“FEDERICO II”
UNIVERSITY OF NAPLES

PhD Program
“Human Reproduction, Development and Growth”

Director
Prof. Claudio Pignata

PhD Thesis

“Congenital immunodeficiencies and autoimmunity: definition of the pathogenic mechanism and identification of the molecular and genetic alteration. Identification of novel and suitable therapeutic strategies and their application”

Tutor Student
Prof. Claudio Pignata Dr. Eliana Matrecano

Academic Year 2006-2007
A mio padre e al meraviglioso

ricordo che ho di lui
Contents

Chapter 1

Scientific Background

1.1 Human Primary Immunodeficiency Syndromes page 5
1.2 Apoptosis and the control of immune responses page 7
1.3 Mechanism of the apoptosis: Non secretory pathway and secretory pathway page 8
1.4 The role of the caspase 8 in the apoptosis and in the cellular activation page 15
1.5 Animal models page 16
1.6 Genetic of caspase 8 page 19

Chapter 2

Research projects

2.1 Clustering of Distinct Autoimmune Disease and Apoptosis page 24
 2.1.1 Alteration of T cell survival in children with Clustering of Autoimmune Disease phenotype page 26
 Pubblication page 29
 2.1.2 Immunological characterization of patients with Clustering of Autoimmune Disease phenotype page 35
2.1.3 Apoptosis in the physiology and in the pathology of immune response

2.2 Peripheral GH insensitivity is a distinct disorder in Idiopathic Short Stature

2.2.1 Peripheral GH insensitivity: a post-receptorial defect

2.2.2 Abnormal GH Receptor Signaling as a marker for peripheral GH insensitivity

2.3 Human Severe Combined Immunodeficiency (SCID) phenotype

2.3.1 Immunologic reconstitution after bone marrow transplantation in human Nude/SCID phenotype

2.3.2 Molecular screening for the Nude/SCID gene alteration in isolated population

2.4 A crosstalk between Immune System and Endocrine System

2.4.1 X-SCID phenotype associated with growth hormone hyporesponsiveness
2.4.2 Functional Interaction of Common Gamma Chain
and Growth Hormone Receptor Signaling Apparatus page 120

Publication page 122

2.5 Brain Migration Disorder and Immune System page 132

2.5.1 Combined defect of neuronal migration and
hyperactivity of Fyn Tyrosine Kinase page 134

Publication page 136

Chapter 3

Technologies

3.1 Evaluation of Fas-induced cell death page 141

3.2 Molecular analysis of the Fas and caspase-8 genes page 141

3.3 Cells and cell cultures page 143

3.4 Proliferative assay page 143

3.5 Flow cytometry page 143

3.6 Natural Killer cell function page 144

3.7 Cell stimulation and protein extraction page 144

3.8 Western blotting page 145

3.9 Confocal microscopy page 145
Chapter 4

4.1 Summary page 147
4.2 Acknowledgement page 148
4.3 Curriculum page 149
Chapter 1

Scientific Background

1.1 Human Primary Immunodeficiency Syndromes

Primary immunodeficiency diseases (PIDs) represent a group of most heterogeneous syndromes characterized by development or functional defect of the immune system. More than 130 inherited conditions described immunodeficiencies exist (Chapel, H. 2003; Fischer, A. 2001; Buckley R. H. 2000). Clinical presentation is highly variable, ranging from various patterns of microbial susceptibility to allergy, lymphoproliferation or autoimmune manifestation the most of these syndromes are monogenic and lead to defects in any aspect of the immune response. A great contribution to understanding the genetic basis of PIDs came up from recent report on using tools developed to study the human genome, approximately 100 genes associated to PIDs have been identified so far (Chapel, H. 2003; Fischer, A. 2001; Buckley R. H. 2000).

Along with classical form in with there are clear sign of immune defect there are often several form in which the clinical features of immune defect are not completely clear so many cases are misdiagnosed. In many cases, inherited diseases have led to the identification of new gene that are crucial in immune cell development or effector function, thus contributing to homeostatic mechanisms that keep the immune system in check to prevent overt autoimmune
disease. In particular, in the last years the attention has been focused on the several form of ID in which an alteration of homeostatic mechanism is involved.

The process which is involved in the control of immunological homeostasis named apoptosis or programmed cell death that exert its important role through specialized cells. These cells play their role of maintenance of the immune homeostasis through two principal mechanism: the secretory and non secretory pathway that will be illustrated below.
1.2 Apoptosis and the control of immune responses

Apoptosis is a programmed cell death mechanism involved in normal cell turnover which can be induced by a variety of stimuli to eliminate damage, infected or useless cells. Apoptosis is essential for the development of vertebrates, being involved in elimination of interdigital webs, palatogenesis, haematopoietic cell homeostasis and development of intestinal mucosa and retina (Denis F. et al 1998). Apoptosis is characterized morphologically by condensation of nuclear chromatin, internucleosomal cleavage of DNA, compaction of cytoplasmatic organelles, decrease in cell volume and loss of plasma membrane asymmetry resulting in recognition and phagocytosis (Denis F. et al 1998). Inappropriate cell death plays a role in pathological condition such as cancer, autoimmunity and neurodegenerative diseases (Denis F. et al 1998).

Apoptosis plays a key role in the control of immune response, infact, the majority of lymphocytes that in vivo expand and proliferate in response to foreign antigens, subsequently, will die to maintain a constant cell number. During the initial expansion phase of an immune response, growth factors and cytokines participate in the process, leading to T- and B-cell proliferation after encountering the antigens. These agents, in a highly regulated fashion, are responsible for delivering cell signals that sustain the growth and survival of T cells. At the end of an immune response apoptosis occurs to limit cell growth, thus restoring immunological homeostasis (Busiello R. et al 2004).
1.3 Mechanism of the apoptosis: Non secretory pathway and secretory pathway.

During the last decade, major advances were made in understanding the complex regulatory mechanism of the cell concerning the control of its own death. Several molecular pathways have been unraveled, and many proteins playing a role in these pathways have been described (Jutte van der Werff ten Bosh, Pediatr Drugs 2003). Actually, it is common knowledge that the apoptosis is activated by non secretory and secretory pathways (Rieux- Laucat F. et al 2003).

In particular, the non secretory pathway functionally specialized membrane receptors. These receptors, called death receptors, belong to TNF-receptor (TNF-R)/NGF-receptor (NGF-R) superfamily which contain cysteine-rich domains (CRDs) in the extracytoplasmic region. The extracellular portion of these proteins is important for ligand binding. Furthermore, these proteins are characterized by the presence of a functional domain named “death domain” (DD) in the cytoplasmic region, that binds the cytoplasmic signaling proteins essential to induce apoptosis (Kischkel F.C. et al 1995). Fas, also known as CD95 or Apo-1 or TNFRSF6 belongs to this family of proteins and is the most efficient inducer of apoptosis in the lymphocytes. The molecule consists of 3 extracellular CRDs and of 80 amino acid residues in the intracellular DD. Fas ligand (FasL), molecule that belong to the TNF superfamily of the type II transmembrane proteins activate this receptor. The intracellular and extracellular domains of FasL are located in the N- and C-terminal regions,
respectively. The receptor-binding domain is located at the very end of the C-terminus, and deletion of at least three amino acids from this region is sufficient to interfere with interactions with its receptor, Fas (Kavurma M.M. et al 2003). After ligand binding, three molecules of Fas assemble into complexes. Fas signaling occurs through the interaction of Fas with the Fas Associated Death Domain (FADD), a cellular adaptor and, subsequently, with procaspases 8 and/or 10 in a death inducing signaling complex (DISC) (Rieux-Laucat F. et al 2003). This complex serve to bring two or more caspase 8 precursors in close proximity, allowing for intermolecular autoproteolytic activation. The active form of caspase 8 converted the procaspase 3 in caspase 3 (active enzyme) by proteolytic processing with a cascade model. This effector caspase cleaved specific substrate inactivating or deregulating protein involved in DNA repair, mRNA splicing and DNA replication.

Therefore the caspases contribute to apoptosis through disassembly of cell structures, they disintegrate the cell into apoptotic bodies and they induce the cell to display signals that mark it for phagocytosis (Thornberry et al 1998).(Fig. 1)
Fig. 1: Non-secretory pathway
In the secretory or calcium-dependent pathway, cytotoxic T cells (CTLs) and Natural Killer cells (NK) are key effectors for the elimination of virus-infected cells, and they deliver a lethal hit to their targets through involving a series of serine proteases called granzymes (Grz) and perforin (PRF1).

PRF1 is present in granules of CTLs and NK cells. Cytotoxic granules gather at site of contact between the CTL and the target cell, known as the immunological synapse. The granule membrane fuses with the cell membrane and releases the contents of the granules in a process referred to as exocytosis. This results in rapid death of the target cell. Secreted PRF1 inserts into the lipid bilayer thorough specific receptor, while the granzymes are potent activator of the caspases. In fact they induce the cleavage of the caspases, including the caspase 3 (Darmon A. J. et al 1995). The most recent model shows that the adhesion of the cytotoxic T lymphocytes to the target cell, via the interaction between the TCR and the antigen-MHC complex, triggers a Ca\(^{2+}\)-dependent degranulation process in the effector cells. The degranulation process, causes the release of PRF1, which recognizes the mannose-6-phosphate receptor (MPR), thus leading to a macromolecular complex, along granzymes. This macromolecular complex results in the target cell lysis. (Fig. 2)

Eleven granzymes (Grz A-H, M and N) have been described (Smyth et al 1996). Ten of these are expressed in mice and five in humans (A,B,H,K and M) (Smyth and Trapani 1995, Trapani et al 2000). Among these, the granzyme B is an caspase because cleaved the substrates after
aspartic acid residues and so triggering apoptotic cell death either directly, or indirectly via the activation of cellular caspases (for example caspase 3).

Therefore, the caspases plays a critical role in the mechanism of apoptosis. They are members of a large family of proteases whose members have distinct roles in inflammation and apoptosis. In apoptosis, the caspases function in both cell disassembly (effector) and in initiating this disassembly in response to proapoptotic signals (initiator). Thirteen caspases have been identified in the mammalian cells, the effector caspases 3, 6,7 and the initiator caspases 1, 2, 4, 5, 8, 9, 10, 14. (Figure 3). They share similarities in amino acid sequence, structure and substrate specificity. Caspases are among the most specific of proteases, with an unusual and absolute requirement for cleavage after aspartic acid. Recognition of at last four amino acids NH-terminal to the cleavage site is also a necessary requirement for efficient catalysis. The preferred tetrapeptide recognition motif differ significantly among caspases and explain the diversity of their biological function (Thornberry et al 1998).
Fig. 2. Evolving models of CTL/NK-secretory pathway.

A The initial model, which was developed in the early 1980s when perforin was first purified, emphasized the role of perforin as lytic molecule. The target cell died because of loss of plasma membrane homeostasis, with excessive uptake of water and loss of intracellular contents. B With the realization that granzymes are involved in the inducing cell death cooperatively with perforin, and that many cells die by apoptosis, the lytic model was adapted to accommodate the passive diffusion of granzymes into the target cell cytosol, where they could access key substrate (caspase), leading to death. C The next main findings to be accommodated in the model during the mid to late 1990s were that: granzymes enter target cells by endocytosis
1.4 The role of the caspase 8 in the apoptosis and in the cellular activation

Recently, a new clinical phenotype was found, where T, B and NK immunodeficiency has been observed together with an ALPS-like phenotype. An important study shows the existence of pleiotropic defects in lymphocyte activation caused by caspase 8 mutations. Chun et al. bring that caspase 8, well known for its killer effect, plays also an important role in the lymphocytes proliferation. The authors in their study have described a group of patients with a severe functional deficit of caspase 8. In particular, they have shown that mutations in homozygosis in caspase 8 gene can produce a condition of multiple autoimmunity and immunodeficiency. Clinical examinations showed that subjects carriers of this mutation in homozygosis exhibited splenomegaly, lymphadenopaty as sign of the involvement of the reticular-endothelial system, reduced Fas-induced apoptosis, recurrent respiratory infections, low levels of serum Ig without isotipic switch, Virus Herpes Simplex infections and a combined T, B and NK immunodeficit.

The existence of autoimmunity together with immunodeficiency supports the hypothesis that the same genes, involved in the control of the immune response are also responsible of the activation and cellular proliferation.
1.5 Animal models

The existence of animal models and the generation of knock out mouse with mutations of single gene and analysis of related clinical phenotypes greatly contributed to ameliorating our knowledge on the pathogenesis of complex syndrome of immunodeficiency. Mice lpr and gld have mutations in Fas and FasL genes, respectively, (Nagata et al., 1995) and these mutations lead to loss of function. These mice have a clinical phenotype characterized by high levels of auto-antibodies and considerable accumulation of activated and autoreactive lymphocytes in secondary lymphoid tissues with consequent involvement of lymphoreticular system (Rieux-Laucat F. et al., 2003). Consequently, mice show autoimmune disorders, splenomegaly and lymphadenomegaly (Rieux-Laucat F. et al., 2003). Altered homeostasis of T and B cells is also been described as motive of prevalent lymphoproliferative disorders. In addition, these mice show an increase of TCR α/β +, CD4- and CD8- double negative in peripheral blood, due to defective intrathymic maturation.

Homozygous targeted disruption of the mouse caspase 8 gene was found to be lethal in utero (Varfolomeev et al., 1998). The most important feature of the abnormal phenotype of the casp8\(^{-/-}\) mutant was marked hyperaemia in the abdominal area, superficial capillaries and other blood vessels. Disruption of the casp8 gene appears to result in a dramatic primary or secondary depletion of the haematopoietic precursor pool. Histological examination in mutant embryos reveals a congested accumulation of erythrocytes in liver and in blood vessels areas. Normal embryonic liver tissue, with its characteristic early
haematopoietic elements, and early liver cells are visible only in the cortical area. The casp8 null embryos also exhibit impaired heart muscle development, in fact the ventricular musculature is thin and in some cases not different from early mesenchyme. In fibroblast strains derived from these embryos, the TNF receptors, Fas/Apo1 and DR3 are able to activate the Jun N-terminal kinase and to trigger IκBα phosphorylation and degradation. They failed, however, to induce cell death. These findings indicate that caspase 8 plays a necessary and non redundant role in death induction by several receptors of the TNF/NGF family and serves a vital role in embryonic development.

Because caspase 8 deletion is associated with embryonic lethality in mice, has been generated a conditional knock-out mouse that have consented to study in vivo the nonapoptotic function of caspase 8. This murine model, generated with T cell specific deletion of caspase 8 (tcasp8−/−), showed T cell lymphopenia, defective activation-induced T cell proliferation, defective T cell responses to viral infection that were associated with defective T cell-death induced by CD95 (Salmena et al 2003).

Furthermore a new study on mouse tcasp8−/− model reported the long-term physiological consequences of caspase 8 deficiency. This study showed that tcasp8−/− mice develop an age-dependent lethal lymphoproliferative and lymphoinfiltrative immune disorder characterized by lymphoadenopathy, splenomegaly, and accumulation of T cell infiltrates in the lungs, liver, and kidneys. Peripheral casp8−/− T cells manifest activation marker up-regulation and are proliferating in the absence of any infection or stimulation (Salmena et
al 2006). Interestingly, the condition described in tcasp8^{−/−} mice manifests features consistent with the disorder described in humans with Caspase-8 deficiency and support the hypothesis that this immune disorder is different from autoimmune lymphoproliferative syndrome (Salmena et al 2006). These findings suggest that tcasp8^{−/−} mice may serve as an animal model to evaluate caspase-8–deficient patient prognosis and therapy.
1.6 Genetics of Caspase 8.

The human caspase 8 (CASP 8) gene is localized to chromosome band 2q33-34 and consists of ten exons spanning ~30Kb (Fig. 3). The structure of the human gene, corresponding to the open reading frame (ORF) portion of the mRNA, is encoded by eight exons and the coding sequence beging in exon 3. CASP 8 is expressed as proenzyme and contain three domains: an NH$_2$-terminal domain contain two DEDs domain, a large subunit (~18 KD) and a small subunit (~10 KD) contain two cysteine protease domain. One of the DEDs is encoded by exon 3, whereas the second is encoded by exons 4 and 5 and these are involved in the regulation of activation (see below). The linker region, located between the DEDs and cysteine protease domain, is encoded by exons 6-8. The cysteine catalitic domain are encoding by exons 9-10. The activation of the caspase 8 involves proteolytic processing between domains, followed by association of the large and small subunits to form a heterodimer. This processing, after aspartic acid, can be performed either autocatalytically or in a cascade by enzymes with similar specificity. Actually, nine different isoforms of caspase 8, all generated by alternative splicing, have been found. Analysis of human adult tissue demonstrated that caspase 8 mRNA is very little express in testis, skeletal muscle, kidney and brain. The highest level of expression was found in pheripheral blood leukocytes, consistent with caspase’s 8 role in the death of peripheral T cells (Grenet et al 1999, Thornberry et al 1998).
Fig. 3. Caspase 8 gene and protein structure
References

(Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. *EMBO J.* 14(22), 5579-88

Chapter 2

Research projects

2.1 Clustering of Distinct Autoimmune Disease and Apoptosis

Even though distinct autoimmune disorders may be associated in the same individual, only rare patients exhibit a clear clustering of different autoimmune diseases, which are indicative of a common polyreactive autoimmune process (Jonsson et al 1996). Several studies documented a linkage between defined HLA molecules and certain autoimmune disorders, such as rheumatoid arthritis (RA) (Brown et al 1998), insulin-dependent diabetes mellitus (IDDM) (Nepom et al 1998), and celiac disease (CoD) (Fernandez-Arquero et al 1998). Whilst HLA molecules may contribute to the predisposition to a certain disease, the mechanism responsible for clustering in a single individual is still unknown.

Programmed cell death or apoptosis is a finely regulated biological mechanism involved in tissue differentiation and homeostasis (MacDonald HR et al 1990, Raff MC 1992). In immune response, apoptosis exerts a suppressive influence by limiting clonal expansion and by participating in intrathymic negative selection of the T cell receptor (TCR) repertoire (Blakman M et al 1990). Interaction between Fas and Fas ligand induced apoptosis in several lymphoid cell lines and long-term activated peripheral T cells (Nagata S. 1997) by activating a death signaling pathway that involves several cysteine proteases
named caspases (Cohen GM et al 1997; Salvesen GS et al 1997) (see section 1.3).

An acidic sphingomyelinase-producing ceramide, that induces mitochondrial alterations probably mediated by GD3-ganglioside (De Maria R et al 1997) is also activated, even though its role in Fas signaling is still uncertain (Hsu SC et al 1998; Watts JD et al 1997). Inherited loss-of-function mutations of the Fas or FasL genes were reported in association with the autoimmune lymphoproliferative syndrome (ALPS), characterized by haematological autoimmunities and non-malignant lymphadenopathy with expansion of TCR α/β CD4-CD8- double-negative (DN) T cells (Fisher GN et al 1995; Riex-Laucat F et al 1995; Drappa J et al 1996; Bettinardi A et al 1997; Pensati P et al 1997). Functional Fas deficiency has also been reported in children with clinical findings similar to ALPS, but no DN T cell expansion and Fas mutations, indicating that alteration of other molecules in the Fas signalling pathway causes an ALPS-like syndrome (Dianzani U. et al 1997).
2.1.1 Alteration of T cell survival in children with Clustering of Autoimmune Disease phenotype

In the first phase of this study we evaluated Fas- and ceramide-induced cell death on T cells from three children affected by clustering of distinct autoimmune diseases (CAD) to assess whether a dysregulation of the T cell switching-off system may be implicated in the pathogenesis of intense polyreactive autoimmunity.

Of the three patients enrolled in this study, two patients were selected because affected by insulin-dependent diabetes mellitus (IDDM) associated with intense autoimmune disorders affecting other organs. Patient 1 showed Coeliac Disease (CoD), autoimmune thyroid disease and juvenile rheumatoid arthritis (JRA) in association with IDDM. Patient 2 showed IDDM and localized scleroderma. Patient 3 had CoD, vasculitis, recurrent episodes of fever with arthritis and iridociclitis. All patients displayed serum autoantibodies and several features similar to ALPS. The molecular and cytofluorimetric analysis revealed that Patient 1 displayed low Fas expression both at transcript and protein level associated with expansion of DN T cells. Her resistance to Fas-induced cell death and sensitivity to ceramide were in line with a defect directly involving Fas, as that described in ALPS type Ia. However, no causal mutation has been identified in Fas cDNA. One possibility is that causal mutation may be located in unscreened gene regions, such as the promoter region, intronic splice sites, or generally in genomic DNA.
In patients 2 and 3 no expansion of DN T cells was found and Fas expression was normal. In patient 3 both Fas- and ceramide-induced cell death was abnormal, while in patient 2 only ceramide failed to induce a proper cell death. In these two patients, a further Fas transcript was found that retains intron 5 expected to encode for a truncated protein lacking the transmembrane and intracellular regions. The aberrant transcript was also observed in the healthy mother and brother of patient 3. Sequence analysis did not reveal any change in cDNA, which could explain the abnormal splicing. However, we have been unable to detect this transcript in 11 normal donors. Whether the expression of this form is implicated in the pathogenesis of the polyreactive syndrome remains to be established.

Soluble forms of Fas are expected to inhibit Fas but not ceramide-induced cell death. Whereas patient 2 was sensitive to Fas trigger and resistant to ceramide, the patient 3 was resistant to both stimuli. It is conceivable that low doses of soluble Fas may not inhibit cell death induced by high doses of anti-Fas MoAb in the vitro assay, thus explaining the normal Fas function displayed by patient 2. Thus the production of the putative soluble form of Fas could inhibit Fas function in vivo and be a cofactor for development of the polyreactive autoimmune disease when associated with other genetic and environmental factors. The current opinion is that Fas triggering activates a caspase cascade leading to cell apoptosis. The generation of ceramide is an alternative pathway that seems to boost the caspase pathway (De Maria R et al 1997), even though the role played by ceramide in Fas signalling is still debated (Hsu SC et al 1998;
Watts JD et al 1997). Moreover the system is under the control of several inhibitors belonging to the bcl-2, FLIP and IAP families (Cronin CC et al 1997).

Therefore, in both patients 2 and 3, the overt disease and the decreased function of the death pathway triggered by ceramide could be explained by the concurrence of other genetic factors hitting the pathway downstream from FAS. These factors may hit other systems involved in apoptotic induction, such as TNF, trail and granzyme systems, which use apoptotic pathways partially overlapping that of Fas (Cronin CC et al 1997; Golstein P 1997).

It is noteworthy that our patient 2 was resistant to ceramide, but responded normally to Fas triggering, which shows that the Fas pathway can also function normally when the ceramide pathway is unfunctional and suggests that alteration of T cell switching-off systems that are independent of Fas may play a role in autoimmunity.

The data reported in this work indicate that polyreactive autoimmune syndromes may be associated with heterogeneous alteration of the immune response switching-off system.

These results has been published on the Clinical and Experimental Immunology see below for the manuscript.
Clustering of distinct autoimmune diseases associated with functional abnormalities of T cell survival in children

Department of Pediatrics, Federico II University, Naples, Departments of Paediatrics and Genetics, University of Turin, Turin and Department of Medical Science, University 'A. Avogadro' of Eastern Piedmont, Italy

(Accepted for publication 23 March 2000)

SUMMARY
To ascertain whether alterations of lymphocyte switching off may be associated with clustering of autoimmune diseases in children, Fas- and C2-ceramide-induced cell death was evaluated on T cell lines derived from three patients affected by clustering of autoimmune disorders. Three patterns were found: patient 1 was resistant to Fas- and C2-ceramide, patient 2 was resistant to Fas, but sensitive to C2-ceramide, patient 2 was resistant to C2-ceramide, but sensitive to Fas. By contrast, Fas- and C2-ceramide-induced cell death was normal in five children with systemic juvenile rheumatoid arthritis, five children with insulin-dependent diabetes and 10 age-matched healthy controls. Surface expression of Fas was low in patient 1, but normal in patients 2 and 3. Together with normal Fas transcripts, patients 2 and 3 displayed a transcript 152 bp longer than the normal one retaining intron 5. Our data indicate that polyreactive autoimmune syndromes may be associated with heterogeneous alteration of the immune response switching-off system.

Keywords: polyreactive autoimmune diseases, cell apoptosis, Fas

INTRODUCTION
Even though distinct autoimmune disorders may be associated [1,2], only rare patients exhibit a clear clustering of different diseases based on a polyreactive autoimmune (PA) process [3]. Several studies documented a linkage between defined HLA molecules and certain autoimmune disorders, such as rheumatoid arthritis (RA) [4], insulin-dependent diabetes mellitus (IDDM) [5], and coeliac disease (cCoD) [6]. Whilst HLA molecules may contribute to the predisposition to a certain disease, the mechanism responsible for clustering in a single individual is still unknown.

Programmed cell death or apoptosis is a finely regulated biological mechanism involved in tissue differentiation and homeostasis [7,8]. In immune response, apoptosis exerts a suppressive influence by limiting clonal expansion, and by participating in intrathymic negative selection of the T cell receptor (TCR) repertoire [9]. Fas is a transmembrane molecule belonging to the tumour necrosis factor (TNF) receptor superfamily, and interacts with the Fas ligand (Fasl), a type II transmembrane molecule. Fas ligation induces programmed cell death in several lymphoid cell lines and long-term activated peripheral T cells [10] by activating a death signalling pathway that involves several cysteine proteases named caspases [11,12]. An acidic sphingomyelinase-producing ceramide, that induces mitochondrial alterations probably mediated by CD95-ganglioside [13], is also activated, even though its role in Fas signalling is still uncertain [14,15]. Inherited loss-of-function mutations of the Fas or Fasl genes were reported in association with the autoimmune lymphoproliferative syndrome (ALPS), characterized by haematological autoimmunities and non-malignant lymphadenopathy with expansion of TCR αβ CD4 CD8 double-negative (DN) T cells [16-20]. Functional Fas deficiency has also been reported in children with clinical findings similar to ALPS, but no DN T cell expansion and Fas mutations, indicating that alteration of other molecules in the Fas signalling pathway causes an ALPS-like syndrome [21]. This possibility has been recently confirmed in two patients with an ALPS-like clinical pattern who displayed mutations of caspase-10 [22].

In this study we evaluated Fas- and ceramide-induced cell death on T cell lines from three children with clustering of distinct autoimmune diseases to assess whether a deregulation of the T cell switching-off system may be implicated in the pathogenesis of intense polyreactive autoimmune.

© 2000 Blackwell Science
PATIENTS AND METHODS

Patients

Two patients with IDDM were selected because of its association with severe autoimmune disorders affecting other organs. The diagnosis of IDDM was performed according to the following American Diabetes Association criteria: fasting hyperglycaemia (>7.8 mmol/l), ketonuria, and insulin dependence. Patient 1 showed CoD, autoimmune thyroid disease and juvenile rheumatoid arthritis (JRA) in association with IDDM. She displayed serum anti-thyroid autoantibodies. The diagnosis of JRA was established according to the American College of Rheumatology criteria [23]. Patient 2 showed IDDM and localized scleroderma. He displayed serum antimuclear autoantibodies. No other signs of lymphoreticular involvement were evident. Patient 2 had a sister who developed IDDM, but not scleroderma and did not display serum autoantibodies. Their parents were not consanguineous. In the maternal lineage, two subjects suffered from RA and uveitis, and from autoimmune thyroiditis, respectively. Patient 3 had CoD, vasculitis, recurrent episodes of fever with arthritis and iridocyclitis. Major features of these patients are illustrated in Table 1.

There were no serological signs of recent infectious disease, including infections from Epstein–Barr virus (EBV), cytomegalovirus, HIV, hepatitis C virus, Borrelia burgdorferi. All patients had hypergammaglobulinaemia, that was associated with IgA deficiency in patient 1. No patient had thrombocytopenia or haemolytic anaemia. Standard procedures were carried out to assess the involvement of other organs. As shown in Table 1, the two patients with IDDM were receiving insulin autoantibodies, and non-steroidal anti-inflammatory drugs (patient 1), or β-lactamilline (patient 2). Patient 3 occasionally received prednisone during acute episodes of uveitis. Histological evaluation of skin biopsies from patient 2 revealed thickening of epidermis and loss of skin adnexa, the dermis was widened by an increased amount of collagen. A series of normal controls was also included after informed consent. 11 adult subjects were used as controls for cDNA sequencing analysis; 65 adult and 10 age-matched healthy subjects were used to set the normal range for the cell death assay. Moreover, five age-matched children with systemic RA and five children affected only by IDDM were also included.

Immunophenotype analysis

Expression of surface markers was detected by direct immunofluorescence and indirect immunofluorescence analysis (FACScan; Becton Dickinson, San Jose, CA). The following MoAbs were used: anti-CD3 (Leu-4), -CD4 (Leu-3a), -CD8 (Leu-2a), -CD19 (Leu-12), -CD56 (Leu-19), -TCR α/β (Becton Dickinson), and -Fas (Immunotech, Marseilles, France). CD4 and CD8 DN TCR α/β* cells were detected by two-colour immunofluorescence using FITC-conjugated anti-CD4 MoAb and PE-conjugated anti-CD8 and CD25 MoAbs. HLA-DR, CD25 and Fas were detected by two-colour immunofluorescence on resting or activated T cells using PE-conjugated anti-CD3 MoAb and FITC-conjugated MoAb to HLA-DR, CD25 (Becton Dickinson), and Fas (Chemicon, Temecula, CA). Non-specific background fluorescence was established with the appropriate isotype-matched control MoAb (Becton Dickinson). Antigenic density was expressed as median fluorescence intensity ratio (MFIR) of total lymphocytes according to the following formula: MFIR = (MFI of sample histogram (arbitrary units))/MFI of control histogram (arbitrary units)).

Analysis of Fas- or C2-ceramide-induced apoptosis

Fas- or C2-ceramide-induced cell death was evaluated as previously reported [21] on T cell lines obtained by activating peripheral blood mononuclear cells (PBMC) with phytohaemagglutinin (PHA) at days 0 (1 µg/ml) and 15 (0.2 µg/ml) and cultured in RPMI 1640 + 10% fetal calf serum (FCS) + recombinant IL-2 (5 U/ml) (Biogen, Geneva, Switzerland). Fas function was assessed 6 days after the second stimulation (21 days of culture). Cells were incubated with control medium or anti-Fas MoAb (IgM isotype) (1 µg/ml) (UBI, Lake Placid, NY) in the presence of rIL-2 (5 U/ml) to minimize spontaneous cell death. Cell survival was evaluated after 18 h by counting live cells in each well by a trypan blue exclusion test. The same conditions were used to measure cell death induced by methyl-prednisolone (PDN) (Upjohn, Parris, Belgium) or C2-ceramide (N-acetyl-sphingosine) (Sigma, St Louis, MO). Results were expressed as specific cell survival percentage, calculated as follows: total live cell count in the assay well/total live cell count in the control well) × 100. This technique was chosen in preliminary experiments.

Table 1. Clinical and laboratory features of patients

<table>
<thead>
<tr>
<th>Patient</th>
<th>Age (years)/sex</th>
<th>Positive familial history</th>
<th>Associated diseases (age of onset, year)</th>
<th>ESR/CRP (mmol/l) (mg/dl)</th>
<th>AutoAb</th>
<th>Hyper IgG</th>
<th>Leucocytes (cells/mm²)</th>
<th>Therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15/F</td>
<td>–</td>
<td>CoD (1.5) IIDD/n (12)</td>
<td>50/12</td>
<td>Th/Ab</td>
<td>+</td>
<td>18 500</td>
<td>NSAIDs</td>
</tr>
<tr>
<td>2</td>
<td>17/M</td>
<td>+</td>
<td>IIDD/n (6)</td>
<td>10/3</td>
<td>ANA</td>
<td>+</td>
<td>8430</td>
<td>Penicillin</td>
</tr>
<tr>
<td>3</td>
<td>15/M</td>
<td>–</td>
<td>CoD (1-4) AU (6)</td>
<td>45/25</td>
<td>RF</td>
<td>+</td>
<td>22 800</td>
<td>NSAIDs</td>
</tr>
</tbody>
</table>

CoD: Coelic disease; IIDD/n, insulin-dependent diabetes mellitus; ATD, autoimmune thyroid disease; JRA, juvenile rheumatoid arthritis; LS, linear scleroderma; AU, autoimmune uveitis; V, vasculitis; Th/Ab, thyroid autoantibodies; ANA, antinuclear antibodies; RF, rheumatoid factor; NSAIDs, non-steroidal anti-inflammatory drugs.

© 2000 Blackwell Science Ltd, Clinical and Experimental Immunology, 121:53–58

30
comparing sensitivity of several techniques to detect cell death triggered by anti-Fas MoAb on the PHA-derived T cell lines. It evaluates the overall cell survival in the culture at each time point and was found to be more sensitive than techniques detecting the instantaneous proportion of dying cells at each time, such as cytofluorometric determination of cells displaying shrunken/hypergranular morphology, those displaying DNA fragmentation after staining with propidium iodide, or those stained by annexin V. Fas-induced cell death was always less striking in these polyclonal T cell lines than in stabilized tumour cell lines, since it was slower and more asynchronous. The normal range of T cell responses to Fas-, ceramide- and PDN-induced T cell death was defined as the mean ± 2 s.d. of data obtained from 65 non-age-matched normal donors.

Analysis of the FAS gene

Mutation analysis of the Fas gene was performed by cDNA sequencing, using a dye terminator DNA sequencing kit (Applied Biosystems Perkin-Elmer, Foster City, CA) on an ABI Model 373A automated DNA sequencer (Applied Biosystems Perkin-Elmer). Total RNA was extracted from fresh PBMC using the Ultraspec II RNA kit (Biotecx, Houston, TX). Total RNA (2 μg) was used as a template for cDNA synthesis with the Promega (Madison, WI) cDNA synthesis kit. The entire coding sequence of the FAS gene was amplified in a single (1114 bp long) and in overlapping segments 203–302 bp long, using the polyverse chain reaction (PCR) protocol and the A+ primers previously described [21]. PCR was performed with 25 pmol of each primer and 1/4 of the cDNA synthesis reaction (35 cycles per fragment). Automated sequencing was performed twice using primers from both ends.

RESULTS

Immunophenotypic analysis of fresh PBMC

The evaluation of T and B cell markers (i.e. CD3, CD4, CD8, CD19 and CD56) did not reveal significant differences between the three PA patients, control patients with systemic JRA, and the age-matched healthy controls. Evaluation of expression of CD25, and HLA-DR on CD3⁺ cells showed that only patient 3 had a slight increase of HLA-DR⁺ T cells (%), whereas the other patients had values comparable to the control group (<2.5%) (data not shown). Since the expansion of DN T cells represents a feature of high/lp/lp disease and APLS, we evaluated these cells in PA patients. Only patient 1 had a slight increase (5%), while the other had values comparable to the healthy controls (<1%).

Evaluation of Fas- and ceramide-induced T cell death

Cell survival was evaluated on T cell lines obtained through a 21 days stimulation of PBMC with PHA in the presence of exogenous IL-2. Cells were treated with anti-Fas MoAb or C2-ceramide and survival was evaluated after 18 h. Figure 1 illustrates survival in cultures from the three PA patients, systemic JRA, control with IDDM, and age-matched healthy controls. All PA patients displayed decreased cell death response to anti-Fas MoAb and/or ceramide. In patient 3, both stimuli displayed decreased capacity to induce cell death. In patient 1, the cell death response to the anti-Fas MoAb was decreased, whereas to ceramide was in the normal range. Patient 2 displayed the opposite pattern, since cell death induced by the anti-Fas MoAb was in the normal range, whereas that induced by ceramide was decreased. In contrast, cell death response to the anti-Fas MoAb and ceramide was in the normal range in all JRA, IDDM patients and age-matched normal donors. The cell death response to PDN was in the normal range in all subjects. Each PA patient was evaluated three times over a 1-year period. Results were always consistent and no correlation was found with the clinical status.

