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CHAPTER 1 
INTRODUCTION 

 
 

 

 

 

 

 

 

Lightning is one of the natural phenomena that have 

amazed the human beings since the beginning of the 

civilization. In the history of almost all societies there are 

records that relate lightning to a punishment from a powerful 

god. In ancient times, some important personalities of the 

public life tried to protect themselves against it by techniques 

based on myths. For example, Julius Caesar used to wear a 

laurel crown and the Romans emperors used to wear a skin striped from a cow 

under their robes during thunderstorms. But with time, people started questioning 

these techniques and started wondering whether this phenomena arising in the sky 

was an act of god or a natural phenomenon. 

In 1847 Benjamin Franklin 

proposed its kite experiment to 

show that a lightning flash is a 

result of electricity and 

movement of charges. Since 

then, the scientific community 

has tried to understand the 
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physical mechanism and the consequences of lightning flashes. 

Nowadays, in the field of the power system, the lightning activity is one of 

the main causes of a-periodic disturbances on distribution networks which 

seriously affect the power quality and in particular the so-called lightning indirect 

activity.  

Due to the limited height of 

distribution lines of medium and 

low voltage distribution 

networks as compared to that of 

the structures in their vicinity, 

indirect lightning return strokes 

are more frequent events than 

direct strokes, and for this 

reason we shall focus on such a 

type of lightning event. 

 

 

1.1 A survey on  the investigations on Lightning Induced 

Overvoltages 

In 1908, K.W. Wagner [1] carried out the first theoretical investigation of 

induced lightning surges on power transmission lines. He assumed the following 

conditions. A charged thunder cloud situated above a power transmission line will 

induce charges with opposite polarity in the line. On the assumption that free 

charges can move to earth via the leakage resistance of the line during the time 

when the field is determined by the fact that the resulting potential of the line 

should be equal to zero. If the charge of the thunder-cloud, and with it also the 

inducing field, suddenly disappears, the induced charges will be free to move out 

on the line is given by the product of the height of the conductor above the ground 

and the inducing electrical field strength prior to the lightning discharge. The 
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fronts and half-value times of the waves are given by the variation along the line 

of the inducing field strength, which implies very flat surges. 

In 1929, Bewley [2] improved Wagner’s theory by taking account of the fact 

that the inducing field cannot disappear instantaneously but must have a limited 

time derivative. 

An article written by Aigner in 1935 [3] is interesting considering that it is 

the first time in the literature on the present topic that the inducing effect of the 

vertical lightning path of a lightning stroke to ground is taken into account. 

In 1942, C.F. Wagner and McCann [4] published a paper which must be 

considered fundamental to the modern conception of the nature of the induced 

overvoltages. In this paper, it is the first time, excepting the above mentioned 

attempt by Aigner, that the influence of the charge and current in the lightning 

channel during the return stroke is introduced and it is shown that it is the field of 

the lightning path which is of a dominating importance in comparison with the 

field of the thunder-cold. 

In a paper published in 1948 Szpor [5] has calculated the induced voltages 

caused by a vertical lightning stroke using other, and more complicated, 

assumptions than Wagner and McCann. Szpor takes account of the magnetic as 

well as the electrostatic induction, but treats the problem as quasi-stationary, 

stating that the results are valid only in the immediate vicinity of the lightning 

stroke. 

In 1954 Golde [6] published an investigation dealing with the influence of 

the induced voltages on the fault frequency of power-distribution lines. In his 

calculations of the induced voltages his assumptions are somewhat different from 

those of Wagner and McCann. The influence of the different assumptions on the 

maximum value of the induced voltages may, however, not be great.. In Golde’s 

calculations, which are carried out by a numerical integration method, only the 

scalar potential is computed.  

In 1955, R. Lundholm [7] computed the induced voltages on short and long 

high-voltage transmission lines with approximately the same assumptions of 
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Wagner and McCann. The new point in Lundholm’s treatment are principally a 

new theory for the relation between the velocity of the return stroke and the 

lightning current and a definition of the induced voltage. In deducing the formula 

of the induced voltage, Lundholm neglects the magnetic field, which implies that 

the result at last from the theoretical point of view is not quite satisfactory. 

In 1958 Rusck [8] computed the induced voltages on short and long low-

voltage transmission lines by means of a closed form expression which is still 

used in important international standard [9]. 

In 1967 [10] Chowdhuri and Gross proposed two closed form expressions 

for computing the induced overvoltages in the same hypotesis of Rusck, obtaining 

different results. 

In 1986 [11] Liew and Mar, modifying the Chowfhuri-Gross approach, have 

proposed also closed form solutions. 

In 2001 [12] Hoidalen has proposed a closed form which accounts for finite 

ground conductivity.  

In addition, staring from the early ‘90s, the more and more increasing 

request of power quality has pushed  many other researches to focus on the 

indirect lightning phenomenon solving the problem by means of more and more 

sophisticated numerical approaches. 

 

1.2 Contents and Contribution of the Thesis 

In recent years, in literature many efforts have been directed to improve the 

knowledge of the lightning phenomenon and its effects on power circuits. In 

particular, many numerical approaches have been proposed for the evaluation of 

the overvoltages induced on an overhead line by indirect lightning. Also closed 

form solutions have been proposed and it is important to underline that they are 

very important both in the design phase and in parametric evaluation and 

sensitivity analysis. Closed form solutions provide considerable insight into the 

phenomenon, which is often obscured in numerical approaches. All the closed 
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form proposed so far in literature are approximated and/or incomplete as we will 

show in the thesis. The first significant contribution of the present work is that of 

obtaining the exact closed form solution, overcoming errors and/or 

approximations in the closed form solutions so far available in literature. Another 

contribution will be that of using our exact formulation to check the accuracy of 

the other closed form solutions, which is still object of an international debate [13, 

14]. The work will carry on with the analysis of the effects of the indirect 

lightning on distribution network and on the methods used for improving the 

quality of power supply. 

 

The thesis is organised as follows: 

 

o chapter 2 will be devoted to introductive aspects of the lightning 

phenomenon and to summarise the numerical approaches used to 

calculate the induced overvoltage due to indirect lightning; 

 

o chapter 3 will be devoted to the analytical formulation of the 

indirect lightning problem. An exact closed form solution will be 

presented and used to discuss the other formulae adopted in 

literature; 

 

o chapter 4 will be devoted to the analysis of the effects of indirect 

lightning on power quality. A method based on the Monte Carlo 

technique will be used to improve the commonly used IEEE 

method [9]. The results will be analysed and discussed in order to 

obtain methods to improve distribution network design and 

operational control. 
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CHAPTER 2: 
NUMERICAL METHODS FOR LIGHTNING INDUCED 

OVERVOLTAGES CALCULATIONS 
 
 

 

 

 

 

 

 

 

In literature, many numerical approaches have been proposed for the 

evaluation of the overvoltages induced on an overhead line by indirect lightning. 

These approaches are based on different models which will be presented and 

discussed in this chapter. In what follows the focuses will be on: 

 

1) introduction to the indirect lightning problem; 

2) lightning return stroke models; 

3) lightning electromagnetic field evaluation; 

4) coupling between lightning electromagnetic field and power line. 

 

In the final part of the chapter the lightning induced voltages predicted by some 

numerical methods will be presented and discussed. 

2.1 Introduction 

Since the early years of the past century, many researchers activities focused 

on the estimation of lightning induced overvoltages. K.W. Wagner [1] in 1908, 

Bewley [2] in 1929 and Norinder [3] in 1936, stated that the overvoltages 
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produced by indirect lightning were produced, basically, via electrostatic 

induction by charged clouds. According to K.W. Wagner [1], when the lightning 

discharge occurs, the charge bound to the line is released in form of travelling 

waves of voltage and current. Wagner did not consider the electromagnetic field 

radiated by the lightning discharge. In the early 1940's C.F. Wagner and McCann 

[4], based on Schonland's [5] investigations on the nature of the lightning 

discharge, published a paper in which the overvoltage was considered due to a 

phase of lightning named return stroke phase. Also in recent years, in literature 

many efforts have been directed to improve the knowledge of the lightning 

phenomenon and its effects on power circuits. In particular, many numerical 

approaches have been proposed for the evaluation of the overvoltages induced on 

an overhead line by indirect lightning In all these approaches, the overvoltage 

calculations deal with three main phases involving the lightning phenomenon and 

its effects: 

 

1) the return stroke phase generating the electromagnetic field; 

2) the field propagation; 

3) interaction between the field and the line conductors. 

 

In figure 2.1 these three phases are depicted. The lightning return stroke 

electromagnetic field is evaluated by employing a lightning return-stroke current 

model. This model describes the waveform of the return stroke current as a 

function of height and time along the vertical channel. To this aim, the return 

stroke channel is generally considered as a straight vertical antenna (as depicted in 

fig. 2.1). The electromagnetic field is then evaluated and, by considering also the 

propagation effects, the field is used to calculate the induced overvoltages by 

means of a coupling model which describes the field to line conductors 

interaction. 

In the next paragraph 2.2 the return stroke models, along with a brief 

description of the basics behind a lightning flash, will be presented and discussed. 
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The paragraph 2.3 will be devoted to the evaluation of the electromagnetic field 

radiated by a return stroke and, in the paragraph 2.4 the propagation of the field 

will be discussed. The field to line coupling models will be discussed in paragraph 

2.5. 

 

2.2. Return Stroke Models 

Lightning electromagnetic field is generally calculated making use of a 

return stroke current model which specifies the spatial-temporal distribution of the 

lightning current along the channel. In this paragraph the return stroke models, 

along with a brief description of the basics behind a lightning flash, will be 

summarised and discussed. Obviously, most attention will be given to the 

mathematical models constructed to represent the return stroke electromagnetic 

fields. 

2.2.1 The Lightning Mechanism 

Lightning flashes can produce three types of electrical discharge: between 

two clouds (inter-cloud flashes), within the same cloud (intra-cloud flashes) or 

Li
gh

tn
in

g 
C

ha
nn

el
 

Power Line 
Ei,Bi

Figure 2.1: Pictorial representation of the three main phases of the lightning 
event for the induced overvoltages calculations. 
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between cloud and ground. In literature, traditionally, the most severe induced 

overvoltages are considered due to the cloud to ground flashes. Then, in the 

following the mechanism of the cloud to ground flashes is described more in 

details. 

A thundercloud has three charge centres as shown in figure 2.2: one large 

positive charge centre at the top of the cloud, one negative charge centre in the 

middle of the cloud, and one small positive charge pocket at the base of the cloud 

[6]. 

Normally, a cloud to ground flash takes place either from the negative 

charge centre or the positive charge centre to ground. The former leads to a 

negative ground flash where the latest leads to a positive ground flash. 

Researchers have observed from the electromagnetic field signatures of lightning 

flashes that a cloud to ground flash has an initial stage that takes place in the 

cloud. This electrical breakdown process is called preliminary breakdown [7]. 

This process leads to the formation of a conductive channel propagating, from the 

cloud towards the ground, in a stepped manner. This is called a stepped leader. In 

many cases all this process, the initial electrical breakdown and the stepped leader 

are termed as preliminary breakdown. In this chapter, the initial electrical 

discharge that takes place inside the cloud will be termed preliminary breakdown 

and the stepping process will be named as the stepped leader. In the negative 

stepped leader, the length of each step is around 50 m [7]. 

+ + + + + + + + 
+ + + + + + + + + + + 

  – – – – – – – – – – –
  – – – – – – – – – – –

+ + + 

Figure 2.2: Charge distribution in a thunder cloud
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When the negative stepped leader is propagating towards the ground, it will 

induce charges of the opposite polarity at the surface of the ground. When the 

stepped leader is about 100 meters from the ground level, the intense electric field 

at the ground level will be able to initiate upward electrical discharges from the tip 

of the tall objects at ground level. Such discharges are called upward connecting 

leaders. Several of these upward connecting leaders will be launched from 

different objects, but only one will be able to join the stepped leader with the 

ground via an upward connecting leader. After this connection between the 

stepped leader and the ground is made, a wave of zero potential will propagate 

along the stepped leader channel to neutralize the charges deposited along it [7]. 

This will result in a luminous event that propagates from the ground to cloud with 

a speed close to the speed of light. This is called a return stroke. Once the channel 

is established between the cloud and ground several such strokes can take place 

along the same conductive channel. Typically a ground flash may last for about 

0.5 s with a mean number of strokes between four and five. 

