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N = 5, α = 100meV Å, U = 13meV and ωd = 5meV . . . . 26

1.16 N=3 particles dot: FES spin density (arb.units) for a) α =
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stupida forma di rigidità mi spinse ad evitare ringraziamenti e dediche. Alla
fine del mio triennio di dottorato, ammetto di essermi ricreduto. La mia tesi
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Introduction

According to an empirical law introduced by Gordon Moore [1] in 1965 the
miniaturization of semiconducting electronic devices allows to double the
number of transistors in a chip, and so its computational power, approxi-
mately every two years. This law was very well verified until 1980. Since
that date, the processors power begun to double even faster: roughly ev-
ery 18 months. If one, without paying too much attention to the physical
limitations of the miniaturization, tries to make predictions about what will
be the future of semiconducting chips by simply applying Moore’s law, he
should obtain the crazy result that in 2020, the continuation of geometrical
scaling would mean that there would be less than one electron available for
switching each transistor on microchips [2]. Obviously the physical limits
to miniaturization will be reached well before and, actually, a reasonable
prediction warns that the end of Moore’s law will be very close, within 10
years. Therefore, in recent years, the scientific community is devoting an
increasing interest in the direction of studying alternative devices. Richard
Feynman, first, pointed out the possibility to build computers at the atomic
scale, able to realize quantum operations [3]. Such devices have been called
quantum computers and their building blocks are the so called quantum bits.
This thesis is not devoted to qubits but discusses come topics strictly related
to them. A simple example of the extraordinary computational power of a
quantum computer is the very celebrated Shor algorithm. In 1994 Peter
Shor [4] discovered an algorithm based of quantum computers capable of
factorizing the RSA-129 code [5] (the cryptography code created in 1977 by
R. Rivest, A. Shamit and L. Adleman) in 8 seconds by using 2000 qubits
1. That performance appeared absolutely extraordinary compared with the
experimental result obtained in the same year by using 1600 net connected
computers working togheter for about 8 months.

This result gave a strong improvement in both the theoretical and exper-
imental research on quantum computers. Theoretical papers have been pro-
duced to evaluate the physical limits to computation [7] and to describe both
quantum algorithms and candidate devices for quantum computation [8].
Recently, many proposed quantum bits are solid state mesoscopic devices.
In particular some of them are based on superconducting materials (mainly
Nb) such as the charge qubit [9] or the flux qubits [10], some others are
based on semiconductors (mainly based on GaAs-AlGaAs ethetostructures)
double quantum dots [11] [12], and there are also many other proposals [13].

1Actually, in his original proposal Shore hypotized the use of 100000 quantum bits, the
reformulation of the problem in terms of 2000 qubits was due to Deutsch, Barenco and
Eckert [6] few months later
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The big common problem of all of these devices is the decoherence due to
their coupling with the environment and between themselves. In general, in
actual devices, the coherence time is, today, shorter then the time needed for
the computation, so basically at the moment this technology is not available.
Once the scientific community will be able to solve this problem, another
point will be addressed, which is the way in which these quantum systems
will have to be manipulated in a controlled fashion.

The topic of the manipulation of quantum states of the solid state co-
herent devices is the central goal of this thesis. We have studied different
manipulation techniques on different devices. From the theoretical point of
view, this has been very stimulating, giving me the opportunity to use dif-
ferent approaches ranging from non equilibrium Green’s function theories to
numerical physics, to path integrals and many others. The problems studied
concerns both the superconductors physics and the semiconductors physics.
They are reported in three chapters; each chapter has its own appendixes, a
bibliography, and a detailed discussion in the end, so that the reader could
read whatever chapter independently of the others. In what follows I briefly
summarize the topics developed in this work describing them as they appear
in the chapters.

In chapter one we deal with the physics of 2D quantum dots. We first
introduce the basics of quantum dots [14] showing some interesting results
obtained in the presence of a Rashba spin orbit coupling.

In the presence of a magnetic field orthogonal to the dot plane the dot
undergoes a sequence of transitions. When the magnetic field is weak the dot
is unpolarized, the spins of the electrons tend to form singlets thus minimiz-
ing the total spin and also the orbital angular momentum is minimum. By
increasing the magnetic field the dot reaches its Fully Spin Polarized(FSP)
state that is, both the orbital and the spin angular momentum is maximum.
By further increasing B the dot reconstructs and changes its shape as an
effect of the magnetic squeezing. We mainly focus on the FSP state of the
dot: in the case of a 2 electrons dot it corresponds to the very celebrated
singlet triplet crossing, observed experimentally in 1999 [15]. We have found
that, independently of the number of electrons in the dot, its ground state
and low lying excitations are similar to a Quantum Hall Ferromagnet (QHF)
close to filling 1 [16]. In fact when the dot is FSP the ground state is fer-
romagnetic like and the first excited state is a spin wave excitation very
similar to the skyrmion excitation of the Quantum Hall disk. The shape
of this excitation can be squeezed and manipulated by tuning the electric
field orthogonal to the dot plane, that is by varying the Rashba spin orbit
coupling. The ground state and the first excited state look very appealing:
they are two well defined spin states with a tunable spin gap of the order
of microwaves between them. So, we have studied the possibility to induce
a transition between this two states by mean of a Far Infrared Radiation
(FIR). If possible, this could allow for a coherent manipulation of the spin
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state of a dot [17]. In fact, in this framework, the quantum manipulation
of the dot is intended as the flipping of the dot spin by mean of an external
FIR field.

Our numerical results show that such a spin manipulation is possible. So
the FIR can be useful for a coherent manipulation of the spin states of the
dot. Moreover, as explained in detail in chapter one, the FIR can also al-
low to monitor the crossover to the FSP state. This crossover, interestingly
enough, becomes sharper and sharper by increasing the number of particles
on the dot, which means that we are going in the direction of the thermo-
dynamic limit and of a phase transition, when icreasing the dot size toward
a quantum Hall disk.

In the second chapter we deal with the possibility of performing an adi-
abatic manipulation of the two electron dot close to the singlet triplet cross-
ing. This idea emerged in view of the fact that some quantum algorithms
assume that the system dynamically evolves through a sequence of unitary
transformations, or that a set ~λ of external control parameters of the Hamil-
tonian H smoothly changes in time [18]. In particular, if adiabatic evolution
is realized across a closed path γ in the parameter space, close enough to an
accidental level degeneracy, the nontrivial topology of the space makes the
state of the system to take a “geometrical” phase Γ, referred to as “Berry
Phase” [19]. The value of Γ may be controlled by properly choosing γ. Fol-
lowing this idea, geometric adiabatic evolution has recently been proposed
as a way to operate with superconducting devices without destroying phase
coherence [20, 21].

In the two electron quantum dot the single triplet crossing becomes an
anti crossing in the presence of a Rashba coupling. In other words by cycli-
cally modulating in time an electric field orthogonal to the dot plane, and
as a consequence the Rashba coupling, we can tune the dot close enough to
the level degeneracy point. The nontrivial topology of the space allows the
many body wavefunction to acquire a “geometrical” phase Γ. This phase
is in general an Ahronov Anandan phase [22] and in the adiabatic limit a
“Berry Phase” [19]. In order to properly describe this situation we intro-
duce an effective low energy Hamiltonian by projecting the full Hamiltonian
onto the singlet and the triplet states involved in the anti-crossing. Such
a projection gives us a simple two level Hamiltonian that, in the adiabatic
limit recalls the very celebrated two level Berry Hamiltonian. Solving this
simple model we show that the many body wavefunction of the dot acquires
a geometrical phase [23].
Then we describe a possible transport experiment that should allow for read-
ing out such a geometrical phase. The device studied, in this case, is not a
quantum dot but a quantum ring. This choice allows us to simplify the calcu-
lations and gives us a very clear physical picture. Moreover such a structure
is capable of producing a geometrical phase without any time dependent pa-
rameter because, in this case, we can deal with the electrons semiclassically.
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The electrons themselves, by moving into the arms of the ring, experience
time dependent external fields varying according to semi-classical equations
of motions. Some evidences of geometric phases are described; interestingly
in the non adiabatic regime, that is when a strong spin orbit and a weak
magnetic fields are present, some spin flips effect have been observed. [24]

In the last chapter we study the ultrafast optical manipulation of a low
Tc Josephson junction. This is, once again, in the direction of producing
a manipulation of a quantum device without affecting its coherence. We
begun studying this problem in order to give a theoretical support to the
experimental groups involved in the Coherentia labs in Napoli [25, 26].

The idea of shading laser radiation onto Josephson junctions, is of thirty
years ago: the first experimental results [27] showed that a coupling between
optical radiation and superconductivity was possible but the coherence of
the superconductors were degradated because of the heating of the samples
due the radiation.

The bolometric regime, that is when the sample ’feels’ the radiation
basically by mean of heating effects, has been extensively studied in the
past [28].

Recent experimental techniques allow to release very low energy in short
time windows (few tenths of fs) so that the coupling can preserve coherence,
though in a non-equilibrium environment of carriers. The laser radiation
excites electronic modes very high in energy and superconductivity plays
no role in this: this very energetic electrons generate a cascade process
which gives rise to a massive pair breaking, depending on the energy the the
single photons. Wonderful theoretical papers have been published for the
case of high energy photons (X rays), mainly by Larkin, Ovchinnikov and
Kresin [29].

Some experiments have been performed with optical photons but at
present, to our knowledge, no microscopic theories have been developed
to describe them. In this experiental works some phenomenological theo-
ries [30–32] are usually invoked to describe the measurements.

We develop a microscopic theory, which shows that it is possible to stim-
ulate in the superconductor a non-equilibrium dynamics without destroying
the quantum coherence. This theory is based on non-equilibrium Keldysh
Green’s functions and allow for studying the response of the junction to such
an optical stimulation. Within our non-equilibrium formalism we study the
time evolution of the order parameter of the irradiated electrode and then
the response of the whole junction by numerically analyzing the modified
Josephson coupling. The order parameter can be manipulated in time in
controlled way by appropriately tuning the duration of the radiation and
the energy it releases [33].
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Science may set limits to knowledge, but should not set limits
to imagination.

Bertrand Russell (1872-1970)

1
Quantum dots with spin orbit

coupling

Abstract

We discuss the properties of two dimensional quantum dots with few interacting
electrons in the presence of a magnetic field and an electric field orthogonal
to the dot plane. The energy spectrum, the charge distribution and the spin
distribution of the dots are discussed in detail. The Coulomb interactions between
the electrons, with a large magnetic field B = B∗ applied in the z-direction
(orthogonal to the dot), produce a fully spin polarized (FSP) ground state. The
Rashba coupling can be tuned by using the electric field and induce the splitting
of the levels corresponding to the FSP multiplet of total spin S = N/2. We find
that the first excited state is a particular state which has a spin texture carrying
one extra unit of angular momentum. This is reminiscent of the Quantum Hall
Ferromagnet at filling one which has the skyrmion state as its first excited state.
The spin orbit coupling can squeeze the flipped spin density at the center of the
dot, can increase the gap in the spectrum and can tune the energy and the spin
density of the first excited state. Far infrared radiation absorption can induce
a transition from the ground state to the first excited state and monitor the
crossover to the FSP state.

1.1 Introduction

Quantum dots (QD’s) are semiconductor devices in which electrons are con-
fined to a small area within a two dimensional electron gas by properly
biasing voltage gates added to the structure [1, 2]. In an isolated quantum
dot (QD) the confining potential gives rise to quantized single particle energy
levels. However, electron-electron interaction determines the dot properties.
In dots having a diameter of ∼ 100nm, the level spacing and the Coulomb
energy are of the order of the meV and most charging properties can be
included within the Hartree-Fock (H-F) approximation, just like in atoms.
Correlation effects do not significantly alter the charging properties, but
may strongly influence the spin properties of the confined electrons. One

11
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striking evidence of this is the fact that Hund’s rule, which is typical of
atoms, is often satisfied in dots [3]. However, the reduction of the energy
scale by a factor of 10−3 with respect to atoms, enhances the sensitivity of
the electrons in the dot to an external magnetic field.
Quantum dots, have been proposed as devices for the future quantum elec-
tronics. One of the possibilities is to operate on the spin of the trapped
electrons as a qubit [4]. In a different proposal the QD controls the nuclear
spins embedded in the crystal matrix via hyperfine coupling [5]. In both
cases the polarization of the spins is expected to last long enough at low
temperatures, so that the quantum computation can be carried out. Con-
trolled spin transfer between electrons and nuclei has been demonstrated to
be possible in a spin polarized two-dimensional electron gas (2DEG) [6]. In
a 2DEG fully spin polarized quantum Hall states are used to manipulate the
orientation of nuclear spins. Low lying skyrmion states at filling close to one
are used to reset the nuclear spin system by inducing fast spin relaxation.
In the presence of a magnetic field B orthogonal to the dot, the relaxation
mechanism seems to be dominated by hyperfine interaction for B < 0.5T
and by spin-orbit (SO) coupling assisted by phonons for higher fields [7].
The inverse relaxation time 1/T1 has also been probed recently by transport
across a single QD [8]. In the cylindrical geometry, orbital effects are domi-
nant [9]. Indeed Zeeman spin splitting does not drive any spin polarization
in these systems and can be often ignored 1.

However correlations combine orbital and spin effects together and can
be probed by magnetoconductance measurements in a pillar configuration
[11, 12]. Spin properties are quite relevant to conductance, in view of the
possibility of spin blockade [13, 14], Kondo effect [15, 16], or Berry phase
induced tuning [17].

Quantum numbers labeling the dot energy levels are the number of elec-
trons N , the total orbital angular momentum along z, M , the total spin S
and the z−component of the spin Sz. By increasing the magnetic field B,
both M and S increase. Finally, at B = B∗, a fully spin polarized (FSP )
state is reached. The increasing of the total spin S was measured in a dot
with about 30 electrons, a striking evidence of e-e correlations [18]. While,
in the absence of interactions, the density of the FSP state becomes uni-
form over the dot area, which is contracted to a minimum, in the real case,
the e-e interaction tends to reduce the density at the center of the disk, by

1This is due to the fact that the Hamiltonian term coupling B⊥ to M is µ∗
BB⊥M where

µ∗
B = e~/2m∗c is the effective Bohr magneton (m∗ is the effective mass). On the other

hand the Zeeman spin splitting term is g∗µBB⊥Sz, where g∗ is the effective gyromagnetic
factor for electrons in this geometry (very low in many semiconductor heterostructures)
while µB is the Bohr magneton with the bare mass (spin is insensitive to band effects).
The situation is similar to what happens in the QHE where ωc includes the effective mass
and Landau level separation is increased by a factor of ∼ 20, while Zeeman spin splitting,
being reduced by a factor of 4, becomes negligible in comparison [10]
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compressing the electrons at the dot edge (see Fig.1.4 [middle panel]). By
further increasing B, the electron density reaches a maximum value. The
dot becomes a so called “Maximum Density Droplet” (MDD) [19]. For
larger B values, the FSP state is disrupted: the dot density reconstructs
i.e. an annular local maximum of the density is produced at the edge of the
dot [20] with breaking of azimuthal symmetry at the edge (de Chamon-Wen
phase [21]).

Various numerical calculations [22] have investigated these subsequent
electronic transformations which appear as crossing of levels with different
quantum numbers. H-F calculations are known to incorrectly favor spin-
polarized states [23]. Spin density functional calculations have been per-
formed for dots including a larger number of electrons [24]. The density
functional approach, with a good choice of the parameters of the potentials,
can reach a significative agreement with the experiments, but it may intro-
duce uncontrolled approximations. When the electron density is reduced, a
Wigner molecule can be formed. Recently, this broken symmetry state has
been studied in the absence of an external magnetic field, using Quantum
Monte Carlo simulations, with a multilevel blocking algorithm which is free
of the sign problem [25]. We use exact diagonalization for few electrons
with azimuthal symmetry [14, 26] to discuss the spectral properties of the
dot which is stabilized by the Coulomb interaction.

In what follows we discuss the spin properties of an isolated QD in
presence of a magnetic field B in the z−direction, orthogonal to the dot
disk (cylindrical symmetry is assumed). Electrons are confined to a two-
dimensional (2 − d) disk by a 2 − d parabolic potential and interact via the
full Coulomb repulsion whose strength is parametrized by U = e2/κl. Here
l is the magnetic length due to the parabolic confinement in the presence
of the magnetic field and κ is the static dielectric constant. The potential
confining the electrons in the x − y plane often is not symmetric for an
inversion w.r. to the growth direction z, this implies the presence of an
electric field in the z−direction which gives rise to the so called Spin Orbit
(SO) Rashba term [27]. It provides a coupling between the orbital motion
and the spin degree of freedom of the electrons and can be tuned, in a non-
linear conductance measurement, when an extra bias voltage Vsd is applied
to the contacts of a vertical structure. This possibility has been beautifully
shown in InGaAs−based 2DEG [28] and in a recent experiment on large
lateral QD, where the conductance has been tuned from the weak localiza-
tion limit, without SO coupling, to the anti-localization limit, with SO [29].
Recent technological improvements allow to realize nanostructured materi-
als in which the SO effects can be observed in transport measurement [30].
In the presence of SO, Jz = M + Sz becomes the good quantum number.
This modify the energy spectrum which is characterized by the presence of
marked anti-crossings between levels coupled by the SO Hamiltonian [31].

The FSP ground state (GS) has Jz = N(N−1)/2−S (e.g. Jz = 15/2 for
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N = 5), while the first excited state (denoted as DES state in the following)
has Jz = N(N − 1)/2 − S + 1 (e.g. Jz = 17/2 for N = 5). The charge
density is rather insensitive to the SO coupling, α. However, we show that
the SO interaction by coupling the spin polarization to the orbital motion
determines the spin properties of the GS and the first excited states in a
surprising way. Indeed, by increasing α, the expectation value of the spin
density of the GS, which was originally oriented in the z−direction, acquires
a component in the dot plane, because the minority spin density is increased
and pushed away from the center of the dot outward. Moreover the combined
effect of U and α deforms substantially the spin density of the FES. A sharp
minority spin polarization is present close to the dot center. The reversal
of the spin polarization at the origin in the FES state w.r. to the FSP GS
leads to an extra node in the spin density.

This situation is reminiscent of the case of the Quantum Hall Ferromag-
net (QHF ) [32] close to filling one. In that case, a true magnetic ordering
is achieved, which is characterized by full spin polarization in the GS and
by a topologically constrained first excited state, the Skyrmion (SK) state,
with reversal of the spin at the origin, first studied in the O(3) non lin-
ear σ model (NLσM) in 2 − d dimensions [33, 34]. There is evidence of
skyrmion excitations in GaAs 2− d electron gas systems close to filling one
by magnetoabsorption spectroscopy [35]. We elaborate on the analogies and
differences between the FSP dot and the QHF . In the QHF a topological
quantization of charge occurs. By contrast the FES state has no topological
features, because the geometrical compactification procedure cannot take
place. We refer to the FES state as a “spin exciton” because there is some
piling up of the charge at the center of the dot w.r.to the GS, together with
the reversal of the spin polarization there. This spin exciton FES is found
to be a universal property of the dot, that is independent of the number
of particles confined. Within our numerical diagonalization scheme we have
found this peculiar state for N = 2, 3, 4, 5.

We propose to probe this excited state using a Far Infrared Radiation
(FIR) pumping [31]. A sharp absorption line is expected be found in exciting
dots to the FES state, by transferral of energy and angular momentum with
circularly polarized light. This amounts to adding a spin exciton to the
dot. We find that the absorption intensity for circularly polarized FIR is
strongly enhanced when the crossover to the FSP state is completed (see
Fig.1.17). Moreover the spin density can be squeezed at the center of the
dot by increasing the SO coupling α (see Fig.1.16). Meanwhile the gap
between the GS and FES increases with α (as shown in Fig.1.8 for N=3).
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1.2 FSP state and dot reconstruction

We consider N (we discuss in the following the cases N = 2, 3, 4, 5) elec-
trons confined in two dimensions (spanned by the (ρ, ϕ) coordinates) by a
parabolic potential of characteristic frequency ωd. This is a model for an iso-
lated disk shaped QD. A magnetic field B orthogonal to the disk is measured
in units of ~ωc (meV ), where ωc is the cyclotron frequency. The single par-
ticle Hamiltonian, for the i−th electron, in the effective mass approximation
(m∗

e), in the absence of spin orbit coupling is:

H(i) =
1

2m∗
e

(

~pi +
e

c
~Ai

)2
+

1

2
m∗

eω
2
d~r

2
i , (1.1)

with ~Ai = B/2 (yi,−xi, 0), and e is minus the electron charge.

The single particle states φnm are the eigenfunctions of the 2−d harmonic

oscillator with frequency ωo =

√

ω2
d + ω2

c
4 . They are labeled by n,m (with

n ∈ (0, 1, 2, 3, ...) and m ∈ (−n,−n + 2, ..., n − 2, n)). m is the angular
momentum in the z direction:

φnm =
eimϕ

l
√
π
Rn|m|(t) =

Cnm
eimϕ

l
√
π
e−

ρ2

2l2

(ρ

l

)|m|
L
|m|
n−|m|

2

(

ρ2

l2

)

. (1.2)

Here Lα
n (t) (with t = ρ2/l2) is the generalized Laguerre polynomial with

n ≥ 0 [36], l =
√

~/m∗ωo is the characteristic length due to the the lateral
geometrical confinement in the dot inclusive of the B field effects and Cnm =
[

“

n−|m|
2

”

!
“

n+|m|
2

”

!

] 1
2

is a normalization factor.

The corresponding single particle energy levels are the so called Fock-
Darwin levels [37],

εn,m = (n+ 1)~ωo −
m

2
~ωc . (1.3)

plotted in Fig.1.1. When the magnetic field is close to zero the spectrum
reproduced the two dimensional harmonic oscillator spectrum with levels
equally spaced in energy. By increasing the magnetic field there is the for-
mation of the infinitely degenerate Landau bands which group levels having
the same orbital angular momentum.

In the absence of SO, the full Hamiltonian for the dot, inclusive of the
Coulomb interaction between the electrons (parametrized by U) is:

H =

N
∑

i=1

H(i) +

N
∑

i<j
i,j=1

U/|~ri − ~rj | . (1.4)
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The orbital angular momentum M =
∑N

i=1m(i), the total spin S and Sz

(the projection of the spin along ẑ) are good quantum numbers.

We have performed Lanczos exact diagonalization of this system includ-
ing Coulomb interaction between the electrons. The matrix elements of the
unscreened Coulomb interaction use the single particle basis set, up to 28
orbitals. They can be calculated analytically and are parametrized by the
strength of the interaction U. Our calculation is limited to very small parti-
cle numbers (N < 7), because the truncation of the Hilbert space influences
the results for larger N . However, our convergency checks show that the
numerical errors proliferate only at higher energies 2. In particular they
affect the reliability of the level spin degeneracy. In any case, numerical
errors are quite small if is N is less or equal to 6. In the presence of the
e − e interaction the Fock and Darwin spectrum is slightly deformed: in
fig 1.2 the energy spectrum of a N = 2 particles dot shows a different be-
havior of the levels vs the magnetic field with respect to the single particle
spectrum. In particular, it shows many interesting crossings between states
with different M . The most interesting one describes the very celebrated
singlet triplet [19] transition which has never observed in real atoms but it is
realizable in quantum dots because of their increased sensitivity a the mag-
netic fields. At low B field the ground state is a singlet state with M = 0
and Sz = 0, by increasing the magnetic field the ground state becomes the
triplet state with M = 1 and Sz = −1.

In the absence of both interaction and magnetic field, the lowest lying
single particle states are occupied with the minimum spin. The GS Slater
determinant for N=5 is sketched pictorially in Fig.1.3a, where energy is
intended on the vertical axis. Each box represents a single particle state la-
beled by n,m and arrows represent electron occupancy with spin projection
along the quantization axis.