Fas expression was evaluated in the long-term T cell lines on the same day in which Fas function was assessed. Figure 2 shows that normal levels of Fas were expressed by the lines derived from patient 2 and patient 3, whereas in that from patient 1 the Fas expression was slightly below the normal range. These data suggest that decreased Fas expression was not responsible per se for the functional Fas defect, at least in patients 2 and 3.

Fas gene molecular studies

Molecular studies of the Fas cDNA revealed that patients 2 and 3 showed normal amounts of PCR products, while patient 1 had a reduced amount, in keeping with her low surface expression of Fas. Together with the normal sized cDNA and splice variants, patients 2 and 3 showed a shorter transcript, 152 bp longer than the normal sequence. Sequence figure 3a illustrates the ideogram of the transcripts found in patients 2 and 3. Figure 3b shows the abnormal transcript in patients 2 and 3 and in the healthy brother of patient 3, along with the normal transcript of patient 1. This abnormal transcript was detected by using the primer F as reverse primer and the primer C or the primer E as forward primers: primers C and F gave two bands of 211 bp (normal product) and of 363 bp (abnormal product); primers E and F gave two bands of 427 bp (normal product) and 577 bp (abnormal product). Sequence analysis showed that the abnormal bands retained intron 5. The finding was not due to contamination with genomic DNA, because PCR products encompassed exons 2–6 and 3–6, respectively, but only intron 5 was transcriptional. Analysis of all members of the family of patient 3 revealed the aberrant product in the mother and brother, but not in the father. By contrast, the aberrant product could not be amplified from 11 normal controls. Sequencing of the entire cDNA, including intron 5, from the patients did not reveal any DNA change, compared with the published normal sequence [24] and polymorphisms [25]. It is noteworthy that translation of the product which retains intron 5 is expected to generate a protein lacking the transmembrane region and all the 3' region downstream to exon 5, because of a stop codon TAA located 99 bases downstream the 3' splice site of intron 5. The new protein would include 32 amino acids downstream from glycosylation and might be a soluble form of Fas. The splice sites scores were 0.98 and 0.51, respectively, for the donor and the acceptor splice sites (calculated using the human splice site prediction software Neural Networks, Lawrence Berkeley National Laboratory: http://www-hg.lbl.gov/). Thus the 3' splice site ranks suboptimal. We could not amplify a full-length transcript encompassing intron 5 from any of the patients.

DISCUSSION

Children with clusters of distinct autoimmune disorders are far from common. In this study we describe three children showing intense polyreactive autoimmunity, as revealed by the appearance of distinct autoimmune diseases, and decreased T cell death response to Fas triggering and/or ceramide, whose death pathways partially overlap. Patient 1 was diagnosed as having IDDM, JRA, CoD and thyroiditis during the 10 years follow up. While IDDM may be associated with other autoimmune diseases, and in particular with CoD [1,2], its association with multiple autoimmune diseases in the
Fig. 1. Cell survival on treatment with anti-Fas MoAb, C2-ceramide, or methylprednisolone (PDDN) of T cell lines derived from the three patients with polyreactive autoimmunity. Five controls with systemic juvenile rheumatoid arthritis (RA; ▲), five controls with insulin-dependent diabetes mellitus (IDDM: ●) and 10 age-matched normal controls (▲). Long-term T cell lines were treated with the indicated reagent and survival was assessed after 18 h. Results are expressed as specific cell survival percentage. In the patients' group, each point represents the mean percentage value of three distinct experiments. Vertical bars indicate ± s.d. Horizontal lines indicate the upper limit of the normal range calculated as the mean ± 2 s.d. from data obtained from 65 non-age-matched normal donors. ○, Patient 1; ■, patient 2; □, patient 3.

Fig. 2. Fas expression in the long-term T cell lines derived from the three patients with polyreactive autoimmunity and the sister of patient 2. Fas expression was evaluated by direct immunofluorescence and cytofluorometric analysis. Quadrants show the cytofluorometric plots (negative control and Fas staining) from the indicated subject. In each quadrant, the number indicates the median fluorescence intensity ratio (MFI-R), calculated as described in Patients and Methods. The mean ± s.d. of MFI-R obtained from T cell lines derived from 10 age-matched controls was 18 ± 8 (range 5.6–33.4).

© 2000 Blackwell Science Ltd, Clinical and Experimental Immunology, 131:53–58
Clustering of autoimmune diseases and abnormal T cell survival

33

Fig. 3. Fas transcripts identified in patients 2 and 3. (a) Schematic depiction of transcripts identified in patients 2 and 3 and the encoded protein. The insertion of intron 5 would, if translated, originate a truncated protein lacking exons 6–9, but including 32 new amino acids after glycine 169. A stop codon is located at base 99 of the intronic sequence. Exonic sequence is indicated in capital letters, intronic sequence in lowercase. (b) Polymerase chain reaction (PCR) products obtained using primers E and F [11] from a normal donor (lane 1), patient 2 (lane 2), patient 3 (lane 3), normal brother of patient 3 (lane 4), and patient 1 (lane 5). Patient 2, patient 3 and his healthy brother show fragments of 211 bp (normal) and 363 bp (abnormal). Sequence analysis showed that the 363-bp fragment includes read-through of intron 5. The PCR product from patient 1 was obtained after two rounds of PCR; nevertheless, the 211-bp band intensity is lower than the others (the multiple spurious bands in this lane are due to the two rounds of PCR). M, Marker ladder.

same individual is quite uncommon [3]. Patient 2 was diagnosed as having IDDM at age 6, and developed overt scleroderma at age 15. Patient 3 had CoD, vasculitis, recurrent episodes of fever with arthritis and uveitis. The heterogeneity of the alterations of cell survival mechanisms observed in our patients reflects the heterogeneity of the pathogenetic mechanisms underlying the ALPS. A recent classification named ALPS type Ia and Ib, the disease with mutations of Fas and FasL, respectively, and ALPS type II the disease without mutations of these genes [26]. Decreased Fas function has been described in ALPS type Ia with mutations of the Fas gene and in ALPS type II without these mutations. In ALPS type Ia, DN T cells are always expanded, whereas in ALPS type II these cells are often undetectable.

Our PA patients displayed several features similar to ALPS. Patient 1 displayed low Fas expression both at transcript and protein level and expansion of DN T cells. Her resistance to Fas-induced cell death and sensitivity to ceramide were in line with a defect directly involving Fas, as described in ALPS type Ia. However, no causal mutation has been identified in Fas cDNA. One possibility is that causal mutations may be located in unscreened gene regions, such as the promoter region, intronic splice sites, or generally in genomic DNA. Most ALPS type Ia patients are heterozygous for Fas mutations and express normal levels of Fas, but some express low levels due to mutations that inhibit Fas surface expression. In contrast, Fas expression is always normal in ALPS type II patients. In some ALPS type II patients, abnormality seems to involve both the Fas signalling pathway downstream from Fas and that used by ceramide [21]. In patients 2 and 3 no expansion of DN T cells was found and Fas expression was normal. In patient 3 both Fas- and ceramide-induced cell death was abnormal, while in patient 2 only ceramide failed to induce a proper cell death. In these two patients, a further Fas transcript was found that retains intron 5 expected to encode for a truncated protein lacking the transmembrane and intracellular regions. The aberrant transcript was also observed in the healthy mother and brother of patient 3. A conclusive interpretation of this finding is not thus far possible.

Sequence analysis did not reveal any change in cDNA, which could explain the abnormal splicing. However, mechanisms which regulate pre-mRNA splicing have not been completely elucidated to date. It has been shown that silent DNA changes located far away may affect the correct splice mechanism for each splice site [27, 28]. DNA changes in unscreened regions, such as introns, might be present in these patients and affect the correct splicing of intron 5. Another possible interpretation is that the longer Fas transcript is a splice variant similar to those already described [29]. However, we have been unable to detect this transcript in 11 normal donors. Whether the expression of this form is implicated in the pathogenesis of the polyreactive syndrome remains to be established. The lack of concordance between the longer transcript and the presence of the disease (relatives of patient 3 were healthy) seems to be against this possibility. However, discrepancies may be only apparent. In fact, the lack of concordance between the aberrant form and the disease status was similar to what observed in ALPS type I patients, whose parents carrying the Fas mutation are generally healthy.

Soluble forms of Fas are expected to inhibit Fas but not ceramide-induced cell death. Whereas patient 2 was sensitive to Fas triggering and resistant to ceramide, the patient 3 was resistant to both stimuli. It is conceivable that low doses of soluble Fas may not inhibit cell death induced by high doses of anti-Fas MoAb in the in vitro assay, thus explaining the normal Fas function displayed by patient 2. Thus, the production of the putative soluble form of Fas could inhibit Fas function in vivo and be a cofactor for development of the polyreactive autoimmune disease, when associated with other genetic or environmental factors. The current opinion is that Fas triggering activates a caspase cascade leading to cell apoptosis. Hydrolysis of the phospholipid sphingomyelin and generation of ceramide is an alternative pathway that seems to boost the caspase pathway, since it is triggered by caspases and potentiates caspase activation [33], even though the role played by ceramide in Fas signalling is still debated [14, 15]. Moreover, the system is under the control of
several inhibitors belonging to the bcl-2, FLIP, and IAP families [1]. Therefore, in both patients 2 and 3, the overt disease and the decreased function of the death pathway triggered by ceramide could be explained by the concurrence of other genetic factors hitting the pathway downstream from FAS. Moreover, these factors may hit other systems involved in apoptosis induction, such as TNF, trail and the graneyymes systems, which use apoptotic pathways partially overlapping that of Fas [1,30].

It is noteworthy that our patient 2 was resistant to ceramide, but responded normally to Fas triggering, which shows that the Fas pathway can also function normally when the ceramide pathway is dysfunctional and suggests that alteration of T cell switching-off systems that are independent of Fas may play a role in autoimmune.

In conclusion, our data indicate that polyneuropathy autoimmune syndromes may be associated with heterogeneous alterations of the immune response switching-off system. However, perturbation of the T cell switching-off mechanism does not seem to be a general functional alteration common to other autoimmune diseases, since five controls with systemic JRA and five with IDDM showed a Fas- and ceramide-induced programmed cell death in the normal range. Moreover, it has been reported that PBMC isolated from patients with systemic lupus erythematosus have a high spontaneous or Fas-mediated apoptosis and increased membrane expression of Fas under resting conditions [31–34], which seems to be related to the in vivo constitutive activation of PBMC.

ACKNOWLEDGMENTS

This study was supported by Grants 'Progetto MURST-PRIN' (Research Program of National Relevance) 1997 no. 9706463006, A.I.R.C. (Milano), and Telethon no. ES66 (Rome), and by Biomed 2 no. CD8-3007.

REFERENCES

© 2000 Blackwell Science Ltd, Clinical and Experimental Immunology, 121:53–58
2.1.2 Immunological characterization of patients with Clustering of Autoimmune Disease phenotype

Along with classic forms of ALPS, recently has been identified a novel phenotype ALPS-like in which the autoimmunity is associated to specific functional deficit of T, B and Natural Killer (NK) cells (Chun H.J. et al 2002). This phenotype is due to a homozygous mutation in the gene that encoded for the caspase 8 protein. Therefore on the base of these evidences we performed the second phase of this research project.

In this work, for the first time, we have performed a molecular and immunological characterization of a group of pediatric patient affected by clustering of autoimmune disease (CAD) phenotype and a functional defect in the Fas-induced cell-death. In particular aim of this study was to investigate if a clear clinical phenotype with multiple autoimmunity may be suggest of a more complex phenotype of immunodeficiency and if its pathogenesis may be caused to a single gene defect.

In the wide coorte of the subjects with CAD phenotype that referred to our Department, 22 patients, were enrolled on base of the following criteria: presence of at least two distinct autoimmune diseases in the same individual associated to the defect in the apoptosis Fas-induced.

The clinical and laboratory features of the 22 patients showed the presence of systemic and/or organ-specific autoimmune disorders (Table 1).
Table 1. Major clinical and laboratory features of CAD patients

<table>
<thead>
<tr>
<th>Patient #</th>
<th>Autoimmune Disease</th>
<th>*Fas functional (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Autoimmune Thyroiditis, Type 1 Diabetes Mellitus</td>
<td>82</td>
</tr>
<tr>
<td>2</td>
<td>Type 1 Diabetes Mellitus, Autoimmune Thyroiditis, Cytopenia</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>Cytopenia, Autoimmune Thrombocytopenia</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>Hypoparathyroidism, Candidiasis, Addison, Deficit of GH, Skin dystrophy, Autoimmune Thyroiditis, Ovary Failure, Pancreatitis</td>
<td>88</td>
</tr>
<tr>
<td>5</td>
<td>Type 1 Diabetes Mellitus, Coeliac Disease, Autoimmune Thyroiditis</td>
<td>79</td>
</tr>
<tr>
<td>6</td>
<td>Deficit of IgA, Type 1 Diabetes Mellitus, Vitiligo, Psoriasis</td>
<td>80</td>
</tr>
<tr>
<td>7</td>
<td>Urticaria, Atopic Dermatitis</td>
<td>104</td>
</tr>
<tr>
<td>8</td>
<td>Cytopenia, Autoimmune Thrombocytopenia, Linfoadenopathy</td>
<td>90</td>
</tr>
<tr>
<td>9</td>
<td>Autoimmune Thrombocytopenia, Deficit of IgA, Uveitis</td>
<td>106</td>
</tr>
<tr>
<td>10</td>
<td>Autoimmune Enteropathy, Deficit of GH</td>
<td>106</td>
</tr>
<tr>
<td>11</td>
<td>Autoimmune Thrombocytopenia, Autoimmune Thyroiditis</td>
<td>91</td>
</tr>
<tr>
<td>12</td>
<td>Enteropathy, Candidiasis</td>
<td>82</td>
</tr>
<tr>
<td>13</td>
<td>Coeliac Disease, Type 1 Diabetes Mellitus, Autoimmune Thyroiditis</td>
<td>106</td>
</tr>
<tr>
<td>14</td>
<td>Vasculitis, Hypergammaglobulinemia, Splenomegaly</td>
<td>79</td>
</tr>
<tr>
<td>15</td>
<td>Type 1 Diabetes Mellitus, Autoimmune Thyroiditis</td>
<td>100</td>
</tr>
<tr>
<td>16</td>
<td>Juvenile Idiopathic Arthritis, Coeliac Disease, Uveitis, Vasculitis</td>
<td>96</td>
</tr>
<tr>
<td>17</td>
<td>Type 1 Diabetes Mellitus, Coeliac Disease</td>
<td>89</td>
</tr>
<tr>
<td>18</td>
<td>Autoimmune Thrombocytopenia, Autoimmune Thyroiditis</td>
<td>100</td>
</tr>
<tr>
<td>19</td>
<td>Coeliac Disease, Juvenile Idiopathic Arthritis, Type 1 Diabetes Mellitus</td>
<td>100</td>
</tr>
<tr>
<td>20</td>
<td>Mixed Connectivie Tissue, Type 1 Diabetes Mellitus, Ovary Failure</td>
<td>80</td>
</tr>
<tr>
<td>21</td>
<td>Splenomegaly, Lymphoadenopathy</td>
<td>90</td>
</tr>
<tr>
<td>22</td>
<td>Cytopenia, Splenomegaly</td>
<td>91</td>
</tr>
</tbody>
</table>

GH= Growth Hormone

*Fas functional (%) Autoimmune Disease Patient #
*T cell survival after anti Fas antibody stimuli. This values are expressed in %. The value > or = 79% is pathologic.
In this group of the patients was evaluated the functional immunological deficiency through the lymphocytes proliferative response after phytoemagglutinin and/or anti-CD3 antibody stimuli. The resulted showed that 13/22 patients (59%) were also affected by a defect in T cell activation (Fig.1).

Fig. 1 Proliferative response to the PHA and CD3 in a CAD patients
The molecular analysis of caspase 8 gene performed in 12 of these 13 patients revealed the presence of three polymorphisms of which one localized in the exon 9 and the other two localized in the intron region flanking the exon 9 (Fig.2 and Table 2). At least one of three polymorphic variant was found in 10/12 subjects.

Fig.2 Alterations in exon and intron region of caspase8 gene.
<table>
<thead>
<tr>
<th>Pt #</th>
<th>Asp302His</th>
<th>A53051G</th>
<th>C53001T</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Heterozygote</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Heterozygote</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Heterozygote</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Heterozygote</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>Heterozygote</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>Homozygote</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>Heterozygote</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>Heterozygote</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>Homozygote</td>
<td>Heterozygote</td>
</tr>
</tbody>
</table>

☆ Know polymorphism
Furthermore for ruled out any alteration in perforin-dependent pathway, we evaluated the integrity of this pathway in 8/13 subjects with combined defect. In vitro, the assay of citotoxicicity revealed that 3 children had a decrease of cytolytic activity of the lymphocytes T (CTL) and NK cells respect to the control subject (Fig. 3).

Fig. 3 Evaluation of cytolytic activity in CAD patients with combined defect
Nevertheless any causative mutation has been revealed in the gene that encode for the perforin protein, which have a crucial role in this way of the apoptotic pathway.

In conclusion, the CAD phenotype may be considered a novel clinical entities characterized to the presence in the same individual of a wide spectrum of autoimmune diseases. Even though all the patients, of this study, showed a functional defect of Fas-induced cell-death, this alteration be not ascribed to any causative mutation in Fas gene. Furthermore, these data, suggests that a lymphocyte activation defect is less uncommon than expected in patients with severe autoimmunity associated with defective Fas-induced apoptosis. The heterogeneity of the phenotype may be explained cosiderating that the alteration of different molecules shared from the apoptosis and activation cell pathways may influence the its expression.

The caspase 8 gene polymorphisms founded in our patients along does not cause the disease but its role in the pathogenesis cannot ruled out. In fact this polymorphisms may to represent a predisposing factor for this complex disorder.

These results has been published on the Journal of the “Incontri Pediatrici Normanni” International Congress. See below for the manuscript.
Identificazione di un nuovo fenotipo di malattia caratterizzato da immunodeficit T e/o NK ed autoimmunità: analisi molecolare dei geni caspasi 8 e perforina

E. Matreca

Dipartimento di Pediatria, Università “Federico II”, Napoli, Italia

Le malattie autoimmuni rappresentano un gruppo di disordini estremamente eterogenei. Attualmente, sono state descritte diverse sindromi da immunodeficienza il cui quadro clinico è caratterizzato da “clustering” di distinte malattie autoimmuni (CAD) in uno stesso individuo. Un prototipo di tali sindromi è rappresentato dalla Sindrome Autoimmune Linfo proliferativa (ALPS) di cui si conoscono diverse forme con ereditarietà monogenica. È ormai noto che un’altra razione del processo di apoptosi rappresenta una possibile, anche se rara causa di autoimmunità multipla. L’apoptosi, o morte cellulare programmata, svolge un’importante ruolo nel regolare la differenziazione cellulare e l’omeostasi delle cellule del sistema immune. Il processo di apoptosi può avvenire in due diversi modi: in seguito al legame e all’attivazione di recettori di morte (es. Fas/Fas ligando) con i loro rispettivi ligandi espressi normalmente dai linfociti T citotossici (CTL) e/o in seguito all’esocitosi di granuli intracitoplastmici contenenti granzimi e perforina da parte delle cellule CTL e Natural Killer (NK). Entrambi queste vie causano l’attivazione a cascata di proteasi dette caspasi responsabili dell’apoptosi. Recentemente è stato dimostrato che l’alterazione del gene caspasi 8 in pazienti che mostravano un fenotipo ALPS-like era associata ad un immuno-deficienza combinata (T, B ed NK) sia pure non grave.

Lo scopo del nostro studio è stato quello di caratterizzare funzionalmente e molecolarmente pazienti in età pediatrica con un fenotipo CAD e con difetto apoptotico Fas-indotto. Abbiamo identificato 22 pazienti che mostravano un fenotipo di autoimmunità associata a ridotta apoptosi indotta da FAS. Inoltre, allo scopo di valutare alterazioni della funzionalità linfo citaria veniva eseguito test di proliferazione dopo stimolo ai comuni mitogeni (PHA, CD3 X-L). Per valutare se nei soggetti con difetto funzionale apoptotico Fas-indotto e di attivazione linfo citaria vi fosse anche una compromissione funzionale dei linfociti CTL ed NK veniva eseguito un saggio di citotossicità in vitro. L’analisi molecolare dei geni caspasi 8 e perforina era valutata per sequenziamento diretto. I risultati hanno mostrato che in 13 dei 22 (59%) soggetti era presente una ridotta attivazione linfo citaria T. L’analisi di sequenza del gene della caspasi 8 effettuata in 12/13 pazienti con difetto funzionale combinato mostrava la presenza di tre polimorfismi di cui uno localizzato nell’esone 9 e gli altri due localizzati nell’intron che precede l’esone 9. Inoltre una ridotta attività citotossica era presente in 3 soggetti con difetto funzionale combinato nonostante l’analisi del gene della perforina era risultato normale.
In conclusione i nostri dati indicano che nei pazienti affetti da CAD può esserci la contemporanea presenza di ridotta apoptosi Fas-indotta e di attivazione linfocitaria. Tuttavia rimane da chiarire il ruolo dei polimorfismi identificati nel gene caspasi 8 nella patogenesi del fenotipo CAD.

INTRODUZIONE

Le sindromi autoimmuni rappresentano un gruppo di malattie clinicamente e molecularmente eterogenee, la cui incidenza è stimata nel 3-5% della popolazione. Caratteristica comune dei processi autoimmuni è la presenza di cloni linfocitari autoreattivi che possono rappresentare la causa di malattie sistemiche o rappresentare l'effetto di processi infiammatori. In alcuni casi una risposta autoimmune può derivare da un'alterata reazione immunitaria che può essere innescata da infezioni virali o batteriche, in altri casi può derivare paradossalmente da un'«immunodeficit» linfocitario.

Anche se attualmente il meccanismo patogenetico di base dell'autoimmunità è ancora poco chiaro, è ormai noto che un'alterazione del processo di apoptosi svolge un ruolo chiave nello sviluppo delle malattie autoimmune multiple. L'apoptosi o morte cellulare programmata, è un'importante meccanismo di regolazione del sistema immune in quanto limita l'espansione clonale alla fine di una risposta immune, interviene nei processi di differenziazione cellulare e garantisce il mantenimento dell'homeostasi linfocitaria.

Il processo di apoptosi può avvenire attraverso due diversi pathway: non secretorio e secretorio. Nel primo il processo apoptotico è innescato in seguito all'interazione ed all'attivazione di specifici recettori di morte con i loro rispettivi ligandi. Il recettore Fas (CD95) è il più efficiente induttore di apoptosi linfocitaria e è espresso sulla superficie di linfociti target. Appartiene alla superfamiglia dei recettori Tumor Necrosis Factor (TNF-R) ed è caratterizzato dalla presenza di un dominio di morte (DD) nella regione citoplasmatica. In seguito all'attivazione di tale recettore si ha la formazione di un complesso detto DISC (Death-Inducing Signaling Complex) attraverso il quale si ha la trasduzione del segnale apoptotico. Durante la formazione del DISC è reclutata ed attivata una proteina adattatrice detta FADD (Fas-Associated Death Domain) che interagendo con la procaspasi 8 (forma inattiva) ne promuove l'autoprocessamento catalitico in una proteina eterotetramerica attiva, la caspasi 8. Queste ultime è così capace di attivare altre caspasi tra cui la caspasi 3 iniziando una cascata di reazioni proteolitiche che culminano nella morte cellulare. Il ligando di Fas (FasL) è normalmente espresso sulla superficie dei linfociti T citotossici (CTL) e delle cellule Natural Killer (NK). Il secondo pathway, detto secretorio, si attua attraverso la secrezione di granuli intracitoplasmatici contenenti proteine liche da parte delle cellule CTL ed NK, quali la perforina ed una serie di proteasi a serina chiamate granzimi. Durante l'attività lítica, i granzimi A e B, contenuti nei granuli, vengono rilasciati ed entrano nella cellula bersaglio grazie ad endocitosi mediata da recettori. Il ruolo della perforina è essenziale per il rilascio endosomale del granzima B nel citosol e nel nucleo della cellula target e per la successiva attività di lisi cellulare.
attuata dalla caspasi 36-8. Pertanto entrambe queste vie determinano l’attivazione di una stessa molecola, la caspasi 3.

Solo recentemente è stata documentata l’esistenza di nuovi fenotipi clinici con “Clustering” di malattie autoimmuni (CAD), caratterizzati dalla presenza di disordini autoimmuni multipli in uno stesso individuo. Per tali nuovi fenotipi è stato possibile individuare il singolo difetto genetico e la modalità di trasmissione ereditaria. L’esistenza di trasmissione mendeliana di clustering di malattie autoimmuni è stata ben documentata in diversi tipi di sindromi. A tal proposito la Sindrome Autoimmune Linfoproliferativa (ALPS), di cui si conoscono diverse forme in base alla presenza di alterazioni di diverse molecole coinvolte nei vari stadi del processo apoptotico, rappresenta il prototipo delle sindromi CAD\(^9\).

Accanto alle forme classiche di ALPS è stata recentemente identificato un nuovo fenotipo detto ALPS-like in cui all’autoimmunità si associa un immunodeficit funzionale specifico T, B, ed NK e la cui causa è dovuta ad una mutazione del gene che codifica per la caspasi 8\(^10\).

Scopo di questo lavoro è stato quello di caratterizzare immunologicamente e molecolarmente un gruppo di pazienti con fenotipo CAD e con un chiaro difetto funzionale apoptotico Fas-indotto.

MATERIALI E METODI

Pazienti

Tra un’ampia coorte di soggetti con fenotipo CAD che affliggono presso il nostro Dipartimento, 22 pazienti, erano selezionati in base ai seguenti criteri di inclusione: presenza di almeno 2 diversi disordini autoimmuni nello stesso individuo associati ad un difetto di apoptosi Fas-indotto. Tra le caratteristiche cliniche di tali pazienti era possibile evidenziare la presenza di disordini autoimmuni sistemici e/o la presenza di disordini autoimmuni organo specifici.

La diagnosi di Artrite Reumatoide Giovanile era eseguita in base ai criteri dell’American College of Rheumatology\(^11\) mentre la diagnosi di Diabete Mellito di tipo I era eseguita in base ai valori di iperglicemia (>126 mg/dl), alla presenza di chetosi e alla presenza di autoanticorpi specifici diretti contro le cellule beta pancreatiche. La Tiroidite Autoimmune era diagnosticata per la presenza di specifici autoanticorpi associata ad una disomogeneità ultrasonografica (in presenza o meno di una compromissione funzionale tiroidia). La Celicaemia era diagnosticata in accordo ai criteri ESPGHAN\(^12\).

Risposta proliferativa linfocitaria in vitro

Le cellule mononucleate del sangue periferico (PBMC) erano isolate mediante centrifugazione su gradiente di Ficoll-Hypaque (Biochrom, Berlino, Germania) secondo procedura standard. Il saggio di proliferazione dei linfociti veniva effettuato usando una piastra costituita da 96 pozzietti (Becton Dickinson, San Jose, CA) ponendo in coltura 2 x 10\(^5\) cellule per pozetto in assenza e/o in presenza di PHA (8 ?g/ml) (Biochrom, Berlino, Germania) e mediante cross-linking del CD3 (0.3 ng/ml) (Ortho Diagnostics Raritan, NJ),
per 72 ore a 37°C in atmosfera umidificata al 5% di CO₂. La risposta proliferativa era valutata attraverso l’incorporazione di timidina da parte delle cellule in coltura marcate con 0,5 ?Ci di timidina triziata 16 ore prima della fine della coltura. La radioattività rilasciata dalla timidina [3H] veniva misurata in conte per minuto (cpm) utilizzando uno scintillatore liquido (Packard 1600 TR Liquid Scintillation Analyzer).

Saggio di citossustà
Le cellule bersaglio (K562) venivano incubate per 1 h a 37°C con Cr51 (Amersham Pharmacia Biotech) (30 µCi/10⁶ cellule) e lavate per tre volte con mezzo di coltura prima di essere addivizionate alle cellule effettrici. La lisis specifica veniva misurata con un saggio in triplicato effettuato mescolando 5X10³ cellule bersaglio con cellule effettrici in rapporti diversi (E:T = 25:1 a 3.125:1) in un volume totale di 200 µl. Dopo un’incubazione di 5 ore della sospensione cellulare a 37°C, 100 µl di sovrantanante di coltura venivano raccolti per valutare la quantità di Cr51 rilasciato. La percentuale di lisis specifica veniva calcolata come segue: 100 x (rilascio specifico spontaneo)/(rilascio totale spontaneo).

Analisi molecolare dei geni caspasi 8 e perforina
L’analisi molecolare dei geni caspasi 8 e perforina era valutata per sequenziamento diretto di DNA genomico. Il DNA era isolato da cellule del sangue periferico (PBMC) con i metodi standard. L’amplificazione dei 10 esoni del gene della caspasi 8 e degli esoni 2 e 3 del gene della perforina era eseguita mediante la reazione di PCR utilizzando coppie di oligonucleotidi intronici fiancheggianti ciascun esone. Le modalità e le condizioni della reazione di amplificazione erano determinate sperimentalmente per ciascuna coppia di oligonucleotidi. La reazione di PCR veniva condotta secondo una procedura standard (35-40 cicli di 95°C per 10 min, 95°C per 1min, 58-61°C per 1min, 72°C per 1min utilizzando un GenAmp PCR System 2400 (PE Applied Biosystems). I frammenti così amplificati venivano separati per elettroforesi su gel 1-2% di agarosio secondo i casi e purificati mediante protocollo “Gel Extraction Kit” (Qiagen, S.p.A., Milano, Italia). I prodotti di PCR erano sequenziati usando il “Big Dye Terminator Cycle Sequencing Kit” (Applied Biosystem) ed un sequenziatore automatico “ABI PRISM 377” della Applied Biosystem.

RISULTATI

Pazienti
Le principali caratteristiche cliniche e di laboratorio di 22 pazienti con fenotipo CAD e con un difetto apoptotico Fas-indotto sono riportate in Tabella 1. 7 dei 22 pazienti erano affetti da tre o più disordini autoimmuni. 17 dei 22 presentavano una patologia organo-specifica che coinvolgeva prevalentemente il sistema endocrino o l’apparato intestinale. 7 pazienti mostravano disordini ematologici con interessamento di una o più linee cellulari mentre 4 dei 22 soggetti mostravano un interessamento del sistema linfoblastico. Due dei 22 pazienti erano affetti da una diminuzione dei livelli sierici di IgA e in altri due soggetti era stata riscontrata una ridotta produzione dell’ormone della crescita (GH).
Risposta proliferativa
Allo scopo di valutare se nei pazienti, oggetto del nostro studio, affetti da un fenotipo CAD e da una resistenza all’apoptosi si associava anche un difetto immunologico funzionale veniva eseguito un test per mezzo del quale era possibile valutare la risposta proliferativa linfocitaria dopo stimolo con i comuni mitogeni. I risultati ottenuti mostravano che in 13 su 22 soggetti vi era una ridotta proliferazione cellulare T in risposta alla fitoemoagglutinina (PHA) e/o a seguito del cross-linking del CD3.
Analisi molecolare del gene caspasi 8
L’analisi molecolare del gene caspasi 8, eseguita in 12 dei 13 pazienti che presentavano un difetto di proliferazione dei linfociti T, rivelava la presenza di tre diversi polimorfismi noti di cui uno localizzato nell’esone 9 mentre gli altri due localizzati nella regione intronica fiancheggiante l’esone 9 (IVSIX al nucleotide 1073, C->T e IVSIX al nucleotide 1123, A -> G). Questi polimorfismi erano presenti sia allo stato eterozigote che allo stato omozigote.
Soggio di citotossicita
Allo scopo di valutare se nei pazienti CAD con difetto apoptotico e difetto funzionale T era associata anche una compromissione funzionale delle cellule citotossiche (CTL) e/o NK, in 8 di 13 soggetti era eseguito il saggio in vitro di citotossicità. Dall’analisi di tali dati è emerso che in 3 soggetti vi era un’alterata funzionalità citotossica.
Analisi molecolare del gene perforina
L’analisi molecolare del gene che codifica per la perforina era eseguito allo scopo di valutare se nei tre pazienti CAD il difetto di funzionalità CTL ad NK potesse essere dovuto ad un’alterazione genica. I dati ottenuti non mostravano la presenza di nessuna mutazione causativa.

Discussione

In questo lavoro descriviamo le caratteristiche cliniche, funzionali e molecolari di un gruppo di 22 pazienti in età pediatrica affetti da “Clustering of Autoimmune Disease” (CAD). Questo fenotipo rappresenta una nuova entità clinica caratterizzato dalla presenza in uno stesso individuo di un ampio spettro di malattie autoimmuni. Inoltre, tutti i pazienti, oggetto del nostro studio, erano affetti da un difetto funzionale apoptotico Fas-indotto non attribuibile a nessuna mutazione genica causativa come rivelato dall’analisi molecolare del gene di Fas. È attualmente noto, che la patogenesi delle malattie autoimmuni è dovuta ad una alterazione dei meccanismi che regolano l’omeostasi e la differenziazione cellulare. Un ruolo chiave in questi meccanismi è svolto da un complesso processo apoptotico che può esplicarsi attraverso due diverse vie: secretoria e non secretoria. Entrambi i pathways condividono numerose molecole di signaling ed attivano a cascata diverse proteasi dette caspasi3-8.
Recenti evidenze inoltre suggeriscono che l’autoimmunità può associarsi, in alcuni rari casi, ad un difetto funzionale linfocitario T, B ed NK. È stato ipotizzato che una probabile causa di tale associazione sia dovuta ad una mutazione in omo-
zigosi del gene caspasi 810. Pertanto in tutti i soggetti presi in esame è stata valutata la funzionalità linfocitaria, dopo stimolo con PHA e cross-linking del CD3, che ha permesso di individuare 13 su 22 soggetti (59%) affetti anche da un difetto di attivazione linfocitaria T. L’analisi molecolare del gene caspasi 8 in 12 dei 13 soggetti con immunodeficienziati ha evidenziato la presenza di tre polimorfismi noti, di cui il primo localizzato nella regione dell’esone 9 e gli altri due localizzati nella regione intronica fiancheggiante l’esone 9. Almeno una delle tre varianti polimorfiche trovate è presente in 10 dei 12 soggetti.

Inoltre, allo scopo di escludere un’alterazione del pathway perforina-dipendente, abbiamo valutato l’integrità di tale pathway in 8 dei 13 soggetti in cui si presentava un difetto funzionale combinato. Dall’analisi, eseguita mediante saggio in vitro di citotossicità, è emerso che 3 soggetti mostrano una riduzione dell’attività citotossica dei linfociti T (CTL) e delle cellule NK. Infine allo scopo di escludere che tale alterazione potesse dipendere da mutazioni del gene della perforina, principale molecola effettrice in questa via di apoptosi, abbiamo effettuato l’analisi molecolare del gene. Tuttavia, l’analisi molecolare eseguita nei 3 soggetti con ridotta funzionalità linfica non ha però rivelato alcuna alterazione genica.

