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ABSTRACT 
 

The Environment and its safeguard are becoming more and more important for the 

social, economic and political system. In the first chapter data are given showing that 

the railway transportation system produce low levels of chemical pollution for this 

reason the demand of this transport system is rapidly increasing. However the problem 

of vibration emission remains and so the interest in new railway systems has been 

rapidly increasing to obtain a relevant vibration reduction. The problem becomes more 

important when a railway line have developed near urban areas where noise and 

vibration are a relevant impact factor and can produce complaints from people. The 

problem can be solved developing new antivibration systems with more elastic level 

respect to the traditional track. In this thesis the use of a new elastomeric composite 

material is proposed. This material derives from recycled rubber and it can be another 

important environmental aspect that has to  be taken into account. 

In the second chapter there is a brief description of the main components of the 

traditional track, then the most important innovative tracks are described to point out 

the elements that allow to obtain higher performances in terms of vibration reduction. 

The following part of this thesis can be divided in two parts: the first one concerns 

the theoretical and experimental study of the new composite material for railway 

application and it is expanded in chapter 3, chapter 4 and chapter 5.  The second one 

regards railway track modelling and the experimental validation of the studied 

theoretical model: this part is developed in chapter 6 and chapter 7. 

In the third chapter the most important characteristics of elastomers are recalled: 

non linear mechanical behaviour, crystallization under stress and glass transition 

temperature. Two different approaches for the rubber behaviour study are described: 

hyperelastic approach that can represent the non-linear properties but not the time-

depending properties that are considered through a viscoelastic approach. 
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In the forth chapter a particular type of composite recycled rubber material is 

considered, used to manufacture rubber mats and pads for innovative antivibration 

track systems. The material is composed by recycled rubber, an inert component, and 

by polyurethane that constitutes the binder. The recycled rubber is derived from used 

tyres and rubber factory leftovers. The process cycle is described. The main important 

properties of the inert are derived also considering experimental data. Composite 

materials are often non-homogeneous and anisotropic and require specific approaches 

to capture the main aspects of their static and dynamic behaviour. Starting from micro-

scale in which inhomogeneities are visible, macro-scale behaviour is derived through 

homogenization techniques. Assuming an elastic and anisotropic material 

microstructure, Voigt and Reuss relations are considered in which global mechanical 

properties of the composite material are obtained from properties of its components 

and starting from the Reuss and Voigt models, the proper model for the considered 

material is discussed.. The main scope is to make predictions of material’s behaviour 

from theoretical aspects with the possibility to reduce experimental tests and costs, i.e. 

to obtain criteria to design a material with desired mechanical characteristics. 

Finally in the fifth chapter a comparison is made between the expected theoretic 

behaviour and the experimental results from tests performed on square specimens 

obtained from mats, classified according to compound type, form and dimension of the 

inert. Different densities are considered to show the effect of compactness on 

mechanical properties. Results of static and dynamic tests performed following UNI 

Italian standards are shown and discussed in the paper. 

The previous considerations clear that it is important to conceive the track system 

considering the problem of the isolation of vibration from the beginning. The starting 

model is an Euler beam with distributed mass and flexural stiffness supported by a 

uniformly distributed spring bed representing an elastic foundation. The case of a 

constant force moving at constant speed is considered, the load is defined by means the 

Dirac function. The solution allows to understand the importance of the critical speed; 
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moreover it is showed how the damping can vary the amplification of displacement 

and the dynamical behaviour of the beam. The other load condition that has been 

studied consists of a fixed harmonic force. It has been solved considering that the 

solution is practically equal to the one for the Winkler beam in the static case. The 

results are expressed in terms of transfer function between load and displacement. New 

antivibration railway systems are often designed introducing one or more elastic levels 

in the track in order to modify its static and dynamic behaviour. To understand the 

effect of these additions, different models are considered able to explain the effect of 

added flexibilities at different positions. Lumped spring-mass models are studied first. 

The simplest is a mass-spring system characterized by a concentrated mass m  and a 

constant stiffness k . Solving the problem, information is obtained regarding the 

behaviour in the static case, at resonance and at high frequencies. The behaviour of this 

model is compared with two other systems: a spring-mass-spring model in which 

another spring is added above the mass and a mass-spring-spring model in which a 

spring is added in series to the other one. The dimensionless dynamic flexibility and 

stiffness is determined and shown in the paper for each system. More refined models 

including a continuous bar of total length l , of axial stiffness  EA  and with mass per 

unit length s Aµ , sµ being the mass density are subsequently considered. The first of 

these model is a mass-bar system and its static and dynamic behaviour is described and 

shown. It is compared with the following further systems: a spring-mass-bar model in 

which another spring is added above the mass, a mass-spring-spring model in which a 

spring is added in series to the bar and a mass-spring-bar-spring model in which two 

springs are added, one spring is between the mass and the bar and the other one is in 

series to the bar. The results are still shown in terms of dimensionless dynamic 

flexibility and stiffness. 

Finally, in the seventh chapter previous models are applied to a traditional and to its four 

varants studied within AFERIA (Armamenti Ferrotranviari Ecocompatibili a Ridotto Impatto 

Ambientale, environment friendly railway tracks with reduced environmental impact) funded 
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by MIUR (Italian Ministry for Education and Research). The results are given in terms of 

static displacement and characteristic length, moreover acceleration transfer functions in 

frequency domain is derived for each railway system. The traditional track consists of two rails 

and sleepers connected each other by fastenings and supported by a ballast layer. Two variants 

(1st variant and 2nd  variant) of the previous system are both obtained adding an under ballast 

mat, but the first one is stiffer than the second one , the 3rd variant  is obtained including the 

effect of an elastic wrapping of the sleepers; finally the forth variant is a combination of the 

second variant and the third one. Full-scale prototypes have been developed for the traditional 

and innovative track systems. Static and dynamic tests have been performed and the results 

will be compared with analytical solutions. 
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CHAPTER 1 

VIBRATION INDUCED BY RAILWAY TRAFFIC AND 

THE ENVIRONMENTAL SAFEGUARD 

 
The environment and its safeguard are very important values for the social 

economic and political system. Pollution prevention and saving and re-cycling of 

resources are becoming more and more important. Today in the management of 

territory and natural resources, production of goods and services it is a must to take 

into account the environment and ecologic cycles. For this reason the demand of rail 

transport systems is rapidly increasing, as they produce much less chemical pollution 

greenhouse gas or atmospheric pollution) compared with road or air transportation.  

In the following data of the 5th REPORT of the Italian association “Earth Friends” 

in collaboration with the Italian Railway Institution are shown. They consider the 

external costs (they load people in terms of greenhouse gas emission, accident and 

traffic) of the transportation system. 
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1995 1997 1999 2001 2003 Variation (1995-2003)
ROAD 103573 105438 109574 113955 116171 12.2
RAIL 3034 3071 2953 2835 2796 -7.8
AIR 7047 7922 9640 10336 12181 72.9
TOTAL 113654 116431 122167 127126 131148  

table 1 CO2 emission evolution (kt) (source: 5th “Earth friends” report in collaboration with 
Italian Railway Institution: Environmental and social transportation costs in Italy) 

 

Absolute 
emission CO2

Equivalent 
emission CO2 

Esternal 
Costs

Part of esternal 
costs divided for 

category
(kt) (106 euro) (%)

ROAD 116,171 120,386 2,408 78.3
passenger transportation 76,787 80,319 1,606 52.2
private use 73,317 76,799 1,536 50.0

Cars 69,277 72,567 1,451 47.2
petrol 42,047 44,069 881 28.6
diesel 23,610 24,761 495 16.1
GPL 3,620 3,737 75 2.4

Motor-cycles 2,282 2,403 48 1.6
Motor-bicycles 1,758 1,829 37 1.2

bus 3,471 3,520 70 2.3
freight transportation 39,383 40,067 801 26.0
light vehicles 13,693 13,994 280 9.1
weight vehicles 25,690 26,073 521 16.9

RAIL 2,796 2,889 58 1.9
passenger transportation 1,944 2,012 40 1.3
freight transportation 852 877 18 0.6

AIR 12,181 * 609 19.8
passenger transportation 11,342 * 567 18.4
freight transportation 839 * 42 1.4
TOTAL 131,148 135,456 3,075 100.0  

table 2 Emission and external cost of greenhouse gas in 2003 (source: 5th “Earth friends” report in 
collaboration with Italian Railway Institution: Environmental and social transportation costs in 

Italy) 
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greenhouse 
gas

Atmosferic 
Pollution Noise Accident traffic jam TOTAL (%)

ROAD 2,408 7,277 5,224 3,941 19,435 38,285 94.4
passenger transportation 1,606 4,329 2,599 3,599 13,087 25,220 62.2
private use 1,536 3,997 2,414 3,563 12,679 24,189 59.6

Cars 1,451 3,323 1,547 2,546 12,679 21,546 53.1
Motor-cycles 48 179 516 551 - 1,295 3.2
Motor-bicycles 37 495 350 466 - 1,348 3.3

bus 70 331 185 36 408 1,031 2.5
freigth transportation 801 2,949 2,625 341 6,348 13,065 32.2
ligth vehicles 280 948 1,108 40 2,647 5,023 12.4
weight vehicles 521 2,000 1,517 301 3,701 8,042 19.8

RAIL 58 123 235 35 97 547 1.3
passenger transportation 40 94 140 31 97 402 1.0
freight transportation 18 29 95 3 - 145 0.4

AIR 609 581 440 29 74 1,734 4.3
passenger transportation 567 540 408 29 74 1,620 4.0
freight transportation 42 40 32 - - 114 0.3
TOTAL 3,075 7,981 5,899 4,005 19,606 40,566 100.0  
 

table 3 total external costs of mobility in 2003 (millions of Euro) (source: 5th “Earth friends” 
report in collaboration with Italian Railway Institution: Environmental and social transportation 

costs in Italy) 
 

These data clear the interest in the promotion of Railway transport systems, 

however, noise and vibration emission remains a relevant impact factor and they 

produce complaints from people living along lines and above underground lines 

(figure 1).  

The main causes of vibration emissions are: 

• Wheel rail irregularities 

• wheel wear; 

• rail corrugation; 

• displacement of the ballast and of the basement. 

• The irregularities of vehicle motion 

• hunting; 

• sliding. 
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figure 1 noise and vibration problem 

 

Nowadays a way to the problem of vibration is to develop new antivibration 

systems with more elastic levels that give upper performances in terms of vibration 

transmission. 

In this thesis the use of new elastomeric material is proposed that can help to solve 

an other environmental aspect: the rubber recycling. Polymers need long time for the 

natural decomposition because of their chemical structures and their additives; for this 

reason the dump disposition is a serious Environmental problem (table 4). 

 

COUNTRY PRODUCTION DUMP EXPORT RETREADING RECYCLING STOCKING ENERGY 
RECOVERY OTHER 

Austria 50.000 20.000 5.000 4.500 500 0 20.000 0 
Belgium 70.000 2.800 8.400 10.500 9.800 350 38.150 0 

Denmark 37.500 0 4.500 1.125 26.250 0 5.625 0 
Finland 30.000 0 3.000 1.800 24.000 1.200 0 0 
France 370.000 74.000 18.500 74.000 55.500 92.500 29.600 25.900 

Germany 650.000 32.500 110.500 117.000 78.000 0 279.500 32.500 
Greece 58.500 48.065 0 1.755 4.585 0 4.095 0 
Ireland 32.000 17.600 0 1.600 0 12.800 0 0 

Italy 350.000 231.000 7.000 29.000 34.000 0 49.000 0 
Luxembourg 2.750 0 2.612,5 137.5 0 0 0 0 
Netherlands 67.000 0 12.060 1.340 20.100 0 33.500 0 

Portugal 52.000 31.200 676 1.560 5.876 0 6.500 6.188 
United Kingdom 435.000 117.450 8.700 73.590 113.100 19.575 69.600 32.625 

Spain 244.000 195.200 3.660 30.744 7.076 0 7.320 0 
Sweden 60.000 1.200 3.600 7.200 18.600 600 20.400 8.400 
TOTAL 2.508.750 770.750 1.882.208 356.211,5 397.387 127.025 563.290 105.613 

 100% 31% 8% 14% 16% 5% 22% 8% 

table 4 production, destination and recycling occasions of tyres in Europe in 2000 (t) (source: 
ETRA, European Tyre Recycling Association) 

GENERATION NOISE 
PROPAGATION

RECEPTION VIBRATION 
PROPAGATION
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1.1 OVERVIEW OF ITALIAN AND INTERNATIONAL STANDARDS 

 
In this paper only vibration generated on the track line and transmitted through solid 

media are considered (no reference is made to noise problems). Present available 

standards regarding the effects of vibration can be divided in two groups: those which 

refer to annoyance produced on people during their activities and those which consider 

damage caused on buildings. The Italian UNI 9614, the German DIN 4150 (parts 1 and 

2) and the international ISO 2631 belong to the first group; standards of the second 

group are: UNI 9916, DIN 4150 (parts 1 and 3) and ISO 4866, as well as the Swiss 

standard SN 640 312 a (see table 5). 

 

STANDARD EFFECTS ON PEOPLE EFFECTS ON STRUCTURES

ITALIAN UNI 9614 UNI 9916 

INTERNATIONAL ISO 2631 (part 1 and 2) ISO 4866 

SWISS  Sn 640 312 a 

GERMAN DIN 4150 (part 1 and 2) DIN 4150 (part 1  and 2) 

table 5 standards on the effect of vibration on people and structures 
 

A critical comparison among the above standards has been developed showing 

analogies and differences in the definition of levels of perception or limit levels for the 

effects on the human body, and of guideline values for effects on buildings.  

 

1.2 EFFECTS OF VIBRATION ON PEOPLE 

 

Standards concerning effects on people all consider a range of frequencies between 

1-80 Hz. Vibrations are characterized through the root mean square of acceleration 

both in UNI 9614 (UNI, 1990)  and in ISO 2631 (ISO, 1985-1989) . The effects of 

vibrations are different according to the frequency content: UNI 9614 supplies curves 

of perception limits that are equal to those reported in ISO 2631/2, there indicated as 
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base curves, but in the International Standard the same curves (or tables) are reported 

also for velocity. Limit levels (values that cause annoyance on people) are provided in 

a different form in the two standards: in terms of frequency weighted root mean square 

of acceleration in UNI 9614 and through a range multiplicative factor of base curves in 

the ISO 2631. However, as shown in tables 6 and 7, the corresponding values are very 

close when appropriately converted. In Both of theme three propagation directions are 

considered in a Cartesian reference with the origin point in the contact point of the man 

with the ground and the three axes correspond back-chest direction (X axis), left-right 

direction (Y axis), head feet direction (Z axis). The reference is shown in figure 2. 

 

 Z axis X and Y axes 
Location UNI 9614 ISO 2631 UNI 9614 ISO 2631 

critical areas 
residential (night) 
residential (day) 

office 
workshop 

5,0⋅10-3 
7,0⋅10-3 
10,0⋅10-3 
20,0⋅10-3 

40,0⋅10-3 

5,0⋅10-3 
7,0⋅10-3 

10,0-20,0⋅10-3 
20,0⋅10-3 

40,0⋅10-3 

3,6⋅10-3 
5,0⋅10-3 
7.2⋅10-3 
14,4⋅10-3 

28,8⋅10-3 

3,6⋅10-3 
5,04⋅10-3 

7.2-14.4⋅10-3 
14,4⋅10-3 

28,8⋅10-3 

table 6 Limit levels of weighted acceleration [m/s2] for continuous vibrations (Italian and 
international standard) 

 

 Z axis X and Y axes 
Place UNI 9614 ISO 2631 UNI 9614 ISO 2631 

critical areas 
residential (night) 
residential (day) 

office 
workshop 

5,0⋅10-3 
7,0⋅10-3 

0,30 
0,64 

0,64 

5,0⋅10-3 
7,0⋅10-3-0,1 
0.15-0.45 
0,3-0,64 

0,45-0,64 

3,6⋅10-3 
5,0⋅10-3 

0,22 
0,46 
0,46 

3,6⋅10-3 
5,0⋅10-3-0,072 

0,11-0,32 
0,22-0,46 
0,32-0,46 

table 7 Limit levels of weighted acceleration [m/s2] for impulsive vibrations (Italian and 
international standard). 
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figure 2 direction for level vibration evaluation 
 

ISO 2631 is much more detailed than the Italian standard fore some further aspects. 

In fact in the first part of ISO 2631 exposure limits (higher than the above threshold 

limit levels) are indicated which may be applied in the case of periodic vibrations and 

of random or non periodical vibrations. They are indicated with reference to three main 

human criteria: 1) the preservation of comfort (“reduced comfort limit”), 2) the 

preservation of working efficiency (“fatigue decreased proficiency boundary”) and 3) 

the preservation of health or safety (“exposure limit”). In their definition, consideration 

is given to four physical factors that are considered very important in determining the 

human response to vibrations: the intensity the frequency, the direction and the 

duration. 

A different approach is used in the German standard DIN 4150 (DIN, 1975), where 

vibrations are characterized by root mean square of velocity for frequencies higher 

than 8 Hz. Limit levels are given through an index, called KB, that depends on 

velocity, oscillation frequency, location and type of phenomenon: 

2
0

max

)/(12
1KB

ff

v

+
⋅=  (1.1) 

In which maxv is the peak value of the speed; f is the vibration frequency and 0f  is a 

reference frequency of 5.6 Hz. 
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1.3 EFFECTS OF VIBRATION ON STRUCTURES 

 

Standards concerning effects on buildings give guideline values of safety for which 

certainly serious damages do not occur on structures. ISO 4866 (ISO, 1990) and UNI 

9916 (UNI, 1991) are very similar, as both consider a classification of buildings 

according to their presumed response to mechanical vibrations. The resistance of 

buildings depends on the characteristics of soil, type of foundation and superstructure.  

Explicit limit levels are not given, but in the appendix of Italian and international 

standards a table is provided which actually is taken from the German DIN 4150/3 

(DIN, 1986) standard. These limits are in terms of peak value of velocity depend on 

the type of structure and range of frequency. The Swiss standard SN 640 312a (SN, 

1992) is perhaps the most suitable for continuous and frequent vibrations, because 

limit levels depend on number of oscillations in a assigned time interval as well as on 

the frequency content and the type of structure. 
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CHAPTER 2 

TRADITIONAL AND INNOVATIVE TRACK SYSTEMS 

 
In the last years the need of reducing the emission of vibrations has significantly 

changed the design of track systems, as today they are designed considering the 

problem of the isolation of vibrations from the beginning. 

A ballasted track with rigid fastenings gives low performances in terms of 

transmission of vibrations: this because in conventional track systems it is only 

possible to act on fastenings to obtain a relevant attenuation of vibrations.  

New anti-vibration tracks are being designed, which are characterized by higher 

performances in vibration reduction. In this following the most important slab tracks 

are briefly described. 

 

2.1 TRADITIONAL TRACK SYSTEM 

 

The classical railway track consists of a flat framework made up of rails and 

sleepers connected to each other by fasteners; they are supported on ballast. The ballast 

bed sometimes rests on a sub-ballast layer (figure 1). 
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fastening
sleeper

rail

sub-ballast ballast

formation

fastening
sleeper

rail

sub-ballast ballast

formation  
figure 1 traditional railway track 

 

The rail is a steel element. There are three different types of rail profile: the flat-

bottom rail, the non standard profile and the grooved rail. The last is used in enclosed 

track structures such us road ways, yards. The flat-bottom rail is always used in the 

conventional track. This rail profile is derived from the I-profile in which the upper 

flange is converted to form a rail head, because the rail is a support and a guidance for 

the vehicle. The flat-bottom rail can be divided in three parts: the rail head that is 

formed to ensure a good contact with the wheel tire profile, this upper part is the 

rolling plane; the rail web in which are made the holes for the joints in jointed rails, the 

thickness of the web can be different to obtain an adequate stiffness against bending 

and buckling; the rail foot serves to fasten rail either directly or indirectly to the sleeper 

and its width must be large to guarantee the stability of the rail profile, the load 

distribution to the sleepers and the required moment of inertia in the lateral direction. 

The non-standard profile is very similar to the flat-bottom rail but the web thickness is 

greater to provide for switch and crossing components. Rail profiles which are used in 

Europe include the 54 E1 (UIC 54) and the 60 E1 (UIC 60) that are shown in figure 2 

(Esveld, 2001). 

 
figure 2 rail profiles (Esveld, 2001) 
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The sleepers have to preserve track gauge and rail inclination; they support rail 

forces and transfer them to the ballast bed. Timber and concrete sleepers are usually 

used; the use of the steel sleepers is not very spread. The concrete sleepers are more 

resistant than timber or steel sleepers to the climatic effects. The timber sleeper is the 

rifest in the traditional track; it is prismatic in shape, 15 cm high and 25 cm wide; the 

length is 2.60-2.70 m. The distance between the sleepers depends on the track loads 

and on the type of the rail, it is usually 60 cm but in lightly loaded CWR (concrete 

welded rail) it can be increased and its value is 75 cm. 

The ballast bed consists of a layer of loose, coarse grained material, which, as a 

result of internal friction between the grains, can adsorb considerable compressive 

stresses but not tensile stresses. The thickness is 35 cm for the secondary lines and 50 

for the main lines measured from the lower side of the sleeper. The grading of the 

ballast bed elements is 25/70 mm, the best elements derive from broken, solid or 

sedimentary rock such us porphyry, basalt, granite.  

The sub-ballast consists of a bituminous concrete layer that is sometimes present in 

the traditional track to reduce the displacement of the ballast, and it is always present 

in the high speed lines. Its thickness is about 12 cm (Esveld, 2001). 

 

2.2 OVERVIEW OF INNOVATIVE TRACK SYSTEM 

 

2.2.1 Rheda 2000 

 

The  ballastless track was undergoing rapid development in Germany thanks to the 

tests that the DB (The German railway institute) has been operating since 1996. The 

best-known designs are Rheda and Zublin, so called from the name of the place where 

they were made for the first time. There are numerous variants of the Rheda track 

system and the most developed one is Rheda 2000 (figure 3). 
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Concrete 
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Concrete 
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fastening system Vossloh 300

 
 

figure 3 Rheda 2000 track system 
 

This track system has been used in high speed lines and in tunnel and the system 

was born to obtain an innovative system with low costs and this target is obtained with 

a continuous concrete cast. The conventional concrete trough was eliminated and so a 

simplification of the overall system configuration and a considerable reduction of the 

structural height were obtained and this reduction is very important in tunnel. Twin-

block sleepers are used in Rheda 2000 with double elastic fastenings, and the sleepers 

are longitudinally connected with reinforcing steel to prevent them from loosening. 

They are fit in the concrete slab and so the whole cross section of the track becomes a 

monolithic component. The Rheda 2000 can give some maintenance problems because 

of the continuous  concrete cast (Esveld, 2003). 

 

2.2.2 Japanese ballastless track system, Blog 

Japan was the birthplace of high speed rail and it was the first country that opened 

the first high speed line (between Tokyo and Osaka) in 1964, that was called 

Shinkansen network. The first Japanese ballastless track consists of a prefabricated 

slab on which the sleepers were fixed and it was used in high speed lines. 

Subsequently sub layer stabilized using cement was added to increase the elasticity of 

the system. Once the cast of the foundation has been made and the sub layer has been 

carried out the cylindrical stoppers are placed to prevent lateral and longitudinal 

movement; then the reinforced pressurised slab measuring 4.93m(2.39m(0.19m 



Chapter 2 – Traditional and innovative track systems 

 

 13

(4.95m(2.34m(0.15m in tunnels) is built; eventually the fastenings and the rail are set 

(Crispino, 1996). 

The innovative German Blog track is very similar to the Japanese one; Blog slabs 

are made of B55 steel fibre reinforced concrete and are 20 cm thick, 6.45 m long, and 

2.55 or 2.80 m wide. The slabs are prestressed in the lateral direction, while in the 

longitudinal direction traditional reinforcement is applied. Spindles integrated in the 

slabs provide an easy and quick adjustment of the slabs. The slabs are connected 

longitudinally by post-tensioned steel rods in the neutral axis (Esveld, 2003). 

 

2.2.3 Stedef, Sonneville Low vibration, Walo, Edilon Block System 

These track systems fall in the same category. Both the French Stedef system and 

Sonneville Low Vibration track system use a rubber boot under the sleepers that gives 

a high degree of elasticity and ensures a good noise and vibration insulation.  

The Swiss Walo system is related to the Stedef and Sonneville Low Vibration 

system, but it uses a twin block sleepers. A special slipform paver lays a concrete slab, 

the sleepers are fitted with the rubber boots and they are placed in the position and cast 

(figure 4)  

Phase 1: 
track supportino bed  

Phase 2: 
Cable channel  

Transverse profile 

 
figure 4 the Swiss Walo system 

 

The Edilon block track system is often used for bridges and tunnels. The first step is 

to place the rails and the block in the position. The blocks are then cast in using 
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corkelast (that is a cork/polyurethane mixture) to  guarantee the necessary elastic 

support. 

 

2.2.4 Embedded Rail Construction 

All the designs mentioned so far were based on the rail being supported at discrete 

points. Since 1976 a continuously supported rail system has been in use in the 

Netherlands. The system is called Embedded Rail Construction (ERC) in which the 

continuous support for the rail is obtained by means of a compound consisting of 

corkelast. One of the most important advantages is that the wheel does not experience 

any difference in vertical stiffness like in the track systems with sleepers and it is 

known that this stiffness difference is one of the major sources for the development of 

the rail corrugation. The Dutch rail Institute has over 20 years experience with this 

system and it has proved to require little maintenance. The rail is placed in a 

longitudinal recess created in the base structure and pored out with elastic embedding 

material. This fastening system can be used only in the ballstless tracks (figure 5). 

 

 
figure 5 Continuously Embededd Rail system 

 

1 Longitudinal recess 
2 Elastic embedding material 
3 Space filling elements 
4 Elastic base strip 

 

The material of the recess can be reinforced concrete or steel, depending on the 

track structure. Fixing down of the rail is realized by the contact of the embedding 
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material with the rail and the recess surface. The systems can vary in the composition 

of the embedding materials, in most of the cases there is a two component elastomer 

occasionally with added cork. If a greater elasticity is necessary a cork base strip is 

placed under the rail. For reducing the amount of the embedding material space filling 

elements are placed on both sides of the rail, they can be PVC pipes or cement-based 

brick in the fish-plate pass (Ludvigh, 2002). 

The first ERC system used the conventional UIC 54 rail (figure 6). 

 

 
figure 6 the first variant of ERC system 

 

 

The system has been developed in 1998 when the SA42 rail has been used which 

produces 5 dB(A) less noise. An additional advantage is the substantial reduction of 

polyurethane (figure 7). 
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figure 7 the Dutch innovative track with SA42 rail 

 

A new development is an embedded rail structure in asphalt pavement, this system 

is called ERIA (Embedded Rail In Asphalt). This is a special solution for trams and 

light rail in the urban areas (figure 8). 

 
figure 8 ERIA 

 

Two variants have been developed: 

• The embedded rail prefabricated in a steel trough, which is fixed into a combi 

layer of very open asphalt concrete, filled up with a cement slurry. 

• In the second variant the bitumen in the upper 10 cm has been replaced by the 

much stronger polyurethane to replace the steel trough (Esveld, 2003). 
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2.2.5 Vienna 

Vienna is a floating mass track in which the mass consists of two independent 

concrete blocks and a little canal is between the two blocks (figure 9). 

 

 
figure 9  Vienna track system 

 

1 Poliurethane sleepers 
2 Rubber covering 
3 fiberglass 
4 Levelling slab 
5 slab 

 

The adequate elasticity is obtained by means fibreglass mats on which the concrete 

castings rest. A dynamic mass-spring system is realized consisting of the concrete 

elements and of the elastic mats; good vibration isolation is obtained thanks to the 

floating concrete mass. The first vertical frequency of the system is 20Hz. Light weight 

sleepers that rest on the elastic elements are used to prevent the formation of “roaring 

rail” corrugations (Acquati, Cavagna, 2003). In spite of these important dynamic 

characteristics of the track, some aspects were not satisfactory: 

• A reduced geometric stability because of the creep of fibreglass mats 

• High flexural elasticity of the sleeper. 
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2.2.6  Coopsette e IPA 

Coopsette track system consists of precast concrete elements that rest on 

elastomeric discrete bearings (figure 10). 

 
figure 10 Coopsette track system 

 

The bearings underneath the slab are laid along a triangle to obtain an isostatic lying 

of the slab for which each bearing is load with the same load, therefore differential 

displacements are avoided, and they can reduce the useful life of the track. 

There are six niches on the upper face to house the sleepers that are six concrete 

blocks fitted in rubber boots like in the Walo system. Separate sleepers give low 

performances in terms to preservation of the gauge; to overcome this disadvantage the 

stiffness of the rubber boots id increased, but it can make worse the problem of the rail 

corrugations. The elastomeric bearings do not resist to horizontal loads and a sufficient 

stability is not guaranteed; for this reason the ‘stoppers’ are used to face these loads 

with contained displacements. The stopper is a steel cylinder that is anchored in the 

slab. This cylinder can move in another cylinder and therefore a constraint is realized 

which allows vertical displacements but not horizontal ones. The stopper is in the 

centre of the slab and so it is difficult to notice  feasible breakings. The first frequency 

of the track system  is 18.5 Hz (Acquati, Cavagna, 2003). 

The IPA track system consists of  a concrete slab with a thickness of 40 cm; the 

sleepers are in the slab and they are not wrapped by any elastic element (figure 11). 

 



Chapter 2 – Traditional and innovative track systems 

 

 19

 
figure 11 IPA track system 

 

The concrete casting rest on a continuous elastomeric mat with a small thickness 

that can control horizontal displacemets even if the stoppers are eliminated. This track 

system is cheaper than Coopsette because it has neither stoppers nor a second elastic 

level between the sleepers and the slab, but it has a good dynamic behaviour and its 

fundamental frequency is 19 Hz (Acquati, Cavagna, 2003). 

 

2.2.7 Milano Massivo 

Milano Massivo is an innovative track system that has been developed by 

Metropolitana Milanese S.p.A. with the cooperation of the polytechnic of Milan. It 

works as a floating slab system, which consists of a precast concrete slab resting on 

discrete elastomeric bearings. The slab weight is 4 t and the elastomeric bearings and it 

rests on four discrete elastomeric bearings. These elastic bearings and the high mass of 

the slab are very important to guarantee a good antivibration behaviour of the system. 

The slab has three niches on its upper side in which the sleepers are placed and their 

inter-axis is 75 cm. They are made of an African wood called “azobè” that offers a low 

weight and a very high strength. The sleepers are wrapped with elastomeric panels. 

Above each sleeper there are two steel plates that are used to fasten the rail by means 

the Vosshol elastic fastenings. The bearings underneath the slab are laid along a 

triangle like for the coopsette track system: two next to one vertex and each of other 

two next to the reaming two vertices (figure 1.12). 
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figure 12  Milano Massivo track system 
 

At the middle of each of the two lateral faces of the slab there is a ‘stopper’ like in 

the Coopsette system but this one is different and is in a different position. The stopper 

of Milano Massivo is a rubber block (40×150×395mm) which is fixed at the middle of 

each of the two lateral faces of the slab; it is vulcanized to two steel plates that are used 

to bolt the block in the concrete slab. Its purpose is to control the horizontal 

movements, infact they have high stiffness in the horizzontal direction and low 

stiffness in the vertical direction. 

Each slab is indirectly connected to the other ones infact the rail is welded and 

continuous and it is fastened to the sleepers which are fixed in the slab, but the slabs 

are completely independent. 