In Fig.1.4 [left panels], we show the lowest lying total energy levels at

2A new Lanczos routine has been improved in collaboration with B.Jouault in order
to minimize the errors in the calculation of the energies of excited states. Preliminary
results, not showed in this thesis, show a good agreement also for very excited levels with
energy eigenvalues obtained performing an exact diagonalization (possible only for small
Hilbert spaces)
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quoted in the text are depicted.
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S = 1/2 for the state at B = 0
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B = B∗, the magnetic field value
at which the maximum absolute
value of S is achieved [b)].

fixed angular momentum M , versus M , for U = 13meV . Magnetic field is
B = 5meV [top], B = B∗ = 7 meV [middle], B = 11.5 meV [bottom]. At
each M , the spin degeneracy is marked by dashes of different length: short
dashes for S = 1/2 (doubly degenerate level), medium dashes for S = 3/2
(fourfold degeneracy) and long dashes for S = 5/2 (sixfold degeneracy). On
the r.h.s. of the picture the radial charge density of the corresponding GS
is plotted vs distance r from the dot center. Fig.1.4 ([left panels]) shows
the crossing of levels with increasing B. Electron-electron correlations imply
that when M increases, S also increases. At B = B∗ = 7 meV the spin
S reaches its maximum value S = N/2. The largest contribution to the
GS wave function is given by the Slater determinant depicted in Fig.1.3b
for N=5 corresponding to M =

∑N−1
0 m = 10. We concentrate on the

state at B = B∗,the FSP GS. This corresponds to the “maximum density
droplet” state discussed in the literature [19]. Qualitatively we can say that
at B = B∗ the dot attains its smallest radius. As can be seen from the GS
charge density, further increase of B leads to the so called reconstruction
of the charge density of the dot. For B > B∗, the M of the GS increases
further, but S is no longer at its maximum. In the bottom panel of Fig.1.4
it is shown that at B = 11.5meV the GS energy is now achieved for M = 13
with a doublet (S = 1/2) state. The corresponding charge density of the
dot, as depicted on the r.h.s, is strongly modified close to the edge [20]: it
displays a node followed by an extra non zero annulus at a larger distance.
In view of the fact that our expansion of the wave function only includes
rotationally invariant components, the breaking of the azimuthal symmetry
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is impossible. By contrast this is found to occur in density functional cal-
culations and the corresponding GS is referred to as the de Chamon-Wen
phase [21]. The GS at B = B∗ can be compared with a FSP quantum Hall
state of an extended disk in the absence of lateral confinement (Quantum
Hall Ferromagnet (QHF) at filling one). Fig. 1.3b) recalls the occupancy of
the lowest Landau level (LLL) up to a maximum m = N − 1, except for the
fact that in our case the single particle levels corresponding to the LLL are
not all degenerate in energy. In the language of the quantum Hall effect the
unperturbed levels are:

εν,m = (2ν + |m| + 1)~ωo −
m

2
~ωc (1.5)

where ν = (n−|m|)/2. LLL is for ν = 0 and m ≥ 0. The Slater determinant
of Fig.1.3b) has a charge density which is flat as a function of the radius r,
up to the disk edge, where it rapidly falls down to zero. In our case this
feature is lost because of the presence of U, together with the fact that the
number of electrons is small. We shall better discuss the comparison of the
FSP GS with the QHF in the following.
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1.3 Inclusion of spin-orbit

We now add the spin orbit interaction to dot. This can be tuned by applying
an electric field E in the ẑ direction, which couples to the spin of the electrons
in the dot with the so called Rashba (single particle) Hamiltonian [27]:

Hso = −α
~

[(

~p− e

c
~A
)

× ~σ
]

· ẑ . (1.6)
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Here ~σ are the Pauli matrices, α is the spin-orbit coupling parameter which
is proportional to the electric field. α will be measured in units of meV ·Å.
~A is the vector potential due to the magnetic field B orthogonal to the dot
plane: in the symmetric gauge it assumes the form ~A = B/2 (−y, x, 0).
Expanding 1.6 in a 2D matrix form (using the Pauli matrixes) we can write

Hso = α

[(

0 ∂x − i∂y

−(∂x + i∂y) 0

)

− eB

2~

(

0 x− iy
−(x+ iy) 0

)]

.

(1.7)
We now rewrite the last equation in a second quantized form choosing an
appropriate spinor basis (↑, ↓). We denote the fermionic operators associated

to φnm of Eq.(1.2) by cnmσ, c
†
nmσ and we get:

Hso = α
∑

nm, n′m′

{

< n′m′| − (∂x + i∂y)|nm > c†n′m′↓cnm↑ + (1.8)

< n′m′|∂x − i∂y|nm > c†n′m′↑cnm↓

}

+ (1.9)

eB

2~

{

< n′m′|x− iy|nm > c†n′m′↓cnm↑ + (1.10)

< n′m′|x+ iy|nm > c†n′m′↑cnm↓

}

.

The integration over the azimuthal angle ϕ have been done analytically. The
Hamiltonian can be, then, rewritten in the following way:

Hso =
α

l

∑

nn′

∑

m

(

Bn′m+1,nm

(

1 − ωc

ω0

)

c†n′m+1↓cnm↑+

An′m−1,nm

(

1 − ωc

ω0

)

c†n′m−1↑cnm↓

)

, (1.11)

with

An′m′nm = δm′+1,m

∫ ∞

0
dtRn′|m′|(t)(2

√
t
∂

∂t
+
m√
t
)Rn|m|(t) , (1.12)

and

Bn′m′nm = δm′−1,m

∫ ∞

0
dtRn′|m′|(t)(2

∂

∂t

†√
t+

m′

√
t
)Rn|m|(t) . (1.13)

Here Bnm,n′m−1 = A∗
n′m−1,nm, what implies that the hamiltonian is her-

mitian. A pictorial sketch can help in understanding what happens in the
presence of both an orthogonal magnetic field and a SO Rashba coupling.
In the absence of an external orthogonal B field the Rashba coupling acts as
an effective in plane magnetic field that forces a precession of the electron
spins in the dot plane. An out of plane component of B tends to tilt the spin
out of the plane acting, thus, in opposition to the Rashba coupling. Our
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calculation confirms this intuitive idea that the SO soupling in weakened
by an orthogonal magnetic field, in fact in 1.11 by increasing ωc (that is in-
creasing the orthogonal magnetic field B), the strength of the SO interaction
decreases.
It is clear that while sz and m are no longer separately conserved, their sum
jz = sz + m ( with jz half integer ) is a good quantum number. We shall

denote the single particle basis that diagonalizes the SO term by wβ
jz

with
β = p,m. The label β takes two possible values, say p, q and allows for the
conservation of the number of degrees of freedom.

The SO interaction lifts the spin degeneracy. In Fig.1.5 we show the
splitting of the multiplet with N = 5, S = 5/2, M = 10 at B = B∗ =
7 meV and U = 13 meV vs the strength of the SO coupling α. The
strength of U is responsable not only for the fact that the GS belongs to
this multiplet, but also for the ordering in energy of the sequence: Jz =
15/2, 17/2, 19/2, 21/2, 23/2, 25/2 (from bottom to top). At small U values
the sequence is Jz = 25/2, 23/2, 21/2, 19/2, 15/2, 17/2, as shown in Fig.1.6.
With increasing of U, some level crossings occur.
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Figure 1.5: Splitting of the lowest
lying multiplet for N = 5,S = 5/2
and M = 10 vs strength α of
the SO interaction, at B = B∗ =
7 meV, U = 13 meV and ωd =
5 meV . The levels are labeled by
Jz.

The ordering at three different values of U is magnified in the bottom
panels of Fig.1.6. The case with U = 13meV is shown in the bottom right
panel of Fig. 1.6. The lowest state in energy is for Jz = 15/2 followed
by Jz = 17/2, 19/2 (almost degenerate with 25/2), 25/2, 21/2, 23/2. At
U = 13 meV a sizeable gap is formed between the Jz = 15/2 GS and the
first excited state Jz = 17/2. The other states of the multiplet are bunched
together at higher energy.

In figure 1.7 we show the energy spectrum of a 2 particle dot in the
presence of the SO coupling vs ωc with ωd = 5meV , U = 13meV and
α = 250meV Å.

By mean of a comparison with Fig.1.2 some important features emerge.
The level structure is qualitatively analogous to that obtained in Ref. [38],
intended for an InSb dot, with Dresselhaus and cubic SO terms included.
The singlet-triplet transition appearing in fig 1.2 as a crossing at ~ωc ≈ 4
appears now here as a marked anti-crossing at ~ωc ≈ 4meV, because of the
SO coupling [31]. The states involved in the anti-crossing have Jz = 0 and
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Figure 1.6: Energy levels with
N = 5, B = 7meV , ωd = 5meV ,
and α = 100 meV Å, for differ-
ent U values. In the upper panel
we show the crossings that allow
the FSP polarized state to be the
ground state when U is large. Or-
dering of the levels is magnified in
the bottom panels for three differ-
ent U values.

originate, in the absence of SO, from the singlet (S = 0, Sz = 0,M = 0) and
the triplet (S = 1, Sz = −1,M = 1) states. Recently, the relaxation time T1

for the flipping of the two-electron spin trapped in a vertical GaAs QD, from
the triplet to the singlet state, has been measured, by applying electrical
pulses to the QD. T1 has been estimated to be > 200 µs at T < 0.5K [39].
Similarly to what found in Ref. [38], exchange interaction produces a small
zero-field splitting between the first excited state (a triplet with Jz = 2 )
and the second excited state (a singlet with Jz = 1 ). Increasing B further
the SO induces the crossing of the latter two states, so that lowest lying
states are the GS (S = 1, Jz = 0) and the FES (S = 1, Jz = 1). As
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Figure 1.7: N=2 particles dot: energy spectrum vs magnetic field ωc in the

presence of the SO. ωd = 5meV , U = 13meV , α = 250meV Å. The GS is
Jz = 0, the FES is Jz = 1.

seen from figures 1.8, 1.9, the same pattern can be found also for N = 3, 4.
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Figure 1.8: N=3 particles dot: energy spectrum vs magnetic field ωc in the

presence of the SO. ωd = 7meV , U = 13meV , α = 250meV Å. The GS is
Jz = 3/2, the FES is Jz = 5/2.
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Figure 1.9: N=4 particles dot: energy spectrum vs magnetic field ωc in the
presence of the SO. The GS is Jz = 4, the FES is Jz = 5. ωd = 7meV ,
U = 13meV , α = 250meV Å.



1.3. INCLUSION OF SPIN-ORBIT 23

However by increasing the number of particles the level structure becomes
richer the anti-crossings between the levels seems to be masked. In fact,
for N = 4, anti-crossings are less prominent and the level separation of the
bunch of states in Fig.1.9 is much smaller, but a gap to the above develops at
ωc ≈ 5.5meV , between the GS (S = 2, Jz = 4) and the FES (S = 1, Jz = 5),
originating from the M = 6 multiplet. The gap is strongly sensitive to the
SO tuning and increases with increasing α (Fig.1.10). The SO coupling
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Figure 1.10: GS-FES spin gap vs
α at ωc = 8meV for a 3 particles
(N = 3) dot with ωd = 7meV ,
U = 13meV , α = 250meV Å.

tends to shift the ↓ spin density with respect to the ↑ one radially (see Fig.
1.13 and [26]). The shift can occur easily for the GS when N = 2 and
provides a reduction of the e − e interaction by leaving an isolated spin at
the center of the dot. When N > 2, the confinement potential together
with the e − e repulsion contrasts such a spin redistribution and the final
result is that the z−component of the total spin density is diminished at the
center of the dot. In particular, σz(r) tends to flatten in the GS for N = 3, 4
(see Fig.1.11). Correspondingly the radial component σr(r) increases in the
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Figure 1.11: Spin and charge den-
sity of the ground state (black)
and the first excited state (red) for
the dot with N=2 [top], N=3 [mid-
dle], N=4 [bottom]. ωd = 7meV ,
U = 13meV , α = 250meV Å.

case of N = 3, 4 at any distance from the center and not only at the dot
boundary as it happens for N = 2 (see Fig.1.11).

In what follows discuss the charge density and the spin polarization of
the GS in the presence of strong e− e correlations. As it appears from Fig.
1.12 [top panel], the charge density of the GS is only mildly changed when
we increase the SO coupling. By contrast, the spin density is quite sensitive
to the addition of SO, up to saturation. Now the z−component of the total
spin is no longer a good quantum number and some admixture with down
spin electrons appears. Indeed the role of the Rashba term is to rotate
the average electron spin. In particular, down spin electrons are pushed
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Figure 1.12: Charge density, az-
imuthal spin density Sz, in plane
spin density Sr, in the radial di-
rection, in the GS ( N = 5,
J = 15/2) at various SO cou-
plings: α = 5, 100, 250 meV Å.
Here B = 7 meV , U = 13 meV
and ωd = 5meV

away from the center of the dot, giving rise to the spin density components
Sz(~r) (orthogonal to the dot plane), and Sr(~r) (in the plane of the dot),
which are plotted in Fig.1.12 [middle and bottom panels, respectively]. It is
remarkable that the spin density Sz(~r) changes sign at the edge of the dot
for large SO coupling. This is confirmed by a plot of the occupation numbers
nnmσ = 〈GS|c†nmσcnmσ |GS〉 with n = m. They are shown in Fig.1.13 for
both N = 4 and N = 5 for comparison. Of course, the change of N would
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Figure 1.13: Occupation numbers
nn=m,m,σ in the GS with N =
4(5) electrons (left(right)) with-
out SO (top) and with SO (α =
100 meV Å) (bottom). Other pa-
rameter values are B = 7 meV ,
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bars refers to spin down, grey bars
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the dot with N = 4(5) electrons
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z−component of the total angular
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also imply an effective change of the confinement potential ωd (what we
do not do). However, all what we want to show here is that our findings
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depend on the strength of B only, and not on the number of electrons being
even or odd. A similar feature occurs in the de Chamon-Wen phase, in the
absence of SO: when crossing the edges, the spins tilt away from their bulk
direction [40]. The reversal of the spins in the tail at the dot boundary is
a peculiarity of the Rashba interaction, but the spin/charge density is very
small there and does not influence the dot properties.

1.4 Spin and charge density in the multiplet S =

5/2, M = 10

In the previous Section we have shown that at B = B∗ the GS with N = 5
electrons belongs to the S = 5/2, M = 10 multiplet. The SO coupling
lifts its degeneracy as shown in Fig.1.5. The size of U strongly influences
the energy of each state, by producing crossings of levels. At U = 13 meV
the lowest lying states with increasing energies are (see Fig.1.6[right bottom
panel]):

|GS >≡ |N = 5; Jz = 15/2 >: this is the fully spin polarized GS .

|FES >≡ |N = 5; Jz = 17/2 >: the ‘spin exciton‘.

This ordering of energy levels is the following: lowest energy is for Jz =
Lz − Sz, higher energy is for Jz = Lz + Sz. Besides affecting the energy
of the states, the effect of U is to enhance the transfer of weight from the
majority (“down”) to the minority (“up”) spin population. This is shown in
Fig.1.14, where the occupation numbers nn=m,m,σ are reported for the states
|GS >, |FES > and another reference level |b >≡ |N = 5; Jz = 25/2 > for
U = 0 [left panels] and U = 13meV [right panels], respectively. A striking
feature characterizes the spin densities of these states (see Fig.1.14, 1.15):
the dominant spin density is reversed in the |b > state, with respect to the
|GS >. The state |FES >, which is the first excited state, interpolates
between the two. Spin occupancy is not significantly modified for larger
r. While at U = 0 the flipping of the spin at the origin with respect to
the GS is full, in the interacting case some up-spin is left at the center.
This allows for a smoother radial dependence of the spin and charge density
expectation values. Eventually, this is the reason why this state turns out
to be the lowest excited state in the FSP system. In Fig.1.15 we show
the charge and spin densities of the complete GS multiplet for N = 5 at
α = 100 meV Å, U = 13meV and B = B∗. The situation is quite peculiar:
by looking at < Sz > [middle panel], we see that the GS has a down spin
density everywhere in the dot, except for a tiny little reversed tail at the
boundary. By contrast, the state b Jz = 25/2 has an up spin density at
any r. Intermediate between the two, the FES state displays a reversed
spin at the center of the dot but the spin polarization changes into down
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Figure 1.14: The occupation
numbers nn=m,m,σ in the state at
Jz = 15/2, 23/2, 25/2 for small U
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refers to spin up. We stress that
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(U = 13meV ). (see Fig. 1.6 [bot-
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when approaching the edge, to restore the spin density of the GS. There
is a node in the middle! The other states (17/2, 19/2 and 21/2) are rather
featureless and they do not share these features. The trend is confirmed by
looking at the projection of the spin density in the plane of the dot Sr = r̂ · ~S
(see Fig.1.15[bottom panel]). This is the complementary information with
respect to Sz(r). When Sr(r) in strongly non zero, then Sz(r) is heavily
reduced.

0

0.1

0.2

0.3

0.4

C
ha

rg
e 

de
ns

ity

-0.2

-0.1

0

0.1

0.2

Sp
in

 d
en

si
ty

 S
z

25/2
23/2
21/2
19/2
17/2
15/2

0 20 40 60r(nm)
-0.15

-0.1

-0.05

0

Sp
in

 d
en

si
ty

 S
r

GS

SKD
b

SKD

GS
b

GS

b
SKD

Figure 1.15: Charge density, az-
imuthal spin density Sz, in plane
spin density Sr, in the radial di-
rection, at various Jz. Parame-
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U = 13meV and ωd = 5meV

An analogous interpolation occurs for the charge density. There is a
piling up of the charge at the origin (see Fig.1.15[top panel]), corresponding
to a locally dominant down spin density. The FES is a collective excitation
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Figure 1.16: N=3 particles dot: FES spin density (arb.units) for a) α =

150meV Å, b) α = 250meV Å, c) α = 350meV Å. By increasing the SO there
is a squeezing close to the center and some reduction of < σz >.

of the QD, which we call a “spin exciton”. So in the FES the SO enforces
a spin texture with 〈Sz〉 flipped at the origin with respect to the GS and
healing back gradually away from the center up to the QD boundary, where
the spin density points radially in the dot plane [26]. Remarkably, the SO
coupling acts on this spin excitation as a squeezing factor: that is the larger
is α the closer the spin distribution of the FES is to the center of the dot, as
can be seen in Fig 1.16. The FES for B > B∗ has Jz increased by one with
respect to the GS. But, the difference of the angular momentum expectation
values ∆ < M >≡< M >FES − < M >GS is found to be vanishingly small.

To justify the last statement, we note that in a disk shaped dot, a radial
change of ∆ < M > requires a change of n(r) as well, but, as a matter of
fact, we find that the charge distribution in the dot at the FSP point is rather
insensitive to excitation and to the strength of the SO coupling (see Fig.s
1.11, 1.12). While the radial charge density n(r) appears to be compressible
at fields B < B∗ and B > B∗, it is approximately incompressible at B ∼ B∗

[41]. When B >> B∗, the charge distribution of the dot reconstructs [20,26].

The spin excitation gives rise to an extra collective magnetization ẑ ·
∆ ~M(r) ≈ 〈2µB∆σz(r)〉, where ∆σz(r

′) is the difference in z-component of
the local spin density between the FES and the GS and µB = e~/2mec. The
radial spin density σz(r) appears in Fig.1.11 (for N = 2, 3, 4).

We have estimated the possible extra magnetic flux φ associated to the
spin excitation, by integrating numerically the vector potential, induced by
the spin polarization of the dot, aϑ(r), along the circle of radius R at the
dot boundary γ ( φ =

∫

γ R dϑ aϑ(R)). This is given by:
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aϑ(r) = 2µB

∫ 2π

0
dϑ′

∫ R

0

dr′ ~r′ × ẑ

|~r − ~r′|
∂∆Sz(r

′)

∂r′
, (1.14)

where r̂ is a radial unit vector. The calculation yields a very tiny fraction of
the flux quantum φo = ~c/e, but it is remarkable that, at B ≈ B∗, we find
the same value of φ for N = 2, 3, 4. This is consistent with the fact that the
FES has essentially one spin flipped at the origin and no change in orbital
angular momentum independently of the number of electrons on the dot.

1.5 FIR absorption

The ground state and the first excited state are spaced by an energy of the
order of meV , so our idea is to study the possibility to drive, with a far
infrared radiation (FIR), a transition between these two states by choosing
in an appropriate way the polarization of the radiation field. In particular
the transition under analysis requires an increasing of the total angular
momentum of ∆Jz = 1 that impose us to choose a right hand circularly
polarized radiation. In order to probe the effect of the FIR on the FSP dot
we have to go beyond the generalized Kohn theorem.

Our aim is twofold:

• We want to monitor, with the FIR, the crossover of the QD, embedded
in an orthogonal magnetic field, in the presence of SO coupling, to the
FSP state. In fact, as seen in Fig.s 1.17 a),b), when the dot becomes
fully spin polarized the transition probability increases suddenly.

• In addition, the possibility to drive, with the FIR, a transition between
the GS and the FES of the FSP dot is quite appealing in that it allow
manipulating the spin properties of the dot in an unusual way.

We study in detail such transition by focusing on the importance of the spin
orbit coupling in what follows.

1.5.1 Kohn Theorem

Far infrared radiation is a common tool in large scale QD arrays (e.g. In
QD’s [42] or field-effect confined GaAs QD [43]). Apparently, experiments of
far infrared spectroscopy on QD’s seems not to reveal their very rich energy
levels structure [44–46], by contrast only two excitation frequencies seems
to be singled out, this phenomenon has been completely understood [47] as
a consequence of the generalized Kohn theorem.

Maksym and Chakraborty [47] (and well before Laughlin [48] in a 2-D
electron gas) had showed that the full Hamiltonian of a parabolic quantum
dot, in the absence of Rashba coupling can be decoupled into center of mass
and relative coordinates.
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The coupling Hamiltonian in the dipole approximation for a space inde-
pendent electric field ~E = ~E0exp(−iωt) is:

Hint =

N
∑

j=1

e ~E0 · rje−iωt , (1.15)

by choosing the center of mass coordinate as ~R =
∑

i ~ri/N and the total
charge as Q = Ne it can be rewritten as:

Hint = Q~E0 · ~Re−iωt . (1.16)

Now we can rewrite also the dot Hamiltonian in the absence of SO coupling
as a function of center of mass coordinate and the 3(N − 1) coordinates
relative to it. These are conveniently chosen to be ~ρi = ~ri − ~R where i =
1, ..., ne − 1. It reads

H =
1

2M
(~P +Q~A)2 +

1

2
Mω2

0R
2 +Hrel(~ρi) , (1.17)

with ~P =
∑

i ~pi/N , ~A is the vector potential of the cm and M = Nm∗.

The Hamiltonian 1.17 is separated into two pieces: the second one is
Hrel and only depends on the relative coordinates ~ρi. The first one does not
contain any terms due to the interaction and depends only on the center
of mass coordinates ~R and ~P , it is fully equivalent to the single particle
Hamiltonian except for a renormalization of the coefficients that does not
affect at all the energy eigenvalues.

In the dipole approximation the perturbing Hamiltonian due to the FIR
is expressed only in terms of the center of mass coordinate 1.16: this means
that the radiation would couple only to the single particle modes without
affecting any relative motion! This is a simple explanation of the generalized
Kohn theorem. In the range of validity of the Kohn theorem the FIR tran-
sition between the two states (the GS and FES are not Kohn modes for the
FSP dot) studied here would be typically forbidden and only the two Kohn
modes at frequencies ω± = 1/2(

√

4ω2
0 + ω2

c ±ωc) would be observed. In the
past, some exotic ways to excite non center of mass modes of QD’s with a
FIR have already been proposed: the best results, as far as we know, have
been obtained both in theory [43] and in experiments [49] by hypotizing a
non parabolicity of the confining potential. Indeed, plasma modes have been
spotted just below the upper Kohn frequency ω+ [43].

However modern technology allow to realize devices in which a strong
spin orbit coupling is present: this offers new chances to go beyond the
generalized Kohn theorem. In fact in the presence of a strong SO coupling
the hypothesis of the generalized Kohn theorem breaks down: the full dot
Hamiltonian can no longer be decoupled because the Rashba term explicitly
couples relative and center of mass coordinate (next chapter section 3 and
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[2]) and does not allow for the decoupling of the Hamiltonian. So it is
possible and interesting to study this ‘non center of mass’ transition.

1.5.2 Coupling Hamiltonian and FIR spectra

We write the coupling Hamiltonian in a slightly different way:

HFIR =
√

(2)A0(ω)ε̂R · ~p eiωt + h.c. (1.18)

where A0(ω) = A0(ω)/
√

2[exp(−iωt) + c.c.] (and A0(ω) is the envelope
function of the wavepacket in the ω-space, which we suppose to be very
peaked around the ω frequency to simulate a monochromatic radiation) and
εR = x̂ + iŷ is the unit vector characterizing a right hand circularly po-
larized radiation. Typical wavelength of FIR are 1 ÷ 100 µm while typical
dot size are usually less then 100 nm: this assures that, in this case, dipole
approximations holds to a high degree of accuracy.

By writing this Hamiltonian in a second quantized form we have:

HFIR =
A0(ω)√

2i

∑

n,n′,m,σ

[

An′m−1nmc
†
n′m−1σcnmσe

iωt −Bn′m+1,nmc
†
n′m+1σcnmσe

−iωt
]

,

(1.19)
where An′m−1nm and Bn′m+1,nm have been already defined in Eq.s 1.12 and
1.13. It appears clearly that the radiation releases energy and exchanges
orbital angular momentum to the dot. In particular the adsorption of a
photon increases the total angular momentum of one unity by releasing one
quantum of angular momentum. As explained before in order to excite the
dot from GS to FES we do not need orbital but spin angular momentum.
Once again the Rashba Hamiltonian provide the right coupling in order to
couple orbital and spin motion: in this way the angular momentum released
to the dot is transferred into spin angular momentum. This mechanism
allow to wash out the spin gap between the two states under examination
by using the radiation, that is we can switch the dot to an ’opposite’ spin
configuration by mean of fast radiation. Moreover, if we turn off the FIR we
can let it relax back to the ground state with the original spin polarization.

We have calculated the dipole matrix element squared for the transition
from GS to FES vs B. Our results are shown in Fig. 1.17 (a) for N = 2
and 1.17 (b) for N = 4, respectively. The dispersion of the absorption
peaks is artificial, but their detailed shape would yield direct access to the
coupling constants and to the level mixing introduced by the SO terms. We
find an increase of the expected intensity at the FSP point which marks
the crossover to the new states. As expected, the crossover sharpens with
increasing N .

