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A reasonable starting point for a discussion of the many-body problem might
be the question of how many bodies are required before we have a problem.
In 18th century newtonian mechanics the three body problem was insoluble.

With the birth of general relativity, around 1910, and quantum
electrodynamics, around 1930, the two and one body problems became

insoluble. And with modern quantum �eld theory, the problem of zero bodies
(vacuum) is insoluble. So, if we are out after exact solutions, no bodies at

all is already to many.

Richard Mattuck,
A Guide to Feynmann Diagrams and the Many-Body problem.

DON'T PANIC.

Douglas Adams,
The Hitch-Hikers Guide to the Galaxy.



Introduction

Einstein's General Relativity shows that compact concentrations of matter
and energy modify the intimate structure of spacetime, warping it and chang-
ing the distance between points. In a dynamic universe, these concentrations
vary shape and position in time, so the curvature also has to vary.
Already in 1916, few years after the �rst formulation of general relativity,
Einstein inferred that the information about the variation had to propagate
through space at the velocity of light by means of waves. These are the grav-
itational waves, ripples of the fabric of spacetime propagating at the same
velocity of electromagnetic waves and carrying the information about how a
time varying distribution of matter and energy a�ects spacetime curvature.
Gravitational waves constitute a fundamental prediction of General Relativ-
ity which hasn't found yet a direct experimental proof. Nevertheless a very
stringent indirect con�rmation of their existence has been provided by the
observation of the binary star system PSR1913+16, accomplished by Russell
Hulse and Joseph Taylor (Nobel Prize 1993). Their studies demonstrated
that the variation in the orbital period of the system was predicted with
extreme accuracy by energy loss due to gravitational wave emission.
Besides energy loss, gravitational waves produce direct physical e�ects, in
terms of distance variation between free falling proof masses. This is the
phenomenon on which the idea of direct detection is based.
The extremely weak interaction of gravitational radiation with matter makes
the detection an extremely challenging task, but at the same time it consti-
tutes an essential reason of scienti�c interest: gravitational waves can travel

4



through large distances virtually unmodi�ed, bringing information from re-
gions of the universe which cannot be observed by means of electromagnetic
radiation.
Detecting gravitational waves will constitute the �rst step towards a com-
pletely new way of looking at the Universe, through the foundation of the so
called gravitational wave astronomy.
This extremely high interest related to gravitational wave detection and ob-
servation has motivated and motivates the research of hundreds of physicists,
engineers, mathematicians and computer scientists which keep cooperating
in order to develope and improve the theoretical and practical issues needed
for �nally capturing gravitational radiation.
The idea of direct detection is based on measuring extremely small distance
variations: starting from the '60, when the �rst resonant bars were built,
all the technology that has been developed so far in the gravitational wave
detection �eld aims at this conceptually simple task. However neither the
resonant bar antennas nor the current ground-based interferometric anten-
nas, which are the two kinds of gravitational wave detectors actually existing,
have yet succeeded.
LISA (Laser Interferometer Space Antenna) will be the �rst space-borne grav-
itational wave interferometer. It is an ESA-NASA joint mission, with launch-
ing date scheduled for 2018. While its ground-based companions aim at the
detection of gravitational signals with frequencies ranging from 10, 100 Hz

to 10000 Hz, LISA is sensitive to the frequency band 10−4 Hz − 10−1 Hz.
Di�erent astrophysical gravitational wave sources correspond to these di�er-
ent frequency ranges.
Galactic binary pulsars and massive blackholes, which are the most promis-
ing source of gravitational waves, emit at frequencies lower than 1 Hz. Many
of them are expected to be detectable by LISA. There is also a number
of known 'guaranteed sources' for LISA, the so called veri�cation binaries.
However, the complementarity of the detectable signals makes sure that the
united e�ort of ground-based interferometers and LISA can provide a wide
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map of gravitational wave sources.
LISA is constituted of three spacecraft, orbiting the sun in a giant trian-
gular formation and exchanging laser light beams in a modi�ed Michelson
interferometer setup. Di�erently from the proof masses of the ground-based
interferometers, which are suspended to extremely sophisticated supports for
noise isolation purposes, LISA test masses are in a true free fall condition.
Each spacecraft encloses and protects from external disturbances two freely
�oating test masses, following their geodesic motion and keeping as station-
ary as possible with respect to them. However, if left to itself, the spacecraft
could not purchase this purpose, because of the external perturbations pre-
venting it from actual free fall. A control system is then needed, in order to
properly readjust at every time the position of the spacraft around the test
masses.
This system is the so called drag-free control loop. Position sensors read the
displacements of the spacecraft relatively to the test masses and the measured
signals are used to drive special microthrusters, which correct the spacecraft
position.
The displacement readout is operated by the so called Gravitational Refer-
ence Sensor (GRS).
Actually, it is not possible to keep the spacecraft stationary around the test
masses by moving only the spacecraft, owing to the geometrical con�guration
of the system. It is necessary to readjust the position of the proof masses
themselves with respect to the spacecraft. Since the detection concerns only
the interferometric axes, it is necessary to keep a high quality free fall along
those directions. Therefore the position of the proof mass positions will be
corrected only along directions ortogonal to the optical axes, by means of
electrostatic actuation. The position of the spacecraft will instead be read-
justed by the microthrusters along the sensitive axes of the interferometer.
The control signals for both the electrostatic actuators and the microthrusters
are provided by the GRS.
The GRS can be a dangerous source of disturbance in its turn, because
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the position sensing noise enters the drag-free control loop. Furthermore
this noise can be reproduced by electrostatic actuators along the interfer-
omer axes, by means of cross-coupling mechanisms among di�erent degrees
of freedom. In order to achieve the extremely demanding goal sensitivity of
LISA, the 2 kg proof masses must follow a geodesic motion with a residual
acceleration ≤ 3 · 10−15 ms−2 Hz−1/2 in the LISA frequency band. The po-
sition sensing noise coupled to the main axes of the interferometer must not
spoil this condition.
The previous reasonings point out that the GRS plays a key rule in LISA and
that its noise level is crucial for succeeding in gravitational wave detection.
Therefore the development of a reliable solution for the GRS with high sensi-
tivity performances is a fundamental task for the scienti�c outcome of LISA
experiment.
The present thesis work concerns the development and experimental vali-
dation of a position readout based on optical levers. This optical readout
(ORO) is proposed as a backup solution for the LISA GRS. The current
reference solution is a capacitive readout, which has been developed by the
LISA group in Trento and which will �y on the LISA technology demonstra-
tion mission, LISA Path�nder, in 2010. The proposal of a backup solution
replies to the necessity of mission risk reduction, which is obviously a fun-
damental task in a space-based experiment. Furthermore an optical readout
is potentially more sensitive than a capacitive sensor and can thus relax the
demanding requirement on cross-couplings imposed by this latter.
An auxiliary readout has the further advantage of providing extra-information
on couplings. However, among other kinds of optical readouts, potentially
more sensitive than required for LISA, the choice of a system based on opti-
cal levers is particularly interesting for its simplicity, which is a fundamental
issue for a device planned to work in space.
The original research carried out during this thesis work concerned:

• the tests of the ORO in rigid bench-top setups, which allowed to demon-
strate experimentally the ORO sensitivity performances and to estab-
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lish some baseline solutions for the devices to use on LISA;

• the development, manufacturing and testing of a real-scale bench-top
prototype representing a possible integration scheme of the ORO sensor
in LISA, activity which has given positive results;

• the development of an ORO system to integrate on the four mass tor-
sion pendulum in Trento, in order to test the ORO in a free fall ap-
proximation along one degree of freedom, its e�ective integration in the
facility and the �rst results from the tests in Trento. This last activity
has been accomplished in collaboration with the LISA group of Trento.

The mentioned research topics are enclosed partly in chapter II and then
in chapter III, IV and V. Most of the work has been accomplished in the
LISA laboratory of Napoli, while the experimental activity concerning the
integration of the ORO on the pendulum and the related tests has required
a transfer to Trento laboratory.

In chapter I there is an introduction to the basic concepts about gravita-
tional waves, together with a short description of the current ground-based
interferometers. Then the LISA experiment is illustrated in some detail,
showing the di�erences and the main advantages with respect to the ground-
based antennas. A section is dedicated to the the expected sources for LISA.
Finally a brief description of LISA Path�nder is presented.
A detailed description of the ORO concept and its model noises is given in
chapter II. Here a short discussion of the capacitive sensor is also found,
which allows to state the requirements for the ORO and to compare the ex-
pected performances, associated to the relative cross-coupling requirements.
Chapter III is devoted to the tests of the ORO in bench-top setups and to
the research of possible baseline solutions for LISA. Chapter IV describes the
activity concerning the integration of the ORO in LISA and the real scale
prototype accomplished for bench-top testings.
Finally chapter �ve deals with the integration of the ORO in the torsion
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pendulum and the experimental results so far achieved.

Actually, the development of the ORO sensor for LISA had a very in-
teresting technological transfer, resulting in a collaboration with the VST
(Very Large Telescope Survey Telescope) group of Napoli. A small part of
my research activity has been devoted to the development of an ORO sys-
tem to be integrated in the secondary mirror of the VST, with the purpose
of characterizing the system for the positioning and the orientation of the
mirror. Since this work is not within the purposes of this thesis, it is brie�y
exposed in appendix A, referring for further details to the related article.
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Chapter 1

Detecting Gravitational Waves
with LISA

The acronyme LISA stands for Laser Interferometer Space Antenna. LISA
will be the very �rst gravitational wave detector operating in space.
The experimental apparatus consists of the hugest and most sophisticated
interferometer for gravitational wave detection ever conceived: three iden-
tical spacecraft orbiting the Sun in a triangular formation will constitute a
kind of modi�ed Michelson interferometer, with an extra-arm and armlenth
of 5 million kilometers!
LISA is an ESA-NASA joint mission. Its launching date is expected around
2018. A preliminary technology testing mission, LISA Path�nder, will be
sent into orbit in 2010.
LISA will be sensitive to very low frequency gravitational waves, emitted typ-
ically by very massive sources, as massive black hole binary systems. Many
expected gravitational wave sources are known to be in LISA frequency range
(0.1 mHz − 100 mHz).
LISA will be a very powerful instrument for atsrophysical observation: gravi-
tational wave signals detected by LISA can provide fundamental information
from near and far Universe, information which are complementary to those
brought by elecromagnetic radiation.
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In the �rst section of this chapter I will brie�y introduce gravitational waves.
Then I will describe in a certain detail LISA apparatus, its sensitivity and
the expected detectable sources. In the last section I will shortly discuss
LISA Path�nder mission.

1.1 Gravitational Waves
The detection of gravitational waves is one of the present frontiers of General
Relativity. The existence of gravitational waves was predicted by Einstein
since 1916, as a consequence of the theory of General Relativity, but till now
there is only an indirect experimental evidence about them.
This evidence stands in Hulse's and Taylor's observation of the �rst binary
pulsar ever sighted, the system PSR1913+16, discovered by them in 1974.
In over 10 years of observations, the two scientists measured a progressive
reduction of the orbital period of the binary star and veri�ed that it could
be very precisely predicted by progressive energy loss due to gravitational
wave emission. The discovery yielded to Hulse and Taylor the Nobel Price
for Physics in 1993.
Later on the discovery and observation of other binary pulsars con�rmed the
indirect evidence of the existence of gravitational waves. In 2004 an interna-
tional team of astronomers announced the discovery of the �rst double-pulsar
system, J0737-3039A/B, in which both neutron stars emit detectable radi-
ation as pulsars: after only 3 years of observation, the system provided the
same level of agreement with Einstein's theory as Hulse's and Taylor's binary
[1].
In the last �fty years many dedicated instruments have been carried out for
direct detection of gravitational waves. Starting from the �rst resonant bars,
conceived by John Weber in the '60s [2][3], the history of gravitational wave
detection passes through the development of many generations of resonant
detectors, built all around the world and still technologically improving [4]
[5]. On the other hand investigations into laser-interferometric gravitational
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wave antennas began in the '70s, and �nally in the last few years a world
wide network of interferometric detectors has started to take data.
Nevertheless gravitational waves still slip detection, no experiment has suc-
ceeded yet. Alternate manifestations of pure enthusiasm and open skepticism
couple to the expectations of the scienti�c community, which are very high.

What are gravitational waves and what makes them so di�cult to detect?
This section deals with these two questions.

1.1.1 Einsten's Field equations predict Gravitational Waves
Einstein's General Relativity equations describe the way matter and energy
a�ect space-time. Given a certain distribution of matter and energy, which is
the other face of matter, the equations tell how this distribution determines
the geometry of space-time:

Rµν − 1

2
Rgµν =

8πG

c4
Tµν µ, ν = 0, 1, 2, 3. (1.1)

The left hand side contains the geometrical information: Rµν is Ricci tensor
and R = gµνR

µν is the trace of Rµν [6] [7] [8].
A fundamental term is the metric tensor gµν , which de�nes the distance
between two points of spacetime when matter is present:

ds2 = gµνdxµdxν . (1.2)

If there were no gravitational sources and no gravitational perturbations,
spacetime would be �at and the metric tensor gµν would become the metric
of �at spacetime, that means Minkowski metric tensor ηµν :

ηµν =




−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




. (1.3)
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In this case the distance between two close points of spacetime is simply:

ds2 = ηµνdxµdxν = −c2dt2 + dx2 + dy2 + dz2. (1.4)

The right hand side of Einstein's �eld equations (1.1) describes the distri-
bution of energy and matter, through the energy-impulse tensor Tµν . The
quantity G is the universal gravity constant and its value is (6.6732±0.0031)×
10−11 m3/(s2 kg).
The presence of matter and energy a�ects the metric of spacetime, that
means the way we calculate the distance between points. If the distribution
of energy and matter changes in time, so has to do spacetime curvature. The
information about the changes in the metric have to travel in some way and
propagate from the source to all the surrounding points of spacetime. Carri-
ers of this information transmission are the gravitational waves.

In the weak �eld approximation, which means far enough from gravita-
tional sources in order to consider spacetime almost �at, it is possible to �nd
a coordinate system in which the metric tensor can be written as

gµν = ηµν + hµν |hµν | << 1, (1.5)

where hµν is a little perturbation on Minkowski's metric. There are in�nite
coordinate systems which allow this, so we can take advantage of the needless
degrees of freedom by imposing a simpli�ng coordinate transformation, called
Lorenz gauge transformation:

∂µh
µ
λ − 1/2∂λh = 0 Lorenz gauge. (1.6)

Einstein's �eld equations then become:

2h̄µν =
−16πG

c4
Tµν , (1.7)

where h̄µν is the symmetric tensor h̄µν = hµν−1/2ηµνh, h = ηµνh
µν being the

trace of hµν . The equations (1.7) are Einstein's linearized �eld equations for
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small deviations from �at spacetime. In vacuum, which means gravitational
�eld sources at in�nity, equations (1.7) become:

2h̄µν = 0. (1.8)

As the analogue Maxwell's equations for electromagnetic �eld, equations (1.8)
admit wave solutions. Note that the symmetric tensor h̄µν has got 6 indepen-
dent components out of 10, because of the 4 constraints imposed by equations
(1.6).
The gauge transformations (1.6) do not unambiguously identify a coordi-
nate system, because the Lorenz conditions and the �eld equations are both
invariant under coordinate transformations xµ −→ xµ + ξµ with 2ξµ = 0.
We can then impose 4 more constraints through the transverse and traceless
gauge conditions, the so called �TT gauge�:

h̄ = 0 traceless (1.9)

h̄0µ = 0 transverse. (1.10)

These last gauge conditions identify univocally the coordinate system: these
coordinates are called inertial coordinates and correspond to the geodesic
curves of free falling masses. Notice that in the TT gauge h̄TT

µν ≡ hTT
µν .

Only two independent components are now left for hµν , which represent two
transversely polarized wave solutions. If the wave is propagating along the z
axis, the general solution of (1.8) can be written as the sum of two compo-
nents:

hTT
µν = h+e+

µν + h×e×µν , (1.11)

where

e+
µν =




0 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 0




(1.12)
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and

e×µν =




0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0




. (1.13)

The time dependence of the wave is contained in the functions h+ ≡ h+(t)

and h× ≡ h×(t). The two independent tensors e+
µν and e×µν represent two

ortogonal polarization for a gravitational wave propagating along z.

1.1.2 Physical e�ects of GW passage
Einstein's �eld equations predict the existence of gravitational waves. Grav-
itational waves are ripples in the structure of spacetime propagating at the
same velocity of light, which carry the information about how a time varying
distribution of matter and energy a�ects the curvature of spacetime.
Gravitational waves are transverse and possess two polarization states, la-
belled by + and ×. Each of the two polarization states warps spacetime in
a peculiar way. If we consider a ring of proof masses in geodesic motion and
a wave propagating along a direction ortogonal to the plane containing the
ring, the e�ect would be the one shown in the �gure 1.1.

The ring reduces and enlarges periodically along ortogonal directions, de-
pending on the polarization state of the incident gravitational wave.
The passage of a gravitational wave causes a periodical variation in the dis-
tances between free falling proof masses: this is the physical e�ect on which
all gravitational wave detectors are based. Detecting this e�ect is extremely
di�cult, because distance variations are extremely small.

1.1.3 The quadrupolar nature of gravitational waves
In order to understand the generating process of gravitational waves by a
massive source, it is necessary to consider Einstein's linearized �eld equa-
tions (1.7), when matter is present and the energy-impulse tensor is not null.
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Figure 1.1: Periodic deformations of ring of proof masses, caused by the passage of
a gravitational wave propagating ortogonally to the plain containing the ring. The �rst
�gure shows the physical e�ect due to a purely + polarized wave, the second �gure shows
the case of a pure × polarization.

It is possible to decompose not relativistic sources into multipoles, as for the
electromagnetic �eld. The monopole moment of the mass distribution is the
total mass, which is conserved. Analogously to what inferred in electromag-
netism from the conservation of the charge, there is no monopole emission
of gravitational radiation. Although, unlikely what happens for electromag-
netic radiation, also the dipole term is null: the dipole moment of the mass
distribution is conserved, because its time derivative is the total momentum
of the source, which is constant. Then the dominant term of gravitational
radiation results to be the second derivative of the energy density quadrupole
moment of the source:

h̄ij(t, ~x) =
2G

Rc4
q̈ij(tr), (1.14)

where tr = t− |~x− ~y|/c is the delay time and the energy density quadrupole
moment is given by

qij(t) =

∫

~y∈source

yiyjT00(t, ~y)d3~y. (1.15)
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This quadrupolar dependence causes gravitational radiation to be very weak.
The coupling constant between gravitational radiation and matter is G/c5 ≈
10−53 Watt−1: it's an indication of how negligible gravitational interaction
is, compared to the other fundamental physical interactions. Unfortunately,
a very small coupling constant means that also the interaction between grav-
itational waves and detectors is very weak: this makes the detection of grav-
itational waves an extremely challenging task. At the same time, this is one
of the reasons that makes them so interesting: gravitational waves can travel
through space and matter without undergoing almost any alteration, they
can then bring information from sources and regions of the Universe which
are very far in space and time.
The quadrupolar nature of gravitational radiation implies that sources with
spherical symmetry do not emit gravitational waves. In order to detect gravi-
tational waves we have to look for sources having a very large internal kinetic
energy due to not spherically symmetric components.

1.2 Ground-based interferometric gravitational
wave detectors

A Michelson interferometer is an instrument sensitive to very small changes
in the distances between its mirrors. The mirrors can ideally be used as
proof masses, while the distance variation between them is measured very
accurately through interference of laser light.
The working principle of interferometric gravitational wave antennas is to
set the mirrors in a condition as close as possible to free fall, minimizing
all not-gravitational perturbations, in order to detect a gravitational wave
as a phase variation of the interference pattern of the interferometer. This
requires extremely complex and sophisticated technology.
The phase variation due to gravitational waves is proportional to the inter-
ferometer length, which means that an interferometric gravitational wave de-
tector is more sensitive the longer is its armlength L. The distance variation
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∆L is obtained from the phase measurents and is related to the gravitational
signal as:

∆L(t)

L
≡ h(t). (1.16)

Ground-based interferometric gravitational wave detectors achieve sensi-
tivity of 10−23 1/Hz

1
2 and work in the frequency range 10 Hz − 10000 Hz.

They deal with extremely delicate problems, such as the suspension of the
mirrors and thier isolation from noise, the control of the interferometer on
the working point.
Seismic noise limits the sensitivity of Earth-based detectors at frequencies
lower than 100 Hz. At high frequencies (f > 500 Hz) sensitivity is shot
noise limited. In the central part of the band the dominant perturbation is
thermal noise.
The ground-based interferometric antennas form a world wide network of
scienti�c collaborations. A very brief description of the state of the art of
ground-based gravitational wave interferometer is reported below.

LIGO (USA): The Laser Interferometric Gravity-Wave Observatory is a join-
ing of three interferometers, two in Hanford Reservation, near Seattle,
with 2000 m and 4000 m armlengths respectively, and one in Livingston
Parish,Louisiana, with 4000 m armlength [10]. LIGO is taking data
since 2002 and has reached its nominal sensitivity in 2006. The picture
1.3 shows the sensitivity curves of the three LIGO detectors.

GEO600 (Germany): GEO600 is a british-german collaboration [11]. The exper-
imental apparatus is sited in Hannover and the interferometer arms are
600 m long. Between 2002 and 2006 GEO600 participated in several
data runs in coincidence with the LIGO detectors and is now gradually
approaching design sensitivity.

TAMA300 (Japan): The japanese detector is located in Tokyo and has 300 m

armlength [12]. It has been the �rst one to reach its nominal sensitivity
and is taking data since 2001.
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AIGO (Australia): The Australian International Gravitational Observatory
interferometer is under construction in Gingin, western Australia. The
interferometer will have 5000 m armlength. A southern hemishere de-
tector will largely increase the directional precision of the network, as
shown in �gure 1.2: a single gravitational source appears as a long
streak in the sky without AIGO; with AIGO its location is identi�ed
to within less than a half degree [14].

Figure 1.2: AIGO contribution in determining the position of a gravitational wave
source: a single source appears as a long streak in the sky when detected by LIGO and
VIRGO, while a joined detection of LIGO, VIRGO and AIGO allows to identify the source
location to within less than a half degree.

VIRGO (Italy): The french-italian experiment VIRGO has seat in Cascina, near
Pisa [13]. The interferometer has arms 3000 m long. Virgo started its
science runs the 22nd of May of this year. As you can see in �gure
1.3, the actual sensitivity curve is still not the expected one, especially
at the lower frequencies. A peculiar feature of Virgo is the extremely
sophisticated suspension system of the mirrors: it is called "superat-
tenuatore" and is made of a chain of �ve pendular attenuation stages,
attached to an actively stabilized platform, laying on top of an inverted
pendulum, which compensates for very low frequency and large ampli-
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tude oscillations. The system allows to extend Virgo's sensitivity range
down to 10 Hz.

Figure 1.3: Comparison between the sensitivies of di�erent ground-based interferome-
ters. The black continous line represents VIRGO goal sensitivity, while the magenta line
is VIRGO's experimental curve, measured the 25th of May of 2007. The red and blue line
are the experimental sensitivity curves of LIGO ( km) respectively measured on the 4th
of June 2006 and on the 17th of March 2007, which match already very well the dashed
line representing LIGO's model sensitivity. The higher grey curve is the experimental
sensitivity curve of GEO600 (6 June 2006), while the green curve is referred to LIGO
(2 km).

