic loop in the control manifold. At the
end of the loop, the eigenspace will come back to it$&)f[z(T")] = H,[z(0)], followed by the final
state|(T)) € H,[z(T)]. Hence, in general, the system will acquire a non-Abelisasptfactor:

(1)) = Ul(0)), (2.86)

whereU € U(d), is aunitary matrixacting in thed-dimensional eigenspadé,,[z(0)].
Let us chose a frame i, [x(0)], denoted with{|n,[=(0)])} and let it evolves according to the
Schrodinger equation. Hence, the corresponding sokiipp [z(¢)]) }, with

S nale(0)]) = Hr@nale(0) (2.87)

define an orthonormal basis i, [z(t)] at each timel € [0,7]. Another basis{|¢,[x(t)])} in
H,[x(t)] can be chosen such tha, [z (t)]) = Uaplz(t)]|ds]x(t)]), and|ie[z(T)]) = |a]2(0)]) =
Ina]2(0)]), corresponding to a time-dependent unitary maltfi[z(t)] = U € U(d). Omitting to
indicate explicitly the dependence front), equation (2.87) reads:

HUgp|dp) = idUgp| ) + iUqgpd)|bp) - (2.88)
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Multiplying from the left by (.| = (¢4|U.q" One obtains
Ued"Uab(PalH|pp) = iUcq" dUab(daldv) + iUca Uap(Paldp) - (2.89)
Since the¢,) are eigenvectors of the instantaneous Hamiltonian, onevcée
Ued " Uabendap = iUcq” dUap0ap — Uca Uap Aap (2.90)
where we have defined timatrix-valuedconnection one form
Aagp = —1(aldey) . (2.91)
The expression in (2.90) has a matrix form:
el = ihdUU' — RUAUT . (2.92)
Multiplying by U* from the left and from the right we obtain
el =iUTdU — A . (2.93)
The latter is a differential equation for the unitdry that we can rewrite explicitly as

z’UT% =e+ A. (2.94)

The formal solution, with initial conditiod/(0) = I is
U(T) = e=iJo et me=if A (2.95)

Notice that the first factor is the dynamical contributiorite phase inside the degenerate eigenspace,
it corresponds to an irrelevahi(1) global phase factor. On the other hand, the second factor, as in
the Abelian case, is independent of the parametrizatioheottirve and of the operational time and is
interpreted as the geometric contribution non-Abelian holonomyThe matrixA,, = —i(dq|dds),
or the operatotd,, = —i(pa|dps)|Pa){¢s| is the corresponding non-Abelian connectimme-form
Since the instantaneous degenerate space is determinegdiytan the control manifold, we can
write the connection as a one-form ovet, with component expressiof = A, dz,,, where

Ay = —i(6al0uds) - (2.96)

Neglecting the dynamical part (for example, puttipg= 0), we obtain a holonomic non-Abelian
gate, which has the following expression

[ =Pe /4, (2.97)

Since the holonomy is independent of the particular pamapagion of the loopz(t), we have
substituted the time-ordering with the path-ordering sghib.
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2.5 Universal computation with the holonomic group

The observation of non-Abelian holonomies naturally ldadkeapplicationof geometric phases
for the scopes ofjuantum computingr, in general, foquantum information processingSince a
quantum algorithm is realized as a unitary evolution of anfua system, one can argue that the
geometric phases can be regarded sigezial clas®f unitary transformations. In the present section,
we recall how geometric phases can be exploited in orderl@esuniversal quantum computation.

Let us consider a quantum system, together with a familyaefégenerate Hamiltonian functions

H: zxzeM — Hlx], (2.98)

with a point-wise spectral decomposition

Hlz] =) exlx] P[] - (2.99)
k

The corresponding Hilbert space factorizes as a direct ysub)spaces
H = @ Hy[] (2.100)
each corresponding to a different eigenenergy. A loop ormdimérol manifold
v o tel0,T] — ~(t)eM, (2.101)
with starting pointzy = v(0) = v(T'), is said to be adiabatic if
/v < inf len[y] — exl7]] (2.102)

If the control parameters evolve in time along an adiabatp] the overall unitary transformation
factorizes in the following way:

U(T) = @re” "Dy (v) Pylzo] (2.103)
wheregy (T) = fOT ex[y(t)]dt are the dynamical contributions to the phase, and
Tp(v) = Pe i A (2.104)

are the holonomies associated to each subspace. Thus,nhmidg in each degenerate subspace
Hy[zo] at the initial pointx, are decoupled. In each of the subspace, the adiabatic dmmesin
general matrix valued, and takes values in the Lie algela), wheredy, is the dimension of the
corresponding subspace. For the scope of geometric quarttomputation, one needs to pick up one
degenerate subspace, g4y of dimensiond = dj, that will play the role of a&computational space
By itself, this subspace hasn't any tensor product strectuevertheless it is mathematically equiva-
lent to — and can be used simulate— a register of N qubits, withN' = log, d. From that point
of view, one can notice that the dimension of the degenerdispgce growsxponentiallywith the
number of qubits. Neglecting the dynamical phase, the laslgncan be exploited in order to pro-
duce a quantum gate incampletelygeometric fashion. Furthermore, the quantum gate is detedn
through the control of the classical parameters
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After the introduction of adiabatic geometric phases, @l be clear that in correspondence to
a givenadiabaticloop in the control manifold one obtains an unitary gate Wwhécthe corresponding
holonomy. On the other hand, one cannot in principle avoal, tfor a given loop, the holonomy
is trivial, i.e. it is a numerical phase factor in the computationatepar that different holonomies
obtained by different loops docommutesach other. Changing the loop in the parameter space cor-
responds to change the obtained holonomic gate, also ircdlsis we cannot in principle avoid the
situation in which all the loop give rise to the same gate —hersamesubgroupof gates — hence
not allowing to take advantage of the full computationaleptialities of the system. In other words,
there is need to identifies the conditions under which anasrsal quantum computation is possible
using only holonomic transformations in the selected cdadmnal subspace. That kind of problem
was proposed and solved by Paolo Zanardi and Mario Rasd#ziRA9]. In the following we will
give a short survey of their results.

Two ingredientsenter in the definition of the holonomic transformation: seéectedoop ~ over
the control manifold, and the explicit expression of tomnectionone form. First of all, one has to
notice that the set of loops over the manifold with fixed #tgrpointz, is endowed with a law of
composition. Since the adiabatic holonomy does not deparibdeooperational time, we can put

v o ose0,1]] — q(s)eM. (2.105)
Hence, one can notice that two loops can be composed in foeiioy way
Yo (t) = 0(1/2 = t)y(2t) + 0(t — 1/2)y(2t — 1) (2.106)

(wheref is theheavy-siddunction). In correspondence with that, an inner produnttwadefined on
holonomies as follows

L(y2)L(71) =T(y2 - 71) - (2.107)

Notice that the trivial loopyy(t) = x¢ corresponds to the trivial holononiy(+,) = I, and the
inverse holonomy corresponds to the loop preformed in tipsipe wayl'~! (v) = I'(y/), where we
have defined//(t) = v(1 — t). Hence, the set of the corresponding holonomies is a graliedche
holonomy groumassociated to the adiabatic connection. That group is ddhot(A).

The holonomy grouphol(A) is in general groper subgroup of the whole unitary grodp(d)
acting in thed-dimensional subspace chosen as computational subspaaelelr to obtain universal
holonomic computation, one has to require that the holon¢suk)group isot a proper subgroup,
i.e.hol(A4) = U(d). If that condition holds true, it is possible to approach anitary transformation
with arbitrary high accuracy, with &nite sequence of holonomic transformations which corresponds
to a sequence of loops. In that case, the connection one-forsnsaid to berreducible Hence,
the universality of holonomic computation is equivalentttie irreducibility of the corresponding
connection one-form.

The irreducibility of the connection can be determined gitugl the associatedurvature or field
strength,F’ = dA. Its component expression, in a local set of coordingtes on M, reads

Fu = 0,A, — 0,A, — [A,, A)] . (2.108)

The important result, for our purpose, is that the connadtidarreduciblef and only ifthe compo-
nents of the curvaturgpanthe whole Lie algebra(d) of the unitary group [NaO5]. As was discussed
in [ZR99], irreducibility can be proven to be tlyeneric cas€in the sense that the set of irreducible
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Figure 2.2: On the left: structure of the levels for a single with the coupling fields. On the right:
blue and red de-tuned laser fields related to the realizafitime two-qubit geometric gate.

connections is an open subset which is dense in the set asdlige connection one-forms). On the
other hand, that result leaves the problem of explicithyntidg a physically reliable Hamiltonian over
a suitable manifold of control parameters with an assodiamteducible connection one-form.

To conclude, one can notice that the approach we have adiiimthis section take in consider-
ation a system ofl-levelsas a whole without taking in account (and even without requiring tibat
a system ofV = log, d qubits has a precisensor producstructure. Also from that point of view,
as the name says, the holonomic approach can be interpietegiabal approach to quantum com-
putation. On the other hand, as also recalled in the chapiarcbntrast to thisop-downapproach,
one can take aottom-uppoint of view and obtain any-qubit gate as the composition of simple
one-qubit and two-qubits gates.

In the next section, we will discuss the proposal that wasgired in [Du01] that involves a
physically reliable Hamiltonian and exploit the bottom{ugnt of view.

2.6 Physical realizations

The first experimentally feasible proposal for the realaratof an all-holonomic computation
was given by Luming Duan, Ignacio Cirac and Peter Zoller in(QD]. A possible physical system is
an array of ions in a Pauli trap, which can be manipulated eijpropriate laser beams. The same
physical setting has been discussed in order to realizeatadynamicalscheme for quantum com-
puting [Ci95, S099, M099, Ci00], and the single and multbijoperations have been experimentally
demonstrated [M095, R099]. Even if other models have beepgsed in the literature [Fa00], the
model of Duanet al. is probably the one most extensively studied also with ezfee to different
physical systems, as Josephson junctions [Fa03] and seduictor quantum dots [So003], and can be
regarded as eeference poinfor the subject.

2.6.1 Geometric manipulation of trapped ions

All the ions are assumed to have the same structure of etecti@vels (see the scheme on the
left hand side of figure 2.2). For thgh ion, it is composed of two degenerate stable or metastable
state|0); and|1); which, as the notation suggests, identify the computakispace of thejth qubit
H), = span{|0);,|1),}; an excited stat¢),; and an ancillary low-energy state);. In such a way,
one-qubit degrees of freedom are attached to each ion. &r twbtain universal computation, the
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Figure 2.3: The level scheme and the control manifold forfeeond) single-qubit geometric gate.

ability to realize a pair of hon-commuting single-qubit tany gates and one nontrivial two-qubit
transformation is required.

The gates that can be generated in a complete geometriotiasain be chosen in the following
way:

1. The first one-qubit gate is
Ul = ! ®llsal (2.109)

which is a single-qubiphasegate, that has the matrix expression

; 1 0
Ui = 0 et ] (2.110)
in the computational basis.
2. The second one-qubit gate is )
Uj = e'®200 | (2.111)

wherea] = i(]1);(0] — |0);(1]) is the Pauli matrix in the computational basis. The corre-
sponding matrix expression of the gate is:

j P - cos @y sin Pg
Uy = cos ®olV + isin $oo) = [ CGindy cos By ] ) (2.112)
3. The two-qubit gate, acting on thigh andkth qubit, is
Uk = et (11l (2.113)

Its matrix expression in the computational basis of the paigubits j and & (the two-qubit
computational states af¢00) ., [01) ., [10)x, [11);%}) is

100 0

: 010 0

Uik = 2.114

3 001 0 ( )
0 0 0 %

The argumentspb,, &, and ®3 are adjustable parameters depending on the chosen loop in th
parameter manifold.
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In order to realize the single-qubit gates, an ion in the tsapddressed with three laser beams
corresponding to the three possible transition from the-dowrgy levels to the excited level. The
degenerate levels are supposed to have different angulareniam in such a way that the corre-
sponding transitions can be addressed with laser beam# witifer in polarization. In the rotating
frame, the interaction picture Hamiltonian reads as foliow

H = (Q0]0){e| + Q1[1){e| + Qula)(e] + h.c.) (2.115)

where(, 2, and(), are the three, in general complex, Rabi frequencies handlenotes the Her-
mitian conjugate, and we have omitted the index labelingahs.

The first one-qubit gate

To generate the holonomic gat§ one has to sef)y = 0. In such a way, the0) level is
completely decoupled. Also, we choose the following pataizegion: Q; = —sin (9/2)e’? and
Q, = Qcos (9/2). The common factof? gives the total "intensity” of the interactian® = Q2 + Q2.
Its value is relevant in order to validate the adiabatic agjpnation, while it is the relative amplitude
betweer(); and(}, that determines the dynamics in the adiabatic limit. Hetit manifold of con-
trol parameters is a two-dimensional sphere. With thatrpatdzation, the system presents a dark
state, i.e. a state with zero energy:

|t)) = cos §]1> + sin gew]@ . (2.116)

The initial configuration of the system has to be chosen inespondence with the poirdt= 0
(the North pole), in which the state)) = |1) has zero energy. The connection one-form is written as

Ay = —i(y|dy)) = sin® gdcp = % (1 —cos®)dep . (2.117)

After an adiabatic loop in the parameter space, the acqagieedhetric phase equals one-half of
the solid angle spanned by the loop. For a given loop, whiehtifies a solid angle, we obtain the
holonomic gate z V{11,

The second one-qubit gate

In the following chapters, we will consider the followinglbnomic gate as a case study. In order
to realize the one-qubit gaté,, we need to constraint the three Rabi frequency to be réakda
furthermore, the parameters are constrained to take valuestwo-sphere. It is thus convenient
to introduce polar coordinates. Putting= Qg, y = 4, andz = ,, we write the following
parametrization:

= Qsindcos
y = Qsindsing . (2.118)
z = Qcosd

In that case, the spectrum of (2.115) is threefold:
o=1{0,+0}, (2.119)
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with the null eigenvalue which is doubly degenerate. The degenerate eigenstates with vanishing
energy can be chosen as follows:

o) = cosd(cosp|0) +sinpll)) —sind|a) ,

2.120
1) = —sing|0) + cosp|l) . ( )

Hence, while the eigenenergy is fixed, the correspondingnsigace is a function of the control
parameters, i.e. a function on the two-sphere.
The corresponding connection one-form is matrix-valuedir@ads as follows:

Ay = —i(ta|dipg) = — cos dypol? (2.121)

whereag‘ﬁ are the components of the Pauli matrix. Afteradiabatic loopin the parameter space,
which spans &olid anglew, (see the figure 2.3), one obtains the non-Abelian holonomy

Uy = e~ ™29 (2.122)

The two-qubit gate

The realization of the two-qubit gate requires to explod ihteractions between two ions. lons
interact between themselves via the Coulomb force. Forlateslations from the equilibrium po-
sition, this interaction can be modeled by a set of collestimodes which describe the vibrational
degrees of freedom of the array of ions.