There is not much information available on the mechanism of the positive 

flashes. However, available information indicates that its mechanism is similar to 

the negative with some differences. For instance, observations show that the 

positive stepped leader propagates more or less continuously towards the ground 

[7]. Moreover, positive flashes may contain a single return stroke while the 

negatives may contain several. 

As can be seen, all the processes associated with either the positive or the 

negative ground flashes involve the movement of electrical charges. This will 

result in an electromagnetic field that will propagate in air. In the following 

subparagraph some details will be presented on the different return stroke models 

utilized to generate electromagnetic fields similar to those generated by lightning 

return strokes. 
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2.2.2 Return Stroke Models 

A comprehensive review of the return stroke models to represent lightning 

return stroke could be found in the literature [7,8]. Rakov and Uman, in [8], have 

been defined four classes of return stroke models: 

 

1) gas dynamic or “physical” models, which are primarily concerned 

with the radial evolution of a short segment of the lightning channel 

and its associated shock wave; 

2) electromagnetic models that are usually based on a lossy, thin-wire 

antenna approximation to the lightning channel. These models 

involve a numerical solution of Maxwell’s equations to find the 

current distribution along the channel from which the remote electric 

and magnetic fields can be computed; 

3) distributed-circuit models that can be viewed as an approximation to 

the electromagnetic models described above and that represent the 

lightning discharge as a transient process on a vertical transmission 

line characterized by resistance (R), inductance (L), and capacitance 

(C) per unit length; 

4) Engineering models in which a spatial and temporal distribution of 

the channel current (or the channel-charge density) is specified based 

on such observed lightning return-stroke characteristics as current at 

the channel base, the speed of the upward propagating front, and the 

channel luminosity profile. 
 

The gas dynamic model are primarily used to reproduce physical parameters 

of the return stoke. The other models are mainly used to reproduce the 

electromagnetic field from a return stroke. In this chapter we shall limit the 

discussion to the engineering models. Infact most of the methods for induced 

overvoltages calculations are based on engineering models. 
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An engineering model for return stroke current is a mathematical 

specification of the spatial-temporal distribution of the lightning current along the 

discharge channel ),'( tzi , or the channel line charge density ),'( tzρ . Such a 

mathematical specification includes the return stroke wavefront velocity, which is 

generally one of the model inputs [9], the charge distribution along the channel, 

and a number of adjustable parameters related, to a certain extent, to the discharge 

phenomenon [7] and which should be inferred by means of model comparison 

with experimental results [10]. Outputs can be directly used for computation of 

electromagnetic fields. In these models the lightning channel is generally assumed 

to be straight, vertical and perpendicular to the conducting ground plane, as shown 

in figure 2.3, where the geometry of the problem is also defined. 

From an engineering point of view, the models of main interest are those in 

which the return stroke current ),'( tzi  can be related to the specified channel-base 

current ),0( ti , since only the channel-base current can be measured directly and 

for which experimental data are available. For this reason, the most used 

engineering models presented in literature give the mathematical specification of 

the spatial-temporal distribution of the lightning current along the discharge 

channel ),'( tzi  as follows [11]: 

 

)/',0( )'( )/'(),'( vztizPvztutzi f −−=     (2.1) 

 

where u  is the Heaviside function, fv  is the return stroke wavefront velocity, v  is 

the propagation velocity of the return stroke current, and ( )'zP  is the attenuation 

function of the return stroke current along the channel, which was proposed by 

Rakov and Dulzon [12]. The next subparagraph will be devoted to the main 

models of channel-base current ),0( ti  presented in literature. 

 



Chapter 2: Numerical Methods for Lightning Induced Overvoltages Calculations 

15 

 

The most commonly adopted return stroke models for lightning induced 

overvoltages calculations are: 

 

o the Bruce and Golde model (BG), proposed in [13]; 

o the Travelling Current Source model (TCS), proposed by Heidler 

[14]; 

o the Transmission Line model (TL), proposed by Uman and McLain 

[9]; 

o the Modified Transmission Line model, with a linearly decay current 

(MTLL), proposed by Rakov and Dulzon [12]; 

o the Modified Transmission Line model, with an exponential decay 

current (MTLE), proposed by Nucci at al. [15]. 

 

These five main models are summarised in table 2.1. In this table, according 

with expression (2.1), both the propagation velocity of the return stroke current v  

and the attenuation function of the return stroke current along the channel ( )'zP  

are specified for each model. In particular, in table 2.1 H  is the channel length, λ  

is the decay constant of the current along the channel and c  is the free space light 

velocity. For sake of completeness other two return stoke engineering models will 

x

z

y

P(r,φ,z)

rφ 

dz’ i(z’,t) 

vf

z’ 

Figure 2.3: Return stroke channel. 

O
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also be presented at the end of this subparagraph: the Master, Uman, Lin and 

Standler (MULS) model reported in [16] and the Diendorfer and Uman (DU) 

model [17]. 

 

Model )'(zP  v  

BG 

(Bruce and Golde [13] ) 

 

1 

 

∞  

TCS 

(Heidler [14] ) 

 

1 

 

c−  

TL 

(Uman and McLain [9] ) 

 

1 

 

fv  

MTLL 

(Rakov and Dulzon [12] ) 

 

Hz /|'|1−  

 

fv  

MTLE 

(Nucci et al. [15] ) 

 

)/|'|exp( λz−  

 

 

fv  

Table 2.1: Return stroke model summarization according [11] 

 

 

1) Bruce and Golde (BG) Model 
Bruce and Golde proposed a simple model of return stroke in which the 

channel-base current propagates along the channel undistorted and unattenuated. 

The expression of this current model reads: 

 

( )
( )

,'

,'

0

,0
,'

tvz

tvzti
tzi

f

f

>

≤

⎪⎩

⎪
⎨
⎧

=      (2.2) 

 

An equivalent expression in terms of the line charge density ),'( tzρ  on the 

channel was proposed by Thottappillil et al. in [18] by means of the continuity 

equation: 
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   (2.3) 

 

An initial charge distribution, which takes into account the effects of the 

charges stored in the corona sheath of the leader, is instantaneously removed by 

the current. By combining the expressions (2.2) and (2.3) the instantaneously 

removed charge is obtained and reads [18]: 

 

( ) ( )
f

f

v
vzi

tz
/',0

,' =ρ        (2.4) 

 

According with the hypothesis of instantaneous charge removal, the 

removed charge (2.4) is time independent. 

 

2) Travelling Current Source (TCS) model 
This model was proposed by Heidler in [14]. In this type of model, the 

return stroke current may be viewed as generated at the upward-moving return 

stroke front and propagating downward. In the TCS model, current at a given 

channel section turns on instantaneously as this section is passed by the front. 

Channel current may be viewed as a downward-propagating wave originating at 

the upward-moving front, and the expression reads: 
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The equivalent formulation of this model in terms of charge distribution reads: 

 

*
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with )/1/( cvvv ff +=∗ . Eventually, the TCS model reduces to the BG model if 

the downward current propagation speed is set equal to infinity instead of the 

speed of light. 

 

3) Transmission Line (TL) model 
In this model, proposed by Uman and McLain [9], the current is assumed to 

travel undistorted and unattenuated upwards the lightning channel at a constant 

velocity v . The expression of this model is: 
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=      (2.7) 

 

The transfer of charge takes place only from the bottom of the leader 

channel to the top; thus no net charge is removed from the channel, i.e. 

( ) 0,' =tzρ . This being an unrealistic situation with respect to the present 

knowledge of lightning physics [20]. However, in [19] the authors show that the 

TL model is in fairly good agreement with measurements. Moreover in [19] the 

authors show that the early time field prediction of the TL model is very similar to 

that of the more physically reasonable models. 

Eventually, one can note if ∞=v , the TL model reduces to the BG model. 

 

4) Modified Transmission Line Linear (MTLL) model 
The Transmission Line model, with a linear decay current, was proposed by 

Rakov and Dulzon [12]. This model can be viewed as incorporating a current 

source at the channel base, which injects a specified current wave into the 

channel, that wave propagating upward without distortion but with specified 

linear attenuation as seen from the corresponding current expression which reads: 
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with H  the specified channel height. The equivalent formulation of this model in 

terms of charge distribution reads: 

 

)(1)/',0(
H

/'1),'( tQ
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whit )(tQ  the total charge transfers from the ground to the channel at the time t. It 

is given by: 

 

ττ dvzitQ
t
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5) Modified Transmission Line Exponential (MTLE) model 
This model was proposed by Nucci et al. [15] and it is similar to the MTLL 

one. This model can be viewed as incorporating a current source at the channel 

base, which injects a specified current wave into the channel, that wave 

propagating upward without distortion but with specified exponential attenuation 

as seen from the corresponding current expression which reads: 
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The equivalent formulation of this model in terms of charge distribution reads: 
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with )(tQ  the total charge transfers from the ground to the channel at the time t, 

still given by expression (2.10). 

The two modified transmission line models MTLL and MTLE represent a 

modification of the TL model, in which the attenuation is not considered. This 

attenuation was introduced to take into account the effect of the charges stored in 

the corona sheath of the leader, and subsequently discharged during the return 

stroke phase via the upwards current [15]. Thus, the fields predicted by these two 

models result in a better agreement with experimental results. However, if one 

considers that for lightning induced overvoltages calculations it is the early time 

region of the field that plays the major role [22], it follows that the TL model, for 

the problem of interest, can be considered a useful and relatively simple 

engineering tool. 

 

6) Master, Uman, Lin and Standler (MULS) model  
The Master, Uman, Lin and Standler model (MULS) [16] results from 

physic considerations and from experimental tests. Originally proposed by Uman, 

Lin e Standler (LUS) it was modified by Master (MULS). According to this 

model, the return stroke current is composed by three terms: a uniform current ui  

which is the sequel of the leader current, an impulsive current pi  propagating 

upwards, to take in account the collapse of the return stoke wavefront, and a 

current ci  due to the removal of the charges stored in the corona sheath of the 

leader. For the latter term the surge current is assumed distributed along the 

channel with a double exponential mathematical form with an exponential decay 

with the cannel height.  

 

7) The Diendorfer and Uman (DU) model 
In the Diendorfer and Uman model [17], the return-stroke current may be 

viewed as generated at the upward-moving return stroke front and propagating 
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downward. The current at a given channel section turns on exponentially as this 

section is passed by the front. The expression of the DU model reads: 
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where )/1/( cvvv ff +=∗  and Dτ  is the decay time constant of the current. The 

current expression (2.13) involves two terms: the first is a downward-propagating 

current as in the TCS model that exhibits an inherent discontinuity at the upward-

moving front, and the second term being an opposite polarity current which rises 

instantaneously to the value equal in magnitude to the current at the front and then 

decays exponentially with a time constant Dτ . 

The equivalent formulation of this model in terms of charge distribution 

reads: 
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Eventually if 0=Dτ  the DU model reduces to the TCS model. 

 

2.2.3 Channel-base current 

Channel-base current measurements have been performed by means of 

instrumented towers in some countries, and statistical elaboration of lightning 

current data have been presented (e.g. [23, 24]). Usually, positive flash 

occurrences are less frequently than the negative ones and have also a lower peak 
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current-derivative. For this reason only lightning with negative charge to ground 

will be considered. 

Typical channel-base current wave shapes for negative return strokes is 

reported in figure 2.4. This figure, as reported by Berger at al. [23], shows both 

the first (fig. 2.4a) and subsequent (fig. 2.4b) strokes. The statistics of lightning 

current parameters which are most significant for the evaluation of induced 

overvoltages (peak value and front steepness) are shown in table 2.2. 

 
95 % 50 % 5 % 

Stroke 
First Subs First Subs First Subs 

Ipeak [kA] 14 4.6 30 12 80 30 

Time to crest [µs] 1.8 0.2 5.5 1.1 18 4.5 

( ) ]/[
max

mskAdt
di  5.5 12 12 40 32 120 

Table 2.2 Statistics of peak amplitude, time to crest and maximum front stepness for first and 
subsequent negative return strokes [23]. 

 

 
Figure 2.4: Typical channel-base current wave shapes for the first negative return strokes a) 

and for subsequent negative return strokes b) adapted from [23]. 
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Typical channel base current waveshapes lead to several models adopted in 

literature for the return stroke models. In the following the most commonly 

adopted are presented. 