In conclusion, it is possible to stimulate the transition between the
ground state and the FES by mean of circularly polarized FIR radiation.
The transition from the ground state is strongly favourished after the dot
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appears to be fully spin polarized. This way to manipulate spins seems to
be very appealing. In fact we do not deal with single spins as in recent
proposals for spin based quantum computers (in that case the coupling to
the environment can easily destroy the coherence) [50] but we propose to
change the spin polarization of whole dot. This is very interesting because
the spin configuration of the QD is certainly stabilized by the electron elec-
tron interaction within the dot.
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Figure 1.17: Absorption spectrum vs magnetic field for a) N=2 particles,b)
N=4 particles

In the next Section we show that the spin exciton recalls the first excited
state of a QHF with some important differences, though.

1.6 Comparison between the dot and a QHF disk

The case of the dot in the FSP state can be compared with that of a disk
shaped Quantum Hall Ferromagnet at filling one. The comparison is in
order, because the physics of the dot turns into that of a quantum Hall disk
by increasing the magnetic field, as long as the ratio ωd/ωc → 0. Of course,
while the infinite quantum Hall system is marked by a phase transition to
the spin polarized state, the dot, being a system with a finite number of
particles, undergoes a crossover to the FSP state which is not a broken
symmetry state. This is confirmed by the presence of the tiny minority spin
tail at the edge of the dot.

We now, recall, some properties of the Hartree Fock description of the
GS and first excited state of the QHF, which applies to filling close to (but
less than) one.

Similarly, some analytical approximations leading to a simplified H-F-
like approach for the dot with SO coupling will be discussed in the following
to highlight the analogies between the two systems.
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1.6.1 Quantum Hall Ferromagnet

In describing the QH state on a disk it is customary to label one particle
states with ν = (n − |m|)/2 and m,σ, corresponding to the eigenvalues
εν,m,σ given in Eq.(1.5). The LLL includes the wave functions φnm given
by Eq.(1.2) for ν = 0 and m ≥ 0. In this case all Laguerre polynomials

L
|m|
0 (t) = 1. If there is no confinement potential (ωd = 0), all ε0m are

degenerate. We rename the LLL wave functions f0mχσ (here χσ denotes the
spin 1/2 wave function) and associate the single particle fermion operators
âν=0mσ to them. In the QHF at filling one, the LLL sub-band with, say,
spin down, is fully occupied: the GS is a fully spin polarized state:

∣

∣

∣

∣

QHF, 0

〉

=
∏

0≤m≤N−1

â†0m↓

∣

∣

∣

∣

∅
〉

(1.20)

Here |∅〉 is the vacuum state. The lowest lying branch of excitations of the
QHF are spin waves. These involve electrons in the down spin LLL sub-band
and holes in the up spin LLL sub-band.

It was pointed out long ago [51] that, if the filling is slightly less than
one, the first excited state can be a very special collective excitation with
S < N/2 and an extra node in the spin density. The spin polarization is
reversed at the center, but gradually heals to the dominant spin background
over a distance of many magnetic lengths (SK state). This excitation can be
traced back to the skyrmion , the topological excitation of the O(3) NLσM
in 2−d [33]. A disk of infinite radius in coordinate space can be compactified
to a sphere S2 in R3 having the origin in the south pole and the point at
infinity in the north pole. A similar compactification can be performed
in the order parameter configurational space. An uniform magnetization
“down” is represented by a vector pointing to the south pole everywhere
on S2. The skyrmion is a finite action configuration on S2, satisfying the
classical Eq.s of motion for the magnetization of the NLσM , conserving
~J = ~S+ ~M and belonging to a non trivial homotopy class. If the topological
charge is Q = 1, the shape of the magnetization field is ~s(~r) = r̂, where r̂ is
the normal to S2 at each point. Q is the flux of ~s(~r) through the sphere of
unit radius. The spin polarization is “up” at the south pole and turns over
continuously in space, until it reaches “down” at the north pole. That is,
the spin polarization is flipped at the origin of the disk with respect to the
GS and turns smoothly over away from it in the radial direction.

Within Hartree-Fock [52], the Slater determinant |S,K〉 that describes
this state conserves total Jz. To construct it, a canonical transformation is
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performed on the fermion operators:

q̂j = uj â0j− 1
2
↑ + vj â0j+ 1

2
↓ , j ∈ (

1

2
, ...∞)

p̂− 1
2

= â00↓

p̂j = −vj â0j− 1
2
↑ + uj â0j+ 1

2
↓ , j ∈ (

1

2
, ...∞) , (1.21)

Normalization requires that |uj |2 + |vj |2 = 1. Note that the operator p̂− 1
2

still belongs to the LLL as it destroys a particle in the fν=0,m=0χ↓ state. We

denote by f
p/q
j the single particle orbitals corresponding to the operators of

Eq.(1.21) and we use them in Appendix 1A.

The generic Slater determinant built by means of these operators is:

|S,K〉 =

∞
∏

j= 1
2

(

p̂†j−1

)np
j−1
(

q̂†j

)nq
j |∅〉 (1.22)

nβ
j are the occupation numbers of the single particle states (np

j =< p†jpj >,

nq
j =< q†jqj >), with

∑

j β n
β
j = N . The state of Eq.(1.22) is labeled by

the total spin S and by K. Sz is no longer a good quantum number and is
substituted by

K = S +
1

2

N−1/2
∑

j=1/2

(nq
j − np

j−1) (1.23)

The state of Eq.(1.22) with S = N/2,K = 0 is the FSP QHF ground
state of Eq.(1.20), if the only non zero occupation numbers are nq

j = 1 for

j ∈ (1
2 , ..., N/2) with uj = 1 for j ∈ ( 1

2 , ..., N/2). This state corresponds to
the FPS GS of Fig.1.3b) for the QD case.
For the hard core model the HF equations can be solved analytically [52].
The lowest lying skyrmion state is |N/2, 1〉, with

|uj |2 = 1 − |vj |2 =
ξ2

ξ2 + (j + 1
2)

(1.24)

leading to the spin density ~s(~r) defined in terms of the arbitrary length scale
ξ ( r2 = x2 + y2) [34] (see Appendix 1A for a detailed discussion):

sx(~r) = − 2xξ

r2 + ξ2
; sy(~r) = ± 2yξ

r2 + ξ2
; sz(~r) = −r

2 − ξ2

r2 + ξ2
. (1.25)

The ± refer to the sign of the topological charge Q = ±1. In the real QHF
the length ξ is governed by the relative strength of the Zeeman and the
Coulomb energies.
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1.6.2 Dot with spin-orbit coupling

In this Subsection we give arguments supporting our claim that the FES
of the dot corresponds to the state |N/2, 1〉 in the QHF limit, that is in
the limit of zero confinement potential and filling one. Indeed, the radial
distribution of the spin density of the FES recalls the one of Eq.(1.25) except
for a very shallow tail at the boundary. Away from the center the spin
polarization of the FES state lines up gradually with the one of the GS
as it happens for the case of the Skyrmion. As in the SK case, Sz(r) has
an extra node at r = ξ. In the presence of SO, the length scale ξ is no
longer arbitrary, but is fixed by the strength of the SO coupling. In the
case of the QHF on a disk, both rotations in real space around the z−
axis and rotations in spin space are good symmetries, so that M as well
as Sz are conserved. This implies that an allowed SK−like excited state
of the real system has to be obtained by projecting the state of Eq.(1.22)
onto the subspace of definite M and Sz. This is not necessary in the QD
with SO interaction, because the SO Hamiltonian term only conserves Jz

as the state |S,K〉 does. In the following we show that a simplified H-F-
like approach for the dot case with SO coupling shows features similar to
the ones described by Eq.s (1.21), (1.24) and Eq.s (1.22), (1.25). Let us
first discuss SO coupling in the dot at U = 0. The vector space required to
diagonalize the SO coupling and to obtain the eigenfunctions wβ

jz
exceeds the

LLL space enormously (in practice we always use the basis of Eq.(1.2) and

never calculate the wβ
jz

’s explicitly). As a simple analytical approximation,
we can restrict ourselves to the LLL for sake of simplicity. We have checked
numerically that this approximation is largely satisfactory away from the
level crossings. In this case, diagonalization of the SO interaction factorizes
the problem into a collection of 2× 2 matrices. What the SO does is to mix
single particle states with different m and opposite spins in the way that
the transformation of Eq.(1.21) shows. Indeed, jz (jz ≡ j in the following)
is conserved. Within the LLL, two (m,σ) values contribute to each half
integer j: (m, ↑) and (m + 1, ↓). The unperturbed energy levels involved,
ε0m and ε0m+1, are given by Eq.(1.5). Let the off-diagonal matrix element
including the SO coupling be α. Then the eigenvalues are:

λ
p/q
j =

1

2
(ε0m + ε0m+1) ±

√

δ2

4
+ α2 , (1.26)

where δ = ε0m+1−ε0m = ωo−ωc/2. The diagonalization implies a rotation in
the 2-vector space {f0mχ↑, f0m+1χ↓}of an angle γ given by tan 2γ = −2α/δ.

The single particle states obtained in this way coincide with f
p/q
j defined

after Eq.(1.21). The mixing of the two states (m, ↑) and (m + 1, ↓) is
j−independent, within our approximations, because δ is. This implies
that the rotation angle γ keeps roughly constant in the radial direction,
because average radial distribution of an electron of angular momentum j is
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∼ l
√
j + 1. We can now construct the Slater determinants representing the
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Figure 1.18: Slater determinants
quoted in the text with the same
labels. Quantum numbers are
N = 5, S = 5/2 and Jz. Upper/
lower triangle refer to single par-
ticle states labeled by jz and p/q.
Other possible quantum numbers
do not appear. The dots mark oc-
cupied states.

states lower lying in energy. The states corresponding to the ones obtained
numerically in the previous sections are depicted in Fig.(1.18). In analogy
to Fig.(1.3) we use boxes to allocate electrons. Each box is cut into a lower
and an upper triangle with respect to the diagonal, corresponding to the q
and the p state of a given jz, respectively. A dot marks which of the orbitals
is occupied. We have analyzed the Slater determinants which contribute
mostly to the states obtained at the end of the Lanczos procedure, giving
the average occupation numbers of Fig.(1.14). Their largest components
indeed contain the determinants shown in Fig.(1.18). Another analogy be-
tween our finite system (dot) and the quantum Hall disk can be found on
symmetry grounds. The SK state of the QHF is the first excited state of a
spontaneously broken symmetry, which is the spin SU(2). In the dot case,
once again, there is a reduction of the symmetry of system because the SO
couples the spin and orbital motion thus conserving Jz and reducing the old
symmetry SO(3)×SU(2) (orbital and spin) to a smaller group SO(3). In a
sense, we could say that in the finite system again there is a breaking of the
SU(2) symmetry but it is not a spontaneous symmetry breaking because
the SO provides it. All these are close similarities between the dot and
the QH disk. However relevant differences can be immediately recognized.
While the skyrmion shows a very smooth tilting of the spin orientation with
increasing distance from the center of the disk (see Eq.(1.24)), the rotation
angle γ for the dot is uniform in the radial direction. This feature is partly
compensated by the addition of the Coulomb repulsion. Indeed, U 6= 0 pre-
dominantly affects the occupations close to the center of the dot disk, while
its influence fades out away at larger distances. This fact introduces a radial
variation of the tilting of the spin polarization. According to Eq.(1.25), the
skyrmion has a linear variation with radial distance of Sr, close to the ori-
gin. By contrast, our numerical results reported in Fig.(1.12 [bottom panel])
show a quadratic increase at small r’s. The role of U is quite substantial, by
locating the energy of the FES state intermediate between those of the GS
and of the b state. Needless to say, another relevant and obvious difference
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between FES and SK is the absence of any conserved topological charge
in the dot. In the QHF the conservation of Q is implemented on symmetry
grounds, by mapping the QH disk onto a sphere. This mapping cannot be
extended to the dot, because, as seen from Fig.(1.15), the direction of the
magnetization at the boundary is not unique. Magnetization is not defined
at ~r → ∞: the point at infinity is a singular point in the magnetization
configurational space.

1.7 Discussion

In a disk shaped quantum dot with few electrons in the presence of a mag-
netic field B = B∗ orthogonal to the dot the interactions drive the system
to a fully spin polarized state with S = N/2. At B > B∗, the total spin
is again drastically reduced and the charge density reconstructs at the disk
boundary. We have discussed on exact diagonalization results of a QD with
N = 2, 3, 4, 5 electrons and studied the effect of SO coupling possibly due
to an external electric field orthogonal to the dot disk. The effect of the
Rashba interaction can modify both qualitatively and quantitatively the en-
ergy spectrum of the dot and its spin configuration. As an example the
single triplet transition of the N=2 electrons dot, in the presence of spin or-
bit appear as a marked anti-crossing at the corresponding energy. We focus
on the fully spin polarized dot (FSP ) with N = 2, 3, 4, 5. There are analo-
gies between the dot state at B = B∗ and the Quantum Hall Ferromagnet at
filling one. We claim that such analogies are universal properties of the dot
in the sense that all the effects studied are present in the dot independently
of the number N of confined particles. However by increasing the number
of particles both the polarization of the dot and the formation of a very
peculiar FES become stabilized by the e-e interaction U . In fact we require
a sizeable interaction strength U to stabilize the FSP GS. As an example,
in the N = 5 particles case, when the SO coupling is increased, level cross-
ings occur in the splitted S = 5/2 multiplet, until the state with minimum
Jz = M − Sz = 15/2 becomes the GS. The first excited state (FES state)
has Jz = 17/2. When compared to the GS, the FES state has some charge
transferred to the dot center and a very peculiar spin texture. Indeed, the
z−component of the spin density at the center of the dot is opposite to
the one of the GS and rotates continuously over away from the center, by
acquiring the same profile as the one of the GS at the dot boundary. This
winding requires an extra node in the spin density, which is absent in the
other multiplet states. According to these properties, the FES state can be
viewed as carrying one spin exciton. Both our numerical results, and our
approximate analytical speculation show how essential the combined role
of the SO coupling and of the e − e interaction is in stabilizing this state.
Our calculation parametrizes the interaction strength U, but it ignores the



1.7. DISCUSSION 37

screening of the e− e interaction altogether. This should be reconsidered in
view of the fact that vertical QD’s are separated on the top and the bottom
from the contact metals by barriers with a typical width of 70Å. Even for
N = 5 this is smaller than the inter-electron spacing. However, we believe
that the exciton state is robust when the screening is included. Indeed, the
flipping of the spin is concentrated at the center of the dot and is governed
by the e − e interaction at short range, which should be largely insensitive
of screening effects.
The FES state recalls the skyrmion excitation which takes place in a disk
shaped QHF at filling one. The statement could be puzzling, in view of
the fact that the SO coupling is essential to the FES state, but it is never
invoked when discussing Quantum Hall properties. However field theory
models (NLσM) use the conservation of J to prove the existence of the
skyrmion state. In a real isolated QH disk M,Sz would keep finite and sep-
arately conserved. In this case only the component of the SK state that
conserves given values of M,Sz would be present in the excitation spectrum.
Nonetheless the difference is washed out in the limit of an infinite disk size.
This is the continuous limit which leads to the NLσM . In the case of the
dot, the compactification of both the coordinate space and the magnetiza-
tion space cannot be performed because the direction of the magnetization is
not defined at ~r → ∞. Therefore no state can be constructed that conserves
Jz only, without conserving M and Sz separately. The spin orbit coupling
opens up this possibility. However, no topological charge can be associated
to the FES state in the dot.
Our calculation shows that for realistic values of the dot confining potential
(ωd = 5meV ), of the Coulomb interaction strength (U = 13meV ) and of
the SO coupling α ∼ 100meV Å [30], the FSP GS and the FES state are
well spaced levels and their spacing monotonically increases by increasing α.
The other levels of the multiplet appear at higher energies and are rather
close to each other. This means that, at B = B∗, the dot opens a sizeable
spin gap between the GS and the FES state, that can be tuned with an
applied gate. This spin gap cannot be washed out by thermal fluctuations,
if the temperature is low enough (∼ 50mK). The gap can be probed by
optically pumped NMR as in quantum wells [32]. Spin-lattice relaxation of
71Ga nuclear spins in the dot, driven by the hyperfine coupling to the dot
electrons should be very much reduced, thus leading to a large T1.
The extremely low spin relaxation expected for this excitation, could al-
low for a coherent manipulation of the spin exciton using teraHertz radi-
ation [53–55]. In general, we believe that the system studied here can be
relevant to the coherent manipulation of QD states. This is appealing in
view of quantum information processing [56–58]. Indeed, a spectrum like
the one discussed in this chapter should produce sharp optical absorption
lines. Photoluminescence induced by a pump and probe laser technique has
been studied in disk shaped In Ga As QD’s with evidence for Rabi oscilla-
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tions [59].
In our case, a circularly polarized pulse of one single chirality has been used
to excite the spin exciton discussed here. We have found that it is possible
to stimulate the transition between the ground state and this spin excitation
by mean of circularly polarized FIR radiation. The effect of the radiation is
twofold: first of all the transition, from the ground state is strongly favour-
ished after the dot appears to be fully spin polarized. It means that the FIR
spectrum can be used to monitor the crossover to the FSP state. Moreover
by increasing the number of particles, the crossover appear to be sharper,
that is, we are going in the direction of a phase transition because the in-
creased number of particles and the strong magnetic field make the system
closer to the ’thermodynamic’ limit in the QH sense. Then the second effect
is to manipulate in a controlled way the spins of the dot. This new way to
manipulate spins seems to be very appealing. In fact we do not deal with sin-
gle spins, as in recent proposals for spin based quantum computers (in that
case the coupling to the environment can easily destroy the coherence) [50],
but we propose to change the spin polarization of whole dot. This is very
interesting because the spin configuration of the QD is certainly stabilized
by the electron electron interaction within the dot.
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Appendix 1A
QHF Spin Density

In this appendix we show that the state |N/2, 1〉 given by Eq.(1.22) with uj

given by Eq.(1.24) leads to the skyrmion spin density of Eq.(1.25).
The wave functions for the QH disk associated to the operators â0mσ are

given in Eq.(1.2). In the LLL (ν = (n−|m|)/2 = 0) all Laguerre polynomials
Lm

0 (t) = 1. To construct the field operator, we associate a spinorial wave

function f
p/q
j (~r) to the operator p̂j/q̂j following Eq.(1.21):

fp
j (~r) =

(

−vjf0j− 1
2
(~r)

ujf0j+ 1
2
(~r)

)

, j ∈ (
1

2
, ...∞) , (1.27)

f q
j (~r) =

(

ujf0j− 1
2
(~r)

vjf0j+ 1
2
(~r)

)

, j ∈ (
1

2
, ...∞) . (1.28)

We take uj and vj real. The field operator is:

ψ̂(~r) =

∞
∑

j= 1
2

(

fp
j−1(~r)p̂j−1 + f q

j (~r)q̂j

)

. (1.29)

The spin density operator is ~̂s(~r) = <e
{

ψ̂†(~r)~σψ̂(~r)
}

, to be evaluated on the

state |N/2, 1〉. Let us consider sx(~r) first. All the f q orbitals are unoccupied
in the state |N/2, 1〉, except for j = 1

2 : this term, would give a contribution
∼ 2ξ/(ξ2 + 1)r ∗ exp (−r2) which rapidly vanishes away from the center.
So the term including the q̂j operators giving an exponentially vanishing
contribution can be neglected.

The contribution to sx(~r) given by the p̂j operators is:

∞
∑

j= 1
2

(

−vjf
∗
0j− 1

2

(~r) ujf
∗
0j+ 1

2

(~r)
)

(

0 1
1 0

)

(

−vjf0j− 1
2
(~r)

ujf0j+ 1
2
(~r)

)

= −
∞
∑

j= 1
2

2ujvjf
∗
0j− 1

2

(~r)f0j+ 1
2
(~r) . (1.30)

Using Eq.(1.24) we get (~r ≡ (r, ϕ)):

−2ξ
∞
∑

j= 1
2

<e
{

eiϕ
rj− 1

2 rj+ 1
2

(j − 1
2)!

1
2 (j + 1

2)!
1
2

(j + 1
2)

1
2

ξ2 + (j + 1
2)
e−r2

}

= −2ξ r cosϕ

∞
∑

j= 1
2

(r2)j−
1
2 e−r2

(j − 1
2)!

1

ξ2 + (j + 1
2 )
. (1.31)
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Because the maximum of the first factor occurs for j + 1
2 ∼ r2 we evaluate

the denominator of the second factor by substituting j+ 1
2 → r2, what allows

us to perform the sum explicitly. By noting that r cosϕ = x we obtain sx(~r)
as given by Eq.(1.25).

sx(~r) = − 2xξ

r2 + ξ2
. (1.32)

A similar calculation applies for sy(~r).

sy(~r) = ± 2yξ

r2 + ξ2
. (1.33)

In the case of sz(~r), the extra factor is v2
j −u2

j = [(j+ 1
2)− ξ2]/[(j + 1

2 )+ ξ2]
and ϕ disappears.

sz(~r) = −r
2 − ξ2

r2 + ξ2
. (1.34)
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Discovery consists in seeing what everybody has seen and
thinking what nobody has thought.

Albert Szent-Györgyi (1893-1986)

2
Adiabatic control and Berry phase

Abstract

By adiabatically cycling some external control parameters it is possible that the
many-body wave function of a quantum dot acquire a geometrical Berry phase.
We introduce an effective low energy Hamiltonian capable to describe the singlet
triplet anti-crossing in the two electron dot in the presence of the Rashba coupling
and we calculate explicitly such a geometrical phase. This can be detected both
in the adiabatic (Berry) and in the non-adiabatic regime (Ahronov-Anandan) by
reading the conductance oscillations of a quantum mesoscopic ring.

2.1 Introduction

Manipulating in a controlled fashion the phase of a quantum electronic sys-
tem is presently one of the most relevant challenges in nanophysics, espe-
cially in view of possible applications to quantum computing [1]. Probably,
the most promising route to achieve such a task is provided by coherent
solid-state devices. For instance, a superconducting Josephson qubit has
already been realized as a Cooper pair box, that is, a small superconducting
island, weakly coupled to a charge reservoir via a Josephson junction [2].
The quantum state of the box can be tuned to a coherent superposition of
the charge-zero and the charge-one states. The possibility of realizing su-
perpositions of flux states has been considered, as well [3]. Entanglement
in a semiconducting device made out of two dots, one on top of each other
(“quantum dot molecule”) has been recently optically measured [4].

Usually, quantum algorithms assume that the system dynamically evolves
through a sequence of unitary transformations, or that a set ~λ of external
control parameters of the Hamiltonian H smoothly changes in time [5]. In
particular, if adiabatic evolution is realized across a closed path γ in the pa-
rameter space, close enough to an accidental level degeneracy, the nontrivial
topology of the space makes the state of the system to acquire a “geomet-
rical” phase Γ, referred to as “Berry Phase” [6]. The value of Γ may be
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controlled by properly choosing γ.

Following this idea, geometric adiabatic evolution has recently been pro-
posed as a way to operate with superconducting devices without destroying
phase coherence [7, 8]. Another possibility is using semiconducting nanode-
vices, like single-electron transistors or Quantum Dots (QD). The QD state
can be finely tuned, by means of external magnetic and electric fields act-
ing on the dot, or on the coupling between the dot and the contacts [9].
Moreover, accidental level degeneracies are quite common in QD’s, as seen
both theoretically, and experimentally [10–13]. Also, double dots have been
proposed as possible qubits [14].

In the two electron quantum dot the single triplet crossing becomes an
anti crossing in the presence of a Rashba coupling. In other words by mean
of the magnetic field we can tune the dot at the singlet triplet crossing.
Then by cyclically modulating in time an electric field orthogonal to the dot
plane, and as a consequence the Rashba coupling, we can manipulate the
dot close enough to the level degeneracy point. The nontrivial topology of
the space allows the many body wave function to acquires a “geometrical”
phase Γ. This phase is in general an Ahronov Anandan phase [15] and in
the adiabatic limit a “Berry Phase” [6]. In order to properly describe this
situation we introduce an effective low energy Hamiltonian by projecting the
full Hamiltonian onto the singlet and the triplet states involved in the anti-
crossing. Such a projection gives us a simple two level Hamiltonian that,
in the adiabatic limit recalls the celebrated two level Berry Hamiltonian.
Solving this simple model in the next section we shall show that the many
body wave function of the dot acquires a geometrical phase.
In the second part of the chapter we shall try to describe a possible trans-
port experiment that allows for reading out such a geometrical phase. The
studied device, in this case, is not a quantum dot but a quantum ring. The
choice of the ring allows us to simplify the calculations and gives us a very
clear physical picture as it will be explained in the following. Moreover such
a structure is capable of producing a geometrical phase without any time
dependent parameter because the electrons themselves by moving into the
arms of the ring experience time dependent external fields varying according
to semiclassical equations of motions. Some evidences of geometric phases
will be described, particularly in the non adiabatic regime, that is, when a
strong spin orbit and a weak magnetic fields are present.