In order to realize the two-qubit gaté;, one vibrational mode with frequenay is selected,
typically it corresponds to the vibrational motion of thentey of mass of the chain. Both thigh
and thekth ions are addressed with the same combination of lasesfiéhile the|0) levels are
decoupled @y = 0), the|1) and|a) levels are independently coupled to the excited state wilser
field composed of two beams, a blue and red de-tuned comondate precisely, the de-tuning for
the transition1) < |e) is chosen to be-(v + d), whered is an additional shift, and- (v — §’) for the
other transition, wheré& can be chosen to g = —¢ (see the scheme depicted in figure 2.2). In this
way, only the second order transitions are resonant. In &mh-Dicke regimes{ < 1), the system
Hamiltonian reads:

2

H =" (—Iuofiofi + 1 oiofs) (2.123)
where

oo = enle) (u] + huc. (2.124)

with 1 = 1, a. One can take the parametrizatigty | = || sin (¢/2) and|Q,|? = |22|? cos (¥/2)
and¢; — ¢, = ¢. Starting from the point) = 0, the vector|11) adiabatically follows|y) =
cos (9/2)[11) + €% sin (9/2)|aa), while the vectorg00),|01) and|10) are decoupled. Also in this
case, if the loop spans a solid anglg the corresponding gate g = ¢ s 1111,

2.7 The argument of robustness of geometric phases

In the adiabatic case, the geometric phase acquired inspamnelence of a closed loopon the
control manifold is given by the integral of the adiabaticicection:

P = j{A. (2.125)
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In the examples discussed above, one can invoke the (Ab&8takes’ theorem and write:

(I):/SF’ (2.126)

whereS is a surface witlboundary~y, andF' is the curvature field associated 4o
In the presence of parametric noise, the loop is changecttudiBy loopy,:

N — Y (2.127)

As a consequence, in correspondence of a noisy adiabalicqued obtains a noisy geometric phase:

o, = A, (2.128)
Tn
which can be also written as the integral of the curvature twe surfaceS,, spanned by the noisy
path:

@n:/ F. (2.129)
SIl

It is worth noticing that the quantity in (2.129) is a stodimsariable, defined as a stochastic
integral. Thefluctuationsin ®,, are determined by the fluctuations in the noisy loop and byébe
that in general the noisy path mighot be closed. The non-closure of the path makes the integral in
(2.128) no more gauge invariant. Following [SB88] and [DRP08e can "close” the loop following
ageodesiaule. Obviously, that approach makes sense only for smetlifEtions.

Corresponding with the noisy path, one has a holonomic fibamstion, or geometric phase

Iy =exp(—id,), (2.130)

which is itself a stochastic variable. The geometric phasault-tolerant with respect to parametric
noise, if the integral in (2.129) is stable with respect ® filactuation induced by the noise affecting
the loop in the parameter manifold. Hence the issue is tam@te in which conditions, regarding
the noise and the system, the stochastic integral in (2[02%) (2.128)] has negligible fluctuations.

2.7.1 Berry phase in a fluctuating magnetic field

Following Gabriele De Chiara and Massimo Palma in [DP03this section we describe the ar-
gument infavor of the robustness of the geometric phase with respect tonedria noise. Obviously
the robustness is not an absolute property of geometricephiaes claim is that it can be more robust
than its dynamical counterpart.

The system under consideration is a spji2-degree of freedom in the presence ofasy adia-
batic magnetic field. With reference to the example discussedeiséation 2.4.3, here we consider a
noisy magnetic field and the corresponding Schrodingeatamu

d 1
Z&Wﬁ = —53(75)0|¢> : (2.131)

In the presence of parametric noise, the magnetic field isuheof two parts:
B(t) = By(t) + K(t) , (2.132)

whereB(t) identifies and ideal (noiseless) closed loop experiencetidynagnetic field during an
operational time", andK(¢) is a noisy contribution to the magnetic field which can be niedias a

44



stochastic processith vanishing mean value. For instance, we will take in edeistion a stationary
Ornstein-Uhlenbeck process (see for instance [Ga83])awthlitudes and band-widtH", along each
of the three components & (¢). In particular, the two-times correlation function has tbkowing
form:

C([t — s]) = (K;(t), Ki(8))noise = dje2e T8l (2.133)
whereK; indicates thegith components of the field.

In the discussion below we explicitly require that the nasediabatic, hence generating an
adiabatic sample path. This condition can be stated by nieguhat the band-width of the noise is
sufficiently narrow, in our case that condition reafis< |B|. That ensures that the high frequencies
give a sufficiently small contribution.

If, in correspondence of the ideal loop the instantaneous magnetic field is written in polar
coordinates as

Bo(t) = |Bo(t)] (sin ¥g(t) cos o(t), sin ¥o(t) sin g (t), cos 9o (t)) , (2.134)
the noisy magnetic field, which follows the noisy pathhas an analogous expression
B(t) = |B(t) + K(t)| (sin 9(t) cos ¢(t),sin 9(t) sin (), cos I(t)) . (2.135)

For small amplitude of the noise, the angular variables @expressed by their first-order Taylor
expansion:
9(t) Yo (t) + 00(t)
e(t) = polt) +dp(t) .

12

(2.136)

Without noise, the geometric phasedis= f7 A, and the dynamical phase is denotegd In the
presence of noise, the adiabatic connection

A=—(1—-cos?)dp (2.137)

N =

has to be evaluated along the noisy loop. One can write aofidglr perturbative expansion for the
integral of the connection of the following kind:

<1>n:/ A:/A+6<I>. (2.138)
n Y

Using the expression in (2.136), one has:

T (1 _ T T .
3P = / wd&p@) - / = go(t)w(t)dsoo(t) + / S 20(” 50(1)dé(t) -
0 0 0
(2.139)
Hence, we have written the perturbative term in (2.138) a®ehastic integral, in which one can
distinguish three contributions:

e A term which is of the first order in the amplitude of the noised is determined by the
component of the noise along the angte

1

0P, = 3 /OT (1 —cost(t)) dop(t) . (2.140)
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e A second term of the first order in the noise amplitude, deteethby the component of the
noise along the anglé:

5%y — % /0 ¥ i 9o(6)69(t)dgolt) (2.141)

e Aterm of the second order in the amplitude of the noise, wisicketermined by the correlations
between the noise components along the atigiady:

5D3 = % /0 " in Bo(£)50(t)dde(t) . (2.142)

The philosophy adopted in [DP03] was to neglect the secaddrderm, hence writing
D, ~ D+ 0Py + 0Py . (2.143)

At this point, they did several assumption. They consideidaal loop in whichd,(t) = 9 is
constant, they pup(t) = 277%, and choice the unperturbed magnetic field with constantutosd
|Bo(t)] = B. They neglect the terni®; by noticing that it is responsible of the fact that the noisy
path might be in general non-closed, making use of the dssmuisn [SB88] about geometric phases
in the non-cyclic setting (see also the section 2.3.1 in ¢hipter). The remaining terdb, was
finally written in the following way:

1 /B
( 03 (2.144)

1 . K3 2mdt
5@2 = / 5 Sln190519(t)dcp0(t) = A 5 EBQ K — f) T s

whereB,; andK; indicate thejth component of the fields, and we have omitted the time degrered
Finally, the geometric phase in the presence of the noisiees @py the following stochastic integral:

T
<I>n:<I>+%/O (%BO-K—%> dt . (2.145)

They computed the mean value and the variangef that stochastic integral. While the mean
value is zero, the mean square has the following expressidhg limit I'T" > 1):

2 52 . 2 . 92 2 1
op = ZE [(77(308790 sindg)” + (msin® ¥o) } T -

Notice that the quantityv = I'I" can be interpreted as the averagenber of statistically inde-
pendent fluctuationsiade by the noise component during the operational fim€hat quantity turns
to be a crucial parameter for the description of noisy gedmphase. In particular, we can see from
the expression in (2.146) that the variance of the geomphése vanishes (at the first order in the
noise amplitude) in the limifV — oo. In other words, the geometric phase is stable if the noise is
allowed to experiencsufficiently manydiabatic oscillation during the operational time.

The expression in (2.146) has to be compared with the vagiahthe corresponding dynamical
phase. Notice that the dynamical phase is written as a sbichiategral of the following form:

(2.146)

B

The mean value of the dynamical phase vanishes, while its smaare has the following form:

T T Bn- K
D, :/ IB(t)| ~ BT+/ 0"t . (2.147)
0 0

2 T T
02 = %/ dt/ ds [sin2 ¥ cos (wo(t) — po(s)) + cos? Do) e Tlt=sl (2.148)
0 0

46



that, as can be easily checked, in the lifvift > 1 scales linearly with the operational tirfié

The total phaseacquired at the end of the adiabatic loop is the sum of therdiga and the
geometric contribution. The overall variance is not the safrthe variances because the two phases
are not independent, since both are determined by the sticimoces¥K. Nevertheless, since the
variance of the geometric phase scale§'as, while the one of the dynamical phase scale$ athe
main contribution to the fluctuations of the phase comes fiteerdynamical part in the limit of long
operational time.

2.8 Strategies for fault-tolerant holonomic gates

Itis clear that the first-order analysis reviewed in the jmas section suggests a possisieategy
in order to obtain dault-tolerantquantum computation in the context of the holonomic apgroac

The argument of robustness of the holonomic gates stateshinductuations in the geometric
phase becomaegligible (at first order in the noise amplitude) increasing the patam¥, which
expresses the average number of statistically indepeindeiiations of the noise. Hence, fogaven
noise, identified by itamplitudeand itsband width(or its correlation timg, one can reduces the
fluctuations of the noise by increasing the operational imélence the cost of a longer operational
time is compensated by a more robust computation.

The first-order analysis suggest to take the liffiit— oo in order to ideally obtain vanishing
fluctuations in the holonomic gate. More realistically, draes to consider a feasible operational time
which results from dalancebetween different physical and computational aspects.

The main idea of the present Thesis, that will be discusse@tails in the chapters 4 and 5 is to
refine that strategy taking into account the effects of theenon the geometric phase at the second
order in the perturbative expansion. One can indeed arate ififor longer operational time the
first-order contribution to the variance of the geometriag#his negligible, one has to consider the
terms of the second order. The dependence of the secondaanmdection from the operational time
— or the number of noise fluctuation$ — will hence determine the optimal strategy in order to
achieve a robust holonomic gate.
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Chapter 3

Robustness of non-adiabatic holonomic
gates

This chapter is mainly based on the paper [Lu07’], in whichhege studied the behavior of a
non-Abelian anchon-adiabaticholonomic gate in presence of parametric noise. That kinglaté
was presented in a recent paper [FI06] in the context of theAlzelian one-qubit gate which was part
of the proposal for a fully holonomic computation in [DuO&]go recalled in the previous chapter,
section 2.6). The main result, contained in [Lu07’] and emx&d in this chapter, is that for non-
Abelian fast gates, the adiabatic condition might not be reached in tiesgoice of noise, hence
the standard argument of robustness of holonomic gatesotéenapplied. On the other hand, a
different kind of mechanism which leads to an effect of céataen of the noise can be observed. That
kind of effect is completely dynamical and is not relatedie gjeometric features of the holonomic
transformation.

3.1 Introduction

Since the very beginning, holonomic gates were considered tntrinsically robust against clas-
sical noise [Pa01], thanks to the geometric features ofrfuotty in Hilbert bundles. As we will briefly
recall below, three main ingredients are needed in ordegdlize such holonomic gates.

The first ingredient is a suitable physical system descriiyed quantum Hamiltonian depending
on some set of parameters, these parameters being asdogitiiehe external (classical) driving
fields that are assumed to be experimentally controllabtetions of time; the unavoidable instru-
mental instability (stochastic noise) affecting the figkithe source of the kind of classical noise, that
has been mentioned above.

The second ingredient consists in selecting a suitablesgee of the given Hamiltonian — an
eigenspace depending smoothly on the external parambtarse actually an iso-degenerate family
of eigenspaces; and in fixing in the parameter space arafipidint’ and a loop through this point. To
such a loop corresponds an excursion of the parameter-depeHamiltonian (hence, of its eigenpro-
jectors) and a certaiileal unitary transformatiornn theencoding eigenspaceamely, that particular
relevant eigenspace fixed by the initial (and final) pointhef loop in the parameter space. This ideal
transformation is determined i{ato’s adiabatic evolutoassociated with the given Hamiltonian and
with the chosen loop in the parameter space, and it has aesigapimetric interpretation as a holon-
omy phenomenon (geometric phase). The ideal unitary wamsition plays a central role in Kato’s
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formulation of the adiabatic theorem [Ka51] applied to context. Indeed, the external parameters
are controllable functions of time and, in thdiabatic limit thereal evolution over the operational
time determined by the given physical Hamiltonian becomgdic in the encoding eigenspace and
(apart from an irrelevant overall ‘dynamical phase fagtobalesces in this subspace with the ideal
unitary transformation We stress that the ideal unitary transformation shouldhbeght, in our con-
text, as arideal quantum gatevhose behavior can be, in general, only approached tgraideal
quantum gateorresponding to the real evolution over a suitably large finite, operational time.

Accordingly, the third ingredient is the choice of a suielperational time — which will be
calledbalanced working timein the following — for the real quantum gate. This time spamsin
be short enough to achieve a fast quantum computation anai the ravages of decoherence, but
long enough to justify the adiabatic approximation (i.eapgroach the behavior of the ideal quantum
gate) which is at the root of the appearing of geometric phaseence, a balanced working time is
determined by a touchy trade-off between two competing andecessarily compatible demands.
On the other hand, the drawback of a longer operational tifree tmlonomic gate with respect to
standard dynamical gates can be balanced by the robustregssah be achieved in the holonomic
setting, leading to less computational time spent in emarection. Also from that point of view, one
has to determine a balanced working time taking in accowntdmputational time and the resistance
to noise.

The problem of robustness of holonomic gates against para@meise has been studied both in
the Abelian [DP03] and in the non-Abelian case [So04]. Iiséhpapers, the effects of random pertur-
bations of the control parameters are considered. It ishamoticing, however, that such effects are
evaluated with the adiabatic limit already being perforptads essentially confirming quantitatively
the standard qualitativgeometric argumeniisually adopted to support the robustness of holonomic
gates, argument which was recalled in the previous chaggerthe section 2.7). We emphasize that,
on the other hand, the operational time (in particular, @larfced working time) of a quantum gate
is obviously always finite; hence, in principle, the menddrgeometric argument can be applied only
with a certain degree of approximation in concrete devick<ritical analysis of this simple, but
somewhat subtle, issue was the main contribution of therdapé7’].

As holonomic gates are generally considered t@lpgiori robust against parametric noise, at-
tention has mainly focused on the study of decoherencetgff€éa03, Ca04, Fu05, Pa06] and on the
possibility of partially suppressing them [Wu05]. Thesesstigations show that for certain physical
systems, and for certain models and regimes of the couplitigtiae environment, one is able to esti-
mate the typical time-scale within which the effects of dem@nce can be neglected. Hence one can
determine, in principle, a balanced working time for theggteams. At this point, according to what
has been observed above, one should actehlckwhether this balanced working time guarantees
a suitable robustness of the quantum gate against parameise, namely, whether the effects of
this kind of noise on the fidelity of the non-ideal quantumegaith respect to the ideal one can be
neglected or not.

Recently, a new ingredient has been proposed for the impitien of a holonomic quantum
gate [FIO6] (see also [Tr06, FIO6']). Indeed, some authargetobserved — for the model of a ion-trap

We recall that geometric phases arise also in the contextant-@diabatic) cyclic evolutions [AA87, An88], but only
adiabaticphases are relevant for our purposes.
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geometric quantum gate proposed by Deaial. [Du01], model which is also central in the present
Dissertation — the existence of aptimal working time namely, of a specific operational time for
which the non-ideal (i.e. finite-time) gate behaeaactlyas the ideal (i.e. adiabatic) gate; they show,
furthermore, that over the optimal working time the effeattshe environment are negligible. Thus,
such a optimal working time turns out to be also a balancekiwgrtime. Again we stress that,
anyway, the fact that the non-ideal gate behaves, in carnegmce to the optimal working time, as
the ideal one cannot be used to rule out the influence of pari@meise on the base of the standard
geometric argument. Indeed, one should not expect thayrparg the loop in the parameter space,
the non-ideal gate will still mimic the behavior of the ideale. Hence, once again, one cannot apply,
in principle, the standard geometric argument to suppertabustness of this kind of holonomic gate
against parametric noise.

In the present chapter, we will try to illustrate this agserby means of quantitative arguments,
focusing on the ion-trap model proposed by Deaal. [Du01].

3.2 Adiabatic versus finite time gates

The main aim of this section is to review critically the stardlargument that is commonly used in
the literature in order to support the robustness of holoo@ates against noise. As already stressed
in the introduction, non-ideal holonomic gates — i.e., Imalmy-based devices that can be concretely
realized in a laboratory — must necessarily have a finite imgrikme which should be short enough
in order to avoid the perturbing effects of decoherence s idsue has been carefully analyzed in a
recent paper [FIO6], where it is shown explicitly, on theda$ a concrete model of adiabatic holo-
nomic gate, that decoherence effects can prevent the fitgsith achieving a faithful holonomic
gate when the adiabatic limit is approached. This resulbbliigerent with theoretical speculations (see
[SLO5, SLO5+]) on the failure of the adiabatic theorem ingarece of dissipative terms in the master
equation governing the dynamics of the physical systememphting the quantum gate.

