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1. INTRODUCTION 

Escherichia coli is part of the normal microflora of the 

gastrointestinal tract of mammals and birds, but certain strains have 

been associated with gastrointestinal diseases in both humans and 

animals. These E. coli strains have been categorised into 

pathogenicity groups, based on their virulence properties. One of 

these groups is characterised by the production of potent cytotoxins 

that inhibit protein synthesis within eukaryotic cells. These toxins 

are either termed verocytotoxins (VT), because of their activity on 

Vero cells, or Shiga toxins (Stx), because of their similarity with the 

toxin produced by Shigella dysenteriae. Therefore, these strains are 

either termed Shiga toxin-producing E. coli (STEC) or 

verotoxigenic producing E. coli (VTEC). 

STEC infections have been described in a wide range of both 

domestic and wild animal species, but their natural pathogenic role 

has been demonstrated only in young calves (diarrhoea or 

dysentery), weaning pigs (oedema disease), and dogs  (cutaneous 

and renal vasculopathy in greyhounds). In humans, can be 
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asymptomatic or can cause illnesses such as diarrhea, bloody 

diarrhea, haemorrhagic colitis (HC), and haemolytic uremic 

syndrome (HUS), especially among children and the elderly. 

Enterohaemorrhagic E. coli (EHEC) constitute a subset of serotypes 

of STEC that has been firmly associated with bloody diarrhoea and 

HUS in industrialised countries. The majority of the cases of disease 

worldwide are caused by strains of serotype O157:H7, but infections 

sustained by EHEC strains belonging to serogoups other than O157, 

like O26, O111, O103, and O145 are increasingly being reported. 

These strains are now usually referred to as non–O157 EHEC. 

STEC/EHEC represent the only pathogenic group of E. coli that has 

a definite zoonotic origin, with cattle being recognised as the major 

reservoir for human infections. (25) 
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2. ANIMAL RESERVOIRS AND ECOLOGY 

STEC can be found in the gut of numerous animal species, but 

ruminants have been identified as a major reservoir of STEC  that 

are highly virulent to humans, in particular EHEC O157. 

Knowledge about the routes of transmission and the sources of 

human infections has increased during the past twenty years, as 

numerous epidemic events have been investigated. It appears 

evident that STEC may be transmitted from animal reservoirs to 

humans not only via the ingestion of contaminated foods or drinking 

water, but also by contact with STEC-positive animals or with their 

environment. (25) 

 

2.1. Cattle 

Cattle are considered to be the most important source of human 

infections with EHEC O157, being asymptomatic excretors of the 

organism, which is a transient member of their normal gut 

microflora. The presence of EHEC O157 in cattle excreta appears to 

be influenced by the age of the animals. Studies conducted in the 
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United States have shown that EHEC O157 could be isolated from 

the faeces of less than 1.5% of calves under two months of age 

(129) and from 1.8  to 5% of the calves aged between two and four 

months (210).Thereafter, the prevalence of EHEC O157 declines 

(78), suggesting that faecal shedding might be more intense and 

frequent immediately after weaning. Experimental infections in 

calves have confirmed that EHEC O157 is shed longer and more 

intensely in calves than in adult cattle (36) and that shedding largely 

increases after weaning (66). A higher rate of faecal shedding of 

STEC after weaning has also been observed in a Japanese study 

regardless of the serotype.   stx genes were detected in faecal 

samples from 39.4% of calves less than 2 months of age, 78.9% of 

calves from 2 to 8 months of age, and 40.8% of adult cattle (172). 

 The prevalence of EHEC O157 in cattle also depends on the 

season, since increased rates of faecal shedding have been 

repeatedly reported in warmer months (17, 29, 75).  However, a 

study conducted on the presence of STEC in grazing beef cattle 

regardless of their serotype showed a higher prevalence in the 
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winter than in the summer (182). Studies on the presence of STEC 

in cattle have been performed worldwide. In North America, STEC 

have been isolated both from beef cattle (169,181) and dairy cattle 

(182). Hancock and co-workers (74) reported the isolation of EHEC 

O157 from 0.28% of dairy cattle (8.3% of the tested herds) and from 

0.71% of beef cattle (16% of the herds). In Brazil, stx genes were 

detected in the faeces of 82% of dairy cattle and 53% of beef cattle, 

but EHEC O157 was isolated from only 1.5% of the samples. In 

Australia, stx genes were present in 16.7% of faecal samples from 

dairy cattle (31) and EHEC O157 and EHEC O26:H11 were isolated 

from 1.9 and 1.7% of the samples respectively. In Japan, stx genes 

were detected in the faeces of 46% of tested calves, 66% of heifers 

and 69% of cows (102); EHEC O26, O111 and O157 were isolated 

in 9 of the 78 herds tested (11.5%). In Europe, studies on STEC 

faecal shedding have been performed in many countries. The rate of 

animals carrying STEC ranged from 2.8% of the tested animals in 

the UK (208) to 75% in Norway (190). When EHEC O157 was 

isolated, the rate of positive animals ranged from 0.2% in France 
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(154)to 16.6% in Italy(16). In Spain, STEC have been isolated from 

both calves and adult cattle, with prevalence rates ranging from 20.3 

to 36.7%. In these studies, up to 83% of the tested herds were 

positive and the main STEC serogroups isolated were O8, O20, 

O22, O77, O113, O126 and O162. Most of the isolates were 

negative for the eae gene. In France, a study performed at the 

slaughterhouse indicated that 18% of faecal samples were positive 

for stx genes, and STEC were isolated from 7.9% of these samples 

(163). In another study, however, a much higher prevalence of stx 

genes (70%) was observed, and STEC were isolated from more than 

30% of the samples.(154) STEC belonging to serogroups other than 

O157 can frequently be isolated from young calves with diarrhoea. 

STEC strains pathogenic to calves usually possess the LEE, (locus 

of enterocyte effacement), produce Stx1, and belong to a restricted 

number of serogroups: O5, O26, O111, O118 (204). EHEC O118 

strains, in particular, have frequently been isolated from diarrhoeic 

calves in Germany (203),  and their zoonotic transmission to 

humans has been demonstrated (7). In investigations conducted in 
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Germany (203) and Brazil (114), STEC were isolated more 

frequently from diarrhoeic calves than from healthy calves. 

Conversely, other studies have reported higher rates of STEC faecal 

carriage in healthy than in diarrheic animals (10,159).  The results 

of the investigations on the prevalence of STEC and/or EHEC O157 

in cattle are clearly influenced by the sampling and detection 

methods that are used.   E. coli O157:H7 can be detected using 

sorbitol MacConkey agar, since unlike other E. coli serotypes, it is 

sorbitol negative; however, it is difficult to detect non-O157 STEC 

based on phenotypic traits.  Methods based on detection of the Shiga 

toxins or the Shiga toxin genes must be used.  The use of specific 

immunoconcentration procedures for EHEC O157 (193, 209)  

strongly enhances the sensitivity of the isolation methods. 

Therefore, the studies based on such procedures reported prevalence 

rates for EHEC O157 much higher that those reported in 

investigations aimed at revealing all the STEC, regardless of their 

serotype.  Antibody-coated magnetic beads used for 

immunoconcentration procedures are not available for most non-
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O157 STEC strains.  It is therefore difficult to determine whether 

the STEC/EHEC prevalence results reported reflect true differences 

in colonisation rates with O157 and non-O157 strains or are the 

consequence of the different methodologies adopted. 

 

2.2. Other ruminant species 

STEC, including EHEC O157 and other serogroups associated with 

human infections like O91, O128 and O146, have been frequently 

isolated from the intestinal content of sheep (82,158,190). EHEC 

O157 has also been found in both meat (30)and milk (164) and 

sheep are now considered as an important reservoir for human 

infection. EHEC O157 has also been isolated from goats (155) and 

goat milk has been associated with an outbreak (8). Small ruminant 

flocks may also have a relevant role in spreading STEC 

contamination in the environment (87,142). The water buffalo is 

another potential source for STEC infections. A recent survey 

conducted in southern Italy (unpublished results) (25) showed that 

buffalo dairy herds were frequently colonised by EHEC O157(1); 
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yet the organism was not found in a study conducted on mozzarella 

cheese prepared with unpasteurised buffalo milk(33). 

STEC can be found in wild ruminants, and the possible role of these 

animals as reservoirs for domestic ruminants sharing the same 

environment has been suggested. EHEC O157 has been repeatedly 

isolated from deer (161)and the consumption of deer venison has 

been associated with human infections (98,157); these episodes also 

underline the risk of products derived from private slaughtering. 

 

2.3. Other non- ruminant mammals 

STEC have been sporadically isolated from mammals other than 

ruminants, but in many cases it is not clear whether they represented 

actual hosts or merely vectors transiently colonised after contact 

with ruminant feces excrections (197). EHEC O157 strains isolated 

from companion animals, such as horses (28,187) and dogs  living 

in a farm environment and have been associated with human 

infections,. The presence of STEC, including EHEC O157, has been 

recently described in both wild and farmed rabbits (67,108, 156), 
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and the possible role of the rabbit as a source of human infections 

requires further studies.  Pigs are not considered to be a major 

source of EHEC O157 and other STEC associated with human 

infections. Prevalence rates of EHEC O157 faecal carriage ranging 

from 0.2 to 2% have been reported in pigs slaughtered in European 

countries (17,83, 94) Japan (136) and the United States (53). The 

low carriage rate observed in these studies could be the result of 

accidental exposure of pig herds to EHEC O157 through 

contamination of feedstuff or the environment with ruminant 

manure in farms that do not comply with good husbandry practices. 

However, investigations conducted in South America (18,162) 

showed a surprisingly high rate of EHEC O157 faecal carriage (8–

10%) in slaughtered pigs. These marked differences in prevalence 

may be due to differences in pig husbandry and slaughtering 

practices. 
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2.4. Birds 

STEC have also been isolated from birds. The isolation of EHEC 

O157 (195) and non-O157 STEC (118) from gull droppings has 

been reported. The gulls were not considered as a true reservoir of 

STEC but rather as potential vectors for their dissemination since a 

low carriage was found and since the birds fed on contaminated 

sites. STEC strains producing a particular variant of Stx2, 

designated Stx2f (167), have been frequently isolated from feral 

pigeons (41). Most of these strains possessed genes encoding for 

other virulence factors, such as the intimin protein and the cytolethal 

distending toxin (133). It is difficult to establish whether Sxt2f–

producing strains may represent a cause of avian disease or even a 

potential health hazard for humans. Pigeons seem to be a natural 

reservoir for these particular STEC strains, which could be host 

adapted. STEC have not been found in live chickens (6, 83) even 

though EHEC O157 strains have been isolated from retail poultry 

products (47, 108) and from the intestinal content of a turkey (83). 
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Moreover, the organism has been shown to colonise the caecum of 

chicks for long periods following experimental infection (3) 

 

3. ECOLOGY IN CATTLE FARMING 

Many studies have been performed to increase our understanding of 

the on-farm ecology of EHEC O157, in order to develop strategies 

for preventing or reducing carriage and shedding of the organism by 

cattle. 

 

3.1. Shedding and persistence 

Faecal shedding of EHEC O157 appears to be transient in cattle. It 

can last approximately one month in a same animal (5), and 

colonisation can be more prolonged in the winter than in the 

summer months (170). The load of EHEC O157 in calf faeces can 

range from 102 to 105 cfu/gram of faecal matter (170, 210) . In a 

recent study conducted on a breeding farm in Japan (201), faecal 

shedding of EHEC O157 and EHEC O26 persisted up to 10 and 

three weeks, respectively. The magnitude of faecal shedding was 
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approximately 104 cfu/gram for EHEC O157 and 102 cfu/gram for 

EHEC O26. Some strains of STEC can persist for many years in the 

same cattle herd, and this may explain the role of cattle as a 

reservoir. Moreover, the introduction of new STEC strains via feed 

and drinking water is always possible (78). The importance of the 

farm environment as a potential source or reservoir of EHEC O157 

has been extensively addressed. Lejeune et al. (113) found a 13% 

prevalence of EHEC O157 in commercial feedlot cattle throughout 

the finishing feeding period prior to slaughter, with the 

predominance and the persistence of four specific clonal types over 

a period of four months. In the USA, a same well-identified EHEC 

O157 strain persisted in a farm environment for more than two years 

(170). The strain was isolated from cattle but also from other 

animals, including birds or flies and from feed and drinking water. 