In conclusione i nostri dati mostrano che pazienti affetti dal fenotipo CAD possono presentare difetti funzionali multipli che necessitano di ulteriori approfondimenti per la caratterizzazione patogenetica. Inoltre l’associazione di tali alterazioni è più frequente di quanto si possa sospettare. Anche se i nostri dati molecolari non hanno permesso di evidenziare alcuna mutazione causativa del gene caspasi 8, è tuttavia ipotizzabile che i polimorfismi da noi individuati possano svolgere un importante ruolo patogenetico.

Bibliografia

290
2.1.3 Apoptosis in the physiology and in the pathology of immune response

In the final part of this research project we focus our attention on the role of apoptosis in the physiology of the immune response and how alterations in molecule involved in the apoptotic process may be caused complex pathology. The majority of lymphocytes that in vivo expand and proliferate in response to foreign antigens, subsequently, will die to maintain a constant cell number (Busiello R. et al 2004). During the initial expansion phase of an immune response, also autoreactive clones are generated. Without homeostatic mechanisms controlling cell growth, this autoreactive expansion would have fatal consequences on the biological functions of the organism. At the end of an immune response, apoptosis or programmed cell-death play a key role to limit cellular proliferation, restoring immunological homeostasis, and in the deletion of autoreactive lymphocytes, controlling the self-tolerance (King et al 2004).

The apoptosis is activated by three different pathways: extrinsic, induced by death receptor triggering, intrinsic activated by extracellular stimuli and secretory (Rieux-Laucat et al 2003). All these mechanism involved the activation of the specific cysteine proteases called Caspase. Currently, 13 caspases have been identified in mice and humans. The subset of caspases that clave selected substrates to produce the changes associated with apoptosis are know as effector caspase, which in mammalian are caspase 3, 6 and 7. In most instance, these executioner caspase are activated by the initiator caspases: caspase8, 10, 2 and 9. Other initiator caspase are: caspase 1, 4, 5 and most likely caspase 14 (Martinon F et al 2004). The phylogenetic ralationship of
caspases appears to correlated with their function (Lamkanfi et al 2002). One subfamily of caspases is constitud by caspases that have clear functions in the execution of apoptosis and includes the initiator caspase 8, 9 and 10 and the effector caspase 3, 6 and 7. However, some of the “apoptitic” caspases, in particular caspase 8, have been recently shown to have additional roles in lymphocyte proliferation and differentiation (Chun et al 2002, Salmena et al 2003). Human caspase 1, 4, and 5 and mouse caspase 11 and 12 constitute another group designated inflammatory caspases. In fact these caspases can be involved in apoptosis but their prime function is the regulation of the inflammatory processes (Martinon F et al 2004) (Fig. 4).

![Fig.4 Phylogenies of Caspases](Denis F, Cell Mol Life Sci 1998)
The identification of novel human or murine clinical phenotypes and the studies of knock out mice for a specific molecule greatly contributed to ameliorating our knowledge of such homeostatic mechanisms. In particular studies of patients affected by complex autoimmune phenotype have demonstrated a monogenic origin of same hyperimmune syndrome, such as: Autoimmune Lymphoproliferative Syndrome (ALPS) (Canale 1967), Autoimmune Polyendocrinopathy Candidiasis-Ectodermal Dystrophy (APECED) (Neufeld 1980), Immunodysregulation, Polyendocrinopathy, Enteropathy, X linked syndrome (IPEX) (Wildin 2002). These are caused to alterations of molecules involved in cell apoptosis.

ALPS

Hematologic autoimmune disorders associated with nonmalignant lymphadenopathy are the prominent clinical features of the ALPS, whose molecular characterization led to define five distinct entities on the basis of the location of the defect in the Fas signaling cascade (Rieux-Laucat et al 2003). The ALPS0 represents the human analog of the lpr mice (Fas/-/-) and is associated to a complete absence of Fas molecule. The ALPS1a, represents the most frequent form of the syndrome and is associated to heterozygous mutation of Fas gene. The ALPS1b is associated to a molecular alteration of the ligand of Fas, FasL while the ALPSII is associated to an alteration of the caspase 10 gene. Moreover, ALPSIII represents a large group of ALPS patients in which the molecular defect still remains to be identified. Along with typical form of this syndromes in several form, ALPS-like the autoimmune process is associated to
an immunodeficit which leads to an increase susceptibility to viral infection. In a recent study, a novel form of ALPS has been identified. This form is characterized by a specific immunodeficit of T, B and NK lymphocytes and is associated to an alteration of caspase 8 gene (Chan et al 2002) (Table 4).

Table 4. Gene mutations in Autoimmune Lymphoproliferative Syndrome.

<table>
<thead>
<tr>
<th>Disease</th>
<th>Gene</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALPS 0</td>
<td>CD95/Fas</td>
</tr>
<tr>
<td>ALPS IA</td>
<td>CD95/Fas</td>
</tr>
<tr>
<td>ALPS IB</td>
<td>CD168/FasL</td>
</tr>
<tr>
<td>ALPS II</td>
<td>Caspase 10</td>
</tr>
<tr>
<td>ALPS III</td>
<td>unidentified</td>
</tr>
<tr>
<td>ALPS and Immunodeficiency</td>
<td>Caspase 8</td>
</tr>
</tbody>
</table>

APECED

APECED is characterized by the variable occurrence of T cell and B cell mediated autoimmune diseases targeting various endocrine glands (parathyroid, thyroid, adrenal glands, gonads, pancreas, liver, skin and erythrocytes). It is often associated with chronic mucocutaneous candidiasis and ectodermal dysplasia (Fisher 2004). It is inherited as a Mendelian disease with an autosomal recessive mode. Loss of function mutations in Autoimmune Regulator gene (AIRE) cause the disease (Fisher 2004). A similar phenotype has been noted in Aire-/- mice (Fisher 2004). Considerable interest was sparked
by the fact the AIRE is expressed mainly in medullary thymic epithelial cells and that the gene encodes for a protein with a DNA binding activity and gene transactivation capacity (Fisher 2004). Recently, several reports have demonstrated that AIRE actually regulates the ectopic expression in medullary thymic epithelial cells of tissue specific proteins normally found in terminally differentiated organs, such as preproinsulin and zona pellucida glycoprotein 3 (Fisher 2004). These results strongly indicate that AIRE expression is key in central tolerance to a set of self proteins, although the mechanism by which AIRE triggers their gene expression is still unknown.

IPEX

The IPEX syndrome is a multisystemic autoimmune disease with an early onset and often fatal outcome (Fisher 2004). Severe enteropathy with diffuse and massive T cell infiltration and mucosal destruction variably associated with diabetes, eczema and autoimmunity toward blood cells are hallmarks of this disease. Loss of function mutations in the gene Foxp3 are causal (Fisher 2004). Foxp3 encodes a DNA binding protein of the forkhead family with a winged helix domain. It is expressed mainly by a subset of regulatory CD4 T cells that also express CD25 (Fisher 2004). There is a similar natural mutant in mice: the scurfy mice (Fisher 2004). As Foxp3 is essential for regulatory T cell induction, this phenotype seems to be the consequence of a deficiency in regulatory T cells. The dominance of normal over mutated cells in obligate carriers and after bone marrow transplantation, respectively, results in a mixed chimerism (Fisher 2004). The IPEX phenotype differs from APECED and these differences
demonstrate the non redundancy of the mechanism controlling autoimmune disease. This review has been published on the Journal of Prospective in Pediatria. See below for the manuscript
L’apoptosi nella fisiologia della risposta immune e sue alterazioni nella patogenesi di quadri di patologia complessa

C. Pignata, S. Amorosi, M. Giovannini, I. Russo, E. Matreccano, R. Busello

Dipartimento di Pediatría, Università “Federico II” di Napoli

Riassunto

Summary
Recently, several studies led to define the intimate mechanisms responsible for lymphocyte homeostasis in immune response. Immune system cells have the capability to proliferate after encountering specific antigens. Within the process, autoreactive clones are generated as well. Without homeostatic mechanisms controlling cell growth, this autoreactive expansion would have fatal consequences. A major role is played by lymphocyte apoptosis, that involves intracellular or membrane molecules, as Fas and Fas ligand. The process takes place through an extrinsic, induced by death receptors triggering, intrinsic, activated by extracellular stimuli, or secretory mechanism. Caspases participate to all these mechanisms. The hallmark of some molecules of this family is the involvement in either the inflammatory response or in apoptosis. Central and peripheral tolerance plays a major role in limiting autoreactions. Central tolerance occurs in primary lymphoid organs, while the peripheral tolerance in secondary lymphoid organs. The identification of novel human or marine clinical phenotypes and the studies of knock out mice for a specific molecule greatly contributed to ameliorating our knowledge of such homeostatic mechanisms. In particular, studies of patients with autoimmune lymphoproliferative syndrome have demonstrated a monogenic origin of some hyperimmune syndromes related to alterations of molecules involved in cell apoptosis. Further examples are represented by two novel clinical entities, APEXED and IPEX, caused by molecular alterations of the Aire gene, involved in central tolerance, and of T regulatory cells, respectively. These studies greatly contributed to demonstrate the molecular bases of some hyperimmune syndromes inherited as monogenic disorders.

Introduzione
Una risposta immune fisiologica è caratterizzata dall’espansione di cloni di linfociti T e B che hanno imparato a riconoscere determinati antigeni. Tale espansione clonale è tuttavia limitata da differenti fattori che determinano quel quadro di equilibrio tra crescita e morte cellulare definito meccanismo di prolifera- zione omeostatica (King et al., 2004). La proliferazione cellulare è soprattutto limitata dallo spazio disponibile negli organi linfonodali e dalla limitata disponibilità di specifici fattori di crescita, che non consentono l’espansione illimitata delle cellule responsive.

Apatosi o morte cellulare programmatata
L’apoptosi è un processo multifasi- co finemente regolato che conclude alla morte selettiva di cellule sulla base di un programma geneticamente controllato. Tale processo è essenziale per il normale sviluppo embrionale, per il mantenimento dell’omeostasi tissutale e per il rimodellamento nella rigenerazione degli organi (Gaetaniello et al., 1998; McCarthy, 2003). Al processo partecipano recettori di membrana, definiti “recettori di morte”, che aprono alla superfamiglia dei recettori del Tumor Necrosis Factor (TNF) e Nerve Growth Factor (NGF) (Kischkel et al., 1995). Tali recettori sono accompagnati dalla presenza di domini omologhi nella porzione extracellulare ricchi in cistina importanti per il legame con i ligandi e dalla presenza di un dominio funzionale intracellulare, definito dominio di morte (Ashkar- nazi et al., 1998), che interagisce
con le molecole del signaling intra-cellulare coinvolte nell’apoptosi. La molecola più rilevante per questo processo è rappresentata da Fas o CD95, che è il più potente inducente di apoptosi linfocitaria (Rieux-Laucat et al., 2003). La molecola consiste di tre domini extracellulari ricchi in cisteina (CRDs) e 80 residui amminoacidici che costituiscono il dominio di morte. In seguito al legame con il ligando (FasL), tre molecole di Fas si assemblano in un complesso unico, cui segue l’interazione con l’induttore cellulare FADD (Fas Associated Death Domain). Successivamente, le molecole Caspasi 8 e 10 vengono ingaggiate per la formazione del DISC (Death Inducing Signaling Complex) (Kischkel et al., 1995).

Le cellule che si avviano alla morte cellulare programmatà subiscono ingenti modificazioni morfolo-giche e molecolari: diminuiscono di grandezza, condensano il proprio DNA, che viene suddiviso in frammenti e racchiuso, insieme agli altri detriti cellulari, nei cosiddetti corpi apoptotici, in seguito fagocitati dalle cellule “scavenger”.

Un potente effetto inibitorio del processo di apoptosi indotto da Fas è svolto dalle proteine virali inhibito-rie definite FLIPs, che contengono un dominio effettore di morte simile alla procapepasi 8 e a FADD, competono nell’interazione con queste molecole.

Nel corso di una risposta immune produttiva è inevitabile che, durante la generazione di un repertorio di recettori specifici per gli antigeni assai diversificati, si generino anche cloni autoreattivi in conseguenza del riarrangiamento casuale dei geni che codificano per questi recettori. Evidentemente, la generazione di cloni autoreattivi avrebbe conseguenze fatali per l’organismo biologico se non vi fossero dei meccanismi di controllo della crescita volti a mantenere la tolleranza verso il self.

Tolleranza immunologica

Esistono due meccanismi predominanti che permettono la tolleranza: il primo, tolleranza centrale, si realizza nel corso del differenziamento negli organi linfoidi primari, quali il timo ed il midollo osseo, ed è rivolto a linfociti T e B immaturi. La tolleranza centrale si realizza mediante la selezione o l’inattivazione dei linfociti autoreattivi (Mathis et al., 2004). Nel timo il precursore del linfocita T che non esprime ancora il recettore per l’antigene (TCR) non riceverà un appropriato segnale di sopravvivenza e morirà per apoptosi. Tuttavia, anche il linfocita T, che mediane il TCR interagisce con l’antigene con un legame ad alta affinità, subirà lo stesso destino di morte per apoptosi. L’unico linfocita che raggiungerà la maturazione ed esplorerà la sua funzione in periferia è il linfocita che interagisce con l’antigene con un legame ad alta affinità (Fig. 1). La tolleranza periferica invece si realizza nel sangue periferico e negli organi linfoidi secondari ed è rivolta ai linfociti T e B maturi (Walker et al., 2002). Anche in periferia la delezione clonale svolge un ruolo rilevante (Fig. 2). Esistono tuttavia ulteriori meccanismi di tolleranza, quali l’energia da citochine anergizzanti, ad esempio l’IL-10, e i meccanismi di regolazione legati alla cellula CD4+CD25+ T reg, che rappresentano circa il 10% dei linfociti CD4+. Un ulteriore meccanismo di controllo ormonistico è rappresentato dalla lisi clonale mediante meccanismo selettore, che coinvolge le molecole di granulina A e B e la perforina (Fig. 2). È interessante notare come molte delle informazioni sulla fisiologia dei meccanismi di apoptosi e regolazione della tolleranza provengano dalle osservazioni di malattie rare dell’infanzia illustrate in seguito, che hanno permesso di chiarire il
ruolo chiave che singole molecole svolgono in questi processi.

Pathways dell’apoptosi

Il processo di morte cellulare programmata può essere attivato da tre differenti pathways: estrinseco, intrinseco e secretorio (Rieux-Laucat et al., 2003). Nella prima via, quella estrinseca, il processo apoptotico è innescato dai "recettori di morte" già menzionati, quali il Fas che a valle attiva la cascata delle Caspas, responsabili di reazioni protolitiche, che infine determinano la frammentazione del DNA con conseguente morte cellulare (Fig. 3). Il raggio della matrice nucleare e delle proteine del citoscheletro produce le note alterazioni strutturali sia del nucleo sia del citoplasma che si osservano nelle cellule apoptotiche. Un ulteriore pathway apoptotico è quello intrinseco, che si attua in seguito a stimuli interni alla cellula stessa, quali ad esempio quelli dovuti ad un danno genetico irreparabile, a concentrazioni di calcio citosolico estremamente alte o a gravi stress ossidativi. Si attivano così diversi fattori proapoptotici tra cui i più conosciuti sono i membri della famiglia delle proteine Bcl-2 (Petrus et al., 2004). Si tratta di proteine regolatrici, alcune delle quali promuovono l’apoptosi (Bad, Bcl, Bax), mentre altre (Bcl-x, Bcl-w, e la stessa Bcl-2) la prevenzano. Lo stimolo di morte attiva i membri proapoptotici della famiglia Bcl-2, che traslocano dal citosol alla membrana mitocondriale esterna. Il cito- cromone c, debolmente associato alla superficie esterna della membrana mitocondriale interna, risiede effettivamente nello spazio intermembrana. L’attacco di Bad o di altre proteine proapoptotiche alla membrana mitocondriale esterna ne altera la permeabilità (Sharp et al., 2004) promuovendo il rilascio del cito- cromone c nel citosol (Nutt et al., 2002). Una volta nel citoplasma, il citocromone c forma un complesso multimerico con una proteina citolica chiamata APAF-1 e con molecole di procaspasi 9. Le molecole di Caspase 9 (forma attiva) attraverso specifici tagli proteolitici attivano altre Caspasi, dette effettizzi, che promuovono la frammentazione del DNA e la definitiva morte cellulare. Le due vie apoptotiche, estrinseca ed intrinseca, convergono nella fase finale, attivando le stesse Caspase effettizzi, che tagliano i medesimi bersagli cellulari. Il terzo pathway apoptotico, definito secretorio, si attua attraverso la secrezione di granuli contenenti proteine litiche, quali la perforina ed una serie di serina-proteasi chiamate granzimi (Damon et al., 1995). Durante l’attività litica, i granzimi A e B, contenuti nei granuli, vengono rilasciati ed entrano nella cellula bersaglio grazie ad endocitosi mediata da recettori, in particolare grazie al recettore di recente identificazione mannosio-6 fosfato (Snyd et al., 2005). Il ruolo della perforina è essenziale per il rilascio endosomial del granzimo B nel citosol e nella cellula bersaglio e per la successiva lisi cellulare attuata dalla Caspasi 3.

Le Caspasi

Le Caspasi giocano, quindi, un ruolo cruciale nell’apoptosi. Esse sono, tuttavia, coinvolte anche nei processi di crescita, differenziazione cellulare e maturazione citochimica (Wang et al., 2000). Esse sono delle cysteina-pro-
Fig. 3. Pathways dell’apoptosi. I 3 principali pathway dell’apoptosi consistono nel pathway extrinsico mediato dalle molecole Fas/FasL, in quello intrinsico mediato dal mitocondrio e in quello secretorio mediato dalla perforina e dal granzima. Tutti e 3 meccanismi convergono intrinse, determinando l’attivazione delle Caspasi 3, che induce la perdita della cellula.

tesi che utilizzano l’attivazione del ciclo della via diapositiva per compiere le reazioni di taglio proteolitico, in genere, mediante il riconoscimento di una sequenza tetrapeptidica ed il taglio specifico del legame peptidico e terminale a livello di residui di Acido Aspartico (Bonnegreit et al., 2003). Le proteasi hanno bersaglio intracellulari specifici, quali le proteine della lamina nucleare e del citoscheletro. Esse originano da un comune precursor cellare e nel corso dell’evoluzione filogenetica si sono differenziate in iniziatici ed effettori, per la presenza o meno di determinati domini funzionali (Martinon et al., 2004) (Fig. 4). In particolare, tali molecole sono provviste di ripetizioni in tandem definite Death Effector Domain (DEDs) e domini noti come Caspase-Recruitment Domain (CARDs) (Wang et al., 2000). Le Caspasi effettori sono quelle che, mediante i tagli proteolitici su substrati selezionati, producono le modificazioni proprie del processo apoptotico, partecipando quindi alla fase finale dell’apoptosi. Quelle iniziatrici agiscono nelle tappe iniziali del processo apoptotico, assolvendo al compito principale di attivare le Caspasi effettori (Martinon et al., 2004). Nei mammiferi sono state identificate quattro Caspasi effettori la 3, 6, 7 e quattro Caspasi iniziatrici la 1, 2, 4, 5, 8, 9, 10, 14 (Martinon et al., 2004). È importante sottolineare che le Caspasi sono attivate in una sequenza e nel loro clustere di programmi di morte cellulare. In seguito alla formazione del DISC la Caspasi 8 viene attivata e viene innescata l’attivazione a cascata delle pre-caspasi 3, 7 e 6 nelle rispettive forme attive (Newton et al., 2002).

Nel pathway intrinseco, che coinvolge meccanismi mitocondriali dipendenti, l’attivazione delle Caspasi 3 porta alla formazione di un complesso chiamato apoptossoma. L’attivazione di Caspasi 9 provoca a sua volta l’attivazione delle Caspasi effettive 3, 6 e 7 (Chen et al., 2003; Martinon et al., 2004). Differentemente da pathway extrinseco ed intrinseco, nel pathway secretorio, la scala gerarchica di attivazione delle Caspasi è essenzialmente invertita. Il granzima B, infatti, provoca direttamente le Caspasi 3, 7, 8 e 10. In questo pathway le Caspasi 2, 6 e 9 sono processate direttamente dalla Caspasi 3. Inoltre, è importante notare che la Caspasi 3 svolge un ruolo fondamentale anche per la maturatione delle Caspasi 8 e 10 (Adrain et al., 2005).

Tuttavia, anche se le Caspasi svolgono un ruolo centrale nell’apoptosi, è opportuno sottolineare che alcune di queste molecole hanno un ruolo altrettanto importante nello sviluppo e nella proliferazione cellulare (Boccon-Fontana et al., 2002). Tale coinvolgimento ha delle importanti implicazioni cliniche, come verrà di seguito evidenziato.

Dalla fisiologia alla patologia

Nell’ultimo decennio l’ampliamento delle conoscenze sui meccanismi biochimici e di regolazione dell’apoptosi è stato reso possibile grazie all’acquisizione di informazioni nei tre ambiti specifici dei modelli animali naturali, dei topi knock-out e dei quadri di malattie umana associate ad alterazioni di geni che codificano per molecole coinvolte nel processo biologico dell’apoptosi. Ve alcune sottolineato che l’intervento di informazioni scientifiche provenienti da questi tre ambiti consenta, oltre a comprendere meglio la patologia umana, anche di ipotizzare nuovi fenotipi clinici, che fino ad
oggi non vengono identificati o non ricevono apposite inquadramen-
to nosografico.

Modelli animali

La presenza di modelli animali con mutazioni di singoli geni e l’analisi
de relatori fenotipi clinici ha senso pubblico dato un considerevole con-
tributo alle conoscenze in questo settore. I tipi *lpr* e *gld* sono caratte-
risati da mutazioni dei geni che codificano per le proteine Fas e FasL, ri-
spettivamente (Nagata et al., 1995). In entrambi i casi la mutazio-
ne determina perdita di funzione. Come illustrato in Tabella 1, fenotipi
clinici di questi tipi sono essen-
zialmente caratterizzati dalla pre-
senza di un alto titolo di autoanti-
corpi e da considerevole accumulo
di linfociti attivati ed autoreattivi
te presenti linfoidi secondari con
conseguente notevole impegno del
sistema linfocitico (Rieux-Laucat et al., 2003). Ne deriva che i to-
pi presentano malattie autoimmuni-
tarie, coinvolgenti gli organi più di-
spari, sieropenetralia e infonder-
mezialia (Rieux-Laucat et al., 2003).
Inoltre, è stata descritta una mag-
ggiore prevalenza di disordini
cellulativi, quale conseguenza
dell’alterato ovocitosi cellulare T e
B. Inoltre, in questi tipi è stato de-
scritto un aumento di cellule TCR+
CD4- e CD8- doppio negative nel
sangue perifero dovuto ad un di-
fetto di maturazione intrinseca.
Tuttavia, numerose evidenze speri-
mentali, ottenute in studi genetici
condotti su modelli animali ed uma-
ni, dimostrano che le mutazioni del
genere Fas non sono sempre sufi-
cienti a determinare il fenotipo AL-
PS. In particolare, è stato dimo-
strato che il background genetico
de i ceppi di topo è determinante per l’e-
spressività clinica della malattia
(Choi et al., 1999). Tale background
genetico può inoltre spiegare le dif-
ferenze di espressione clinica tra to-
po ed umano. Infatti, nel topo è par-
ticolarmente frequente la glomeru-
lopericitosi (Watanabe et al., 2002).

**Modelli knock-out e ipotesi di nuo-
vi fenotipi clinici**

Attraverso tecniche di DNA ricombi-
nante è stato possibile generare
modelli di tipi knock-out in cui venisse-
ro provocati mutazioni a carico di
genitori codificanti per molecole coin-
volte nell’apoptosi. Ciò ha permesso
una migliore definizione delle basi
molecolari delle patologie associate
e altre ad alterazioni di questo processo bi-
ologico. Tali studi sono risultati fon-
damentali per meglio apprezzare gli
eventi molecolari e cellulari che so-
no alla base della regolazione dell’e-
meostasi linfocitaria e per meglio de-
finire le patologie associate ad alte-
razioni di singole molecole (Tab. 1).
Ad esempio, la delezione di geni,
che codificano per le Caspasi inu-
ni, ha permesso di comprendere co-
me le Caspasi siano coinvolte non
solo nell’apoptosi, ma anche nella
maturazione, nella crescita e nella
differenziazione cellulare (Wang et al., 2000). A titolo di esempio lo sto-
udio dei tipi KO caspasi 1-2 (Kuida et al., 1995) e caspasi 11-16 ha permesso
di documentare che l’attivazione av-
vien a cascata secondo un ordine
presso che vede la Caspasi 11 agire
a monte della 1 (Wang et al., 1998).
Lo studio del fenotipo del topo ca-
spasi 9-14 ha evidenziato che esso è
più grave del topo caspasi 2-8 sugge-
rendo quindi che la Caspasi 3 è coin-
volta negli stadi finali dell’apoptosi
e che esistono ulteriori vie effettive a
valle della 9. In altri termini, analog-
gamente ad altri sistemi biologici,
anche il sistema delle Caspasi sem-
bra essere ridondante. Questo dato
induce a ritenere che potenzialmente
anche in patologia umana potrebbero

**Fig. 4. Albero filogenetico delle Caspa-
si.** Le Caspasi originano da un unico
principio comune e nel corso della
velocità si sono differenziate in due
principal famiglie, quelle iniziatrici
e quelle effettive. Le prime sono caratte-
rizzate dalla presenza di ripetizioni in
tandem dette Death Effector Domain
(DEDs) e comuni nei come Caspase Re-
ruitment Domain (CARDs). Quelle effet-
tive, invece, sono responsabili dei segni
proteolitici che avvengono nelle fasi
finale del processo di apoptosi.
Tab. I. Modelli animali.

<table>
<thead>
<tr>
<th>Genotipo</th>
<th>Principali alterazioni immunologiche</th>
<th>Principali alterazioni immunologiche</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caspasi -/-</td>
<td>Assenza del “processing” di L-1 e IL-18</td>
<td>Resistenza allo shock settico indotta da LPS</td>
</tr>
<tr>
<td></td>
<td>B linfoblasti resistenti all’apoptosi induction dei granzima B</td>
<td>Sviluppo normale</td>
</tr>
<tr>
<td></td>
<td>Fibroblasti resistenti all’apoptosi mediata da Fas e TNFR1</td>
<td>Assenza di grosse anomalità</td>
</tr>
<tr>
<td></td>
<td>Timoidi con difetto di apoptosi</td>
<td>Anormali e sviluppo</td>
</tr>
<tr>
<td></td>
<td>Assenza del “processing” di L-1 e IL-18</td>
<td>Tolleranza immunitaria</td>
</tr>
<tr>
<td>Fas, mutato (gld)</td>
<td>Assenza di apoptosi Fas/FasL</td>
<td>Anormale sviluppo cerebrale</td>
</tr>
<tr>
<td></td>
<td>Induzione dei linfociti</td>
<td>Totalità prenauseale</td>
</tr>
<tr>
<td>Fas, mutato (gld)</td>
<td>Cellule T riferite all’apoptosi</td>
<td>Anormale sviluppo cerebrale</td>
</tr>
<tr>
<td></td>
<td>Fast, mediata</td>
<td>Totalità prenauseale</td>
</tr>
</tbody>
</table>

Esistere quadri di malattia autoimmuni monogeniche di differente gravità legate ad alterazioni di molecole che giocano un ruolo in differenti fasce della cascata. L’attivazione delle Caspasi è considerata un meccanismo importante durante la selezione timica ed in particolare nella selezione negativa. Tuttavia, gli studi nel KO caspasi -/- hanno dimostrato come il numero totale e la composizione dei timociti sia normale in questi topi mutanti, supportando l’ipotesi che non tutte le Caspasi sono indispensabili nel processo di selezione timica. Studi sui topi caspasi +/+ hanno evidenziato che il numero dei precursori ematopoietici è drammaticamente ridotto in questi topi, suggerendo, quindi, che la Caspasi 8 è essenziale per la crescita e la differenziazione dei progenitori delle cellule ematopoietiche.

Inoltre, studi sui topi caspasi 2/- hanno mostrato che la Caspasi 2 è un substrato del granzima B e pertanto coinvolta nel pathway selettivo di apoptosi. Tale dato indica che la Caspasi 2 è una delle proteasi coinvolte nel controllo delle attività citolitiche, mediata dai linfociti CTL e NK.

Pertanto, la conoscenza di tali fenotipi murini ha rilevanza perché permette di ipotizzare nuovi scenari di patologia umana e di individuare un certo numero di geni candidati nelle strategie d’identificazione di cause genetiche di nuovi fenotipi complessi di malattia.

Quadri di malattia umana

Le ALPS
Tab. II. Segni cliniche delle ALPS.

<table>
<thead>
<tr>
<th>Manifestazioni autoimmuni linfoproliferative</th>
<th>Glomerulonefrite</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>interstiziale</td>
</tr>
<tr>
<td></td>
<td>Anemia emolitica</td>
</tr>
<tr>
<td></td>
<td>Trombocitopenia</td>
</tr>
<tr>
<td></td>
<td>Neutropenia</td>
</tr>
<tr>
<td></td>
<td>S. di Guillain-Barre</td>
</tr>
<tr>
<td></td>
<td>Linfadenopatia</td>
</tr>
<tr>
<td></td>
<td>Splenomegalia</td>
</tr>
<tr>
<td></td>
<td>Epatomegalia</td>
</tr>
<tr>
<td></td>
<td>Linfoma</td>
</tr>
<tr>
<td>Caratteristiche di laboratorio</td>
<td>Linfociti doppio negativi</td>
</tr>
<tr>
<td></td>
<td>ipergammaglobulinemia</td>
</tr>
<tr>
<td></td>
<td>Autoanticorpi</td>
</tr>
<tr>
<td></td>
<td>Elevati livelli sierici di IgG1-10</td>
</tr>
<tr>
<td>Caratteristiche aggiuntive</td>
<td>Defetto di apoptosi Fas media</td>
</tr>
<tr>
<td></td>
<td>Ipereosinofilia</td>
</tr>
<tr>
<td>Caratteristiche meno frequenti</td>
<td>Infrazioni</td>
</tr>
<tr>
<td></td>
<td>Ritardo di crescita</td>
</tr>
<tr>
<td></td>
<td>Artriti reumatoidi giovanili</td>
</tr>
<tr>
<td></td>
<td>Autoimmunodermie</td>
</tr>
<tr>
<td></td>
<td>Idoipsia</td>
</tr>
<tr>
<td></td>
<td>Destrappolei</td>
</tr>
</tbody>
</table>

Si sta, inoltre, chiarendo un ulteriore meccanismo di malattia, in cui la somma di mutazioni di geni diversi, che codificano per molecole funzionalmente correlate e ciascuna delle quali isolatamente non è associata a segni clinici, può determinare un fenotipo di patologia complessa. Un esempio è costituito dalla doppia mutazione in eterozigoti dei geni Fas e Perforina, che determinano un quadro di autoimmunità che successivamente evolve in linfoma (Clementi et al., 2004).

Va anche menzionato che in alcuni casi la mutazione del gene Fas può essere somatica (Holzelova et al., 2004). Ciò può rendere difficile la diagnosi in quanto la mutazione può essere presente esclusivamente in un tipo cellulare.

ALPS e immunodeficit

Assunto alle forme classiche di ALPS, in cui l’autoimmunità rappresenta il marker di malattia, in alcune di queste sindromi l’iporeattività immunitaria si associa ad una condizione di aumentata susceptibility a contrarre infezioni. È stata re-

<p>| Tab. III. Eterogenetità genetica delle Sindromi Autoimmuni Linfoproliferative. |</p>
<table>
<thead>
<tr>
<th>Malattia</th>
<th>Gene alterato</th>
<th>Ereditarietà</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALPS 0</td>
<td>CD95-Fas</td>
<td>AR</td>
</tr>
<tr>
<td>ALPS Ia</td>
<td>CD95-Fas</td>
<td>AD</td>
</tr>
<tr>
<td>ALPS II</td>
<td>CD168-Fasl</td>
<td>AD</td>
</tr>
<tr>
<td>ALPS III</td>
<td>Caspasi 10</td>
<td>AR</td>
</tr>
<tr>
<td>ALPS e Immunodeficit</td>
<td>non rilevato</td>
<td>–</td>
</tr>
<tr>
<td>ALPS e Caspasi 8</td>
<td>Caspasi 8</td>
<td>AR</td>
</tr>
</tbody>
</table>
centemente identificata una forma di ALPS associata ad immunodeficit specifico coinvolgente sia i linfociti T che B e Natural Killer (NK). Tale malattia è causata da mutazioni del gene che codifica per la Caspasi 8 (Chun et al., 2002). Come illustrato in precedenza, tale Caspasi oltre a svolgere un ruolo nell’attività cistotica, gioca un ruolo determinante anche nella proliferazione linfocitaria. Pertanto, i pazienti affetti presentano associato al deficit funzionale della Caspasi 8 una condizione di autoimmunità multiplo ed immunodeficienza (Chun et al., 2002). All’esame clinico i soggetti portatori di questo tipo di mutazione allo stato omozigote mostravano splenomegalia, linfonodenopatia come segno del coinvolgimento del sistema reticoloendoteliale, ed inoltre infezioni respiratorie ricorrenti e da Virus Herpes Simplex (Chun et al., 2002). Sotto il profilo funzionale immunologico, venivano documentate ridotta apoptosis Fas-indotta, bassi livelli di immunoglobuline sieriche ed assenza di switch isotipico (Chun et al., 2002).

L’esistenza di autoimmunità associata ad immunodeficienza conferma pertanto l’ipotesi che alcuni geni di questa famiglia siano coinvolti sia nel controllo della risposta immune sia nella fase di attivazione cellulare dopo contatto con l’antigene, e quindi anche responsabili dell’attivazione e della proliferazione cellulare.

APECED e IPEX

Singolari modelli di malattie monogeniche autoimmuni sono inoltre la Poliendocrinopatia Autoimmune con Candidiasi e Distrofia Ectodermica (APECED) (Eisenbarth et al., 2004; Perheentupa, 2002) e la Poliendocrinopatia a trasmissione recessiva legata al cromosoma X, il cui acronimo, IPEX (Schubert et al., 2001; Wildin et al., 2002), definisce le caratteristiche principali del fenotipo rappresentate da Immunodisregolazione, Poliendocrinopatia, Enteropatia, trasmissione X-recessiva. L’APECED (MIM # 240300) è causata da alterazioni del gene che codifica per la molecola di regolazione dell’autoimmunità (Aire); tale molecola gioca un ruolo chiave nella tolleranza centrale in quanto è espressa nel timo, come riferito in precedenza (Eisenbarth et al., 2004; Perheentupa, 2002).