In [FI06, FIO6] it has been also shown that there may esgscificoperational times (‘optimal
working times’) for non-ideal holonomic gates allowing tiotain a high fidelity together with a good
robustness against decoherence. It is then worth studyéigbustness of non-ideal holonomic gates
against instrumental noise.

Even though there are several approach to the adiabatiethggee for instance [BF28, Me62]),
as a first step we will consider the Kato’s proof of the adiebieorem [Ka51]. This proof was orig-
inally formulated in order to go beyond some limitations oepd by previous proofs [BF28], such as
the requirement of a Hamiltonian witlhon-degenerateigenvalues. However, the most remarkable
idea in Kato’s proof is the introduction of adeal evolution operator— that we may call the ‘Kato
evolutor’ — reproducing the typical adiabatic behavior @umntum system; one can then prove that,
under suitable hypotheses, in the proper limitried evolution of the quantum systetoalescesvith
the ideal adiabatic evolution.

In the standard construction of holonomic gates, a quanitstes is considered with a Hamil-
tonian which depends on pointson a suitable manifold\1. For the sake of simplicity, here we
consider the case in which the family of Hamiltonian fune&d/ (r) is isodegenerate with a pure dis-
crete spectrum. A local set of coordinates‘} on M plays the role of parameters that are supposed
to be experimentally controllable. The control parameseesallowed to perform a cyclic evolution
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in the operational tim&”
v | tel0,T] — r(t), (3.2)
with r(7") = r(0).
As usual, we define = ¢/T', in terms of this parameter the Schrodinger equation raaétslows:

Up(s) = —iTH(x(s))yr(s), s €[0,1], (3.2)

where we have re-definads) = r(sT'). Here and in the following{’(s) = d X (s)/ds.

In view of the case study that will be considered below, wérigsour discussion to the special
case in which the distinct eigenvaluesifr(s)) are a finite set and do not depend on time. In these
hypotheses, the time dependent Hamiltonian has a speetahtgosition

n—1
H(r(s)) = > _ NP(s). (3.3)
=0

Where)\; are all distinct eigenvalues ari¢j(s) are the corresponding instantaneous eigenprojectors,
we also assume that the eigenprojectors are at least psramice continuously differentiable fere
[0, 1]. In the following we pick up one eigenprojectors, day that corresponds to the computational
subspace that will be introduced below. In order to neglaecowerall phase factor the dynamical
contribution to the adiabatic transformation and to sifgpie notation we sek, = 0 and rename
P(s) = Py(s).

The solution of the Schrodinger equation (3.2) reads

Yr(s) = Vo (s)yr(0). (3.4)
Vr(s) is the unitary operator which describes the dynamical foansation that obeys:
Vi(s) = —iTH(r(s))Vr(s), (3.5)

with the initial conditionV(0) = I.
On the other hand, the adiabatic transformation is definedsadution of the equation

U'(s) =iA(s)U(s), (3.6)

where
iA(s) = [P'(s), P(s)] = P'(s)P(s) — P(s)P'(s). (3.7)

The solution of (3.6) is completely determined once thaah@ondition is given. The solutiof (s),
with the initial conditionU (0) = T, is unitary and has the property

P(s)U(s) = U(s)P(0). (3.8)

This last relation indicates théi(s) transforms isometrically the eigenprojector at initiahéi (0)
onto the instantaneous eigenprojecitfs). In order to look closely at the computational space, we
consider the operator

W(s) =U(s)P(0), (3.9)

sinceW (s)P(0) = U(s)P(0), U(s) is equivalent tdV (s) when restricted on functions of the eigen-
projectorP(0). It is easy to see thal/(s) obeys the equation

W'(s) = P'(s)W(s). (3.10)
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The adiabatic theorem states that the dynamical transtmmarestricted to the eigenspace with
eigenprojecto(0), asymptotically approaches the adiabatic transformatamce we are interested
in the final transformation, definingg = W (1) and V; = Vp(1), the following relation holds
[Ka51]:

[V — W] P(0) = iV; , (3.11)
T T; T
where X )

A1) = [VI@REW )] = [ i) (Rl ) (3.12)

It is easy to show [Ka51] that the operatdkg(7") are bounded uniformly with respect1q i.e. there
exists a positive numbe¥v/ € R such that

| VrA(T) [|< M, (3.13)

where|| - || indicates a suitable operator norm. Hence

1

I Ve = WP(0) < MZW .

140

(3.14)

Notice thatA;(T") depend on the gate operational tifiethrough the unitary operatdry(s).
Thus we can expect, before the asymptotic limit, an osoifabehavior of a suitably defined gate
fidelity as a function of". The fidelity revivals described in [FI06] are a particulase of this general
oscillatory behavior at finite operational time.

Equation (3.10) defines a notion of parallel transport witiciresponds to the adiabatic transfor-
mation. Let us choose a bagig, (s)} in the instantaneous subspace

P(s) =Y [ta(s)) (Wa(s)| (3.15)
The adiabatic connection is defined as follows [WZ84]:

A= Aag(s) = (W05()| () (3.16)

The adiabatic transformation at the end of a loop in the patanmanifold can be written as
W = Waslts(1))(1a(1)| and is obtained as the integral of the connection one-forsifblows:

W =Pexp—i / Ads (3.17)
%l

whereP stands for the path ordered product. In a local chaft = A,dz*. By means of the (in
general non-Abelian) Stokes’ theorem, the holonomy isrdeteed by the curvature tensor, whose
component expression is

Fuo=0A,-0,A, —[A, A . (3.18)

In most of the applications for quantum information taske path ordered integral in (3.17)
reduces to a simple exponential and the Abelian versioneoStokes’ theorem can be applied:

W = exp (—1/ Fdxt A dx”) , (3.19)
C
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whereC' is a region whose boundary is the logp The usual argument in favor of the robustness
of holonomic gates follows directly from expression (3.1%ince the integral of the curvature is
supposed to depend weakly on the details of the loop, théaititatransformation is considered to
be robust against a certain kind lotal perturbations in the loogy which weakly affect the integral

in (3.19).

To conclude this section, we emphasizes that what is reajded in order to obtain a trans-
formation with a geometrical character is a cyclic evolntaf the eigenspaceP(1) = P(0)). The
adiabatic theorem ensures that this cyclic evolution afggeecorrespondence with a loop in the pa-
rameters manifold in the adiabatic limit (hence in corresfmnce of a cyclic Hamiltonian). Only in
this limit the argument of robustness of holonomic gate aaafiplied.

3.3 Acase study

It was observed in [FIO6], that in particular situations Hiiéonomic transformation appearing in
the adiabatic limit can be mimed by a non-adiabatic holoramnsinsformation. That corresponds to
a cyclic evolution attained in correspondence of an opamatitimeT” far before the adiabatic regime
is reached.

That kind of situation was observed in [FIO6] with respecbo€ of the non-Abelian one-qubit
holonomic gates which is part of the proposal for a fully getnia computation in [Du01] (see also
the chapter 2 of the present Dissertation). We recall theasyistem under consideration is made of a
single ion in a Pauli trap, which presents the following stiwe of stationary levels:

e A doubly degenerate low-energy level, which identifies a-timensional subspace which is
used for encoding information. A computational bgsis, |1)} is selected. These levels define
the computational space of one qubit.

¢ A high-energy level, denoted).
e An ancillary, quasi degenerate level, which is denotef: as

All the transitions between the low-energy levels and thtghtgnergy level are considered to be
singularly addressed with resonant laser fields. A schematture is depicted in figure 3.1(a). The
corresponding Hamiltonian, in the interaction picture amdhe rotating frame, can be written as
follows:

H = Q[z|0){(e| + y|1){e| + z|a)(e| + h.c.] . (3.20)

In general, the Rabi’s frequenci€s:, Qy, 2z can take complex values, nevertheless, here we are
interested in the case they are real-valued. The Hamilanié3.20) is indeed a family of Hamilto-
nian functions depending on the real parametegs z. Its spectrum isr = {0, +Q+/22 + y2 + 22},
with the vanishing eigenenergy which is doubly degeneratee form of the spectrum suggests to
introduce the constraint? + 42 + 22 = 1 on the amplitude of the laser fields. With that constraint,
one is dealing with a family of Hamiltonian functions whichdefined on a two-dimensional sphere.
Hence the control manifold iS?. Notice that, while the eigenenergies are constant funstan the
two-sphere, the corresponding eigenprojectors dependseovalues of the control parameters. In-
troducing polar coordinates, one can write an instantasme@enprojecto’ (1, ¢) corresponding to
the doubly degeneratdark states. One can choose a corresponding basis in the degesgaae in
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Figure 3.1: Structure of the atomic levels and resonantda&®; unperturbed loop (3.25) in the
parameter manifold (b).

the following way:

o) = cos® (cos p|0) +sin[1)) —sindla) |
{ |Y1) = —sing|0) + cosp|l) . (3.21)

Notice that, ford = 0, 7 (at the north and south pole), the computational space iswohed and
the dark states corresponds to the computational basisinamy) = |0) and|¢,) = |1). These
points can be used as starting points for the system evolutio

As one can check immediately, the connection one-form fafotlowing, matrix valued form:

A= Ayp = —i(a|dipg) = —cos Doy 055 (3.22)

whereg, is the Pauli matrix in the computational ba§j8), |1) }. Hence, after an adiabatic excursion
of the control parameters along a closed path on the contlfoid, one obtains the transformation
in the computational space
‘win> B ‘wout> = W‘¢1n> (323)
with
W = exp (—iwoy) (3.24)
wherew is the solid angle spanned by the loop in the parametersespac

Here we consider the closed path in the parameter manifetdviias studied in [FIO6]. For
s € [0,1] we take (see figure 3.1(b)):

3s7/2 s €10,1/3]
9(s) = /2 s€[1/3,2/3]

37/2(1—s) se[2/3,1]

0 s €[0,1/3] (3.25)
p(s) = 3m/2 (s—%) s€[1/3,2/3]

/2 s €[2/3,1]

The solid angle related to the loop (3.25)is= 7/2, hence the corresponding holonomic gate is
W = —io,. As was observed in [FIO6], the remarkable property of thaithps that it presents perfect
revivals of the gate fidelity at finite operational time. Tlar® behavior was predicted for all the
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loops constructed by moving from the north pole to the equit@ugh a meridian and back to the
north pole through another meridian with piecewise cortstalocity. In the case of the loop (3.25)
there is a perfect revival of fidelity in correspondence &fdperational times:

- %\/1%2—1, k=1,2,... (3.26)

In the following we are mostly concerned with the first optirperational timel™ = 77

To conclude this section we notice that a geometric phaseaappn correspondence to a non
adiabaticcyclic dynamics [AA87, An88]. In particular, for our case studyh#ppens that, in corre-
spondence to an optimal operational time, the evolutiomimes cyclic and the acquired geometric
phase is equal to the adiabatic holonomy.

Ty

3.4 Models of parametric noise and perturbation

In order to study the robustness of non ideal holonomic gatesconsider the response of the
system under parametric noise in the ideal loop (3.25). dieroio quantify the robustness of the gate,
the noisy finite time evolution of the system is solved witmauical methods and the average gate
fidelity (see the appendix B) is calculated. In the followisgveral models of noise are taken into
account: in section 3.4.1 we consider the response of theraysder a monochromatic perturbation
of the three Rabi frequencies in (3.20); in section 3.4.2 igeuds the response of the system under
a telegraphic perturbation in the three Rabi frequencies.additional model was also discussed in
[Lu07’], leading to analogous results.

3.4.1 Monochromatic perturbation

In this section we consider the behavior of the system in thegnce of a small random perturba-
tion in the control parameters. As a first approach to thelprolof the robustness of the non-adiabatic
holonomic gate, we consider a simple monochromatic peatiai instead of a more realistic model
for the parametric noise. That kind of perturbation can lesveid as a smaprobefunction used to
test the stability of the gate. A generic noisy path can béevrias follows:

ry(t) =r(t) +€(t), t 0,77, (3.27)

where the vector(t) describes the unperturbed loop aitd)) is a three component vector including
the perturbation of the path. We have chosen a monochrormaticrbation at frequency and
considered a noisy path obtained from (2.118) and (3.25):

wn(s; 777 6777 T’ (bl) = x(s) _|_ 677€st+i¢1
Un(sim, e, Ty d2) = y(s) + eyelstioz (3.28)
zn(simyen, Top3) = 2(s) + et sTios

wherer,(s) = (zn(8),yn(8),2u(s)), @ = (¢1,d2, ¢3) are random initial phases uniformly dis-
tributed in [0, 27) ande, is the strength of the noise (chosen to be equal for the thoegpaonent).
Notice that this model of noise acts on both the amplitudethedde-tuning of the lasers. Strictly
speaking, it does not preserve the control manifold, sinisancompatible with the constraint of real
valued Rabi’s frequencies in the Hamiltonian (3.20). Fr@28), it is clear that at finite operational
time the perturbation doest reduces to a geometric perturbation of the loop in the patermspace
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Figure 3.2: Average gate fidelity as a function of the adirimrad operational timé2T for several
noise frequencies for the model in section 3.4.1. Black boxg= 0; circles:¢, = 0.1Q,7n = 0.1€;
triangles:e,, = 0.1Q, 7 = 0.2Q2; squaresk, = 0.1€2,7 = 0.3.

since the perturbed path itself depends on the operatimnal tn the presence of the noise, different
values of the operational timE correspond to different loops in the parameters manifold.
For given values of), ¢,, T and¢, we consider the solution of the Schrodinger equation

Vr(sin, en, @) = —iTH(ra(s))Vr(sin, ey, ¢), s € [0,1]. (3.29)

where, in presence of noise, the re-scaled Hamiltoidn, (s)) depends orf’ too. Since we are
mainly interested in the transformation emerging at the ehthe loop, we set/r(n, e,, ¢) =
Vr(Lim, €y, @)

Notice that, for all practical purposes, taking the averagéhe random phases corresponds to the
action of the completely positive map

1
(2m)?
This completely positive map has to be compared with thel idéiabatic unitary dynamics. To do
that, we have evaluated the average gate fidelity by meamg ddbtmula in [Ni02] (see equation B.7
in the appendix B).

For several values of, ¢, and¢, equation (3.29) is numerically solved using the relation:

p— E(p) = / A8V (n, ey &) pVir (1, n, 8)1 (3.30)

Vr(n,e,¢) = lim T[_ = exp {—iTH(rn(k/N))% : (3.31)

whereﬁ stands for the path ordered product. The effective conlgletsitive map (3.30) is evalu-
ated taking the average oVl or more choices of the initial phasesFigure 3.2 shows the estimated
average gate fidelity plotted as a function of the adimersioperational timé7", for several values
of the noise amplitude and frequency. The unperturbed digsacorresponds te, = 0 and can be
compared with the analytical results in [FIO6], it exhibpisrfect revivals of the average gate fidelity
at finite time, in particular the first optimal operationahé is atQ)7} ~ 18.25. The numerical re-
sults show that the pattern of the gate fidelity as a functfdheoperational time can be completely
different in presence of noise.
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Figure 3.3: Average gate fidelity at the first optimal openadi time as a function of adimensional
noise frequency(/2) and amplituded,/Q?) for the model in section 3.4.1.

The average gate fidelity at the first optimal operationaktifii in the presence of parametric
noise is plotted in the figure 3.3 as a function of both amg@étand frequency of the noise. This
plot suggests that the gate can indeed present high fid&diyfar rather large noise amplitude, (=
0.49Q2). It is worth to notice that this is true unless the pertudrafrequency is in a particular range
approximatively about) ~ 0.15¢2. The presence of a typical frequency scale in the patterheof t
fidelity is a feature that will be reencountered in the othedeis of noise considered below.

