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INTRODUCTION 

 

Diabetes mellitus (DM) comprises a group of common metabolic disorders that share 

the phenotype of hyperglycemia. Several distinct types of DM exist and are caused by a 

complex interaction of genetic and environmental factors, and life-style choices. 

Depending on the etiology of the DM, factors contributing to hyperglycemia may 

include reduced insulin secretion, decreased glucose utilization, and increased glucose 

production. The metabolic dysregulation associated with DM causes secondary 

pathophysiologic changes in multiple organ systems that impose a tremendous burden 

on the individual with diabetes and on the health care system. In the United States, DM 

is the leading cause of end-stage renal disease (ESRD), nontraumatic lower extremity 

amputations, and adult blindness. With an increasing incidence worldwide, DM will be 

a leading cause of morbidity and mortality for the foreseeable future (1). 

DM is classified on the basis of the pathogenic process that leads to hyperglycemia. The 

two broad categories of DM are designated type 1 and type 2. Type 1A DM results from 

autoimmune beta cell destruction, which leads to insulin deficiency. Individuals with 

type 1B DM lack immunologic markers indicative of an autoimmune destructive 

process of the beta cells. However, they develop insulin deficiency by unknown 

mechanisms and are ketosis prone. Relatively few patients with type 1 DM are in the 

type 1B idiopathic category. Type 2 DM is a heterogeneous group of disorders 

characterized by variable degrees of insulin resistance, impaired insulin secretion, and 

increased glucose production. Distinct genetic and metabolic defects in insulin action 

and/or secretion give rise to the common phenotype of hyperglycemia in type 2 DM (1) 

 

TYPE 1 DIABETES MELLITUS 
Type 1A DM develops as a result of the synergistic effects of genetic, environmental, 

and immunologic factors that ultimately destroy the pancreatic beta cells. The temporal 

development of type 1A DM is shown schematically as a function of beta cell mass 

Individuals with a genetic susceptibility have normal beta cell mass at birth but begin to 

lose beta cells secondary to autoimmune destruction that occurs over months to years. 

This autoimmune process is thought to be triggered by an infectious or environmental 
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stimulus and to be sustained by a beta cell–specific molecule. In the majority of 

individuals, immunologic markers appear after the triggering event but before diabetes 

becomes clinically overt. Beta cell mass then begins to decline, and insulin secretion 

becomes progressively impaired, although normal glucose tolerance is maintained. The 

rate of decline in beta cell mass varies widely among individuals, with some patients 

progressing rapidly to clinical diabetes and others evolving more slowly. Features of 

diabetes do not become evident until a majority of beta cells are destroyed (80%) and 

the individual becomes completely insulin deficient (1). 

Genetic susceptibility to type 1ADM involves multiple genes. The concordance of type 

1A DM in identical twins ranges between 30 and 70%, indicating that additional 

modifying factors must be involved in determining whether diabetes develops. The 

major susceptibility gene for type 1A DM is located in the HLA region on chromosome 

6. Polymorphisms in the HLA complex account for 40 to 50% of the genetic risk of 

developing type 1A DM. Most individuals with type 1A DM have the HLA DR3 and/or 

DR4 haplotype. Refinements in genotyping of HLA loci have shown that the haplotypes 

DQA1*0301, DQB1*0302, DQA1*501, and DQB1*0201 are most strongly associated 

with type 1A DM. The risk of developing type 1A DM is increased tenfold in relatives 

of individuals with the disease. Nevertheless, most individuals with predisposing 

haplotypes do not develop diabetes. In addition, most individuals with type 1A DM do 

not have a first-degree relative with this disorder (1). 

 

TYPE 2 DIABETES MELLITUS 
Type 2 DM is characterized by three pathophysiologic abnormalities: impaired insulin 

secretion, peripheral insulin resistance, and excessive hepatic glucose production. 

Obesity, particularly visceral or central (as evidenced by the hip-waist ratio), is very 

common in type 2 DM. In the early stages of the disorder, glucose tolerance remains 

normal, despite insulin resistance, because the pancreatic beta cells compensate by 

increasing insulin output. As insulin resistance and compensatory hyperinsulinemia 

progress, the pancreatic islets in certain individuals are unable to sustain the 

hyperinsulinemic state. Then develops impaired glucose tolerance, characterized by 

elevations in postprandial glucose,. A further decline in insulin secretion and an increase 
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in hepatic glucose production lead to overt diabetes with fasting hyperglycemia. 

Ultimately, beta cell failure may ensue (1). 

METABOLIC ABNORMALITIES   

Insulin resistance The decreased ability of insulin to act effectively on peripheral target 

tissues (especially muscle and liver) is a prominent feature of type 2 DM and results 

from a combination of genetic susceptibility and obesity. Insulin resistance is relative, 

however, since supernormal levels of circulating insulin will normalize the plasma 

glucose. Insulin dose-response curves exhibit a rightward shift, indicating reduced 

sensitivity, and a reduced maximal response, indicating an overall decrease in maximum 

glucose utilization (30 to 60% lower than normal individuals). Insulin resistance impairs 

glucose utilization by insulin-sensitive tissues and increases hepatic glucose output; 

both effects contribute to the hyperglycemia. Increased hepatic glucose output 

predominantly accounts for increased fasting plasma glucose levels, whereas decreased 

peripheral glucose usage results in postprandial hyperglycemia. The precise molecular 

mechanism of insulin resistance in type 2 DM has not been elucidated. Insulin receptor 

levels and tyrosine kinase activity in skeletal muscle are reduced, but these alterations 

are most likely secondary to hyperinsulinemia and are not a primary defect. Therefore, 

postreceptor defects are believed to play the predominant role in insulin resistance.  

Another emerging theory proposes that elevated levels of free fatty acids, a common 

feature of obesity, may contribute to the pathogenesis of type 2 DM. Free fatty acids can 

impair glucose utilization in skeletal muscle, promote glucose production by the liver, 

and impair beta cell function (1). 

Impaired insulin secretion Insulin secretion and sensitivity are interrelated. In type 2 

DM, insulin secretion initially increases in response to insulin resistance to maintain 

normal glucose tolerance. In the beginning, the insulin secretory defect is mild and 

selectively involves glucose-stimulated insulin secretion. The response to other 

nonglucose secretagogues, such as arginine, is preserved. Eventually, the insulin 

secretory defect progresses to a state of grossly inadequate insulin secretion. The 

reason(s) for the decline in insulin secretory capacity in type 2 DM is unclear. The 

metabolic environment of diabetes may also negatively impact islet function. For 

example, chronic hyperglycemia paradoxically impairs islet function (“glucose 

toxicity”) and leads to a worsening of hyperglycemia. Improvement in glycemic control 
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is often associated with improved islet function. In addition, elevation of free fatty acid 

levels (“lipotoxicity”) and dietary fat may also worsen islet function. 

Increased hepatic glucose production In type 2 DM, insulin resistance in the liver 

re.ects the failure of hyperinsulinemia to suppress gluconeogenesis, which results in 

fasting hyperglycemia and decreased glycogen storage by the liver in the postprandial 

state. Increased hepatic glucose production occurs early in the course of diabetes, 

though likely after the onset of insulin secretory abnormalities and insulin resistance in 

skeletal muscle. 

GENETIC CONSIDERATIONS 

Polymorphisms in IRS-1 may be associated with glucose intolerance, raising the 

possibility that polymorphisms in various postreceptor molecules may combine to 

create an insulin-resistant state. The pathogenesis of insulin resistance is currently 

focused on a PI-3-kinase signaling defect, which reduces translocation of GLUT4 to the 

plasma membrane, among other abnormalities. Of note, not all insulin signal 

transduction pathways are resistant to the effects of insulin [e.g., those controlling cell 

growth and differentiation and using the mitogen-activated protein (MAP) kinase 

pathway]. 

A common aminoacid polimorfism of PPARγ (peroxisome proliferator-activated 

receptor-γ has been associated to type 2 diabetes (2). Individuals omozygotes for Pro12 

allele are more insulin resistant and present a risk of development of T2D 1,25 times 

higher than eterozygotes for allels Ala12/Pro12. 

Modifications of Calpain-10 gene have been also associated to T2D. Affected people 

have an increase of 3 times in risk of development of T2DM. These modifications affect 

both beta cell function and insulin function on muscle and adipose tissue (3). 

The Phosphoprotein Enriched in Diabetes/ Phosphoprotein Enriched in Astrocytes-15 

(PED/PEA-15) is a 15 kDa cytosolic protein widely expressed in different tissues and 

highly conserved among mammals, whose gene maps on human chromosome 1q21-22 

(4). Overexpression of the PED/PEA-15 gene is a common defect in type 2 diabetes. 

During a study using a differential display technique to identify genes whose expression 

was altered in type 2 diabetes, it has been demonstrated that both PED/PEA-15 mRNA 

and protein levels were overexpressed in fibroblasts from type 2 diabetics compared 

with non-diabetic individuals Also skeletal muscle and adipose tissues, two major sites 
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of insulin resistance in type 2 diabetes, showed the same behaviour (5). Furthermore, a 

recent study showed that PED/PEA-15 overexpression represents a common 

abnormality in both T2DM and their First Degree Relatives (FDR) (6). Cells 

overexpressing PED/PEA-15 showed an impaired insulin-dependent glucose uptake. 

Transgenic mice overexpressing PED/PEA-15 exhibit mildly elevated random-fed 

blood glucose levels and become hyperglycemic after glucose loading, indicating that 

increased expression of this gene is sufficient to impair glucose tolerance. Moreover, 

transgenic mice become diabetic after administration of high-fat diets, indicating that, in 

vivo, the overexpression of PED/PEA-15 in conjunction with environmental modifiers 

may lead to diabetes (7). Thus, these findings identify PED/PEA-15 as a novel gene 

controlling insulin action contributing, under appropriate environmental conditions, to 

genetic susceptibility to type 2 diabetes in humans. 
 