2.2 Berry Phase in QM

In this section we shall briefly review the basics of the quantum mechanics
in the adiabatic approximation and introduce the concept of the topological
Berry phase. Imagine a quantal system whose Hamiltonian H is slowly1

1We shall come back later in much detail on the meaning of “slowly”
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altered in time, it follows from the adiabatic theorem [16] that at any in-
stant the system will be in an eigenstate of the instantaneous H. If the
Hamiltonian is returned to its original form, the system will return to its
original state as well, apart from a phase factor. This phase factor contains
a circuit dependent component eiΓ in addition to the familiar dynamical
phase e−iEt/~.

In what follow we will briefly review how it is possible to calculate such
new phase Γ following the same approach of the wonderful original paper
by Berry [6] who first introduced this phase within a general framework.

Let the Hamiltonian be changed by mean of a set of external control
parameters ~λ which depend on time. Let us suppose that these parameters
are changed in time in such way that ~λ(t = 0) = ~λ(t = T ), that is the
excursion of the system describes a closed path in the parameters space, this
path will be denoted as γ. After a certain period T the Hamiltonian comes
back into itself. The system evolves according to Schrödinger’s equation
(from now on, in this section, we shall put ~ = 1 except in some important
results):

i
∂

∂t
|ψ(t)〉 = H

(

~λ (t)
)

|ψ(t)〉 , (2.1)

if the time evolution of the parameters is sufficiently slow, the system is in
an eigenstate of the Hamiltonian at each time:

H(~λ)|n(~λ)〉 = En(~λ)|n(~λ)〉 , (2.2)

with energies En(~λ) and eigenvectors |n(~λ)〉.
First of all, let us discuss what does adiabatical evolution of a quantum

mechanical system means in this framework.
We expand the wave function solving the time dependent Schrödinger

equation on the basis |n(~λ(t))〉 of the instantaneous eigenstates of the Hamil-
tonian:

|ψ(t)〉 =
N
∑

n=1

cn(t)e−i
R t
0 En(~λ(t′)) dt′ |n(~λ(t))〉 , (2.3)

and calculate i∂t|ψ(t)〉:

i∂t|ψ(t)〉 =
∑

n

(

i∂tcn(t) + cn(t)En(~λ(t))
)

e−i
R t
0

En(~λ(t′)) dt′ |n(~λ(t))〉 +

+i
∑

n

cn(t)e−i
R t
0 En(~λ(t′)) dt′∂t|n(~λ(t))〉 . (2.4)

Now we multiply Eq.2.1 onto 〈n(~λ(t))| and using Eq.2.4, we get:

d

dt
cn(t) = −〈n(~λ(t))|∂t|n(~λ(t))〉cn(t) +

+
∑

m6=n

〈n(~λ(t))|∂t|m(~λ(t))〉cm(t)e−i
R t
0 (En(t′)−Em(t′)) dt′ . (2.5)
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Differentiating eq.2.2 with respect to t and projecting onto 〈n(~λ(t))|we find:

〈n(~λ(t))|∂t|m(~λ(t))〉 = −~̇λ 〈n(~λ(t))|(∇~λH(t))|m(~λ(t))〉
En(t) −Em(t)

. (2.6)

Now imagine integrating the second term of the right hand side of Eq.2.5, us-
ing 2.6 and assume that everything except the exponential is approximately
constant in time. We see that the admixture of other state, to a given state
n will be small if

∣

∣

∣

∣

1

ωmn

〈

∂H

∂t

〉∣

∣

∣

∣

<< En(t) −Em(t) (2.7)

where ~ωmn = Em − En. In other words if the change of the Hamiltonian

over on Bohr period for the transition |n〉 → |m〉 is small w.r. to the level

spacing Em −En of the system, the off-diagonal contribution to Eq.2.5 can

be neglected. In this case the coefficients cn(t) can be decoupled and satisfy
the equation:

d

dt
cn(t) = −〈n(~λ(t))|∂t|n(~λ(t))〉cn(t) . (2.8)

This is the core of the adiabatic approximation [17].
Let us prepare the system in the state |n(~λ(t = 0)) > and adiabatically

evolve by H in such a way that at the time t it is into the state |n(~λ(t)) >.
The wave function ψ solving the time dependent Schrödinger equation can
be written as

|ψ(t)〉 = exp

{

−i
∫ t

0
dt′ En

(

~λ
(

t′
)

)

}

exp {iΓn(t)} |n(~λ(t))〉 . (2.9)

The first phase is the usual dynamical phase. We shall focus our attention
on the second contribution Γ which we shall show to be a non integrable
phase: it cannot be written as a function of ~λ and in particular is not single
valued under continuation on the circuit γ, that is Γ(T ) 6= Γ(0) where T is
the time needed to enclose the path γ in the parameters space. After the
time T the total wavefunction can be written as

|ψ(T )〉 = exp

{

−i
∫ T

0
dt′ En

(

~λ
(

t′
)

)

}

exp {iΓn(γ)} |ψ(0)〉 , (2.10)

where the geometrical phase is

Γn(γ)) = i

∫

γ
〈n(~λ)|∇~λ

n(~λ)〉 · d~λ . (2.11)

By applying Stokes theorem, the last expression can take the form

Γn(γ)) = −
∫∫

γ
d~S · ~Vn(~λ) , (2.12)
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where d~S is the area element in ~λ space and

~Vn(~λ) = =m {∇ × 〈n|∇n〉} . (2.13)

So Vn is the curl of a vector which depends on the choice of the phase of the
single-value eigenstate |n(~λ)〉. The dependence on phase is of the following
kind: if |n〉 → exp{iµ(~λ)}|n〉 then 〈n|∇n〉 → 〈n|∇n〉+i∇µ. Thus the vector
is not unique but its curl is. The quantity ~Vn is analogous to a ’magnetic
field’ in the parameter space whose ’vector potential’ is =m〈n|∇n〉. In the
following we shall show that close to the degeneracies of the Hamiltonian
such vector potential acquires the form of a magnetic monopole potential.
Some geometric identities can be applied to Eq. 2.13:

∇× 〈n|∇n〉 = 〈∇n| × |∇n〉 =
∑

m6=n

〈∇n|m〉 × 〈m|∇n〉 (2.14)

and using 2.6, Eq. 2.13 acquires the form:

~Vn(~λ) = =m
∑

m6=n

〈n(~λ)|∇~λH(~λ)|m(~λ)〉 × 〈m(~λ)|∇~λH(~λ)|n(~λ)〉
(

Em(~λ) −En(~λ)
)2 . (2.15)

Easily Γn(γ) is zero if γ encloses no area. It is independent of how the circuit
is traversed, provided that the time evolution of the parameters is slow
enough that adiabatic approximation still holds. The energy denominator
shows that if the circuit γ lies close to a point ~λ∗ in the parameters space at
which the state n is involved in a degeneracy, then Vn(~λ∗), and hence Γ(γ),
is dominated by the term m corresponding to the other states involved. So
let us suppose that the degeneracy involves only two states |+〉 and |−〉, and
E+(~λ) ≥ E−(~λ). For ~λ ∼ ~λ∗ the Hamiltonian can be expanded to first order
in ~λ− ~λ∗ and

~V+(~λ) = =m〈+(~λ)|∇~λ
H(~λ)| − (~λ)〉 × 〈−(~λ)|∇~λ

H(~λ)| + (~λ)〉
(

E+(~λ) −E−(~λ)
)2 , (2.16)

and easily ~V− = −~V+ and Γ−(γ) = −Γ+(γ). We can choose E±(~λ∗) = 0 and
~λ∗ = 0. So, close to the crossing between the two levels, the Hamiltonian can
be written as a simple two by two matrix which in general (in the absence
of symmetries) takes the form

H(~λ) =
1

2

(

Z X − iY
X + iY −Z

)

. (2.17)

The eigenvalues are E+(~λ) = −E−(~λ) = 1/2 R where R2 = X2 + Y 2 + Z2.
The degeneracy at ~λ∗ = 0 is realized if at the same time X = Y = Z = 0,
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that is the degeneracy has co-dimension three. By noting that ~∇H = 1/2σ̂
it is easy to calculate the Berry’s phase. By using Eq. 2.16 we obtain

~V+ =
R̂

2R2
, (2.18)

and Eq. 2.12 tells us that the Berry phase is the flux trough the surface
enclosed by γ of the magnetic field of a monopole with strength −1/2 located
at the degeneracy. In fact

Γ± = ∓1

2
Ωγ , (2.19)

where Ωγ is the solid angle that γ subtends at the degeneracy: it is in a
sense a measure of the view of the circuit as seen from the degeneracy.

2.3 Two electron Quantum Dot:
A Possible SU(2) Berry Phase

In this section we shall introduce a low energy effective Hamiltonian to
describe the two electron quantum dot properties close to the singlet triplet
crossing. To this aim let us start by discussing again Fig.s 1.2 and 1.7. In
order to help the reader, these figures are drawn again in the following.
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Figure 2.1: N=2 particles dot: (Left box) energy spectrum vs magnetic field
ωc in the absence of the SO. ωd = 5meV , U = 13meV , (Right box) energy
spectrum vs magnetic field ωc in the presence of the SO. Same parameter
values and α = 250meV Å

As explained in Chapter 1 the singlet triplet crossing typical of the 2
electron quantum dot (left panel) without spin orbit coupling appears as a
marked anti-crossing in the case of a quantum dot with SO coupling.

The low lying states are (here we label the states by using the total spin
momentum S and the spin projection along the z axis Sz: |S, Sz〉 which are
good quantum numbers when the SO is absent):

• |0, 0〉, that is M = 0, S = 0, Sz = 0, Jz = 0, it is the singlet ground
state at low B,

and then there are the three triplet states :
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• |1,−1〉, that is M = 1, S = 1, Sz = −1, Jz = 0 it is the ground state
at high B,

• |1, 0〉, that is M = 1, S = 1, Sz = 0, Jz = 1 it is higher up in energy
and completes the S = 1 spin multiplet together with the previous
and next state,

• |1, 1〉, M = 1, S = 1, S = 1, Jz = 2.

+
−

+
−

+
−

+
−

+
−

S=0
Sz=0

S=1 S=1 S=1
Sz=0Sz=−1 Sz=1

Figure 2.2: Slater determinant repre-
sentation of the lowest lying states. We
label with a − the orbitals n = 0, m = 0
and with a + the orbitals n = 1, m = 1

In Fig. 2.2 we represent these states by using the single particle Slater
determinants representation. We label the n = 0, m = 0 “orbital” with −
and the n = 1, m = 1 “orbital” with +. So it is possible to describe the
low lying states by mean of appropriate fermionic operators for the dot d̂n,σ

with n = +, − and σ =↑, ↓. So the following correspondences arise

|0, 0〉 = d̂†−,↑d̂
†
−,↓|0〉 ,

|1,−1〉 = d̂†−,↓d̂
†
+,↓|0〉 ,

|1, 0〉 =
1√
2

(

d̂†−,↑d̂
†
+,↓ + d̂†+,↑d̂

†
−,↓

)

|0〉 ,

|1, 1〉 = d̂†−,↑d̂
†
+,↑|0〉 , (2.20)

where |0〉 is the dot state with the two levels ± empty. In this framework
we can write the low energy dot Hamiltonian as:

Hdot =
∑

n,s

εnd̂
†
n,sd̂n,s −Es

~S2 −EzS
z +HSO , (2.21)

where the parameters εn and Es are chosen in order to reproduce the real
spectrum in the presence of e− e interaction and

~S =
∑

n,s,s′

d̂†n,s

~σs,s′

2
d̂n,s′ . (2.22)

HSO is the projection of the Rashba Hamiltonian onto this 4 − d space
spanned by the vectors 2.20:

HSO = Vsod̂
†
+,↓d̂−,↑ + h.c. . (2.23)
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From the last equation it is clear that the spin orbit only couples the two
states |0, 0〉 and |1,−1〉 thus conserving the total angular momentum, Jz = 0;
moreover the other two states Jz = 1, 2 are not coupled by HSO.

Now it is convenient to map the Hilbert space spanned by the four states
of Eq.(2.20) onto a pseudo-spin Hilbert space which basis is constructed
starting from two spins 1

2 : ~S1 and ~S2 and of the corresponding basis |S+, S
z
+〉

with ~S± = ~S1± ~S2 [18–20]. The one-to-one correspondence between the four
low energy states of the dot and of the two fictious spins is:

|0, 0〉 =
1√
2

(|↑1, ↓2〉 − |↓1, ↑2〉) ,

|1,−1〉 = |↓1, ↓2〉 ,

|1, 0〉 =
1√
2

(|↑1, ↓2〉 + |↓1, ↑2〉) ,

|1, 1〉 = |↑1, ↑2〉 . (2.24)

This correspondence allows one to represent any operator acting on the
states 2.20 in terms of the spin-1/2 operators ~S1,2 acting on the 2.24 basis.
By comparing the matrix elements directly one can write:

P
∑

s

d†nsdn′sP ⇒ nδn,n′

[

~S1 · ~S2 −
1

4
+ n

]

, (2.25)

P
∑

ss′

d†ns

1

2
~σss′dn′s′P ⇒ 1

2
δn,n′ ~S+ + δn,−n′

1

2
√

2

[

~S− + 2in~T
]

, (2.26)

where P =
∑

S,Sz |S, Sz〉〈S, Sz | is the projector onto the states 2.20, ~S± =
~S1 ± ~S2 and ~T = ~S1 × ~S2. Equations 2.25, 2.26 have to be intended in the
sense that the operators on the left hand side obey the same algebra as those
on the right hand side. The states 2.20 are eigenstates of the operators ~S+

and ~S1 · ~S2 while ~S− and ~T describe transitions between the singlet and one
component of the triplet. Some important relations among these operators
are reported in appendix 2A while some details about how to calculate the
matrix elements of Eq.s 2.25, 2.26 are shown in Appendix 2B. In this new
representation, close to B∗, the low energy Hamiltonian takes the form [21]:

Hdot = K~S1 · ~S2 − µBSz
+ +

1

2
√

2

(

Vso

(

~S−
− + 2in~T−

)

+ h.c.
)

. (2.27)

The second term is the Zeeman spin splitting, the first term takes into
account the kinetic part of the confined electrons and together both terms
are responsible for the single triplet crossing at B∗ which appears in the
absence of SO coupling.

In Appendix A the commutation relations are reported which show that
while ~S1 · ~S2 and ~S+ commute, they do not commute with ~S− and ~T , nor
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~S−and ~T commute between themselves. This proves that the SO couples
the center of mass coordinate with the relative ones. Hence Kohn’s theorem
does not apply in the case of dots with spin orbit coupling and microwave
radiation shed onto the dot probes interactions as well (see chapter 1 section
5).

As seen in Fig. 2.1 the SO does not couple states |1, 1〉 and |1, 0〉 with
|0, 0〉 and |1,−1〉, nor between themselves. For what the SO is concerned
they are frozen out. If we just retain the two states involved in the anti-
crossing, we can further simplify the problem which boils down to a single
spin 1/2: S̃. The correspondence between the states is

|0, 0〉 → | ↑〉 , (2.28)

|1,−1〉 → | ↓〉 . (2.29)

Defining as P ′ =
∑

s |s〉〈s| as the projector on the two state basis we have:

P ′Sz
+P ′ ⇒ S̃z − 1

2
,

P ′~S1 · ~S2P ′ ⇒ −S̃z − 1

4
,

P ′S±
−P ′ ⇒

√
2S̃± ,

P ′T±P ′ ⇒ ± i√
2
S̃± . (2.30)

It follows that the effective Hamiltonian of Eq.(2.27), rewritten in the new
representation, reads (for further details see appendix 2A-B-C)

HS̃ = −1

2
(
K

2
− µB) − (K + µB)Sz +

(

VsoS̃
− + V ∗

soS̃
+
)

, (2.31)

where the terms in the last parenthesis are due to the spin orbit coupling
and the first two terms allow for the kinetic and magnetic part of the Hamil-
tonian. We can now define an effective magnetic field b̃ as follows:

b̃+ = b̃x + ib̃y = Vso , (2.32)

b̃− = b̃x − ib̃y = V ∗
so , (2.33)

b̃z = −(K + µB) . (2.34)

In terms of b̃ the last Hamiltonian can be written in the form:

Hdot = −1

2
(
K

2
− µB) + ~̃b · ~̃S . (2.35)

This maps, apart from a shift − 1
2(K

2 − µB) of the energies which we shall
neglect in the following, the two-electron Hamiltonian of Eq.(2.27) onto a
simple spin Hamiltonian completely, close to the anti-crossing point.



54 CHAPTER 2. ADIABATIC CONTROL AND BERRY PHASE

The dot state may be controlled by properly tuning the external control
parameters B and E . The adiabatic cycle is realized by keeping B fixed,
and by slowly periodically varying E , with time period T ; because of this
cycling a time dependent spin-orbit coupling term arises, involving the spin
of electrons at the dot. Such an interaction may give raise to a Berry phase
at the QD.

2.3.1 Solution of the low energy spin Hamiltonian

Here we discuss the simple Hamiltonian 2.31. We show that, in the adiabatic
limit, the the dot can acquire a Berry phase which could be measured in
transport experiment as explained in the following sections. By a simple
shift of the energies the Hamiltonian 2.31 can be written in the simple form:

HS̃ = ~̃b · ~̃S . (2.36)

Let us suppose that the spin orbit coupling is generated by a slowly vary-
ing electric field, that is Vso = Eeiωot. Under this assumption the matrix
Hamiltonian in the 2-d basis {| ↑〉, | ↓〉} is:

Ĥ(t) =
1

2

[

−(K + µB) Ee−iωot

Eeiωot (K + µB)

]

, (2.37)

a description of the vector b̃ in polar coordinates allow us to write b̃cos(θ) =
|K + µB| and b̃sin(θ) = |E|, here we introduce θ as measured from the −ẑ
direction

Ĥ(t) =
|b̃|
2

[

cosϑ sinϑe−iωo(t)

sinϑeiωo(t) − cosϑ

]

, (2.38)

where |b̃| =
√

(K + µB)2 + |Vso|2, ωo = 2πt/T . T is the period of adiabatic
evolution and, clearly, the criterion for adiabaticity will be |b̃|T � 1, as |b̃|/2
is the scale of the transition frequency between the two levels of the system.

The path lies along a parallel on the sphere in parameter space of radius
|b̃|/2 = r. ϑ is fixed during adiabatic evolution.

In order to construct the adiabatic Hamiltonian, ĤA(t), let us diagonalize
Ĥ(t) at fixed t. The eigenvalues are given by ε = ±r, while the corresponding
eigenvectors take the form:

|+, t〉 =

(

cos ϑ
2

sin ϑ
2 e

iωot

)

, |−, t〉 =

(

− sin ϑ
2 e

−iωot

cos ϑ
2

)

. (2.39)

The matrix of the eigenvectors, diagonalizing Ĥ at time t, is

B̂(t) ≡
[

cos ϑ
2 − sin ϑ

2 e
−iωot

sin ϑ
2 e

iωot cos ϑ
2

]

. (2.40)
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In order to properly define the adiabatic Hamiltonian, we shall consider the
Schrödinger equation with Hamiltonian Ĥ:

{

i
∂

∂t
− Ĥ(t)

}

|Ψ(t)〉 = 0 .

It is convenient to strip off from the state |Ψ(t)〉 its adiabatic evolution,
operating with B̂†, so to get:

[

i
∂

∂t
− B̂†(t)Ĥ(t)B̂(t) + B̂(t)†i

∂

∂t
B̂(t)

]

B̂†(t)|Ψ(t)〉 = 0 . (2.41)

By definition, B̂ diagonalizes Ĥ(t). Therefore, we may rewrite Eq.(2.41) in
a 2×2 matrix form as:
[(

i ∂
∂t 0

0 i ∂
∂t

)

−
(

r 0
0 −r

)

−ωo

(

sin2 ϑ
2 sin ϑ

2 cos ϑ
2 e

−iωot

sin ϑ
2 cos ϑ

2 e
iωot − sin2 ϑ

2

)]

|u(t)〉 = 0,

(2.42)
where we have defined |u(t)〉 = B̂†(t)|Ψ(t)〉.

From Eq.(2.42), we see that, in the “adiabatic basis”, the total Hamil-
tonian is given by the sum of an “adiabatic” contribution, obtained by ne-
glecting offdiagonal contributions:

ĤA(t) =

(

r + ωo sin2(ϑ/2) 0
0 −r − ωo sin2(ϑ/2)

)

, (2.43)

plus an extra term ∆Ĥ, whose meaning we are now going to figure out.
Indeed, let us consider the projectors P̂±(t) = |±, t〉〈±, t|:

P̂+(t) =

(

cos ϑ
2

sin ϑ
2 e

iωot

) (

cos ϑ
2 sin ϑ

2 e
−iωot

)

=

=

(

cos2 ϑ
2 cos ϑ

2 sin ϑ
2 e

−iωot

cos ϑ
2 sin ϑ

2 e
iωot sin2 ϑ

2

)

P̂−(t) =

(

− sin ϑ
2 e

−iωot

cos ϑ
2

) (

− sin ϑ
2 e

iωot cos ϑ
2

)

=

=

(

sin2 ϑ
2 − cos ϑ

2 sin ϑ
2 e

−iωot

− cos ϑ
2 sin ϑ

2 e
iωot cos2 ϑ

2

)

. (2.44)

It follows that:

[Ṗ± , P±] =
ωo

2
sinϑ

(

− sinϑ cosϑ e−iωot

cosϑ eiωot sinϑ

)

, (2.45)

and it is easy to see that

∆Ĥ = B̂†(t)

(

i

2

∑

σ=±

[
dP̂σ

dt
(t), P̂σ(t)]

)

B̂(t) . (2.46)
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In the next section, we shall derive the exact propagator Û(t), by exactly
integrating the full Schrödinger equation in the adiabatic basis.

2.3.2 The exact propagator

The adiabatic propagator in the basis |±, t〉 is simply given by:

ÛA(t) =

(

e−i(r+ωo sin2(θ/2))t 0

0 ei(r+ωo sin2(θ/2))t

)

(2.47)

We now derive the exact propagator Û(t). In the adiabatic basis we have
found the following formula for Ĥ(t):

Ĥ(t) =

(

r + ωo sin2 ϑ
2 ωo sin ϑ

2 cos ϑ
2 e

−iωot

ωo sin ϑ
2 cos ϑ

2 e
iωot −r − ωo cos2 ϑ

2

)

. (2.48)

The propagator Û(t) is simply defined as the operator that provides us with
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Figure 2.3: Average value of the
spin projection along the z axis us-
ing the adiabatic propagator (black
curve) and the exact propagator for
different values of the product rT .
When rT is very large the average
value 〈S̃z〉 is very close to the one
calculated in the adiabatic approxi-
mation

a state at time t, upon acting on a state at t = 0:

Û(t)|Ψ(t = 0)〉 = |Ψ(t)〉 .

The calculation of the full propagator is performed in appendix 2D, and the
result is

U(t) =

(

(cos(εt) − iγ sin(εt))eiαt −iβ sin(εt)eiαt

−iβ sin(εt)e−iαt (cos(εt) + iγ sin(εt))e−iαt

)

. (2.49)

Where the coefficients α, β, γ are defined in appendix 2D. It is easily verified
that in the adiabatic limit, (T → ∞), U(t) → UA(t). That is, the larger
is the product rT , the better is the approximation of substituting Û with
ÛA. It can be checked in plot 2.3 where it is shows the average value of the
spin projection along the z 〈S̃z〉 calculated both using the adiabatic and the
exact propagators.
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2.3.3 Calculation of the Berry phase

By definition, the differential Berry phase for the system lying within either
state |±, t〉 is given by:

dΓ±

dt
(t) = i~̇λ · 〈±, t|

~∂

∂~λ
|t,±〉 , (2.50)

where ~λ is the set of parameters of the system. For the particular case
we have in mind, since we are using polar coordinates in parameter space.
Therefore, we have:

~λ = (r, ϑ, ϕ) ,

and, along the particular path we have chosen, we obtain:

d~λ

dt
= (0, 0,

2π

T
) , (2.51)

and easily
dΓ+

dt
(t) = −2π

T
sin2(ϑ/2) , (2.52)

and
dΓ−

dt
(t) =

2π

T
sin2(ϑ/2) . (2.53)

Therefore we get, for instance:

Γ±(t) = ∓2πt

T
sin2(ϑ/2) . (2.54)

Obviously by integrating this phase over one period we obtain that the Berry
phase is

Γ±(T ) = ∓2πsin2ϑ/2 , (2.55)

and easily if the circuit in the parameter space enclose no surface (i.e. ϑ = 0)
the Berry phase is absent.
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2.4 Detection of the Berry phase: a possible trans-
port experiment

In this section we describe a possible transport experiment which can allow
to detect the Berry phase accumulated by the wave function of the electrons
traveling through a quantum ring. The choice of a ring simplifies the calcu-
lations, with respect to the dot case, and the results obtained give us a very
clear physical picture.

In order to study the transport through the ring we have to apply two
contacts to it. The simplified geometry that we are going to study is sketched
in Fig. 2.4. We assume that the contacts are located symmetrically with
respect to the center: this assumption simplifies our calculations but does
not alter qualitatively the generality of our results.