Bad husbandry conditions, such as a wet ground with faecal matter 

and urine accumulation, seem to favour the persistence of EHEC 

O157 in feedlot cattle (174). Cleaning methods and housing 

conditions are also important. In a cattle herd, a higher prevalence 
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of EHEC O157 was observed when the ground was washed with a 

jet of water, rather than by dry scraping (66). In a Swedish study, 

among calves that carried and shed EHEC O157 in their faeces in 

the spring, only those kept in a cowshed during the summer 

remained positive four months later, while the organism was not 

isolated from the calves grazing in a pasture during the same period 

(95). The persistence of STEC in calves kept in a cowshed might 

result from continuous contact between the animals and/or with 

their environment, which allows regular re-infection. 

 

3.2. Effects of the diet 

There is no clear relationship between feed composition and STEC 

faecal shedding in cattle. Some authors formulated the hypothesis 

that a grain-rich diet may induce mechanisms of STEC acid 

resistance in the rumen that favour STEC survival and faecal 

shedding (19, 44). However, different studies conducted on hay-fed 

and grain-fed cattle produced conflicting results.  Sometimes hay-

fed cattle shed EHEC O157 longer than the grain-fed animals (86, 
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130), and sometimes grain-fed animals shed EHEC O157 longer 

than cattle grazing a pasture (95). Other studies have reported no 

differences between the two categories of animals (70, 74). The 

effect of diet on the shedding of EHEC O157 was also investigated 

by the experimental infection of sheep (104): hayfed sheep shed the 

bacterium twice as long as, and in larger numbers, than sheep fed 

with a mixture of corn and pelleted alfalfa. The effect of fasting has 

also been investigated, and was shown to have only a small effect 

on faecal shedding and rumen proliferation of EHEC O157 in calves 

(79). The presence of EHEC O157 in cattle feed has been recently 

investigated in the USA.   EHEC O157 was detected in 75 of 504 

feed samples (14.9%) collected from 54 feedlots, and no correlation 

between the presence of EHEC O157 and generic coliform counts in 

feed was observed (45). Faecal contamination of grass followed by 

poor silage management may be a factor favouring the persistence 

of EHEC O157 carriage in ruminants (55). On the contrary, EHEC 

O157 did not survive a good silage fermentation process, indicating 

that properly ensiled and correctly stored grass is unlikely to be a 
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vector for the transmission of this pathogen among cattle (24). 

Experimental inoculation of lactic acid-producing bacteria in silage, 

which decreases pH more rapidly during ensiling, appears to hasten 

the elimination of EHEC O157 from the silage (2). 

The quality of drinking water is another important issue related to 

the on farm ecology of EHEC O157. The organism can survive and 

even grow in the sediments of a drinking trough contaminated with 

faeces, which may serve as a long-term reservoir and source of 

infection for cattle (52, 77, 111, 112,  170, 191). 

 

3.3. Persistence in faeces and manure 

STEC appear to be well adapted to survive in animal faeces, where 

they can remain viable for periods ranging from several weeks to 

many months (122). Experimental contamination of cattle faeces 

showed a good survival capacity when faeces were maintained 

between 15°C and 18°C (62, 120). The temperature and the water 

activity of the faeces influenced the duration of EHEC O157 

survival, which was longer (more than 70 days) when faecal 
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samples spiked with the organism were stored at 5°C, and had a 

water activity of 0.98 at the end of the storage (196). When cattle 

faeces contaminated with 108 cfu/gram of EHEC O157 were kept on 

the surface of grazing land, the count decreased by 4.0–5.0 log 10 

cfu/gram within 50 days, but the organism was still detectable in the 

surrounding soil for up to 99 days (15). Persistence of STEC in the 

soil (63, 64) favours the infection of cattle and makes environmental 

exposure a risk factor for human infection ( 35, 87, 142, 176). 

Animal wastes and effluents from farming operations, including 

manure and slurries, are frequently applied as a fertiliser to land 

used for crop or silage production and cattle grazing. The presence 

and persistence of STEC, and in particular of EHEC O157, in these 

products may therefore be an important factor in the initial infection 

and re-infection of cattle (91, 105). On the contrary, when cattle 

manure or slurry are applied on farmland in the production of food 

crops that are to be consumed in the raw or minimally processed 

state, appropriate handling of these products is necessary to control 

the spread of potentially present STEC and limit the risks of human 
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infection (76, 89). Cattle manure composting before its spread onto 

land may reduce the risk of transmission of STEC through 

contaminated vegetables (92, 93, 115). When STEC-containing 

manure is applied on land, concomitant periods of heavy rainfall can 

cause the transport of bacteria to both deeper layers of the soil by 

leaching and drains and rivers by run-off (56, 63).  EHEC O157 has 

been isolated from surface waters (110, 123) and an increased risk 

of waterborne infections was recorded immediately after cattle 

manure spreading (141). Waterborne episodes of STEC infection 

have been increasingly reported (43, 122, 145, 184)but the causative 

agent has rarely been isolated from the related water samples (1, 

26). Cattle husbandry is likely the major source of environmental 

contamination with STEC. However, it should also be considered 

that the presence of STEC may result from the release of 

contaminated wastewaters of human origin into the environment 

(107) or spreading of contaminated sewage- sludge onto the land 

(193).  
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4. EMERGING MODES OF TRANSMISSION  

 

During the 1980s, most of the outbreaks of STEC O157 infection 

were food borne and the food vehicles implicated were usually 

inadequately cooked hamburgers or other beef products and 

unpasteurised milk (71). In the past ten years, remarkable changes in 

the epidemiology of human infections have occurred. In addition to 

foods of bovine origin, several outbreaks have been associated with 

low pH products like fermented salami, mayonnaise and yogurt 

(126) This has highlighted the tolerance of E. coli O157 to acidic 

pH and its ability to survive the processes of fermentation and 

drying. In addition, waterborne outbreaks and outbreaks associated 

with other types of environment related exposures have been 

increasingly reported (122, 184). The dispersion of untreated 

manure in the environment can cause the contamination of different 

items, which can then act as secondary vehicles of human infections 

(32, 122). 
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4.1. Fruit and vegetables 

An increasing spectrum of fruits and vegetables fertilised with 

ruminant manure or contaminated during harvesting or processing 

has been involved in outbreaks (122, 184). Contaminated sprouts 

have caused episodes of salmonellosis and represent an emerging 

source of EHEC O157 (127). Viable organisms have been observed 

in the inner tissues of sprouts grown from experimentally 

contaminated seeds (90) and this is a matter of particular concern, 

since disinfection of the sprout surface could not insure the safety of 

this ready-to-eat food. Other fresh produce like lettuce, tomatoes, 

coleslaw, and others (122, 184) are established or potential vehicles 

of STEC infection. Unpasteurised fruit juices, increasingly popular 

among consumers, represent another safety concern, if the acidic 

tolerance and the low infectious dose of EHEC O157 are 

considered. Apple juice, in particular, has been frequently involved 

in outbreaks (122,184). 
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4.2. Environment-related exposures 

An increasing number of outbreaks of EHEC O157 infection have 

occurred among persons involved in outdoor activities, usually in 

summer months (184). Swimming in contaminated waters appears 

to be an important issue (121), as well as the contamination of 

drinking water supplies in rural settings, such as springs or wells. 

Water contamination frequently occurs due to runoff from land 

contaminated with animal faeces (43, 145). Outbreaks have also 

occurred among persons attending open-air events, such as fairs, 

music festivals, parties, and visits to farms or petting zoos (184). 

The sources of infection implicated include well water, exposure to 

mud contaminated with cattle faeces, and direct contact with 

animals on display. Visiting a farm is now considered an important 

risk factor for acquiring severe EHEC infections (139, 150). 

Conversely, EHEC O157 has been frequently isolated from farm 

workers in the absence of disease suggesting that farm residents 

may develop immunity, possibly by exposure to the more common 

and less virulent STEC non-O157 (4, 183, 207).  
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5. CONTROL STRATEGIES 

 

As for other zoonotic agents, having animals and raw products that 

are free from STEC is not possible in practice. However, their 

occurrence can be minimised by applying high standards of hygiene 

in all the steps of the food production chain. At the farm level, 

classical eradication strategies based on the elimination of positive 

animals is not feasible, due to the high prevalence of colonisation, 

its transient nature, and the technical difficulties in detecting low 

levels of the organism in animal faeces. Many approaches have been 

attempted to reduce the intestinal colonisation in cattle. These 

include interventions associated with the diet of the animals, the 

administration of probiotics as competitive microflora (20, 183), and 

the use of bacteriophages active on EHEC O157 (106). These 

approaches have produced inconclusive and sometimes conflicting 

results. Moreover the feed regimens and the treatments adopted in 

experimental trials are often difficult to apply to farming practices. 



 28 

Recently, experimental vaccines aimed at reducing the shedding of 

EHEC O157 in cattle were developed. Subcutaneous 

administrations of type III secreted proteins, (mainly EspA, EspB 

EspD and Tir) are able to decrease shedding of EHEC O157 by 

cattle (153). Transgenic tobacco plant cells that express the host 

cell-binding domain of EHEC O157 intimin have also been tested 

successfully in a mouse model (96). Although transgenic plants are 

not likely to be used for cattle vaccination, at least in Europe, this 

latter result suggests that an intimin-based vaccination strategy 

could be successful. However, as for other infectious diseases, good 

hygiene and management practices remain at the present the best 

way to reduce the spread and persistence of EHEC O157 on the 

farm. As discussed in the above paragraphs, these may include 

cleaning the water troughs where EHEC O157 can survive and even 

grow (77, 111, 112, 170, 171, 191), reducing faecal contamination 

and humidification of feed, and a correct preparation of silage. 

Other factors that could favour colonisation and shedding of EHEC 

O157 like sudden modifications in the diet and the stress derived 
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from movement or overcrowding should be reduced. Since 

environmental contamination may have an important role in the 

transmission of the infection to humans, the handling of the animal 

dejections represents an important issue. STEC can survive in 

bovine faeces for a considerable time (122), therefore manure and 

slurries should be properly composted to ensure sterilisation or at 

least the reduction of the microbial load (92, 93, 115). As far as the 

transmission through the direct contact with animals is concerned, 

both farmers and people visiting farms should apply hygiene 

practices. In particular, farms receiving school visits must ensure 

that adults always supervise children, facilities for hand washing are 

easily available, and areas for food consumption are clearly 

separated from those where the animals are kept. At the abattoir 

level, no specific procedures for STEC elimination can be applied. 

