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I n t r o d u c t i o n   
In the last decades, the continuous acceleration of the technological changes has 

shown the importance of the technology and innovation management for competitive 

advantage and survival. Therefore, the technological innovation process is until now 

a topic of huge research. Indeed the words technology and innovation are objects of 

discussion. However, for the purposes of this study, we define technology as a 

process, technique, or methodology – embodied in a product design or in a 

manufacturing or service process – which transforms inputs of labour, capital, 

information, material, and energy into outputs of greater value. Then, we define 

technological innovation as a change in one or more of such inputs, processes, 

techniques, or methodologies, which improves the measured levels of performance 

of a product or process (Christensen, 1992a).   

In the technology management literature, growth curves (also called S-curves) 

have been extensively used to model the performance and to analyze the life cycle of 

many technologies in spite of their limits. In fact, if on one side they are effective in 

describing the global trends in the industrial sectors (at the industry-level), on the 

other side they have more limited decision-making usefulness within the single 

company (at the company-level) (Christensen, 1992a; Christensen, 1992b). 

Moreover, the deep statistical understanding of the dynamics of technological 

innovation process is a fundamental phase in its management. To this end, the 

formulation of the diagnostic tools aimed to analyze different representative 

scenarios is mandatory. In fact, while the innovation is one of the main drivers of a 

company’s competitive advantage, it has often a disruptive effect on the organization 

because it is associated to or induces organizational change and adaptation (Calia et 

al., 2007; Fosfuri & Ronde, 2006). Therefore, a technological change is a full-scale 

change in the way business is conducted and the simple adoption of new technology 

may be insufficient in order to survive (Grove, 1999). In particular, companies must 
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implement a dual management mode because management approaches used in 

periods of stability are often quite inappropriate in periods of significant changes 

(Dervitsiotis, 2003; Dervitsiotis, 2004). Consequently, only through a timely 

organizational change, companies can strategically transform themselves before the 

decline phase starts. 

This thesis consists of four chapters. The common subjects are the performance 

modelling and the technology and innovation management. It is organized in the 

following manner. In the Chapter 1, some S-curve models are discussed with respect 

to their genesis and their statistical-mathematical properties. In the Chapter 2, the 

concept of “force of change” is proposed. It measures the incentive to substitute the 

adopted technology. Moreover, a new flexible S-curve model is formulated and its 

statistical-mathematical properties are evaluated. In the Chapter 3, the S-curve as a 

benchmarking tool is proposed in order to overcome the difficulty to practically use 

S-curve as a decision-making tool at the company-level. Moreover, two operative 

functions are reformulated in order to discriminate amongst typical behaviours of a 

company against accumulated “performance delays” and “performance distances” 

with respect to the leader in the specific industrial sector. Finally, in the Chapter 4, a 

piecewise regression model is proposed in order to identify if a critical 

environmental change has occurred and a strategic transformation is needed for 

survival. In particular, the diagnostic power of this model is highlighted through the 

analysis of the aircraft industry history. 
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C h a p t e r  1  A  C o m p a r i s o n  a m o n g s t  t h e  
S - c u r v e  M o d e l s  f o r  T e c h n o l o g i c a l  

P e r f o r m a n c e  G r o w t h  

1.1. Introduction 
The S-curve models were firstly formulated to study population growth and 

diffusion phenomena over time (Carrillo & González, 2002; Kumar & Kumar, 1992; 

Linton, 2002; Meade & Islam, 1995; Meyer et al., 1999; Teng et al., 2002). 

Subsequently, they were proposed by Richard Foster (1986) in order to analyze the 

evolution of the technological performance (Asthana, 1995; Erto, 1997a; Erto & 

Lanzotti, 1995; McGrath, 1998; Nieto et al., 1998). The S-curve is able to describe 

how a technological performance parameter, ( )P t , increases as a function of the 

Research & Development (R&D) effort or, if R&D is constant, of time, t , until it 

approaches its saturation value. In particular, at the beginning growth is slow owing 

to initial difficulties. Once a critical mass of engineering expertise in the technology 

builds up, growth is rapid and its progress is accelerated. However, as the saturation 

value is approached, growth decelerates until it finally stops (Figure 1.1).  

 
Figure 1.1. The S-curve model 
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Foster (1986) pointed out that the growth of a new technology must never be 

represented in terms of time, but rather in terms of the R&D effort (measured in 

monetary units, number of researchers, hours worked, workers per year, etc.). 

Nonetheless, the difficulties associated with obtaining data about the investment that 

is made by different companies (companies are reluctant to spread this strategic 

information) in the development of a specific technology are often insuperable. 

Consequently, the mathematical functions proposed in the literature model the 

technological performance according to the time (Nieto et al., 1998). In fact, even if 

this assumption doesn’t fulfil one of the basic recommendations in the use of S-

curves, it allows to describe the significant role of the experiential effect and 

accumulation of knowledge in the technological growth process.   

However, the proliferation of various models and the differences and similarities 

amongst them make difficult for a model user the choice of the appropriate model for 

his data and situation (Kumar & Kumar, 1992). The models differ amongst 

themselves in terms of their genesis and their quantitative characteristics. In this 

work, a comparative study of the characteristics of some S-curve models is proposed. 

In particular, the four different facets of the comparative evaluation are as follows: 

1. the genesis; 

2. the number of parameters; 

3. the location of their inflection point and the symmetric or nonsymmetric 

behaviour about it; 

4. the closeness to linear behaviour. 

The last feature is studied by fitting the S-curve models to real datasets 

concerning three different technologies: jet aircraft engines, piston aircraft engines 

and digital signal processors (DSP). 

1.2. Genesis and mathematical properties of some s-curve models 
In general, growth models are mechanistic rather than empirical ones. A 

mechanistic model usually arises as a result of making assumptions about the type of 

growth, writing down the differential equation that represent these assumptions and, 

then, solving this equation to obtain a growth model (Draper & Smith, 1981). Several 
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mathematical functions have been proposed in the literature as S-curve models. 

Among them, the logistic model and some of its generalizations (the log-logistic 

model and the Richards model), the Gompertz model, the Erto-Lanzotti model and 

the Weibull-type model are compared in this work. The Table 1.1 summarizes the 

mathematical properties for the examined S-curve models. 

Table 1.1 The mathematical properties of the compared S-curve models 

Model Formula Parameters 0P  Coordinates of the inflection 
point 

* *( , ( ))t P t   

Logistic lim( )
1 kt

P
P t

eα −=
+

 0α >  
0k >  

lim

1
P

eα+
 *t

k
α

= , * lim( )
2

P
P t =  

Gompertz lim( )
kteP t P e

α −−=  0α >  
0k >  

lim

e

P

e
α  *t

k
α

= , * lim( )
P

P t
e

=  

Log-
logistic 

lim
ln( )( )

1 k t

P
P t

eα −
=

+
 Rα ∈  

1k >  0
lim ( ) 0
t

P t
→

=

1

* ( 1)
1

ke kt
k

α⎛ ⎞−
= ⎜ ⎟+⎝ ⎠

, 

*
lim

1( )
2

kP t P
k
−

=  

Erto-
Lanzotti 0 lim 0( ) (1 )( )

sktP t P e P P−= + − − 0k >  
1s >  0P  

1

* 1 sst
ks
−⎛ ⎞= ⎜ ⎟

⎝ ⎠
, 

1
*

0 lim 0( ) (1 )( )
s

sP t P e P P
−

= + − −

Richards 
lim

1( )
(1 )kt s

P
P t

eα −

=
+

 ln sα >  
0k >  
0s >  

lim
1

(1 ) s

P

eα+
 * ln st

k
α −

= , * lim
1( )

(1 ) s

P
P t

s
=

+
 

Weibull-
type lim( )

sktP t P eα −= −  lim0 Pα< <  
0k >  
1s >  

limP α−  

1

* 1 sst
ks
−⎛ ⎞= ⎜ ⎟

⎝ ⎠
, 

*
lim 1( ) s

s

P t P
e

α
−= −  

 

The used notation is: 

t  is the explanatory variable representing the time; 

( )P t  is the response variable representing the technological performance level; 

0P  is the original value of the technological performance level (corresponding to 

0t = ); 

limP  is the saturation value (or limit) of the technological performance level; 

* *( , ( ))t P t  are the coordinates of the inflection point; 
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α , k  and s  are the model parameters. 

We considered 0P  and limP  as given constants, while α , k  and s  are to be 

estimated. In fact, the overparameterization problem often occurs when the user tries 

to estimate the saturation value like a parameter of the model (Erto, 1997a; Erto & 

Lanzotti, 1995; Ratwosky, 1990). 

1.2.1 The logistic model 

Introduced by Verhulst (1838), the logistic model was popularized in 

mathematical biology by Lotka (1920). Its genesis is related to population growth 

processes (Meyer et al., 1999). The model was formulated as solution of a 

differential equation and assumes that at the beginning the growth rate of a 

population is proportional to the population itself (exponential growth). Then, 

because few, if any, systems are permanently unbounded and sustain exponential 

growth, the introduction of a saturation limit gives rise to the more realistic 

sigmoidal shape. The logistic model is a two-parameter model and it is symmetric 

with respect to its inflection point. In fact, the inflection point occurs in 

correspondence of the 50%  of the saturation value of the technological performance 

level ( lim / 2P ). 

1.2.2 The Gompertz model 

Closely related to the logistic model is the Gompertz model (Gompertz, 1825). Its 

genesis was formulated as solution of a differential equation as well as the logistic 

model one. It assumes that the growth rate of a population is a function of the 

logarithm of the saturation limit (Teng et al., 2002). The Gompertz model is a two-

parameter model and it is not symmetric with respect to its inflection point. In fact, 

the inflection point occurs in correspondence of the 37%  of the saturation value of 

the technological performance level ( lim /P e , where e  represents the base of the 

natural logarithm). 

1.2.3 The log-logistic model 

Introduced by Tanner (1978), the log-logistic model directly derives from the 

logistic model through the replacement of the time t  by ln( )t  (Meade & Islam, 
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1995). It is a two-parameter model and it is not symmetric with respect to its 

inflection point. In fact, the inflection point occurs before the technological 

performance level reaches half of its saturation value ( *
lim( ) / 2P t P< ). 

1.2.4 The Erto-Lanzotti model 

Introduced by Erto & Lanzotti (1995), it has a peculiar genesis that is directly 

linked to the technological innovation process. In fact, this model arises from the 

analysis of the interactions between the two main factors that play a leading role in 

starting the innovation process: the inertia toward change process and the stimulus 

toward the improvement process. The Erto-Lanzotti model is a two-parameter model 

and it can offer wide variations in the degree of symmetry for a given inflection 

point. In fact, the inflection point can assume a wide range of values. This property is 

a peculiarity of the so-called flexible models. 

1.2.5 The Richards model 

The Richards model represents the most popular flexible S-curve since it was the 

first proposed flexible model (Richards, 1959). On the other hand, this flexibility was 

obtained at the cost of a greater computational complexity. In fact, this model was 

formulated by adding a third parameter, s , to the original formulation of the logistic 

model (Birch, 1999). When 1s =  the Richards model matches the logistic model, but 

for 1s >  the inflection point occurs when lim( ) / 2P t P>  and for 1s <  it occurs when 

lim( ) / 2P t P< . This allows a wider range of curves to be produced, but as 0s →  the 

lowest value of *( )P t  remains greater than lim /P e . In fact, as 0s →  the Richards 

model tends towards the Gompertz one. Therefore, the Richards model is a three-

parameter model and it can offer wide variations in the degree of symmetry for a 

given inflection point. 

