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ABSTRACT 

 CD117-positive cells contributing to the cardiac cell turnover in the 

normal and pathological conditions have been recently described in the adult 

human heart. Since the precise spatial and temporal expression of 

extracellular matrix proteins and their receptors is critical for proper organ 

formation, we have analyzed and compared the spatial distribution of 

cardiac primitive CD117-positive cells in the human adult normal and 

pathological hearts with chronic ischemic cardiomyopathy, with respect to 

the localization and expression of laminin and integrin isoforms. 

 In the pathological hearts, CD117-positive cells, visualized by 

immunofluorescence, were significantly more numerous than in the normal 

hearts. These cells were localized mainly in the atria and were up to 38-fold 

more numerous in the subepicardium than in the myocardium. Compared 

with normal hearts, most CD117-positive cells in the subepicardium of 

pathological hearts were α6 integrin-positive. Laminin-1, typical of 

developing heart, was found predominantly in the subepicardium of normal 

and pathological adult hearts. Western blotting revealed its highest 

expression in the normal atrium and pathological left ventricle. The 

presence of laminin-1 in vitro, in contrast to laminin-2, increased 

proliferation and reduced apoptosis of CD117-positive cells, with the latter 

effect being related to integrin α6 expression. In vitro, the epithelial-

mesenchymal transition of epicardial cells from human adult heart, cultured 
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in the presence of extracellular matrix synthesized by cardiac fibroblasts, 

gave origin to CD117-positive cells. 

 These data reveal that the increase in the number of cardiac CD117-

positive cells and the expression of laminin-1 are observed in the ischemic 

cardiomyopathy. The subepicardial localization of CD117-positive cells, 

laminin-1 and α6 integrin subunit expression may all correspond to the 

activation of cardiac regeneration involving an epithelial-mesenchymal 

transition recently described also in the adult heart. 
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1. Introduction 

 

1.1. CD117-positive cells as cardiac stem cells 

 

Stem cells and progenitor cells with the capacity to differentiate into 

three major cardiac cell types - cardiomyocytes, smooth muscle cells and 

endothelial cells have been described in both embryonic [1, 2, 3] and adult 

heart tissue [4, 5, 6]. These cells have been characterized by an array of 

membrane, cytoplasmic and nuclear antigens, yet the expression of different 

markers could be associated simply with the degree of stem cell 

differentiation. Despite different phenotype description in various studies, it 

is widely acknowledged that the cardiac hematopoietic lineage-negative 

(CD45-negative, CD34-negative) stem cells express neither muscle nor 

endothelial cell markers at an undifferentiated stage [7]. However, when 

induced to differentiate, they adopt phenotype specific for myocytes, 

smooth muscle or endothelial cells, expressing markers typical for these cell 

lineages (Nkx2.5 and α-sarcomeric actin, GATA6 and smooth muscle actin, 

Ets-1 and FVIII, respectively). 

Although the specification and origin of cardiac stem cell population 

remains to be determined, many studies have reported the presence of 

hematopoietic lineage-negative, stem cell factor receptor (CD117)-positive 

primitive cells with the above characteristics in the adult myocardium [4, 5, 

8]. In the light of those findings, it is reasonable to suppose that the heart is 
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not a terminally differentiated organ and cardiac cells are continuously 

replaced by newly formed younger populations of myocytes as well as 

vascular smooth muscle and endothelial cells. These cellular processes are 

enhanced in pathologic states. However, the precise mechanisms controlling 

primitive cardiac cells (defined as cells expressing stem cell markers only or 

together with markers of commitment towards cardiac cell lineages) 

survival, proliferation and migration in the diseased heart need to be 

elucidated further. 

 

1.2. Laminin isoforms and their receptors in the heart 

 

It is known that the precise spatial and temporal expression of 

extracellular matrix proteins and their receptors is critical for proper organ 

formation during organogenesis [9]. Laminin-1 (heterotrimer assembled 

from α1, β1 and γ1 chain subunits) is the first extracellular matrix protein to 

be expressed during embryonic development and it has been observed that 

the heart organogenesis does not proceed in the absence of this protein [10]. 

The absence of laminin-2 (α2β1γ1), an isoform typical of the muscle, causes 

congenital muscular dystrophy with cardiac involvement [11]. Similarly, the 

presence of specific integrins influences the fate and biological properties of 

cells [12]. A correct interaction of extracellular matrix proteins with their 

receptors on the cell membrane and outside-inside integrin signaling has 

been found to be critical in the rod shape formation of primitive myocytes 
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and patterning of the myofibrils in vitro [13]. Receptors for laminin-1 and -2 

present on adult cardiomyocytes include integrins α1β1, α3β1 and α7β1, 

whereas α6β4 is typically found on epithelial cells [14]. Although a primary 

function of α6β4 integrin is to maintain the integrity of epithelia due to its 

ability to mediate the formation of hemidesmosomes on the basal cell 

surface [15], some studies provide definitive evidence to implicate α6β4 in 

migration, documenting its localization in membrane protrusions associated 

with migration [16]. Importantly, the acquisition of motile properties by 

epithelial cells can be a consequence of an epithelial-mesenchymal 

transition [17]. 

 

1.3. Epithelial-mesenchymal transition of epicardial cells 

 

Epithelial-mesenchymal transition is one of the major events in heart 

organogenesis. Studies of developing avian embryos have shed light on the 

mechanisms by which cardiac cells are formed from the proepicardium [18]. 

In mammals, the proepicardium is composed of mesothelium continuous 

with splanchnopleural epithelium that separates the primitive 

pleural/pericardial cavity from the peritoneal cavity. The epithelial cells of 

proepicardium attach to the surface of the developing myocardium, forming 

epicardium. Subsequently, a subset of epicardial cells undergoes an 

epithelial-mesenchymal transition (EMT), that is they detach from the 

epithelial sheet, invade the subepicardial space and acquire a mesenchymal 



 10

phenotype, generating in the subepicardium the population of epicardially 

derived cells (EPDCs) [19]. The epithelial-mesenchymal transition is 

triggered by interplay of extracellular matrix proteins and growth factors 

and requires dissociation of tight junctions, acquisition of motile properties 

and molecular changes involving epithelial and mesenchymal markers 

expression [17]. EPDCs differentiate into interstitial fibroblasts, 

cardiomyocytes, coronary endothelial and smooth muscle cells [20]. Recent 

studies have observed the preservation of vasculogenic potential of adult 

epicardial cells in vitro [21, 22], but the possibility that these cells are the 

real cardiac stem cells of the human heart awaits investigation. 
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2. Scope of the study 

 

The adult heart is mainly composed of terminally differentiated 

cells, but it is not a terminally differentiated organ since it harbors stem cells 

supporting its regeneration. Self-renewing organs contain the niches that 

constitute the microenvironment in which primitive cells survive, 

proliferate, differentiate and from which they migrate upon stimulation. The 

structure of a niche needs to suit the particular needs of its resident stem 

cells [23]. Hence, the scope of the study was to observe cardiac primitive 

cells, their microenvironment and their interactions mediated by integrins, in 

the normal and pathological conditions.  