However, good hygiene and manufacturing practices as well as 

implementation of HACCP will contribute to reducing faecal 

contamination of carcasses. The general principles of food hygiene 

will also be effective in preventing EHEC infections at the 
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processing and retail levels of the food chain. In particular, cross 

contamination between raw and ready to eat products must be 

avoided, bearing in mind that several large outbreaks (34, 189) have 

originated from gross failures in this basic point. Microbiological 

testing of meat lots consumed by persons who have become ill 

suggests that the infectious dose for EHEC O157 might be very low 

(71, 140). This represents a strong argument for enforcing zero 

tolerance for this organism in processed food and for markedly 

decreasing contamination of raw ground beef.  
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6. THE EVOLUTION OF EHEC 

 

EHEC strains are not a homogenous pathogroup, and it has been 

suggested that they fall into at least four divergent clonal groups 

(25).  One clonal group includes EHEC strains of serotype O157:H7 

and the closely related EPEC of serotype O55:H7. A second clonal 

group includes EHEC strains of serotype O111:H8 and O26:H11. A 

third group includes EHEC strains of serotype O103:H2 and 

O45:H2. A fourth group includes many different O types, usually 

associated with the H21 flagellar antigen. The most common 

serotypes are O113:H21, OX3:H21, and O91:H21. Except for the 

last clonal group, bacteria from the other clonal groups invariably 

carry the eae gene, but otherwise they display a diverse array of 

virulence. The mechanisms underlying the evolution and emergence 

of EHEC clones are not well understood but it is now clear that the 

composition of the E. coli genome is highly dynamic. Such fluid 

gain and loss of genetic material is well illustrated by the 

comparison of the genomic sequence of EHEC O157 with the non-
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pathogenic laboratory strain K-12 genome. A 4.1-Mb sequence is 

highly conserved between the two strains and may represent the 

fundamental backbone of the E. coli chromosome. In contrast, the 

remaining 1.4-Mb sequence comprises EHEC O157-specific 

sequences. Molecular analysis suggests that EHEC acquired the 

majority of their virulence factors by horizontal transfer of genetic 

material, and the acquisition of the LEE pathogenicity island (PAI) 

and the Stx genes were two crucial steps in the evolution of EHEC 

O157 from a commensal ancestor. Genetic analyses suggest that 

EHEC O157 separated from a common ancestor of E. coli K-12 as 

long as 4.5 million years ago. The stepwise model of Feng et al. (54) 

makes specific predictions about the history of descent and the order 

of acquisition of virulence factors. Such a model predicts that EHEC 

O157:H7 and O157:H– were derived from an EPEC-like O55:H7 

ancestor that carried the LEE located at the selC site and acquired 

the bacteriophages carrying the Stx-encoding genes. As far as the 

LEE is concerned, however, it is not clear how often this transfer 

took place and which parts of the locus were involved. Like the 
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large EHEC-haemolysin plasmid, the LEE is clearly a mosaic 

structure, which arose from multiple recombination events with 

foreign DNA. Interestingly, LEE can be found in or next to tRNA 

genes at different locations on the chromosomes of different EPEC 

and EHEC clonal types, suggesting that it may have been acquired 

on more than one occasion. Despite the wealth of information 

available, further comparative studies are needed to decipher 

definitively the evolution of virulence in EHEC. However, the 

presence of 24 prophages and prophage-like elements that occupy 

more than half of the EHEC O157-specific sequences suggest a 

predominant role of bacteriophages. These prophages, including the 

Stx-transducing phages, exhibited extensive structural and 

positional diversity, implying that variation of bacteriophages is a 

major factor in generating genomic diversity among the EHEC 

O157 lineage. In addition, it was recently shown that these 

prophages do not only code for Stx, but also for effector molecules 

which are recognized by the type III secretion system encoded by 
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the LEE. Phages could be the major contributors in the evolution of 

EHEC virulence and in the emergence of new EHEC clones. (25) 

 

7. PATHOGENESIS AND VIRULENCE FACTORS 

 

An important objective of the studies conducted in recent years on 

virulence and pathogenicity has been to define the combination of 

virulence genes and the mechanisms that make a STEC strain an 

EHEC fully pathogenic to humans. The production of Stx appears to 

be essential but not solely responsible for the pathogenic effects. As 

a matter of fact, EHEC associated with severe human disease are 

usually capable of colonising the intestinal mucosa with a 

characteristic “attaching and effacing” mechanism and possess 

virulence plasmids, while these properties are significantly less 

common among STEC strains isolated from healthy cattle. An 

increasing number of additional virulence factors has been 

described, and they are usually carried by mobile genetic elements 
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like plasmids and PAIs, large genetic elements carrying virulence 

genes and inserted in chromosomal loci encoding tRNA.(25) 

 

7.1. The pathogenesis process 

EHEC are highly infectious to human beings. The infection is 

usually acquired by ingestion of contaminated food or water or by 

person-to-person spread through close contact. Outbreaks or 

incidents of illness are believed to result from a very low infective 

dose, e.g. < 100 cells, but people may carry EHEC as part of their 

transient gut microflora without disease. 

When these organisms do cause illness, very serious clinical 

manifestations can occur, including haemorrhagic colitis and HUS. 

This latter condition usually occurs in children under five years of 

age and is the major cause of acute renal failure in children. The 

pathogen and host factors that contribute to the clinical 

manifestations of EHEC infection are the subject of considerable 

ongoing investigations and the pathogenesis process is still not fully 

understood. Stx production is a prerequisite for EHEC mediated 
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diseases. The toxin is able to pass through the intestinal epithelium 

to reach its target on endothelial cells lining small blood vessels that 

supply the gut, kidney and other viscera. In addition to exacerbating 

the intestinal damage associated with infection, Stx are responsible 

for life-threatening post-diarrhoeal complications due to their action 

on glomerular and brain microvascular endothelial cells and the 

activation of prothrombotic and proinflammatory cascades that lead 

to the development of HUS and central nervous system 

complications. While the mechanism of action of Stx and the 

resultant cytotoxicity are well described, the pathogenic 

mechanism(s) leading to the profound vascular damage seen in HUS 

is less well understood. Possible contributors to pathogenesis may 

include bacterial lipopolysaccharides and the proinflammatory 

cytokines tumour necrosis factor α and interleukin-1β. 

Besides Stx production, colonisation of the host intestinal mucosa is 

another key determinant of virulence, and several virulence factors 

involved in the process have now been characterised. In conclusion, 

not all the strains of STEC are able to cause haemorrhagic colitis or 
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HUS, and those that do carry virulence determinants in addition to 

Stx.  However, it is still not clear why only the subset of STEC 

defined as EHEC have narrow host specificity and are human 

pathogens. (25) 

 

7.2. Shiga toxins 

Stx are considered to be the major virulence factor of EHEC and 

comprise a family of structurally related cytotoxins with similar 

biological activity. The two main groups consist of Stx1, which is 

nearly identical to the toxin of S. dysenteriae type 1, and Stx2, 

which shares less than 60% amino acid sequence with Stx1. The 

genetic information for the production of Stx1 and Stx2 is located in 

the genome of lambdoid prophages integrated in the STEC 

chromosome.  Several variants of Stx2 with altered antigenic or 

biological characteristics have been described, and variants of Stx1 

(Stx1d and Stx1c) have also been described.  Stx2 variants have 

been termed Stx2c, Stx2d, Stx2e and Stx2f. Besides these toxins, 

which have been reported in a relevant number of strains, several 
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reports on other Stx2 variants produced by single strains have been 

published. Epidemiological studies have revealed that Stx2 is more 

often associated with severe human disease than Stx1. Among the 

Stx2 variants, Stx2 and Stx2c have been frequently found in strains 

isolated from patients with HUS, while strains producing Stx2d are 

usually isolated from cases of uncomplicated diarrhoea. Other 

variants are produced by strains of animal origin and are rarely 

observed in human isolates: Stx2e is mainly found in STEC causing 

oedema disease in pigs, and Stx2f appears to be closely associated 

with STEC of avian origin. (25) 

 

7.3. The Locus of Enterocyte Effacement (LEE) 

Most STEC included in the EHEC group colonise the intestinal 

mucosa with a mechanism that subverts the epithelial cell function 

and induces a characteristic histopathologic lesion defined as 

“attaching and effacing”(A/E). The A/E lesion is due 

to marked cytoskeletal changes and is characterised by effacement 

of microvilli and intimate adherence between the bacteria and the 
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epithelial cell membrane, with accumulation of polymerised actin 

directly beneath the adherent bacteria. 

The complex mechanism of A/E adhesion is genetically governed 

by a large PAI defined as the LEE, and epidemiological studies have 

shown that LEE-positive strains are highly associated with severe 

human disease. LEE consists of three functionally different 

modules. The first encodes a type III secretion system (TTSS) that 

exports effector molecules. The second encodes the secreted 

proteins EspA, B, and D, which function as part of the type III 

secretion apparatus. The third encodes the adhesin “intimin” and the 

“translocated intimin receptor” (Tir), which is translocated into the 

host cell plasma membrane by the TTSS. 

Intimin mediates the intimate attachment of EHEC and also of 

enteropathogenic E. coli (EPEC) to the host cell, and its important 

role in the pathogenic process has been demonstrated. The intimin 

encoding genes (eae) present a considerable heterogeneity in their 

3’ end that encodes the C-terminal 280 amino acids involved in 
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binding to the enterocytes and Tir, and the corresponding changes in 

the amino acid sequence also represent antigenic variations. 

Based on the sequence and antigenic differences in this C-terminal 

cell-binding domain, several distinct intimin types have been 

identified and classified with a nomenclature system based on the 

Greek alphabet. The main types are termed α,β, ε, γ. Intimin α  is 

generally found in EPEC, while types γ and ε are closely associated 

with EHEC.  Intimin γ is produced by serogroups O157, O111, and 

O145, while intimin ε by serogroups O103 and O121. Intimin β can 

be found in both EPEC and EHEC, the most important EHEC 

serogroup producing intimin β being O26. Several other less 

frequent eae gene variants have been described, and a PCR typing 

scheme for their identification has been developed. It has been 

hypothesised that the wide variability in the polypeptide cell-

binding domain of intimin could play a role in the tissue tropism of 

the different intimin-producing E. coli. EPEC, which produce β 

intimins, can colonise almost all regions of the small bowel, while 
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binding of γ intimin-positive EHEC strains is restricted to the 

follicle-associated epithelium of the Peyers patches. 

In addition to Tir, LEE-positive EHEC use the TTSS to inject 

several effector proteins directly into the eukaryotic cell, where the 

normal cellular functions are subverted to the benefit of the bacteria. 

To date, seven EPEC and EHEC effector molecules have been 

shown to be injected into the host cell by the TTSS. Five 

translocated effectors are encoded by LEE: Tir/EspE, Map, EspF, 

EspG and EspH. Two effectors are encoded outside the LEE by 

lambdoid prophages: Cif and NleA/EspI. Blast analysis revealed 

that homologues of NleA/EspI are encoded by an Stx1-converting 

phage in EHEC of serotype O84:H4 (unpublished results) or by the 

phage coding for Cif. Other potential type III effectors encoded 

outside the LEE have also been identified using a proteomic 

approach. These non-LEE effectors are encoded by lambda-like 

phages or by putative PAI, such as PAI O#122, also termed SpLE3, 

integrated near tRNA pheV in EHEC O157. The set of translocated 

effector molecules tends to be unique to each pathogen: it reflects 
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the needs and specific niches of each bacterial species and could 

also determine the clinical manifestation of disease in the host. The 

repertoire of LEE encoded effectors does not  explain the full 

spectrum of pathologic phenomena induced by infections with 

EHEC in the host. The  newly identified non-LEE-encoded effectors 

will open up new areas of investigation to increase our 

understanding of EHEC-mediated diseases. (25) 

 

7.4. Other mechanisms of intestinal adhesion 

LEE-negative STEC are rarely isolated from cases of bloody 

diarrhoea or HUS and are usually not included among EHEC. A few 

exceptions have been reported in the literature, in which other 

mechanisms of adhesion could have allowed the strains to colonise 

the intestinal mucosa as efficiently as strains having the A/E 

phenotype, and hence to cause disease. STEC O111:H2 from an 

outbreak of HUS were shown to display aggregative adhesion to 

HEp-2 cells instead of the localised adhesion typical of A/E E. coli 

and to possess the genetic markers of enteroaggregative E. coli 
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instead of the LEE. Tissue culture adherent STEC of serotype 

O113:H21 have been isolated from patients with HUS. STEC O113 

strains produce an autoagglutinating adhesin, encoded by a genetic 

locus, termed saa, which could have a role in the colonisation of the 

host intestinal mucosa.(25) 

 

7.5. Other pathogenicity islands 

Genetic analysis of the complete DNA sequence of EHEC O157:H7 

showed that almost 20% of its chromosome is constituted of foreign 

DNA, which is not present in the chromosome of E. coli K-12, and 

which was probably acquired from other bacterial species through 

horizontal gene transfer. Similarly to LEE, other regions of this 

foreign DNA can be considered as putative PAI since they carry 

virulence-associated genes, show a lower GC content, and are 

inserted in tRNA loci. Some of these PAI are not restricted to EHEC 

O157, but have been observed in other EHEC serogroups and in E. 

coli strains belonging to other diarrhoeagenic groups. In particular, a 

PAI termed O#122 is present in most EHEC and EPEC, but not in 
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other groups of E. coli. In many clones, PAI O#122 and LEE are 

physically linked to form a larger mosaic PAI, and that could be the 

basis of the association with EHEC and EPEC. In EHEC O157, PAI 

O#122 is located apart from the LEE, and it has been hypothesised 

that the two islands were separated after being acquired as a unique 

large PAI, following events of chromosomal rearrangement. PAI 

O#122 carries efa1/lifA, a 10-kb virulence locus that has been 

involved with both the repression of host lymphocyte activation 

response and the adhesion to cultured cells. In vivo, the presence of 

this gene has been associated with the capability of colonising the 

intestinal tract of cattle and of inducing diarrhoea in young calves. 