Figure 2.4: Sketch of a possible transport experiment across a quantum
ring

The conductance in the framework of a Landauer-Buttiker like approach
[22,23], is proportional to the probability T that one electron traveling into
the dot from the left contact, jumps out from the dot through the right
contact, no matter how long it stays into the ring:

G =
e2

~

∑

σ,σ′

Tσ,σ′ , (2.56)

where σ is the spin of the incoming electron and σ ′ the spin of the outcoming
one. The transmission probability T , for an electron injected with energy
Ein, is a function of the transmission amplitude:

A(ϕf , µf ;ϕ0, µ0|Ein) =

∫ ∞

0
ei

Eintf
~ 〈~rfµf tf |~r0µ00〉 dtf . (2.57)

Here we have considered a particle injected at the point ~ro with a spin µo

at the time to which exits from the point ~rf with the spin µf at the time tf .
The transmission probability is calculated by mean of an exact description
for the electrons in the ring [24]. In order to do that, we calculate the exact
quantum mechanical propagator for a spinful electron in a closed ring by
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means of a Feynman path integral approach. This is not enough, however,
when a source and drain contacts are attached to the ring. We shall discuss
the results in a saddle point approximation what amounts to consider the
orbital motion of the particle as semiclassical. As the contacts are not ’ideal’
they will offer a finite barrier for the incoming electrons. Each contact will
be considered as perfectly equal the other. In our semilcassical framework
an electron moving across the ring ’sees’ a certain reflection amplitude r and
transmission amplitude t or, in other words, it will be back refleted with a
probability r2 and it will be transmitted with a probability t2.

2.4.1 Model Hamiltonian for the electron on the ring

The the electrons in the ring are considered to move on a strictly one dimen-
sional trajectory. The neglection of the actual finite transverse dimension
of the arms of the ring can be performed, to a good level of accuracy, be-
cause the mixing between lateral sub bands alter only quantitatively and
not qualitatively the conductance of this devices as shown in Ref. [25].
We write down the Hamiltonian for the electrons in the ring: we want to de-
scribe a low electron rate transport experiment, so we can neglect, from now
on, the electron correlations within the ring and consider a single electron
injected in the ring at the Fermi energy. The Hamiltonian thus reads:

H =
1

2m

(

~p+
e

c
~A
)2

− 1

2
~ωc σZ + Ĥso , (2.58)

Hso =
α

~

(

ẑ×
(

~p+
e

c
~A
))

·~σ ,

where α is the spin orbit coupling constant inclusive of the effect of an
external electric field orthogonal to the ring plane; as introduced in chapter
1, ωc is the cyclotron frequency and ~σ is the vector of the Pauli matrices. In
the symmetric gauge, by using cylindrical coordinates the vector potential
~A = φ

2πR ϕ̂ (where φ is the flux through the ring, R is its radius, and ϕ a the
orbital coordinate on the ring). So the Hamiltonian takes the form:

H =
~

2

2mR2

(

l̂ +
φ

φ0

)2

+
1

2
~ωc σZ +Hso .

As usual l̂ = −i ∂
∂ϕ , and φ0 = hc

e is the flux quantum. Again we can define:

~Π =
~

R

(

l̂ +
φ

φ0

)

.

Moreover Hso can be rewritten as:

Hso = α [Πxσy − σxΠy] = −α
(

0 Πy + iΠx

Πy − iΠx 0

)

,
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so by applying straightforward transformations and by symmetrizing the
operators (in order to assure the hermiticity of the Hamiltonian), the spin
orbit contribution can be written as

Hso = − α

2R

[(

e−iϕ(l̂ +
φ

φ0
) + (l̂ +

φ

φ0
)e−iϕ

)

σ++

(

eiϕ(l̂ +
φ

φ0
) + (l̂ +

φ

φ0
)eiϕ

)

σ−

]

, (2.59)

where we have introduced the usual operators σ± = (σx ± iσy)/2.

2.4.2 Topology of the ring

The topology of our problem is non trivial: the electrons moving into a ring
see a multiply connected space Q = R2 −C where C is the ring center. The
usual evolution operator, defined as the integral kernel K(~r, ~r ′, t) (in this
subsection we shall neglect spin indexes) such that

ψ(~r, t) =

∫

d~r′ K(~r, ~r′, t)ψ(~r′, 0) , (2.60)

onto our space acquires the form [26]:

K(~r, ~r′, t) =
+∞
∑

n=−∞

Kn(~r, ~r′, t) , (2.61)

where n represents the n− th homotopy class (or in another language n is
the winding number) labeling for n > (< 0) electrons traveling unticlockwise
(clockwise), in the dot. The path integral will be calculated onto a covering
space (U, π), which allow to avoid the complications due to the multiple
connection. U is the log Riemann surface and π the projection of U onto
Q, defined as follows:

U 3 r̃ = (r, θ) R < r < +∞; −∞ < θ < +∞ .

And the application π is defined as:

π : U → Q; (r, θ) → (r, θ − 2nπ) ,

0 ≤ θ − 2nπ ≤ 2π n ∈ Z .

The difference between Q and its covering U is in the definition of the θ
angle: in the nth sheet of the Riemann surface θ → θ + 2πn.

On such Riemann surface the problem appears simplified because paths
that in Q belong to different homotopy classes are now, in U, different paths.
Indeed they have the same starting point but different finishing points that
lye on different sheets of the new space. So the kernel now read:

θ → θ + 2π ⇒ Kn → Kn+1 ,

and the calculations of the nth kernel Kn is performed onto the space with
trivial connection U.
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2.4.3 Path-integral of a spinful particle on the ring

The transition amplitude of a particle that comes into the ring in the point
ro with a spin µo at the time to and exit from the point rf with the spin µf

at the time tf is expressed as:

〈~rf µf tf |~ro µo to〉 , (2.62)

where we use the notation |~r µ〉 = |~r〉 ⊗ |µ〉 . Eq. 2.62 has to be intended
as:

〈~rf µf tf |~ro µo 0〉 = 〈~rf µf |U(tf , 0)| ~r0 µ0〉 , (2.63)

where, for simplicity, we have posed t0 = 0.
Because we consider a strictly one dimensional ring, no dependence on the
radius enters the Hamiltonian, so we can write the previous amplitude only
in terms of angular coordinates on the ring:

〈ϕf µf tf |ϕo µo 0〉 = 〈ϕf µf |e−iHtf |ϕo µo〉 . (2.64)

The full path integral procedure is reported in appendix 2E for electrons
belonging to a well defined homotopy class n (that is ϕn −ϕ0 = π(2n−1))).
The transition amplitude is:

〈ϕfµf tf |ϕ0µ00〉 ≡ eitf
α2 m

2

∫ ϕf

ϕ0

D[ϕ(t)]e
i

R tf
0

“

m
2

R2ϕ̇2(t)− φ
φ0

ϕ̇(t)
”

〈µf |T̂ ei
R tf
0 C[ϕ(t)]|µ0〉,
(2.65)

where T̂ indicates the chronologically ordered product and Ĉ[ϕ(t)] is the
matrix:

Ĉ[ϕ(t)] =

[

−1

2
~ωcσz + e−iϕ(t)ασ+

(

ϕ̇(t)Rm+
1

2R

)

+ eiϕ(t)ασ−

(

ϕ̇(t)Rm− 1

2R

)]

.

(2.66)
The first phase factor in Eq. (2.65) originates from the Rashba coupling,
the second one is the usual kinetic energy and the third one, after the in-
tegration, will provide the Ahronov-Bohm phase. The quantum evolution
of the spin is calculated, in the following, for a particular saddle point field
ϕcl(t) evaluated in the next subsection. The spin propagator appearing as a
last piece in Eq.2.65 will provide an additional geometrical phase. The full
evolution kernel, from Eq.2.61, is

∑

n

eitf
α2 m

2

∫

n
D[ϕ(t)] e

i
R tf
0

“

m
2

R2ϕ̇2(t)− φ
φ0

ϕ̇(t)
”

〈µf |T̂ ei
R tf
0 C[ϕ(t)]|µ0〉 , (2.67)

where n labels the different homotopy classes.
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2.4.4 Saddle point approximation

As outlined before, the transition amplitude for electrons injected in the ring
at the energy Ein is:

A(ϕf , µf ;ϕ0, µ0|Ein) =

∫ ∞

0
ei

Eintf
~ 〈rfµf tf |r0µ00〉 dtf . (2.68)

The matrix element 〈rfµf tf |r0µ00〉 can be evaluated in the saddle point
approximation. This approximation allow us to find the path which gives
the main contribution to Eq.2.65. As in classical mechanics, the saddle point
path satisfies the classical Lagrange equation:

∂L
∂ϕ

− d

dt

∂L
∂ϕ̇

= 0 . (2.69)

Where the whole Lagrangian from Eq.2.65 has to be intended as:

L(ϕ̇) =
m

2
R2ϕ̇2 − Φ

Φ0
ϕ̇− 1

2
ωcσZ + e−iϕσ+(ϕ̇Rαm+

α

2R
) +

+e−iϕσ+(ϕ̇RαEm− α

2R
) .

By simply substituting in Eq.2.69 we have:

mr2ϕ̈+ i
α

2R

(

e−iϕσ+ + eiϕσ−
)

= 0 . (2.70)

It appears that
∏N

i=1 e
ε
~
Ĉi contributes to the equation of motion (2.70) only

up to α
2R (momentum quantum fluctuation). If we suppose that R is the

radius of a mesoscopic structure, these terms can be neglected. So the
equation of motion oversimplifies and reads:

mR2 ϕ̈ = 0 ⇒ ϕ̇cl = cost =
ϕf − ϕ0

tf
=
π(2n− 1)

tf
, (2.71)

where ϕ(0) = ϕ0 and ϕ(tf ) = ϕf , and the pedix cl reads for ’classical’. So
the transition amplitude, in the saddle point approximation, is:

〈ϕfµf tf |ϕ0µ00〉cl ' lim
N→+∞

(
√

mR2

2πε

)N

e
−i φ

φ0
(ϕf−ϕ0) eitf

α2 m
2 ×

〈µf |Ûcl(tf , 0)|µ0〉
∫

dϕ1..dϕN−1 e
ε

PN
i=1

m
2

R2ϕ̇2
i−1 ,

where

Ûcl(tf , 0) =

N
∏

i=1

e
ε
~

Ĉcl
i , (2.72)

is the spin evolution operator evaluated along the classical path.
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The term e
−i φ

φ0
(ϕf−ϕ0) is the so-called Ahronov-Bohm phase. The Rashba

term does not give any additional Ahronov-Bohm phase because the effec-
tive magnetic field it originates lies in the plane. As a last step we have to
evaluate the expression:

lim
N→+∞

(
√

mR2

2πε

)N
∫

dϕ1..dϕN−1 e
1
~

PN
i=1

m
2

R2ϕ̇2
i−1 =

=

√

m

2iπ~tf
e
i mR2

2 tf
(ϕf−ϕ0)2

.

In conclusion the transition amplitude, in the saddle point approximation,
is:

〈ϕfµf tf |ϕ0µ00〉cl '
√

m

2iπtf
e
i mR2

2 tf
(ϕf−ϕ0)2

e
−i φ

φ0
(ϕf−ϕ0)

ei tf
α2 m

2 ×

〈µf |Ûcl(tf , 0)|µ0〉 . (2.73)

Moreover the contacts are located at an angular distance of π and the so-
lution obtained is valid for a path beonging to a certain homotopy class n
where ϕf − ϕ0 = π (2n− 1) = ϕn.
Eq. (2.73) is the transition amplitude for an electron which travels through
the dot in a time tf , it is not properly what we need in order to calculate
the transmission probability which, of course, does not depend on time, but
expresses the probability that an incoming particle jumps out from the ring,
no matter how long it does stay onto it.
So we can fix the winding number n and the injection energy, and integrate
over all the possible final times up to a very long time tf = ∞. Obviously
not all the values of the injection energy are allowed but only discrete val-
ues will be available corresponding to the eigenstates of the single particle
Hamiltonian on the ring as pointed out in [25]. Finally, the transmission
probability amplitude can be expressed as:

A(ϕf , µf ;ϕ0, µ0|Ein) =

∫ ∞

0
ei

Eintf
~

√

m

2iπtf
e
i mR2

2 tf
(ϕf−ϕ0)2

e
−i φ

φ0
(ϕf−ϕ0)×

ei tf
α2 m

2 〈µf |Ûcl(tf , 0)|µ0〉 dtf .(2.74)

For each n there will be a particular traveling time which will give a greater
contribution to the total amplitude. This allow us to perform a stationary
phase approximation. To impose the stationary phase condition on Eq.2.73
we should solve:

d

dtf

[(

α2 m

2~3
+Eintf

)

+
mR2

2~ tf
π2(2n− 1)2

]

= 0 ,
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where we have made use of Eq. (2.4.4). Easily (omitting the pedix f and
replacing it with the label n):

tn =
π(2n− 1)τ0
√

(ksoR)2

4 + Ẽin

, (2.75)

where we have introduced the time scale τ0 = mR2/~, the momentum kso =
2mα/~2 and the dimensionless injection energy Ẽin = Ein/(~

2/(mR2)).
Now it clearly emerges that, for each homotopy class, there is a particu-
lar time tn which mostly contributes to the transmission.

This time increases with n. So we can substitute this time into the
equation (2.73) and sum over all the possible homotopy classes n from −∞
to +∞. Now the reader could argue that negative n should also mean
negative time: nevertheless in the framework of our calculation the time is
only an indication of the traveling direction and positive and negative n has
only to be intended as unticlockwise or clockwise rotation directions in the
ring.

We then obtain the total transition amplitude between (ϕ0, µ0) e (ϕf , µf ),

A(µf ;µ0|Ein) =

∞
∑

n=−∞

√

m

2iπtn
ei

Eintn
~ ei

mR2

2 tn
(π(2n−1))2e

−i φ
φ0

(π(2n−1))
(2.76)

ei tn
α2 m

2 ×〈µf |Ûcl(tn, 0)|µ0〉 ,

we have omitted the injection and ejection angle which have been fixed to
be 0 and (2n− 1)π for each winding number n.
This semiclassical approach allows us to to estimate the angular velocity of
the electrons rounding n times in the ring:

ϕ̇cl =
ϕf − ϕ0

tf
=
ϕn

tn
=

√

(ksoR)2

4 + Ẽin

τ0
. (2.77)

This clearly states that the velocity is constant independent of n; the period
of evolution in the ring:

T cl =
2π

ϕ̇cl
=

2πτ0
√

(ksoR)2

4 + Ẽin

. (2.78)

Taking into account Eq.(2.75), the characteristic time can be also expressed
in terms of the evolution period T :

tn = T cl

(

2n− 1

2

)

.
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Eq.2.77 can be also improved by introducing the scattering center at the
contacts (introduced the previous subsection) with semiclassical reflection
amplitude r and transmission amplitude t such that:

A(µf ;µ0|Ein) = t4
∞
∑

n6=0,n=−∞

(r2)2|n|−1

√

m

2iπtn
e

iEintn
~ ei

mR2

2 tn
(π(2n−1))2×

e
−i φ

φ0
(π(2n−1))

ei tn
α2 m

2 〈µf |Ûcl(tn, 0)|µ0〉 . (2.79)

Now easily Tµ0,µf
= |A(µf ;µ0)|2. Using a semiclassical picture, one can

imagine that each electron can jump out of the ring in infinitely different
ways, that is after 1/2 round trip, after 3/2 round trips, after 5/2, and so
on. Each of this different paths is associated to a characteristic weights

and ’times’. It is worth noting that the prefactor
√

m
2iπtn

is proportional

to
√

1/(2n − 1)π: this means that paths with high winding numbers, cor-
responding to electrons which experience multiple reflections into the ring,
gives a vanishing contribution to the transition amlitude and, as a conse-
quence, to the conductance. Therefore we expect the main contribution to
the conductance to be given by electrons performing a low number of round
trips in the ring.
The last step to calculate the transmission probability is the evaluation of
the spin dynamics

〈µf |Ûcl(tn, 0)|µ0〉 = 〈µf |e−
i
~

R tn
0

Ĉcl dt|µ0〉 , (2.80)

where, from Eq.(2.122):

Ĉcl =

[

−1

2
~ωcσz + e−iϕcl

σ+

(

ϕ̇clR
αE

~
m+

αE

2R

)

+ eiϕ
cl
σ−

(

ϕ̇clR
αE

~
m− αE

2R

)

]

.

(2.81)
Here R is the radius of a mesoscopic ring ∼ 50 ÷ 100nm this allow us to
neglect the term αE

R and consider only ϕ̇clRαE
~
m. So, once again the spin

evolution seems to be regulated by the simple 2 by 2 Hamiltonian of Eq.2.36

ĤS = ~b · ~S ,

by simply using the following correspondences:

b cos θ → −1

2
~ωc , b sin θ → ϕ̇clR

αE

~
m .

In other words our semiclassical picture allow us to describe ’classically’ the
orbital dynamics and the spin dynamics in a fully quantum mechanical way.
Interestingly, here, the real external fields are time independent but, because
of the periodic motion of the electrons in the ring, they ’see’ effective time
dependent external fields which allow us to treat with the spin dynamics as
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in the usual Berry Hamiltonian. The solution of the spin dynamics is the
same as reported into the previous section (for details see also the appendix
D) and eventually shows a geometrical phase due to the non trivial topology
of the parameter space.

So the transmission amplitude of Eq.2.80 can be obtained both in the
adiabatic approximation and in an exact form by using all the results of
appendix 2D and giving the appropriate meaning to all the symbols.

At this point we are able to evaluate the conductance and Eq.2.56 can
be rewritten as

G =
e2

~

[

|A(↑; ↑)|2 + |A(↑; ↓)|2 + |A(↓; ↓)|2 |+A(↓; ↑)|2
]

(2.82)

where the evaluation of the single transmission amplitudes of 2.79 have been
calculated by numerically evaluating the summation over the winding num-
bers of Eq.2.79 .

2.4.5 Conductance oscillations
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Figure 2.5: Conductance vs φ/φ0 for (left panel) ideal coupling with the
contacts r = 0 and (right panel) more realistic contacts r 6= 0 for different
values of the reflection amplitude at the contacts

The results showed in figures 2.5, 2.6 are in agreement with the other
semiclassical analytical [25] and numerical [27] theoretical predictions. More-
over our improved path integral approach allow us to include also the quan-
tum fluctuations which mainly contributes in the case of non ideal contacts,
that is, with reflection amplitudes different from zero.

In fig 2.5[left panel] the dimensionless conductance is plotted vs φ/φ0

in the absence of the Rashba coupling and with ideal contacts. The con-
ductance shows the well known Ahronov-Bohm oscillations [28]. In Fig.
2.6[right panel] we represent again the dimensionless conductance vs φ/φ0

but for different values of the reflection amplitude r at the contacts. We
suppose that the two contacts are perfectly equal each other and the incom-
ing electrons can be back-reflected with a probability r2 and transmitted
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with a probability t2 = 1 − r2. For r = 0, upper curve, we reproduce the
perfect coupling conditions and we can observe the same behavior as in Fig.
2.5[left panel]. Moreover, by increasing the reflection amplitude, the elec-
trons with higher order winding numbers (n > 1) generate higher harmonics
oscillations.
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Figure 2.6: Conductance vs kSOR for (left panel) ideal coupling with the
contacts r = 0 and (right panel) more realistic contacts r 6= 0 for different
values of the reflection amplitude at the contacts

In fig 2.6[left panel] the dimensionless conductance is plotted vs the
parameter kSOR in the absence of the orthogonal magnetic field and with
ideal contacts. The conductance shows some quasi-periodic oscillations and,
remarkably, reproduces the zeros at kSOR =

√
3,
√

15,
√

35, ... predicted by
other authors [25, 27].

In Fig. 2.6[right panel] we represent again the dimensionless conduc-
tance vs kSOR but for different values of the reflection amplitude r at the
contacts. Once again, for r = 0, upper curve, we reproduce the perfect
coupling conditions and again we can observe the same behavior as in Fig.
2.6[left panel]. By increasing the reflection amplitude, the electrons with
higher order winding numbers (n > 1) makes further interference effect
thus generating oscillations at higher harmonics in the conductance. As ex-
pected, by increasing r also the oscillations amplitude decrease and there is
no conductance at all in the case of a totally reflecting barrier with r = 1.
Nevertheless the superimposed oscillations at r 6= 0 does not appear to be
perfectly periodic as in the case of Fig. 2.5: in this case a variable number
of secondary peaks appear in correspondence to different values of the SO
coupling. This is due to beating effects between the SO phases and a ge-
ometric Ahronov-Anandan [15] phase which comes from the spin evolution
operator. In the non adiabatic regime, that is, at low magnetic fields, some
unexpected phenomena can emerge. In particular in Fig.s 2.7 and 2.8 we
can see the conductance for a single incoming spin channel ↑ for two differ-
ent values of the SO coupling: kSOR = 2 and kSOR = 6 respectively. Once
the spin orientation of the incoming electron is fixed to be ↑, two conduc-
tance channels can be studied that are G↑,↑ and G↑,↓ for outgoing electrons
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Figure 2.7: Conductance vs φ/φ0 for ideal coupling with the contacts r = 0
and corresponding average value of the outcoming spin < Sz >.

with spin up and down respectively. A clear correspondence between these
two conductance channels and the average value of the spin of the outgoing
electron emerges. Interestingly, in correspondence to minima of the G↑,↑

there are maxima of G↑,↓ and the spin projection along the z axis for the
outgoing electrons reaches its minimum. For weak spin orbit coupling this
is a clear indication of the Rashba spin precession but does not allow for
spin flippings (Fig. 2.7). If we increase the SO coupling, the flipping of
the outgoing spins is possible as depicted in figure 2.8. Moreover in both
cases by increasing the magnetic field (in other words we are restoring the
adiabaticity) orthogonal to the ring plane both the simple precession and
the spin flip phenomena tends to disappear because the spins are forced to
be aligned in the direction of the magnetic field.

2.5 Discussion

In mesoscopic quantum structures it is possible to drive the system trough
an adiabatic sequence of unitary transformations which does not alter the
energetical ordering of the eigenstates of the Hamiltonian but affects their
phase. This way of controlling such devices is very interesting because can
allow for reading the coherence of the quantum states of a mesoscopic device
by simply looking at its quantum mechanical phase, for instance, in the
framework of transport experiment.
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Figure 2.8: Conductance vs φ/φ0 for ideal coupling with the contacts r = 0
and corresponding average value of the outcoming spin < Sz >.

In this chapter we have first dealt with the case of a two electron quan-
tum dot close to the single triplet crossing. The case under examination
seems to be very interesting because it fulfill in a wonderful way all the re-
quirements needed to obtain a topological Berry phase. In the presence of a
Rashba spin orbit coupling a gap develops between the two states involved
in the crossing which, thus, becomes an anti-crossing. If the electric field is
cyclically modulated in time it can periodically tune the gap and drive the
dot in such a way that the many body wave function of the electrons can
acquire a topological phase. In fact the level splitting, close to the singlet
triplet transition, can be finely tuned in order that its product times the
period of the quantum evolution satisfies the adiabaticity condition. By in-
troducing an effective low energy Hamiltonian [21] we show that the project
outlined before can be actually realized into a parabolically confined two
electron quantum dot in the presence of a magnetic field orthogonal to the
dot plane and of an additional electric field that can allow for the modulation
of the Rashba coupling.

Provided that a quantum topological phase can be induced onto the wave
function of the dot, the second point faced into this chapter concerns with
the possibility to observe this phase.

Our main idea is that evidences of such a geometrical phase can be
found by studying the conductance oscillations of a mesoscopic quantum
ring. The ring geometry allows us to simplify the calculation of the conduc-
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tance through with respect to the case of the dot.
In the framework of a ballistic Landauer Buttiker approach we perform a

path integral calculation which allows us to calculate the conductance of the
dot. The geometrical phase, now, emerges from the quantum mechanics of
the spins, which moving into the ring, experience time dependent effective
fields although the real fields are fixed. This is a nice way to induce a
topological phase and allow us to explore both adiabatic and non adiabatic
regimes by choosing the strength of the external fields.

In the non adiabatic regime again a topological phase arise [15], which
gives back the Berry phase [6] only in the adiabatic limit.

Moreover in the non adiabatic regime some interesting spin flip phenom-
ena have been studied that should be measured experimentally giving an
extimation of the nonadiabaticity of the quantum evolution.
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Appendix 2A
Some properties of the operators S and T

Using

[Sα
i , S

β
j ] = δij

∑

γ

εαβγS
γ
i ,

it is possible to proof the following commutation relations between the op-
erators ~S± = ~S1 ± ~S2 and ~T = ~S1 × ~S2.