These interferometric detectors have di�erent sensitivities corresponding to
their di�erent armlengths. The most sensitive are of course LIGO and
VIRGO, which have very similar expected performances.
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Thanks to its original seismic isolation system, Virgo is the only ground-
based interferometric antenna to be sensitive starting from 10 Hz. A much
more performant seismic isolation looks unachievable: below 1 Hz another
terrestrial noise overcomes the expected astronomical signals, the so called
Newtonian noise, which is due to time-dependent variations in the local New-
tonian gravitational �eld. It isn't possible to isolate ground-based detectors
from this gravity-gradient noise, which plays on such low frequencies.
On the other hand, galactic binary pulsars and massive black hole binaries
are the most promising gravitational wave sources, but they emit at frequen-
cies lower than 1 Hz and are not detectable by ground-based detectors.
The brief discussion at the beginning of this section and this last point show
the main advantages of making a space-based gravitational wave detector:

• the true geodesic motion of the proof masses;

• the possibility of making optical paths virtually as long as we wish;

• the absence of seismic and gravity-gradient noise and the consequent
break-through towards very low and mostly interesting frequencies.

As we will see in the following section, LISA will allow to look at gravita-
tional signals with frequencies in the band 0.1 mHz − 100 mHz, which is a
window complementary to the one detected by ground-based antennas. The
collaboration between ground-based detectors and LISA o�ers the possibil-
ity to look at a very wide frequency distribution of gravitational wave sources.

1.3 LISA
The �rst concept studies for a space-borne gravitational wave detector date
back to 1981. In 1985 P. L. Bender and J. Faller proposed a mission based
on three drag-free spacecraft in heliocentric orbit, named LAGOS (Laser An-
tenna for Gravitational-radiation Observation in Space)[15]. This �rst pro-
posal had already many elements of present-day Laser Interferometer Space
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Antenna (LISA) mission.
LISA is an ESA-NASA project, under study since 1993. Many di�erent
arrangements have been proposed through the years and many alternative
operative solutions are still under discussions nowadays. Here I will describe
only the �traditional� working scheme of LISA.
The LISA project is in Phase A at both ESA and NASA since 2004. At the
moment the launch is expected for 2018. The LISA Path�nder mission will
take o� in 2010, with preliminary technology testing purposes.

1.3.1 A panoramic view of LISA
The basic idea is to place proof masses in space in true geodesic motion, a
great distance apart and to measure interferometrically the distance varia-
tions induced by a passing gravitational wave.
In the present LISA design there are six proof masses in total, two by two
shielded by three spacecraft from the external disturbances (solar wind, solar
radiation pressure, etc...). The optical interferometric instrumentation is sol-
idal to the spacecraft. While the two near proof masses are freely �oating in
space, the hosting spacecraft must keep as stationary as possible with respect
to them and avoid any interference with their geodesic motion. This purpose
is obtained measuring and correcting the relative position with a drag-free
control loop, as will be explained in the next paragraph. The drag-free con-
trol will be discussed in detail in the second chapter.
After the launch, the three identical spacecraft constituting LISA will take
one year to reach their �nal orbits, placing themselves at the vertices of an
equilateral triangle with 5 million kilometer sidelength. This peculiar arm-
length has been chosen for LISA to optimize sensitivity at the frequencies of
expected gravitational wave sources.
During the long voyage towards the �nal orbits the proof masses are solidly
anchored to the spacecraft by the so called caging mechanism, getting re-
leased only at destination.
Figure 1.4 illustrates the �nal con�guration of LISA. Each spacecraft follows
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Figure 1.4: LISA con�guration: the giant equilateral triangle moves in an earth-like
orbit (R = 1 AU), 20◦ behind the Earth [15]. The plane of the triangle is inclined at
60◦ to the ecliptic. Drawing is not to scale: the LISA constellation is drawn one order of
magnitude larger than the true one.

its own orbit around the Sun: the orbits are chosen to keep the triangle sides
as close to equal as possible over the mission lifetime. The three individual
orbits have their inclinations and eccentricities such that the giant triangle
rotates around its axis, keeping a 60◦ inclination with respect to the Earth's
ecliptic plane. At the same time the center of the LISA constellation moves
around the Sun in an earth-like orbit (R = 1 AU), 20◦ behind the Earth [15].
As shown in the �gure 1.5, the constellation revolves once around its center
while completing one turn of its orbit, that means once a year.
The described geometry has the further advantage of exposing always the

same side of the spacecraft to sun radiation, providing a thermally very sta-
ble environment. Furthermore solar pannels on the illuminated lid collect
the incident sunlight for power supply.
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Figure 1.5: The �nal orbits of LISA spacecraft: each spacecraft moves on its own orbit.
The triangular constellation appears to rotate once around its center in the course of a
year's revolution around the Sun.

1.3.2 The spacecraft
Each spacecraft has the shape of a �at cylindrical box, containing a Y-shaped
payload with arms subtending an angle of 60◦ [15], as shown in �gure 1.6.
Each arm of the payload includes an optical bench, a telescope for receiving
and transmitting light and two lasers (one for backup purpose).
Each telescope points at one of the distant spacecraft at the other two cor-
ners of the triangle.
On each optical bench is assembled an electrode housing, which surrounds
the cheif protagonist of the LISA adventure: the free falling proof mass.
This is a 46 mm AuPt cube (Au 90% Pt 10%) having a mass of 1.3 kg. The
composing material assures very high re�ectivity and magnetic susceptibility
down to 3 · 10−6, with a residual magnetic moment below 0.02 µAm2.
The electrode housing hosts the so called Inertial Sensor or Gravitational
Reference Sensor (GRS), which measures the relative position of the proof
mass with respect to the spacecraft and provides the control signals for the
drag-free control loop. We will speak in detail about the GRS in the next
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Figure 1.6: LISA spacecraft. Upper part: top view of the spacecraft showing the payload
with its two optical assemblies. Lower part: one of the two payload arms.

chapter.
Because of the 60◦ angle between the proof masses, the correction of the rel-
ative position of proof masses and spacecraft can be achieved only by means
of moving both the spacecraft and the masses.
In order not to spoil LISA sensitivity to gravitational waves, the position
readjustment in the directions of the optical axes is obtained by moving
the spacecraft: special microthrusters force the spacecraft to follow the dis-
placements of the freely �oating proof mass along that degree of freedom.
These thrusters represent a really challenging technological task: they are
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ion-emitting precision microthrusters capable of exerting on the spacecraft
forces of few micro-newtons.
On the other hand, along the transverse degrees of freedom the position read-
justment is obtained by means of electrostatic actuation on the proof masses:
electrostatic actuators hosted on the electrode housing allow to move each
test mass individually in the directions ortogonal to the corresponding inter-
ferometer arm.1

Electrostatic actuators and microthrusters are both driven by the GRS, in
order to keep the relative position of spacecraft and proof masses as station-
ary as possible.
On the electrode housing are also mounted the UV �ash lamps, which are
used to free the proof mass from net charges deposited by cosmic rays and
other agents.
The planned light sources are solid-state diode-pumped monolithic miniature
Nd-Yag ring lasers, which will emit a continuous 1 Watt infrared beam with
a wavelength of 1.064 µm.

1.3.3 The optical scheme
Each laser is phase-locked either to its companion on the same spacecraft or
to the incoming light from the distant one: the �rst phase-locking system
works as a beamsplitter, the second one as an amplifying mirror or light
transponder (see �gure 1.7.
The laser light going out from one spacecraft to the other corners is not

re�ected back directly. Ampli�cation at the end spacecraft is required, due
to divergence of the beam over the very large distance. An extremely narrow
outgoing beam, a few micro radians wide, would still appear spread out over
a radius about 20 kms long, after travelling 5×109 kms. This estimate can be

1The con�guration of electrostatic actuators in LISA electrode housings allow to move
the test masses in all the six degrees of freedom, but in the drag-free control loop only the
actuators relative to the transverse degrees of freedom are used.
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Figure 1.7: LISA Optical Scheme.

easily obtained from the formula describing the propagation of of a gaussian
beam [16]. If w0 = 30 cm is the initial waiste of the beam, corresponding to
the telescope diameter, and L and λ are respectively the traveling distance
(LISA armlength) and the wavelength of the laser beam, the waiste of the
beam at the distant spacecraft is given by:

w = 2

{
w2

0

4
·
[
1 +

(
λL

π · w2
0/4

)2
]}1/2

≈ 25 km. (1.17)

Only a very small fraction of the original power, around π(w0/2)2

π(w/2)2
≈ 10−10,

reaches the end photodiode. This means that if the optical power is 1 W at
the beginning, only about 100 pW arrive at destination.
Therefore the laser on the distant spacecraft is phase-locked to the incoming
light, after the latter is been re�ected o� the proof mass and then a phase
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replica is transmitted back at full intensity. When the transponded laser
beam arrives back at the original spacecraft, it is re�ected by the local proof
mass and superposed with a portion of the original laser light, which works
as a local oscillator in a standard heterodyne detection scheme. This rela-
tive phase gives information about the length variation of that interferometer
arm.
This basic scheme is repeated along the other arms. The phase measurement
for di�erent arms are compared. Optical path di�erence changes and laser
frequency noise are so determined.

1.3.4 LISA Sensitivity
LISA will measure length changes between its arms with sub-Angstrom pre-
cision. Taking account of the considerable armlength, LISA will be able to
detect gravitational wave induced strains of amplitude h = ∆L/L ≈ 10−23

with one year of observations and signal to noise ratio of 5. Figure 1.8 shows
LISA sensitivity curve.
As you can see from �gure 1.8, LISA is sensitive in the frequency band

0.1mHz − 100mHz.
LISA sensitivity is limited at lower frequencies (f < 3 mHz) by proof mass
acceleration noise, which is due to stray forces perturbing the proof masses
from their nominal geodesic motion, as we will see in next subsection. At
higher frequencies position noise, essentially laser shot noise, is dominant.
The current estimate gives a power spectral density with a 1/f 2 slope in
low frequency, that becomes a white noise in high frequency, with a corner
at about 3 mHz. The white noise level is expected to be 4 · 10−21 1/Hz1/2,
quickly degraded above 20 mHz by the loss in the antenna transfer function,
due to the �nite light travel time [3]. For a detailed discussion of the noises
limiting LISA performances I refer to [15] [19].
A very peculiar feature of LISA sensitivity curve is that a di�use background
of unresolved galactic binaries is expected to contribute to the measured
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Figure 1.8: LISA Sensitivity Curve: it is expressed in terms of the dimensionless strain
h. The graph is produced by using the LISA sensitivity Curve Generator tool [17]. The
curve is calculated integrating over one year of observation and for a signal to noise ratio
of 5. The black line represents the white dwarf binary confusion.

strain level in the frequency range 0.1 − 1 mHz. The galactic binary back-
ground will be discussed in the paragraph concerning LISA sources.
For ground-based interferometric detectors a fundamental issue is the isola-
tion of the mirrors from noise sources. Analogously, for LISA the primary
request is the geodesity of proof masses motion. LISA sensitivity depends
on the ability in setting and keeping the proof masses in a condition as close
as possible to pure geodesic motion, at least along the interferometer optical
axes.
Figure 1.9 shows the LISA sensitivity curve compared to the sensitivity

curve of VIRGO. The main di�erence between the two stands in their fre-
quency bands, which determine the di�erent astrophysical sources to which
the experiments aim.
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Figure 1.9: Comparison between LISA and Virgo sensitivities. The curves are produced
by using the LISA data generated by the tool [17] and the VIRGO sensitivity curve data
�le available at [13]. For a consistent comparison here the LISA curve is calculated with
a signal to noise ratio of 1 and without integration over time.

1.3.5 Geodesic motion of the proof masses and sensitiv-
ity goal

It is not di�cult to show that at low frequencies the noise limiting LISA
sensitivity is acceleration noise, caused by residual stray forces which prevent
the free fall of the proof masses along the optical axes of the interferometer.
In the weak �eld approximation, the time varying distance L(t) between
two LISA test masses representing the end-mirrors of an interferometer arm
satis�es the following equation:

∂2L

∂t2
=

Fx(t)

m
+ L

∂2h

∂t2
, (1.18)

where h(t) is the gravitational wave strain, and m is the mass of each mirror
(2 kg). The term Fx(t) is the di�erential force acting on the two proof masses
along the optical axis x, which induces a spurious acceleration Fx(t)/m. The
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related acceleration disturbance is the so called acceleration noise and is
described by the power spectral density F̃x(f)/m, where f indicates the
frequency.
According to equation (1.18), the acceleration noise produces a displacement
noise x̃(f) along x, which can mask the e�ect of a passing gravitational wave
and is expressed by:

x̃(f) =
F̃x(f)

m

1

(2πf)2

1

L
. (1.19)

This displacement noise is dominant at low frequencies, owing to the f−2

term. This is true even if we assume a frequency independent force noise F̃x.
The acceleration noise rapidly degrades LISA sensitivity below few mHz.
Furthermore, it can also worsen the maximum sensitivity �oor of LISA at
few mHz.
Taking into account the interferometer armlength L = 5 · 10−9 m, in order
to achieve the LISA design sensitivity the acceleration noise spectral density
must satisfy the following upper limit:

F̃x(f)

m
≤ 3 · 10−15 ×

[
1 +

(
f

3 mHz

)2
]

m

s2
√

Hz
. (1.20)

An extremely high quality free fall is thus required, in order to allow LISA to
observe the most interesting low frequency sources. The acceleration noise
of the test masses due to stray forces must keep below 3 · 10−15 m/(s2Hz1/2)

at low frequencies down to 0.1 mHz.
Figure 1.10 shows how di�erent values of the acceleration noise a�ect LISA
sensitivity curve and how a low acceleration noise is crucial in order to detect
some of the expected gravitational wave sources.

1.3.6 Some di�erences between Ground and Space - Time
Delay Interferometry

Up to now we didn't go into any detail about how the signals coming from
the single arms of LISA are processed and combined. However a real compre-
hension of the way LISA works cannot be achieved without understanding
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Figure 1.10: LISA sensitivity curve calculated assuming di�erent residual acceleration
noise levels an on the proof masses [17], for one year integration and signal to noise ratio
of 5. The black dashed curve draws the white dwarf binary confusion noise. The red stars
represent the amplitude of some of the veri�cation binary signals, which are expected to
be emitted from candidate sources with well known parameters.

some very special features concerning its signal processing.
It has been said that LISA can be thought as a Michelson interferometer in
space, but this assertion can be quite misleading.
In interferometric ground-based detectors, laser light experiences the same
delay in each arm, because of the armlength equality. Thus the phase or
frequency noise from the laser precisely cancels at the photodetector, allow-
ing phase measurement many orders of magnitude below the intrinsic phase
stability of the laser itself. If this would not happen, detection would be im-
possible, because raw laser noise is orders of magnitude larger than all other
noises.
In contrast with ground-based detectors, it is impossible to keep the arms of
a space-based interferometer to be equal. LISA armlengths can di�er by a
few percent. The laser phase �uctuations experience di�erent delays along
each arm, so on each spacecraft the two signals coming from the two di�erent
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arms cannot be directly recombined to obtain laser noise cancellation. There
is no hope of achieving the desired sensitivity to gravitational waves if laser
phase noise is not accurately removed.
Fortunately this serious problem can be solved, as I will discuss further in
this paragraph.
Another fundamental di�erence between space-based and ground-based in-
terferometers is the interferometric detection technique, which is heterodyne
for the �rst detectors and homodyne for the second ones2.
In LISA each spacecraft sends and receives in turn two laser beams. All the
laser beams are o�set locked to each other, that means that the laser fre-
quencies are all made di�erent by an o�set value (around 10 kHz) [15]. This
frequency di�erence is needed to make the heterodyne measurement of the
phase of the transponded beam returning from the far spacecraft. Indeed, on
each spacecraft the laser light received from each arm is coherently combined
at a photodetector with the light from the on board reference laser, and the
frequency di�erence is recorded as a beat signal. Each spacecraft produces
two beat signals.
Of course the use of di�erent laser sources, although they are o�set locked
to each other, complicates further on the problem of laser noise cancellation.
On the other hand, LISA presents another peculiar problem with respect to
its terrestrial companions. LISA arms are not only inequal, they are also
time-varying. The LISA constellation expands and reduces rithmically and
this pulsation causes the spacecraft to move with respect to each other with
expected relative velocities of about 1 m/s. This means that the laser signals
received at each spacecraft are always shifted in frequency by Doppler e�ect.
The expected Doppler shifts are of the order of few MHz for annual or-
bit corrections and can be kept below tens of kHz at least for two arms
by monthly orbit corrections. Of course a shift in frequency can simulate
a phase variation due to a passing gravitational wave, so it is necessary to

2In the homodyne technique the interfering light beams come from a single laser, while
in the heterodyne technique the light beams are produced by di�erent lasers.
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rectify the signals by removing Doppler beat notes.

How can the problem of laser phase noise cancellation be solved for LISA?
Here I will brie�y discuss the simplifying model exposed in [20] [21], which
assumes that the six lasers are identical (and so are their frequencies) and
that there has been a successful prior removal from the interferometer sig-
nals3 of any Doppler beat notes due to relative motions of the spacecraft.
We thus have six residual Doppler time series as the raw data of a stationary
inequal-armlength interferometer working with equal lasers4.
The cancellation of laser phase noise can be obtained by �nding a suitable
combination of the 6 LISA signals. However, the signals cannot be combined
as they are: owing to the considerable armlengths of the interferometer, time-
delays related to light propagation have to be taken into account5.
The resolution relies in properly time-shifting and linearly combining the
signals from the interferometer. This technique is called Time-Delay Inter-
ferometry (TDI).
As indicated in �gure 1.11, the distances between pairs of spacecraft are L1,
L2 and L3, with Li being opposite spacecraft i. The Doppler data stream
are denoted by yij with i 6= j: y31 is, for example, the Doppler time series
derived from reception at spacecraft 1 with transmission from spacecraft 2
6. The other Doppler time series are obtained by cyclic permutation of the
indices i and j: 1 → 2 → 3 → 1.
The laser noise of the receiving spacecraft enters the Doppler data imme-
diately at the time of reception, while the laser noise of the transmitting
spacecraft enters at a one-way delay time earlier. Denoting the frequency
�uctuation noise of the laser aboard the ith spacecraft by Ci(t), the terms

3I refer to the two signals produced on each spacecraft by the superposition of the
beams received from the far spacecraft with a little part of the light of the local laser.

4Actually the analysis taking into account moving spacecraft and inequality of the
sources does not present basic conceptual di�erences with respect to the simpli�ed case
and assumes this latter as its starting point. For a complete discussion see [22].

5Laser light takes about 17 s to travel through one-way LISA arm.
6The present notation allows to cyclically permute indices in subsequent equations.
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Figure 1.11: Unequal armlength interferometer.

due to laser noise in the six Doppler series can be written as:

ylaser
31 = C2(t− L3)− C1(t) (1.21)

ylaser
21 = C3(t− L2)− C1(t) (1.22)

with cyclic permutations of the indices.
The total signal on the spacecraft j relative to the k 6= j 6= i arm is the

sum of the gravitational signal, the laser phase noise, the shot noise and the
acceleration noise:

yij(t) = ygw
ij (t) + ylaser

ij (t) + yshot
ij (t) + yaccel

ij (t). (1.23)

where ygw
ij and yaccel

ij involve propagation delays and geometric features of the
setup, while the shot noise has an immediate e�ect at the time of reception
and so the corresponding Doppler variable yshot

ij doesn't involve time delays.
The laser noises are the dominant terms and need to be cancelled.
It is possible to demonstrate that with independent lasers on two spacecraft
laser noise cancellation can be achieved only at some selected Fourier fre-
quencies [20], while with three spacecraft the increased number of Doppler
signals allows removal of laser noises at all frequencies.
It is possible to verify by direct substitution that three independent linear
combinations of the Doppler data which remove laser noise are:

α = y21 − y31 + D2y13 −D3y12 + D1D2y32 −D1D3y23, (1.24)
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β = y32 − y12 + D3y21 −D2y23 + D2D3y13 −D2D1y31, (1.25)

γ = y13 − y23 + D1y32 −D3y31 + D3D1y21 −D3D2y12, (1.26)

where Dj is a delay operator de�ned by Djy(t) = y(t− Lj).
There are many other combinations, which can be found with a systematic
method illustrated in [21]. Di�erent combinations have di�erent sensitivities
to gravitational waves and to system noises, so it is possible to optimize the
combinations for speci�c cases.
An important combination is the so called fully symmetric Sagnac combina-
tion, which is mostly insensitive to gravitational radiation and allows to �turn
o�� LISA sensitivity to gravitational waves, in order to measure the noise
level and discriminate whether a signal is present or not in LISA frequency
band.

1.4 Expected Gravitational Wave Sources for
LISA

The most important expected LISA sources can be grouped in three gen-
eral classes: massive black hole binaries, extreme mass-ratio inspirals, and
intermediate-stellar mass compact object binaries [18]. Each class of source
presents special issues involving data analysis, source simulation, and popu-
lation synthesis.
For data analysis purposes a more practical classi�cation of the sources is
made distinguishing them by the spectral character of their waves. Then
we have: periodic sources, chirping sources, complex chirping sources and
stochastic sources [23].
Here I will speak in some detail only about the �rst three groups.
Stochastic gravitational waves are random signals arising from the superpo-
sition of many uncorrelated sources, which produce a broadband nearly �at
spectrum. Theoretical studies on stochastic sources are very promising but
still relatively speculative.
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An accurate and complete discussion of LISA scienti�c objectives is found in
[18].

1.4.1 Periodic Sources: Binary Stars in the Galaxy
When LISA will open the eyes on the cosmos, it will be struck by the gravi-
tational radiation emitted by millions of compact binaries from our galaxy.
Compact binaries are double star systems in which two compact objects, such
as white dwarfs, neutron stars or stellar-mass black holes, orbit each other.
Binaries with orbital periods below a few hours emit gravitational radiation
in LISA band. Their signal is weak compared to massive black hole binary
radiation, but in return their number is extremely high in our galaxy and
even in the Solar neighborhood. In the Milky Way there are billions of binary
star systems and tens of millions of these are compact.
Several thousands of compact binaries are expected to be detected individ-
ually by LISA, allowing for parameter measurement. Among these binaries,
there is a number of known systems which are chosen as veri�cation binary
stars. From the observation of their electromagnetic spectrum their orbital
periods, positions and distances from the Earth are known with good pre-
cision. These guaranteed sources will thus appear in the LISA data with
predictable and recognizable signals, allowing for veri�cation of the perfor-
mances of the space detector [24]. Some of these veri�cation binaries are
indicated in �gure 1.10.
Population synthesis studies show that at low frequencies in LISA band the
number of detectable binaries is so high that they form a confused back-
ground, in which the single sources are not identi�able. In �gure 1.8 the
average galactic background is plotted with the black line.
The galactic binary background must be regarded as noise in most cases,
because it can overcome the extremely interesting signals emitted by mas-
sive black hole binaries, which are in the same low frequency region of LISA
band.
Nevertheless the binary background can give precious information on stellar
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population and in that kind of studies it is a signal in every respect.
Gravitational wave emission causes the stars to inspiral towards one another,
gradually reducing their orbital period and increasing the frequency [23]:

f ′ =
48

5π
µM2/3(2πf)11/3, (1.27)

where µ is reduced mass and M the total mass.
The masses we're talking about are of the order of 1 M¯ − 100 M¯, orbiting
each other with periods between 100 and 10000 seconds. At the considered
masses and frequencies the chirp is very slow, so frequency remains constant
over a mission lifetime. These sources can thus be considered periodic unless
we go to frequencies f ≥ 10mHz of LISA band, where we �nd several slowly
chirping ones.