To this aim, the spatial distribution of CD117-positive cells in the 

adult human normal and pathological hearts with chronic ischemic 

cardiomyopathy was analyzed and compared with respect to the localization 

and expression of laminin-1 and laminin-2, and their receptor, integrin α6β4. 

Furthermore, the role of laminin-1 and laminin-2 in the primitive adult 

cardiac cell proliferation and apoptosis was examined in vitro. 

 The description of cardiac primitive cells in the adult human heart 

stimulated a heated and fierce debate about their origin, dividing basic 

science and clinical researchers community. In fact, most studies attempting 

to cast new light on the characteristics of CD117-positive cells and the 

mechanisms controlling their homing, migration and differentiation, raise 

more questions rather than provide definitive answers. Also in the course of 



 12

our study, the findings resulting from the description of CD117-positive 

cells localization and extracellular matrix interactions dictated the need for 

subsequent research on the origin of cardiac primitive cells in the adult 

human heart. Hence, the possibility that epithelial-mesenchymal transition 

of epicardial cells can result in the generation of CD117-positive cells in the 

adult human heart was examined in vitro. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 13

3. Materials and methods 

 

3.1. Materials 

 

 Samples of normal adult hearts were derived from patients who died 

for reasons other than cardiovascular disease (n=11, mean age 41±12 years, 

7 males, 4 females). Pathological hearts were explanted due to end-stage 

heart failure associated with ischemic cardiomyopathy (n=20, mean age 

55±5.5 years, 14 males, 6 females, mean ejection fraction 25±1%). In each 

case fragments of right ventricle, left atrium, left atrioventricular junction, 

left ventricle and apex were excised across the full thickness of heart wall, 

including epicardium and endocardium. The investigation conforms with the 

principles outlined in the Declaration of Helsinki.  

 

3.2. Immunofluorescence 

 

3.2.1 Immunofluorescent staining of heart tissue sections 

 

 Heart tissue was embedded in Killik cryostat embedding medium 

(Bio-Optica, Milan, Italy), fast frozen and stored at -80°C or fixed in 4% 

formaldehyde and embedded in paraffin, then sliced into serial 4 µm-thick 

sections and mounted on slides. Before proceeding for immunostaining, the 

paraffin was removed by incubation with xylen, followed by rehydration 
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with ethanol at decreasing concentrations (from 96 to 80% v/v). For cellular 

antigens retrieval, sections immersed in citric buffer were heated in 

microwave oven.  Frozen sections were fixed in 4% paraformaldehyde and 

equilibrated to room temperature, then dehydrated with ethanol at increasing 

concentrations (from 30 to 95% v/v). Slides were incubated in blocking 

buffer and double labeling was performed using primary antibodies against 

CD117 (1:10; Dako, Glostrup, Denmark) and α6 integrin (1:20; Santa Cruz 

Biotechnology, Santa Cruz, CA, USA); fibronectin (1:200; Sigma-Aldrich, 

St. Louis, MO, USA) and α4 integrin (1:20); laminin α-1 (1:25) or α-2 

chain (1:25; all from Santa Cruz Biotechnology) and α-sarcomeric actin 

(1:30; Sigma-Aldrich); and secondary antibodies conjugated with 

fluorescein or rhodamine (1:30; Jackson Immunoresearch, West Grove, PA, 

USA). Nuclei were counterstained with DAPI. Finally, sections were 

covered with mounting solution (Vector Laboratories, Burlingame, CA, 

USA) and coverslip. Negative controls were included for each staining by 

elimination of primary or secondary antibody. Microscopic analysis was 

performed with a Leica DMLB microscope equipped for epifluorescence. 

For every field, images corresponding to different immunofluorescence 

filters were taken with digital camera connected to a microscope (Leica 

DC200) and then merged (Leica QFluoro). The number of CD117-positive 

cells/100 mm2 was established by counting all positive cells in the section 

and measuring the area of the entire section (SigmaScan Pro5 software). 
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3.2.2. Immunofluorescent staining of cardiac cells in vitro 

 

 For the characterization of cells in vitro, CD117-positive cells were 

fixed with 4% paraformaldehyde. After incubation in blocking serum, 

nuclear and cytoplasmic markers of different cardiac cell lineages were 

labeled with primary antibodies against CD117 (1:10, Dako), Nkx 2.5 (1:20) 

and α-sarcomeric actin (1:30), Ets-1 (1:40) and factor VIII (1:40), GATA-6 

(1:40; all from Santa Cruz Biotechnology) and smooth muscle actin (1:30; 

Sigma-Aldrich) and secondary antibodies conjugated with fluorescein or 

rhodamine (1:30; Jackson Immunoresearch). Nuclei were counterstained 

with DAPI and the cells were mounted under a glass coverslip. Images 

corresponding to different immunofluorescence filters were taken with 

digital camera (Leica DC200) connected to a microscope (Leica DMLB) 

and then merged (Leica QFluoro). 

 

3.3. Immunoprecipitation and immunoblotting 

  

 Protein extracts were prepared from fragments of normal and 

pathological hearts. Heart tissue (1 gram) was minced and incubated on ice 

in a lysis buffer containing 50 mM Tris-HCl (pH 7.4), 5 mM EDTA, 250 

mM NaCl, 0.1% Triton X-100 supplemented with proteases inhibitors (1 

mM DTT, 2 mM PMSF, 2 µg/ml aprotinin and 10 µg/ml leupeptin). Lysates 

were centrifuged and protein concentration in the supernatants was 
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determined using Bio-Rad Protein Assay (Bio-Rad Laboratories, Hercules, 

CA, USA). Solutions containing 300 µg of proteins were incubated with 

antibody against laminin α1 or α2 chains (1:10; Santa Cruz Biotechnology), 

followed by the incubation with Protein G Agarose Beads (Invitrogen, 

Carlsbad, CA, USA). Western blot of α–actinin (1:100; Santa Cruz 

Biotechnology) served as a control of equal protein amount in the solution 

used for immunoprecipitation. The immunoprecipitated proteins were size 

fractionated by electrophoresis on 8% SDS-polyacrylamide gel and 

transferred onto a nitrocellulose membrane. Molecular weight markers (Bio-

Rad Laboratories) and denaturated samples of purified laminin were loaded 

onto each gel as a molecular weight and positive immunoblotting control, 

respectively. The membranes were blocked and then incubated with anti-β1 

laminin antibody (1:100), followed by horseradish peroxidase-labeled 

secondary IgG (1:10000; both from Santa Cruz Biotechnology). Antibody 

binding was visualized by chemiluminescence (GE Healthcare, Bucks, UK) 

and autoradiography. The intensity of individual bands was determined 

using ImageJ software (NIH, USA). 
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3.4. Cardiac primitive cell isolation and culture 