Dal punto di vista clinico i pazienti affetti da APECED sono caratterizzati da manifestazioni autoimmuni multiplo a carico di organi endocrini e non endocrini (Tab. IV). Generalmente, la malattia si manifesta nei primi mesi di vita con candidiasi si mucocele. Successivamente, compaiono morbo di Addison, ipoparatiroidismo, diabete di tipo I e disfunzioni delle gonadi. In qualche soggetto possono anche comparire manifestazioni autoimmuni che colpiscono gli annessi cutanei determinando vitiligio o alopecia. Tuttavia, la diagnosi non è sempre agevole in età pediatrica in quanto solo alcune manifestazioni autoimmuni hanno essorso in età infantile, mentre altre possono diventare evidenti nel corso dell’età adulta. La frequenza di tale sindrome nelle popolazioni Finlandese, Sarda e Iraniana è stata stimata in 1:25000, 1:14400 ed 1:9000, rispettivamente (Rosatelli et al., 1998). Nei pazienti APECED sono state identificate 46 mutazioni a carico del gene AIRE (Rosatelli et al., 1998; Wang et al., 1998) una di queste, la R257X, è stata descritta con una frequenza dell’83% nella popolazione Finlandese e rappresenta anche la più comune nella popolazione nord Italia (Bjorosse et al., 2000; Cibakova et al., 2001). L’IPEX è legata ad alterazioni del fattore di trascrizione FOXP3, prevalentemente espresso nei linfociti T regolatori CD4+ CD25+, responsabili della down regolazione di clo-

<table>
<thead>
<tr>
<th>Tab. IV. Segni clinici dell’APECED.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caratteristiche endocrine</td>
</tr>
<tr>
<td>Ipoparatiroidismo</td>
</tr>
<tr>
<td>Morbo di Addison</td>
</tr>
<tr>
<td>Insufficienza ovarica</td>
</tr>
<tr>
<td>Caratteristiche non endocrine</td>
</tr>
<tr>
<td>DOM</td>
</tr>
<tr>
<td>Ipertiroidismo</td>
</tr>
<tr>
<td>Candidiasi</td>
</tr>
<tr>
<td>Ipoplastia dello smalto</td>
</tr>
<tr>
<td>Alopecia</td>
</tr>
<tr>
<td>Distrofia ungueale</td>
</tr>
<tr>
<td>Chetapatia</td>
</tr>
<tr>
<td>Malassimilamento</td>
</tr>
<tr>
<td>Vitiligine</td>
</tr>
<tr>
<td>Anemia perniciosa</td>
</tr>
<tr>
<td>Epatite autoimmune</td>
</tr>
</tbody>
</table>

61
ni autoreattivi in periferia (Schubert et al., 2001; Wildin et al., 2002).
Del punto di vista clinico, la sindrome colpisce soggetti in età pediatrica ed è caratterizzata da enteropatia ed ictus che colpiscono il sistema endocrino, come il Diabete Mellito insulino-dipendente. Un grosso contributo alla comprensione del fenotipo clinico è stato dato dallo studio del modello naturale dell'IPEX, lo “scary mouse”. Il gene FOXP3, la cui mutazione è causa della malattia, appartiene alla famiglia dei fattori di trascrizione “forkhead”, che svolgono un ruolo chiave nella funzione ed attivazione delle cellule T. Tale gene è localizzato sul cromosoma X nella regione Xp11.3-q13.3 e codifica per un polipeptide di 431 amminoacidi noto come scurfina (Blennet et al., 2000). Questa proteina presenta nella regione carboni-terminale un dominio altamente conservato nelle proteine forkhead il “winged helix”, cruciale nel processo di legame al DNA, un motivo riconosciuto e riconosciuto da proteine finger necessarie alla stabi-
zione del legame della scurfina al DNA.

Tab. V. Segni clinici dell'IPEX.

<table>
<thead>
<tr>
<th>Caratteristiche cliniche</th>
<th>Diabete tipo I ad esordio neonatale</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grave enteropatia</td>
</tr>
<tr>
<td></td>
<td>Eczema</td>
</tr>
<tr>
<td></td>
<td>Anemia/ombrotrofia</td>
</tr>
<tr>
<td></td>
<td>Ipoeodidrocolismo</td>
</tr>
<tr>
<td></td>
<td>Igpar-1gE</td>
</tr>
<tr>
<td>Positività di autoanticorpi</td>
<td>Normale numero di cellule CD8+ , CD4+ e CD8+</td>
</tr>
<tr>
<td></td>
<td>Normale risposta proliferativa al mitogeni</td>
</tr>
<tr>
<td></td>
<td>Normali livelli di IGG</td>
</tr>
<tr>
<td></td>
<td>Alli livelli di IGE</td>
</tr>
<tr>
<td></td>
<td>Presenza di autoanticorpi</td>
</tr>
</tbody>
</table>

Conclusioni e prospettive

Lo studio di questi pazienti, affetti da forme instabili di immunodeficienza, la cui manifestazione clinica predomina, l'autoimmunità ha permesso di elucidare meccanismi biologici importanti, quali l'apoptosi e quelli coinvolgono nella tolleranza centrale e periferica. Come spesso avvenuto negli ultimi 15 anni grazie all'osservazione di pazienti rari si è definito il ruolo che singole molecole svolgono nella fisiologia della risposta immune. La prima implica-
zione, sul piano clinico è rappresentata dal fatto che l'identificazione di questi pazienti con fenotipo di malattia autoimmunare complessa può portare ad identificare nuove immunodeficienze su base genetica finora non diagnosticate. Evidentemente l'identificazione di una causa genetica di una malattia del sistema emato-
poietico non può non suggerire nuovi scenari terapeutici quali ad esempio terapie con cellule stam-
nali o in un futuro non prossimo interventi terapeutici di correzione molecolare come già realizzato in alcune forme di immunodeficienza congenita classica.

Infine, lo studio molecolare e funzionale dei pathways dell'apoptosi potrebbe dare un considerevole contributo ad identificare alterazioni molecolari a carico di geni interferenti nel l'insorgenza delle malattie autoimmuni classiche, giustamente conside-
rate multifattoriali nella patogenesi, e nel determinare la gravità peggioran-
do o attenuando il fenotipo.
Bibliografia

Newton K, Staudt A. Immune signal not only apoptosis but also antigen-induced activation in cells of the immune system. Curr Dev 2003;17:685-5.

Ringraziamenti

Gli autori ringraziano la Sicu in Emanuela Minopoli per l’assistenza editoriali.

Corrispondenza

Prof. Università di Pavia, Azienda Ospedaliero Universitaria "Filippo Neri" 20820, 20820 Monza, Italy.

E-mail: ainsen@unimi.it

156

63
References

resulting in autoimmune lymphoproliferative syndrome: a molecular and immunological analysis. *Blood.* 89, 902-9

2.2 Peripheral GH insensitivity is a distinct disorder in Idiopathic Short Stature

Short stature is the most important clinical problem considered the high frequency in childhood. In many case the short stature may be the sign of a wide variety of pathologic condition or inherited disorder. Indeed, decreased childhood growth resulting in short stature is caused by endocrine or chromosomal abnormalities, genetic defects in endochondral bone formation, malnutrition, chronic systemic disease, or psychosocial deprivation. In spite of that, in many children a specific etiology for the growth failure cannot be identified and this condition is referred to as Idiopathic Short Stature (ISS). The criteria used for to define this pathology are 1) a height of more than two standard deviation below the mean; (2) normal or slow height velocity; (3) normal birth weight; (4) absence of specific endocrine abnormalities (including GH deficiency) and no evidence of chronic physical or psychological illness [1-3 in Blair 2002] and idiopathic short stature is considered a diagnoses of exclusion.

Actually, the therapy of the children with ISS consist in the administered to exogenous recombinant human GH (rhGH) (Manmohan A 2005).

Before 1980, GH was administered exclusively to GH deficient (GHD) children who were unresponsive to stimulation tests. Subsequently, many investigators studied the effects of GH in very short children who were GH sufficient and were growing at a subnormal velocity for their age. Left untreated, many of these short children have failed to reach their midparental
target heights, consequently, opinions differ as to its impact on final heights (Buchlis JG et al 1998).

In these cases, the short stature may be caused to the defect in spontaneous GH secretion associated with the normal response to GH stimulation test (Spiliotis BE et al 1984) or to GH inactivity (Kowarski AA et al 1978). Nevertheless, the first mechanism has been found in a rare cases (Kerrigan JR et al 1993) while the second mechanism, also recently, has been reported (Takahashi Y et al 1997). Furthermore, it has been recognized that some children with ISS may have peripheral insensitivity to GH (GHI) at different extents of severity (Goddard AD et al 1995). Overall, studies in the last years have elucidated that receptor defects or molecular alterations of downstream elements in the signaling cascade may lead to a considerable number of diseases characterized by total or partial unresponsiveness of the target organ to appropriate stimuli (Rosenfeld RG 1994).

Laron syndrome (LS) represent the classical prototype of GH insensitivity. This is a rare autosomal recessive disorder characterized by severe peripheral resistance to the physiological action of GH (Rosenfeld RG et al 1994). Although diagnostic criteria to define patients with severe GHI are well established (Woods KA et al 1996), the identification of patients with milder forms is still debated (Johnston LB et al 1999).
2.2.1 Peripheral GH insensitivity: a post-receptorial defect

Considered that for understanding regulation of normal growth and metabolism, it is essential to understand the molecular basis of growth hormone (GH) action, in this first phase of research we describe the physiopathological role of GH hormone in peripheral GH insensitivity disorder. Furthermore we provide to delineate possible diagnostic algorithms to help the paediatrician promptly recognize in a heterogeneous group of ISS that forms of short stature due to a receptorial or post-receptorial defect.

The GH hormone play an important role in the cellular growth, differentiation and metabolism but its diverse effects are elicited by binding of GH to its receptor (GHR).

The human growth hormone receptor (GHR) belongs to the GH-PRL-cytokine receptor superfamily and consists of three domains: an extracellular domain responsible for hormone binding and receptor dimerization, a transmembrane domain, and an intracellular domain that initiates intracellular signaling (Postel-Vinay MC et al 1995). A soluble form of the GHR called high affinity GH binding protein (GHBP) is present in the circulation of normal individuals end acts as a reservoir and buffer for circulating GH. It is produced as a result of proteolytic cleavage of the extracellular domain from the rest of the receptor protein. GH has been shown to bind sequentially to two GHBP, leading to the hypothesis that GH binding causes both dimerization of GHR and conformational changes important for GH function. These changes result in increased binding to GHR of JAK2, a nonreceptor tyrosine kinase, and promote
activation of JAK2. In turn, both GHR and JAK2 are phosphorylated on tyrosines by the activated JAK2. These phosphorylated tyrosines serve as docking sites for SH2 domain-containing signaling molecules. Subsequent signaling events include activation of MAP kinases, via a SHC+Grb2+Sos+ras+raf+MAPK pathway. MAP kinase substrates include other protein kinases as so as transcription factors that are phosphorylated in response to GH and are responsible for several actions of GH. A recently described family of transcription factors that serve as signal transducers and activators of transcription (Stat) participates in GH signaling between the receptor and the nucleus. Stat proteins are latent cytoplasmic factors containing SH2 and SH3 domains. Upon tyrosyl phosphorylation, often via a JAK kinase-initiated cascade, cytoplasmic Stat proteins complex with other Stat and/or non-Stat proteins, translocate to the nucleus, bind to DNA, and activate transcription of target genes (Carter-Su C. et al. 1996).

The effects of GH on growth are mostly mediated by intermediate factors, of which the insulin-like growth factor-I (IGF-I) is the most studied. The linear growth is a complex process and GH and IGF-I participate as combined factors or separately to this process. Thus, GH appears to have many cellular effects that are independent of IGF-I, and are most probably direct effects of GH mediated by its cognate receptor (Le Roith Trends in Endocrinol 2001).

Recently, has been reported that the GHR stimulation actives several pathways. The coordinate action of the proteins involved in this pathway leads to the expression of the appropriate GH functions (Winston LA 1995).
Therefore, any proteins alteration and/or protein phosphorylation events alteration in the transduction mechanism may be cause to a peripheral GH insensitivity.

Moreover studies of pathogenesis in patient with GHI showed that in same cases this condition is associated to molecular alteration of GH-R gene. In classis Laron syndrome nearly 40 distinct mutations and/or exon deletions have been identified (Rosenbloom AL et al 1999). On the contrary, molecular analysis performed in children with a milder form of GHI reveals that only in few cases this disorder is associated to mutations in GH-R gene (Goddard AD et al 1997, Sanchez JE et al 1998). Take together, this data suggest that other molecules involved in GH-R signaling might be altered and to cause a partial responsiveness to GH hormone stimulation.

Thus far the GH stimulation test is a useful tool to help to identify the patient without GH deficiency. This test is performed administrated exogenous GH for 4 consecutively days. A increase of the serum levels of IGFI I (main mediator of GH function) more than 20% of the basal value is considerate a positive test response (Blum WF 1994). This evaluation allow to leave out a structural or functional defect of the GH-receptor. Conversely, no increase of the serum levels of IGFI indicate no responsiveness of the peripheral organ to the GH and this associated to normal or elevated serum levels of GHBP suggest a defect in signaling transduction mechanism of the GH-R.

This work has been published on Italian Journal Pediatrics see below for the manuscript.
Difetto di crescita staturale da alterata risposta periferica al GH: patologia pediatrica emergente e spesso non diagnosticata

Short stature due to peripheral GH insensitivity: emerging and often not diagnosed pediatric disorder

M. SALERNO, E. MATRECANO, N. POZZI, A. IOVINO, M. SOMMANTICO, S. DI MAIO, C. PIGNATA
Dipartimento di Pediatrica, Unità di Immunologia ed Endocrinologia, Università «Federico II», Napoli

Parole chiave — Rassegna statura idiopatica - Ormone della crescita - Insensibilità periferica al GH - Trasmissione del segnale - Malattie postreceptoriali

KEY WORDS. — Idiopathic short stature - Growth hormone - Peripheral GH insensitivity - Signal transduction - Postreceptorial diseases

Introduzione

La bassa statura costituisce uno dei problemi clinici di maggiore rilevanza in età pediatrica in considerazione della alta prevalenza di tale condizione. Mentre in molti casi la causa del ritardo è facilmente individuabile, in altri non è sempre possibile identificarne l’etiologia. In questi casi la condizione di ritardo di crescita staturale viene etichettata come bassa statura idiopatica (BSI). La Tabella I illustra i criteri generalmente utilizzati per definire una condizione di BSI. Tale diagnosi costituisce, pertanto, una diagnosi di esclusione e riflette l’impossibilità del Pediatra di porre una diagnosi eziopatogenetica. Va sottolineato come alla luce delle conoscenze attuali non vi sia consenso unanime sui criteri per porre tale diagnosi, in quanto alcuni Autori includono in questo gruppo anche il ritardo costituzionale di crescita e pubertà, e la bassa statura familiare, entità classicamente ritenute varianti della norma in quanto caratterizzate da una velocità di crescita normale. Tuttavia, i casi in cui ad un basso basso segnalazione si sovrappoggia anche un rallentamento della velocità di crescita possono rientrare nella BSI. A tal proposito si sottolinea come sia importante nell’approccio al bambino con bassa statura il followup osservatorio che preveda almeno due misurazioni a distanza di 6 mesi, così da consentire una valutazione dinamica della crescita (velocità di crescita). Una migliore definizione di questo capitolo di patologia pediatrica ha grande rilevanza clinica. Infatti, alcuni bambini con BSI raggiungono una statura adulta inferiore al bersaglio familiare e ciò ha indotto alcuni Autori ad effettuare un trattamento con ormoni della crescita (GH) per migliorare la velocità di crescita e raggiungere un apporto basato genetico. Tale trattamento, tuttavia, non è sempre efficace, confermando quindi che il gruppo delle BSI sia eterogeneo nel decorso clinico e negli aspetti patogenetici. Tra le possibili cause della ridotta crescita in questo gruppo di soggetti è stata suggerita una distruzione neurosecretoria, caratterizzata da inadeguata secrezione spontanea di GH, sia pure associata a normale risposta al test di stimolo, o la presenza di un GH inattivo. Tuttavia il primo meccanismo è stato riscontrato solo in rari casi e il secondo è stato solo di recente dimostrato. Un’altra possibile causa del difetto accrescitivo è rappresentata dalla ridotta sensibilità periferica all’ormone, legata ad anomalie strutturali o funzionali del recettore specifico per il GH. Conoscenze recenti sui meccanismi biochimici che regolano il corretto funzionamento dei recettori stanno fornendo considerevoli contributi alla comprensione di malattie pediatriche in differenti settori della Patologia, altrimenti non facilmente identificate. È possibile attualmente identificare e quindi diagnosticare malattie da alterazioni recettoriali o postrecettoriali. È verosimile, pertanto, che tale settore di studi possa in futuro contribuire considerevolmente a migliorare le conoscenze anche in questo gruppo di patologia pediatrica. Lo scopo di questo articolo di aggiornamento è quello di contribuire a meglio discriminare nel gruppo eterogeneo delle BSI quelle forme da insensibilità periferica del recettore e fornirle delle linee guida per un miglior inquadramento di questi pazienti. Per facilitare la comprensione della problematica si ritiene necessario fornire degli elementi di fisiologia relativi alla costituzione del recettore per il GH e dei meccanismi che ne regolano il corretto funzionamento.
Fisiologia del recettore per il GH

Aspetti strutturali del recettore e sue funzioni
Il recettore dell’ormone della crescita umano (GHR) è una proteina di 620 amino acidi costituita da una porzione extracellular di 246 amino acidi, che viene rilasciata come componente solubile del recettore nel siero (proteina legante il GH o GHBP), da una regione transmembrana di 24 amino acidi, ed un lungo dominio intracitoplasmatico di 350 amino acidi, come illustrato nella Figura 1A. La Figura 1B rappresenta schematicamente la struttura del gene che codifica per i 10 esoni del GHR, localizzato sul cromosoma 5p 13.1-p12. Il dominio extracellular contiene 7 residui di cisteina e 7 potenziali siti di glicosilazione. Il dominio extracellular del recettore è costituito da 2 regioni aventi una tipologia simile a quella delle immunoglobuline. Il primo evento nella trasmissione del segnale è il legame del GH con 2 molecole del GHR. Ogni molecola di GH ha 2 siti di legame e, quindi, un primo recettore lega il sito 1 mentre il secondo recettore lega il sito 2 dell’ormone. L’interazione del GH con le 2 molecole di recettore forma un omodimer (dimerizzazione del recettore). La distruzione di uno o di entrambi i siti di legame del GH o una mutazione che alteri il processo di dimerizzazione del recettore determina perdita di funzione e quindi insensibilità al GH.

La regione intracitoplasmatica contiene 10 residui di tirosina, contrassegnati con la Y nella Figura 1A, come si vedrà in seguito svolgono un ruolo molto importante nel processo di risposta dell’organo periferico all’ormone. La porzione extracellular è codificata dagli esoni 2-7, mentre la porzione transmembrana dall’esone 8 e quella intracitoplasmatica dagli esoni 9 e 10. Il GH svolge un ruolo fondamentale nella crescita e nella differenziazione cellular. La presenza del GHR è stata documentata in numerosi organi come illustrato in Figura 2. In particolare, esso è espresso sulla membrana di cellule di fegato, rene, intestino, polmone, surrene, muscolo, timo, osso, ed inoltre in neuroni, fibroblasti, adipociti e linfociti. Oltre a promuovere la crescita longitudinale durante l’infanzia, il GH ha numerosi altri effetti biologici, che gli conferiscono un ruolo centrale anche nella fisiologia dell’adulto. Nella Tabella II sono riportati i principali effetti dell’ormone. Gli effetti sul metabolismo glucidico, lipidico e sulla sintesi proteica sono svolti direttamente dall’ormone, mentre per la maggior parte degli altri effetti l’azione del GH sull’organo bersaglio è mediata da un fattore periferico prodotto soprattutto a livello epatico, denominato insulin-like growth factor-I.

Fig. 1
Recettore per il GH: a. schema rappresentativo del recettore nelle sue porzioni extracellular, transmembrana ed intracellular; b. organizzazione in esoni del gene che codifica per il recettore.
Difetto di crescita staturale da alterata risposta periferica al GH

Fig. 2. Distribuzione del recettore per il GH in differenti tipi cellulari.

(IFG-I) 20. Anche se il recettore per il GH sembra essere ubiquitario, gli effetti biologici indotti dall’azione del- l’ormone sembrano essere più evidenti in alcuni organi. Nonostante la presenza del GHR su linfociti ed organi linfoidi, il significato biologico dell’effetto modulatorio del GH sul sistema immune è ancora da definire. È ipotizzabile, tenuto conto della ampia espressione del GHR su vari organi e tessuti che alcune funzioni specifica- che non siano state tuttora identificate.

Messaggeri extracellulari dell’informazione
Il GH in alcuni casi agisce direttamente sull’organo bersaglio, mentre in molti casi esso agisce mediante messaggeri intermedi (Fig. 3). I principali mediatori sono rappresentati dagli insulin-like growth factors (IGFs), che partecipano ai meccanismi di crescita e di funziona- mento di quasi tutti gli organi 20. Le molecole IGF-I ed IGF-II sono importanti per lo sviluppo dell’embrione e la crescita fetale, mentre dopo la nascita le informazioni sinora disponibili sugli effetti di queste molecole indicano nell’IGF-I il principale mediatore dell’azione del GH 20. La maggior parte dell’IGF-I viene prodotta a livello epatico per effetto dell’azione del GH e la sua concentra- zione sierica correla con la concentrazione dell’ormone. Esistono evidenze che indicano come a sua volta l’IGF-I possa inibire la secrezione ipofisaria dell’ormone. Tali messaggeri circolano legati a proteine vettrici (IGFBP) di cui finora ne sono state identificate almeno 10 21. Tra queste l’IGFBP3, che lega più del 95% dell’IGF-I aumentando l’emivita, sembra avere rilevanza clinica nel modulare l’effetto dell’IGF-I 21. Le concentrazioni sierie- che di IGF-1 risentono di molte variabili: età, sesso, stato nutrizionale e secrezione di GH.

Tab. 2.
Effetti del GH sui principali organi bersaglio.

<table>
<thead>
<tr>
<th>Tissue</th>
<th>Effects of GH on organ targets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fegato</td>
<td>Stimola la sintesi di IGF1</td>
</tr>
<tr>
<td>Renne</td>
<td>Stimola la neoglucogenesi</td>
</tr>
<tr>
<td>Osso</td>
<td>Aumenta il flusso plasmatico reale</td>
</tr>
<tr>
<td>Muscolo</td>
<td>Aumenta la filtrazione glomerulare</td>
</tr>
<tr>
<td>Sistema immune</td>
<td>Stimola la linfopoiesi</td>
</tr>
<tr>
<td>S. nervoso centrale</td>
<td>Parzecipia all’attivazione linfocitaria</td>
</tr>
<tr>
<td>S. adiposo</td>
<td>Stimola la lipolisi</td>
</tr>
<tr>
<td></td>
<td>Inibisce la differenziazione degli adipociti</td>
</tr>
</tbody>
</table>
Trasmissione del segnale intracellulare
Dopo l’interazione dell’ormone con il recettore, è necessario che l’informazione sia trasmessa al nucleo per consentire l’attivazione della trascrizione dei geni che permettono l’espressione della funzione specifica. Questo processo di trasmissione del segnale è prevalentemente determinato da processi a catena di fosforilazione. La tirosina cinasi JAK 2, appartenente alla famiglia di chinasi Janus, svolge un ruolo fondamentale in questo processo. Essa si attiva fosforilandosi se stessa (processo di autofosforilazione) ed in seguito fosforila il dominio intracitoplasmatico del GHR a livello dei residui di tirosina. Questi siti di fosforilazione svolgono un ruolo fondamentale per la trasmissione del segnale in quanto rappresentano siti di legame per proteine intracellulari contenenti domini SH-2, come le proteine della famiglia delle «Signal Transducers and Activators of Transcription» (STATs). Queste molecole attivate mediante fosforilazione traslocano nel nucleo dove si legano a specifiche sequenze di DNA attivandone la trascrizione di appropriati geni target. Al momento 3 proteine della famiglia STAT, denominate, 1, 3, e 5, partecipano al processo; tuttavia STAT-5 sembra essere quella maggiormente coinvolta nella regolazione della risposta al GH. La Figura 4 illustra uno schema semplificato della sequenza di reazioni. Va sottolineato, tuttavia, come con il rapido progredire delle conoscenze in questo settore il numero dei mediatori intracellulari sia inevitabilmente destinato ad aumentare. Alla luce di quanto esposto ben si comprende come siano importanti per un corretto funzionamento del recettore tutte le regioni intracitoplasmatiche dello stesso. Infatti, ad esempio, la regione denominata Box 1 è necessaria per l’attivazione di JAK 2 e delle chinasi attivate dai mitogeni (MAPK). Recenti studi indicano inoltre chiaramente che la stimolazione del recettore attiva pathways multipli, che quindi fungono nel modo integrato e consentendo l’espressione della funzione appropriata.

Insensibilità periferica all’ormone della crescita
La condizione più nota di insensibilità al GH è rappresentata dalla sindrome di Laron, disordine autosomico recessivo caratterizzato da una completa resistenza alla fisio logica azione del GH. Esistono anche casi di resistenza al GH secondaria a malnutrizione, malassorbimento, sepsi, insufficiente epatica o malattie infiammatorie croniche. Le caratteristiche cliniche dei pazienti affetti da sindrome di Laron sono simili a quelle dei pazienti con grave deficit di GH. Inoltre spesso nella sindrome di Laron sono presenti alcuni segni clinici particolari, quali fronte prominente, ponte nasale ipoplasmico, diminuite dimensioni verticali del viso, capelli radi, sciele blu, voce acuta, mani e piedi piccoli. Tuttavia il fenotipo clinico è variabile in relazione all’eterogeneità genetica della malattia. I livelli basali di GH possono essere normali o più spesso elevati; l’IGF-I ed IGF/FB3, che rappresentano gli indicatori più diretti dell’azione del GH, sono generalmente bassi rispetto ai valori normali per sesso ed età. Un ulteriore supporto alla diagnosi viene dal test di generazione somatomedinica, come illustrato in seguito nell’algoritmo diagnostico. Nei casi di insensibilità al GH non si osserva aumento significativo di IGF-I rispetto al valore basale. Gli studi patogenetici sinora condotti su pazienti con insensibilità al GH hanno evidenziato come in alcuni casi tale condizione sia associata ad alterazioni molecolari del recettore per l’ormone. Fino ad oggi più di
30 diverse mutazioni e/o delezioni sono state descritte. La maggior parte di esse coinvolgono gli esoni 2-7 del gene che codificano per il dominio extracellulare del GHR. In questi casi la GHBP, che rappresenta la porzione extracellulare solubile del recettore, può essere assente o comunque inferiore al 10% del normale. Pertanto, il dosaggio della GHBP può essere utile per la diagnosi. In alcuni casi può essere alterato il processo di dimerizzazione del recettore, mentre in altri casi è stata dimostrata un’alterazione del dominio intracellulare, o ancora difetti nella sintesi e/o secrezione dell’IGF-I. Nei casi con mutazione del dominio intracellulare, i livelli di GHBP sono normali o aumentati. La Tabella III, tuttavia, mostra come nei principali studi effettuati in pazienti con insensibilità recettoriale all’ormone o con bassa statura idiopatica, alterazioni del recettore siano state trovate solo in alcuni dei pazienti, mentre in altri non è stato possibile identificarne il meccanismo molecolare. Ciò suggerisce che differenti meccanismi, coinvolgendo diverse molecole nei pathways di trasmissione del segnale, possano determinare la condizione di insensibilità recettoriale. Tale ipotesi è suffragata altresì dall’osservazione che esiste un ampio spettro clinico di GH resistenza, che va dalla parziale responsività ad una assoluta incapacità del recettore di rispondere allo stimolo ormonale. Studi in questo settore potranno, quindi, consentire la diagnosi patogenetica di alcuni pazienti finora identificati come affetti da bassa statura idiopatica.

Come si riconosce un difetto recettoriale o postrecettoriale

Nonostante il progredire delle conoscenze nel settore

Tab. III.

Prevalenza di mutazioni del GH-R in pazienti con insensibilità al GH (GHI) o bassa statura idiopatica (BSI).

<table>
<thead>
<tr>
<th>Autore</th>
<th>Classificazione dei pazienti</th>
<th>Numero dei pazienti</th>
<th>Numero dei pazienti con mutazione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meacham (1992)</td>
<td>GHI</td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td>Blum (1994)</td>
<td>GHI</td>
<td>38</td>
<td>6</td>
</tr>
<tr>
<td>Goddard (1997)</td>
<td>BSI</td>
<td>100</td>
<td>8</td>
</tr>
<tr>
<td>Wood (1997)</td>
<td>GHI</td>
<td>82</td>
<td>27</td>
</tr>
</tbody>
</table>

Il numero di mutazioni rilevate su 31 campioni testati.
dell’Endocrinologia sperimentale, non riteniamo possibile al momento fornire delle linee guida al Pediatria per definire con certezza una condizione di difetto di crescita da malattia recettoriale o postrecettoriale. Tuttavia alcuni elementi possono essere utili nell’approccio a questa problematica clinica, come schematicamente illustrato nella Figura 5. In quei pazienti con bassa statura idiopatica, ed in cui quindi è stato in precedenza escluso un deficit di GH secondo i criteri convenzionali, il test di generazione della somatomedina rappresenta il primo strumento da utilizzare. Essi si esegue somministrando 0.11 μg/kg/die di ormone della crescita per 4 giorni consecutivi. Generalmente si considera un aumento di IGF-I superiore al 20% del valore basale una risposta positiva al test, che consente di escludere un difetto strutturale o funzionale del recettore per il GH. In questi casi, pertanto, o vi è un’altra causa della bassa statura idiopatica o è possibile che vi sia un’alterazione del recettore per l’IGF-I, e veniva tuttavia dimostrata solo in alcune gruppi etnici. Nel caso non vi sia aumento di IGF-I, questa condizione è indicativa di non responsività dell’organismo periferico al GH, in questo caso la valutazione della GHBP può fornire utili elementi diagnostici. Infatti, come è stato descritto in precedenza, questa proteina corrisponde alla componente extracellulare e solubile del recettore stesso. Pertanto, in caso di mutazione di tale regione del recettore frequentemente si osserva un basso valore di GHBP (< 10%). Nel caso invece si riscontri un valore normale o addirittura elevato di GHBP sierica, in riferimento ai valori normali per età, ciò è indicativo di un difetto intracellulare del recettore, tuttavia descritto in soli 2 soggetti della stessa famiglia, o dei meccanismi di trasmissione del segnale, che virtualmente può coinvolgere ciascuna delle numerose molecole di signaling come illustrato in precedenza. L’analisi molecolare del gene per il GHR trova, a nostro avviso, giustificazione esclusivamente per studi di correlazione tra fenotipo clinico e genotipo. Va segnalato, tuttavia, che non necessariamente un valore basso di GHBP si associa a mutazione del recettore.

È possibile oggi, in alcuni centri altamente specializzati studiare con tecnologie innovative le fasi biochimiche che seguono all’interazione del recettore con il ligancho e che permettono la trasmissione del segnale dal recettore al nucleo. Tale tecnologia consente pertanto una valutazione diretta delle capacità trasduttive del recettore e quindi può rivelarsi strumento estremamente utile nella diagnosi di questi pazienti. Un’applicazione più ampia di tali strumenti diagnostici può contribuire ad individuare pazienti, che fino ad oggi non ricevono appropriata diagnosi, e quindi a consentire una valutazione della reale prevalenza del problema, oggi non possibile in quanto i differenti gruppi di lavoro utilizzano differenti criteri di selezione dei soggetti, spesso indiretti.

Bibliografia

Pazienti con bassa statura idiopatica

Test di generazione somatomedica

- **IGF-I**:
 - Aumenta (>20% del valore basale)
 - Altra causa
 - GHBP bassa
 - GHBP normale

 Probaibile difetto del recettore del IGF-I

 Probabile difetto del "signaling" intracellulare

- Non aumenta

Fig. 5. Criteri per l’identificazione di un’eventuale insensibilità periferica all’ormone in pazienti affetti da bassa statura idiopatica. Un ruolo importante è svolto dal test di generazione somatomedica.
Difetto di crescita staturale da alterata risposta periferica al GH

Yarden Y, Ulrich A.

Growth hormone receptor: intrinsic kinase.

Campbell GS.

Growth hormone signal transduction.

J Pediatr 1997;13;24-44.

Winston LA, Hunter T.

Growth hormonel signal transduction.

J Pediatr 1997;13;24-44.

Blum WF, Custerl AM, Postel-Vinay MC, Ranke MB, Savage MO, Wilton P.

Improvement of diagnostic criteria in growth hormone insensitivity syndrome: solutions and pitfalls.

Rosenbloom AL, Savage MO, Blum WF, Guevara-Aguirre J, Rosenfeld RG.

Clinical and biochemical characteristics of growth hormone receptor deficiency (Laron syndrome).

Rosenfeld RG, Rosenthal DM, Guevara-Aguirre J.

Growth hormone (GH) insensitivity due to primary GH receptor deficiency.

Argetinger LS, CarterSe C.

Mechanism of inactivation by growth hormone receptor.

Characterization of the human growth hormone receptor gene and demonstration of a partial gene deletion in two patients with Laron-type dwarfism.

Martini JP, Villares SM, Nagano M, Delahaye-Zervas MC, Eymard B, Kelly PA, Postel-Vinay MC.

Quantitative analysis by polymerase chain reaction of growth hormone receptor gene expression in human liver and muscle.

Hammel RN, Medoff RG.

Effects of growth hormone and insulin-like growth factor I on renal growth and function.

Olsson CA, Bengtsson BA, Isaksson OGP, Andreassen TT, Slootweg MC.

Growth hormone and bone.

Freeth JS, Silva CM, Whatmore AJ, Clayton PE.

Activation of the signal transducers and activators of transcription signaling pathway by growth hormone (GH) in skin fibroblasts from normal and GH binding protein positive Laron syndrome children.

Hammel RN, Medoff RG.

Effects of growth hormone and insulin-like growth factor I on the immune system.

Wollmann HA, Ranke MB.

Metabolic effects of growth hormone in children.

Le Roith D.

Insulin-like growth factors.

Rosenfeld RG.

An endocrinologist's approach to the growth hormone-insulin-like growth factor axis.

80
2.2.2 Abnormal GH Receptor Signaling as a marker for Peripheral GH insensitivity

As GHI encompasses a wide spectrum of clinical phenotypes, ranging from classical complete forms and partial deficiencies, the identification of these patients is often difficult, and the prevalence of such cases may be underestimated (Saenger P 1999). Aim of this research were ascertain whether integrating functional provocative assays, analysis of receptor induced biochemical alterations and molecular studies may help unravel the complexity of ISS and lead to identification of more reliable markers of GHI.