The PAI O#122 of EHEC O157 possess only the 5’ region of 

efa1/lifA, but even that portion of the gene appears to have a role in 

its adherence properties. 

Another PAI first described in pathogenic Yersinia species and 

termed high-pathogenicity island (HPI) has been reported in EHEC. 

It encodes the pesticin receptor FyuA and the siderophore 
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yersiniabactin, and has been detected in EHEC O26 strains, but not 

in EHEC belonging to serogroups O157, O103 and O111.(25) 

 

7.6 Biofilm formation in E. coli.     

Biofilms are structured bacterial communities attached to a surface 

and encased in a self-produced polymeric substance.  Cells within 

biofilms have an increased tolerance to antimicrobial agents 

compared to planktonic cells, therefore, formation of biofilms is 

problematic in food processing environments.  In E. coli, quorum 

sensing mechanisms are believed to be involved in biofilm 

formation (109).  In addition, a number of surface structures, 

including curli, flagella, and fimbriae (192-147a).  Dudley et al., 

(48) identified an IncI1 plasmid in an enteroaggregative E. coli 

strain, which was named, pSERB1, encodes a type IV pilus that was 

involved with adherence to mammalian cells, plasmid conjugation, 

and adherence to surfaces.  Fourteen genes are found within the type 

4 (thin pilus) pilus locus, which are designated pilI through pilV.  

Deletion of the pilS gene that encodes the major type IV pilin 
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subunit resulted in reduced conjugal transfer of the plasmid, reduced 

adherence to polystyrene, and a reduction in mature biofilm 

formation. 

 

7.7. Plasmids 

EHEC O157 possesses a large virulence plasmid of approximately 

93-kb termed pO157.  

The nucleotide sequence of 93-kb plasmid showed that it encodes 

35 proteins, some of which are presumably involved in the 

pathogenesis of EHEC infections. The hly operon encodes four 

ORFs necessary for the synthesis and transport of the 

enterohaemolysin and confers to EHEC the enterohaemolytic 

phenotype. The hly operon is considered as the best marker of the 

presence of pO157 and is also present in large plasmids that can be 

detected in most non-O157 EHEC strains. pO157 also carries a type 

II secretion system related to the pullulanase secretion pathway of 

Klebsiella, but its function has yet to be elucidated. Other putative 

virulence factors harboured by this plasmid comprise a katalase-
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peroxidase and a serine protease, encoded by katP and espP genes, 

respectively. The involvement of these factors in EHEC 

pathogenesis is unclear, but antibodies to the espP product have 

been found in convalescent-phase sera from children who suffered 

from EHEC infection. pO157 is a dynamic structure, which includes 

different mobile genetic elements such as transposons, prophages, 

and parts of other plasmids assembled together by recombination 

events. As a consequence, the plasmid-encoded determinants are 

unevenly distributed among EHEC O157 strains. The hly operon 

and the type II secretion system are present in almost all the isolates, 

while katP and espP can be detected in two thirds of the strains. 

Another virulence gene, termed toxB, has been recently described in 

pO157 and it appears to be present in all the EHEC O157 isolates 

(186). The product of toxB seems to be involved in the colonisation 

of the host gut by influencing the expression of the LEE encoded 

type III secreted proteins and by inhibiting the activation of host 

lymphocytes. These biological activities are similar to those 

conferred by the efa1/lifAgene carried by PAI O#122. Both toxB and 
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efa1/lifA are large genes, which show a 50% mean homology in the 

amino acid sequence, although there are no significant homologies 

at the nucleotide level. It is interesting to note that EHEC O157, 

which possess toxB, carries only a small portion of efa1/lifA 

corresponding to the 5’ region of the gene. Conversely, most non-

O157 EHEC have the entire efa1/lifA but did not present toxB 

sequences (unpublished results) (25). Large plasmids resembling 

pO157 can be found in most non-O157 EHEC strains. These 

plasmids usually carry the hly operon, while other markers like the 

type II secretion system, katP and espP can be found in less than 

50% of the isolates. These findings probably reflect the remarkable 

plasticity of this group of large virulence plasmids. 
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8.  CURRENT STUDIES ON THE EHEC VIRULENCE 

PLASMID AND RESEARCH OBJECTIVES 

 

  8.1 O157:H7 and O157:H- outbreaks  

EHEC strains harbor a large plasmid that possesses genes associated 

with virulence.  An E. coli O157:H7 strain associated with an 

outbreak that occurred in Japan in 1996 possessed two plasmids, 93 

and 3.3 kb in size (118).   Analysis of the complete sequence of the 

large plasmid designated as pO157 showed similarity to F-factor 

and to R100, a transmissible drug resistance plasmid.  It encodes 

genes involved in virulence as described previously, including the 

EHEC hemolysin, HlyA, a catalase peroxidase, KatP, a serine 

protease, EspP, ToxB, which is involved in adherence, and a type II 

secretion system (etpC-O) involved in secretion of pathogenic 

factors.            

In European countries, particularly Germany, and in some non-

European countries, sorbitol-fermenting E. coli O157:H- strains are 

an important cause of diarrheal illness and HUS.  Brunder et al. (22) 
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sequenced the large plasmid of sorbitol-fermenting E. coli O157:H- 

strain 3072/96, designated pSFO157.  This plasmid was 121,239 kb 

in size, ca. 32% larger than pO157, and it lacked the katP, espP, and 

toxB genes that are found in pO157.  In another study, Brunder et al. 

(21) analyzed the large plasmids found in a number of STEC 

serotypes and in other diarrheagenic E. coli.  They found that there 

was considerable variation among the plasmids with respect to the 

gene arrangement and the presence of specific virulence genes. 

 

8.2 E.coli O26:H11 outbreaks 

Shiga toxin-producing E. coli O26:H11 is the most important non-

O157 EHEC and has been associated with many outbreaks and 

sporadic cases of hemorrhagic colitis and hemolytic uremic 

syndrome.  An E. coli O26:H11 multi-state outbreak in Germany 

caused by E. coli O26:H11 associated with a beef product known as 

"Seemerrolle" affected 11 people (198).  An outbreak due to an 

EHEC O26:H11 strain that possessed the stx1 and eae genes 

occurred in Denmark in 2007 and was linked to an organic 
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fermented cured beef sausage (50).  Other outbreaks caused by E. 

coli O26:H11 linked to contaminated food and water or from 

undetermined sources have also been reported (131, 85, 84, 124).  E. 

coli O26:H11 strains associated with illness possessed OI 122 and 

HPI (9). 

 

8.3 toxB gene 

toxB has recently been described as a new virulence gene located on 

the large virulence plasmid of EHEC O157. Its presence has been 

associated with an enhancement of bacterial adhesion to cultured 

cells  and with the inhibition of the host lymphocyte activation. 

Moreover, it has been shown to influence the expression and 

secretion of the LEE-encoded proteins. toxB is 9.5 kb in size and the 

presence of its complete coding sequence has been demonstrated 

only in the two pO157 plasmids which have been fully sequenced so 

far. Little is known about the frequency of this gene among EHEC 

O157 strains or its presence in other EHEC and EPEC strains. The 

available information refers to the presence of DNA fragments 
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corresponding to limited regions of toxB in some EHEC serogroups  

and in the plasmid of an EPEC O111 strain (186). The toxB gene in 

EHEC and EPEC strains belonging to different serogroups by using 

a combination of three PCRs and two DNA probes, altogether 

spanning most of the full length sequence of the gene, has recently 

been investigated. All of the EHEC O157 strains tested reacted with 

the three PCR primer pairs and the two probes, thus indicating the 

presence of a complete toxB gene regardless of whether the isolates 

were from human disease or from animal sources. Moreover, the 

strains belonged to different phage types and had been isolated in 

different years and different Italian regions, thus indicating that they 

were not clonally related. This suggests that toxB is a stable 

component of the pO157 plasmid. The presence of a presumably 

entire toxB gene was not restricted to EHEC O157, as positive 

reactions with all of the genetic tools employed in the study were 

also observed in a considerable proportion (50%) of EHEC O26 

strains and in a few other EHEC (O118 and O123) and EPEC (O26 

and O86) strains. E. coli O26 probably represents the most 
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important non-O157 EHEC serogroup in human infections (186). 

Furthermore, EHEC O118  and O123  have been associated with 

severe infections in calves (186). So, the presence of toxB in EHEC 

serogroups causing severe infections in both humans and calves 

may support the hypothesis that this gene has an important role in 

the pathogenesis of EHEC infections. Conversely, toxB sequences 

were not found in other EHEC serogroups, like O111 and O103 that 

are often associated with severe human infections. Sequencing of 

the 5’ region of the toxB gene of an EPEC O26 strain indicated an 

86% homology with the corresponding region of the EHEC O157 

toxB gene (186). Several EHEC and EPEC isolates belonging to 

different serogroups showed positive reactions with at least one of 

the PCRs and/or probes. This finding could be explained by the 

presence of either toxB-like genes with a higher degree of 

polymorphism or truncated forms of toxB, like that present in the 

plasmid of the EPEC O111 strain B171 (GenBank accession no. 

AB024946) (186). The studies indicate that the toxB gene harbored 

on pO157 is consistently present in EHEC O157 strains, regardless 
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of their human or bovine source. DNA sequences closely related to 

toxB are frequent in EHEC O26 and have also been detected in a 

few other EHEC and EPEC serogroups.(186) 

 

8.4 Research objectives 

Despite great efforts by various investigators, further studies on the 

mechanisms of pathogenesis and the evolution of EHEC are 

waranted.  Understanding the factors that govern the development of 

severe disease in human beings, and the colonisation of animal hosts 

will provide insights for more effective interventions on both of 

these aspects. Moreover, defining the combination of virulence 

genes and the mechanisms that make a STEC strain fully pathogenic 

will be pivotal for improving the efficacy of the diagnostics of 

human infections, surveillance of animal reservoirs, and the 

assessment of public health risks. The epidemiology of EHEC 

infections has remarkably changed during the past ten years. The 

organisms have been reported in a large variety of domestic and 

wild animal species, and an increasing number of diverse food 
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vehicles have been associated with human infections. New routes of 

transmission have emerged, like contact with animals during farm 

visits and a wide variety of environment-related exposures. In 

particular, the isolation of EHEC from a growing spectrum of 

animal species, which can either act as true natural hosts or merely 

as occasional vectors, suggests that investigations on episodes of 

human disease with a potential link to a rural environment should be 

conducted with an open mind.  Furthermore, previously identified 

and unidentified animal reservoirs, or food or environmental 

vehicles should be considered and tested for the presence of 

STEC/EHEC, including EHEC O26:H11. 