HYPERGLICEMIA AND DIABETIC COMPLICATIONS  
Type 1 DM and type 2 DM share the phenotype of hyperglycemia. Prolonged 

hyperglycemia is responsible for the onset of diabetic complications. Four main 

hypotheses about how hyperglycaemia causes diabetic complications have been 

generated. The four hypotheses based on distinct biochemical abnormalities are: 

increased polyol pathway flux; increased advanced glycation end-product (AGE) 

formation; activation of protein kinase C (PKC) isoforms; and increased hexosamine 

pathway flux (for further details see: Brownlee M. Biochemistry and molecular cell 

biology of diabetic complications. Nature. 2001 Dec 13;414(6865):813-20). 

In human diabetes, the resulting problems are grouped under "microvascular disease" 

(due to damage to small blood vessels) and "macrovascular disease" (due to damage to 

the arteries). 

The damage to small blood vessels leads to a microangiopathy, which can cause one or 

more of the following: 

• Diabetic retinopathy, growth of friable and poor-quality new blood vessels in the 

retina as well as macular edema (swelling of the macula), which can lead to 

severe vision loss or blindness. Retinal damage (from microangiopathy) makes it 

the most common cause of blindness among non-elderly adults in the US.  
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• Diabetic neuropathy, abnormal and decreased sensation, usually in a 'glove and 

stocking' distribution starting with the feet but potentially in other nerves, later 

often fingers and hands. When combined with damaged blood vessels this can 

lead to diabetic foot (see below). Other forms of diabetic neuropathy may 

present as mononeuritis or autonomic neuropathy. Diabetic amyotrophy is 

muscle weakness due to neuropathy.  

 

• Diabetic nephropathy, damage to the kidney which can lead to chronic renal 

failure, eventually requiring dialysis. Diabetes mellitus is the most common 

cause of adult kidney failure worldwide in the developed world.  

 

Macrovascular disease leads to cardiovascular disease, to which accelerated 

atherosclerosis is a contributor: 

• Coronary artery disease, leading to angina or myocardial infarction ("heart 

attack")  

• Stroke (mainly the ischemic type)  

• Peripheral vascular disease, which contributes to intermittent claudication 

(exertion-related    leg and foot pain) as well as diabetic foot.  

• Diabetic myonecrosis ('muscle wasting')  

• Diabetic foot, often due to a combination of neuropathy and arterial disease, may 

cause skin ulcer and infection and, in serious cases, necrosis and gangrene. It is 

the most common cause of adult amputation, usually of toes and or feet, in the 

developed world. 
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DIABETIC FOOT 
Diabetic foot ulcers (DFUs), a leading cause of amputations, affect 15% of people with 

diabetes. A series of multiple mechanisms, including decreased cell and growth factor 

response, lead to diminished peripheral blood flow and decreased local angiogenesis, all 

of which can contribute to lack of healing in persons with DFUs. Most commonly, 

patients have neuropathy, which could be causative. When coupled with an impaired 

ability to fight infection, these patients become largely unable to mount an adequate 

inflammatory response. Thus, the DFU that may look like a healing wound becomes a 

portal for infection that can lead to sepsis and require limb amputation. Over 100 known 

physiologic factors contribute to wound healing deficiencies in individuals with 

diabetes. These include decreased or impaired growth factor production (8–10), 

angiogenic response (10, 11), macrophage function (12), collagen accumulation, 

epidermal barrier function, quantity of granulation tissue (10), keratinocyte and 

fibroblast migration and proliferation, number of epidermal nerves (13), bone healing, 

and balance between the accumulation of ECM components and their remodeling by 

matrix metalloprotease (MMPs) (14). Wound healing occurs as a cellular response to 

injury and involves activation of keratinocytes, fibroblasts, endothelial cells, 

macrophages, and platelets. Many growth factors and cytokines released by these cell 

types are needed to coordinate and maintain healing. 
 

 

WOUND HEALING PHYSIOLOGY 
The wound healing process has 3 phases. They are the inflammatory phase, the 

proliferative phase, and the maturational phase (Figure 1) (15). The inflammatory phase 

is characterized by hemostasis and inflammation. Collagen exposed during wound 

formation activates the clotting cascade (both the intrinsic and extrinsic pathways), 

initiating the inflammatory phase. This initial response helps to limit hemorrhage. After 

a short period, capillary vasodilatation occurs secondary to local histamine release, and 

the cells of inflammation are able to migrate to the wound bed. The timeline for cell 

migration in a normal wound healing process is predictable. Platelets release multiple 

chemokines, including epidermal growth factor (EGF), fibronectin, fibrinogen, 

histamine, platelet-derived growth factor (PDGF), serotonin, and von Willebrand factor. 
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These factors help stabilize the wound through clot formation. These mediators act to 

control bleeding and limit the extent of injury. The inflammatory phase continues, and 

more immune response cells migrate to the wound. The second response cell to migrate 

to the wound, the neutrophil, is responsible for debris scavenging, complement-

mediated opsonization of bacteria, and bacteria destruction via oxidative burst 

mechanisms (ie, superoxide and hydrogen peroxide formation). The neutrophils kill 

bacteria and decontaminate the wound from foreign debris. The next cells present in the 

wound are the leukocytes and the macrophages (monocytes). The macrophage, referred 

to as the orchestrator, is essential for wound healing. Numerous enzymes and cytokines 

are secreted by the macrophage. These include collagenases, which debride the wound; 

interleukins and tumor necrosis factor (TNF), which stimulate fibroblasts (produce 

collagen) and promote angiogenesis; and transforming growth factor (TGF), which 

stimulates keratinocytes. This step marks the transition into the process of tissue 

reconstruction, ie, the proliferative phase.  

 

Figure 1. Wound healing phases 

The second stage of wound healing is the proliferative phase. Epithelialization, 

angiogenesis, granulation tissue formation, and collagen deposition are the principal 

steps in this anabolic portion of wound healing. Epithelialization occurs early in wound 

repair. If the basement membrane remains intact, the epithelial cells migrate upwards in 

the normal pattern. The epithelial progenitor cells remain intact below the wound, and 

the normal layers of epidermis are restored in 2-3 days. If the basement membrane has 
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been destroyed then the wound is reepithelialized from the normal cells in the periphery 

and from the skin appendages. Angiogenesis, stimulated by TNF-alpha, is marked by 

endothelial cell migration and capillary formation. The new capillaries deliver nutrients 

to the wound and help maintain the granulation tissue bed. The migration of capillaries 

into the wound bed is critical for proper wound healing. The granulation phase and 

tissue deposition require nutrients supplied by the capillaries, and failure for this to 

occur results in a chronically unhealed wound. Mechanisms for modifying angiogenesis 

are under study and have significant potential to improve the healing process.  

The final part of the proliferative phase is granulation tissue formation. Fibroblasts 

differentiate and produce ground substance and then collagen. The ground substance is 

deposited into the wound bed; collagen is then deposited as the wound undergoes the 

final phase of repair. Many different cytokines are involved in the proliferative phase of 

wound repair. The steps and the exact mechanism of control have not been fully 

elucidated. Some of the cytokines include PDGF, insulin like growth factor (IGF), and 

EGF. All are necessary for collagen formation.  

The final phase of wound healing is the maturational phase. The wound undergoes 

contraction, ultimately resulting in a smaller amount of apparent scar tissue. The entire 

process is a dynamic continuum with an overlap of each phase and continued 

remodeling. Collagen deposition continues for a prolonged period, but the net increase 

in collagen deposition plateaus after 21 days.  
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MOLECULAR MECHANISM OF WOUND HEALING 
Wound healing involves a complex interaction and equilibrium of cells, cytokines and 

growth factors working in concert. Two major cellular functions are necessary for a 

proper wound healing: cell proliferation and motility. 

CELL PROLIFERATION 

Fundamental part of the answer to the damage in the process of wound healing is the 

cellular proliferation. The mostly interested cells are fibroblasts and the endotelial cells. 

Cell proliferation is triggered by the binding of a messenger molecule to a specific 

receptor of the target cell. In mammalian cells the cascade often is begun from the 

activation of a receptor with intrinsic tyrosin-kinase activity by interaction with a 

growth factor, such as EGF (epidermal growth factor), FGF (fibroblat growth factor), 

PDGF(plateled-derived growth factor) and IGF-1. The interaction with the ligand 

induces the dimerization of the receptor and the autophosphorylation on tyrosine 

residues. Phosphorylated tyrosines represent site of protein-protein interaction and act 

as activation site for intracellular proteins responsible for transduction of the signal 

from the cellular surface to the nucleus. In particular, there are three main pathways of 

signalling that have a primary role in the stimulation of the cellular proliferation. 
 

• RAS/MAPK pathway 

Receptor-linked tyrosine kinases such as the epidermal growth factor receptor (EGFR) 

are activated by extracellular ligands. Binding of epidermal growth factor (EGF) to the 

EGFR activates the tyrosine kinase activity of the cytoplasmic domain of the receptor. 

The EGFR becomes phosphorylated on tyrosines. Docking proteins such as GRB2 

contain SH2 domains that bind to the phosphotyrosines of the activated receptor (16). 

GRB2 binds to the guanine nucleotide exchange factor SOS by way of an SH3 domain 

of GRB2. When the GRB2-SOS complex docks to phosphorylated EGFR, SOS 

becomes activated (17). Activated SOS promotes the removal of GDP from Ras. Ras 

can then bind GTP and become active().. Activated Ras activates the protein kinase 

activity of RAF kinase (18), a serine/threonine-selective protein kinase. RAF kinase 

phosphorylates and activates MEK, another serine/threonine kinase. MEK 

phosphorylates and activates Extracellular Signal-regulated kinase 1e 2 (Erk 1/2). 
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Active Erk 1/2 translocates into the nucleus and phosphorylates several transcription 

factors stimulating cell proliferation (Figure 2). 