It is clear that Milano Massivo has three elastic levels (Acquati, Cavagna, 2003): 

• Under-rail pads; 

• Panels wrapping the sleepers; 

• Elastomeric bearings under the slab. 

These three elastic levels can give high performances in terms of the reduction of the 

vibrations. To have a good antivibration behaviour, a track must be designed with a big 

Elastomeric 
bearings 

Under-rail 
pads 

Panels 
wrapping 
sleepers 
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floating mass and an elastic element underneath the mass with a low stiffness; thus it is 

possible to make the fundamental frequency of the system as low as possible.  

The first frequency of Milano Massivo is 18 Hz and it is obtained the right 

mediation between the the dimension of the floating mass (if it is too big it lead to a 

more difficult carrying of the slabs inside the small section of a urban metro tunnel) 

and the elasticity of the bearings (a reduction of their stiffness could involve higher 

deflections of the track and less safety of trains transit).   
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CHAPTER 3 

AN OVERVIEW ON MODELS REGARDING 

ELASTOMERIC MATERIAL CHARACTERIZATION  

 
Elastomers are substantially supercondensed gases because most of them derive 

from monomers that are gases; but their density is greater 3 orders of magnitude and 

viscosity 14 orders than gaseous state. They are polymer with the property of 

elasticity; the term is derived from elastic polymer and it is used interchangeably with 

the term rubber, actually this definition is preferred when vulcanized rubbers are 

considered. Elastomers are typically amorphous polymers having a random coil 

molecular arrangement.  

Rubbers can be divided broadly in two categories: thermosets and thermoplastics. 

Thermosets are three-dimensional molecular networks with very long molecules that 

are held together by chemical bonds. They can adsorb solvent and swell without 

dissolving and it is impossible to reprocess them simply by heating. On the contrary 

thermoplastic molecules are not connected by primary chemical bonds and so they can 

dissolve in suitable solvents and soften on heating. There are some applications (such 
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us tires) in which some specific properties are necessary and thermosets are used for 

their better elasticity, resistance to set and durability. 

Various ingredients can be added to raw rubber to obtained desired properties and 

this process is called “rubber compounding or formulation” (Gent, 2001).  

 

3.1 ELASTOMERS: GENERAL CHARACTERISTICS 

 
There are important general properties that have to be considered for a correct 

modelling. They are described in the following. 

The most “famous” characteristics of natural rubber and other elastomers is the 

ability to undergo large and reversible deformation. It is necessary to clear that the 

native state of the natural rubber does not satisfy this property: its molecules tend to 

slide and can exist permanent deformations. Molecules have to be chemically 

crosslinked by sulphur bonds to prevent permanent flow. 

Rubber materials have the ability to dissipate energy and consequently the 

mechanical behaviour depends on time and temperature. 

Moreover the material can be considered incompressible, in other words 

deformations for the effect of a hydrostatic pressure can be disregarded and volume 

remains constant. 

Other important property is the non linear mechanical behaviour. This is shown in 

figure 1 where tensile tests are performed on dumbbell specimens of natural rubber 

with additives.  
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figure 1 experimental rubber stress-strain relation 

 

These tests can determine the stress-strain relation and some considerations can be 

made: 

• For lower deformation the rubber stiffness tends to decrease. 

• When deformations reach higher levels (see in particular figure 2) the rubber 

stiffness goes up and this phenomenon is called “crystallization under stress” 

(Krevelen, 1990). 
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figure 2 rubber stress-strain relation (Krevelen, 1990) 

 

Another type of crystallization can be caused by low temperature. There is a 

temperature, called the glass transition temperature, below which the physical 

properties of amorphous materials vary in a manner similar of a solid phase (glassy 

state) and above which amorphous materials behave like liquids (rubbery state). In 

other words a material’s glass transition temperature is the temperature below which 

molecules have little relative mobility (figure 3). 
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figure 3 glass transition temperature 

 

3.2 MECHANICAL BEHAVIOUR MODELING OF RUBBER MATERIAL 
 

Different models have been developed by different researchers to describe 

constitutive relations of rubber material. 

There are two different approaches that can capture different aspects of the rubber 

behaviour: 

1. Hyperelastic approach: hyperelastic models can represent the non-linear properties 

and the ability of the rubber to undergo large deformations. However they can not 

describe time-depending properties and so they do not describe damping aspects. 

2. Viscoelastic approach: viscoelastic models can represent the damping properties of 

rubber materials and they take into account in the model the time variable. 

 

3.2.1 Hyperelastic models 

Rubber materials with hyperelastic behaviour can be described in terms of strain-

energy function ( )U ε , which defines the quantity of strain energy accumulated in the 

material per unit of reference volume. 
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There are different expressions of this function to model an elastomer considered 

isotropic and incompressible: the Arruda-Boyce form, the Marlow form, the Mooney-

Rivlin form, the neo-Hookean form, the Ogden form, the polynomial form, the reduced 

polynomial form, the Yeoh form and the Van der Waals form.  

It is noticed that the reduced polynomial and Mooney –Rivlin models can be 

considered as particular cases of the polynomial model; the Yeoh and neo-Hookean 

potentials can be viewed as special cases of the reduced polynomial model. For this 

reason they can be collectively called “polynomial models”. They are easily applicable 

because they need limited test data for calibration; in particular when one set of test 

data is available (uniaxial, equibiaxial or planar test data) the Marlow form is 

recommended. 

Generally, when it is possible to obtain data from multiply experimental tests (this 

requires at least uniaxial and equibiaxial test data) the Ogden and Van der Waals are 

more accurate in fitting experimental results. 

The form of Arruda-Boyce strain energy is: 

( ) ( ) ( )
( ) ( )
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 (3.1) 

where U  is the strain energy per unit of reference volume; ,  and m Dµ λ  are 

temperature-depend material parameters; 1I  is the first deviatoric strain invariant and 

elJ  is the elastic volume ratio. 

The initial shear modulus 0µ  is related to µ  with the expression: 

0 2 4 6 8
3 99 513 420391

5 175 175 67375m m m m

µ µ
λ λ λ λ

⎛ ⎞
= ⋅ + + + +⎜ ⎟

⎝ ⎠
 (3.2) 

A typical value of mλ  is 7 for which 0 1.0125µ µ= ⋅ . 

The initial bulk modulus is related to D : 
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0
2K
D

=  (3.3) 

1I  is given by the following relation: 

1 2

2 2 2
1 3I λ λ λ= + +  (3.4) 

In which the deviatoric stretches are: 
1/ 3

i iJλ λ−=  (3.5) 

J  is the total volume ratio: 

( )detJ F=  

The deformation gradient F expressed in the principal directions of stretch is:  

1

2

3

0 0
0 0
0 0

F
λ

λ
λ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (3.6) 

iλ  are the principal stretches: the ratios of current length to length in the original 

configuration in the principal directions. They are related to the principal nominal 

strains iε  by: 

1i iλ ε= +  (3.7) 

In the case of isothermal response: 

1 2 3

2 2 2
11 2 31    1    J Iλ λ λ λ λ λ= = = + +  (3.8) 

The elastic volume ratio elJ  relates the total volume ratio and the thermal volume ratio 

thJ : 

( )31
el th th

J JJ
J ε

= =
+

 (3.9) 

Where thε  is the linear thermal expansion strain: it is obtained from the temperature 

and the isotropic thermal expansion coefficient. 

The form of Marlow strain energy potential is: 
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( ) ( )1dev vol elU U I U J= +  (3.10) 

U  is still the strain energy per unit of reference volume, devU is its deviatoric part and 

volU  is its volumetric part. 1I  is given by (3.4). 

The form of Mooney-Rivlin strain energy potential is: 

( ) ( ) ( )2
1 210 01

1

13 3 1elU C I C I J
D

= ⋅ − + ⋅ − + ⋅ −  (3.11) 

U  is the strain energy per unit of reference volume. 10 01 1,   and C C D  are temperature-

dependent material parameters, the initial shear modulus and the bulk modulus are 

given by: 

( )0 10 01 0
1

22 ;       C C K
D

µ = + =  (3.12) 

 1I  and 2I  are the first and second deviatoric strain invariants the first one is the 

defined by (3.4), the second one is: 

( ) ( ) ( )
1 2

2 2 2
2 3I λ λ λ

− − −
= + +  (3.13) 

 elJ  is the elastic volume ratio defined by (3.9). 

The form of neo-Hookean strain energy is: 

( ) ( )2
110

1

13 1elU C I J
D

= ⋅ − + ⋅ −  (3.14) 

. 10 1 and C D  are temperature-dependent material parameters, the initial shear modulus 

and the bulk modulus are given by: 

0 10 0
1

22 ;       C K
D

µ = =  (3.15) 

1I  and elJ  are still given by (3.4) and (3.8) respectively. 

The  form of the Ogden strain energy potential is: 

( ) ( )2
1 2 32

1 1

2 13 1i i i el
N N ii

i i ii
U J

D
α α αµ

λ λ λ
α= =

= ⋅ + + − + ⋅ −∑ ∑  (3.16) 
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iλ  are the deviatoric stretches defined in (3.5). N  is a material parameter and 

,   and i i iDµ α  are temperature-dependent material parameters. The initial shear 

modulus and bulk modulus for the Ogden form are given by: 

0 0
1 1

2      
N

i
i

K
D

µ µ
=

= =∑  (3.17) 

It is important to point out  that the Mooney-Rivlin and Neo-Hookean forms can be 

obtained from the general Ogden strain energy potential for special choices of iµ  and 

ia . 

The form of the polynomial strain energy  potential is: 

( ) ( ) ( )2
1 2

1 1

13 3 1el
N N ii i

ij
i j i i

U C I I J
D+ = =

= ⋅ − − + ⋅ −∑ ∑  (3.18) 

N  is a material parameter and  and ij iC D  are temperature-dependent material 

parameters. The initial shear modulus and bulk modulus for the polynomial form are 

given by (3.12). 1I  and 2I  are the first and the second deviatoric strain invariants 

defined in (3.4) and (3.13). 

When the nominal strains are small ( 100%)< , the first terms in the polynomial series 

are usually sufficient to describe the material behaviour. Mooney-Rivlin, neo-Hookean 

and Yeoh forms can be obtained for special choices of ijC . 

The form of reduced polynomial strain energy potential is: 

( ) ( )2
10

1 1

13 1el
N N ii

i
i i i

U C I J
D= =

= ⋅ − + ⋅ −∑ ∑  (3.19) 

N  is still a material parameter and 0 and i iC D  are temperature-dependent material 

parameters. The initial shear modulus and bulk modulus for the polynomial form are 

given by (3.15). 1I  is the first deviatoric strain invariants defined in (3.4). 

The Van der Waals form strain energy potential is: 
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( ) ( )
3

22
2 12 3 13 ln 1 ln

3 2 2
el

m el
JIU a J

D
µ λ η η
⎧ ⎫

⎛ ⎞⎛ ⎞ −−⎪ ⎪⎡ ⎤= − − ⋅ − + − ⋅ + ⋅ −⎜ ⎟⎨ ⎜ ⎟ ⎬⎣ ⎦
⎝ ⎠ ⎝ ⎠⎪ ⎪

⎩ ⎭

 (3.20) 

In which I  and η  are defined in the following: 

( ) 1 21I I Iβ β= − ⋅ +       2
3
3m

Iη
λ
−

=
−

 (3.21) 

U  is the strain energy per unit of reference volume; µ  is the initial shear modulus; 

mλ  is the locking stretch; a is the global interaction parameter; β  is an invariant 

mixture parameter; and D  governs the compressibility. These parameters can be 

temperature-dependent. 1I  and 2I  are in (3.4) and (3.13) respectively. 

Finally the form of the Yeoh strain energy potential is: 

( ) ( ) ( )
( ) ( ) ( )

2 3
1 1 110 20 30

2 4 6

1 2 3

3 3 3

1 1 1      1 1 1el el el

U C I C I C I

J J J
D D D

= ⋅ − + ⋅ − + ⋅ − +

+ ⋅ − + ⋅ − + ⋅ −
 (3.22) 

U  is the strain energy per unit of reference volume; 0  and i iC D  are temperature-

dependent material parameters. The initial shear modulus and bulk modulus for the 

polynomial form are given by (3.15) (ABAQUS manual). 

 

3.2.2 Viscoelastic models 

The ideal behaviour of elastomers assumes reversible relations between load and 

displacement. Actually, deviations from such ideal elastic behaviour are predictable. 

Elastomers combine both liquid and solid properties. They show viscous behaviour. 

There are some applications in which viscous properties are desired, but excessive 

viscous response can sometimes create problems. 

An ideal linear solid is described by Hooke’s law:  stress is proportional to strain. 

An ideal viscous liquid obeys Newton’s law: stress is proportional to rate of change of 
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strain with time. Elastomers have properties intermediate between these two cases and 

the response of these materials is called “viscoelastic” behaviour. 

Hooke’s law can be written: 

F kx=  (3.23) 

where x  is the deformation, F  is the force and k  is the spring constant. 

Newton’s law is written in the following: 

dxF b
dt

= ⋅  (3.24) 

in which b  is a viscous damping coefficient. This behaviour is well represented by a 

viscous element called dashpot.  

Previous relations can be written in terms of stress: 

e

E
d
dt

σ ε
εσ η

=

= ⋅
 (3.25) 

in which σ  is the tensile stress, ε  is the tensile strain, E  is the elastic tensile modulus 

and eη  is the Newtonian viscosity coefficient in tension. For an incompressible fluid 

the tensile viscosity eη  is three times the shear viscosity η  (the same relation between 

E and the shear modulus G  for an incompressible solid). Traditionally Viscoelastic 

behaviour has been described by phenomenological approaches. 

A Maxwell model consists on a spring and a dashpot placed in series (figure 4). 
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Maxwell Voigt

 
figure 4 Maxwell and Voigt model 

 

In this case the equation of motion is written (equal terms being the forces, and the 

additive terms are the deformations): 

1dx dF F
dt k dt b

⎛ ⎞= ⋅ +⎜ ⎟
⎝ ⎠

 (3.26) 

The stress relaxation is obtained considering that: 

( )0   or    constantdx x a
dt

= =  (3.27) 

Substituting (3.27) in(3.26): 
/

0
tF F e τ−= ⋅  (3.28) 

In which the relaxation time is defined: 

b
k

τ =  (3.29) 

The creep is represented by the following condition: 

0   (or     constant)dF F a
dt

= =  (3.30) 

Substituting in (3.26) it is obtained: 
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0
Ftx x
b

= +  (3.31) 

Finally the case of a constant rate of deformation is considered: 

dx R
dt

=  (3.32) 

Consequently the following relation is found: 

( )/1 tF bR e τ−= ⋅ −  (3.33) 

Voigt model is obtained considering a spring and a dashpot in parallel (figure 4). In 

this case the equation of motion is given by (equal terms being the deformations and 

additive terms are the forces): 

dxF k x b
dt

= ⋅ +  (3.34) 

The stress relaxation, the creep and the constant rate deformation are still studied. 

In the first case (stress relaxation) considering(3.27) is obtained: 

F kx=  (3.35) 

The creep is represented (applying (3.30)): 

( )/0 1 tFx e
k

τ−= ⋅ −  (3.36) 

In which τ  is still given by (3.29) but it is now called retardation time. 

A generalized Maxwell model consists of an infinite number of simple Maxwell 

elements in parallel and the distribution of elastic modulus ( )E τ  as a function of the 

relaxation time τ  of the simple Maxwell model is obtained. 

A generalized Voigt model consists of an infinite number of simple Voigt elements 

in series and the distribution of compliance ( )D τ  as a function of the retardation time 

τ  of the simple Maxwell model is described. 

Generally generalized Maxwell model is applied for stress-relaxation experiments 

while a generalized Voigt model describes well creep experiments. 
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The dynamic mechanical properties of elastomers can be important in several 

applications and they refers to the behaviour of these material subjected to stresses or 

strains changing with time. In the following the case of sinusoidally varying stresses 

and strains is discussed. 

In the oscillatory dynamic experiment stress and strain are not in phase and there is 

not only the ratio of stress to strain but also the phase difference (or phase angle 

between them) is measured. The phase angle depends on the dynamic viscosity, being 

zero when the viscosity is zero. 

Considering the phase angle three different behaviours can be considered. For a 

perfect spring the force and the deformation are in phase (figure 5a); in the case of 

dashpot the force leads the deformation by / 2π  radians (figure 5b). Finally, a 

viscoelastic material has property both of a spring both of a dashpot then it has an 

intermediate phase angle (figure 5c).  

 

σ σ σ

ε εε

a) b) c)

 
figure 5 typical relations between stress and strain a) for a perfectly elastic solid subjected to an 

alternating stress; b) for a simple viscous liquid; c) for a viscoelastic solid 
 

A close parallel exists between dynamic mechanical theory and alternating current 

circuit. In a reactive circuit voltage and current are out of phase and electrical loss 

factor is given in terms of electrical loss tangent. For the same concept tanδ  

represents mechanical energy losses and it is called mechanical loss tangent or factor 

(Gent, 2001). 



Chapter 3 – An overview on models regarding elastomeric material characterization 

 36

The whole notation system for mechanical properties is also like that used in 

alternating current theory. For this reason some terms as complex and imaginary 

modulus are used and they hard to understand in a mechanical sense.  

The Voigt element is considered in terms of stress σ  and strain ε : 

dE
dt
εσ ε η ⎛ ⎞= + ⋅⎜ ⎟

⎝ ⎠
 (3.37) 

In which η  is the tensile viscosity.  

A strain (varying with time in sinusoidal way) is applied: 

( )0 sin tε ε ω=  (3.38) 

In which 0ε  is the strain amplitude. 

A complex relation is introduced for strain: 

( ) ( )0 0exp cos sint t i tε ε ω ε ω ω= = +  (3.39) 

In this way both imaginary (3.38) and real part are considered. 

The rate of change strain with time is given by: 

( )0 expd i i t i
dt
ε ωε ω ωε= =  (3.40) 

This relation is substituted in (3.37): 

( )E iσ ωη ε= + ⋅  (3.41) 

E iωη+ is a type of modulus because it is the ratio of a stress to a strain and it is called 

complex dynamic modulus *E . 1E E=  is the real part called real dynamic modulus 

and 2E ωη= is the imaginary called imaginary dynamic modulus and the (3.41) can be 

written: 

( )1 2E iEσ ε= + ⋅  (3.42) 

The following definitions are considered: 

1
component of stress in phase with strain

strain
E =  
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2
component of stress 90° out of phase with strain

strain
E =  

The absolute value of complex modulus is expressed as a function of the loss factor: 

( ) ( )
1/ 21/ 2 2* 2 2

1 2 1 1 tanE E E E δ⎡ ⎤= + = +⎣ ⎦  (3.43) 
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CHAPTER 4 
DESCRIPTION AND MODELING OF A NEW RUBBER 

MATERIAL 
 
 

Environmental and energy-saving issues are increasing the interest toward the use 

of recycled rubber for different applications in several industrial sectors. In this thesis a 

particular type of composite recycled rubber material is considered, it is used to 

manufacture rubber mats and pads for innovative antivibration track systems.  

They are produced by ISOLGOMMA s.r.l. that is specialized in the production of 

anti-vibration mats of recycled rubber for railway applications, with manufacturing 

plant located in Albettone (Vicenza, Italy) and research centre in Pozzuoli (Napoli, 

Italy). 

The use of new elastic element in railway track is becoming a very effective way to 

reduce vibrations induced by railway traffic. Elastomeric pads and mats can be 

included at different levels in a railway track and the importance to understand their 

effect is increasing together with the interest and the need to describe static and 

dynamic behaviour of the material.  
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4.1 DESCRIPTION OF THE MATERIAL 
 

The material investigated is composed by recycled rubber and polyurethane; the 

recycled rubber is the inert component and it is derived from used tyres and rubber 

factory leftovers. The inert is in form of big (figure 1 and 2) or small (figures 3, 4, 5) 

granules (6 and 3 millimetres), while small or big (figure 6) fibres are obtained from 

the scraping of tyre external surface. Because of its origin the recycled rubber is SBR 

(Styrene Butadiene Rubber), that is the main component of tires together with the 

natural rubber, other products are in EPDM (Ethylene Propylene Dien Monomer) that 

can be grey or black (EPDMg, EPDMb). The binder is polyurethane, an urethane 

prepolymer with different aromatic poly-isocianates. 

 

 
 

figure 1 big granules of SBR 
 

 
 

figure 2 big granules of grey EPDM 
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figure 3 small granules of SBR 
 
 

 
 

figure 4 small granules of black EPDM 
 
 

 
 

figure 5 small granules of  grey EPDM 
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figure 6 big fibres of  grey EPDM 
 

 

4.1.1 Description of the production cycle 

The composite rubber material is used to manufacture mats and pads. The 

production cycle is composed by the four steps (figure 7): 

1. Material acceptance and accumulation: in this phase the recycled rubber 

material is available but the production process starts with the following step. 

2. Rubber granulation: the inert is put in the grinding chamber, where the rubber 

remains until granules or fibres get to stoker dimension under the grinding 

chamber.  

3. Binder-inert mixing: the rubber compound, prepared in the previous step, is put in 

an automatic mixer, then the correct amount of binder is added to the rubber in the 

mixer and they are mixed together until becoming a homogeneous compound.  

4. The last step is the hot pressing or the cold forging. In the first one the inert-

binder compound is spread through a hopper on a paper support. While the 

compound goes on the belt, it is levelled and homogeneously put on the whole belt 

surface by means a levelling roller. During this phase the compound does the 

polymerization facilitated by the water presence (sprinkled when the compound 

enters in the press) and by the heat that is transferred by surfaces that are warmed 

until the temperature of the binder prescription is reached. This phase last until the 

polymerization is complete and the product is agglomerated maintaining desired 
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thickness, density and dimensions. Finally, the product undergoes a forced air 

cooling and it can be cut for different applications. In the cold forging Teflon-

aluminium dies are applied and the hopper is used to fill them. The product is 

pressed for a fixed time at a defined pressure to obtain a desired compactness. 
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figure 7 production cycle 
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4.2 TIRE COMPOSITION 
 

Tires consist of a rubber compound usually reinforced with steel and textile. They 

are composed by vulcanized rubber and different additives. SBR and polybutadiene are 

recently used because they improve their ultimate strength and wear proof. The natural 

rubber is added for adhesion problems and it carries out an improvement in the shock 

and tearing resistance, moreover it maintains constant the elastic modulus during the 

aging. 

Tires also contain the following components: 

• Black filler: it is used to increase the elastic modulus of the elastomer and to 

improve its abrasion resistance. 

• Inert: they are used to control the viscosity and to decrease the internal friction 

during the production process; moreover they improve the rubber flexibility for 

lower temperatures. 

• Curing agents: sulphur compounds are used as catalysts of the curing process 

and zinc oxide is used to start the curing. 

• Reinforcing fibres: steel and textile fibres are used to increase the resistance. In 

the past inferior fibres were used (for example: synthetic fibres), but now it is 

spread the use of steel fibres. 

The material composition of passenger car and truck tires from the European Union 

is in table 1. 
table 1 tire composition 

MATERIAL CAR TIRES TRUCK TIRES

Rubber/elastomers 47% 45%
Carbon black 21.5% 25%
Textile 5.5% -
Zinc oxide 1% 2%
Sulphur 1% 1%
Additives 7.5% 5%  
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4.3 PROPERTIES OF THE RUBBER INERT 
 

Previously the main components of the inert part had been described, now their 

most important characteristics are considered. 

SBR denotes a copolymer of styrene and butadiene, typically containing about 23% 

styrene with a glass temperature transition of approximately 55 C− ° . It is the most 

widely used synthetic elastomer with the largest volume production. It has good 

abrasion resistance and good aging stability. It is stable in mineral oils, fats, aliphatic, 

aromatic and chlorinated hydrocarbons. Its possible temperature range is 

40 to 100 C− + °  and its typical application is in the production of tyres (Gent, 2001). 

EPDM is a synthetic elastomer, a terpolymer of ethylene, propylene and a diene-

component which is characterized by wide range of applications. It has a small number 

of double bonds external to the backbone. The ratio ethylene to propylene in 

commercial grades can vary from 50/50 to 75/25. Its glass transition temperature is 

60 C− ° .  It has excellent resistance to weathering a good heat stability. EPDM is 

applied for roofing, seals, gaskets and hose (Gent, 2001). 

Some tests have been performed at research centre ISOLGOMMA on the inert 

component to show and classify different inert for their mechanical characteristics. 

Test instructions are in UNI 10570 standard that is described in the following.  

A proper baseplate (1, in figure 8a) and load slab (2, in figure 8a) are designed. 

Inert granules or fibres (4, in figure 8a) are put in a tank (3, in figure 8a) without 

imparting pressure and the starting condition is obtained (figure 8b) for which the 

volume is given by: 
3 3 3 3

0 (390 2 20) (390 2 20) 80 mm 9800 10 mm 9800 cmV = − ⋅ ⋅ − ⋅ ⋅ = ⋅ =  (4.1) 
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figure 8 a) description of the experimental procedure; b) starting condition 

 
 

Static tests are performed considering the application of a load that linearly goes up 

with time, until the maximum value is reached and then it linearly goes down; three 

cycles are considered and the mechanical characteristics are derived by the third one. 

Test loads are: 
2 2 2

0 1 N/cm       9 N/cm        2 N/cm   ps pdσ σ σ= = =  

in which 0σ  is the initial load, psσ and pdσ  are the static and dynamic component 

respectively (figure 9). 

 

 
figure 9 variation of the load during the tests 

a) b) F
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Three different conditions for the inert are considered. The first one (condition 1) 

states an inert compression with the steel plate until it reaches the tank edge (figure 

10a). This compression reduces the initial volume of 25% and the new value is: 

( ) 3 3 3 3
1 (390 2 20) (390 2 20) 80 20  mm 7350 10 mm 7350 cmV = − ⋅ ⋅ − ⋅ ⋅ − = ⋅ =  (4.2) 

The compression is greater in the second condition (condition 2) in which the steel 

plate is lowered of 5 mm from the tank edge (figure 10b). The volume is reduced of 

31.25% for this compression: 

( ) 3 3 3 3
2 (390 2 20) (390 2 20) 80 25  mm 6737,5 10 mm 6737,5 cmV = − ⋅ ⋅ − ⋅ ⋅ − = ⋅ =  (4.3) 

The last condition (condition 3) is obtained lifting the steel plate as shown in figure 

10c. The volume is greater than the other two conditions and it is given: 

( ) 3 3 3 3
3 (390 2 20) (390 2 20) 80 15  mm 7962,5 10 mm 7962,5 cmV = − ⋅ ⋅ − ⋅ ⋅ − = ⋅ =  (4.4) 

 
figure 10 a) compression condition 1; b) compression condition 2; c) compression condition 3 

 

The following types of inert are considered: big granules of grey EPDM and SBR 

and small granules of grey and black EPDM and SBR. For each inert type the previous 

three compression conditions are considered. Figures from 11 to 15 show the 

experimental cycles:   the mean displacement is on x-axis and the tension is on y-axis. 

The results in terms of static stiffness and loss factor are summarized in table 2. 

 

e

F FFa
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figure 11 experimental cycles for big granules of grey EPDM: a) condition 1; b) condition 2; c) 
condition 3 
 

 
figure 12 experimental cycles for big granules of  SBR: a) condition 1; b) condition 2; c) condition 

3 
 

 
figure 13 experimental cycles for small granules of grey  EPDM: a) condition 1; b) condition 2; c) 

condition 3 
 

 
figure 14 experimental cycles for small granules of black EPDM: a) condition 1; b) condition 2; c) 

condition 3 
 

 
figure 15 experimental cycles for small granules of SBR: a) condition 1; b) condition 2; c) 

condition 3 
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table 2 experimental results for inert component 

INERT TYPE CONDITION
STATIC 

STIFFNESS
ks[N/cm3]

LOSS 
FACTOR 

[%]
Grey EPDM (BG) 1 14.93 31.52

2 27.25 17.79
3 6.79 29.24

Grey EPDM (SG) 1 19.81 19.18
2 24.66 17.02
3 10.81 32.23

Black EPDM (SG) 1 18.90 30.38
2 35.46 30.45
3 13.29 31.57

SBR (BG) 1 33.94 48.25
2 45.70 25.33
3 16.34 25.61

SBR (SG) 1 24.40 25.40
2 47.08 27.86
3 15.25 27.70  

 
It is evident that the second condition gives stiffness values greater caused by a 

greater material compression. The grey EPDM compound has the lowest stiffness 

values and the stiffest compound is the SBR one. 
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4.4 PROPERTIES OF THE BINDER 
 
 

The binder is a polyurethane resin. The polyurethane is a polymer consisting of a 

chain of organic units joined by urethane links. Generally polyurethane polymers are 

formed by reacting a monomer containing at least two isocyanate functional groups 

( N C O− = = ; when an isocyanate has two isocyanate group is called diisocyanate) 

with another monomer containing at least two alcohol groups in the presence of 

catalyst (the acceleration of a chemical reaction). The alcohol is an organic compound 

in which a hydroxyl group (OH) is bound to carbon atom of an alkyl, that is an 

equivalent radical containing only carbon and hydrogen atoms arranged in a chain. 

 

 
figure 16 chemical formulation of alcohol and alkyl group respectively 

 

Polyurethane formulations cover an extremely wide range of stiffness, hardness and 

densities. 

The binder in the described material is a polyether that consists of more than one 

ether group (an oxygen atom and two alkyl groups). The diethyl ether is CH3-CH2-O-

CH2-CH3. 

 

 
figure 17 chemical formulation of ether and diethyl respectively 

 
The binder is provided by a French society called SNAD POLYURETANE and it is 

the commercial name Stobicoll R389.00.The chemical description is a pre-polymer of 

urethane with different aromatic poly-isocyanates. 
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4.5 THEORETHICAL STUDY OF THE COMPOSITE MATERIAL 
 

In the mechanical approach of composite materials three size scales can be 

considered: micro-scale, meso-scale and macro-scale.  

The first one considers matrix-fibre heterogeneities, it consists of the study of 

composite material behaviour where the interaction of constituent material is examined 

in detail and used to predict and define the behaviour of the heterogeneous material.  

The meso-scale is an intermediate scale useful to understand the nature of fibres 

disposition (orderly or random).  

The last one is the scale of the global structure. It consists of the study of composite 

material behaviour where the material is presumed homogeneous and the effects of 

constituent material are detected only as averaged ‘apparent’ properties of the 

composite. Considering the macromechanics, composite properties can be obtained 

from single component properties, i.e. the microscopic nature of the structure can be 

disregarded and considered as a homogeneous material. 

 

4.5.1 Voigt and Reuss models 

Regarding polymer composites in literature (Ward & Sweeney, 2004) an idealized 

lamellar composite that consists of high modulus layer and a more compliant matrix 

layer is modelled. It is assumed that the bond between layers remains intact and the 

volume fraction of each component is an important parameter, but not the thickness of 

the individual layer. Both Voigt and Reuss models are considered in the following.  

In the first one an uniaxial stress is applied parallel to the layers direction 

orientation (figure 18).  