So, the objective of this study was to sequence and analyze the 

virulence plasmid in E. coli O26:H11:K60 ED21, a clinical isolate, 

to determine the similarity to other EHEC virulence plasmids.   In 

addition to the large virulence plasmid, the strain possessed 5 other 

plasmids; therefore all six plasmids were sequenced and analyzed.  

Preliminary results are presented. 
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9. MATERIALS AND METHODS 

 

9.1 Bacterial strain and growth conditions.   

E. coli O26:H11:K60 CL19(H30), isolated from an infant with 

diarrhea (103) was obtained from Dr. Mohammed Karmali at the. 

Laboratory of Foodborne Zoonoses, Public Health Agency of 

Canada, and then renamed strain ED21 at the Istituto Superiore di 

Sanitá.  This strain has been used as a reference strain for Stx1 

production (152).  For the current study, it was routinely grown in 

Luria Bertani (LB) broth (Becton Dickinson, Sparks, MD) or LB 

agar at 37°C.   

 

9.2 PCR assays to determine the presence of virulence genes.  

 To confirm the identity of the E. coli O26:H11 ED21 strain, the 

culture was plated onto LB agar, and colonies were tested for the 

presence of virulence genes and genes in the E. coli O26 O antigen 

cluster.  The PCR was used to determine if E. coli O26:H11 ED21 

possessed  the EHEC hemolysin gene, hly, using primer set MFS1F 
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and MFS1R (59), the toxB gene using primers described by Tozzoli 

et al. (186), the stx1 and stx2 genes using primer sets described by 

Fratamico et al. (60), the eae gene using primer described by 

Gannon et al. (64 a.) and the E. coli O26 wzx and wzy genes found 

in the O26 O antigen gene cluster (38).  The DNA sequences of the 

primers used are shown in Table 1.  A colony from LB agar was 

resuspended in 200 µl of the PrepMan Ultra reagent (Applied 

Biosystems) and was heated at 100°C for 10 min, followed by 

cooling and centrifugation at 16,000 x g for 2 min.  The supernatant 

containing the template DNA was used in the PCR.  For the PCR , 

the Qiagen Multitplex PCR Kit was used (Qiagen, Valencia, CA), 

and 0.5 µM of each of the primers and 2.5 µl of template DNA were 

added,    The cycling conditions consisted of an enzyme activation 

step at 95°C for 15 min, followed by 35 cycles of 94°C for 0.5 min, 

annealing at 55°C (toxB), 57°C (hly), 57°C (eae), 51°C (O26 wzy 

and wzx) for 1.5 min and extension at 72°C for 1.5 min.  There was 

a final extension step at 72°C for 10 min.   
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Table 1.   PCR primers used in this study 
Gene Primer name Primer sequence Size of 

PCR 

product 

Reference 

MFS1-F ACGATGTGGTTTATTCTGGA 

hly933 MFS1-R CTTCACGTCACCATACATAT 

166 
  

Fratamico 
et al., 1995 

SLT1-F 
TGTAACTGGAAAGGTGGAGTATA
C 

stx1 

  SLT1-R 
GCTATTCTGAGTCAACGAAAAAT
AAC 

210 
  

Fratamico 
et al., 2004 
  

SLT2-F GTTTTTCTTCGGTATCCTATTCC 
stx2 

  SLT2-R 
GATGCATCTCTGGTCATTGTATTA
C 

484 
  

Fratamico 
et al., 2004 
  

EAE-F GTGGCGAATACTGGCGAGACT eaeAGEN 

  EAE-R CCCCATTCTTTTTCACCGTCG 
 
 890 

  

Gannon at 
al., 1997 
  
 
 

O26wzx-F GCGCTGCAATTGCTTATGTA O26 wzx 

O26wzx-R TTTCCCCGCAATTTATTCAG 

152 DebRoy et 
al., 2004 

O26wzy-F TAAATTGCGGGGAAAGAATG O26 wzy 

O26wzy-R GACTTCATGGGTACCGCCTA 

276 DebRoy et 
al., 2004 

toxB.911F ATACCTACCTGCTCTGGATTGA toxB 

toxB.1468R TTCTTACCTGATCTGATGCAGC 

600  Tozzoli et 
al., 2005 

 

 

9.3 Pulsed field gel electrophoresis (PFGE).   

Since initially, the PCR assays occasionally gave conflicting results, 

PFGE was performed on several colonies obtained from LB agar 

plates to confirm the purity and identity of the strain analyzed, E. 

coli O26:H11 ED21.  The bacterial suspension was embedded in 
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agarose, lysed, washed, and digested with the restriction enzyme, 

XbaI (New England Biolabs, Beverly, MA) overnight (12-16 h) at 

37°C essentially as described in the Centers for Disease Control and 

Prevention (Atlanta, GA) “One-Day (24-28 h) Standardized 

Laboratory Protocol for Molecular Subtyping of Escherichia coli 

O157:H7, non-typhoidal Salmonella serotypes, and Shigella sonnei 

by Pulsed Field Gel Electrophoresis (PFGE)” 

(http://www.cdc.gov/pulsenet/protocols.htm) (see detailed protocol 

described below).  Electrophoresis was performed in a 1% agarose 

gel using 0.5X Tris-borate-EDTA buffer on a Chef Mapper XA 

(BioRad Laboratories, Hercules, CA), which was stained for 30 min 

at room temperature with ethidium bromide (Invitrogen, Carlsbad, 

CA) and photographed. Salmonella choleraesuis subspecies 

Braenderup (ATCC# BAA-664) was included as a reference. 

Pattern images were acquired using a BioRad Gel Doc system with 

the Multi-Analyst software program (Bio-Rad; v. 1.1) and analyzed 

using Bionumerics software program version 2.0 (Applied Maths 

BVBA, Saint-Martens-Latem-Belgium).  
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One-Day (24-28 h) Standardized Laboratory Protocol for 

Molecular Subtyping of Escherichia coli O157:H7, non-

typhoidal Salmonella serotypes, and Shigella sonnei  by Pulsed 

Field Gel Electrophoresis (PFGE). 

PREPARATION OF PFGE PLUGS FROM AGAR CULTURES 

Day 0  

Streak an isolated colony from test cultures to Trypticase Soy 

Agar with 5% defibrinated sheep blood (TSA-SB) plates (or 

comparable media) for confluent growth; stab or streak small screw 

cap tubes of TSA, HIA, or similar medium, using the same 

inoculating needle/loop. This will ensure that the same colony can 

be retested if necessary.  Incubate cultures at 37ºC for 14-18 h.  

  

3.  Prepare 1% SeaKem Gold:1% SDS agarose in TE Buffer (10 

mM Tris:1 mM EDTA,  pH 8.0) for PFGE plugs as follows:  

a.   Weigh 0.50 g (or 0.25 g) SeaKem Gold (SKG) into 250 ml 

screw-cap flask.   
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b.    Add 47.0 ml (or 23.5 ml) TE Buffer; swirl gently to disperse 

agarose.   

c.  Remove cap, cover loosely with clear film, and microwave for 

30-sec; mix           gently and repeat for 10-sec intervals until 

agarose is completely dissolved. Place flask  

in 55-60ºC water bath for 5 minutes before adding SDS.  

d.   Add 2.5 ml (or 1.25 ml) of 20% SDS (pre-heated to 55ºC) and 

mix well.   

e.   Recap flask and return to 55- 60ºC water bath until ready to use.        

4.  Label small tubes (12-mm x 75-mm Falcon tubes or equivalent) 

with culture numbers.  

5.    Prepare Cell Suspension Buffer (100 mM Tris:100 mM EDTA, 

pH 8.0)  

6.   Transfer ≈2 ml of Cell Suspension Buffer (CSB) to small 

labeled tubes.  Use a sterile polyester- fiber or cotton swab that has 

been moistened with sterile CSB to remove some of the growth 

from agar plate; suspend cells in CSB by spinning swab gently so 



 62 

cells will be evenly dispersed and formation of aerosols is 

minimized.     

Note: The minimum volume of the cell suspension needed will 

depend on size of the cuvettes or tubes used to measure the cell 

concentration and are dependent on the manufacturer’s 

specifications for the spectrophotometer, turbidity meter, or 

colorimeter.  Keep suspensions on ice if you have more than 6 

cultures to process or refrigerate cell suspensions if you cannot 

adjust their concentration immediately.  

7.  Adjust concentration of cell suspensions to one of values given 

below by diluting with sterile CSB or by adding additional cells.  

 a.  Spectrophotometer: 610 nm wavelength, absorbance (Optical 

Density) of  1.35   (range of 1.3-1.4)  

  b.  Dade Microscan Turbidity Meter:   0.48 - 0.52 (measured in 

Falcon 2054 tubes)      0.68 - 0.72 (measured in Falcon 2057 tubes)  

 c.  bioMérieux Vitek colorimeter:  ≈14-15% transmittance 

(measured in Falcon 2054 tubes)  
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CASTING PLUGS  

Label wells of PFGE plug molds with culture number.  When 

reusable plug molds are used, put strip of tape on lower part of 

reusable plug mold before labeling wells.  

Note 1:  Unused plug agarose can be kept at room temperature and 

reused 1-2 times. Microwave on low- medium power for 10 -15 sec 

and mix; repeat for 5 -10 sec intervals until agarose is completely 

melted.  

Note 2:  Proteinase K solutions (20 mg/ml) are available 

commercially, or a stock solution of Proteinase  K can be prepared 

from the powder in  sterile Ultrapure (Reagent Grade Type 1) water, 

aliquoted in 300- 500  µl amounts, and kept frozen.  Just before use, 

thaw appropriate number  of vials needed for the samples; keep 

Proteinase K solutions on ice.  Discard any thawed Proteinase K 

stock solution that was prepared from powder by the user at end of 

work day.  Store commercially prepared Proteinase K  

solutions according to directions provided by the supplier.  
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1.   Transfer 400 µl (0.4 ml) adjusted cell suspensions to labeled 1.5-

ml microcentrifuge tubes.  If cell suspensions are at room 

temperature, agarose can be added directly without pre-warming 

cell suspensions.  If cell suspensions are cold, place tubes containing 

cell suspensions in plastic holders (floats); incubate in a 37ºC water 

bath for a few minutes.  

2.   Add 20 µl of Proteinase K (20 mg/ml stock) to each tube and 

mix gently with pipet tip. (200 µl are needed for 10 cell 

suspensions.)  

3.   Add 400 µl (0.4 ml) melted 1% SeaKem Gold:1% SDS agarose 

to the 0.4-ml cell suspension; mix by  gently pipetting mixture up 

and down a few times.  Maintain temperature of melted agarose by 

keeping flask in beaker of warm water (55-60ºC).  

4.  Immediately, dispense part of mixture into appropriate well(s)  of 

reusable plug mold. Do not allow bubbles to form.  Two plugs of 

each sample can be made from these amounts of cell suspension and 

agarose.  Allow plugs to solidify at room temperature for 10-15 min.  

They can also be placed in the refrigerator (4ºC) for 5 minutes.  
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Note: If disposable plug molds are used for making plugs with 1% 

SeaKem Gold:1% SDS agarose, use  200 µl cell suspension, 10 µl of 

Proteinase K (20 mg/ml stock) and 200 µl of agarose; up to 4 plugs 

can be made from these amounts of cell suspension and agarose. 

 

LYSIS OF CELLS IN AGAROSE PLUGS 

Note: Two plugs (reusable plug molds) or 3 - 4 plugs (disposable 

plug molds) of the same strain can be lysed in the same 50-ml tube.  

1.  Label 50-ml polypropylene screw-cap or 50-ml Oak Ridge tubes 

with culture numbers.   