• PKCS’ pathway 

PKCs proteins belong to a multigenic family including at least 14 isoforms with 

different catalytic and regulatory proprieties. (19). PKCs can be dived in three 

subgroups on the basis of their structural features and cofactor dependency. Classical 

PKCs (α, βI , βII and  γ) are Ca2+ and diacylglycerol (DAG) dependent; novel PKCs 

(δ,ε, η, e θ) are DAG dependent but are Ca2+ independent; le atypical PKCs (ζ, λ e ι) 

are both Ca2+ and DAG independent. 

PKCs play an important role in several cellular functions such as proliferation, 

metabolism, vescicular traffic and cytoskeleton organization. In response to growth 

factors one of the mechanisms of PKCs activation is mediated by phospholypase C e D 

production of DAG. 

• PI3K/PKB pathway 

PI3K family includes several isoforms divided in three classes based on structural 

features and regulation mechanisms. (20). The most known class is the Ia that is 

activated in response to growth factors. Class Ia consisting of heterodimers composed of 

a 85 kDa regulatory subunit (p85) and of a 110kDa lipidic kinase catalytic subunit. 

Interaction of p85 with phosphorylated tyrosines on activated growth factors receptors 

or on adapting proteins induces a conformational change that modulates p110 catalytic 

activity. (21). Activated PI3K phosphorylates the membrane lipid phosphatidylinositol 

on 3’ position of inositolic ring inducine an increase of phosphatidylinositol 3-

phosphate (PI3P), of phosphatidylinositol 3, 4-biphosphate (PI3,4P2) and of 

phosphatidylinositol 3,4,5 tri-phosphate (PI3,4,5P3). Phosphorylate phosphatidylinositol 

act as second messenger and mediate PI3K effect on cytoskeleton, cell cycle, vescicular 

traffic, glucose metabolism and cell survival. Phospholipid activated proteins include 

some Ca+2-indipendent PKC isoforms, such as PKCδ and PKCζ (22), p70S6 kinase, 

small GTPase Rho e Rac and serine-threonine-kinase PKB/Akt.(23) p70S6 kinase 

phosphorilates 40S ribosomial subunit protein S6, inducing G1-S cell cycle transition; 

small GTPase Rho e Rac regulate actin cytoskeleton; PKB/Akt phosphorylates and 

sequestrate into cytosol proapoptotic protein Bad. Thus Bad is unable to associate to 
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Bcl-2 and to translocate into mitochondria to induce cytocrome C release and to trigger 

apoptotic signal(24) (Figure 2) 

 

Figure 2. Erk 1/2 and Akt/PKB pathway in cell proliferation. 

 

CELL MIGRATION 

Cell migration at wound site is another fundamental event in wound healing process. 

The crawling movements of animal cells are among the most difficult to explain at the 

molecular level. Different parts of the cell change at the same time, and there is not a 

single, easily identifiable locomotory organelle (analogous to a flagellum, for example). 

Although actin forms the basis of animal cell migration, it undergoes many different 

transformations as the cell moves forward, assembling into lamellipodia and 

microspikes, associating with focal contacts, forming stress fibers, and so on. In broad 

terms, three distinct processes can be identified in the crawling movements of animal 

cells: protrusion, in which lamellipodia and microspikes (or filopodia) are extended 

from the front of the cell; attachment, where the actin cytoskeleton makes a connection 

with the substratum;and traction, where the body of the cell moves forward. 
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Protrusion is a function of the leading edge of the cell. Actin-rich lamellipodia and 

microspikes (or filopodia) extend forward over the substratum, a process that is 

accompanied by actin polymerization. It seems likely that the protrusion is driven by 

actin polymerization at the leading edge, although this is still debated. Myosin-I motors 

attached to the plasma membrane could also drive the cell forward by actively walking 

along actin filaments. Rapidly motile cells, such  white blood cells, make more diffuse 

contacts with the substratum. It is thought, however, that similar principles apply to 

focal contacts of fibroblasts: transmembrane receptors for extracellular matrix proteins 

link the plasma membrane to the substratum, and actin filaments in the cytoplasm 

interact with the cytoplasmic domains of these receptors through actin-binding proteins. 

The details of these important interactions are uncertain, but it is clear that the cell 

contacts with the substratum must be continually made and broken as the cell moves 

forward. The dynamic assembly and disassembly of focal adhesions plays a central role 

in cell migration. During cell migration, both the composition and the morphology of 

the focal adhesion changes. Initially, small (0.25µm²) focal adhesions called "focal 

complexes" are formed at the leading edge of the cell in lamellipodia: they consist of 

integrin, and some of the adapter proteins, such as talin and paxilin. Many of these focal 

complexes fail to mature and are disassembled as the lamellipodia withdraws. However, 

some focal complexes mature into larger and stable focal adhesions, and recruit many 

more proteins such as zyxin. Once in place, a focal adhesion remains stationary with 

respect to the extracellular matrix, and the cell uses this as an anchor on which it can 

push or pull itself over the ECM. As the cell progresses along its chosen path, a given 

focal adhesion moves closer and closer to the trailing edge of the cell. At the trailing 

edge of the cell the focal adhesion must be dissolved. The mechanism of this is poorly 

understood and is probably instigated by a variety of different methods depending of the 

circumstances of the cell. Traction is perhaps the most mysterious part of cell 

locomotion. In many cases it is thought that the force for cell locomotion is generated 

near the front of the cell and that the nucleus and bulk cytoplasm are dragged forward 

passively. The force generation can be viewed in different ways. The leading part of the 

cell might actively contract like a muscle fiber and thus pull on the back of the cell. In 

another view polymerization of actin filaments at the front of the cell extends the actin 
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cortex forward, and the rear of the cell is then carried forward by the contractile force of 

the resulting cortical tension (Figure 3) (25). 

 

 

 

Figure 3. Cell movement model 

Also cell motility is triggered by binding of signal molecules to specific receptors on 

cell surface. Ligand-receptor interaction activates several pathway of transduction inside 

the cell inducing rearrangement in cytoskeletron in order to promote migration. Mitogen 

activated protein kinase (MAPK) pathway is one of the most important signalling 

system in cell migration. In particular, JNK (Jun N-terminus kinase), p38 and ERKs 

play a pivotal role (26). 

 

• JNK signaling 

JNK is activated in response to various extracellular stimuli, including tumor necrosis 

factor (TNF), epidermal growth factor (EGF), platelet-derived growth factor (PDGF), 

transforming growth factor ß (TGF-ß) and lysophosphatidic acid, as well as diverse 

environmental stresses (27). These activate MAPKKKs: such as MEKK1 and MLK, 

which phosphorylate and activate two MAPKKs, MKK4 and MKK7. In turn, these 

phosphorylate the threonine and tyrosine residues within the Thr-Pro-Tyr motif in the 

JNK activation loop. Accumulating evidence implicates the JNK pathway in regulation 

of cell migration. First, activation of JNK correlates with an increase in cell migration in 
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several cell types, for example, JNK activation is closely associated with cell migration 

induced by EGF, ephrin B1 and CrkII. Second, the signaling molecules that activate 

JNK are essential for cell migration. MEK kinase 1, an upstream kinase in the JNK 

pathway, is essential for cell migration and the developmental process of eyelid closure. 

Third, inhibition of JNK by either the chemical inhibitor SP600125 or the dominant-

negative mutant JNK1AF, significantly impairs the rate of migration of several different 

cell types. Fourth, using a gene knockout approach has been demonstrated that JNK 

activity plays a crucial role in the migration of fibroblasts in wound healing assays. 

Active JNK is found in cytoplasmic locations providing evidence for cytoplasmic 

functions of JNK, in addition to its established nuclear functions. Along with the various 

well-known transcription factors and apoptosis-related proteins that are substrates for 

JNK, several cytoskeleton-associated proteins and signaling molecules as well as 

adaptor proteins have recently been identified as JNK substrates. These include the 

intermediate filament protein keratin 8, microtubule-associated proteins (MAPs), such as 

MAP1B, MAP2, DCX and SCG10, the actin-binding protein spir, the protein kinase 

p90RSK, and the adaptors insulin receptor substrate 1 (Irs-1), p66ShcA and paxillin. Of 

these, paxillin, spir, DCX, MAP1B and MAP2 are probably directly involved in cell 

migration These findings collectively implicate JNK in the control of cell migration in a 

broad range of cell types and in several developmental processes (28). 

 

• p38 signaling 

Four isoforms represent the p38 subfamily of MAPKs: p38 , p38ß, p38  and p38 . The 

activity of p38 is stimulated by many growth factors, cytokines, and chemotactic 

substances, such as vascular endothelial growth factor (VEGF), fibroblast growth factor 

(FGF), PDGF, TNF, interleukins, lipopolysaccharide (LPS) and formyl-methionyl-

leucyl-phenylalanine (fMLP). The upstream MAPK cascade in this case includes 

MAPKKKs such as MLK3, DLK and TAK1, which phosphorylate and activate MKK3 

and MKK6, which in turn phosphorylate and activate p38. It is well known that p38 is 

involved in inflammation, apoptosis, cardiomyocyte hypertrophy and cell 

differentiation. Recently, several studies have suggested it is also involved in the 

migration of diverse cell types. SB203580 and SB202190, inhibitors of p38, inhibit the 

migration of smooth muscle cells induced by PDGF, TGFß and IL-1ß, porcine aortic 
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endothelial cells challenged with PDGF and VEGF, neutrophils stimulated with fMLP, 

mast cells treated with stem cell factors and antigen, corneal epithelial cells stimulated 

with hepatocyte growth factor, mouse embryonic fibroblasts challenged with PDGF and 

IL-1, NMuMG and MDA-MB-231 mammary epithelial cells treated with EGF and 

TGFß1  and NLT neuronal cells stimulated with Gas6 (encoded by growth arrest-

specific gene 6). Moreover, p38AF, a dominant negative mutant of p38, also inhibits the 

migration of smooth muscle cells induced by PDGF, TGFß and IL-1ß, NMuMG and 

MDA-MB-231 mammary epithelial cells in response to EGF and TGFß1  and NLT 

neuronal cells stimulated with Gas6. Taken together, these findings demonstrate that p38 

is involved in growth-factor- and cytokine-induced cell migration (28). 