Chapter 4 – Description and modelling of a new rubber material 

 

 51

 
figure 18 Voigt model (Ward & Sweeney, 2004) 

 
The strain is the same in all layers (isostrain condition) and the force cF  acting on the 

composite is equal to the sum of the forces acting on the fibre fF  and matrix mF  

layers: 

c f mF F F= +  (4.5) 

Considering the relation between the force and the tension each addendum can be 

written: 

1      1f f f f m m m mF A h F A hσ σ σ σ= ⋅ = ⋅ ⋅ = ⋅ = ⋅ ⋅  (4.6) 

The total stress σ  is given by: 

( )1
fc c m

f m f f m m
hF F hE E E V E V

A h h h
σ ε ε ε= = = ⋅ ⋅ + ⋅ ⋅ = ⋅ + ⋅ ⋅

⋅
 (4.7) 

The equivalent modulus of the composite material, called Voigt average modulus, is 

given by: 

,eq Voigt f f m mE E V E V= +  (4.8) 
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where fE and mE  are the fibre and the matrix elastic modulus respectively; fV  is the 

volume fraction of fibres and mV  is the volume fraction of the matrix (such that: 

1f mV V+ = ). 

In the Reuss model the uniaxial stress is applied in transverse direction with respect 

to the layers direction orientation (figure 19).  

 
figure 19 Reuss model (Ward & Sweeney, 2004) 

 

Each layer is subjected to the same force and hence to the same stress (isostress 

condition) whereas the total deformation cs  is equal to the sum of the deformations of 

each component: 

 c f ms s s= + .  (4.9) 

The displacement of the fibre part is: 

c f
f

f

F h
s

E A
⋅

=
⋅

 (4.10) 

The displacement of the matrix part is given by: 

c m
m

m

F hs
E A

⋅
=

⋅
 (4.11) 

The total displacement is expressed as a function of an equivalent modulus eqE : 
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c

eq

F hs
E A

⋅
=

⋅
 (4.12) 

Considering the relation (4.9): 

      c f fc c m m

eq f m eq f m

F h hF h F h hhs
E A E A E A E E E

⋅⋅ ⋅
= = + ⇒ = +

⋅ ⋅ ⋅
 (4.13) 

f m
eq

m f f m

E E
E h

E h E h
⋅

= ⋅
+

 

In this case the equivalent modulus of the composite, called Reuss average modulus is 

given: 

,Re
f m

eq uss
m f f m

E E
E

E V E V
=

+
 (4.14) 

In figure 20 the ratio between the equivalent Voigt and Reuss elastic modulus and 

the fibres one is represented as a function of the fibres fraction volume for different 

ratios between the fibres elastic modulus and the matrix one: 

,eq Voigt m
f m

f f

E EV V
E E

= +  ,Re 1eq uss

ff
f m

m

E
EE V V
E

=
+

 (4.15) 
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figure 20 Voigt and Reuss results 

 

Considering the same type of matrix and fibre and the same material composition 

the Voigt equivalent elastic modulus is greater than the Reuss one. When the matrix 

has a greater elastic modulus than the fibre one 0.25;  0.5f f

m m

E E
E E

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
, the 

equivalent elastic modulus is always greater than the elastic modulus of the fibre and it 

increases with the matrix volume fraction. 

 

4.5.2 Model for the rubber-polyurethane material 

Starting from the Reuss and Voigt models, the proper model for the considered 

material is now discussed.  

The material consists of two components: binder (1) and inert (2) although the 

presence of voids (v) can not be disregarded. A combination of Voigt and Reuss model 

is considered which includes rubber and polyurethane through a Reuss model; the 
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equivalent modulus is then obtained if the presence of voids is assumed as a new 

material combined with the inert and the binder through a Voigt model (figure 21). 

Rubber and polyurethane volumes are respectively: 

1 1(1 ) 1vV h h= − ⋅ ⋅   2 2(1 ) 1vV h h= − ⋅ ⋅  (4.16) 

The total force cF is taken by rubber and polyurethane part. 

The relation between the stress and force is still considered: 

( )1 1
c c

v

F F
A h

σ = =
− ⋅

 (4.17) 

 

inert (2)

hv1-hv

1

h2

h1

binder (1)
1

voids (v)

Fc

s2

s1

 
figure 21 Model for the new material 

 
The total displacement in the force direction is: 

1 2 1 2 1 2
1 2

( )
(1 ) 1 (1 ) 1

c c c

tot eq v v

F F Fs h h s s h h
A E E h E h

= ⋅ + = + = ⋅ + ⋅
⋅ ⋅ − ⋅ ⋅ − ⋅

 (4.18) 

where 1 1totA = ⋅ . 
 hence: 

1 2 1 2

1 2

( )
1 (1 ) (1 )eq v v

h h h hs
E h E h E
+

= = +
⋅ − ⋅ − ⋅

 (4.19) 
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The voids volume is given by: 

( )1 21v vV h h h= ⋅ ⋅ +  (4.20) 

vh  can be calculated: 

( ) ( )1 2 1 2

1
1 1 1

v v
v

V Vh
h h h h

⋅
= =

⋅ + ⋅ ⋅ +
 (4.21) 

The dominator represents the total volume and vh  can be written as a function of voids 

volume fraction vv : 

1 1v
v v

tot

Vh v
V
⋅

= = ⋅  (4.22) 

Moreover, 1h  and 2h  can be written: 

( ) ( ) ( )
1 1 1

1 1 1 1 1 1 1 1 1v v v

V V Vh
h v v

= = =
− ⋅ − ⋅ ⋅ − ⋅ ⋅

 (4.23) 

( ) ( ) ( )
2 2 2

2 1 1 1 1 1 1 1 1v v v

V V Vh
h v v

= = =
− ⋅ − ⋅ ⋅ − ⋅ ⋅

 (4.24) 

(4.22), (4.23) and (4.24) is substituted in (4.19): 

1 2
2 2

1 2 1 1 2 2

1
(1 ) 1 1 ( ) (1 ) 1 1 ( )eq v v

V V
E v h h E v h h E

= +
− ⋅ ⋅ ⋅ + − ⋅ ⋅ ⋅ +

 (4.25) 

Considering that 1 21 1 ( )totV h h= ⋅ ⋅ + the relation (4.25) is written as a function of the 

volume fractions of the binder and the inert 1v  and 2v  respectively: 

( ) ( )
1 2

1 2
1 2 1 2

      
1 1 1 1

V Vv v
h h h h

= =
⋅ ⋅ + ⋅ ⋅ +

 (4.26) 

Hence: 

1 2
2 2

1 2

1
(1 ) (1 )eq v v

v v
E v E v E

= +
− ⋅ − ⋅

 (4.27) 

The equivalent elastic modulus of the composite material ca be expressed as: 
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1 2

1 2
2 12 2(1 ) (1 )

eq

v v

E EE v vE E
v v

⋅
=

⋅ + ⋅
− −

 (4.28) 

The ratio between the equivalent elastic modulus and the inert modulus is given by: 

1 2 22
2 2

1

1

(1 ) (1 )

eq

v v

E
v E vE

Ev v

=
⋅ +

− −

 (4.29) 

This ratio is plotted in the following figures as a function of volume fraction of voids 

and for different values of ratio 2

1

E
E

 and for different values of  ratio  2

1

v
v

 (figures 22-

26). 
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figure 25 equivalent elastic modulus for 2
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When the material consists of polyurethane and two rubber component a variant of 

this model can be considered. A combination of Voigt and Reuss model is still 

considered which includes two rubber components and polyurethane through a Reuss 

model; the equivalent modulus is then obtained assuming voids as a new material 

combined with the two inert components and the binder through a Voigt model (figure 

27). 

s3

s1

Fc

voids (v)

1
binder (1)

h1

h3

1

1-hv hv

1st inert (2)

h2

s2

2nd inert (3)

 
figure 27 Model for the new material (2) 

 

The total displacement in the force direction is: 

1 2 3 1 2 3
1 2 3

1 2 3

( )
(1 ) 1 (1 ) 1 (1 ) 1

c c c c

tot eq v v v

F h h h F h F h F hs s s s
A E E h E h E h

⋅ + + ⋅ ⋅ ⋅
= = + + = + +

⋅ ⋅ − ⋅ ⋅ − ⋅ ⋅ − ⋅
 (4.30) 

In which 1 1totA = ⋅ ; the total is written as in the following: 

1 2 3 31 2

1 2 3

( )
1 (1 ) (1 ) (1 )eq v v v

h h h hh hs
E h E h E h E

+ +
= = + +

⋅ − ⋅ − ⋅ − ⋅
 (4.31) 

The voids volume is given by: ( )1 2 31v vV h h h h= ⋅ ⋅ + +  (4.32) 
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vh  can be calculated: 

( ) ( )1 2 3 1 2 3

1
1 1 1

v v
v

V Vh
h h h h h h

⋅
= =

⋅ + + ⋅ ⋅ + +
 (4.33) 

The dominator still represents the total volume and vh  can still be written as a function 

of voids volume fraction vv . 

Moreover, 1h , 2h  and 3h  can be written: 

( ) ( ) ( )
1 1 1

1 1 1 1 1 1 1 1 1v v v

V V Vh
h v v

= = =
− ⋅ − ⋅ ⋅ − ⋅ ⋅

 (4.34) 

( ) ( ) ( )
2 2 2

2 1 1 1 1 1 1 1 1v v v

V V Vh
h v v

= = =
− ⋅ − ⋅ ⋅ − ⋅ ⋅

 (4.35) 

( ) ( ) ( )
3 3 3

3 1 1 1 1 1 1 1 1v v v

V V Vh
h v v

= = =
− ⋅ − ⋅ ⋅ − ⋅ ⋅

 (4.36) 

(4.34), (4.35) and (4.36) are substituted in(4.31): 

1 2
2 2

1 2 3 1 1 2 3 2

3
2

1 2 3 3

1
(1 ) 1 1 ( ) (1 ) 1 1 ( )

      
(1 ) 1 1 ( )

eq v v

v

V V
E v h h h E v h h h E

V
v h h h E

= + +
− ⋅ ⋅ ⋅ + + − ⋅ ⋅ ⋅ + +

+
− ⋅ ⋅ ⋅ + +

 (4.37) 

Considering that 1 2 31 1 ( )totV h h h= ⋅ ⋅ + + the relation (4.37) is written as a function of 

the volume fractions of the binder 1v  and the two inert component 2v  and 3v : 

( ) ( ) ( )
31 2

1 2 3
1 2 3 1 2 3 1 2 3

            
1 1 1 1 1 1

VV Vv v v
h h h h h h h h h

= = =
⋅ ⋅ + + ⋅ ⋅ + + ⋅ ⋅ + +

 (4.38) 

Hence: 31 2
2 2 2

1 2 3

1
(1 ) (1 ) (1 )eq v v v

vv v
E v E v E v E

= + +
− ⋅ − ⋅ − ⋅

 (4.39) 

Consequently, the equivalent elastic modulus of the composite material can be 

expressed as: 
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1 2 3

31 2
2 3 1 3 1 22 2 2(1 ) (1 ) (1 )

eq

v v v

E E EE vv vE E E E E E
v v v

⋅ ⋅
=

⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅
− − −

 (4.40) 
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CHAPTER 5 
EXPERIMENTAL ANALYSIS OF THE COMPOSITE 

MATERIAL 

 
The application of new systems to attenuate disturbance in residential area located 

along underground lines increases the interest in using of new elastomeric materials. 

Castellani et al. (1998) have already studied an elastomeric material used for 

vibration isolation of railway lines comparing the theoretical and the experimental 

behaviour: they performed both static and dynamic tests on specimens characterized by 

different densities. Pichler and Zindler (1999) considered a cellular polyurethane 

(PUR) material to develop artificial elastomers for railway applications. 

In this thesis the experimental tests on the composite material (previously 

described) are performed at research centre ISOLGOMMA. They have three main 

purposes: 

• evaluate elastic and damping properties of the studied composite material; 

• compare different types of rubber compound; 

• verify the effect of different densities. 
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5.1 REFERENCE STANDARDS FOR THE TESTS 
 

The first standard regarding rubber material used for railway applications is UNI 

5572/72. It deals in rubber under-rail grooved pads for railway and tramway lines, but 

it does not mention the problem of vibration reduction. In 1980 applications of 

antivibration systems started. Most of them have introduced elastic elements at 

different levels in the track (under rail, sleeper, ballast or slab). The need of specific 

standards regarding antivibration elements was born together with the evolution in the 

railway field. 

In particular two Italian standards are considered: 

• UNI 10570: it was issued in 1997 and regards pads and mats in railway tracks. 

• UNI11059: it substituted the previous one for the part on mats in 2003. 

 

5.1.1 UNI 10570: determination of mechanical characteristics of mats and pads 

The UNI 10570 (UNI, 1997) defines and describes procedures to determine elastic 

and damping mechanical properties of the product; moreover the aging test is 

considered (it represents the ability of the product to maintain its properties for 

permanent load).  

This standard gives prescriptions to test and check pad and mat that are applied in 

railway field. In the standard the pad is a “discrete” product with defined geometrical 

dimensions and the mat is a “continuous” product given in form of rolls or big sheets.   

Tests for mechanical characterization are: 

• Static tests; 

• Forced dynamic test, 

• Dynamic test of free oscillations. 

Tests of mechanical aging are: 

• Tests of permanent deformation; 

• Fatigue tests. 
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In the standards the following test loads are considered: 

• Initial load ( )2
0 0 [N] or  [N/mm ]F σ : it always acts on the railway line and it is 

produced by clips and by gravitation loads. 

• Design static load ( )2[N] or  [N/mm ]ps psF σ : it consists of the accidental load that 

acts during the useful life of the railway line. 

• Design dynamic load ( )2[N] or  [N/mm ]pd pdF σ : it consists of the dynamic 

component of the exercise loads. 

In the following details are only given for the tests that are of interesting in the 

considered application. 

Static tests are performed with the application of a slow load. It starts to zero value 

and increases with linear pattern until its maximum value: three cycles are considered. 

Each cycle last two minutes: the first cycle and the second one help to arrange the 

specimen, while the mechanical parameters are derived by the third one. The 

maximum test load is given: 

( )max 0    for padsPS PdF F F F= + +   (5.1) 

( )max 0    for matsPS Pdσ σ σ σ= + +  (5.2) 

The terms are previously defined. 

Other prescriptions regard the following test parameters 

• the geometrical dimensions of specimens: they must not be smaller than 

30 cm 30 cm× ; 

• the test temperature: 15-20 °C. 

The static stiffness is obtained considering the following relations: 

( )PS

PS 0
   for padsS

FK
δ δ

=
−

 (5.3) 

( )PS

PS 0
   for matsSk σ

δ δ
=

−
 (5.4) 
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in which PSδ  is the displacement for ( 0PS FF + ) or ( 0PS σσ + ) and 0δ  is the 

displacement for the initial load. 

The loss factor is given by: 

( )tan( )    for padss

s

G
K

θ =   (5.5) 

( )tan( )    for matss

s

g
k

θ =   (5.6)  

In which SG  and Sg  are the static damping for pads and slabs respectively and given 

by: 

SSS KG ν⋅⋅= 2   SSS kg ν⋅⋅= 2  (5.7) 

sν is the damping static factor: 

2

1
ciclo

carico

ciclo

E
E

E
S

−
⋅=

π
ν  (5.8) 

where cicloE  represents the energy that is dissipated in a cycle, while caricoE  is the 

energy that is stored during the loading phase. 

The forced dynamic tests are performed to determine how the mechanical 

parameters vary for different values of frequency. The applied force ( )F t (or stress 

( )tσ ) is composed by a static component sF ( )sσ  and a dynamic component dF ( )dσ  

varying sinusoidally with the time: 

( ) ( ) ( )0( ) sin 2 = sin 2 for padsS d ps dF t F F f t F F F f tπ π⎡ ⎤ ⎡ ⎤= + ⋅ ⋅ ⋅ ⋅ + + ⋅ ⋅ ⋅ ⋅⎣ ⎦ ⎣ ⎦   (5.9) 

( ) ( ) ( )0( ) sin 2 sin 2  for matsS d pd dt f t f tσ σ σ π σ σ σ π⎡ ⎤ ⎡ ⎤= + ⋅ ⋅ ⋅ ⋅ = + + ⋅ ⋅ ⋅ ⋅⎣ ⎦ ⎣ ⎦   (5.10) 

The dynamic load is given by: 

Pdd FF  ±=  Pdd σσ  ±=  (5.11) 

The frequency varies from the initial value if  to the final one ff  with discrete step of 

f∆ : 
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( ) ( ) ( ),  ,   2 ,  ...  ,  i i i f ff f f f f f f f f= + ∆ + ∆ −∆  (5.12) 

In the standard the elastic-viscous-hysteretic model is assumed as the ideal 

behaviour of the material to evaluate elastic and damping dynamic parameters 

(figure1). 

 

 
figure 1 “elastic-viscous-isteretic” model (UNI 1997, UNI 2003) 

 
The elaboration starts from the displacement analysis for each test frequency, it is 

evaluated considering the mean value of the four transducers and it will be sinusoidal 

form: 

( )[ ] )(2sin)( 0 ttft dS δϕπδδδ ++⋅⋅⋅⋅+=  (5.13) 

In which Sδ  and dδ  are obtained from static and dynamic load respectively while 

)(0 tδ  is the signal distortion that must be negligible as shown in the following 

condition: 

%10

)(1

)(1

0

2

0

2

≤

⋅⋅

⋅⋅

∫

∫
T

T
o

dtt
T

dtt
T

δ

δ
 (5.14) 

The spectral transfer functions of the specimen for pads and mats are given by: 
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)j1 e
)(
)(

)( (f

d

d

f
fF

fH ϕ

δ
×− ×=  )j1 e

)(
)(

)( (f

d

d

f
f

fh ϕ

δ
σ ×− ×=  (5.15) 

Considering the model in figure 1 they can be written in the form: 

[ ] ( )[ ]fBGjKfH dd ×××+×+=− π2)( 1    [ ] ( )[ ]fbgjkfh dd ×××+×+=− π2)( 1 (5.16) 

The real part is the dynamic stiffness and it is constant for different values of 

frequency, while the imaginary part varies linearly with the frequency in which dg  

represents the hysteretic dissipation and b  is the viscous dissipation. 

Materials can show a bit different behaviour for which they has an intermediate 

phase where there is a gradual transition from static to dynamic behaviour. The 

extension of this phase is given by the transition frequency.  

The analytical expressions for the calculation of dynamic parameters are given  

1

1
( )

N

n Rei
d

H f
K

N

−

=

⎡ ⎤⎣ ⎦
≅
∑

 (5.17) 

 
( )

( ) ( ) ( ){ }

1
1

1 1

2 1

1 1 1

2 ( )

2 2 ( ) 2

N N

n n Imn nd
N N N

n n n nImn n n

N f H f
G
B

f f H f f

π

π π π

−
−

= =

−

= = =

⎡ ⎤ ⎡ ⎤⎡ ⎤⎢ ⎥ ⎢ ⎥⎣ ⎦⎡ ⎤ ⎢ ⎥ ⎢ ⎥≅ ×⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎡ ⎤ ×⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∑ ∑

∑ ∑ ∑
 (5.18) 

1

1
( )

N

n Rei
d

h f
k

N

−

=

⎡ ⎤⎣ ⎦
≅
∑

 (5.19) 

( )

( ) ( ) ( ){ }

1
1

1 1

2 1

1 1 1

2 ( )

2 2 ( ) 2

N N

n n Imn nd
N N N

n n n nImn n n

N f h f
g
b

f f h f f

π

π π π

−
−

= =

−

= = =

⎡ ⎤ ⎡ ⎤⎡ ⎤⎢ ⎥ ⎢ ⎥⎣ ⎦⎡ ⎤ ⎢ ⎥ ⎢ ⎥≅ ×⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎡ ⎤ ×⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∑ ∑

∑ ∑ ∑
 (5.20) 

relation (5.17) and (5.18) are applied for pads ; relations (5.19)and (5.20) are applied 

for mats.  

For other specific considerations the reference is the standard test. 
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5.1.2 UNI 11059: elastomeric mats for railway tracks 

UNI 11059 (UNI, 2003) is applied for elastic mats in new railway tracks or as an 

underballast element or as an under concrete slab element. Some experimental tests in 

11059 are mentioned in 10570, in the following innovations of UNI 11059 (respect to 

UNI 10570) will be considered. 

The elastomeric mat is designed to reduce vibration induced by railway traffic, it 

has constant thickness and it has the following characteristics: 

• One dimension (the thickness h ) is significantly smaller than the other two 

dimensions (the longitudinal one ld  and the transverse one  td ):  

 10
l td d

h
π
⋅

≥  (5.21) 

• During the useful life of the railway line loads are orthogonally applied on the mat 

surface. 

Two categories of tests are considered. 

1. Characterization tests that include: 

• Static tests; 

• Simulation tests (as a function of train speed); 

• Forced dynamic tests; 

• Dynamic tests of free oscillations 

2. Performance tests that include: 

• Permanent load tests; 

• fatigue tests; 

• frost strength tests with water; 

• atmospheric conditions strength tests; 

• adequacy of mats to be put along lines; 

• geometric stability of mats. 

In the standards the following test loads are considered: 
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• Nominal initial load ( )2
0 [N/mm ]σ : it always constantly acts on the railway line 

and it is produced by the weight of the rack on the elastomeric mat. It 

approximately assumes values 2
0 0.7 1.0 N/cmσ = −  for ballasted systems and 

values 2
0 0.4 2.0 N/cmσ = −  for slab track systems. 

• Nominal railway load ( )2 [N/mm ]fσ : it consists of the accidental load and 

corresponds to the weight of the train that runs on the line. The standard gives this 

component as a function of the railway track and of the vehicle. 

• Nominal dynamic railway factor ( )dγ : it is an amplification factor of the nominal 

railway load and depends on the railway track type and conditions, on train and on 

dynamic interaction track-train. It varies from 20% to 50%. 

The procedure of the load application does not change respect to the UNI 10570.  

The maximum test load is given: 

( )max 0 1 d fσ σ γ σ= + + ⋅  (5.22) 

In the UNI 11059 specimen dimensions are indicated with more details: for 

thickness smaller than 50 mm the dimensions of specimens must to be greater than 

30 cm 30 cm× and for thickness greater than 50 mm their dimensions depend on the 

thickness and they must to be greater than ( ) ( )6 6h h×  in which h  is the nominal 

thickness. 

This standard only refers to mat that are “continuous” element and so it accurately 

describes the procedure to obtain specimens considering the possible heterogeneity of 

rolls or sheets. 

The evaluation of the static stiffness is obtained by the following relation: 

01

f

01

01

δδ
σ

δδ
σσ

−
=

−
−

=qsk   (5.23) 
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In which 1 0 fσ σ σ= +  and 1δ  is the correspondent displacement and  0δ  is the 

displacement for the nominal initial load 0σ . 

The procedure to determine the damping static factor and the loss factor has already 

described for UNI 10570. 

Regarding forced dynamic tests they involve the application of a load )(tσ that 

consists of a static component Sσ   and of a dynamic component dσ  that varies 

sinusoidally with the time: 

( )[ ]tft dS ⋅⋅⋅⋅+= πσσσ 2sin)(   (5.24) 

Tests have to be performed with two different static and dynamic test load 

components, in particular the static component is: 

[ ] [ ]1 0 f 2 0 f100% (1 )    60% (1 )S d S dσ σ γ σ σ σ γ σ= × + + × = × + + ×  (5.25) 

the dynamic one is: 

( ) ( )1 1 2 25 10 %    5 10 %d S d Sσ σ σ σ± = ± − × ± = ± − ×  (5.26) 

The frequency still varies from the initial value if  to the final one ff  with discrete 

step of f∆ . 

The following parameters are determined: dynamic stiffness dk , dynamic hysteretic 

damping dg , viscous damping b , dynamic hysteretic and viscous damping factor di ,ν  

and dv,ν  respectively, dynamic loss factor )tan( dθ  and the transition frequency. These 

parameters are determined considering the “elastic-viscous-hysteretic” model that has 

been previously described. dk , dg  and b are determined using (5.19) and (5.20). 

Finally other parameters are given by the following relations: 

d

d
di k

g
×

=
2,ν  ( )

d

d
d k

g
=θtan  , 2v d

d

b
k m

ν =
× ×

 (5.27) 

In which m  is the mat mass per unit of area and it is given by: 



Chapter 5 – Experimental analysis of the composite material 

 72

( )0
1

1
100% d f

f
g

m
a

σ γ σ⎡ ⎤+ + ⋅⎣ ⎦= ⋅  (5.28) 

For other specific considerations the reference is the standard test. 

 

5.2 DESCRIPTION OF THE TESTING EQUIPMENT AND MACHINE 
 

The testing machine is called Resilient Pad and Mat Testing Machine (RPMTM). It 

has been design to perform static and dynamic tests according to standards UNI 10570 

and UNI 11059 that are described previously. 

There is a frame that supports and contains the working equipment rest on a steel 

plate (figure 2).  

 

 

 
figure 2 layout of testing machine 
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Every element in figure 2 is described in the following table 1. 
table 1 description of the testing machine elements 

1 press basement
2 press columns 
3 movable upper cross-bar
4 handwheel
5 connection bar 
6 angular transmission
7 screw 
8 lower plate
9 load cell

10 upper plate
11 hydraulic actuator 15 kN

12 Moog valves and differential 
pressure cell

13 dispacement transducer  
 

This system is on four dampers. In the following the main components of the testing 

machine are described. 

The load frame is designed for a maximum force of 100 kN  in the dynamic 

condition. The upper cross-bar is moved by two worm-screws placed in the lateral 

columns of the press. The cross-bar can be placed in the vertical direction at regular 

distance of 100 mm  and it can contain both an actuator of 15 kN and of 100 kN . The 

displacement of the cross-bar is obtained thanks to a handwheel that puts on (through a 

worm-screw and two angular transmissions)  two thread shafts with bronze bush 

anchored on the cross-bar (figure 3).  

The actuator has transverse section 210.54 cmaA = , it has a device that prevents the 

rotation, it is equipped of Moog valves (each is 38 lpm ) that are calculated for a 

maximum frequency of 100 Hz with 50 lit/min. The actuator has also a linear 

displacement sensor “MTS Temposonics” and a differential pressure transducer 

“Paine” (figure 4). 
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figure 3 cross-bar and handwheel 

 

 
figure 4 hydraulic actuator and Moog valves 

 

The oleo dynamic junction box  works at variable capacity and at a pressure of 210 

bar. The maximum capacity of the tank is 250 l. There is an air-oil heat and a control 

thermostat. 

The testing machine includes the following measure sensors: 

• four inductive displacement transducers HBM WA-T-50mm and four inductive 

HBM WA-T-100mm. They can be placed on four corners of the load plate (figure 

5); 

• two inductive accelerometers HBM B12-200; 

Lateral 
upright 

Angular 
transmission 

Bolts to block 
the movable  
cross-bar 

Press basement 

      
          handwheel 

Movable upper 
cross-bar 
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• a load cell is installed between the press basement and the lower plate; 

• a displacement  transducer is installed on the hydraulic actuator and a differential 

pressure transducer is installed in the lateral part of the actuator. 

 
 

 
figure 5 displacement transducers 

 
Finally, the main components of the digital control system are: 

• Control and data acquisition unit is based on PXI platform of the National 

Instruments with multifunction card with eight differential analogical input 

channels and an analogical output to command the valves; the resolution is 16 bit 

and his maximum sampling frequency is 250.000 sps. The digital control system 

permits to condition load, displacement and differential pressure transducers, 

moreover it controls the load and the limit of the actuator, and it communicates with 

the hydraulic junction box to start the test or interrupt it. Another important 

characteristic is the saving on file of test data, test parameters and transducers 

configuration. 

• Data logger HBM mod. Spider 8 is the data acquisition unit connected to personal 

computer, it permits to acquire signals of measure sensors concerning the test 

specimen (typically vertical deformations or acceleration). The system has eight 

differential analogical input channels. 

Displacement transducer 
housing 

Displacement transducer 
LVDT 
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5.2.1 Software for the RPMTM use 

A software has been developed in labview language that permits to perform tests on 

mats and pads (Indapro, RPMTM, 2005). This software is a graphic interface with the 

user and helps to use correctly the testing machine. 

Some of its functions are listed in the following: 

• ignition and shutdown of the system; 

• visualization of the alarm signal that can be present during the execution of the test; 

• configuration of measurement chains of the control unit and of the acquisition unit 

given by the Spider 8; 

• controlled management of the hydraulic actuator by means the control panel; 

• visualization in real time of the acquired data in graphic and numerical form; 

• rescue of data in Ascii form; 

• database management of the performed tests. 

The main panel is in figure 6: it can be divided in different parts. The central part is 

given to the visualization of graphs of the test progress. In the upper part the measure 

indicators are visualized during the test progress, moreover there is the possibility to 

enter in the configuration of measurement chains by means the push-button 

“configurazione (the first button on the left in the upper part)”. The push-button 

“pannello di controllo (the second button in the upper part)” permits to enter in the 

actuator control panel and the last button in this part “giornale di prove” permits the 

visualization of the list of performed tests.  The lower part is given to the visualization 

of alarm signals. On the left initial data of the product to test are given. In this panel 

the type of the test is chosen. 

For other information the reference is the manual document ((Indapro, RPMTM, 

2005). 
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figure 6 the main panel of the software in labview language 
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5.3 CLASSIFICATION AND PROPERTIES OF SPECIMENS 

Square specimen dimensions are approximately 345mm×345mm and the thickness 

is 20 mm (figure 7). 

 

 
figure 7 specimens 

 

 The specimens can vary with the type or dimension of the inert component, while 

the binder is always polyurethane (polyether).  

Four specimens consist of a single inert component: 

• short fibres (sf) of SBR; 

• small granules (sg) of SBR; 

• big granules (bg) of grey EPDM: 

• big granules (bg) of black EPDM. 
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Three specimens are composed by two types of the inert component in which the 

first one always consists of short fibres of SBR and the amount of each one is the 

same: 

• short fibres (sf) of SBR (50%) and big granules (bg) of black EPDM (50%); 

• short fibres (sf) of SBR (50%) and big granules (bg) of grey EPDM (50%); 

• short fibres (sf) of SBR (50%) and small granules (sg) of SBR (50%). 

Three specimens are still composed by two types of the inert component and the 

first one  still consists of short fibres of SBR but its amount is greater than the second 

component as shown in the following: 

• short fibres (sf) of SBR (90%) and small granules (sg) of black EPDM(10%); 

• short fibres (sf) of SBR (90%) and small granules (sg) of grey EPDM (10%); 

• short fibres (sf) of SBR (90%) and small granules (sg) of SBR (10%). 

 Different densities are obtained to verify its importance in the determination of 

material mechanical parameters. Four classes of density are considered (500; 600; 700; 

900 kg/m3).The binder amount in the composite material is 8% in weight, but it can 

decrease ( )6%  to obtain higher densities (i.e. 900 kg/m3). 

The main specimen characteristics are in tables from 1 to 11. 