1.2.6 The Weibull-type model 

Unlike the other growth models, the Weibull-type model derives from a 

morphological analogy rather than theoretical remarks (Prodan, 1968). In fact, the 

idea of applying this probability function to the growth analysis was suggested by the 

analogy between a growth curve and a cumulative distribution function and by 



 

 

 

12

flexibility of the Weibull distribution function. Then, the S-curve was obtained by 

adding an expanding factor ( limP ) to the Weibull distribution function since it is 

scaled to yield a probability domain between 0  and 1 (Yang et al., 1978). The 

modified Weibull function is highly flexible. Therefore, the Weibull-type model is a 

three-parameter model and it can offer wide variations in the degree of symmetry for 

a given inflection point. 

1.2.7 Discussion 

As anticipated, the above growth models differ mainly on the basis of three 

important characteristics: 

1. the genesis; 

2. the number of parameters; 

3. the location of their inflection point and the symmetric or nonsymmetric 

behaviour about it. 

The genesis is important in order to understand the underlying dynamics of the 

models. The Erto-Lanzotti model is the only one that derives from the identification 

of the main forces that rule the innovation process, being all the other models 

originated in different contexts and, then, adopted to model the technological 

performance growth. 

The number of parameters determines the computational complexity. In fact, the 

application of any model involves estimating its parameters. The greater the number 

of parameters, the better the data will fit. On the other hand, the job of estimating 

becomes complex (Kumar & Kumar, 1992). Amongst the compared models, the 

Richards and the Weibull-type models have one more parameter than the other 

models. 

The point * *( , ( ))t P t  at which the growth rate of the technological performance is 

at its peak is indubitably an important characteristic of the process. In real world 

situations, this point can be anywhere in the process of development. Therefore, the 

S-curve can be symmetric as well as nonsymmetric (Kumar & Kumar, 1992). One of 

the weaknesses of earlier models was that they were either symmetric or 

nonsymmetric. In fact, the logistic and the Gompertz models have their inflection 

points at 50%  and 37%  of the saturation value of the technological performance 
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level, respectively. Thus, they are symmetric and nonsymmetric about the inflection 

point, respectively. The log-logistic model has its inflection point within a range 

between 0%  and 50%  of the saturation value of the technological performance 

level. Thus, it is nonsymmetric about it. Instead, the flexible models, such as the 

Erto-Lanzotti, the Richards and the Weibull-type models, overcome this limit since 

they can offer wide variations in the degree of symmetry for a given inflection point. 

Finally, the Erto-Lanzotti model is the only one that assumes an original value of 

the technological performance level ( 0P ) explicitly. On the contrary, the log-logistic 

model assumes 
0

lim ( ) 0
t

P t
→

=  and the other models assume 0P  depending on the 

model parameters.  

1.3. The closeness to linear behaviour 
The S-curve models are nonlinear regression models since their parameters appear 

nonlinearly. In this work, the basis for estimating the unknown parameters in all the 

models is the criterion of least squares (LS). So, an amount ε , which is an 

unobservable random “error” term, was added to the models. If the error terms are 

independent and identically distributed normal random variables with mean zero and 

finite variance 2σ , the LS estimators in linear models are also the maximum 

likelihood estimators of the parameters. They are minimum-variance unbiased linear 

estimators. Therefore, they provide the best available estimates in practice. 

Moreover, they are normally distributed. On the contrary, in nonlinear models the LS 

estimators have essentially unknown properties for finite sample sizes (only 

asymptotically nonlinear LS estimators have the properties possessed by linear ones). 

These and other desirable properties, as we will illustrate in subsequent paragraphs, 

make important assessing nonlinearity in nonlinear models. In fact, it is self-evident 

that a close to linear nonlinear model is to be preferred to one whose behaviour is far 

from linear (Bates & Watts, 1980; Bates & Watts, 1998; Draper & Smith, 1981; 

Ratkowsky, 1983). Therefore, the nonlinear behaviour of the above S-curve models 

was evaluated by fitting them to real datasets concerning three different technologies. 

Obviously, it is more appropriate to speak of a “model/dataset” combination, rather 
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than of a “model”, since a specific set of observed data in conjunction with a 

specified model determines its behaviour.  

In the Tables 1.2, 1.3 and 1.4 and in the Figures 1.2, 1.3 and 1.4 some data 

concerning the growth towards the saturation value of the performance level (at the 

industry-level) of the following technologies are presented: jet aircraft engines, 

piston aircraft engines and digital signal processors (DSP). The take-off thrust, 1( )Y t , 

(in Newton, N ) of jet aircraft engines; the engine power, 2 ( )Y t , (in kilowatt, kW ) of 

piston aircraft engines and the efficiency (defined as the ratio between the data type 

that the DSP can work and its cycle time), 3( )Y t , (in bit/nanosecond, /bit ns ) of 

DSP, have been adopted as performance indicators (Erto, 1997a; Nieto et al., 1998). 

From the adopted t  scale, the simple proportion 1 0 2 1

1 0 2 1

P P P P
t t t t
− −

=
− −

 (where kP  is the 

performance level corresponding to time kt  with 0, ,k n= …  and n  is the sample 

size) leads to the following original values (corresponding to 0 0t = ) of the 

technological performance level: 0.071 ; 0.007  and 0.0732 , respectively. Having 

used the normalized data, the saturation value of the performance level lim 1P =  

follows for each dataset.    
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Tables 1.2 Performance (take-off thrust) data of jet aircraft engines (the saturation 
value of the take-off thrust level is 

lim
8

1 1.29 10Y N= ⋅ ) 

t  ( year ) 
 

1( )Y t  ( N ) 
 

lim1 1 1( ) ( ) /P t Y t Y=  

1  (1942)  69.287 10⋅  0.072  
9  (1950)  71.006 10⋅  0.078  
16  (1957)  72.451 10⋅  0.19  

16  (1957)  73.521 10⋅  0.273  
17  (1958)  74.179 10⋅  0.324  
21  (1962)  74.437 10⋅  0.344  

22  (1963)  75.095 10⋅  0.395  
24  (1965)  75.16 10⋅  0.4  
27  (1968)  79.997 10⋅  0.775  

28  (1969)  81.051 10⋅  0.815  
29  (1970)  81.067 10⋅  0.827  
31  (1972)  81.129 10⋅  0.875  

40  (1981)  81.205 10⋅  0.934  
44  (1985)  81.277 10⋅  0.99  

 

 

 

 

Figures 1.2. Jet aircraft engine (normalized) data 
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Tables 1.3 Performance (engine power) data of piston aircraft engines (the saturation 
value of the engine power level is 

lim2 2835Y kW= ) 

t  ( year ) 
 

2 ( )Y t  ( kW ) 
 

lim2 2 2( ) ( ) /P t Y t Y=  

1  (1902)  22.68  0.008  
4  (1905)  34.02  0.012  

11  (1912)  56.7  0.02  
12  (1913)  79.37  0.028  
16  (1917)  340.2  0.12  

17  (1918)  368.5  0.13  
17.5  (1918.5)  445.1  0.157  

25  (1926)  737  0.26  

28  (1929)  878.8  0.31 
30  (1931)  1162  0.41 
32  (1933)  1327  0.468  

37  (1938)  1551  0.547  
38  (1939)  1672  0.59  
40  (1941)  1729  0.61 

41.5  (1942.5)  2313  0.816  
44  (1945)  2424  0.855  
48  (1949)  2611  0.921 

  

 

 

 

Figures 1.3. Piston aircraft engine (normalized) data 
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Tables 1.4 Performance (efficiency) data of DSP (the saturation value of the 
efficiency level is 

lim3 2 /Y bit ns= ) 

t  ( year ) 
 

3 ( )Y t  ( /bit ns ) 
 

lim3 3 3( ) ( ) /P t Y t Y=  

1  (1985)  0.1562  0.0781 
2  (1986)  0.166  0.083  

3  (1987)  0.166  0.083  
4  (1988)  0.312  0.156  
4  (1988)  0.5  0.25  

6  (1990)  0.5  0.25  
8  (1992)  0.833  0.4165  
8  (1992)  0.5  0.25  

9  (1993)  0.625  0.3125  
10  (1994)  0.758  0.379  
10  (1994)  1  0.5  

 

 

 

 

Figures 1.4. DSP (normalized) data 

From Figures 1.2, 1.3 and 1.4 we can see that the jet aircraft engine and the piston 

aircraft engine datasets are representative datasets since they cover the full range of 

the response variable ( )P t  by approaching the saturation value of the technological 

performance level. On the other hand, the DSP dataset is a critical dataset since it 

covers just the half of this range. In fact, the estimate efficiency depends on sample 
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size generally. Instead, for the S-curve models the coverage of all the growth phases 

has a primary effect.  

1.3.1 The curvature measures of nonlinearity of Bates and Watts 

Most algorithms for computing the least squares estimates and most inference 

methods for nonlinear models are based on a local linear approximation to the model 

by a Taylor series expansion (Bates & Watts, 1980; Bates & Watts, 1998). The effect 

of this approximation is to replace the solution locus (that is the expectation surface 

traced in the n − dimensional sample space) by its tangent plane (planar assumption) 

and simultaneously to impose a uniform co-ordinate system of the parameters on that 

tangent plane (uniform co-ordinate assumption). On the contrary, for nonlinear 

models the solution locus is a curved surface and the parameter lines (the lines on 

the solution locus corresponding to values of parameters having equal increments) 

are not straight, parallel and equispaced (Bates & Watts, 1980; Bates & Watts, 1998; 

Draper & Smith, 1981; Ratkowsky, 1983). Therefore, both the effectiveness of LS 

algorithms and the validity of inferences made regarding the parameters of a 

nonlinear model will be affected by the closeness of the model to the linear 

approximation. In particular, for close to linear models, there will almost always be a 

unique minimum of the residual sum of squares surface and the speed of 

convergence of the algorithms to that minimum will usually be very rapid. On the 

contrary, as the behaviour of a model becomes more and more nonlinear, 

convergence may not even occur.  

The curvature measures proposed by Bates & Watts (1980) provide the modeller 

with an effective approach in order to evaluate the adequacy of a linear 

approximation and its effects on inferences. In fact, these authors quantified the 

extent of curvature of the solution locus and of the parameter lines and their lack of 

parallelism and equispacedness by two measures: the intrinsic nonlinearity (IN) and 

the parameter effects nonlinearity (PE), respectively. In particular, the PE may often 

be reduced, sometimes drastically, by a suitable model reparameterization. On the 

contrary, the IN cannot be altered by reparameterization. The importance of IN 

becomes manifest when the user wishes to predict values of the response variable 

and to determine confidence limits for those predicted values. In fact, the estimate 
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bias is related only to the intrinsic component of nonlinearity. Finally, if the IN is 

acceptably low and the modeller finds a reparameterization which has an acceptable 

PE, the following benefits stand: the LS estimates will be easily obtained; the various 

statistical tests or procedures whose use is derived from analogy with linear models 

and which assume normality will be valid; the estimate bias will be negligible (Bates 

& Watts, 1980; Bates & Watts, 1998; Ratkowsky, 1983).       