 

3.4.1. Establishment of primary cardiac cell culture 

 

For in vitro assays, CD117-positive cells were isolated from the 

fragments of left ventricular myocardium of pathological hearts. The 

primary culture was obtained according to the protocol described previously 

[24] with some modifications. Cardiac tissue fragments were minced and 

digested in the presence of 0.25% trypsin-EDTA and collagenase II (0.1% 

w/v). Cardiomyocytes were removed by sequential centrifugation and the 

supernatant was filtered with 40 µm nylon cell strainer. The cells were 

plated at the density of 2x104/cm2 in DMEM-Ham F12 medium (Sigma-

Aldrich) supplemented with 5% fetal calf serum (Invitrogen), bFGF 

(10ng/ml, Peprotech, London, UK), glutathione (0.2mM, Sigma-Aldrich), 

penicillin G (50,000U) and streptomycin (50mg, Invitrogen) and allowed to 

proliferate. 

 

3.4.2. Isolation of CD117-positive cells 

 

Once adherent cells were more than 75% confluent, they were 

detached with 0.25% trypsin-EDTA and CD117-positive cells were purified 

using positive selection with anti human-CD117 MicroBeads (Miltenyi 

Biotec, Bergisch Gladbach, Germany) as recommended by the 
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manufacturer. Briefly, cells were incubated with magnetically labeled 

monoclonal anti-human CD117 antibodies (1:5) and FcR blocking reagent 

(1:5). Then, the cell suspension was loaded onto a column that was placed in 

the magnetic field. While the unlabeled cells ran through, the magnetically 

labeled CD117-positive cells were retained on the column and eluted as the 

positively selected fraction once the column had been removed from the 

magnetic field. 

 

3.5. Culture of cardiac primitive cells in the presence of laminin-1 and -2 

 

To evaluate the effects of laminin-1 and laminin-2 on cardiac 

primitive cells proliferation and apoptosis, CD117-positive cells isolated 

from adult human heart were cultured on laminin-1 (R&D Systems, 

Minneapolis, MN, USA) or laminin-2 (Sigma-Aldrich) coated dishes 

(5µg/cm2). In order to assess the role of α6 integrin signaling in the 

regulation of these processes, before in vitro testing, cells were detached, 

divided into three groups and incubated in suspension with function 

blocking anti-α6 integrin antibody (Chemicon, Temecula, CA, USA) or 

isotype-matched control antibody for 1 hour. Third group of cells was 

processed in the same manner but without antibody presence. Next, the cells 

were seeded on chamber slides (BD Biosciences, Franklin Lakes, NJ, USA) 

coated with either laminin-1 or laminin-2. Chamber slides covered with 
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bovine serum albumin (BSA, Sigma-Aldrich) served as control. All in vitro 

experiments were repeated a minimum of three times in triplicate. 

 

3.5.1. Evaluation of proliferation on laminin-1 and -2 in vitro 

 

For evaluation of proliferation, cardiac primitive cells were exposed 

to serum-free culture medium for 12 hours. Quiescent cells were incubated 

with complete medium for 24 hours and 5-bromo-2’-deoxy-uridine (BrdU) 

was added (10µM) for one hour before cell fixation. BrdU is incorporated in 

place of thymidine during DNA synthesis. Incorporation of BrdU was 

evaluated using BrdU Labeling and Detection Kit (Roche Diagnostics, 

Basel, Switzerland) according to the manufacturer’s protocol. The cells 

were fixed in acidic ethanol and incubated with anti-BrdU monoclonal 

antibody (1:10) in incubation buffer containing nucleases. After incubation 

with anti-mouse-Ig-fluorescein (1:40), the nuclei were counterstained with 

DAPI and the signals were visualized by immunofluorescence microscopy. 

The result was expressed as the percentage of  BrdU-positive cells. 

 

3.5.2. Evaluation of apoptosis on laminin-1 and -2 in vitro 

 

For evaluation of apoptosis, cardiac primitive cells were cultured on 

laminin-1 or laminin-2 for 24 hours and then fixed in 1% paraformaldehyde. 

Apoptotic cells were labeled using ApopTag Plus Fluorescein In Situ 
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Apoptosis Detection Kit according to the manufacturer’s protocol 

(Chemicon). DNA strand breaks were detected by labeling the 3’-OH 

termini generated upon apoptotic DNA fragmentation with modified, 

digoxigenin labeled nucleotides enzymatically added to the DNA by 

terminal deoxynucleotidyl transferase (TdT).  Incorporated nucleotides were 

then allowed to bind an anti-digoxigenin antibody conjugated to fluorescein. 

All nuclei were counterstained with DAPI. The apoptotic cells were 

quantified by fluorescence microscopy. The result was expressed as the 

percentage of apoptotic cells. 

 

3.6. Epicardial cell culture 

 

3.6.1. Formation of extracellular matrix substrate in vitro 

 

 Cardiac fibroblasts were isolated from the fragments of adult human 

pathological hearts using positive selection with anti-fibroblast MicroBeads 

(Miltenyi Biotec) as recommended by the manufacturer. Cells were 

incubated with magnetically labeled monoclonal anti-fibroblast antibodies 

and loaded onto a column placed in the magnetic field. Successively, the 

positive fraction was eluted from the column once it had been removed from 

the magnetic field. The fibroblasts were plated at the density of 30 x103 

cells/cm2 in DMEM with 10% fetal calf serum. After one week cells were 

non-enzymatically removed with delicate repetitive washes in 0.5mM 
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EDTA and the presence of extracellular matrix proteins on the culture dish 

was confirmed by immunofluorescence. 

 

3.6.2. Epithelial sheet formation in vitro 

  

Extracellular matrix synthesized and secreted by the fibroblasts 

isolated from human adult heart served as a substrate for the culture of 

epithelial cells from the fragment of epicardium detached mechanically 

from the heart wall. The fragments were placed on culture dishes layered 

with extracellular matrix in the medium composed of DMEM-Low Glucose 

(Invitrogen) and MCDB 201 (US Biological, Swampscott, MA, USA) 

supplemented with 2% fetal bovine serum (Invitrogen), Linoleic Acid-BSA 

(1mg/ml), ITS 100X, Ascorbic Acid-2-Phosphate (0.1mM, all from Sigma-

Aldrich), penicillin G (50,000U) and streptomycin (50mg, Invitrogen). After 

a period ranging from 3 to 5 days the outgrowth of epithelial cells was 

observed in vitro. 