We have also studied, with the same methods, the resporise ®fstem in presence of analogous
perturbations which have different symmetries. We havesiciemed the case in which only the real
part of (3.28) is taken; in this case the perturbation actg onthe amplitude of the coupling but
not in the de-tuning. The corresponding average gate fydalithe first optimal operational time is
plotted in figure 3.4. We have also analyzed the case of arpattan which is square wave shaped;
in this case grobe function is identified by its half period and initial phaselsé in this case, the
corresponding pattern of the average gate fidelity is exacthlogous to the one shown in figure 3.3
and 3.4. That leads to the conclusion that the pattern ofitijdsllargely independent of the details
of the chosen probe function and a rather general behavitunasion of the typical frequency is
observed.

Analogous results are also found for other loops of the santk kuch as the loop with the angle
¢ varying from0 to 7 /4 in (3.25) which is related to the Hadamard gate.

3.4.2 Telegraphic noise

In this section, we consider a more realistic model for ayhpisrturbation. Here we study the
robustness of the non-adiabatic holonomic gate in attaineespondence of the first optimal opera-
tional timeT™ in the presence of a telegraphic noise acting on the corairalnpeters.

Taking in consideration the ideal loop (3.25), here we sth@ynoisy paths of the following kind:

wn(3§Tstep76aT) = x(s) +§1(37Tstep7T)
yn(SQTstopyeaT) = y(s) + gQ(SaTstcpaT) s (332)
Zn(S;Tstcpa€>T) = Z(S) + 53(3>Tstop>7—)
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Figure 3.4: Average gate fidelity as a function of both theaye number of independent fluctuation
of the noiseN = nT* and the amplitude of the noigefor a monochromatic perturbation (section
3.4.1), that affects only the amplitude of the fields, in espondence with the first optimal operational
time QT

whereg; (s, Tsep, I') € [—¢, €] are three real random variables, uniformly distributedhi@ thosen
interval, which are piecewise constant {gr— 1)7gep < 7" < jTstep-

Hence, the model of noise considered here is characterizé@doparameters: its amplitude
and the typical time.,. The corresponding two-times correlation function présam exponential
decayC/(t,s) =~ e "=l for |t — s| < T4.ep, Where the correlation time is of the order of typical time
of the noise mode, namety= I'"! ~ 7.

It is interesting to compare the behavior of the gate at tis diptimal operational time to the
case of longer operational time in presence of noise. Itssipte to see [FIO6, FIO6'] that the fidelity
oscillations shown in figure 3.2 in absence of noise are gtysuppressed i > 3 in equation (3.26)
(we are near the adiabatic regime). A good approximatiorhefadiabatic regime can be already
obtained for the fourth optimal operational time.

In order to study the behavior of the gate at finite operatitmee, we have evaluated the average
gate fidelity for a fixed value of the noise amplitude= 0.1€2 as a function of the noise typical
frequency(Q7«.ep) ! in correspondence of the first four optimal working time (tbrth operational
time corresponds tQ7) ~ 75.21) in the same range of values for the ra(tmrstep)_l between the
noise typical frequency and the system typical frequenby résults are shown in figure 3.5. The data
plotted in this figure lead us to formulate two kind of consad®ns: first of all we notice again the
unexpected result that the non-adiabatic optimal workimgs (the first, for instance) appears to be
more robust than longer operational times (the forth ofdtoparational time, for instance); secondly,
we observe the same qualitative behavior of the pattern @litfidor all the optimal operational times
under study, that suggests the presence of a common meathahish account for the cancelation
of the effects of the noise.

In apparent contrast to the intuition related to the usiugiment of robustness of holonomic gates
we notice that, in the same range of frequencies of the n@batic case (and, therefore, for a larger
number of fluctuations)f’ reaches lower values. Moreover, the adiabatic gate negtishvalues
of the frequency of noise for recovering the ideal behavidéke conclude that the (approximately)
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Figure 3.5: Average gate fidelity as a function of the noisecgl frequency for the noise model in

section 3.4.2 for the first four optimal operational timesgaiigles, circles, full triangles and squares
correspond respectively to the first, second, third andfiooptimal operational time= = 0.1€2.

adiabatic (purely geometri®yOT transformation is more sensitive to parametric noise thambn-
adiabatic one.

The average gate fidelity ia also plotted in figure 3.6 as atiomof both the operational time and
the number of fluctuations of the noise (hence for differeities of the parametet;.,) for a fixed
value of the noise amplitude.

We have also analyzed the case of a noise which include degtby considering complex ran-
dom variables; (s, 7step, I'). The result are completely analogous and the introductianrmise in
the de-tuning does not introduce new elements in the patfdrdelity.

3.5 Analysis of the results

The aim of this section is to furnish a physical explanatimrttie observed behavior of the average
gate fidelity. Due to the fact that all the models of noise galthe same qualitative behavior of the
fidelity, in the following we are going to consider in morealiét the model presented in section 3.4.2.

As already recalled, the relevant parameter for the gedrakttancelation usually related to
holonomic gates in the adiabatic regime is the number ofdhtains of the noise during the gate
operational time (denotedl). This effect is related only to the swept solid angle andéependent
of the chosen operational time. If the number of cycles ofribise is large enough, the fluctuations
in the solid angle spanned by the loop are expected to becegigible. To be more specific. let us
suppose that, after a noisy loop, the swept solid angleasd the mean square over the realizations
of the noise igAw?). In figure 3.7 the mean square is plotted as a function of thebeu of cycles of
the noise; since, in the adiabatic limit, the gate depentisamthe swept solid angle, the fluctuations
of the gate are expected to have the same behavior as theaflootiin the solid angle.

As already explained in the previous section, figure 3.5 shtive average gate fidelity as a
function of the adimensional typical noise frequeri€yr..,) ! for several values of the evolution
time which correspond to the first four optimal operationales. The plot shows an analogous
behavior of the fidelity as a function of the typical noisegitencyindependentlyof the particular
value of the operational time; moreover, the minimum of thelfty is reached in correspondence of
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Figure 3.6: Average gate fidelity as a function of both theage number of independent fluctuation
of the noiseN and the operational tim@7’, for the telegraphic noise with real components discussed
in the section 3.4.2. The amplitude of the noise is 0.1
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Figure 3.7: Fluctuations in the solid angle spanned by ayrloigp as a function of the number of
perturbations of the nois®, for the noise model in section 3.42= 0.112.
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Figure 3.8: Average gate fidelity as a function of the numifefiuwtuations of the noiséV for
the noise model in section 3.4.2 for the first four optimalragienal times. Triangles, circles, full
triangles and squares correspond respectively to thedasond, third and fourth optimal operational
time. e = 0.1€2. Compare with figure 3.5 and 3.7.

(Qrstep)—l ~ (.5 for all the considered values of the operational time. Ireottd cast some light on
the nature of the cancelation effect, the same data areglottfigure 3.8 as functions of the number
of fluctuations of the noise (notice that = QT'(Q7ep) 1) A direct comparison of figures 3.5 and
3.8 suggests that the relevant quantity which accounthéomtechanism of cancelation of the effects
of the noise is its typical frequendf2rsc,) ! andnot onlythe number of fluctuationd’. On the
other hand, the fluctuations of the solid angle around thal id&lue (r/2) start to be negligible for
N > 20; a comparison with the curve for the fourth optimal workingjr (squares in figure 3.8)
suggests that the recovery of the fidelity for long cycliclation times is given also by geometric
cancelation.

For non adiabatic evolution times one can imagine the existef a different mechanism which
accounts for the observed cancelation of the noise effectsuffficiently fast noise which is related
to adynamicalinstead of geometrical cancelation. A dynamical effeci@¢owt be directly related
to the swept solid angle: in this case the relevant paransetpected to be the typical time of the
noiseyp, and a dynamical cancelation of the noise should appear tygisal frequency is suffi-
ciently large compared to the system frequency, nanf@ly.,) ' > 1. Of course this condition
implies, for fixed operational tim&’, that /N >> 1 (the usual condition for geometric cancelation);
nevertheless, as figure 3.5 shows, a cancelation of the effisets appears on a frequency scale
(Q7step) ~! = 1 independentlypf the chosen value of the operational time, thus suggeatihgnami-
cal mechanism for the noise cancelation at least for theffizstoptimal operational times.

The fact that in the non adiabatic regime the robustness Hgaamical origin can also explain
why the minimum value of the fidelity tends to decrease fora@asing values df *: if the geometric
cancelation is not present, the noise is less effectivestuiing the system when the evolution time
is short.
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3.6 Final comments

In this chapter we have considered the influence of pararnedise on the efficacy of a non-
adiabatic holonomic gate which is expected to be robustandeal (adiabatic) case. Two models of
parametric noise or disturbance have been discussed iasketfinite operational time. The average
gate fidelities for all the models of noise considered heesgmt an analogous qualitative behavior.
For each of the three models the non-ideal gate presentsakdmen of the average gate fidelity
for small frequencies of the noise (compared to the systehr Bequency), while a high value of
the fidelity is reached for noise with higher frequenciesisTdan lead to say that the presence of a
“resonant frequency” for the breakdown Bfis a rather general feature in the presence of parametric
perturbations.

We want to stress again that the usual argument in favor abingstness of holonomic quantum
computation is based on the purely geometric nature of tkenboy group that describes the adia-
batic transformations. Since the dynamics hasmapletelygeometric charactenly in the adiabatic
limit, the robustness of adiabatic gates is, in this sens#,g consequence of the adiabatic theorem.
Despite these considerations, our calculations showdhbdast in certain situations, the first optimal
operational time can be preferable to longer operationadi with regards to the robustness of the
corresponding gate against parametric noise.

Nevertheless, our results lead to the conclusion that teergbd revivals of the fidelity for suffi-
ciently fast noises is mainly due ttynamicalinstead of geometrical effects. Our conclusion is that,
in the range of operational times considered here, the wbdeancelation effects are mainly related
to a dynamical average over fast oscillations of the n(ﬁgtep)‘l > 1 and there is no relevant
connection with the ‘geometric’ robustness of the sweptismigle which plays a crucial role for the
usual argument in favor of robustness of the holonomic cdatjmn in the adiabatic regime.

In other words, not only the loop in the parameter space isattabatic in correspondence of
the optimal working giving rise to a non-adiabatic holonotyt also the noise fluctuations cannot
be adiabatic since the operational time is not long enouglhdt setting, one can observe an effect
of cancelation which correspond to an opposite situatiotin waéspect to the usual adiabatic-noise
setting. The transformation is indeed robust if the noismigh faster than the the typical system
time-scale. While in the adiabatic case the geometric datioe happens when the noise is adiabatic
with respect to the system dynamics, in the non-adiabase tae dynamical cancelation appears
when the system internal dynamics is adiabatic with respittte fluctuations of the noise.
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Chapter 4

Robustness of geometric phases: A
toy-model

In the chapter 2, we have presented timbonomic approactio quantum computation and the
argumentation that is commonly used to statedtsistnessvith respect tqparametric noiseln the
chapter 3, we have studied the robustness of a non-adidimtinomic gate, described its behavior
and compared it to the standard argument which can be appiigdo adiabatic gates.

The aim of the present chapter is to consider the standatoinengt in favor of the robustness of
holonomic gates in the presence of parametric noise angzniinfurther details It is important to
notice that the robustness argument of holonomic comjputadineitherstrictly related to any pecu-
liar properties of quantum mechanicgr to any details of the physical system under consideration.
The only ingredient which enters in the argument of robusstrif holonomic gates is thlgeometric
natureof the holonomic transformation. That geometric behavtorsically appears in the adiabatic
limit, in which the dynamical transformation is describgdabholonomy.

For that reason, in this chapter we discuss a sint@emodelwhich represents the simplest
physical set in which a holonomy phenomenon can appear.slingte model is a system composed
of a semiclassical charged particle which is constrainethtwe in a plane in the presence of a
transverse stationamnagnetic field It is worth noticing that that is essentially equivalentthe
case of a particle confined in a box which is moved around adimeagnetic flux, example that was
originally discussed in [Be84]. Using that model, we carilgasudy the robustness of the holonomic
transformation and obtain general indications about thestmess of holonomic computation in the
more interesting situations.

4.1 Geometric phase in the simplest setting

Thestandard argumenh favor of the robustness of holonomic gates under paracnatise is a
simplegeometricargumentation which, by itself, hasthing to dowith quantum mechanics and with
the peculiar features of the physical system which implds#re holonomic computation. For these
reasons, in this section we will concentratetba simplest exampla which the geometric argument
can be applied, namely a system composed s¢raiclassicaparticle moving in a static magnetic
field. The interest here is on thetatistical properties of the area of the surface spanned by a noisy
loop. The fact that it is physically related to the phase a@eguby the particle gives us a physical
motivation to study this system but, by itself, that doesplay any particular role in our context.
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So, let us consider a semiclassical particle endowed witetric charge which is constrained
to move in the plane, in the presence of a transverse statinetia field. Let us also suppose that
the position of the particle can be experimentalbntrolled and the particle is constrained to move
along a given closed loop:

v o ose0,1] — H(s) (4.1)
with (1) = ~(0). We consider a situation in which the particle is allowed @malong the path in
the operational time7l’. Hence, in the time interval € [0, T, the position of the particle a timels
given by~(t/T).

Also, we suppose that the particle is in iswternal stationary level, with corresponding energy
Ey. Ifinitially the particle is in the staté/y), at the end of the loop it will be in

) = e e FT |yg) . 4.2)

Where the acquired phase factor is the product of two ternesdytnamicalparte—*#07' and the
geometricparte’®. The latter is given by the flux of the magnetic field througa surface spanned
by the loop:

@:q/imsqus, (4.3)
S

whereS is the surface spanned by the loop, @i its oriented area. Equivalently, it can be written
by means of the line integral of the gauge potential:

@:qﬁA. (4.4)

In order to focalize on geometric aspects, one has to netjlealynamical contribution to the
overall phase factor. That can be obtained, for instanceking in a gauge with a vanishing ground
state energy, namell, = 0.

One can notice that that simple toy-model is essentiallyvaetgnt to the system originally con-
sidered by Michael Berry in [Be84], where he described thengeric phase acquired by a charged
particle confined in a box which is adiabatically moved ambariine of magnetic flux. The holon-
omy transformation induced at the end of the loop is mainigpendent of the details of the path, but
depends on a global quantity which is the integral in (4.4)ther words, if we consider a perturbed
path

’Yn(t) - ’Y(t/T) + E(t) ) (4.5)

the argument of the geometric phase changes in
<I>—><I>n:/A. (4.6)
The acquired phase factor will remain unchangete perturbatiorpreserveshe integral:

(AA:%A. 4.7)

By virtue of the Stokes’ theorem, one can write
/A:B& (4.8)
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where S, indicates the oriented area of the surfef;e spanned by theoisy path Thus, if one
is dealing with a perturbation whicpreserveshe area of the surface spanned by the loop — i.e.
S, = & — the holonomy associated to the loop remains unchanged.

It is worth noticing, however, that in the presence of thesapithe path might not be closed,
leading to agauge not-invarianintegral in (4.8). What is needed is a rule to define the geomet
phase for a non-closed loop or, in other words, one neededawlose the path. Taking inspiration
by the work of Pancharatnam [Pa56] about phases in clasgit@ls, one can for instance use the
geodesiaule to close the open loop (see [SB88, DP03] and the chajptedlaviously, that kind of
approach can be meaningful only locally, that is to say, émlysmall amplitude of the noise.

On the other hand, one can argue that the fact that the patimislosed gives rise to aaddi-
tional source of erronn the corresponding geometric phase, the error dependisgnéally on the
chosen rule used to close the loop. For non-pathologicanpials and for a small amplitude of the
perturbation, the error in the evaluation of the integrahglthe open path is expected to be propor-
tional to thesquareof the amplitude of the noise and, in particular, toith@ependenof the number
of fluctuations of the noise during the time evolution.