The curvature measures IN and PE were calculated for each model/dataset 

combination. They are not very meaningful as they stand. In fact, a convenient scale 

of reference was established by comparing the curvature measures with that of the 

linear parameter confidence region at a specified significance level, 1 α− . This 

curvature is equal to 1/ ( , ;1 )F p n p α− − , where F  indicates the Fisher 

Distribution, p  is the parameter number and n  is the sample size (Bates & Watts, 

1980; Bates & Watts, 1998; Ratkowsky, 1983). We chose as critical value 1/(2 )F  

at 95%  significance level, so that the radius of curvature of the solution locus is at 

least twice the radius of the linear 95%  confidence region. In this way, the deviation 

of the solution locus from the tangent plane – calculated as 2100{1 1 ( ) }%F IN− −  – 

is less than 14%  (Bates & Watts, 1980). The results are reported in Table 1.5 with 

the critical values in brackets. The bold values point out the curvature measures that 

exceed the critical values. 

Table 1.5 The curvature measures of Bates and Watts and the critical values for 
each model/dataset combination 

Data Curvature 
measures 

Logistic Gompertz Log-
logistic 

Erto-
Lanzotti 

Richards Weibull-
type 

IN 
0.1338  

(0.2537)  
0.2057  

(0.2537)  
0.1439  

(0.2537)  
0.1361  

(0.2537)  
.1 105  

(0.2640)  
.0 3089  

(0.2640)  Jet 
aircraft 
engines PE 

0.1685  
(0.2537)  

0.1817  
(0.2537)  

0.2079  
(0.2537)  

.44 90  
(0.2537)  

.4 174  
(0.2640)  

.145 3  
(0.2640)  

IN 
0.09472  
(0.2606)  

0.1736  
(0.2606)  

0.1664  
(0.2606)  

0.09850  
(0.2606)  

.0 3565  
(0.2734)  

0.1741 
(0.2734)  Piston 

aircraft 
engines PE 

0.1258  
(0.2606)  

0.1875  
(0.2606)  

0.1734  
(0.2606)  

.20 63  
(0.2606)  

.2 926  
(0.2734)  

.51 42  
(0.2734)  

IN 
0.1039  

(0.2423)  
0.09593  
(0.2423)  

0.1932  
(0.2423)  

.0 2678  
(0.2423)  

.1 287  
(0.2480)  

.0 5389  
(0.2480)  

DSP 
PE 

0.2131 
(0.2423)  

0.1593  
(0.2423)  

.0 2748  
(0.2423)  

.10 62  
(0.2423)  

.694 2  
(0.2480)  

.52 90  
(0.2480)  
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The Table 1.5 shows that, for the two-parameter models, the IN values are less than 

the critical values for all model/dataset combinations, except for the Erto-

Lanzotti/DSP combination. However, the IN for this model/dataset combination 

implies a deviation from the tangent plane less than 17%  (rather than 14% ). So, it 

can be considered negligible. Moreover, it’s worth keeping in mind that the DSP 

dataset is a critical dataset. In contrast, the IN values for the Richards model exceed 

the critical values for each dataset, indicating that the solution locus departs 

significantly from linearity for this model with these datasets. This alone may be 

sufficient to induce a modeller to abandon this model for further consideration. 

Finally, the Weibull-type model has different behaviours depending on adopted 

dataset. In fact, the IN value for the Weibull-type/jet aircraft engine combination 

exceeds the critical value with a deviation from the tangent plane that is less than 

19%  (rather than 14% ); the IN value for the Weibull-type/piston aircraft engine 

combination is less than the critical value; the IN value for the Weibull-type/DSP 

combination exceeds highly the critical value. With respect to the PE values, those 

for the logistic, the Gompertz and the log-logistic models are less than the critical 

values, except for the log-logistic/DSP combination. On the contrary, the Erto-

Lanzotti, the Richards and the Weibull-type models exhibit high PE values for each 

dataset. However, as anticipated, the PE can often be reduced by a suitable model 

reparameterization. In fact, different model functions, that are different 

parameterizations, can be associated with the same model. In order to find a model 

function with a smaller PE value, we have to identify the parameter or parameters 

responsible for nonlinear behaviour. Since the PE value doesn’t accomplish this task, 

we turned to different approaches. 

1.3.2 The parameter bias 

The parameter bias calculated using the method of Box (Ratkowsky, 1983) can 

help to indicate which parameter or parameters are responsible for the departure from 

linear behaviour. In fact, the bias expressed as a percentage of the LS estimate 

(percentage bias) is a useful quantity as an absolute value in excess of 1%  appears 

to be a good rule of thumb for indicating nonlinear behaviour. The absolute values of 

the percentage bias for each model/dataset combination are reported in Table 1.6. 
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The bold values point out the parameters for which the absolute value of percentage 

bias is considerably in excess of 1% .   

Table 1.6 The absolute values of the percentage bias for each model/dataset 
combination 

Data Param. Logistic Gompertz Log-
logistic 

Erto-
Lanzotti 

Richards Weibull-
type 

α  1.043  1.326  1.514   .59 25  0.2791 
k  1.034  1.237  1.501 .118 7  .57 98  .353 1  

Jet aircraft 
engines 

s     0.9808  .62 81  .2 332  
α  0.4005  0.7908  0.8086   .7 204  0.1069  
k  0.3901 0.6831 0.7964  .30 07  .6 812  .65 95  

Piston 
aircraft 
engines s     0.3891 .8 894  0.6408  

α  1.007  0.8593  1.593   1051  .3 480  
k  1.178  0.8860  1.871 .28 21  .193 0  .138 5  

 
DSP 

s     .3 424  .461 5  .10 09  
 

The Table 1.6 shows that for the logistic, the Gompertz and the log-logistic models, 

the bias values are less or only slightly more than 1% . This suggests that the 

nonlinear behaviour of these models can be small in practical terms. In contrast, in 

accordance with the high values of their PE, the other models show very high 

percentage biases for some parameters. In particular, for the Erto-Lanzotti and 

Weibull-type models, most of the PE is centred in a single parameter ( k ), suggesting 

that much of the nonlinearity can be removed by a suitable reparameterization 

involving it. The situation with the Richards model is more difficult since all of its 

parameters contribute substantially to the overall nonlinear behaviour. However, the 

percentage biases are just a useful guide. On the contrary, a simulation study can 

fully settle the question (Ratkowsky, 1983). 

1.3.3 Simulation studies 

A simulation study can reveal the full extent of the non-normal behaviour of the 

LS estimators and possibly suggest useful reparameterizations (Ratkowsky, 1983).  

The above analysis shows that the PE of the Erto-Lanzotti and the Weibull-type 

models can be reduced by a reparameterization involving the parameter k . However, 

we analyzed only the Erto-Lanzotti model. In fact, both models are flexible, but the 

Weibull-type model has one more parameter than the Erto-Lanzotti model. 

Moreover, the Weibull-type model can be converted in the Erto-Lanzotti model by 
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the transformation lim 0P Pα = − . Therefore, we preferred the Erto-Lanzotti model to 

the Weibull-type one. 

So, in order to find a better parameterization for the Erto-Lanzotti model, 1000  

pseudo-random datasets were generated for each original dataset. In fact, an error 

term, ε  (that is a random variable generated to be stochastically independent and 

identically normally distributed with zero mean and constant variance 2σ ), was 

added to the Erto-Lanzotti model. The “true” values of the parameters k  and s  and 

of the error variance 2σ  were taken to be the quantities obtained from the LS fit to 

the original datasets (Ratkowsky, 1983). Each set of simulated data was then fitted 

by LS in order to examine the distributional properties of the LS estimators. The 

histograms of the standardized results for k̂  are reported in Figure 1.5. 

 

 

Figure 1.5. The histograms of the standardized results for k̂  for jet aircraft 
engine, piston aircraft engine and DSP datasets, respectively 

The Table 1.7 summarizes the values of skewness and excess kurtosis for each 

distribution of k̂ . It shows that the normality hypothesis is rejected with p-values 

less than 0.01 .  

 

 



 

 

 

23

Table 1.7 The skewness and excess kurtosis values and the test hypothesis results 
about them for each distribution of k̂  

Data Measures Values *u  p-values 
Skewness 5.98  77.2  0.01<  Jet aircraft 

engines Excess Kurtosis 50.4  325  0.01<  
Skewness 1.69  21.9  0.01<  Piston aircraft

engines Excess Kurtosis 5.93  38.3  0.01<  
Skewness 2.06  26.5  0.01<   

DSP Excess Kurtosis 6.52  42.1  0.01<  
 

Moreover, the Figure 1.5 shows histograms with a long right-hand tail that is typical 

of a lognormal distribution. This suggests that the Erto-Lanzotti model can be 

improved by replacing k  by ke ′  (where e  represents the base of the natural 

logarithm).  In particular, since k̂  is less than unity for each original dataset, we use 
ke ′− , so that the values of k̂ ′  in the new parameterization shall be positive. Thus the 

new model function to be considered is as follows: 

0 lim 0( ) (1 )( )
k se tP t P e P P
′−−= + − −                                                                              (1.1)                        

The percentage bias (for the parameters k  and k ′ ) and the PE for all the 

combinations of the new Erto-Lanzotti model function in (1.1) with the three datasets 

were calculated and compared with the ones concerning the original Erto-Lanzotti 

model function. The results are reported in Table 1.8. 

Table 1.8 Percentage biases and PE for the Erto-Lanzotti model and the 
reparameterized Erto-Lanzotti model 

Data Measures Erto- 
Lanzotti 

Reparameterized   
Erto-Lanzotti 

Percentage bias 118.7  ( )k  0.9752  ( )k ′  
Jet aircraft 

engines PE 44.90  
(0.2537)  

0.1821  
(0.2537)  

Percentage bias 30.07  ( )k  0.3868  ( )k ′   
Piston aircraft 

engines PE 20.63  
(0.2606)  

0.1220  
(0.2606)  

Percentage bias 28.21 ( )k  2.812  ( )k ′  
DSP 

PE 10.62  
(0.2423)  

0.4165  
(0.2423)  

 

The Table 1.8 shows that the percentage bias and the PE are substantially reduced 

for each dataset. Although the nonlinear behaviour is still statistically significance 
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for the DSP dataset, the new model function (1.1) is absolutely closer to linearity 

than the original one. The 1000  estimates k̂  were converted into 1000  estimates k̂ ′  

via the function 1ˆ log ˆk
k

⎛ ⎞′ = ⎜ ⎟
⎝ ⎠

. Then, the histograms of the standardized results for k̂ ′  

are reported in the Figure 1.6. 

 

 

Figure 1.6. The histograms of the standardized results for k̂ ′  for jet aircraft 
engine, piston aircraft engine and DSP datasets, respectively 

The Figure 1.6 shows histograms much closer to a normal distribution than the 

previous ones. Moreover, the Table 1.9 summarizes the values of skewness and 

excess kurtosis for each distribution of k̂ ′ . The skewness and excess kurtosis values 

confirm a distribution closer to normal than the previous one (see Table 1.7), even if 

the normality hypothesis is still rejected for the jet aircraft engine and DSP datasets.  

Table 1.9 The skewness and excess kurtosis values and the test hypothesis results 
about them for each distribution of k̂ ′  

Data Measures Values *u  p-values 
Skewness 0.319  4.12  0.01<  Jet aircraft 

engines Excess Kurtosis 0.350  2.26  0.05<  
Skewness 0.013  0.168  0.05>  Piston aircraft 

engines Excess Kurtosis 0.0713−  0.460−  0.05>  
Skewness 1.26  16.3  0.01<  DSP 

DSP Excess Kurtosis 3.94  25.5  0.01<  
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1.3.4 Confidence regions for the parameters 

In order to confirm the nonlinearity reduction due to the reparameterization, the 

contours of the confidence regions for the parameters at the significance levels 90% , 

95%  and 99%  of the Erto-Lanzotti model and the reparameterized Erto-Lanzotti 

model for each dataset are shown in the Figure 1.7. 