2.   Prepare Cell Lysis Buffer (50 mM Tris:50 mM EDTA, pH 8.0 + 

1% Sarcosyl) as follows:  

    25 ml of 1 M Tris, pH 8.0  

    50 ml of 0.5 M EDTA, pH 8.0  

    50 ml of 10 % Sarcosyl (N-Lauroylsarcosine, Sodium salt) 

Dilute to 500 ml with  sterile Ultrapure (Reagent Grade                 

Type 1) water   
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3.    Calculate the total volume of Cell Lysis/Proteinase K Buffer 

needed as follows:  

a.  5 ml Cell Lysis Buffer (50 mM Tris:50 mM EDTA, pH 8.0 + 1%  

Sarcosyl) is needed per tube (e. g., 5 ml x 10 tubes = 50 ml).  

b.  25 µl Proteinase K stock solution (20 mg/ml) is needed per tube 

of the cell lysis buffer   

c.   Measure correct volumes into appropriate size test tube or flask 

and mix well.  

  

Note: The final concentration of Proteinase K in the lysis buffer is 

0.1 mg/ml, and  is different from the concentration that was added to 

the cell suspension (0.5 mg/ml).  

 

4.   Add 5 ml of Proteinase K/Cell Lysis Buffer to each labeled 50 

ml tube.  

5.   Trim excess agarose from top of plugs with scalpel or razor 

blade (optional).  Open reusable plug mold and transfer plugs from 
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mold with a 6-mm wide spatula to appropriately labeled tube.   If 

disposable plug molds are used, remove white tape from bottom of 

mold and push out plug(s) into appropriately labeled tube.  Be sure 

plugs are under buffer and not on side of tube.   

Note: The excess agarose, plug mold, spatula, etc. are contaminated. 

Discard or disinfect appropriately.  

6.   Remove tape from reusable mold.  Place both sections of plug 

mold, spatulas, and scalpel in 70% isopropanol (IPA) or other 

suitable disinfectant.   Soak them for 15 minutes before washing 

them.   Discard disposable plug molds or disinfect them in 10% 

bleach for 30-60 minutes if they will be washed and reused.  

7.   Place tubes in rack and incubate in a 54ºC shaker water bath  or 

incubator for 1.5 – 2h with constant and vigorous agitation (150-175 

rpm).  If lysing in water bath, be sure water level is above level of 

lysis buffer in tubes.  

The N-Lauroylsarcosine, Sodium salt can be added directly to the 

other ingredients and allowed to dissolve.   
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8. Pre-heat enough sterile Ultrapure (Reagent Grade Type 1) 

water to 50ºC so that plugs can be washed two times with 10-

15 ml water (200-250 ml for 10 tubes).  

 WASHING OF AGAROSE PLUGS AFTER CELL LYSIS  

Lower the temperature of the shaker water bath or incubator to 

50ºC.  

1.   Remove tubes from water bath or incubator, and carefully pour 

off lysis buffer into an appropriate discard container; plugs can be 

held in tubes with a screened cap or spatula.   

Note: It is important to remove all of the liquid during this and 

subsequent wash steps by touching edge of tube or screened cap on 

an absorbent paper towel.  

  

2.   Add at 10-15 ml sterile Ultrapure (Reagent Grade Type 1) water 

that has been pre-heated to 50ºC to each tube and shake the tubes in 

a 50ºC water bath or incubator for 10-15 min.  

3.   Pour off water from the plugs and repeat wash step with pre-

heated water (Step 2) one more time.  
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 a.   Pre-heat enough sterile TE Buffer (10 mM Tris:1 mM EDTA, 

pH 8.0) in a 50ºC water bath so that plugs can be washed four times 

with 10-15 ml TE (300-350 ml for 10 tubes) after beginning last 

water wash.   

4.   Pour off water, add 10-15 ml pre-heated (50ºC) sterile TE 

Buffer, and shake the tubes in 50ºC water bath or incubator for 10-

15 min.  

  

5.    Pour off TE and repeat wash step with pre-heated TE three 

more times.   

6.   Decant last wash and add 5-10 ml sterile TE.  Continue with 

step 1 in "Restriction Digestion" section or store plugs in TE Buffer 

at 4ºC until needed.  Plugs can be transferred to smaller tubes for 

storage.  

Note: If restriction digestion is to be done the same day, complete 

Steps 1-3 of next section (RESTRICTION DIGESTION OF  DNA 

IN AGAROSE PLUGS WITH  XbaI) during last TE wash step for 

optimal use of time.    
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RESTRICTION DIGESTION OF DNA IN AGAROSE PLUGS 

WITH XbaI   

 

Note: A small slice of the plug or the entire plug (made in 

disposable plug molds) can be digested with the restriction enzyme.  

Restriction digestion of a small slice of the plug is recommended 

because less enzyme is required and other slices of the plug can be 

subjected to restriction analysis with other enzymes, such as AvrII 

(BlnI), SpeI, etc.  This is important when the PFGE patterns 

obtained with the primary enzyme from two or more isolates are 

indistinguishable, and confirmation is needed to determine that the 

PFGE patterns of these isolates are also indistinguishable with 

additional enzymes.  

  

1.   Label 1.5-ml microcentrifuge tubes with culture numbers; label 

3 (10-well gel) or 4 (15-well gel) tubes for Salmonella ser. 

Braenderup H9812 standards. 
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Optional Pre-Restriction Incubation Step:  Dilute 10X H buffer 

(Roche Molecular Biochemicals or equivalent) 1:10 with sterile 

Ultrapure (Reagent Grade Type 1) water according to the following 

table.  

 

a. Add 200 µl diluted H buffer (1X) to labeled 1.5-ml 

microcentrifuge tubes.  

b.  Carefully remove plug from TE with spatula and place in 

a sterile disposable Petri dish or on large glass slide.  

c.  Cut a 2.0- to 2.5-mm-wide slice from test samples with a 

single edge razor blade (or scalpel, cover slip, etc.) and 

transfer to tube containing diluted H buffer.  Be sure plug 

slice is under buffer.  Replace rest of plug in original tube that 

contains 5 ml TE buffer.   

Store at 4ºC.  
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Note: The shape and size of the plug slice that is cut will depend on 

the size of the comb teeth that are used for casting the gel.  PulseNet 

recommends that the combs with larger teeth (10-mm-wide teeth) be 

used to cast the gels because computer analysis of the gel lanes is 

more accurate and less tedious than analysis of gel lanes cast with 

combs with the smaller teeth (5.5-mm).  The number of slices that 

can be cut from the plugs will depend on the skill and experience of 

the operator, integrity of the plug, and whether the slices are cut 

vertically or horizontally (plugs made in disposable molds).   

  

d. Cut three or four 2.0-mm-wide slices from plug of the S. 

ser. Braenderup H9812 standard and transfer to tubes with 

diluted H buffer.  Be sure plug slices are under buffer.  

Replace rest of plug in original tube that contains 5 ml TE 

buffer.  Store at 4ºC.  

e.   Incubate sample and control plug slices in 37ºC water bath 

for  5-10 min or at room temperature for 10-15 min.  
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f.   After incubation, remove buffer from plug slice using a 

pipet fitted with 200-250 µl tip all the way to bottom of tube 

and aspirate buffer.  Be careful not to cut plug slice with pipet 

tip and that plug slice is not discarded with pipet tip.  

2.  Dilute 10X H buffer 1:10 with sterile Ultrapure (Reagent Grade 

Type 1) water and add XbaI restriction enzyme (50 U/sample) 

according to the following table.   Mix in the same tube that was 

used for the diluted H buffer.  

               

                                

Note: Keep vial of restriction enzyme on ice or in insulated storage 

box (-20˚C) at all times.   

3.   Add 200 µl restriction of enzyme mixture to each tube.  Close 

tube and mix by tapping gently;   be sure plug slices are under 

enzyme mixture.  
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4.    Incubate sample and control plug slices in 37˚C water bath for 

1.5-2 h.  

5.   If plug slices will be loaded into the wells (Option B, page 9), 

continue with Steps 1-4 of the next section (CASTING AGAROSE 

GEL) approximately 1 h before restriction digest reaction is finished 

so the gel can solidify for at least 30 minutes before loading the 

restricted PFGE plugs.   

CASTING AGAROSE GEL  

 A.  Loading Restricted Plug Slices on the Comb:   

1.  Confirm that water bath is equilibrated to 55- 60ºC.  

2.   Make volume of 0.5X Tris-Borate EDTA Buffer (TBE) that is 

needed for both the gel and electrophoresis running buffer according 

to one of the following tables.  
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3.   Make 1% SeaKem Gold (SKG) Agarose in 0.5X TBE as 

follows:   

a.   Weigh appropriate amount of SKG into 500 ml screw-cap 

flask.  

b.   Add appropriate amount of 0.5X TBE; swirl gently to 

disperse agarose.  

c.   Remove cap, cover loosely with clear film, and 

microwave for 60-sec; mix  gently and repeat for 15-sec intervals 

until agarose is completely dissolved.  

d.   Recap flask and place in 55-60ºC water bath.  

Mix 1.0 g agarose with 100 ml 0.5X TBE for 14-cm-wide gel form 

(10 or 15 wells)   Mix 1.5 g agarose with 150 ml 0.5X TBE for 21-

cm-wide gel form (≥15 wells)  

4.   A small volume (2-5 ml) of melted and cooled (50-60ºC) 1% 

SKG 1% SKG agarose may be wanted to seal wells after plugs are 

loaded.  Prepare 50 ml by melting 0.5 g agarose with 50 ml 0.5X 

TBE in 250 ml screw-cap flask as described above.  Unused SKG 

agarose can be kept at room temperature, melted, and reused several 
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times.  Microwave for 15-20 sec and mix; repeat for 10-sec intervals 

until agarose is completely melted.  Place in 55-60ºC water bath 

until ready to use. Alternatively, save approximately 5 ml of the 

melted agarose used to cast the gel in a pre-heated (55-60ºC) 50 ml 

flask and place in 55-60ºC water bath until used.   

  

Note: Confirm that gel form is level on leveling table, that  front of 

comb holder and teeth face the bottom of gel, and that the comb 

teeth touch the gel platform.  

5.   Remove restricted plug slices from 37ºC water bath.  Remove 

enzyme/buffer mixture and add 200 µl 0.5X TBE. Incubate at room 

temperature for 5 min.  

6.   Remove plug slices from tubes; put comb on bench top and load 

plug slices on the bottom of the comb teeth as follows:  

a.  Load S. ser. Braenderup H9812 standards on teeth (lanes) 

1, 5, 10 (10-well gel) or on teeth 1, 5, 10, 15 (15-well gel).  

b.  Load samples on remaining teeth.  
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7.   Remove excess buffer with tissue. Allow plug slices to air dry 

on the comb for ≈5 minutes or seal them to the comb with 1% SKG 

agarose (55-60ºC).  

 8.    Position comb in gel form and confirm that the plugs slices 

are correctly aligned on the bottom of the comb teeth, that the lower 

edge of the plug slice is flush against the black platform, and there 

are no bubbles (if allowed to air dry).  

 9.    Carefully pour the agarose (cooled to 55-60ºC) into the gel 

form.  

10.   Put black gel frame in electrophoresis chamber.  Add 2 -2.2 L 

freshly prepared 0.5X TBE.  Close cover of unit. (The amount of  

buffer needed depends  on whether residual buffer was left in tubing 

or if unit was flushed with water after the last gel was run.)  

11.   Turn on cooling module (14ºC), power supply, and pump 

(setting of ≈70 for a flow of   1 liter/minute).  

12.  Remove comb after gel solidifies for 30-45 minutes.  

13.  Fill in wells of gel with melted and cooled (55- 60ºC) 1% SKG 

Agarose (optional).  Unscrew and remove end gates from gel form; 
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remove excess agarose from sides and bottom of casting platform 

with a tissue.  Keep gel on casting platform and carefully place gel 

inside black gel frame in electrophoresis chamber.  Close cover of 

chamber.  

B.    Loading Restricted Plug Slices into the Wells:  

 1.   Follow steps 1-4 in Option A on pages 7 and 8 (Loading 

Restricted Plug  Slices on the Comb).  

Note: Confirm that gel form is level on gel-leveling table before 

pouring gel, that front of comb holder and teeth face bottom of gel, 

and the bottom of the comb is 2 -mm above the surface of the gel 

platform.  