 

 

 

 

 

 

 

 

 

 

 



Chapter 5 – Experimental analysis of the composite material 

 80

table 2 Short fibres of SBR 

weight total volume density weight specific weight volume Vb weight specific weight volume Vi1 weight specific weight volume Vi2
[Kg] [m3] [Kg/m3] [Kg] [Kg/m3] [m3] [Kg] [Kg/m3] [m3] [Kg] [Kg/m3] [m3]
1.005 2.261E-03 444 0.080 1070 7.514E-05 0.925 1100 8.405E-04 0 0 0
1.005 2.261E-03 444 0.080 1070 7.514E-05 0.925 1100 8.405E-04 0 0 0
1.015 2.261E-03 449 0.081 1070 7.589E-05 0.934 1100 8.489E-04 0 0 0

1.525 2.514E-03 607 0.122 1070 1.140E-04 1.403 1100 1.275E-03 0 0 0
1.555 2.529E-03 615 0.124 1070 1.163E-04 1.431 1100 1.301E-03 0 0 0
1.490 2.543E-03 586 0.119 1070 1.114E-04 1.371 1100 1.246E-03 0 0 0

1.710 2.415E-03 708 0.137 1070 1.279E-04 1.573 1100 1.430E-03 0 0 0
1.730 2.394E-03 723 0.138 1070 1.293E-04 1.592 1100 1.447E-03 0 0 0
1.720 2.394E-03 718 0.138 1070 1.286E-04 1.582 1100 1.439E-03 0 0 0

2.295 2.436E-03 942 0.184 1070 1.716E-04 2.111 1100 1.919E-03 0 0 0
2.390 2.450E-03 976 0.191 1070 1.787E-04 2.199 1100 1.999E-03 0 0 0
2.170 2.450E-03 886 0.174 1070 1.622E-04 1.996 1100 1.815E-03 0 0 0

inert 2composite binder inert 1

 
 
 

table 3 small granules of SBR 

weight total volume density weight specific weight volume Vb weight specific weight volume Vi1 weight specific weight volume Vi2
[Kg] [m3] [Kg/m3] [Kg] [Kg/m3] [m3] [Kg] [Kg/m3] [m3] [Kg] [Kg/m3] [m3]
1.515 2.381E-03 636 0.121 1070 1.133E-04 1.394 1200 1.162E-03 0 0 0
1.505 2.394E-03 629 0.120 1070 1.125E-04 1.385 1200 1.154E-03 0 0 0
1.520 2.394E-03 635 0.122 1070 1.136E-04 1.398 1200 1.165E-03 0 0 0

1.710 2.536E-03 674 0.137 1070 1.279E-04 1.573 1200 1.311E-03 0 0 0
1.700 2.394E-03 710 0.136 1070 1.271E-04 1.564 1200 1.303E-03 0 0 0
1.720 2.401E-03 716 0.138 1070 1.286E-04 1.582 1200 1.319E-03 0 0 0

2.155 2.415E-03 892 0.129 1070 1.208E-04 2.026 1200 1.688E-03 0 0 0
2.180 2.401E-03 908 0.131 1070 1.222E-04 2.049 1200 1.708E-03 0 0 0
2.165 2.401E-03 902 0.130 1070 1.214E-04 2.035 1200 1.696E-03 0 0 0

binder inert 1 inert 2composite

 
 

table 4 big granules of grey EPDM 

weight total volume density weight specific weight volume Vb weight specific weight volume Vi1 weight specific weight volume Vi2
[Kg] [m3] [Kg/m3] [Kg] [Kg/m3] [m3] [Kg] [Kg/m3] [m3] [Kg] [Kg/m3] [m3]
1.550 2.353E-03 659 0.124 1070 1.159E-04 1.426 1400 1.019E-03 0 0 0
1.500 2.381E-03 630 0.120 1070 1.121E-04 1.380 1400 9.857E-04 0 0 0
1.525 2.374E-03 642 0.122 1070 1.140E-04 1.403 1400 1.002E-03 0 0 0

1.735 2.381E-03 729 0.139 1070 1.297E-04 1.596 1400 1.140E-03 0 0 0
1.720 2.381E-03 723 0.138 1070 1.286E-04 1.582 1400 1.130E-03 0 0 0
1.760 2.394E-03 735 0.141 1070 1.316E-04 1.619 1400 1.157E-03 0 0 0

2.180 2.381E-03 916 0.131 1070 1.222E-04 2.049 1400 1.464E-03 0 0 0
2.180 2.387E-03 913 0.131 1070 1.222E-04 2.049 1400 1.464E-03 0 0 0
2.190 2.381E-03 920 0.131 1070 1.228E-04 2.059 1400 1.470E-03 0 0 0

composite binder inert 1 inert 2
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table 5 big granules of black EPDM 

weight total volume density weight specific weight volume Vb weight specific weight volume Vi1 weight specific weight volume Vi2
[Kg] [m3] [Kg/m3] [Kg] [Kg/m3] [m3] [Kg] [Kg/m3] [m3] [Kg] [Kg/m3] [m3]
1.525 2.381E-03 641 0.122 1070 1.140E-04 1.403 1250 1.122E-03 0 0 0
1.505 2.394E-03 629 0.120 1070 1.125E-04 1.385 1250 1.108E-03 0 0 0
1.510 2.394E-03 631 0.121 1070 1.129E-04 1.389 1250 1.111E-03 0 0 0

1.690 2.394E-03 706 0.135 1070 1.264E-04 1.555 1250 1.244E-03 0 0 0
1.710 2.387E-03 716 0.137 1070 1.279E-04 1.573 1250 1.259E-03 0 0 0
1.695 2.381E-03 712 0.136 1070 1.267E-04 1.559 1250 1.248E-03 0 0 0

2.175 2.381E-03 914 0.174 1070 1.626E-04 2.001 1250 1.601E-03 0 0 0
2.190 2.381E-03 920 0.175 1070 1.637E-04 2.015 1250 1.612E-03 0 0 0
2.190 2.381E-03 920 0.175 1070 1.637E-04 2.015 1250 1.612E-03 0 0 0

inert 2composite binder inert 1

 
 

table 6 50% short fibres of SBR and 50% big granules of black EPDM 

weight total volume density weight specific weight volume Vb weight specific weight volume Vi1 weight specific weight volume Vi2
[Kg] [m3] [Kg/m3] [Kg] [Kg/m3] [m3] [Kg] [Kg/m3] [m3] [Kg] [Kg/m3] [m3]
1.530 2.492E-03 614 0.122 1070 1.144E-04 0.704 1100 6.398E-04 0.704 1250 5.630E-04
1.525 2.514E-03 607 0.122 1070 1.140E-04 0.702 1100 6.377E-04 0.702 1250 5.612E-04
1.325 2.360E-03 561 0.106 1070 9.907E-05 0.610 1100 5.541E-04 0.610 1250 4.876E-04

1.740 2.401E-03 725 0.139 1070 1.301E-04 0.800 1100 7.276E-04 0.800 1250 6.422E-04
1.745 2.543E-03 686 0.140 1070 1.305E-04 0.803 1100 7.297E-04 0.803 1250 6.440E-04
1.755 2.422E-03 725 0.140 1070 1.312E-04 0.807 1100 7.339E-04 0.805 1250 6.458E-04

2.205 2.381E-03 926 0.176 1070 1.649E-04 1.014 1100 9.221E-04 1.014 1250 8.114E-04
2.200 2.381E-03 924 0.176 1070 1.645E-04 1.012 1100 9.200E-04 1.012 1250 8.096E-04
2.195 2.381E-03 922 0.176 1070 1.641E-04 1.010 1100 9.179E-04 1.010 1250 8.078E-04

composite binder inert 1 inert 2

 
 
 

table 7 50% short fibres of SBR and 50% big granules of grey EPDM 

weight total volume density weight specific weight volume Vb weight specific weight volume Vi1 weight specific weight volume Vi2
[Kg] [m3] [Kg/m3] [Kg] [Kg/m3] [m3] [Kg] [Kg/m3] [m3] [Kg] [Kg/m3] [m3]
1.505 2.401E-03 627 0.120 1070 1.125E-04 0.692 1100 6.294E-04 0.692 1400 4.945E-04
1.370 2.387E-03 574 0.110 1070 1.024E-04 0.630 1100 5.729E-04 0.630 1400 4.501E-04
1.370 2.394E-03 572 0.110 1070 1.024E-04 0.630 1100 5.729E-04 0.630 1400 4.501E-04

1.715 2.450E-03 700 0.137 1070 1.282E-04 0.789 1100 7.172E-04 0.789 1400 5.635E-04
1.710 2.415E-03 708 0.137 1070 1.279E-04 0.787 1100 7.151E-04 0.787 1400 5.619E-04
1.725 2.408E-03 716 0.138 1070 1.290E-04 0.794 1100 7.214E-04 0.794 1400 5.668E-04

2.200 2.422E-03 908 0.176 1070 1.645E-04 1.012 1100 9.200E-04 1.012 1400 7.229E-04
2.200 2.443E-03 901 0.176 1070 1.645E-04 1.012 1100 9.200E-04 1.012 1400 7.229E-04
2.180 2.436E-03 895 0.174 1070 1.630E-04 1.003 1100 9.116E-04 1.003 1400 7.163E-04

composite binder inert 1 inert 2
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table 8 50% short fibres of SBR and 50% small granules of SBR 

weight total volume density weight specific weight volume Vb weight specific weight volume Vi1 weight specific weight volume Vi2
[Kg] [m3] [Kg/m3] [Kg] [Kg/m3] [m3] [Kg] [Kg/m3] [m3] [Kg] [Kg/m3] [m3]
1.530 2.401E-03 637 0.122 1070 1.144E-04 0.704 1100 6.398E-04 0.704 1200 5.865E-04
1.510 2.450E-03 616 0.121 1070 1.129E-04 0.695 1100 6.315E-04 0.695 1200 5.788E-04
1.535 2.450E-03 627 0.123 1070 1.148E-04 0.706 1100 6.419E-04 0.706 1200 5.884E-04

1.735 2.422E-03 716 0.139 1070 1.297E-04 0.798 1100 7.255E-04 0.787 1200 6.651E-04
1.745 2.422E-03 720 0.140 1070 1.305E-04 0.803 1100 7.297E-04 0.798 1200 6.689E-04
1.790 2.401E-03 745 0.143 1070 1.338E-04 0.823 1100 7.485E-04 0.803 1200 6.862E-04

2.625 2.680E-03 980 0.210 1070 1.963E-04 1.208 1100 1.098E-03 1.208 1200 1.006E-03
2.625 2.703E-03 971 0.210 1070 1.963E-04 1.208 1100 1.098E-03 1.208 1200 1.006E-03
2.715 2.703E-03 1005 0.217 1070 2.030E-04 1.249 1100 1.135E-03 1.249 1200 1.041E-03

composite binder inert 1 inert 2

 
 
 

table 9 90% short fibres of SBR and 10% small granules of black EPDM 

weight total volume density weight specific weight volume Vb weight specific weight volume Vi1 weight specific weight volume Vi2
[Kg] [m3] [Kg/m3] [Kg] [Kg/m3] [m3] [Kg] [Kg/m3] [m3] [Kg] [Kg/m3] [m3]
1.100 2.268E-03 485 0.088 1070 8.224E-05 0.913 1100 8.300E-04 0.099 1250 7.920E-05
1.110 2.261E-03 491 0.089 1070 8.299E-05 0.9213 1100 8.375E-04 0.100 1250 7.992E-05
1.115 2.261E-03 493 0.089 1070 8.336E-05 0.92545 1100 8.413E-04 0.100 1250 8.028E-05

1.525 2.514E-03 607 0.122 1070 1.140E-04 1.26575 1100 1.151E-03 0.137 1250 1.098E-04
1.515 2.657E-03 570 0.121 1070 1.133E-04 1.25745 1100 1.143E-03 0.136 1250 1.091E-04
1.390 2.422E-03 574 0.111 1070 1.039E-04 1.1537 1100 1.049E-03 0.125 1250 1.001E-04

1.745 2.436E-03 716 0.140 1070 1.305E-04 1.44835 1100 1.317E-03 0.157 1250 1.256E-04
1.720 2.429E-03 708 0.138 1070 1.286E-04 1.4276 1100 1.298E-03 0.155 1250 1.238E-04
1.720 2.436E-03 706 0.138 1070 1.286E-04 1.4276 1100 1.298E-03 0.155 1250 1.238E-04

composite binder inert 1 inert 2

 
 

 
table 10  90% short fibres of SBR and 10% small granules of SBR 

weight total volume density weight specific weight volume Vb weight specific weight volume Vi1 weight specific weight volume Vi2
[Kg] [m3] [Kg/m3] [Kg] [Kg/m3] [m3] [Kg] [Kg/m3] [m3] [Kg] [Kg/m3] [m3]
1.120 2.261E-03 495 0.090 1070 8.374E-05 0.930 1100 8.451E-04 0.101 1200 8.400E-05
1.105 2.261E-03 489 0.088 1070 8.262E-05 0.917 1100 8.338E-04 0.099 1200 8.288E-05
1.105 2.261E-03 489 0.088 1070 8.262E-05 0.917 1100 8.338E-04 0.099 1200 8.288E-05

1.525 2.657E-03 574 0.122 1070 1.140E-04 1.266 1100 1.151E-03 0.137 1200 1.144E-04
1.515 2.565E-03 591 0.121 1070 1.133E-04 1.257 1100 1.143E-03 0.136 1200 1.136E-04
1.495 2.565E-03 583 0.120 1070 1.118E-04 1.241 1100 1.128E-03 0.135 1200 1.121E-04

1.720 2.422E-03 710 0.138 1070 1.286E-04 1.428 1100 1.298E-03 0.155 1200 1.290E-04
1.720 2.408E-03 714 0.138 1070 1.286E-04 1.428 1100 1.298E-03 0.155 1200 1.290E-04
1.730 2.408E-03 718 0.138 1070 1.293E-04 1.436 1100 1.305E-03 0.156 1200 1.298E-04

composite binder inert 1 inert 2

 
 
 

table 11 90% short fibres of SBR and 10% small granules of grey EPDM 

weight total volume density weight specific weight volume Vb weight specific weight volume Vi1 weight specific weight volume Vi2
[Kg] [m3] [Kg/m3] [Kg] [Kg/m3] [m3] [Kg] [Kg/m3] [m3] [Kg] [Kg/m3] [m3]
1.115 2.142E-03 520 0.0892 1070 8.34E-05 0.925 1100 8.413E-04 0.100 1400 7.168E-05
1.11 2.261E-03 491 0.0888 1070 8.30E-05 0.921 1100 8.375E-04 0.100 1400 7.136E-05

1.105 2.142E-03 516 0.0884 1070 8.26E-05 0.917 1100 8.338E-04 0.099 1400 7.104E-05

composite binder inert 1 inert 2

 
 



Chapter 5 – Experimental analysis of the composite material 

 83

For each type of material composition and density volumes of the inert ( )1 2,in inV V , 

binder ( )bV and voids ( )vV  are obtained. The volumes for specimens are shown in 

tables from 12 to 21. 

 
table 12 volumes for short fibres of  SBR 

Vt Vb Vin1 Vin2 Vv

m3 m3 m3 m3 m3

2.261E-03 7.514E-05 8.405E-04 0 1.346E-03

2.261E-03 7.514E-05 8.405E-04 0 1.346E-03

2.261E-03 7.589E-05 8.489E-04 0 1.337E-03

2.415E-03 1.279E-04 1.430E-03 0 8.571E-04

2.394E-03 1.293E-04 1.447E-03 0 8.181E-04

2.394E-03 1.286E-04 1.439E-03 0 8.272E-04

2.514E-03 1.140E-04 1.275E-03 0 1.125E-03

2.529E-03 1.163E-04 1.301E-03 0 1.112E-03

2.543E-03 1.114E-04 1.246E-03 0 1.186E-03

2.436E-03 1.716E-04 1.919E-03 0 3.450E-04

2.450E-03 1.787E-04 1.999E-03 0 2.724E-04

2.450E-03 1.622E-04 1.815E-03 0 4.728E-04

short fibres of SBR
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table 13 volumes for short granules of  SBR 

Vt Vb Vin1 Vin2 Vv

m3 m3 m3 m3 m3

2.381E-03 1.133E-04 1.162E-03 0 1.106E-03

2.394E-03 1.125E-04 1.154E-03 0 1.128E-03

2.394E-03 1.136E-04 1.165E-03 0 1.115E-03

2.536E-03 1.279E-04 1.311E-03 0 1.097E-03

2.394E-03 1.271E-04 1.303E-03 0 9.639E-04

2.401E-03 1.286E-04 1.319E-03 0 9.540E-04

2.415E-03 1.208E-04 1.688E-03 0 6.062E-04

2.401E-03 1.222E-04 1.708E-03 0 5.713E-04

2.401E-03 1.214E-04 1.696E-03 0 5.839E-04

 small granules of SBR

 
 

table 14 volumes for big granules of  grey EPDM 

Vt Vb Vin1 Vin2 Vv

m3 m3 m3 m3 m3

2.353E-03 1.159E-04 1.019E-03 0 1.219E-03

2.381E-03 1.121E-04 9.857E-04 0 1.283E-03

2.374E-03 1.140E-04 1.002E-03 0 1.257E-03

2.381E-03 1.297E-04 1.140E-03 0 1.111E-03

2.381E-03 1.286E-04 1.130E-03 0 1.122E-03

2.394E-03 1.316E-04 1.157E-03 0 1.106E-03

2.381E-03 1.222E-04 1.464E-03 0 7.945E-04

2.387E-03 1.222E-04 1.464E-03 0 8.014E-04

2.381E-03 1.228E-04 1.470E-03 0 7.873E-04

big granules of grey EPDM
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table 15 volumes for big granules of  black EPDM 

Vt Vb Vin1 Vin2 Vv

m3 m3 m3 m3 m3

2.381E-03 1.140E-04 1.122E-03 0 1.144E-03

2.394E-03 1.125E-04 1.108E-03 0 1.174E-03

2.394E-03 1.129E-04 1.111E-03 0 1.170E-03

2.394E-03 1.264E-04 1.244E-03 0 1.024E-03

2.387E-03 1.279E-04 1.259E-03 0 1.001E-03

2.381E-03 1.267E-04 1.248E-03 0 1.006E-03

2.381E-03 1.626E-04 1.601E-03 0 6.171E-04

2.381E-03 1.637E-04 1.612E-03 0 6.049E-04

2.381E-03 1.637E-04 1.612E-03 0 6.049E-04

big granules of black EPDM
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table 16 volumes for 50% short fibres of SBR and 50%  big granules of black EPDM 

Vt Vb Vin1 Vin2 Vv

m3 m3 m3 m3 m3

2.492E-03 1.144E-04 6.398E-04 5.630E-04 1.175E-03

2.514E-03 1.140E-04 6.377E-04 5.612E-04 1.201E-03

2.360E-03 9.907E-05 5.541E-04 4.876E-04 1.219E-03

2.543E-03 1.305E-04 7.297E-04 6.422E-04 1.041E-03

2.450E-03 1.308E-04 7.318E-04 6.440E-04 9.433E-04

2.422E-03 1.312E-04 7.339E-04 6.458E-04 9.111E-04

2.381E-03 1.649E-04 9.221E-04 8.114E-04 4.821E-04

2.381E-03 1.645E-04 9.200E-04 8.096E-04 4.864E-04

2.381E-03 1.641E-04 9.179E-04 8.078E-04 4.907E-04

50 % short fibres of SBR 50% big granules of black EPDM

 
 

table 17 volumes for 50% short fibres of SBR and 50%  big granules of grey EPDM 

Vt Vb Vin1 Vin2 Vv

m3 m3 m3 m3 m3

2.401E-03 1.125E-04 6.294E-04 4.945E-04 1.165E-03

2.387E-03 1.024E-04 5.729E-04 4.501E-04 1.262E-03

2.394E-03 1.024E-04 5.729E-04 4.501E-04 1.269E-03

2.450E-03 1.282E-04 7.172E-04 5.635E-04 1.041E-03

2.415E-03 1.279E-04 7.151E-04 5.619E-04 1.010E-03

2.408E-03 1.290E-04 7.214E-04 5.668E-04 9.911E-04

2.422E-03 1.645E-04 9.200E-04 7.229E-04 6.147E-04

2.443E-03 1.645E-04 9.200E-04 7.229E-04 6.357E-04

2.436E-03 1.630E-04 9.116E-04 7.163E-04 6.451E-04

50 % short fibres of SBR 50% big granules of grey EPDM
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table 18 volumes for 50% short fibres of SBR and 50% small  granules of SBR 

Vt Vb Vin1 Vin2 Vv

m3 m3 m3 m3 m3

2.401E-03 1.144E-04 6.398E-04 5.865E-04 1.061E-03

2.450E-03 1.129E-04 6.315E-04 5.788E-04 1.127E-03

2.450E-03 1.148E-04 6.419E-04 5.884E-04 1.105E-03

2.422E-03 1.297E-04 7.255E-04 6.651E-04 9.017E-04

2.422E-03 1.305E-04 7.297E-04 6.689E-04 8.929E-04

2.401E-03 1.338E-04 7.485E-04 6.862E-04 8.327E-04

2.680E-03 1.963E-04 1.098E-03 1.006E-03 3.794E-04

2.703E-03 1.963E-04 1.098E-03 1.006E-03 4.025E-04

2.703E-03 2.030E-04 1.135E-03 1.041E-03 3.236E-04

50 % short fibres of SBR 50% small granules of SBR

 
 

table 19 volumes for 90% short fibres of SBR and 10% small  granules of black EPDM 

Vt Vb Vin1 Vin2 Vv

m3 m3 m3 m3 m3

2.268E-03 8.224E-05 8.300E-04 7.920E-05 1.277E-03

2.261E-03 8.299E-05 8.375E-04 7.992E-05 1.261E-03

2.261E-03 8.336E-05 8.413E-04 8.028E-05 1.257E-03

2.514E-03 1.140E-04 1.151E-03 1.098E-04 1.140E-03

2.657E-03 1.133E-04 1.143E-03 1.091E-04 1.291E-03

2.422E-03 1.039E-04 1.049E-03 1.001E-04 1.169E-03

2.436E-03 1.305E-04 1.317E-03 1.256E-04 8.632E-04

2.429E-03 1.286E-04 1.298E-03 1.238E-04 8.787E-04

2.436E-03 1.286E-04 1.298E-03 1.238E-04 8.858E-04

90 % short fibres of SBR 10% small granules of black EPDM
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table 20 volumes for 90% short fibres of SBR and 10% small  granules of SBR 

Vt Vb Vin1 Vin2 Vv

m3 m3 m3 m3 m3

2.261E-03 8.374E-05 8.451E-04 8.400E-05 1.249E-03

2.261E-03 8.262E-05 8.338E-04 8.288E-05 1.262E-03

2.261E-03 8.262E-05 8.338E-04 8.288E-05 1.262E-03

2.657E-03 1.140E-04 1.151E-03 1.144E-04 1.278E-03

2.565E-03 1.133E-04 1.143E-03 1.136E-04 1.195E-03

2.565E-03 1.118E-04 1.128E-03 1.121E-04 1.213E-03

2.422E-03 1.286E-04 1.298E-03 1.290E-04 8.666E-04

2.408E-03 1.286E-04 1.298E-03 1.290E-04 8.528E-04

2.408E-03 1.293E-04 1.305E-03 1.298E-04 8.437E-04

90 % short fibres of SBR 10% small granules of SBR

 
 

table 21 volumes for 90% short fibres of SBR and 10% small  granules of grey EPDM 

Vt Vb Vin1 Vin2 Vv

m3 m3 m3 m3 m3

2.142E-03 8.336E-05 8.413E-04 7.168E-05 1.146E-03

2.261E-03 8.299E-05 8.375E-04 7.136E-05 1.270E-03

2.142E-03 8.262E-05 8.338E-04 7.104E-05 1.155E-03

90 % short fibres of SBR 10% small granules of SBR

 
 

It is clear that the specimen weight increases considering greater densities and 

consequently the voids volume decreases. This aspect is shown by previous tables. 
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5.4 RESULTS OF STATIC AND DYNAMIC TESTS 
 

Static and dynamic tests on the material are performed according to the following 

Italian standards (previously they have been described):  

• UNI 10570, which rules “the determination of mechanical characteristics of mats 

and pads”;  

• UNI 11059, ruling “elastomeric mats for railway tramway tracks”. 

Loads for static tests are indicated in the standards and previously they are defined. 

For tests according to UNI 10570 it is assumed: 

( )max 0 0.01 0.07 0.04 Mpa 0.12 Mpaps pdσ σ σ σ= + + = + + =  (5.29) 

Remembering that 0σ  is the initial load, psσ is the static component and pdσ  is the 

dynamic component.  

For tests according to UNI 11059, it is assumed: 

max 0 (1 ) 0.01 (0.4 1) 0.03 Mpa 0.052 Mpaf dσ σ σ γ= + + = + + ⋅ =  (5.30) 

Considering that 0σ  is the initial load, fσ  is the maximum value of the “variable” 

load and dγ  is the amplification parameter of the nominal railway track, it has been 

chosen considering good geometrical conditions of the railway track (it is obviously 

greater for old railway line) and for a running speed of about 200 km/h. 

Previously the procedure for the load application had been described; an example of 

the load variation with time is in figure 8 for test of short fibres of SBR according to 

UNI 10570.  
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figure 8 load variation with the time for short fibres of SBR according to UNI 10570 
 

For each type of material composition and density, three specimens are considered. 

The results are given by the third cycle for each specimen. For an example three cycles 

for the specimen consisting of short fibres of SBR with density 600 kg/cm3 is in figure 

9 and in figure 10 the third cycle for four values of density of specimen composed by 

short fibres of SBR.  
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figure 9 three cycles for static test of short fibres of SBR with density 600 kg/cm3 
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figure 10 third cycle for specimens with different densities of short fibres of SBR 

 



Chapter 5 – Experimental analysis of the composite material 

 92

The results discussed in the following are in terms of mean value of the static 

stiffness (table 22). 

Loads for the dynamic tests are indicated in the standards. For tests according to 

UNI 10570 it is assumed the following static component: 

0 2 2 2
N N N0.01 0.07 0.08

mm mm mms qsσ σ σ= + = + =  (5.31) 

The dynamic component is given by: 

2
N0.04 

mmd pdσ σ= ± = ±  (5.32) 

During the test the frequency starts from the initial value 2 Hzif =  and reaches the 

last value  

100 Hzff =  considering step of 2 Hz. 

In the following the real part of the inverse transfer function (5.15) for the specimen 

composed by short fibres of SBR is shown as an example (figure 11). 
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figure 11 real part of the inverse transfer function 
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For tests according to UNI 11059 it is assumed the following static component: 

( ) ( )0 2 2 2
N N N1 0.01 1 0.4 0.03 0.052

mm mm mms f dσ σ σ γ= + ⋅ + = + + ⋅ =  (5.33) 

And the dynamic one is given by: 

2
N10% 0.0052

mmd sσ σ= ⋅ =  (5.34) 

The initial frequency is still 2 Hz, the final one 100 Hz and the step is 2 Hz. 

The results discussed in the following are in terms of mean value of the dynamic 

stiffness and of dynamic loss factor (table 22). 

 
table 22 results of static and dynamic tests 

Dynamic loss factor
UNI 10570 UNI 11059 UNI 10570 UNI 11059 UNI 10570 UNI 11059 [%]

500 23 25 91 102 3.96 4.08
600 50 59 82 123 1.64 2.08 16.9
700 97 96 145 187 1.49 1.95 13.9
900 242 227 537 503 2.22 2.22
600 48 48 90 96 1.88 2.00 15.4
700 60 67 112 148 1.87 2.21 18.2
900 153 153 354 355 2.31 2.32
600 28 26 59 63 2.11 2.42 14.3
700 32 33 59 65 1.84 1.97 13.4
900 59 58 114 112 1.93 1.93
600 31 28 91 102 2.94 3.64 18.9
700 57 61 115 152 2.02 2.49 20.0
900 281 276 851 835 3.03 3.03
600 39 43 79 102 2.03 2.37 17.0
700 76 84 137 198 1.80 2.36 18.7
900 296 288 776 755 2.62 2.62
600 27 26 58 64 2.15 2.46 15.4
700 49 50 81 107 1.65 2.14 14.4
900 103 104 202 202 1.96 1.94
600 44 50 82 112 1.86 2.24 17.1
700 131 127 215 261 1.64 2.06 15.3
900 287 265 723 667 2.52 2.52
500 21 21 90 92 4.29 4.38
600 43 49 76 105 1.77 2.14 17.2
700 85 94 142 210 1.67 2.23 16.6
500 21 22 88 90 4.19 4.09
600 41 46 90 97 2.20 2.11 17.8
700 134 127 230 270 1.72 2.13 15.2
500 22 21 83 82 3.77 3.90
600 41 47 78 93 1.90 1.98 16.5
700 72 76 113 157 1.57 2.07 15.0

Dynamic stiffening

90% SF SBR         10% 
SG black EPDM

90% SF SBR         10% 
SG SBR

90% SF SBR         10% 
SG grey EPDM

TYPE

50% SF SBR         50% 
BG black EPDM

50% SF SBR         50% 
BG grey EPDM

50% SF SBR         50% 
SG SBR

SG SBR

BG grey EPDM

BG black EPDM

density 
[kg/m3]

SF SBR

Ks [N/cm3] Kd [N/cm3]

 
 

Experimental results confirm that the lowest values of stiffness are obtained by 

specimens composed by grey EPDM. The product becomes stiffer if the density goes 

up but there is not a significant changing in the loss factor. The standard model 



Chapter 5 – Experimental analysis of the composite material 

 94

explains the presence of a dynamic stiffening of the material for higher frequencies and 

it is confirmed by experimental data and the stiffening factor varies by about 1.5 to 4.5 

and it is important to take into account this phenomenon during the railway track 

design. 

 

5.5 EXPERIMENTAL TESTS AND THEORETICAL RESULTS 
COMPARISON 

 
The theoretical value of the equivalent elastic modulus is obtained considering the 

model described in the previous chapter (chapter 4). 

The elastic modulus of the polyether is assumed equal to 0.35 Mpa. Regarding the 

rubber component, proper values found in literature (Gent, 2001) are summarized in 

table 23. 

 
table 23 Typical SBR and EPDM properties 

Property SBR EPDM 

Shore A hardness 65 64 

300% modulus (Mpa) 13.5 6.8 

 
Tensile strength (Mpa 

25 15.5 

Breaking elongation (%) 500 410 

 
 
The equivalent elastic modulus for each material composition and density is evaluated 

as mean value on the three specimens. 

Tests results are in terms of static stiffness, whereas the experimental elastic 

modulus for each specimen is obtained considering its thickness. Again for each 

material composition and density the static stiffness is the mean value computed on the 

three specimens. Two different elastic modules are obtained because tests are 

performed considering two different standards.  
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The theoretical model explained in this thesis is a very simplified model which 

assumes the material elastic and homogeneous, but it allows obtaining equivalent 

elastic modulus values of the composite material close to the experimental test results. 

Significant differences do not occur if test results obtained with the UNI 10570 and 

UNI 11059 loads are compared. Some problems can occur when very big density 

( 3900 kg/m ) is considered. Moreover the agreement between tests and theoretical 

results is greater if the inert component is SBR and if it is the prevalent one. These 

aspects are shown in the following figures (figures 12-20). The fitting curves of the 

experimental data are evaluated for each type of specimen. 
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figure 12 comparison between theoretical and experimental results for short fibres of SBR 
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figure 13 comparison between theoretical and experimental results for short granules of SBR 
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figure 15 comparison between theoretical and experimental results for big granules of black 

EPDM 
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figure 16 comparison between theoretical and experimental results for short fibres of SBR (50%) 

and big granules of  black EPDM (50%) 
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figure 17 comparison between theoretical and experimental results for short fibres of SBR (50%) 

and big granules of  grey EPDM (50%) 
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figure 18 comparison between theoretical and experimental results for short fibres of SBR (50%)  

and small granules of SBR (50%) 
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figure 19 comparison between theoretical and experimental results for short fibres of SBR (90%) 

and big granules of  black EPDM (10%) 
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figure 20 comparison theoretical and experimental  results for short fibres of  SBR (90%)  and 

small granules of SBR (10%) 
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CHAPTER 6 

ANALYTICAL MODELS FOR TRADITIONAL AND 

INNOVATIVE RAILWAY TRACK 

 
In the past the design of new track system was often guided by experience only, 

while the previous study of their static and dynamic behaviour can give good 

suggestions to improve the performances of the system. In the mathematical modelling 

of railway tracks, three-dimensional models are obviously the most complete but in the 

study of longitudinal and vertical problems two-dimensional ore one-dimensional 

models are often sufficient.  