 

3.7. Epithelial-mesenchymal transition of epicardial cells in vitro 

  

To evaluate whether epithelial-mesenchymal transition in the adult 

human heart gives rise to CD117-positive cells, hepatocyte growth factor 

(HGF, 40ng/ml, Peprotech) was added to the culture of cardiac mesothelial 

cells forming an epithelial sheet on the dish layered with extracellular 
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matrix substrate. The effects of HGF were observed as soon as 24 hours 

later. After 48 hours the cells were fixed and stained with anti-CD117 

antibody (Dako), as described above. 

 

3.8. Statistics 

 

Quantitative results are expressed as means±SEM. Statistical 

differences were evaluated using Student’s two-tailed t-test for comparison 

among pairs of groups and ANOVA with post-hoc Bonferroni’s t-test when 

multiple groups were compared. P values <0.05 were considered 

statistically significant. 
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4. Results 

 

4.1. Quantification of CD117-positive cells in the adult human heart 

 

4.1.1. Distribution of CD117-positive cells between different heart regions 

 

The presence of CD117-positive cells was analyzed by 

immunofluorescence (fig. 1A, E). In the normal hearts, there were 

345.5±32.2 cells/100 mm2 in the right ventricle, 409.6±11.6 cells/100 mm2 

in the left atrium, 126.7±3.7 cells/100 mm2 in the atrioventricular junction, 

248.0±67.3 cells/100mm2 in the left ventricle and 105.7±33.3 cells/100 mm2 

in the apex (fig. 2). In the hearts with chronic ischemic cardiomyopathy 

CD117-positive cells were significantly more numerous than in the normal 

hearts. Interestingly, their distribution between different heart regions did 

not differ significantly and also in the pathological hearts it was the left 

atrium that contained more CD117-positive cells (3573.0±874.9 cells/100 

mm2), followed by the left ventricle (3243.0±1134.0 cells/100 mm2) and the 

right ventricle (2809.0±715.3 cells/100 mm2). The atrioventricular junction 

and the apex contained 465.3±57.6 and 575.8±60.2 cells/100 mm2, 

respectively (fig. 2). 
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4.1.2. Distribution of CD117-positive cells between different tissue layers 

 

Both in the normal and in the pathological hearts, CD117-positive 

cells were strikingly more numerous within the epicardium and 

subepicardium than in the main myocardium. In the normal hearts (fig. 3A), 

this difference reached a maximum of 27.5-fold in the left atrium (14.3±1.6 

cells/100mm2 in the myocardium and 395.2±11.7 cells/100mm2 in the 

epicardium, p<0.0001) and a minimum of 6.7-fold in the apex (13.75±2.9 

cells/100mm2 in the myocardium and 91.9±30.8 cells/100mm2 in the 

epicardium, p<0.05). In the hearts with ischemic cardiomyopathy (fig. 3B), 

the subepicardium within the left atrium contained 38-fold more CD117-

positive cells than the main myocardium (3483.3±870.8 versus 91.9±5.2 

cells/100mm2, p<0.0001). Similarly, there were 10.5-, 42-, 8- and 37.5-fold 

more CD117-positive cells in the subepicardium compared with the main 

myocardium of the atrioventricular junction (424.9±59.3 vs. 40.4±2.6 

cells/100mm2, p<0.0001), left ventricle (3188.1±1126.0 vs. 56.6±5.2 

cells/100mm2, p<0.005), apex (512.5±57.4 vs. 63.3±4.6 cells/100mm2, 

p<0.0001) and right ventricle (2624.8±612.8 vs. 69.8±5.5 cells/100mm2, 

p<0.0001), respectively. 

It emerges that the increase in the number of CD117-positive cells in 

the chronic pathological conditions is more pronounced within the 

subepicardium than in the myocardium of all heart regions. Compared with 

normal hearts, the number of CD117-positive cells raises 10-fold in the 
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subepicardium and only 5-fold in the myocardium of the left ventricle in the 

hearts with ischemic cardiomyopathy. 

 

4.2. Integrin α6 expression on CD117-positive cardiac cells 

 

A fraction of CD117-positive cells expressed α6 integrin subunit (fig. 

1B), which together with β4 constitutes a typical and specific receptor for 

laminin. Examination of heart sections by immunofluorescence showed that 

this fraction was almost identical in the subepicardium (19.51±5.6%) and 

myocardium (21.67±3.48%, p value ns) of the normal hearts (fig. 3A). In 

the pathological hearts (fig. 3B), by contrast, α6 integrin-expressing cells 

constituted 82.73±9.1% of CD117-positive cells in the subepicardium and 

only 40.7±17% of CD117-positive cells in the myocardium (p<0.05) of the 

left atrium, and 86.12±9.4% in the subepicardium and 65.44±3.45% in the 

myocardium of the left ventricle (p<0.05). 

 

4.3. Laminin isoforms expression in the adult human heart 

 

 Laminin α1 chain makes part of laminin-1 and -3, while α2 laminin is 

present in laminin-2, -4 and -12 isoforms [25]. Of these, only laminin-2 and 

-4 (merosins) are present typically in the normal adult human heart, while 

laminin-1 is expressed in the developing myocardium [26]. Fluorescent 

labeling of heart cryo-sections with antibodies specific for α1 and α2 laminin 
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chains revealed the presence of laminin-1 (α1β1γ1) and merosins (α2 chain 

containing laminins) in the subepicardium and myocardium of human adult 

heart (examples of left ventricular tissue staining are presented in fig.4). 

Protein analysis by electrophoresis and immunoblotting showed differences 

in the expression of laminin-1 and laminin-2 between different regions, as 

well as between the same regions of the normal and pathological hearts 

(fig.5 and 6). 

 

4.3.1. Pattern of laminin-1 and -2 distribution in the heart tissue 

 

In the normal hearts, laminin-1 presence was restricted to the 

epicardium and subepicardium, while α2 laminin chain bordered, but not 

surrounded entirely, cardiomyocytes. In the hearts with ischemic 

cardiomyopathy, laminin-1 formed a meshed network within the 

subepicardium, with frequent inward-reaching branches (fig. 4A), and filled 

the interstitial space in the myocardium, revealing granular-like pattern of 

fluorescence around the cardiomyocytes (fig. 4B, C). Merosins lined the 

epicardium (fig. 4D) and formed a conspicuous network lining the basement 

membrane of the cells in the myocardium (fig. 4E, F). 
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4.3.2. Expression of laminin in different heart regions 

 

While in the atria the expression of α1β1 laminin chains (fig.5A), 

detected by immunoprecipitation and immunoblotting, was only slightly 

higher in the normal than in pathological hearts, in the left ventricle it was 

up to 3-fold higher (p<0.001) in the hearts with ischemic cardiomyopathy. 