The results obtained in this study revealed reduced tyrosine phosphorylation in two of 14 ISS children following GH stimulation of peripheral lymphocytes, associated with low basal and GH-stimulated serum IGF-I. In the patient 3 no tyrosine phosphorylation was observed while in the patient 12 the biochemical alteration was selective, in that it concerned exclusively the protein migrating in the 119 kDa area, whose size corresponds to that of Jak2, but immunoprecipitation experiments showed a normal JAK 2 phosphorylation thus suggesting that a different molecule migrating in the same area of JAK 2 and yet be defined was involved in the process. The molecular analysis of GHR in these patients revealed two heterozygous polymorphism: G168A in the exon 6 and I526L in the exon 10 in the patient 3 and an homozygous polymorphism I526L in the exon 10 in the patient 12. Only one heterozygous mutation Arg^{161} Cys was found in patient 5 that showed a normal incremental response to GH. Thus, a possible mechanism to explain the wide
phenotypic variability of heterozygous mutation of GHR is that there are other genes that may interact with the signaling pathway, thus modifying the clinical phenotype. This work has been published on Clinical Endocrinology and Metabolism, see below for the manuscript.
Abnormal GH Receptor Signaling in Children with Idiopathic Short Stature

MARIA CAROLINA SALERNO, BARBARA BALESTRIERI, ELIANA MATRECANO, ANNUNZIATA OFFICIOSO, RON G. ROSENFELD, SALVATORE DI MAIO, GIORGIA FIMIANI, MATILDE VALERIA URSINI, AND CLAUDIO PIGNATA

Department of Pediatrics, Federico II University (M.S., B.B., E.M., A.O., S.D.M., C.F.), 80131 Naples, Italy; Department of Pediatrics, Oregon Health Science University (R.G.), Portland, Oregon 97201-3082; and International Institute of Genetics and Biophysics (G.F., M.V.U.), Consiglio Nazionale delle Ricerche, 80131 Naples, Italy

Peripheral GH insensitivity may underlie idiopathic short stature in children. As the clinical and biochemical hallmarks of partial GH insensitivity have not yet been clearly elucidated, the identification of such patients is still difficult. We integrated functional, biochemical, and molecular studies to define the more reliable markers of GH insensitivity. In particular, we measured GH receptor transducing properties through GH-induced protein tyrosine phosphorylation in patients' peripheral blood mononuclear cells and performed direct sequencing analysis of GH receptor-coding exons. Five of 14 idiopathic short stature patients with low basal IGF-I levels showed low or absent IGF-I increment after 4 d of GH administration. However, a prolonged GH stimulation induced in 3 of them an increase in IGF-I 40% above the baseline value. The IGF-binding protein-3 behavior paralleled that of IGF-I. The 2 GH-unresponsive subjects showed an abnormal tyrosine phosphorylation pattern after GH challenge. Sequence analysis of the GH receptor gene revealed a heterozygous mutation resulting in an Arg to Cys change (R161C) in exons 6 in only 1 patient, who had normal GH receptor responsiveness. Our findings indicate that abnormal GH receptor signaling may underlie idiopathic short stature even in the absence of GH receptor mutations. Thus, combining the 4-d IGF-I generation test and the analysis of GH-induced protein tyrosine phosphorylation is a useful tool to help identify idiopathic short stature patients with partial GH insensitivity. (J Clin Endocrinol Metab 86: 3882-3888, 2001)

The management of patients with short stature and growth hormone deficiency remains controversial. In the absence of systemic diseases or hormone deficiencies, these patients are often classified as having idiopathic short stature (ISS), which implies that the underlying pathogenic mechanism has yet to be defined (1). It has been recognized that some children with ISS may have peripheral insensitivity to GH at different extents of severity (2). Overall, studies in the last few years have elucidated that receptor defects or molecular alterations of downstream elements in the signaling cascade may lead to a considerable number of diseases characterized by total or partial unresponsiveness of the target organ to the appropriate stimuli. GH insensitivity (GHI) is characterized by the peripheral resistance to the physiological action of GH (3). Clinical features include short stature with high circulating levels of GH and low levels of IGF-I and IGF-binding protein-3 (IGFBP-3). Children with GHI exhibit significant heterogeneity in both phenotype and genotype, resulting in a wide spectrum of severity (4, 5). In classic Laron syndrome, mutations in the GH receptor (GH-R) gene have been extensively documented in the last 10 yr. Along with exon deletions, nearly 40 distinct mutations of the GH-R, including nonsense, missense, splice, or frameshift mutations, have been identified (6). Mostly, these mutations have been found in regions coding for the extracellular domain of the GH-R, consisting of the exons 2–7 (3, 7). Only a few mutations have been documented in regions coding for intracellular domains, such as exons 9 and 10, implicated in the intracytoplasmic intermolecular connections (8–11). The possibility that GHI might also underlie ISS in those children who do not have features of Laron syndrome led to a search for alterations in the GH-R. However, mutations in the GH-R gene have been found in fewer than 5% of these patients (12, 13), thus suggesting that other molecules involved in GH-R signaling might be altered and cause short stature in these patients with ISS due to GHI (14).

As in the case of other receptors, the signal transduction induced by GH-R triggering is a complex array of biochemical events acting in a coordinated fashion and involving a large number of distinct molecules (15, 16). Protein tyrosine phosphorylation (pY) of several proteins represents a key event, ultimately resulting in nuclear factor activation and gene transcription (17).

As GH encompasses a wide spectrum of clinical phenotypes, ranging from classical complete forms and partial deficiencies, the identification of these patients is often difficult, and the prevalence of such cases may be underestimated (18). Although diagnostic criteria to define patients with severe GHI are well established (5), the identification of patients with milder forms is still debated (19).

In this study we ascertain whether integrating functional provocative assays, analysis of receptor-induced biochemical alterations and molecular studies may help unravel the
complexity of ES and lead to identification of more reliable marker(s) of GHI. These patients might also be good candidates for studies aimed at identifying downstream targets in GHR signaling.

Subjects and Methods

Study subjects

The study population consisted of 14 children (7 girls and 7 boys), aged 1.5-14.1 yr (mean age ± SD: 8.8 ± 4.3 yr) with ISS who met the following inclusion criteria: 1) disease below 2.5 standard deviations from the mean for chronological age and/or height, 2) bone age delay more than 2.5 SD for chronological age, 3) growth velocity below the 25th percentile for chronological age, 4) normal birth weight, 5) no evidence of endocrine disease or skeletal dysplasia, and 6) no other reason for short stature. Data on height, growth velocity, and sex-corrected midparental height (target height) were transformed into z-scores according to the standards of Tanner (20). Growth velocity was evaluated at 6- to 12-month intervals. Bone age was assessed according to the method of Greulich and Pyle (21). GH secretion was evaluated after clonidine and arginine provocative tests by standard procedures.

Informed consent was obtained from the parents of the patients enrolled in the study. The clinical features of the 14 children with ISS are shown in Table 1. Patient 3 was initially considered to have classical GH deficiency based on low CH values after two stimulation tests performed in another hospital. However, after 1 yr of GH therapy (0.14 IU/kg/day) daily growth velocity remained abnormal (-2.6 SD, respectively). Therefore, therapy was continued, and the patient was enrolled in the study.

IGF-I generation test

To assess the ability to respond to exogenous GH, each patient underwent an IGF-I generation test. This involved daily sc injections of recombinant GH (0.14 IU/kg) for 14-21 consecutive d. Blood samples were taken before the first injection and on d 5, 8, 15, and 22 for measurements of fasting IGF-I and IGFBP-3 levels. IGF-I and IGFBP-3 were measured using a two-site immunometric assay kit (Diagnostic Systems Laboratories, Inc., Webster, TX). Values were expressed as absolute values (micrograms per liter) or were normalized for age and sex with the normative data provided by the manufacturer and expressed as the percent increase. The change in IGF-I and IGFBP-3 levels during the generation test were also expressed as the percent increase. The IGF-I intra- and interassay coefficients of variation were, respectively, 3.4% and 8.2%, whereas the IGFBP-3 intra- and interassay coefficients of variation were 1.8% and 1.9%.

GH-induced P-Tyr

The transducing properties of the GH were studied by using the analysis of GH-induced protein tyrosine phosphorylation on peripheral blood mononuclear cells (PBMC). PBMC were isolated by Ficol-Hyphaque (Becton, Berlin, Germany) density gradient centrifugation using standard procedure. GH stimulation (500 ng/ml) was performed with 5- to 15-min stimulation. The pattern of P-Tyr proteins was analyzed on whole cell lysates. Cells (3 x 10^6) were lysed in a buffer containing 20 ml Tris (pH 8.0), 0.5% Triton X-100, 1 mM PMSF, 10 mM EDTA, 1 mM phenylmethylsulfonyl fluoride, 11 mM sodium orthovanadate (Na_3VO_4), 5 mM sodium pyrophosphate, and 5 mM d-galactose. Proteins were recovered by 10% SDS-PAGE and then blocked with 3% BSA. Immunoblotting was performed by a 1- to 2-h incubation with anti-P-Tyr. In a few experiments membranes were stripped with 10% SDS-PAGE and then blocked with 3% BSA. Immunoblotting was performed by a 1- to 2-h incubation with anti-P-Tyr. In a few experiments membranes were stripped with 10% SDS-PAGE and then blocked with 3% BSA. Immunoblotting was performed by a 1- to 2-h incubation with anti-P-Tyr. In a few experiments membranes were stripped with 10% SDS-PAGE and then blocked with 3% BSA. Immunoblotting was performed by a 1- to 2-h incubation with anti-P-Tyr. In a few experiments membranes were stripped with 10% SDS-PAGE and then blocked with 3% BSA. Immunoblotting was performed by a 1- to 2-h incubation with anti-P-Tyr. In a few experiments membranes were stripped with 10% SDS-PAGE and then blocked with 3% BSA. Immunoblotting was performed by a 1- to 2-h incubation with anti-P-Tyr. In a few experiments membranes were stripped with 10% SDS-PAGE and then blocked with 3% BSA. Immunoblotting was performed by a 1- to 2-h incubation with anti-P-Tyr.

GH-R mutational analysis

Automated sequence analysis of exons 2-10 of GHR was performed in those patients who failed to show an IGF-I increase after the standard 4-d IGF-I generation test and in three of the remaining patients with a borderline IGF-I response. Genomic DNA was isolated from peripheral blood leukocytes. Each exon and corresponding donor and acceptor splice sites were individually amplified by PCR. The coding portion of exon 10 was amplified in three overlapping fragments. Primers were derived from published sequence (22), and amplification was performed using standard PCR conditions (25 cycles of 15 sec, 15°C for 30 sec, 50°C for 30 sec, and 72°C for 30 sec). PCR products were recovered from 1.5% agarose gel and sequenced (both coding and noncoding strands) with an ABI Prism dye terminator cycle sequencing kit using a forward primer and an ABI Prism 377 Automated DNA Sequencer (PE Applied Biosystems, Foster City, CA). The mutation detected in exon 6 and the polymorphism detected in exon 10 were confirmed by Wulff or DraI restriction enzymes (New England Biolabs, Inc., Beverly, MA) digestion, respectively.

Results

IGF-I and IGFBP-3 levels during the generation test

As illustrated in Table 2, the IGF-I generation test, performed over a 4-d standard schedule, revealed an increase of 40% above the baseline value in 8 (patients 1, 2, 4, 5, 6, 7, 10, and 11) of 13 patients (patient 14 was lost to follow-up at the time of the generation test). However, in 2 subjects (patients 2 and 5) the increase in IGF-I expressed as the SD score, remained below the basal IGF-I mean value for age.

The basal IGFBP-3 value was below -1 SD score in three

TABLE 1. Clinical details of patients enrolled in the study

<table>
<thead>
<tr>
<th>Patient no.</th>
<th>Sex</th>
<th>Chronological age (yr)</th>
<th>Bone age (yr)</th>
<th>Height (SD score)</th>
<th>Target height (SD score)</th>
<th>Growth velocity (SD score)</th>
<th>GHI peak (ng/liter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>1.6</td>
<td>1.9</td>
<td>-2.7</td>
<td>-0.3</td>
<td>-3.4</td>
<td>18</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>3.1</td>
<td>1.5</td>
<td>-2.9</td>
<td>-0.7</td>
<td>-2.1</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>4.3</td>
<td>2.2</td>
<td>-3.6</td>
<td>-2.2</td>
<td>-2.6</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>4.8</td>
<td>2.5</td>
<td>-2.7</td>
<td>-0.6</td>
<td>-0.9</td>
<td>25</td>
</tr>
<tr>
<td>5</td>
<td>M</td>
<td>9.4</td>
<td>3.5</td>
<td>-2.9</td>
<td>-0.8</td>
<td>-1.3</td>
<td>25</td>
</tr>
<tr>
<td>6</td>
<td>M</td>
<td>6.0</td>
<td>4.1</td>
<td>-3.5</td>
<td>-0.2</td>
<td>-3.7</td>
<td>19</td>
</tr>
<tr>
<td>7</td>
<td>M</td>
<td>10.7</td>
<td>7.8</td>
<td>-3.2</td>
<td>-1.9</td>
<td>-2.9</td>
<td>11</td>
</tr>
<tr>
<td>8</td>
<td>M</td>
<td>11.1</td>
<td>9.9</td>
<td>-2.4</td>
<td>-1.4</td>
<td>-2.0</td>
<td>25</td>
</tr>
<tr>
<td>9</td>
<td>M</td>
<td>11.2</td>
<td>7.5</td>
<td>-2.8</td>
<td>-0.4</td>
<td>-1.1</td>
<td>13</td>
</tr>
<tr>
<td>10</td>
<td>M</td>
<td>11.9</td>
<td>9.5</td>
<td>-2.6</td>
<td>-1.5</td>
<td>-2.4</td>
<td>12</td>
</tr>
<tr>
<td>11</td>
<td>M</td>
<td>12.2</td>
<td>7.9</td>
<td>-2.1</td>
<td>-1.0</td>
<td>-1.0</td>
<td>12</td>
</tr>
<tr>
<td>12</td>
<td>M</td>
<td>12.8</td>
<td>10.9</td>
<td>-4.7</td>
<td>-0.9</td>
<td>-2.8</td>
<td>19</td>
</tr>
<tr>
<td>13</td>
<td>M</td>
<td>13.9</td>
<td>11.5</td>
<td>-8.1</td>
<td>-0.6</td>
<td>-5.7</td>
<td>23</td>
</tr>
<tr>
<td>14</td>
<td>M</td>
<td>14.1</td>
<td>9.9</td>
<td>-3.6</td>
<td>-0.3</td>
<td>-3.5</td>
<td>20</td>
</tr>
</tbody>
</table>
of the five patients who failed to show an IGF-I increase; values were $-2.0, -1.8$, and -1.2 SD score (patients 3, 8, and 13). In three patients (no. 8, 9, and 12) who did not have a significant IGF-I increase, no rise in IGFBP-3 was found; the percent increase was between 0-2% above the basal values. In the remaining two patients, the increase was appreciable (47% and 58%). The stimulated IGF-I level correlated with the IGF-I basal level ($r = 0.75$, $P < 0.004$), as shown in Fig. 1A. In particular, all patients with a small IGF-I increase had low basal IGF-I SD scores. Similarly, the stimulated IGFBP-3 level during the generation test correlated to the basal IGFBP-3 value ($r = 0.74$, $P < 0.004$; data not shown). As expected, the increase in IGF-I during the generation test paralleled the increase in IGFBP-3 ($r = 0.8$, $P = 0.001$), as depicted in Fig. 1B.

To identify late responders, the generation test was prolonged for 21 d. Figure 2 depicts the behavior of IGF-I in the five patients who failed to respond with an IGF-I increase in the 4-d test. Interestingly, in three of these five patients a late response was observed with increases in IGF-I values at 14 d of 192% and 82% in patients 9 and 13, and an increase of 137% at 21 d in patient 8, respectively. In contrast, in patients 3 and 12 no response was observed. Paternal heights in patients 3 and 12 were 158 and 168 cm, whereas maternal heights were 147 and 158 cm, respectively.

GH-R analysis

In control PBMC, short-term GH stimulation induced P-Tyr. In particular, two major proteins of 119 and 105 kDa were promptly phosphorylated; signals reached maximal intensity at 5 min and remained appreciable 15 min after the stimulation, as shown in Fig. 3A. As illustrated in Fig. 3, B and C, these proteins should correspond to JAK2 and STAT5, important signaling molecules in GH-R signaling. In the patient group GH-induced P-Tyr was normal in all subjects who showed a good response to IGF-I generation test, including those with a delayed response at 14 or 21 d of *in vitro* stimulation. In two patients (no. 3 and 12) who failed to respond to the sustained IGF-I generation test, *in vitro* GH stimulation of the receptor on PBMC induced abnormal P-Tyr events. Although in patient 3 no tyrosine phosphorylation was observed, in patient 12 the abnormality was selective, in that it concerned exclusively the protein migrating in the 119 kDa area, whose size corresponds to that of JAK2. Figure 3A shows the abnormal P-Tyr in this patient. This abnormality was not due to an overall low amount of the protein in that, as depicted in Fig. 3, B and C, showing rephosphorylation of the membranes with anti-JAK2 or anti-STAT5, both JAK2 and STAT5 molecules were expressed to an extent comparable to that in the controls. Moreover, in three experiments immunoprecipitated JAK2 from unstimulated or GH-stimulated PBMC was properly phosphorylated (data not shown). In all other patients, the number of P-Tyr proteins and the timing of the phosphorylation events were comparable to those in the controls, as indicated by the densitometric analysis of the behavior of 119- and 119 kDa protein phosphorylation shown in Fig. 4, A and B.

<table>
<thead>
<tr>
<th>Patient no.</th>
<th>Basal IGF-I</th>
<th>Stimulated IGF-I</th>
<th>Increase (%)</th>
<th>Basal IGFBP-3</th>
<th>Stimulated IGFBP-3</th>
<th>Increase (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>68</td>
<td>0.0</td>
<td>138</td>
<td>3.0</td>
<td>172</td>
<td>3.0</td>
</tr>
<tr>
<td>2</td>
<td>22</td>
<td>-1.3</td>
<td>33</td>
<td>-1.0</td>
<td>50</td>
<td>3.0</td>
</tr>
<tr>
<td>3</td>
<td>58</td>
<td>-1.2</td>
<td>49</td>
<td>-0.8</td>
<td>29</td>
<td>3.0</td>
</tr>
<tr>
<td>4</td>
<td>123</td>
<td>1.5</td>
<td>243</td>
<td>5.2</td>
<td>97</td>
<td>2.0</td>
</tr>
<tr>
<td>5</td>
<td>24</td>
<td>-1.5</td>
<td>66</td>
<td>-0.8</td>
<td>175</td>
<td>2.0</td>
</tr>
<tr>
<td>6</td>
<td>106</td>
<td>-0.04</td>
<td>286</td>
<td>3.2</td>
<td>170</td>
<td>2.0</td>
</tr>
<tr>
<td>7</td>
<td>169</td>
<td>0.1</td>
<td>251</td>
<td>0.2</td>
<td>95</td>
<td>0.0</td>
</tr>
<tr>
<td>8</td>
<td>58</td>
<td>-0.1</td>
<td>58</td>
<td>-0.1</td>
<td>0</td>
<td>2.0</td>
</tr>
<tr>
<td>9</td>
<td>189</td>
<td>0.0</td>
<td>154</td>
<td>-0.2</td>
<td>12</td>
<td>0.0</td>
</tr>
<tr>
<td>10</td>
<td>203</td>
<td>0.5</td>
<td>355</td>
<td>1.3</td>
<td>42</td>
<td>2.0</td>
</tr>
<tr>
<td>11</td>
<td>206</td>
<td>-0.4</td>
<td>410</td>
<td>1.2</td>
<td>10</td>
<td>1.0</td>
</tr>
<tr>
<td>12</td>
<td>154</td>
<td>-0.8</td>
<td>173</td>
<td>-0.6</td>
<td>12</td>
<td>0.0</td>
</tr>
<tr>
<td>13</td>
<td>113</td>
<td>-1.3</td>
<td>150</td>
<td>-1.1</td>
<td>33</td>
<td>2.0</td>
</tr>
<tr>
<td>14</td>
<td>120</td>
<td>-1.9</td>
<td>150</td>
<td>-2.0</td>
<td>33</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Values are expressed in absolute values (pg/mL), in SD score and as percentage increase above the baseline absolute value.
10, and 12) were homozygous for the cytosine to adenine polymorphism at position 1 of codon 526 (E526L) in exon 10, resulting in an isoleucine/leucine change. This polymorphism was also found in 24 of 40 control chromosomes derived from individuals of the same geographic area.

Discussion

To ascertain whether GH-R hyporesponsiveness might be implicated in the pathogenesis of ISS, in this study a combination of several functional and molecular assays was used to evaluate a number of events induced by GH-R in vitro or in vitro signal transduction. This approach led to the identification of 2 of 14 ISS patients exhibiting partial GHI, thus indicating that GH-R hyporesponsiveness may underlie ISS in childhood.

Mutations of the GH-R gene itself in the hyporesponsive state have been implicated in the pathogenesis of ISS (2, 12, 13). In particular, in a large cohort of patients, 8 of 100 children affected with ISS carried mutations in the GH-R locus (12).

Fig. 1. A, Relationship between basal and stimulated IGF-I values. Thirteen patients with ISS underwent a standard IGF-I generation test. GH (0.1 IU/kg) was administered through daily sc injections for 4 consecutive d. Values are expressed as micrograms per liter, B. Relationship between the increase in IGF-I and IGFBP3 during the 4-d generation test. Values are expressed as the percent increase over the basal value after 4 d of GH administration.

Fig. 2. Time course of the IGF-I response after a prolonged IGF-I generation test. GH (0.1 IU/kg) was administered for 14–21 d to the five patients with ISS who failed to show an increase in IGF-I levels during the standard 4-d generation test. Values indicate the percent increase over the basal values.

Fig. 3. A, Representative experiment showing the pattern of GH-induced P-Tyr in patient 12 and a control. PECF were stimulated in vitro with GH for 5 or 15 min as indicated. In the control, two major proteins of 119 and 106 kDa were promptly phosphorylated; signals reached the maximal intensity at 5 min and were also appreciable 15 min after the stimulation. In the patient, no P-Tyr of a protein migrating in the 119 kDa area was observed. The 119- and 106-kDa proteins, corresponding to JAK2 and STAT5, respectively, are indicated. The same membrane was stripped and reprobed with anti-JAK2 (B) and anti-STAT5 (C) antibodies. Each protein in the patient was normalized to the extent comparable to the control, and no change in its amount was noted during the short stimulation, as expected.
Fig. 4. Densitometric analysis of the behavior of the 105-kDa (A) and 119-kDa (B) tyrosine-phosphorylated proteins in six representative ISS patients with a normal increase in P-Tyr and a normal response to the IGF-I generation test. In vitro GH stimulation was performed as indicated in Fig. 5. Densitometric analysis was expressed in arbitrary units. Vertical bars indicate the mean ± s.e. of control values.

Fig. 5. A, Pedigree of patient 5 carrying the mutation of exon 6 of the GH-R gene. Half-solid circles and squares indicate subjects heterozygous for the Arg^163^Cys mutation. The arrow indicates the index case. The current height of the proband and his family members is given as a SD score. One sister carrying the mutation (II-1) had a history of growth and pubertal delay. B, DNA sequence analysis of exon 6 of the GH-R gene showing the mutant sequence at the heterozygous state.

reported, similar to what is frequently observed in patients with complete GHI (6). The Arg^163^Cys mutation, which is responsible in the homozygous state for complete GHI, has been previously described in the heterozygous state in 2 ISS patients originating from different geographic areas (12). However, the family data associated with the nucleotide variant reported here would argue against a pathological role of this mutation. Taken together, the low prevalence of GH-R mutations in large cohorts of ISS patients and the lack of a clear phenotype/genotype relationship indicate that a genetic alteration of the receptor itself, although possible, is a relatively rare mechanism for ISS in childhood.

In our patients several polymorphisms of the GH-R gene have been found. In particular, the guanine to adenine polymorphism at position 3 of codon 168 (G168) was found in three patients. The I526L polymorphism in exon 10 was found at the same frequency in patients and controls originating from the same geographic area. A higher frequency of G168 polymorphism has been described in subjects with ISS compared with normal controls (12). However, the significance of this genetic alteration in influencing linear growth as well as the overall clinical phenotype remains an open and intriguing issue.

The GH-R, like all other receptors, exerts its function by delivering intracellular signals through biochemical alterations of functionally related signaling molecules (23). This complex array of biochemical events is redundant in that several genes are involved in amplifying signal transduction in the individual pathway (24). A proper functional interaction in a well coordinated fashion of several gene products is, therefore, required for fully functioning receptor signaling. Thus, a possible mechanism to explain the wide phenotype variability of heterozygous mutations of GH-R is that there are other genes that may interact with the signaling pathway, thus modifying the clinical phenotype.

In the two patients with peripheral hyporesponsivity herein reported, an abnormal P-Tyr after in vitro stimulation with GH of the GH-R expressed on the surface of PBMC (25), was documented. In one of these two patients, the effect selectively involved a 119-kDa protein, a size corresponding to the JAK2 molecule, which plays a major role in GH-R
signaling. However, the absence of tyrosine phosphorylation of the protein was not due to a reduced amount of the kinase itself, thus suggesting a possible abnormal posttranslational regulation of the molecule. Moreover, through immunoprecipitation experiments showing a normal JAK2 phosphorylation, this hypothesis was ruled out, thus suggesting that a different molecule might be the same area of JAK2 and yet to be defined was involved in the process. Dimerization of the receptor that follows GR binding represents the first key event in the activation of target cells (24). Subsequently, tyrosine phosphorylation of JAK2 and STAT5 proteins plays a crucial role in the activation process, which ultimately results in gene transduction (16, 17). In the context of the overwhelming number of distinct molecules implicated in the process, the pivotal role of STAT5 in the signaling pathway related to GH-R, and in particular of the STAT5b protein, is also supported by the experimental evidence of reduced growth in mice with STAT5b gene disruption (26, 27). Furthermore, the importance of the JAK-STAT pathway is also underlined by the evidence of defective GH-induced tyrosine phosphorylation and activation of STAT5 in patients affected with short stature carrying GH-R gene mutations and in patients with Laron syndrome (28–30). To our knowledge, the two cases reported here are the first patients with ISS in whom an abnormal tyrosine phosphorylation induced by GH-R signaling in PBMC has been documented in the absence of any genetic alteration of the receptor itself or classical features of Laron syndrome. Overall, as the clinical and biochemical hallmarks of partial GH hyporesponsiveness yet been clearly elucidated, the identification of such patients is still difficult. Our approach was to integrate functional, biochemical, and molecular studies in an effort to identify the most reliable markers of GHR. Our findings indicate that none of the individual functional parameters, including basal and stimulated IGF-I and IGFBP-3 values, led to unequivocal identification of such patients. According to previously reported observations (31), it should be noted that four patients (patients 1, 4, 7, and 10) with an E2 clinical phenotype indistinguishable from that of the two patients with the GH-R unresponsiveness had normal or close to normal basal IGF-I values, which further increased in response to GH stimulation. These patients deserve further attention, because they could represent a distinct clinical entity, such as peripheral resistance to IGF-I. The frequently used 4-d IGF-I generation test led to an overestimate of unresponsive patients. Indeed, a sustained GH stimulation induced in three of five unresponsive patients, a significant IGF-I increase. In three subjects (patients 5–7) a discrepancy between the increases in IGF-I and IGFBP-3 after GH administration was observed. In all of these cases only an increase in IGF-I was observed, suggesting a possible selective abnormality of the binding protein. However, arguing against this hypothesis, the amount of the binding protein was normal in two of them, and in the third patient it significantly increased after a prolonged GH stimulation. Of note, the two patients who failed to respond to the long-term IGF-I generation test also showed an abnormal pattern of P-Tyr after in vitro GH stimulation of PBMC, thus suggesting that different cell targets, such as hepatocytes and PBMC, share the same transducing elements. As the 21-d IGF-I generation test cannot be proposed as a diagnostic tool on a routine basis, due to the high cost and the uncomfortable nature of the test, our findings also suggest that combining the 4-d IGF-I generation test with analysis of GH-induced P-Tyr on PBMC may help identify E2 patients with partial GHR.

Acknowledgments

Received August 31, 2000. Accepted April 20, 2001.

Address all correspondence and requests for reprints to: Claudio Figueroa, M.D., Ph.D., Department of Pediatrics, Unit of Immunology, Federico II University, Via S. Pancali 5, 80131 Naples, Italy. E-mail: pignat@unina.it.

This work was supported by MURST-99-PRIN (Progetto di Rilevante Interesse Nazionale to C.F.).

References

17. Corner-Sti C, Smith US. 1990 Signaling via JAK tyrosine kinase: growth hormone receptor as a model system. Recent Prog Horm Res 53:61–82
23. Downloaded from jcem.endojournals.org by on September 17, 2007
References

2.3 Human Severe Combined Immunodeficiency (SCID) phenotype

Severe Combined Immunodeficiencies (SCID) encompasses a wide spectrum of disorders of both cell-mediated and humoral immunity. Defects in lymphoid differentiation may lead to the complete absence of T and B cells (T-B- phenotype) or, alternatively, may predominantly affect T lymphocyte development (T-B+ phenotype) (Fischer A. 1997). These forms are generally fatal within the first years of life, although a few typical cases may be characterized by a milder phenotype. Thus far, all the different forms with a known molecular basis are caused by mutations in genes that encode for proteins selectively expressed in the hematopoietic tissue, which lead to intrinsic abnormalities of lymphocyte function. This implies that in most patients, the affected cell line can be replaced by stem cells from healthy donors. However, an appropriate, productive immune response also requires appropriate intercellular connections. A relation between the hematopoietic precursor and the thymic epithelial component plays a crucial role in cell ontogeny and in negative and positive selection (Anderson G. 1994).

Our group in 1999 reported on 2 sisters affected by a novel form of SCID (MIM 601705) characterized by T cell defect associated with congenital alopecia and nail dystrophy. This complex phenotype represents the human homologue of mouse Nude/SCID phenotype (Pignata et al 1996). Subsequently, the sisters were found to carry a nonsense the R255X mutation in the homozygous status in the highly conserved winged-helix-nude (WHN) gene (Frank J et al 1999). Alteration of this gene is responsible for mouse Nude
/SCID (Nels et al 1994, Segre et al 1995). WHN is a forkhead-winged helix transcription factor whose expression is restricted to the thymic epithelium, epidermis, and hair follicle (Lai et al 1993, Kaufmann et al 1996). Human Nude/SCID is the first example of a human SCID caused by a gene not expressed in hematopoietic cells. Before this molecular alteration was identified, the younger of the 2 WHN/- sisters underwent allogenic bone marrow transplantation (BMT) because of her critical clinical and immunologic condition.
2.3.1 Immunologic reconstitution after bone marrow transplantation in human Nude/SCID phenotype

The current study was undertaken to evaluate the role of the thymus in immunologic reconstitution and long-term efficacy of bone marrow transplantation (BMT) in the younger of the 2 sister affected by human Nude/SCID phenotype. This is a unique model with which to investigate the role of intrathymic connections, between thymic epithelia and hematopoietic progenitors, in the regeneration and maintenance of T-cell responses after allogenic BMT.

The children was born of consanguineous parents. The clinical feature showed a complete absence of hair, distrophic nail, absence of thymus and severe functional T-cell immunodeficiency. At the age of 5 months the patient underwent HLA-identical total bone marrow transplantation from her unaffected brother. The immunophenotype performed at regular interval during post-BMT follow-up revealed that despite an increases in CD3+,CD4+, and CD8+ cells, CD4+CD45RA naive lymphocytes were not generated. Conversely, naive CD8+ cells were normal. The proliferative responses of peripheral lymphocytes to CD3 cross-linking showed an initial improvement that progressively declined 48 months after BMT. Furthermore, the proliferative responses to common mitogens of lymphocyte obtained from the WHN -/- patient revealed a remarkable deficiency compared with the genotypically identical donor cells grown in the WHN +/- environment. Analysis of T-cell receptor (TCR) repertoire of CD4+ cells revealed that only 3
of 18 Vβ families had an altered CDR3 heterogeneity length profile. Conversely, CD8+ lymphocytes showed an abnormal distribution in most Vβ families. These data indicate that the thymus is differentially required in the reconstitution of CD4+ and CD8+ naive subsets and in the maintenance of their repertoire complexity. Despite the favorable clinical course after BMT, our data suggest that this terapeutic procedure is ineffective in the long term cure of this form of SCID. These results has been published on Blood see below for the manuscript.
Human equivalent of the mouse Nude/SCID phenotype: long-term evaluation of immunologic reconstitution after bone marrow transplantation

Claudio Pignata, Lucia Gaetaiello, Anna Maria Masci, Jorge Frank, Angela Christiano, Eliana Matreccano, and Luigi Racioppi

Human Nude/SCID (severe combined immunodeficiency) is the first severe combined immunodeficiency caused by mutation of the winged-helix/nude (W/N) gene, which is expressed in the thymus but not in the hematopoietic lineage. The disease is characterized by T-cell defect, congenital alopecia, and nail dystrophy. A Nude/SCID patient who underwent bone marrow transplantation from the human leukocyte antigen-identical hematocyte brother was studied to investigate, in this unique model, the role of the thymus in immunologic reconstitution. Despite an increase in CD40, CD41, and CD81 cells, CD48 RA naïve lymphocytes were not regenerated. Conversely, naïve CD81 cells were normal. After an initial recovery, lymphocyte proliferation to mitogens progressively declined compared with controls and genetically identical donor cells grown in the W/N environment. Analysis of the T-cell receptor (TCR) repertoire of CD41 cells revealed that only 3 of 18 Vβ families had an altered CDR3 heterogeneity length profile. Conversely, CD81 lymphocytes showed an abnormal distribution in most Vβ families. These data indicate that the thymus is differentially required in the reconstitution of CD41 and CD81 naïve subsets and in the maintenance of their TCR repertoire complexity. Taken together, these findings suggest that bone marrow transplantation is ineffective in the long-term cure of this form of SCID. (BLOOD. 2001;97:800-805)

© 2001 by The American Society of Hematology

Introduction

Severe combined immunodeficiency (SCID) encompasses a wide spectrum of disorders of both cell-mediated and humoral immunity.1 Defects in lymphoid differentiation may lead to the complete absence of T and B cells (T−B− phenotype) or, alternatively, may predominantly affect T lymphocyte development (T−B+ phenotype).2 In a few patients with SCID with a predominant T-cell defect, T cells are detectable in peripheral blood but are not functional because of abnormalities in the cell activation process rather than because of differentiation defects.2

In recent years, the identification of several molecular alterations has led to a better understanding of the mechanisms underlying SCID. Alterations in at least 8 genes have been identified and associated with a clinical phenotype of SCID. Abnormalities of signaling molecules, such as the common γ element of several cytokine receptors, the α chain of IL-7 receptor,5 and the JAK-3 tyrosine kinase that associates with the γ chain, are responsible for the X-linked or autosomal recessive forms of T−B− SCID.4,5 Mutations of RAG-1 and RAG-2 have been described in autosomal recessive forms of the disease.6 Mutations of elements of the T-cell receptor (TCR)/CD3 multimeric complex, such as CD3e or CD3y chains,7 or of the 70-kd kinase that associates with the ζ chain of the complex, also result in the less severe forms of activation defects.2 It is noteworthy that all the genes so far implicated in the pathogenesis of SCID encode for proteins selectively expressed in hematopoietic tissue. This implies that in most patients, the affected cell line can be replaced by stem cells from healthy donors. However, an appropriate, productive immune response also requires appropriate intercellular connections. A relation between the hematopoietic precursor and the thymic epithelial component plays a crucial role in cell ontogeny and in negative and positive selection.8

We previously reported on 2 sisters affected by SCID because of a T-cell defect associated with congenital alopecia and nail dystrophy.10 This complex phenotype was considered the human homologue of the mouse Nude/SCID phenotype.11 Subsequently, the siblings were found to carry a nonsense mutation in the highly conserved winged-helix–nude (W/N) gene.12 Alteration of this gene is responsible for mouse Nude/SCID.11,13 W/N is for a forkhead winged helix transcription factor whose expression is restricted to the thymic epithelium, epidermis, and hair follicle.14,17 Human Nude/SCID is the first example of a human SCID caused by a gene not expressed in the hematopoietic cells. Six years ago, before the molecular alteration was identified, the younger of the 2 W/N− siblings underwent allogeneic human leukocyte antigen (HLA)-related bone marrow transplantation (BMT) because of her critical clinical and immunologic conditions. The current study was undertaken to evaluate, in this unique model, the role of the thymus in immunologic reconstitution and the long-term efficacy of BMT in the human Nude/SCID phenotype.