Simple analytical models can capture the main aspects of the problem and guide the 

development of more detailed model. One of the simplest of these models consists of a 

single beam on elastic or visco-elastic foundation and it will be discussed in the 

following. 
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6.1 SINGLE BEAM CONTINUOUS MODEL 
 

Considering the classical railway track described in the third chapter, it can be 

represented as a beam resting on visco-elastic foundation modeled by a continuously 

distributed stiffness and damping (figure1). 

EI,µ
k b

 
figure 1 simplified model for preliminary design 

 

The axes of coordinates are chosen in such a manner that the x-axis coincides with 

the beam and the direction in which the beam has elastic support from the foundation 

is perpendicular to the x-direction and the y-direction is parallel to it.  

E   young modulus of the beam 

I   moment of inertia of the beam cross section (constant) 

EI    flexural stiffness 

k    railway track stiffness 

µ    mass for unit length of the beam (constant) 

b     viscous damping parameter 

The viscous damping parameter includes all possible forms of the dissipation energy. 

The beam is modelled as an Euler beam characterized only by its mass and flexural 

stiffness, while the rotational inertia and shear force deformation are disregarded. The 

aim is the study of vertical deformations of the beam, therefore the displacements in y-

direction are considered. 

The equation that governs the problem is obtained by means dynamical equilibrium 

of the beam element: 
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4 2

4 2
( , ) ( , ) ( , ) ( , ) 0y x t y x t y x tEI b k y x t

tx t
µ∂ ∂ ∂

⋅ + ⋅ + ⋅ + ⋅ =
∂∂ ∂

 (6.1) 

In which ( , )y x t  is the vertical displacement of the point of the beam whose coordinate 

is x at time t. 

This is a differential equation with partial derivates, in fact the flexural term is a 

spatial derivate, while the damping and inertial terms are temporal derivates. 

 

6.1.1 General problem: concentrated harmonic load moving at constant speed 

In this general case a concentrated load is considered varying sinusoidally with 

time, whose point of application moves with constant speed v in the positive direction; 

in this way it is possible to consider both the effect of the train that run and the effect 

of the rail irregularities causing dynamic overloads. It can be mathematically 

represented as: 

0( , ) cos ( )F x t F t x vtω δ= ⋅ ⋅ −  (6.2) 

in which 0F is the constant concentrated force, ( )x vtδ −  is the Dirac delta function (or 

impulsive function) and v  represents the train speed. 

The Dirac function is not a function in the conventional sense. It is a so-called 

generalized function and it can be defined as the distributional derivate of the 

Heaviside function ( )H x : 

( )( ) dH xx
dx

δ =  (6.3) 

For the Dirac function the following relations can be considered ( , ,a b ξ  are 

constant and ( )f x  is a continuous function in the interval < a,b>): 

( ) 1x dxδ
+∞

−∞

=∫  (6.4) 

∫
+∞

∞−

=− )()()( afdxxfaxδ  (6.5) 



Chapter 6 – Analytical models for traditional and innovative railway track 
 

 103

∫
⎪
⎩

⎪
⎨

⎧

<<
<<
<<

=−
a

b ba
baf
ba

dxxfx
ξ

ξξ
ξ

ξδ
per            0
per      )(
per            0

)()(   (6.6) 

∫
⎪
⎩

⎪
⎨

⎧

<<
<<−

<<

=−
a

b

nnn

ba
baf
ba

dxxfx
ξ

ξξ

ξ

ξδ
per                         0
per     )()1(
per                       0

)()( )()(    (6.7) 

The substitution of ( )xϕ having zero value at some (single) point ( )  0ξ ϕ ξ⎡ ⎤=⎣ ⎦  gives: 

( )
( )

( )1
'

x x
x

δ ϕ δ ξ
ϕ

⎡ ⎤ = ⋅ −⎣ ⎦  (6.8) 

If ( )x axϕ =  then: 

( ) ( )1ax x
a

δ δ= ⋅  (6.9) 

The equation that governs the problem is: 
4 2

04 2
( , ) ( , ) ( , ) ( , ) cos ( )y x t y x t y x tEI b k y x t F t x vt

tx t
µ ω δ∂ ∂ ∂

⋅ + ⋅ + ⋅ + ⋅ = ⋅ ⋅ −
∂∂ ∂

 (6.10) 

A new variable is introduced which expresses the fact that its origin moves together 

the load with constant speed v : 

r x vt= −  (6.11) 

The displacement ( , )y r t  is periodic in t , the period being 2 /π ω . The 

displacement can be expressed in the form (Mathews, 1958): 

( ) ( )1 2( , ) ( ) cos ( ) siny r t y r t y r tω ω= ⋅ + ⋅  (6.12) 

Considering the total derivative definition the equation is written in terms of the two 

variables r  and t : 
4 2 2 2

2
4 2 2

0

2

cos ( )

y y y y y yEI v v b v ky
r t r tr r t

F t x vt

µ

ω δ

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞⋅ + ⋅ ⋅ − ⋅ + + ⋅ − ⋅ + + =⎜ ⎟ ⎜ ⎟∂ ⋅∂ ∂ ∂∂ ∂ ∂ ⎝ ⎠⎝ ⎠
= ⋅ ⋅ −

 (6.13)  
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The y  expression (6.12) is substituted in (6.13); the two sides of the equation are 

compared considering separately the terms containing ( )cos tω and  ( )sin tω  and the 

equation is written trough two simultaneous equations: 

( )

( )

4 2 2
2 21 1 1 2

2 1 04 2 2

4 2 2
2 22 2 2 1

1 24 2 2

2 ( )

2 0

y y y yEI v vb v b y k y F r
rr r r

y y y yEI v vb v b y k y
rr r r

µ ωµ ω µω δ

µ ωµ ω µω

∂ ∂ ∂ ∂
⋅ + ⋅ ⋅ − ⋅ − ⋅ + ⋅ + − ⋅ =

∂∂ ∂ ∂
∂ ∂ ∂ ∂

⋅ + ⋅ ⋅ − ⋅ + ⋅ − ⋅ + − ⋅ =
∂∂ ∂ ∂

 (6.14) 

Regarding boundary conditions, at infinite distance the deflection, the slope of the 

deflection line, the bending moment and the shear force all vanish; and the solution can 

be obtained by the method of Fourier integral transformations using the following 

fundamental relations:  

( ) 1 ( )
2

isry r P s e ds
π

+∞

−∞

= ⋅∫  (6.15)  P(s) = ( ) ( ) isrP s y r e dr
+∞

−

−∞

= ⋅∫  (6.16) 

where s  is a variable in the complex plane. And ( )P s  is the transform of ( )y s . 

The two equation of (6.14) are rewritten in the following form: 

( ) ( )

( ) ( )

4 2 2 2
1 2 0

4 2 2 2
1 2

2

2 0

EIs v s bvis k p v is b p F

v is b p EIs v s bvis k p

µ µω ωµ ω

ωµ ω µ µω

− − + − ⋅ − − ⋅ =

− ⋅ − − − + − ⋅ =
 (6.17) 

The (6.17) equations form an algebraic system in 1p  and 2p , that can be easily 

solved: 

( ) ( )

4 2 2 2

1 0 2 24 2 2 2 2

EIs v s bvis kp F
EIs v s bvis k v is b

µ µω

µ µω ωµ ω

− − + −
= ⋅

− − + − + −
 (6.18) 

( )
( ) ( )

2 0 2 24 2 2 2

2

2

v is b
p F

EIs v s bvis k v is b

ωµ ω

µ µω ωµ ω

− −
= ⋅

− − + − + −
 (6.19)  

The solution in terms of the vertical displacement ( , )y r t  is obtained inverting 

(6.18) and (6.19) considering (6.15). The inversion can be carried out through the 
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Cauchy’s residue theorem, if 1p  and 2p  can be split up into partial fractions. For this 

aim the denominator has to be expressed through linear factors:   
222224 )2()( ωωµµωµ bisvkbvissvEIs −⋅+−+−−  (6.20) 

The results can be expressed in non-dimensional form introducing proper 

parameters that consider the frequency, speed and damping effect. Thus, the following 

parameters are defined: 

µ
ω k

=0  fundamental frequency of the system (6.21) 

k
EIEIkv θ

µ
24

4 20 ==   critical speed in which  4
4EI

k
=θ  (6.22)  

kb µ⋅= 20  critical damping (6.23) 

The three non-dimensional parameters are: 

0ω
ω

=W ,   
0v
v

=α ,   
0b

b
=β   (6.24) 

Moreover a non dimensional variable is considered obtained by the variable r: 

( )R x vtθ= ⋅ −   (6.25) 

Regarding the displacement, the non-dimensional parameter is: 

0y
yY =  in which 

EI
F

k
EI

EI
F

y
8

4
8

0
4/3

3
0

0 ⎟
⎠
⎞

⎜
⎝
⎛==

θ
 (6.26) 

The Laplace transform is written: 

( )
0

2( ) ( )iSR
j j j

kP S Y r e dR p s
F

+∞
−

−∞

⋅ =∫   with    j = 1, 2 (6.27) 

The solution in terms of non-dimensional parameters is: 

)sin()(Y)cos()(),( 21 trtrYtRY ⋅+⋅⋅= ωω  (6.28) 

in which 1( )Y R and 2 ( )Y R  are Fourier inverses with respect to S  of 1( )P S  and 2 ( )P S  , 

that are expressed: 
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( )
( ) [ ]

4 2 2 2

1 2 24 2 2 2

8 4 8 4 1
( )

4 8 4 1 64

S S iS W
P S

S S iS W WiS W

α β α

α β α α β

⎡ ⎤⋅ − ⋅ − ⋅ ⋅ ⋅ + −⎣ ⎦=
⎡ ⎤− ⋅ − ⋅ ⋅ ⋅ + − + ⋅ −⎣ ⎦

 (6.29) 

( )

( ) [ ]
2 2 24 2 2 2

64
( )

4 8 4 1 64

WiS W
P S

S S iS W WiS W

α β

α β α α β

− ⋅ −
=

⎡ ⎤− ⋅ − ⋅ ⋅ ⋅ + − + ⋅ −⎣ ⎦

 (6.30) 

The solution is obtained when the denominator is factorized, or equivalently, the 

following equation is solved: 

( ) [ ]
2 24 2 2 24 8 4 1 64 0S S iS W WiS Wα β α α β⎡ ⎤− ⋅ − ⋅ ⋅ ⋅ + − + ⋅ − =⎣ ⎦  (6.31) 

The general solution is quite difficult to obtain but the salient aspects of the railway 

track dynamical behaviour can be obtained considering less complex particular cases. 

 

6.1.2 Vibration of the beam in the absence of damping 

The absence of damping can simplify the previous relations and facilitate the 

consequently solution. In (6.18) and (6.19) the damping parameter b  disappears: 

( ) ( )

4 2 2 2

1 0 2 24 2 2 2 2

EIs v s kp F
EIs v s k v is

µ µω

µ µω ωµ

− + −
= ⋅

− + − +
 (6.32) 

( ) ( )
2 0 2 24 2 2 2

2

2

v isp F
EIs v s k v is

ωµ

µ µω ωµ

−
= ⋅

− + − +
 (6.33) 

The denominator can be split up in two fourth degree factors: 

02
02

2224

2224

=−−+−

=+−+−

svksvEIs
svksvEIs

ωµµωµ

ωµµωµ
 (6.34) 

Solving the first equation of (6.34) all roots are obtained because if s a−  is a 

solution of the first one, then s a−  is a root of the second one. The following 

equation is solved: 
4 2 2 22 0EIs v s v s kµ ωµ µω− + ⋅ + − =  (6.35) 
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Depending on equation coefficients the roots may be all real or all complex or two 

may be real and two complex.  

When the roots are real 1p , 2p  and their transform function 1( )y r , 2 ( )y r  lead to a 

solution for y  which includes terms representing an undamped sinusoidal wave 

existing over the whole length of the beam and moving in the positive x  direction with 

velocity v . This situation is never realized physically and so the roots are all complex.  

As all the coefficients are real, the roots must occur in conjugated pairs. Moreover 

the sum of the four roots must be zero because the coefficient of 3s is zero. In order to 

satisfy these requirements, the four roots must be expressed in the form: 

1 1 2 2                  a ic a ic a ic a ic+ − − + − −  

hence: 

)()()()(2 2211
2224 icasicasicasicassvksvEIs ++⋅−+⋅+−⋅−−=+−+− ωµµωµ  

The three unknown values 1 2,  and a c c  can be obtained through the following equation, 

applying the identity principle of the polynomials: 

EI
vcca

2
2
2

2
1

22 ⋅
=−−

µ  (6.36) 

EI
vcca ωµ2)(2 2

2
2
1 =−⋅  (6.37) 

EI
kcaca

2
2
2

22
1

2 )()( µω−
=+⋅+  (6.38) 

When 1 2,  and a c c  are obtained the four roots are known and the process of 

expanding of 1p   and 2p  into partial fractions is carried out: 



Chapter 6 – Analytical models for traditional and innovative railway track 
 

 108

( ) ( ) ( )

( ) ( )

( ) ( )

2

1 2 2
0 1 1 2 1 2 1 11 2

1 1 2 1 2 1 1

2 1 2 1 2

( ) 1 1 1( )
2 24

1 1 1                   
2 2

1 1                   
2 2

EI vp s
F ic a ic ic a ic ic s a ic s a ica c c

ic a ic ic a ic ic s a ic s a ic

ic a ic ic a ic ic s

ωµ ⎧ ⎡ ⎤⎪= ⋅ − +⎨ ⎢ ⎥+ − ⋅ + + − − + +⋅ − ⎪ ⎣ ⎦⎩

⎡ ⎤
− ⋅ − +⎢ ⎥− − ⋅ − + − + + −⎣ ⎦

+ ⋅
+ − ⋅ − − +

( ) ( )

2 2

2 1 2 1 2 2 2

1

1 1 1                   
2 2

                   

a ic s a ic

ib a ic ic a ic ic s a ic s a ic

⎡ ⎤
− +⎢ ⎥− − +⎣ ⎦

⎫⎡ ⎤⎪− ⋅ − ⎬⎢ ⎥+ + ⋅ − + + + − − ⎪⎣ ⎦⎭

 Considering that: 

the inverse of  
icas −−

1  is )()( rHie riac−−  

the inverse of 
icas +−

1  is )()( rHie riac −− +  

the inverse of 
icas −+

1  is )()( rHie riac+−  

the inverse  
icas ++

1  is )()( rHie riac −− −  

where a  and c are positive and ( )H r is the Heaviside unit function for which ( ) 1H r =  

if 0r > and ( ) 0H r =  if 0r < (Mathews, 1958). 

Hence the 1( )p s function can be easily inverted obtaining 1( )y r ; 2 ( )p s and 2 ( )y r  are 

found using the same procedure outlined above and so the following expression is 

obtained: 
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( )
( )

( )
( )

1 1

1 2

1 2

2 2 2
1 2 10

22 2 2 2 21 1 2 1

2 2 2
2 1 2

22 2 2 2 22 2 1 2

0

( ) cos ( ) sin

4 cos 4 sin1   cos
2 4 16

4 cos 4 sin1    
4 16

    sin
2

c r c r

c r c r

y y r t y r t

a c c e a r ac e a rF t
EI c a c c a c

a c c e a r ac e a r

c a c c a c

F t
EI

ω ω

ω

ω

− −

− −

= ⋅ + ⋅ =

⎡ ⋅ − + ⋅ +⎢= ⋅ ⋅ ⋅ +⎢
⋅ − + +⎢⎣

⎤⋅ − + ⋅ + ⎥+ ⋅ +⎥
⋅ − + + ⎥⎦

∓
( )

( )
( )

( )

1 1

2 2

2 2 2
1 2 1

22 2 2 2 21 1 2 1

2 2 2
2 1 2

22 2 2 2 22 2 1 2

4 sin 4 cos1

4 16

4 sin 4 cos1    
4 16

c r c r

c r c r

a c c e a r ab e a r

b a c c a c

a c c e a r ac e a r

c a c c a c

− −

− −

⎡ ⋅ − + ⋅ −⎢⋅ ⋅ +⎢
⋅ − + +⎢⎣

⎤⋅ − + ⋅ − ⎥− ⋅ ⎥
⋅ − + + ⎥⎦  (6.39) 

In (6.39) the negative sign holds when 0r >  and the positive sign for 0r < . 

This is the formal solution, which describes the vibrations of the beam under the action 

of a concentrated force varying sinusoidally with time and whose point of the 

application on the beam moves with speed v  in the positive x  direction when the 

damping is absent. The values of 1 2,  and a c c are evaluated as a function of the inertial, 

elastic and damping parameters for the different cases.  

If the force is fixed ( )0v = and varies sinusoidally with the time: 

4
2

21 4EI
kcca µω−

===  (6.40)  

therefore the deflection of the beam is written: 

( ) txaxae
EIa
Ftxy xa ωcossincos

8
),( 3

0 ⋅+= −  (6.41) 

The maximum amplitude of the vibration is at the point of application of the load 

and its value is: 
4\3

2
0

3
0

max
4

88 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

==
µωk
EI

EI
F

EIa
Fy  (6.42) 
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The maximum amplitude (6.42) tends to infinity when the frequency of the load is near 

the fundamental frequency of the beam: 

2
0

2 ω
µ

ω ==
k  (6.43) 

this fact reveals the existence of a resonance phenomenon.  

A force constant and moving with constant speed is now considered, the values of 

1 2,  and a c c  are obtained from the following relations: 

EI
vaccc

2
                     

2
2

121
µ

−==  (6.44) 

Substituting in (6.38): 

EI
k

EI
va =−

2
2

2
2 µ  (6.45)  

 hence: 
2/12

44 ⎭
⎬
⎫

⎩
⎨
⎧

+=
EI
v

EI
ka µ  

2/12

21 44 ⎭
⎬
⎫

⎩
⎨
⎧

−===
EI
v

EI
kccc µ  (6.46) 

The vertical displacements of the beam are given by: 

( ) { }vtxacvtxaa
caac

e
EI
F

y
vtxc

−+−⋅
+

=
−−

sincos
22 22

0   (6.47) 

The deflection at the point where the moving load is applied ( )r x vt= −   is: 

2/122/1
0

22
0

max 44
4

8)(22

−−−

⎭
⎬
⎫

⎩
⎨
⎧

−⎟
⎠
⎞

⎜
⎝
⎛⋅=

+⋅
⋅=

EI
v

EI
k

k
EI

EI
F

caac
e

EI
F

y
vtxc µ   (6.48) 

this displacement is compared with the static one given by (6.26): 

2/12

4/1

0

max

44

)4/(

⎭
⎬
⎫

⎩
⎨
⎧

−

=

EI
v

EI
k

EIk
y

y

µ
 (6.49) 

If  the critical speed 0v  is considered, (6.49) can be written: 
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2/1

2
0

2

0

max 1
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

v
v

y
y  (6.50) 

The effect of the speed can cause instability if the train speed is near the value of the 

critical one.  

It is of interest to enquire as to how the resonance frequency is modified when the 

speed v  has a finite value.  A relationship between the values of v  and ω  that 

correspond to instability conditions is found. The (6.39) shows that y tends to infinite 

if one of the following conditions is satisfied: 

1 0c =  or 2 0c =  or 0a =   and  1 2c c=  

However, from (6.37) when 0v ≠  and 0ω ≠ , it must be 1 2c c> ; this condition 

considering that 1 2,  and a c c  are non-negative by definition, rules out the first and the 

third of the above alternatives and leaves the first the condition 2 0c = . 

The introduction of this condition into (6.36), (6.37) and (6.38) gives: 

EI
vba

2
2

1
22 ⋅

−=+−
µ  (6.51) 

EI
vab ωµ22 2

1 =  (6.52) 

EI
kaba

2
22

1
2 )( µω−

=⋅+  (6.53) 

Eliminating a  and 1c  from the three equations, it is found that y tends to infinite if v 

and ω are such that: 
1/ 21/ 2 1/ 22 22 2 2 2 2 21 1 212 12

3 36
v v k k v v

EI EI EI EI EI EI EI
µ µ µω µω µω µ ωµ

⎧ ⎫ ⎧ ⎫⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞− −⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎢ ⎥+ + ⋅ + − =⎜ ⎟ ⎜ ⎟⎨ ⎬ ⎨ ⎬
⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎪ ⎪ ⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭ ⎩ ⎭

this relation (figure 2) can be expressed in terms of the non-dimensional parameters 

α and W : 

{ } 3242224 )1(44)1()1(1827 WWW −⋅=−−−−⋅− αα  (6.54) 
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figure 2 relation between the values of α  and W in instability conditions (Mathews, 1958): 

 

(6.36), (6.37) and (6.38) can be expressed in a non-dimensional form as a function of 

α  and W  an of the non-dimensional variable R . Moreover A , 1C  and 2C  are 

defined: 

1 2
1 2            c caA C C

θ θ θ
= = =  (6.55) 

Hence: 
22

2
2

1
2 42 VCCA ⋅=−−  (6.56) 

( ) WVCCA ⋅⋅=−⋅ 42
2

2
1  (6.57) 

( ) ( ) ( )22
2

22
1

2 14 WCACA −⋅=+⋅+  (6.58) 

The values of A , 1C  and 2C   for the different values of V  and W  are obtained 

solving the three equations (6.56), (6.57) and (6.58); they are in table 1. 
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table 1 A, C1 e C2  in function of non-dimensional parameters  α e W (Mathews, 1958) 

 
α 

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0 
 
 

0.1 
 
 
 

0.2 
 
 
 

0.3 
 
 
 

0.4 
 
 
 

0.5 
 
 
 

0.6 
 
 

 
0.7 

 
 
 

0.8 
 
 
 

0.9 
 

 

A=C1=C2 
 

A 
C1 
C2 
 

A 
C1 
C2 
 

A 
C1 
C2 
 

A 
C1 
C2 
 

A 
C1 
C2 
 

A 
C1 
C2 
 

A 
C1 
C2 
 

A 
C1 
C2 
 

A 
C1 
C2 

 

1.000
 
1.005
0.995
0.995
 
1.020
0.980
0.980
 
1.044
0.954
0.954
 
1.077
0.917
0.917
 
1.118
0.866
0.866
 
1.166
0.800
0.800
 
1.221
0.714
0.714
 
1.281
0.600
0.600
 
1.345
0.436
0.436

0.997
 
1.002
1.002
0.982
 
1.017
0.997
0.957
 
1.042
0.981
0.921
 
1.075
0.954
0.873
 
1.116
0.914
0.810
 
1.165
0.860
0.730
 
1.219
0.788
0.626
 
1.279
0.694
0.482

0.990
 
0.995
1.005
0.964
 
1.010
1.010
0.928
 
1.035
1.004
0.881
 
1.069
0.986
0.820
 
1.111
0.956
0.744
 
1.160
0.912
0.647
 
1.215
0.853
0.516
 
1.276
0.774
0.311

0.977
 
0.982
1.003
0.940
 
0.998
1.018
0.892
 
1.024
1.022
0.832
 
1.059
1.014
0.758
 
1.102
0.993
0.664
 
1.152
0.959
0.542
 
1.208
0.910
0.363

0.957
 
0.963
0.995
0.908
 
0.980
1.022
0.847
 
1.007
1.036
0.772
 
1.044
1.036
0.680
 
1.089
1.026
0.563
 
1.140
1.001
0.399

0.931
 
0.937
0.982
0.867
 
0.955
1.021
0.783
 
0.985
1.046
0.696
 
1.024
1.036
0.680
 
1.071
1.055
0.424
 
1.125
1.039
0.114

0.894 
 
0.902 
0.962 
0.812 
 
0.922 
1.015 
0.714 
 
0.955 
1.053 
0.596 
 
0.998 
1.075 
0.441 
 
1.049 
1.083 
0.166 

0.845 
 
0.854 
0.934 
0.738 
 
0.879 
1.005 
0.611 
 
0.917 
1.057 
0.449 
 
0.965 
1.092 
0.175 
 
 

0.775
 
0.787
0.896
0.629
 
0.819
0.991
0.448
 
0.867
1.061
0.130

0.660
 
0.682
0.842
0.426
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The non-dimensional displacement (6.26) is written in the form: 

( )

( )

( )

( )
⎥
⎦

⎤
++−

+⋅⋅+−
⋅−

+
++−

−⋅⋅+−
⎢
⎣

⎡
⋅⋅⋅⋅

+⎥
⎦

⎤
++−

+⋅⋅+−
⋅+

+⎢
⎣

⎡
++−

+⋅⋅+−
⋅⋅⋅⋅

=⋅⋅+⋅⋅=

−−

−−

−−

−−

2
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2
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1

2

1

21

16)4(
||cos4||sin4 1      

16)4(
||cos4||sin41sin4      

16)4(
||sin4||cos4 1     

16)4(
||sin4||cos41cos4      

sin)(cos)(

22

11

22

11

CACCA
RAeACRAeCCA

C

CACCA
RAeACRAeCCA

C
t

CACCA
RAeACRAeCCA

C

CACCA
RAeACRAeCCA

C
tω

tRYtRYY

RCRC

RCRC

RCRC

RCRC

ω

ωω

∓

 (6.59) 

If 0R >  the second term assumes negative sign; if 0R <  the second term assumes 

positive sign. 

The modulus of Y  as a function of R  is shown for different values of non-dimensional 

parameters  α  and W  in figure 3. 
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figure 3 Modulus of non-dimensional displacement Y  for different values of α  and W  
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6.1.3 Vertical vibrations of the beam in damped case 

The general analytical solution in which the harmonic force moves on the beam 

with constant speed is quite difficult to determine in damped case. The equation (6.31) 

has to be solved; it is a polynomial of the eighth degree and its eight roots can be 

written in the following form (Mathews, 1959): 

1 1 2 2 3 3 4 4

1 1 2 2 3 3 4 4

,          ,         ,         
  with 1...8

,       ,         ,            i
A iB A iB A iB A iB

S i
A iB A iB A iB A iB
+ − − + − −⎧

= =⎨− + − − + −⎩
 

Two simpler cases are studied from which some important results concerning the 

dynamical behaviour of the track system can be derived. 

 

6.1.3.1 The case of a constant force moving at constant speed 

The track model is in figure 1 still consists of a beam with infinite length on 

viscoelastic foundation. It is loaded by a constant force 0F  moving at constant speed 

v . 

Vertical vibrations of the beam are described by the following differential equation: 
4 2

04 2
( , ) ( , ) ( , ) ( , ) ( )y x t y x t y x tEI b k y x t F x

tx t
µ δ∂ ∂ ∂

⋅ + ⋅ + ⋅ + ⋅ = ⋅
∂∂ ∂

 (6.60) 

The first member of the equation is that of equation(6.1), the second one describes 

the load acting on the beam, which represents the train running on the track. 0F  is 

constant and ( )xδ  is still the Dirac function. 

The damping coefficient b  can be expressed as shown in the following: 

2 bb µω=  (6.61) 

In which µ  is the beam mass per unit length  and bω  is a circular frequency of 

damping. 

The problem is solved using the method of Fourier integral transformations very 

effective in the study of moving loads. 
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Regarding the boundary conditions the slope of the deflection line, the bending 

moment and the shear force are zero at an infinite distance on the right as well as on 

the left of the force 0F .  

The dimensionless variable R  is considered again: the coordinate system origin 

moves together with the load at a uniform speed v  (Fryba, 1999). 

Moreover the hypothesis of quasi-stationary state is introduced, in which the beam 

is at rest with respect to the moving coordinate system and so the solution in terms of 

displacement can be written in the form: 

0( , ) ( )y x t y y R= ⋅  (6.62)     

in which 0y  is the static displacement defined in (6.26) and ( )y R  is the non-

dimensional displacement. 

The partial derivates of  R  defined in (6.25) are:   

R
x

θ∂
=

∂
      R v

t
θ∂

= −
∂

 (6.63) 

Considering the (6.63) and the quasi-stationary state the partial derivates of the rail 

displacement  ( , )y x t  can be written: 

4 4
4

04 4
( , ) ( )y x t d y Ry
x dR

θ∂
= ⋅

∂
  (6.64) 

2 2
2 2

02 2
( , ) ( )y x t d y Rv y
t dR

θ∂
= ⋅

∂
 (6.65) 

0
( , ) ( )y x t dy Rvy

t dR
θ∂

= − ⋅
∂

 (6.66) 

According to the properties of the Dirac function, expressed by (6.8) and (6.9), the 

non-dimensional form of the function is written as: 

1( ) ( )R xδ δ
θ

= ⋅  (6.67) 

considering that: 
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1( ) ( ) 1R dR x dxδ δ λ
θ

+∞ +∞

−∞ −∞

= =∫ ∫  (6.68) 

(6.67), (6.66), (6.65) and  (6.64) are substituted in (6.60): 
4 2 24 2

0 0 0 0 0
4 4 4 2 4 4 4

0 0 0 0 0

( )( ) ( ) ( ) ( )EIy y v y v ky F Rd y R d y R dy R y R
dREIy dR EIy dR EIy EIy EIy

θ µ θ θ θδ
θ θ θ θ θ

⋅ + ⋅ + ⋅ + ⋅ =  (6.69) 

If the two non-dimensional parameters α  and β  (defined in previous paragraph) are 

considered the differential equation coefficients can be written: 
2 2 2

20
4 2

0

0 0
4 4

0 0
4

0
4 4

0
4

0 0
4 4 4

0 0

4 4
4

 4 2 88 8
4 2 2

4 4

2 8 8

y v v
EIy EI

y v by v b v EI b
kEIy EIy EI k

ky EI
EIy EI

F F k EI
EIy F EI EI

µ θ µ α
θ θ

µθ θ θ θ α αβ
θ θ θ µ µ

θ
θ θ

θ θ θ
θ θ θ θ

= ⋅ =

⋅ ⋅
= ⋅ = ⋅ ⋅ ⋅ = =

⋅ ⋅

= =

= = =

 (6.70) 

Substituting (6.70) in (6.69): 
4 2

2
4 2

( ) ( ) ( )4 8 4 ( ) 8 ( )d v R d v R dv R v R R
dRdR dR

α αβ δ+ ⋅ − ⋅ + =  (6.71) 

The boundary conditions are:  

for R→ +∞ and for R→ −∞  v(R) = v′(R) = v′′(R) = v′′′(R) = 0 

The method of Fourier integral transformations is used. The following fundamental 

relations have to be remembered: 

1( ) ( )
2

iSRy R P S e dS
π

+∞

−∞

= ⋅ ⋅∫  (6.72) ( ) ( ) iSRP S y R e dR
+∞

−

−∞

= ⋅∫  (6.73) 

in which S  is a variable in the complex plane, and ( )P S  is the transform of the 

function ( )y R . The integral transforms applied in the model are in table 2. 
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table 2 Integral transforms in the model 
FUNCTION TRANSFORM 

   for   ( ) 0dy y
dR

±∞ =  ( )iSP S  

2

2    for   ( ) '( ) 0d y y y
dR

±∞ = ±∞ =  2 ( )S P S−  

3

3    for   ( ) '( ) ''( ) 0d y y y y
dR

±∞ = ±∞ = ±∞ =  3 ( )iS P S−  

4

4    for   ( ) '( ) ''( ) '''( ) 0d y y y y y
dR

±∞ = ±∞ = ±∞ = ±∞ = 4 ( )S P S  

( )      (a=constant)a y R⋅  ( )a P S⋅  

( )      (Dirac function)Rδ  1 

 

The integral transforms are substituted in (6.71) and the non-dimensional 

parameters of the speed and damping (α  and β  respectively) are considered: 

4 2 2( ) 4 ( ) 8 ( ) 4 ( ) 8S P S S P S i S P S P Sα αβ⋅ − ⋅ − ⋅ + ⋅ =  (6.74) 

An algebraic equation is obtained and the single unknown function is ( )P S :   

4 2 2
8( )

4 4
P S

S S i Sα αβ
=

− − +
 (6.75) 

hence: 

4 2 2
4( )

4 4

iRSey R dS
S S i Sπ α αβ

+∞

−∞

= ⋅
− − +∫  (6.76) 

The residue theory is applied to obtain the solution in closed form, therefore the 

integrand denominator has to be factorized, in other words the integrand poles have to 

be found. They are derived from the roots of the denominator ( )Q S  in (6.76): 
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4 2 2( ) 4 8 4 0Q S S S Sα αβ= − − + =  (6.77) 

The particular form of the equation and the hypothesis of  light damping 

( )crβ β< makes possible to write  the roots in the following way: 

1 1 2 1 3 2 4 2                  A a ic A a ic A a ic A a ic= + = − + = − = − −  

Hence: 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )1 2

4 2 2
1 2 3 4 1 1

2 2 2 2 2 2 2 2
2 2

4 8 4

2 2

S S S S A S A S A S A S a ic S a ic

S a ic S a ic S icS a i c S icS a i c

α αβ− − + = − ⋅ − ⋅ − ⋅ − = − − ⋅ + − ⋅

⋅ − + ⋅ + + = − − + ⋅ + − +

 

Applying the identity principle of  polynomials: 

2 2 2
2

22a c
c
αβα= + −  (6.78) 

2 2 2
1

22a c
c
αβα= + +  (6.79) 

( )6 2 4 4 2 2 22 1 0c c cα α α β+ + − ⋅ − =  (6.80)  

The roots of the equation (6.80) are six, but only the positive ones are taken into 

account; in fact, according to Descartes’ rule of signs, the equation has a positive root 

when 0α ≥  and  0β ≥ . The equation (6.80) is solved as a third degree equation in c 2. 