 

 

 
Figure 1.7. Confidence regions for the parameters of the Erto-Lanzotti model and 

the reparameterized Erto-Lanzotti model for jet aircraft engine, piston aircraft engine 
and DSP datasets, respectively 
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In fact, the extent to which these contours depart from an ellipse (the condition for 

a linear model) provides a visual picture of the degree of nonlinearity in the model 

(Draper & Smith, 1981; Ratwosky, 1983). Therefore, the closeness of the contours of 

the reparameterized Erto-Lanzotti model to an ellipse is a further proof of the 

nonlinearity reduction due to the reparameterization.  

1.4. Conclusions 
This work explores the development, the assumptions and the behaviour of some 

representative S-curve models in order to analyze the technological performance 

growth. The aim of the work was to present a comparative study of these models in 

order to create a better understanding of them aimed at making easier the selection of 

the appropriate model.  

Obviously, caution should be exercised in generalizing the results of this study, 

since so few datasets were included. However, it is tempting to recommend the Erto-

Lanzotti model in the model function (1.1) as the first choice to be considered for 

technological performance growth modelling. In fact, the model (1.1) is a flexible 

model even having only two parameters and is close to linear for the analyzed 

representative datasets. Moreover, it is the only model that derives from the 

identification of the main forces that rule the technological innovation process and 

that incorporates explicitly the original value of the technological performance level, 

0P .  
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C h a p t e r  2  M o d e l l i n g  t h e  D y n a m i c s  o f  
T e c h n o l o g i c a l  I n n o v a t i o n  

2.1. Introduction 
The role of technological evolution and innovation in shaping the destinies of 

industries and companies is often underestimated. Technological change is a key 

factor as both a creative force in the growth of companies and as a destructive force 

making those same companies vulnerable to competition. Generally, in any market, 

there are periods of continuity, when the rate of innovation is incremental and major 

changes are infrequent, and periods of discontinuity, when major product or process 

changes occur (see Chapter 4). In particular, when an invading technology appears, 

the established technology generally offers better performance or cost than the 

challenger, which is still unperfected. Therefore, the new technology may be viewed 

as crude, leading to believe that it will find only limited application. However, the 

performance superiority of the established technology may prevail for some time, but 

if the new technology has real merit, it typically enters a period of rapid 

improvement, just as the established technology enters a stage of slow incremental 

improvements. Nevertheless, successful companies tend to be remarkably creative in 

defending their old technologies, which often reach unimagined heights of elegance 

in design and technical performance only when their demise is clearly predictable 

(Utterback, 1994).  

Thus, two main forces play a leading role in starting a technological innovation 

process. The first force is the inertia of the companies toward change process. The 

second force is the stimulus toward the improvement process. This stimulus 

originates from the difference between the expectation and the perception of the 

offered performance level (D’Avino & Erto, 2006). In order to statistically 
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understand the dynamics of technological innovation process, we propose the 

concept of “force of change”. Then, we formulate a new flexible S-curve model and 

we evaluate its genesis and its statistical-mathematical properties.   

2.2. The cyclical model of technological change of Abernathy and Utterback 
In a series of articles published from the mid to late-1970s, Abernathy and 

Utterback (1978) laid out a model of the dynamics of innovation. Subsequently, 

many studies concerning different industries supported their hypotheses. The 

Abernathy and Utterback model hypothesizes that the rate of innovation for both 

products and processes follows a general pattern over time. In particular, they 

proposed a cyclical model of technological change in which an industry evolves 

through long periods of incremental change punctuated by technological 

discontinuities (or discontinuous innovations that redefine trajectories of product or 

process performance). Examples of product discontinuities include jet (vs. piston) 

engines, diesel (vs. steam) locomotives and integrated circuits (vs. discrete 

transistors) (Tushman & Anderson, 1986). Examples of process discontinuities 

include the flat-glass and cement industries (Anderson & Tushman, 1990). The 

introduction of these radical innovations gives rise to an era of experimentation as 

companies struggle to absorb or destroy the innovative technology (era of ferment). 

In fact, the era of ferment is characterized by a high rate of variation – owing to a 

lack of common understanding among technical experts about how the new 

technology operates and where its economic performance limits lie – followed by a 

selection process. For example, in the early years of the automobile industry, 

fundamental questions such as whether the power source should be a steam-, 

electric-, or gasoline-powered engine were not yet resolved. Moreover, we are living 

an era of ferment right now. In fact, there could be a change in the way cars and 

trucks are powered. The auto companies are moving forward on alternatives to 

internal combustion engine vehicles, but the intellectual and physical barriers are still 

high. On the other hand, it may just be that political and/or legal issues will be the 

main drivers of change process (Vasilash, 2000).  

Subsequently, the selection process culminates in a dominant design by a 
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retention mechanism of the successful variation. In particular, a dominant design is a 

single architecture that establishes dominance in a product or process class. In fact, it 

meets with general acceptance, even if it is not necessarily the optimal design.  

Therefore, dominant designs permit companies to design standardized and 

interchangeable parts and to optimize organizational processes for volume and 

efficiency. So, once a design becomes an industry standard, it is difficult to dislodge 

it because it creates economies due to learning by doing. Examples of dominant 

designs are the internal combustion engine, the IBM personal computer, the Ford 

Model T automobile and the Douglas DC-3 aircraft.  

After a dominant design emerges, technological progress is driven by numerous 

incremental innovations (innovations that reinforce established trajectories of 

product or process performance) and the rate of technological innovation declines 

markedly (era of incremental change). In fact, the focus of competition shifts from 

higher performance to lower cost and to differentiation via minor design variations 

and strategic positioning tactics. Finally, this period is broken by the next 

technological discontinuity (Anderson & Tushman, 1990; Suárez & Utterback, 

1995).  

2.3. The “force of obsolescence” or “force of change” 
In order to model the dynamics of innovation, we can reformulate the index 

“force of obsolescence”. It was proposed by Erto & Lanzotti (1995) and measures 

the local tendency toward obsolescence of the adopted technology. In particular, the 

index “force of obsolescence” is so-defined: 

lim lim

( )
( )( )

( ) ( )

dP t
p tdtr t

P P t P P t
= =

− −
                                                                                 (2.1)    

where ( )p t , being the derivative of ( )P t , is defined density of obsolescence. The 

density of obsolescence gives, for every t , the growth rate of obsolescence, that is 

the growth rate of the technological performance level toward its saturation value. 

The force of obsolescence measures the density of obsolescence, using as unity the 

distance of the current performance level of the adopted technology from its 
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saturation value. So, it is a local (i.e. at moment, instantaneous) measure of the 

tendency toward the obsolescence of the adopted technology. In other words, the 

force of obsolescence measures the speed toward obsolescence that the adopted 

technology assumes conditionally to its age. The higher this speed the smaller the 

time to the end of the improvement process. Therefore, it represents the 

mathematical formulation of the incentive to substitute the adopted technology. In 

this context, the index (2.1) will be called “force of change” (D’Avino & Erto, 2006).  

In particular, following the cyclical model of technological change of Abernathy 

and Utterback (1978), the force of change should be an increasing function during 

the initial period of product or process design ferment (era of ferment). 

Subsequently, it should exhibit a maximum point when a dominant design emerges. 

In fact, the dominant design reduces variation and uncertainty in the product or 

process class. Therefore, the maximum point represents the “instant” when the 

selection process culminates in a dominant design that becomes well understood and 

established. Finally, the force of change should become a decreasing function during 

the era of incremental change since a retention mechanism of the dominant design 

occurs. In fact, 80% of all progress within a technological change cumulates during 

the era of ferment (Anderson & Tushman, 1990). Obviously, dominant designs don’t 

remain dominant for ever. The force of change begins to increase again and the cycle 

of technological change repeats itself when the next technological discontinuity 

appears. 
The index (2.1) is useful to discriminate between different models of S-curves 

too. In fact, little differences in the shape of S-curves assume greater evidence in the 

shape of force of change. Therefore, it constitutes a further item to be considered in 

the choice of the appropriate S-curve model. The forces of change of the models 

presented in the Chapter 1 were formulated and reported in the Table 2.1.  
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Table 2.1. The forces of change of the compared S-curve models 

Model Force of Change 

Logistic 
( ) lim ( )

1 kt t

kr t r t k
eα − →+∞

= =
+

 

Gompertz 
( ) lim ( )

1
kt

kt

te

ker t r t k
e

α

α

−

−

→+∞
= =

−
 

Log-logistic 
ln( ) lim ( ) 0

(1 )k t t

kr t r t
t eα − →+∞

= =
+

 

Erto-Lanzotti 1( ) lim ( )s

t
r t kst r t−

→+∞
= = +∞  

Richards 

( )1/
( ) lim ( )

(1 ) (1 ) 1

kt

kt kt s t

ker t r t k
s e e

α

α α

−

− − →+∞
= =

+ + −
 

Weibull-type 1( ) lim ( )s

t
r t kst r t−

→+∞
= = +∞  

 

The Table 2.1 shows three different patterns of the index ( )r t . In particular, the force 

of change of the log-logistic model is an increasing function at the beginning and, 

then, exhibits a maximum point and decreases toward zero as t →+∞ . Therefore, it 

fits well the cyclical model of technological change of Abernathy and Utterback 

(1978).  

On the other hand, the logistic, the Gompertz and the Richards models show a 

force of change that tends to a constant k  as t →+∞ . This pattern of ( )r t  can 

represent a context in which equilibrium is reached between two opposing sets of 

forces: the driving forces, that seek to promote change, and the restraining forces, 

that attempt to maintain the status quo. In fact, in the innovation management 

context, the exploitation and exploration activities are in constant tension (Fosfuri & 

Ronde, 2006). On the one hand, the exploitation of the current technology might 

generate structural inertia and reduce a company’s ability to adapt to future 

environmental changes and opportunities. On the other hand, exploring new 
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alternatives might disrupt successful routines. For example, the implementation of a 

successful innovation, backed by an R&D department, results costly changes for a 

production department. In response, the production department tries to improve the 

current technology in an attempt to convince the management not to implement the 

innovation. In this context, Foster (1986) describes the case of DuPont and its 

decision in the 1950s to move from the established nylon technology to the new 

polyester technology for the production of car tires. Behind the decision there was a 

conflict between production engineers at the nylon plant and researchers supporting 

the new technology. The production engineers managed to push the nylon 

technology to the limits, and provided sufficient evidence to convince the 

management that the nylon technology would remain competitive. The polyester 

technology was eventually shelved. Obviously, the equilibrium can be raised or 

lowered by changes in the relationship between the driving and the restraining 

forces.  

Finally, the Erto-Lanzotti and the Weibull-type models exhibit a force of change 

that tends to infinity as t →+∞ . This pattern of ( )r t  can represent a very 

competitive market where, despite settling on a dominant design, innovation still 

occurs, albeit of a different character. For example, in the mobile phone market the 

innovations on the system level (e.g. infrastructure, technological standards) were 

followed by a flurry of additional features (e.g. games, ringtones, vibration alert, 

memory location, multimedia messaging, camera, handset design, etc.) since mid-

1990s. In particular, a typical mobile phone user is likely to be more interested in the 

features and capabilities of a handset he buys than its technological details. 

Therefore, it is of paramount importance that the mobile phone companies look at 

innovation in handsets from the user’s point of view. In fact, unlike for PCs, there is 

no standard user interface in the mobile industry. Therefore, the design of the user 

interface can determine not only the success of an individual model but also that of 

subsequent models. In fact, the mobile phones are also fashion items. Consequently, 

manufacturers of mobile phones compete on product differentiation by introducing 

new product features continuously (Koski & Kretschmer, 2006).  