 

• Erk/MAPK signaling 

The Erk MAPKs are the most extensively studied subfamily of MAPKs. Erk has been 

implicated in the migration of numerous cell types. The Erk pathway inhibitors 

PD98059 and U0126 inhibit the migration of diverse cell types in response to cell matrix 

proteins, such as fibronectin, vitronectin and collagen, growth factors such as VEGF, 

FGF, EGF, insulin and other stimuli, such as fetal calf serum and urokinase plasminogen 

activator (uPA). Moreover, a dominant negative Erk mutant or inhibition of Erk by an 

antisense strategy also inhibits cell migration. Erk is thus an important factor in the 

regulation of cell migration. Erk phosphorylates serine or threonine residues followed by 

proline. The most stringent consensus sequence is Pro-Leu-Ser/Thr-Pro. Identified 

substrates include several protein kinases, such as p90rsk, MSK1, MNK1/2, myosin 

light chain kinase (MCLK) and FAK, the protease calpain, paxillin, as well as 

transcription factors and nuclear proteins. Of these MLCK, calpain, and FAK are most 

likely to be involved in Erk-mediated cell migration. Erk regulates FAK-paxillin 

complex sophistically: initially it promotes complex-assembly by phosphorylation of 

paxillin and then promote disassembly by subsequent phosphorylation of FAK. It is 

possible that Erk-modulated disassembly of the FAK-paxillin complex is involved in 

focal adhesion disassembly, but its precise role and the mechanism remain to be 

completely clarified. Erk  also participates in cell migration by suppressing the ability of 

integrins to bind to their extracellular matrix ligands. It is well known that the Ras-Raf-

MEK-Erk pathway regulates integrin activation (the affinity of an integrin for its 
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substrate), although the molecular mechanism remains to be elucidated. Because 

dynamic integrin activation is required for cell migration (), Erk might also play an 

important role regulating cell migration, by regulating integrin activation (Figure 4) 

(28). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Erk 1/2 pathway in cell migration. 
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WOUND HEALING IN DIABETES 
Diabetic patients frequently have non-healing chronic wounds. This is due, in part, to 

microcirculation damage typical of diabetes. Intact and functional microcirculation is 

necessary for an adeguate nutrition of tissues, for discarting metabolism’s products and 

for an effective inflammatory response. Any defect in microcirculation can cause 

alteration in wound healing process. 

Hyperglycemia causes stiffening of vessel’s wall and a reduction of permeability to the 

blood obstructing inflammatory cells flux to the wound site. Furthermore, insulin 

absence or insulin resistance causes an ineffective carbohydrates, lipid and protein 

metabolism, necessary to sustain cellular activity during wound healing (29). Glucose is 

major source of energy for fibroblasts and polimorfonucleate cells during healing. 

Inability to use glucose as fuel increases oxidation of fatty acid reducing cell 

membranes synthesis. Proteins are essential for collagen synthesis. Collagen confers 

resistance to ECM deposed by fibroblasts at wound site. Has been demonstrated that 

reduction of chemotaxis, phagocitosys and bactericide activity, (30) increased ROS and 

decreased antioxidant activity (31) observed in diabetic patients, are also responsable for 

wound healing impairment. Decreased biodisponibility of growth factors and increased 

glucorticoids concentartion (32) inhibit cell proliferation (33) and stimulate apoptosis 

(34) reducing granulation tissue formation that is a key step in wound healing process. 

 

FIBROBLASTS DISFUNCTION IN DIABETES  

Fibroblasts play a key role in wound healing process. Infact, they produce, secrete and 

remodel ECM and act as signal cells. It is clear that any impairment of fibroblasts’ 

function induces an impairment in wound healing. In diabetes, in particular, has been 

demonstrated an impairment in proliferation, migration and ECM synthesis. In detail, 

diabetic fibroblasts produce and secrete large amount of matrix metalloprotease 

(MMPs). Physiologically MMPs promote cell migration and healing, nevertheless 

increased concentration observed in diabetes act as negative regulator of both process. 

Moreover (vascular endothelian grow factor) VEGF production is reduced in diabetic 

fibroblasts. VEGF is fundamental for vascular development during tissue repair; 

decreased VEGF levels are responsible for a reduced angiogenetic response that impairs 

the following proliferation and ECM deposition phases of wound healing.(35) 
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THERAPIES OF DIABETIC FOOT 

The optimal therapy for foot ulcers and amputations is prevention through identification 

of high-risk patients, education of the patient, and institution of measures to prevent 

ulceration. Despite preventive measures, foot ulceration and infection are common and 

represent a potentially serious problem. Ulcers may be primarily neuropathic (no 

accompanying infection) or may have surrounding cellulitis or osteomyelitis. A growing 

number of possible treatments for diabetic foot ulcers exist, but they have yet to 

demonstrate clear efficacy in prospective, controlled trials. A recent consensus 

statement from the ADA identified six interventions with demonstrated efficacy in 

diabetic foot wounds: 1) off-loading, 2) debridement, 3) wound dressings, 4) 

appropriate use of antibiotics, 5) revascularization, and 6) limited amputation. Off-

loading is the complete avoidance of weight bearing on the ulcer, which removes the 

mechanical trauma that retards wound healing. Bed rest and a variety of orthotic devices 

or contact casting limit weight bearing on wounds or pressure points. Surgical 

debridement is important and effective, but clear efficacy of other modalities for wound 

cleaning (enzymes, soaking, whirlpools) is lacking. Dressings promote wound healing 

by creating a moist environment and protecting the wound. Antiseptic agents and 

topical antibiotics should be avoided. Referral for physical therapy, orthotic evaluation, 

and rehabilitation may be useful once the infection is controlled. Mild or non-limb-

threatening infections can be treated with oral antibiotics (cephalosporin, clindamycin, 

amoxicillin/clavulanate, and fluoroquinolones), surgical debridement of necrotic tissue, 

local wound care (avoidance of weight bearing over the ulcer), and close surveillance 

for progression of infection. More severe ulcers may require intravenous antibiotics as 

well as bed rest and local wound care. Urgent surgical debridement may be required. 

New information about wound biology has led to a number of new technologies (e.g., 

living skin equivalents and growth factors such as basic fibroblast growth factor) that 

may prove useful. Recombinant platelet-derived growth factor has some benefit and 

complement the therapies of off-loading, debridement, and antibiotics. Hyperbaric 

oxygen has been used, but rigorous proof of efficacy is lacking.(1). Another option for 

treating a patient with a diabetic foot ulcer is the use of platelet releasate (PR). PR is an 

autologous product obtained by in vitro activation of autologous platelet used in 
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conjunction with standard care, which involves covering the wound with saline 

impregnated gauze and instructing the patient to avoid weight bearing activities on the 

affected limb (36). A recent study demonstrated that platelet releasate was more 

effective than standard care (37).  

 

 
Table 1:Effectviness of PR treatment compared to standard therapy. Patient are collected in groups on 
basis of growing seriousness of the lesion. 
 

The effect was greatest in those with the most severe wounds, i.e., large wounds that 

affect deeper anatomical structures. In spite of the large utilization of platelet 

components as therapeutic tools in pathologies requiring tissue repair, the detailed 

molecular events underlying this beneficial effect are poorly defined. 
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AIM OF THE STUDY 

Diabetes’ incidence is growing up making it one of the most common health problem in 

western countries. Chronic complications, in particular, cause a significant decrease in 

life span and life quality of diabetic patients and have a huge cost to public health 

worldwide. It was calculated that, in 2006, the US spent an estimated $22.9 billion on 

direct medical costs related to diabetes complications. Diabetic foot is one of the 

complications that has major impact on life quality and life span of affected patients. 

Several therapeutic tools has been used to care it but no one of them is completely 

effective. Attention has been given to the clinical utilization of individual growth 

factors, such as PDGF (38), and to autologous platelet factors as useful therapeutic tools 

to accelerate tissue repair and regeneration. The overall experience with recombinant 

PDGF in wound healing has not been completely successful (39, 40-42). This is not 

surprising, however, given the consideration that wound healing is the outcome of an 

intricated network of circulating and tissue elements. The complexity is linked, at least 

in part, to the combination of the released growth factors, the timing of their release by 

platelets and the cell-specific response to individual growth factors or combinations of 

them. More recently, a blood component generated by thrombin-activated platelets 

(TAPs) and usually identified as platelet gel (PG) or platelet releasate (PR) has become 

available (43). Current therapeutic application of PG includes a number of pathological 

conditions requiring bony and soft tissue reconstruction (44,45). In fact, beside the 

important haemostatic functions, the release of cytokine and growth factors by activated 

platelets is apparently crucial in increasing the probability of healing and in reducing the 

healing time (46). In spite of the large utilization of platelet components as therapeutic 

tools in pathologies requiring tissue repair, the detailed molecular events underlying this 

beneficial effect are poorly defined. Aim of this work has been to clarify in further 

detail the molecular mechanisms responsible for effectiveness of TAPs in care of 

diabetic foot and the mechanisms responsible of its eventual failure. 
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METHODS 

 

Materials - Media, sera, and antibiotics for cell culture were purchased from Invitrogen 

Ltd. (Paisley, United Kingdom). Rabbit polyclonal ERK 1/2 antibodies, rabbit 

polyclonal Akt antibodies, rabbit polyclonal antibodies PKCα and antibodies toward the 

phosphorylated forms of PKCα were from Santa Cruz Biotechnology (Santa Cruz, 

Calif.), and antibodies toward the phosphorylated forms of the Akt/PKB and ERK 1/2 

were from Cell Signal Technology (Beverly, Mass). Mouse monoclonal IGF-1R and 

phospho-tyrosine antibodies and rabbit polyclonal PDGF-Paxillin antibodies were from 

Zymed Laboratories (Invitrogen Corporation, Calif.). Rabbit polyclonal fibronectin 

antibodies were from Chemicon (Millipore Corporation). Western blotting, ECL 

reagents and radiochemicals were from Amersham (Arlington Heights, Ill.). 