In the following solutions in terms of 1 2, ,a a c  are carried out for different values of 

the two non-dimensional parameters α  and β . 

In the static case ( )0α = : 

1 21      1      1b a a= = =  (6.81) 

In the case of the absence of damping ( )0β = : 

2 2
1 2for 1 1    1c a a aα α α< ⇒ = − = = = +  (6.82) 

1 2for 1 1   2c a a aα = ⇒ = = = =  (6.83) 

2 2 2 2
1 2for 1 0   1 1    1 1c a aα α α α α> ⇒ = = + + − = + − −  (6.84) 
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When the damping is considered an approximate solution is obtained and there are 

different solution depending on the ratio between the damping parameter β  and the 

critical damping crβ . The first case is given by 1β <  and the solution is obtained: 

1/ 2 1/ 2
2 2 2

1 22 2

2 2for 1 1    1   1
1 1

c a aαβ αβα α α α
α α

⎛ ⎞ ⎛ ⎞
< ⇒ ≈ − ≈ + + ≈ + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

 (6.85) 

( )1/ 4 1/2 1/ 2 3 / 4 1/ 2
1 2for 1 2    2 1 2c a a aα β β− −= ⇒ ≈ ⋅ ≈ ≈ ≈ ⋅ + ⋅  (6.86) 

2 2 2 2
1 24

for 1    1 1    1 1
1

c a aαβα α α α α
α

> ⇒ ≈ ≈ + + − ≈ + − −
−

 (6.87) 

When the damping parameter reaches its critical value the value of 2a   always assumes 

zero value, considering (6.78): 

( )2 2 2 22 12 2
2

cr
crc c c

c
αβ

α αβ α+ = ⇒ = ⋅ +  (6.88) 

(6.88) is substituted in (6.80) and finally the expression of the critical damping is 

obtained: 

( ) ( )
1/ 21/ 21/ 2 1/ 2 1/ 22 4 4

3/ 2
2 13 2 3
3crβ α α α α

α
⎛ ⎞⎛ ⎞= ⋅ − + + ⋅ + ⋅ +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

  (6.89) 

It depends on the load speed, since depends on the non dimensional α; on the contrary 

if a single degree of freedom system is considered the critical damping does not 

depend on the speed, but it is an intrinsic characteristic of the system. However the 

critical damping becomes constant when the non dimensional parameter α reaches 

higher values and it is shown in figure 4. 
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figure 4 the critical damping crβ  

 

In this case 1a  and c are given by: 

( )2 2 4
1

4 2 3
3

a α α= ⋅ + +  (6.90) 

( )2 42 3
3

c α α= ⋅ − + +  (6.91) 

When the damping parameter is higher than the critical one the equation (6.78) 

becomes negative and the poles have to be expressed in a different way: 

( ) ( )1 1 2 1 3 2 4 2                  A a ic A a ic A c a i A c a i= + = − + = − − ⋅ = − + ⋅  

Again the identity principle of polynomials is applied: 

( ) ( ) ( ) ( )4 2 2
1 2 3 44 8 4S S S S A S A S A S Aα αβ− − + = − ⋅ − ⋅ − ⋅ −  

1a  and c are still defined by equation (6.79) and (6.80), while 2a  is given by: 



Chapter 6 – Analytical models for traditional and innovative railway track 
 

 122

2 2 2
2 2 2

22      0      a c a a b
c
αβα= − − + > >   (6.92) 

When the integrand poles are known, the integral (6.76) can be solved: 

( ) 4 ( )y R F S dS
π

+∞

−∞

= ⋅ ∫  

It represents the solution of the differential equation. 

The integral can be expressed as a limit in the following way: 

1

1
1

lim
( ) ( )

RiRS iRS

R
R

e edS dS
Q S Q S

+∞

→∞
−∞ −

=∫ ∫  (6.93) 

in which 1R  is the radius of the semicircle 
1RC  which passes around all the poles in a 

half-plane (for an example see figure 5).  

 
figure 5 poles in the complex plane 

 

According to the Cauchy’s residue theorem, the integral in the counter-clockwise 

direction around the close curve C (consisting of segments –R, +R, and semicircle CR 
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and a point in which the function is not analytical) does not depend on the particular 

curve. The integral only depends on the value of the function F(s) residue: 

1

111 1
1

( ) lim 2 Res ( ) |
( ) ( ) ( ) iR R R

RiSR iSR iSR

S AC C CR
R

e e eF S dS dS dS dS i F S
Q S Q S Q S

π
+

=
→∞

−

⎡ ⎤
⎢ ⎥= = + =
⎢ ⎥⎣ ⎦

∫ ∫ ∫ ∫v v v  (6.94) 

In (6.94) Res ( ) |
iS AF S =  is the residue of the function ( )F S  in the pole jA . 

These results can be extended in the case the poles are more than one: 

1
2 Res ( ) |

( ) jR

iSR n

S AC
j

e dS i F S
Q S

π =
=

= ∑∫v  (6.95) 

The integral (6.94) converges because ( )F S  is a regular function if the upper half-

plane is considered and along the real axis except for a finite number of poles which lie 

in the upper half-plane. Moreover for S → ∞ , ( )SF S   uniformly tends to zero in fact 

( )Q S  is a fourth degree polynomial and the following relations are derived if 

S iξ η= +  is the complex variable: 

( ) ( ) ( ) ( ) ( )

( ) )

( )

For    0    1

For    0    1

iSR iR i iR R R

iS R i R i i R R R

R e e e e

R e e e e

ξ η ξ η η

ξ η ξ η η

+ − −

− − + − − + − −

> = = = ≤

< = = = ≤
 (6.96) 

For this reason in the evaluation of integrals the semicircle CR is drawn in the upper 

half-plane ( )0 for 0Rη > > , and in the lower half-plane ( )0 for 0Rη > >  . 

The second integral in the square brackets of (6.94) is zero: ( )Q S  is a fourth degree 

polynomial, therefore 1( ) nQ S R≥  on semicircle 
1RC  and considering that: 

 
1

1( )
( )

iRS

n
eF S

Q S R
= ≤  

applying the Jordan’s lemma the integral around 
1RC  is: 

11

1
1

1 1
lim ( ) 0

R
n nCR

RF S dS
R R

π π
−→∞

≤ = =∫v = (6.97) 
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Therefore the solution is derived from (6.95) and (6.97): 

1

1

2 Res ( ) |                   s 0                          

( )
-2 i Res                     s 0

j

j

n

S AiSR
j

n

S A
i

i F S
e

Q S
F(S)|

π

π

=+∞
=

−∞
=

=

⎧
+ >⎪

⎪= ⎨
⎪ <⎪⎩

∑
∫

∑
 (6.98) 

In the following the relations to compute the residue of a function are reported. For 

a pole of the first order: 

( )Res ( ) | ( ) |
j jS A j S AF S F S S A= == ⋅ −  (6.99) 

For an example the case of poles of the second order is considered ( )2j = : 

2 1 2 3 2 4
Res ( )

( )( )( )j

iRS

S A
eF S

A A A A A A=
=

− − −
 (6.100) 

Finally the general case is derived: 

( )

( 1)

( 1)

[( ) ( )]1Res ( ) lim
1 !j j

k k
j

kS A S A

d S A F S
F S

k dS

−

−= →

⎛ ⎞−
= ⎜ ⎟⎜ ⎟− ⎝ ⎠

 (6.101) 

In which k is the order of the pole. 

These relations allow to solve the integral in closed form for different values of the 

two non-dimensional parameters α and β. 

The static solution ( )0α = is quickly obtained: 

( )( ) cos sinRy R e R R−= ⋅ +  (6.102) 

In the absence of camping ( )0β =  three different ranges of the speed parameter are 

considered. The first one is the case of 1α < : 

( ) ( )( )1( ) cos sinc Ry R e a aR b a R
ab

−= ⋅ +  (6.103) 

When 1α =  the load speed reaches its critical value crv . In this case the solution is not 

defined and the beam will lose its stability. This condition is very important and in the 

following other consideration will be made. 
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For 1α >  

14
1

24
2

2 sin       for 0
1

( )
2 sin      for 0

1

a R R
a

y R
a R R

a

α

α

⎧− ⋅ >⎪
−⎪= ⎨

⎪− ⋅ <
⎪ −⎩

   (6.104) 

In the case of light damping ( )1β <<  the solution can be written in the form: 

( )

( )

1 1 2 22 2
1 1 2

3 1 4 22 2
1 3 4

2 cos sin       for 0
( )

( )
2 cos sin       for 0

( )

cR

cR

e D a R D a R R
a D D

y R
e D a R D a R R

a D D

−

−

⎧ ⋅ ⋅ + >⎪ +⎪= ⎨
⎪ ⋅ ⋅ + <
⎪ +⎩

 (6.105) 

In which: 

( )

( )

2 2 2
1 1 2 1 2

2 2 2
3 2 4 1 2

1      
4
1      
4

D a c D c a a

D a c D c a a

= = − ⋅ −

= = − ⋅ −
 (6.106) 

The solutions is obtained for different values of the speed parameter α  substituting the 

proper expressions of 1a , 2a  and c  (see (6.85), (6.86) and (6.87)). 

 The light damping solution is still fit in the condition of critical damping for positive 

values of the variable R  substituting the proper values of 1a , 2a  and c (see (6.90) and 

(6.91)); when R  assumes negative values there is the double pole A3 = A4 and the 

integral in (6.98) is computed using (6.100). In this case the solution is: 

( )4
4
2( ) 3

3
cRy R e c Rα

α
= ⋅ ⋅ − + ⋅

+
  (6.107) 

At supercritical damping ( )crβ β>  the poles change. The solution (6.105) is still fit 

for positive values of R  but with different values of coefficients: 

 ( )2 2 2
2 1 2

1
4

D c a a= − +  
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( )2 2 2
4 1 2

1
4

D c a a= + +  

while for 0R <  the solution is: 

( ) ( ) ( ) ( )2 2
3 4 4 32 2

2 4 3

1( )
( )

c a R c a Ry R D D e D D e
a D D

− ⋅ + ⋅⎡ ⎤= ⋅ + ⋅ − − ⋅⎣ ⎦−
 (6.108) 

The plots of the non-dimensional displacement are shown as a function of the non-

dimensional variable R and for different values of the speed and damping parameters 

α  and β  . In the absence of damping ( )0β =  or in the condition of sub-critical 

damping  ( )1β <   when the load speed is smaller than the critical value ( )1α < , the 

diagram of the displacement is almost symmetric about the load position (perfectly 

symmetric only for α = 0) and the maximum displacement occurs where the load is 

applied (see figure 6 and 7 ); when the parameter α is greater than one the diagram of 

the displacement is not symmetric and the maximum occurs in a previous section 

respect to the section where the load is applied.  
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figure 6 displacement ( )y R  in the absence of damping 
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figure 7 displacement ( )y R  for the sub-critical damping 

 

In the super-critical damping condition ( )crβ β> the diagram is never symmetric 

(see figure 8 and 9), even if the load speed is smaller than  the critical one.  
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figure 8 displacement ( )y R  for the critical damping 
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figure 9 displacement ( )y R  for the super-critical damping 
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Regarding maximum amplifications it is possible to affirm that high amplifications 

occur when the load speed is near the value of the critical one (α = 0.9, α=1.1), while 

the dynamic displacement is almost equal to the static one when the load speed is far 

from the critical one (α = 0.1, α = 0.5, α = 2). 

The solution of this load condition allows to introduce the concept of critical speed 

which is the value for which, if a train rides with slower speed, static displacement is 

not amplified by the dynamic effect; if the speed of train is near the value of critical 

speed there is a strong amplification of static displacements. One of the main results of 

this load condition is that it is possible to study the problem as though the train were at 

a stop, if the critical speed is rather high compared to the speed of the train. 

 

6.1.3.2  The case of a fixed harmonic load 

The dynamic track model is in figure 1. The load consists of a fixed harmonic 

concentrated force at 0x = ; this load can be written by the complex form that is very 

rife in structural dynamics (Clough, Penzien, 1982): 

0( ) i tF t F e ω= ⋅  (6.109) 

The boundary conditions are: 

 0),(lim =
+∞→

txy
x

 (6.110) 

0),(lim =
−∞→

txy
x

 (6.111)  

(0, ) 0y t
x

∂
=

∂
 (6.112)  

3

03
(0, ) 0.5 i ty tEI F e
x

ω∂
= ⋅

∂
 (6.113) 

 At the quasi-stationary state the solution of the differential equation (6.1) can be 

written in the form: 

( , ) ( ) i ty x t w x e ω= ⋅  (6.114) 

the partial  derivatives are obtained: 
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4

4
( , ) ( )IV i ty x t w x e
x

ω∂
= ⋅

∂
 (6.115) 

( , ) ( ) i ty x t i w x e
t

ωω∂
= ⋅

∂
  (6.116) 

( )
2

2 2
2

( , ) ( ) ( )i t i ty x t i w x e w x e
t

ω ωω ω∂
= ⋅ ⋅ = − ⋅ ⋅

∂
 (6.117) 

Substituting the partial derivates in (6.1): 
2( ) ( ) 0IVEI w x i b k w xω µ ω⎡ ⎤⋅ + − + + ⋅ =⎣ ⎦  (6.118) 

The solution of the differential equation is practically equal to the one for the 

Winkler beam in the static case if the foundation coefficient k  is replaced by the 

complex coefficient *k  (Esveld 1997, 2001): 
2*k k i bω µ ω= − ⋅ +  (6.119) 

It is easy to identify the modulus and the phase of the complex expression, if the 

complex stiffness is written in the following form: 

2arctan
2 2 2 2* [( )

bi
k bk k b e

ω
ωω µ ω

⎡ ⎤⋅ ⎢ ⎥−⎣ ⎦= − + ⋅  (6.120) 

The dynamic problem can be solved considering the solution of the static case 

( )0bµ = = : 

4( ) 4 ( ) 0IVw x w xϑ+ ⋅ =  (6.121) 

The parameter ϑ  is defined by  (6.22) and here recalled: 

4
4

k
EI

ϑ =                                                                                                                   

Moreover the characteristic length and the wavelength can be defined:  

 1L
ϑ

=  (6.122); 2 Lλ π=  (6.123) 

The solution is in the form: 

( ) ( )( ) ( ) ( )( )1 2 3 4( ) cos sin cos sinx xw x e c x c x e c x c xϑ ϑϑ ϑ ϑ ϑ−= ⋅ + + ⋅ +  (6.124) 
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The constants are found out by the boundary conditions; the first one (6.110) and 

the second one (6.111) give: 

1 2 0c c= =  (6.125)  

the condition (6.112) gives: 

3 4c c=  (6.126) 

The value of the constant is deduced by the fourth boundary condition (6.113): 

0( ) 0.5III i t i tEI w x e F eω ω⋅ ⋅ = ⋅ ⋅  (6.127) 

The derivates of the displacement function ( )w x are: 

( ) ( )( )
( )

( ) ( )( )
( )

3

3

2
3

3
3

( ) cos sin

( ) 2 sin

( ) 2 cos sin

( ) 4 cos

x

I x

II x

III x

w x e c x x

w x e c x

w x e c x x

w x e c x

ϑ

ϑ

ϑ

ϑ

ϑ ϑ

ϑ ϑ

ϑ ϑ ϑ

ϑ ϑ

−

−

−

−

= ⋅ ⋅ +

= − ⋅ ⋅

= ⋅ ⋅ − +

= ⋅ ⋅

 (6.128) 

The constant value is: 

3 0 0 0
3 0 3 4 34 0.5             

2 28
F F FEI c F c c

k kLEI
ϑ

ϑ
ϑ

= ⇒ = = = =  (6.129) 

The expression of the static displacement is: 

0( ) cos sin
2

x
L

xF xw x e
kL L L

− ⎛ ⎞⎛ ⎞⎛ ⎞= ⋅ +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
 (6.130) 

The solution of the dynamic problem is the same if the complex stiffness *k  and the 

complex characteristic length *L  are substituted for k and L : 

*0
* * * *( ) cos sin

2

x
L

xF xw x e
k L L L

− ⎛ ⎞⎛ ⎞⎛ ⎞= ⋅ +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
 (6.131) 

*k  is given by (6.120). 

Previously two non dimensional parameters have been defined: W and β . The first 

one is the ratio between the load frequency ω and the fundamental frequency of the 



Chapter 6 – Analytical models for traditional and innovative railway track 
 

 132

system 0ω ; β  is the ratio between the damping parameter b and the critical damping 

crb .The complex stiffness is written as a function of the two dimensionless parameters: 

0
2

2
0

2
arctan

2 12 2
*

2 2
0 0

1 4

i

k k e

ω β
ω

ω
ωω ω β

ω ω

⎡ ⎤
⋅ ⋅⎢ ⎥

⎢ ⎥⋅ ⎢ ⎥
⎢ ⎥−
⎢ ⎥⎣ ⎦

⎛ ⎞
= ⋅ − + ⋅ ⋅ ⋅⎜ ⎟

⎝ ⎠
 (6.132) 

In the static case the characteristic length depends on the static stiffness by the 

equation (6.122), the same relation is still valid in the dynamic case but the complex 

stiffness *k is substituted for k : 
4

*
* 4

1 4
*

EIL
kϑ

= =  (6.133) 

Placed that: 

( )22 2 21 4W WβΓ = − +                        (6.134); 2
2arctan
1

W
W

β⋅ ⋅⎡ ⎤Ω = ⎢ ⎥−⎣ ⎦
 (6.135) 

Hence: 

* 1/ 2 4

4
* 1/ 8 / 4

1/ 4 1/ 8 / 4
4

i

i
i

k k e

EIL L e
k e

Ω

− − Ω
Ω

= ⋅Γ ⋅

= = ⋅Γ ⋅
Γ

 (6.136) 

In which L  is the static characteristic length. 
*k  and *L  are substituted in the expression of the static displacement to obtain the 

dynamic one: 

( ) ( )3 / 4 / 43/ 8 1/ 80

1/ 8 / 4 1/ 8 / 4

( )
2

          cos sen

x
i iL

i i

Fw x e e e
kL

xx e e
L L

−− Ω Ω− −

Ω Ω

= ⋅Γ ⋅ ⋅ ⋅Γ ⋅ ⋅

⎛ ⎞⎛ ⎞⎛ ⎞⋅ Γ + Γ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

 (6.137) 

It is of interest to know the transfer function ( )wH ω  between the load and the 

displacement at 0x = :    
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( )
0

(0)
w

wH
F

ω =    

0 0
* * *3(0)

2 8
F Fw
k L EIϑ

= =  (6.138) 

hence: 

( ) 3*

1
8

wH
EI

ω
θ

=  (6.139) 

(6.139) is written as a function of W  and β  substituting (6.136) for *k and *L  : 

1/ 2 1/ 8 / 4
1( )

2w i iH W
k e L eΩ − − Ω=

Γ Γ
 (6.140) 

Substituting (6.134) and (6.135): 

( )

0
2

2
0

2
3 arctan3/ 8 42 12 2

2
0 2 2

0 0

1/ 1 4
2

i

wH e
kL

ω β
ω

ω
ωω ωω ω β

ω ω

⎡ ⎤
⋅⎢ ⎥

⎢ ⎥− ⋅ ⎢ ⎥−
⎢ ⎥−
⎢ ⎥⎣ ⎦

⎛ ⎞⎛ ⎞⎜ ⎟= ⋅ − + ⋅⎜ ⎟
⎜ ⎟⎝ ⎠⎝ ⎠

 (6.141) 

The modulus of the transfer function is given by the term preceding the exponential 

function in (6.141): 

( )
3/ 822 2

2
0 2 2

0 0

1/ 1 4
2wH

kL
ω ωω ω β
ω ω

−
⎛ ⎞⎛ ⎞⎜ ⎟= ⋅ − +⎜ ⎟
⎜ ⎟⎝ ⎠⎝ ⎠

 (6.142) 

whereas the phase is: 

ϕ = 
4
3

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

− 2
0

2

1

2
arctan

ω
ω

β
ω
ω

n  (6.143) 

The modulus and the phase are showed in figure 10 and 11. 

The transfer function has been compared with that is obtained by the study of a further 

simplified model with a single degree of freedom (SDF). The track system is modeled 

as a concentrated mass while a spring and a damper give elastic and viscous properties 
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respectively. Proper correlations have been found to make a direct comparison 

between the two models. The transfer function module and phase of a single degree of 

freedom system are: 

N = 

2/1

2

2
2

2

2

2

41

−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

nn f
f

f
f ξ  (6.144)ϕ = 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

− 2

2

1

2
arctan

n

n

f
f

f
f ξ

 (6.145) 

The module of the transfer function is practically equal except for the exponent. The 

plot of the module of the two transfer functions (figure 10) is analogue, it is observed a 

peak value when the load frequency is near the frequency of system; the peak is equal 

if the dimensionless damping parameter is chosen adequately.  

The plots of phase of two transfer functions are very much alike, but the phase of 

the discrete system approaches -π for high frequencies, instead that of the continuous 

model approaches –3/4π. 
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figure 10 Modulus of the transfer function and amplification coefficient of SDF 
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figure 11 Phase of the continuous beam and of SDF 

 

 

6.1.4. Representation of rail defects 

The rail profile can be described as a stochastic process that can be assumed 

stationary and ergodic and so it is synthetically represented by means of a power 

spectral density (PSD) function of the vertical defects. Rail defects are measured by 

some Railway Institutions and are represented in terms of power spectral density, 

which describes the frequency content of the mean square value of the signal (rail 

profile defects), if the random process has a mean value of zero (Crispino, 1996).  

The power spectral density function pS  can be given as a function of the spatial 

frequency ( )cycles/mF  in which case it is expressed in ( )2m / cycles/m , or as a 

function of the temporal frequency  ( )cycles/sF f=  then expressed in ( )2m / cycles/s . 

If the spatial power spectrum is known, the temporal one is easily obtained when the 

train speed is known. The temporal frequency written as a function of the spatial one 

is: 
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/
/ / /3.6

km h
Hz cycles m m s cycles m

Vf F V F= ⋅ = ⋅  (6.146) 

The relationship between the spatial power spectrum and the temporal one is then 

obtained as: 

( ) [ ]

2

2
m( )

cycles/mm
cycles/s m/s

S F
S f

V

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎣ ⎦= =⎢ ⎥

⎣ ⎦
   (6.147)  

Finally, if the temporal frequency is expressed in /rad s  the following relations are 

considered: 

/
/ / / /2 2

3.6
km h

rad s cycles m m s cycles m
V F V Fω π π= ⋅ ⋅ = ⋅ ⋅   (6.148) 

[ ]

2

2
m( )

cycles/mm( ) 2
rad/s m/s

S F
S

V
ω π

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎣ ⎦= ⋅⎢ ⎥

⎣ ⎦
   (6.149) 

In the railway field the following four mediated power spectra are commonly used 

(see figure 12): 

• the basic spectrum: for the Swedish (SAB Swedel) and German (DB) Railway 

Institutions;  

• the bilinear British Railways spectrum; 

• the curvilinear French Railway Institutions (SNCF) spectrum; 

• the power spectrum of the American Railway Standard. 
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figure 12 mediated power spectra of different Railway Institution 

 

The analytical expressions of the basic spectra of the Swedish and German Railway 

Institutions are slightly different, but they are represented by means a straight line in a 

logarithmic plot. The expression of the spatial power spectrum for the Swedish 

Railway Institution is (Panagin, 1990): 

 ( )2( ) m / /NS F CF Cycles m−=  (6.150) 

 For the spatial vertical spectrum C and N assume the following values: 
90.928 10C −= ⋅  (it represents the vertical coordinates when the horizontal one F  is 

zero) 

4N =  (It gives the slope of the straight line representing the power spectrum) 

Hence: 

( )9 4 2( ) 0.928 10 m / /S F F Cycles m− −= ⋅ ⋅  

The German railway institution has a spatial power spectrum for high speed lines when 

the spatial frequencies are such as  0.143F >  and it is written (Panagin, 1990): 
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( )
9 4

2
6

10( ) m /cycle/m
21
10

FS F
Fπ

− −

=
⎛ ⎞+ ⎜ ⎟
⎝ ⎠

 (6.151) 

Two straight lines representing (6.150) and (6.151) are practically coincident.  

The bilinear British Railways spectrum has the analytical expression of the basic 

spectrum, but for smaller spatial frequencies the slope of the line (expressed by the 

parameter N ) is smaller than the slope of the second one. The British Railway has 

spatial spectra both for good railway lines with welded rails and for bad lines with 

joined rails. For welded rails the spectrum is (Panagin, 1990): 
8

2 2 1
2

9
2 1 1

4

7.5 10  ( / / )       for      3.2 10 3.12 10
( )

7.5 10 ( / / )      for      3.10 10 6.24 10

m cycles m V F V
FS F

m cycles m V F V
F

−
− −

−
− −

⎧ ⋅
⋅ < < ⋅⎪⎪= ⎨

⋅⎪ ⋅ < < ⋅⎪⎩

 (6.152) 

and for joined rails is: 

 

7
2 2 1

2

8
2 1 1

4

3 10  ( / / )       for      3.2 10 3.12 10
( )

3 10 ( / / )      for      3.10 10 6.24 10

m cycles m F
FS F

m cycles m F
F

−
− −

−
− −

⎧ ⋅
⋅ < < ⋅⎪⎪= ⎨

⋅⎪ ⋅ < < ⋅⎪⎩

 (6.153) 

The French Railway Institution (SNCF) has defined the power spectrum of the rail 

profile considering both vertical and horizontal defects. The data are obtained by tests 

along the Paris-Toulose line between the 136th and 137th kilometre considering a part 

of the line that is representative of the whole line. Tests are made by means the Mauzin 

carriage in the space of spatial frequencies between 0.025 and 0.5 cycles/m. It is 

important to underline that the  precision of the measurements is insufficient when the 

frequencies outside this space are considered (Panagin, 1990). 

The power spectral density function as a function of spatial frequency which is adopted 

by the French Railway Institution is (Panagin, 1990): 

( )2( )       m /cycles/m
( 2 )N

CS F
a Fπ

=
+

    (6.154) 
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In which N  is equal to 3; F  is the spatial frequency; C  is a parameter 

depending on the age of the railway track, in particular: 6 610   or  2 10C − −= ⋅  for 

new and old tracks respectively; a  is equal to 0.36. 

The lateral power spectrum is: 

( )
6

2
3

0.368 10( )    m /cycles/m
(0.136 2 )

S F
Fπ

−⋅
=

+
 (6.155) 

Finally the power spectrum of the America Railway Standard is considered given 

for six line grades (line grade one is the worst line and six is the best line). The 

analytical expression is in cm2/rad/m as a function of the spatial frequency in 

rad/m (X. Lei, N.A. Noda, 2002): 

( )
2

2
2 2 2    cm /rad/m

( )
v c

c

kAS ω
ω

ω ω ω
⎡ ⎤= ⎣ ⎦+ ⋅

 (6.156)  

Where vA  and cω  are coefficients associated with the line grade (see table 3) and k  

is a constant normally equal to 0.25. 

 

6.1.5 The effect of unsprung mass and rail defects 

The railway model in figure 13  is now applied for a different load condition. The 

Euler beam is solved considering the effect of rail defects that are represented by a 

dynamic overload: 

[ ]( , ) ( , )uQ M y x t r x t= − +�� ��  (6.157) 

uM  is the unsprung mass of the vehicle that is the axle weight with the wheels, ( ),w x t  

is the rail displacement function and ( , )r x t is the rail defect function that can be 

expressed as: 

( , ) i tr x t R e ω= ⋅  (6.158) 
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r(x,t)µEI,

 
figure 13 Euler beam on elastic foundation with unsprung mass uM  and rail defects ( , )r x t  

 

Three boundary condition are given by (6.110), (6.111) and (6.112), while the forth is 

now different and given by: 

( )23

3 2

0,( , ) 0.5 u
v ty x tEI M r

x t

⎛ ⎞∂∂
= − ⋅ +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

��  (6.159) 

The state stationary is still considered and the solution is in the form (6.114). 

Substituting the proper derivates the equation is (6.118). The solution is obtained if the 

static case is solved and it is still in the following form: 

( ) ( )( ) ( ) ( )( )1 2 3 4( ) cos sin cos sinx xw x e c x c x e c x c xϑ ϑϑ ϑ ϑ ϑ−= ⋅ + + ⋅ +  

In which ϑ  is still given by (6.22) and the constants values are found out considering 

the boundary conditions. Three conditions still give: 

1 2 3 40      c c c c= = =  

The shear condition gives: 

( )2'''(0) 0.5 (0)uEIw M w Rω= − ⋅ +  (6.160) 

Remembering the derivates of the function ( )w x (6.128), the following relation is 

obtained: 

( )3 2
3 34 0.5 uc M R cϑ ω= ⋅ ⋅ ⋅ +  (6.161) 

The constant 3c  is found: 

2

3 3 28
u

u

Mc
EI M

ω
ϑ ω

⋅
=

− ⋅
 (6.162) 
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The static displacement is: 

( ) ( )( )
2

3 2( ) cos sin
8

xu

u

Mw x e x x
EI M

ϑω
ϑ ϑ

ϑ ω
−⋅

= ⋅ ⋅ +
− ⋅

 (6.163) 

Substituting the complex equivalent stiffness *k  and the complex characteristic length 
*L  the dynamic displacement is given by: 

( ) ( )( )*
2

* *
*3 2( ) cos sin

8
xu

u

Mw x e x x
EI M

ϑω
ϑ ϑ

ϑ ω
−⋅

= ⋅ ⋅ +
− ⋅

 (6.164) 

The transfer function of the displacement is: 

( )
2

*3 2(0)
8

u

u

MH w
EI M

ωω
ϑ ω

⋅
= =

− ⋅
 (6.165) 

6.2 DOUBLE BEAM CONTINUOUS MODEL 

 
If  an innovative antivibration track has to be studied, it can be convenient to model 

the track as a double beam, in which the upper beam generally represents the rail and it 

is characterized by its distributed mass and its flexural stiffness, while the lower beam 

can represent the sleepers or a concrete floating slab. This model is very proper to 

study the static and dynamic behaviour of  innovative tracks because they often have 

two or more elastic levels. The dynamic effects of the wheel-rail irregularities are 

considered but the effect of the movement of the train is disregarded; in other words 

the load consists of a harmonic fixed force and so it is considered that the train speed is 

far from the critical one. 