Figure 2.1 shows the three different patterns of the force of change. 
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Figure 2.1. The different patterns of the force of change 

2.4. A flexible s-curve model  
From the above analysis, it emerges that only the log-logistic model fits well the 

pattern of force of change in according to the cyclical model of technological change 

of Abernathy and Utterback (1978). On the other hand, the log-logistic model 

doesn’t show optimal mathematical properties. Therefore, we propose a new flexible 

S-curve model with the same ( )r t  pattern. 

2.4.1 Genesis of the model 

The genesis of the model is directly linked to the functional form of ( )r t . In fact, 

given it, the S-curve model can be easily determined. Moreover, it is assumed that  

0 lim0
lim ( ) lim ( )
t t

P t P P t P
→ →∞

= =                                                                               (2.2) 

In particular, in order to obtain the desired pattern of force of change (a function 

that increases at the beginning and, then, exhibits a maximum point and decreases 

toward zero as t →+∞ ), we chose the following functional form of ( )r t : 
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1

( ) 0; 1
s

s s

str t k s
k t

−

= > >
+

                                                                                  (2.3) 

Now, it follows from (2.1) that 

lim

( )( )
( )

dP tr t dt
P P t

=
−

 

or 

{ }lim 0
0

( ) log[ ( )]
t

tr t dt P P t= − −∫ . 

Thus, 

lim

lim 0 0

( )log ( )
tP P t r t dt

P P
−

= −
− ∫  

or 

0

( )
lim

lim 0

( )
t

r t dt s

s s

P P t ke
P P k t

−∫−
= =

− +
. 

Finally, we obtained the following S-curve model: 

( )0 lim 0( ) 1 0; 1
s

s s

kP t P P P k s
k t

⎛ ⎞
= + − − > >⎜ ⎟+⎝ ⎠

                                                (2.4) 

2.4.2 The statistical-mathematical properties of the model 

The model (2.4) is a flexible two-parameter model. In fact, the inflection point 

coordinates are: 

( )
1

* *
0 lim 0

1 1( )
1 2

ss st k P t P P P
s s
− −⎛ ⎞ ⎛ ⎞= = + −⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠

                                                   (2.5) 

Therefore, it can offer wide variations in the degree of symmetry for a given 

inflection point. Moreover, it assumes an original level of the technological 

performance ( 0P ) explicitly. 

The closeness to linear behaviour of the model (2.4) was also evaluated by fitting 

it to real datasets presented in the Chapter 1. First, we calculated the curvature 

measures of Bates and Watts (1980). The results are reported in Table 2.2 with the 
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critical values in brackets. The bold values point out the curvature measures that 

exceed the critical values. 

Table 2.2 The curvature measures of Bates and Watts and the critical values 
for each model/dataset combination 

Data Curvature
measures 

Model 
(2.4) 

IN 
0.1609  

(0.2537)  Jet 
aircraft 
engines PE 

0.2470  
(0.2537)  

IN 
0.1656  

(0.2606)  Piston 
aircraft 
engines PE 

0.1856  
(0.2606)  

IN 
.0 2736  

(0.2423)  
DSP 

PE 
.1 9603  

(0.2423)  

 

The Table 2.2 shows that the IN and PE of the model (2.4) are less than the critical 

values for the jet aircraft engine and piston aircraft engine datasets. However, the IN 

for the DSP dataset implies a deviation from the tangent plane less than 18%  (rather 

than 14% ). So, it can be considered negligible. Moreover, it’s worth keeping in mind 

that the DSP dataset is a critical dataset (see Chapter 1). On the other hand, for this 

dataset the PE value is high too. Therefore, we searched for a better parameterization 

for the model. In order to identify the parameter or parameters responsible for 

nonlinear behaviour, we calculated the parameter bias. The Table 2.3 summarizes the 

results. The bold values point out the parameters for which the absolute value of 

percentage bias is considerably in excess of 1% .   

Table 2.3 The absolute values of the percentage bias for each model/dataset 
combination 

Data Param. Model (2.4) 
k  0.02891 Jet aircraft engines 
s  1.574  
k  0.02031 Piston aircraft engines 
s  0.7745  
k  .3 213  DSP 
s  .3 500  
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In accordance with the higher value of PE, the parameter percentage biases for the 

DSP dataset are higher than the other ones. Moreover, both parameters contribute 

substantially to the nonlinear behaviour. Therefore, we turned to a simulation study 

in order to reveal the full extent of the non-normal behaviour of the LS estimators. 

The histograms of the standardized results for k̂  and ŝ  for DSP dataset are reported 

in Figure 2.2. 

 

Figures 2.2. The histograms of the standardized results for k̂  and ŝ  for DSP 
dataset 

The Table 2.4 summarizes the values of skewness and excess kurtosis for each above 

distribution. It shows that the normality hypothesis is rejected with p-values less than 

0.01  (Ratkowsky, 1983).  

Table 2.4 The skewness and excess kurtosis values and the test hypothesis results 
about them for the distributions of k̂  and ŝ  

Data Measures Param. Values *u  p-values 
k  4.25  54.8  0.01<  Skewness 
s  1.24  16.0  0.01<  
k  29.3  189  0.01<  

 
DSP 

Excess Kurtosis 
s  4.32  27.9  0.01<  

 

Moreover, the Figure 2.2 shows histograms with a long right-hand tail that is typical 

of a lognormal distribution. This suggests that the model (2.4) can be improved by 

replacing k  by ke ′  and s  by se ′  (where e  represents the base of the natural 

logarithm). Thus the new model function to be considered is as follows: 

( )0 lim 0( ) 1
se

se s

k

k e

eP t P P P
e t

⎛ ⎞
⎜ ⎟= + − −
⎜ ⎟+⎝ ⎠

                                                                     (2.6) 

The percentage bias (for the parameters k  and k ′  and the parameters s  and s′ ) and 



 

 

 

37

the PE for the combination of the new model function in (2.6) with the DSP dataset 

were calculated and compared with the ones concerning the original model function 

in (2.4). The results are reported in Table 2.5. 

Table 2.5 Percentage biases and PE curvature for the both model functions 
Data Measures Model (2.4) Model (2.6) 

3.213  ( )k  0.8160  ( )k ′   
Percentage bias 3.500  ( )s  0.1989  ( )s′  

DSP 
PE 1.9603  

(0.2423)  
0.9310  

(0.2423)  

 

The Table 2.5 shows that, even if the percentage bias of k̂  and ŝ  is substantially 

reduced, the PE is reduced only by a relatively small amount which is not sufficient 

to make the nonlinearity not significant statistically. Therefore, it appears that the 

less complicated model function (2.4) might be adequate for most purposes, since it 

is close to linear for the jet aircraft engine and piston aircraft engine datasets and 

shows a no drastic departure from linearity for DSP dataset.   

2.5. Conclusions 
In this work the dynamics of technological innovation process were analyzed. 

In particular, the “force of change” index allowed the modelling of different 

representative scenarios. Moreover, it constitutes a further item to be considered in 

the comparative study amongst the S-curve models presented in the Chapter 1. 

Finally, a new S-curve model with a specific pattern of force of change was proposed 

and its good statistical-mathematical properties were evaluated.  
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C h a p t e r  3  S - c u r v e  M o d e l  a s  
B e n c h m a r k i n g  a n d  S e l f - A s s e s s m e n t  

T o o l  

3.1. Introduction 
The unit of analysis in most published studies of technological growth has been at 

the industry level (for example, see McGrath, 1998; Nieto et al., 1998). In this 

context, the S-curve model is a useful framework in order to describe the 

technological innovation process. Consequently, some authors have advocated the 

use of the S-curves at the company-level (Becker & Speltz, 1983; Foster, 1986). On 

the other hand, they have not addressed how managers might use it as a guide in the 

strategic management of technology. Therefore, the S-curve analysis as a basis to 

plan new technology developments at the company level shows some shortcomings. 

In fact, S-curves seem less relevant to performance of assembled products than to 

performance of the components, since, in the design of most assembled products, 

there is more than one route to achieve performance improvement. Therefore, the 

levels at which individual companies perceive the saturation value of the 

technological performance differ amongst them depending on company-specific 

characteristics of product design. This suggests that managers may have substantial 

leeway for extending the performance of the adopted technology before undertaking 

the risk and expense of developing different technological approaches (Christensen, 

1992a; Christensen 1992b). Moreover, in the practical use of S-curves, problems 

arise from both choosing the performance indicator and from identifying the 

saturation value of the performance level. The choice of performance indicator 

depends on the business area as well as on the specific product/service offered. It 

must reflect some characteristics which are easily measurable and, at the same time, 
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recognizable by clients (for example, market share, technical or financial 

performance, productivity of key resources or other); it must be relevant from both 

technical and business perspective and it must reflect the fact that the technology is 

less costly, more attractive to potential buyers, or in some way more profitable. In 

particular, the performance indicator must reflect the improvements of the products 

that incorporate the technology (quality, security, cost, etc.) (Asthana, 1995; 

Dervitsiotis, 2005; Foster, 1986). Then, the saturation value of the performance level 

must be performed on the basis of physical and/or commercial constraints (Erto, 

1997a; Erto & Lanzotti, 1995, Nieto et al., 1998; Ratwosky, 1990). 

Christensen (1992b) argues that the benchmarking against competitors’ 

performance, in addition to the own historical performance and perceived natural 

limits, may provide a clearer view of the potential improvement of the adopted 

technology. In fact, the benchmarking can help to identify the performance indicator 

and, above all, its saturation value when there are wide differences of opinion about 

it amongst companies. In particular, the disagreement occurs when the technological 

performance results from exploiting some combination of broadly understood 

physical laws and experience-based know-how of the specific company. Obviously, 

the saturation value may in practice be a moving target rather than immovable 

barrier, since nobody knows what researchers may discover or develop in the future 

(Christensen 1992a; Christensen, 1992b; Christensen, 1997). However, the reference 

to the technological leader is a good starting point.  

In this work, we propose the S-curve itself as a benchmarking (against the leader 

company in the industry) and self-assessment tool. 

3.2. S-curve as benchmarking tool 

Benchmarking is a technique used in strategic management which allows 

companies to evaluate various aspects of their processes in relation to best practice 

within their industry with the aim of increasing some aspects of performance.   

For these purposes, the top management can employ the S-curve assuming the 

leader company (which adopts the same technology) in the industry as the reference 

model (Corti, 2002). In fact, the S-curve of this company represents the 
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“performance borderline” that is the locus of the maximum performance growth 

reachable through the adopted technology. In this way, a company which adopts a 

specific technology with delay, or adopts it improperly, will accumulate both a 

“performance delay”, said x , and a “performance distance”, said y , against the 

leader company (D’Avino & Erto, 2007a) (Figure 3.1). Therefore, the monitoring of 

both x  and y  can be useful in the strategic decision-making process within 

company by alerting the management to the remedial actions. In particular, the 

company could decide to invest further resources to accelerate its technological 

growth (evolutionary improvement process) or to use a new technology since the old 

one doesn’t provide the desired results anymore (radical improvement process). 

Moreover, it’s interesting to note that also the leader company can exploit these 

results. In fact, the reactive behaviour of the monitored companies must induce the 

leader one to adopt a new technology before the others achieve its technological 

performance level (Corti, 2002). 