1.4.2 Chirping Sources: Massive Black Hole Binaries
Chirping sources emit peculiar quasi-sinusoidal gravitational signals, with
frequency and amplitude rapidly increasing with time. As we can infer from
equation (1.27) the frequency sweeps across the LISA band only if large
masses are involved: the most promising expected sources for LISA are mas-
sive black hole (MBH) binaries with total system mass of 104 M¯ − 107 M¯

and mass ratio of 1/20 − 1 or so. These sources sweep through LISA band
in a time ranging from a few months to a few years and constitute the most
powerful gravitational wave sources expected for LISA.
Optical, radio and X astronomy have provided great evidence that nearly
all galaxies have MBH in their central nuclei. These are the remnants of
galaxy formation. MBH binaries are created by the merger of galaxies and
protogalaxies.
According to the studies of galactic dynamics, mergers of MBHs are fre-
quent events in the Universe. Galaxies are continuously forming and growing
through hierarchical processes, from the collision of smaller galactic struc-
tures.
The predicted rate of MBH mergers takes into account the great number of
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galaxies in the present observable volume. Hubble Space telescope observes
more than 1010 galaxies, and most bright local galaxies show evidence of
central supermassive black holes (M > 107 M¯). From fossil remnants of
mergers among local galaxies one can deduce the rate of MBH mergers in
the local group, that results to be at least one per year at redshift z < 1 [25]
[26].
MBH binaries are so powerful sources that LISA will be able to detect them
to a wide range of redshifts, back to the �rst protogalaxies at z ≈ 15. Ac-
cording to recent studies [27], the rate of detectable MBH coalescences for
LISA will be in the range 1− 1000 per year.

1.4.3 Complex Chirping Sources: Extreme Mass-Ratio
Inspirals

Among the chirping sources a place apart is occupied by the extreme mass-
ratio inspirals (EMRI), which are binary systems composed by a MBH and
a stellar-mass compact object, with a mass-ratio ranging from about 102 to
107. Such systems are created by scattering processes in the cores of galaxies.
Current estimates suggests that hundreds of these sources will be detectable
by LISA each year [28].
The great interest of these sources stands in the fact that they can provide
unprecedented insights into the spacetime geometry around MBHs. EMRIs
can be accurate instruments for testing Einstein's theory, because they ap-
proximate from a physical point of view the ideal sources corresponding to a
very special solution of the �eld equations of General Relativity, the so called
Kerr metric [29].
The orbit of an EMRI is quite complex. A strong �eld black hole orbit
has three orbital periods, describing respectively the motion in the axial di-
rection, the poloidal oscillations and the radial oscillations. These periods
coincide only in the weak �eld limit.
An EMRI emits thus a very complex chirping signal, which represents a
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recognizable signature of the source.

1.5 The LISA Path�nder mission
LISA Path�nder mission aims at testing in space the most challenging tech-
nologies required for LISA.
It is an ESA mission, which will �y a European payload, called LISA Tech-
nology Package (LTP) and which will host on board also an american instru-
ment, the Disturbance Reduction System, developed for NASA by the Jet
Propulsion Laboratory in Pasadena.
As we already said, the launch is scheduled to take place at the end of 2010.
The experimental apparatus is composed by a single spacecraft, containing
two free �oating proof masses, identical to the LISA ones, each placed in
its own electrode housing. These masses are used as reference masses for a
one arm interferometer: it is like having one of LISA 5 × 109 km long arms
squeezed down to 35 cm, in order to be hosted in a single spacecraft.
LTP contains only one optical bench, on which are mounted the two electrode-
housings, analogous to the ones described before for LISA.
As mentioned previously, LISA sensitivity performance is limited at frequen-
cies smaller than few mHz by stray forces perturbing the proof masses free
fall trajectories. An extremely high quality free fall is needed: the level of
isolation from stray perturbations required to achieve LISA sensitivity must
ful�l the condition expressed by equation (1.20). A so demanding require-
ment has never been reached before in drag-free �ight experiments. Verifying
the feasibility of LISA drag-free requirements and the performances of the
inertial sensor will be one of the fundamental tasks of LTP.
A second task will be the testing of the micro-Newton electric propulsion
system, which we mentioned before.
Other fundamental tests that LTP will ful�l concern: the electrostatic actu-
ators used to move the proof masses along the transverse degrees of freedom;
the Charge Management System, compensating the net electrical charge de-
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posited on the proof masses; the laser interferometry at the level of accuracy
envisaged for LISA; the caging and the relaxing mechanism; the endurance
of the di�erent instruments and hardware in the space environment.
The successful demonstration of these very challenging technologies will rep-
resent a fundamental step towards the most complex and sophisticated LISA
mission.
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Chapter 2

An Optical Readout for the LISA
Gravitational Reference Sensor

The stationariness of the position of each spacecraft around the proof masses
is a fundamental issue of LISA. The aim of the Gravitational Reference Sen-
sor (GRS) is to measure the displacements of the spacecraft with respect to
the proof masses, providing the signals required by the drag-free control loop
in order to readjust the relative position.
The usual solution for satellite drag-free control, adopted as a reference so-
lution also for the LISA GRS, is the usage of capacitive sensors.
The obvious alternative solution is some kind of optical readout (ORO) sys-
tem; this o�ers very small back-action and is potentially more sensitive than
the capacitive one.
However a capacitive readout system has been already developed and tested
on a torsion pendulum by the group of Trento University. It is the baseline
inertial sensor that will �y on the LISA Path�nder for technological demon-
stration in space. In case of successful �ight testing, the capacitive sensor
will certainly remain as the reference solution also for LISA.
Nevertheless, the demand for mission risk reduction results in the necessity
of a backup solution for the GRS.
The development of an ORO system to be integrated in the present design

50



of the GRS is what my thesis work mainly concerned.
In this chapter I will describe the drag-free control of LISA and the GRS. I
will illustrate the capacitive sensor performances obtained in Trento with the
one mass torsion pendulum facility. Finally I will introduce our proposal for
an ORO system, discussing its main advantages and making some analysis
of the requirements for LISA and the expected model noises.

2.1 LISA Drag-Free Control and the GRS
One of the fundamental tasks of the spacecraft is to shield the proof masses
from external perturbations, which can cause them to move and induce phase-
signals appearing as gravitational waves. Such perturbations can be of many
kinds: solar radiation pressure, solar wind, small particles moving across
space.
This means that, while the two proof masses are freely �oating, di�erent
external forces will be acting on the spacecraft, spoiling its geodesic motion
and preventing it from correctly following the proof masses free fall. In the
extreme case the spacecraft could hit the proof masses.
It is thus necessary to measure the relative position in order to control it.
The measurement is made by an inertial sensor system called GRS.
Due to the fact that the proof masses are rotated of an angle of 60◦ with
respect to each other, the spacecraft can be kept centred on the proof masses
only by means of two di�erent mechanisms. Along the main interferome-
ter axes the position correction is obtained by moving the spacecraft. This
is done with the already mentioned ion-emitting microthrusters. Along the
transverse directions, instead, electrostatic actuators mounted on the elec-
trode housings act directly on the proof masses.
Microthrusters and electrostatic actuators are both driven by the signals gen-
erated by the GRS. GRS, thrusters and electrostatic actuators constitute the
so called drag-free control loop of LISA.
The proof masses represent at the same time the reference mirrors of the

51



interferometer and the inertial references for the drag-free control of the
spacecraft. However, the electrostatic actuation prevents the mirrors to be
in free fall along the transverse DOFs in the loop band-width. Furthermore
the mirrors are forced by the servo-loop to follow the intrinsic noise of the
position sensor.
The residual motion between the spacecraft and its proof masses must be re-
duced as much as possible. In this way, besides the cross-coupling noise which
I'll analyse in next subsection, also the force disturbances due to spacecraft
self-gravity and other relative position dependent perturbations are mini-
mized.

2.1.1 The problem of cross-couplings
If the alignment between sensors and mirrors were perfect and there were no
cross-couplings between the di�erent DOFs, the sensor noise would be repro-
duced only along the transverse DOFs, while the mirrors inertiality would be
kept safe along the intererferometer axes, which are the directions involved in
the gravitational radiation strain measurement. There would be no problem
in this case.
Unfortunately cross-couplings cannot be reduced to zero and thus the sensor
noise couples the proof mass displacements also along the optical axes. In
order to achieve LISA sensitivity, the cross-couplings must be kept below a
certain treshold, which depends on the noise level of the inertial sensor, as
we will discuss further.
The maximum acceptable cross-coupling noise is readily calculated taking in
account the design sensitivity of LISA. As we saw in the previous chapter,
the noise sources that limit the antenna sensitivity are laser shot noise in high
frequency and acceleration noise in the low frequency region. The position
noise curve behaves like 1/f 2 in low frequency and then becomes white noise
in high frequency, with a corner at about 3 mHz. The white noise has an
expected value of 4 · 10−11 m/Hz1/2 [15].
Assuming that the residual cross-coupling position sensing noise ỹs is the
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same for every proof mass and for every DOF and that the noises add inco-
herently, furthermore taking in account two transverse DOFs for each mirror
and two mirrors per arm, we get an upper limit for the noise introduced by
cross-couplings in the drag-free servo loops:

√
ỹ2

s + ỹ2
s + ỹ2

s + ỹ2
s ≤ 2 · 10−11m/Hz1/2 =⇒ ỹs ≤ 10−11m/Hz1/2. (2.1)

Introducing a safety factor of 10, we obtain a generally accepted upper limit
of:

ỹs ≤ 2 · 10−12m/Hz1/2 above 3 mHz, (2.2)

while the speci�cation is relaxed as f 2 below the corner frequency. This can
be expressed by a more general relation, which is valid at all frequencies f :

ỹs ≤ 2 · 10−12

√√√√
[(

3 mHz

f

)2

+ 1

]2

[m/Hz1/2] . (2.3)

Summing up, in order not to spoil the required inertiality of the �oating
proof masses along the optical axes, the position sensing noise coupled to the
main DOFs of the interferometer by means of the electrostatic actuation on
the transverse DOFS must not overcome 2 · 10−12 m/Hz1/2 above 3 mHz 1.
The previous reasonings show that the precise centering and the stationar-
iness of the spacecraft around the mirrors along the interferometer axes is
crucial in order to achieve LISA sensitivity.

2.2 The Capacitive Sensor

2.2.1 Main features
The reference solution for LISA GRS is based on capacitive sensors. The ba-
sic principle is to use a plane parallel-faced capacitor, where one of the plates

1Notice that we have discussed the problem in terms of the displacement sensitivity
of LISA. An equivalent point of view is to consider the acceleration noise induced by the
drag-free control loop on the proof masses along the optical axis and remember that it
must ful�l the upper limit expressed by equation 1.20.
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is the surface of the test mass while the other one is set on the electrode
housing and thus is integral with the spacecraft.
The current GRS design has been developed at Trento University and has
been tested experimentally on a single mass torsion pendulum facility in
Trento laboratories [30] [36] [37] [38].
The sensor is made up of a suitable geometrical con�guration of plane con-
densers, as illustrated in �gure 2.1 [39] [40]. Six pairs of electrodes are
mounted on the electrode housing surrounding the proof mass.

Figure 2.1: Capacitive Sensor scheme for the single mass torsion pendulum facility in
Trento. The test mass, represented by the yellow cube, is surrounded by the sensing and
injection electrodes. On the right, the electrode con�guration respectively on the x, y and
z electrode housing faces. The x axis is the interferometer/drag-free preferred one. The
holes shown in the scheme are for the interferometer laser-light beam (x faces) and for the
locking plunger of the caging mechanism (z faces), needed for holding the test mass during
the launch phase. Some relevant geometrical dimensions: test mass cubic size 46 mm; x

sensing electrodes-test mass gap d = 4 mm.

The six readout channels can be linearly combined to reconstruct the test
mass displacements in all the six DOFs.
Here I report the results obtained from the tests performed with the single
mass torsion pendulum facility in Trento []. A four mass facility has been
recently set up for further experimental veri�cations and will be discussed in
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the last chapter of this thesis.
The single mass torsion pendulum is basically consituted of a proof mass
hanged by a torsion �ber in a vacuum chamber (see �gure 2.2). In this latter
the electrode housing surrounding the proof mass and hosting the capacitive
sensor is rigidly mounted on a support, which can be moved by a 5 DOF
micromanipulator for centering purposes. The facility is equipped with an
electrostatic actuation circuitry, which allows the control of the pendulum
torsional and tilting modes.

Figure 2.2: Scheme of the single mass torsion pendulum facility in Trento.

The sidelength of the proof mass is 46 mm, as it will be in LISA, while
the x sensing electrodes-test mass gap is d = 4 mm.
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Figure 2.3: Capacitive sensor expected sensitivity to translational degrees of freedom.

Graphs 2.3 and 2.4 show the sensitivity requirements for the capacitive
sensor with regard to the translational and the rotational DOFs [15] [30].
The curves represent the model noise level expected for the capacitive sensor
and are in very good agreement with the experimental curves obtained with
Trento apparatus.
The sensitivity to translational DOFs is of 2 nm/Hz1/2 in all the frequency
band interesting for LISA, while for rotational DOFs we get a value of
200 nrad/Hz1/2.

One of the main disadvantages of capacitive sensors is the need for a very
small free gap between the two plates and then between mirror and space-
craft. In order to achieve the sensitivity required for LISA, the gap cannot
exceed few millimeters. The small free gap turns out in strong sensitivity to
net charges deposited on either the proof mass or the spacecraft. As a conse-
quence the maximum acceptable rate of charge deposition is very demanding
and a frequent discharge by UV �ash lamps is needed.
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Figure 2.4: Capacitive sensor expected sensitivity to rotational degrees of freedom.

The ground testing facilities pave the way to the tests on the technology
demonstration mission LISA Path�nder, on which the capacitive sensor is
planned to �y.

2.2.2 Cross-coupling requirements
Referring to the result obtained in (2.2), we can now estimate the maximum
acceptable cross-coupling for the drag-free control loop in the case of the
reference solution for the inertial sensor of LISA.
If the upper limit of the noise due to cross-coupling is established by (2.2), the
maximum acceptable cross-coupling between di�erent translational DOFs is
given by the ratio of ỹs and the sensitivity of the capacitive sensor to the
translational DOFs:

ỹs

GRS sensitivity =
2 · 10−12m/Hz1/2

2 · 10−9m/Hz1/2
= 0.001. (2.4)
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The cross-coupling of the transverse DOFs to the main interferometer axis
must be of the order of one part per thousand. It is worth of noting that the
requirement holds in the frequency interval where LISA is limited by position
noise, while it can be relaxed as 1/f 2 below 3 mHz.
The condition stated above is a very stringent requirement and represents
an extremely challenging technological task. Cross-couplings below 0.1%

are generally very di�cult to achieve in a real system. Usually coupling
e�ects are of the order of few percent. Of course this does not represent an
intrinsic limit, but the problem is that cross-couplings are caused by a great
number of predictable and sometimes unpredictable mechanisms (machining
and assembling imperfections, calibration and centering errors and so on)
and keeping them under control is a very di�cult job. The di�culties are
increased if this job has to be developed for space, as for LISA, where the
experimental apparatus is out of reach for possible corrections.
It is clear that any reduction of the readout noise below the speci�cations in
�gure 2.3 would give a corresponding relaxation of the requirement for the
cross-couplings.
On the other hand, the sensitivity of the capacitive sensor can be further
improved only by reducing the free gap between test mass and electrodes, but
this would increase unacceptably the sensor back-action (due, for example,
to net charges).
The previous reasonings lead naturally to think about an alternative solution
for the LISA GRS. This can be found among the optical readout systems.

2.3 The ORO Sensor
The LISA research activity in Napoli concerns the study, development and
testing of an optical readout (ORO) system for the inertial sensor of LISA.
This activity has started since 200 [30]. I joined it three years ago beginning
my phd studies.
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2.3.1 Why an ORO Sensor?
In principle an ORO can achieve better sensitivities performances than a ca-
pactive sensor, without the problem of reducing the free gaps between proof
mass and electrodes. On the contrary an ORO system can work with large
gaps and thus can potentially lower the e�ects due to electromagnetic stray
forces. This means that an ORO system would allow a signi�cant noise re-
duction with negligible back-action.
The replacement of the capacitive sensor with an optical one has been al-
ready proposed since a long time and di�erent schemes have been suggested,
but none has been developed in detail and experimentally demonstrated in
the con�guration adapted to �ight on LISA.
On the other side, the capacitive sensor developed in Trento is planned to
be tested in the LISA Path�nder mission and it is very likely that, in case
of successful test on �ight, it will remain as the reference solution also for
LISA.
The possibility of replacing the capacitive sensor with an optical one not
tested in space environment, even though more performing, has not to be
considered.
Nevertheless, as explained earlier, the demand for mission risk reduction
states the necessity of a backup solution for the GRS. A further advantage
of having an auxiliary sensor is that it can provide extra information on cou-
plings between di�erent degrees of freedom.
In developing an ORO solution for the inertial sensor of LISA our primary
goal is thus to provide a reliable instrument to be integrated in the present
design of the GRS, in order to substitute the capacitive sensor in case of
failure during the mission. This reasoning states that the basic sensitivity
requirements for an ORO system are those achieved by the capacitive sen-
sor.
Any further improvement in the sensitivity would relax the extremely de-
manding constraints on the cross-couplings and would turn out to be very
useful in any case, especially if the ORO were adopted as the main sensor
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and the capacitive sensor became the backup solution.
However sensitivity and back-action are not the only issues to be taken into
account while studying an alternative solution for LISA GRS. The simplicity
and reliability of the instrumentation are fundamental requirements as well.
Furthermore the ORO must be compatible with the present design of the
LISA inertial sensor, so that it can be integrated with minimal modi�cations
of the project.
Keeping in mind all these arguments, we have selected a sensor based on
optical levers.
Of course, other kinds of optical sensors are possible. An alternative solution
can be some type of interferometric readout. This can perform better sensi-
tivities than an optical lever system, but it is a much more complex device.
An optical lever has the advantage of being very simple and thus cheap and
reliable, which are fundamental properties for a device planned to work in
space. Furthermore, it is worth noting that, at the low frequencies we are
interested in, sensitivity is not limited by the intrinsic noise of the sensor,
that is shot noise in the case of the optical readouts. Other sources of noise
intervene, which are independent from the optical sensor, such as thermal
drifts in both mechanics and electronics, as well as other perturbing e�ects
that are not easily identifyable.
For this reason, a simpler ORO solution can be preferable with respect to
an interferometric sensor, which is in principle much more sensitive than re-
quired, but also presents higher costs and greater complexity.
For further details on proposed interferometric solutions to be integrated in
LISA GRS see [31] [32] [33] [34].

2.3.2 The principle scheme of the ORO
The principle scheme of the ORO is very simple. As it is sketched in �gure
2.5, a laser beam is sent through a mono-modal optical �ber to the surface
of the proof mass. The re�ected beam is collected by a detector sensitive
to beam position (quadrant photodiode (QPD) or position sensing device
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(PSD)). A translation or rotation of the test mass results in a displacement
of the light spot across the sensor.

Figure 2.5: ORO's principle scheme: an optical lever. A �ber coupled light source sends
a light beam to the surface of the test mass. The position of the re�ected beam is read
by a position sensor (QPD or PSD). The light beam is collimated and focused by means
of a proper �ber output focuser (output �ber coupler). The optical lever's length l and
incidence angle ϑ are indicated in the �gure.

A translational displacement ∆xTM of the test mass causes a displacement
∆xPh of the light spot on the photodetector depending on the incidence angle
ϑ as:

∆xTM =
∆xPh

sinϑ
. (2.5)

A rotation of the proof mass relative to a variation ∆ϑ of the angle ϑ corre-
sponds to a displacement ∆xPh of the light spot on the photodiode depending
on the optical lever armlength l :

∆xPh = 2l ·∆ϑ. (2.6)

With a suitable combination of three sensors, it is possible to recover the
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displacements of the proof mass in all six DOFs, as we will see in chapter
four.
The single-mode optical �ber is necessary to reduce the beam jitter that
would otherwise be dominating.
The photodiodes signals are read by trans-impedance ampli�ers, which trans-
form them from current signals to ampli�ed voltage signals.

2.3.3 The expected noise sources of the ORO system
In order to establish if our ORO system can achieve the required sensitivity,
it is necessary to model the intrinsic noise sources and calculate the expected
noise level for the sensor.
In the frequency band of interest (0.1−100 mHz) it is possible to identify the
main sources of noise of our ORO sensor as the shot noise and the electronic
noise of the photodiode ampli�er [42]. The other modeled noise sources are
negligible at these frequencies.
As for any optical sensor, the ultimate limit is shot noise, which is due the
random �uctuation of the number of photons incident on the photodetector
per unit of time. This results in a current noise ĨSN in the measured pho-
todetector current IPh, which corresponds to a displacement noise described
by the formula:

x̃SN =
ĨSN

|dIPh/dx| , (2.7)

where the tilde indicates the power spectral density of the below quantity.
The shot noise ĨSN is expressed by ĨSN =

√
2IPhe, where e is the electron

charge. The photodiode current is evaluated in terms of the optical power
P0 of the light beam and of the photodiode responsivity α(λ) 2, depending

2The responsivity of a photodiode characterizes its performance in terms of the pho-
tocurrent generated per incident optical power at a given wavelength [41]:

α(λ) =
Iph

P0
.
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on the wavelength λ, by means of the relation IPh = α(λ)P0.
The measurement range L is represented by the size of the light spot in case a
QPD is used or by the detector size in a PSD setup, as will be shown in next
chapter. In this interval the photodiode current ranges from −IPh to IPh.
The quantity dIPh/dx in equation (2.7) can thus be reasonably approximated
by dIPh/dx ≈ ∆IPh/∆x = 2IPh/L.
Taking in account these relations and making α(λ) explicit in terms of the
quantum e�ciency η of the photodiode 3, we get:

x̃SN ≈ L

2

√
2hc

P0ηλ
≈

≈ 1.4 · 10−11

(
633 nm

λ

)1/2 (
1 mW

P0

)1/2 (
0.84

η

)1/2 (
L

1 mm

)
(2.8)

dimension units [x̃SN ] =
[
m/
√

Hz
]
.

Notice that the shot noise limited sensitivity of the ORO depends on the
light power P0 and on the measurement range L 4.
It is worth noting that for reasonable values of the light power (0.1− 1 mW )
in (2.8), the shot noise results negligible in the LISA frequency band.
On the other hand, the current noise In of the trans-impedance ampli�er
used to read the photodiode current imposes a limit displacement sensitivity

3The quantum e�ciency of a photodiode measures the probability of the conversion
process of received photons to free electron hole pairs and is de�ned as the ratio of the
number of free electron hole pairs giving rise to a photocurrent Iph and the number of
incident photons [41]:

η =
Iph/e

P0/hν
.

where P0 and ν are the power and the frequency of the incident light, while e is the electron
charge and h the Planck constant.

4The equality (2.8) is a handy way of expressing the displacement noise due to photodi-
ode current shot noise. The value 1.4 ·10−11 m/

√
Hz of the diplacement noise corresponds

to the numerical values of the physical parameters speci�ed in the round brackets. Substi-
tuting di�erent desired values for the parameters, in the proper dimension units indicated
in the brackets, it is possible to obtain the associated displacement noise.
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given by:

x̃I =
√

N
Ĩn(f)

|dIPh/dx| ≈
√

N · L

2α(λ)P0

· Ĩn(f) ≈

≈ 4 · 10−10

(
0.43 A/W

α(λ)

)(
1 mW

P0

) (
1 mHz

f

)1/2 (
L

1 mm

)
(2.9)

dimension units [x̃I ] =
[
m/
√

Hz
]
,

where we assume Ĩn(f) = (5.4 · 10−12)/
√

f A/(Hz)1/2, which is the typical
value for a widely used device (Analog Devices OP27EP). The quantity N is
the number of current signals: N = 4 for two dimensionals sensors.
As the shot noise, also the electronic noise depends on the laser power and on
the measurement range. However, di�erently from shot noise, which is white,
the electronic noise depends on the frequency f as 1/f 1/2. At the frequencies
we are interested in, electronic noise is the expected limiting factor for an
ORO based on optical levers, as illustrated in �gure 2.6.