 

1) Bruce and Golde model 
The channel-base current proposed by Bruce and Golde in [13] have a 

double exponential form. In particular, Bruce and Golde proposed a channel base 

current expression for both the first and the subsequent return stroke, which reads: 

 

)(),0( 0
tt

first eeIti βα −− −=       (2.14) 

 

)(
2

),0( 0 tt
subs eeIti βα −− −=       (2.15) 
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Figure 2.5: Bruce and Golde model for channel base current. 
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with 0I  the peak value of the channel-base current. The value of the parameters in 

(2.14) and (2.15) assumed by Bruce and Golde are reported in table 2.3. Figure 

2.5 shows the channel base current waveshape proposed by Bruce and Golde. 

 

2) Pierce and Cianos model 
Pierce, in [25], proposed a similar model to that of Bruce and Golde,  but he 

considered different values for the current parameters 0I , α  and β . The values 

he proposed are reported in table 2.3. Moreover, in [26], Pierce and Cianos 

proposed a new base channel current model in which a second current component 

added to the usual one (2.14) for the first return stroke. This second component 

have also a double exponential form, and leads to a more realistic waveshape, 

since it adjusts the longer time value of the current. The expression reads: 

 

( )tt
i

tt
first eeIeeIti δγβα −+−= −−−

00 )(),0(     (2.16) 

 

The values of the parameters iI0 , γ  and δ  are reported in table 2.3. 

 

 
First Subsequent 

Parameters 
Bruce and Golde Pierce and Cianos Bruce and Golde Pierce and Cianos 

0I  [kA] 30 20 15 10 

iI0  [kA] - 2 - 2 

α  [s-1] 4.4 104 2 104 4.4 104 2 104 

β  [s-1] 4.6 105 2 106 4.6 105 2 106 

γ  [s-1] - 103 - 103 

δ  [s-1] - 104 - 104 

Table 2.3: Values of the parameters for the Bruce and Golde, and the Pierce and Cianos models 
proposed for the channel base current [13,25,26]. 
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Figure 2.6: Pierce and Cianos model for channel base current. 
 

Also for the subsequent return strokes, the same adjustments are applied, 

and the proposed values of the parameters are also given in table 2.3. Figure 2.6 

shows the channel base current waveshape proposed by Pierce and Cianos, both 

for the first and the subsequent return strokes. 

Eventually, one can note that both the Bruce and Golde model and the 

Pierce and Cianos one are characterized by an unrealistic convex channel-base 

current wavefront with a maximum current derivative at 0=t . 
 

3) Heidler model 
The Heidler model was presented in [14]. This model reproduces the 

observed concave rising portion of a typical channel base current waveform, i.e. it 

does not exhibit a discontinuity in its time derivative, unlike the double-

exponential model above presented. The expression of this model reads: 
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u(t) )/exp(
)/(1

)/(),0( 2 
1

 
10 τ
τ

τ
η

t
t

tIti n

n

−
+

=      (2.17) 

 

with ])/()/([expη /1 
1221

nn ττττ−= , 1τ  the time constant of rising front current, 

2τ  the decay constant of the wave form of the current, n  a integer number in the 

range 102 ÷ , and 0I  is the amplitude of the channel base current. The expression 

(2.17) allows one to change conveniently the current peak, maximum current 

derivative, and associated electrical charge transfer nearly independently by 

changing 0I , 1τ  and 2τ  respectively.  

In table 2.4 typical values for the 0I , 1τ  and 2τ  parameters are given [27]. 

The correspondent channel base current is plotted in figure 2.7. In figure 2.8 is 

also plotted a zoom of the channel base current. In this figure the concave rising 

portion of the current can be observed. Eventually, note that by changing 0I , 1τ  

and 2τ , the subsequent return strokes could also be modelled. 
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Figure 2.7: Heidler model for channel base current. 
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Figure 2.8: Heidler model for channel base current. 

 

 

I0 (kA) τ1 (μs) τ2 (μs) n 

10.7 0.25 2.5 2 

Table 2.4: Typical values for Heidler channel base current [27]. 

 

Sometimes a sum of two Heidler functions with different parameters is used 

to approximate the desired current waveshape. Diendorfer and Uman [17], for 

example, described the subsequent-stroke current waveform at the channel base as 

the sum of two expressions given by (2.17), which reads: 
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with the parameters meaning already given for expression (2.17). In table 2.5 

typical values for the parameters of expression (2.17) are reported [27]. 
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I01 (kA) τ11 (μs) τ21 (μs) n1 I02 (kA) τ12 (μs) τ22 (μs) n2 

10.7 0.25 2.5 2 6.5 2.1 230 2 

Table 2.5: Typical values for Heidler channel base current [27]. 

 

The correspondent channel base current is plotted in figure 2.9. As shown in 

figure 2.9, the current waveshape estimates by expression (2.18) is, for longer 

time, more realistic than the current waveshape estimated by (2.17). 

Eventually, Nucci et al. [19] proposed a channel base current as the sum of a 

Heidler expression and a double-exponential expression. This expression reads: 
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In table 2.6 the typical value of the parameters in (2.19) are given [19]. In figure 

2.10 the plot of the current expression (2.19) is shown. 
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Figure 2.9: Channel base current given by summing two Heidler expressions. 
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Figure 2.10: Channel base current proposed by Nucci et al. [20]. 

 

 
I01 (kA) τ11 (μs) τ21 (μs) n I02 (kA) τ12 (μs) τ22 (μs) 

9.9 0.072 5 2 7.5 100 6 

Table 2.6: Typical values for channel base current proposed by Nucci et al. [19]. 

 

 

 

4) Frequency Heidler model 
This model was proposed by Andreotti et al. in [28,29]. In [28] the authors 

presented the analytical evaluation of the Fourier transform of Heidler’s lightning 

return stroke current expression (2.17) to evaluate lightning-induced overvoltages, 

when the frequency domain is considered. The expression of the Fourier 

transform of Heidler’s lightning return stroke current is given in [29] and reads: 
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with 1
2

1 ωτ
τ
τ jp += , and 
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for 1,,1,0 −= nk … , and with 1E  the exponential integral function. 

This model allows to use the Heidler model also in the frequency domain 

overcoming approximations previously made (e.g. [30-32]). 

 

 

2.2.4 Model validation 

The traditional approaches to validate the engineering models are based on 

direct procedures. For an assigned return stroke model, the electromagnetic fields 

are calculated at one or more distances and then compared to the observed ones. A 

return stroke model is then considered suitable if there is a relatively good 

coincidence between calculated and measured fields. In this view, two primary 

approaches to engineering model validation have been used: the Typical Return 

Stroke approach, and the Specific Return-Stroke approach [8]. 

 

 

1) Typical Return Stroke approach 
This approach involves using a typical channel base current waveform and a 

typical return-stroke propagation speed as model inputs and then comparing the 

model predicted electromagnetic fields with typically observed fields. This 

approach has been adopted by Rakov and Dulzon [12], Nucci et al. [19], and 

Thottappillil et al. [18]. Nucci et al. [19] identified four characteristic features in 

the fields at km 2001−  measured by Lin et al. [33] and used those features as a 
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benchmark for their validation of the TL, MTLE, BG, TCS and MULS models. In 

figure 2.11 the lightning fields measured by Lin et al. [33] are showed. The 

characteristic features include: 

 

a) a sharp initial peak that varies approximately as the inverse 

distance beyond a kilometer or so in both electric and magnetic 

fields; 

b) a slow ramp following the initial peak and lasting in excess of 

sμ 100  for electric fields measured within a few tens of kilometers; 

c) a hump following the initial peak in magnetic fields within a few 

tens of kilometers, the maximum of which occurs between 10 and 

40 sμ ; 

d) a zero crossing within tens of microseconds of the initial peak in 

both electric and magnetic fields at 50 to 200 km . 

 

For the current and other model characteristics assumed by Nucci et al. [19], 

feature a) is reproduced by all the models examined, feature b) by all the models 

except for the TL model, feature c) by the BG, TL and TCS models but not by the 

MTLE model, and feature d) only by the MTLE model but not by the BG, TL, 

and TCS models. Diendorfer and Uman [17] showed that the DU model 

reproduces features a), b), and c), and Thottappillil et al. [34] demonstrated that a 

relatively insignificant change in the channel base current waveform (well within 

the range of typical waveforms) allows the reproduction of feature d), the zero 

crossing, by the TCS and DU models. Rakov and Dulzon [12] showed that the 

MTLL model reproduces features a), b) and d). 
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Figure 2.11: Typical vertical electric field intensity and horizontal magnetic flux 
density waveforms. The fields are plotted for first (solid line) and subsequent 
(dashed line) return strokes at distances of 1 - 200 km, adapted from [33]. 
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2) Specific Return-Stroke approach 

This approach involves using the channel base current waveform and the 

propagation speed measured for the same individual event and comparing 

computed fields with measured fields for that same specific event. This approach 

is able to provide a more definitive answer regarding model validity, but it is 

feasible only in the case of triggered-lightning return strokes or natural lightning 

strikes to tall towers where channel base current can be measured. In the field 

calculations, the channel is generally assumed to be straight and vertical with its 

origin at ground 0'=z , conditions which are expected to be valid for subsequent 

strokes, but potentially not for first strokes. 

This approach has been adopted by Thottappillil and Uman [21] who 

compared the TL, TCS, MTLE, DU, and MDU models. They used 18 sets of three 

simultaneously measured features of triggered lightning return strokes: channel-

base current, return-stroke propagation speed, and electric field at about 5 km 

from the channel base, the data previously used by Willett et al. [35] for their 

analysis of the TL model. It has been found that the TL, MTLE, and DU models 

each predict the measured initial electric field peaks within an error whose mean 

absolute value is about 20%, while the TCS model has a mean absolute error 

about 40%. 

 

The above presented approaches to validate return stoke models are based 

on direct procedures: a return stroke model is considered suitable if there is a 

relatively good coincidence between calculated and measured fields. In [36] 

Andreotti et al. describe the possibility of identifying exactly the attenuation 

function )'(zP , by means of an inverse procedure, solving the equations relating 

the measured field to the channel base current. Two possible different procedures, 

one for different frequencies and one for different distances, to identify the 

lightning return stroke attenuation in the frequency domain were proposed. Both 

procedures are able to accurately identify )'(zP . 
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2.3. Calculation of lightning return stroke fields 

Once the source is specified, fields can always be computed without 

approximation other than those involved in the computational process. In the 

problems concerning the lightning induced overvoltages calculations, the most 

commonly field equations adopted for the evaluation of return stroke fields have 

been proposed by Uman et al. in [37]. By assuming the ground as a perfect 

conductor, they have derived the equations for the electric and magnetic field 

originated by a vertical dipole of infinitesimal length, by solving Maxwell’s 

equations in terms of retarded scalar and vector potentials. The geometry of the 

problem is shown in figure 2.12. 

The field evaluated is originated by a vertical dipole of infinitesimal length 

'dz  placed at height 'z . In the cylindrical coordinate system shown in figure 2.12 

the field generated by a vertical dipole is characterised, assuming ground as a 

perfect conductor, by the vertical and radial electric field component, and the 

azimuthal magnetic field component. The equations proposed in [37] are: 

 

x

z

y

P(r,φ,z)

rφ 

dz’ i(z’,t) 

vf

z’ 

Figure 2.12: Geometry for return stroke field evaluation. 

O



Chapter 2: Numerical Methods for Lightning Induced Overvoltages Calculations 

35 

⎥
⎦

⎤−−
+

+−
−−

⎢
⎣

⎡
∫ +−

−−
=

t
cRtzi

Rc
zzr

cRtzi
cR

rzzrdcRzi
R

rzzrdztzrde t

o
r

∂
∂

ττ
πε

)/,'()'(                               

)/,'()'(3 )/,'()'(3
4

'),,(

32

4

2

05

2

 

          (2.22) 
 

⎥
⎦

⎤−
−

+−
−−

⎢
⎣

⎡
∫ +−

−−
=

t
cRtzi

Rc
r

cRtzi
cR

rzzdcRtzi
R

rzzdztzrde t

o
z

∂
∂

τ
πε

)/,'(                              

)/,'()'(2 )/,'()'(2
4

'),,(

32

2

4

2

05

2

 

          (2.23) 
 

⎥
⎦

⎤−
⎢⎣
⎡ +−=

t
cRtzi

cR
rcRtzi

R
rtzrhd

∂
∂

πϕ
)/,'()/,'(

4
1

),,( 23    (2.24) 

 

with 22 )'( zzrR −−= . The equations refers to a return stroke current ),'( tzi . 