 

Figure 3.1. “Performance Delay” and “Performance Distance” against 
“Performance Borderline” 

3.2.1 Reactivity functions: Density of Hope of End Delay and Density of Hope of 
End Distance 

Based on the proposed tool, we can reformulate an operative function proposed in 

a different context (Erto, 1997b) using it to evaluate the reactivity of the company 

against accumulated delays and distances. In this way, we obtain two functions, the 

“Hope of End Delay” (HEDE) and the “Hope of End Distance” (HEDI), so defined:  
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( ) ( )( , )
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+ Δ −
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                                                                    (3.1)        

being ( )XF x  and ( )YF y  the probability distribution functions respectively of the 

random delay, x , and the random distance, y . They both measure a conditional 

probability, since the numerator measures the probability that the delay (or distance), 

x  (or y ), finishes between x  and x x+ Δ  (or y  and y y+ Δ ), while the denominator 

measures the probability that the delay (or distance) is greater than x  (or y ).  

However, for the practical use, rather than the HEDE and HEDI functions, it is 

more effective to consider the functions “Density of Hope of End Delay” (DHEDE) 

(Erto, 1997b) and “Density of Hope of End Distance” (DHEDI), so defined: 

0

0

( , )( ) lim

( , )( ) lim

x

y

HEDE x xDHEDE x
x

HEDI y yDHEDI y
y

Δ →

Δ →

Δ
=

Δ

Δ
=

Δ

                                                                            (3.2)                       

The indexes (3.2) are very significant tools to assess the typical behaviours of the 

company operatively. In fact: 

1. if the DHEDE (or DHEDI) is increasing, it means that the end of delay (or 

distance) is more frequent after long rather than short delays (or distances), i.e. 

the company is robust since its reaction improves more and more as delay (or 

distance) increases;  

2. if the DHEDE (or DHEDI) is constant, it means that the end of delay (or 

distance) is independent from the delay (or distance) that has just occurred, i.e. 

the company is apathetic since it shows no reaction to delays (or distances); 

3. if the DHEDE (or DHEDI) is decreasing, it means that the end of delay (or 

distance) is more frequent after short rather than long delays (or distances), i.e. 

the company is weak since its reaction is discouraged more and more as delay 

(or distance) increases. 
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3.2.2 Applicative example 

In order to highlight the main features of the proposed tool and derived tools, we 

simulated a typical and widely representative scenario in which a company monitors 

the performance growth when a technology is adopted (Figure 3.2). Generally, this 

company begins to use the technology after the leader company. So, we simulated 

the initial delay to be equal to 5  years. It’s interesting to note that the different S-

curve slopes represent the different innovative capabilities of the two companies. In 

fact, the leader company is the fastest in achieving the saturation value of the 

adopted technology. 

 
Figure 3.2.  “Performance Borderline” and dataset of the monitored company 

The continuous S-curve represents the “performance borderline” of the leader 

company and the dots represent the dataset of the technological performance levels, 

( )iP t , gathered yearly by the monitored company. The company monitors the yearly 

accumulated “performance delays”, ix , and “performance distances”, iy , against the 

“performance borderline” (the continuous S-curve) over a period of 25  years. This 

period was considered a sufficient time to achieve the maturity of the adopted 

technology. In fact, in order to generate our dataset, an error term, ε  (that is a 

random variable generated to be stochastically independent and identically normally 

distributed with zero mean and constant variance 2σ ), was added to the Erto-

Lanzotti model. The “true” values of the parameters k  and s  and of the error 

variance 2σ  were taken to be the quantities obtained from the LS fit to the DSP 

original dataset (see Chapter 1).  
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Using the following non parametric estimators, six point estimates of both 

DHEDE and DHEDI were obtained: 

1

1
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N (or M ) is the number of all registered delays (or distances); 

in  (or im ) is the delay number less than or equal to ix  (or iy ). 

Interpolating the six points both for DHEDE and DHEDI, the following functions 

were estimated: 

3 2( ) 0.089 2.1 10DHEDE x x−= + ⋅                     ( ) 2.65 36.5DHEDI y y= − +                          

       

Figure 3.3.  DHEDE and DHEDI estimated functions 

The shapes of the DHEDE and DHEDI (Figure 3.3) suggest that the company is 

robust since its reaction improves more and more as both delay and distance 

increase. Moreover, the company is more reactive to “performance distance” than 
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to “performance delay” since the slope of the DHEDI function is greater than the 

slope of the DHEDE function.  

3.3. S-curve as self-assessment tool 
Assessment is the process of evaluating an organization and its improvements, 

achievements and processes against a reference model for continuous improvement 

(Hillman, 1994). Therefore, the above proposed tool may be used by companies also 

in self-assessment with the aim of improving organizational performance. In fact, as 

well as the technological performance growth, the growth of a chosen performance 

parameter of any process of a company can be conformed to an S-curve pattern as a 

function of time (Dervitsiotis, 2003; Dervitsiotis, 2004; Dervitsiotis, 2005; Grove, 

1999; Stockport, 2000).  

Generally, companies implement the Quality Award Models, so called Business 

Excellence Models (the most famous are: the Deming Application Prize (DP), the 

Malcolm Baldrige National Quality Award (MBNQA) and the European Quality 

Award (EQA)) for self-assessment, but many of them, especially the small ones, are 

still dissatisfied with these practices (Rodríguez-Escobar et al., 2006; Williams et al., 

2006). Consequently, the number of small companies which implement a formal 

quality management system or which develop self-assessment against the criteria of 

these business excellence models remains very low (Sturkenboom et al., 2001).  

3.3.1 Small companies’ experiences with self-assessment 

Often quality management practices are seen as being important for large 

companies only, although there are many examples and there is enough research 

evidence to show that quality principles apply for small companies too. On the other 

hand, small companies find more difficulties in the implementation of formal 

practices due to the general lack of technical and specialist know-how in the field of 

quality combined with the high concentration of decision-making processes in the 

figure of the entrepreneur-owner (Biazzo, 2005). Therefore, many small companies 

tend to adopt formal quality systems only when there are significant external 

pressures to do so (Brown et al., 1998).  
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Similarly, self-assessment practices are not very spread in small companies. In 

fact, self-assessment is perceived to be used only when applying for an award, which 

is seen like something addressed to large companies exclusively (Wilkes and Dale, 

1998). Moreover, the business excellence models translation into self-assessment 

tools is generally seen as too complicated and time-consuming. In fact, their 

language is not easy to understand and considerable training is needed in relation to 

their implementation (Wilkes and Dale, 1998; Sturkenboom et al., 2001). Therefore, 

some authors modified the excellence models to suit them to small companies but the 

problems mentioned above were not solved (Sturkenboom et al., 2001). So, more 

needs to be done in terms of language simplification, format of the model and 

simplification of the application document (Wilkes and Dale, 1998).  

3.3.2 Self-assessment tools 

It’s worth recognizing that the introduction of internationally respected quality 

awards has promoted quality awareness and provided a platform for sharing 

successful quality management initiatives (Lee and Quazi, 2000; Van der Wiele et 

al., 2000). Moreover, the quality awards have stimulated the use of self-assessment 

as a way of measuring progress on the quality journey and give direction to further 

improvement activities (Sturkenboom et al., 2001). These awards contain a number 

of criteria addressed toward many aspects of a company such as leadership, 

information analysis, process management, strategic planning, human resource 

management, partnership, public responsibility, quality results, operation results and 

customer satisfaction (Lee and Quazi, 2000; Samuelsson and Nilsson, 2001). The 

mode of assessment is the evaluation of a written application that the companies 

submit to a team of quality assessors. Subsequently, the quality assessors give back a 

thorough feedback on the relative strengths and weaknesses of the companies 

together with a numerical score for the application. This process is long and tedious. 

In fact, companies take many months to prepare for the application and each 

application may be about 80 to 100 pages long. Therefore, many companies give up 

unless they think they are prepared and have a real chance of winning the award (Lee 

and Quazi, 2000).  

Moreover, since the self-assessment derived from awards uses tools born with 
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different aims, specific approaches are needed today (Conti, 1997). In particular, the 

differences between award assessment and self-assessment are evident. In fact, 

award evaluations are third-party assessments since the body that conducts the 

assessment is external and independent from the company, while self-assessment is a 

first-party evaluation based on the complete and active participation of all people 

involved. Finally, since the goal of award assessment is to choose the best 

performers among a number of applicants, comparability by scoring is essential. On 

the contrary, the use of a score is a risk for the diagnostic power of self-assessment 

since experience has amply proved that managers tend to concentrate on scoring 

rather than on searching for the causes of problems (Conti, 1997).  

In this context, the above proposed tool supports a self-assessment process 

independent from the Awards criteria. In fact, it shows the following main features: 

1. It is not complex being not extensive and having a language easy to 

understand; 

2. It is not time-consuming since it doesn’t require a long written documentation; 

3. It focuses on processes instead of scoring; 

4. It is a diagnostic tool for the continuous improvement. 

3.4. Conclusions 
In this work a new mathematical tool for benchmarking and self-assessment was 

proposed. This tool is original and it is a good starting point to overcome both the 

limits of the S-curves as a decision-making process guide at the company-level and 

the difficulties of the Quality Awards approach due to their complexity and 

subjective scoring system. Moreover, it allows the company to identify strengths and 

weaknesses in key technologies and/or processes and to monitor the impact of action 

plans.  
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C h a p t e r  4  A  P i e c e w i s e  R e g r e s s i o n  
M o d e l  f o r  S u s t a i n a b l e  B u s i n e s s  

E x c e l l e n c e  

4.1. Introduction 
Nowadays, organizational change has become a mandatory condition to survive in 

the marketplace for all companies. In fact, a business needs to be able to adapt to the 

changes of its external environment in order to remain competitive (Black & 

Crumley, 1997). In particular, since the late 1970s a number of change drivers, i.e. 

new technologies, new knowledge, new customer preferences, the deregulation of 

several industries and the increased globalization of trade, have caused an 

acceleration of environmental change (Dervitsiotis, 2003; Dervitsiotis, 2004). Such 

forces provide opportunities and challenges that drive companies through relatively 

long periods of stability punctuated by relatively short periods of turbulence. This 

environmental dynamism creates a set context or a set of conditions within which 

innovative ideas are fostered and developed (Carrillo & Gaimon, 2002; DeTienne & 

Koberg, 2002). In such a situation, companies are faced with big opportunities and 

big potential drawbacks. Those that are able to correctly foresee the future 

developments can gain a substantial competitive advantage (Borés et al., 2003). On 

the other hand, due to the rapid changes, entire business models can be rendered 

obsolete within a short time (DeTienne & Koberg, 2002; Hacklin et al., 2004). As a 

consequence, a company’s change strategy is of paramount importance to achieve 

sustainable growth and business excellence (Kanji, 2005). In fact, management 

approaches applicable in periods of stability are often quite inappropriate in periods 

of turbulence. Therefore, to achieve the key objectives in both stable and turbulent 

periods, management must develop the capability to operate in a dual management 
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mode by shifting the criteria of success when environmental conditions demand it. 

This capability is called Sustainable Business Excellence (SBE) (Dervitsiotis, 2003; 

Dervitsiotis, 2004).  

4.2. Discontinuous innovations 
In this context, companies are highly dependent on innovation for competitive 

advantage and survival (DeTienne & Koberg, 2002). In fact, during the early 

nineties, between 60-70 per cent of the Fortune 100 largest global companies were 

found to not exist at all or in any form similar to what they were like in 1970 

(Stockport, 2000). Therefore, many business school academics tried to identify the 

reasons of these failures. A typical example of the examined case studies is the 

history of the disk drive industry, where changes in technology, market structure, 

global scope and vertical integration have been very pervasive, rapid and unrelenting 

(Christensen, 1997). For this case, some scholars have attributed the high mortality 

rate to the unfathomable pace of technological change. On the contrary, a deeper 

study of the disk drive industry case history revealed that the different impact of 

technological change were at the root of the leading firms’ failures. Two types of 

technological change were identified: the technological changes that sustain or 

reinforce established trajectories of product performance (sustaining technologies) 

by following an incremental innovation and the technological changes that disrupt or 

redefine performance trajectories (disruptive technologies) by following a 

discontinuous innovation (as anticipated in the Chapter 2). Incremental innovations 

and sustaining technologies were not sufficient for survival when new disruptive 

technologies were leapfrogging the price/performance parameters of these 

incremental innovations (Christensen, 1997; Kassicieh et al., 2002).  