Electrophoresis reagents were from BioRad. Tyrphostins and mytomicin C were from 

Sigma-Aldrich (St. Louis, Mo.) 

 

Cell culture and cell growth - Shoulder skin fibroblasts were obtained by punch biopsy 

and cultures established as previously described (47). The cells were grown at 37°C in 

DMEM supplemented with 10% fetal calf serum in a 5% CO2-95% air humidified 

atmosphere. Cultures were used for experimental procedures between the 8th and 15th 

passage, and, for each individual experiment, the cells were maintained in culture for an 

equal number of generations. 

 

Platelets’rich plasma and Platelet Gel - Platelets’rich plasma (PRP) was obtained from 

healthy donor volunteers (for in vitro experiments) and from diabetic patients 

undergoing autologous platelet gel (PG) treatment for ulcers of the lower extremities. 

Pertinent clinical features of the patients and criteria for the assignment to the study 

group treated with standard care plus PG have been previously reported (48). The 

preparation procedures for platelets were performed according to standardized methods 

(49, 50). For PG preparations, thrombin (1:10 vol/vol) and calcium gluconate (1:10 

vol/vol) were added to PRP for 5 min at room temperature. For the treatment of the 

patients, the volumes were dictated by the size of the lesions and the applications were 
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repeated twice a week. For in vitro experiments, 1 cm2 aliquots of PG were applied to 

cells plated in 100 mm diameter dishes. 

 

Thymidine incorporation - 105 cells/plate were seeded in 1 ml of DMEM supplemented 

with10% fetal bovine serum in six-well plates. After incubation for 24 h at 37 "C, the 

medium was removed and replaced with DMEM containing 0.25% BSA and no serum. 

After additional 24 h, the medium was removed again and replaced with DMEM, 0.25% 

BSA, and platelet gel. Incubation was prolonged for additional 16 h, and the incubation 

media replaced with the same media supplemented with [3H]thymidine (500 nCi/ml). 

After 1-h incubation, media were removed and cells washed three times with ice-cold 

phosphate-buffered saline. The cell monolayers were solubilized in 1 ml of SDS (0.1%) 

solution for 30 min at 37 °C. An equal volume of 20% trichloroacetic acid was added to 

the detergent extract and radioactivity in the trichloroacetic acid precipitate was 

measured by liquid scintillation counting after solubilization of the pellet in 1 N NaOH 

(0.3 ml). 

 

Western blot - For Western blotting, the cells were solubilized in lysis buffer (50 mM 

HEPES [pH 7.5], 150 mM NaCl, 4 mM EDTA, 10 mM Na4PO7, 2 mM Na3VO4, 100 

mM NaF, 10% glycerol, 1% Triton X-100, 1 mM phenylmethylsulfonyl fluoride, 100 

µg of aprotinin/ml, 1 mM leupeptin) for 60 min at 4°C. Cell lysates were clarified at 

5,000 x g for 15 min. Solubilized proteins were then separated by SDS-PAGE and 

transferred onto 0.45-µm-pore-size Immobilon-P membranes (Millipore, Bedford, 

Mass.). Upon incubation with the primary and secondary antibodies, immunoreactive 

bands were detected by ECL according to the manufacturer's instructions. 

 

PDGF and IGF-1 determination - PDGF and IGF-1 levels in the extracellular media 

were measured by Human Quantikine Elisa kit (R&D Systems, Inc. Minneapolis, MN) 

according to the manufacturer’s instructions. 

 

ERK activity – ERK activity was assayed as previously described (51). Briefly, cell 

lysates (200µg of protein/assay) were immunoprecipitated with ERK 1/2 antibodies and 

then incubated with protein A-Sepharose for 2 h. Immobilized ERK 1/2 was washed 
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three times with ice-cold TAT buffer (50 mM HEPES, pH 7.5, 150 mM NaCl, 10 mM 

EDTA, 10 mM Na4P2O7, 2 mM Na3VO4, 10% glycerol, 1% Triton X-100), twice more 

with HNTGVa buffer (50 mM HEPES, pH 7.5, 150 mM NaCl, 2 mM Na3VO4, 10% 

glycerol, 1% Triton X-100) and then resuspended in HNTGVa supplemented with 

60 mM magnesium acetate, 30 µM ATP, 6 mM dithiothreitol, 1 µg/ml myelin basic 

protein, and 0.5 µCi of [γ-32P]ATP. Upon incubation for 30 min at 25 °C, reaction 

mixtures were spotted on phosphocellulose discs and washed three times with 1% (v/v) 

phosphoric acid and once more with ethanol. Disc-bound radioactivity was quantitated 

by liquid scintillation counting. 

 

Akt activity - Akt activity was assayed in vitro as previously reported (52). Briefly, the 

cells were solubilized in lysis buffer and lysates were clarified by centrifugation at 5,000 

x g for 20 min. 200 µg of the lysates were immunoprecipitated with Akt/PKB 

antibodies. The precipitates were incubated in a kinase reaction mixture containing 20 

mM HEPES [pH 7.2], 10 mM MgCl2, 10 mM MnCl2, 1 mM dithiothreitol, 5 mM ATP, 

0.2 mM EGTA, 1 mM protein kinase inhibitor, 10 µCi of [γ-32P]ATP and recombinant 

GSK-3 as substrate. Phosphorylation reactions were prolonged for 10 min, stopped by 

cooling on ice, and spotted on phosphocellulose disk papers. Disks were washed with 

1% H3PO4, and disk-bound radioactivity was quantified by liquid scintillation counting. 

 

Scratch assay - To analyze cell migration, confluent monolayers of cells on well of 6-

wells tissue culture dishes were wounded by manually scratching with a pipette tip, 

washed with PBS, incubated at 37°C. Wound closure was monitored and photographed 

at 0 and 24 h at the same location using the grid as a marker. Similar assays were 

performed in the presence of mitomycin C (10 µg/ml; Sigma) to rule out the potential 

contribution of differences in cell proliferation. Images of areas were collected with a 

Canon Powershot digital camera coupled to the microscope and percentage of healing 

was calculated with NIH IMAGE J. These experiments were repeated at least three 

times with similar results using two different isolations of fibroblasts. 

 

 



 

 29

Confocal microscopy - Subconfluent cells on glass coverslips were fixed for 20 minutes 

with 4% paraformaldehyde (Sigma) in PBS containing 0.9 mM calcium and 0.5 mM 

magnesium (PBS CM) at room temperature, washed twice in 50 mM NH4Cl in PBS 

CM and twice in PBS CM. Cells were permeabilized for 5 minutes in 0.5% Triton-X 

100 (Bio-Rad) in PBS CM and washed twice, for 10 minutes, in 0.2% gelatin (Sigma) 

in PBS CM. Cells were then incubated for 1 hour with the primary antibodies diluted in 

0.5% BSA (Sigma) in PBS. After three washes with 0.2% gelatin in PBS CM cells were 

incubated for 20 minutes with the appropriate rhodamine- or fluorescein-tagged goat 

anti-mouse or anti-rabbit secondary antibody (Jackson ImmunoResearch, West 

Grove,PA), diluted 1:50 in 0.5% BSA in PBS. To visualize actin filaments, 

permeabilized cells were incubated with a 1:70 dilution of rhodamineconjugated 

phalloidin (Sigma) for 20 minutes. After final washes with PBS, the coverslips were 

mounted on a microscope slide using a 50% solution of glycerol in PBS and examined 

with a Zeiss LSM 510 version 2.8 SP1 Confocal System. 
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RESULTS 
 

In vivo activation of Akt/PKB and ERK1/2 by thrombin-activated platelets. 

Thrombin-activated platelets are commonly used in the treatment of ulcerative skin 

lesions and in other processes requiring wound healing and tissue regeneration (53,43). 

Seven consecutive diabetic patients with grade II/III ulcers at the lower extremities 

according to Wagner (54), were treated with local applications of TAPs. Pertinent 

clinical data of participants has been previously described (48). After two weeks of 

treatment in 90% of patients the ulceration size was reduced by about 40%. In order to 

elucidate the molecular mechanisms by which TAPs induce cell growth, the key 

mediators of survival and proliferation signals activation Akt/PKB and ERK1/2 has 

been investigated in vivo. Specimens derived from peri-lesional biopsies, taken before 

(day 0) and after (weeks 1 and 2) repeated topic applications of TAPs, were solubilized 

and probed with antibodies against phosho-Ser473-Akt/PKB and  phospho-

Thr202/Tyr204-ERK1/2 (Fig. 5). 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.  Effect of thrombin-activated platelets on ERK 1/2 and Akt/PKB in peri-lesional skin 
biopsies. PG was applied twice a week to skin lesions of 12 consecutive diabetic patients, diagnosed 
with grade II/III ulcers. Peri-lesional skin biopsies were taken at indicated time. The specimens were 
solubilized and immuno-blotted with specific anti-phospho antibodies (Akt/PKB and ERK1/2). The bar 
graphs represent means ± S.D. of the densitometric values of the bands obtained by four independent 
experiments (n = 12).  The autoradiographs in the upper insets show a representative experiment. 
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Both Akt/PKB (Fig. 5A) and ERK1/2 phosphorylation (Fig. 5B) were increased upon 1 

week of treatment, by 3- and 2.5-fold, respectively. At week 2, ERK1/2 

phosphorylation levels were significantly higher than those detected at week 1 

(p<0.05). No change of Akt/PKB and ERK1/2 total levels was observed, however. At 

variance, at week 2 Akt/PKB activation was similar to that obtained at week 1 and still 

higher than that at day 0. No significant changes of Akt/PKB and ERK1/2 

phosphorylation were observed in bioptic samples obtained by lesions from patients 

treated with standard care (data not shown). Thus, topic application of TAPs increases 

local activation of Akt/PKB and ERK1/2. 