In equations (2.8) and (2.9) the noise is expressed in terms of the dis-
placement of the spot on the sensor. To convert this in terms of proof mass
displacement, we should insert a factor depending on geometrical con�gura-
tion (1/(2sinϑ), as will be shown in next chapter).
The previous calculations show that our ORO can in principle reach a sen-
sitivity well below 10−9 m/

√
(Hz) in the whole measurement band of LISA

and is then potentially much more sensitive than the capacitive sensor.
However at such low frequencies, besides the intrinsic noise of the sensor
other relevant noise sources intervene, as I mentioned before.
Mechanical vibrations and thermal drifts depend on the actual setup and can
be reduced using an appropriate rigid mounting and thermal stabilization.
Nevertheless they cannot be completely removed. Furthermore for frequen-
cies between 0.1 mHz and 100 mHz, that means for periods between 10 s

and 10000 s, mechanical drifts, creeps and other residual noise sources are
di�cult to identify and render very problematic the experimental veri�cation
of the potential sensitivity of the ORO sensor with a bench-top experiment.
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Figure 2.6: ORO's Model Noise. The red line represents the expected shot noise, while
the electronic noise is the black curve. The incoherent some of the two, that is ORO's total
model noise, is indicated in green. The expected sensitivity for translational DOFs of the
capacitive sensor is the orange curve. Electronic noise and shot noise are here calculated
assuming the following values for the parameters: P0 = 0.2 mW , L = 0.4 mm (spot size),
λ = 633 nm (He-Ne laser).

2.3.4 The back-action of the ORO sensor
In section 1.3.5 it has been shown that in order to achieve LISA sensitivity the
acceleration noise of the test masses due to stray forces must keep below 3 ·
10−15 m/(s2Hz1/2). This means that for a 2 kg proof mass the power spectral
density of stray forces must not overcome the value 6 · 10−15 N/

√
(Hz).

The force perturbation exerted by the ORO sensor on the proof mass is
essentially due to the �uctuations of the incident light power. In order to
establish the maximum acceptable laser power noise P̃ of the ORO sensor,
we assume for the power spectral density F̃ of the stray forces a conservative
upper limit of F̃ ≤ 6 · 10−16 N/

√
Hz.

Remembering that the radiation force FR and the incident light power P
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ful�l the relation5 FR ≤ 2 · P/c, we get the following requirement for the
laser power stability of the ORO sensor:

F̃R ≤ 2 · P/c ≤ F̃ =⇒ P̃ ≤ 10−7 W/
√

Hz. (2.10)

The condition (2.10) can be achieved by actively stabilizing the laser power.

2.3.5 Research Activities
The research activity I carried out during my PhD studies concerned three
main topics.
The �rst aspect of this work has been the characterization of the sensitivity
performances of the ORO sensor in rigid bench-top setups. This activity has
been developed in the LISA laboratory of Napoli. Di�erent con�gurations
have been tested, in order to identify the best solution for LISA. Di�erent
kinds of light sources, optical �bers, detectors and so on, have been investi-
gated, as will be illustrated in the next chapter.
The second topic consisted in the study and development of a real scale
prototype of the ORO for the integration in LISA. In order to do this the
engineering model for the electrode housing of LISA Path�nder mission has
been considered as a baseline, in order to analyze the problem of the integra-
tion of the ORO in the most realistic con�guration available at the moment.
This activity and its results are described in chapter IV of this thesis.
The last part of my work has been carried out in collaboration with the LISA
group of Trento and concerned the testing of the ORO sensor on a four mass
torsion pendulum. The facility in Trento allows to verify the sensitivity and
back-action performances of the ORO in a condition as close as possible to
free fall for a single DOF. The ground testings on the torsion pendulum will
be discussed in chapter V.

5Equality is ful�led in case of normal incidence of the laser beam on the surface of the
proof mass.
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Chapter 3

The ORO Performances

The aim of the measurement and the analysis described in this chapter is
the characterization of the ORO sensitivity performances in rigid bench-
top setups. Many di�erent con�gurations of the ORO have been tested,
investigating di�erent solutions for the light sources, the position sensors
and the �ber components, in order to improve the sensitivity of the device,
reduce the noise level and �nally �nd a suitable con�guration to �y on LISA.

3.1 The experimental setup

3.1.1 Inside the box
The rigid bench-top layout we set up for testing the ORO performances is
shown in �gure 3.1.

The bench is machined from a single block of stainless steel, with inter-
faces for two �ber couplers and two sensors. The test mass is represented
by the small tower in the center and mounts two mirrors on its sides. It can
be rigidly �xed on the bench itself or mounted on a translation stage, such
as a micrometric screw system or a piezo-electric translator with capacitive
control, which allow to move it for calibration. The central structure is �xed
to the steel block with screws and the whole assembling is rigidly mounted
on an optical bench.
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Figure 3.1: Rigid bench-top setup.

The length and the angle of the optical lever are respectively l = 57.5 mm

and ϑ = 45◦.
The idea is to have a setup as rigid as possible so that the measured residual
motion of the light spot on the photodiode is due to the intrinsic noise of the
sensor itself, rather than to actual motion of the test mass.
As it is possible to see from �gure 3.1, the setup is symmetric for di�erential
measurement: there are two opposite optical paths, each of which corre-
sponds to a di�erent light beam outgoing from the relative �ber coupler,
re�ecting on the mirror and being collected by the relative detector. In �g-
ure 3.1 only one ORO sensor is mounted on the bench.
The whole setup is closed in a box to avoid air �ows and other external
disturbances. Initially we had at our diposal only a black plexiglas box.
Then we earned a very simple thermally insulated box made up of expanded
polystyrene. We lined the inside with common aluminium foil, in order to
further reduce thermal variations.
A temperature sensor attached to the steel block monitors the thermal vari-
ations inside the box.
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Assuming an asymmetry of 0.2 mm, due to machining tolerances, and a ther-
mal expansion coe�cient for steel of α ≈ 2 · 10−5 we get, in presence of a
temperature �uctuation δT , a displacement noise δx ≈ 4 · 10−9 · δT . By
assuming �uctuations amplitude of 10−2K/Hz1/2 with a white spectrum in
the whole band, it should be possible to go down to the intrinsic noise of the
sensor.

Beyond the numerous measurement with the rigid setup, some tests have
been accomplished with a real scale bench-top prototype reproducing the
layout for integration of the ORO on Trento torsion pendulum. This setup
is described in subsection 3.3.7.

3.1.2 Outside the box
Inside the box is closed the rigid steel setup, with the test mass tower, the
�ber couplers and the position sensors assembled on it. What does our ap-
paratus look like outside the box? The light sources, comprehensive of their
thermal controlers and power supply are positioned outside and so are the
ampli�ers of the photodiodes, included the direct voltage generator providing
them power supply.
The picture is completed by the digital acquisition system. The measurement
described in this chapter have been performed with a four channel FFT anal-
yser (ONO SOKKI).

3.1.3 About the tests
The tests I carried out concerned di�erent devices:

• Light Sources −→ He-Ne Laser (λ = 630 nm), Laser Diode (λ =

830 nm), Super Luminescent Light Emitting Diode (λ = 830 nm);

• Fiber components −→ SM (single mode) and PM (polarization man-
taining) optical �bers, Fiber output Couplers: aspheric micro-lenses,
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graded index lenses;

• Sensors −→ Quadrant Photodiode (QPD), Position Sensing Device
(PSD).

The system has been also tested with a Faraday insulator, inserted at the
output of the laser in order to reduce the light re�ected back to the laser
along the �ber, which perturbs the laser's stability.
A study of the in�uence of temperature variations on the ORO system has
also been carried out. Furthermore the apparatus has been tested in vacuum
for some time.
It is worth of noting that we are interested in the LISA frequency band, which
means that our measurement must last from several ours to several days in
order to investigate the noise level of the ORO sensor in the band ranging
from 10−4 Hz to 10−1 Hz. At the extremely low frequencies we deal with,
it is very di�cult to control the experimental conditions for carrying out
repeated measurement. Tests made up in di�erent days and with identical
setups have often lead to di�erent results in the sensitivity performances of
the ORO. Furthermore at such low frequencies the identi�cation of noise
sources reveals to be a very challenging task.
The most relevant results of the bench-top measurement are shown in section
3.3.

3.2 The measurement procedure

3.2.1 The signals
Each QPD ampli�er has seven outputs: four of them are the single voltage
signals from each quadrant of the photodiode, and the other three are special
combinations of the four quadrant signals. The single quadrant outputs have
been used only for checking purposes.

Referring to �gure 3.2, we call V1, V2, V3 and V4 the four quadrant signals
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Figure 3.2: Sketch of a quadrant photodiode.

and the recombined signals are:

S = V1 + V2 + V3 + V4 [V olts] (3.1)

H = V1 + V3 − (V2 + V4) [V olts] (3.2)

V = V1 + V2 − (V3 + V4) [V olts] (3.3)

which represent the voltage signals corresponding respectively to the total
optical power incident on the photodiode, to the horizontal and vertical po-
sitions of the light spot with respect to the center of the QPD.
The signals to be acquired are thus the photodiode signals S, H and V and
the temperature T . Other useful signals are the capacitive signals from the
piezoelectric translators, when in use, which give the voltage displacements
of the test mass as measured by the piezoelectric capacitors. These signals
can be calibrated to give the proof mass displacement in metres, using the
calibration factor indicated on the instrument data sheets (0.5001 V/µm).
Of course for the measurement in vacuum chamber another signal to be ac-
quired is pressure.

3.2.2 Acquisition and preliminary signal processing
The parameters we have to indicate in order to start up the acquisition with
the ONO SOKKI are the number of samples N and the sampling frequency
fs, which is related in this instrument to the frequency range by the rela-
tion FrequencyRange = 2.56×fs. Furthermore it is necessary to establish a
suitable measurement range for each acquisition channel, with the purpose of
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exploiting the dynamics of the instrument with an eye to possible saturation
of the channels.
The acquired signals S, H, V are each one a digital time series made up of N

samples with sampling frequency fs. The signals are transfered to a PC and
are processed with Matlab software. The �rst thing to do is to verify that no
channel has saturated the measurement range during the time of acquisition.
Drifts in the horizontal and vertical signals can easily cause saturation over
the long periods of our measurement.
The contribution of the laser power �uctuations to horizontal and vertical
signals can be cancelled out by normalizing H and V to the sum signal S

(see �gure 3.5). The normalized time series HN and VN constitute the data
to be furtherly processed.
It is worth noting that we are interested in making a study of the noise level
of our ORO sensor, which means that we have to deal with the power spectral
density of the horizontal and vertical photodiode signals. As already done in
section 2.3.3, we indicate the power spectral density of a discrete time series
y with ỹ.

3.2.3 The calibration
Once we get the horizontal and vertical normalized signals in normalized volt
units, we can transform them in meters, in order to have the time stream
of the light spot displacements along the axes of the photodiode or the time
stream of the proof mass displacements. The calibration factor which allows
to translate the normalized voltage signals in the meter diplacements of the
light spot is the photodiode calibration factor CPh, de�ned by:

CPh =
Normalized Photodiode Signal

Light Spot Displacement [m−1]. (3.4)

Actually the calibration factor we can measure is CTM , de�ned as:

CTM =
Normalized Photodiode Signal

Test Mass Displacement [m−1], (3.5)
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from which we can calculate the proof mass displacements corresponding to
the time signals HN and VN . The two calibration factors are related by
geometrical means. From �gure 3.3 it is possible to see that the diplacement

Figure 3.3: Test mass diplacements versus light spot displacements.

DxTM of the test mass corresponds to an horizontal displacement DxPh of
the spot on the photodiode, by means of the geometrical relation:

DxPh = 2sin(ϑ) ·DxTM =
√

2 ·DxTM . (3.6)

Correspondingly, the two calibration factors are related as:

CPh =
CTM

2sin(ϑ)
, (3.7)

where ϑ is the angle of incidence of the light beam on the mirror attached
to the proof mass. In our rigid setup ϑ = 45◦. This means that for this
ORO con�guration the two calibration factors satisfy: CPh ≡

√
2

2
CTM . The

test mass displacements are obtained with a micrometric screw translator or
with a piezoelectric device, which allow to move the mass along the diagonal
of the steel block (translation axis). The translation causes the light spot to
move along the horizontal axis of the photodiode: we assume reasonably that
the calibration factor has the same value for both the axes of the detector.
We thus position the mass so that the light spot is approximately centered
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on the sensor, with H ≈ 0 V and V ≈ 0 V . In the case of the micromet-
ric screw translator, the method we adopted was to move the test mass of
60 − 70 µm by steps of 10 µm, starting from an extreme position: the light
spot translates correspondingly along the horizontal axis, moving from neg-
ative to positive values of H or viceversa (see �gure 3.4). For each step we

Figure 3.4: Test mass step diplacements obtained with the micrometric screw translator.
Each step is 10 µm wide.

can calculate the calibration factor as the ratio of the di�erence between the
corresponding values H i

N and H i+1
N and the step itself (10 µm). These values

generally di�er by few percents. The �nal calibration factor is estimated as
the medium value among these previous values.
A more accurate way of calculating the calibration factor is to use the piezo-
electric translator and to induce periodic back and forward translations of the
proof mass along the diagonal of the steel block. This is done by driving the
piezo with an external sinusoidal signal having appropriate amplitude and
frequency. Correspondingly the light spot will go back and forward along
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the horizontal axis and the time series H will be a sinusoidal signal. In this
way with a suitable number of periods we can calculate the calibration factor
from the ratio of the power spectral density of the piezoelectric capacitive
signal, previously calibrated in metres, and the power spectral density of
HN : the calibration factor is given by this ratio calculated at the modulation
frequency fsin. In fomula:

CTM =

(
H̃N

S̃PZT

)

fsin

, (3.8)

where SPZT is the displacement (µm) of the test mass read by the capacitive
sensor of the piezoelectric (sinusoidal signal) 1.
Finally the displacements DxPh and DyPh of the light spot along the axes
of the detector can be obtained as:

DxPh =
HN

CPh

[m], (3.10)

DyPh =
VN

CPh

[m]. (3.11)

The displacement of the test mass along the translation axis of the setup is:

DxTM =
HN

CTM

[m]. (3.12)

3.2.4 Calibration and Sensitivity of the ORO
The bigger are the calibration factors CPh and CTM , the more sensitive is the
ORO system, because it means that for a same displacement the response

1There is another equivalent way of calculating the calibration factor, which will be
used in next chapter:

CTM =
∣∣∣∣

FFT (HN )
FFT (SPZT )

∣∣∣∣
fsin

, (3.9)

where we have indicated with FFT the fast Fourier transform. This calculation returns
modulus and phase, this latter providing the sign of the calibration factor. For the tests
described in this chapter the sign has no importance. In the next chapter more degrees of
freedom will be considered and the phase will be relevant for the sign attribution of the
elements of the calibration matrix.
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Figure 3.5: Comparison between normalized (red) and not normalized (blue) displace-
ment signal. The normalization cancels the laser power �uctuations.

signal is greater. In particular, given the calibration coe�cient of the photo-
diode CPh, CTM increases with the angle of incidence of the light beam. So
proof mass displacement sensitivity increases with the angle of the optical
lever.
Another important consideration is that the sensitivity of an ORO sensor
depends on the light power of the laser and on the measurement range of the
detector. This is shown in the equations (2.8) and (2.9), where the modeled
noises expected for the ORO, shot noise and electronic noise, are expressed
in terms of the parameters of the ORO device. In particular ORO's model
noise is inversely proportional to light power and directly proportional to the
measurement range.
In the case of a quadrant photodiode (QPD) the measurement range is equal,
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in good approximation, to the size of the light spot 2. A gaussian beam with
a diameter d corresponds to a measurement range of 2 · d

2
= d, as it is easily

understood from �gure 3.6.

Figure 3.6: Measurement range of a quadrant photodiode. The red circle represents a
gaussian light spot in the extreme positions of the photodiode measurement range.

The smaller is the spot, the smaller is the measurement range. This means
that under the same conditions (laser power, angle of the optical lever) and
for a same proof mass displacement we get a greater response signal when
the light spot is smaller. A way to visualize this is that the H and V signals
range between the same values but for a smaller displacement range of the
spot on the detector: the calibration factor CPh increases and so does CTM .
In order to increase the ORO sensitivity we can thus use very collimated
beams. On the other hand we have to take into account that the increase
in sensitivity is obtained reducing the measurement range: the displacement
range of the proof mass is reduced too and this of course can be a problem.
We must play attention to this point when we collimate the laser beam.
It is worth noting that in case a QPD detector is used, every time we change
the collimated beam size, it is necessary to calculate the new calibration fac-
tors.
In our measurements the typical value of the spot diameter is 400 µm.

2The approximation consists in the fact that the cross dividing the four quadrants is an
insensitive area. The QPDs chosen by us have a usable area of 3 mm×3 mm , in which the
insensitive cross about 100 µm wide doesn't contribute to the measurement range. It is
worth noting that when the spot is perfectly centerd on the QPD, the signal S undergoes
a drop, especially if the spot size is comparable with the width of the insensitive cross.
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On the other hand the measurement range of a position sensing device (PSD)
is de�ned by the dimensions of the detector. This means that generally a
PSD shows lower sensitivity than a QPD.

3.3 The measurement
In this paragraph I describe the main measurement campaigns performed
in order to test the ORO sensor with di�erent experimental con�gurations.
References [42] [43] [30] report the �rst studies on the ORO sensor and the
�rst experimental results, obtained with a bench-top setup with elements
mounted separately on the optical bench. This analysis was done before I
joined the group and I won't enter in any detail about it, referring to the
relative articles. I will only show a comparison between the noise level of
those �rst measurement and the one obtained during the �rst campaign on
the rigid setup (see �gure 3.17).
As it has been said before, measurement at the very low frequencies we are
interested in take very long time, each lasting several hours, or days (up
to one week). If we want to go down to 0.1 Hz or below, many samples
are needed for averaging in order to improve the accuracy. Furthermore,
any change in the setup requires opening the thermal insulation box and
some time is thus required to get again a stable and uniform temperature,
before we can start a new measurement. So it is generally not so easy to
be sure that in comparative experiments all the experimental conditions are
the same: in some cases it is easier to identify the setup which gives a good
sensitivity rather than rule out, without doubt, the one giving not completely
understood troubles.
All the di�erent setups generally show measurable di�erences only at very
low frequencies, while they normally give similar results for frequencies above
a few Hz (where the device is generally limited by readout electronic noise
and mechanical vibrations). This results in the fact that we cannot use high
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frequency measurement (which would be much faster) to extrapolate low
frequency behaviour.

3.3.1 Quadrant Photodiode or Position Sensing Device
As we mentioned in the second paragraph, once �xed all the other param-
eters in equation (2.8) and (2.9), the sensitivity is inversely proportional to
the measurement range (L), that is the spot size 3 in the case of the QPD
and the detector size for the PSD.
As expected, in our measurement the best sensitivity results were achieved
with the QPD, that we adopt as the reference solution for our ORO.
The PSD o�ers the advantage that the response is not depending on spot
size and shape and so it is more stable in time, while for the QPD any change
in spot size requires a new calibration and the shape of the spot can a�ect
the measurement.
An interesting aspect is connected to the presence of the photodiode win-
dow. In our �rst experiments, performed with He-Ne laser, we observed,
for frequencies below few tens of mHz, an extra unexplained noise with a
time varying spectrum (non stationary spectrum). This e�ect disappeared
when we removed the window from the photodiode, so we interpreted it as
due to the presence of interference fringes across the spot, due to multiple
re�ections in the window itself. Any change in the fringe pattern can result
in a change of the spot's barycenter and is read as a beam displacement. In
practice, in our device the position signal is proportional to the light power,
while the noise connected to the window is proportional to the light phase, as
happens in an interferometer. For all the following measurement we always
used windowless photodiodes, but we think that by using short coherence
sources (SLEDs) this e�ect should become negligible. We didn't check this
point yet, but we plan to devote dedicated tests.

3By spot size I mean the diameter of the spot.
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3.3.2 Fibers and �ber components
Before describing the measurement with the di�erent light sources it is useful
to give some detail about the �bers and the �ber components tested in the
ORO system.
In general we have adopted SM �bers in order to get a good and stable beam
quality and to �lter out beam position and angular jitter that would other-
wise be dominating for a free space sources.
As a rule, we used only angle polished connectors in order to get a low back-
re�ection.
We have tested both SM and PM (polarization maintaining) �bers, with or
without Faraday Insulators inserted along the optical paths.
We also tested, as �ber output focusers, aspherical micro-lenses and graded
index lenses. In the latter case the spot size was typically about 0.4 mm.
For the He-Ne laser we got the best sensitivity measurement with PM �bers,
while we coundn't �nd any signi�cant indication that the Faraday insulator
was giving any improvement. For what concerns the output couplers, the
sensitivity performances with GRIN lens were poor. We think that this is
due to the bad beam quality, con�rmed by visual inspection by projecting
the beam on a far screen, but we cannot assert if this is a general problem
or is due to the speci�c components we tested.
The LD measurement were always dominated by the noise due to mode
hopping, so that we couldn't get any information about the �ber optic com-
ponents.
In the end, the SLED measurement provided stable and reproducible results
with no evidence of di�erences between using SM or PM �bers. In this case
we only used aspherical micro-lens collimators for the time being, but we
plan to repeat tests with graded index as well.
An important thing to point out is that �ber components planned to work
on LISA must have small dimensions. Furthermore they should be compact
and the most simple as possible. Taking in account these requirements, the
reference solution for the �ber focusers must be chosen among the pigtail
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style �ber collimators, which can be found on the market either in the as-
pherical micro-lens or graded index versions.
These focusers are integrated in the �bers, as it is for the usual graded in-
dex collimaters, so that the �ber end shows a cilindrical bulge, the so called
ferrula. The bulges can have di�erent diameter and length. The graded
index focusers we tested were very small, with a diameter of 2.5 mm, di-
mensions that �t the tiny spaces available on the spacecraft. However, these
collimaters have shown to be extremely delicate, thus certainly not suited
to space operation; furthermore, as already mentioned, they didn't give suc-
cessful results. On the other side, a pigtail aspherical micro-lens collimator
with 3 mm diameter has been tested with the SLED source, showing very
good sensitivity performances. This solution has been adopted for the test
on the torsion pendulum in Trento, as will be said later on.
It is worth noting that, di�erently from the traditional adjustable �ber cou-
plers, which can be �xed to the relative support with screws, the pigtail
collimaters need suitable holders to be adapted to the interfaces of the sup-
port. We have designed, developed and tested di�erent kinds of holders for
the ferrulas (with circular and triangular hole sections) and tried di�erent
�xing strategies, by glueing the ferrula to the holder or by tightening it deli-
cately with a screw pressure. Actually the best solution seems to be to �x the
collimator in between two cilindrical grooves, with the top groove pressing
on the ferrula by means of two screws on its sides screwing in the bottom
groove. As will be shown later, this is the solution adopted for the ORO
torsion pendulum setup.

3.3.3 He-Ne Laser Source
The �rst type of source used to test the ORO has been a �ber coupled He-Ne
laser (λ = 633 nm), with a single longitudinal mode and power or frequency
stabilization. The VIRGO laboratory in Napoli was already equipped with
a certain number of these lasers, so it was a natural preliminary choice.
Figure 3.7 shows the time evolution of the test mass diplacements Dx, during
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a measurement lasting 200000 s. The measurement refers to the following
experimental features: He-Ne laser (P0 = 0.2 mW ); PM optical �ber (λ =

633 nm); aspheric micro-lens collimator (λ = 633 nm, spot size= 0.1 mm);
�ber coupled Faraday insulator (λ = 633 nm, attenuation); windowless QPD
(Responsivity= 0.45 A/W ); test mass mounted on micrometric translator
(CTM = 13000 m−1); plexiglas box. Figure 3.8 shows the corresponding time
evolution of temperature: as it it possible to see from the comparison with the
displacement graph, temperature and displacement have very similar trends.
Also the relative spectrums, illustrated in �gures 3.9 and 3.10, present

Figure 3.7: Time evolution of test mass displacement (He-Ne setup).

common features, as the peaks around 0.7 mHz.
Figure 3.9 shows the spectrum corresponding to the same setup described
above but with a graded index �ber focuser (λ = 633 nm, nominal spot
size= 0.4 mm). The noise level is considerably higher than the one obtained
with the aspheric micro-lens coupler.
In order to estimate the angular noise corresponding to the displacement
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Figure 3.8: Time evolution of temperature inside the plexiglas box (He-Ne setup).