(

~S · ~T
)

−
(

~T · ~S
)

= 4i
(

~S1 · ~S2

)

, (2.83)
[

~S−,
(

~S1 · ~S2

)]

= −2i~T , (2.84)
[

~T ,
(

~S1 · ~S2

)]

=
i

2
~S− . (2.85)

These relations allow to relate ~S− and ~T by mean of the unitary transfor-
mation:

2~T = e−i(π/2)(~S1·~S2)~S−e
i(π/2)(~S1·~S2) , (2.86)

since
(

~S1 · ~S2

)

commutes with ~S+ application of this transformation to the

identity

[Sα
±, S

β
−] = i

∑

γ

εαβγS
γ
∓ , (2.87)

leads to the equations

[Sα
+, T

β] = i
∑

γ

εαβγT
γ , [Tα, T β] =

i

4

∑

γ

εαβγS
γ
+ . (2.88)

Appendix 2B

Mapping of the low energy effective Hamiltonian
onto the two spin 1/2 model

In order to properly map the dot Hamiltonian onto the two spin basis we
have to project the operators from the original Hartree Fock 4 − d basis
of Eq 2.20 to the 4 − d two spin S1, S2 basis of Eq.2.24. Defining P =
∑

S,Sz |S, Sz〉〈S, Sz | as the projector on the original basis 2.20, the following
correspondences arise 2.26:

P
∑

s

d†nsdn′sP ⇒ nδn,n′

[

~S1 · ~S2 −
1

4
+ n

]

, (2.89)

P
∑

ss′

d†ns

1

2
~σss′dn′s′P ⇒ 1

2
δn,n′ ~S+ + δn,−n′

1

2
√

2

[

~S− + 2in~T
]

. (2.90)
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In order to properly understand the mapping, we sketch the way used to
calculate the correspondence between matrix elements in the two different
basis. As a simple example we now calculate the correspondence between
two matrix elements according to Eq.2.89.

First we have to calculate the matrix elements of
∑

s d
†
nsdn′s between the

states of the old basis, as a simplification we shall do it only for the singlet
state d̂†−↑d̂

†
−↓. Such a matrix element can be written as:

〈d̂−↑d̂−↓

∣

∣

∣

∣

∣

∑

s

d†nsdn′s

∣

∣

∣

∣

∣

d̂†−↑d̂
†
−↓ > , (2.91)

and only nonzero contributions from the summations are:

〈d̂−↑d̂−↓

∣

∣

∣d
†
−↑d−↑ + d†−↓d−↓

∣

∣

∣ d̂
†
−↑d̂

†
−↓ >= 2 . (2.92)

Now in the two spin basis the corresponding matrix element is again:

1√
2

(〈↓1, ↑2| − 〈↑1, ↓2|)nδn,n′

(

~S1 · ~S2 −
1

4
+ n

)

1√
2

(|↓1, ↑2〉 − |↑1, ↓2〉) = 2 ,

(2.93)
because n = −1, ~S1 · ~S2 = 3/4. Thus operating in the same way for all the
matrix elements of Eq. 2.89, and 2.90, one easily can check that the dot
Hamiltonian restricted to this new low energy base reads:

Hdot = K~S1 · ~S2 − µBSz
+ +

1

2
√

2

(

Vso

(

~S−
− + 2in~T−

)

+ h.c.
)

. (2.94)

Appendix 2C
Mapping of the two spin 1/2 model onto the single

spin model

The spin orbit Rashba coupling only couples the states |0, 0〉 and |1, 1〉 of
Eq.s 2.20, therefore is it possible to map the two spin Hamiltonian of Eq.2.27
onto the subspace spanned by a single spin S̃ = 1/2 with the following
correspondences:

| ↑〉 ⇐⇒ |0, 0〉 =
1√
2

(|↑1, ↓2〉 − |↓1, ↑2〉) ,

| ↓〉 ⇐⇒ |1,−1〉 = |↓1, ↓2〉 ,
(2.95)

In order to properly map the two spin effective Hamiltonian onto the single
spin basis we have to project some important operators from the 4−d basis
(in the following old basis) of the two spin system to the 2 − d basis (new
basis) of the single spin S̃.
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Defining as P ′ =
∑

s |s〉〈s| as the projector on the two state basis, among
the operators contained in 2.27 only the following have non zero matrix
elements:

P ′Sz
+P ′ ⇒ S̃z − 1

2
,

P ′~S1 · ~S2P ′ ⇒ −S̃z − 1

4
,

P ′S±
−P ′ ⇒

√
2S̃± ,

P ′T±P ′ ⇒ ± i√
2
S̃± . (2.96)

In order to properly understand the mapping, in the following, we sketch the
way used to calculate the correspondence between matrix elements in the
two different basis that is purely formal. A simple example is the analogy

P ′Sz
+P ′ ⇒ S̃z − 1

2
.

First we have to calculate the matrix elements of Sz
+ between the states of

the old basis 〈↓1, ↓2|:

〈↓1, ↓2|Sz
+|↓1, ↓2〉 = −1 , (2.97)

1√
2

(〈↑1, ↓2| − 〈↓1, ↑2|)Sz
+

1√
2

(|↑1, ↓2〉 − |↓1, ↑2〉) = 0 , (2.98)

and the off-diagonal elements are zero. The correspondence to the single
spin basis is realized by the operator S̃−1/2, in fact its matrix elements are

〈↓ |S̃ − 1/2| ↓〉 = −1 , (2.99)

〈↑ |S̃ − 1/2| ↑〉 = 0 . (2.100)

so the correspondence between matrix elements is reached. Analogously we
can proof all the equations 2.96.

By simple mapping each matrix element of Eq.2.27 with the help of
equations 2.96 we can map the two spin effective Hamiltonian onto the
single spin basis:

Hdot = −1

2

(

K

2
−B

)

+ ~̃b · ~̃S , (2.101)

where bz = −(K + B) and b+(−) = bx + (−)iby = 2V
(∗)
so . Where |b| =

√

(K +B)2 + |2Vso|2 and the tilting angle θ is defined by tan(θ) = |2Vso|
−|K+B| .
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Appendix2D
Adiabatic and exact propagator

In order to find the propagator of the Berry Hamiltonian, we may solve the
system of differential equations in the adiabatic basis:

i
d

dt

(

u+

u−

)

=

(

r + ωo sin2 ϑ
2 ωo sin ϑ

2 cos ϑ
2 e

−iωot

ωo sin ϑ
2 cos ϑ

2 e
iωot −r − ωo sin2 ϑ

2

)(

u+

u−

)

.

(2.102)
First we neglect the off-diagonal components and evaluate the adiabatic
propagator by we solving

i
d

dt

(

uA
+

uA
−

)

=

(

r + ωo sin2 ϑ
2 0

0 −r − ωo sin2 ϑ
2

)(

uA
+

uA
−

)

. (2.103)

It easily gives us

uA
+(t) = u+(0)e−irte−iωo sin2 ϑ

2 , (2.104)

uA
−(t) = u−(0)eirteiωo sin2 ϑ

2 . (2.105)

After a period T = 2πωo the second exponent in the evolution operator is
the so called Berry phase:

Γ±(t) = ∓ωot sin
2 ϑ

2

Now we try to solve the equations for the full propagator U(t), that is we do
not neglect off-diagonal component to the Hamiltonian 2.48 that we rewrite
here as:

H(t) =

(

r + ωo sin2 ϑ
2

1
2ωo sinϑe−iωot

1
2ωo sinϑeiωot −r − ωo sin2 ϑ

2

)

. (2.106)

The solution is trivial. First of all, one may switch to a time-independent
coefficient matrix by defining:

(

y+

y−

)

=

(

e−i ωo
2

t 0

0 ei
ωo
2

t

)(

u+

u−

)

. (2.107)

We call the T the matrix transformation of Eq.2.107. So by defining

Y =

(

y+

y−

)

,

W =

(

u+

u−

)

,

we can easily write
Y = T W, W = T−1 Y . (2.108)
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The Eq.s 2.102 now read:

i
dy+

dt
(t) = (r − ωo

2
cos(ϑ))y+(t) +

ωo

2
sinϑy−(t) ,

i
dy−
dt

(t) = +
ωo

2
sinϑy+(t) + (−r +

ωo

2
cos(ϑ))y−(t) . (2.109)

Now we define r′ = r− ωo
2 cosϑ and s = ωo

2 sinϑ, so that in matrix form we
have:

i
d

dt

(

y+

y−

)

=

(

r′ s
s −r′

)(

y+

y−

)

, (2.110)

in a compact form we can rewrite the last equation as:

i
d

dt
Y = C Y , (2.111)

and the matrix C is easily identified.
We now decouple the previous system of equation by mean of diagonalizing
the matrix C. Its eigenvalues are λ = ±ε = ±

√
r′2 + s2 and the matrix that

diagonalizes C is

P =

(

1 r′−ε
s

ε−r′

s 1

)

, (2.112)

and its inverse is

P−1 =

(

s2

2ε(ε−r′)
(ε−r′)s
2ε(ε−r′)

− (ε−r′)s
2ε(ε−r′)

s2

2ε(ε−r′)

)

. (2.113)

Easily, in fact,

P−1 C P =

(

ε 0
0 −ε

)

. (2.114)

So Eq.2.111 reads:

i
d

dt
P−1 Y = P−1 C P P−1 Y , (2.115)

and by calling V = P−1 Y , we have

i
d

dt
V =

(

ε 0
0 −ε

)

V . (2.116)

Its formal solution is:

V (t) =

(

e−iεt 0
0 eiεt

)

V (0) , (2.117)

or, in matrix form
V (t) = S(t) V (0) . (2.118)
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Now we apply inverse transformations in order to obtain the full Schrödinger
propagator, that is the matrix transformation between (W (t) and W (0)).

W (t) = T−1 P S P−1(0) T (0)W (0) ,

since P does not depend on time we have P−1(0) ≡ P−1. Moreover T (0) ≡
I2 so the full evolution operator is

U(t) = T−1 P S P−1 ; (2.119)

by introducing:

α =
ωo

2
cos(θ) ,

β =
s

ε
=
ωo

2ε
sin(θ) ,

γ =
r′

ε
=
r + ωo

2 cosϑ

ε
,

and performing all the matrix products one has:

U(t) =

(

(cos(εt) − iγ sin(εt))eiαt −iβ sin(εt)eiαt

−iβ sin(εt)e−iαt (cos(εt) + iγ sin(εt))e−iαt

)

. (2.120)

Appendix 2E

Path integral for a spinful particle on a ring

We want to calculate the transition amplitude:

〈ϕf µf tf |ϕo µo 0〉 = 〈ϕf µf |e−iHtf |ϕo µo〉 . (2.121)

First we calculate the transition amplitude for a time interval ε = limN→+∞
i tf
N :

H0 =
~

2

2mR2

(

l̂ +
φ

φ0

)2

+
1

2
~ωcσz .

Applying Trotter’s formula [29], we obtain:

M1,0 = 〈ϕ1 µ1|e−
ε
~
(H0+HS−0)|ϕo µo〉 ' 〈ϕ1 µ1|e−

ε
~
H0e−

ε
~

Hso |ϕo µo〉 =

= 〈ϕ1 µ1|e−
ε
~
H0

(

∑

µ

∫

|p1µ〉〈p1µ|dp1

)

e−
ε
~
Hso |ϕo µo〉 .

Where |pϕ〉 are eigenstates of the angular momentum l̂ with eigenvalues:

l̂ |p1〉 =
1

i

d

dϕ
|p1〉 = p1|p1〉 ,
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this implies the following rule:

〈ϕ1µ1|p1µ〉 =
1√
2π
eip1ϕ1 δµµ1 .

We stress that in this problem we have no quantization of the momentum
p because the covering space U is unbounded −∞ < ϕ < +∞. By using
these relations the transition amplitude becomes:

M1,0 =
∑

µ

∫

dp1〈ϕ1µ1|e−
ε
~
H0 |p1µ〉×

〈p1µ|e
ε
~

α
2R

h“

e−iϕ(l̂+ φ
φ0

)+(l̂+ φ
φ0

)e−iϕ
”

σ++
“

eiϕ(l̂+ φ
φ0

)+(l̂+ φ
φ0

)eiϕ
”

σ−

i

|ϕ0µ0〉 .

In order to calculate the matrix element

〈p1µ|e−
ε
~
Hso |ϕ0µ0〉 ,

we have to order in a right way the operators within the Hamiltonian by
using the relations:

[eiϕ, l̂] = i eiϕ[ϕ, l̂] = −eiϕ , [e−iϕ, l̂] = −i e−iϕ[ϕ, l̂] = e−iϕ ,

being [ϕ, l̂] = i. So the ordered spin orbit Hamiltonian can be written as:

Hso = − α

2R

[(

e−iϕ + 2(l̂ +
φ

φ0
)e−iϕ

)

σ+ +

(

−eiϕ + 2(l̂ +
φ

φ0
)eiϕ

)

σ−

]

.

In this form the operators are ordered in a right way (now each operator
acts on its own eigenstates and the calculation is straightforward):

M1,0 =

∫

dp1〈µ1|〈ϕ1|p1〉e−
ε
~

h

~
2

2mR2 (p1+ φ
φ0

)2+ 1
2

~ωcσz

i

〈p1|ϕ0〉

e
ε
~
( α

R
)
h“

p1+
1
2
+ φ

φ0

”

e−iϕ0σ++
“

p1−
1
2
+ φ

φ0

”

eiϕ0σ−

i

|µ0〉 =

=
1

2π

∫

dp̃1〈µ1|e−i φ
φ0

(ϕ1−ϕ0) e−
ε
~
( ~

2
ωcσz) e

ε
~
( α
2R

)[e−iϕ0σ+−eiϕ0σ−]×

e
− ε

~

n

~
2

2mR2 p̃2
1−[ α

R [e−iϕ0σ++eiϕ0σ−+ϕ̇0~]]p̃1

o

|µ0〉 ,

where we have introduced p̃1 = p1 + φ
φ0

, i (ϕ1−ϕ0)
ε = ϕ̇0. Moreover by

neglecting terms o(ε)2 it is possible to split the exponents and write the
integrals into a simplest form. Now the integral over p̃1 is a Gaussian integral
like:

∫ +∞

−∞
dp̃1 e

−ap̃2
1+bp̃1 =

√

π

a
e

b2

4a ,

where the coefficients are, in our case:

a =
ε

2mR2
, b = B̂0 =

εα

R

(

e−iϕ0σ+ + eiϕ0σ−
)

+ ~I εϕ̇0 ,
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and

B̂2
0

4a
=
B̂2

0mR
2

2ε
= ε

[(

1

2
mR2ϕ̇2

0 +
α2 m

2

)

~I + ϕ̇0Rαm
(

e−iϕ0σ+ + eiϕ0σ−
)

]

.

At the end:

M1,0 =

√

mR2

2πε
e
−i φ

φ0
(ϕ1−ϕ0)〈µ1|e−ε( 1

2
ωcσz) eε(

α
2R

)[e−iϕ0σ+−eiϕ0σ−]×

e
ε
h“

1
2
mR2ϕ̇2

0+α2 m
2

”

~I+ϕ̇0Rαm(e−iϕ0σ++eiϕ0σ−)
i

|µ0〉 =

=

√

mR2

2πε
e
ε

»

− φ
φ0

ϕ̇0+
mR2ϕ̇2

0
2

+α2m
2

–

×

〈µ1|e−ε[ 1
2
ωcσz−e−iϕ0σ+( α

2R
+ϕ̇0Rαm)+eiϕ0σ−( α

2R
−ϕ̇0Rαm)]|µ0〉 .

Now we can repeat all this machinery for a doubled time slice 2 ε between
the states (ϕ2, µ2, 2ε) and (ϕ0, µ0, 0) and the result is:

M2,0 = 〈ϕ2µ2|e2ε(H0+Hso)|ϕ0µ0〉 = 〈ϕ2µ2|eε(H0+Hso)

(

∑

µ1

∫

dϕ1|ϕ1µ1〉〈ϕ1µ1|
)

×

eε(H0+Hso)|ϕ0µ0〉 =
∑

µ1

∫

dϕ1〈ϕ2µ2|eε(H0+Hso)|ϕ1µ1〉〈ϕ1µ1|eε(H0+Hso)|ϕ0µ0〉 =

=

(
√

mR2

2πε

)2
∫

dϕ1e
ε

»

− φ
φ0

(ϕ̇0+ϕ̇1)+
mR2(ϕ̇2

0+ϕ̇2
1)

2
+2 α2 m

2

–

×

〈µ2|e−ε[ 1
2

~ωcσz−e−iϕ1σ+( α
2R

+ϕ̇1R α
~

m)+eiϕ1σ−( α
2R

−ϕ̇1Rαm)]×
e−ε[ 1

2
ωcσz−e−iϕ0σ+( α

2R
+ϕ̇0Rαm)+eiϕ0σ−( α

2R
−ϕ̇0Rαm)]|µ0〉 .

We define Ĉi the matrix:

Ĉi =

[

−1

2
~ωcσz + e−iϕiασ+

(

ϕ̇iRm+
1

2R

)

+ eiϕiασ−

(

ϕ̇iRm− 1

2R

)]

.

(2.122)
In Ĉi the contribution ϕ̇iR

α
~
m is clearly due to the Rashba coupling, by

contrast α
2R comes from commutation operations, therefore it is an explicit

quantum correction: it represents a quantum fluctuation of the order ~/R
around the classical momentum mϕ̇iR. Starting from M1,0 and M2,0 it is
possible to generalize to finite times the path integral procedure in order to
obtain the transition amplitude between (ϕf , µf , tf ) and (ϕ0, µ0, 0):

〈ϕfµf tf |ϕ0µ00〉 = lim
N→+∞

MN,0 = lim
N→+∞

(
√

mR2

2πε

)N

eitf
α2 m

2 ×

∫

dϕ1..dϕN−1 e
ε

PN
i=1

“

m
2

R2ϕ̇2
i−1−

φ
φ0

ϕ̇i−1

”

〈µf |
N
∏

i=1

eεĈi |µ0〉 , (2.123)
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or in a more compact form by using the following correspondence:

lim
N→+∞

(
√

mR2

2πε~

)N
∫

dϕ1..dϕN−1 =

∫ ϕf

ϕ0

D[ϕ(t)] ,

the transition amplitude appears as:

〈ϕfµf tf |ϕ0µ00〉 ≡ eitf
α2 m

2

∫ ϕf

ϕ0

D[ϕ(t)]e
i

R tf
0

“

m
2

R2ϕ̇2(t)− φ
φ0

ϕ̇(t)
”

〈µf |T̂ ei
R tf
0 C[ϕ(t)]|µ0〉,

(2.124)
where T̂ indicates the chronologically ordered product. The first phase factor
in Eq. (2.124) originates from the Rashba coupling and the term

∫ tf

0

(

m

2
R2ϕ̇2(t) − ~

φ

φ0
ϕ̇(t)

)

dt =

∫ tf

0
L(ϕ̇) dt ,

is the action of a quantum particle moving on a ring in the presence of a
magnetic field. Now it is easy to recognize the effective Lagrangian L(ϕ̇)
inclusive of the spin effects contained in Ĉ.
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You can know the name of a bird in all the languages of the
world, but when you’re finished, you’ll know absolutely noth-
ing whatever about the bird... So let’s look at the bird and see
what it’s doing, that’s what counts.

Richard Feynman (1918-1988)

3
Fast optical control of an out of
equilibrium Josephson junction

Abstract

By irradiating with a single ultrafast laser pulse a superconducting electrode of
a Josephson junction it is possible to drive the quasiparticles (qp’s) distribution
strongly out of equilibrium. The behavior of the Josephson device can, thus, be
modified on a fast time scale, shorter than the qp’s relaxation time. This could
be very useful, in that it allows fast control of Josephson charge qubits and, in
general, of all Josephson devices. If the energy released to the top layer contact S1
of the junction is of the order of ∼ µJ , the coherence is not degradated, because
the perturbation is very fast. Within the framework of the quasiclassical Keldysh
Green’s function theory, we find that the order parameter of S1 decreases. We
study the perturbed dynamics of the junction, when the current bias is close to the
critical current, by integrating numerically its classical equation of motion. The
optical ultrafast pulse can produce switchings of the junction from the Josephson
state to the voltage state. The switches can be controlled by tuning the laser
light intensity and the pulse duration of the Josephson junctiona.

aA large part of this chapter is taken from Ref. [1]

3.1 Introduction

The characteristic frequency in the dynamics of a Josephson junction (JJ)
is the so-called Josephson plasma frequency ωpJ (e.g.10 ÷ 100GHz). Cou-
pling of a JJ to a microwave field leads to the well known lock-in conditions,
which show up as Shapiro steps in the I/V characteristic. On the other
hand, photo-response to radiation in a superconductor induces heat relax-
ation (bolometric effect [2]) and non equilibrium generation of quasiparticles
(qp’s) [3, 4]. Both phenomena are extensively studied since they are rele-
vant for the fabrication of fast and sensitive detectors. The models used are
phenomenological [5–9], mainly involving different temperatures associated

83
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to separate distributions of electrons and phonons out of equilibrium.
Recently, laser light with pulses of femtosecond duration τc ∈ (10−14s, 10−13s)
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S1

I
S2

Figure 3.1: Sketch of the Josephson junction exposed to a laser radiation
pulse.

has become available, as a source to test the photo-response of a JJ [8]. Ul-
trafast pulses can be extremely useful, in that they allow studying an unex-
plored regime in non equilibrium superconductivity. Indeed, photon absorp-
tion, by creating electron-hole (e-h) pairs at very high energies, drives the
quasi-particle (qp) energy distribution out of equilibrium during the time
τc. The qp non-equilibrium distribution depends on the energy relaxation
time parameter τE, defined as the time by which a ‘hot’ electron is thermal-
ized by repeated scatterings with other electrons or phonons. The process
involves generation of many qp’s during energy degradation, until the sys-
tem relaxes back to the equilibrium distribution function no(ω). This time
scale is determined by the electron-electron interaction time τe−e and the
electron-phonon interaction time τe−ph, which are strongly material depen-
dent [10], ranging from 4 · 10−7s for Al to 1.510−10s for Nb. In this chapter
we analyze the possibility that, keeping temperature quite low, ultrashort
laser radiation induces direct switches out of the Josephson conduction state
at zero voltage, due to coherent reduction of the critical current Jc.

There are many reasons for the switching from the zero to the resistive
state in a Josephson junction. Among these, thermal escape [11], quantum
tunneling [12], latching logic circuits [13] and pulsed assisted escape [14].
A clear cut discrimination between different mechanisms can be difficult to
achieve. In our case quantum escape is ruled out because the temperature
is not expected to be low enough. Also, we assume that there is no external
circuit to induce switching and re-set of the zero voltage state as in latching
logic elements.

Pulsed assisted escape is a generic term for a large class of phenomena
including in principle bolometric heating of the junction which is re-set in
relatively slow times [3]. Production of quasiparticles generated by X-ray
radiation has been studied up to recently [15, 16]. A cascade follows, which
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increases the number of excitations and lowers their energy down to the
typical phonon energy ωD in a duration time, which is of the order of the
nanoseconds. Subsequently, qp’s decay by heating the sample. However,
the power of the laser can be reduced enough and both the substrate and
the geometry can be chosen such that the energy released by the radiation
on the junction can be small. On the other hand, appropriate experimental
conditions can make the time interval between two pulses long enough, so
that the bolometric response is negligible.

Generally speaking, junctions are more sensitive to pulses especially
when their harmonic content is close to ωpJ , but this is not our case. In
fact the laser carrier frequency (Ω ∼ 100THz) is quite high compared to
ωpJ and we consider the case Ω >> τ−1

c > ωpJ > τ−1
E , what implies that

little relaxation takes place during the duration of the pulse. τc should also
be shorter than the pair-breaking time ~/∆o ∼ 1 ÷ 5ps. Here ∆o is the
unperturbed gap parameter. Our approach assumes that, on a time scale
intermediate between the pulse duration and the relaxation time ∼ τE, the
order parameter of the irradiated superconductor is sensitive to the non-
equilibrium qp distribution, which modulates it coherently till it switches
out of the zero voltage state.

To analyze the dynamics of the order parameter and the way how the
latter affects the Josephson current, we adopt a non-equilibrium formalism
based on quasiclassical Green’s functions [17, 18]. The quasiclassical ap-
proach has been mostly used in the past in connection with the proximity
effect [18], as well as with non-equilibrium due to other space inhomogeneity
conditions [19]. As far as we know, in [1] it is the first time that an exten-
sion of a time dependent out of equilibrium quasiclassical Green’s function
theory is applied to a coherent response after an ultrafast laser irradiation.

The quasiclassical approximation to the Gorkov equations, is obtained
by averaging over the period of the optical frequency Ω, which is a fast time
scale [20]. Our equations include the physics of the cascade process, which
occurs when one focuses on the kinetics of the qp diffusion. A kinetic equa-
tion approach to the steady state non equilibrium qp distribution, including
phonon scattering has been developed in Ref. [23], for electromagnetic irra-
diation, mostly in the microwave range. The cascade regime is extensively
discussed in Ref. [16], however it will not be specifically addressed here.

Instead, if the switching of the irradiated superconductor due to the ul-
trafast pulse takes place prior to the occurrence of qp relaxation, an approx-
imate solution of the dynamical equations can be derived, which describes
an instantaneous response of the order parameter.

We take a low Tc JJ with an s-wave order parameter as the reference
case (e.g. a high quality Nb or Al junction) and T << Tc. The optical pen-
etration depth of the laser light λδ in the topmost superconductor exposed
to radiation S1 is assumed to be shorter than its thickness, so that any
modification induced by the radiation field only involves S1 itself [3] (see.
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Fig.(3.1)). In a small size JJ the spatial variation of the order parameter
along the lateral dimension of S1 is not taken into account, except when the
qp diffusion process cannot be ignored.