In (2.22) and (2.23), the three terms are respectively called the electrostatic field, 

the induction field, and the radiation field. In (2.24) only the induction and 

radiation fields are present, respectively the first and second terms. 

The total electric and magnetic fields are obtained by integrating (2.22)-

(2.24) along the lightning channel and its image. The following expressions are 

obtained: 
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The expressions (2.25)-(2.27) have correspondent expressions in the 

frequency domain. By means of a Fourier transform, the expression obtained 

reads: 
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where ),'( ωzI  is obtained as 
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If vztu /'−=  is substituted in (2.31), the following expression is obtained: 
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where )'(zP  is the attenuation function of the return stroke current along the 

lightning channel. If (2.32) is substituted in (2.28)-(2.30), following expressions 

are obtained [36]: 
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2.4. Propagation effect 

If the observation point ),,( zrP ϕ  of the lightning fields is located on the 

ground surface, and the ground is assumed to be perfectly conducting, only two 

field components, the vertical electric field and the azimuthal magnetic field are 

present, as discussed in the previous paragraph. The horizontal electric field 

component is zero as required by the boundary condition on the surface of a 

perfect conductor. At an observation point above a perfectly conducting ground, a 

nonzero horizontal electric field component exists. A horizontal electric field 

exists above ground and also both on and below its surface in the case of a finite 

ground conductivity. Propagation effects include the preferential attenuation of 

the higher frequency components in the vertical electric field and azimuthal 

magnetic field waveforms and the appearance of a horizontal radial electric field 

which can be viewed as producing the radial current flow and resultant ohmic 

losses in the earth. A good review of the literature on the effects of finite ground 

conductivity on lightning electric and magnetic fields is given by Rachidi et al. 

[38]. 

Two approximate equations, both in the frequency domain, are commonly 

used for the computation of the horizontal electric field in air within 10 m or so of 

a finitely conducting earth. The first is namely the wavetilt formula and was 

proposed by Zenneck [39], while the second, namely Cooray–Rubinstein formula, 

was presented by Cooray [40] and by Rubinstein [41]. 

 

1) Wavetilt formula 
The term “wavetilt” originates from the fact that when a plane 

electromagnetic wave propagates over a finitely conducting ground, the total 

electric field vector at the surface is tilted from the vertical because of the 
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presence of a nonzero horizontal (radial) electric field component. The tilt is in the 

direction of propagation if the vertical electric field component is directed upward 

and in the direction opposite to the propagation direction if the vertical electric 

field component is directed downward with the vertical component of the 

Poynting vector being directed into the ground in both cases. 

The wavetilt formula states that for a plane wave the ratio of the Fourier 

transform of the horizontal electric field ),( ωPEr  to that of the vertical electric 

field ),( ωPEz  is equal to the ratio of the propagation constants in the air and in 

the ground [39]: 
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j
zrEzrE
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=     (2.40) 

 

where gσ  and rgε  are the conductivity and relative permittivity of the ground, 

respectively, and ω  is the angular frequency. The formula is a special case (valid 

for grazing incidence) of the theory of the reflection of electromagnetic waves off 

a conducting surface and, hence, is a reasonable approximation only for relatively 

distant lightning or for the early microseconds of close lightning when the return 

stroke is near ground. ),,( ωzrEz  is typically computed assuming a perfectly 

conducting ground or is measured. 

In 1988 Thomson et al. [42] presented the horizontal field magnitude from 

the vertical electric field by using the time domain approach described by Master 

in 1982 [43]. In Master’s technique the vertical electric field is approximated as a 

sequence of superposed delayed ramps, since a ramp has an analytical inverse 

transform of the wavetilit expression (2.40). The horizontal electric field is then 

determined in the time domain as the superposition of the ramp responses. For 

example, for the ramp, given by 

 

)(  )( 1ttutmtez −=        (2.41) 
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the wavetilt response is 

 

[ ] [ ] )()(exp)()()()( 11101 ttuttpptIptIttmte
r

r −−−+−=
ε

  (2.42) 

 

with )2/( 0εεσ rgp = , 0I  and 1I  are the modified Bessel’s functions of the first 

kind of the zeroth and first order, respectively. 

 

2) Cooray–Rubinstein equation 

The Cooray–Rubinstein equation is expressed as follows [40], [41]: 
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where 0ε  is the free space permeability and ),,( ωzrErp  is the Fourier transforms 

of the horizontal electric field at height z  above ground and ),0,( ωϕ rH p  is the 

azimuthal magnetic field at ground level, respectively, both computed for  the 

case of a perfectly conducting ground. The second term is equal to zero for 

∞→gσ  and becomes increasingly important as gσ  decreases. 

2.5. Field to Line Coupling 

Once the electromagnetic field is calculated making use of a return stroke 

current model, it is used to calculate the induced overvoltages, by means of a 

coupling model which describes the interaction between the field and the line 

conductors. As far as the calculation of the electromagnetic field it has already 

been the object of the previous paragraphs. As far as the coupling models they are 

the object of this paragraph. In particular, the most used coupling models will be 

summarised and discussed. 
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In literature different formulations have been proposed for field to line 

interaction. The most popular coupling models, for calculations concerning 

lightning, are: 

 

o Taylor, Satterwhite and Harrison model, proposed in [44]; 

o Agrawal, Price, Gurbaxani model, proposed in [45]; 

o Rachidi model, proposed in [46]; 

o Rusck model, proposed in [47]; 

o Chowdhuri and Gross model, proposed in [48]. 

 

All these models are based on the Transmission Line approximation, which 

means that the transverse dimension of the line is considered much smaller than 

the minimum significant wavelength, and that the response of the line to the 

lightning electromagnetic field is quasi-transverse electromagnetic. In figure 2.13 

the geometry used for the calculation of overvoltages induced on an overhead 

power line by an indirect lightning return stroke is reported. The line have height 

h , length L , is parallel to axisx −  and is contained in the planexz − . 

In what follows the Taylor et al., Agrawal et al. and Rachidi coupling 

models and their formulations will be summarised. The last two models, the 

i(x,t) 

Bi
y 

Ei
x 

Ei
z 

x x x+dx x=0 x=L 

Z1 Z2 h 

Figure 2.13: Geometry used for the field to line coupling problem. 
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Rusck and the Chowdhuri-Gross ones, are very popular for analytical approaches. 

For this reason these two models will be discussed in the next chapter, since it is 

focused on the methods based on analytical tools. 

Each of these coupling model formulations is expressed by means of a pair 

of equations involving time and space-derivatives of induced voltages and 

currents along the line plus some forcing function, or source terms, that are a 

function of the incident electromagnetic field component. 

 

1) Taylor, Satterwhite and Harrison model 
This coupling model refers to a two-wire transmission line and the source of 

line excitation is an external electromagnetic field. With respect to the figure 2.13, 

the first wire is located at 0=z and the second one at hz = . The incident 

magnetic field iB  is taken in the y  direction and the incident electric field iE  in 

xz  plane. This model is described by two coupling equation in the frequency 

domain, which reads: 
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where )(xV  and )(xI  are the voltage and current along the line, respectively, 'Z  

and 'Y  are the line conductor distributed series impedance and shunt admittance 

respectively, given by [44]: 
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where iZ  is the internal impedance of the line conductor, )/ln()/( ahLe πμ= , a  

is the conductor radius and ( )ωσεμω /jk −= . 

The boundary condition are: 
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The second members of (2.44) are the source terms, which are expressed in terms 

of transverse magnetic induction and vertical electric components of inducing 

field. In figure 2.14 the equivalent circuits of this coupling model is showed for a 

lossy single wire overhead line. 

 

2) Agrawal, Price, Gurbaxani model 
This coupling model refers to the general case of a multiconductor line plus 

a reference conductor and the source of line excitation is a nonuniform 

electromagnetic field. With respect to the figure 2.13, the conductor is located at 

hz =  and the reference one is located at 0=z . The incident magnetic field iB  is 

taken in the y  direction and the incident electric field iE  in xz  plane. This model 

is described by two coupling equation in the frequency domain, which reads: 
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Figure 2.14: Equivalent coupled circuit according to the Taylor et al. model for a lossy 
single wire line. 
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where ),( hxEi
x  the horizontal component along the wire of the incident electric 

field, 'Z  and 'Y  are the longitudinal and transverse per-unit-length impedance and 

admittance respectively, and )(xV s  is the scattered voltage, related to the total 

voltage by the following equation 
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with )(xV i  the called incident voltage. The expression of 'Z  and 'Y  have already 

been discussed. In particular, when the lossy ground is considered they read [38] 
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with wZ '  and gZ '  the wire and the ground impedances 'L  and 'C  the external 

per-unit-length inductance and capacitance, respectively, calculated for a lossless 

wire above a perfectly conducting ground, gY '  is the ground admittance and 'G  is 

the per-unit-length transverse conductance. 

The boundary conditions are 
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In figure 2.15 the equivalent circuits of this coupling model is showed for a 

lossy single wire overhead line. 

 
 

The difference between the formulation (2.48) proposed by Agrawal et al. 

and the formulation (2.44) are lies essentially in the representation of the source 

terms. In the formulation of Taylor et al., source terms are functions of both 

electric and magnetic incident fields. In the formulation of Agrawal et al., the 

source terms involve only the electric incident field components. 

 

3) Rachidi model 
This coupling model refers to the general case of a multiconductor line plus 

a reference conductor and the source of line excitation is a nonuniform 

electromagnetic field. With respect to the figure 2.13, the conductor is located at 

hz =  and the reference one is located at 0=z . The incident magnetic field iB  is 

taken in the y  direction and the incident electric field iE  in xz  plane. This model 

is described by two coupling equation in the frequency domain, which reads: 
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Figure 2.14: Equivalent coupled circuit according to the Agrawal et al. model for a lossy 
single wire line. 
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with ),( zxBi
x  the horizontal component along the conductor of the incident 

magnetic field, and )(xI s  the scattered current, related to the total current by the 

following equation 
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with )(xI i  the called incident current, and with 'Z  and 'Y  meaning already given 

for the Agrawal et al. model. The boundary conditions are 
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In this formulation, the source terms are expressed in terms of magnetic 

incident field components. The use of this formulation is particularly interesting 

when the exciting field is determined experimentally, since only the measurement 

of magnetic field-generally much easier than that of electric field is needed. In 

figure 2.16 the equivalent circuits of this coupling model is showed for a lossy 

single wire overhead line. 
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The summarised models have been presented by means three different, but 

equivalent, formulations (2.44), (2.48) and (2.53) and the total induced voltages 

predicted by these three formulations are identical, as shown by Nucci and 

Rachidi [49]. 

2.6. Indirect Lightning Induced Voltages Calculation 

Most numerical methods on lightning induced voltages on overhead power 

lines use a direct time domain analysis to solve the field to transmission line 

coupling equations. The use of a direct time domain analysis is useful because of 

its straightforwardness in dealing with insulation coordination problems, and its 

ability to handle non-linearities, which arise in presence of protective devices such 

as surge arresters or corona phenomenon. One of the most popular approaches to 

solve the transmission line coupling equations in time domain is the finite 

difference time domain (FDTD) technique. Such a technique was used, for 

example, by Agrawal et al. in [45]. A comprehensive review of the procedure 

involving numerical solutions of coupling equation is reported in [38]. 

The field to transmission line coupling equations (2.44), (2.48) and (2.53), 

presented in the frequency domain, can be converted in the time domain. The 

frequency dependent parameters, such as the wire and ground impedances, can be 

represented using a convolution integral. As a consequence a considerable time 

and computer memory storage requirements could be needed to carry out a time 
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Figure 2.16: Equivalent coupled circuit according to the Rachidi model for a lossy 
single wire line. 

L 

dxdz
y

zxB
Z

h i
x

⎥
⎦

⎤
⎢
⎣

⎡
∫

∂
∂

−
0

),(
'

1

∫−
h

i
y dzzLB

Z 0
),(

'
1

∫−
h

i
y dzzB

Z 0
),0(

'
1  



Chapter 2: Numerical Methods for Lightning Induced Overvoltages Calculations 

48 

domain solution. Hence, any numerical methods need to involve approximated 

procedure to solve the coupling equations, e.g. [49,50]. 

In the following the induced voltages evaluated by means of a finite 

difference time domain computer code proposed in [37] are reported. The 

geometry of the case studio is reported in figure 2.17. 