Figure 3.9: Power spectral density of the measured proof mass displacement. The
blue curve represents the measurement obtained with the traditional adjustable aspheric
micro-lens collimators, while the red curve has been measured using the graded index
collimators.
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noise of the test mass, we take into account the geometrical relation between
the rotation angle Dφ around the axis ortogonal to the optical bench, in the
point where the beam is re�ected and the horizontal displacement of the light
spot on the photodiode:

Dφ =
DxPh

2lcos(ϑ)
[rad], (3.13)

where l = 57.5 mm and ϑ = 45◦ are as usual the armlength and the angle of
incidence of the optical lever. Using equation (3.6), we get:

Dφ =
DxTM

l
[rad]. (3.14)

From the test mass displacement data relative to the blue curve in �gure 3.9,
we obtain the angle noise curve of �gure 3.11. As it is possible to see, the
ORO noise level is below the capacitive sensor curve at all the interesting
frequencies.

Sensitivity curves analogous to the blue curve in �gure 3.9 have been ob-
tained with the rigid setup enclosed in the thermally insulated box.
General results obtained with the He-Ne light source are illustrated in �gure
3.12, for a wider range of frequencies.
The demonstrated sensitivity performances of the ORO are good: the noise
level is below the capacitive readout's speci�cations in almost all the fre-
quency band. As it is possible to see from the �gure, the two curves intercept
around 0.5 mHz, but above 1 mHz the ORO curve decreases as 1/f 1/2. This
slope is in agreement with the electronic noise model, although the absolute
value is greater than the model curve by a factor of about 4. Below 1 mHz

the ORO spectrum has a steeper behaviour, with a slope around 1/f . For
frequencies above 10 Hz, it approaches the shot noise limit, in agreement
with the model.
There is still a residual unidenti�ed noise which keeps the measured spec-

trum above the ORO model noise by a factor ≈ 4 over large part of the
bandwidth. However, the demonstrated performance is already good enough
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Figure 3.10: Power Spectral Density of the temperature inside the plexiglas box (He-Ne
setup).

Figure 3.11: Comparison between ORO angular sensitivity performance (He-Ne setup,
black spectrum) and the corresponding capacitive sensor requirement (orange line).
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Figure 3.12: Comparison between ORO measured displacement noise (He-Ne setup, blue
curve), ORO model noises (shot noise: red dashed curve; electronic noise: dark green; total
model noise: light green) and the capacitive sensor requirement (orange line). The black
curve is a schematic representation of ORO measured noise level, that will be useful for
further calculations.

for our purposes.
Of course the identi�cation of the excess noise is an important task, because
if we don't understand its origin we cannot be sure about its relevance in
space environment.
Actually another important point is that the results shown here correspond
to the best measurement performed in the He-Ne con�guration of the ORO.
The sensitivity performances achieved with the same con�guration in di�er-
ent measurement were not equal. The results were not constant and stable: as
already mentioned, it is very di�cult to keep under control all the experimen-
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tal and environmental conditions in measurement carried out at frequencies
ranging from 10−4 Hz to 0.1 Hz. On the not stationary results obtained with
the He-Ne measurement I will come back later, in the paragraph concerning
the SLED sources.
Despite these two points, the results were very encouraging.
However the measurement carried out with the He-Ne laser have to be con-
sidered as preliminary, because this kind of light source does not suit space
operation: it is fragile, power consuming and has relatively large overall
dimensions. Consequently it can only be used for ground tests as the bench-
top measurement, but not as a reference solution to be �ight on LISA, where
some solid state source should be adopted. Possible solutions can be laser
diodes or light emitting diodes, described below.

3.3.4 Laser Diode Source
We have tested an infrared laser diode, having a wavelength λ = 830 nm.
The choice of the wavelength is dictated by the fact that LISA's proof mass
has maximum re�ectivity for infrared light. A laser diode is a solution suit-
able to space: it is small (dimensions), robust and requires less power than
the He-Ne laser.
The experimental features were the following: Laser diode (λ = 830 nm,
P0 = 0.2 mW ); PM optical �ber (λ = 830 nm); aspheric micro-lens colli-
mators (λ = 830 nm, spot size= 0.2 mm); �ber coupled Faraday insulator
(λ = 830 nm, attenuation); windowless QPD (quantum e�ciency, respon-
sivity); test mass mounted on micrometric translator (CTM = 7000 m−1);
expanded polystyrene box 4.
The measurement showed that the laser diode was a�ected by mode hop-
ping, as illustrated in �gure 3.13. The source works on a certain resonant
frequency for some time and then a sudden instability makes it 'jump' to an-

4Furthermore in this setup it was necessary to introduce an optical �lter (optical
density= 0.5) at the end of the �ber output coupler such to reduce the incident otical
power, in order not to saturate the photodiode ampli�er.
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other resonance mode: the operation point of the source switches from one
longitudinal mode to another, causing both the laser power and the wave-
length to undergoe istantaneous variations. The �rst e�ect is corrected by
normalization. On the other hand, the instantaneous changes in the emitted
wavelength result in sudden displacements of the light spot on the detector,
originating on the dioptric surfaces at the �ber end (which is angle polished,
as I mentioned before) and through the collimator lens. These are actual
beam displacements, that cannot be canceled out by normalization 5.
The mode hopping causes an increase in the noise level of the sensor. It

Figure 3.13: Laser diode mode hopping. The graph on the left side shows the jumps
in the time evolution of the sum S, while the plot on the right hand represents the corre-
sponding jumps in the horizontal displacements of the light spot on the photodiode.

is worth noting that a laser diode undergoing a mode jump every few hours
would be acceptable for the majority of applications, where relatively high
frequency (above 100 mHz) are involved, but cannot be used at the very low
frequencies we are interested in. Our measurement last several days and the

5In order to verify that frequency variations of the laser light result in actual displace-
ments of the light spot on the photodiode, we made some tests with the He-Ne laser. We
induced a sinusoidal frequency modulation of the laser light by feeding an external sinu-
soidal signal (Amplitude= 10 V Frequency=100 MHz) at the external driving input of the
laser. The measurement showed that the sinusoidal behaviour was reproduced either in S

than in HN and VN . The frequency modulation causes real displacement of the beam.
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mode jumps turn out in an unacceptable noise source.
It is possible to reduce considerably mode hopping in two ways: by inserting
a Faraday optical insulator in the optical path, in order to cut out any back-
re�ection; by actively stabilizing the laser diode temperature and current.
However both strategies do not solve completely the problem: disturbance
can be hardly eliminated at all.
The mode hopping phenomena is common in Fabry-Perot laser diodes, but
alternative solutions can be found. Indeed in the next future we plan to in-
vestigate Distributed Feed-Back (DFB) laser diodes and Fiber Bragg Grating
(FBG) laser diodes, which should be mode hopping free.

3.3.5 Super Luminescent Light Emitting Diode
We were lucky with our second choice among solid state light sources: we suc-
cessfully tested �ber coupled super luminescent light emitting diodes (SLED).
The wavelength is once more 830 nm.
Compared to traditional LEDs, these light sources have a greater optical ef-
�ciency. They are in between laser diodes and normal LEDs, in some sense.
As laser diodes, they provide an almost monochromatic beam, but with a
relatively short coherence length (well below 1 mm). On the other hand they
are not lasing, so they are mode hopping free.
The very short coherence length make the LEDs unsuited to cases in which
coherent light is needed, as in interferometric optical readouts. For an ORO
based on optical levers there is no need of coeherent light. On the contrary
the use of incoherent light can be an advantage: the short coherence length
avoids the e�ect of ghost fringes, due to multiple re�ections within optical
components or windows, which can, in some cases, spoil the sensitivity of the
ORO system, as we have mentioned before.
Moreover SLEDs (like laser diodes) are already available on the market with
single-mode �ber pigtail and in compact standard packages (like Butter�y
or Mini-Dil), so that their integration on the LISA �ight hardware should be
relatively easy.
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The experimental setup used for the measurement shown in �gure 3.14 is the
following: SLED source (λ = 830 nm, P0 = 0.2 mW ); PM or equivalently
SM optical �ber (λ = 830 nm); aspheric micro-lens collimator (λ = 830 nm,
spot size= 0.4 mm); no Faraday insulator; windowless QPD (responsivity);
test mass mounted on micrometric translator (CTM = 4000 m−1); expanded
polystyrene box. Tests have been performed also with graded index �ber
couplers (λ = 830 nm, spot size= 0.4 mm), giving noise levels in a factor
2− 4 above the sensitivity curve measured with aspheric micro-lens.
From graph 3.14 it is possible to see that the ORO sensitivity performances

Figure 3.14: ORO sensitivity performances with the SLED setup. The measurement
obtained with micro-lens collimators are represented by the pink curve, while the results
achieved with the graded index collimators are plotted in black.

with the SLEDs sources are comparable to the best ones achieved with the
He-Ne laser. Furthermore, while the best sensitivity curves obtained with He-
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Ne sources were not easily reproducible, in the case of the SLEDs the ORO
behaviour shows to be much more stable and reliable and measurement have
a higher degree of repeatibility. From these experimental observations we
can reasonably infer that the not stationariness of the ORO sensitivity per-
formances achieved with the He-Ne was caused by laser instabilities.
All the previous reasonings, added to the fact that the SLED features are
suited to space, have made up our mind to choose the SLED as our reference
solution, at least until we try the DFB and FBG laser diodes.
It is important to note that we observed that after a certain period of use,
ranging from 30 to 60 hours of light emission, the SLED sources undergo
deterioration: the optical power begins to decrease linearly with time and
correspondingly the normalized variation ∆S/S of the sum signal shows a
medium rate of the order of 10−7 s−1. It is necessary to solve this problem
in view of space use, �nding longer lasting SLEDs.

3.3.6 Electronic Noise measurement
In order to make measurement of the electronic noise of the photodiode
ampli�er it is necessary to shade the detector or, equivalently, to shut down
the incident laser beam. The measurement is carried out in the usual way,
with the only exception that now no light reaches the photodiode. The
signals coming out from the photodiode ampli�er thus represent the intrinsic
electronic noise of the device.
To compare the measured electronic noise with the experimental sensitivity
curves it is necessary to render homogenous the data. The voltage noise data
HElNoise and VElNoise have to be normalized with respect to the sum S (or to
its mean) 6 relative to the enlightened photodiode data with which we want
to make the comparison. Of course, if we want to compare the spectrums in
meters, also the corresponding calibration factor has to be used, as usual.

6We normalize with respect to the mean value of S instead to S itself because the
measurement to compare are usally carried out in di�erent days and the data stream have
di�erent number of samples and sampling frequency.
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It is possible to see from �gure 3.15 that the measured noise behaves like

Figure 3.15: Comparison between ORO measured electronic noise (violet curve) and
model electronic noise (green line).

1/f 1/2, as expected. Furthermore, after calibration the measured noise level
is reproduced quite well by the model equation (2.9), once the actual values
for P0, and CTM are taken in account.
As already stressed in the paragraphs above, despite the agreement of the
measured electronic noise with the model, the measured sensitivity is above
the expected noise by a factor of about 4 over almost all the considered
frequency band. Improvements in sensitivity have been achieved testing the
di�erent devices described above, as windowless photodiodes, special light
sources and di�erent �ber components. However this residual unexplained
noise remains. We performed di�erent tests in order to identify and cancel
the excess noise, as described further in this chapter.
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3.3.7 Prototype for the ORO integration on Trento tor-
sion pendulum

The great part of the measurement described in this chapter has been per-
formed with the rigid setup. However, during my thesis work also another
ORO bench-top layout has been developed and tested. This is a real scale
prototype reproducing the ORO con�guration as it will be integrated on the
torsion pendulum in Trento. We have developed this real scale prototype in
order to make preliminary tests of the ORO layout proposed for the integra-
tion.
A detailed description of the study which has lead to the current ORO inte-
gration scheme lies outside the aims of this chapter and is instead furnished
in chapter V. Here I will just introduce brie�y the experimental setup, which
has been used for the bench-top tests.
As it is possible to see from �gure 3.16, in this setup the light beam travels
in a plane which is ortogonal to the optical bench. The test mass is �xed on

Figure 3.16: ORO real scale bench-top prototype for integration in Trento torsion pen-
dulum.

three piezoelectric translators in a column, which are screwed in their turn
to the basis of the setup. The mirror is on the left side of the test mass. The
ORO components (�ber collimator and the photodetector) are mounted on
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a kind of L-shaped structure on the left, which is �xed on the basis. This
latter is screwed to the optical bench.
The optical lever is de�ned by the armlength l = 52.5 mm and the angle
α = 70◦.
The reference solution adopted for the light source is a �ber coupled SLED
(λ = 830 nm). The �ber output coupler is a pigtail aspherical micro-lens
collimator with a diameter of 4 mm (CTM = 11000 m−1). Figure 3.16 shows
the collimator mounted on top of the L-shaped support: the holder is the
one described in section 3.3.2 with the two cilindrical grooves tightened by
two lateral screws.
The photodetector is a quadrant photodiode and is glued to a macor support,
screwed to the L-shaped structure on the bottom.
During the measurement the setup is enclosed in the plexiglas box.
The performed measurement are shown in �gure 3.18 (pink curve): the re-
sults are very good, the sensitivity performances are comparable with the
best ones obtained with the He-Ne setup. As it is possible to see in graph
3.18, the system has got a (presumably) thermal peak around 1.4 mHz.

3.3.8 Comments on general results
As it has been anticipated at the beginning of this section, �gure 3.17 shows
the improvements achieved in ORO sensitivity with di�erent setups: start-
ing from the so called bench-top measurement (pink curve), in which there
was no rigid setup but the elements were separately mounted on the opti-
cal bench; passing through the �rst measurement with the rigid setup and
the traditional QPD (red curve); ending with a rigid setup measurement ob-
tained using the windowless QPD (blue curve). In all these setups the light
source was an He-Ne laser.
In �gure 3.18 are plotted the results of some sensitivity measurement per-
formed with the He-Ne setup (blue line) and the SLED prototype layout
(magenta line). In particular, we selected the results obtained with the setup
giving the best performances. Both the curves are the average of measure-
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ment performed with the same setup at di�erent times and in di�erent fre-
quency intervals.
On the same plot are also reported the expected sensitivity of the capacitive

Figure 3.17: Comparison between old and new measurement of ORO sensitivity (He-Ne
laser source). The measurement performed with the �rst bench-top setup are shown by the
pink curve. The red and blue curves refer to rigid setup measurement using respectively
a traditional QPD and a windowless QPD. The measured electronic noise is shown in
black. The magenta line is plotted with the only purpose of indicating the noise level
10−9 m/Hz1/2 as a visual reference.

sensor (orange line) and the expected electronic noise (green line) and shot
noise (red line) computed according to equations (2.8) and (2.9) respectively
and their incoherent sum (cyan line). The noises have been computed for
He-Ne assuming P0 = 0.2 mW and dI/dx = 0.5 A/m, but they change only
slightly for the SLED.
Finally, the black line represents an approximation of the measured sensi-
tivity (essentially the same with both the light sources) that we will use for
further analysis.
From the analysis of �gure 3.18, we can give some conclusion about the
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Figure 3.18: General comparison between ORO noise levels measured with di�erent
experimental layouts. ORO sensitivity with the He-Ne setup (blue line) and the SLED
prototype setup (magenta line). Expected sensitivity of the capacitive sensor (orange line)
and expected electronic noise (green line) and shot noise (red line) and their incoherent
sum (cyan line). The black line represents an approximation of the measured sensitivity
(essentially the same with both the light sources), which will be used in further calculations.

ORO sensitivity. First of all, it is veri�ed experimentally that an ORO
system based on optical levers and position sensors can give much higher
sensitivity than the one achieved by the capacitive sensor designed for LISA.
In our measurement, the improvement ranges from a factor of 2 at 1 mHz to
a factor of 20 at 100 mHz.
At lower frequencies, below 0.5 Hz, the ORO noise spectrum exceeds the
design sensitivity of the capacitive readout, showing a steeper slope. We
think that this is mainly due to thermal and mechanical drifts, rather than
to sensor intrinsic noise.
For frequencies above 10 Hz, the residual noise approaches the shot noise
limit, in agreement with the model.
One more interesting point, is that, in a large frequency band, the measured
noise spectrum shows a 1/f 1/2 slope. This slope is in agreement with the
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electronic noise model, but the absolute value is about a factor of 4 above
the expected one. On the other side, the measured electronic noise, essen-
tially dominated by the current noise of the trans-impedance ampli�er used
to read the QPD signal, is in agreement with the model. We observed this
discrepancy between actual and potential sensitivity of the ORO in all our
measurement. The main investigations we carried out in order to identify
the excess noise are described in the next subsections. The tests have been
performed before introducing the SLED sources; we used thus the He-Ne
laser setup.

3.3.9 Analysis of thermal e�ects
Temperature variations of the rigid setup can be good candidates as sources
of the excess noise.
A handy way of verifying the e�ects of temperature variations and thermal
isolation on the ORO system is to expose the rigid setup to a periodic heating
source. We used a normal desk lamp as heating source, its lighting regulated
by a timer. We have performed measurement with di�erent lightings periods,
with the rigid setup closed in the thermally insulated box and then in the
plexiglas box. The experimental con�guration was the same described for
the He-Ne measurement.
Figure 3.19 shows the time evolution of the temperature and of the corre-
sponding horizontal signals of the photodiode when the apparatus is ther-
mally isolated and when it is not (period of 60 minutes: 30 min lamp on and
30 min lamp o�).
Correspondingly the spectrums of the horizontal signals show di�erent am-
plitudes at the thermal resonance, stating the necessity of thermal isolation
(�gure 3.20).
However, despite the good �ltering of temperature �uctuations operated by
the expanded polystyrene box, we didn't observe any improvement in dis-
placement sensitivity out of the modulation frequency.
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Figure 3.19: Temperature and test mass displacement time evolution using plexiglas
box (red curves) and expanded polystyrene box (blue curves).

3.3.10 Measurement in vacuum chamber
Other investigations in order to identify the residual excess noise consisted
in the measurement under vacuum. The aim is to cut-out the e�ect of air
�ows and air refractive index �uctuations.
The vacuum encloser used to test the rigid setup is shown in �gure 3.21.
The optical �bers and the electric cables of the photodiode enter the vacuum
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Figure 3.20: Comparison between ORO displacement noise levels using plexiglas (red
curve) and polystyrene box (blue curve). The system undergoes a periodic thermal solic-
itation by means of the lamp light (period: 60 minutes), corresponding to the resonance
peak at about 0.3 mHz which is present in both the spectrums. Despite the better ther-
mal isolation, the e�ects of which are remarkable at low frequncies, above 3 mHz the noise
level in the polystyrene box is even slightly higher than in the plexiglas box. This means
that at those frequencies thermal noise is not predominant.

chamber through suitable feedthroughs. We �xed the rigid setup to the �oor
of the chamber. We used the same experimental con�guration described in
section 3.3.3, but with �ber components suited to vacuum.
The starting operation pressures of our measurement were in the order of
0.1 mBar, obtained with a two stage rotary pump.
The vacuum tests of the rigid setup were not successful: the noise level of
the horizontal and vertical signals of the photodiode were very high and
not stationary, presumably due to the bad behaviour of the He-Ne laser
source. From the performed measurement we couldn't get any resolutive
answer about the in�uence of air pressure on the ORO sensitivity. We plan
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Figure 3.21: Vacuum encloser used to test the rigid setup.

to repeat the measurement campaign with the SLED sources.

3.3.11 Di�erential Measurement
The rigid setup is symmetric to allow di�erential measurement, as it has
been said at the beginning of this chapter. As it is possible to understand
from the �rst sketch in �gure 3.22, a translation of the test mass along the
diagonal of the steel block produces a symmetric displacement of the two
light spots along the horizontal axes of the two photodiodes. By summing
the two displacement signals it should be possible to cancel out the common
noise and obtain a better sensitivity.
We performed many di�erent measurement in order to establish if the signal
combination works at noise cancellation. Tests were carried out both with
two He-Ne lasers and with two SLEDs, and their respective setups described
previously. Unexpectedly all the results showed no noise cancellation neither
by summing the signals nor by subtracting them.
We have thus performed special tests on our rigid setup, in the di�erent con-
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Figure 3.22: Di�erential measurement con�gurations on the rigid setup (top view).
The �rst picture shows the rigid setup prepared for di�erential measurement in its usual
symmetric layout. The yellow rectangle represents the test mass. The orange and green
rectangles are respectively the �ber couplers and the QPDs. Sketch (a) shows a modi�ed
layout in which the incoming light beam is divided in two beams by a beam splitter. One
of the beams goes straight through towards the front QPD. The second beam is directed
by a mirror to the back QPD. Sketch (b) shows a setup using two light sources. The
light beams go straight from the �ber couplers to the relative QPDs, placed in opposite
positions. In the last setup a single light beam is splitted by a beam splitter, but di�erently
from layout (a) the two secondary beams are both sent to their relative photodetectors
without any other mirror re�ection.

�gurations illustrated in �gure 3.22.
In the �rst case a laser beam is divided by a beamsplitter in two components,
in order to have a symmetric condition with a single light source. The two
signals Dx1

Ph and Dx2
Ph are very similar (�gure 3.23), although not as much

as we expected. Reasonably the di�erence can be explained by the e�ect of
the mirror. However, the di�erence 1

2
(Dx1

Ph − Dx2
Ph) shows a small noise

cancellation, especially at low frequencies, as it is shown in �gure 3.24.
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Very slight cancellation with the sum combination 1
2
(Dx1

Ph + Dx2
Ph) is ob-

Figure 3.23: Di�erential measurement with setup (a) of �gure 3.22: the horizontal
displacements of the light spots on the two photodiodes (blue and red curves) and the
di�erence between the two (black curve).

tained with setup (b) in �gure 3.22, where two light sources are used. Laser
noise overcomes the common displacement noise.
A de�nitely better cancellation is obtained with the setup (c), using as

in the �rst case a single light source (�gure 3.25). ORO sensitivity looks
dominated by actual displacements of the light beam. These displacement
can be rotations or translations, of course. However, taking into account the
geometrical con�guration in use, the results obtained with this last setup
suggest that translations of the light beam overcome rotations. The combi-
nation 1

2
(Dx1

Ph + α · Dx2
Ph) achieves indeed the best noise cancellation for

α = 1, which is in agreement with common noise due to translational dis-
placement of the light beam. Geometrical considerations show that common
noise due to rotation of the light beam is compatible instead with a value
α ≈ 3/10.
It is worth pointing out that in all the tests performed the sensitivity achieved
with noise cancellation does not overcome the one relative to the best mea-
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Figure 3.24: Di�erential measurement: noise cancellation with setup (a). The blue and
red curves are the power spectral densities of the horizontal displacements of the light spots
on the two photodiodes. The black curve is the power spectral density of the di�erence
signal.

Figure 3.25: Di�erential measurement: noise cancellation with setup (c). The blue and
red curves are the power spectral densities of the horizontal displacements of the light
spots on the two photodiodes. The pink curve is the power spectral density of the sum of
the two photodiode signals.
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surement with the single beam (�gure 3.18). This indicates that in the best
measurement the limiting noise is not due to beam displacements, which
should be reduced by summing or subracting the signals.