Patient, materials, and methods

Patient history

The patient was born of consanguineous Italian parents with a complete absence of hair and dystrophic nails, as seen in her elder sister. Thereafter,

From the Departments of Pediatrics and Cellular and Molecular Biology and Pathology, “Federico II” University, Naples, Italy, and the Department of Dermatology and Genetics and Development, Columbia University, New York, NY.

Submitted April 3, 2000; accepted October 13, 2000.

Supported by Boehringer 2 grant CTM93007, INRST-93-PBN, and Telethon E0329. J.F. received support from Bundesministerium für Bildung und Forschung (BMFB); grants 01 KS 950309 and 01 KS 950300.

Reprints: Claudio Pignata, Department of Pediatrics, Unit of Immunology, “Federico II” University, Via S. Pansini 5-80125, Naples, Italy; e-mail: pignata@unina.it.

The publication costs of this article were defrayed in part by page charge payment. Therefore, solely to indicate this fact, this article is hereby marked "advertisement" in accordance with 18 U.S.C. section 1724.

© 2001 by The American Society of Hematology

800 BLOOD, 15 FEBRUARY 2001 • VOLUME 97, NUMBER 4

96
Results

Lymphocyte reconstitution in the WBN^—/^- patient after allogenic BMT

The patient’s immunophenotype before BMT is reported elsewhere. Briefly, the WBN^—/^- patient had CD8^+ lymphocytes of reduced number and percentage (650 cells/µL and 25%, respectively), a low number of CD4^+ cells, and a low-normal number of CD8^+ cells. The T-cell subset and B-lymphocyte profiles during the 6-year post-BMT follow-up are shown in Figure 1. Consequent to the administration of antilymphocyte globulin, 12 days after BMT, CD8^+ T-cell levels were markedly reduced, whereas the CD4^+ T-cell level was higher than normal (1400 cells/µL). The number of CD4^+ cells started to increase progressively 3 months after BMT. Twelve months after BMT, T cells reached a level of 700 µL (27% of PBMCs). CD8^+ cells increased faster than CD4^+ lymphocytes. One year after BMT, clonality analysis revealed that T cells were from the donor and B cells were from the host (data not shown). Four years after BMT, T cells remained of donor origin, and CD levels were as follows: CD3^+ cells, 1100 µL; CD4^+ cells, 500 µL; and CD8^+ cells, 400 µL (10% of PBMCs). Thereafter, CD3^+ and CD4^+ levels progressively declined. The CD4^+ :CD8^+ ratio persisted below 1.

Regeneration of the CD45 RA "naive" phenotype within CD4 and CD8 compartments in the WBN^—/^- environment after BMT

Despite the increase of CD4^+ cells and, to a lesser extent, of mature CD3^+ CD4^+ cells, nearly all these cells showed a memory CD45 RA phenotype, whereas only 1% to 2% of lymphocytes expressed the CD4^+ CD8^+ RA "naive" phenotype (Figure 2A). At 6 years of follow-up, no changes were observed in the CD4^+ CD45 RA—CD4^+ CD45 RA ratio. Because all T cells in the WBN^—/^- patient were of WBN^—/^- donor origin, we compared the memory and naive phenotype of CD4^+ cells developed in vivo as the donor with those developed in the recipient environment. Six years after BMT, the CD4^+ CD45 RA compartment was significantly reduced only in the CD4^+ cells obtained from the recipient WBN^—/^- environment (Figure 2B). This resulted in a very low RA RO ratio compared with cells from the donor WBN^—/^- environment (0.06
and 1.37, respectively). These findings indicate that a functional thymus is necessary to renew the naive CD4+ subset.

During the post-BMT period there was a marked increase in the percentage and number of CD3+CD8+ cells, which reached 27% and paralleled the increase of the whole CD3+ population (Figure 3A). This subset did not contain the CD3-CD8+ natural killer population, which represented 6% of PBMCs. In contrast to the CD4 compartment, the percentage of CD8+ CD45 RA cells was 12% and remained stable during follow-up. Six years after BMT, the CD45 RA–CD45 RO ratio was normal (1.30) (Figure 3B). This suggests that CD8+ CD45 RA lymphocytes are generated even in the absence of a functional thymus. Indeed, the CD8+ CD45 RA–CD45 RA–CD45 RA RO ratio was also normal (1.66) also before BMT. CD8+ cells were also stained for the expression of CD25 and CD11b molecules. Fifty percent of CD8+ cells expressed CD25, whereas only 4% of these cells bore CD11b.

Proliferative responses in the WHIV−/− patient after allogeneic BMT

To assess the functional reconstitution of peripheral lymphocytes after BMT, we analyzed at regular intervals during the 6-year follow-up the proliferative response of PBMC from the WHIV−/− patient to CD3 cross-linking. From the third month after BMT there was a progressive improvement in the proliferative response to CD3 cross-linking (Figure 4A). The response was completely normal 2 years after BMT. Proliferative capability began to decline 48 months after BMT. Again, because all T cells in the recipient were of donor origin, we compared the proliferative response to common antigens of PBMC obtained from the WHIV−/− recipient with the genotype-specific donor cells developed in vivo in the WHIV−/− environment. Six years after BMT a remarkable deficiency of cells from the WHIV−/− recipient was evident (Figure 4B). Even though exogenous IL-2 induced an approximately 3-fold increase of the response to CD3 cross-linking, the response never reached normal levels.

Humoral immunity studies

To evaluate whether humoral immunity reconstitution, as revealed by cell number and proliferative response to mitogens, was associated with normal capability to generate specific antibody production, an immunization program was scheduled in the post-BMT period. To discriminate between a response due to committed donor cells and that due to newly in vivo–primed lymphocytes, the program included immunizations both to known antigens to the donor at the time of BMT and to coinfections such as HBsAg. Table 1 illustrates the comparison of humoral immunity in the pre- and post-BMT (36 months) periods and, in particular, antibody responses in the WHIV−/− (recipient) versus the WHIV−/− (donor) environment. A full humoral reconstitution was achieved 2 years after BMT as revealed by the rise in anti-tetanus toxoid antibodies. Notably, even in the WHIV−/− environment, B cells were able to generate a

<table>
<thead>
<tr>
<th>Table 1. Humoral immunity studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHIV−/− recipient</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>Serum IgG (g/L)</td>
</tr>
<tr>
<td>Serum IgA (g/L)</td>
</tr>
<tr>
<td>Serum IgM (g/L)</td>
</tr>
<tr>
<td>Antibodies</td>
</tr>
<tr>
<td>Specific antigens</td>
</tr>
<tr>
<td>Allergen protections Pre-BMT</td>
</tr>
<tr>
<td>Post-BMT</td>
</tr>
<tr>
<td>Tetanus toxoid</td>
</tr>
<tr>
<td>Post-BMT</td>
</tr>
<tr>
<td>HBsAg</td>
</tr>
<tr>
<td>Post-BMT</td>
</tr>
</tbody>
</table>

abs, absent; pos, positive.
specific antibody response toward antigens unknown at the time of the transplantation. In fact, 2 boosters of HBsAg led to the appearance of specific antibodies, which demonstrates that efficient priming also occurs in the Whn -/- environment.

Maintenance of T-cell receptor diversity in the Whn -/- environment

The biologic mechanism ensuring maintenance of T-cell repertoire diversity in mature lymphocytes are not completely known and involve central and peripheral lymphoid tissue. In this context, the analysis of TCR diversity in our Whn -/- patient after BMT provides a unique opportunity to analyze the role of peripheral factors in maintaining T-lymphocyte diversity. We evaluated the TCR repertoire by analyzing VB CDR3 heterogeneity length (spectratyping) 6 years after BMT in genotypically identical T cells obtained from the Whn -/- recipient and from the Whn +/+ donor. Figure 5A shows the CDR3 length profiles of 15 VB families in the CD4+ cells. In cells from the Whn -/- recipient there was a marked alteration in the CDR3 length profile in only 3 of the 15 VB families.4,12 Notably, in 2 of them (families 8 and 15), the altered profile overlapped in donor and recipient cells. Spectratyping analysis of CD8+ lymphocytes (Figure 5B) revealed that most of the VB families displayed an altered profile (9 of the 11 families). Most of them (families 5, 8, 9, 14, 17) exhibited oligoclonal expansion. The complexity of the TCR repertoire was reduced in the remaining families. Even though all the families were altered in both Whn -/- and Whn -/- cells, within individual families the distribution pattern differed between recipient and donor, unlike what occurred in CD4+ cells. Spectratyping analysis confirmed the different behavior of CD4+ and CD8+ cells in the absence of a functional thymus.

Discussion

We used a unique model, the human counterpart of the Nude/SCID phenotype recently described by our group,15 to explore the role of the thymus in post-BMT immunologic reconstitution. Nude/SCID is the first form of SCID whose immunodeficiency is substantially and exclusively related to an intrinsic abnormality of the thymus.24,25 The gene involved in this disease is the Whn gene, which encodes a forkhead--winged helix transcription factor and is associated with both the murine and human Nude/SCID phenotypes.23,24 Because Whn is selectively expressed in the thymic epithelia and not in hematopoietic cells, this rare and novel condition in humans is a reliable model with which to investigate the role of thymic intercellular connections, and namely the connections between thymic epithelia and hematopoietic progenitors, in the regeneration and maintenance of T-cell responses after allogeneic BMT. The analysis of immunologic reconstitution during the 6-year follow-up after BMT in the patient described herein revealed that the lack of a functional thymus did not prevent the repopulation kinetics of CD3+ CD4+ and CD8+ cells.

In the absence of a functional thymus, in the Whn -/- environment no CD4+ CD45RA naive lymphocytes were detected in the periphery. Moreover, the long-term follow-up revealed that the defect in the generation of the naive CD4 population was not restored by BMT. Conversely, the Whn -/- patient was able to regenerate and maintain a normal amount of CD8+ CD45RA T lymphocytes. Our findings are in keeping with the recent observation in cancer patients who underwent thymectomy, that after BMT the reconstitution of the CD4+ CD45RA subset relies on a functional host thymus.21 As did our patient, patients who undergo thymectomy retain the capacity to regenerate the naive CD8* subset, suggesting the presence of a thymus-independent pathway for the generation of this subset.21 Indeed, recovery of the CD4+ CD45RO memory subset after BMT in thymus-deficient patients presumably results from expansion of the donor's mature lymphocytes. Taken together, these findings also argue against the possibility that in humans CD4+ CD45RO cells can convert to the naive CD45RA phenotype.23 The prompt recovery of the CD69+ CD45RA naive cells may indicate the involvement of extrathymic lymphopoesis. These cells could also originate from conversion of the CD45RO phenotype.23 However, it should be noted that the CD8+ CD45RA compartment is heterogeneous in that it contains unprimed and primed cells.24 Unlike unprimed naive cells, primed cells express low levels of CD27 and CD28 and high levels of the CD11b adhesion molecule. Of note, a large fraction of CD3+ CD8+ cells in our patient expressed CD28 and only a small percentage expressed CD11b, which suggests that they were unprimed naive CD8+ T cells. In patients with DiGeorge syndrome, BMT can lead
to donor T-cell engraftment, though it is unclear whether reconstitution is stable over time and whether donor T cells represent an expansion of mature T lymphocytes differentiated before transplantation. However, in DiGeorge syndrome, there is residual thymic function as testified by the post-BMT increase in CD4+ CD45 RA+ cells.

During the 6-year post-BMT period, the proliferative responses of the recipient peripheral blood cells to common antigens progressively declined to 20% of the genetically identical donor cells grown in the WCN-− environment. Feasibly, in the absence of the thymus, T-lymphocyte survival and homeostasis depend principally on continuous stimulation by lymphoid tissue accessory cells. Because all T cells were of donor origin, this progressive functional impairment could reflect accelerated accumulation of aged lymphocytes that have a low proliferative capability, somewhat similar to what occurs in the elderly.

The thymus plays a major role in T-cell ontogeny. In this organ, T cell precursors undergo a complex mechanism of positive and negative selection to shape the TCR repertoire of mature lymphocytes. Mature cells become capable of recognizing exogenous peptides in the context of self-major histocompatibility complex molecules. Conical epithelial thymocytes of the thymus are unique in their ability to mediate positive selection efficiently, whereas bone marrow–derived dendritic cells are efficient mediators of negative selection; they are not involved in the positive selection process. Patients with DiGeorge syndrome have a marked reduction in lymphopenia and severe alterations in the lymphocyte repertoire. In this context, our analysis of T-cell repertoire complexity provides insights into the mechanisms involved in the maintenance and regeneration of T-cell repertoire diversity. The WCN-− environment did not influence the long-term maintenance of TCR repertoire diversity in the CD8+ population, which consisted mostly of memory cells. Furthermore, the altered Vβ families had a similar profile in host and donor lymphocytes, suggesting that the donor’s repertoire is maintained in the host environment. Unlike the CD4+ compartment, the complexity of the TCR CDR3 profile was reduced in most CD8+ cells, in a few cases indicating oligoclonal expansion. In addition, within individual Vβ families and unlike what was observed in the CD4+ compartment, recipient and donor cells had different CDR3 profiles. Whether extrathymic lymphopoiesis or peripheral mechanisms may have contributed to the CD8+ reconstitution is an intriguing question.

It is noteworthy that 6 years after BMT, and despite the progressive immunodefectivity status and the absence of antiviral prophylaxis, the patient remains free of infection, probably because of a residual immune response estimated to be 20% of donor cell proliferative potential. In addition, NO-mimetic mice can clear some viral infections. This is presumably because a T-cell-independent antibody response and mechanisms of innate immunity.6,35 Clearance of the polyoma virus in T-cell–deficient mouse results from T-cell–independent antibody–mediated responses.19 In our patient HBSAg immunization led to specific antibody production. The generation of specific antibody responses toward a neuromyelitis antigen to the donor cells at the time of BMT may indicate that donor-derived CD4+ cells can provide help for B cells. However, it should be pointed that we observed specific antibody responses during the phase of optimal immune response; we did not test the response when immunity declined. Alternatively, the generation of a B-cell response against HBSAg may be obtained in a thymus-independent fashion.

In conclusion, our findings on T-cell reconstitution in the WCN-− environment indicate that a functional thymus is essential to regenerate the CD4+ naive subset. The long-term maintenance of TCR diversity of the memory–effector CD4+ lymphocytes may be ensured by a peripheral mechanism that does not depend mainly on antigens-driven clonal expansion.19 Conversely, the regeneration of CD8+ naive lymphocytes after BMT is less thymus dependent and also occurs in the WCN-− environment. Lastely, despite the favorable clinical course after BMT, our data indicate that this therapeutic procedure is ineffective in the long-term cure of this form of SCID.

References
BLOOD, 15 FEBRUARY 2001 - VOLUME 97, NUMBER 4
IMMUNOLOGIC RECONSTITUTION AFTER BMT OF NUDE/SCID

2.3.2 Molecular screening for the Nude/SCID gene alteration in isolated population

Since the first 2 sisters investigated, carrying the R255X mutation in the homozygous state, born to consanguineous parents originating from small community in southern Italy (Pignata et al 1996), other cases were found in same community. So in this phase of research, the genetic screening for the presence of the FOXN1 R255X mutation was performed in an attempt to identify an ancestral founder effect. In fact due to the geographical location of the village, lying in the mountains between Naples and Salerno, and the elevated rate of endogamy, the population may be considered isolated. Moreover, we have genotyped 2 microsatellite markers, D17S2187 and D17S1880 flanking the FOXN1 gene on chromosome 17 to define whether a founder chromosome is shared by individuals carrying the R255X mutation. Molecular analysis revealed that 55 subjects, corresponding to 6.52% of the population were found heterozygous carriers of the mutation. In these 55 subjects, originated from 39 families, we perform a genealogical study. Through the archival database, common ancestors were identified for the 55 heterozygous carriers. They are linked in an extended 7 generational pedigree comprising 483 (Figure 1) individuals founded by a single ancestral couple born in 19th century. This work has been very important also to give a prenatal diagnosis support to this population. These results has been published on the Annals of Human Genetics see below for the manuscript.
Short Communication
doi: 10.1046/j.1529-8817.2004.00091.x

Ancestral Founder Mutation of the Nude (FOXN1) Gene in Congenital Severe Combined Immunodeficiency Associated with Alopecia in Southern Italy Population

M. Adriani1, A. Martinez-Mir2, F. Fusco3, R. Busiello1, J. Frank4, S. Telesè5, E. Masurella1, M. V. Ursini1, A. M. Christiano1 and C. Pignata1

1Department of Pediatrics, “Federico II” University, Naples, Italy; 2Department of Dermatology & Genetics and Development, Columbia University, New York, NY; 3Department of Dermatology and Allergy, University Clinic of the BWH, Andalus, Germany; 4International Institute of Genetics and Biophysics, CNR, Naples, Italy

Summary

Genetic alterations of the FOXN1 transcription factor, selectively expressed in thymic epithelia and skin, are responsible in both mice and humans for the Nude/SCID phenotype. The first described human FOXN1 mutation was a C792T transition in exon 5 resulting in the nonsense mutation R255X, and was detected in two probands originated from a small community in southern Italy. In this community, four additional children affected with congenital alopecia died in early childhood because of severe infections. In this study, we report on the screening for this mutation in 10% of the village population. This analysis led us to identify 55 heterozygous carriers (6.52%) of the R255X mutation out of 843 inhabitants screened. A genealogical study revealed that these subjects, belonging to 39 families, were linked in an extended 7-generational pedigree comprising 438 individuals. Through the archival database a single ancestral couple, both at the beginning of the 19th century, were identified. To confirm the ancestral origin of the mutation we genotyped two microsatellite markers, D17S2187 and D17S1886, flanking the FOXN1 gene on chromosome 17. The three haplotypes identified, 3/R255X/3, 3/R255X/2 and 3/R255X/1, are consistent with a single ancestral origin for the mutation R255X.

Introduction

The inherited severe combined immunodeficiencies (SCIDs) are a group of diverse genetic diseases affecting either the T- or B-cell compartment of the immune system that share common clinical features, such as high susceptibility to develop severe and, sometimes, fatal infections (Fischer et al. 1997; Keirn et al. 1997). Thus far, all the different forms with a known molecular basis are caused by mutations in genes expressed in the hematopoietic system, which lead to intrinsic abnormalities of lymphocytic function. A recently described novel form of SCID (MIM 601705) represents the human equivalent of the well known murine phenotype defined as Nude/SCID, and is the only human SCID caused by an intrinsic abnormality of the epithelial component of the thymus (Pignata et al. 1996). The thymus is the lymphoid organ where T-cell precursors mature. The gene responsible for the disease in both mice and humans encodes the forkhead/winged helix (WHIM) FOXN1 transcription factor selectively expressed in thymic epithelia and skin (Neub et al. 1994; Segre et al. 1995; Frank et al. 1999). The most prominent characteristic of the clinical phenotype is congenital alopecia, from which the term “Nude” for the murine equivalent derived (Flanagan, 1966). The disease is always associated with a profound T-cell defect. The first described human FOXN1 mutation was a C792T transition in exon 5 resulting in the nonsense
mutation R255X (Frank et al. 1999). This mutation lies upstream of the DNA binding and transactivation domain of this transcription factor, so that the truncated protein, if any, would be completely non-functional, similar to the previously described rat and mouse Foxn1 mutations (Feingold et al. 1978; Hutch et al. 1997; Hoffmann et al. 1998). To date, the first two patients investigated, carrying the R255X mutation in the homozygous state, were born to consanguineous parents originating from a small community in southern Italy (Pignata et al. 1996). Furthermore, from the community records four additional patients of previous generations were affected with congenital alopecia and died in early childhood because of severe infections. Due to the geographical location of the village, lying in the mountains between Naples and Salerno, and the elevated rate of endogamy, the population may be considered isolated. In this study, based on the presence of several cases in the same community, a genetic screening for the presence of the Foxn1 R255X mutation was performed in an attempt to identify an ancestral founder effect. Moreover, we genotyped two microsatellite markers, D17S2187 and D17S1880 flanking the Foxn1 gene on chromosome 17, to define whether a founder chromosome is shared by individuals carrying the R255X mutation.

Subjects and Methods

All the living individuals still resident in the Acerano village and related to the probands’ family were interviewed. Information obtained from this survey was verified and integrated using the local church and community records dating back to 1800. Subsequently, all data were recorded and analysed using the Cyrllelle 3 software (Cherwell Scientific 2000, www.cyrillelle.com V3.0, 400)). After written informed consent, and upon approval of the Institutional Ethical Committee, genomic DNA was extracted following standard procedures (Miller et al. 1988) from 843 subjects of the Acerano community, corresponding to approximately 30% of the population, and processed anonymously. Samples were coded by a third party to allow re-testing of heterogeneous allele mixtures using PCR methods (Muller et al. 1998). From the DNA of 383 subjects related to the probands’ family, DNA of the probands was tested by PCR amplification using primers annealing to the coding region of the Foxn1 gene. A 350-bp fragment was amplified from the DNA of the probands, and the PCR fragment containing exon 5 of the Foxn1 gene was sequenced. The sequencing results confirmed the presence of the R255X mutation in the probands’ DNA. PCR amplification and sequencing of the Foxn1 gene in 843 subjects from the community allowed the identification of a total of 831 subjects carrying at least one copy of the R255X mutation, and 12 subjects carrying both copies.

Results and Discussion

Fifty-five subjects, corresponding to 6.52% of the studied population, were found to be heterozygous carriers of the mutation. Twenty eight of them, corresponding to 50.9%, were females. These 55 subjects originated from 39 families, which were subjected to a genealogical study. Through the archival database, common ancestors were identified for the 55 heterozygous subjects. They are linked in an extended, 7-generational pedigree comprising 483 individuals (Figure 1), founded by a single ancestral couple born at the beginning of the 19th century. In one family, heterozygous were born to a mother who belonged to the pedigree, but was found to be genotypically normal in two independent determinations. The family name of the deceased father, who presumably transmitted the mutation, was one of the six recurrent surnames in the pedigree of the probands.

From the founding ancestral couple in the first generation, four family groups originated. All the affected cases belonged to this pedigree. On the basis of our pedigree analysis, 33.3% of the mutation carriers inherited the mutated gene from their mother, whereas 66.7% inherited the mutant allele from their father. The pedigree also shows a high rate of partial and complete consanguineous and endogamous marriages, typical of small communities. In particular, 14 out of 151 marriages were found to be consanguineous.
To confirm that the R255X mutation represents a single ancestral event, we constructed the haplotype for the FOXN1 locus for 47 chromosomes carrying the mutation R255X. The haplotype for D17S2187-FOXX1-D17S1880 could be established for 27 carrier chromosomes, and three different haplotypes were identified: 3-R255X-3 (14/27), 3-R255X-2 (11/27) and 3-R255X-1 (2/27) (see the Table). The same haplotypes for the microsatellite markers D17S2187-D17S1880 were identified in just 1 (3-3), 1 (3-2) and 6 (3-1) non-carrier chromosomes (data not shown). Among the carrier individuals for whom the phase could not be established (20/47), 3 and 2 were consistent with haplotypes 3-3 and 3-1, respectively, whereas 10, 2 and 3 were consistent with two of the previous haplotypes, 3-3/2, 3-3/1 and 3-2/1, respectively. Assuming recombination over the generations, these haplotypes could be consistent with a single ancestral origin of the R255X mutation in the Acerno population.

Table 1: Haplotypes analysis

<table>
<thead>
<tr>
<th>Haplotype</th>
<th>Known freq</th>
<th>Unknown freq</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-R255X-3</td>
<td>14/27</td>
<td>3/20</td>
</tr>
<tr>
<td>3-R255X-2</td>
<td>11/27</td>
<td>-</td>
</tr>
<tr>
<td>3-R255X-1</td>
<td>2/27</td>
<td>2/20</td>
</tr>
<tr>
<td>3-R255X-3/2</td>
<td>-</td>
<td>10/20</td>
</tr>
<tr>
<td>3-R255X-3/1</td>
<td>-</td>
<td>2/20</td>
</tr>
<tr>
<td>3-R255X-2/1</td>
<td>-</td>
<td>3/20</td>
</tr>
</tbody>
</table>

Our study demonstrates that the FOXX1 mutation R255X, which underlies the human equivalent of the murine Nude/SCID phenotype, is present in a heterozygous state in the Acerno population, and seems to have a single ancestral origin, dating back to the early 19th century. The prevalence of carriers in this community was 6.5%, thus leading to a presumptive estimate of expected cases, in the absence of prenatal diagnosis, of 11,000 live births. This estimate does not...
take into account the elevated frequency of carrier status within the extended pedigree, which corresponded to 36.9% and, more importantly, the elevated rate of consanguinous matings among the families, which have occurred on several occasions in the last century.

As previously reported, this form of SCID is particularly severe due to the absence of the thymus. Thus, the importance of genetic counselling for couples at risk, and of first trimester prenatal diagnosis by direct genetic analysis, given the high frequency of the FOXN1 mutation in the Acerino population, cannot be overemphasized. It is remarkable that although a screening program for prenatal diagnosis has only been introduced for a short period of time in Acerino, an affected female fetus has already been identified, thus indicating the usefulness of this effort in an isolated community.

Acknowledgment

We especially thank the Acerino population, who enabled this study to be carried out. We also thank Dr Giuseppe Cappetta and Vito Simone for the collection of samples. This work was supported by the Grants “Ministero della Salute – Roma and Regione Campania, Legge 502”, MIUR-PRIN 2002 and Telethon #E0934.

References

Received: 17 October 2003
Accepted: 7 January 2004
References

2.4 A crosstalk between Immune System and Endocrine System

The crosstalk between Nervous System (NS), Endocrine System (ES) and Immune System (IS) has been documented. Recently, a large number of experimental evidences show a tight interaction between IS and ES. In particular, the growth hormone as GH and IGF-I which play a key role in the growth and in the tissue metabolism seems to play a key role in the maintenance and in homeostasis of IS. However the mechanism of action and the role of production by leucocytes of hormones with an endocrine function still to be clarified. The aim of this phase of this research project is to clarify the biochemical and molecular mechanism of the network of ES and IS and to clarify if an alteration of this complex network may be implicated in the pathogenesis of Congenital Immunodeficiency (CID). Severe combined immunodeficiencies (SCIDs) represent a wide spectrum of illnesses, which differ in either the qualitative or quantitative alterations of T-, B- and natural killer- (NK-) cell (Fischer et al. 1997). Most forms of SCID are associated with molecular alterations of genes selectively expressed in hematopoietic cells and implicated in cell differentiation/activation process. Thus, classical symptoms are generally considered those related to the immunological impairment that results in increased susceptibility to infections. Since patients usually die by the first year of age without an effective treatment, the clinical phenotype is predominated by the life-threatening problems.
2.4.1 X-SCID phenotype associated with growth hormone hyporesponsiveness

X-linked Severe Combined Immunodeficiency (X-SCID) is the most common form of the disease accounting for approximately half of all cases (Noguchi et al 1993; Leonard et al 2001). The gene responsible for X-SCID is \textit{IL2RG} that encodes for the common cytokine receptor γ chain (γ_c), a member of the cytokine receptor class 1 superfamily. The molecule represents a shared component of several receptors critical for the development and function of lymphocytes (Leonard et al 2001).

In this phase of research we described a patient affected with a X-linked SCID who received a BMT late at 5.2 years of age and therefore his short stature became evident. This patient showed an immunodeficiency due to a T-cell activation defect associated with peripheral GH insensitivity and abnormal haematopoiesis. The pathogenic mechanism underlying this complex phenotype involves signal transduction through both TCR and GHR. These receptors, as many other receptors, trasduce signals through a cascade of biochemical events involving phosphorylation/dephosphorylation processes (Klausener et al 1991). Even though a few signaling molecules are tissue specific, most of the signaling pathway are not restrict to a certain cell type. In this study we focuses our attention on the JAK2/STAT5 molecules involved in signaling through several cytokine receptor even included GHR (Argetsinger et al 1996, Winston et al 1995). In this patient, the analysis of signal transduction revealed a defective
pattern of protein tyrosine phosphorylation after TCR and GHR engagement. In particular, CD3 X-L failed to increase phosphorylation of protein of 42-44, 56-60,70 and 85 kD usually phosphorylated upon this activation (Del Giudice et al 2000). Similarly, after the GH stimulation there was no increase in the signal regarding the 2 protein of 105 and 119 kD generally phosphorylated upon GH stimulation, corresponding to JAK2 and STAT5 molecules.

Experimental evidence and knock out mice indicate that alteration of STAT5A and 5B result in an impaired response to a number of cytokines, including GM-CSF, IL-2, IL-3, IL-5, GH and erythropoietin (Teglund et al 1998, Socolovsky et al 1999). In particular, activation of STAT5B is considered a prominent event in GH signaling and is crucial for the regulation of transcription of GH-responsive genes, including the gene encoding for insulin-like growth factor-I (IGF-I), which mediates many of the GH biological functions (Clark et al 1997; Dorshkind et al 2000; Le Roith et al 2001). However, in this study, mutational screening and expressional analysis failed to reveal any molecular alteration of GHR, JAK2 and STAT5A/B genes in the patient with X-SCID and peripheral GH hyporesponsiveness.

Even though, to our knowledge, an extrahematopoietic role of γc has not yet been demonstrated, although the abundance of the protein in non-hematopoietic cells would imply additional functions for this element (Du et al 2005; Ozawa et al 2004), our data suggest the hypothesis that in this patient the γ
chain defect is the common underlying pathogenic mechanism for both endocrinological and immunological problems.

These results has been published on the Clinical and Experimental Immunology, see below for the manuscript.
Atypical X-linked SCID phenotype associated with growth hormone hyporesponsiveness

M. V. URsini†, L. GAETANIello†, R. AMBROso*, E. MATRECANO*, A. J. APICELLA†, M. C. SALERNo† & C. PIGNATA* *Department of Paediatrics, Federico II University, Naples, and †International Institute of Genetics and Biophysics, CNR, Naples, Italy

(Accepted for publication 21 January 2002)

SUMMARY

Severe combined immunodeficiency (SCID) is a heterogeneous group of disorders characterized by defect of T- and B-cell immunity. In many cases of autosomal recessive SCID, thus far described, the molecular alteration involves genes encoding for molecules that participate in the signal transduction. We report on a patient affected by a combined immunodeficiency, characterized by severe T-cell functional impairment, in spite of a close to normal number of circulating mature type T and B cells. NK cells were absent. Associated with the immunodeficiency, this patient also showed short stature characterized by low growth velocity, delayed bone age and absence of increase of the plasma levels of Insulin growth factor-I (IGF-I) after growth hormone (GH) in vivo stimulation indicating peripheral hyporesponsiveness to GH. Evaluation of the protein tyrosine phosphorylation events occurring following either T-cell receptor (TCR) or GH receptor (GHR) triggering revealed striking abnormalities. No molecular alteration of GHR gene was found, thus suggesting the presence of postreceptorial blockage. Mutational screening and expression analysis failed to reveal any molecular alteration of JAK2 and STAT 5 A/B genes thus ruling out the involvement of these genes in the pathogenesis of this form of SCID. Mutational analysis of IL2RG chain gene revealed the presence of a L1838 missense mutation, thus indicating an atypical and more complex clinical presentation of this X-linked form of SCID. At our knowledge, this is the first report on the GH hyporesponsiveness in this disease.

Keywords: Severe combined immunodeficiency, Janus kinase 2, signal transducer and activators of transcription 5, idiopathic short stature

INTRODUCTION

Severe combined immunodeficiency (SCID) comprises a group of genetically and phenotypically heterogeneous hereditary diseases characterized by profound deficiency of both T- and B-cell immunity [1]. SCID phenotypes have been tentatively classified according to the presence or absence of B cells in the peripheral blood in T"B" or T"B" forms of SCID [2]. Of note, all the molecular alterations causing a severe combined immunodeficiency phenotype thus far described involve genes encoding for molecules that participate in the signal transduction process [3]. This is the case of the V-chain, a common element of several receptors, and the Janus kinase 3 (JAK3) molecule that associates with γ element, whose alteration results in T"B" SCID and absence of natural killer (NK) cells [4,5]. Mutations of the Zap-70 kinase that associates with the ζ element of the T-cell receptor (TCR)/CD3 complex [6,7], or decreased expression of the p56ck tyrosine kinase due to an alteration of the splicing pattern result in SCIDs characterized by a selective decrease of CD8+ or CD4+ T cells [8], respectively. Both of these forms are associated with normal NK cell number. Even though further molecular mechanisms have been recently elucidated, which involve molecules as Rag-1, Rag-2, CD45, IL-7Rα, CD3ε, CD3γ, in about 30% of the cases of SCID the underlying genetic defect is still unidentified [2,3,9].

Here, we report on a SCID patient whose immunodeficiency is predominantly a T-cell activation defect, and is part of a multi-systemic disorder being associated with peripheral GH insensitivity and abnormal haematopoiesis. The pathogenetic mechanism underlying this complex phenotype involves signal transduction through both TCR and GHR. These receptors, as many other receptors, transduce signals through a cascade of biochemical events involving phosphorylation/dephosphorylation processes [10]. Even though a few signalling molecules are tissue specific, most of the signalling pathway are not restricted to a certain cell type. We first focused our attention on the JAK2/STAT5 molecules involved in signalling through several cytokine receptors even included GHR [11,12]. JAK2 is activated following receptor

Correspondence: Dr Claudio Pignata, Unit of Immunology, Department of Paediatrics, Federico II University, Via S. Pignam 5-80131, Naples, Italy. E-mail: pignata@unina.it

502

© 2002 Blackwell Science
Atypical X-linked SCID phenotype associated with GH hyporesponsiveness 503

stimulation with several factors, as erythropoietin, GHR, granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-2 (IL-2), IL-5, IL-6, IL-12 [15,16]. It is also required for a proper interferon (INF) γ response [15,16]. In turn, activated Jak2 phosphorylates the STAT5 thus resulting in the activation of transcription of target genes. In particular, experimental evidence and knock out mice indicate that alterations of STAT5A and STAT5B result in an impaired response to a number of cytokines, including GM-CSF, IL-2, IL-5, IL-6, GHR and erythropoietin (Epo) [17,18]. However, molecular studies led us to rule out alteration of GHR, Jak2 and STAT5A/B encoding genes. Remarkably, sequence analysis of the IL-2 receptor gene revealed a L1835 missense mutation, thus indicating that also this form of SCID may exhibit a more complex and atypical clinical presentation.

SUBJECT AND METHODS

Case report
The patient DG was born at 40 weeks of gestation to unrelated healthy parents. His birth weight was 2850 g and height was 46 cm. No morphological anomalies were appreciable. At the age of 4 months, the patient presented with severe respiratory distress due to an interstitial pneumopathy. A Pneumocystis carinii infection was diagnosed and, due to the persistence of the infectious problem, an extensive immunological evaluation was carried out leading to a diagnosis of SCID as described below in detail. Humoral immunity studies revealed very low IgG (105 mg/dl) and IgA (9 mg/dl) serum levels at 12 months of age. IgM were 14 mg/dl. Anti-hemagglutinins were undetectable. A severe hypoproliferative anemia requiring blood transfusion represented a further clinical problem until the age of 10 months. Moreover, since the age of 1 years a short stature not explained on the basis of endocrinological, nutritional or infectious causes was present as below described. Short limb dwarfism was ruled out by the measurement of body proportions which were present. Prophylaxis against bacterial, fungal and viral infections was successfully established while the patient, at the time of the study, was pending a bone marrow transplantation.