 

 

 
Figure 2.17: Geometry of the problem for induced voltages calculation. 

 

 

The case studio considered is the one of a single conductor lossless line 

above a lossy ground. The line is matched at both ends, km 1  long and m 10  

height. The lightning impact point is m 50  far from the line, equidistant between 

the two line ends. The induced voltage at the abscissa 0=x  is showed in figure 

2.18. This figure is adapted from [38] and refers to a typical return stroke. 
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Figure 2.18. Induced Voltages on an overhead line km 1  long and m 10  height. A typical return 

stroke is considered. Adapted from [38]. 

 

In figure 2.18 the induced voltage is plotted both for the cases of finite and 

infinite ground conductivity. As shown, the ground conductivity affects the 

induced voltages both for the magnitude and the polarity. 
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CHAPTER 3 
ANALYTICAL FORMULATIONS FOR LIGHTNING 

INDUCED OVERVOLTAGES CALCULATIONS 
 
 

 

 

 

 

 

 

 

In literature many efforts have been directed to improve the knowledge of 

the lightning phenomenon and its effects on power circuits. In particular, many 

numerical approaches have been proposed for the evaluation of the overvoltages 

induced on an overhead line by indirect lightning, as discussed in the chapter 2. 

However, closed form solutions provide considerable insight into the 

phenomenon, which is often obscured in numerical approaches. For this reason 

closed form solutions are very important in the design phase (e.g. [1]), in 

parametric evaluation and sensitivity analysis (e.g. [2]), and in economic analysis 

(e.g. [3]).  

In literature, two main analytical formulations are very popular: the 

formulae proposed by Rusck [4], and the formulae proposed by Chowdhuri and 

Gross [5]. Moreover, Hoidalen, in [6], and Liew and Mar in [7] have presented 

other two analytical formulations. The closed form solutions proposed by Rusck 

[4], in particular, are very relevant since they are used in the Standard IEEE 1410 

[1]. All these closed form solutions have been investigated by many authors; in 

particular, both the validity of the models underlying the solutions and the 

approximations used in those models were analysed (e.g. [8-11]). However, those 
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closed form solutions have never been compared with a rigorous analytical 

formulation, which is not available in literature and will be one of the 

contributions of the present work. We will, therefore, in this chapter, obtain the 

exact closed form solution in the hypothesis of lightning event model adopted in 

[4-7]. This solution will be then used to compare the other closed form solutions 

with the exact one in order to highlight their accuracy. 

This chapter is organised as follows: in paragraphs 3.1, 3.2, 3.3 and 3.4, the 

Rusck’s, Chowdhuri and Gross’, Liew and Mar’s and Hoidalen’s formulations, 

respectively, will be presented. In paragraph 3.5 the exact closed form solutions 

will be derived and the results discussed. In paragraph 3.6, the four closed forms 

presented in literature will be then compared with the exact one. 

3.1. The Rusk Formulae 

In this paragraph the Rusck formulation will be summarised. This 

formulation was proposed in the 1958 [4]. The Rusck lightning event model 

applies to the case of a vertical and straight lightning channel (see figure 3.1). To 

take into account the leader effect, a negative charge is uniformly distributed 

along the lightning path before the return stroke starts. The return stroke is a 

current surge with the shape of a step-function which propagates upwards along 

the lightning channel with the constant velocity v , neutralizing the charge. This 

type of propagation along the lightning channel is known as TL model (detailed in 

chapter 2). The power line is assumed to be an infinitely long lossless single 

conductor line above a perfectly conducting ground.  
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As in any other method for the evaluation of induced voltages in power 

lines, Rusck first evaluates the electromagnetic field, and then calculates the field 

to line coupling. In the next section the electromagnetic field as evaluated by 

Rusck will be presented, and then in 3.1.2 the Rusck coupling model will be then 

introduced. In 3.1.3 the induced voltages predicted by Rusck formulae will be 

shown and discussed. 

3.1.1 The Lightning Electromagnetic Field 

The Rusck return stroke model applies to the case of a vertical and straight 

lightning channel initially charged by a uniform distribution charge, as shown in 

figure 3.1. The geometry of the problem, for the evaluation of the field, is shown 

in figure 3.2. The return stroke current is a step-current (figure 3.3) which 

propagates along the channel undistorted and unattenuated. The expression 

describing the current distribution for the model under study is given by 

 

( ) ( )vztuItzi /' ,' 0 −=        (3.1) 

v 
q(z’,t)
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Figure 3.1: Lightning event model of the Rusck formulation. 
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This return stroke current, as it moves along the channel, leaves a positive 

charge distribution 0q  which neutralise the initial negative charge distribution. 

The initially charged channel is assumed of finite length ch , as shown in figure 

3.2. The relation between the current and charge distributions 0q  is given by 

vqI 00 = . 

Rusck calculates the scalar potential φ  and the vector potential A
G

 which 

can be written as 

 

i(z’,t) 

t

I0 

z’/v 

Figure 3.3: Return stroke current adopted in the Rusck formulation. 
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Figure 3.2: Geometry of the problem for the evaluation of the field 
according to Rusck formulation. 
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As far as the scalar potential φ , disregarding the influence of the mirror image for 

the while, the equation (3.2) will be simply 
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with the lower limit of integration 1s  obtained from the condition that the 

travelling time of the return stroke from the ground to the point 1sz =  plus the 

travelling time from this point to the place where the potential is desired, i.e. the 

point ),,( zr ϕ , must be equivalent to the time t . The following equation is 

obtained 
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Solving for 1s  
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By integrating (3.4) and substituting (3.6), the scalar potential reads: 
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Eventually, the potential of the mirror image is obtained from (3.7) by changing 

the sign of z . 

As far as the vector potential A
G

, disregarding the field of the mirror image, 

the equation of the vector potential (3.3) can be written as 
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By integrating (3.8) and substituting 1s  from (3.6), the vertical component of the 

vector potential can be calculated as: 
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Eventually, the vector potential of the mirror image is obtained from (3.9) by 

changing the sign of z . 

Now, the electric field E
G

 and the magnetic field B
G

 can be evaluated 

through the following equations: 
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In [4] Rusck gives the expression of the vertical component of the electric field. 

More in details, he split the vertical component of the electric field in two terms: 

the first due to the scalar potential φe  and the second due to the vector potential 

Ae . The terms φe  and Ae  can be obtained by the vertical component of the first 

and second term in the R.H.S. of (3.10), respectively, and read: 
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The two components of the electric field strength at the ground, are obtained 

by (3.12) and (313) by substituting 0=z . 
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Rusck gives also the magnetic field strength at the ground level, which 

reads: 
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These expression are not, of course, valid until the field of the return stroke 

have not reached the observation point, i.e. not until the time crt /= . Before this 

time, the field is determined by the stepped leader process which, in comparison 

with the field of the turn stroke, may be considered stationary and consequently 

cannot induce voltages. At the moment when the tip of the stepped leader reaches 

the ground, the electric field is determined by the uniformly distributed charge in 

the lightning channel. The study in [4] shows that the field strength is then given 

by  
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i.e. the same value which is obtained by substituting crt /=  in equation (3.14). 

The time derivative of φe  is consequently limited at crt /=  even if the front time 

of lightning current is zero (as in the case of a step current), which is of 

importance when computing the induced voltage. The component of φe , 

dependent on the charge, starts at a positive value 0φe  and decreases to zero when 
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the return stroke approaches to cloud. The component Ae , dependent on the 

lightning current, increases from zero at crt /=  to the value 

 

r
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and will then monotonously die out. 

In figures (3.4), (3.5) and (3.6) 0φφ ee − , Ae  and ϕb  have been plotted, 

respectively, as functions of the time for a number of different values of the 

lightning current. 
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Figure 3.4: The vertical electric field component dependent on the charge 

distributed along the lightning channel a function of the time and for different 

lightning current, for r = 100 m ad z= 0. 
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Figure 3.5: The vertical electric field component dependent on the lightning 

current as a function of the time and for different lightning current, for r = 100 m 

and z = 0. 
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Figure 3.6: The magnetic field as a function of the time and for different 

lightning current, for r = 100 m and z = 0. 
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3.1.2 Field to Line coupling 

Rusck in [4] presented a field to wire coupling model derived in terms of the 

distributed currents and voltages along the line. The proposed transmission lines 

equations associated with the model were derived relating the total electric field 

on the conductor surface to the scalar and vector potentials. Considering the 

geometry presented in figure 3.1, the transmission line equations derived by 

Rusck [4,9] are: 
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In equations (3.19) and (3.20) ),( txvφ  is the voltage induced on the line due to the 

scalar potential iφ  of the incident field, 'l  and 'c  are the corresponding line 

inductance and capacitance per unit length, respectively, ),( txi  is the current 

along the line. The total voltage ),( txv  along the line is given by 
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Figure 3.7 depicts the transmission line representation of the Rusck model. 
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To simplify the process of getting the final solution, Rusck assumes the electric 

field, the scalar and vector potentials between the ground and the line height to be 

constant and equal to those on the ground surface. With these approximations the 

final solution found by Rusck, after integration of (3.19) and (3.20) reads: 
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The voltage at the point nearest to the lightning stroke ( 0=x ) is given by 
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In figure 3.8 the voltage induced on a line m 10  height and  50  m far from the 

lightning stroke is plotted. The voltage is shown for a lightning current of kA 10  

and for different values of β . 

As β  is generally much smaller than unity the last term in the bracket in 

equation (3.23) may be neglected when determining the maximum value of 

),0( tv . With this approximation it is found that equation (3.23), is at its maximum 

when 
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which gives 
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Expression (3.25) is fundamental since the IEEE standard 1410 [1] proposes this 

formula for the peak evaluation of the induced voltage. 

The Rusck formulation has been investigated by many authors; in particular, 

both the validity of the model underlying the solutions, and the approximations 
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Figure 3.8: The induced voltage at x = 0 according to the Rusck formula. The 

voltage is calculated on a line 10 m height, 50 m far from the lightning stroke, 

for a lightning current I0=10 kA, and is plotted for different values of β. 
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used in this model were analysed. The validity of the underlying model was 

considered questionable by Parker et al. [7], since it could be responsible for the 

significant differences between experimental data and theoretical results. Cooray 

in [9] actually found a missing term in the coupling model, which however was 

not relevant to geometries where the lightning channel was perpendicular to the 

power line. In [10] Nucci et al. found that the approach may defects for situation 

where the overvoltage is calculated not in front of the lightning channel but in 

offset positions. However, the closed form solutions proposed by Rusck have 

never been compared with the only legitimate term of reference which is its 

corresponding exact analytical formulation, which, we repeat, will be derived in 

what follows. 

3.2. Chowdhuri and Gross Formulae 

In this paragraph the Chowdhuri and Gross formulation will be summarised. 

This formulation was originally proposed in the 1967 [5]. In Cornfield [12] some 

errors were found in the original formulation and Chowdhuri himself proposed a 

corrected formulation in [13]. The basic assumptions are exactly the same as those 

used by Rusck, here recalled for sake of clarity: 

 

o vertical stroke channel with a single return stroke originating from the 

ground plane at time 0=t ; 

o velocity of the return stroke is constant v ; 

o uniform charge distribution along the leader stroke; 

o the line conductor is lossless and doubly infinite and the earth is perfectly 

conducting. 

 

The lightning event model adopted by Chowdhuri and Gross is that in figure 3.1. 

The type of propagation along the lightning channel is the TL model (detailed in 

chapter 2). 
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3.2.1 Electromagnetic field 

In this formulation a rectangular system coordinates in space of figure 3.9 

was chosen. The electromagnetic field associated with the charge and the current 

in the lightning stroke at any point in space is 
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∂

−∇−= φ     (3.26) 

 

with φ  the inducing scalar potential created by the charge of the lightning stroke 

and A
G

 the inducing vector potential created by the current of the lightning stroke. 

These two electromagnetic inducing potentials are deduced from Maxwell’s field 

equations 
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Figure 3.9: Geometry of the problem of the lightning event model of the 

Chowdhuri and Gross formulation. 
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where r , 'r  are the field and source points, respectively, ρ  is the charge density, 

J
G

 is the current density and the integration is taken over a volume enclosing the 

source. 

For the problem of lightning induced voltage calculations, the source is the 

lightning stroke, and the field point is any point along the power line. The line 

integral of eG  will then provide the inducing voltage at the power line 
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The inducing voltage (3.29) will act on each point along the length of the power 

line. 