However, the expression of laminin-1 in the normal atria was 4-fold higher 

than in the normal left ventricle (p<0.001), whereas in the pathological 

conditions it was the left ventricle that contained more laminin-1 than any 

other heart region (fig. 6).  

Laminin-2 expression in the atria from normal and pathological 

hearts differed not significantly (fig.5B), whereas in the left ventricle α2β1 

chains were up to 2.5-fold more abundant (p<0.001) in the pathological 

hearts. 

 

4.4. Culture of cardiac primitive cells in the presence of laminin-1 and -2 in 

vitro 

 

4.4.1. Characterization of CD117-positive cells in vitro 

 

CD117-positive cells were isolated from primary cardiac cell culture by 

immunomagnetic cell sorting (as described in Materials and Methods 

section 2.4.2). Purity of sorted cells was determined by immunofluorescence 
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and reached 98%. The culture consisted of CD117-positive cardiac lineage-

negative cells and CD117-positive cells that expressed markers of 

commitment towards cardiac cell lineages (fig.7). Fluorescent 

immunolabeling revealed the presence of endothelial (expressing 

transcription factor Ets-1 in the nuclei and FVIII in the cytoplasm) and 

smooth muscle cells progenitors and precursors (expressing transcription 

factor GATA6 in the nuclei and smooth muscle actin in the cytoplasm), as 

well as cells committed to cardiomyocyte lineage (with transcription factor 

Nkx2.5 and α-sarcomeric actin fibers). 

 

4.4.2. Proliferation and apoptosis in the presence of laminin-1 and -2 in vitro 

 

To investigate the role of different laminin isoforms in the cardiac 

primitive cell proliferation and survival, CD117-positive cardiac primitive 

cells were isolated from the adult human heart and cultured on laminin-1 or 

laminin-2 coated chamber slides. In the presence of laminin-2 the 

proliferation rate of cells (fig. 6A), evaluated by the incorporation of BrdU 

in vitro, was 7.7±0.1% (n=4), whereas during the culture of cardiac 

primitive cells on laminin-1-coated dishes the proliferation rate increased 

more than 4-fold and reached 31.1±1.4% (n=4, p<0.001). Moreover, 

apoptosis in the presence of laminin-1 (fig. 6B) was 4-fold lower (1.1±0.2%, 

n=5) than in the culture of cells on laminin-2 (4.4±0.5%, n=5, p<0.001). 

This effect of laminin-1 was inhibited by earlier incubation of cells with α6 
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integrin function-blocking antibody, implicating α6 integrin and laminin-1 

interaction in the regulation of CD117-positive cell survival. 

 

4.5. Epithelial-mesenchymal transition of the adult epicardial cells in vitro 

 

 The fragments of epicardium placed on the culture dish covered with 

extracellular matrix proteins synthesized and secreted by cardiac fibroblasts 

gave rise to an epithelial sheet in vitro. The epithelial sheet was formed by a 

monolayer of polygonal cells tightly joined together (fig. 9A). The addition 

of HGF resulted in the spectacular change of cell morphology and as soon 

as 24 hours later, we observed small spindle-like shaped cells with 

numerous lamellipodia and motile properties (fig. 9B). The majority of cells 

expressed CD117 antigen characteristic of cardiac primitive cells (fig. 9C). 

Hence, the epithelial-mesenchymal transition of mesothelial cells from adult 

human epicardium gives rise to the cardiac primitive cells in vitro. 
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5. Discussion 

 

5.1. Subepicardial localization of cardiac CD117-positive cells in the adult 

human heart 

 

The space between the myocardium and epicardium is known as the 

subepicardium or subepicardial space. This compartment plays a specific 

and critical role in the heart development, as it hosts mesenchymal cells that 

detach from epithelial sheet of epicardium and generate a population of 

epicardially derived cells (EPDCs) through an epicardial epithelial-

mesenchymal transition (EMT) [19]. Recent studies have demonstrated that 

EPDCs can differentiate into multiple cell types, including coronary 

endothelial and smooth muscle cells, as well as cardiac fibroblasts [20, 27] 

and the process in which epicardially-derived cells acquire mesenchymal 

phenotype and invade myocardium giving origin to cells of cardiac lineages 

has been recently suggested as the source of stem cells also in the adult heart 

[21, 22].  

 In the previous studies [6, 8, 28], it was shown that the population of 

CD117-positive cells reside in the adult heart. The quantification of cardiac 

primitive cells revealed that their pool was enhanced acutely after infarction, 

but this growth response was attenuated in chronic heart failure [29]. 

Moreover, the clusters of proliferating myocytes, smooth muscle end 

endothelial cells were found in acutely infarcted hearts, but not in chronic 
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infarcts. This is in agreement with the present study, in which we have 

found CD117-positive cells in the hearts with ischemic cardiomyopathy 

scattered within myocardium. However, we report the presence of numerous 

CD117-positive cells within epicardium and subepicardium of the adult 

human heart. 

 To the best of my knowledge, this is the first study showing that the 

increase in the number of CD117-positive cells between human normal and 

pathological hearts with ischemic cardiomyopathy involves predominantly 

the cells localized in the subepicardium, and to a lesser, although still 

significant, extent those within the myocardium. The subepicardial 

localization of CD117-positive cells seems to correspond to their likely 

origin, that is an epithelial-mesenchymal transition of epicardial cells. 

A numeric increase of cardiac primitive cells in the adult human 

heart has already been described in the patients with chronic aortic stenosis 

[30]. In that study, increased number of c-kit positive cells expressing 

markers of differentiation towards the cells of cardiac lineages was found 

within the myocardium. It is possible that the epicardial and subepicardial 

localization of CD117-positive cells has not been taken into consideration or 

else, different type of pathological stress evokes different types of response, 

with the prevalent activation of differentiation and maturation of primitive 

cells resident within the myocardium in the pressure overload and the 

generation, proliferation and migration of CD117-positive cells within a 

subepicardial space in the chronic ischemia. 
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5.2. Integrin α4 and α6 expression on CD117-positive cardiac cells 

 

Both different laminin isoforms and integrin subunits have different 

functions and convey specific signals within the cell. Moreover, integrins 

are associated with growth factor and cytokine receptors, coordinating the 

response of cells to the changes of the fibrillar and soluble components of 

extracellular matrix [12].  