Subsequently, some case studies showed that the technological change and the 

organizational change are closely connected. In fact, the impact of a technological 

change is often not limited to the new product’s technological aspect, but it also 

requires changes of the company’s operational and commercial activities through the 

reconfiguration of its business model (e.g. the introduction of automated teller 

machine changed banking, the introduction of computers in medical diagnosis 
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changed medical care, etc.) (Calia et al., 2007; Grove, 1999). On the basis of these 

experiences, discontinuous innovations change the framework in which the business 

operates, making obsolete the old ways. They permit entire industries and markets to 

emerge, transform or disappear, providing a significant competitive advantage. On 

the contrary, incremental innovations are minor changes (DeTienne & Koberg, 

2002). Therefore, discontinuous innovations involve a higher degree of risk and 

uncertainty than incremental innovations, but they may mean an opportunity for a 

new period of growth (Grove, 1999). Unfortunately, history shows that, even though 

these are cataclysmic changes, successful companies often missed them. In fact, their 

leaders develop over time a confidence for the soundness of their success formula 

and “freeze” their structure and operating mode. This makes adaptation for survival 

difficult when the environment changes in significant ways (Dervitsiotis, 2003; 

Dervitsiotis, 2004). In particular, the first phase of organizational reaction to a 

discontinuous innovation is very often denial. An organizational change requires to 

get out of a comfort zone and tear up the organization, while management wants to 

perpetuate its successful past. Moreover, a transformation requires to re-start from a 

lower business level with very onerous consequences on the company. At the same 

time, companies that begin a decline as a result of a missed change rarely recover 

their previous greatness (Grove, 1997).  

4.3. The strategic inflection point 

As defined by Grove (1999), at that time President of Intel Corporation, the 

critical point where the transformation from one business model to another must 

occur is known as strategic inflection point (“point I”) (Figure 4.1). Obviously, by 

“point I” it doesn’t mean a particular point in time but rather a strategic window of 

time and opportunity during which strategic transformation can take place. This 

strategic window of time could be months or years (Stockport, 2000). Grove 

identified a strategic inflection point when the Japanese entered the memory 

production market and began research and development of new chips to lead the 

world market. The U.S. companies could not compete against Japanese low-cost, 

high quality products and some of them were losing the fight and money because 
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they failed to recognize the Japanese business threat. Fortunately, Intel’s 

management recognized the strategic inflection point and adapted the Intel’s business 

from memory chip production to microprocessors one before it was too late. Further 

examples of the strategic inflection points have occurred in the shipping industry, 

following the innovation of the containerization that made old international ports, 

such as New York, unable to compete with those prepared for this innovation, such 

as Seattle; and in marketing and distribution following the development of e-

commerce, as in the case of bookshops like amazon.com compared with Barnes & 

Noble, or following the establishment of Wal-Mart, probably the largest retailer in 

the world, in small rural American towns traditionally served only by relatively small 

stores (Dervitsiotis, 2003; Dervitsiotis, 2004; Grove, 1997). 

The strategic inflection point can be depicted on the S-curve. In fact, the growth 

of a chosen performance parameter, ( )P t , of a company can be conformed to an S-

curve pattern as a function of time, t , which starts when a new business model is 

adopted (Dervitsiotis, 2003; Dervitsiotis, 2004; Dervitsiotis, 2005; Grove, 1999; 

Stockport, 2000). In this context, the saturation value of the performance level is the 

Business Excellence (BE). Moreover, the curve’s shape makes it easy to see that the 

company productivity begins to decrease just after the strategic inflection point 

(“point I”), that is the point on the curve where the arc changes from concave to 

convex (Asthana, 1995; Grove, 1999; Kumar & Kumar, 1992). Therefore, the 

strategic inflection point (“point I”) marks the end of a previously successful mindset 

and of strategies that are no longer effective (Figure 4.1).  

 

Figure 4.1. The strategic inflection point 
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At that point, management should begin a strategic transformation because further 

efforts in the old business model will result in diminishing returns (Asthana, 1995; 

Dervitsiotis, 2003; Dervitsiotis, 2004; Dervitsiotis, 2005; Stockport, 2000). It was 

found useful to break this change process into two phases. The first half is the phase 

in which it is best to let chaos reign because management do not know enough to 

take charge. After that this experimentation phase (the so-called edge of chaos) is 

over, it is time to rein in chaos. In fact, the second phase is the moment to take 

charge again and to be completely explicit in stating the direction of the new 

business (Grove, 1997). Therefore, a key management task is to monitor the position 

of the company on its S-curve and prepare itself for jumping at the “point A” from 

the present curve to a new performance curve, based on a new business model that is 

more suitable for the emerging conditions (Figure 4.2). In fact, upward movement 

along an S-curve is generally accepted to depict an incremental innovation in the 

chosen performance parameter, while a transition to a different business model (that 

has a higher saturation value of the performance level) is graphically depicted as a 

discontinuous innovation (Corti, 2002; Erto, 1997a; Erto & Lanzotti, 1995; McGrath, 

1998). So, we don’t have a single S-curve, but we have a series of successive S-

curves (D’Avino & Erto, 2007a; Sood & Tellis, 2005).  

 

Figure 4.2. Jumping the curve 

In this way, the organization can strategically transform itself before it starts to 

wither (the decline phase is not included in our analysis). In fact, “jumping the 

curve” must always be made while the company has the ability and “slack” to 

transform itself. At “point A” there is still a momentum from continuing good results 



 

 

 

52

of past successful products and markets, which provides the “slack” of required 

resources to make an effective transition. On the contrary, if the leadership of a 

successful company isn’t prompt to recognize a strategic inflection point and reacts 

too late, the needed internal transformation may be too difficult or impossible to 

make, and decline follows. Moreover, when there is a delayed attempt to jump the 

curve, the costs may become too high (Dervitsiotis, 2003; Dervitsiotis, 2004; 

Dervitsiotis, 2005; Stockport, 2000). 

Finally, the strategic inflection point can mean an opportunity to rise to new 

heights, but it may just as likely signal the beginning of the end (Grove, 1999). To 

survive and maintain a competitive advantage, management should act and re-

position the company when the going is at its best. Unfortunately, almost nobody 

does that: they wait until the signs of a strategic inflection point are incontrovertible, 

but they only become incontrovertible after the decline has gone so far that nobody 

can question it. They want the proof that the strategic inflection point has been past 

(Grove, 1997). Therefore, being helped to understand when time has come to start a 

long strategic transformation without any hesitation can be a significative survival 

factor. In this framework, we propose a diagnostic tool in order to support 

management in this difficult decision-making process. 

4.4. A piecewise regression model 

It is standard practice to approximate a regression curve by a single model over 

the entire range of time, which is relevant to the problem. However, for our purposes, 

we found approximating the regression curve by a sequence of sub-models 

(piecewise regression model) more effective and flexible (D’Avino & Erto, 2007b). 

Obviously, each sub-model must be joined to the next one at the end of its definition 

range. It is relatively simple to fit such a model if where the join points are is known 

in advance. On the contrary, our problem deals with the more difficult case where the 

join points themselves have to be estimated from the data. 

Therefore, we propose the following new piecewise regression model, of the 

performance level ( )P t , which is tractable and very adaptive having four shape 
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parameters ( 1a , 2a , 3a , 4a ), two time parameters ( 1τ , 2τ ) and four given constants 

( 0P , limP , 0τ , 3τ ) for only one explanatory variable, t : 

2
1 0 1 0 1 0 0 1

2 2 3 2 1 2

4
3 lim 4 2 3

( ) ( ) 0, 0
( ) 0

( ) 0

P t P a t a P for t
P t a t a a for t

aP t P a for t
t

τ τ τ
τ τ

τ τ

⎧
⎪ = + − > > ≤ ≤
⎪

= + > ≤ ≤⎨
⎪
⎪ = − > ≤ ≤
⎩

                             (4.1)                         

It is straightforward to show that: 

0
1 0 3 limlim ( ) lim ( )

t t
P t P P t P

τ→ →+∞
= =                                                                             (4.2)                        

The good applicability of this model is also due a reduction (from six to four) of 

the number of parameters to be estimated, as shown in the next paragraph. 

The model is composed of three sub-models: a branch of parabola, 1( )P t , that 

approximates the birth phase of the new business model; a straight line, 2 ( )P t , that 

approximates its growth phase, and a branch of translated equilateral hyperbola, 

3 ( )P t , that approximates its maturity phase (Figure 4.3). The mathematical 

formulations of the first and the third sub-models were chosen because their patterns 

fit well respectively the initial phase of slow growth and the final phase of slow 

decrease. In particular, the slow pattern of the branch of translated equilateral 

hyperbola allows to represent the “slack” that company has still at the “point A”, to 

transform itself. Moreover, the choice of the three above sub-models is validated by 

the empirical analysis of our datasets.  

 

Figure 4.3. The three phases of the business model life cycle 
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The used notation is: 

0τ  is the initial time (given constant); 

0P  is the initial performance level (given constant); 

limP  is the saturation value of the performance level or the Business Excellence (BE) 

reachable through the adopted business model (given constant);  

1τ  is the join point between the branch of parabola and the straight line, or the time 

when the second phase starts (to be estimated); 

2τ  is the join point between the straight line and the branch of translated equilateral 

hyperbola, or the time when the third phase starts (to be estimated);  

3τ  is the last sampled time (given constant).  

For our purposes, the most important parameter is 2τ , since it represents the best 

point and time to jump to a new performance curve (“point A”).  

4.5. Least squares estimators for piecewise regression 
The method of least squares (LS) is used throughout this paper. The number of the 

parameters to be estimated is six: two time parameters ( 1τ  and 2τ ) and four shape 

parameters ({ } 1,...,4i i
a

=
). However having the model to be continuous at each join 

point, the following constraints stand: 

2
0 1 1 0 2 1 3

1 1 2 1
4

2 2 3 lim2 2 3 2
2

( )( ) ( )
( ) ( )

P a a aP P
aa a PP P

τ τ ττ τ
ττ τ

τ

⎧ + − = +
=⎧ ⎪⇒⎨ ⎨ + = −=⎩ ⎪

⎩

                                             (4.3)                       

Therefore, the number of independent parameters to be estimated is reduced to four. 

No restriction is placed on the slopes of the adjacent curves. 

In order to estimate the unknown parameters, we have to minimize the following 

residual sum of squares (RSS): 
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( ) ( )
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1 1 2 2 3

1 1
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3 4
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( ; )
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k k S

T
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RSS a S V P P t a P P t a a

P P t a

τ
= = +

= +

= − + − +

+ −

∑ ∑

∑
                       (4.4)                        

with 1V S≥ + ; 1, , 4i = … ; 1, 2j = ; 1, ,k n= …  ( n  is the sample size) and kP  being 

the performance level corresponding to time kt . The function (4.4) is subject to the 

following constraints in addition to the constraints (4.3) among parameters:   

1 1 2 1S S V Vt t t tτ τ+ +≤ ≤ ≤ ≤                                                                                   (4.5)                        

where S  and V  are integer numbers which identify the starting points of the two 

intervals in which 1τ  and 2τ  must be estimated respectively.  