Let us now consider the following situation. The particleexgernally driven in order to follow
the given loopy. Nevertheless, the experimental control on the particktion is not perfect. As
an physical example, one can imagine that the particle isereed in a classical fluid. That yields
an additional component in the particle position that carréated as a Brownian motion which is
superimposed to the unperturbed loop.

A perturbation in the loop can be modeled as a stochastiepsatt), which can be character-
ized by its correlation functions. For the case of a Markascpss, one can consider the two-times
correlation function

C(t,s) = (e(t)e(s)) (4.9)

and the corresponding correlation time In the case of a stationary process with exponentially
decaying correlation function:
C(t,s) ~ e Klt=sl, (4.10)

the correlation time is defined as the inverse of the realgfak, namelyr = (K )~'. If the noisy
loop isdrawn by the particle in an operational tin¥, the ratioN = 7'/7 can be interpreted as the
average number of statistically independent fluctuatiohthe noise during the operational time. In
this setting, the heuristic argument of robustness of lmiun gates says that v > 1 — i.e. if

the correlation function of the noise decdgst enouglcompared with the operational time — the
changes in the area of the surface spanned by the loop argibkeglthat is to sayS, ~ S. In order

to develop the analysis of the phase acquired in the noisy, ca® needs to be more specific, hence
considering suitable models for the noise and selectingeifsploop.

4.2 Geometric phase in the presence of parametric noise

In this section, we will discuss the behavior of the simplergetric evolution of our toy-model
in the presence of several kinds of parametric perturbsitzom noises.

The setting is the following. The dynamics of the particléhia operational tim&” is associated
with the unperturbed loop

V(t/T) = (2(1),y(t)) - (4.11)

67



To fix the ideas and for the sake of simplicity, here we selgotdifferent sample loops:

e The first sample loop has the shape aaiare namely:

teon] - {*0 = wFt/T
y(t) = wo
z(t) = zp+1
telT,,27T,] —
| | y(t) = yo+ (t—To)/Ta 4.12)
Le 2T, 3T, — x(t) = zo+1—(t—2T,)/T,
y(t) = wo+1
z(t) = =z
t € [37,,4T,] —
[ ] y(t) Yo + 11— (t - 3Ta)/Ta )
wherel" = 47T, is the operational time corresponding to thieole loop
e The second loop has the shapeintle, namely:
— 1
e [0.7] — xz(t) = xo+ " cos (2mt/T) (4.13)
y(t) = yo+ o sin(2nt/T) .

Notice that, in both cases, the loops span a surface withtedeareaS = 1. Hence the corre-
sponding phase, acquired by the charged particle, is equét’t. One can consider a noise with
components

€(t) = (ex(t), €y (1)) (4.14)

to which the following noisy path is associated:

Mm(t) = () +€(t) = (2(t) + ex(t), y(t) + €y (1)) - (4.15)

The noisy phase (4.6) can be expanded in the following way:

T
b= [vde = [0+ o)) +des(t)
Tn
T T T
- 7{ ydz + / e, (t)d(t) + / y(t)den(t) + / e, (t)des(t) . (4.16)
vy 0 0 0
One can recognized the unperturbed integral:
¢y = fydm ; (4.17)
Y
two perturbative contributions of thfest orderin the noise amplitude:
T
of} :/ ey(t)da(t) , (4.18)
0

and
T
&= [ yltdes(t). (4.19)
0
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and one term which is of theecond ordeim the noise amplitude:

T
o :/0 ey(t)dey(t) . (4.20)

Each of these perturbative terms, a well as the whole petuphase, are defined as stochastic
integral.

The section is now divided in three subsections: in the fubsection we consider a monochro-
matic perturbation acting on the coordinates of the chapgeticle; in the second one we analytically
examine the behavior of the considered toy-model in thegmiess of a more realistic source of noise
which is modeled by a continuous stochastic process (a €@nasthlenbeck process, see for instance
[Ga83]); finally in the third subsection, we present some @tcal calculations corresponding to two
different models for the noisy component, a Ornstein-Ubésk process and a telegraphic noise. All
the calculations, both analytical and numerical, are dartbe asymmetric gauge

=—Bydz. (4.21)

4.2.1 A monochromatic perturbation

Prior to consider a more realistic model of perturbationthis section we describe the behav-
ior of the geometric phase in the presence of a simple, maaowtic perturbation. The following
discussion can look rather academic, nevertheless, ittwifl to be useful to understand the main
features appearing in correspondence with the slightlyenetaborated and probably more realistic
situations that will be described in the following sections

Let us take in consideration the sample unperturbed patbhatis the shape of a square, per-
formed with piecewise constant velocity. The operatioimakt needed by the particle to move along
the loop, is indicated witfl’, while the time needed to move along one of the segments dddipeis
T, =T/4.

For the sake of simplicity, we consider a perturbed path iitivthe perturbation acts only on one
of the segments that compose the loop. With reference togiers-shaped loop defined in (4.12),
we take in consideration the following perturbed loop:

[ 1) for ¢ e 0,7y
"(t) = { y(t/T) + e(t) for te|[T,,4T,]. (4.22)

Hence, the perturbation tsrned ononly in correspondence of the first segment of the squared
loop.
The monochromatic perturbation is written in the followiiogm:

€x(t) = ecos(nt+ ¢z)
{ ey(t) = ecos(nt+ ), (4.23)

where¢, and¢, are random initial phases. Since that perturbationldvag range correlationsit is

not a good model of noise. On the other hand, the perturbati¢.23) can be intended ageobe
function useful to test the efficacy of the geometric transformaitiotine presence of disturbance in
the classical control parameters. These probe functions &atatistical nature only since the phase
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factors¢, andg, are random variables. We take these random phases to Isticailii independent
and uniformly distributed in—7, 7[. As a result, the integral in (4.16) is itself a stochastidalale.
The perturbation (4.23) is identified by two parameters,aimplitudes and the characteristic fre-
quencyn. In the following, we compute the mean and variance of thelgtstic integral in (4.16) in
the presence of the perturbation (4.23) as functionsanfdn.

At this point, we distinguish to cases: the first one correglgoto a very peculiar situation in
which the perturbation isransverseto the segment, i.e. only the,(t) component is present; the
second case is the generic one, in which both the transyggeand the parallel componea(t) of
the noise are present.

Transverse monochromatic perturbation

In order to obtain a transverse perturbation, one has teitit = 0 in (4.23). Hence the expres-
sion in (4.16) reduces to

T
o = ?{ydw—i—/o ey (t)dx(t) . (4.24)

With the monochromatic perturbatiar(t) = e cos (nt + ¢). Taking the average over the real-
izations of the perturbation — i.e. over the choice of thedman initial phasep — one obtains that
the mean value is left unchanged, namely:

(D) = Dy = jf ydz . (4.25)
v

On the other hand, the variance is given by:

(AD?) = (D — @)?) = (97) (4.26)
where
T, Ta Ta
o, = /0 ey(t)dx(t) = z—:/o cos (nt + ¢)&(t)dt = z—:/o cos (nt + gzb)% . (4.27)
Hence,
9 Ta 9
o) = ?a/o cos (nt + ¢)dt = T (sin (nT, + ¢) — sin(¢)) , (4.28)
and )
P2 = (77;7)2 [sin® (0T, + ¢) + sin® (¢) — 2sin (nT, + ¢) sin (§)] . (4.29)
Taking the average over, one obtains:
2
(AD?) = (B2) = —— (1 — cos (11h)) . (4.30)

(nT,)?

The variancg A®?) is a measure of the fluctuations in the perturbed flux of thenatig field.
Analogously, one can compute directly the variance of tresphwhich reads:

(A(e®)?) = (|e'® — €®0]?) = 2(1 — (cos AD)) ~ (AD?) | (4.31)

and
(e'®) = i (4.32)
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One can formulate two observations from the result expdess@.30). The first observation is
that the amplitude of the fluctuations in the perturbed irgtegcales as(n7,)~!. That can be inter-
preted as a simple application of tRéemann-Lebesgue lemmahe consequence which is relevant
for quantum computation is that, for given amplitude andfiency of the perturbation, the variance
of the surface spanned by the perturbed loop can be madgihdglincreasing the operational time
T,. The result of this simple situation is agreementvith the standard argumenof robustness of
holonomic gates, since the fluctuations decrease withasarigN = nT,. Notice that that behavior
corresponds to the fact that the noise has only a transvenspanent. The second observation is that,
if one considers only closed perturbed path, one has totgéeallowed frequencies which satisfy
vT, = 2km, for k € 7Z, and equation (4.30) simplifies:

52

2y
(AD?) = AL (4.33)

In other words, the term proportional tos (1) in (4.30) corresponds to the fact that in the
presence of the perturbation the path might not be closed.
Generic monochromatic perturbation

It is more interesting to consider the case in which a peadtiiwh is present both along theand
y components:

{ ex(t) = ecos (it + ) (4.34)

ey(t) = ecos(nt+ ¢y) .

In this case, one has to consider all the terms containedi8)4Awhich read as follows:
By = [T, (t)da(t) = —Tia / cos (nt + ¢y )dt (4.35)
Py = [y y(t)des(t) = —e(yo+ 1)y / sin (nt + ¢, )dt (4.36)
By = [T (t)den(t) = —e2 / cos (1t + ) sin (t + ¢o)dt . 4.37)

It is immediate to distinguish betwedr, and®,, which are corrections of the first order in the
amplitude of the noise, andl; which is a correction of the second order. In analogy to wizet h
been done in [DP03], one coufteglectthe higher order correction. Nevertheless we will keep the
second-order term during all the calculations and showith&bpntributioncan be relevantindeed,
the description of the consequence of that second orderitethe overall integral along the noisy
path is the main contribution of the present chapter.

Taking the average over the random initial phases, onerabtai

(4.38)

ro| N o

and

(caDeal(s) = (e(D)ey(s) = 5 cos(nlt—s)) (4.39)



From which it follows that:
(®1) = (Py) = (P3) =0. (4.40)

Hence, the mean value of the perturbed integral remainsamgelt(®) = . Its variance reads
as follows:
(AD%) = (@) + (03) + (0F) — 2(P1D2) — 2(P2P3) — 2(P3®1) . (4.42)

As we will show below, only theliagonalterms do contribute, while theff-diagonalterms do
vanish. About the diagonal terms, they give the followingtcibutions:

e For the first perturbative term, as in the previous exampéeohbtain:

T.
o, = —Tia /0 cos (gt + ¢)dt (4.42)
that yields
2
(®2) = (77;1)2 (1 —cos (nTy)) . (4.43)

e For the second term, we have:
Pg = (yo +1) (€x(Ta) — €2(0)) = (yo + 1)Aey . (4.44)
If €,(T,) ande,(0) are statistically independent one obtains:
(@) = 2(yo + 1)*(e2) - (4.45)
However, for the monochromatic perturbation, they are taitssically independent and so we

have:
(‘I’%> = (yo + 1)2&72 (1 —cosnTy,) . (4.46)

e The last, second-order, term is:
T,
Oy = —5217/ cos (Nt + ¢y) sin (nt + ¢5)dt . (4.47)
0
Its mean square reads

Ta Ta
(<I>§> = 77254/0 dt/o ds(cos (nt + ¢y) sin (nt + ¢5) cos (ns + ¢y) sin (s + ¢z)) .

(4.48)
This expression can be simplified, since
(cos (nt + ¢y) sin (nt + @) cos (ns + ¢y) sin (ns + ¢z)) =
(cos (nt + ¢y) cos (s + ¢y)) (sin (Nt + ¢z) sin (ns + ¢z)) =
(cos (nt + ¢y) cos (ns + ¢y)>2 , (4.49)
and )
(cos (nt + ¢) cos (ns + ¢)) = = cos (n(t — s)) , (4.50)

2
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to obtain:
et [T T, , e
(®2) = T/ dt/ dscos (n(t —s))” = g(nTa)2 . (4.51)
0 0

It is important to notice that the last term is of the forth @rdh the noise amplitude, but it
also depends quadratically on the operational tilgehrough the number of cycles of the
perturbationN = nT,.

e It remains to show that the off-diagonal terms vanishes tt®statical independence gf and
€y, ONE obtains:

(®,8y) = yOTtl / dt(Aeye, (1)) = 0 (4.52)
(ByD5) = yOTtl / dt / ds(e,(t)ey(s)én(s)) = 0 (4.53)
(B3Dy) = / dt(Aese,()en(t)) = 0. (4.54)

To summarize, we get the following expression for the mearasg of the integral along the
perturbed path:
52 1 54

<A(I)2> = 5 (77Ta)2 (1 — COS (77Ta)) + (yO + 1)2 (1 — COos 77Ta) +| + g(nTa)Q . (455)

Let usemphasizevhat is the main result of this section, i.e. the form of theosel-order contribu-
tion &3, which is not in agreement with the heuristic argument imfaf the robustness of holonomic
gates. The important fact is that the fluctuations of the sg@@vder increase with increasing number
of cycles of the noise. Though that contribution is of higbester in the noise amplitude, even for
€2 < ¢, it can become relevant for sufficiently high valueshofor, in other words, for fixed noise
frequency and long operational tirfie

4.2.2 Noise as a random process

In the previous section, we have considered the behavidreofitometric phase in the presence
of a monochromatic perturbation in the loop. The statisficaperties of the perturbed integral were
obtained taking the average over the choice of the initiakpl. In this section, we are going to work
with a more realistic model for the noise affecting the conparameters.

Contrary to what was done in the previous section, here wecaiisider a model for the noise
which is described by a stationary random process, chaizsteby anexponential decapf the
two-times correlation functionAlso we assume that the relation (A.4) holds true.

We consider the same unperturbed loop used in the sectioh, 4t particle is moving with
piecewise constant velocity in an operational tiffie Each segment of the loop is ran in a time
T, = T'/4. The noise, acting along both the directiemndy, gives rise to a noisy loop:

Y — T =7t/T) +et). (4.56)
Let us recall that the noisy phase

d = —/ ydx | (4.57)
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can be expanded as:

3 = - / (t) + e (1)] d [2(t) + ea (1)

- / y(t)da(t) — / y(t)de,(t) — / ey(t)dx(t) — / ey(t)dex(t)

We can distinguish the three contributions:

T

3 = - /O y(t)deu (1 (4.58)
T

by = — /O e, (t)dz(t) (4.59)
T

o3 = —/0 ey(t)deg(t) . (4.60)

For the noise component along thexnd they directions, we put (see also the discussion in the
appendix A):

(ezy(t)) = 0 (4.61)
(eay(Deny(s)) = €Clts) (4.62)
(€xy(t)ézy(s)) 2K (t, ) (4.63)
(ex(t)ey(s)) = 0, (4.64)
with the two-times correlation function:
C(t,s) = e Tlt=sl (4.65)

It is instructive to consider the integration only along finst segment [as in (4.22)]. In this case,
we write the perturbative terms in (4.58,4.59,4.60) aowd:

d; = —/T Yo (t)dt (4.66)
by = ——/ eyt (4.67)
by = - /0 e, (D)ea(t)dt . (4.68)
It is immediate to show that:
(P) = Py, (4.69)
and
(AD?) = ((® — Bg)?) = (®) + (®3) + (P3) (4.70)

and we obtain:

(@) = e2(0))%) (4.71)

+(Ta
/Ta / " dsC(s,1) (4.72)

vo (e
2
) = <5
(®%) = / /dsCst) (s,1) . (4.73)



To evaluate these integrals, we assume the following esjmres for the correlations functions:

Clt—s) = e Tl (4.74)
K(t—s) = T[20(t—s)—T]e *t=sl (4.75)

Using the relations in (A.22, A.23, A.24, A.25), in the limit' 7« < 1, one obtains the following
expressions:

(@f) = 2% (4.76)
1 2

(®3) = *yg (FTa_m> (4.77)

(@3 = ¢ <FTCL—I—%>. (4.78)

Notice that the three contributions to the total mean sqoétée noisy integral have different
interpretations and behavior:

e The contribution ofb, is related to the fact that the noise in general does not predee initial
and the final point of the path, if one requires th@f') = ¢(0) this term vanishes while in the
general case it gives a contribution of ordérand is independent of the operational tiffie

e The contribution of®, is related to the fluctuations of the noise in a direction Wwhgtrans-
verse to the unperturbed loop, this contribution is of orefebut it depends on the average
number of statistical independent fluctuations of the ndigéng the operational time, denoted
N = I'T; in particular the mean square &6 goes to zero in the limilv — oo.

e The contribution of®; is related to the combination of noise along orthogonalatioe. The
term (®3) is of higher order (proportional te'), nevertheless, it isnboundedas function of
N =T'T. We have that for fixed the mean square diverges in the limit— oo.