In the present study of the localization of CD117-positive primitive 

cells in the adult human heart, we found only sparse CD117-positive cells in 

the normal myocardium and numerous CD117-positive cells that expressed 

α4 integrin within the epicardium lined with fibronectin. In contrast, the 

epithelial cells were absent from the surface of the heart with ischemic 

cardiomyopathy. Moreover, none of the CD117-positive cells localized 

within the myocardium expressed α4 integrin. This is consistent with the 

results of Dettman et al. [31] who found that the receptor of fibronectin, α4 

integrin, normally restrains epicardial-mesenchymal transition, as well as 

invasion and migration of epicardially derived mesenchymal cells during 

organogenesis. Integrin α4 has also been implicated in the epicardium 

development and integrity during embryogenesis [32, 33]. In the adult, this 

integrin subunit is typically present on differentiated cells of mesenchymal 

origin [34] and its interaction with interstitial fibronectin may enable 

functional integration of newly formed cardiac cells in the myocardial 

syncytium in vivo. 
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Urbanek et al. [35] described clusters of cardiac lineage-negative, 

CD117-positive, α4 integrin-positive cells surrounded by fibronectin and 

laminin α2 chain within the myocardium of normal adult mice. Far-reaching 

analogy with the bone marrow made them conclude that α4 integrin – 

laminin-8/9, -10/11 and fibronectin interaction is implicated in cardiac stem 

cells renewal and the preservation of their undifferentiated state. This is a 

very plausible theory, however, it is based on erroneous assumption, since, 

to the best of my knowledge, there is no interaction of laminin with α4 

integrin or the presence of α2 laminin chain in the laminin-8/9 or -10/11 

isoforms [25]. 

In the present study, CD117-positive cells in the subepicardial space 

co-localized with laminin-1, lacked α4 integrin and expressed α6 integrin 

subunit. Apart from the classical role of integrin α6 in the maintenance of 

cell adhesion, it has been described for several different cell types that, 

rather than being downregulated, this subunit becomes widely distributed in 

the cell membrane and participates in cell migration on laminin-1 [36]. In 

the light of these facts, both laminin-1 presence in the subepicardial space 

and α6 integrin expression on cardiac CD117-positive cells in the adult heart, 

described in the present study, may enable the migration of cardiac primitive 

cells from the subepicardium towards the damaged muscle. 
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5.3. Laminin isoforms in the adult human heart 

 

Laminin-1 predominates among the laminin forms during early 

embryogenesis and further organogenesis. Its unique role is underlined by 

the fact that the embryogenesis will not proceed in the absence of this form 

of laminin [10]. To the best of my knowledge, this is the first study 

documenting the presence of laminin-1 in the adult human heart. In the 

immunochemical study of the laminin content in embryonic and adult 

mouse tissues, Sasaki et al. [37] found laminin-2 expression in the normal 

adult murine heart and skeletal muscle to be the highest compared to all 

other organs, whereas the content of α1 chain was much lower. While that 

study analyzed whole-organ tissue extracts, we focused on the differences in 

the laminin expression between different regions (mostly atrium and left 

ventricle) and different layers (subepicardium, myocardium) of the normal 

and pathological adult hearts.  

We found that in the adult human hearts the presence of laminin α1 

chain, as detected by immunofluorescence, was restricted mostly to the 

subepicardial space, with the highest expression in the normal atria and 

pathological left ventricle. Laminin-1 is essential in epithelial tissue 

polarization, as well as in epithelial-mesenchymal contact and interactions 

[38]. These two functions may be essential also in the heart, particularly in 

the subepicardial space, that hosts CD117-positive cardiac cells. In the liver, 

an organ with high regenerative capacity in the adult life, laminin α1 that 
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disappears from the space of Disse by 6 to 8 weeks of postnatal life, 

reappears during hepatic regeneration [39]. The expression of laminin-1 in 

the adult human heart, involving molecular reprogramming and revoking 

the mechanisms operative during organogenesis, may be directly associated 

with and aim at the regeneration of cardiac tissue in the chronic pathological 

conditions. The presence of laminin-1 in the subepicardial space of ischemic 

heart may be essential for creating an environment permissive for epithelial-

mesenchymal transition in the adult heart.  

It is known that the absence of, or alteration in the laminin α2 chain 

weakens the muscle cells basement membrane, which leads to muscle fiber 

damage under the stress of contractions [40]. Whereas α2 chain is expressed 

by differentiated mature cells of mesodermal origin, laminin α1 chain is 

highly expressed by developing epithelial cells [37]. It follows that while 

the expression of laminin-1 isoform in the diseased heart may have 

important role in the formation of new functionally competent cells, 

laminin-2 expression would be essential for the maintenance of the pre-

existing cardiac cells. Importantly, the differences in the laminin expression 

in the pathological hearts found and described in the present study, regarded 

mostly laminin α1 chain with the preserved and even increased laminin α2 

expression in the ischemic myocardium when compared with the normal 

heart. Moreover, the atrium of the normal adult human hearts contained 

more laminin-1 than the left ventricle, while the increase of laminin-1 

content in the pathological conditions regarded mostly the left ventricular 
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wall, subjected to the highest work overload in case of dilative ischemic 

cardiomyopathy. 

The observation of CD117-positive cells in vitro indicate that 

laminin-1, not laminin-2, presence protects from apoptosis and stimulates 

proliferation of cardiac primitive cells. The α6 integrin presence and 

function was not implicated in the proliferation of cells on laminin-1, but it 

diminished the apoptosis rate. This effect is similar to observations reported 

by Maitra et al. [34] in which myoblasts transfected with α6 did not 

proliferate, but were able to differentiate. Our findings of the increased 

fraction of α6 integrin expressing CD117-positive cells in the pathological 

human hearts with respect to the normal hearts may support the role of α6 

integrin-laminin interaction in the survival, migration and differentiation of 

cardiac primitive cells activated in the chronic pathological conditions. 

 

5.4. Epithelial-mesenchymal transition in the adult human heart 

 

 The adult myocardium is covered by a layer of epithelial cells 

forming epicardium. Epicardial cells are involved in the earliest events 

during the establishment of myocardial tissue. These events were studied in 

detail in the chick and quail model, in which a proepicardial organ forms a 

separate structure that can be manipulated, microdissected and isolated for 

in vitro studies. In mammals, the proepicardium is composed of 

mesothelium derived from septum trasversum and continuous with 
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splanchnopleural epithelium. This mesothelium synthesizes a dense layer of 

extracellular matrix and develops multiple protrusions pointing to the 

ventricular surface of the heart [42]. A subset of mesothelial cells detaches 

from the epicardium, migrates in the subepicardial space and undergoes 

epithelial-mesenchymal transition, generating a population of epicardially 

derived cells (EPDCs). These cells contribute to several cell lineages within 

the developing heart [19]. 