 

In vitro effect of thrombin-activated platelets on human fibroblasts cell growth. To 

analyze the molecular details of TAPs-induced cell growth, 1 x 109 human platelets 

were activated with thrombin and applied in gel form (1 cm2) to the surface of dishes 

containing cultured human fibroblasts (1 x 105) derived from skin biopsies of healthy 

volunteers. The application of TAPs to the dish was sufficient to induce cell growth in 

the absence of serum and the cells became confluent after 4 days. Fibroblasts cultured 

in serum-free media detached from the plate starting from day 2. In contrast, TAPs 

addition progressively increased the number of cells. Indeed, the growth curves were 

comparable to those achieved in the presence of 10% fetal bovine serum (Fig. 6 A).  
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Figure 6. Effect of thrombin-activated platelets on cell growth in cultured human fibroblasts. A. 105 

cells were plated and supplied with complete medium (10% BS) or serum-free media or serum free (-). 
Where indicated a 1 cm2 aliquot of TAPs, obtained as described in Materials and Methods, has been 
added to the serum-free medium. At the indicated times, the cells were trypsinized and counted with a 
Neubauer chamber. Data represent means ±  s.d. of six independent experiments in duplicate. B. Six-well 
plates were seeded with 105 cells/plate in 1 ml complete medium. After incubation for 24 h at 37C, the 
medium was removed and replaced with DMEM containing 0.25% BSA and no serum. After an 
additional 24 h, the medium was removed again and replaced with complete DMEM, or DMEM 0.25% 
albumin with or without PG. Incubation was prolonged for additional 16 h, and the incubation media 
replaced with the same media supplemented with [3H]thymidine (500 nCi/ml). After  1 h, media were 
removed and thymidine incorporation measured as described in Materials and Methods. The bar graph 
represents means ±  s.d. of three independent experiments in triplicate.  
 

TAPs-treated cells also displayed a 4-fold increase in thymidine incorporation into 

DNA, as compared to untreated cells (p<0.001), further indicating a growth-promoting 

action of TAPs (Fig. 6 B).  

 

In vitro effect of thrombin-activated platelets on Akt/PKB and ERK1/2 activation. 

Based on immunoblot with phospho-specific antibodies and on kinase activity assays, 

the application of TAPs to cultured human fibroblasts enhanced  phosphorylation and 

activity of both Akt/PKB and ERK1/2 (Fig. 7). Akt/PKB phosphorylation peaked at 15 

min, then remaining stable up to 48h (Fig. 7 A). TAPs-induced phosphorylation of ERK 

1/2 was equally rapid but, at variance with Akt/PKB, further increased in a time-

dependent manner (Fig. 7 B). Comparable results were obtained by measuring Akt/PKB 

and ERK1/2 activities (Fig. 7 C). 

 

 

Th
ym

id
in

e
in

co
rp

or
at

io
n

(c
pm

/p
ro

te
in

m
g)

- TAPs Serum

2000

4000

0

3000

1000

BA

10% BS
-

TAPs 1
TAPs 2
TAPs 3
TAPs 4

N
um

be
ro

f c
el

ls
(x

 1
03 )

1200

0

200

400

600

800

1000

1 2 3 4

Th
ym

id
in

e
in

co
rp

or
at

io
n

(c
pm

/p
ro

te
in

m
g)

- TAPs Serum

2000

4000

0

3000

1000

Th
ym

id
in

e
in

co
rp

or
at

io
n

(c
pm

/p
ro

te
in

m
g)

- TAPs Serum

2000

4000

0

3000

1000

BA

10% BS
-

TAPs 1
TAPs 2
TAPs 3
TAPs 4

10% BS
-

TAPs 1
TAPs 2
TAPs 3
TAPs 4

N
um

be
ro

f c
el

ls
(x

 1
03 )

1200

0

200

400

600

800

1000

1 2 3 4



 

 33

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7. Effect of thrombin-activated platelets on ERK1/2 and Akt/PKB activation in human 
fibroblasts. Cells were treated with thrombin-activated platelets for the indicated time and solubilized.  
Western blot with anti-phospospecific ERK1/2 (A, upper panel) and Akt/PKB (B, upper panel) antibodies 
was performed. As control, a western blot with anti total ERK1/2 and Akt/PKB was also performed (A 
and B, lower panels). Autoradigraphs representative of four independent experiments are shown. The 
activity of both kinases was measured at the indicated time (C) as described in Materials and methods. 
The bar graph represents the mean ±  s.d. of three independent experiments in triplicate. 
 

To address whether the activation of Akt/PKB and/or ERK1/2 was required for the 

TAPs proliferative effect, TAPs-induced DNA synthesis was measured in the presence 

of LY294002 (an inhibitor of the PI3K-PKB/Akt pathway) and PD98059 (an inhibitor 

of the MEK-ERK1/2 pathway). Thymidine incorporation was reduced by 40% and 

50%, respectively, by the pretreatment of the fibroblasts with 100 µM LY294002 and 

50 µM PD98059 (Fig. 8), indicating that these molecular pathways are involved in 

TAPs-induced cell growth. 
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Figure 8. Role of ERK1/2 and Akt/PKB in TAPs-induced thymidine incorporation. Thymidine 
incorporation experiments were performed, as previously described in the absence or in the presence of 
50 µM PD 98059 and or 100 µM LY294002. The bar graph represents means ±  s.d. of three independent 
experiments in triplicate.  
 

Activation of tyrosine kinase receptors by thrombin-activated platelets.  Both 

Akt/PKB and ERK1/2 are often downstream target of tyrosine kinase signaling (46). 

Therefore, we analyzed the pattern of tyrosine phosphorylated proteins in human 

fibroblasts in the absence or in the presence of TAPs (Fig. 9A). Interestingly, TAPs 

treatment of the cultured cells rapidly (15 min) increased tyrosine phosphorylation of a 

205 kDa species, which remained stable up to 48h. In addition, phosphorylation of 

another major 95 kDa band was detected. Tyrosine phosphorylation of the latter 

molecular species progressively increased in a time-dependent manner.  
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Figure 9. Effect of thrombin-activated platelets on receptor tyrosine kinases. A. Thrombin-activated 
platelets were applied to fibroblasts for the indicated times. Cells were solubilized and western blot with 
anti-phosphotyrosine antibodies was performed. The experiment has been repeated six times with 
comparable results. The autoradiograph shows one representative experiment. B. Thymidine 
incorporation experiments were performed as previously described in the absence or in the presence of 
specific AG1296 (PDGF-R inhibitor), AG 1024 (IGF1-R inhibitor) or SU1498 (VEGF-R inhibitor). The 
bar graph represents means ±  s.d. of three independent experiments in triplicate.  
 

Platelets are a major source of growth factors, which are bona fide activators of 

tyrosine kinase receptors (TKR) (53). We then tested the effect of specific TKR 

inhibitors (tyrphostins) on TAPs-induced cell growth. 10 µM AG1296 (a PDGF-R 

inhibitor) and 10 µM AG1024 (an IGF-1-R inhibitor) reduced thymidine incorporation 

by 50% and 60%, respectively (Fig. 9 B). By contrast, no effect was achieved when the 

cells were pretreated with 10 µM SU1498 (a VEGF-R inhibitor). 

Akt/PKB and ERK1/2 activities were also measured following the pre-treatment of the 

cells with tyrphostins (Fig. 10). Akt/PKB activity was reduced by >80% by AG1296 

PDGF receptor kinase inhibitor, both upon 15 min and upon 24h TAPs addition. No 

significant change was observed following AG1024 and SU1498 pretreatment (Fig. 10 

A). AG1296 only slightly reduced (about 20%) the acute (15 min) activation of 
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ERK/12. By contrast, the AG1024 inhibitor decreased by about 50% the activity of 

ERK1/2 induced by 15 min incubation with TAPs (Fig. 10 B). 

 

 

 

 

 

 

 

 

 

 

 
Figure 10. Effect of RTK inhibitors on ERK1/2 and Akt/PKB kinase activity 
Cultured human fibroblasts were incubated for the indicated times with thrombin-activated platelets 
(TAPs) in the absence or in the presence of AG1296, AG 1024 or SU1498. The activity of Akt/PKB (A) 
and ERK1/2 (B) was measured in specific immunoprecipitates as described in Materials and methods. 
The bar graphs represent the means ±  s.d. of three independent experiments in triplicate. 
 

 

Moreover, TAPs-mediated long term (24 h) stimulation of ERK1/2 activity was reduced 

by 50% and 75%, by AG1296 and AG1024, respectively. No effect on ERK1/2 was 

achieved upon SU1498 pretreatment of the fibroblasts (Fig. 10 B). 
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Release of growth factors by platelets and fibroblasts. Since data were consistent 

with the hypothesis of a major involvement of PDGF and IGF-1 receptors on fibroblast 

growth and transduction of mitogenic signals, the concentration of these growth factors 

has been determined in media exposed to TAPs and to human fibroblasts, either alone 

or in combination (Fig. 11). In TAPs derived media, PDGF-AB concentration raised in 

15 min, and remained stable up to 48 h (Fig. 11 A). Almost no PDGF was detectable in 

media from cultured fibroblasts. PDGF levels in media from fibroblasts co-incubated 

with TAPs were slightly lower than those determined in media from TAPs alone, and 

the difference was significant (p<0.05) at 24 and 48 h, presumably due to the 

consumption of the growth factor. 

 

 

 

 

 

 

 

 
Figure 11. PDGF and IGF-1 release by thrombin-activated platelets and fibroblasts. Media were 
collected from thrombin-activated platelets, fibroblasts and TAPs-stimulated fibroblasts at the indicated 
times. The concentration of PDGF-AB (A) and IGF-1 (B) was determined by ELISA as described in 
Materials and methods. The bar graphs represent the means ±  s.d. of three independent experiments in 
triplicate. 
 

IGF-1 was also detectable in TAPs media, and, at very low levels, in media derived 

from fibroblasts alone (Fig. 11 B). No time-dependent changes were observed in these 

media, however. Different from PDGF, co-incubation of fibroblasts with TAPs led to a 

progressive increase of IGF-1 release (the difference was significant starting from 6 h). 