3.4 What about the relaxation of cross-coupling
conditions?

Considering the sensitivity performances so far demonstrated for the ORO
sensor (�gure 3.18), we can now estimate the cross-coupling conditions de-
scribed in chapter II assuming the ORO as LISA GRS solution. Figure 3.26
shows the displacement sensitivity of LISA and the maximum acceptable
cross-coupling noise ỹs expressed by (2.3). Taking in account the ORO ex-

Figure 3.26: LISA displacement sensitivity and maximum acceptable cross-coupling
noise.

perimental sensitivity curve, the black line in �gure 3.18, we calculate the
related maximum acceptable cross-coupling as a function of frequency. In
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order to do this we just have to follow equation (2.4):

Maximum Cross-coupling =
ỹs

GRS sensitivity , (3.15)

calculated at all frequencies.
Using in turn for the GRS sensitivity the ORO experimental sensitivity, the
ORO model sensitivity and the capacitive sensor sensitivity (�gure 3.18), we
obtain the results illustrated in �gure 3.27.
As mentioned in the previous chapter, the usage of the capacitive read-

Figure 3.27: Requirements on LISA cross-coupling assuming as reference solution for
the GRS in turn: the capacitve sensor (black curve), the ORO sensor with the current
sensitivity (blue curve) and the ORO sensor with its potential sensitivity (red curve).

out requires a cross-coupling upper limit of 0.1% above 3 mHz, which is
an extremely demanding task. Only below 1 mHz it gets above a more re-
assuring 1%. On the other hand, assuming the ORO measured sensitivity
the maximum cross-coupling turns out to be above 1% except for the band
1.5 mHz− 25 mHz and however above 0.5% almost everywhere, with a min-
imum of 0.45% at 4 mHz.
Of course the relaxation on the cross-coupling conditions gets even greater if
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we take into account the ORO potential sensitivity, going well above 1% in
the whole frequency band.

In concluding this chapter it is worth stressing that, despite the not yet
explained noise source which keeps the measured sensitivity above the po-
tential sensitivity in a factor about 4 above 1 mHz, the performances so far
demonstrated make of the ORO sensor a very promising candidate either as
the main solution for the inertial sensor of LISA, allowing to relax the very
stringent cross-coupling conditions imposed by the capacitive sensor speci�-
cations, or as a backup solution, constituting an e�cient and reliable device
to put beside the actual reference sensor.
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Chapter 4

The integration of the ORO
sensor in LISA

In principle, the actual integration of the ORO in the LISA inertial sensor
would be very easy if taken into account from the beginning of the design.
On the contrary, the project of the LISA Path�nder inertial sensor was al-
ready in an advanced phase when the ORO was proposed for the �rst time
by my group.
Furthermore, the ground tests of the ORO were still immature and there was
not yet an ORO baseline setup suitable to space in order to include the op-
tical sensor in LISA Technology Package. Timing was not favourable to the
ORO sensor, but the strong necessity of an auxiliary sensor aboard, being
reliable, handy and highly performant, certainly is.
Of course, in case of successful test of the GRS in LISA Path�nder mission,
only marginal modi�cations will be accepted for LISA. For this reason, in
order to develope a trustworthy project for the integration of the ORO, the
design of the Path�nder inertial sensor has been assumed as a baseline, pro-
viding the most realistic model actually available for LISA electrode housing.
This chapter deals with the analysis, the experimental work and the mea-
surement I accomplished in order to develope and test a real scale prototype
reproducing the electrode housing environment and mounting a suitable ORO
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setup.

4.1 The real scale prototype

4.1.1 The integration baseline
The proposal of the current integration scheme of the ORO in LISA GRS
was made before I joined the group and is described in [43] [30], to which I
refer for further details. Figure 4.1 shows the scheme of the inertial sensor
engineering model for LISA Path�nder at the moment of the proposal. Some
details have changed since then, but the principle scheme has remained essen-
tialy the same. In particular the overall dimensions of the caging mechanism

Figure 4.1: Engineering model of LISA Path�nder Inertial Sensor.

and of the electrodes are basically unvaried and constitute the greater ob-
stacles in �nding suitable paths for the ORO light beams. The layout of the
electrodes (actuation and capacitive sensing electrodes) and of the locking
plunger leaves only a little space for the optical beams to enter the electrode
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housing, hit the test mass surface and get out again towards the position
sensors.
As mentioned before, if we want to measure the proof mass displacements
in all the six degrees of freedom (DOF), we need three ORO sensors, which
means three di�erent optical paths. The three light beams impinge on three
ortogonal faces of the proof mass, that we call x, y and z, referring to the
related normals (see �gure 4.4). Correspondingly we shall indicate the associ-
ated optical paths with X, Y and Z. Figure 4.2 shows the electrode housing,
the grey and orange cube box, enclosing the test mass. On the external green
support it is possible to see the three �ber couplers and the three detectors
of the ORO setup. The light beams (red lines) are visible at the output of
the �ber couplers and when they end on the photodiodes. The hole on top of

Figure 4.2: LISA Path�nder vacuum encloser and electrode housing model.

the electrode housing is where the locking plunger of the caging mechanism
passes.
Figure 4.3 shows the same picture without the cubic structure hosting the
electrodes, in order to reveal the inside. As illustrated in the �gure, the pro-
posed solution is to use the electrodes as mirrors along the two x and z paths:
each of the two light beams is sent by properly oriented �ber couplers to the
surface of a �rst electrode, gets re�ected, hits the test mass, gets re�ected
by a second electrode and �nally reaches the photodiode placed outside the
electrode housing. The z path is not centered along the top face of the
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Figure 4.3: ORO integration scheme.

proof mass, because the central part is occupied by the caging mechanism
(tetraedric hole in the proof mass top face).
The y-beam hits directly the test mass and is re�ected towards the relative
sensor, in the usual optical lever con�guration. As it is possible to notice
already by looking at �gure 4.3, the optical lever angle relative to the y path
is the smallest. This corresponds to a smaller sensitivity, as explained in the
previous chapter.
Another important feature is the use of �bers with suitably small pigtail style
collimators, in order to �t the tiny available spaces.

4.1.2 The prototype
The described integration scheme was the starting point of my work on the
present topic. I adopted the discussed layout as a reference solution for
developing a real scale bench-top prototype, in order to test the proposed
ORO setup. It is worth noting that the setup can be updated according to
the possible evolution of the inertial sensor design from Path�nder to LISA.
A 3−D picture of the real scale prototype is illustrated in �gure 4.4, where
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the top lid hosting the two dummy z electrodes has been removed to allow
to look the inside.
The test mass hosts three mirrors, one on top and the other two respectively

Figure 4.4: Real scale prototype, 3-D picture.

on the left and back side. Other mirrors are �xed to the supports representing
the electrode holders, along the x and z paths: two for the x electrodes and
two for the z electrodes.
A maybe more clarifying �gure is 4.5, which shows a detailed scale scheme
of the prototype through its front and top views. The indicated geometrical
parameters have the following values:

• Lx = 30 mm, Ly = 27 mm, Lz = 36 mm ;

• βx = 75◦, βy = 10◦, βz = 74◦ ;

• Sx = 15 mm, Sz = 15 mm;

• d = 6 mm.
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It is worth remembering that the side length of the test mass is 46 mm.
The overall dimensions of the electrodes, of the proof mass and of the

Figure 4.5: ORO integration scheme: top and front projections.

electrode housing are reproduced faithfully as in the actual model, to allow
the experimental veri�cation of the correct passing of the light beams and
the validation of the design.
Besides this purpose, the tests of the real scale prototype aim at the analysis
of the optical matrix of the system. This is the matrix which allows to
calculate the test mass displacements from the photodiode signals. It can
be calculated analytically by means of the geometrical con�guration of the
system. Furthermore its elements can be obtained experimentally by proper
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measurement. It is thus possible to compare the experimental results with
the analytical predictions, as I will show later on in this chapter.
Summarizing, the tests on the real scale prototype concerned mainly two
aspects:

• the validation of the integration design;

• the study of the optical matrix.

It is worth noting that in this phase we are not interested in making mea-
surement of the sensitivity performances at this stage of the work.

4.1.3 The experimental setup and the assembling phase
The prototype has been manufactured in the machine shop of INFN section
of Napoli. The proof mass and the basic structure are made of aluminium
and have been alodyn coated, in order to protect the surfaces. The electrodes
are replaced by mirrors with protective gold coating, as the ones attached to
the test mass.
Figure 4.6 shows the prototype during the assembling phase. The three mir-
rors are visible on the top and on the sides of the proof mass. On the left
side of the external structure it is possible to see a circular hole, which is the
passage for the optical �bers.
As photodetectors we mounted three position sensing devices (PSD). Since
the tests do not concern sensitivity measurement, we prefer to use the PSD
device, which is more handy, having a sensitivity range which is independent
from spot size and thus providing a greater sensitive area. This is important
especially in our speci�c case, in which the extremely small spaces for the
passage of the light beams, added to the mechanical tolerances, make it very
di�cult to center the light spots on the detectors. At this stage of the work
it is not worth complicating our experimental problems.
The PSDs are glued to their holders, which have a rectangular pro�le such
as to constrain the photodiodes in the correctly oriented position. 1. The

1Di�erently from the QPDs, these PSDs have a rectangular shape.
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holders in their turn are screwed to the support in the proper locations.
We used the light sources currently at our disposal in the laboratory: two He-
Ne lasers to generate the X and Y light beams and a laser diode (λ = 830 nm)
for the Z path.

Figure 4.6: Real scale prototype during the assembling phase.

Figure 4.7 shows another important feature of the setup: the pigtail �ber
collimaters glued in their alluminium holders, which are stuck in their turn
to the support. As it is possible to notice, the pro�le of the support in the
gluing areas is such that the holders are di�erently inclined, in order to direct
the light beams towards the mirrors with the proper angles. The focusers are
the 4 mm diameter graded index lens collimaters, which we have mentioned
in the previous chapter.
Unfortunately many of these extremely delicate �ber components broke dur-
ing the assembling phase and we were left with an inappropriate �ber (λ =

830 nm) to couple the He-Ne light beam relative to the Y path. For paths
X and Z the �bers corresponded to the proper wavelengths, respectively
λ = 630 nm and λ = 830 nm. The �bers are, as usual, SPM.
The choice concerning the �ber focusers are here dictated by the small di-
mensions of the setup and by simplicity requirements. In a future study a
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Figure 4.7: The real scale prototype and a detail of the �ber output couplers.

more performant setup suited to work in space invironment must be proposed
and tested, in order to establish the proper devices to use for LISA.
As it is shown in �gure 4.7, the proof mass is screwed to three piezoelectric
translators (PZT) in a column, which allow to move it along the three ortog-
onal axes x, y and z.

The assembling phase was successful: the re�ected light beams reached
the photodiodes without clipping, after making few adjustments with thin
steel spacers (≈ 100 µm). These necessary corrections are consistent with
machining tolerances, with the accuracy in the positioning of the �ber output
couplers and further with the accuracy in relative alignment of the �ber with
its own ferrula.
The maximum distance of the light spots from the center of the PSDs was
about 300 µm.
As expected, it is clear that the accurate positioning of the �ber output
coupler will be essential in the real system, and that some possibility of
regulating the position of the output detector (for example using calibrated
spacers) will be necessary.
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4.2 Theoretical versus experimental analysis

4.2.1 The optical matrix and the system calibration
Let's call B the optical matrix of the system, which allows to calculate the
position of the test mass once we know the signals from the photodiodes.
Since there are six DOFs, it is a 6×6 matrix, which is de�ned by the relation:




X

Y

Z

α

η

θ




=




B11 B12 B13 B14 B15 B16

... ... ... ... ... ...

... ... ... ... ... ...

... ... ... ... ... ...

... ... ... ... ... ...

B61 ... ... ... ... B66




×




Xh

Xv

Yh

Yv

Zh

Zv




, (4.1)

where the DOFs of the proof mass (X, Y, Z, α, η, θ) ([m], [rad]) are indi-
cated in �gure 4.8 and the vector (Xh, Xv, Yh, Yv, Zh, Zv) ([m]) includes the
photodiode signals (the pedices h and v stand for 'horizontal' and 'vertical'),
as shown in �gure 4.4. The matrix B is a matrix containing all the calibra-
tion factors of the system.

Figure 4.8: Reference frame of the prototype setup.

Actually we can measure the elements of the inverse matrix of B, that
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we call A:



Xh

Xv

Yh

Yv

Zh

Zv




=




A11 A12 A13 A14 A15 A16

... ... ... ... ... ...

... ... ... ... ... ...

... ... ... ... ... ...

... ... ... ... ... ...

A61 ... ... ... ... A66




×




X

Y

Z

α

η

θ




. (4.2)

It is worth noticing that the elements of the �rst three columns are dimen-
sionless, while the elements of the last three have dimensions [m/rad].
The matrix elements Aij are measured using the same basic principle de-
scribed in the previous chapter for calibration, but here we are interested
in more DOFs. So we have to move the test mass of a known amount on
one single DOF, using the three DOFs PZT system. In this way, the six
matrix elements of a given column can be measured as direct ratio of the six
photodiode signals over the input test mass displacement measured by the
capacitive sensor of the PZTs. For example, if we move the proof mass along
the x axis by a given amount X0, with no displacements in the other DOFs
(Y = Z = α = η = θ = 0), we get the matrix elements of the �rst column
as:

A11 =
Xh

X0

A21 =
Xv

X0

A31 =
Yh

X0

A41 =
Yv

X0

A51 =
Zh

X0

A61 =
Zv

X0

.

(4.3)
In the same way, it is possible to measure the elements of the other columns
of the matrix by moving the test mass in the other DOFs. In practice, as we
have already mentioned in the previous chapter, the most accurate way of
measuring the calibration factors is to excite the system sinusoidally so that
the matrix element can be measured with higher precision as the ratio of the
power spectral densities of the output and input signals at the modulation
frequency fsin. For example, moving the test mass with a sinusoidal excita-
tion X0 along the x axis, the �rst element of the matrix would be calculated
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as:
A11 =

(
X̃h

X̃0

)

fsin

(4.4)

or
A11 =

∣∣∣∣
FFT (Xh)

FFT (X0)

∣∣∣∣
fsin

. (4.5)

The second method returns modulus and phase, this latter providing the sign
of the matrix element. Once the matrix is �lled, we can invert it, in order
to obtain the matrix B. Actually we can measure only the elements of the
�rst three columns of A, because we are not yet supplied with PZT rotators
in order to induce calibrated angular displacements of the test mass.
The elements of the second and third columns are measured by moving the
proof mass respectively along the y and z axes. If we call the corresponding
PZT capacitive signals Y0 and Z0, the matrix we can actually measure is:

Ameas =




(
X̃h

X̃0

)
fsin

(
X̃h

Ỹ0

)
fsin

(
X̃h

Z̃0

)
fsin(

X̃v

X̃0

)
fsin

(
X̃v

Ỹ0

)
fsin

(
X̃v

Z̃0

)
fsin(

Ỹh

X̃0

)
fsin

(
Ỹh

Ỹ0

)
fsin

(
Ỹh

Z̃0

)
fsin(

Ỹv

X̃0

)
fsin

(
Ỹv

Ỹ0

)
fsin

(
Ỹv

Z̃0

)
fsin(

Z̃h

X̃0

)
fsin

(
Z̃h

Ỹ0

)
fsin

(
Z̃h

Z̃0

)
fsin(

Z̃v

X̃0

)
fsin

(
Z̃v

Ỹ0

)
fsin

(
Z̃v

Z̃0

)
fsin




, (4.6)

where the sign of each element is identi�ed by the phases of the FFTs at the
modulation frequency.

4.2.2 The analytical matrix
The optical matrix is identi�ed by the geometry of the system. It is �xed
once the geometrical properties of the setup have been de�ned. The matrix
A can thus be calculated analytically by means of geometrical reasonings.
I refer to the geometrical parameters of �gure 4.5. I calculated the matrix
elements stopping at the �rst order approximation, achieving the following
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result:

Ageom=




− sin(π−2βx)
cos(βx)

0 0 0 0 2(Lx+Sx)

0 0 0 0 −2(Lx+Sx)cos(βx) 0

0 sin(2βy)

cos(βy
0 0 0 −2Ly

0 0 0 −Lycos(βy) 0 0

0 0 0 0 −2(Lz+Sz)cos(βz) 0

0 0 − sin(π−2βz)
cos(βz)

−2(Lz+Sz) − sin(π−2βz)
cos(βz)

d 0




.

(4.7)
The matrix turns out to have determinant equal to zero, because the 2nd
and 5th rows are proportional. It is thus not invertible. From a physical
point of view this means that it is not possible to extract the proof mass
displacements, in all the 6 DOFs, from the signals of the photodiodes in the
actual con�guration. The current geometry of the system leads to 5 linearly
independent equations instead of six, so with this ORO setup it is possible
to extract unambigously the six DOFs of the test mass.
If we want to determine the complete position of the test mass we need to
�nd a new geometrical disposition of the three ORO sensors, described by
an invertible matrix A. I will propose a possible solution in the next section.
However, at the moment this design mistake in the originary integration
scheme of the ORO in LISA is not a big problem. Indeed in LISA three
DOFs of the test mass are read by the main interferometer, so among the 6
position signals needed by the drag free control loop, three are provided by
the main interferometer and only the other three have to be furnished by the
GRS. I will speak about this argument further on in this chapter.
As a matter of fact, despite the geometrical matrix can't be inverted, the
analysis of the present con�guration can be very useful, allowing to compare
the analytical model with the experimental values.
We can obtain the actual values of the matrix elements by substituting the
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parameter values:

Ageom =




−1.932 0 0 0 0 0.0900

0 0 0 0 −0.023 0

0 0.35 0 0 0 −0.0540

0 0 0 −0.0266 0 0

0 0 0 0 −0.028 0

0 0 −1.923 −0.1020 −0.0120 0




. (4.8)

We can also calculate the related errors, taking into account the mechani-
cal tolerances of the prototype and using the maximum error propagation.
Therefore, we can de�ne an error matrix ∆Ageom as:

∆Ageom =




0.007 0 0 0 0 0.0004

0 0 0 0 0.002 0

0 0.04 0 0 0 0.0002

0 0 0 0.0002 0 0

0 0 0 0 0.002 0

0 0 0.008 0.0004 0.0004 0




. (4.9)

The previous results have to be compared with the measured matrix.

4.2.3 The measured matrix
The measurement gave the following values for the matrix elements:

Ameas =




−1.94 −0.0126 0.173 − − −
0.0119 −0.0019 0.0302 − − −
−0.0364 0.345 −0.0439 − − −
0.0101 −0.0072 −0.0596 − − −
0.061 0.029 −0.11 − − −
0.034 −0.019 −1.8 − − −




. (4.10)

where the missing elements are the ones we cannot measure with the current
setup. An important thing to stress is that di�erent measurement of the
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elements of the 5th and 6th row gave very di�erent results. The variation
was of the order of about 15%. These discrepancies are explained by the
experimental features. Indeed rows 5 and 6 are calculated from the signals of
the photodiode Z, associated with the laser diode source. As I have already
mentioned in the previous chapter, the laser diode undergoes mode hopping,
which causes the calibration factor to change. The matrix elements in rows 5
and 6 are thus estimated as a mean value between the di�erent measurement
and the relative errors are evaluated as standard deviations from the mean.
The error evaluation concerning the other matrix elements has been made in
a di�erent way. Since the matrix elements are calculated as ratios of FFTs, in
order to calculate the errors it is necessary to estimate the error on the FFT.
This is done by comparing the peak amplitude to the nearby �oor noise, as
shown in �gure 4.9. The maximum error propagation is then used to evaluate
the errors on the matrix elements.
Our rough estimate of the matrix elements errors gives:




0.01 0.001 0.005 − − −
0.0003 < 0.0001 0.0008 − − −
0.0004 0.002 0.0003 − − −
0.0002 0.0001 0.0004 − − −
0.009 0.004 0.02 − − −
0.005 0.003 0.3 − − −




. (4.11)

As it is posssible to see from equations (4.8), (4.9), (4.10) and (4.11), the
�rst three columns of experimental matrix and of the analytical matrix are
in good agreement. Our model has been validated by the measurement for
what concerns the translational DOFs of the test mass.

4.2.4 Correction for rotated photodiodes
In order to explain the slight discrepancies between analytcal and measured
matrix we made an assumption. We supposed that each photodiode had been
glued to its holder rotated by an angle ξ 6= 0 with respect to the nominal
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Figure 4.9: Estimate of the error on FFT (Xh). The blue curve represents the function
FFT (Xh), while the black dashed line estimates the mean value of the �oor noise. The
peak indicated in the graph corresponds to the modulation frequency. In order to be
identi�able it must stand out from the �oor noise level, which thus represents the related
error.

position (see �gure 4.10). We thus assumed that the di�erence between the
matrix elements was originated by the cross-couplings due to these rotated
positions of the detectors.
Calling ξx, ξy and ξz respectively the rotation angles of photodiodes x, y

and z, we can estimate them as:

tg(ξx) =
A21

A11

(4.12)

tg(ξy) =
A42

A32

(4.13)

tg(ξz) = −A53

A63

. (4.14)
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Figure 4.10: Rotated position of the PSD.

The rotation matrix R corrects the measured matrix Ameas for the rotated
positions of the photodiodes:

R =




cos(ξx) sin(ξx) 0 0 0 0

−sin(ξx) cos(ξx) 0 0 0 0

0 0 cos(ξy) sin(ξy) 0 0

0 0 −sin(ξy) cos(ξy) 0 0

0 0 0 0 cos(ξz) sin(ξz)

0 0 0 0 −sin(ξz) cos(ξz)




,

(4.15)
Ameas

R = R×Ameas. (4.16)

The matrix Ameas
R is the measured matrix corrected for the photodiode ro-

tated positions. Substituting the numerical values in (4.16), we get:

Ameas
R =




−1.94 −0.0126 0.173 − − −
0 −0.0020 0.0313 − − −

−0.0366 0.345 −0.0427 − − −
0.0094 0 −0.0605 − − −
0.0591 0.0298 0 − − −
0.0375 −0.0172 −1.8388 − − −




. (4.17)

As it is possible to see comparing the numerical values in (4.17) with the
ones in (4.7) and in (4.8), a wrong orientation of the photodiodes doesn't
justify the discrepancies between the measured and analytical matrices.
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4.3 A setup with invertible optical matrix
A geometrical con�guration of the 3-ORO system corresponding to an in-
vertible optical matrix can be obtained by tilting the x beam path by an
angle γ around the X axis (see �gure 4.11). The analytical matrix relative

Figure 4.11: Real scale prototype: modi�ed design. A possible value for the angle γ

which should require little modi�cation of the present prototype is γ = 16.5◦.

to the new setup is the following:

Anew=




− sin(π−2βx)
cos(βx)

0 0 0 0 2(Lx+Sx)

0 − sin(π−2φx)
cos(φx)

0 0 −2sin(βx)(Lx+Sx)tg(γ)
sin(φ)

0

0 sin(2βy)

cos(βy
0 0 0 −2Ly

0 0 0 −Lycos(βy) 0 0

0 0 0 0 −2(Lz+Sz)cos(βz) 0

0 0 − sin(π−2βz)
cos(βz)

−2(Lz+Sz) − sin(π−2βz)
cos(βz)

d 0




,(4.18)

where the angle φ is de�ned by the relation tg(φ) = tg(βx) · tg(γ). Of
course, with γ = 0 we obtain once more matrix (4.7). All the rows of matrix
(4.18) are linearly independent and the matrix can thus be inverted: the six
photodiode signals of this new ORO setup completely determine the position
of the proof mass in all its DOFs.
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4.4 About sensitivity performances

4.4.1 LISA con�guration
As I have already mentioned in an earlier section of this chapter, also with
the present setup having γ = 0, the test mass position is completely resolved
if we use LISA interferometric signals. Actually this is the current prefered
solution for the integration of the ORO sensor in LISA, because in the cor-
responding con�guration no ORO beam would impact the proof mass on the
x faces, which are ortogonal to the interferometric axis involved in gravita-
tional wave detection.
The proof mass displacements which are directly measured by LISA inter-
ferometer are X, θ and η. The corresponding interferometric signals will be
signed with the pedix I of 'ineterferometer' to distinguish them from the
ORO measurement. The matrix describing the system is de�ned in this case
by:



XI

θI

Yh

Yv

ηI

Zv




=




1 0 0 0 0 0

0 0 0 0 0 1

0 sin(2βy)

cos(βy
0 0 0 −2Ly

0 0 0 −Lycos(βy) 0 0

0 0 0 0 1 0

0 0 − sin(π−2βz)
cos(βz)

−2(Lz+Sz) − sin(π−2βz)
cos(βz)

d 0




×




X

Y

Z

α

η

θ




.