 Recent studies have observed the preservation of multipotency of 

adult epicardial cells in vitro [21, 22], suggesting that the EPDCs form 

myocardial precursor cells, that mediate regeneration of adult heart in 

physiological and pathological conditions. In the study contemporary with 

ours, Capogrossi et al. [43] identified CD117-positive cells in the 

subepicardial region of adult hearts. Immunofluorescence analysis revealed 

that some subepicardial CD117-positive cells expressed the early marker of 

cardiomyocyte differentiation Nkx2.5 and the cardiac transcription factor 

GATA4, and displayed the functional characteristics of endothelial cells 

(Ac-LDL-Dil uptake). The number of these cells in the murine heart 

increased 3 days after an experimental infarction. However, the mechanistic 

connection between epicardial cells and CD117-positive cells was not 

shown experimentally. 

 Unlike most studies dedicated to the epithelial-mesenchymal 

transition of adult epicardial cells that described this phenomenon in vitro as 

spontaneous [22] or in which fibroblast-like shaped cells were isolated 
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directly from subepicardium [43], our study provides direct evidence of 

epicardial origin of CD117-positive cells in the adult human heart. The 

epithelial sheet formed in vitro only in the presence of extracellular matrix 

typical of adult human heart. This fact underscores the role of subepicardial 

space, rich in extracellular matrix fibers, proteoglycans and glycoproteins, in 

the preservation of epicardium integrity. On the other hand, the 

subepicardium also accumulates growth factors, such as hepatocyte growth 

factor (HGF), fibroblast growth factor (FGF), vascular endothelial growth 

factor (VEGF) and transforming growth factors (TGF), that were shown to 

induce the epithelial-mesenchymal transition in the variety of cell types [17] 

and, specifically, to regulate the development of epicardially-derived cells. 

In fact, soon after the addition of HGF, we observed that the epicardial cells 

forming a compact monolayer in vitro changed to CD117-positive spindle-

like shaped small cells with numerous lamellipodia and motile properties. 

This finding, when confirmed in vivo, could cast new light on the origin of 

multipotent cardiac primitive CD117-positive cells in the adult human heart. 
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6. Conclusions 

 

 The findings of the present study indicate that normal adult human 

heart and pathological heart with ischemic cardiomyopathy differ in terms 

of CD117-positive cells number and laminin isoforms and integrin α6 

subunit expression. While in the normal heart laminin-1 is barely present in 

the left ventricle and most of CD117-positive cells do not express α6 

integrin, in the pathological conditions the expression of laminin-1 is 

significantly higher and α6 integrin-positive cardiac primitive cells 

predominate. Moreover, the number of CD117-positive cells is strikingly 

higher in the pathological conditions.  Remarkably, these cardiac primitive 

cells are located in the subepicardium of the ischemic heart. The induction 

of epithelial-mesenchymal transition in the epicardial cells of adult human 

heart in vitro provides the connection between these cells and CD117-

positive cells, known to be able to give rise to cardiomyocytes, smooth 

muscle and endothelial cells. 

As is the case with most tissues and organs with self-renewing 

capacity, among which skin, liver and intestine, ischemia leads inevitably to 

the cell necrosis and scar formation. The most common modality of heart 

ischemia is associated with a subendocardial infarction and, more rarely, full 

wall thickness necrosis. The epicardium and subepicardial region usually 

retain a relatively better blood supply. When these facts are taken into 

consideration, the possible epicardial origin and subepicardial localization 
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seem advantageous to cardiac primitive cells, constituting the “niche” that 

supports their survival and proliferation, enabling their survival and 

migration in the pathological conditions. 

In organs with regenerative capacity, the physiological cell turnover 

enables the preservation of tissue structure and function, inasmuch as old or 

dead cells are replaced with the new and better functioning ones. In 

pathological conditions, the bigger the damage, the bigger resources must be 

involved in the healing process and it has been already suggested that organ 

regeneration may require molecular reprogramming and reactivation of the 

mechanisms operative during organogenesis [41]. The epithelial–

mesenchymal transition and the generation of CD117-positive cells, as well 

as the expression of laminin α1 chain in the adult pathological heart, 

followed by different expression of integrin subunits on cardiac cells, may 

represent such process, in which an extensive damage and chronic 

pathological conditions activate a regenerative response involving all, 

cardiac primitive cells, extracellular matrix proteins and their receptors. 

In the foregoing discussion I have attempted to examine the links 

between different laminin and integrin isoforms expression and CD117-

positive cells localization in the adult human heart. On balance, we suggest 

a model of cardiac regeneration in which the signals from subepicardial 

space, among which the acquisition of laminin-1 expression, activate the 

epithelial-mesenchymal transition of epicardial cells, leading to the 

population of subepicardium with CD117-positive cells. The interaction of 
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integrin α6 on the cell membrane and laminin-1 in the extracellular matrix 

supports the survival of cells, protecting them from apoptosis, and 

stimulates their migration towards a damaged muscle. Once within the 

cardiac wall, primitive cells differentiate and lose gradually the expression 

of the stem cell marker (CD117). They anchorage to the cardiac stroma rich 

in fibronectin by means of integrin α4 and become functionally incorporated 

within the cardiac muscle syncytium bordered by laminin-2. Our results 

furnish the intriguing, still indirect, evidence that these processes are 

remarkably activated in the ischemic cardiomyopathy. An experimental 

model allowing cardiac CD117-positive cells tracing in vivo is necessary to 

verify the proposed model emerging from the examination of heart sections 

and in vitro experiments. 
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Figure 1. 
CD117-positive cells in the subepicardium and myocardium of the adult 

human heart detected by immunofluorescence. 
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Figure 2. 
Distribution of CD117-positive cells between different heart regions. 
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Figure 3. 
Distribution of CD117-positive cardiac cells and expression of α6 integrin 

between different cardiac tissue layers. 
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Figure 4. 

Pattern of laminin-1 and -2 distribution in the pathological adult human 
heart tissue sections. 



 46

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. 
Expression of laminin-1 and -2 in different heart regions. 
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Figure 6. 
Expression of laminin-1 in the adult human heart with ischemic 

cardiomyopathy. 
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Figure 7. 
CD117-positive primitive cells in vitro. 
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Figure 8. 
Effects of laminin-1 and -2 on proliferation and apoptosis of cardiac 

CD117-positive cells in vitro. 
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Figure 9. 
Epithelial-mesenchymal transition in vitro. 
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Figure legends 
 

Figure 1. CD117-positive cells in the subepicardium and myocardium of 

the adult human heart detected by immunofluorescence. Examples of 

normal heart sections staining are presented. Top row: Two CD117-positive 

cells (arrow) within the subepicardium (A, red) express α6 integrin subunit 

(B, green). Middle row: CD117-positive cell (arrow) within the 

myocardium (E, red) is α6 integrin-negative (F). Bottom row: Fibronectin 

lines epithelial cells within the epicardium (I, red); all cells forming the 

epicardium are α4 integrin-positive (J, green) and co-localize with 

fibronectin. The nuclei of cells were counterstained with DAPI (C, G, K, 

blue). Panels D, H, L result from the overlay of three separate images from 

every row. Scale bar: 50 µm. 