Because of the retardation effect, the electromagnetic potentials φ  and A
G

 at 

the field point r  and at time t  must be originated at the source point 'r  at an 

earlier time crrtt /'' −−= . It is convenient to choose the instant at which the 

return stroke starts from the ground as the origin of time, i.e. 0=t . The 

disturbance of an element of charge or current at a height 'z  above the ground and 

along the return stroke will be felt at a field point r  on the ground at time  
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Therefore, the earliest time at which the disturbance from the return stroke will 

reach a field point would be 
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In other words, the inducing voltage at a field point remains zero till 0tt = . 

Hence, the inducing voltage is a sectioned function 
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with )( 0ttu −  the shifted Heaviside function. The continuous function ),( txψ  is 

evaluated from the assumed structure of the lightning stroke. When the channel 

base current is a step function (figure 3.3) with magnitude 0I , ),( txψ  reads 
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Note that Ωπζ 60)4/(2 0 = . 

3.2.2 Field to Line coupling 

In the Chowdhuri and Gross model a power line is represented as consisting 

of distributed series inductance and distributed shunt capacitance. The 

transmission line equations based on the Chowdhuri and Gross coupling model 

are 
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with 'l  and 'c  the corresponding line inductance and capacitance per unit length, 

respectively, ),( txv  and ),( txi  the voltage and current along the line, 

respectively. The equivalent transmission line representation based on Chowdhuri 

and Gross coupling model is shown in figure 3.10. 

It should be mentioned here that the transmission line equations presented 

by Chowdhuri and Gross [5] are similar to those of Rusck [4], but they are 

expressed in terms of total line voltage. The source term along each point of the 

line counts of the inducing voltage ),( txvi . Chowdhuri and Gross state that since 

the height of the line conductor is small compared with the height of the cloud (i. 

e. the length of the lightning channel), the inducing electric field below the line 

conductor can be assumed constant and equal to that on the ground surface. Then, 

the inducing voltage ),( txvi  can be written as: 
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Chowdhuri and Gross proposed two closed form solutions: in the first a step 

current along the lightning channel was assumed, while in the second a linearly 

rising current. In the following both these two formulae will be summarised. 
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Figure 3.10: Transmission line segment representing Chowdhuri and 
Gross coupling model. 
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3.2.3 Induced Voltage: Step Current along the lightning channel 

The first closed form solution presented by Chowdhuri and Gross applies to 

the case of a step current propagating along the lightning channel, plotted in figure 

3.3. The channel base current is then a step function, as in the Rusck formulae. 

The expression describing the current distribution for the model under study is 

given by (3.1). 

The inducing voltage ),( txvi , is (3.32). By solving the coupling equations 

(3.34) and (3.35) the induced voltage is evaluated. According to the Chowdhuri 

and Gross model, the total voltage is given by 
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where 
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In [13,14] Chowdhuri introduced a correction to this formula, considering the 

suggestion given by Cornfield [12]. In particular, the correction regards the 

coefficients 1k  and 2k  which take the form  
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In figure 3.11 the voltage induced on a line m 10  height and  50  m far from 

the lightning stroke is plotted. The voltage is shown for a lightning current of 

kA 10 , for 4.0=β  and the lightning channel is assumed km 5  long. 
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3.2.4 Induced Voltage: Linearly rising front current along the lightning 

channel 

Once the induced voltage on an overhead line caused by a rectangular 

current wave in the return stroke is known, the corresponding induced voltage 

caused by any other form of current in the return stroke can be computed by the 

application of Duhamel’s theorem [15,16], so explained by Chowdhuri and Gross: 

 

“if the current in the return stroke )(' ti  is of exponential order and is a 

continuous function of t , and if its first derivative with respect to t  is sectionally 

continuous, the induced voltage caused by this current is 
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Figure 3.11: The induced voltage at x = 0 according to the Chowdhuri and 

Gross formula for a lightning step current. The voltage is calculated on a line 

10 m height, 50 m far from the lightning stroke, for a lightning current I0=10 

kA, β=0.4 and for a lightning channel 5 km long. 
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where ),(0 txv  is the induced voltage caused by the unit-step-function return 

stroke current”. 

 

By means of the Duhamel’s theorem Chowdhuri and Gross presented the 

closed form solution for the case of a linearly rising front channel base current 

propagating along the lightning channel. In figure 3.12 the current waveshape is 

plotted. The expression describing the channel base current waveshape is 
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with tt f /=α . The expression for induced voltage due to this lightning current 

waveshape was given by Chowdhuri and Gross as: 
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Figure 3.12: Channel base current linearly rising front time. 
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with  

⎥
⎥
⎥
⎥

⎦

⎤

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

⎭
⎬
⎫

⎩
⎨
⎧

−
+

−−

⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛ +
+

−
−

+++−

⋅=

2

22
2

2

2

2

22
224

222

222222

2

01

)(ln
1k

11       

)(2

)1(
)1()())(1(ln1       

30),(

d
xct

d

dxctct

d
ctdx

ct
hItxv

f

β

γ
ββγ

β
ββββ

γ

β

 

          (3.47) 

 

In [11] Chowdhuri introduced the correction to the original formula (3.47), 

considering the suggestion given by Cornfield [12], reported in (3.43). 

Both the two closed form solutions (3.36) and (3.46) proposed by 

Chowdhuri and Gross have been investigated by many authors, e.g. [11,16,17]; in 

particular, both the validity of the model underlying the solutions, and the 

approximations used in those models were analysed. In particular Nucci et al. in 

[11] found the Chowdhuri and Gross coupling model incomplete, since it is 

missing one term which is very relevant to overvoltages calculations. 

 

3.3 Liew and Mar Formulae 

Liew and Mar in [7] proposed, following a similar procedure to that of 

Chowdhuri and Gross, a new closed form solution for both the step current and 

the linearly rising current. The basic assumptions are exactly the same as those 

used by Chowdhuri and Gross and also by Rusck. The geometry of the problem is 

shown in figure 3.9. 

Liew and Mar consider the inducing voltage as 
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instead of (3.36). In the following we summarise the two formulae 

presented by Liew and Mar. 

3.3.1 Induced Voltage: Lightning Step Current along the lightning 

channel 

In this case of step current along the lightning channel (figure 3.3), Liew 

and Mar proposed the following formula for induced voltage evaluation reads 
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and  
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with 1k  and 2k  already given in (3.43).  

In figure 3.13 the voltage induced on a line m 10  height and  50  m far from the 

lightning stroke is plotted. The voltage is shown for a lightning current of kA 10 , 

for 4.0=β  and the lightning channel is assumed km 5  long. 

3.3.2 Induced Voltage: Linearly Rising Current along the lightning 

channel 

The expression for induced voltage due to this lightning current waveshape 

(figure 3.12) was given by Liew and Mar as: 
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Figure 3.13: The induced voltage at x = 0 according to the Liew and Mar formula 
for a lightning step current. The voltage is calculated on a line 10 m height, 50 m 
far from the lightning stroke, for a lightning current I0=10 kA, β=0.4 and for a 
lightning channel 5 km long. 
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where 
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In figure 3.14 both the Chowdhuri and Gross and the Liew and Mar formulae are 

reported, adapted from [7]. 

 
Figure 3.14: Induced voltage for a linearly rising front time lightning current 

at x = 0, adapted from [7]. In the plot y0 = d and the Authors’ New 

Expression is the Liew and Mar expression. 
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3.4. Hoidalen Formulae 

The configuration of the system is shown in Fig. 3.15. The lightning channel 

is assumed to be straight and vertical and the lightning return stroke model of the 

type TL, detailed in chapter 2. The line is considered lossless. The formulation of 

Hoidalen aims to consider the lossy behaviour of the ground in order to evaluate 

the induced overvoltages. 

3.4.1 Electromagnetic Field over a lossless ground 

The hypothesis of the Hoidalen formulation are identical to the previous 

discussed formulation except for the situation of the lightning channel, which is 

now assumed initially free of charges, so disregarding the effects of the initial 

stepped leader. A step current with amplitude 0I and velocity v is assumed for the 

return stroke. The field expressions calculated by Hoidalen read: 
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Figure 3.15: The lightning event model used by Hoidalen. 
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The horizontal electric field is approximated by the first term of a series 

expansion around 0=z , (note that 0),0,,(0 == tzyxex ). The vertical component 

of the electric field and the magnetic field are equal to Rusck’s expressions, when 

the static field from the charged leader is ignored [6]. 

 

3.4.2 Effect of lossy ground 

According to the Cooray Rubinstein approximation [19,20], as discussed in 

chapter 2, the horizontal electric field over a lossy ground is the sum of the 

lossless field and a surface impedance contribution depending on the horizontal 

magnetic field. In the time domain it reads: 
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where Δ
xe  is the lossy ground contribution, σ

xe  is the horizontal electric field over 

a lossy ground, the sign * denotes a convolution and )(0 tg  is the surface function 

in the time domain. The surface function is in the laplace domain [18] 
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with the ground factor )2/( 0εεσ ra = , σ  the ground conductivity and rε  relative 

ground permittivity.  

The lossy ground effect on the vertical electrical field and the magnetic field 

can be ignored since they do not give significant contributions [6]. 

 

3.4.3 Induced Voltage 

Hoidalen uses the Agrawal et al. coupling model [20] to calculate the 

lightning induced voltages. This coupling model was detailed in chapter 2. The 

calculation of the induced voltages is formulated using a procedure proposed by 

Hoidalen himself in [21]. According to that, the overhead line can be electrically 

modelled by the classical Bergeron model as shown in figure 3.15, where the 

voltage sources are constructed as  
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with rAv  and rBv  the sources at terminal A  and B . The source at terminal A  

consists of a resultant inducing voltage term called σ
indv  and the reflection from 

terminal B  delayed a time τ . Based on the sum in (3.38) the inducing voltage 
σ
indv  is split in a lossless contribution 0

indv  and an additional lossy ground 

contribution Δ
indv  as 
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The lossless contribution to the induced voltage at a terminal can be written as  
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where )(1 tg  is a function that takes the lightning current shape into account and 

),(0 txv  is the induced voltage produced by a step current as formulated in [22], 

which reads 
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For times less than 2t , the expression (3.64) is equal to Rusck’s formula (3.23) 

even though a different coupling model is used. This was also generally verified 

by Cooray in [9]. 

The additional contribution to the induced voltage from the horizontal 

electric field due to the lossy ground is given by: 

 

),(*)(*)(),( 01 txvtgtgtxvind Δ
Δ −=      (3.67) 

 

where ),(*)(0 txvtg Δ−  equal to the induced voltage contribution produced by a 

step current. The expression of Δv  is given by Hoidalen as: 
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with 

 

( )),,(1),(

),,()(),(

223

2
2

tyxct
yx

txf

tyxxctxtxf

ξβ

ξβ

+
+

=

+−+=

     (3.69) 

 

To analytically solve the convolution )(*)( 01 tgtg  in equation (3.67), 

Hoidalen choose a suitable lightning current. One such current shape is a linear 

rising and decreasing lightning current, reported in figure 3.17. The induced 

voltage terms is formulated by Hoidalen as 
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where 

 

⎥⎦
⎤

⎢⎣
⎡
∑ +=

−

=

1/

0

0
0

0
0 2

),(),()(),(
tt

ic

m txvtixv
tI

tItHtxA
Δ

ΔΔ
   (3.71) 

 

⎥
⎦

⎤
⎟
⎠
⎞

⎜
⎝
⎛ ++−+−⎟

⎠
⎞

⎜
⎝
⎛ ++

⎢⎣
⎡ +∑

−
−=

−

=

),(
3
422.007.1),(

6
10.22-       

1/
),()(),(

33

1/

0

0

0

txvttxv

tt
tixvt

tI
ItHtxA

tt

ic

m

ΔΔ

Δ
Δ

Δ

κκΔκ

Δ
Δ

πσ
Δε

 (3.72) 

 

with [ ] 1)(2/ +−= chc tttb , )/(0 trg Δπσεεκ = , tΔ  the time step used in the 

numerical integration, )(tH  the unit step function, ct  the lightning current time to 

crest, ht  the lightning current time to half value and mI  the amplitude of return 

stroke current of figure 3.17. 