(4.19)
We call AI the matrix 6 × 6 in equation (4.19) and BI its inverse, which
represents the optical matrix of the described reference setup.
Substituting the values of expression (4.8) for the relative matrix elements
present in AI and calculating the corresponding inverse, we get a partially
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experimentally veri�ed optical matrix of the system, which we call BI.



X

Y

Z

α

η

θ




=




BI
11 ... ... ... ... BI

16

... ... ... ... ... ...

... ... ... ... ... ...

... ... ... ... ... ...

... ... ... ... ... ...

BI
61 ... ... ... ... BI

66




×




XI

θI

Yh

Yv

ηI

Zv




. (4.20)

4.4.2 How to estimate sensitivity
It is possible to make an estimate of the noise level of the optical sensor
measurement in the di�erent DOFs assuming for the ORO the measured
sensitivity curve of �gure 3.18. We have thus to take into account the geom-
etry of the system, that means its optical matrix.
We consider the reference con�guration discussed in the previous subsection,
in which X, θ and η are read intereferometrically. We make the reasonable
assumption that the noise level of the interferometric measurement is abso-
lutely negligible with respect to the noise relative to the ORO measurement.
Then the noise levels we want to estimate are relative to the Y , Z and α

DOFs. Taking into account the matrix BI de�ned above, the expected noise
for each degree of freedom can be expressed as the incoherent sum of the
measured signals weighed by the relative matrix elements. The noise levels
Ỹ , Z̃ and α̃ relative to Y , Z and α are then given by:

Ỹ =
[
(BI

23 · Ỹh)
2 + (BI

24 · Ỹv)
2 + (BI

26 · Z̃v)
2
]1/2

, (4.21)

Z̃ =
[
(BI

33 · Ỹh)
2 + (BI

34 · Ỹv)
2 + (BI

36 · Z̃v)
2
]1/2

, (4.22)

α̃ =
[
(BI

43 · Ỹh)
2 + (BI

44 · Ỹv)
2 + (BI

46 · Z̃v)
2
]1/2

. (4.23)

Assuming reasonably that the noise level is the same for all the three detectors
and that it is equal to the lowest measured noise level ỹs obtained with the
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rigid setup (black curve in �gure 3.18), we get the expected noise for each
degree of freedom of our prototype:

Ỹ =
[
(BI

23)
2 + (BI

24)
2 + (BI

26)
2
]1/2 · ỹs, (4.24)

Z̃ =
[
(BI

33)
2 + (BI

34)
2 + (BI

36)
2
]1/2 · ỹs, (4.25)

α̃ =
[
(BI

43)
2 + (BI

44)
2 + (BI

46)
2
]1/2 · ỹs. (4.26)

The calculations can be repeated assuming for ỹs the model noise of the ORO
sensor.
The results of this analysis are shown in �gures 4.12 and 4.13.

4.4.3 The results
Figure 4.12 illustrates the noise levels expected for Y and Z, compared with
the capacitive sensor requirement for the translational DOFs. The dashed
lines represent the expected model noise levels for Y and Z.
The Y noise level is higher than the Z one because, as I have already pointed
out, the relative optical lever incidence angle is smaller.
Figure 4.13 shows the expected noise level relative to α degree of freedom of
the prototype, which is below the capacitive sensor speci�cation in about all
the bandwidth. Summing up, the layout proposed for the ORO integration in
LISA in its analytical model has been validated experimentally. Furthermore,
assuming the experimentally demonstrated displacement sensitivity of the
ORO (see chapter III) and its potential further improvement, we can predict
a noise level for the ORO integration setup within or close to speci�cations
for all the DOFs.
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Figure 4.12: Comparison between noise levels relative to the translational DOFs: the
orange curve is the capacitive sensor requirement, while the red and magenta curves rep-
resent ORO measured noise levels for Y and Z DOFs of the test mass. The dashed lines
are the respective ORO potential sensitivities, assuming the model noise.

Figure 4.13: Comparison between noise levels relative to the rotational DOFs: the
orange curve is the capacitive sensor requirement, while the blue curve represents ORO
measured noise level. The dashed line is ORO potential sensitivity, assuming the model
noise.
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Chapter 5

Ground Testing of the ORO on a
torsion pendulum facility

The bench-top measurement described in chapter III and IV have success-
fully proven that the ORO satis�es the requirements for sensitivity both in
translational and in rotational DOFs, overcoming the capacitive sensor per-
formances in a wide range of frequencies. Nevertheless, the rigid bench-top
prototypes are not a realistic test stand for the ORO, which will work in
space on free falling masses.
Furthermore a rigid setup could not supply measurement of the ORO back-
action, due to the radiation pressure of the light beams hitting the test mass,
and of other potential unknown interactions.
The installation in Trento of a four mass torsion pendulum facility provides
an excellent opportunity to verify the performances of the ORO in a con�g-
uration as close as possible to the real one for at least one DOF and to put
a relevant upper limit on its induced noise. Moreover it allows to make in-
depth comparisons between the ORO and the pendulum capacitive readout
system, furnishing a very accurate tool for cross-correlation analysis and for
a better estimate of the pendulum mechanical excess noise.
I have already discussed in chapter III that, in order to make preliminary
tests in our laboratory in Napoli, we developed a real scale bench-top proto-
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type of the ORO designed for integration in Trento ground testing facility.
These preliminary measurement gave very good results, analogous to the best
ones achieved with the rigid bench-top setup.
After this �rst experimental validation, for which I refer to dedicated para-
graph 3.3.7, we were �nally ready to bring the ORO system in Trento and
mount it on the torsion pendulum.
This chapter describes the activity concerning the integration of the ORO
sensor in the facility and the measurement so far performed. The main part
of the experimental work has been accomplished in Trento, were I spent some
weeks during my PhD studies.

5.1 The four mass torsion pendulum facility
For each of its test masses LISA demands a nearly perfect free fall along
a single translational axis, which is the optical axis of the interferometer.
Translational forces along that direction are thus the most important for
LISA GRS.
The single mass torsion pendulum described in chapter II is sensitive to
torques, rather than to translational forces. Furthermore the force noise that
can be achieved with this facility is limited by intrinsic thermal noise of the
torsion oscillator and results to be two orders of magnitude above the target
force noise for LISA [30].
I mentioned these brief reasonings to introduce the new four mass torsion
pendulum facility, which has been developed in Trento in order to improve
both the sensitivity of the ground-based measurement and the degree to
which they are representative of �ight experiments.

5.1.1 The pendulum
The scheme of Trento new pendulum is sketched in �gure 5.1. Four LISA-like
proof masses (Au-coated, side length: 46 mm) are mounted on a cross-shaped
support (shaft), with an armlength b = 10 cm (distance of the proof mass
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Figure 5.1: Scheme of the four mass torsion pendulum in Trento. Mass 1 is associated to
the engineering model of the capacitive readout, while mass 2 deals with the ORO sensor
and the so called sti�ness compensator. On the right side is shown a picture of the vacuum
chamber.

center from the center of the pendulum) [47] [46].
As its single mass companion, the four mass pendulum is hung by a torsion
�ber (L ≈ 105 cm) to the top of a vacuum chamber. However, di�erently
from the �rst one, its simple Cavendish type geometry displaces the proof
mass from the torsion �ber axis, thus allowing the facility to be sensitive to
net forces along the x translational axis.

Referring to �gure 5.1, for small rotations φ, mass 1 undergoes a trans-
lation x ≈ b · φ: the x is the so called 'soft DOF' of the proof mass, because
in this direction the mass is approximately in free fall. The facility is thus
force sensitive along x.
The reference frame we adopt for the displacements of the proof masses is

indicated in �gure 5.3, together with a sketch of the con�guration of the sen-
sors working on the pendulum. The translational DOFs of the proof masses,
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Figure 5.2: The Pendulum. The small cube on top of the pendulum is the mirror on
which impinges the autocollimator light beam.

mass 1 and mass 2, are X, Y and Z, while the rotations around the corre-
sponding axes are called θ, φ and η. It is worth noticing that X, Y , Z, φ and
η will be always referred to the displacements of the proof masses, unless it
is di�erently speci�ed.

5.1.2 The sensors
Mass 1 is the proof mass associated to the engineering model capacitive sen-
sor (EM), which represents a real scale prototype of the current solution for
LISA GRS. The EM is constituted of six pairs of electrodes, disposed as
shown in �gure 5.3, which allow to measure test mass 1 displacements in
all the six DOFs. The EM electrode housing hosts also the electrodes for
electrostatic actuation and the �bers for UV discharge of the proof mass.
Mass 2, or dummy test mass, is instead surrounded by the so called sti�ness
compensator (STC), a less performant capacitive sensor allowing to com-
pensate the tilt-twist coupling induced on the pendulum by the EM-related
sti�ness [46]. The STC capacitive sensor is made of three pairs of electrodes,
which are visible in picture 5.3. This con�guration is sensitive only to the
translational displacement of test mass 2.
The ORO sensor acts on mass 2 and is mounted on the STC electrode hous-
ing, as we will see in detail later on.
The two electrode housings are installed on a rigid platform and the relative
position of the three sensors (EM, STC and ORO) is thus �xed. The proce-
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Figure 5.3: Reference frame and of the general orientation of the sensors.

dure aimed at �nding the common zero position of the sensors, in order to
center them and �nally �x them, will be described in section 5.5.
The platform can translate and rotate by means of a micromanipulator.
An autocollimator (AC) located externally to the vacuum chamber sends its
light beam to a mirror mounted on top of the pendulum, shown in �gure 5.2,
measuring the rotations η and φ and thus providing the signals for calibrating
the EM, ORO and STC sensors.

5.1.3 Other experimental features
The vacuum chamber lays on a concrete slab partially isolated from the lab-
oratory �oor. All the experimental setup is enclosed in a large thermally
isolated box, except for the acquisition systems.
The working pressure inside the vacuum chamber during the measurement
shown in this chapter is around 10−7 mbar.
A very important experimental feature is that the signals from the four sen-
sors (EM, ORO, AC, STC) can be visualized in real time on a monitor,
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thus providing instantaneous information on the time evolution of the proof
masses displacements and on the functioning of the sensors themselves.
This operation is carried out by the Trento acquisition system, which ac-
quires all the signals from the four sensors, together with the temperatures
and the pressure inside the vacuum chamber, with a sampling frequency of
10 Hz. The signals are then displayed in real time on a monitor as plots in
function of time, by means of Labview graphical interfacing.
The real time visualization of the signals is a fundamental tool in the four
mass pendulum setup, as I will point out further. In this way we can imme-
diatly become aware, for example, of a possible exit of a light spot from the
ORO measurement range or of some problem occurred in the data streams.

5.2 The ORO layout

5.2.1 The geometrical scheme
The ORO con�guration planned to work on the torsion pendulum is made
up of two optical levers impinging on opposite sides of the dummy test mass,
as shown in �gure 5.4. The ORO sensors are oriented in opposite directions.
The symmetry allows to reduce static force due to the radiation pressure of
the light beams hitting the test mass.

Figure 5.4: ORO con�guration on the torsion pendulum.
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This layout allows to measure the translational displacements of test mass
2 along the x axis and the rotations φ and η around the y and x axes, as it
is possible to understand looking at �gure 5.5.
A X translation of the test mass causes the light spots to displace along the
vertical axes of the photodiodes. In particular, according to the orientation
of the ORO sensors shown in �gure 5.3, the two vertical displacements have
the same sign.
A rotation φ of the pendulum results in a rotation φ of the proof mass around
its center plus a translation of the proof mass center of mass. Consequently,
a φ rotation of the pendulum causes a displacement of the light spots along
both the vertical and horizontal axis of the QPDs. However the φ rotation
of the proof mass around its center makes the spots displace along the QPDs
horizontal axes. The two signals have opposite signs.
A rotation η of the proof mass causes the spots to translate along the vertical
axis. The displacements have opposite directions on the two photodetectors.
Of course, the previous reasonings are true if we stop at the �rst order ap-
proximation and neglect the cross-couplings between di�erent DOFs.

5.2.2 Proof mass displacements and ORO signals
The four mass pendulum has di�erent normal modes, corresponding to φ

(torsional mode) and η (swinging mode) rotations. Furthermore, the pendu-
lum can oscillate around the �ber axis and it also can translate owing to a
translation of its suspension point.
Di�erent modes of the pendulum can contribute to a displacement of the

proof mass along the same DOF. For example, a translation X of test mass
2 can be caused both by a φ rotation of the pendulum or by a translation
of the pendulum center of mass by means of a pendulum η rotation. These
di�erent motion contributions to a single DOF of the test mass can be distin-
guished by their proper resonance frequencies, as will be speci�ed in section
5.4, where I will explain the calibration procedure.
From a geometrical point of view, it is possible to characterize the ORO sys-
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Figure 5.5: Displacements of test mass 2 and ORO signals.

tem relating the displacements of the light spots on the photodiode to the
displacements of proof mass 2. For the following discussion I refer to the
reference frame and the sensor orientation shown in �gure 5.3.
If Dx1, Dx2 and Dy1, Dy2 are the measured horizontal and vertical displace-
ments of the lights spots on the two photodiodes, the relations between the
ORO signals and the proof mass displacements X, φ and η are:

X =
1

4sinα
(Dy1 −Dy2) [m], (5.1)

φ =
1

4lcosα
(Dx1 −Dx2) [rad], (5.2)

η =
1

4l
(Dy1 + Dy2) [rad]. (5.3)

The expressions (5.1), (5.1) and (5.1) are obtained by geometrical consider-
ations, stopping at the �rst order approximation and neglecting the cross-
couplings.
Notice that the a single photodiode is su�cient to measure φ, but for a better
accuracy we consider the mean of the horizontal signals of the two photode-
tectors.

From a practical point of view, given the measured ORO signals H1
N , V 1

N

and H2
N , V 2

N , which are normalized with respect to the sums S1 and S2, the
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displacements of the test mass measured with the ORO system are:

XORO ∝ (V 1
N − εV 2

N), (5.4)

φORO ∝ (H1
N − γH2

N), (5.5)

ηORO ∝ (V 1
N + σV 2

N). (5.6)

The proportionality constants are the calibration factors. The quantities ε,
γ and σ take into account the possible di�erences between the calibration
factors of the two photodiodes.

5.2.3 The experimental setup
A basic scheme and a photo of how the ORO is integrated in the STC is
shown in �gure 5.6, which illustrates a front view of the system: the STC
appears as the joint of two L-shaped pieces, on which the �ber couplers and
the photodetectors are mounted in the same way described for the bench-top
prototype in section 3.3.7.

Figure 5.6: Integration of the ORO in the STC.

The holders are the same as in the prototype: the photodiodes are glued
to macor holders, which are screwed to the STC through proper interfacing
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pieces; the �ber couplers are tightened in between two cilindrical grooves
with lateral screws and integrated in the electrode housing with suitable
interfacing supports. We made many calibrated interfacing pieces for the
photodetector and the �ber couplers, such to readjust the relative positions
and allow a good centering of the light spot on the photodiode.
The optical lever armlength and angle are l = 52.5 mm and α = 70◦.
The experimental features of the ORO setup on Trento torsion pendulum are
the following:

• Light Sources −→ Super Luminescent Light Emitting Diodes (λ =

830 nm);

• Fiber components −→ SM optical �bers, Fiber output Couplers:
aspheric micro-lenses (λ = 830 nm, nominal spot size= 0.4 mm);

• Sensors −→ Quadrant Photodiode (QPD).

The optical �bers and the electric cables of the photodiode enter the vacuum
chamber through suitable feedthroughs. It is worth noticing that the optical
�bers used so far in the facility are PVC coated and are not suited to deep
vacuum, so next step will be to substitute them with hytrel coated ones.

5.2.4 The acquisition system
The acquisition system has been developed and assembled in our laboratory
in Napoli. It is based on VME architecture and disposes of 32 not multi-
plexed channels, with 16 bit analogic-digital converters (Range: R = 20 V

[−10 V, +10 V ], Sampling frequency: fS = 1 KHz) and 32 analogic antiali-
saing �lters (8th order Butterworth �lters, cutting frequency: 200 Hz). The
digital data streams can be furtherly �ltered with digital antialiasing �lters
(8th order Butterworth �lters) in order to allow an undersampling at desired
frequency (usually 10 Hz).
The expected acquisition noise level is essentialy the noise level of each
analogic-digital converter (ADC), which is estimated as: ÑADC = R

2N ·
√

1
fS

=
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20−5 V/
√

Hz.
Actually we have measured the acquisition noise by plugging a channel of

Figure 5.7: Noise level of our acquisition system compared with the electronic noise of
the QPD ampli�er.

our acquisition system with a 50 Ω resistance and acquiring the associated
signal. It is possible to see from �gure 5.7 that the measured acquisition
noise is not white as the model predicts. This discrepancy is originated by
the antialiasing analogic �lters. This is one of the issues we can improve in
future steps.
Figure 5.7 also shows the electronic noise of the QPD ampli�er, compared
with the acquisition noise. This latter is dominant.
In order to use all the voltage range of the ADC and increase the signal to
noise ratio between the QPD signals and the acquisition noise, we modi�ed
the QPD ampli�ers, inserting a switch which allows to change the gain fac-
tor of the horizontal and vertical signals from 1 to 20. We call this latter
modality 'scienti�c mode'. Of course when we process the data acquired in
scienti�c mode we must remember to normalize the horizontal and verticl
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signals by the factor 20.
It is worth noticing that with gain factor 20, the measurement range on the
QPD reduces of a factor 20 too. Considering the spot size 0.4 mm, the mea-
surement range becomes 0.02 mm. This means that the centering operation
of the light spot on the photodiode becomes more di�cult and that the spot
can easily exit the sensitive area of the photodetector during the pendular
displacements.
The signals we acquire are the six signals from the QPDs: S1, H1, V1 and
S2, H2, V2. These signals are also acquired with the Trento acquisition sys-
tem, which allows to display them on a monitor in real time.

5.3 ORO, EM, STC and AC signals
As I have already pointed out, the current ORO layout is sensitive to three
DOFs of test mass 2: X, φ and η.
Our purpose is to compare the signals measured with the ORO sensor with
the signals measured with the capacitive sensors. Therefore, in the following
discussion I will consider only the EM and STC signals to be used in the
comparison with the ORO sensor.
As it is possible to see from �gure 5.3, the STC sensor is made of three
couples of electrodes, that we indicate with Z, X and Y . This setup allows
the STC to be sensitive only to the translations of test mass 2. In particular,
the measurement of the X displacements of proof mass 2 is performed with
the STC sensor as:

XSTC ∝ XSTCV , (5.7)

where XSTCV is the voltage signal from the X electrode pair of the STC.
The EM sensor is constituted of 6 pairs of electrodes, called: Z1, Z2, X1, X2,
Y1, Y2. From the sum of each pair the relative translational displacement
is obtained, while the di�erence between the signals of the homonymous
electrodes give the rotations. So the EM measurement of the X, φ and η
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displacements of proof mass 1 are obtained from the relations:

φEM ∝ (Z1 − δZ2), (5.8)

XEM ∝ (X1 + τX2), (5.9)

ηEM ∝ (X1 − κX2), (5.10)

where the factors δ, τ and κ are present for possible di�erences in the cali-
bration factors of the electrode pairs. Beyond the previous sensors, there is
also the AC, which makes independent measurement of φ and η, providing
the calibration signals for EM, ORO and STC. The output signals φAC and
ηAC of the AC are directly furnished in degrees.
Summing up, the �nal signals we deal with are:

• XORO, φORO, ηORO;

• XEM , φEM , ηEM ;

• XSTC

• φAC , ηAC .

Actually it is possible to take advantage of the geometry of the pendulum,
using both EM and STC or EM and ORO to measure φ, improving the
sensitivity by means of the armlength of the pendulum. However this way of
measuring φ is not worth for LISA, so I won't take it into account here.

5.4 Calibration
The calibration is a delicate operation in this context, because of the di�er-
ent pendular normal modes of the four mass pendulum. These modes are
the swing and the torsion. Furthermore when the pendulum swings, it also
oscillates with respect to the �ber axis. Fortunately this latter oscillation
has a high frequency f ≈ 2 Hz and isn't included in the bandwidth we are
interested in.
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The equilibrium position of the pendulum center of mass can also translate,
because its hanging point can move.
The reference signals for calibrating the ORO, EM and STC data are φAC

and ηAC , as I mentioned in the previous sections.
In order to calculate the calibration factors with the usual method summa-
rized by equation (3.8), we have to consider the di�erent resonant frequencies
related to the di�erent pendular normal modes. Typical normalized vertical
and horizontal signals from the ORO are shown in �gure 5.8.

Figure 5.8: Power spectral densities of horizontal (red) and vertical (blue) signals of the
ORO operating on the torsion pendulum.

Two main resonant peaks are visible at f1 ≈ 0.75 mHz and at f2 ≈
0.45 Hz. The �rst peak is also visible in φ̃AC (�gure 5.9), while the second
is evident in η̃AC , according to the fact that the AC is insensitive to cross-
couplings. Indeed, the �rst resonance corresponds to the torsional mode
(rotation φ), while the higher frequency peak is associated with the η rotation
resonance. The same peaks are visible in the power spectral densities of XEM
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Figure 5.9: Torsion pendulum: power spectral densities of the autocollimator signals.

and XSTC , as shown in �gure 5.10.
The �rst peak is thus evident in both ORO signals HN and VN , according

to equations (5.1) and (5.2). The second peak should be visible only in VN .
Actually we see a smaller peak also in HN , which is due to cross-coupling.
This latter can be caused, for example, by a not perfect alignment of the
ORO and the test mass.
Di�erently from what we used to do for the calibration of the bench-top
setups, we do not excite the pendulum with an external force. We use its
own pendular normal modes in order to calculate the calibration factors
by means of the usual power spectral density method, described in section
3.2.3. We need to pay attention to having properly long lasting measurement,
according to the resonant frequency we are taking into account.
The calculation strategy of the calibration factors for the ORO, EM and
STC signals is di�erent depending on the proof mass displacement we want
to extract.
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Figure 5.10: Torsion pendulum: power spectral densities of the EM and STC signals,
referring respectively to electrodes X1 of the EM and X of the STC.

5.4.1 Procedure DOF by DOF
The calibration factors relative to φ, X and η for the single sensors have been
calculated by following the steps described below.

ORO - φ DOF
We reasonably assume that at the frequency f1 the motion of the pendulum
is only due to φ normal mode. As already mentioned, each horizontal signal
of the ORO gives an independent measurement of φ, so each H i

N (i = 1, 2)

has to be calibrated singularly against the signal φAC . In this way we get
two calibration factors:

Ci
φORO

=

(
H̃ i

N

φ̃AC

)

f1

[rad−1] =⇒ φi
ORO =

H i
N

Ci
φORO

[rad] (i = 1, 2).