Let us now consider the case in which the noisaursed onduring all the operational tim&’,
namely

() =~(t/T) + €(t) for t €[0,T] . (4.79)

In analogy to what we have obtained for the one-segmentibaiion, for the complete loop we
have:

Ta 2T, _ _
o = — /0 yode(t) — / A =7/ ?(yl %) ge. (1) (4.80)
3 Ta(t —3T/4)(yo — 1)
- [ Cwdetty - [ - dex (1)
By — — /O " wey(t)dt— /3 : Zl(woijjwl)ey(t)dt (4.81)
i A
o3 = —/0 ey(t)deg(t) . (4.82)

It is immediate to recognize that the off-diagonal terfidg @), for h # k, do vanish.
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One can neglect the correlation terms between the addenrblsarid -, which are negligible if
the correlation time of the noise decays sufficiently fashwéspect to the operational tirfie Hence
we can write:

Ta Ta
(@) = / dt/ ds [ ve + K (t —s) + 32(y1T %0)” tsK(t — s)
2 2 [T o (21— )
(®3) = 32¢ / dt/ dsTC(t —s)
0 0

T T
2y = 4 —s —5).
®2) = ¢ /0 ds /0 At — $)K (1 — 5)

Using the relations in (A.22, A.23, A.24, A.25, A.26) we dbtan the limite T7 <« 1:

o 2 2
@f) = 22 +ad) + S (T B (.89
(®2) = 22 [16(””}7;“)2% (% - %)] (4.84)
(@) = ¢ [FT+ %} : (4.85)

Finally, we have found the following general expressiontfe mean square of the noisy integral
(in the limite "7 < 1):

(AD?) — ¢ <a+ bt fe ) 4 ATT) +e) . (4.86)

1
rr)  (I7)? )
That result shows that the terms of ordérands* in the mean square of the geometric phase give
contributions of different nature to the mean square of thisynintegral. While the corrections of
ordere? are bounded from above, the term of oretéis unbounded. Puttingy = I'T’, for fixed value
of £, one obtains that the lower-order correction decreasdsimgteasingV, while the higher-order
terms grows linearly with the number of fluctuations of théseaV.
4.2.3 Comments and interpretations

Let us notice that the leading term at the second order, whiptoportional ta:* NV in (4.86) and
(4.78), comes from a stochastic integral of the kind

T
S = /O a(t)dA(L) , (4.87)

where botha(t) and 5(t) are stochastic processes with two-times correlation fonaf'(¢,s) =
e~ Tlt=sl, The stochastic integral can be defined as the root meaneskimitr(see for instance [Ga83])
of the sum

N—
S=Y_ alt;)(B(t; + 5t) — B(t;)) (4.88)
wheredt = T/N. The variance of the integral (4.87) is the limit of

ZZ (B(t: + 6t) — B(t:))(B(t; + 6t) = B(¢5))) , (4.89)
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where the average of and factorizes for the statistical independence of the prasesé/e have

A8 = (a(ti)a(ty) {(B(ti+1)B(ti1) + (B(E)B(E)) — (Btirat)B(t;)) — (B(t+1)B(t))} -

ij

(4.90)
Evaluating the two-times correlation functions, one aigai
AS2 _ Z<a(ti)a(tj)> {26—F\i—j\6t o e—F|i—j+1|6t o e—F|j—i+1|6t} ] (4_91)
ij
The term in curled brackets is
2(1 — 719 ~ 216t for |i—j|=0
—(1 — e T2 ~ _T2(6t)? for |i—jl=1 |, (4.92)
e—F|z’—j|6t(2 o eF(St . e—F(St) ~ e—F\i—j\étF2(5t)2 for |Z —j| >1
and{a(t;)a(t;)) = e~ i=ilo,
Taking the limitdt — 0, only the terms withji — j| = 0 do not vanish, leading to
T
AS =) oIt ~ / oTdt = 2¢'TT = 2¢'N | (4.93)
. 0

J

whereN = I'T'is, as before, thaverage number of statistical independent fluctuations

Interpretation
In the previous section, we have obtained the following lexgression (forN > 1) for the
variance of the geometric phase up to the second order imipétade of the noise:
2
o2 ~ N +bet + e’ N . (4.94)
The terms appearing in (4.94) have a simple interpretation:

e The first-order term gives a contribution to the varianceprtonal to

That corresponds to the fluctuations which are transversbetdoop. Each transverse fluc-
tuation gives a contribution to the area (the stochastegiall) which is proportional te. If
the noise experiencd’ statistically independent fluctuations during the opersati time, the
contribution of each fluctuation to the area of the surfagadportional to=/N. Since theN
fluctuations are in average statistically independent,hasea total variance:

g g
o1 = N\/N = % (4.96)

e The constant second-order term is related to the fact thatdrsy loop is in general non closed,
hence yielding an additional fluctuation in the stochastitegral which is proportional to the
square of the amplitude of the noise. That contributes tadtad variance with a term:

o9 =2 . (4.97)
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e Finally, the second-order term which is proportionalXas interpreted as follows. A generic
oscillation of the noise with amplitudecontributes to the area of the noisy surface with a term
proportional to=2. SinceN is the average number of statistically independent fluicingt one
has a contribution to the total variance proportional to

o3 =e2VN . (4.98)

Analogously, for a monochromatic perturbation (as the oiseusgsed in section 4.2.1), the
fluctuations are not statistically independent, hence @sett sumN coherent fluctuations,
giving rise to the terno, = 2V [see equation (4.55)].

The three terms have different origins and can be considerbd mutually independent, hence
they have to be summed in quadrature, yielding the expregsi@.94).

4.2.4 Numerical evaluations

In this section, we present several results faromerical calculationsnvolving few different
settings. In particular, we consider two models for the @@aiffecting the control parameters.

4.2.5 Telegraphic noise

The simplest model is a telegraphic noise. Here we consitidegraphic noise with correlation
timer (see the appendix A) which perturbs a given loop. We consiiietwo sample loops introduced
above, the first one is a loop which has the shape of a squaire (@42)], while the second one is a
circular loop [as in (4.13)].

For each loop, which is drawn in the operational tiffiewe have numerically computed the
average(®), and the normalized root mean square

357
@)

of the noisy integral. We have considered a fixed value of thieenamplitudez = 0.1, which
corresponds to th&) per cent of the linear dimension of the loop. The results kottqal as a function
of the average number of statistically independent fluainatof the noise, nameliy = 7'/r. For
the square-shaped loop, the mean value and the normaliaechean square are plotted in figure 4.1.
For the circle-shaped loop, they are showed in figure 4.2.

AD/D = (4.99)

4.2.6 Ornstein-Uhlenbeck process

One could notice that the telegraphic noise produces a sapgth which isdiscontinuous A
continuoussample path is for instance produced by the Ornstein-Uklgnmodel. In order to visu-
alize the effects of this kind of noise on a given loop, we haleéted some examples of noisy paths
for several values oiV and of the noise amplitude. For a square-shaped loop, thplagaths are
plotted in figure 4.3, while the same is plotted in figure 4 Atfe circle-shaped loop.

For the Ornstein-Uhlenbeck model of noise, the mean valye and the normalized root mean
squareAd/(®) are plotted in figure 4.5 for the square-shaped loop, and imdig.6 for a circular
shaped loop for a noise amplitude= 0.1.
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Figure 4.1: (a) For a telegraphic noise, the plot shows thenreelue of the integral for the noisy loop
related to a square-shaped unperturbed loop as a functithe @verage numbe¥ of fluctuations
of the noise. (b) Rescaled root mean square of the integragjghe noisy loop as a function of the
average numbeW of fluctuations of the noise: = 0.1.
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Figure 4.2: (a) For a telegraphic noise, the plot shows thereelue of the integral for the noisy loop
related to a circle-shaped unperturbed loop as a functidheodverage numbéy of fluctuations of
the noise. (b) Rescaled root mean square of the integral &h@noisy loop related to a circle-shaped
unperturbed loop as a function of the average number fluctuations of the noisez = 0.1.
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Figure 4.3: Unperturbed square-shaped loop (a), and naig fior a Ornstein-Uhlenbeck model of
noise, withe = 0.1 andN = 10 (b), N = 100 (c), andN = 200 (d), and with: = 0.01 andN = 100
(e), andN = 1000 (f).
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Figure 4.4: Unperturbed circle-shaped loop (a), and noa&higpfor a Ornstein-Uhlenbeck model of
noise, withe = 0.1 and N = 10 (b), N = 100 (c¢), andN = 200 (d), and with: = 0.01 andN = 100
(e), andN = 1000 (f).
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Figure 4.5: (a) Mean value of the integral for the noisy loejated to a square-shaped unperturbed
loop as a function of the average numi@€érof fluctuations of the noise, for a noise modeled by
a Ornstein-Uhlenbeck process. (b) Rescaled root meanesgfidine integral along the noisy loop
related to a square-shaped unperturbed loop as a functibie eiverage numbéy of fluctuations of
the noise, for a noise modeled by a Ornstein-Uhlenbeck psoee= 0.1.
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Figure 4.6: (a) Mean value of the integral for the noisy loefated to a circle-shaped unperturbed
loop as a function of the average numi@€érof fluctuations of the noise, for a noise modeled by
a Ornstein-Uhlenbeck process. (b) Rescaled root meanesgfidhe integral along the noisy loop
related to a circle-shaped unperturbed loop as a functidheo&verage numbéy of fluctuations of
the noise, for a noise modeled by a Ornstein-Uhlenbeck psoee= 0.1.

The variance of the noisy integral increases with increpdinbecause of the contribution of the
term which is of second order in Decreasing the value af the second order effects becomes
relevant only for higher value of the average number of flatituins of the noisévV. The mean value
and the normalized root mean square are plotted in figurecot.thé square-shaped loop, and in
figure 4.8 for the circular-shaped one, for a smaller noispliimde ¢ = 0.01 of about1 per cent of
the linear dimension of the loops. These plots can be cordpaith their homologous for a larger
noise amplitude = 0.1. The second order effects are still present, but becomearaidor larger
values ofN.

At least qualitatively, the numerical results presentetetae in agreement with the analytic
results and are qualitatively independent of the detailthefchosen unperturbed loop and noise
model.

4.3 Final comments

In this chapter we have made use di@mple modein order to study thetability of thegeometric
phase The appearance of geometric phases is not strictly retatatly dynamical quantity deter-
mining the specific physical system, but it is mainly a consege of general geometric features.
For that reason, we argue that the simple toy-model can lzetasgescribe thgeneral behavioof
geometric phases in the presenceafametric noise

The principal result presented in this chapter is the fortheimean square of the geometric phase
at the second order in the noise amplitude. We can indeed tiegt following kind of expression of
the mean square as a function of the average number of is&tisindependent fluctuations of the

noiseNV:
2

o2 a% +et(b+ceN) . (4.100)
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Figure 4.7: (a) The mean value of the integral for the noigpleelated to a square-shaped unper-
turbed loop as a function of the average numbeof fluctuations of the noise, for a noise modeled
by a Ornstein-Uhlenbeck process. (b) Rescaled root meawesgifithe integral along the noisy loop
related to a square-shaped unperturbed loop as a functibie eiverage numbéy of fluctuations of
the noise, for a noise modeled by a Ornstein-Uhlenbeck psoee= 0.01.
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Figure 4.8: (a) The mean value of the integral for the noigplelated to a circle-shaped unperturbed
loop as a function of the average numk¥€rof fluctuations of the noise, for a noise modeled by
a Ornstein-Uhlenbeck process. (b) Rescaled root meanesgfidine integral along the noisy loop
related to a circle-shaped unperturbed loop as a functidheoverage numbéy of fluctuations of
the noise, for a noise modeled by a Ornstein-Uhlenbeck psoee= 0.01.
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Besides of the first-order contribution (proportionaktan the mean square), one can notice two
terms which are of higher order. The constant term is rel&teithe fact that the noisy path is in
general non-closed, giving rise to an additional uncetyaglue to the lost of the gauge invariance.
The important term, from our point of view, is the one whiclpisportional toN. Even ife? < &2,
that term can become relevant far > 1. That observation leads torafinemenbf the argument
of robustness of the geometric phdsee section 2.7.1) and of the corresponditrgtegyto obtain
robust holonomic gatesee the section 2.8). Taking into account the perturbativributions at the
second order, one has to find thygtimal value of theoperational timewhich minimizes the variance
in (4.100). The usual argument, based on the first-order, teuggests that the optimal strategy is
to approach the limif” — oo. On the other hand, the second-order analysis states flsaiseless
to increase the operational time above a certain threshali suggests to reach a finite value of the
optimal operational time[" = T;,.
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Chapter 5

Robustness of geometric phases: A case
study

In the previous chapter we presented a discussion aboatgnenent of robustness holonomic
computation based a toy-model that, probably, is the sistjplysical example in which geometric
phases appear. Moreover, the argument of robustness afdmolo gates ipurely geometri@and, as
a matter of fact, as nothing to do with quantum mechanics hénfollowing, we consider the fact
that the geometric behavior can appearuantum mechanics the adiabatic limit, giving rise to
holonomies, or geometric phases.

We take in consideration a representative example thamnisidered in literature and discuss the
behavior of the corresponding geometric phase in the pcesehparametric noise. The case study
is one of thesingle-qubit holonomic gatgsresented in [Du01] (also reviewed in the chapter 2). In
particular, we considenumerical solutionf the corresponding Schrodinger equation in compar-
ison with the ideal gate which is expected in the adiabatigtland in the absence of noise. The
second-order effectthat appeared in the discussion of the toy-model in the pusvchapter will
play a role also in the case study analyzed here. It is wortiting that the standard argument of
robustness refers to the behavior of the noisy geometrisgphathefirst orderin the amplitude of
the noise. Hence, once the first-order term becomes ndglidite leading contribution corresponds
to thesecond-ordeterms. At this point, the study of the second-order termgivasrelevant

5.1 Single-qubit holonomic gate

As a case study, in this section we consider one of the simgjhé-holonomic gates proposed in
[Du01]. That gate is reviewed in chapter 2 and it is also e mrthe discussion of non-adiabatic gate
in chapter 3. The system under consideration is a singl@achjpn with a structure of stationary or
metastable states as depicted in the figure (5.1). Transibietween the levels are driven by resonant
lasers fields, hence the system is described, in the rotatinte, by the following Hamiltonian:

H= % (x]0)(e| + y|1)(e| + z|a){e| + h.c.) . (5.1)

In order to obtain the geometric gate, one has to chose theot@arameters to be real-valued,
namelyz = z*, y = y*, andz = z*. The additional constraint’ + 32 + 22 = 1 is also needed.
Hence the corresponding control manifold is a two-dimemsigphere. Under these conditions, the
system presents a doubly degenerate subspace with vaneigienenergy. The system is initialized
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Figure 5.1: On the left: structure of the levels of the sirtgggped ion, with the relevant laser fields.
On the right: a loop on the control manifold.

with x = y = 0, hence the initial Hamiltonian corresponds to Narth poleon the control manifold.
The computational space, defining the qubit, is determisetthe linear span of the twaark states
Ho = span{|0), |1)}, which is initially decoupled.