 

Figure 2. Distribution of CD117-positive cells between different heart 

regions. CD117-positive cells in the sections from the right ventricle (RV), 

left atrium (LA), atrioventicular junction (AVJ), left ventricle (LV) and apex 

(Apx) of  the normal (N) and pathological (P) hearts were visualized by 

immunofluorescence and quantified. The bars correspond to the mean±SEM 

of CD117-positive cells number in 100 mm2. With respect to the same 

regions of the normal hearts (n=4 for every region), these cells are 8.7-fold 

more numerous in LA (n=5), 3.6-fold in AVJ (n=4), 13-fold in LV (n=4), 

8.1-fold in RV (n=5) and 5.4-fold in Apx (n=5) of the hearts with ischemic 

cardiomyopathy. *p<0.05, **p<0.001 normal versus pathological. 
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Figure 3. Distribution of CD117-positive cardiac cells and expression of α6 

integrin between different cardiac tissue layers. CD117-positive α6 integrin-

positive (gray bar) and α6 integrin-negative (white bar) cells in the 

epicardium/subepicardium (E) and myocardium (M) of the right ventricle 

(RV), left atrium (LA), atrioventricular junction (AVJ), left ventricle (LV) 

and apex (Apx) were visualized by immunofluorescence and quantified. The 

bars correspond to the mean±SEM of CD117-positive cells number in 100 

mm2. A: In the normal hearts CD117-positive cells are localized mainly in 

the epicardium of the atrium and right ventricle; the fraction of α6 integrin-

expressing cells is identical in the subepicardium and myocardium. B: In the 

pathological hearts CD117-positive cells are significantly more numerous 

(note the difference in the scale), with their highest number in the 

subepicardium of LA, LV and RV; the fraction of α6 integrin-positive cells 

is from 2 to 4-fold higher than in the normal hearts and 2-fold higher in the 

subepicardium than in the myocardium. *p<0.05, **p<0.001, ***p<0.0001 

CD117-positive cells in the subepicardium versus myocardium. 

 

Figure 4. Pattern of laminin-1 and -2 distribution in the pathological adult 

human heart tissue sections. The presence of laminin-1 and merosins 

(laminin-2 and -4) in the hearts with chronic ischemic cardiomyopathy was 

detected by immunofluorescent labeling of heart sections with specific 

antibodies against α1 and α2 laminin chains (green). Antibody against α-

sarcomeric actin was used to stain cardiomyocytes (red); the nuclei of cells 
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were counterstained with DAPI (blue). A: Laminin-1 fills subepicardium 

with a meshed network; a few branches spread between epicardium and 

myocardium are present. B, C: Granular-like pattern of laminin-1 

immunofluorescence can be observed within the myocardium, where 

laminin-1 fills interstitial spaces and clusters round the cardiac cells. D-F: 

Merosins line epicardium and form a conspicuous network corresponding to 

the basement membrane of the cells in the myocardium. 

 

Figure 5. Expression of laminin-1 and -2 in different heart regions. The 

expression of laminin-1 (A) and laminin-2 (B) isoforms in the adult human 

heart was detected by immunoprecipitation (IP: α1 or α2) followed by 

western blotting (WB: β1) of the proteins from normal (N) and pathological 

hearts (P). Representative results with bands of 220 kDa corresponding to 

α1β1 or α2β1 laminin chains are shown above the bars indicating their 

mean±SEM optical density. CTR indicates positive control for western blot 

(purified laminin-1 or laminin-2). *p<0.05, **p<0.001 pathological versus 

normal within the same heart region, ## p<0.001 left ventricle versus atrium 

within the same heart. 

 

Figure 6. The expression of laminin-1 in the adult human heart with 

ischemic cardiomyopathy was detected by immunoprecipitation (IP: α1) 

followed by western blotting (WB: β1) of the proteins from right ventricle 

(RV), left atrium (LA), atrioventricular junction (AVJ), left ventricle (LV) 
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and apex (A). Western blot of α–actinin (110 kDa) served as a control of 

equal protein amount in the solution used for immunoprecipitation. 

Representative result with bands of 220 kDa corresponding to α1β1 laminin 

chains is shown above the bars indicating mean±SEM optical density. 

*p<0.05, **p<0.001,  ***p<0.0001 versus LV. 

 

Figure 7. CD117-positive primitive cells in vitro. CD117-positive cells 

were isolated from the fragments of left ventricular myocardium of adult 

human hearts by enzymatic dissociation and immunomagnetic separation. 

A: The efficacy of separation was confirmed by immunofluorescent labeling 

of CD117 antigen and reached 98%. B-E: The presence of cells expressing 

nuclear and cytoplasmic markers of endothelial (Ets-1 and factor VIII), 

smooth muscle (GATA6 and smooth muscle actin) and cardiomyocyte 

(Nkx2.5 and α-sarcomeric actin) cell lineages among CD117-positive cells 

in culture was evidentiated by immunofluorescence. 

 

Figure 8. Effects of laminin-1 and -2 on proliferation and apoptosis of 

cardiac CD117-positive cells in vitro. The bars correspond to the 

mean±SEM percentage of cells with BrdU incorporation (A) or the 

percentage of apoptotic cells (B). CD117-positive cells were plated on 

laminin-1 or laminin-2 coated dishes after incubation with α6 integrin 

function-blocking antibody (α6 block), isotype-matched control antibody 

(IgG) or without antibody pretreatment (CTR). A: Both laminin-1 and -2 
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stimulate proliferation of CD117-positive cells in vitro. The percentage of 

BrdU incorporating cells in the presence of laminin-1 is 4.5-fold higher with 

respect to laminin-2. However, this effect is not related to α6 integrin 

expression, as both α6 integrin function-blocking antibody and  isotype-

matched non specific antibody reduce proliferation rate in the same manner. 

B: Laminin-1 and -2 protect CD117-positive cells from apoptosis. 

Moreover, the percentage of apoptotic cells is 4-fold lower in the presence 

of laminin-1 with respect to laminin-2. The anti-apoptotic effect of laminin-

1 is specifically abolished in the presence of α6 integrin function-blocking 

antibody. **p<0.001, ***p<0.0001 CTR versus BSA, ##p<0.001 α6 block 

versus IgG. 

 

Figure 9. Epithelial-mesenchymal transition in vitro. A: Phase-contrast 

images show the epithelial sheet obtained from adult human epicardium 

placed on culture dish in the presence of extracellular matrix typical of 

pathological heart. B: After the addition of HGF, the epithelial cells 

disaggregated, giving origin to small spindle-like shaped cells with motile 

properties. C: These cells express CD117 antigen (red fluorescence). The 

nuclei of cells were counterstained with DAPI (blue fluorescence). 
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