 

6.2.1 The lower beam with zero bending stiffness 

The upper beam represents the rail that is characterized by its mass for unit of 

length 1µ  and its flexural stiffness EI . The lower beam represents the sleepers with 

their distributed mass 2µ and it has a zero bending stiffness. The first viscoelastic level 

is between the two beams and it can represent the under-rail pads, it is characterized by 
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an elastic parameter 1k  and an equivalent viscous damping coefficient 1b . The second 

level gives the viscoelastic contribution of the ballast through the coefficients 2k and 

2b (figure 14). 

µ

µ

 
figure 14 double beam model 

 

The solution of the dynamic problem is obtained considering the solution of the 

Winkler beam in the static case (Esveld, 2001). The load is expressed: 

0( ) i tF t F e ω= ⋅  (6.166) 

The equation of the dynamic equilibrium is written for each beam: 

( )

( )

4 2
1 1 1 2

1 1 1 1 24 2

2
2 2 2 1

2 2 1 1 2 1 2 22

( , ) ( , ) ( , ) ( , ) ( , ) ( , ) 0

( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) 0

y x t y x t y x t y x tEI b k y x t y x t
t tx t

y x t y x t y x t y x tb b k y x t y x t k y x t
t t tt

µ

µ

⎧ ∂ ∂ ∂ ∂⎛ ⎞⋅ + ⋅ + − + − =⎪ ⎜ ⎟∂ ∂∂ ∂⎪ ⎝ ⎠
⎨

∂ ∂ ∂ ∂⎛ ⎞⎪ ⋅ + + − + − + ⋅ =⎜ ⎟⎪ ∂ ∂ ∂∂ ⎝ ⎠⎩
 

The displacements of the two beams have the following expressions: 

1 1 2 2( ) ( )       ( ) ( )i t i ty x w x e y x w x eω ω= ⋅ = ⋅  

The equations of the dynamic equilibrium are written considering  (6.115),(6.116) and 

(6.117): 

⎪⎩

⎪
⎨
⎧

=+−⋅++−⋅+−

=−⋅+−⋅+−

0)( )(                

0             )(                 )( )(

221212212122
2

21121111
2

wkwwkwbiwwibw

wwkwwibwxEIwIV

ωωµω

ωµω
 (6.167) 
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Two complex stiffness are defined:  

 * 2 * 2
1 1 1 1 2 2 2 2      k k i b k k i bω µ ω ω µ ω= − + = − +  

The displacement of the second beam 2w  is obtained from the second equation of 

the system (6.167) : 

0) () () ( 111112222
2

2 =+−++++− kbiwkbiwkbiw ωωωµω  (6.168) 

Set that: 

11  bikA ω+=  222
2  kbiB ++−= ωµω  (6.169) 

hence: 

12 w
BA

Aw ⋅
+

=  (6.170) 

2w , given by  (6.170), is substituted in the first equation of the system (6.167): 

0 1

2

111
2

1 =
+

−+− w
BA

AAwwwEI IV µω  (6.171) 

0 111
2

1 =
+

+− w
BA

ABwwEI IV µω  (6.172) 

A new equivalent stiffness is defined: 

BA
ABkt +

=  (6.173) 

Hence: 

0)( 11
2

1 =⋅+−+ wkwEI t
IV µω  (6.174) 

The following transfer function is obtained: 

3
0 8

1)0()(
β

ω
EIF

wH r ==  (6.175) 

in which: 

EI
kt

16
1

22
4 µω

β
−

=  (6.176) 
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6.2.2 An “infinite” and flexible Floating slab  

Both upper and lower beam are characterized by their mass for unit of length 1µ  

and 2µ  and their bending stiffness 1 1E I  and 2 2E I . The two elastic levels are 

represented by the elastic coefficients: 1k  and 2k  (figure 15).  

µ
µ

 
figure 15 double beam model: flexible slab 

 

The problem is studied in the absence of damping and a constant concentrated load 

F0 is considered (Acquati, 2003). 

The equations that govern the problem are: 

⎪⎩

⎪
⎨
⎧

=−++

=−+

0)(

0)(

12122222

211111

wwkwkwIE

wwkwIE
IV

IV

 (6.177) 

The solution is written in the form: 
xseAy ⋅= 1

11  xseAy ⋅= 2
22  (6.178) 

⎪⎩

⎪
⎨
⎧

=++

=−

0

)(

11122222

111121
IVIV

IV

wIEwkwIE

wIEwwk
 (6.179) 

Substituting (6.178) in the second equation of the system (6.179): 

0122 4
111122

4
2222 =++ xsxsxs esAIEeAkesAIE  (6.180) 

hence: 1 2s s=  

The solutions are written: 
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xseAy ⋅= 11  xseAy ⋅= 22  (6.181) 

The first equation of the system becomes: 

2111
4

11 )( AkAksIE =⋅+  (6.182) 

Hence: 

2
1

4
11

1
1 A

ksIE
kA ⋅

+
=  (6.183) 

(6.183) is substituted in the second equation of the system (6.177): 

112122
4

222 AkAkAksAIE =++  

2
1

4
11

2
1

2122
4

222 A
ksIE

kAkAksAIE
+

=++  (6.184) 

the following equation of the eighth degree in s  is obtained: 

0)]([ 21
4

1211122
8

1122 =+⋅+⋅++ kkskkIEkIEsIEIE  (6.185) 

it is solved as an equation of the second degree in 4s : 

2211

221121
2

121112212111224

2
4)]([)]([

IEIE
IEIEkkkkIEkIEkkIEkIE

s
−++±++−

=  (6.186) 

0 4
1 〈s  || 4

1
2
,1 sis j ±=  4 solutions 

0 4
2 〈s  || 4

2
2
,2 sis j ±=  4 solutions 

the eight roots of the equation are written in the form: 

)1(1,1 is +⋅= α  )1(1,2 is +⋅= β  

)1(2,1 is −⋅= α  )1(2,2 is −⋅= β  

)1(3,1 is −−⋅= α  )1(3,2 is −−⋅= β  

)1(4,1 is +−⋅= α  )1(4,2 is +−⋅= β  

in which: 

2
2||4 4

1 ⋅= sα  
2
2||4 4

2 ⋅= sβ  (6.187) 
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For the boundary conditions it is possible to disregard the growing terms and only 

the real terms are considered: 

( ) ( )
( ) ( )

(1) (1) (1) (1)
1 1 2 1 2

(2) (2) (2) (2)
2 1 2 1 2

( ) cos sin cos sin

( ) cos sin cos sin

x x

x x

y x e A x A x e A x A x

y x e A x A x e A x A x

α β
α α β β

α β
α α β β

α α β β

α β α β

− −

− −

⎧ = + + +⎪
⎨

= + + +⎪⎩

 (6.188) 

The eight constants in the expression are determined through eight equations. Four 

equations derive from relations between the coefficients that are given by (6.183): 

11
4

1

)2(
11)1(

1 4 IEk
Ak

A
α

α
α −

⋅
=  (6.189)

11
4

1

)2(
21)1(

2 4 IEk
Ak

A
α

α
α −

⋅
=  (6.190) 

11
4

1

)2(
11)1(

1 4 IEk
Ak

A
β

β
β −

⋅
=  (6.191) 

11
4

1

)2(
21)1(

2 4 IEk
Ak

A
β

β
β −

⋅
=  (6.192) 

Four equations derive from boundary conditions: the slope of the rail and the slab 

deflection line at 0x =  is zero; while the shear on the rail at x = 0 is 0 / 2F , and on the 

slab is zero. 

The derivate of the first order of the rail deflection line is: 

( ) ( )
( ) ( )xAxAexAxAe

xAxAexAxAexy
xx

xx

ββββββ

αααααα

ββ
β

ββ
β

αα
α

αα
α

cossinsincos            

cossinsincos)(
)1(
2

)1(
1

)1(
2

)1(
1

)1(
2

)1(
1

)1(
2

)1(
1

'
1

+−⋅++⋅−

++−⋅++⋅−=
−−

−−

 (6.193) 

it is calculated at 0x = : 

0)0( )1(
2

)1(
1

)1(
2

)1(
1

'
1 =⋅+⋅−⋅+⋅−= ββαα ββαα AAAAy  (6.194) 

an analogous expression is valid for the slab deflection line: 

0)0( )2(
2

)2(
1

)2(
2

)2(
1

'
2 =⋅+⋅−⋅+⋅−= ββαα ββαα AAAAy  (6.195) 

Regarding on the shear condition the derivate of the third order of the rail deflection 

line is: 

[ ] [ ]
[ ] [ ] )1(

2
3)1(

1
3

)1(
2

3)1(
1

3
1

)sin(cos2)cossin(2              

)sin(cos2)cossin(2)(

β
β

β
β

α
α

α
α

ββββββ

αααααα

AxxeAxxe

AxeAxxexy
xx

xxIII

+⋅++−⋅+

++⋅++−⋅=
−−

−−

 (6.196) 

 it is calculated at x = 0 : 
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2
2222)0( 0)1(

2
3)1(

1
3)1(

2
3)1(

1
3

1
F

AAAAy III =+++=+
ββαα ββαα  (6.197) 

for the slab deflection line: 

02222)0( )1(
2

3)1(
1

3)1(
2

3)1(
1

3
2 =+++=+

ββαα ββαα AAAAy III  (6.198) 

It is obtained a system of eight equations. 

 

6.3 SINGLE BEAM ON A PARTICULAR ELASTIC FOUNDATION 

 
The model consists of the Euler beam described in the previous part and now the 

most important results are recalled. New antivibration railway systems are often 

designed introducing one or most elastic levels in the track to modify its static and 

dynamic behaviour. To understand the effect of these additions, different models are 

considered in the paper able to explain the effect of added flexibilities at different 

positions. 

 

6.3.1 Lumped spring-mass models 

The first model is a very simple mass-spring system characterized by a concentrated 

mass m , and a constant stiffness k (figure 16).  

m

k

F0eiωt

x1

 
figure 16 Mass-spring system 
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This may very approximately represent the inertia and flexibility present under the rail. 

The equation that governs the problem is: 

1 1 0
i tmx kx F e ω+ =��  (6.199) 

Dividing for the mass m : 

0
1 1

i tFk kx x e
m m k

ω+ = ⋅��  (6.200) 

The static displacement and the first system frequency are defined: 

20       st
F kx
k m

ω= =  (6.201) 

The solution can be written in the form: 
2

1 0 1 0 1 0                 i t i t i tx x e x i x e x x eω ω ωω ω= ⋅ ⇒ = ⋅ ⋅ = − ⋅ ⋅� ��   (6.202)  

122

1 2 22
1st

Fx x
k

ω ω
ωω ω

−
⎛ ⎞
⎜ ⎟= ⋅ = ⋅ −
⎜ ⎟− ⎝ ⎠

 (6.203) 

The dynamic flexibility 1d  of the mass-spring system is given by: 

( )
12

1
1 2

1/ 1xd
F k

ωω ω
ω

−
⎛ ⎞
⎜ ⎟= = ⋅ −
⎜ ⎟
⎝ ⎠

 (6.204) 

Consequently the dynamic stiffness is written as: 

( )
2

1 2
1

/ 1Fk k
x

ωω ω
ω

⎛ ⎞
⎜ ⎟= = ⋅ −
⎜ ⎟
⎝ ⎠

 (6.205) 

The dimensionless dynamic flexibility and stiffness are represented in figure 17 and 18 

respectively. 
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figure 17 dimensionless dynamic flexibility of mass-spring system 
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figure 18 dimensionless dynamic stiffness of mass-spring system 

 

The point at / 0ω ω =  in the figures above describes the static behaviour; when the 

resonance frequency is reached the stiffness assumes the value 1 0k =  and the 

flexibility tends to infinite; at high frequencies ( )/ω ω → ∞  the stiffness tends to 

infinite and so the flexibility tends to zero. 

A spring-mass-spring model (figure 19) is now considered in which another spring 

is added at the top of the mass (representing as an example the flexibility of rail-

sleepers fastenings), its stiffness being:      with      0fask kα α= ⋅ ≥  
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tωie0F

m

x2

kfas

k
x1

 
figure 19 spring-mass-spring model 

  

The equations of motion are: 

( )

1 1 0
1 1 0

0 1
22 1 0

i t
i t

i t
fasi t

fas
fas

mx kx F e
mx kx F e

F e k x
xk x x F e

k

ω
ω

ω
ω

⎧ + =
⎧ + = ⎪⎪ ⎪⇒ + ⋅⎨ ⎨

=⋅ − =⎪ ⎪⎩
⎪⎩

��
��

 (6.206) 

Substituting 1x  still given by (6.203) in the second equation of (6.206), the 

displacement at the point of load application is given by: 

2 2 2 2

2 2 2

1 1 1 1

1 1 1fas

F F F F Fx
k k k k kα αω ω ω

ω ω ω

⎛ ⎞
⎜ ⎟
⎜ ⎟= + ⋅ = + ⋅ = ⋅ +
⎜ ⎟

− − −⎜ ⎟
⎝ ⎠

 (6.207) 

The dynamic flexibility is 2d : 

( )

2

2

2
2 2

2

1
1/  

1

xd
F k

ωα
ω

ω ω
ωα
ω

⎛ ⎞
⎜ ⎟+ −
⎜ ⎟
⎝ ⎠= = ⋅
⎛ ⎞
⎜ ⎟⋅ −
⎜ ⎟
⎝ ⎠

 (6.208) 

The dynamic stiffness 2k  is still obtained as the inverse function of the flexibility: 
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 ( )

2

2

2 2

2

1

/

1

k k

ωα
ω

ω ω
ωα
ω

⎛ ⎞
⎜ ⎟⋅ −
⎜ ⎟
⎝ ⎠= ⋅
⎛ ⎞
⎜ ⎟+ −
⎜ ⎟
⎝ ⎠

  (6.209) 

The dimensionless dynamic stiffness is represented in figure 20.  
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figure 20 dimensionless dynamic stiffness of the spring-mass-spring model 

 

Different curves are obtained for different values of the α  parameter; it is clear that 

the presence of the added spring modifies the shape of the stiffness function and 

consequently of the flexibility one. For / 0ω ω =  (static behaviour) the total stiffness is 

given by the stiffness of two springs in series and so the static flexibility increases and 

the static stiffness decreases: 

( ) ( )2 2
1for   / 0      / 1   and   /

1
d k αω ω ω ω ω ω

α α
= ⇒ = + =

+
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The resonance frequency does not change. At high frequencies the stiffness does not 

tend to infinite but to the fask  value: 

( ) ( )2 2/ /

1lim /       lim /d k
ω ω ω ω

ω ω ω ω α
α→∞ →∞

= =  

A different case is obtained considering a mass-spring-spring model (figure 21) in 

which a spring is in series to the first one (representing as an example the flexibility of 

an underballast mat), its stiffness being:      con      0matk kβ β= ⋅ ≥   

kmat

k

m

F0eiω t

x3

 
figure 21 mass-spring-spring model 

  

This system is studied considering that two springs placed in series have the total 

stiffness: 

1
1 1totk

k kβ

=
+

 (6.210) 

Reconsidering the (6.199) equation with the proper k  expression: 

3 3 0
i t

totmx k x F e ω+ =��  (6.211) 

The following solution is obtained: 
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3 2 2 2
1 1 1 1 1 11

1 1 1
/ 1 11/ 1 1

tot

tot

F Fx F
k k k k

kk m
m

k k m

β βω ω ω

β
β

⎛ ⎞ ⎛ ⎞
= ⋅ = ⋅ + ⋅ = ⋅ + ⋅⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
− − −

⎡ ⎤⎛ ⎞
⋅ +⎢ ⎥⎜ ⎟ ⎛ ⎞⎝ ⎠⎣ ⎦ + ⋅⎜ ⎟

⎝ ⎠
 

Hence: 

3 32 2

2
2

1 1 1 1

11 1

1

st stx x x xβ β
β βω β ω

ββ ωω
β

⎛ ⎞ ⎛ ⎞+ +
= ⋅ ⋅ = = ⋅ ⋅⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎛ ⎞+
− − ⋅⎜ ⎟⎛ ⎞ ⎝ ⎠⋅⎜ ⎟+⎝ ⎠

 (6.212) 

The dynamic flexibility is 3d : 

3 2

2

1 1 1

11

x
k

β
β β ω

β ω

+
= ⋅

⎛ ⎞+
− ⋅⎜ ⎟

⎝ ⎠

 (6.213) 

Consequently the dynamic stiffness is: 
2

3 2
11

1
x k β β ω

β β ω

⎡ ⎤⎛ ⎞+⎢ ⎥= ⋅ ⋅ − ⋅⎜ ⎟+ ⎢ ⎥⎝ ⎠⎣ ⎦
 (6.214) 

The dimensionless dynamic flexibility curves are plotted in figure 22 for different 

values of the β  parameter. 
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figure 22 dimensionless dynamic stiffness of the mass-spring-spring model 

 

For / 0ω ω =  (static behaviour) the total stiffness is still given by the stiffness of 

two springs in series: 

( ) ( )3 3
1/ 0    and   / 0

1
d kβ βω ω ω ω

β β
+

= = = =
+

 (6.215)  

The resonance frequency is modified by the presence of the added spring and it 

assumes the value: 

1
ω β
ω β

=
+

 (6.216) 

The high frequency behaviour does not change in fact it is evident that the flexibility 

tends to zero and the stiffness tends to infinity. 
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6.3.2 Continuous bar-spring-mass models 

More refined models including a continuous bar of total length l , of axial stiffness 

EA  and with mass per unit length Aρ , ρ  being the mass density, are now considered. 

The bar may synthetically represent the distributed ballast flexibility and inertia. 

First of all it is necessary to consider the stationary state stiffness matrix of a bar 

with distributed mass and flexibility under harmonic motion of circular frequency ω . 

Considering the bar in figure 23  the equilibrium equation is: 
2

2
( , ) 0v y tdN Ady
t

ρ ∂
− ⋅ =

∂
 (6.217) 

F11

l
ρ

EA

y2

y1

tωie

eiωt
1F2

 
figure 23 bar system 

 

In the following v�  and v�� represent the first and the second temporal derivate of 

( , )v y t function respectively; 'v  and ''v  represent the first and the second spatial 

derivate of ( , )v y t function respectively. 

Applying equation of continuous mechanics: 

'       'v E Evε σ ε= ⇒ = =  (6.218) 
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In which ε  is the non-dimensional axial deformation, σ  is the corresponding stress 

and E  is the material young modulus. 

Axial force N and its spatial derivate are given by: 

'          '' ''dNN A EA v EAv dN EAv dy
dy

σ= ⋅ = ⋅ = ⇒ =  (6.219) 

Substituting (6.219) in (6.217): 

'' 0EAv dy Ady vρ− ⋅ =��  (6.220) 

'' 0E v v
ρ

− =��  (6.221) 

Propagation speed of compressive bar waves is defined: 

2E τ
ρ

=  (6.222) 

For stationary state hypothesis the solution can be written: 

( , ) ( ) i tv y t y e ω= Ψ ⋅  (6.223) 

And the following derivates are obtained: 

2

'( , ) '( )

''( , ) ''( )

( , ) ( )

i t

i t

i t

v y t y e

v y t y e

v y t y e

ω

ω

ωω

= Ψ ⋅

= Ψ ⋅

= − Ψ ⋅��

 (6.224) 

Substituting the third and the forth relation of (6.224) and (6.222) in (6.221) the 

following equation is obtained: 
2 2'' 0τ ωΨ + Ψ =  (6.225) 

2

2'' 0ω
τ

Ψ + Ψ =  (6.226) 

The (6.226) is a differential equation with a characteristic polynomial with two 

complex conjugate roots and the equation solution can be written: 

1 2( ) sin cosy c y c yω ω
τ τ

⎛ ⎞ ⎛ ⎞Ψ = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (6.227) 
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Boundary conditions are written to find the constant 1c  and 2c : 

1 1

2 2

(0, ) (0) (0)

( , ) ( ) ( )

i t i t

i t i t

v t y e e y

v l t y e l e y l

ω ω

ω ω

= = Ψ ⋅ ⇒ = Ψ

= = Ψ ⋅ ⇒ = Ψ
 (6.228)  

Considering  (6.227): 

2 1(0) c yΨ = =  

1 1 2( ) sin cosl c l y l yω ω
τ τ

⎛ ⎞ ⎛ ⎞
Ψ = + =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

Hence: 

2 1

1 2 1

cos
         

sin

y y y
c c y

y

ω
τ

ω
τ

⎛ ⎞
− ⎜ ⎟

⎝ ⎠= =
⎛ ⎞
⎜ ⎟
⎝ ⎠

 (6.229) 

The solution is: 

2 1
1( ) sin cos

sin tan

y yy y y y
l l

ω ω
ω ω τ τ
τ τ

⎡ ⎤
⎢ ⎥ ⎛ ⎞ ⎛ ⎞⎢ ⎥Ψ = − ⋅ +⎜ ⎟ ⎜ ⎟⎛ ⎞ ⎛ ⎞ ⎝ ⎠ ⎝ ⎠⎢ ⎥

⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 (6.230) 

Its first derivate is: 

1 2'( ) cos siny c y c yω ω ω ω
τ τ τ τ

⎛ ⎞ ⎛ ⎞Ψ = ⋅ ⋅ − ⋅ ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (6.231) 

The axial stresses acting at two ends of the bar are obtained: 

( ) ( )
( ) ( )

1

2

0, ' 0, '(0)

, ' , '( )

i t i t

i t i t

N t EAv t EA e F e

N l t EAv l t EA l e F e

ω ω

ω ω

= = Ψ ⋅ = −

= = Ψ ⋅ =
 (6.232) 

Hence: 
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2 1
1

2 1
2 1

'(0)
sin tan

'( ) cos sin
sin tan

y yF EA EA
l l

y yF EA l EA l y l
l l

ω
τω ω

τ τ

ω ω ω ω
τ τ τ τω ω

τ τ

⎡ ⎤
⎢ ⎥
⎢ ⎥= − Ψ = − − ⋅⎢ ⎥⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥

⎛ ⎞ ⎛ ⎞⎪ ⎪⎢ ⎥= Ψ = ⋅ − ⋅ ⋅ − ⋅ ⋅⎨ ⎜ ⎟ ⎜ ⎟⎬⎢ ⎥⎛ ⎞ ⎛ ⎞ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎢ ⎥⎜ ⎟ ⎜ ⎟⎪ ⎪⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦⎩ ⎭

 (6.233) 

Finally the stationary state stiffness matrix of the bar with distributed mass and 

flexibility is obtained: 

( ) ( )

( ) ( )

1 1

2 2

/ /
tan / sin /

/ /
sin / tan /

l lF y
EA

F y

l l

ω τ ω τ
ω τ ω τ

ω τ ω τ
ω τ ω τ

⎡ ⎤
−⎢ ⎥

⎢ ⎥⎧ ⎫ ⎧ ⎫
= ⋅ ⋅⎢ ⎥⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎩ ⎭⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

 (6.234) 

The first model case is a mass-bar system (figure 24). The relation (6.234) is 

applied considering that 1 0
i tF F e ω= ⋅ and 2 0y =  and the dynamic stiffness barK  of the 

bar with one fixed end is obtained: 

tan
bar

l
EAK

ll

ω
τ

ω
τ

⋅
= ⋅

⎛ ⎞⋅⎜ ⎟
⎝ ⎠

 (6.235) 

Indicating with: 

( )1
/

           =             ,
tan /

bar
bar

kEA E Alk f
l m m

ω ω ζρ ωω τ ζ ζ
ρ ω ω ω ζ

⎛ ⎞ ⋅
= = = =⎜ ⎟

⋅⎝ ⎠
 (6.236) 

Then: 
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( ) ( ) 1
/

/ ,
tan /tan

bar bar bar

l A l mEA
l E A l mK k k f

l A l m
E A l m

ρ ω
ζ ω ω ωω ω ζ

ωρ ζ ω ωω

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⎛ ⎞⋅⋅ ⋅ ⋅= = ⋅ = ⋅ ⎜ ⎟

⎛ ⎞⋅ ⋅ ⋅ ⋅ ⋅ ⎝ ⎠⋅⎜ ⎟⎜ ⎟⋅ ⋅ ⋅⎝ ⎠

(6.237) 

y

x

EA
l

F0eiωt

sµ

 
figure 24 mass-bar model 

 

The mass-bar system is studied as the simple mass-spring model. The equation of 

the problem is: 

1 1 0
i t

c bar cmx K x F e ω+ =��  (6.238) 

Substituting (6.237): 

( )
0

1 1
/

tan /
i tbar bar

c c
bar

k F kx x e
m m k

ωζ ω ω
ζ ω ω
⋅

+ ⋅ = ⋅
⋅

��  (6.239) 

Hence: 
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( )2 2
1 1 1/ , i t
c c stx f x x e ωω ω ω ζ ω+ ⋅ = ⋅ ⋅��  (6.240) 

Again the solution can be written in the form: 
2

1 0 1 0 1 0                 i t i t i t
c c cx x e x i x e x x eω ω ωω ω= ⋅ ⇒ = ⋅ ⋅ = − ⋅ ⋅� ��  (6.241) 

The solution is: 

( )
1 2

1

1

/ ,
c stx x

f ωω ω ζ
ω

= ⋅
⎛ ⎞

− ⎜ ⎟
⎝ ⎠

 (6.242) 

The results are still expressed in terms of flexibility and stiffness given by: 

( )
12

1
1 1

1/ ,c
c

bar

xd f
F k

ω ωω ω ζ
ω ω

−
⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥= = ⋅ −⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 (6.243) 

( )
2

1 1 / ,c bark k f ω ωω ω ζ
ω ω

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥= −⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 (6.244) 

The dimensionless stiffness is represented in figure 25. 
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figure 25 dimensionless dynamic stiffness of the mass-bar model 
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For / 0ω ω =  (static behaviour) 1 1/c bard k=  and therefore 1c bark k= . Being the bar a 

continuous model an infinite number of resonance frequencies occurs their values 

depending on the dimensionless mass parameter ζ . 

A spring of stiffness fas bark kα= is now added above the mass to obtain a spring-

mass-bar system (figure 26). 

tωie0F

l

x

y

ka

µ s

EA

 
figure 26 spring-mass-bar model 

 

Solving the following system: 

( )
1 1 0

2 1 0

i t
c bar c

i t
fas c c

mx K x F e

k x x F e

ω

ω

⎧ + =⎪
⎨

⋅ − =⎪⎩

��
 (6.245) 

Proceeding as in the corresponding discrete case, is obtained: 
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2 2 2

1 12 2

1 1 1

, ,
c

bar bar bar

F F Fx
k k k

f f
α αω ω ω ωζ ζ

ω ω ω ω

⎡ ⎤
⎢ ⎥
⎢ ⎥= + ⋅ = ⋅ +⎢ ⎥⎛ ⎞ ⎛ ⎞⎢ ⎥− −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 (6.246) 

The dynamic flexibility and stiffness are: 

( )

-12

1 2

2
2 2

1 2

,
1/

,

c
c

bar

f
xd
F k

f

ω ωα ζ
ω ω

ω ω
ω ωζ α
ω ω

⎧ ⎫⎡ ⎤⎛ ⎞
⎪ ⎪⋅ −⎢ ⎥⎜ ⎟
⎪ ⎪⎢ ⎥⎝ ⎠⎪ ⎪⎣ ⎦= = ⋅ ⎨ ⎬

⎛ ⎞⎪ ⎪− +⎜ ⎟⎪ ⎪
⎝ ⎠⎪ ⎪⎩ ⎭

 (6.247) 

( )

2

1 2

2 2

1 2

,

 /

,

bar

c

k f

k

f

ω ωα ζ
ω ω

ω ω
ω ωζ α
ω ω

⎡ ⎤⎛ ⎞
⋅ ⋅ −⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦=
⎛ ⎞

− +⎜ ⎟
⎝ ⎠

 (6.248) 

Dimensionless stiffness is represented in figure 27. 
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figure 27 dimensionless stiffness of the spring-mass-bar model (for 1ζ =  ) 
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As in the corresponding discrete case for / 0ω ω =  (static behaviour) the total stiffness 

is given by the stiffness of two springs in series; moreover an infinite number of 

resonance frequencies occurs, their values depending onζ  and α . 

A mass-spring-bar system (figure 28) is now considered in which a spring 

(representing as an example rubber wrapping of the sleepers) is added under the bar, 

the spring stiffness given by: 

 =    with      0wra bar
EAk k
l

β β β= ⋅ ⋅ ≥  (6.249) 

kwra

l

x

tωie0F

EA
l

kbar=

=ρ
Al
mζ

m x3c

 
figure 28 mass-spring-bar model 

 

This system can be easily studied considering the bar and the spring as two springs 

placed in series with the total stiffness: 

1

3

1

,
, ,

,

bar

tot bar

f k
k f k

f

ω ζ β
ω ω ζ β

ωωβ ζ
ω

⎛ ⎞
⋅⎜ ⎟ ⎛ ⎞⎝ ⎠= = ⋅⎜ ⎟

⎛ ⎞ ⎝ ⎠+ ⎜ ⎟
⎝ ⎠

 (6.250) 
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where: 

1

3

1

,
, ,

,
bar

f
f k

f

ω ζ β
ωω ζ β

ω ωβ ζ
ω

⎛ ⎞
⋅⎜ ⎟⎛ ⎞ ⎝ ⎠= ⋅⎜ ⎟

⎛ ⎞⎝ ⎠ + ⎜ ⎟
⎝ ⎠

 (6.251) 

The relation (6.238) is applied with the proper expression of the total spring stiffness: 

3 3 3 0, , i t
c bar cmx k f x F e ωω ζ β

ω
⎛ ⎞

+ ⋅ ⋅ =⎜ ⎟
⎝ ⎠

��  (6.252) 

Solving the equation as in previous systems the solution is obtained: 

 

( )
3 2

3

1

/ , ,
c stx x

f ωω ω ζ β
ω

= ⋅
⎛ ⎞

− ⎜ ⎟
⎝ ⎠

 (6.253) 

Therefore flexibility and stiffness are given by: 

( )
12

3
3 3

1/ , ,c
c

bar

xd f
F k

ω ωω ω ζ β
ω ω

−
⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥= = ⋅ −⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 (6.254) 

( )
2

3 3 / , ,c bark k f ω ωω ω ζ β
ω ω

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥= −⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 (6.255) 

Dimensionless stiffness is represented in figure 29. 
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figure 29 dimensionless stiffness of the mass-spring-bar model (for 1ζ = ) 

 

As in the corresponding discrete case, for / 0ω ω =  (static behaviour) the total 

stiffness is given by the stiffness of the two springs in series; moreover an infinite 

number of resonance frequencies occurs, their values depending both ζ and β . 