IGF-1 generation test
To assess the ability to respond to exogenous GH, DG patient underwent an IGF-1 generation test through daily subcutaneous injections of recombinant GH (0.1 U/kg) for 4 consecutive days. Blood samples were taken before the first injection and on day 5 for the measurements of IGF-1 levels. IGF-1 was measured by using a two-site immunoradiometric assay (IRMA) kit (Diagnostic Systems Laboratories, Webster, Texas). Values were expressed as Standard International Units (pg/ml).

Phenotypic analysis and proliferative assays
The expression of surface-membrane antigens on peripheral blood mononuclear cells (PBMC) was examined by flow cytometry (Becton Dickinson, San Jose, CA, USA) using the following monoclonal antibodies: anti-CD3 (Leu-4), anti-CD4 (Leu-3a), anti-CD8 (Leu-2a), anti-CD19 (Leu-12), anti-CD56 (Leu-19). The activation marker HLA-DR, CD25 (IL-2 receptor α chain), and CD71 (transferrin receptor), were evaluated on resting or phytohemagglutinin- (PHA)-stimulated PBMC in two-colour immunofluorescence using anti-CD3 and the corresponding monoclonal antibody from the same source (BD). The proliferative response was evaluated by [3H]-thymidine incorporation in PBMC cultured at a concentration of 2 × 10⁶ cells per well for 72 h with PHA (8 μg/ml), concanavalin A (ConA; 8 μg/ml) (Difco Laboratories, Detroit, MI, USA), 20 ng/ml phorbol-myristate acetate (PMA) and ionomycin (0.5 μm). CD3 cross-linking (CD3 X-L) was performed by precoating tissue culture plates with anti-CD3 monoclonal antibody at optimal or suboptimal concentrations (10 and 1 ng/ml) (Ortho Diagnostics, Raritan, NJ, USA).

GH and TCR induced protein tyrosine phosphorylation
Transducing properties were studied through the analysis of protein tyrosine phosphorylation in PBMC after stimulation with GH, PMA or CD3 X-L. GH stimulation (500 ng/ml) was performed through 5-15 min stimulation. The pattern of tyrosine phosphorylated (Pyr) proteins was analysed on whole cell

Fig. 1. Proliferative responses in the SCID patient during the 5years follow-up. Proliferative response evaluated through [3H]-thymidine incorporation following stimulation of PBMC by PHA, PMA + Iono, PPM, and CD3 cross-linking (a). Proliferation was analysed at regular time during the 5 years follow-up. The results are expressed as cpm. Bars indicate mean value ± SD of control values. (b) Proliferative response following optimal or suboptimal stimulation through CD3 cross-linking in the presence (●) or absence (○) of exogenous rIL-2 used at a concentration of 100 U/ml.
lysates. After stimulation, 3 x 10^6 cells were lysed in a buffer containing 20 mM Tris, pH 8, 10% glycerol, 137 mM NaCl, 1% Nonidet P-40, 10 mM EDTA, 1 mM phenylmethylsulphonyl fluoride (PMSF), 1 mM sodium orthovanadate (Na_3VO_4), 5 μg/ml leupeptin and 5 μg/ml aprotinin. Proteins were resolved by 10% SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and then blocked with 3% bovine serum albumin. Immunoblotting was performed by a 1–4 h incubation with anti-Pyr. Densitometric analysis of the signals was performed.

GH receptor, STAT5A and B, JAK2 and γ chain mutational analysis

Genomic DNA and RNA were isolated from peripheral blood mononuclear cells [19]. Automated sequence analysis of exons 2–10 of the GH receptor (X06641-1) was performed in DG patient. The coding portion of exon 10 was amplified in three overlapping fragments [20]. STAT5A and STAT5B mutational analysis was performed using primers designed on published sequence for a total of 18 primer sets for each gene. Each exon and corresponding donor and acceptor splice site was individually amplified by PCR. PCR conditions were as follows 35 cycles of 94°C for 30 s, 55°C for 45 s, 72°C for 1 min. JAK2 cDNA was obtained by reverse transcription (RT) using 1 μg purified RNA and random examers in a buffer supplied by the manufacturer (Boehringer, Mannheim, Germany). Twelve sets of primers were synthesized to amplify and sequence human JAK2 cDNA (AF002156-1) both coding and noncoding strands.

STAT5A and B cDNAs (NM012448-1 and NM000352-1, respectively) were amplified using RT-PCR performed with primers designed to amplify both cDNAs (position 1686 STAT5B/2130 STAT5A: CCGTCCGCTGACCAAAAGTGCTG and position 2284 STAT5B/2763 STAT5A: TTGCAAAACTCAGGGACAC). One μl of [3P]dCTP was included in the reaction. Amplified products were subsequently Hinf1 digested and separated by electrophoresis on 5% polyacrylamide gel. Densitometric analysis of the signals was performed.

IL-2γ chain mutational analysis was performed using primers designed on published sequence (L19546) for a total of 8 primer sets [21]. Each exon and corresponding donor and acceptor splice site was individually amplified by PCR. Amplified products were automatically sequenced. ABI Prism dye terminator cycle sequencing kit and an ABI 377 Automated DNA Sequencer were used.

Sequence of primers used in molecular analysis of STAT 5 A/B and γ chain are available upon request (ursini@ilga.mibg. na.cnr.it).

RESULTS

Cell proliferation and activation markers

The proliferative response was consistently reduced during the 5-year follow-up as depicted in Fig. 1a. The addition of either suboptimal or optimal rIL-2 to the cultures of patient's PBMC stimulated through CD3 triggering, as shown in Fig. 1b, was unable to restore the proliferation. The functional impairment was associated with the presence of some circulating mature CD3+ T cells, ranging during the follow-up between 22 and 85%.

Table 1 shows the representative percentage values at 2 and 5 years of age indicating a spontaneous increase of CD3+ cells bearing TCR α/β chains. CD4+ cells were persistently reduced during the follow-up ranging from 13 and 16%, while CD8+ cells ranged between 10 and 48%. TCR γδ cells increased over the time. However, most of these cells were CD4+ and CD8 double negative. CD19+ B cells were present and inversely correlated to the number of T cells, ranging between 70 and 4%. NK cells were always absent.

The evaluation of the activation markers HLA-DR, alfa chain of IL-2R (CD25) and transferrin receptor (CD71) on patient's T cells confirmed on a per cell basis that there was a cell activation defect, as illustrated in Table 2. PHA stimulation for 48 h of the patient's PBMC failed to induce up-regulation of the membrane expression of all 3 activation markers tested, differently from...
Table 1. Patient's immunophenotype

<table>
<thead>
<tr>
<th>Age</th>
<th>2 years old</th>
<th>5 years old</th>
<th>2 years old</th>
<th>5 years old</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Patient*</td>
<td>Control†</td>
<td>Patient*</td>
<td>Control†</td>
</tr>
<tr>
<td>Total lymphocyte count</td>
<td>915</td>
<td>3600</td>
<td>919</td>
<td>3600</td>
</tr>
<tr>
<td>Surface markers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD3+</td>
<td>23.8 (218)</td>
<td>64 (2223–2484)</td>
<td>85.3 (784)</td>
<td>64 (2223–2484)</td>
</tr>
<tr>
<td>CD3+TCR-εβ</td>
<td>14.1 (129)</td>
<td>66 (1880–2592)</td>
<td>49.4 (459)</td>
<td>66 (1880–2592)</td>
</tr>
<tr>
<td>CD4+</td>
<td>13.4 (123)</td>
<td>37 (1080–1440)</td>
<td>16.0 (147)</td>
<td>37 (1080–1440)</td>
</tr>
<tr>
<td>CD8+</td>
<td>10.3 (94)</td>
<td>29 (900–1152)</td>
<td>48.5 (451)</td>
<td>29 (900–1152)</td>
</tr>
<tr>
<td>CD4+CD8+TCR γδ</td>
<td>1.0 (9.2)</td>
<td>abs</td>
<td>17.3 (158)</td>
<td>abs</td>
</tr>
<tr>
<td>CD95+</td>
<td>70.9 (652)</td>
<td>24 (756–1008)</td>
<td>4.3 (39)</td>
<td>24 (756–1008)</td>
</tr>
<tr>
<td>CD154+</td>
<td>12.8 (117)</td>
<td>9 (216–576)</td>
<td>65.9 (604)</td>
<td>9 (216–576)</td>
</tr>
<tr>
<td>CD56+</td>
<td>0.6 (5)</td>
<td>11 (288–540)</td>
<td>0.1 (0.9)</td>
<td>11 (288–540)</td>
</tr>
</tbody>
</table>

Values given as *% (cells/mm³) and †% (25th–75th centiles).

Fig. 3. Protein tyrosine phosphorylation induced by CD3 cross-linking or GH stimulation. Representative experiments showing the pattern of tyrosine phosphorylated proteins after stimulation of PBMC from DG and a control. (a) TCR triggering for 5 (lanes 2 and 6) or 10 min (lanes 3 and 7) or PMA stimulation (lanes 4 and 8) in the control’s PBMC (lanes 1–4) and in the patient (lanes 5–8). Molecular markers are indicated. The lower panel illustrates the densitometric analysis of the 60 kD protein, which represents the major phosphorylated protein after TCR triggering. (b) GH stimulation for 5 or 15 min of the patient’s PBMC (lanes 1–5) and of the control (lanes 4–6). The lower panel illustrated the densitometric analysis of the 116.5 kD and 80 kD proteins. In the patient, an abnormal pattern of protein tyrosine phosphorylation was observed following both stimulations. Western blots were performed using whole cell lysates and an antiphosphotyrosine antibody.

© 2002 Blackwell Science Ltd, Clinical and Experimental Immunology, 125:502–509
controls whose cells exhibited a 3–20 fold increase of the surface expression.

Growth rate, peripheral sensitivity to GH and GHR analysis

The patient DG showed a clearly abnormal growth curve, being under the 5th centile for height, as shown in the Fig. 2a. Bone age was always markedly delayed as compared to the chronological age. The more common causes of short stature, including malnutrition, chronic diseases, and endocrinological disorders were ruled out by standard diagnostic procedures. Due to the efficacy of the anti-infectious prophylaxis, short stature could not be explained by chronic infections. In 2 out of 3 pharmacological stimulation tests, GH increase was normal, thus leading to a descriptive diagnosis of ISS.

Insulin-like growth factor-I (IGF-I) is a heparinically derived circulating mediator of growth hormone, which is regulated by GH, and mediates many of the GH biological functions, being also involved in the maintenance of lymphoid mass and functions [11]. Therefore, we sought to investigate the peripheral sensitivity to GH by examining the increase of IGF-I plasma levels following *in vivo* provocation test. As reported in Fig. 2b, peripheral hyporesponsiveness to GH was demonstrated *in vivo* on the basis of the low baseline IGF-I levels and the absence of plasma IGF-I increase during GH treatment performed at 2 different concentrations. An IGF-I increase below 15μg/l during the generation test was considered a diagnostic criteria for GH insensitivity [22].

To rule out a genetic alteration of the GHR gene in the patient, a GHR sequence analysis of the exons 2–10 was performed. All 11 amplified products have sequence identical to the wild type, thus ruling out a GHR alteration. The patient was heterozygote for the already described G168 and I526L polymorphisms [23].

Defective pattern of protein tyrosine phosphorylation after TCR and GHR engagement

We next investigated the overall signal transduction properties following TCR and GHR ligation by analysing the number and the timing of the proteins phosphorylated on tyrosine residues. Figure 3a,b illustrate immunoblots with anti-Pyr of whole cell lysates from patient’s or control’s PBMC following stimulation through CD3 X-L, PMA or GH. In contrast to what observed in control cells, both stimuli failed to induce substantial increase of tyros phosphorylated proteins in patient cells. In particular, CD3 X-L failed to increase phosphorylation of proteins of 42–44, 56–60, 70 and 85 kD usually phosphorylated upon this activation [24]. Similarly, after the GH stimulation there was no increase in the signal regarding the 2 proteins of 105 and 119 kD generally phosphorylated upon GH stimulation of PBMC, presumably corresponding to JAK2 and STAT5 molecules.

Molecular analysis of JAK2, STAT 5 A/B and IL-2Rγ chain molecules

By taking advantage of knock out mouse knowledge, we focused our attention on JAK2/STAT5 signalling pathway involved in several cytokine receptors including GH [15,16]. Since the DG PBMC contain JAK2 mRNA (data not shown), we used CDNA
produced by reverse RT-PCR and JAK2 specific oligonucleotide primers to scan the entire gene. All 12 amplified products have sequence identical to the wild type. DNA fragments appeared quantitatively and qualitatively indistinguishable from those observed in several unrelated controls.

Recently, the human genomic sequence of STAT5A and STAT5B was solved by some of us thus allowing a complete mutational analysis of each individual gene (unpublished observation). However, we found that all 18 amplified products corresponding to coding exons of each STAT gene have sequence identical to the wild type (data not shown). In addition, we analysed the expression and the relative abundance of both STAT5A and STAT5B mRNAs in the patient PBMC by RT-PCR performed with primers able to amplify both STAT 5A/B cDNAs. Amplified products were subsequently Hinfl digested and separated by electrophoresis to distinguish fragments of each gene; therefore, this analysis also reflects the STAT 5A/B specific mRNA ratio (Fig. 4A). Reference pattern was obtained from age-matched control.

We observed that the two mRNA-derived amplified products were qualitatively and quantitatively indistinguishable from those obtained from control PBMC mRNA (Fig. 4B).

Ultimately, a mutational analysis of the 8 encoding exons of the γ chain gene was performed and revealed the presence of a single base pair change T548 > C (numbered from the ATG) resulting in a change in coding from leucine to serine at residue 163 in the region coding for the extracellular domain of the protein (Fig. 5). We also found that the mother and the sister of the proband are heterozygous for this mutation. Amplification of γ chain specific cDNA appeared quantitatively and qualitatively indistinguishable from those observed in several unrelated controls.

DISCUSSION

We reported here on an atypical form of SCID in a patient presenting with severe hyperregenerative anaemia, and severe functional impairment of apparently mature T cells, as shown by the absence of proliferative response to a variety of mitogens and up-regulation of activation markers. The number of B cells was normal, but they were non functional, whereas NK cells were undetectable. The patient was also affected by idiopathic short stature with a reduced serum levels of IGF-1 and peripheral insensitivity to GH. This last defect has frequently been associated with GHR mutation. [20,23,25]. However, in DG we were unable to find any mutation in GHR gene. Of note, an abnormal pattern of protein tyrosine phosphorylation was found in DG.

![Figure 5](image_url)
Fig. 5. Pedigree of the family and sequence analysis of the IL-2Rγ chain in family members. The proband is indicated by the arrow. The sequence analysis revealed the presence of T548C (causing the L163S missense mutation) in the heterozygous state in the proband and at the heterozygous state in the mother and sister.

© 2002 Blackwell Science Ltd, Clinical and Experimental Immunology, 129:50-500
PBMC either after GH stimulation or following TCR/CD3 perturbation.

Mouse mutations have become an important genetic tool for the identification of new clinical phenotypes that may help unravel complex human disorders and identify new pathogenic gene alterations [25]. The STAT5A/B mutant mice, but not the individual mutants, have a profound T-cell functional defect. In addition to prolactin, STAT5 proteins are activated by GH, Epo, GM-CSF and IL-2 [27,28]. GHR belongs to cytokine/ haematopoietin receptor superfamily and shares with other members of this family several signal transducers even included JAKs, such as Tyk2, phosphotyrosine STATs [11,12]. STATs heterodimers are phosphorylated in response to TCR-stimulation, thus indicating their involvement in T-cell proliferation [29]. Even though the Jak2 knockout in mice is embryonically lethal, this gene plays an essential non redundant role in the function of a number of cytokine receptors including Epo, GM-CSF, IL-5 and IL-3, and presumably of GHR as well [15,16]. Therefore, we first focused our attention on the Jak2/STAT5 signalling pathway. However, our molecular studies led us to rule out a direct involvement of those molecules in the pathogenesis of the disease.

The absence of NK cells is also present in SCID related to mutation of y-chain or Jak3 genes. In these forms of SCID, generally there are no T cells. These forms are generally fatal within the first years of life, but a few atypical cases are characterized by a milder phenotype [30–32]. In our patient, we documented the presence of a L1858 homozygous mutation of the γ chain. This alteration modifies the extracellular domain of the protein, as also described for other mutations associated with a typical phenotype of this form of SCID [21,32].

In conclusion, our findings indicate that the immunodeficiency here described is an X-linked form of SCID due to an activation deficiency associated with peripheral insensitivity to GH, resulting in a profound growth failure. We here documented in vitro triggering of both TCR/CD3 complex and GHR was associated to an abnormal pattern of protein tyrosine phosphorylation events, raising the intriguing question on the mechanism by which the γ-chain defect is the common underlying pathogenic mechanism for both endocrinological and immunological problems. Of note, mutational analysis of a few additional candidate genes functionally related to short stature and T-cell activation failed to reveal any further alteration that could explain the atypical and complex phenotype. This observation is in keeping with what reported on other genetic diseases, showing that patients with an identical mutation may have different clinical and immunological features. To address the issue of the role of interfering genes in modifying the clinical expression of a genetic disease new developing technologies (e.g. biochip) are now available. We believe that unusual clinical and laboratoristic observations may be very useful to unravel complex diseases and help find new gene-function relationship toward targeted therapeutic approaches.

ACKNOWLEDGEMENT

Supported by Telethon #E8934.

REFERENCES

© 2002 Blackwell Science Ltd, Clinical and Experimental Immunology, 129:592–599
29 Welto T, Leitenberg D, Dittel BN et al. STATS interaction with the T cell receptor complex and stimulation of T cell proliferation. Science 1996; 273:222-5.
2.4.2 Functional Interaction of Common Gamma Chain and Growth Hormone Receptor Signaling Apparatus

Since, in the previously research has been hypothesized a role for the γ_c chain in GHR signaling, aim of this study has been evaluated, for the first time, the functional interaction between GHR and the common γ element in either freshly isolated or Epstein-Barr virus (EBV) transformed lymphocytes from X-SCID patients and healthy subjects. In particular, the functional response to GH stimulation, the pattern of GHR induced protein tyrosine phosphorylation and GH induced translocation from the cytoplasm to the nucleus of STAT5 were evaluated.

The results showed that the proliferative response to GH stimulation of the B cell lines of γ_c-negative patients was impaired despite a comparable cellular expression of GHR molecules to controls. The functional interaction between γ_c and GHR leads to the activation and intranuclear translocation of STAT5b protein. The results showed that in patients, after GH stimulation, no phosphorylation of STAT5 was observed. In addition, the molecule localization through confocal microscopy revealed that in B cell lines of patients no nuclear traslocation of STAT5b following GH stimulation occurred differently from controls. Biochemical analysis of the nuclear extracts of γ_c-negative cell lines provided further evidence that the amount of STAT5b and its phosphorylated form did not increase following GH stimulation. In patients, cells reconstituted with wilde type γ_c abnormal biochemical and functional events were restored.
resulting in nuclear traslocation of STAT5. Finally, confocal experiments revealed that GHR and γ_c were colocalized on the cell membrane.

Our study demonstrates the existence of a previously unappreciated relationship between individually well studied elements, such as GHR and γ_c, and signaling pathways.

Crosstalk between receptor signaling systems is now emerging as an important and exciting area of signaling research. These results has been published on Journal of Immunology, see belw for the manuscript.
Functional Interaction of Common γ-Chain and Growth Hormone Receptor Signaling Apparatus

Marsilio Adriani, Corrado Garbi, Giada Amodio, Ilaria Russo, Marica Giovannini, Stefania Amorosi, Eliana Matreccano, Elena Cosentini, Fabio Candotti, and Claudio Pignata

We previously reported on an X-linked SCID (X-SCID) patient, who also had peripheral growth hormone (GH) hyperresponsiveness and abnormalities of the protein phosphorylation events following GH receptor (GHR) stimulation. In the present study, we examined a potential role of common cytokine receptor γ-chain (γc) in GHR signaling using EBV-transformed lymphocytes from healthy subjects and γc-negative X-SCID patients. We demonstrated that the proliferative response to GH stimulation of the B cell lines of γc-negative patients was impaired despite a comparable cellular expression of GHR molecules to controls. In patients, after GH stimulation, no phosphorylation of STAT5 was observed. In addition, the molecule localization through confocal microscopy revealed that in B cell lines of patients no nuclear translocation of STAT5b following GH stimulation occurred differently from controls. Biochemical analysis of the nuclear extracts of γc-negative cell lines provided further evidence that the amount of STAT5b and its phosphorylated form did not increase following GH stimulation. In patients, cells reconstituted with wild-type γc abnormal biochemical and functional events were restored resulting in nuclear translocation of STAT5b. Confocal experiments revealed that GHR and γc were colocalized on the cell membrane. Our study demonstrates the existence of a previously unappreciated relationship between GHR-signaling pathway and γc, which is required for the activation of STAT5b in B cell lines. These data also confirm that growth failure in X-SCID is primarily related to the genetic alteration of the IL2RG gene. The Journal of Immunology, 2006, 177: 6889–6895.

Severe combined immunodeficiencies represent a wide spectrum of illnesses, which differ in either the qualitative or quantitative alterations of T, B, and NK cell (1). Most forms of SCID are associated with molecular alterations of genes selectively expressed in hematopoietic cells and implicated in the cell differentiation/activation process. Thus, classical symptoms are generally considered those related to the immunological impairment that results in increased susceptibility to infections. Because patients usually die by the first year of age without an effective treatment, the clinical phenotype is predominated by the life-threatening problems.

X-Linked SCID (X-SCID) is the most common form of the disease accounting for approximately half of all cases (2, 3). The gene responsible for X-SCID is IL2RG that encodes for the common cytokine receptor γ-chain (γc), a member of the cytokine receptor class I superfamily. The molecule represents a shared component of several receptors critical for the development and function of lymphocytes (3). To our knowledge, an extrahemopoietic role of γc has not yet been demonstrated, although the abundance of the protein in nonhemopoietic cells would imply additional functions for this element (4, 5).

We previously reported on a patient affected with X-SCID who received a bone marrow transplantation late at 5.2 years of age. In this patient, short stature became evident, and a peripheral growth hormone (GH) hyperresponsiveness associated with abnormalities of the protein phosphorylation events that occur following GH receptor (GHR) stimulation was demonstrated.

The GHR was the first identified member of the cytokine receptor class 1 superfamily, which includes receptors for erythropoietin, G-CSF, GM-CSF, IL-2, IL-9, IL-13, IL-12, and many other cytokines. Due to the lack of intrinsic kinase activity, members of the cytokine receptor superfamily recruit and activate cytoplasmic tyrosine kinases to relay their cellular signal. The JAK2 represents the predominant nonreceptor tyrosine kinase required for the initiation of GH signal transduction upon ligand binding to the receptor (6, 7). However, GH also stimulates tyrosine phosphorylation of JAK1 (8, 9) and JAK3 (10) in certain cell lines. Signal transduction through GHR also involves a wide array of molecules, such as STATs 1, 3, and 5, ERK 1 and 2, and PISK-protein kinase B (7). Activation of STAT5 is considered a prominent event in GH signaling and is crucial for the regulation of transcription of GH-responsive genes, including the gene encoding for insulin-like growth factor (IGF)-1, which mediates many of the GH biological functions (11–13). In our previous study, mutational screening and expression analysis failed to reveal any molecular alteration of GHR, JAK2, and STAT5B genes in the patient with X-SCID and peripheral GH hyperresponsiveness (14).

Because we hypothesized a role for the γc in GH signaling, in this study, we evaluate the functional interaction between GHR.
and the common γ element in either freshly isolated or EBV-transformed lymphocytes from X-SCID patients and healthy subjects. In particular, the functional response to GH stimulation, the pattern of GHR-induced protein tyrosine phosphorylation and GH-induced translocation from the cytoplasm to the nucleus of STAT5 was evaluated. We demonstrated the existence of a previously unappreciated functional interaction between γc and GHR. This interaction leads to the activation and intranuclear translocation of the STAT5b protein.

Materials and Methods

Reagents

Recombinant human GH (rGH) was obtained from Serono (Salzburg). The rGH kit was purchased from Amersham Biosciences. The Abs anti-STAT5b, anti-STAT5a, anti-STAT1, anti-STAT3, anti-ERK (recognizing both Erk1 and Erk2), anti-phospho-tyrosine ERK, anti-GHR, and anti-γc and the mAbs anti-phosphotyrosine were purchased from Santa Cruz Biotechnology. The Ab anti-JAK2 was purchased from Cell Signaling Technology. The neutralizing IgG anti-γc mAb was purchased from R&D Systems. An IgG1 isotype-matched anti-CD3 mAb (Leu 3, UCHT1 clone) was purchased from BD Biosciences. Epidermal growth factor was purchased from BD Biosciences and used at the concentration of 100 μg/mL. Aprotinin and bacitracin were obtained from Invitrogen Life Technologies. Pretreated molecular mass standards were obtained from Bio-Rad. Except where noted, other reagents were of either reagent or molecular biological grade from Sigma-Aldrich.

Cells and cell culture

Mononuclear cells (PBMC) were obtained from four X-SCID patients and normal donors and separated from peripheral blood by Ficoll-Hypaque (Biosera) density gradient centrifugation. Upon informed consent, lymphoid cell lines (BCLs) were generated by EBV immortalization of patients and control PBMC using standard procedures. In all cases, γc mutations led to the absence of protein expression. Cells were maintained in RPMI 1640 (Bioblok) supplemented with 10% FBS (Invitrogen Life Technologies), 2 mM L-glutamine (Invitrogen Life Technologies), and 50 mg/mL gentamicin (Invitrogen Life Technologies), and cultured at 37°C, 5% CO₂. In BCL transduction experiments, the pSG2.I γc deletion vector (16) was used to transduce X-SCID BCLs with wild-type (WT) γc, as previously described (17). Transduced cells were selected in the neomycin analog G418 (G418). NIH 3T3 fibroblasts were used in a few experiments.

Proliferation assay

BCLs (1 × 10⁵ cells/100 μl well) were cultured triplicate in 96-well U-bottom microtiter plates (Falcon) with or without rGH at reported concentrations for 4 days. The proliferative response was evaluated by thymidine uptake from cultured cells pulsed with 0.5 μCi of [³H]thymidine (American Biosiences) 8 h before harvesting (18). In neutralization experiments, control EBV cells were preincubated with the neutralizing mAb 2B4 at the concentration of 6 μg/mL or with the IgG1 isotype-matched Ab (Leu 3).

Flow cytometry

The expression of GHR was detected using specific anti Abs (Santa Cruz Biotechnology) by indirect immunofluorescence using a two-step incubation with FITC-conjugated donkey anti-rabbit Abs (Biorad). After washing in PBS, cells were incubated for 20 min with the specific Abs and 30 min with secondary Abs. After staining, all samples were washed in PBS and acquired on the FACSScan flow cytometer (BD Biosciences) using Lyssis software.

Cell stimulation and protein extraction

Before hormone treatment, the cells were made quiescent through incubation in RPMI 1640 minus serum for 8-12 h. GH was used at 10 ng/mL at a concentration of 200 μg/mL in RPMI 1640 for the reported time. Incubations were terminated by washing cells with ice-cold PBS (BioWhitaker) followed by solubilization in 100 μl of lysis solution containing 20 mM Tris (pH 8), 150 mM NaCl, 1% Nonidet P-40, 1 mM EDTA, 1 mM PMF2, 1 mM sodium orthovanadate (Na₃VO₄), 5 μg/ml leupeptin, and 5 μg/ml aprotinin. The cell lysates were stored at −80°C for Western blots analysis. Nuclear extracts were prepared by the method of Andrews et al. (19) and were subsequently nuted with sample buffer.

Western blot

Immunoblotting using phosphoryrino γc Ab was performed as previously reported (14). Immunoblotting using specific Ab was performed according to the vector protocols. Briefly, protein samples separated by SDS-PAGE were transferred onto Mixed Cellulose Ethers membranes (Invomarin NC, Mixed Cellulose Ethers 0.45 μm, Millipore). The membrane was incubated at room temperature for 1 h in blocking buffer consisting of 10% BSA in wash buffer (10 μM Tris, pH 7.5, 100 mM NaCl, and 0.1% Tween 20). The membrane was then washed three times in wash buffer and incubated 1 h at room temperature or overnight at 4°C with the specific Ab. The membrane was then washed three times and an appropriate IgG HRP-conjugated secondary Ab was used for the second incubation. After further washings, the membrane was developed with ECL-developing reagents, and exposed to x-ray film according to the manufacturer's instructions (Amersham Biosciences).

Cellular microscopy

After appropriate stimulation, quiescent cells were washed in ice-cold PBS and fixed in 4% paraformaldehyde in 0.1 M phosphate buffer (pH 7.0) for 30 min at room temperature. After four rinse of 3 min in PBS, the cells were centrifuged in a Shandon Centra III (Beverlton) onto a glass slide and permeabilized by incubation in 0.2% Triton X-100 solution for 20 min. The cells were then incubated for 1 h at room temperature with rabbit Abs against STAT5 diluted 1/100 in PBS containing 1% BSA. After four rinse of 3 min in PBS, the cells were incubated for 1 h at room temperature with a 1/200 dilution of FITC-conjugated donkey anti-rabbit IgG (Pierce) in PBS. After washing in PBS, the glass slides were mounted under a coverslip in 50% glycerol/0.1% PBS solution. The slides were analyzed by laser scanning confocal microscopy, using a Zeiss LSM 510 version 2.8 SP1 confocal System.

Results

Effect of GH on the proliferative response of EBV-transformed cell lines from normal subjects and γc-negative X-SCID patients

It was previously reported that GH enhances EBV-transformed cell line proliferation in vitro, its effect being direct and not mediated by IGF-1 (18). Thus, to evaluate a biological role of γc in GHR signaling, we evaluated the response of EBV-transformed lymphocytes (BCLs) from γc-negative X-SCID patients and normal controls to GH stimulation. As shown in Fig. 1A, GH enhanced proliferation of BCLs of control subjects in a dose-dependent fashion. Significant enhancement of [³H]thymidine uptake was observed at a GH concentration of 50 ng/mL, and the maximal effect was achieved at 200 ng/mL. In contrast, γc-negative BCLs did not respond at any GH concentration. To rule out that the observed phenomena were due to different numbers of the receptor molecules on the cell membrane, GH expression was evaluated by flow cytometry analysis of the cells of controls and patients (Fig. 1B). No difference was found in the mean fluorescence intensity (130.99 ± 28.19 vs 139.88 ± 33.19 in patients and controls, respectively; p = NS) and in the percentage of positively stained cells (99.6 vs 99.7% and 99.8 vs 99.9%, respectively).

Moreover, to demonstrate a link between the γc and GHR, we used a neutralizing mAb in the proliferative assay. As shown in Fig. 1C, the neutralizing mAb inhibited by 64% the proliferative response to GH. A nonspecific effect of the Ab was ruled out, because the IgG1 isotype-matched Ab was ineffective in inhibiting cell proliferation.

To define whether PI3K had a role on GH-induced cell proliferation of BCLs to GHR, the kinase inhibitor wortmannin was used. As shown in Fig. 1D, no inhibitory effect was appreciable. By contrast, in the positive control wortmannin was able to inhibit fibroblast proliferation to EGF by 85%.

To ascertain whether γc was linked to GHR, we then assessed by confocal microscopy the plasma membrane expression of these two molecules. As shown in Fig. 1D, by indirect immunofluorescence using specific Abs, as previously detailed, colocalization of γc and GHR was observed on the cell surface of normal BCL cells.
FIGURE 1. In vitro effect of GH stimulation on proliferation of the EBV cell lines of X-SCID patients and controls and membrane localization of GHR and γc. A, BCLs were generated by EBV immortalization of the PBMC of patients and controls using standard procedures (13) and cultured in the presence of various concentrations of GH for 4 days. Cultures were pulsed with [3H]thymidine for the final 8 h and radioactive incorporation counted. Results are expressed as the increase of cpm from the background. Vertical bars indicate ± SD. B, Flow cytometry analysis indicating that the expression levels of GHR are comparable in controls and patients. C, Control BCLs were pretreated with medium alone (●) or with the neutralizing mAb 284 (□) at the concentration of 5 μg/ml for 3 h, and then cultured for 4 days in the presence of GH at the concentration of 200 ng/ml. As isootype-matched IgG1 control Ab, anti-CD3-Lex 3 was used. Cultures were processed as previously described. D, Control BCLs were pretreated for 1 h with medium alone or with wortmannin at the concentration of 100 nM, and then stimulated with 50, 100, 200, or 400 ng/ml GH, as indicated. As a positive control, fibroblasts were cultured in the presence of EGF. E, γ-chain colocalizes with GHR. Normal BCL cells were double labeled with anti-γc (left) and anti-GHR (center) Abs. Confocal microscopic analysis indicates a plasma membrane localization for both molecules. The yellow color in the merge (shown on the right) indicates areas of colocalization of the two proteins.

Pattern of protein tyrosine phosphorylation induced through GHR engagement in patients and controls cells

We next investigated the overall signal transduction properties of patients and control BCLs following GHR ligation by analyzing the number and the timing of the proteins phosphorylated on tyrosine residues. Fig. 2 illustrates a representative immunoblot with anti-phosphotyrosine Abs of whole cell lysates from BCLs of patients and controls BCLs following stimulation with GH for 5, 15, or 20 min. In contrast to what was observed in control cells, in patients, GH stimulation failed to induce phosphorylation of
FUNCTIONAL INTERACTION BETWEEN γc AND GHR

FIGURE 2. Pattern of protein tyrosine phosphorylation induced through GHR engagement. BCLs from X-SCID patients and healthy subjects were starved of serum for 8-12 h and then stimulated with GHR (500 ng/ml) at 37°C for the indicated time. Stimulation was stopped with cold PBS and BCLs were resuspended in lysis buffer. After SDS-PAGE and Western blot, membranes were incubated with anti-phosphotyrosine Abs.

FIGURE 4. Phosphorylation events induced through GHR stimulation BCLs from X-SCID patients and healthy subjects, starved of serum for 8-12 h, were stimulated for the indicated time with rGH at the concentration of 500 ng/ml. After SDS-PAGE and Western blot, membranes were incubated with (A) anti-pJAK2 or anti-JAK2, (B) anti-pSTAT1 or anti-STAT1, (C) anti-pERK or anti-ERK2, (D) anti-pSTAT3 or anti-STAT3.

FIGURE 3. STAT5 phosphorylation induced through GHR stimulation. rGH stimulation failed to induce STAT5 tyrosine phosphorylation in γc-negative BCLs. BCLs from X-SCID patients and healthy subjects were starved of serum for 8-12 h and then stimulated with GHR (500 ng/ml) at 37°C for the indicated time. After SDS-PAGE and Western blot, membranes were incubated with anti-pSTAT5, anti-STAT5b, or anti-STAT5a Abs.