We consider just one pulse of given duration τc which releases the en-
ergy E per pulse, by exciting e− h pairs and by creating a non equilibrium
distribution of qp’s. A related dimensionless quantity q, as defined in Eq.
(3.12), parametrizes the strength of the perturbation due to the radiation.
The perturbation is assumed to be small so that only the lowest order in
the expansion in q is retained. This allows us to derive a temporary reduc-
tion of the order parameter ∆ induced by the pulse, as shown in Fig.(3.3).
We do not give a detailed description for the relaxation of the non-thermal
qp distribution in the irradiated superconductor. The self-energy terms
corresponding to this process require further analysis. According to the
Eliashberg formulation [10] these terms affect the quasiparticle amplitude
Z(ω) introducing changes in the phonon distribution and retardation in the
response. Nevertheless, we expect that these self-energy terms become effec-
tive only on a longer time scale after the laser pulse. Our equations pinpoint
a non retarded evolution of the order parameter prior to relaxation, which
implies a reduction of the critical current. This shows that the coherent
modulation of the gap parameter can produce switchings of the junction
out of the Josephson state.

The switchings are studied numerically by solving the classical equation
of motion of a current biased JJ with current J close to the critical current
Jc, during the excitation process. After the switching the dissipation in not
treated self-consistently: a standard dissipation, typical of thermal equilib-
rium, is assumed in the JJ dynamics, by adding a conductance term in the
numerical simulation. We stress that the assumed model for dissipation de-
termines the actual qp branch of the I-V characteristics, but does not affect
substantially the switching probability. The switching from the Josephson
state to the voltage state in the parameter space (q, τc, J/Jc) is reported in
Fig.3.6. Interestingly, we find that for fixed value of q and J/Jc there is an
optimum pulse duration to achieve the strongest sensitivity of the junction
to the switching process. We show that this is due to the way how the non
equilibrium qp’s distribution affects the pairing in S1.

3.2 Characteristic time scales

As explained in the introduction, there are many characteristic times that
regulates the dynamics of an out of equilibrium superconductor. In this
section we focus with more detail on the different relaxation-interaction
mechanisms and on their characteristic time scales.
The most important phenomena regulating the non-equilibrium photo-response
of a Josephson junction are certainly the pair breaking and the related pair
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recombination. All the other observed phenomena, such as the quantum
photo-fluxonic effect, the Josephson effect between inter-grain weak links,
and the subsequent time and space modulation of the order parameter has
to be intended as a consequence of the pairs and qp’s dynamics in the non
equilibrium regime.

The mechanisms involving pair breaking and pair recombination are
mainly regulated by the electron-electron and the electron-phonon inter-
action. Let us start discussing the e − ph interaction. There are two main
contributions: the first one is due to the interaction of the qp’s of a bro-
ken pair with longitudinal phonons(lp), the second one with the transverse
phonons(tp): in general, because of Matheisen law

1

τe−ph
=

1

τe−lph
+

1

τe−tph
,

and in the case of a normal metal one should have

1

τn
e−ph

=
π4βlT

4

5
pF l
( β

(pFul)3
+

3βt

2(pFut)2

)

, (3.1)

where pF is the Fermi momentum, l is the mean free path, ul (ut) are the

longitudinal (transverse) phonon velocities, βl(t) = 2
3εF

ν(0)
2ρu2

l(t)

is the e − ph

interaction kinetic constant, and ν(0) the density of electronic states at the
Fermi level. If T ∼ Tc the τe−ph of a superconductor is of the order of the
one of a metallic sample (3.1). By contrast we are very interested in the
very low temperatures (T << ∆) regime where: [7]

1

τ s
e−ph

=
2

5

( βl

(pFul)3
+

3βt

2(pFut)3

)

(pF l)∆
3(2π∆T )1/2e−∆/T . (3.2)

In the low T regime the e− e interaction time takes the form:

1

τ s
e−e

=
1

τn
e−e

∆

πT
e−2∆/T (3.3)

If we introduce the vanishing dimensionless parameter

x =
1

2∆

(πT∆

2

)1/2
e−∆/T

one can show that the e − ph contribution to the pair recombination is of
the order of 1/τ s

e−ph ∝ x while the contribution due to the e− e interaction

of higher order 1/τe−e ∝ x2. As a consequence the main recombination
mechanism that regulates the ’fastest’ part of the superconducting photo-
response is the electron phonon interaction: so the main time scale is the
∼ τe−ph. Another important time is the phonon escape time in the substrate

τes =
4d

Kfsu
(3.4)
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where d is the transverse dimension of the sample, Kfs is the phonon trans-
mission coefficient at the interface between the sample and the substrate and
u is the sound velocity in the sample. This is mainly responsible for ther-
mal effects as the temperature relaxation in the sample (bolometric effect).
The non equilibrium response is usually in competition with the bolometric
response but the last one has longer time scales: this is the reason why usu-
ally the photo-response of a superconducting sample in the thermal regime
is a biexponential curve: the first part of the signal is fast, on the τe−ph

time scale, then the second one is slower and develops on a time scale τes.
In the case of a JJ, correspondingly to (or a bit before of) the peaks of

Figure 3.2: Biexponential response for low Tc[left panel] and high Tc sam-
ples.

the curves in Fig.s 3.2 the junction can switch in the voltage state: we are
mainly interested on the possibility of inducing controlled switchings of the
junction so, in the following, we shall focus on the microscopic mechanisms
that develop on time scale of the order of (or shorter than) the electron
phonon interaction time τe−ph. Generally speaking we define this regime as
non equilibrium regime.

3.3 The non-equilibrium qp distribution

3.3.1 Non-equilibrium electron-hole pair excitations induced
by optical irradiation

The optical frequencies (Ω ∼ 100THz) building the wavepacket of the laser
pulse excite e − h pairs at high energies. As explained in the introduction
the non-equilibrium arising from the alteration of the qp distribution has a
relaxation time τE which is long compared to the optical period: ΩτE >> 1.
In addition to this, the duration of the pulse τc ∼ ω−1

c is even shorter
than the pair breaking time, so that we expect that, in our case, dissipative
phenomena do not affect the coherence of the superconductor on the time
scale τc.

Qp’s are generated as if the metal were normal, because superconductiv-
ity doesn’t play any role in their excitation at large energies. They propagate
according to something very similar to the free particle time-ordered Green’s
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function go (from now on we put ~ = 1):

gT
o (k; t−t′) ≡ −i〈T [ck(t)c†k(t

′)]〉 = −ie−iξ(t−t′)
[

(1 − nk)θ(t− t′) − nkθ(−t+ t′)
]

.
(3.5)

Here ξ is the qp energy with momentum k and is measured from the chemical
potential µ. nk is the qp distribution function. We assume that e − h
symmetry is conserved in the excitation process, so that µ is not altered
with respect to its equilibrium value.

The equation of motion for the Green’s function g̃ in the presence of the
radiation field is:
(

i
∂

∂t
− 1

2m
[~∇r −

e

c
~A(~r, ~R, t)]2 + µ

)

g̃(~r, ~R, t, t′) = δ(r)δ(t − t′) , (3.6)

~r is the relative space coordinate, while ~R is the center of mass coordinate.
The vector potential is a wave-packet centered at frequency Ω according to:

~A(~r, ~R, t) =
∑

±

∑

~p

~a±(~p, ~R, t)e∓i(~p·~r−Ωt) . (3.7)

Here ~a± are slowly varying ’envelope’ functions of ~R on the size of the
irradiated spot and on the time scale Ω−1. We look for solutions of Eq.(3.6)
in the form:

g̃(~r, ~R; t, t′) = g(~r, ~R; t, t′) +
∑

±

∑

~p

g±(~p, ~R, t, t′)e∓i(~p·~r−Ωt) , (3.8)

where g and g± are slowly varying functions of ~R and t on the same scales.
A similar expansion can be done w.r.to the variable t′. Following Eq. (3.8),
a decomposition of Eq.(3.6) into harmonics arises [20, 21]. We define the
zero order harmonic equation as the one that does not contain exponentials
e±iΩt. By averaging over a period Ω−1 we neglect harmonics of order two,
or higher. This amounts to include one photon excitation processes only,
with released energy E . Some extra details can be found in Appendix 3C:


i
∂

∂t
+

1

2m
∇2

r +
e2

mc2

∑

~p′,~p′′

~a+(~p′, ~R, t)~a−(~p′′, ~R, t)ei(~p
′−~p′′)·~r + µ



 g(~r, ~R, t, t′) =

(3.9)
δ(r)δ(t − t′) .

Fourier transforming w.r.to ~r ( ~r → ~p→ ξ) we have:
(

i
∂

∂t
−
(

p2

2m
− µ

))

g(~p, ~R, t, t′)+

+
e2

mc2

∑

~p′,~p′′

~a+(~p′, ~R, t)~a−(~p′′, ~R, t) g(~p′ − ~p′′ − ~p, ~R, t, t′) = δ(t− t′) . (3.10)
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The radiation field generates and annihilates high energy e−h pairs. Hence
we assume that the forcing term conserves the total momentum, ~p′+~p′′ ∼ 0,
but ~p′ − ~p′′ transfers an energy 2ξ to the electrons. Therefore we take the
coupling term in the Hamiltonian as:

e2

mc2
~a+(~p′, ~R, t)~a−(~p′′, ~R, t) → q

ωc√
π
e−

1
2
ω2

c t2 δ(2ξ + ξ′) δ(~p′ + ~p′′) . (3.11)

A Gaussian shaped time dependence has been chosen for the pulse with half-
width ω−1

c , while the space dependence has been neglected for simplicity. In
Eq. (3.11) the dimensionless quantity appears:

q ∼ e2

c

ωD

Ω

E
mΩ2R2

o

, (3.12)

Where Ro is the laser spot (see Eq.3.21). Here the number of excited e− h
pairs is ∼ Ω/ωD, with ωD the Debye energy. Experiments [3, 8] show that
the energy released by the pulse can be very low, so that we shall always
expand in q. In fact, while in the case of an rf radiation q ∼ 1, in the case
of a femtosecond laser pulse q ∼ 0.01 ÷ 0.1, corresponding to a fraction of
µJ released per pulse on the superconducting surface of ∼ 100µm2.

The zero order harmonic equation, Eq. (3.10), becomes :

(i∂t − ξ) g(ξ; t, t′) + q
ωc√
π
e−

1
2
ω2

c t2g(−ξ; t, t′) = δ(t − t′)) . (3.13)

To derive the non-equilibrium correction to the qp distribution function,
the kinetic equation 3.63 (see appendix 3B) should be solved. In place of
this we proceed in this chapter in an heuristic way. Our approach lacks
mathematical rigor, but singles out directly the role of the laser induced
e − h excitations at frequencies (Ω − ωc,Ω + ωc). Our result is valid in the
limit of large ξ’s and zero temperature, before relaxation takes place.

We solve Eq(3.13) for the retarded Green’s function for t > 0 and −t′ ∼
0+ by truncating the Dyson equation to lowest order in q:

gR(ξ; t, t′) = gR
o (ξ; t− t′) − q

ωc√
π

∫

dt′′gR
o (ξ; t, t′′)e−

1
2
ω2

c t′′2gR
o (−ξ; t′′ − t′)

= gR
o (ξ; t− t′) + iq

ωc√
π

∫ +∞

−∞

dω

2π

e−iωt

ω − ξ + i0+

∫ +∞

0+

dt ei(ω−ξ)te−
1
2
ω2

c t2 ,(3.14)

where gR
o (ω) = {ω − ξ + i0+}−1 is the Fourier transform of the retarded

Green’s function. The time integral can be expressed in terms of the function
w[z] ≡ e−z2

erfc(−iz). If we now approximate Eq. (3.14) by evaluating w[z]
only at the pole and use the the integral representation of the step function:

θ(t) =
eizt

2πi

∫ +∞

−∞
dω

e−iωt

ω − z
for =mz < 0 , (3.15)
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the correction δgR(ξ, t) to gR for ξ >> 0, which includes the non equilibrium
qp ’s distribution, is:

δgR(ξ, t, 0−) = − q√
2
e−i(ξ−i0+)t w

[

−2ξ/(
√

2ωc)
]

θ(t), (3.16)

From Eq.(3.16) we obtain the time ordered Green’s function for t > 0, t′ =
0− and ξ > 0:

g(ξ, t > 0, 0−) = (−i)e−i(ξ−i0+)t θ(t)

(

1 − q√
2
ρ
[

2ξ/(
√

2ωc)
]

)

, (3.17)

with

ρ[x] ≡ e−x2 2√
π

∫ x

0
ds es

2
. (3.18)

ρ[x] increases linearly with x and it decreases slowly, as 1/x, at large argu-
ments. In Eq. (3.17) we have neglected <e[w] because |ξ| >> 0.

Eq. (3.17) is to be compared with the free propagating time ordered
Green’s function of Eq.(3.5) for the same time arguments. Comparison
yields the amount by which the distribution function is driven out of the
equilibrium:

δn(ξ) ≈ q√
2
ρ
[

2ξ/(
√

2ωc)
]

for |ξ| >> ∆o . (3.19)

Note that the expression of Eq. (3.19) changes sign according to sign {ξ}.
This stems from the assumed e− h symmetry. In turn this implies that no
charge imbalance occurs.

Eq. (3.19) can be considered as the non equilibrium distribution for qp’s
starting at the time of the pulse t ∼ 0+.

In the absence of relaxation, a change in the available qp density of
states follows. Because (gR(ξ, ω))∗ = gA(ξ, ω) if ω is real, the correction to
the density of state δν(ξ) is:

δν(ξ) = − 1

π

(

δgR − δgA
)

(ξ, 0+) ≈ q

π
√

2
ρ
[

2ξ/(
√

2ωc)
]

for ξ > 0. (3.20)

The first stages of the relaxation process involve the inelastic diffusion of
qp’s in the medium which is qualitatively discussed in the next section.

3.3.2 Inelastic diffusion of the qp’s at initial times

Let us discuss shortly what was neglected in the derivation of the change in
the equilibrium qp distribution δn(ξ) given by Eq.(3.19).

The single particle Green’s function g(p,R, t, t′) is assumed to be a slowly
varying function of (t+t′)/2 = t and a fast varying function of t−t′. Fourier
transforming w.r.to the latter variable ( see Appendix 3C ) there is an ω
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dependence even in the stationary case ( i.e. with no t dependence). This
ω dependence is determined by the frequency dependent Eliashberg e− ph
coupling α2F (ω) and is contained in the e − ph self-energy Me−ph(ω) [22].
Accordingly, the complex qp renormalization parameter Zn(ω) is defined by
[1 − Zn(ω)]ω = Me−ph(ω). In our derivation we have not included the self-
energy, so that we are implicitly taking Zn(ω) → 1, what applies for large
ω(∼ Ω), prior to relaxation.

Moreover, because the system is in the superconducting state, we should
have dealt with the corresponding superconducting parameter Zs(ω). The
latter is derived together with the complex gap parameter ∆(ω, t) with
∆(∆o, t = 0−) = ∆o from the coupled Eliashberg equations (we drop the
overline on t in the following ).

The procedure of averaging over the fast time scale Ω−1 singles out two
frequency components of ∆(ω, t) and Zs(ω, t): ω = ∆o and ω = Ω as a
consequence a retardation arises from frequencies up to 10ωD is neglected.
Ω is so large that Zs and Zn do not differ sizeably. In fact, their real parts
differ by a quantity of the order of (ωD∆o/Ω

2)2 ln(ωD/∆o). ∆(Ω, t) itself
is expected to be so small that it can be neglected altogether. Indeed, in
connection with Eq. 3.53 of Appendix 3C we do not discuss the self-energy
terms. Of course this approximation breaks down on the time scale of the
e− ph relaxation.

Let us now discuss the t dependence. The equation of motion for the
qp distribution function n( ~R, t) is derived in Appendix 3B, where we take
nT = 0, because we neglect charge imbalance corrections.

In averaging over a few optical periods the kinetic equation for δnL,
the electric field ~E averages to zero. The qp relaxation is governed by
the collision integral I[n( ~R, t); t] which describes the inelastic processes. In
Ref. [16] the cascade of the e − h excitations due to inelastic scattering
is studied in detail. Two stages occur. In the first stage e-e interactions
multiply the number of excited qp’s in the energy range from Ω to ωD which
is taken as the cutoff energy of the pairing interaction. This happens in
a time interval short w.r.to the pulse duration (∼ 10−14s). In the second
stage a much slower relaxation process takes place, by which the energy of
the qp’s reaches ∆. This process involves electron-phonon scattering on a
time scale ~ω2

D/∆
3 ∼ 102ns which is much larger than any time scale in

our problem. Here we shall leave this stage aside. In the time interval we
are concerned with, we have little relaxation and the energies involved are
ω >> ∆.

According to Eq. (3.61) the distribution function prior to relaxation
deviates from the equilibrium value by the quantity δnL = −2δn(ξ) given by
Eq. (3.19). There is no explicit dependence on ω in our correction, because
retardation is neglected. Still qp’s diffuse in space inside the junction over
a characteristic distance Ro ∼ √

Dτe−e, where D is the diffusion coefficient.
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Hence

δnL(ξ, ~R, t) = −2
R2

o

R2
o +Dt

δn(ξ) e



− R2

R2
o+ D

t

ff

. (3.21)

For relatively large times τe−ph >> t >> R2
o/D we shall ignore the spatial

dependence by putting R = 0. This is the first step of a perturbative analysis
of the non equilibrium distribution functions.

3.4 Changes of the superconductive properties on
the time scale ω−1

c

3.4.1 The correction to the gap parameter

In this Subsection we derive the Keldysh Green’s function in the presence
both of a time dependent gap ∆(t) and of a non-equilibrium qp distribution
as given by Eq. (3.21). We assume weak coupling superconductivity and we
neglect here the frequency dependence of the e− ph coupling parameter λ.
This follows by neglecting the retardation effects mentioned in Sec. 3.3.2 on
time scales much faster than the e− ph relaxation time. From the Keldysh
Green’s function ĝK (where the hat denotes matrix representation in the
Nambu space, see Appendix 3C) we recalculate the gap self-consistently,
according to the formula:

∆(t) = −ν(0)λ
4

∫ ∞

−∞
< fK(~p/|~p|, ω, t) >~vF

dω . (3.22)

The average over the direction of the momenta on the Fermi surface is
indicated. The Keldysh Green’s function in thermal equilibrium is:

ĝK
o = tanh

βω

2

(

ĝR − ĝA
)

. (3.23)

Out of equilibrium we use the definition:

ĝK = ĝRĥ− ĥĝA . (3.24)

However, ĥ defined in Appendix 3B is here diagonal, because we assume
that no charge imbalance arises. Hence, up to first order in q,

δĝK ≈ n0
L(ĝR

ad − ĝA
ad) + δnL(ĝR

o − ĝA
o ) . (3.25)

Here no
L = tanh(βω/2) is the equilibrium distribution and ĝR

ad − ĝA
ad is intro-

duced in Appendix 3C (see Eq.3.65) and is discussed in the following.
We now first derive the contribution coming from the second term of

Eq. (3.25). We start from the outset using Eq. (3.21) and performing the
quasiclassical approximation. The latter involves an energy integration:

δnL ·
(

ĝR
o − ĝA

o

)

≡ i

π

∫ +∞

−∞
d ξ δnL(ξ, t) ·

(

ĝR
o (ξ, ω, t) − ĝA

o (ξ, ω, t)
)

. (3.26)
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Using the equilibrium BCS functional forms, the Green’s functions ap-
pearing on the diagonal of ĝA/R are [25]:

gR(ξ, ω) =
u2

ξ

ω −Eξ + i0+
+

v2
ξ

ω +Eξ + i0+
, (3.27)

gA(ξ, ω) =
u2

ξ

ω −Eξ − i0+
+

v2
ξ

ω +Eξ − i0+
. (3.28)

The equilibrium values for uξ and vξ are:

u0
ξ =

(

1

2
(1 +

ξ

E
)

) 1
2

, v0
ξ =

(

1

2
(1 − ξ

E
)

) 1
2

, (3.29)

with E =
√

ξ2 + |∆o|2. From now on we shall drop the subscript in the
equilibrium gap parameter (i.e. ∆ ≡ ∆o if no time dependence is indicated
explicitly). Because the factor δnL(ξ, t) appearing in Eq.(3.26), as given by
Eq. (3.21) is odd w.r. to ξ only the second term in u2 and v2 survives, when
the integral in Eq. (3.26) is performed. Let us consider the case ω > ∆ only
and specialize Eq. (3.26) to its diagonal part. According to Eq. (3.21) we
have:

<e
{

δnL · gR
o

}

= <e
{

−
√

2i

π
q(t)

∫ +∞

−∞
d ξ

ξ

2E
ρ
[

2ξ/(
√

2ωc)
]

(

1

ω −E + i0+
+

− 1

ω +E + i0+

)}

= −q(t) 2
√

2 ρ
[

2(ω2 − |∆|2) 1
2 /(

√
2ωc)

]

. (3.30)

Here we have defined the function q(t):

q(t) = q
πR2

o

R2
o +Dt

. (3.31)

Doing similarly for gA and subtracting, the imaginary part cancels:

δnL ·
(

gR
o − gA

o

)

= −q(t)4
√

2 ρ
[

2(ω2 − |∆|2) 1
2 /(

√
2ωc)

]

, for ω > ∆ .

(3.32)
Here the largest contribution of the non-equilibrium excitations arises from
ω ∼ ωc. On the other hand ωc can be larger or smaller than ωD.

Now we evaluate the correction due to ĝR
ad − ĝA

ad. In Appendix 3C we
show that an adiabatic solution of the motion equation of gR,A is possible, in
the sense that the functional dependence on ω is the same as the equilibrium
one, but the gap parameter changes slowly with time (see Eq. (3.65)):

ĝ
R(A)
ad = +(−)

M̂
√

(ω ± i0+)2 − |∆(t)|2
(3.33)



3.4. CHANGES OF THE SUPERCONDUCTIVE... 95

with

M̂ =

(

ω ∆(t)
−∆(t)∗ −ω

)

. (3.34)

This functional form for the R/A functions is obtained if the e−h symmetry
is maintained and if one neglects the diffusion in space-time which will be
mainly important at intermediate times [16].
This adiabatic approximation in the advanced and retarded Green’s func-
tions allows us to write the Keldysh propagator in the form:

gK = gK
ad − q(t)4

√
2 ρ
[

2(ω2 − |∆|2) 1
2 /(

√
2ωc)

]

. (3.35)

To calculate fK we resort to the analogous of Eq.(3.64) which is valid for
ĝK : fK = gK∆/ω. Hence we have:

fK = fK
ad − q(t)4

√
2

∆

ω
ρ
[

2(ω2 − |∆|2) 1
2 /(

√
2ωc)

]

for ω >> ∆ . (3.36)

Now we insert Eq. (3.36) into Eq. (3.22) and consider the linear correction
to the gap of the irradiated contact according to :

∆(t) = ∆ + δ∆(t) .

Here δ∆(t) is the correction to the unperturbed gap parameter ∆ due to
the radiation. In the limit of zero temperature, up to first order in q(t) and
∆/ωD, δ∆(t) is given by:

δ∆(t)

∆
= − q(t)4

√
2

ln(2ωD/∆) − 2 + O(∆2/ω2
D)

∫ ωD

∆

dω

ω
ρ
[

2(ω2 − |∆|2) 1
2 /(

√
2ωc)

]

.

(3.37)
It is interesting to note that the correction arising from the adiabatic dy-

namics has the role of renormalizing the coupling q(t) via the prefactor
−[ln(2ωD/∆) − 2]−1. This prefactor is negative because ln(2ωD/∆) > 2.
Therefore Eq. (3.37) shows that the gap of the irradiated superconductor is
decreased due to the non equilibrium distribution of the qp excitations.

Eq. (3.37) has the same structure as Eq. (14) of Ref. [23]. There is a
striking difference however. The inverse square root singularity at the gap
threshold, which shows up in Eq.(14) of Ref. [23] does not appear in Eq.
(3.37).

The inverse square root singularity originates from the unperturbed den-
sity of states at the excitation threshold and is usually present in non-
stationary superconductivity [24]. It is responsible for retardation and os-
cillating tails. In our case, the gap threshold plays a little role, because we
do not have extensive pair-breaking and q.p. generation at energies ∼ ∆.
Hence, just a tail ∼ 1/ω survives in the integrand.

In Fig.(3.3) the variation of the gap immediately after the pulse (t ∼ 0),
is plotted vs the inverse of the pulse duration ωc in units of ∆, for different
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Figure 3.3: Variation of the gap immediately after the pulse vs the inverse
of duration of the pulse τ−1

c = ωc in units of ∆. Our approximations break
down for very low ratios ωc/∆ (long pulses). On the other hand, large ωc/∆
represent very short pulses: this situation is unrealistic with the available
optical devices.

values of ωD. Our approximations are not valid when the pulse becomes
too long (very low values of ωc/∆). For longer pulses the integrand in Eq.
(3.37) has a narrow peak lined up at the gap threshold. In this case the
inverse square root singularity in the density of states at the gap threshold
is important and the adiabatic approximation Eq.(3.35) breaks down.

For shorter pulses the peak becomes broader and is centered at larger ω’s.
If the integration range is small, the result is quite sensitive to the location of
the peak (see full line in Fig. (3.3)): most remarkably, a minimum appears
in the curve when the pulse is rather long (ωc/ωD < 5). By contrast, the gap
correction is rather flat w.r.to changes of ωc when ωD/∆ is larger (broken
and dotted line in Fig.3.3).