 

Effect of conditioned media on cell growth and receptor kinase signaling. Human 

fibroblasts were incubated for 15 min with media which have been pre-exposed for 24 

h to either TAPs alone, or to cultured fibroblasts alone or to TAPs-stimulated 

fibroblasts prior to analyze protein tyrosine phosphorylation (Fig. 12 A). No significant 

change was detected upon incubation of the cells with conditioned media from 

fibroblasts alone compared to cells incubated with serum-free media. However, 
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tyrosine phosphorylation levels of the 205 kDa and of the 95 kDa species were 

increased by conditioned media from TAPs and from TAPs-stimulated fibroblasts.  

Interestingly, phosphorylation of the 95 kDa band was further 3-fold enhanced by 

conditioned media from TAPs-stimulated fibroblasts, as compared to TAPs alone. At 

variance, tyrosine phosphorylation of the 205 kDa protein was slightly decreased, 

when the cells were incubated with conditioned media derived from TAPs-stimulated 

fibroblasts, compared to TAPs alone. The 205 kDa and the 95 kDa bands co-migrated, 

respectively, with the full-length PDGF-R (Fig. 12 B) and the IGF-1-R beta subunit 

(Fig. 12 C) 

 

 

 

 

 

 

 

 

 

 

 
Figure 12. Effect of conditioned media on RTK phosphorylation. Human fibroblasts were incubated 
for 15 min with media which have been pre-exposed for 24 h to either thrombin-activated platelets 
(TAPs), or serum-starved cultured fibroblasts (Fibro) or to TAPs-stimulated fibroblast (TAPs+Fibro). 
Phosphotyrosine blotting (A) were then performed. Also, the expression of PDGF-R (B) and IGF-1 R 
(C) has been controlled with specific antibodies. Autoradigraphs representative of four independent 
experiments are shown. 
 

In addition, TAPs conditioned media increased by 4-fold both Akt/PKB (Fig. 13 A) and 

ERK1/2 activity (Fig. 13 B). No effect was detectable with conditioned media derived 

from fibroblasts alone. TAPs-stimulated fibroblasts conditioned media, increased 

Akt/PKB activation by 4-fold, similar to that achieved in the presence of TAPs alone 

conditioned media, and ERK1/2 by 6-fold, further enhancing the effect of TAPs alone. 
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Figure 13. Effect of conditioned media on Akt/PKB and ERK1/2 activation. 
Human fibroblasts, pre-treated or not with AG 1296 or AG1024, were incubated for 15 min with media 
wich have been pre-exposed for 24 h to either TAPs, or serum-starved fibroblasts or to TAPs-stimulated 
fibroblasts. Then, the activity of Akt/PKB (A) and ERK1/2 (B) has been analyzed in specific 
immunoprecipitates as described in Materials and methods. The bar graphs represent the means ±  s.d. of 
three independent experiments in triplicate. 
 

To further assess whether TAPs-stimulated fibroblast-released factors were responsible 

for the activation of Akt/PKB and ERK1/2, human fibroblasts were pre-treated with 

AG1296 or AG1024 before stimulation with conditioned media. AG1296 inhibited by 

>80% Akt/PKB (Fig. 13 A) and by only 20%  ERK1/2 (Fig. 13 B) activation induced 

by conditioned media derived from both TAPs and TAPs-stimulated fibroblasts. By 

contrast, the IGF-1-R inhibitor AG1024 had no significant effect on Akt/PKB activity, 

but reduced by 25% and 70% ERK1/2 activity induced  respectively, by TAPs and 

TAPs-stimulated fibroblasts conditioned media. 
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Characterization of TAPs resistant patients As previously mentioned in about 10% 

of patients TAPs treatment did not ameliorate wound healing. These patients have been 

already genetically and clinically characterized in a previous study(6). The common 

trait among these patients was ped/pea-15 overexpression (Fig. 14). 

 

 

 

 

 

 

 

 

 

 
Figure 14. Evaluation of ped/pea-15 expression in peri-lesional biopsies of TAPs resistant patients. 
Peri-lesional biopsies were collected from TAPs sensitive and TAPs resitant patients. Specimens were 
solubilized as previous described (47).Western blot with anti-PED/PEA-15 antibody was performed. Data 
points are the means of three independent determinations in each individual subject. 
 

 

 

PED/PEA-15 effect on wound healing in vitro To verify that ped/pea-15 

overexpression could be responsible for TAPs resistance, an in vitro model of wound 

healing was set up. Fibroblasts were isolated from ped/pea-15 overexpressing mice (Tg) 

and from non-transgenic littermates (Wt) as previous described (47) and subjected to 

scratch assays. Confluent monolayer was scratched and photographed at 0 and 24 hours 

after wounding. Percentage of healing was calculated as described in materials and 

methods. Hyperglycaemia plays a pivotal role in development of diabetic 

complications, including wound healing dysfunction (30-35). For this reason, scratch 

assay was performed in cells cultured both in 5,5 mM glucose (Low glucose-Lg) and in 

22,5 mM glucose (High glucose-Hg). Wt and Tg fibroblasts showed only a slight 

difference in healing capacity in Lg, (Wt 54%±24 vs Tg 50%±15; P=0,27). By contrast, 

in Hg healing ability of Tg fibroblasts was significantly decreased compared to control 

(Wt:55%±23 vs Tg:40%±22; P‹0,005) (Fig. 15). 
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Figure 15.  PED/PEA-15 effect on wound healing in vitro. Fibroblasts were isolated from ped/pea-15 
overexpressing mice (Tg) and from non-transgenic littermates (Wt) as previous described (referenza 
TAPs) and subjected to scratch assays. Confluent monolayer was scratched and photographed at 0 and 24 
hours after wounding. Percentage of healing was calculated as described in materials and methods. 
Scratch assay was performed in cells cultured both in 5,5 mM glucose (Low glucose-Lg), in 22,5 mM 
glucose (High glucose-Hg)and in 22,5 mM glucose in presence of 10 µg/ml mitomycin C. The bar graphs 
represent means ± S.D. of healing values obtained by four independent experiments (n = 12). 
 

 

In vivo and in vitro wound closure is due to both proliferation and motility of the cells. 

To determine whether the effect of ped/pea-15 was due to alteration of migration or 

mitosis, the healing capacity of fibroblasts was assessed after treatment with mitomycin 

C, an irreversible inhibitor of mitosis. Pretreatment with mitomycin C decreased healing 

percentage of both genotypes. Interestingly Tg fibroblasts’ healing capacity is still 

reduced compared to the control (Wt: 37%±14 vs Tg: 24%± 8,22;P<0,05) (Fig. 15). 

These data and the absence of significant differences in thymidine incorporation (data 

not shown) suggest that ped/pea-15 effect on wound healing is due to alterations of cell 

motility. 
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PED/PEA-15 effect on PKCα and ERK 1/2 activation. Ped/pea-15 regulates several 

kinases involved in cell motility such as PKCα and ERK 1/2 (5, 68). In particular, 

PKCα and Erk 1/2 are also positively regulated by glucose (70,71). Since ped/pea-15 

induced wound healing defect is enhanced by high glucose, activation of these two 

kinases was evaluated by western blot with phospho-specific antibody in Lg and Hg 

condition (Fig. 16).  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 16. Effect of PED/PEA-15 on ERK1/2 and PKCα activation. Wt and Tg fibroblasts cultured in 
Lg (A and B) and Hg (C and D) were solubilized. Western blot with anti-phospospecific ERK1/2 (A and 
C upper panel) and PKCα (B and D, upper panel) antibodies was performed. As control, a western blot 
with anti total ERK1/2 and PKCα was also performed (A, B, C and D lower panels). Autoradigraphs 
representative of four independent experiments in duplicate are shown. 
 

 

As expected, both PKCα and ERK 1/2 activation showed a glucose-dependent increase. 

Nevertheless, ped/pea-15 overexpression, in both culture conditions, further increased 

activation of these two kinases compared to the control. These data suggest a possible 

involvement of both kinases in ped/pea-15 induced wound healing alteration. 
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Effect of PKCα and ERK 1/2 inhibition on PED/PEA-15 induced wound healing 

alteration To clarify the role of ped/pea-15 induced hyperactivation of PKCα and ERK 

1/2 in wound healing, scratch assays with specific inhibitors of these kinases were 

performed. Confluent monolayers of Wt and Tg fibroblasts were scratched in Hg in 

presence of bisindolylmaleimide (an inhibitor of the classical PKC pathway) and 

PD98059 (an inhibitor of the MEK-ERK1/2 pathway) and percentage of healing was 

evaluated at 24h (Fig. 17). 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 17. Role of ERK1/2 and Akt/PKB in PED/PEA-15-induced wound healing alteration. Scratch 
assay experiments were performed, as previously described in the absence or in the presence of 100 nM 
bisindolylmaleimide (BDM) or 30 µM PD 98059. The bar graph represents means ±  s.d. of three 
independent experiments in triplicate.  
 

 

Inhibition of classical PKCs reduced healing percentage of both genotypes but it was 

not able to revert the effect of ped/pea-15 overexpression (Wt 42%±8,8 vs Tg 23%±2,4; 

P<0,05). By contrast, PD98059 pretreatment reverted almost completely ped/pea-15 

induced wound healing alteration (Wt:55%±15; Tg:52%±14).  
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PED/PEA-15 effect on cell cytoskeleton Cell migration is a complex and finely 

regulated phenomenon. Several cellular structures, including actin filaments, focal 

adhesion plaques and several components of ECM (such as fibronectin), are continually 

made and broken as the cell moves forward. To further characterize motility defect 

induced by ped/pea-15, organization of these components was investigated by 

immunoflorescence analysis. 