  

2.  Cool melted SKG agarose in 55-60ºC water bath for 15-20 min; 

carefully pour agarose into gel form (casting stand) fitted with 

comb.  Be sure there are no bubbles.  

 3.   Put black gel frame in electrophoresis chamber.  Add 2-2.2 L 

freshly prepared 0.5X TBE. Close cover of unit. (The amount of 
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buffer depends on whether residual buffer was left in tubing, or if 

unit was flushed with water after the last gel was run.)  

4.   Turn on cooling module (14ºC), power supply, and pump 

(setting of  ≈ 70 for a flow of    1 liter/minute) approximately 30 min 

before gel is to be run.    

5.   Remove restricted plug slices from the 37ºC water bath.  

Remove enzyme/buffer mixture and add 200 µl 0.5X TBE.  

Incubate at room temperature for 5 minutes.  

6.    Remove comb after gel solidifies for at least 30 minutes.  

7.   Remove restricted plug slices from tubes with tapered end of 

spatula and load into appropriate wells.  Gently push plugs to 

bottom and front of wells with wide end of spatula.  Manipulate 

position with spatula and be sure that are no bubbles.  

a.  Load  S. ser. Braenderup H9812 standards in wells 

(lanes) 1, 5, 10 (10-well gel) or in wells 1, 5, 10, 15 (15-

well gel).   

    b.  Load samples in remaining wells.  
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Note: Loading the plug slices can be tedious; each  person has to 

develop his/her own technique for consistently placing the plug 

slices in the wells so the lanes will be straight and the bands sharp.   

8.   Fill in wells of gel with melted 1% SKG Agarose (equilibrated 

to 55- 60ºC).  Allow to harden for 3-5 min.  Unscrew and remove 

end gates from gel form; remove excess agarose from sides and 

bottom of casting platform with a tissue.  Keep gel on casting 

platform and carefully place gel inside black gel frame in 

electrophoresis chamber.  Close cover of chamber.  

  

ELECTROPHORESIS CONDITIONS  

1a.   Select following conditions on  CHEF Mapper for  Escherichia 

coli O157:H7 and  Shigella sonnei strains restricted with XbaI or 

AvrII (BlnI):  

  Auto Algorithm  

  30 kb - low MW  

  600 kb - high MW  

 Select default values except where noted by pressing "enter".  
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 Change run time to 18 - 19 h (See note below)  

 (Default values: Initial switch time = 2.16 s; Final switch time = 

54.17 s)  

 1b.  Select following conditions on CHEF-DR III  

    Initial switch time: 2.2 s  

  Final switch time: 54.2 s  

  Voltage: 6 V  

  Included Angle: 120°  

    Run time: 18-19 h (See note below)  

  1c.  Select following conditions on CHEF-DR II  

    Initial A time: 2.2 s  

    Final A time: 54.2 s  

    Start ratio: 1.0 (if applicable)  

  Voltage: 200 V  

    Run time: 19-20 h (See note below)  

  

2a. Select following conditions on CHEF Mapper for non-

typhoidal Salmonella strains restricted  
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with XbaI or AvrII (BlnI):  

  Auto Algorithm  

  30 kb - low MW  

   700 kb - high MW 

  Select default values except where noted by pressing 

"Enter".  

    Change run time to 18 - 19 h (See note below)  

  (Default values: Initial switch time = 2.16 s; Final switch 

time = 63.8 s)  

  

2b.  Select following conditions on CHEF DR-III  

    Initial switch time: 2.2 s  

  Final switch time: 63.8 s  

  Voltage: 6 V  

  Included Angle: 120°  

                                               

The same electrophoresis conditions are used for gels of Shigella 

sonnei restricted with NotI.  Other species of Shigella tested at the 
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CDC usually give satisfactory results when these electrophoresis 

conditions are used; adjustments to the initial and final switch times 

may be required to optimize separation of the bands.  

  Run time: 18-19 h (See note below)  

 2c. Select following conditions on CHEF DR-II.  

  Initial A time: 2.2s  

   Final A time: 63.8 s  

  Start Ratio: 1.0 (if applicable)  

  Voltage: 200 V  

   Run time: 19-20 h (See note below)  

 

Note:  The electrophoresis running times recommended above are 

based on the equipment and reagents used at the CDC.  Run times 

may be different in your laboratory and will have to be optimized 

for your gels so that the lowest band in the S. ser. Braenderup 

H9812 standard migrates 1.0 - 1.5 cm from the bottom of the gel.  

 Day 2  
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STAINING AND DOCUMENTATION OF PFGE AGAROSE 

GEL  

1.  When electrophoresis run is over, turn off equipment; 

remove and stain gel with ethidium bromide.  Dilute 40 µl of 

ethidium bromide stock solution (10 mg/ml) with 400 ml of reagent 

grade water (this volume is for a staining box that is approximately 

14-cm x 24-cm; a larger container may require a larger amount of 

staining solution).  Stain gel for 20 - 30 min in covered container.   

 

 Note: Ethidium bromide is toxic and a mutagen; the solution can be 

kept in dark bottle and reused 3-5 times before discarding according 

to your institution's guidelines for hazardous waste or use the 

destaining bags recommended for disposal of ethidium bromide 

(Section 10).  

2.   Destain gel in approximately 500 ml reagent grade water for 60 

- 90 min; change water every 20 minutes. Capture image on Gel 

Doc 1000, Gel Doc 2000, or equivalent documentation system.  If 
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background interferes with resolution, destain for an additional 30-

60 min.   

  

Note: If both a digital image and conventional photograph are 

wanted, photograph gel first before capturing digital image.  

3.   Follow directions given with the imaging equipment to save gel 

image as an *.img or *.1sc file; convert this file to *.tif file for 

analysis with the BioNumerics software program. 

4.   Drain buffer from electrophoresis chamber and discard.  Rinse 

chamber with 2 L reagent grade water or, if unit is not going to be 

used for several days, flush lines with water by letting pump run for 

5-10 min before draining water from chamber and hoses.  

Please note the following if PFGE results do not have to be 

available within 24-28 hours:   

1.  Plugs can be lysed for longer periods of time (3-16 hours).   

2.  The washing steps with TE to remove the lysis buffer from  

the PFGE plugs can be done for longer periods of time (30-45 min) 

and at lower temperatures (37°C or room temperature).  They can be 
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started on Day 1 and finished on Day 2 after overnight refrigeration 

of the plugs in TE.  

3.  The restriction digestion can be done for longer periods of 

time (3-16 hours).  

4.  If the lowest band in the H9812 standard does not migrate 

within 1 -1.5 cm of the bottom of the gel, the run time will need to 

be determined empirically for the conditions in each laboratory.  

   

NOTE:  CLIA LABORATORY PROCEDURE MANUAL 

REQUIREMENTS  

 

Efforts have been made to assure  that the procedures described in 

this protocol have been written in accordance with the 1988 Clinical 

Laboratory Improvement Amendments (CLIA) requirements for a 

procedure manual (42 CFR 493.1211).  However, due to the format 

required for training, the procedures will require some modifications 

and additions to customize them for your particular laboratory 

operation.  
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9.4 Plasmid purification and library construction.     

Plasmid DNA from E. coli ED21 was purified using the Qiagen 

Plasmid Midi Kit (Qiagen, Valencia, CA), and plasmids were 

visualized following agarose (0.8%) gel electrophoresis.  The gel 

contained ethidium bromide at a concentration of 0.5 µg/ml.   Three 

libraries were constructed: 

1. The plasmid DNA preparation from E. coli ED21 was 

digested with Sau 3A I (0,50 units/µg DNA) at 37°C 

for 16h. The fragments were purified from 0,7% 

agarose gel by using the QIAquick Gel Extraction Kit 

(Qiagen) and ligated using T4 DNA ligase (New 

England BioLabs) with BamHI digested pBC SK(+) 

vector (Fermentas, Glen Burnie, MD) (calf intestine 

phosphatase treated), and then, the plasmid was 

transformed into E. coli K12 DH5α (Invitrogen, 

Carlsbad, CA). by electroporation (BioRad Pulse 

Controller - cuvette size O.2 cm, capacitance 25 

microfarads, resistance 25 ohms, and voltage 2500 V).  
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The resulting clones were grown on LB agar at 37°C 

supplemented with chloramphenicol (170 µg/ml).  One 

hundred microliters of 10 mM isopropyl-1-thio-β-D-

galactopyranoside (IPTG) prepared in sterile water and 

100 µl of 2% 5-bromo-4-chloro-3-indolyl-β-D-

galactopyranoside (X-gal) prepared in 

dimethylformamide were spread onto the LB 

chloramphenicol (170 µg/ml) agar, which was allowed 

to dry prior to plating. 

2. Digestion with EcoRV + SphI (New England BioLabs) 

(0,50 units/µg DNA) at 37°C for 16h. The fragments 

were purified from a 0,7% agarose gel using the 

QIAquick Gel  Extraction Kit, ligated using T4 DNA 

ligase (New England BioLabs) into SmaI+SphI 

digested pUC19 (Fermentas) and transformed into E. 

coli K12 DH5α (Ιnvitrogen).  The cells were plated 

onto LB agar + ampicillin (50 µg/ml) supplemented 

with 100 µl of 10 mM IPTG and 100 µl of 2% X-gal.  
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3. Digestion with SmaI + SphI (New England BioLabs) 

(0,50 units/µg DNA) at 37°C for 16h.  The resulting 

fragments were purified from a 0,7% agarose gel by 

using the QIAquick Gel Extraction Kit, ligated using 

T4 DNA Ligase (New England BioLabs) with 

SmaI+SphI digested pUC19 (Fermentas), transformed 

into E. coli K12 DH5α (Ιnvitrogen), and plated onto 

LB agar + ampicillin (50 µg/ml) supplemented with the 

100 µl of 10 mM IPTG and 100 µl of 2% X-gal.  

 

 

9.5 Subculturing Colonies in Liquid Culture and Plasmid 

Purification. 

Individual bacterial white colonies selected from the LB agar plates 

described above, were transferred to liquid culture medium in two 

48-well blocks and incubated overnight with shaking on the Orbital 

Shaker at 37°C.  The BioRobot 9600 (Qiagen) and Protocol: The 

QIAprep 96 Turbo BioRobot Kit was used to extract high purity 
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DNA, which involved lysing the bacteria and purifying the plasmid 

DNA.  This method is used for purification of both low and high 

copy number plasmids.  First the cells are lysed, with detritus 

removed during filtration, the DNA is then bound onto a membrane, 

and finally, the DNA is washed and eluted into a 96-well plate.    

 

9.6 Cycle Sequencing Reaction and Clean up 

The BigDye® Terminator v3.1 Cycle Sequencing Kit (Applied 

Biosystems) was used for performing fluorescence-based cycle 

sequencing reactions on clones. BigDye sequencing reactions were 

conducted by using M13 forward, reverse and T7 primers. The 

master mix composition and amplification conditions are shown in 

table 2 and table 3. The pGEM DNA was used as control for each 

reaction.  Post-reaction cleanup of excess unincorporated dye-

terminators was performed using a CleanSEQ Kit® (Agencourt).  
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Table 2. 