For the complexity of the function (4.4), the solution requires an iterative 

technique. Following the procedure recommended in Hudson (1966) we searched for 

the solutions for each likely value of S  and V  and, then, we chose the estimated 

values of 1τ  and 2τ  for which RSS reaches its global minimum.  

4.6. Application perspective 
During the improvement and/or change process, the main task of the top 

management is to identify and diagnose timely if the moment when transformation 

must occur has come. In practice, this time can be identified only some time late it 

has been past since the environmental changes are unpredictable: the management 

must make any effort to short this time interval. In this context, the above diagnostic 

tool can provide the proof, which management needs, to overcome the resistance to 

change. In fact, it shows that the maturity phase has started and, thus, the 

transformation to the new business model is needed for survival.  

In order to highlight the diagnostic power of our model, the piston aircraft engine 

and jet aircraft engine datasets were analyzed (see Chapter 1). Obviously, the 

analysis is carried out at the industry-level, since it aims to detect a critical 

environmental change. 
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4.6.1 Technological discontinuities in aircraft history 

First, we analyzed the piston aircraft engine dataset. In order to minimize the 

function RSS (4.4), we searched solutions for  

1, ,15S = …   ( 1 1 16t tτ≤ ≤ )  and  2, ,16V = …   ( 2 2 17t tτ≤ ≤ )  with  1V S≥ +  

being 17n =  the sample size. The convergence of the proposed iterative technique is 

achieved for each above suitable combination of the values S  and V . In this way, 

the critical values 1̂τ  and 2τ̂  for which RSS  is minimized, were obtained without 

computational difficulties (Figure 4.4): 

1 14ˆ 40 tτ = =   and  2 15 2 16ˆ ˆ42.05 ( )t tτ τ= < < . 

It’s interesting to note that, from the adopted t  scale, 2ˆ 42.05τ =  corresponds to 

the year 1943 . In fact, in the year 1944, after an era of vast experimentation, mass 

production of jet engine (based on the axial-flow compressor design) as a power 

plant for the world’s first jet-fighter aircraft, the Messerschmitt Me 262, started. It 

will be remembered as the first use of jet engines in service. Then, following the end 

of World War II, the jet engines were extensively studied by the victorious allies. 

Nonetheless, the legacy of the axial-flow engine is seen in the fact that practically all 

jet engines on fixed wing aircraft have had some inspiration from this design. By the 

1950s the jet engine was almost universal in combat aircraft and by the 1960s all 

large civilian aircraft were also jet powered, leaving the piston engine in niche roles. 

 
Figure 4.4. The estimated model for piston aircraft engine (normalized) data 

Subsequently, we analyzed the jet aircraft engine dataset. In order to minimize the 

function (4.4), we searched solutions for  
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  ( 1 1 13t tτ≤ ≤ )  and  2, ,13V = …   ( 2 2 14t tτ≤ ≤ )  with  1V S≥ +  

being 14n =  the sample size. The convergence of the proposed iterative technique is 

achieved for each above suitable combination of the values S  and V . In this way, 

the critical values 1̂τ  and 2τ̂  for which RSS  is minimized, were obtained without 

computational difficulties as in the previous case (Figure 4.5): 

1 8ˆ 24 tτ = =   and  2 10 2 11ˆ ˆ28.35 ( )t tτ τ= < < . 

It’s interesting to note that, from the adopted t  scale,  2ˆ 28.35τ =  corresponds to 

the year 1969 . In fact, in the year 1970, the first commercial wide-body aircraft, the 

Boeing 747, debuted. The Boeing 747 was born from the increase in air travel in the 

1960s. The era of commercial jet transportation, led by the enormous popularity of 

the Boeing 707 and Douglas DC-8, had revolutionized long distance travel. 

Engineers were faced with many challenges as airlines wanted more seats, more 

range and lower operating cost. Therefore, the wide-body aircraft is a larger airliner 

with twin aisles inside the cabin and can accommodate between 200 and 600 

passengers. The Boeing 747 was expected to become obsolete after sales of 400 units 

due to development of supersonic commercial aircraft, but it has outlived the 

expectations and its production passed the 1000 mark in 1993. The latest 

development of the aircraft, the 747-8, is planned to enter service in 2009. 

 
Figure 4.5. The estimated model for jet aircraft engine (normalized) data 
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4.7. Statistical properties of the proposed method 
Before applying a method in practice, knowledge of its statistical properties is 

crucial. In this work, the results from a simulation study are used to evaluate some 

measures of performance proposed in the literature (Andersson, 2002; Sonesson, 

2003). Data were generated using a set of predetermined values of the parameters of 

the model (4.1). An error term, ε  (that is a random variable generated to be 

stochastically independent and identically normally distributed with zero mean and 

constant variance 2σ ), was added to each sub-model. The “true” values of the 

parameters and of the error variance 2σ  were taken to be the quantities obtained 

from the LS fit to the original jet aircraft engine dataset for each sub-model 

(Ratkowsky, 1983). In particular, the assumed “true” values of 1τ  and 2τ  were 

respectively 1 24τ =  and 2 28.35τ = . By this means, 1000  sets of simulated data 

were produced, each of which provided a set of the parameter LS estimates 

(Ratkowsky, 1983). Consecutively, the histograms of the results for 1̂τ  and 2τ̂  are 

reported in Figure 4.6.  

 
Figure 4.6. Histograms of the results for 1̂τ  and 2τ̂  

The Table 4.1 summarizes the properties of the proposed method. 
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Table 4.1 The measures of performance of the proposed method 

Criteria 
1̂τ  2τ̂  

%bias 1.9−  0.77  

CED 0.16  (about 2  months) 0.60  (about 7  months) 

CEA 0.60  (about 7  months) 0.28  (about 3  months) 

PSD 0.61 0.68  

CI ( 95% ) { }20.74,25.35  { }28,30.06  

 

The used notation is:  

1000

,
1

ˆ

1000%

i j
j

i

i

bias

τ
τ

τ

= −
=

∑

 is the bias expressed as a percentage of the true value of the 

parameters (where ,î jτ  are the single values of the LS estimates of iτ  for 1, 2i =  and 

1, ,1000j = … ); 

{ }ˆ ˆi i i iCED E τ τ τ τ= − ≥  is the conditional expected value of the difference between 

the estimated values greater than iτ  and iτ  (conditional expected delay time). In this 

context, we considered only the values of difference greater than 0.1  (about 1 

month); 

{ }ˆ ˆi i i iCEA E τ τ τ τ= − ≤  is the conditional expected value of the difference between 

the estimated values smaller than iτ  and iτ  (conditional expected advance time). In 

this context, we considered only the values of difference smaller than 0.1  (about 1 

month); 

ˆ( )i iPSD P dτ τ= − ≤  is the probability of successful detection. It measures the 

probability that the change point is detected with a delay or advance time no longer 

than d . In our context, 0.5d = (six months) was considered an acceptable time.  
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CI ( 95% ) is the 95%  confidence interval constructed by percentile method. In fact, 

from Figure 4.6 and from the results of the hypothesis tests about the coefficients of 

skewness and kurtosis, it is clear that the parameter estimates 1̂τ  and 2τ̂  are not 

normally distributed. Therefore, classical confidence intervals are not applicable. 

The Table 4.1 shows that the join point LS estimators underestimate 1τ , while they 

overestimate 2τ . In fact, the %bias value is negative for 1̂τ  and positive for 2τ̂ . Then, 

for 1̂τ  the CEA is greater than the CED, while for 2τ̂  the CED is greater than the 

CEA.  However, these values are considered acceptable in this context. Moreover, 

the PSD value is greater than 50% . Finally, the CI ( 95% ) for 2τ̂  is smaller than one 

for 1̂τ . Therefore, the estimate accuracy for 2τ̂  is greater than one for 1̂τ .  

Another important analysis consists in verifying how many data, after that the 

“point A” has been past, the procedure is able to estimate the join points and how 

robust are their estimates. To this end, we estimated the parameters after having 

ignored the last m  data with 0,1,2,3m =  since 10 1128.35t t< < . The obtained values 

are presented in Table 4.2, where n  is the new simulated sample size and 1̂τ  and 2τ̂  

are the new corresponding estimates of the join points.  

Table 4.2 1̂τ  and 2τ̂  with 0,1,2,3m =  

m  n  
1̂τ  2τ̂  

0  14  824 t=  10 1128.35t t< <

1  13  824 t=  9 1027.57t t< <

2  12  824 t=  9 1027.46t t< <  

3  11 824 t=  9 1027.34t t< <  

 

The procedure appears robust since 1̂τ  is always equal to 24  and 2τ̂  is included 

between 9t  and 11t  for each value of m . Consequently, in this case we would have 

been prompt to obtain a suitable estimate of the join points immediately after that the 
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“true” value of the “point A” has been past. In the Figure 4.7, the estimated model 

with 3m =  is presented. Obviously, 2τ̂  is anticipated owing the missing data. On the 

other hand, this negative bias gives a precautionary alarm. 

 
Figure 4.7. The estimated model for jet aircraft engine (normalized) data with 3m =  

4.8. Conclusions 
In current environment of faster and faster changes, time-based strategy is 

becoming an important weapon to achieve competitive advantage and survival. The 

literature about change process is very extensive, but the greater part of the works 

concerning this topic considers case studies and highlights the important factors that 

affect a successful transformation. Differently from them, this paper deals with a 

specific operative aspect of the problem by providing the managers with an effective 

statistical methodology to face the most important task: diagnosing if the time to 

jump the curve has been past. In this way, management will become aware timely of 

a critical environmental change that may pose a threat to the company’s future 

success. In fact, the applicative example concerning the technological discontinuities 

in aircraft history shows the diagnostic power of the model. Finally, the statistical 

properties of the method were evaluated.  
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C o n c l u s i o n s  
In our era of increasingly rapid technological, social and economic changes, the 

product and/or process innovation should be planned and managed as well as any 

other productive activity. In particular, leader companies should develop 

organizational plans that encourage the external environment monitoring, self-

assessment and constant renewal. In this way, they can face up to the unexpected 

circumstances that are almost certain to arise. On the other hand, each change 

process requires some difficult steps and, thus, gives rise to resistance to change, 

especially in successful companies. In fact, the change requires to shift resources 

away from these areas where the company currently enjoys success to an area that is 

new and unproven. Therefore, in western economies the average corporate life is 

about 40 years and numerous corporate failures occur when environmental 

conditions change dramatically. Moreover, the failure rate of an innovative idea is 

very high (90-94 out of 100 proposals of innovation undergo substantial failure in the 

EU and in the USA). Low reliability in the long run and sensitivity to the usage 

conditions are the factors that determine the failure of innovation. In this context, the 

transfer of time-based statistical methodologies to companies can be a significative 

survival factor. In this way, they will be helped to understand when time has come to 

start a strategic transformation and to overcome the usual breakout friction in order 

to substitute the previously successful strategic formulas. Moreover, the development 

of specific statistical methods aimed to monitor innovation quality and motivate 

innovation investments, is mandatory. Obviously, the problems of managing 

innovation are so varied and complex that multiple bodies of knowledge are likely to 

be required. However, the statistical methodologies help to make sense of what 

previously appeared to have been random or contradictory phenomena. Therefore, 

some original diagnostic tools have been proposed in this work. They can constitute 
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a useful starting point for analyzing and explaining the potential paradigms emerging 

in the study of innovation process.  
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