It is easy to check that the corresponding connection oma-for the degenerate space is

A = cos Vdyoy, (5.2)
expressed in polar coordinates on the two-sphere, namely

tanp = J (5.3)
X
cos¥ = —— 2 , (5.4)
Va2 +y? + 22
whereo, is the Pauli matrix in the computational subspace.
In correspondence with@enericpath on the control manifold:

v oo tel0,T) — x(t), y(t), 2(t), (5.5)

one has to solve the Schrodinger equation (With 1):

d
i () = HO)lY(t) (5.6)
with 0
H(t) = HI, = 3 [x(0)|0){e] +y()[L){e] + 2(t)|a) (e] +h.c] (5.7)

and a suitable initial condition belonging to the compuatadl subspacdy)(0)) = |¢i,) € Hop. The
solution, after the operational tin¥g is written as

‘wout> - U’¢1n> 5 (58)
where, formally:
T
U=Texp (—z/ H(t)dt) . (5.9)
0

On the other hand, in the adiabatic limit, the evolution i@ domputational space, is completely
described by the connection one-form in (5.2). In corredpoce with aradiabatic loopon the
control manifold

Yada : t€[0,T] — x(t), y(t), 2(t), (5.10)
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satisfyingvaa(7') = 7aa(0), and

Yad (T
sup M <1 (5.11)

te(0,7] Vad ()]

one obtains that
|¢out> — W|w1n> ) (512)

W = Pexp <—z/ A> . (5.13)
Yad

Thus, taking the connection as in (5.2), we can write

W = exp <—i/A> = exp (i/cos ﬁdgpay> = exp (—iwoy), (5.14)

wherew is the solid angle spanned by the logp.

where

In particular we focalize on the special class of loops idfiet in [FI06] and further studied in
[Tr06, FIO6’, Lu07’]. The peculiarity of that family of loapis that they present perfect fidelity at
finite operational time, i.e. long before the adiabatic megjiis reached. These perfect revivals of
the fidelity appears in correspondence with special valdigheooperational timél” (see also the
chapter 3 for a review). The presence of the so-catlptimal working timess a peculiar feature
of a specific gate and loop which does not play any particder in the discussion of the adiabatic
regime. Nevertheless, by taking in consideration thatsctdsholonomic gates, we are allowed to
make a direct comparison between different effects of datioa, due todynamicalor geometric
features.

5.1.1 Adiabaticity of the path

A crucial point concerning holonomic computation is theuasgtion that the adiabatic limit is
reached. Only in the adiabatic limit one can assume that ltysi@al evolution of the quantum
system is properly described by a holonomic transformatomgeometric phase. Although quantum
holonomies can also appear in correspondence with noadiscyclic transformation (see chapter
2 and the references therein), only in the adiabatic limjtcic Hamiltonian yields a cyclic evolution.
On the other hand, it is as well apparent that the transféomaichieved in the adiabatic limit is an
idealization, corresponding with an ideal gate. From tlmntpof view, it is the adiabatic theorem
that ensures that the ideal transformation is approachédkddueal one under suitable conditions.

In the absence of the instrumental noise, the holonomic atatipn requires the adiabaticity
of the loop. On the other hand, one has to consider how themeesof the noise can affect the
adiabaticity conditions. In the generic case, the noisepraserveor evendestroythe adiabaticity
of the unperturbed loop. Abstracting from the details of tloése model, the effects of the noise
on the adiabaticity of the loop can depend on two physicahtijies: the operational time of the
gateT and the noise typical time. Notice that here- does not indicate the correlation time of the
noise, but the typical time under which the noisy componerihé path changes. In order to have
a (semi)quantitative measure of the adiabaticity of theeutpbed or noisy path, we consider the
following quantity:

«a = sup (5.15)

tejo,r] Uy
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where(? is the relevant Bohr's frequency. More precisely, this dihardefines arnan-adiabaticity
parameter: in thadiabatic regimgboth in the ideal and noisy case) one has 1, conversely for

« > 1 one is in the opposite regime &dst noisewhich yields a highly non-adiabatic path. The
quantity in (5.15) will be used in the following sections foacacterize a given path in the parameter
space with respect of its adiabaticity.

5.1.2 Noise models

In the previous chapter, we have discussed the geometuenamt of robustness of holonomic
gates using an over simplified model, which neverthelesblesta grasp all the essential features of
the holonomic gates. On the other hand, for any feasibleicgtighn, the geometric behavior of a
gate is not givera priori, but is a consequence of dynamical constraints and appelréncspecial
physical situations. An essential request for a gate tousegaometrically is that the adiabatic limit
is reached, i.e. the adiabatic approximation is justifidabuigh, for a certain value of the operational
time, that is true for the unperturbed gate, in order to akph@ geometric argument of robustness,
one has to require that the loop is still adiabatic even whembise is present. In other words, one
has to require that the gate presents a fully geometric li@halgoin the presence of the noise.

In the previous chapter, describing thimndard argumendf robustness of holonomic computa-
tion, and itsrefinementswe considered a typical time describing the noise comptorigme typical
time-scale was the correlation time of the noise. That isréevant time-scale to describe the ge-
ometric effects of cancelation of the consequences of tleendt is important to notice that the
correlation time is no more the relevant parameter whenidenag the feasibility of the adiabatic
approximation for the noisy loop. For instance, let us cdeisd the random processes used in the pre-
vious chapter, both the telegraphic noise and the Orn&thlanbeck process have a finite correlation
time, nevertheless a loop perturbed with this noise modeisnever be adiabatic. For instance, the
sample paths generated by the telegraphic noise are natwouas, while even though the Ornstein-
Uhlenbeck process generates continuous paths, they adifieoentiable. As it is easy to check,
the (an-)adiabaticity parameter introduced in (5.15) isaumded for those models of noise. In the
discussion of the toy-model in chapter 4, the use of the tefdtic noise and the Ornstein-Uhlenbeck
process was justified by the fact that the geometric charattine physical transformation was as-
sumeda priori and was not a consequence of the adiabatic limit. In the ptesapter, in which we
consider the physical conditions under which the systerves@eometrically, it is worth introducing
another model of noise that can prodackabatic sample-paths

In order to do that, we consider a noise determined byatser spectrumin other words, we are
going to consider a noise with exponentially decaying timwes correlation function,

C(t) = g1t (5.16)

and a corresponding Lorentzian power spectrum

w

1
S PR

(5.17)

with band widthI” and typical correlation time = I'"'. Formally, one can write the random process
as

e(t) =¢ /0+OO dw+/S(w)e'witow) (5.18)
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whereg,, are random phases. We can take advantage of the expresgom8hin order to simulate

a random process by means its power spectrum. In particu&introduce a frequency cut-off at
w = 2I". Furthermore, we make the assumption that the noisy patiilislesed. This assumption

is rather unphysical, but it simplifies both the numericdcakation that the interpretation of the
results. Indeed, in that setting, the term which correspdadhe fact that the noisy path is in general
non-closed (see the analytical discussion in the chapteiod¥ not appear, and the effect of the
noise is to induce aontinuous deformationf the loop. That assumption corresponds to select only
the frequencies which are integer multiple of the fundameinequency of the loop, leading to the

expression:
kv<2l’

e(t):./%, Y VB)elltitoe) | (5.19)
k=0

where N is a normalization factor. If the gate operational tim&'isthe fundamental frequency is
v = 2x/T. The random process is thus determined by its amplityds band widthl” and the drift
frequencyn.

We are going to consider two different settings.

In the first case we take only the real part of (5.19): this ohgreserves the control manifold,
since the control parameter are real even in the noisy cadaisl case, the noise component can be
written in the following way:

kv<2l’

e(t) = /\% Z V' S(w) cos (kvt + ¢,) . (5.20)
k=0

Notice that the physical interpretation of that assumpisotiat the noise affects only ttzenpli-
tudeof the laser fields, without introducing adg-tuning As example, some sample loops, including
the ideal loop, corresponding to= 0 and several values efandI” are showed in figure 5.2.

The second setting corresponds to a complex-valued nofsehis interpreted as a noise affect-
ing both theamplitudeand thede-tuningof the laser fields. One can compute the noise component
using the expression in (5.19). In that case, the contra@maters do not belong any more to the
ideal control manifold.

5.2 Numerical analysis

One can distinguish between two different mechanisms ttwiumt for a cancelation of the ef-
fects of the noise in holonomic gates. The first kind of caatieh is due to the geometric behavior
of the gate in the adiabatic limit. As pointed out above, iaupoint is that the adiabatic approxi-
mation holds true, not only for the ideal unperturbed loag,dso for the perturbed one in presence
of noise. If that condition is not verified, one cannot apphy argument of robustness which relies
on the geometric character of the gate. On the other hanlk imoisy path is highly non-adiabatic,
one can observe as well an effect of cancelation which hawandigal instead of geometric nature.
This second kind oflynamicalcancelation was also discussed in [Lu07’] and reviewederctiapter
3. Here we recall those argumentations and add new examudediscussions.
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Figure 5.2: Several sample loops. Unperturbed loop (a)s\Nioops withs = 0.012 andT” = 1002
(b); e = 0.1Q2 andl’ = 1092 (¢); ¢ = 0.1Q2 andT" = 5012.

In the following sections, we are going to present some teslitained with a numerical analysis
of the case study under consideration. We consider the lioegal

v o e[0T — A(/T) = («(t/T),y(t/T),2(t/T)), (5.21)

which in polar coordinates reads as follows:

3sm/2 s €[0,1/3]
I(s) = /2 s €[1/3,2/3]

37/2(1—s) se[2/3,1]

0 s€[0,1/3] (522)
o(s) = 3r/2(s— %) s€[1/3,2/3]

/2 s€[2/3,1].

That coincides with the ideal loop discussed in the chapterte ideal loop, that spans a solid
anglew = 7 /2, gives rise, in the adiabatic limit to the idegdometricevolutor

W = —ig, (5.23)

acting in the computational subspace.
We consider a noise affecting the path, giving rise to theytwop

(t) = (
mt) =9 () = y(t) + () (5.24)

i—U(t) = Hy(HU(t) (5.25)



is numerically solved with the initial conditiotV (0) = P, where P, indicates the projector on the
computational subspadé(0). The Hamiltonian in (5.25) corresponds to the noisy loopnely:
Q
Hu(t) = 5 [2a(t)[0){e] +yn(t)|1)(e] + 2n(t)|a){e] +hoc] . (5.26)
Finally, theaverage gate fidelity (&, W) between the ideal adiabatic (noiseless) transformation
and the actual dynamical evolution in the presence of neisernputedtfie definition of this quantity
is recalled in the appendix)BEventually, a completely positive mapis defined as

E : p — (UDpU(T)Nnoiser (5.27)

where the average is taken over the realizations of the noise

5.2.1 Real-valued noisy loop

In this section, we consider a noise which affects only theldaude of the laser fields, hence
modeled by a real-valued noisy component in the controlrpatars:

kv<2l’

€j(t) = /\% Z VS(w) cos (kvt + ¢y 1) (5.28)
k=0

with a Lorentzian power spectrum, and= z,y, z. Some sample paths arising from that kind of
noise are shown in the figure (5.2).

Non-adiabatic noise

For the first five values of the optimal operational time, fegbr3 shows the behavior of the gate in
the presence of noise. The amplitude is fixed te 0.1€2. In the figure 5.3a, the average gate fidelity
is plotted, while in the figure 5.3b, the (an-)adiabaticigrameter defined in (5.15) is plotted for the
corresponding working times. These quantities are plateflunctions of the rati@' /2. The plot
shows the revival of the fidelity which happens for fast ngjsehile the lowest value of the fidelity is
reached in correspondence with a noise witesonantfrequency. It is also important to notice the
high value of the (an-)adiabaticity parameter showed inrédu3b, from which it is apparent that in
this regime the perturbed loop is highly non-adiabatic.

In the regime of fast noise, the effects of cancelation degaé to the average of tiastdegree of
freedom of the noise over tteowinternal dynamics of the system. In this regime, no conoadt
expected to exist with the geometry of the noisy loop spaydtie system during the time evolution
(see also the discussion in [Lu07’] and in chapter 3).

Adiabatic noise

In the adiabatic setting, one needs to compare the efficatlyeddictual gate with the one of the
geometric gate. To be more specific, one can assume thatitiistid approximation is justified not
only for the ideal noiseless loop, but also for the noisy oHence, given a noisy loop, it spans a
certain solid anglev to which the corresponding holonomic transformation

Wy = e oy (5.29)
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Figure 5.3: (a) Average gate fidelity as a function of theaaled typical frequency of the noi$g (2,
plotted for the first five value of the optimal working timeoiin the first optimal working time (blue
line) to the fifth one (violet line). (b) The corresponding-adiabaticity parameter as a function of
the re-scaled frequency of the noise.

is associated. Since the solid angleis itself a random variable, determined by the noise, one
has to take the average over the realizations of the noisehvidrads to definition of the following
completely positive map

L p — <WanrJ1r>noise . (530)

Finally, one can compute the average gate fidelity betweendiéal geometric gatd” and the
completely positive map in (5.30), denoted/agV, £). We will refer to that quantity as thgeomet-
ric fidelity. In other words, one has to compare two average gate fidelitie first fidelity is between
the ideal gate (adiabatic limit, no noise) and the actuad gedmputed by numerically solving the
Schrodinger equation in presence of noise); the seconlitfidempares the ideal gate with a ficti-
tious gate which is the one that would be obtained for a pyfediabatic noisy loop. It is worth to
notice that, in the presence of adiabatic noise, the fidalhich is expected to approach the unit is
F (&, L), whilst that cannot be said for the average gate fidéfityV, £). Also, we expect that in the
adiabatic regimer (W, &) ~ F(W, L).

Coming back to the equation (5.30), the completely positiag can be written as

p — L(p) =) pue “vpev, (5.31)

w

wherep,, is the probability (or relative frequency) of the solid anghluedo.
Using the definition in (5.30), it can be immediately checkieat thegeometric fidelityhas the
following expression:
f(VV’ ﬁ) = <Sin2 w>noise . (5.32)
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Figure 5.4: (a) Comparison between the average gate fidsdiftyeen the ideal gate and the actual
gate (solution of the Schrodinger equation) for severhles of the operational time27" = 500
(blue line), QT = 1000 (green line) QT = 3000 (violet line) and the average gate fidelity between
the ideal gate and the fictitious geometric gate (dashednejlds a function of the average number
N of fluctuations of the noise. (b) The corresponding an-adieity parameter for several values of
the operational time as a function f.

For small amplitude of the perturbationsif~ = /2 + §, one can write

FW, L) ~ (sin® (1/2 4 ) noise = 1 — (6% noise - (5.33)

The figure 5.4a shows tlgeometric fidelityogether with thewverage gate fidelitfor several val-
ues of the operational time as functions of the average nupflstatistical independent fluctuations
of the noise, N = I'T". The plot refers to values of the operational time rangignf€X7" = 500 to
QT = 3000. The average gates fidelity can be compared with the geaniigtelity. The geometric
fidelity depends only oV and is it independent of the operational tiffieThe dynamical transforma-
tion is expected to coalesces with the geometric transfiiomanly if the noise is adiabatic, hence
the average gate fidelity follows the geometric fidelity ofdy small values of the an-adiabaticity
parameter, which is plotted in figure 5.4b.

In contrast with the case of the dynamical cancelationsprg &s the noisy loop remains adia-
batic, the relevant parameter to describe both the gatesiprdisence of the noise is the number of
fluctuationsN. On the other hand, the adiabaticity of the loop is deterohiog the noise typical
frequency, high values of the band width of the noise do btealadiabaticity of the loop, that situ-
ation corresponding to high values of the an-adiabaticitsameter in figure 5.4b. Also, for a higher
value of the operational time, the same number of noise ftictus is reached in correspondence of
a slower noise.
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Figure 5.5: (a) Comparison between the average gate fidudityeen the ideal gate and the actual
gate (solution of the Schrodinger equation) (solid blue)iand the average gate fidelity between the
ideal gate and the fictitious geometric gate (dashed reil lii@ The corresponding an-adiabaticity
parameter as a function of the operational time: 0.1$2, I' = 0.0352

It is worth noticing, in the pattern of the geometric fidelitiie existence of the first-order geo-
metric effect of cancelation of the noise (leading to inseem the fidelity), together with the second
order contribution that enhances the effects of the noidesarelevant for higher values of (leading
to decreasing fidelity).