MASTER MIX 1:8 dilution mix 

single reaction 

Milli-Q water 10 µL 

2.5x Buffer 7 µL 

RR mix 1 µL 

Primer (3.2 pmol/µl) 1.2 µL 

Total 19  µL 

Template(s) (80-150 ng/µl) 1.2 µL 

 

Table 3 

THERMOCYCLING AMPLIFICATION 

Initial heat  96°C   5 min 

Cycling conditions (30 cycles): 

96°C 10 sec 

55°C   5 sec 

60°C   4 min 

Soak (hold) at 4°C ∞ 

 

 

9.7 DNA sequencing, analysis, and annotation.  Sequencing was 

performed on an Applied Biosystems 3730 DNA Analyzer and an 

Applied Biosystems 3130 Genetic Analyzer (Applied Biosystems, 

Foster City, CA).   Sequence assembly and analysis of sequence 

data was performed using Sequencher software (Gene Codes Corp., 

Ann Arbor Mich. USA) and BLAST.   
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9.8 Biofilm assay  

E. coli O26:H11 ED21 was cultured overnight in LB broth. One 

hundred microliters of the culture were added to 25 ml of LB broth 

with no salt in 50-ml sterile plastic tubes. Microscope glass slides 

that were washed with Liqui-nox (Alconox, White Plains, NY), 

rinsed with distilled water, and sterilized by autoclaving were 

positioned vertically in the tubes, which were incubated at room 

temperature for 72 h. The culture was then removed, and the slides 

were gently washed once with sterile saline. The biofilm on the slide 

was fixed by the addition of 2.5% glutaraldehyde in 0.1M imidazole 

buffer (pH 7.0) for two hours at room temperature, followed by 

dehydration in a graded series of ethanol solutions (50%, 80% and 

absolute) and critical point drying from liquid carbon dioxide. The 

section of the slide containing the biofilm was cut and was sputter 

coated with a thin layer of gold, mounted directly on a multiple 

sample holder accessory, and examined and imaged in a model 

Quanta 200 scanning electron microscope (FEI Co., Inc., Hillsboro, 
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OR) operated at high vacuum in the secondary electron imaging 

mode at various instrumental magnifications for digital imaging. 

 

10. RESULTS  

10.1 Screening for virulence genes and O26-specific genes by the 

PCR. 

PCR results showed that E. coli O26:H11:K60 strain ED21 

possessed the chromosomal phage-encoded stx1 gene (fig. 5), the 

eae gene (fig.2) found in the chromosomal LEE locus, the tox B 

(fig.4) gene, hly gene (fig.3) the wzx and wzy genes (fig.1) . PCR 

results were negative for the presence of the stx2 gene.  Thus, the 

PCR results confirmed that the strain possessed the stx1 gene as 

described by Konowalchuk et al. (103), it possessed the toxB and 

hly genes, which are associated with the EHEC virulence plasmid,  

and it possessed the eae gene, which encodes the intimin protein. 
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10.2 PFGE analysis.   

PFGE was performed on several colonies from the E. coli 

O26:H11:K60 culture.  All of the colonies selected for analysis 

showed the same PFGE digestion pattern, indicating that they were 

from the same clone, and the culture was pure (Fig. 6). The 

Fig 3.  

Lane1: 100-bp ladder 
Lane 3:hly 166 bp 
Lane 4:hly 166 bp 
Lane 6:hly 166 bp 

Lane 7:hly 166 bp 

Fig  2.EHEC/EPEC 
Lane 1:100-bp  
ladder 
Lane2  eae 890 bp 

Lane 3: eae 890 bp 

 

Fig1. E. coli O26 
Lane 1: 25-bp ladder 
Lane 2: wzx 152 bp  
wzy 276 bp 

 

Fig 4 

Lane 1:100-bp ladder 
Lane2: toxB 600 bp 

 

Fig 5 

Lane 1: 100-bp ladder 
Lane 2: stx1 210 bp 
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similarity in the patterns was confirmed using Bionumerics 

software. 

 

 

 

 

10.3 Plasmids in E. coli O26:H11 ED21.    

Plasmid preparations visualized on agarose gels initially showed 

that there was only one large plasmid, approximately 75 to 95 kb in 

size.  However, when the agarose gel was allowed to run at a lower 

voltage and for a longer time, it appeared that the strain may possess 

two large plasmids, in addition to several smaller plasmids. The 1kb 

Fig.6  PFGE on E. coli O26:H11:K60  ED21 colonies 
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DNA marker, Boston BioProducts (Worcester, MA) was used. The 

strain appears to contain 6 plasmids of different sizes (1,5 - 3,2- 4,1- 

6,8- 72,4 and >90Kb see Fig. 7)  

 

 

 

 

 

 

 

 

 

 

10.4 Sequencing and analysis of plasmids in E. coli 

O26:H11:K60 ED21. 

The large virulence plasmid is greater than 90 kb in size, and 

analyses conducted thus far indicate that it contains the following 

virulence genes:  hlyA, katP, espP, toxB, genes encoding a type III 

secretion system, and genes encoding a type IV pilus.   Plasmid 1 

appears to contain the repA gene, autoregulating structural gene 

Fig. 7  

Plasmid purification from E. 

coli O26:H11 ED21 colonies 
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responsible for replication and copy number control.  The function 

of genes encoded on plasmids 2, 3, and 4 could be related to 

transport of toxins and other proteins; however, this is yet to be 

determined. In addition to the presence of virulence genes, the large 

virulence plasmid in ED21 also contains genes that encode the type 

IV or thin pilus, pilI-pilV.  This pilus is involved in surface 

interactions among bacteria, adherence to epithelial cells, and 

biofilm formation.  (Table 4) 

 

 

 

 

 

 

 Size 
(kb) 

Replicon No. of 

Genes 

Virulence 

Genes 

Resistance 

Genes 

Plasmid 1 1.5 RepA  1 None None 

Plasmid 2 3.2 None? 1 None? None 

Plasmid 3 4.1 None? 3 None? None 

Plasmid 4 6.8 Yes 5 None? None 

Plasmid 5 72.4 Yes ? None? Yes 

Plasmid 6 >90 Yes ? Yes Yes 

Table 4 
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10.5 Biofilm formation of E. coli O26:H11:K60 ED21.  

ED21 produced a strong biofilm as observed by visual examination 

and comparison to other strong biofilm-forming E. coli strains in 

our collection. The biofilm was observed at the air liquid interface.  

LB medium with no salt was used to form the biofilm, since 

previous studies in our laboratory indicated that this medium is 

suitable for E. coli strains that form biofilms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Incubation of glass slides with bacterial 
suspension for 48 h at room temperature 

 

Fig 8.Biofilm formed by 
E. coli O26:H11 ED21 on 

a glass slide 

Staining of biofilm with crystal violet 
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Fig.9 Biofilm. Scanning electron microscopy. 1000X 

Fig.10 Biofilm. Scanning electron microscopy. 25000X 
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11. DISCUSSION 

Enterohemorrhagic E. coli (EHEC), particularly, E. coli serotype 

O157:H7, are important food-borne pathogens responsible for many 

outbreaks of hemorrhagic colitis (HC) and hemolytic uremic 

syndrome (HUS).  HUS is the leading cause of acute renal failure in 

children.  Other important EHEC serogroups include O26, O103, 

O111, O145, and others.  EHEC possess several virulence factors, 

and the production of Shiga toxin is the most critical. The toxin 

cleaves a specific adenine base from the 28S rRNA, resulting in 

inhibition of protein synthesis.  Shiga toxin-producing E. coli 

(STEC) that cause HC and HUS are referred to as EHEC (69).  

EHEC also possess a pathogenicity island called the locus of 

enterocyte effacement (LEE), which encodes proteins necessary for 

attaching and effacing lesions, including intimin (Eae), an outer 

membrane protein, translocated intimin receptor (Tir), a type III 

secretion apparatus, and effector proteins translocated by the 

secretion system.  Several other candidate pathogenicity islands, 

including O island (OI) 122 have also been found in EHEC; 
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however, their role in disease is not fully clear.  The presence of OI 

122 in non-O157 EHEC has been linked to the ability of these 

strains to cause HUS and outbreaks (200).   EHEC may also  

possess genes that encode fimbrial or nonfimbrial adhesins, 

proteases, or other toxins, including cytolethal distending toxin 

(Cdt) or the enteroaggregative E. coli heat-stable enterotoxin 

(EAST1) (69).  Other virulence genes include the plasmid-encoded 

hemolysin (Hly) and the ToxB protein, which contributes to 

adherence.  

Shiga toxin-producing E. coli O26:H11 is the most important non-

O157 EHEC and has been associated with a many outbreaks and 

sporadic cases of hemorrhagic colitis and hemolytic uremic 

syndrome. The objective of this study was to sequence and analyze 

the virulence plasmid in E. coli O26:H11:K60 ED21, a clinical 

isolate, obtained from the Istituto Superiore di Sanità to determine 

the similarity to other EHEC virulence plasmids. At first, to confirm 

the identity of the E. coli O26:H11 ED21 strain, the colonies were 

tested for the presence of virulence genes and genes in the E. coli 
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O26 O antigen cluster by PCR assays. Since initially, the PCR 

assays occasionally gave conflicting results, PFGE was performed 

on several colonies obtained from LB agar plates to confirm the 

purity and identity of the strain analyzed, E. coli O26:H11 ED21. 

After plasmid purification, three libraries were constructed and 

sequenced. The strain harboured six plasmids, which were purified 

and sequenced.  Plasmid 1 appears to contain the repA gene, an 

autoregulating structural gene responsible for replication and copy 

number control.  The function of genes encoded on plasmids 2, 3, 

and 4 could be related to transport of toxins and other proteins; 

however, this is yet to be determined. The large virulence plasmid is 

greater than 90 kb in size, and it contains the virulence genes:  hlyA, 

katP, espP, and  toxB and also genes encoding a type III secretion 

system and a type IV pilus (thin pilus), pilI-pilV.  This pilus is 

involved in surface interactions among bacteria, adherence to 

epithelial cells, and biofilm formation. In fact, ED21 produced a 

strong biofilm as observed by visual examination and comparison to 

other strong biofilm-forming E. coli strains in our collection.  A 
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comparison between the E. coli O26:H11:K60 ED21 strain and 

outbreak strain E. coli O157:H7 933 (table 5) shows high similarity 

in the virulence genotype patterns, indicating that strain 

O26:H11:K60 ED21 has virulence potential.   

It is important to know the sequence of virulence genes and other 

genes that can be used for identification of EHEC O26, to enable the 

design of multiplex PCR assays to rapidly detect and identify EHEC 

O26 strains.  The E. coli O26 wzx and/or wzy, genes in the E. coli 

O26 O antigen gene cluster, could also be included in the multiplex 

PCR assays in addition to virulence genes to identify serogroup O26 

and determine if the O26 strain has genes typical of EHEC.  

Sequencing of EHEC plasmids, including the large virulence 

plasmid also helps us to identify additional biomarkers and to 

determine their evolutionary origin.  The results presented in this 

work are not yet published, and some further confirmation of the 

data is needed. 

Despite great efforts by various investigators, further studies on the 

mechanisms of pathogenesis and the evolution of EHEC are 
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waranted.  Understanding the factors that govern the development of 

severe disease in human beings, and the colonisation of animal hosts 

will provide insights for more effective interventions on both of 

these aspects. Moreover, defining the combination of virulence 

genes and the mechanisms that make a STEC strain fully pathogenic 

will be pivotal for improving the efficacy of the diagnostics of 

human infections, surveillance of animal reservoirs, and the 

assessment of public health risks. The epidemiology of EHEC 

infections has remarkably changed during the past ten years. The 

organisms have been reported in a large variety of domestic and 

wild animal species, and an increasing number of diverse food 

vehicles have been associated with human infections. New routes of 

transmission have emerged, like contact with animals during farm 

visits and a wide variety of environment-related exposures. In 

particular, the isolation of EHEC from a growing spectrum of 

animal species, which can either act as true natural hosts or merely 

as occasional vectors, suggests that investigations on episodes of 

human disease with a potential link to a rural environment should be 



 105 

conducted with an open mind.  Furthermore, previously identified 

and unidentified animal reservoirs, or food or environmental 

vehicles should be considered and tested for the presence of 

STEC/EHEC, including EHEC O26:H11. 

 

Virulence genes 

 
O157:H7 933 

 
O26:H11:K60 ED21 

 

eae* YES YES 

stx1** 

 
YES YES 

stx2** 

 
YES NO 

toxB*** 

 
YES YES 

hlyA*** 

 
YES YES 

katP*** 

 
YES YES 

espP*** 

 
YES YES 

 

 

 

 

Table 5 

**:  Chromosomal biomarkers 

***: Plasmid biomarkers 
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