The following model consists of a mass-bar-spring system (figure 30) obtained 

adding a spring of stiffness  =    with      0mat bar
EAk k
l

β β β= ⋅ ⋅ ≥ .  
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mζ
Al

ρ =

=kbar
l

EA

l

m

kmat

x4c

F0eiω t

 
figure 30 mass-bar-spring model 

 

It is considered the state stationary stiffness matrix of the bar (6.234) in which: 

1 0
i tF F e ω=       2 2

2
mat bar

P Py
k kβ

= =
⋅

  (6.256) 

Considering the bar parameters in (6.236), the global stiffness is obtained:  

4

sin
, ,

tan sin
cos

tot bar bark k k f

ω ζ
ω

ωω ζζ ω ωω ζ β
ωω ωζ ζ

ω ω ωβ ζ
ωω ζ

ω

⎡ ⎤
⋅⎢ ⎥

⎢ ⎥
⎛ ⎞⎢ ⎥⋅⎜ ⎟⋅⎢ ⎥ ⎛ ⎞⎝ ⎠⎢ ⎥= ⋅ − = ⋅ ⎜ ⎟

⎛ ⎞ ⎛ ⎞⎢ ⎥ ⎝ ⎠⋅ ⋅⎜ ⎟ ⎜ ⎟⎢ ⎥⎛ ⎞⎝ ⎠ ⎝ ⎠⎢ ⎥⋅ + ⋅⎜ ⎟⎢ ⎥⎝ ⎠⋅⎢ ⎥⎣ ⎦

 (6.257) 

The following equation is solved where the (6.257) is substituted: 
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1 4 0
i t

c tot cmx k x F e ω+ =��  (6.258) 

Hence: 

 4 2

4 2

1

, ,
c stx x

f ω ωζ β
ω ω

= ⋅
⎛ ⎞⎛ ⎞
⎜ ⎟−⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

   (6.259) 

Therefore flexibility and stiffness are: 

( ) ( )
12 2

4
4 4 4 4

1/ , ,    / , ,c
c c bar

bar

xd f k k f
F k

ω ω ω ωω ω ζ β ω ω ζ β
ω ω ω ω

−
⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎢ ⎥ ⎢ ⎥= = ⋅ − = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

 (6.260) 

The dimensionless stiffness function is represented in figure 31. 
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figure 31 dimensionless stiffness of the mass-bar-spring model (for 1ζ = ) 

As in mass-spring-bar  model for / 0ω ω =  (static behaviour) the total stiffness is 

given by the stiffness of the two springs in series; the infinite number of resonance 
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frequencies still depends on ζ  and β  but they occur for lower frequencies because 

the total floating mass is greater. 

The last system is a mass-spring-bar-spring model (figure 32) in which two springs 

are added: the first one of stiffness matk   is in series to the bar and the other of stiffness 

wrak  is between the mass and the bar: 

1 1mat bar
EAk k
l

β β= ⋅ = ⋅  2 2wra bar
EAk k
l

β β= ⋅ = ⋅  (6.261)  

kwra

matk

x

l

m

F0eiωt

EA
l

kbar=

=ρ
Al
mζ

 
figure 32 mass-spring-bar-spring model 

 

The problem is solved considering two springs in series, the first one of stiffness wrak , 

the second one having a stiffness corresponding (according to (6.257)) to the bar and 

matk  in series: 
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4 1

1

sin
, ,

tan sin
cos

bar bark k f

ω ζ
ω

ωω ζζ ω ωω ζ β
ωω ωζ ζ

ω ω ωβ ζ
ωω ζ

ω

⎡ ⎤
⋅⎢ ⎥

⎢ ⎥
⎛ ⎞⎢ ⎥⋅⎜ ⎟⋅⎢ ⎥ ⎛ ⎞⎝ ⎠⎢ ⎥⋅ − = ⋅ ⎜ ⎟

⎛ ⎞ ⎛ ⎞⎢ ⎥ ⎝ ⎠⋅ ⋅⎜ ⎟ ⎜ ⎟⎢ ⎥⎛ ⎞⎝ ⎠ ⎝ ⎠⎢ ⎥⋅ + ⋅⎜ ⎟⎢ ⎥⎝ ⎠⋅⎢ ⎥⎣ ⎦

 (6.262) 

 The total stiffness totk  is then: 

4 1 2

5 1 2

2 4 1
2

4 1

, ,
1 , , ,1 1

, ,
, ,

tot bar bar

bar
bar

f
k k k f

fk
k f

ω ζ β β
ω ω ζ β β

ωωβ ζ ββω ωζ β
ω

⎛ ⎞
⋅⎜ ⎟ ⎛ ⎞⎝ ⎠= = ⋅ = ⋅ ⎜ ⎟

⎛ ⎞ ⎝ ⎠+ + ⎜ ⎟⎛ ⎞ ⎝ ⎠⋅ ⎜ ⎟
⎝ ⎠

(6.263) 

The solution is obtained: 

( )
5 2

5 2

1

/
c stx x

f ωω ω
ω

= ⋅
⎛ ⎞
⎜ ⎟−
⎜ ⎟
⎝ ⎠

 (6.264) 

Dimensionless flexibility and stiffness are derived (figure 33): 

( ) ( ) ( ) ( )
12 2

5
5 5 5 5

1/ /       / /c
c c bar

bar

xd f k k f
F k

ω ωω ω ω ω ω ω ω ω
ω ω

−
⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥ ⎢ ⎥= = ⋅ − = −⎜ ⎟ ⎜ ⎟
⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

(6.265) 

Again, in the static case 0ω
ω

⎛ ⎞
=⎜ ⎟

⎝ ⎠
 the total stiffness corresponds to the stiffness of the 

three springs in series and the infinite number of resonant frequencies now depends on 

the three parameters 1 2,  and ζ β β . 
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figure 33 dimensionless stiffness of the mass-spring-bar-spring model (for 1ζ = ) 
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CHAPTER 7 

APPLICATION OF THE ANALYTICAL MODELS AND 

EXPERIMENTAL VALIDATION 

 
 

Every model needs proper values for the elastic and massive elements that compose 

it, and it is important to make some experimental tests that can provide reliable values.  

In the previous chapter analytical models cleared the main parameters that have to 

be defined to obtain good theoretical results comparable with the tests. It is necessary 

to know: 

• the railway track typology is very important. In the case of  a traditional ballasted 

system the problem is to model the ballast layer, in new innovative systems a 

concrete slab replaces the ballast layer and its modelling can be easier than the 

ballast one; 

• the vertical stiffness of the elements that support the railway track; 

• vertical damping of every element (rail, sleepers, etc); 

• flexural and shear stiffness of rails, sleepers and slabs; 
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• load conditions and their combination taking into account the rail irregularities; 

• vehicle parameters. 

Analytical models have been applied to a traditional railway track and to four its 

variants (table 1); then theoretical results are compared with experimental tests 

performed on prototypes developed in a Pozzuoli where Research Centre of  

ISOLGOMMA is. They are on full scale and can help to find out the best solutions and 

provide a design procedure in the railway field. 
table 1 brief  description of prototypes  

TRACK TYPE MAIN CHARACTERISTICS

Traditional: reference 
track type

Rails connected to the sleepers with 
Vossloh fastenings. No elastic levels.

Innovative: 1st variant
Addition of an underballast mat for 

exurban lines

Innovative: 2nd variant
Addition of an underballast mat for urban 

lines

Innovative: 3rd variant
Addition of an elastic wrapping of the 

sleepers 

Innovative: 4th variant
Addition of two elastic levels: an elastic 

wrapping of the sleepers and an 
underballast mat for urban lines  
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7.1 DESCRIPTION OF THE RAILWAY TRACK 
 

The traditional railway track (figure 1) has been developed on a concrete basement 

(figure 2).  

 
figure 1 transverse section of the traditional system: reference track type 

 

 
 

figure 2 prototype on full scale of the reference track type 
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The system consists of UNI 60 rails (figure 3) and pre-stressed concrete single-

block  sleepers (figure 4). The rails are connected to the sleepers with Vossloh 

fastenings (figure 5). Longitudinal distance between sleepers is 0.60 m . The total 

length of the prototype is 10 m (in the following the choice of this length will be 

explained). 

 
 

figure 3 UNI 60 rail 
 

 
 

figure 4 concrete sleepers 
 
 
 



Chapter 7 – Application of the analytical models and experimental validation 
 

 176

 
 

figure 5 rigid and elastic fastenings 
 
 

Innovative elastic elements at different levels are then added to the traditional track 

to verify their influence in the static and dynamic behaviour of the system. Four 

variants are considered. The elastic elements are derived by the material described in 

previous chapters. 

The first one consists in the addition of an underballast mat for exurban lines (figure 

6). The mat thickness is 1 17 mmms = and it is composed by short fibres of SBR (50%) 

and big granules of grey EPDM (50%) obtaining a high density product 

( )3900 kg/m≅ .  
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figure 6 transverse section of  a traditional track with an exurban underballast mat: 1st variant 

 

The second one is still developed with an underballast mat but conceived for urban 

lines with a greater thickness ( )2 50 mmms =  and with a smaller density 

( )3500 kg/m≅ ( figure 7). The components are still short fibres of SBR (90%) and 

small granules of grey EPDM (10%). 

 

 
figure 7 transverse section of  a traditional track with an urban underballast mat: 2nd variant 
 

The third variant is carried out considering an elastic wrapping around the sleepers. 

The elastomeric element has thickness of 20 mmss = and its components are short 
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fibres of SBR (90%) and small granules of grey EPDM (10%) for a product with 

density of 3700 kg/m  (figure 8). 

 
figure 8 transverse section of  a traditional track with the sleepers wrapping: 3rd variant 

 

Both elastic levels are in the forth variant obtained combined the underballast mat 

for urban lines and the elastic wrapping of sleepers ( figure 9). 

 

 
 

figure 9 transverse section of  a traditional track with an urban underballast mat: 4th variant 
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7.2 PROTOTYPE MODELS 
 

In the model of the traditional track system the rail is represented by an Euler beam 

characterized by its mass µ  and flexural stiffness r rE I . The concrete sleepers are 

massive components modelled as concentrated masses m  positioned at distance p  to 

each other. The fastenings are an elastic elements taken into account in the model 

considering the spring above the mass. The ballast behaviour is quite difficult to 

determine; in the following it is modelled as a continuous bar with axial stiffness 

b bE A , length l  and with a distributed mass b bAρ . 

 The UNI 60 rail is characterized by: 
4 8 43055 cm 3055 10  m       60 kg/mI µ−= = ⋅ =   (7.1) 

In the model both of rails are considered and so the following data are obtained ( rE  

being the steel elastic modulus): 

9 8 4 7 2
2

N2 210 10 3055 10 m 1.28 10  Nm
mr rE I −= ⋅ ⋅ ⋅ ⋅ ⋅ = ⋅  (7.2) 

kg kg2 60 120 
m mrµ = ⋅ ⋅ =  (7.3) 

Fastenings are composed by two clips that push the rail foot on a rubber slab under 

the rail; this element transfers the vertical load deriving from rail on the sleepers. The 

horizontal ( )xb  and vertical ( )yh  dimensions of the under-rail slab in the track 

transverse section are (AFERIA, 2006): 150 mm;      7 mm  x yb h= = In the railway 

track direction:  200 mmzl = . 

3 21000 kg/m ;    E 100 N/mm   am = =  

The fastening can be modelled as a spring with constant stiffness aK  obtained in 

the following: 

c xz
a

y

E AK
h

=  (7.4) 
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In which cE is the confined elastic modulus given by: 

24cE GS=  (7.5) 

S  is the shape factor defined as  the ratio between the loaded area and the free area, in 

the specific case: 

( ) ( )
loaded area 150 200 30000 6.12

free area 2 2 150 7 2 200 7 2 4900
z x

z y x y

l bS
l h b h

⋅ ⋅
= = = = =

⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅
 (7.6) 

It is known the elastic modulus and the shear one is calculated: 

21 1 100 N/mm
3 3

G E= ⋅ = ⋅  (7.7) 

hence: 
2 2 24 4 33.3 6.12 4989 N/mmcE GS= = ⋅ ⋅ =  (7.8) 

Finally the constant stiffness of the spring is found: 
2

2 7 1030000mm4989N/mm 2.14 10 N/mm=2.14 10 N/m
7mm

c xz
a

y

E AK
h

= = ⋅ = ⋅ ⋅  (7.9) 

It will be shown that the fastening stiffness is greater than the other elements and so its 

effect in the analytical modelling can be disregarded. 

In figure 4 the concrete sleeper is showed. In the track transverse section sleeper 

dimensions are:  

230 cm;    30 cmx zl b= =  

Its height is:  18 cm yh =  

If the sleeper is modelled as a spring and  its stiffness can be calculated: 
9 4

1135 10 6900 10 1.34 10 N/m
0.18

xz
t

y

EAK
h

−⋅ ⋅ ⋅
= = = ⋅  

It is clear that the value is very great if it is compared with the fastening stiffness; for 

this reason in the model it is assumed that the sleeper is a massive component and its 

value is: 
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( ) 3
3

kg2500 0.3 2.3 0.18 m 310.5 kg
mt z y xM m b h l= ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ =  (7.10) 

Bar parameters are assigned considering the ballast characteristics. Its length is the 

ballast height under the sleeper ( )30 cml = . There are two areas on which the sleepers 

transfer railway loads, the value of these area (called itA  ) is smaller than the total 

sleeper area and given by: 
22 30 80 4800 cmitA = ⋅ ⋅ =  (7.11) 

The ballast mechanical characteristic are very hard to obtain, in the following is 

assumed (Pezzoli, 2005):  

2 3
N kg1000       1800 

cm mb bE ρ= =  (7.12) 

The bar area is assumed: 
21.5 7200 cmb itA A= ⋅ =  (7.13) 

Hence the other bar characteristics are derived: 

7 N7200 kN      2.40 10
mb b b

EAE A k
l

= = = ⋅  (7.14) 

The global model is in figure 10. 

m

equivalent

l EA
ρ

l EAl EAEAll EAEAl

60 cm

m=310.5kg
EbAb=7200 kN
ρ=1800 kg/m3

l=30 cm

7

K*1K*1K*1K*1K*1K*1K*1K*1K*1K*1K*1K*1K*1K*1K*1K*1K*1

mmmmm

ρ ρ ρ ρ ρ

ErIr=1.28 10  Nm   , µr=60 kg/m2

K*1

 
figure 10 model for the traditional track system 
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The stiffness expression for the mass-bar system is applied with the proper values of 

the massive and elastic elements obtaining 1( )K ω  from which: 

2* 1
1     Kk

p
µω= −  (7.15) 

The dimensionless parameters ζ  is equal to: 

 1800 0.72 0.3 1.25
310.5

s Al
m

µζ ⋅ ⋅
= = =   (7.16) 

Regarding the dynamic modelling the ballast can become stiffer and in the 

following it is assumed that its stiffness is three times greater than the static one: 

7 7
,

N N3 3 2.40 10 7.2 10
m mb dyn bk k= ⋅ = ⋅ ⋅ = ⋅  (7.17) 

Moreover a loss factor has to be assumed and it is set a loss factor 0.15bν = . 

 

7.2.1 Application of models for innovative railway tracks 

Innovative elastic elements at different levels are then added to the traditional track 

to verify their influence in the static and dynamic behaviour of the system. Four 

variants of the traditional system are considered.  

The first one consists in the addition of an underballast mat for exurban lines. The 

proper model is a mass-bar-spring system in which the mat is represented as a spring 

under the bar with stiffness 1matk . This stiffness is derived from material tests (Chapter 

5): 3
1, 110 N/cmmat statk = .It is assumed that 3

1, 1, 110 N/cmmat dyn mat statk k= =  and a loss 

factor 0.2bν = . 

Considering an influence area for the mat given by: 2
1 1.5 7200 cmmat b itA A A= = ⋅ =  

The stiffness spring in the model is evaluated: 

2 7
1 , 1 3

N110 7200 cm 7.92 10 N/m
cmmat d matk k= = ⋅ = ⋅  (7.18) 

And the non dimensional parameter β  is: 
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7
1

1 1 7
7.92 10
2.40 10

mat
d

b

k
k

β β ⋅
= = =

⋅
 (7.19) 

The global model is in figure 11. 
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figure 11 model for the first variant 

 

The second variant is equal to the first one but the underballast mat has different 

mechanical characteristics conceived for urban lines. The stiffness is obtained by static 

tests (chapter 5): 3
2, 21 N/cmmat statk = . In this case it is assumed a dynamic stiffening 

factor 3R =  and consequently 3
2, 63 N/cmmat dynk = . The loss factor is set 0.2bν = .  

The influence area of the mat 2matA  has not changed ( )2
2 1 7200 cmmat matA A= = . The 

proper model is still a mass-bar-spring system in which the stiffness spring 

(representing the under-ballast mat) is given by: 

2 7
2 3

N21 7200 cm 1.5 10 N/m
cmmatk = ⋅ = ⋅  (7.20) 

and consequently: 

2 7
, 2 3

N63 7200 cm 4.54 10 N/m
cmd matk = ⋅ = ⋅  (7.21) 

the non dimensional parameter β  in the static and dynamic case is given by: 
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7
2

2 7
1.5 10 0.63
2.40 10

mat

b

k
k

β ⋅
= = =

⋅
 (7.22) 

7
, 2

2 7
,

4.54 10 0.63
7.2 10

d mat
d

b

k
k

β ⋅
= = =

⋅
 (7.23) 

The global model is in figure 12.  

EA

y

x

l
EA

y

x

l l

x

y

EA
l

x

y

EA
l

x

y

EA

kmat1

l

x

y

EA

60 cm

k*2

equivalent 

k*2 k*2k*2 k*2k*2 k*2k*2 k*2k*2 k*2k*2 k*2k*2 k*2k*2 k*2k*2

ErIr=1.28 10  Nm   , µr=60 kg/m

ρρρ
ρρρ

kmat1 kmat1 kmat1 kmat1 kmat1

mmmmmm

l=30 cm
3ρ=1800 kg/m

EbAb=7200 kN
m=310.5kg

kmat1=7.92 10   N/m7

7 2

 
figure 12 model for the second variant 

 

The third variant is carried out considering an elastic wrapping around the sleeper. 

A possible model is a mass-spring-bar system for which the wrapping is modelled as a 

spring between the mass and the bar. The stiffness for the wrapping is still derived 

from material tests (Chapter 5): 3
, 75 N/cmwra statk = . Assuming a dynamic stiffness 

factor 1.5R = , the dynamic stiffness is 3
, 112.5 N/cmwra dynk = . The loss factor is 

0.25bν = . The sleepers influence area is 24800 cmitA = . The stiffness spring in the 

model is: 

2 7
3

N75 4800 cm 3.60 10 N/m
cmwrak = ⋅ = ⋅  (7.24) 

In the dynamic case: 
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2 7
, 3

N112.5 4800 cm 8.1 10 N/m
cmd wrak = ⋅ = ⋅  (7.25) 

And the non dimensional parameter β  in the static and dynamic case is given by: 

7

3 7
3.60 10 1.5
2.40 10

wra

b

k
k

β ⋅
= = =

⋅
 (7.26) 

7

3 7
8.1 10 1.13
7.2 10

wra
d

b

k
k

β ⋅
= = =

⋅
 (7.27) 

The global model is in figure 13.  
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figure 13 model for the third variant 

 

Both elastic levels are in the third variant; mass-spring-bar-spring system is applied 

in which the underballast mat is represented by a  spring, in series to the bar, of 

stiffness 2 , 2 or mat d matk k  and the wrapping is modelled as the spring between the mass 

and the bar of stiffness , or wra d wraK K ( )2 2 3 30.63, 0.63;  1.5, 1.13d dβ β β β= = = = . The 

global model is in figure 14.  
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figure 14 model for the forth variant 

 

Substituting proper values of elastic and massive elements global stiffness is 

obtained for each variant ( )iK ω  and consequently: 

2*     i
i

Kk
p

µω= −  (7.28) 

The theoretical transfer function in terms of acceleration is obtained for each variant: 

2 2 2
* *

0

(0) 1( ) ( )
2a w

wH H
F L k

ω ω ω ω ω= − ⋅ = − ⋅ = − ⋅  (7.29) 

in which *L  is given by (6.133). 
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7.3 DESCRIPTION OF THE STATIC TESTS  
 

Tests want to evaluate the behaviour of the track system (represented by the 

prototype) for the effect of static railway loads. 

The load is considered fixed on the track. It is applied on rail level by two hydraulic 

actuator that work between a lower cross-bar rest on the rail level and an upper one 

sustained by four bars anchored to the railway track basement. These bars go trough 

the prototype thanks to arranged holes but they do not interfere with the track 

behaviour. Displacements at rail level in assigned sections are monitored. The load is 

not constant but it starts to zero value and it slowly increases with a linear pattern until 

its maximum value (figure 15): three cycles are considered. 
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figure 15 procedure scheme for the static test 

 

Two hydraulic actuator are used there are set in parallel and shown in figure 16. 



Chapter 7 – Application of the analytical models and experimental validation 
 

 188

 
figure 16 hydraulic actuators for the static tests 

  

They have the following characteristics: 

• Builder: Larzep 

• Type: SM01515 

• Load: 15 t (150 kN) 

• Limit: 155 mm 

• Section size: 223.75 cm  

Test loads depend on the type of the track system (see table2). 
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table 2 Test load for the static test 
Type of line Axle load Test load pressure 

tramline 90kN/axle 120kN 260 atm  

underground 120kN/axle 160kN 350 atm 

railway 220kN/axle 290kN 630 atm 

 

The load is monitored by a pressure cell HBM P3MB/1000BAR. Displacements on 

rail levels are measured using ten displacement transducers and their positions are 

shown in figure 17.  

 
figure 17 position of displacement transducers on the prototype 
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figure 18 lay-out of the static tests 

 

 
figure 19 details of the test equipment for the static tests 
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7.3.1  Static test results 
Static tests are performed on the traditional track and on the four its variant, in the 

following the main results are shown.  

First of all the traditional track system is built (figure 20). Its length will be 

sufficient to capture the main characteristics of its displacement path. The static test is 

performed following the previous procedure, the maximum value of the static load in 

performed tests is 290 kN (figure 21, 22). 

 
figure 20 phases of the railway track construction 
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figure 21 static tests on the traditional track 

 

 
figure 22 static tests on the traditional track (2) 
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The results are in terms of static displacements. The theoretical values are evaluated 

considering the models in the chapter 6. The experimental displacements are measured 

along the line considering the scheme in figure 17. In figure 23 static displacements for 

the maximum value of the test load are plotted and compared with the theoretical 

displacements. 
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figure 23 static displacements for the reference track type 

 

The first variant is obtained adding an under-ballast mat, so it is necessary to take 

away the ballast, sleepers and rail with their fastenings (figure 24) and place the mat; 

successively the track is replaced above the mat.  
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figure 24 concrete slab: the basement 

 

The static test is performed (figure 25) and the results in terms displacements for the 

maximum load are in figure 26. 
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figure 25 static test on the first variant 
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figure 26 static displacements for the first variant 
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The procedure is the same to obtain other different variants. 

In figure 27 the static test for the second variant is shown and the elaboration of  

results are in figure 28. 

 
figure 27 static test on the second variant 
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figure 28 static displacements for the second variant 

 

In figure 29 the static test for the third variant is shown and the elaboration of  results 

are in figure 30.  
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figure 29 static test on the third variant 
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figure 30 static displacements for the third variant 

 

Figure 31 represents the preparation of the forth variant in which both elastic levels 

are considered. The scheme of the static test is in figure 32 and in figure 33 the 

elaboration of the tests are discussed. 
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figure 31 preparation of the forth variant 
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figure 32 static test on the forth variant 
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figure 33 static displacements for the forth variant 

 

7.3.2  Elaboration of experimental results: static behaviour 

Important considerations are derived from theoretical-experimental comparison. 

The real deformation form is well represented through the analytical curve, but the 

theoretical displacements often tend to be lower than the experimental values (see 

figure 23, 26, 28, 30 and 33); this aspect is also clear considering the table 3 where 

maximum static theoretical and experimental displacements are summarized. The table 

also show the per cent variation of the analytical values respect to the experimental 

displacements. 
table 3 maximum displacements: theoretical values and experimental results 

THEORETICAL 
VALUES

[mm] [mm] [%] [mm] [%] [mm] [%]
reference track -3.41 -3.93 -13.3 -3.79 -10.1 -3.97 -14.2

1st variant -4.15 -3.97 4.6 -3.88 7.1 -3.91 6.2
2nd variant -6.95 -8.46 -9.3 -8.03 -9.1 -7.95 -9.0
3rd variant -5.00 -6.75 -25.6 -6.17 -19.0
4th variant -8.25 -11.25 -25.5 -11.08 -23.3 -10.8 23.4

TEST 1 TEST 2 TEST 3RAILWAY TRACK TYPE
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Both theoretical curve and experimental results point out that new antivibration 

systems can involve an important increasing of the track deformability. Actually, the 

theoretical maximum displacement increases from 3.41 mm− of the reference system 

up to 8.25 mm− (2.5 times greater) of the 4th variant (most deformable system); while 

the experimental static displacement changes from about 4.00 mm− of the reference 

track to 11.00 mm− (almost 3 times greater) of the 4th variant. Deformability is an 

important aspect of the track design because a excessive displacements can create 

comfort problems or forbid the correct and safe operation of the railway line.  

The prototype length is 10 m and it is sufficient to describe the track behaviour if 

their characteristic lengths are evaluated (table 4). 

 
table 4 theoretical characteristic length of the reference track and of its four variants 

characteristic 
length wave length

[m] [m]
reference track 1.06 6.66

1st variant 1.14 7.16
2nd variant 1.35 8.48
3rd variant 1.21 7.60
4th variant 1.43 8.98

RAILWAY TRACK TYPE

THEORETICAL VALUES
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7.4 DESCRIPTION OF THE DYNAMIC TESTS  
 

The main purpose is to determine the track behaviour under the effect of dynamic 

loads produced by the passage of vehicles. Dynamic loads are always applied together 

with static loads produced by trains: this aspect is clearly shown in figure 34. 
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figure 34 dynamic load scheme 

 

The static load is given by four big helicoidal lateral springs, while the dynamic one 

is produced through a vibrodyne (figure 35)   
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figure 35 scheme of the four  helicoidal springs and of the vibrodyne 

 

The four helicoidal springs (figure 36) has characterized by a very big elasticity (if 

compared with the elasticity of the railway track) and this fact makes the static load 

condition constant during the test. The static load produce by the helicoidal springs is 

80 kN (20 kN/spring × 4 springs) They react through the four bars anchored in the 

basement.  

Vibration acquisition is obtained by a network of accelerometers that monitor both 

vibration on the prototype both vibration near the prototype. 



Chapter 7 – Application of the analytical models and experimental validation 
 

 206

The following test equipment is used: vibrodyne VEM 20 kN 100Hz (figure) and a 

vibrotest system (digital system for the vibrodyne control and for the data acquisition 

and analysis) and the system configuration is in table 5. 

 

 
figure 36 four helicoidal springs 

 

 
figure 37 vibrodyne VEM 20 kN 100Hz 
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table 5 configuration of the system for dynamic tests 

 
 

The position of accelerometers is in figure 38.  

 
figure 38 position of accelerometers 
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Accelerometers on the railway track (pos 1 5÷ ) have vertical sensibility axis (figure 

39), while set of three accelerometers (vertical, longitudinal and transverse sensibility 

axis) are on the basement for each side (pos 6 8÷  and pos 9 11÷  ) and shown in figure 

40.  

 
figure 39 accelerometers pos 1-5 

 

 
figure 40 accelerometers pos 6-8 and pos 9-11 
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7.4.1 Dynamic tests and theoretical results comparison 
Dynamic tests are performed on the reference track and on its four variants 

(previously described). Experimental results in terms of acceleration transfer functions 

are considered. They are compared with the theoretical transfer functions that are 

obtained considering prototype models (see figures 41-. 
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figure 41 theoretical and experimental modulus of the acceleration transfer function: reference 
track 
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figure 42 theoretical and experimental modulus of the acceleration transfer function: 1st variant 
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figure 43 theoretical and experimental modulus of the acceleration transfer function: 2nd variant 
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figure 44 theoretical and experimental modulus of the acceleration transfer function: 3rd variant 
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figure 45 theoretical and experimental modulus of the acceleration transfer function: 4th variant 
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The first frequency of a railway track is an important parameter to assess its 

dynamic behaviour and  the effect in terms of vibration isolation. Fundamental 

frequencies for the reference system and its variants are summarized in table 6.  

 
table 6 theoretical and experimental fundamental frequencies 

theoretical 
fundamental 

frequency

experimental 
fundamental 

frequency
[Hz] [Hz]

reference track 62.2 64.5
1st variant 42.5 42.7
2nd variant 35.7 33.9
3rd variant 51.8 57.0
4th variant 33.5 32.0

TRACK TYPE
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CONCLUSIONS 
 

The main scope of this thesis is to give a contribution in the determination of the 

best solution for reducing vibration in railway traffic. Moreover a new composite 

material has been proposed composed by recycled rubber that involves another 

important environmental aspect. 

In the thesis there are two fundamental topics: 

1. The theoretical and experimental study of the new composite material: recycled 

rubber and polyurethane. 

2. The development of analytical modelling to design railway tracks conceiving for 

the vibration problem from the beginning. This part involves important 

experimental tests to validate theoretical results. 

Regarding the material the aim is to make predictions of material behaviour from a 

theoretical point of view with the possibility to reduce the experimental costs, i.e. to 

obtain criteria to design a material with desired mechanical characteristics. Even 

though a very simplified model based on macromechanical theory is considered, which 

assumes the material as elastic and homogeneous, this study provides good values of 

the elastic modulus of the new composite material. The considered approach can lead 

to more refined models taking into account different properties of the material, and 

considering also dynamic and viscous behaviour. 

The second part intends to be a contribution toward the understanding of the effect 

of added flexibilities and masses at different levels in the railway track. The theoretical 

models provide the following important conclusions: 

• the introduction of a flexibility at fastenings level changes the static and but not the 

resonance frequency; 

• an added flexibility at undersleeper or underballast level modifies both static 

behaviour and resonance frequency. 
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Static tests has been performed has been performed on the traditional track and on 

its four variants and they demonstrate that antivibration railway track can involve 

important displacements. The most deformable system (the 4th variant) can have 

displacements three times greater than the reference track and this aspect has to be 

considered. During the preliminary design the possibility to predict maximum 

displacement in a railway track can avoid problems. However there is a good 

correspondence between the theoretical predictions and experimental results. 

Dynamic tests can give significant parameters to evaluate the effectiveness of a 

system in vibration reduction. One of these parameters (that has been taken into 

account in the thesis) is the fundamental frequency of the system. The traditional track 

gives lower performance in terms of vibration isolation and the most effective position 

of elastic element is at under-ballast level also considering the requirement to avoid 

excessive static displacements (so experimental measures confirmed theoretical 

considerations). In the specific case the lowest fundamental frequency is given by the 

forth variant that has two main elastic level (at sleeper and at underballast level). 

Transfer functions in terms of acceleration demonstrate that there is also a good 

correspondence between analytical and dynamic experimental results in the considered 

frequency range. 

This study provides a criteria to design innovative railway tracks during preliminary 

phase making predictions on static and dynamic behaviour. 
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