A different point of view is described by the plot in figure &,5vhere the gate fidelity and the
geometric fidelity are plotted as functions of the operatidime, for fixed values of the amplitude
¢ and the band width'. The amplitude and the typical frequency of the noise ares@man order
to guarantee the adiabaticity of the noisy loop, as can bekelgein 5.5b where the corresponding
an-adiabaticity parameter is plotted. The plot in figureassBows how, for a fixed noise, the gate
fidelity is a function of the operational time. The gate ha®mpletely geometric behavior in that
setting, hence one can observe the effect of the noise btih fitst and the second order. Notice that
for fixed I, the number of independent fluctuations of the ndisé proportional to the operational
time T', hence the expected behavior of the gate fidelity is of tHevi@hg form:

2

9
~1—ag— — be*'T'T 5.34
7 “rr (534)

which is compatible with the pattern in figure 5.5a. The gemimdidelity is also plotted in fig-
ure 5.6 as a function of both the amplitude of the noise andhtimber of statistically independent
fluctuations.

5.2.2 Complex-valued noisy loop

Here we take in consideration a more general noise, whidct@affooth the amplitude and the
de-tuning of the laser fields, hence it is modeled by a compddxed noisy component in the control
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Figure 5.6: Average gate fidelity of the geometric gate asatfan of both the amplitude of the noise
¢ and the average number of fluctuations of the naise

parameters:
kv<2l

q(t)a% > VS(w)eFrowa), (5.35)
k=0

with a Lorentzian power spectrum, and= x, v, z.

With respect to that kind of noise, tlawerage gate fidelitis plotted in the figure 5.7 as a function
of the operational time, for a fixed value of the noise bandtwil’ = 0.03€2, and for several values
of its amplitude, ranging fromm = 0.01Q2 to ¢ = 0.1Q2. The plot shows théypical behaviorof
the fidelity in theadiabatic regimewhere the different trends, corresponding to the first autisd
order perturbative terms, are clearly shown. Finally, tresence is apparent, for a given noise, of
anoptimal operational timavhich presents the maximum gate fidelity. Tlo@timal working point
appears in correspondence with the maximum of the fideliggumation (5.34).

5.3 About the optimal working point

One of the most interesting features of the holonomic ambrde computation is its believed
robustness against parametric noise affecting the copém@meters. We have seen that that can be
motivated by thestandard argumendf robustness of geometric gates, which was reviewed intehap
2. That argument is based on the first-order contributiomefiise on the geometric phase.

A possible strategy to minimize the effects of the noise gssted by the standard argument
of robustness. Given an experimental setting, one dealssgine source of noise, which is charac-
terized by the amplitude and the correlation time, or the band widti® ~ 7—!. The geometric
behavior, depends only on the number of fluctuatidhs: I'7".

Hence the value ofV can be changed by changing the operational timeBy modifying the
value of the operational time, one could in principle be abl&nd a working time for the quantum
logic gate which isoptimal with respect to the issue of robustness under the given gdri@nmoise.

In other words, one has to find the valueldfvhich maximize the gate fidelity

Considering only the first-order terms in the perturbativpagsion, one is led to conclude that

the ideal optimal point is reached for high values of Th@deally, the fidelity reaches one in the limit
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Figure 5.7: Average gate fidelity in presence of a noise aiffgdooth amplitude and de-tuning as
a function of the adimensional operational tif?&". The noise has bandwidth = 0.03Q2. The
amplitude of the noise are= 0.01€2, ¢ = 0.0582, ¢ = 0.07€2, ¢ = 0.08%2, ¢ = 0.0912, ande = 0.112.

QT — o0). On the other hand, taking into account the second-ord#reirperturbative expansion,
one obtains aefinement of that strategyl' he pattern of the average gate fidelity shown in the plots
confirms the results obtained in the chapter 4 using the togleln According to them, the best
strategy to optimize the fidelity of the holonomic gate is taoapproach the limifv — oo, but rather

to find an optimal valueV = N, which corresponds to asptimal operational timd’ = T, that
maximizes the fidelity in (5.34).

5.4 Trade off between geometric and dynamical cancelation

In the previous sections, we have distinguished betweemge@ and dynamical effects of can-
celation of the noise. For the sake of simplicity and reddgbive have described the dynamical
cancelation for fast gates — at the first five optimal operatiovorking times — while the geometric
effects are illustrated for adiabatic gates correspondlintpnger operational time. It is worth re-
marking that the two different effects are not determinedheyspecific value of the operational time,
conversely the presence of the one or the other (or none divth)eis only determined by the typical
frequency of the perturbation.

In other words, geometric effects (of the first or higher oydmpear for adiabatic noisy loop,
while the dynamical effects of cancelation happen for ndiadaatic one. Hence the relevant param-
eter which discriminates between the two regimes is thedéabaticity parameter (5.15), which is
determined by both the value of the operational time andythieal time-scale of the noise. In other
words, for an ideally adiabatic holonomic gate, one canmedeoth dynamical and geometric effects
of cancelation, depending on the value of the typical fregyef the noise.

To discuss that issue, we have considered a (quasi)momoeticoperturbation, with drift fre-
quencyn and band widthi™ < n. The behavior of the system under this kind of perturbatsoshiown
in the figure 5.8a, in which the average gate fidelity and tloergric fidelity are compared, together
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Figure 5.8: (a) Average gate fidelity of the actual gate (lick line) compared with the average
fidelity of the geometric gate (narrow red line) as a funciwdnhe rescaled typical frequency of the
noisen /< for a quasi monochromatic perturbation. (b) the correspanghn-)adiabaticity parameter.
The plot shows the trade off between geometric {feg 2) and dynamical (for > ) cancelation
effects. The operational time is fixed@¥" = 2000 and the amplitude of the noiseds= 0.1¢).

with the corresponding an-adiabaticity parameter in figudb. In the adiabatic regime (correspond-
ingtoa < 1, orn/Q < 1), the gate fidelity follows the fidelity of the geometric ga@n the other
hand, in the highly non-adiabatic regime (corresponding ts> 1, orn/Q > 1) the two patterns
become different. While the geometric fidelity approaché the gate fidelity approaches one for
of the dynamical effects of cancelation.
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Conclusions

Dans la vie tout ébut a une fin
Tout n’est que souvenir
Donc efforcer vous pour que ¢a soit un bon souvenir

(it should be) a Senegalese motto.

The main result presented in this Thesis is based simaleas well assubtleobservation. The
so-calledstandard argumentf robustness of holonomic gates (or geometric phaseskipriésence
of parametric noisés based on a perturbative analysis which is truncated dirit@rderin the noise
amplitude. That argument can lead to the individuation stfategyto obtain holonomic gates which
areoptimalfrom the point of view offault-tolerance

It is thus natural to ask about the role played by ligher-orderterms in the perturbative ex-
pansion of the noisy geometric phase. With the help of someip models, we have analyzed the
terms which are of the second-order in the amplitude of theendVe have shown that these contri-
butions cannot be in general neglected since they can ptale@ant rolewith respect of the issue
of robustness. The contributions of the noise in the geaomgltrase have precise as well as simple
interpretationboth at the first and at the second perturbative order.

In particular, our considerations and results lead tefamementof the optimal strategywhich
takes into account also the higher order contributions énpirturbative expansion of the geometric
phase. We think that this observation can be of certaingstdor the realization of &ault-tolerant
guantum computation
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Appendix A

About perturbations and noise

In order to study the behavior of holonomic gates and geaoy@tases in the presence of classical
noise we need, for both the analytical and numerical cdiculs, suitable models describing the
parametric noise.

From our point of view, a model for a noise component in thetrmbrparameters is a random
process(t) characterized by its correlation functions. One can canmside two-times correlation
function:

C(t,s) = (e(t)e(s)) (A.1)

where the average is taken over the realizations of the gsodeor a stationary proceé§t,s) =
C(Jt — s]). The random function can also be characterized by means pbwer spectrum:

S(w) = O+OO C(7) cos (wr)dT . (A.2)

If the stochastic process has differentiable sample pattescan consider the function:
K(t,s) = (e(t)é(s)) (A3)

which is the two-times correlation of the derivative of thegess. In that case, one can write the

following identity:
62
K(t,s) = —888t0(t, s) . (A.4)

In the calculations presented in the chapter 4, we make uedfypothesis that the relation (A.4)
holds true. Ifthis is the case, we may say that the sample jpathe random process are differentiable
in aweaksense.

Exponential decay of correlations
For a stationary process with exponential two-times cati@h function
C(t,s) = e Flt=sl (A.5)

we have
K(t,s) = k[26(t — s) — k] e Flt=sl (A.6)
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Ornstein-Uhlenbeck process

A Ornstein-Uhlenbeck procegXt) is a stochastic process (see for instance [Ga83]) thatl$ulfil
the following differential equation:

dB(t) = —kB(t)dt + VDE(t)dt, (A7)

where(t) is a delta-correlated nois®), andk are respectively the diffusion and damping coefficient.
For a stationary process, the two-times correlation foncteads as follows:

C(t,s) = %e—’f‘t—sl. (A.8)

On the other hand, we have:

(B(6)B(s)) = K*(B(1)B(s)) + D(E()E(s)) — VD [(E(D)B(s)) + (BREs)] . (A9)

To evaluate the last term, notice that:

(€(s)B(1)) = —k(E(s)B(1)) + VD{E(s)E(D)).- (A.10)
Hence, puttingZ (¢, s) := (£(s)5(t)) we find:
%Z(t, §) = —kZ(t,s) + VDt — s), (A.11)
which has solution:
Z(t,s) = VDe =gt — ). (A.12)

(Where# indicates the heavy-side function.) We have

(€()B(s)) + (B(1)E(s)) = Z(t,5) + Z(s,t) = VDe M2, (A.13)
that yields:
YNy Dk s
(B(1)3(s)) = Dot — 5) — —=e~ M. (A.14)
Finally, one can write
K(t,s) = %C(t, s). (A.15)

Telegraphic noise

For the numerical calculations, we also consider a teldgcapoise. In that case, the random
process(t) can assume two values, sgye, ¢} with equal probability. The function has a probability
per unit timer of changing its value. It follows that the probability of wag » changes in a time
is given by the Poisson distribution:

Py(\) = e_>‘/\—', (A.16)
n:
where\ = 77. Hence one obtains that:
(et +7) = g2 for n even (A17)
ele “ ) -2 for n odd '
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The corresponding two-times correlation function has goagntial decay:

n —)\/\n

¢ 2,-2\ _
n!

=€ g2e=2mlt=sl, (A.18)

(c(t)e(s)) =) _(~1)

In the chapter 3, we make use of a simplified version of thedstahdefinition of the telegraphic
noise. In that case there is a typical time scalg, which characterized the process. As a conse-
guence, the process is no more invariant under continumesttanslation, but it is symmetric only
under finite translations (by integer multiples of the tgbiime 7.,). The two-times correlation
function can be written as an exponential only for a suffitjelarge time interval, namely

O(t,s) ~ e lt=sl/mer for |t — | > Tyep - (A.19)

Some useful integrals

In the following we calculate some integrals which are ukskfuthe discussion in the chapter 4.
Taking in consideration the case in which the two-timeselation function decays exponentially

C(t — s) = e Hlt=sl, (A.20)

and
K(t—s)=k[26(t — s) — k] e FIt=5l, (A.21)

it is straightforward to obtain the following relations:

T T B T 2 e
/Ods/o dO(t—s) = E—ﬁ<1—e ) (A.22)
/ ds/ AK({t—s) = 2 (1—e—’”> (A.23)

0 0
/ ds / dK(t—s) = T(l—e_kT) (A.24)

0 0
/ ds / QO — K(t—5) = hr+ 2 (1 —6—2’”) (A.25)

0 0 2
/ ds/ dttsK(t —s) = 7‘2—%—1—2%6_'”, (A.26)
0 0

that are taken in consideration in the chapter 4.

Quasi-monochromatic perturbation

In the chapter 5, in order to obtain an adiabatic noise, weidenthe followingformal expansion
of the stochastic process:

+o0 .
e(t) ~ 5/ dw+/S(w)ewi+oe), (A.27)
0

whereS(w) is the corresponding power spectrum, afdare randomly chosen initial phases. The
integral in (A.27) can be ill-defined, nevertheless, oneaarsider the expression

kv<ko
£ .
e(t) ~ 5 D V/S(w)elthiton), (A.28)
k=0
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where is a normalization factor, and we have introduced a fundaahéequencyr and a cutoff at
vy = kQV.
In particular, taking a Lorentzian power spectrum:

1 I

Sw) = 7 (W — wp)? + 12

(A.29)

we also consider a quasi-monochromatic perturbationjrddan correspondence with < wy.
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Appendix B

Figures of merit

One of the tasks faced in the present Dissertation is to makgarison between pairs of quan-
tum states, or between pairs of quantum transformationrdardo make a quantitative comparison,
one needs to identify a definition of a suitable "distancefine®n a pair of quantum states or trans-
formation.

In order to compare two pure states and|¢) of a quantum system, one can consider the overlap

F(,¢) = [(¢l¥)]; (B.1)

which is know as quanturfidelity. The fidelity is insensible to a global phase, hence it is eefion
the corresponding pure state density matrix and we can dswvid

F(3,¢) = V/tr (|o)(|v) (]). (B.2)

The generalization to mixed states is not as intuitive aantlee imagined to be. The following is the
correct definition of the mixed state fidelity:

F(p,0) = tr (\/p1/20p1/2> : (B.3)

which finds its proper justification in the Uhimann’s theorfsin76, Jo94]. If[p, o] = 0, the quantity
in (B.3) reduces to the classical fidelity

fp.a) = /P, (B.4)
k

whereq;, andp, are respectively the eigenvaluesgadindo.

In our discussions, we often need to compare the outputssiatg ) corresponding to an ideal,
noiseless, transformation, with the output,.;s.) of a non-ideal, noisy gate. Since one is mainly
interested in the transformation by itself, and not in onguoustate in particular, it is needed to
consider all the possible input states. Among several pitiisis, we have chosen the quantity known
asaverage gate fidelitas a figure of merit to compare quantum transformations. {#ergossible
choice could have been theorst case fidelity

Following the discussion of Michael Nielsen in [Ni02], wefide the average gate fidelity be-
tween aguantum channél€ and an unitary transformatidii as

FU,€) = / A |UTE(EYENT), (B.5)

*a completely positive and trace-preserving map [NCO0O]
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wheredy) is the normalized Fubini-Studi measure over the set of (ngtates. In order to evaluate
the quantity in equation (B.5) it is indeewt necessaryo explicitly compute the average over the
set of input states. An useful formula was provided in [Ni@e also [Bo02, H099]), which allows
to compute it directly without passing through the averager the set of input states. For a quan-
tum system withd levels, given an orthogonal badiX },—o. 421 in the space of Hilbert-Schmidt
operators, hence satisfying

tr[ X} X = dags, (B.6)

one can write the following formula:

tr |[UXLUTE(XL)| + d?

FU.8)= d2(d? + 1)

(B.7)

Example 4 (Average gate fidelity for sigle-qubit transofrmdions) For a qubit systemy = 2, and
one can chos&,, to be composed by the Pauli matrices together with the idemtatrix, and write
(B.7) in the following way:

FUE) =

%+1_12 > w[UoUig(n)] (B.8)
k=1,2,3

Analogously, if one is dealing with a two-dimensional cotapanal spaceH, = span{|0),|1)},
which is a subspace of a larger space in which the dynamicgfiaet, one can consider the Pauli
matriceso,, in the computational basis:

oo = [0)(0] + [1)(1]
o = )+ 1) -
o2 = il0)1] — if1)0) ®9)
o3 = —[0)(0] + [1)(0|
In this case the formula (B.7) reads:
11 1<
FU,) = 5+ 5tr [UJOUTg(UO)} ot [UUkUTS(Jk)] . (B.10)
k=1
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