To study stress fibres organization, Wt and Tg fibroblasts were stained with 

rhodaminate–phalloidin (Fig. 18 A upper and middle panel). Focal adhesion plaques 

formation and extracellular matrix component fibronectin were evaluated by 

immunostaining with specific anti-paxillin (Fig. 18 B upper and middle panel )and anti-

fibronectin (Fig. 18 C upper and middle panel ) antibodies. In Hg, Tg fibroblasts 

showed a decrease of stress fibres formation, focal adhesion plaques number and length 

and altered fibronectin organization in the extracellular space compared to control.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 18. PED/PEA-15 effect on cell cytoskeleton. To study stress fibres organization, Wt and Tg 
fibroblasts were stained with rhodaminate–phalloidin (A upper and middle panel). Focal adhesion plaques 
formation and extracellular matrix component fibronectin were evaluated by immunostaining with 
specific anti-paxillin (B upper and middle panel) and anti-fibronectin antibodies (C upper and middle 
panel). Effect of ERK 1/2 inhibition was also evaluated (A, B, C, lower panel). Images representative of 
four independent experiments are shown. 
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To understand if ERK 1/2 hyperactivation was responsible even for ped/pea-15 induced 

cytoskeleton alterations, stress fibres formation, focal adhesion plaques number and 

fibronectin organization was evaluated in presence of 30 µM PD98059 (Fig. 18 A, B, 

and C lower panel ). Erk 1/2 inhibition reverts ped/pea-15 induced cytoskeleton 

alterations. These data, together with scratch assays results, suggest that the synergistic 

effect of glucose and ped/pea-15 in alteration of cell motility is mediated by Erk 1/2. 
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DISCUSSION 

 

Since the first report, the application of platelet components has been successfully used 

in orthopedic and maxillo-facial surgery for bone reconstruction and soft tissue 

regeneration (53). According to recent reports (55-57), treatment with autologous 

platelets represents an important therapeutic tool for diabetic patients with ulcers at the 

lower extremities. I sought therefore to investigate whether activated platelets could 

induce a cellular growth response when applied to ulcerative skin lesions of diabetic 

individuals. I found that the growth-related molecules Akt/PKB and ERK1/2 were 

activated in the peri-lesional skin following TAPs applications. I have then explored 

the molecular mechanisms responsible for the beneficial effect of platelets in wound 

healing processes. To this end, a method was devised to analyze the effect of TAPs in 

cultured cells. Aliquots of TAPs were applied to monolayers of cultured cells as serum 

substitute. Interestingly, the addition of TAPs to human fibroblasts induced cell growth 

in a fashion comparable with 10% FBS. This is consistent with recent evidence 

reporting the use of platelet extracts for culturing stem cells of mesenchimal origin (58) 

and support the possible utilization of human platelet factors as a substitute for animal 

serum for cell-based therapeutic applications. The effect of PG, however, was cell-

specific, as we failed to observe a similar growth induction in human umbilical vein 

endothelial cells (data not shown). 

In the fibroblasts, the growth effect was accompanied by the rapid tyrosine 

phosphorylation of the PDGF and the IGF-1 receptors and by the activation of 

Akt/PKB and ERK1/2. The presence of platelet-released factors in media incubated 

with TAPs was sufficient to elicit these effects. In agreement with other reports (59), 

activated platelets release a wide variety of growth factors and cytokines, including 

PDGF, IGF-1 and TGF-beta. The absolute levels of PDGF as well as of the other 

growth factors released by the TAPs showed a certain degree of variability in the 

different preparations. Nonetheless, the time-dependent variation of PDGF 

concentration was extremely conserved. In particular, PDGF levels rapidly increased in 

the media incubated with TAPs. When assayed in the media of TAPs-co-cultured 

fibroblasts, PDGF levels reached an early plateau (15 min) and declined thereafter, 

possibly because of consumption by the target cells. TAPs also induced a very rapid 
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activation of Akt/PKB, which remained stable up to 48 hours. At variance, ERK1/2 

activity progressively increased, reaching maximal activation only upon 48 h of TAPs 

exposure. This sustained activation of ERK1/2 was also detected in the bioptical 

specimens of the ulcerative lesions upon treatment with TAPs. 

Tyrphostin inhibition of PDGF-R signaling drastically reduced PG-induced cell growth 

and activation of Akt/PKB, but only slightly decreased the early ERK1/2 activation, 

indicating that PDGF signaling was not the major stimulus for the induction of the 

latter kinase activity. Thus, the amount of PDGF released by activated platelets 

preferentially activates the survival factor Akt/PKB but is not sufficient to elicit the 

total effects.  

As in the case of osteoblastic cells (60), other growth factors may play crucial role to 

elicit cell cycle progression. However, the PDGF receptor blocker Ag1296, 

significantly reduced late activation of ERK1/2 and DNA synthesis, suggesting that 

PDGF control is necessary to allow the proliferative response to TAPs. 

Interestingly, inhibition of IGF-1 signaling by the specific tyrphostin Ag1024 

selectively reduced both early and late TAPs-induced ERK1/2 activation, with minor 

effect on Akt/PKB. In addition, IGF-1 levels time-dependently increased in the 

supernatant of TAPs-stimulated human fibroblasts. These same conditioned media 

were also capable to stimulate IGF-1 receptor tyrosine phosphorylation and ERK1/2 

activation when added to recipient fibroblasts, while conditioned media from isolated 

fibroblasts or TAPs preparations were not. These data are consistent with the 

hypothesis that IGF-1 autocrine production by fibroblast is needed to propagate TAPs 

proliferative signals. This is further supported by the evidence that the effect of TAPs-

treated fibroblast conditioned media on ERK1/2 is selectively inhibited by 10 µM 

Ag1024. At the concentration used the inhibitory effect of this tyrphostin is selectively 

exerted on the IGF-1 receptor kinase activity (61-63).  

It is conceivable that platelet factors stimulate fibroblast production and release of IGF-

1, which may act as an autocrine stimulator of cell proliferation. TAPs-induced IGF-1 

release and signaling, however are only partially inhibited by the treatment with 

Ag1296, suggesting that platelet factors other than PDGF may be also involved in the 

elicitation of this effect. 
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The combined action of PDGF and IGF-1 may be therefore responsible for a large 

fraction of the growth effect of TAPs on human fibroblasts and implicated in the repair 

mechanisms involving connective tissue. Accordingly, it has been recently described 

that the application of recombinant PDGF and IGF-1 ameliorates bone repair and 

regeneration after test implant insertion in dogs (64). Consistently, Loot et al. (65) 

reported that stimulation with PDGF and IGF-1 leads to a strong proliferative response 

in human fibroblasts, further supporting the hypothesis that the sequential action of 

these growth factors may be relevant in the wound healing process. 

 

Thus, one might argue that activated platelets represents an important source of growth 

factors to induce the proliferation of human fibroblasts, in vivo as well as in cultured 

systems. The release of PDGF is necessary and sufficient to activate Akt/PKB and to 

promote cell survival. Autocrine production of IGF-1 by fibroblasts, however, is 

needed to sustain the prolonged activation of ERK1/2 and to induce the completion of 

the proliferation program. 

 

PG treatment was able to ameliorate wound healing in a large percentage of patients. 

Nevertheless it was not effective in 100% of cases. To clarify the molecular 

mechanisms responsible of PG resistance represents therefore an important issue to 

improve its effectiveness. In my study approximately 10% of patients undergoing TAPs 

treatment had no significant results compared to standard treatment. Interestingly, 

ped/pea-15 overexpression was found virtually in peri-lesional biopsies of all resistant 

patients. Indeed, previous reports indicate that the ped/pea-15 gene is hyperexpressed in 

fibroblasts derived from diabetic patients and in their first degree relatives (6). 

Moreover, Ped/Pea-15 overexpression leads to abnormal glucose tolerance, insulin 

resistance and impaired insulin secretion in transgenic mice, which progress to overt 

diabetes if the animals are fed an high fat diet (7). In addition it has been recently shown 

that ped/pea-15  expression also regulates motility of both normal and neoplastic 

cells(66, 67). I therefore sought to investigate if ped/pea-15 overexpression could be 

responsible for PG treatment failure. To this aim, an in vitro model of wound healing 

was set up. Fibroblasts isolated from both transgenic mice overexpressing ped/pea-15 

and from non transgenic littermates were subjected to scratch assay. Since in 
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development of diabetic complication hyperglycemia plays a pivotal role, scratch assay 

were performed in culture media containing both 5,5 mM and 22,5 mM glucose, 

representative of euglicemic and hyperglicemic condition, respectively. Interestingly, 

ped/pea-15 induces significant alteration of wound healing only in high glucose. This is 

not due to difference in proliferative ability of the cell type but, most likely, to alteration 

in motility as demonstrated by thymidine incorporation and scratch assay in presence of 

mitosis inhibitors. Cell motility is a complex and tightly regulated phenomenon. Several 

kinases are involved in its regulation. I focused my attentionon PKCα and Erk 1/2. Both 

kinases are positively regulated by ped/pea-15 and by glucose. Scratch assay in 

presence of specific inhibitors of these kinases demonstrated that ped/pea-15 induced 

wound healing alteration was mediated by Erk 1/2. Ped/pea-15 binds, activates and 

keeps into the cytosol Erk 1/2. Cytosolic activity of Erk 1/2 is responsible for 

suppression of integrin activation (68). Indeed, ERK 1/2 inhibition by PD 98059 reverts 

not only extracellular fibronectin disorganization but also stress fibres formation, 

number and length of focal adhesion plaques. Active integrins trigger activation of 

several downstream target such as RhoA and components of adeshion plaques such as 

FAK. RhoA GTPase is responsible for organization of stress fibres(69), while cysolic 

kinase FAK is a key component of assembly of focal adeshion plaques. Furthermore, it 

has been recently demonstrated that Erk regulates FAK-paxillin complex sophistically: 

initially it promotes complex-assembly by phosphorylation of paxillin and then promote 

disassembly by subsequent phosphorylation of FAK (28). Then, an increase of ERK 1/2 

cytosolic activity could perturb normal focal adeshion plaque assembly and turnover. 

Thus, these data suggest that ped/pea-15 induced cell motility defect could be mediated 

by increased ERK 1/2 cytosolic activity and suppression of integrin activation. 
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