FIGURE 5. STAT5b subcellular localization. Control cells of X-SCID patients and healthy subjects were cultured in the absence or presence of 500 ng/ml rGH for 30 min at 37°C. Unstimulated or stimulated cells were analyzed by confocal microscopy for STAT5b (green) distribution in the cell, focusing particularly on whether this protein was present in the nucleus.
FIGURE 6. Nuclear fraction of the overall STAT5b amount and of the phosphorylated form of STAT5 in resting or rGH-stimulated BCLs. Patient and control BCLs were stimulated with rGH (500 ng/ml) or medium alone at 37°C for the indicated time. Stimulation was stopped with cold PBS and nuclei were isolated as described in Materials and Methods. After SDS-PAGE of nuclear and cytoplasmic extracts and Western blots, membranes were incubated with anti-STAT5b or anti-pSTAT5 Ab.

GH-induced signaling and STAT5b nuclear translocation in X-SCID EBV cells transduced with the WT γc gene

We next evaluated whether reconstitution of X-SCID cells with WT γc led to a functional recovery. As shown in Fig. 7A, pGCR2γc cells expressed γc at a normal extent. These cells proliferated in a comparable fashion to control cells following GH stimulation (Fig. 7B). Moreover, in WB experiments using an anti-phospho-STAT5 Ab, a phosphorylation of the molecule was observed in pGCR2γc cells (Fig. 7C). Finally, in reconstituted cells, GH stimulation induced a normal nuclear translocation of STAT5b, as shown in Fig. 7D.

Discussion

In the present study, we examined a potential role of the γc chain in GH signaling using BCLs from healthy control subjects and γc-negative X-SCID patients. At a functional level, GH enhanced proliferation of control BCLs in a dose-dependent fashion. By contrast, the functional response to GH of the BCLs of γc-negative patients was severely impaired despite a comparable cellular expression of GH receptors.

The overall signal transduction properties of GHR in X-SCID patients and control BCLs following GH stimulation was also examined by analyzing the pattern of protein tyrosine phosphorylation. In contrast to what was observed in control BCLs, in patients, GH stimulation failed to induce phosphorylation of proteins of 90 kDa identified as belonging to the STAT molecules family, involved in the signal transduction through GHR. In particular, after GH stimulation, no phosphorylation of STAT5 protein was observed in the cell lines of γc-negative patients in contrast to the control cells, in which a prompt activation of STAT5 occurred. Of note, reconstitution of X-SCID cells with the WT γc gene corrected the functional and biochemical abnormalities resulting in an appropriate nuclear translocation of STAT5. These findings strongly support an essential role of γc in GH signaling.

STAT5-dependent pathways are generally believed to be used in cellular events such as cell proliferation, differentiation, and apoptosis (22, 23), even though the overall role of the STAT molecules in GHR signal transduction has not been fully elucidated. At least three different STAT family members (STAT1, STAT3, and STAT5) are activated following GHR perturbation (24–29), even though STAT5 seems to play a prominent role in receptor signaling. Rodent models of STAT5 knockout (30) and the recent identification of a patient with a homozygous nonsense mutation of the **STAT5b** gene indicate that STAT5b is essential for a normal postnatal linear growth (31). Furthermore, the patient with STAT5b mutation also had clinical features of immune deficiency such as chronic diarrhea and severe infections, including interstitial pneumonia. Immunologic studies showed hypergammaglobulinemia and markedly decreased IL-2 receptor-chain expression in response to IL-2 stimulation, suggestive of a T cell activation defect. Thus, a few features are similar to γc-negative X-SCID patients.

FIGURE 7. GH signaling in patient BCLs reconstituted with WT γc (pGCR2γc cells). A, Membrane expression of γc in patient or pGCR2γc cells by flow cytometry. B, Proliferative response in control, patient, or reconstituted BCLs. Cells were cultured in the presence of various concentrations of GH for 4 days and pulsed with [3H]thymidine as previously described. Results are expressed as increase of cpm from the background. Vertical bars indicate 1 SD. C, STAT5 phosphorylation induced through GHR stimulation for the indicated time in pGCR2γc cells. Membranes were incubated, as indicated, with anti-pSTAT5, anti-STAT5, or anti-STAT5 Abs. D, STAT5b subcellular localization through confocal microscopy analysis in control or pGCR2γc cells unstimulated or stimulated with 500 ng/ml rGH for 30 min at 37°C.
FIGURE 6. Nuclear factor of the overall STAT5b amount and of the phosphorylated form of STAT5 in resting or rGH-stimulated BCLs. Patient and control BCLs were stimulated with rGH (500 ng/ml) or medium alone at 37°C for the indicated time. Stimulation was stopped with cold FBS and nuclei were isolated as described in Materials and Methods. After SDS-PAGE of nuclear and cytoplasmic extracts and Western blot, membranes were incubated with anti-STAT5b or anti-pSTAT5 Abs.

GH-induced signaling and STAT5b nuclear translocation in X-SCID EBV cells transduced with the WT γc gene

We next evaluated whether reconstitution of X-SCID cells with WT γc led to a functional recovery. As shown in Fig. 7A, pGC2Rγc cells expressed γc at a normal extent. These cells proliferated in a compatible fashion to control cells following GH stimulation (Fig. 7B). Moreover, in WB experiments using an anti-phospho-STAT5 Ab, a phosphorylation of the molecule was observed in pGC2Rγc cells (Fig. 7C). Finally, in reconstituted cells, GH stimulation induced a normal nuclear translocation of STAT5b, as shown in Fig. 7D.

Discussion

In the present study, we examined a potential role of the γc chain in GHR signaling using BCLs from healthy control subjects and γc-negative X-SCID patients. At a functional level, GH enhanced proliferation of control BCLs in a dose-dependent fashion. By contrast, the functional response to GH of the BCLs of γc-negative patients was severely impaired despite a comparable cellular expression of GHR molecules.

The overall signal transduction properties of GHR in X-SCID patients and control BCLs following GH stimulation was also examined by analyzing the pattern of protein tyrosine phosphorylation. In contrast to what was observed in control BCLs, in patients, GH stimulation failed to induce phosphorylation of proteins of 90 kDa identified as belonging to the STAT molecules family, involved in the signal transduction through GHR. In particular, after GH stimulation no phosphorylation of STAT5 protein was observed in the cell lines of γc-negative patients in contrast to the control cells, in which a prompt activation of STAT5 occurred. Of note, reconstitution of X-SCID cells with the WT γc gene corrected the functional and biochemical abnormalities resulting in an appropriate nuclear translocation of STAT5. These findings strongly support an essential role of γc in GHR signaling.

STAT-dependent pathways are generally believed to be used in cellular events such as cell proliferation, differentiation, and apoptosis (22, 23), even though the overall role of the STAT molecules in GHR signal transduction has not been fully elucidated. At least three different STAT family members (STAT1, STAT3, and STAT5) are activated following GHR perturbation (24–29), even though STAT5 seems to play a prominent role in receptor signaling. Rodent models of STAT knockouts (30) and the recent identification of a patient with a homozygous missense mutation of the STAT5b gene indicate that STAT5b is essential for a normal postnatal linear growth (31). Furthermore, the patient with STAT5b mutation also had clinical features of immune deficiency such as chronic diarrhea and severe infections, including interstitial pneumopathy. Immunologic studies showed hypergammaglobulinemia and markedly decreased IL-2Rα-chain expression in response to IL-2 stimulation, suggestive of a T cell activation defect. Thus, a few features are similar to γc-negative X-SCID patients.
Although the activation of JAKs and STATs represents a prominent biochemical event during GH-dependent proliferation of lymphoid cell lines (32), other signaling pathways also contribute to a full GHR response. GH has been shown to activate the PI3K-protein kinase B signaling (33). MAPKs, and ERKs 1 and 2 (34–36). In both STAT5 knockout mice and in the patient with STAT5 mutation, these pathways are fully functional. In keeping with this observation, also in our experimental model, no alteration was observed in ERK 1 and 2 expression and phosphorylation events involving JAK2, ERKs, STAT1 and 3 molecules that occur following GHR triggering. Moreover, in this study, the involvement of PI3K in GH-induced proliferation of BCLs was ruled out because the kinase inhibitor wortmannin was ineffective in blocking the proliferative response. Similarly, IGF-I expression has been reported to be dependent on STAT5 b, but not on the PI3K pathway (37). Taken together, these observations imply that GHR, as well as other receptors, is able to integrate different pathways which are individually differentially regulated. In support of this, it has been recently shown that GHR signaling and the subsequent IGF-I transcription regulation are under different regulatory control in hepatocytes, fibroblasts, and myoblasts (38). This could be due to the presence of different functional forms of a single receptor existent in non-proliferating. A cell type- or controlled STAT activation has been reported (39–41). STAT5 is not activated following GH stimulation in human fibrosarcoma cells even though MAPKs may provide these cells express the STAT5 protein (41), thus implying that a selectivity in the involvement of specific STAT subset seems to be a general feature of GHR signal transduction. Overall, activation of STAT5b is considered a prominent event in GHR signaling and is crucial for the regulation of transcription of GH-responsive genes, including the gene encoding for IGF-I. This process relies on an appropriate phosphorylation and nuclear translocation of the molecule (7, 42). Recently, it has been proposed that STAT5b tyrosine phosphorylation and nuclear translocation are two events that are regulated sequentially (21). In particular, Giro-Michl et al. (43) demonstrated in the hybrid receptor γc/ GM-CSFβR that the γc/JAK3 complex controls the nuclear localization of pSTAT5 rather than STAT5 phosphorylation itself. Hence, to address the issue of defining the functional implication of γc mutation on STAT5b activation, in our study, the subcellular localization of STAT5b was investigated by analyzing cytosolic-induced translocation of STAT5b from the cytoplasm to the nucleus with confocal microscopy. Statistically, JAK3 induced nuclear translocation of STAT5b in the control cells, whereas no efficient nuclear translocation occurred in γc-negative cells. Furthermore, immunohistochemistry of nuclear and cytoplasmic extracts showed in control cells a rapid increase of the nuclear fraction of the STAT5 molecule after GH stimulation, which paralleled the nuclear phosphorylation, differently from what was observed in patient cells. Moreover, through confocal microscopy studies, we demonstrated that GHR and γc colocalize, as expected in that both molecules are type 1 hematopoietic receptors. A physical interaction may be hypothesized as well, even though conclusive data are still lacking. Our data suggest that the γc chain is a required signaling component of the GHR complex in B cell lines. In particular, in this cell line, it is selectively required for STAT5 phosphorylation and nuclear translocation, and not for the activation of other molecules as ERKs.

Our study demonstrates the existence of a previously unappreciated relationship between individually well-studied elements, such as GHR and γc, and signaling pathways. Cross-talk between receptor signaling systems is now emerging as an important and exciting area of signaling research. Whether the participation of γc to the GHR confers some additional properties to the receptor in hematopoietic cell differentiation and functioning remains to be elucidated. Of note, in CD34+ progenitors, γc participates in hematopoietic cell differentiation by interacting with GM-CSF/βR. This interaction does not occur in normal NK cells or nonhematopoetic cells (43). Hence, the complexity of receptor signaling relies not only on the possibility that individual receptors interact one with each other, but also on a differential array of distinct subunits that may represent a hallmark of that specific cell type.

Our current study also explains what we have previously reported on an atypical X-SCID phenotype and severe short stature associated with GH hyporesponsiveness and abnormal GHR-induced protein tyrosine phosphorylation (14), and indicates that growth failure in X-SCID is directly related to the genetic alteration.

Acknowledgment
We thank Emmanuel Monopoli for technical assistance.

Disclosures
The authors have no financial conflict of interest.

References

References

4. Klausener RD., Samelson LE. T cell antigen receptor activation pathways: the tyrosine kinase connection. *Cell.* 64, 875-8

and Stat5b proteins have essential and nonessential, or redundant, roles in cytokine responses. *Cell* 93, 841-850

2.5 Brain Migration Disorder and Immune System

Neuronal migration disorders may cause mental retardation and epilepsy. Actually, several brain migration disorders are known and the lissencephaly is one of these. Classic lissencephaly (type I) is a brain malformation caused by abnormal neuronal migration at 9 to 13 weeks' gestation, resulting in a spectrum of agyria, mixed agyria/pachygyria, and pachygyria. It is characterized by an abnormally thick and poorly organized cortex with 4 primitive layers, diffuse neuronal heterotopia, enlarged and dysmorphic ventricles, and often hypoplasia of the corpus callosum (MIM 607432). The genetic basis of agyria-pachygyria-band spectrum is beginning to be elucidated and mutation in the lissencephaly gene (LIS1) or doublecortin gene (DCX also Known as XLIS) have been reported (Pilz DT et al 1998).

Nevertheless, the pathogenetic mechanism underlain these disorders still remains to be thoroughly defined.

In the immune system T-cell activation is a complex biochemical process that involves many signaling molecules, such as tyrosine kinases and phosphatases, which in turn active other proteins through phosphorylation/dephosphorylation events (Perlmutter RM 1993). Predominant T-cell immunodeficiencies encompass a wide number of distinct entities whose pathogenetic mechanism are coming to be extensively defined (Arnaiz-Villena A et al 1992; Stiehm ER 1993). However, the mechanism of most functional T-cell activation deficiencies still remains to be elucidated.
The nervous and immune systems share several molecules that are not tissue-specific, therefore, their alteration should result in a multisystem disorder.

Even though recurrent infections in children with brain migration disorders are frequent, no extensive examination of the immune system has been performed in these patients (Dobyns WB, 1987).
2.5.1 Combined defect of neuronal migration and hyperactivity of Fyn Tyrosine Kinase

In this research, for the first time, we study the function of T-cells immune system in a patient affected by a brain migration disorder and recurrent infections.

The preliminary genetic analysis was performed and no genetic cause for the neuronal migration disorder was found.

The immunological evaluated revealed that the proliferative response to the common mitogenic stimulation was lower than that observed in age-matched controls. The PHA stimulation failed to induce a proper up-regulation of membrane expression of T-cell activation markers. Moreover this patient failed to produce specific antibodies. We also documented in lymphocytes abnormalities in the signal transduction process that follows triggering of the T-cell receptor/CD3 complex. The stimulation of the complex failed to induce protein tyrosine phosphorylation (Fig. 2a). A high constitutive autophosphorylation activity of the 59kDa Fyn tyrosine kinase was also found (Fig. 2b). This kinase participates in the T-cell activation process. In particular, it has been documented that in experimental anergy TCR stimulation leads to the activation of Fyn, differing from the productive immune response which requires the recruitment to the receptor of the different array of molecules, but no Fyn (Byrd SE et al 1989). In a similar way, the mechanism of the T-cell defect in our patient seems to involve this kinase.
This work would suggest that abnormalities in Fyn signaling may be an underlying mechanism for a combined defect of neuronal migration in agyria-pachygyria band spectrum and of T-cell functionality. These results have been published in Neuropediatrics; see below for the manuscript.
Short Communication

Brain Migration Disorder and T-Cell Activation Deficiency Associated with Abnormal Signaling through TCR/CD3 Complex and Hyperactivity of Fyn Tyrosine Kinase

E. Del Giudice¹, L. Gaetaniello¹, E. Matreccano¹, E. Cosentini², M.V. Ursini³, L. Racoppi³, G. Arigo³, C. Pignata¹

¹Department of Pediatrics, “Federico II” University, Naples, Italy
²Department of Immunohematology, “Federico II” University, Naples, Italy
³Department of Molecular and Cellular Biology and Pathology, “Federico II” University, Naples, Italy

In this study we report on a patient affected by a brain migration disorder and a T-cell activation deficiency presumably inherited as an autosomal recessive trait. The immunological evaluation revealed that the nitogen stimulation failed to induce a proper up-regulation of membrane expression of T-cell activation markers, and cell proliferation. This functional impairment was associated with abnormalities of the signal transduction process that follows T-cell receptor stimulation. A constitutive hyperphosphorylation of the Fyn tyrosine kinase was documented. This is the first report on a T-cell signaling abnormality associated with a developmental brain disorder. Whether the alteration of Fyn, which plays a role in both neurological and immunological systems, is responsible for either disorder remains to be elucidated.

Key words: Brain migration disorder - T-cell immunodeficiency - Signal transduction - Fyn tyrosine kinase

Abbreviations

ITAM: immunoreceptor tyrosine activation motif
ZAP: zeta-associated protein
TCR: T-cell receptor
PBMC: peripheral blood mononuclear cells
PHA: phytohemagglutinin
ConA: concanavalin A
PMA: phorbol myristate acetate
IONO: ionomycin
CD3X-L: CD3 cross-linking P-tyr: phosphotyrosine

Introduction

Neuronal migration disorders may cause mental retardation and epilepsy. Even though the pathogenetic mechanism still remains to be thoroughly defined, the genetic basis of agyria-pachygyria-band spectrum is beginning to be elucidated. Mutations in the LIS1 (TBC1D1) or doublecortin gene (DCX, also known as XLIS) have been reported [12].

Recurrent infections in children with brain migration disorders are frequent, but no extensive examination of the immune system has been performed in these patients [6]. In one case, a T-cell immune defect has been documented [7]. Predominant T-cell immunodeficiencies encompass a wide number of distinct entities whose pathogenetic mechanisms are coming to be extensively defined [1,15]. However, the mechanism of most functional T-cell activation deficiencies still remains to be elucidated. T-cell activation is a complex biochemical process that involves many signaling molecules, such as tyrosine kinases and phosphatases, which in turn activate other proteins through phosphorylation/dephosphorylation events [11]. A few of these molecules are not tissue-specific and, therefore, their alteration should result in a multisystem disorder.

We report on a patient with a brain migration disorder of the agyria-pachygyria-band spectrum and a functional T-lymphocyte activation defect associated with abnormal signal transduction through the TCR/CD3 complex, and constitutive activation of the 59 kDa Fyn tyrosine kinase.

Case Report

This 3-10/12-year-old boy had intractable seizures and a clinical history of recurrent infections involving the skin and the respiratory tract. Epilepsy was present in the family history. Since the 3rd day of life, he experienced daily polymorphic seizures, i.e. tonic, partial motor, myoclonic and infantile spasms, never completely controlled. Neurological evaluation revealed microcephaly, severe mental retardation, dystonic cerebral palsy and absence of visual pursuit. EEGs showed multifocal spikes and subcontinuous generalized spike-wave complexes both in the awake and sleep state. Congenital infections, and neurometabolic disorders were ruled out. A high resolution karyotype and fluorescence in situ hybridization (FISH) for chromosome 17 revealed no abnormalities. As shown in Fig. 1, brain MRI showed a pachygyric appearance of the parieto-occipital regions.

Received: November 21, 1999 Accepted after Revision: June 30, 2000

Neuropediatrics 2000; 31: 265 - 268
© Georg Thieme Verlag Stuttgart · New York
ISSN 0174-304K

Financial support: This work was supported by “Progetto MURST-PRIN” (Research Program of National Relevance) 1995, and by Biomed 2 # CT98-3007.

136
Due to the high number and severity of infections, the patient underwent a thorough immunological investigation, which led to a diagnosis of T-cell activation deficiency. The proliferative response, evaluated by the [3H]-thymidine (Amersham International, Buckinghamshire, England) incorporation, was lower than that observed in age-matched controls. Mean proliferation to phytohemagglutinin (PHA; 8 µg/ml), concanavalin A (ConA; 8 µg/ml), expressed as counts per minute (cpm), was 11,153 versus 93,000 ± 24,400, and 20,248 versus 71,300 ± 19,850 in controls, respectively. The proliferation to CD3 cross-linking was 558 in the patient versus 33,660 ± 9722 in controls. Phorbol-myristate acetate (PMA; 20 ng/ml) and ionomycin (IONO; 0.5 mM) stimulation induced a higher, but still abnormal, proliferation. The activation deficiency was also confirmed by the analysis of activation markers HLA-DR, CD25, and CD71 on peripheral-blood mononuclear cells (PBMC) by flow cytometry (Becton Dickinson, San Jose, CA). An increased percentage of unstimulated cells constitutively expressed HLA class II and CD25 molecules, values being 10 and 11%, respectively. However, PHA stimulation for 48 or 72 hrs failed to induce up-regulation of these markers. The number of mature CD3+CD4+, and CD3+CD8+ cells was normal, confirming a
functional defect. Moreover, the patient failed to produce specific antibodies.

Since the T-cell defect was functional in nature, signal transduction properties of the TCR/CD3 complex were investigated by analysing the number and timing of protein tyrosine phosphorylation (P-tyr) events occurring after receptor stimulation. Whole-cell lysates were obtained from 3 x 10^6 cells after appropriate stimuli and NP-40 lysis, as above described [13]. Western blots were performed using anti-P-tyr mAb, horse radish peroxidase secondary Ab and enhanced chemiluminescence (Amersham). A representative experiment is shown in Fig. 2a, which indicates that the pattern of P-tyr proteins in the patient’s PBMC was aberrant, and characterized by the failure to induce a proper increase in protein phosphorylation. On the contrary, a 30–32 kDa protein was constitutively hyperphosphorylated on tyrosine. PMA stimulation slightly increased phosphorylation, but to a lower extent than in controls. In Fyn autophosphorylation kinase assays, immunoprecipitates were obtained, using protein-A Sepharose precoated anti-Fyn rabbit serum (kindly provided by Dr. C. Rudd, Dana Farber Cancer Institute, Boston, MA). Kinase buffer contained 25 mM HEPES, 10 mM MnCl_2, 5 mM MgCl_2 and 20 mM [γ-32 P]ATP. Proteins were resolved by 10% SDS-polyacrylamide gel electrophoresis (SDS-PAGE). This assay revealed an intense constitutive autophosphorylation activity of Fyn. Fig. 2b illustrates a representative experiment out of the 3 performed. In one of these experiments, a phosphorylated 30–32 kDa protein was co-precipitated with Fyn. Like other kinases of the src family, Fyn contains a tyrosine in the position 531 whose phosphorylation exercises an inhibitory effect on kinase activation. Therefore, the coding region flanking the Tyr-531 of the molecule was PCR amplified from genomic DNA and sequenced directly (ABI 377 Automated DNA Sequencer). Sequence analysis of the 297 bp fragment obtained failed to reveal any molecular alteration.

Discussion

Clinical and neuroradiological features in our patient were indicative of a brain migration disorder, according to established criteria for the agyria-pachygyria band spectrum [2]. Even though we cannot provide a formal demonstration of a genetic cause for the neuronal migration disorder in our patient, a few elements are in favor of this hypothesis. In particular, the normal pattern of myelination and the absence of porencephalies or other evidence of destructive lesions support the assumption that the arrest of neuronal migration is related to a developmental anomaly.

Our patient also had a T-cell activation defect. It is worth noting that all the molecular alterations causing a combined immunodeficiency phenotype thus far described involve genes encoding for molecules that participate in the signal transduction process, such as ZAP-70, the γ chain of several receptors and the JAK 3 kinase [10–8]. However, none of the clinical and immunological phenotypes associated with alterations of these molecules is similar to the overall features of the patient described here.

Recent evidence indicates that also in the case of brain migration disorders molecular alterations thus far described involve genes, such as LIS1 and XLIS, which play a role in cell signaling [12]. However, these genes are predominantly expressed in the human brain and not in hematopoietic cells [9]. Moreover, the region containing LIS1 gene was normal in this patient. As a matter of fact, a link between the failure of neurons to migrate and the failure of hematopoietic cells to undergo a full differentiation/activation process that leads to a mature lymph node architecture has already been hypothesized [7].

In this patient, we also documented in lymphocytes abnormalities in the signal transduction process that follows triggering of the T-cell receptor/CD3 complex. The stimulation of the complex failed to induce protein tyrosine phosphorylation. A high constitutive autophosphorylation activity of the 59 kDa Fyn tyrosine kinase was also documented. This kinase participates in the T-cell activation process [11]. In particular, it has
been documented that in experimental energy TCR stimulation leads to the activation of Fyn, differing from the productive immune response which requires the recruitment to the receptor of a different array of molecules, but not Fyn [3]. In a similar way, the mechanism of the T-cell defect in our patient seems to involve this kinase.

The nervous and the immune systems share several molecules that are not tissue-specific. Fyn biological functions are diverse and include along with the T-cell activation, regulation of brain function as well, and are in particular involved in adhesion-mediated signaling [5]. A different Fyn isoform, originated by a splicing mechanism, is expressed during early neurogenesis as documented in mouse embryos [5,16]. Interestingly, in a mouse model of acquired immune deficiency syndrome, disruption of Fyn kinase-mediated signaling was responsible for encephalopathic cognitive deficits [15]. Although this is only speculative, it is conceivable to hypothesize that post-transcriptional alterations of signaling molecules expressed in different tissues might lead to multisystemic disorders.

Our observation would suggest that abnormalities in Fyn signaling may be an underlying mechanism for a combined defect of neuronal migration in agyria-pachygyria band spectrum and of T-cell functionality.

Acknowledgment

The authors wish to acknowledge the assistance by, and the facilities of, the Sequencing Group, Area di Ricerca, CNR, Naples, Italy, STB.

References

Claudio Pignata, Ph. D.
Department of Paediatrics
Unit of Pediatric Immunology
"Federico II" University
via S. Pansini 5
80131 Naples
Italy
E-mail: pignata@unina.it
References

Chapter 3

Technologies

3.1 Evaluation of Fas-induced cell death

Fas-induced cell death was evaluated as previously reported on activated T-cell lines obtained by treating peripheral blood mononuclear cells (PBMC) with phytohemagglutinin (PHA) at days 0 (1 µg/mL) and 12 (0.1 µg/mL). Cells were then cultured in RPMI 1640 + 10% FCS + recombinant IL-2 (2 U/mL) (Biogen, Geneva, Switzerland). Fas function was assessed 6 days after the second stimulation (day-18 T cells), by incubating with control medium or 1 µg/mL anti-Fas mAb (CH11, IgM isotype, UBI, Lake Placid, NY) in the presence of 1 U/mL recombinant interleukin 2 (rIL-2) and 5% FCS to minimize spontaneous cell death. Cell survival was evaluated after 18 hours by counting alive cells in each well by the trypan blue exclusion test. Assays were performed in triplicate and analysed by a blind observer. Cells from 2 normal donors were included in each experiment as a positive control. Results were expressed as relative cell survival percentage, calculated as follows: (total live cell count in the assay wells/total live cell count in the untreated samples) x 100. Spontaneous cell loss in the control well was always less than 10% of the seeded cells and similar in cultures from the patients and normal donors. Cell death was evaluated both indirectly, by counting total surviving cells by the trypan blue exclusion test, or directly, by cytometric determination of the
proportion displaying DNA fragmentation after staining with propidium iodide or those stained by annexin to confirm Fas resistance. Fas function was defined defective when cell survival was higher than 78 %, which was the 95th percentile of the response displayed by normal controls.

3.2 Molecular analysis of the Fas and caspase-8 genes

Mutation analysis of the Fas (TNFRSF6) and caspase-8 genes were performed by DNA genomic sequencing. DNA was extracted from PBMC with standard methods. Eight fragments spanning the 5′UTR and the 9 exons of the Fas gene were amplified in 20 µl final volume containing 12 pmol of each primer, 50 ng of genomic DNA and 0,5 units of AmpliTaq (Applied Biosystems, Warrington, UK). PCR conditions for caspase-8 gene amplification were as follows: sixteen fragments spanning the 10 exons and intron-exon boundaries were amplified in 50 µl final volume containing 25 pmol of each primer, 100 ng of genomic DNA, 0.2 mM dNTPs and 1.25 units of AmpliTaq Gold (Applied Biosystems) in the buffer provided by the manufacturer. Amplification was performed in a Gene Amp PCR System 9700 (PE Applied Biosystems). The PCR products were sequenced using a Big Dye Terminator v1.1 Cycle Sequencing Kit (Applied Biosystems) and an ABI PRISM 3100 Genetic Analyzer (Applied Biosystems).
3.3 Cells and cell cultures

Mononuclear cells (PBMC) were obtained from patients and normal donors heparinized peripheral blood by Ficoll-Hypaque (Biochrom) density gradient centrifugation. Upon informed consent, lymphoblastoid cell lines (BCLs) were generated by Epstein-Barr virus immortalization of patients and controls PBMC using standard procedures. Cells were maintained in RPMI 1640 (Biochrom) supplemented with 10% fetal bovine serum (Gibco), 2 mmol/L L-glutamine (Gibco), and 50 µg/ml gentamycin (Gibco), and cultured at 37°C, 5% CO₂.

3.4 Proliferative assay

BCLs or PBMC (1 X 10⁵ cell/200 µl well) were cultured triplicate in 96-well U-bottomed microtiter plates (Falcon®, Becton Dickinson) with or without appropriate stimuli for 4 days. The proliferative response was evaluated by thymidine uptake from cultured cells pulsed with 0.5 µCi [³H]thymidine (Amersham International) 8 h before harvesting.

3.5 Flow cytometry

The expression of specific protein was detected using specific antibodies (Santa Cruz) by indirect immunofluorescence using a second-step incubation with a FITC-conjugated secondary antibodies (Pierce). After washing in PBS, cells were incubated for 20 min with the specific antibodies and 30 min with
secondary antibodies. After staining, all samples were washed in PBS and acquired on the FACScan flow cytometer (Becton-Dickinson) using Lysis I software.

3.6 Natural Killer function

Infected target cells (K562) were pulsed for 1 h at 37 °C with Cr51 (Amersham Pharmacia, Buckinghamshire, England) (30 µCi/106 cells) and washed three times with culture medium before the addition of effector cells. Specific lysis was measured in a triplicate assay performed with 5x103 target cells mixed with different ratios of effector cells (E:T= 25:1 to 3.125:1) in a total volume of 200 µl. After a 5 h incubation at 37 °C, 100 µl culture supernatant were collected and the amount of Cr51 release was counted. The percentage of specific lysis was calculated as follows: 100 x (specific release-spontaneous release)/(total release-spontaneous release).

3.7 Cell stimulation and protein extraction

Prior to appropriate stimuli treatment, the cells were made quiescent through incubation in RPMI 1640 minus serum for 8-12 h. The stimuli was used at 37°C at the reported concentration in RPMI 1640 for the reported time. Incubations were terminated by washing cells with ice cold phosphate-buffer saline (PBS; BioWhittaker) followed by solubilization in 100 µl of lysis solution containing 20 mM Tris (pH 8), 137 mM NaCl, 1% Nonidet P-40, 10 mmol
EDTA, 1 mM phenylmethylsulfonylfluoride, 1 mM sodium orthovanadatum (Na$_3$VO$_4$), 5 µg/ml leupeptin and 5 µg/ml aprotinin. The cell lysates were stored at -80°C for Western blot analysis. Nuclear extracts were prepared by the standard method and were subsequently mixed with sample buffer.

3.8 Western blot

Immunoblotting using phosphotyrosine monoclonal antibody was performed as previously reported. Immunoblotting using specific antibody was performed according to the vendors protocols. In brief, protein samples separated by SDS-PAGE were transferred onto Mixed Cellulose Esters membranes (Immobilon-NC Mixed Cellulose Esters 0.45µm; Millipore). The membrane was incubated at room temperature for 1 h in blocking buffer consisting of 10% Bovin Serum Albumin (BSA) in wash buffer (10 mM Tris, pH 7.5, 100 mM NaCl, 0.1% Tween 20). The membrane was then washed three times in wash buffer and incubated 1 h at room temperature or overnight at 4°C with the specific antibody. The membrane was then washed three times and an appropriate IgG horseradish peroxidase-coniugated secondary antibody was used for the second incubation. After further washings, the membrane was developed with ECL developing reagents, and exposed to X-ray films according to the manufacturer’s instructions (Amersham Biosciences).

3.9 Confocal microscopy

After appropriate stimulation, quiescent cells were rinsed in ice-cold PBS
and fixed in 4% paraformaldehyde in 0.1 M phosphate buffer (pH 7.0) for 30 min at room temperature. After four rinses of 5 min in PBS, the cells were centrifuged in a Shandon Cytospin III (Histotronix) onto a glass slide and permeabilized by incubation in a 0.2% Triton X-100 solution for 20 min. The cells were then incubated for 1 h at room temperature with specific antibody diluted in PBS containing 1% BSA. After four washings for 5 min in PBS, the cells were incubated for 1 h at room temperature with FITC-conjugated secondary antibody. After washing in PBS, the glass slides were mounted under a coverslip in a 50% glycerol/50% PBS solution. The slides were analyzed by laser scanning confocal microscopy, using a Zeiss LSM 510 version 2.8 SP1 Confocal System.
Chapter 4

4.1 Summary

Primary immunodeficiency diseases (PIDs) represent a group of most heterogeneous syndromes characterized by development or functional defect of the Immune System. Thus far, more than 200 distinct well-defined genetic forms have been recognized. Clinical presentation is highly variable, ranging from various patterns of microbial susceptibility to allergy, lymphoproliferation or autoimmune manifestation the most of these syndromes are monogenic and lead to defects in any aspect of the immune response. Along with typical form of these syndromes there are several disease in which the clinical signs are less suggestive of immunodeficiency. In these form it is very difficult make the diagnosis. In the course of this PhD program we try to better clarify for some of these complex phenotypes the correlation between genotype and phenotype, identify the biochemical biomarkers that make possible the diagnosis and eventually clarify the pathogenesis mechanism of these syndromes.
4.2 Acknowledgement

I would like to thank all the people who helped and supported me during my studies, leading to the realization of this work. In particular, I would like to thank my supervisor Prof. Claudio Pignata, whom I hold in high esteem and affection, for the opportunity he gave me to be part of his team. He has been of great support because he has encouraged me during all these years. Moreover, he followed me in the PhD program and in my research, supporting my decisions and influencing my work with stimulating advices.

I would like to thank my husband, the father of my two children, because with love and patient, he has encouraged me during these years.
4.3 Curriculum vitae

Eliana Matrecano was born on January 27, 1972 in Naples, Italy. Her education and professional position are listed below.

Education

- 1990 High School degree
- 1990-1992 School of Laboratory Technician degree
- 2003 “Federico II” University of Naples Degree in Biology
- 2003 at present Ph.D. student in “Sviluppo, Accrescimento e Riproduzione dell’uomo” at the “Federico II” University of Naples

Employment and Experience

- 1996-2002 Technician at the Dept of Pediatrics under Prof. C. Pignata, “Federico II” University of Naples
 - during this period, I have also collaborated for the writing and to performig of the experimental protocol teraphy: “Allogenic transplantation of the thymic tissue in patients with Di Gorge syndrome and thymic aplasia”. This protocol was valuated and approved to Ethic Committee of the “Federico II” University.
• **2004-2006** Integrative teaching activity, Faculty of Biotechnology, “Federico II” University of Naples

Information Technology Skills

• Computer literate, knowledge of MS Windows, MacOS systems

• Good knowledge of scientific softwares as: Oligo 4, Gencokit, Blast, DNA Strider 1.2, Cyrillic 3, Edit View1, Factura 2.0.1, Inherit Autoassembler 1.4.0,

• NIH image (Mac and PC version), Lysis 2.

• Expertise in utilizing common online databases of proteins (Swissprot/TrEMBL, PIR, UniProt, Prosite, etc), nucleotide sequences (GeneBank.EMBL, DDBJ), mouse models (MGI, MPD, GXD, etc)

• Knowledge of written and spoken English

Technical Skills

Direct experience in the following fields:

- Cells culture
- Tissue culture
- Proliferation assay
- Cell death assay
- DNA and RNA extractions
- PCR
- Sequencing analysis
- Western Blotting
- Immunoprecipitation
- In vitro kinase assay
- Flow cytometer analysis
- Immunohistochemistry
List of Papers