(5.11)
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Then φORO is given by the mean of the two di�erent measurement:

φORO =
1

2
(φ1

ORO − φ2
ORO) [rad]. (5.12)

It is worth noticing that H1
N and H2

N have opposite signs, owing to the ori-
entation of the QPDs and the geometry of the system (see �gure 5.3), so in
order to calculate the mean and obtain the right sign for φORO, it is necessary
to put the minus sign before φ2

ORO.

EM - φ DOF
As for the ORO, we assume that the pendulum motion at f1 is all due to φ

rotations. In section 5.3 it has been pointed out that φEM is obtained from
the di�erence between the signals Z1 and Z2. However, we cannot directly
calibrate this di�erence against φAC , because the two Z electrode pairs have
di�erent calibration factors. If δ is the discrepancy factor between the two
calibrations of the Z electrodes, the calibration factor is obtained as:

CφEM
=

(
D̃

φ̃AC

)

f1

[rad−1], (5.13)

where
D = Z1 − δZ2 [V ]. (5.14)

Owing to the fact that at the resonance frequency all the motion is due to the
φ normal mode, in order to �nd δ we have to impose that the two Z electrodes
measure the same signal at the frequency f1. Indeed, in our assumption the
signals Z1 and Z2 only depend on φ at that frequency. So the discrepancy
factor is given by:

δ =

(
Z̃1

Z̃2

)

f1

. (5.15)

Finally we get:
φEM =

1

CφEM

(Z1 − δZ2) [rad]. (5.16)
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ORO - X DOF
We assume that at the frequency f1 the translational motion X is all due to
the φ rotation and not to any displacement of the pendulum center of mass.
The reference signal for the calibration is now XAC , de�ned by:

XAC = b · φAC [m], (5.17)

where b is the pendulum armlength.
As pointed out in section 5.2, XORO is obtained from the di�erence between
the vertical signals of the ORO system. Following the same reasonings made
for calculating CφEM

, we cannot calibrate directly V 1
N − V 2

N against XAC ,
because the calibration factors relative to the di�erent QPDs may di�er. We
calculate the discrepancy factor ε in the same way described above:

ε =

(
Ṽ 1

N

Ṽ 2
N

)

f1

. (5.18)

The calibration factor is then:

CXORO
=

(
J̃

X̃AC

)

f1

[m−1], (5.19)

where
J = V 1

N − εV 2
N [V ]. (5.20)

The XORO is thus given by:

XORO =
1

CXORO

(V 1
N − εV 2

N) [m]. (5.21)

EM - X DOF
Each of the two X electrodes of the EM readout measures independently the
X DOF of test mass 1. As usual we assume that at the frequency f1 the
signals X1 and X2 depend in good approximation only on the φ rotations,
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rather than on the η rotations. So we can calibrate separately X1 and X2

against φAC :

Ci
XEM

=

(
X̃i

X̃AC

)

f1

[m−1] =⇒ X i
EM =

X̃i

Ci
XEM

[m] (i = 1, 2).

(5.22)
In the end we calculate the mean value:

XEM =
1

2
(X1

EM + X2
EM) [m]. (5.23)

STC - X DOF
The single pair of X electrodes of the STC allow to measure the X DOF of
proof mass 2, by means of the calibration factor:

CXSTC
=

(
X̃STCV

X̃AC

)

f1

[m−1], (5.24)

where X̃STCV is the voltage signal measured by the STC X electrodes. The
corresponding displacement is thus:

XSTC =
X̃STCV

CXSTC

[m]. (5.25)

ORO - η DOF
The reference signal for the calibration is ηAC . Now we assume that at the
frequency f2 all the motion of the pendulum is due to η normal mode.
The measurement ηORO is obtained from the sum of the two vertical signals.
As usual, we have to �nd the discrepancy factor between the calibrations of
the two di�erent photodetectors:

σ =

(
Ṽ 1

N

Ṽ 2
N

)

f2

. (5.26)
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The calibration factor is then:

CηORO
=

(
W̃

η̃AC

)

f2

[rad−1], (5.27)

where
W = V 1

N + σV 2
N [V ]. (5.28)

The ηORO is thus given by:

ηORO =
1

CηORO

(V 1
N + σV 2

N) [rad]. (5.29)

EM - η DOF
The η DOF is obtained by the di�erence of the EM signals X1 and X2. We
calculater the calibration discrepancy factor between the two electrode pairs
in the following way:

κ =

(
X̃1

X̃2

)

f1

. (5.30)

We consider the φ resonance because in the power spectral densities of the
signals X1 and X2 the peak in f1 is more evident than the peak in f2.
We calculate the calibration factor as:

CηEM
=

(
M̃

η̃AC

)

f2

[rad−1], (5.31)

where
M = X1 − κX2 [V ]. (5.32)

The ηEM is thus given by:

ηEM =
1

CηEM

(X1 − κX2) [rad]. (5.33)
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5.5 Assembling phase
The assemblage of the three sensors on the platform proceeded in two main
steps: the mounting of the single STC and EM electrode housings, compre-
hensive of the associated sensors, and their correct positioning and integra-
tion on the platform.
Concerning the ORO, the �rst step consisted in mounting it on the STC
electrode housing and in aligning �rst the two optical sensors and then these
latter with the dummy capacitive readout.
Analogously, the two electrode housing must be properly aligned one with
respect to the other and consequently �xed to the platform.
The alignment procedure aims at �nding the proper relative positioning of
the sensors such that all of them measure 0 when the proof mass is in its nom-
inal position. Of course the equality cannot be punctual, but must be worth
in a restricted range: a discrepancy up to few µm between the measurement
of the sensors is acceptable.

5.5.1 Centering of the ORO sensors and sti�ness com-
pensator

In this phase the proof mass n◦2 was installed on a long arm mounted of a
mechanical translation stage, as shown in �gure 5.11, which allowed to trans-
late it along the vertical axis by calibrated steps.
The STC electrode housing including the capacitive electrodes is �xed to

a base which is temporarly mounted on a slipping platform, such that the
sides of the proof mass and of the electrode housing are parallel. The movable
platform allows to translate the electrode housing parallely to the proof mass
faces along two ortogonal directions in the horizontal plane. The calibrated
displacements of the proof mass and of the electrode housing along the three
ortogonal axes are measured with a digital encoder, counting the number of
turns of the handles used to carry out the translations.
In picture 5.11 it is also possible to see the two ORO sensors integrated in
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Figure 5.11: Assembling of the ORO sensor on the STC.

the setup.
We assembled the �ber focusers for �rst. With the proper choice of the cal-
ibrated �ber coupler holders, the light beams came out correctly from the
relative holes of the electrode housing. Afterwards we mounted the QPDs
with the suited calibrated holders, such that the light beams hit the asso-
ciated sensor. Some corrections were needed in order to position the light
spots inside the measurement range of the photodetectors and to center the
two ORO sensors: for this purpose calibrated brass spacers are used, inserted
in between the electrode housing and the ORO holders and visible in picture
5.11.
After achieving a common zero position with the two ORO sensors, more

readjustments were necessary to align both the optical readouts with the
STC electrodes.
Figure 5.12 shows the resulting STC (red curve) and ORO (blue curve) X

signals after �nishing the centering procedure. A rough calibration for the
two sensors is obtained by moving the electrode housing by calibrated steps,
which are measured with the digital encoder. With a suitable correction of
the calibrated factors, we get the curves plotted in �gure 5.12: the agreement
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Figure 5.12: Comparison between the signals XORO and XSTC after the alignment of
ORO and STC sensors.

is very good and the ORO measurement, as expected, shows a lower level of
noise.

5.5.2 Centering of all the sensors
Figure 5.13 shows di�erent moments of the assembling phase of the electrode
housings on the platform. As it is possible to see, the body of the pendulum is
temporarly �xed on a small column in the center, to simulate the equilibrium
position of the pendulum and thus the nominal position of the proof masses.
The EM electrode housing is installed on a translator �xed to the platform.
On the other hand the centering of the STC is managed through screws
positioned on the sides of its base and beneath it.
As the alignment described in the previous section, the centering of the EM,
ORO and STC sensors proceeded by improving approximations, trying to
�nd a common range in which all the readouts measured values close to zero.
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Figure 5.13: Di�erent moments of the assembling of the three sensors on the platform.

5.6 Setting the pendulum for the displacement
measurement

After the assembling and centering phases, the pendulum was �nally ready
to be suspended. I won't give any detail about the suspension stage, because
it is pertaining to the work of the Trento group.
I will just give a brief description of the tools used to position the hanging
pendulum in the measurement range common to all the sensors, such that it
remains in that measurement range for a period of time suitable to the low
frequency measurement we are interested to.
The handles we've got in order to move the pendulum are the following:

• it is possible to change the torsional equilibrium angle φ0 by rotating
the support of the suspension �ber of the pendulum;

• the vacuum chamber can be tilted by screwing or unscrewing the legs
sustaining it, in order to translate the pendulum in the horizontal plane;
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Figure 5.14: The torsion pendulum before suspension.

• it is possible to produce a φ rotation by means of electrostatic actuation
on the proof masses;

• viscous electrostatic damping is used to slow down and control the
swinging pendular normal mode;

• for big swinging oscillation not controlable by the electrostatic damp-
ing, it is possible to intervene from the outside by stepping rithmically
on the pavement supporting the vacuum chamber, in counterphase with
respect to the pendulum swinging mode.

On the other hand, as I have already mentioned, we can rigidly translate
and rotate the platform supporting the electrode housings, to readjust the
position of the sensors around the proof masses.
In section 5.1.3 I pointed out that the signals from the sensors can be vi-
sualized on a monitor. We can thus look at the signals we are interested
in, in order to suitably operate on the pendulum by means of the only just
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described actions.
It is worth noting that the centering of the pendulum is an exremely delicate
operation, which needs much patience and is very time consuming: look-
ing at the signals on the monitor, we have to make an ordered sequence of
actions on the pendulum and repeat it very carefully until each signal we
are interested in is inside the relative measurement range. Furthermore its
oscillation must result properly small and reasonably centered inside the as-
sociated measurement range, otherwise the signal will not be measurable for
a su�ciently long time, reaching very early saturation.
It is worth noting that if we want to switch the ORO QPD ampli�er to the
scienti�c mode, in order to improve the signal to noise ratio between the
horizontal and vertical signals and the acquisition noise, the centering con-
ditions of the ORO sensor become the most stringent. This also means that
in most cases the ORO signals will be the �rst ones going out of range.

5.7 First results of the tests on torsion pendu-
lum

The main results achieved so far with the four mass torsion pendulum are
illustrated in �gures 5.15, 5.16, 5.17 and 5.18. All the measurement accom-
plished with the ORO sensors shown here are obtained in scienti�c mode.
Picture 5.15 shows the power spectral density of φ DOF measured by the

ORO (magenta curve). Unfortunately the Z1 and Z2 electrodes of the EM
capacitive sensor were not working correctly, owing to a wrong wiring, so we
cannot compare the ORO experimental curve with the measured power spec-
tral density of φEM . Instead the expected model noise for φEM is reported
(blue line). As it is possible to see from the graph, the ORO sensitivity per-
formance demonstrated so far for the φ DOF overcomes the EM expected
sensitivity. Furthermore the measured electronic noise of the acquisition sys-
tem is also plotted (black curve), properly normalized and calibrated: at this
stage the ORO φ sensitivity is not limited by the acquisition noise. This is

154



Figure 5.15: Power spectral density relative to the φ displacements of the proof mass
measured with the ORO sensor (magenta curve) compared with the expected sensitivity
of the EM (blue curve).

worth also for the other DOFs, so the next graphs will not show anymore the
acquisition noise.
Figure 5.16 shows the the power spectral densities of XORO, XEM and

XSTC . It is worth noticing that XEM refers to test mass 2, while XORO and
XSTC refer to test mass 1. As it is possible to see, the three sensors measure
with very good approximation the same noise level and the features of the
curves are very similar. This means that along the X DOF the sensors are
dominated by actual motion of the proof masses.
Concerning the rotation η, the results obtained from these �rst tests are

shown in �gure 5.17. The power spectral density of ηEM is plotted in blue,
while ηORO noise is represented by the magenta curve. The ORO perfor-
mance is slightly better than the capacitive one, although it is not good as
expected according to the measurement described in chapter III and IV.
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Figure 5.16: Power spectral density relative to the X displacements of the proof masses
measured with EM, ORO and STC sensors.

However, it has to be taken into account that all these measurement were
performed while the facility was undergoing the debugging phase. Further
investigations and new measurement are thus needed.
An interesting result concerns the back-action of the ORO sensor on the

pendulum. Figure 5.18 shows the force noise upper limit measured with the
EM readout when the ORO is on (blue curve) and o� (red curve). There is no
evidence of extra-disturbance due to the ORO sensor. Actually the meaured
force noise is in good agreement with the thermal noise model expected for
the pendulum.
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Figure 5.17: Power spectral density relative to the η displacements of the proof mass
measured with EM and ORO.

Figure 5.18: ORO Back-action.
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Conclusions

The research activity described in this thesis has lead to the development of
an optical readout (ORO) system based on optical levers to be integrated
in the Gravitational Reference Sensor (GRS) of LISA, providing a backup
solution in case the main sensor fails. This latter is a capacitive readout
developed by the LISA group in Trento.
The proposal of an ORO based on optical levers dates back to 200, before I
joined the LISA group of Napoli. However at that time the ORO was at a
very initial stage and the experimental testing was at its �rst steps.
My work has developed around three main topics:

• Characterization of the sensitivity of the ORO;

• Integration of the ORO in LISA;

• Test of the ORO on the 4 mass torsion pendulum facility in Trento.

A rigid bench-top setup has been used for characterizing the ORO sen-
sitivity in the LISA frequency band 10−4 Hz − 10−1 Hz. Many di�erent
experimental con�gurations have been tested, in order to improve the ORO
performances and identify the proper optical devices to propose as guide-line
solutions for the integration in LISA GRS. On the base of the experimental
analysis, the identi�ed reference solutions are the following:

The bench-top experiments demonstrated that the sensitivity performances
of the ORO sensor overcome the capacitive sensor speci�cations in the whole
frequency band of interest. The improvement ranges from a factor of 2 at
1 mHz to a factor of 20 at 100 mHz. At lower frequencies, below 0.5 Hz, the
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ORO noise spectrum exceeds the design sensitivity of the capacitive readout,
showing a steeper slope. We think that this is mainly due to thermal and
mechanical drifts, rather than to sensor intrinsic noise.
It is worth noticing that the ORO measured sensitivity is better than the
one of the capcitive sensor, despite the fact that ORO has not yet reached
its potential limit, which is established by the electronic noise of the QPD
ampli�er. Actually, the ORO shows an excess noise in a factor 4 with re-
spect to the model noise. Many di�erent tests have been made in order to
identify the cause of this extra-noise, but its origin has not yet been under-
stood. However, being optimistic, the fact that the currently measured ORO
sensitivity is not limited by fundamental noise sources means that further
improvements are still possible.
The better sensitivity of the ORO compared to the capacitive readout allows
a remarkable relaxation of the cross-coupling conditions. Taking into account
the capacitive sensor speci�cations, the upper limit on the cross-coupling
among di�erent DOFs is 0.1% above 1 mHz, that is a very demanding ex-
perimental condition, especially for a space mission. On the other hand, if
the ORO is considered, the upper limit relaxes to 1% over almost all the
frequency band.

A possible integration scheme of the ORO in LISA has been proposed
in [43], taking into account the current electrode housing model of LISA
Path�nder, which is the most realistic layout available at the moment. In
this setup some electrodes are used as mirrors, for directing the light beams
through the very small spaces within the electrode housing. Following that
scheme, a real scale prototype has been developed and tested. This allowed
to validate the proposed integration solution. In particular the optical ma-
trix of the system has been calculated and compared to the measured one,
giving an agreement within few percents.
It is worth noticing that this activity din't aim at sensitivity studies, so the
photodetectors in use were PSDs. In order to estimate the sensitivity per-
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formance of the setup, we took into account the sensitivity curves measured
with the rigid bench-top setup and applied the analytical matrix of the sys-
tem. The results are that also in this layout the ORO sensitivity overcomes
the capacitive readout sensitivity for both the translational and rotational
DOFs in a wide range of frequencies. If the potential sensitivity is taken into
account, the improvement is veri�ed in all the bandwidth we are interested in.

For what concerns the third topic, a suitable ORO layout has been de-
veloped for integration in the four mass torsion pendulum facility in Trento.
The pendulum represents a realistic test stand for the sensors, because the
proof masses approximate free fall along one DOF.
The aims of the integration of the ORO in the facility are thus the veri�ca-
tion of ORO sensitivity performances in a more realistic con�guration than
the bench-top setups; in-depth comparisons between the ORO and the pen-
dulum capacitive readout system; the measurement of the ORO back-action.
The assembling of the ORO and capacitive sensors and the �nal suspension
of the pendulum were accomplished in May 2007. The results obtained from
the �rst measurement are encouraging, even though the facility was still un-
dergoing the debugging phase and some electrodes of the capacitve readout
were not working correctly. It was thus not possible to make an exhaustive
comparison.
For what concerns the back-action of the ORO on the pendulum, the per-
formed measurement showed no evidence of disturbance introduced by the
optical sensor.
The ORO is now in operation on the pendulum and a complete characteri-
zation is going on.

Therefore, next steps concern on one side further measurement and inves-
tigations on the pendulum facility in Trento. On the other side other kind of
light sources, as the FBG and DFB laser diodes, are planned to be tried out
and new bench-top tests are required in order to identify the residual noise,
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preventing the ORO from reaching the model sensitivity.
Further studies are necessary to bring the proposed ORO from the laboratory
breadboarding phase to the status of reliable �ight hardware. This requires
the development of an engineering model to be assembled with space qual-
i�ed components and to be tested on di�erent aspects (vacuum, vibration,
thermal, radiation, etc...), according to space quali�cation standards.
For this purpose a proposal for funding has been recently submitted by our
group to the Italian Space Agency (ASI), in collaboration with an industrial
partner experienced in space hardware development (Carlo Gavazzi Space
S.P.A.).

In conclusion, we have proposed a solution for the LISA GRS which is
simple and reliable, thus cheap and robust. These peculiarities, together
with the small overall dimensions of the devices, are fundamental features
for space operation and make the ORO a very worthy candidate, also com-
pared to potentially more sensitive alternative optical sensors. Furthermore
the proposed integration scheme has demonstrated to be a valid baseline so-
lution.
The results obtained so far show that the principle layout is already mature
enough for being adopted as a useful device in the design of LISA. We believe
that the ORO sensor is ready for the engineering and quali�cation studies.
Bearing in mind that, in case of successful testing on LISA Path�nder, the
capacitive readout will certainly be integrated in LISA, we think that the
better sensitivity of the ORO suggests that it becomes the main sensor,
while the capacitive system can be kept as a backup. The main advantage
would be to facilitate the achievement of LISA design sensitivity, owing to
the relaxation of the very demanding speci�cations on cross-couplings for the
drag-free control loop.
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Appendix A

Technology transfer in other
�elds: ORO applied to VLT
Survey Telescope

One of the fascinations of developing a handy technological device is that it
can be used in very di�erent �elds, so it o�ers the stimulating possibility of
cooperating with groups working at very unlike experiments. This has been
the case of the ORO, which found a very useful application in the VLT (Very
Large Telescope) Survey Telescope, the so called VST apparatus.
The VLT array is a huge ground-based astronomical observatory, built on the
top of Cerro Paranal in northern Chile. It constitutes the �agship facility of
the ESO (Europeen Southern Emisphere Observatory) [48].
The development and the building of the VST has been carried out by a
team of researchers of the INAF (Istituto Nazionale Astro�sica) in Napoli,
entrusted with the project by the ESO [49]. The building has begun since
few years in the site of the Mecsud factory in Scafati and has been completed
one year ago. Part of the apparatus has been carried to the Cerro Paranal
observatory between June and August 2007. However, some of its subsys-
tems are still undergoing the quali�cation phase and the validation tests and
will be sent to South America in the �rst months of 2008.
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A.1 The collaboration

A.1.1 The aims of the collaboration and the ORO setup
The collaboration between the VST group and ours concerns the charac-
terization and the quali�cation of the system for the positioning and the
orientation of the secondary mirror (M2) of the VST. A picture of the VST
basic structure in Scafati is shown in �gure A.1, where the location of the
mirror M2 is indicated on top of the setup.
In the �nal con�guration the mirror M2 can be moved in all the 6 DOFs by

Figure A.1: The VST being built in Scafati.

means of two parallel robots, the so called hexapodes, arranged in cascade.
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Hexapode 1 is constituted by idraulic actuators with an encoder readout. It
allows to carry out relatively large displacements with medium resolution.
Hexapode 2 is made of piezo-electric actuators with capacitive readout. It
has a better resolution and allows only small displacements.
Both robots dispose of sensors which measure the elongation of the actuators,
but not directly the mirror displacements. Here is where the ORO comes into
play: three suitably oriented optical sensors provide an independent readout
system which measures directly the mirror displacements in all the six DOFs,
allowing an independent characterization of the action of the two hexapodes.
Figure A.2 shows the hexapode testing facility in Scafati. The two robots

Figure A.2: VST: the hexapodes, the dummy secondary mirror and the relative ORO
setup.

support an aluminum cylinder on the bottom, identical in shape to the sec-
ondary mirror, which consitutes a dummy of M2.
The ORO layout in the VST is shown in �gure A.3. An important feature of
this setup is that the three PSD sensors are integral with the mirror, while
the �ber couplers are �xed to the external still structure. Furthermore there
is no re�ection of the light beam, which goes straight from the focuser to the
photodetector. This sensing con�guration is absolutely simpler than a real
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optical lever.
In picture A.2 the two lateral ORO sensors are visible with their associated
yellow optical �bers. A detail is illustrated in �gure A.4, where a close-up of
a �ber coupler (aspheric micro-lens, diameter: 3 mm, λ = 830 nm ) and of a
PSD illustrates the basic detection scheme.
On the desk in front of the apparatus (�gure A.2) it is possible to see the
SLED sources (λ = 830 nm) mounted in their holders (�gure A.2). These
latter are the same we have developed for the tests on the pendulum facility
in Trento. They are shown with greater detail in �gure A.5.

Figure A.3: ORO layout in the VST.

A.1.2 Main topics
Our collaboration with the VST group was splitted in two main parts:

• the activity concerning the development of the proper solution to the
problem, accomplished in our laboratory;
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Figure A.4: Detail of the ORO setup on the VST: �ber collimator and PSD.

• the experimental activity carried out in Scafati, mainly the istallation
of the ORO on the VST and the testing of the ORO-Hexapodes setup.

The �rst part concerned, among other things, the accurate calibration of the
PSDs to be mounted on the VST and the veri�cation of the constance of the
calibration factor in the measurement range of the photodetector, through a
grid of repeated measurement over the sensitive area.
Furthermore my 'desk' activity dealed with calculation of the optical matrix,
characterizing the ORO system and relating the actual displacements of mir-
ror M2 with the horizontal and the vertical displacements of the 3 light spots
on the photodiodes. If Dxi, Dyi (i = 1, 2, 3) are respectively the horizon-
tal and vertical light spot displacements measured by the PSDs, the mirror
displacements X, Y , Z, ψ, θ and φ are expressed by:
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Figure A.5: LED sources mounted on supports in the VST ORO setup.

where R is the radius of the mirror (R = 30 cm).

The work I performed concerning the topics of this collaboration doesn't
come within the purposes of this thesis and constituted a minor part of my
PhD reasearch. This is the reason why I decided not to include the argument
in the chapters and to dedicate to it only an appendix of my PhD thesis.
For further details I refer to the article concerning our collaboration with the
INAF group (reference [45]).
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