3.4.2 Correction to the Josephson current

In this subsection we derive the correction to the Josephson current arising
from the two terms of the anomalous propagator f(R, t, t′) given by Eq.
(3.36). Eq.s(3.35, 3.36) show that the non equilibrium Keldysh Green func-
tions of the irradiated superconductor can be separated into two terms. The
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first one is what we call the ’adiabatic’ contribution, while the second one
is strongly dependent on the non equilibrium qp’s distribution function and
is first order in q(t).
Within the linear response theory in the tunneling matrix element |To|2, the
pair current at zero voltage is:

J(~R = 0, t) = 2e|To|2
∫ ∞

−∞
dt′e2ieV (t−t′)

(

f>†
1(0, t, t

′) fA
2 (0, t′, t) + fR†

2(0, t, t
′) f<

1 (0, t′, t)
)

, (3.38)

where |To|2 is assumed to be independent of energy, for simplicity. The
current of Eq. (3.38)is evaluated at the junction site, defined by ~R = 0
and the irradiated superconducting layer S1 is labeled by 1 here, while the
superconductor unexposed to radiation S2 is labeled by 2. The perturbed
Josephson current has an adiabatic term J ad(t) obtained by inserting the
first term of Eq. (3.36) into Eq. (3.38), plus a correction δJ(t) arising from
the second term of Eq. (3.36). Using the definitions fK = f> + f< and
fR − fA = f> − f< and expanding to lowest order in q(t) the adiabatic
critical current is:

Jad = Jad
c (t) sin(ϕ), Jad

c (t) =
π~∆

2eRN

(

1 +
δ∆(t)

2∆

)

, (3.39)

where RN is the normal resistance, ∆ is the unperturbed gap parameter of
both contacts (assuming ∆1 = ∆eiϕ and ∆2 = ∆ in the absence of laser
perturbation), and δ∆(t)/∆ is given by Eq. (3.37). Denoting by δfK the
second term of Eq. (3.36) the correction δJ(t) is:

δJ(t) = e|To|2
∫ ∞

−∞
dω
(

(δfK(ω + ieV ))†1f
A
2 (ω − ieV )+ (3.40)

+(fR(ω + ieV ))†2(δf
K(ω − ieV ))1

)

.

At zero temperature and V = 0, this gives:

δJ(t) =
π~

eRN

∫ ∞

−∞
dω

|∆|2q(t)
ω

ρ
[

2(ω2 − |∆|2) 1
2 /(

√
2ωc)

]

(

e−iϕ

√

(ω + i0+)2 − |∆|2
+

eiϕ
√

(ω − i0+)2 − |∆|2

)

. (3.41)

which is zero for parity. This conclusion holds because we assume that no
charge imbalance occurs. If V 6= 0 the contributions to the integral evaluated
in the complex plane are finite.
δJ(t) is a cosϕ-like correction. In the unperturbed Josephson effect a ’cosϕ’
term only arises when V > 2∆ [2]. By contrast, our calculation shows that
a cosϕ term can arise in the Josephson current with a small nonzero voltage
in the presence of an ultrafast laser pulse.
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3.5 Classical dynamics of the irradiated junction

In this section we integrate the classical equation of motion of the irradiated
junction numerically. Here we discuss the possibility that the laser pulse
induces switches of the junction from the zero voltage state, to the resistive
state. The characteristics of the Josephson junction for a finite voltage, is
obtained within the RCSJ (resistively and capacitively shunted junction)
model [2]. The phase of the superconductor S2 is taken as the reference
phase.

In the absence of the pulse, the junction is biased by a current constant
in time Jb. As discussed in the previous Section, the pulse activates the
superconductor S1 by varying its gap dynamically in time.

Consequently, a voltage V arises at the junction, related to the dynamics
of the phase difference ϕ(t). The latter solves the differential equation:

ϕ̈+Q−1
0 ϕ̇+

Jad
c (t)

Jo
c

sinϕ(t) = γ , (3.42)

where γ = Jb/J
o
c and Jo

c = (π~∆)/(2eRN ) is Josephson critical current
of the unperturbed junction. The time-dependent driving term is deduced
from Eq. (3.39). We assume ωpJ0 > τ−1

E (τ−1
E (Nb) ∼ 7GHz), where ωpJ0 is

the plasma frequency at zero bias. This condition is satisfied for high quality
Nb junctions, where ωpJ0 is in the range 40GHz÷120GHz [26], but it holds
also if we take into account the dependence of the plasma frequency on γ:
ωpJ = ωpJ0(1− γ2)(1/4). At γ = 0.98 the term (1− γ2)(1/4) = 0.44: this still
gives a large plasma frequency for the given range. In any case the plasma
frequency changes marginally when the energy is degradated into heat if q
is small. Under this conditions the relaxation process occurs long after the
switch to resistive state.

In Eq. (3.42), Q0 = ωpJ0R(ϕ)C is the quality factor, where R(ϕ) is
the junction intrinsic resistance, which is in general a non-linear function
of the phase. The dissipative Q−1

0 ϕ̇ term includes thermal incoherent pair
breaking effects at equilibrium. In the simulation we use both a constant
junction resistance R and a patchwork model given by [27]:

Q−1(ϕ̇) = Q−1
0

ωpJ

∆

(
ϕ̇ωpJ

∆ )N

1 + (
ϕ̇ωpJ

∆ )N
(3.43)

with N = 16 and Q−1
0 = 0.636, which corresponds to a normal resistance

above the gap RN = (ωpJϕ0)/(cJ
0
c ). In general we ignore the direct de-

pendence of R(ϕ) on the phase. By the way, Q should also depend on the
energy which is released by each single laser pulse due to the incoherent pair
breaking processes. However, under the hypothesis that this energy is very
low we assume that the quality factor, due to the optically induced normal
resistance of the sample, is constant within the considered energy range.
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Actually, in the presence of the pulse, also the current contribution of Eq.
(3.41) should be plugged into the l.h.s. of Eq. (3.42). This current term
depends on the voltage V = ϕ̇. However, in view of the fact that in this
work we are only concerned with the switching of the junction out of the
zero voltage state, we do not derive the full dynamics of the phase self-
consistently.

0 10 20
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pJ 
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V/V

q=0.1
q=0.075
q=0.05

0

Figure 3.4: Voltage behavior in time for different energy released on the
sample and the quality factor Q = 100. The voltage is normalized to V0 =
ωpJϕ0/c.

In Fig. (3.4) we show the voltage just after the pulse for different values
of the released energy. The time evolution of the voltage is sketched for some
successfully induced switches. The junction starts in the zero voltage state.
At ωpJt = 0+ it is irradiated by the laser pulse. There are few oscillations at
frequency ωpJ before the switching occurs, followed by an overall increase of
the oscillating voltage. The larger is q the faster is the switch. If no switch
is induced the junction remains in the zero voltage state: the phase and the
voltage are weakly perturbed by the radiation and show decaying plasma
oscillations around their equilibrium values.
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Figure 3.5: Voltage behavior in time with different quality factors Q in the
linear conductance model (A,B) and the non-linear conductance model as
given by Eq. (3.43) (C). The voltage is normalized to V0 = ωpJϕ0/c.

In Fig.(3.5) we show the approach to the gap voltage for different Q
values and two different conductance models. Except for the asymptotic
trend, the curves for Q = 10 (B) and Q = 100(A) show a similar behavior.
The non-linear conductance gives rise to a more pronounced shoulder in the
curve after the first increase of the voltage. The first phase oscillation at
frequency ωpJ are largely independent of the dissipation model used.

The switching of the junction out of the zero voltage state depends on the
bias current Jb, on the released energy per pulse q, and on the pulse duration.
In Fig.(3.6) we sketch the switching front in the parameter space a)(ωc/∆, q)
at fixed γ and b) (γ, q) at fixed ωc/∆, for Q = 100 and ωD/∆ = 10. For each
point (q, ωc/∆, γ) we calculate Jad

c (t) from Eq.s(3.39, 3.37). Next we plug
the result into the equation of motion Eq. (3.42). Numerical simulation of
the dynamics shows whether the junction is stable in the zero voltage state,
or it switches to a running state. The points of the curve mark the frontier
between the two behaviors. The full curve is just a guide for the eye. The
non-monotonicity of δ∆(t)/∆ with the pulse duration, appearing in Fig.(3.3)
forces a similar behavior in Fig.(3.6a). This means that the pulse duration
can be appropriately chosen, in order to optimize the junction switching
with the laser field. Indeed, if ωc/∆ is of the order of 5 ÷ 15 a very small
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Figure 3.6: Switching front in the parameter space a)(ωc/∆, q) at fixed
current bias γ = Jb/J

o
c and b) (γ, q) at fixed ωc/∆, for Q = 100 and ωD/∆ =

10. The full curves have been added as a guide for the eye: they mark the
border between the zero voltage (Josephson) state and the voltage state. q
is the coupling strength due to the laser pulse.

released energy is required for the switching of the junction, because the
order parameter is much depressed by the laser pulse in that range. Out
of this range the shorter is the pulse the larger is the energy required. By
contrast a slightly larger released energy is also required for longer pulses
(ωc/∆ < 5). This is because longer pulses imply a more extended change in
the qp distribution up to higher energies. As a consequence the maximum
of the function ρ of Eq. 3.37 contributes less to the correction of the gap
parameter. Nevertheless caution should be used in considering our results
for longer pulses because of the neglected relaxation effects.

3.6 Discussion

The effect of an ultrafast laser pulse on the superconducting coherence at
a Josephson Junction allows studying an unexplored regime in non equi-
librium superconductivity. Non-equilibrium in superconductivity is usually
addressed in the context of one of the possible applications of Josephson
junctions, that is radiation/particle detectors. Highly energetic radiation
produces pair breaking and quasiparticles which, in turn, excite a large num-
ber of them, in a cascade process. Usually the setup is optimized such that
the qp’s can be collected and contribute to the current across the junction
with a sharp signal. Losses are due to degradation of the released energy into
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heat during the relaxation process. To achieve optimum performance, the
Josephson current is usually suppressed by applying a magnetic field. This
picture has been discussed quantitatively by examining the quasiclassical
kinetic equation for the non equilibrium qp distribution function [16].

In this work we have concentrated on a quite different time scale: the
one fixed by the duration of an ultrafast laser pulse. While the relaxation
process mentioned above takes place on a time scale of 0.1÷100 ns, we have
considered a laser perturbation lasting at most hundreds of femtoseconds.
This type of tool can be quite valuable for future applications, because fast
pulses in flux and gate voltages are extremely important when processing
information in superconducting quantum computing devices (qubits) [28].
Indeed, finite rise and fall times of pulses may result in a significant error in
dynamical computation schemes [29]. The carrier frequency of the laser is
∼ 100THz and the optical radiation is expected to produce many e−h pair
excitations as it would occur in a normal metal. In our case, qp’s do not
have enough time to relax down to the typical phonon frequencies (∼ ωD)
and to heat the sample before the stimulated switching occurs. We do not
wish to collect qp’s either, what requires a suitable geometry of the junction.

Instead, we have addressed the question how the critical current for
Josephson conduction Jc can be coherently affected by a laser induced small
perturbation with an unrelaxed non-equilibrium distribution of qp’s, that is
before the dissipative response sets in.

Using the quasiclassical approach to non-equilibrium Keldysh Green’s
functions, we have shown that, if the temperature is very low, the order
parameter of the irradiated superconductor can respond adiabatically to a
weak perturbing signal. A non equilibrium distribution of qp’s is generated
and consequently Jc is temporarily reduced (see Eq. (3.39) and Fig(3.3)).
This reduction can drive switches of the junction out of the zero voltage
state. In our approach the retardation effects which arise from the frequency
dependence of the e − ph coupling α2F (ω) and from the actual features of
e− ph relaxation processes have been neglected. They come into play on a
time scale longer then the duration of the laser pulse, ω−1

c ∼ τc. Indeed in the
equation of motion for the Keldysh Green’s function reported in Appendix
3B and 3C the role of the frequency dependent self-energy terms has not
been discussed.

The parameter which is related to the energy released by the radiation
and describes the strength of the perturbation is q. In our case, the switches
can be induced by pulses with q ∼ 0.05, with relatively low values of ωc/∆ ∼
10, by polarizing the junction very close to the critical current.

In experiments on laser induced non-equilibrium effects in superconduc-
tors [3] or Josephson junctions [4], the released energy is of few µJ , which
corresponds to values of q between 0.25 and 0.67 for the given laser spot
dimension. In our case for q = 0.05 the switching occurs at 98% of the criti-
cal current. Therefore, a coherent effect of the laser on the superconducting
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condensate is sufficiently large to be observed in sensitive experiments mon-
itoring the escape rate [11,12]. These experiments can appreciate very small
variations of the critical current, if temperature is kept low and the released
energy is sufficiently small, so that sizeable heating effects do not occur.

We have also found a ‘cosϕ’ contribution to the Josephson conduction
due to the presence of the excited qp’s (see Eq. (3.41)). This term, which
will be examined in detail elsewhere, vanishes at zero V, T , provided excita-
tions do not generate charge imbalance. A similar term, proportional to the
voltage V , can be derived also in the BCS theory of Josephson conduction [2]
but it is identically zero as long as V ≤ 2∆/e, because of the absence of
qp’s at zero temperature. This is not the case here, due to the presence of
a non-equilibrium qp distribution.

Our derivation of Eq.s(3.37,3.39,3.41) assumes that no charge imbalance
is created by the perturbation. This is because the radiation excites e − h
pairs and the pulse duration is short enough, so that pair breaking is very
limited. The absence of charge imbalance is a crucial approximation in
our solution scheme. This assumption allows us to keep the unperturbed
functional form of the quasiclassical Green’s functions and to insert a time
dependent gap parameter ∆(t) in their expressions. ∆(t) follows the per-
turbation adiabatically and is determined by the non equilibrium e−h pair
distribution produced by the pulse. Charge imbalance corrections should be
reconsidered, but they are usually expected to have a minor effect on the
dynamics of the junction.

To complete the picture, we have simulated the classical dynamics of the
junction switching to the resistive state. This picture is only valid over few
periods 2π/ωpJ on time duration less than the electron-phonon relaxation
time.

Precursor oscillations can be seen in Fig. (3.4) at the Josephson plasma
frequency ωpJ . Most remarkably the duration of the pulse can be optimized
in order to induce controlled coherent switching at the minimum possible
released energy E .
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Appendix 3A
Quasiclassical time dependent Green’s function ap-
proach

In normal metals the classical kinetic equation is applicable when the elec-
tron mean free path is large with respect to the wavelength of the electrons.
In superconductors in addition to the excitation wavelength there is another
important parameter: the size of a pair or the correlation length. Therefore
the standard kinetic equation is applicable only in the cases the mean free
path and the range in which the order parameter changes, greatly exceeds
the correlation length. Using these argument Larkin and Ovchinnikov [30]
had obtained the quasiclassical equations in the non stationary case as a
generalization of the stationary case [31]. In these appendixes we reproduce
Larkin and Ovchinnikov argument in a different way in order to simplify the
time averages and all the difficulties related to the ultrafast laser signal we
intend to study.

The quasiclassical Green’s function solve the Eilenberger form of the
Gorkov equations which can be expressed by the following commutator [18]:

[(

Ğ−1
0 − Σ̆ − ∆̆

)

, Ğ
]

⊗
= 0 . (3.44)

The matrix Green’s function Ğ in the Keldysh space is:

Ğ =

(

ĜR ĜK

0̂ ĜA

)

, (3.45)

where, in turn, ĜR, ĜA, ĜK are the retarded, advanced and Keldysh Green
functions in the Nambu space:

Ĝ(A,R,K) =

(

g(A,R,K) f (A,R,K)

−f (A,R,K)† −g(A,R,K)†

)

. (3.46)

Here f is the anomalous propagator and its Keldysh component defines the
gap:

∆ =
ν(0)λ

4

∫ +∞

−∞
dω < fK >~vF

. (3.47)

The average <>~vF
denotes angular averaging over the Fermi surface. The

gap matrix ∆̆ is defined as:

∆̆ ≡
(

∆̂ 0

0 ∆̂

)

, ∆̂ =

(

0 −∆
∆∗ 0

)

. (3.48)

The self-energy Σ̆ includes elastic and inelastic scattering with impurities
and gives rise to relaxation processes. The commutator is evaluated w.r. to
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the ⊗ operation, which implies integration over the intermediate variables
according to:

Ğ−1
0 ⊗ Ğ0 ≡

∫

d2 Ğ−1
0 (1, 2)Ğ(2, 1′) , (3.49)

where 1 ≡ (~r1, t1). The differential operator Ğ−1
0 (1, 2) is

Ğ−1
0 (1, 2) =

[

iσ̆3∂t1 −
1

2m

(

~∇~r1
− i

e

c
σ̆3
~A(1)

)2
+ (eφ(1) − µ)Ĭ

]

δ(1 − 2) .

(3.50)
Here

σ̆i ≡
(

σ̂i 0
0 σ̂i

)

, Ĭ ≡
(

Î 0

0 Î

)

, (3.51)

where σ̂i(i = 1, 2, 3) are the usual Pauli matrices and Î the 2×2 unit matrix.
The vector potential ~A(1) describes the laser radiation field of frequency Ω:

~A(1) =
∑

±

∑

~p

~a±(p, t)e∓i(~p·~r1−Ωt) , (3.52)

where ~a± can be slowly varying ’envelope’ functions of space, on the light
spot size Ro and on time, on the scale Ω−1. These are the reference space
and time scales in the following. In the frame of the quasiclassical approx-
imation, the original Green’s functions G(1, 2) ≡ G(~r, t, ~r ′, t′) are assumed
to be slowly varying function of the coordinate ~R = (~r + ~r′)/2 while they
oscillate fast as functions of ~r− ~r ′ on the scale of the Fermi wavelength λF .
It is customary to rewrite also the time dependence in terms of the new
variables t = (t+ t′)/2 and t− t′ and to Fourier transform w.r.to ~r− ~r ′ and
t− t′, thus obtaining G(~p, ω, ~R, t).
The motion equation for the Keldysh component of Eq.(3.44) reads:

[

Ĝ−1
0 −<e(Σ̂) − ∆̂, ĜK

]

⊗
=
[

Σ̂K ,<e(Ĝ)
]

⊗
+
i

2

{

Σ̂K , Â
}

⊗
− i

2

{

Γ̂, ĜK
}

⊗
,

(3.53)
where we have defined a quantity proportional to the density of states Â =
i(ĜR−ĜA) (not to be confused with the vector potential), and written down
the imaginary and the real part of the self-energy, Γ̂ = i(Σ̂R−Σ̂A) and <eΣ̂ =
1
2(Σ̂R + Σ̂A), respectively, as well as the real part of the retarded/advanced

Green’s function <eĜ = 1
2(ĜR + ĜA) ({, } denotes the anticommutator ).

The next step is the gradient expansion of the ⊗ product (we drop the
overline on t in the following):

Ĉ ⊗ B̂ = exp 1/2(∂C
t ∂

B
ω − ∂C

ω ∂
B
t ) exp 1/2(∂C

p ∂
B
R − ∂C

R∂
B
p )ĈB̂ , (3.54)

(here ∂C
p stands for the gradient w.r.to the impulse operating on Ĉ ), followed

by the averaging of the result for |~p| close to pF , that is over the energies
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p2/2m− µ ≡ ξ while the direction of ~p, p̂, is untouched:

ĝ(p̂, ω, ~R, t) =
i

π

∫

d ξ Ĝ(~p, ω, ~R, t) . (3.55)

This is justified, because λF is much shorter both of the superconducting
correlation length and of the spatial range of the laser spot (e−h symmetry
is assumed). Eventually ĝ depends on p̂, ω,R, t. The average of Eq.(3.53)
over all directions in the Fermi surface, can be done if no external bias is
applied and anisotropies of the diffusion and relaxation process are not ex-
pected. In the presence of radiation with optical frequency it is customary to
average out the fast oscillating components with frequency Ω [32]. Following
Eq.(3.7), we expand the Green’s functions similarly:

ĝ(ω,R, t) = ĝ(ω,R, t) +
∑

±

χ̂±(ω,R, t)e±iΩt . (3.56)

Here ĝ(ω,R, t) is assumed to be the slowly varying part on the scale of
the pulse duration τc, while χ̂± are fast varying ones. All these functions
are slowly varying functions of space as well, on the light spot size scale.
A decomposition of Eq. (3.53) into harmonics arises. We are interested
in the zero order harmonic equation, which shows a slow dynamics that
can be followed coherently by the irradiated superconductor. Leaving the
self-energy terms in Eq. (3.53) for the moment aside and dropping the
superscript (K), we obtain

[τ3a+, χ̂
−]+[τ3a−, χ̂

+]+[(ωτ̂3−∆̂), ĝ]−1

2
{τ̂3, ∂tĝ}+

1

2
{∂t∆̂, ∂ω ĝ}−

e2

2mc2
∂tA

2∂ω ĝ = ...,

(3.57)
where the ellipsis refers to the missing self energy terms. The first order
harmonic equations are:

±i {τ3, χ̂±} +
e

2mcΩ
[a±, ĝ] = 0 , (3.58)

they show that the first two terms in Eq. (3.57) are O(Ω−1) smaller than the
others and can be neglected to lowest order. Hence the effective equations
for the Green functions are

[(ωτ̂3 − ∆̂), ĝ] − 1

2
{τ̂3, ∂tĝ} +

1

2
{∂t∆̂, ∂ω ĝ} −

e2

2mc2
∂tA

2∂ω ĝ = ... , (3.59)

The last three terms in Eq. (3.59) include the time dependent non equilib-
rium dynamics that is absent in the case of a time independent approach.
Retarded, advanced and Keldysh Green’s function, they all satisfy analogous
equations.
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Appendix 3B
Kinetic equation for n(ω, r, t)

One can linearize Eq. (3.59) for Keldysh Green’s function by posing ĝK =
ĝRĥ − ĥĝA. This yields the kinetic equation for the distribution function
n(ω,R, t) [23]. We neglect any variation in space and concentrate on the t
dependence here. The distribution matrix ĥ is defined starting from the nL

and nT functions according to:

ĥ = nL1̂ + nT σ̂3 , (3.60)

or

ĥ =

(

nL(E) + nT (E) 0
0 nL(E) − nT (E)

)

≡
(

1 − 2n(E) 0
0 2n(−E) − 1

)

.

(3.61)
The second equality defines the relation with the qp distribution function
n(E). We always assume e − h symmetry, so that n(E) + n(−E) = 1 and
nT = 0. In the equilibrium case one has no(E) = 1

eE/T +1
, so that:

no
L(T ) =

1

2

[

tanh(
E

2T
) + (−)tanh(

E

2T
)

]

. (3.62)

Substituting Eq. (3.24) in Eq. (3.59), we get the kinetic equation for the
distribution matrix ĥ.In particular, in case there is no charge imbalance, the
equation for the longitudinal component nL is [16]:

∂tnLTr((ĝ
Rτ̂3 − τ̂3ĝ

A)) + ∂ωnLTr(∂t∆̂(ĝR − ĝA)) +

− e2

2mc2
∂tA

2Tr
(

∂ωnL

(

ĝR − ĝA
))

= −4I[nL(ω)] , (3.63)

where I[nL(ω)] is a collision integral which regulates the relaxation of the
qp distribution toward equilibrium. Eq. (3.63) is fully discussed in Ref. [16].

Appendix 3C

Equation of motion of GR

We now write down the equations Eq. (3.59) explicitly for the retarded
Green’s functions. We label the matrix components by (i, j) (i, j = 1, 2) and
drop the superscript R everywhere. The matrix elements of Eq. (3.57)in the
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Nambu space become :

(1,1) → ∂tg − ∆f † + ∆∗f + ∂t∆∂ωf
† + ∂t∆

∗∂ωf +
e2

2mc2
∂tA

2∂ωg = ...

(2,2) → ∂tg
† + ∆f † − ∆∗f + ∂t∆∂ωf

† + ∂t∆
∗∂ωf − e2

2mc2
∂tA

2∂ωg
† = ...

(1,2) → 2ωf − ∆g† − g∆ + ∂t∆∂ωg
† − ∂ωg∂t∆ +

e2

2mc2
∂tA

2∂ωf = ...

(2,1) → +2ωf † − ∆∗g − g†∆∗ + ∂t∆
∗∂ωg − ∂ωg

†∂t∆
∗ − e2

2mc2
∂tA

2∂ωf
† = ... .

The equilibrium result suggests that

f =
∆(t)

ω
g (3.64)

solves Eq.(1, 2) except for terms ∝ ∂tA
2 which describe the relaxation at

later times. Let us assume that this relation holds also in the non-equilibrium
case. Then the formal solution, follows adiabatically the t−dependence of
the gap parameter ∆ by keeping an equilibrium-like shape:

gad =
ω

√

ω2 − |∆|2(t)
, fad =

∆(t)
√

ω2 − |∆|2(t)
(3.65)

This approximate solution is quite appealing, because it satisfies the equilib-
rium condition for ∆ at t→ ∞. However it neglects diffusion in space-time
which will be mainly important at later times w.r. to the pulse duration.
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