Figure 3.18 shows the calculated induced voltage using the formula of 

Hoidalen for a 1 km long, 10 m high overhead line terminated with its 

 
Figure 3.17: Linear rising and decreasing lightning current in 

Hoidalen formulation, adapted from [6]. 
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characteristic impedance. The lightning is located 50 m from the overhead line 

centre. The lightning return stroke velocity is 1.3 10 m/s, and the current shape 

used is with tc = 0.5 µs, th = 20 µs, Im = 12 kA. Moreover 10=rgε  and 

mS / 001.0=σ  are assumed. In Figure 3.17 is also shown the induced voltage 

predicted by a numerical method [22]. 

 

3.5 Exact Closed Form Solution 

In the previous paragraphs the most important formulae used in literature 

have been summarised. As detailed in the previous paragraphs, in those 

formulations two lightning event models are used: the first, used by Hoidalen [6], 

is shown in figure 3.19 a), and the second, used by Rusck [4], by Chowdhuri and 

Gross [5] and by Liew and Mar [7], is shown in figure 3.19 b). In both the events 

depicted, the lightning applies to the case of a vertical and straight lightning 

channel, however, in the model of figure 3.19 a) a return stroke current propagates 

upwards along the lightning channel initially free of charges, while in the model 

of figure 3.19 b), to take into account the leader effect, a negative charge is 

 
Figure 3.18: Induced voltage at the terminals A and B in overhead line terminated 

with its characteristic impedance. Dotted line: Hoidalen formula for lossless ground. 

Solid line: Hoidalen formula for lossy ground. ■: Induced voltage predicted by [22] 

Adapted from [6]. 
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uniformly distributed along the lightning path. In both the events, we recall, that 

the return stroke current is assumed to be a step current which propagates along 

the lightning channel without any attenuation or distortion with the constant 

velocity v  (TL model). The ground is considered to be a perfect conductor and 

the power line is lossless. Even if simple, these lightning event models can be 

considered reasonably accurate. In fact, as far as TL model, in [23] Thottappillil 

and Uman showed that this model is in fairly good agreement with measurements, 

also the lossless hypothesis for the power line is a reasonable assumption [24]. 

The main limitations of these models are essentially the step waveshape used for 

the return stroke current, which, however, overestimates the induced voltages, 

resulting in a safe evaluation and the perfect conductor hypothesis for the ground 

[24]. 

All the closed form solutions presented in literature have been investigated 

by many authors, as already discussed in the previous paragraphs. The major 

limitation of those investigation is the fact that the closed form solution were 

never compared with the only legitimate term of reference which is their 

corresponding exact analytical solutions.  

For this reasons this paragraph aims, primarily, to get the exact closed form 

solution for both the lightning events of figure 3.19; in fact, no approximations 

will be made, and the results can be considered absolutely rigorous. Secondly to 

 

a) b)i(t) i(t) 

q(t) 

 
Figure 3.19: Lightning Events Models. In a) a straight and vertical return stroke 
current moves upwards. In b) a negative charge is uniformly distributed along the 
lightning path before the return stroke starts, to take into account the leader effect. 
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compare the other closed form solutions with the exact one in order to highlight 

their accuracy. 

The next sections are organised as follows: first of all the lightning 

electromagnetic field is evaluated for both the initially free of charges channel and 

for the initially charged channel, then the field to line coupling problem is 

analysed and the closed form solutions will be derived for both the lightning 

events examined. In the final part, the other closed forms presented in literature 

will be compared with the exact one. 

3.5.1 Lightning Electromagnetic Field Appraisal 

In literature, two techniques have been used for finding the electromagnetic 

field from a known distribution of currents and charges. One of these is the 

monopole technique (e.g. [4,5]) which has been primarily used in the power 

systems literature for lightning radiation calculation. The other is the dipole 

technique which is widely used in theory of antennas, but today frequently used 

for lightning radiation and overvoltage calculation (e.g [6,24,25]). The two 

techniques have been demonstrated absolutely equivalent by Rubinstein and 

Uman [26]. In what follows an overall analysis, in order to derive the field 

analytical expressions, will be curried out for both the two techniques and for both 

the events depicted in figure 3.19. 

 

1. Initially Free of Charge Channel: Monopole Technique 
The initially free of charges channel is considered. The geometry of the 

problem is shown in figure 3.20. The expression describing the current 

distribution for the model under study is given by 

 

( ) ( )vztuItzi /' ,' 0 −=        (3.73) 
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This return stroke current, as it moves along the channel, leaves a positive 

charge distribution q . The relation between the current and charge distributions q  

is given by qvI =0  [4]. 

The scalar potential φ  and the vertical component of the vector potential 

zA , at the observation point ),,( zrP ϕ , can be written as [4] 
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where R  is the distance between the observation point and the source point 

considered and 0R  is the distance between the source point considered and the 

point, ),,( 0000 zrP ϕ  in which the scalar potential is zero. As shown in figure 3.20, 

Rchannel 

P(r,φ,z) 

i(t,z΄) Rimage 
dz΄ 

r 

z

φ 
y 

x

image 

Perfectly conducting ground plane  

P 

i(t,z΄) 

Figure 3.20: Geometry of the problem for the field evaluation. 
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R , for the upper part of the channel and the image part, can be respectively 

written as: 
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The two integrals (3.74) and (3.75) can be split into two parts, to take into account 

the different contribution of the upper part of the channel and the image part. For 

the current, for the upper part of the channel, and for the image part, can be 

written, respectively, 
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The same applies to the charge q . Note that integrals (3.74) and (3.75) are zero 

when the Heaviside functions in (3.77) are zero. Then, the lower and upper limits 

of integrals (3.74) and (3.75) can be found by setting the argument of the 

Heaviside functions to zero. For the upper part channel and image part, 

respectively reads 
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Solving for 'z , when 22 zrct +> , the upper )(ta  and lower )(tb  limits of 

integrals (3.74) and (3.75) can be calculated as 
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with 22 )/()( γβξ rzctchannel +−=  and 22 )/()( γβξ rzctimage ++= . 

 

The expression of the scalar potential is then given by 
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The vertical component of the vector potential zA  is given by 
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Once that the scalar and the vector potentials are known the electromagnetic field 

can be calculated as 
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By applying equation (3.83) the radial and vertical components of the electric 

field read: 
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where the superscript 1 indicates the case of initially free of charge channel 

(figure 3.19 a)). By applying equation (3.84) the azimuthal component of the 

magnetic field reads: 
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2. Initially Free of Charge Channel: Dipole Technique 
The geometry of the problem is again shown in figure 3.19. The expression 

describing the current distribution for the model under study is still given by 

equation (3.73). The dipole technique uses infinitesimal time varying dipoles as 

the source of the electric and magnetic fields. Since the vector potential A
G

 can be 

found from the current alone, expressing the scalar potential φ  in terms of A
G

 

allows us to write the electric field in terms of the current distribution alone. To 

do that the Lorentz condition can be solved for φ  [27]: 
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Substituting (3.88) into (3.83), the electric field reads: 
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where 0)( =−∞=tφ  is assumed. Equation (3.75) can be used to write A
G

 for an 

infinitesimal dipole carrying current )(ti  oriented in the z  direction and located at 

'z  as shown in figure 3.20: 
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Substituting (3.90) into (3.89) and (3.84) general expressions for the electric and 

magnetic fields are obtained. The process of derivation of these expressions was 

detailed by Uman et al. in [27]. The derived infinitesimal expressions have been 

already discussed in chapter 2 and reported in the expressions (2.22-2.24). 
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Rubinstein and Uman in [28] have derived these infinitesimal expressions 

for the case of a lightning step current (3.73), which read 

 

⎥⎦
⎤−−

−
+−−

−
+

⎢⎣
⎡ +−−−−

−
=

)/'/,'()'()/'/,'()'(3                   

)/'/()/'/()'(3
4

'),,(

324

5
01

vzcRtz
Rc

zzrvzcRtzu
cR

zzr

vzcRtuvzcRt
R

zzrdzItzrde
o

r

δ

πε
 

          (3.91) 

 

⎥
⎦

⎤
−−−−−

−−
+

⎢
⎣

⎡
+−−−−

−−
=

)/'/,'()/'/,'()'(2                 

)/'/,'()/'/,'()'(2
4

'),,(

32

2

4

2

5

2
01

vzcRtz
Rc

rvzcRtzu
cR

rzz

vzcRtzuvzcRtz
R

rzzdzItzrde
o

z

δ

πε

          (3.92) 

 

⎥
⎦

⎤
−−⎢⎣

⎡ +−−= )/'/,'()/'/,'(
4

'),,( 34
01 vzcRtzu

R
rvzcRtz

cR
rdzItzrhd δ

πϕ  

          (3.93) 

 

The total fields can be obtained by integrating (3.91) - (3.93) between the top of 

the channel current path and the top of the image current path. The procedure of 

solving these integrals were detailed by Rubinstein and Uman [29]. The 

expressions derived by Rubinstein and Uman are available only for the upper part 

of the channel, and read: 
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with 22
0 zrR += , 22 ))((' ztarR −+=  and )(ta  given by (3.79). The field 

expressions for the image part can be obtained from (3.94)-(3.96) by changing the 

sign of z  and by changing )(ta  with )(tb , given by (3.79). 

Figures 3.21, 3.22 and 3.23 show the electromagnetic field components 

observed at mr  50= , mz  10=  and for 4.0=β . In these figures the field is 

plotted with respect to the asymptotic value, i.e. the field produced for ∞→t . 

Both the monopole and dipole techniques expressions have been plotted and, as 

we can see, the results are identical. The equivalence between the two approaches 
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was demonstrated by Rubinstein and Uman in [28]. Between the two approaches, 

for our analytical purposes, the monopole technique results in a more suitable 

analytical treatment, and will be therefore used in the following analysis. 
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Figure 3.21: Electric field vertical component observed at mr  50= , mz  10=  and for 4.0=β  for 
the model of figure 3.19 a). 
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Figure 3.22: Electric field radial component observed at mr  50= , mz  10=  and for 4.0=β  for 
the model of figure 3.19 a). 
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Figure 3.23: Magnetic field azimuthal component observed at mr  50= , mz  10=  and for 

4.0=β  for the model of figure 3.19 a). 
 

In figure 3.24 the electric field is plotted for different distances and for 

different return stroke velocity (we recall that cv /=β ). In particular, figures 3.24 

a) and b) show the radial and vertical component, respectively, observed at 

m 10=z , m 50=r and for different values of β ; while figures 3.24 c) and d) 

show the radial and vertical component, respectively, observed at m 10=z , for 

different values of r  and for 4.0=β . In these figures the field is again plotted 

with respect to the asymptotic value, i.e. the field produced for ∞→t . 

In figure 3.25 the azimuthal component of the magnetic field is plotted for 

different distances and for different return stroke velocity. In particular, figure 

3.25 a) shows the magnetic field observed at m 10=z , m 50=r and for different 

values of β ; while figure 3.25 b) shows the magnetic field observed at m 10=z , 

for different values of r  and for 4.0=β . In these figures the field is again plotted 

with respect to the asymptotic value, i.e. the field produced for ∞→t . 

 

 



Chapter 3: Analytical Formulations for Lightning Induced Overvoltages Calculations 

 99

 

 

0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ct [m]

e1 r

β=0.2
β=0.4
β=0.6

 
a) 

0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ct [m]

e1 z

β=0.2
β=0.4
β=0.6

 
b) 

0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ct [m]

e1 r

r = 50 m
r = 100 m
r = 200 m

 
c) 

0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ct [m]

e1 z

r = 50 m
r = 100 m
r = 200 m

 
d) 

Figure 3.24: Electric field radial component observed at: a) z = 10 m, r = 50 m, and for different 
values of β; c)  z = 10 m, β = 0.4, and for different values of r; and electric field vertical 
component observed at: b) z = 10 m, r = 50 m, and for different values of β; d)  z = 10 m, β = 0.4, 
and for different values of r (Case of figure 3.19 a)). 
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b) 

Figure 3.25: Magnetic Azimuthal component observed at z = 10 m, at r = 50 m and for different β 
a), and at z = 10 m, β = 0.4 and for different r c) (Case of figure 3.19 a)). 
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3. Initially Charged Channel: Monopole Technique 
The evaluation of the effects of the initially charged channel case (figure. 

3.19 b)) can be carried out starting from the free of charges channel by adding the 

effects of an initial vertical distribution of charges q . Once the scalar potential of 

this distribution of charges is evaluated by applying equation (3.74), the 

corresponding static electric field can be easily calculated by means equation 

(3.83), and reads 
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Now, the total field can be calculated by adding expression (3.97) to (3.85) and 

(3.98) to (3.86). Eventually, the total electric field reads 
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where the superscript 2 indicates the case of figure 3.19 b). At last, the static 

distribution of charges does not produce any magnetic field, so the total one can 

still be evaluated by (3.87). 
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Figure 3.26: Electric field radial component observed at mr  50= , mz  10=  and for 4.0=β  for 
the model of figure 3.19 b). 
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Figure 3.27: Electric field vertical component observed at mr  50= , mz  10=  and for 4.0=β  for 
the model of figure 3.19 b). 
 

At this stage we need to consider that the dipole technique gives the 

electromagnetic field in terms of the current distribution. Hence this technique is 

not able to give directly the electromagnetic field from a static distribution of 

charge, which can be evaluated by the usual approach for the evaluation of static 

fields generated by known distribution of charges. 

Figures 3.26 and 3.27 show the electric field radial and vertical component, 

respectively, observed at mr  50= , mz  10=  and for 4.0=β . In these figures the 

field is plotted with respect to the static electric field, i.e. the field produced by the 
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charge deposited during the leader phase, evaluated by (3.97) and (3.98). The 

magnetic field is shown in figure 3.23. 

3.5.2 Field to Transmission Line coupling 

The more general and source independent approach for transmission line 

coupling is the Taylor et al. model [29] already detailed in chapter 2. The 

transmission line equations, in the time domain, are: 
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These equations can be equivalently rewritten in terms of only electric field 

components [30] as follows 
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  (3.102) 

 

where ),( txv  and ),( txi  are voltage and current along the line, 'l  and 'c  are the 

per-unit-length inductance and capacitance parameters of the line and xe  is the 

line axial component of the incident electric field. The equation (3.102) applies to 

the case of a two conductor lossless line with the conductors lying in the zx −  

plane, with the reference conductor located at 0=z  and the other conductor 

located at hz = , as illustrated in figure 3.28. The solution for a matched line of 

length L  evaluated at the near end ( 0=x ) reads [30]: 
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where cLT /=  and  
 

),0,(),,(),( txethxetxe xxL −=       (3.104) 

 

The solution (3.103) can be easily extended to an infinite length line. First of all 

we need to consider the double-finite line (figure 3.29): the total induced voltage 

can be obtained by adding the contribution of the left line portion ),( txvl  to the 

contribution of the right line portion ),( txvr , which, respectively, read: 
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Figure 3.28: Finite length line. 
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For an arbitrary abscissa x, instead of the central position x = 0, we need to 

consider the circuit in figure 3.30. In this instance we can write for the left and 

right circuits  
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If the two circuits became two semi-infinite length lines, the terminal effects 

disappear and (3.107) and (3.108) became 
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Considering the superposition principle of the effects produced by the two 

circuits, we obtain the solution at an arbitrary abscissa x  for an infinite length line 

  

ξξξξξξ d
c

xted
c

xtedztzxetxv
x

L
x

L

h

z  ,
2
1 ,

2
1 ),,(),(

0
∫ ⎟

⎠
⎞

⎜
⎝
⎛ −

+−∫ ⎟
⎠
⎞

⎜
⎝
⎛ −

−−∫−=
∞−

∞
 

          (3.111) 

 

3.5.3 Induced Voltages appraisal 

In this paragraph the exact formulae for the induced overvoltage calculation 

will be derived both for the case of initially free of charge channel (figure 3.19 a)) 
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Figure 3.30: Double finite length line.
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and for that of initially charged channel (figure 3.19 b)). The geometry of the 

problem is shown in figure 3.31. 

First of all, we note that for the case of perfect conducting ground in (3.104) 

the term ),0,( tzxex =  is zero and so we are left only with ),,( thzxex = . In order 

to evaluate (3.111) we need to calculate the two field components xe  and ze . 

Expression of xe  results from projecting the radial field re  along the line axis 

 

rx e
r
xe =         (3.112) 

 

with re  given by (3.85) or (3.99), while ze  given by (3.86) or (3.100). 

 

1. Initially free of charge channel 
In this case, no voltage is induced before the line is reached by the 

propagation of the lightning electromagnetic field. Hence, the following 
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Figure 3.31: Geometry of the problem. 
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calculations will refer to 222 hdxct ++> . Now, starting from (3.112) and 

(3.85), we can write 
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with 2

22

γ
δ xd +
= . A plot of the axial component of the electric field in figure 

3.32 is shown. We have plotted the field along the line for different time values. It 

is worth noting the breaking effect produced by the propagation of the 

electromagnetic field. As far as the vertical component, 1
ze  is the one given in 

(3.86). Now that all the field components are available, the three integrals in 

(3.111) can be evaluated. It is simple to evaluate the first integral in (3.111), and 

the solution reads 
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Figure 3.32: Electric field axial component exciting a 10 m height line put at 50 m far apart 

from the lightning channel for the event of figure 3.19 a). The field is observed for different 

time values and for a lightning event with I0 = 10 kA and for β = 0.4. 



Chapter 3: Analytical Formulations for Lightning Induced Overvoltages Calculations 

 108

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+

+++
−

+−+−

++++

=∫

22

222

22

22

2

00

0

1

ln2
)(

)(
ln1                    

4
 ),,(

xd
xdhh

hcthct

hcthct

Idztzxe
h

z

δββ

δββ
γ

πβ
ζ

 (3.114) 

 

The two remaining integrals in (3.111), considering (3.113) become 

 

∫ ⎟
⎠
⎞

⎜
⎝
⎛ −

−∫ =⎟
⎠
⎞

⎜
⎝
⎛ −

−
∞ lx

x
x

x
L d

c
xthed

c
xte ξξξξξξ  ,, , 11     (3.115) 

 

∫ ⎟
⎠
⎞

⎜
⎝
⎛ −

+∫ =⎟
⎠
⎞

⎜
⎝
⎛ −

+
∞−

x

x
x

x

L
l

d
c

xthed
c

xte
'

11  ,, , ξξξξξξ    (3.116) 

 

The integration limit lx  in (3.115) is obtained by adding a time delay ( ) cx /−ξ  to 

a time varying breaking point given by 

 

222 hd(ct)bl −−=        (3.117) 

 

This breaking point splits the line into two regions: one illuminated by the field 

and one not yet illuminated, while the addition counts the propagation of the field 

along the line. The integration limit therefore reads 
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The same applies to the integration limit lx'  in (3.116), but the time delay this 

time is ( ) cx /ξ−  and the time varying breaking point is, for symmetry reasons, 

lb− . The integration limit lx'  therefore reads 
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A complete description of the process for getting the solution of the integrals 

(3.115) and (3.116) is given in appendix A.1. The solution of (3.116) is given by  
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with hxctm −−= )(βτ , hxctp +−= )(βτ  and 2

22

γ
δ l

l
xd +

= . The solution of 

(3.116) can be obtained by changing the sign of x  in (3.120). By putting (3.116), 

once with x  and once with x−  and (3.114) in (3.111), we obtain the exact closed 

form solution for the induced voltage at an arbitrary abscissa along the line for the 

case of figure 3.19 a) which reads 
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Solution (3.121) can be specified for the abscissa right in front of the lightning 

channel ),0()(0 tvtv = , this particular value is used in the IEEE Standard 1410 [1]. 

This expression reads: 
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with hct −= βτ , while )(0
2 tv  is obtained by changing the sign of h in )(0

1 tv . 
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Figure 3.33 shows the induced voltage on a m10  height line m50  far apart 

from the lightning channel with kAI 100 =  and 4.0=β . Figure 3.34 shows a 3D 

plot of the induced voltage along the line. In the plot one can see how the 

lightning energy is captured in the very first instants of the phenomenon, then the 

propagation takes place. 
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Figure 3.33. Induced voltage at x = 0 of a 10 m height line put at 50 m far apart 
from the lightning channel, for the event of figure 3.18.a) with I0 = 10 kA and β = 
0.4. 

 

 
Figure 3.34: 3D plot of the induced voltage along the line for the lightning event 
of figure 3.33. 
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2. Initially charged channel 

In this case the field xe  must be split into two contributions: the static 

contribution s
xe  which refers to the following range 2220 hdxct ++≤≤  and is 

given by projecting (3.96) along the line axis, and the dynamic contribution d
xe  

for 222 zdxct ++>  given by projecting (3.99) along the line axis. Hence we 

can write 
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where δ  is the same as (3.113). A plot of the axial component of the electric field 

is given in figure 3.35. We can observe the field along the cable for different time 

values. Also in this case we can observe the breaking effect produced by the 

propagation of the electromagnetic field. 

Now we need to evaluate the three integrals in (3.111). Also in this case we 

will analyse the phenomenon once the field has reached the line, hence the 

following calculations will refer to 222 hdxct ++> . It is simple to evaluate the 

first integral in (3.111), considering (3.100), and the solution reads 
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The two remaining integrals in (3.111), considering (3.126) and (3.127), become 
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The integration limits lx  and lx'  are still given by (3.118) and (3.119). The 

solutions of the two integrals in (3.129) is given by 
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Figure 3.35: Electric field axial component exciting a 10 m height line put at 50 m far apart 

from the lightning channel for the event of figure 3.19 b). The field is observed for different 

time values and for a lightning event with I0 = 10 kA and for β = 0.4 
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The solution of the two integrals in (3.130) can be obtained by changing the 

sign of x  in (3.131). The process for getting the solutions of integrals (3.129) and 

(3.130) is very similar to that in (3.115) and (3.116). In appendix A.1 details of 

this process are reported. 

By putting (3.131), once with x  and once with x− , and (3.128) in (3.111), 

we obtain the exact closed form solution for the induced voltage at an arbitrary 

abscissa along the line for the case of figure 3.19 b). It is worth noting that this 

solution is still given by (3.121), i.e. the induced voltage is the same both in the 

case of figure 3.19 a) and figure 3.19 b). This result is important since we have 

analytically proved the equivalence of the two lightning events of figure 3.19 

when the complete approach is used. The only difference lies in the fact that for  

2220 hdxct ++≤≤ , i.e. when the field has not reached the line yet, 

theoretically, a constant value of the voltage should be considered. 

In the following paragraph we can analyse the accuracy of the other closed 

form solution presented in literature referred to both the lightning events of figure 

3.19. 
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3.6 Analysis of closed form 

In this paragraph we will analyse the other closed form solution presented in 

literature.  

3.6.1 Rusck Formulae 

Rusck formulae refer to figure 3.19 b). The induced voltage ),( txv  at a 

arbitrary line abscissa is given by (3.22) and the voltage at the point nearest to the 

lightning stroke ( 0=x ) is given by (3.23). These two expressions find their 

correspondence with (3.121) and (3.124) presented in the previous paragraph. 

Figure 3.36 shows the voltages induced at 0=x  of a line m50  far apart from the 

lightning channel evaluated by (3.23) and (3.124), for kAI 100 =  and 4.0=β . 

We can see that expression (3.23) gives a steepest front and an overestimated 

maximum value, which can be better appreciated in the zoom presented in the 

figure 3.37. In figure 3.38 a plot of the peak values of the voltages induced along 

the line is also shown. This result is also important, since accuracy of the Rusck 

approach was also considered for “offset” induced voltages [10]. In this instance 

one can see that the Rusck expression is characterised by a small overestimate of 

the induced voltage for all the line abscissas. 

Another interesting result is as follows: let us consider the first term of the 

series expansion around 0=h  of (3.124): 
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as shown in Appendix A.2, we eventually get the same expression of (3.23). 

This means that the Rusck formula is the first order approximation of the exact 

formula (3.124), and any consideration on its accuracy and validity must be 

carried out in this view. 
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Figure 3.36 Induced voltage at x = 0 of a 10 m height line put at 50 m far apart from 
the lightning channel with I0 = 10 kA and β = 0.4. 
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Figure 3.37: Zoom of figure 3.36 around the peak induced voltage. 
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Figure 3.38: Maximum values of the induced overvoltages along a10 m height line 

put at 50 m far apart from the lightning channel with I0 = 10 kA and β = 0.4. 

 

 

 

3.6.2 Chowdhuri and Gross Formula 

The Chowduri and Gross formula refers to figure 3.19 b). This approach 

refers to an initially charged channel of finite length ch , to take into account the 

leader effect. The induced voltage ),( txv  at a arbitrary line abscissa is given by 

(3.37). Expression (3.37) finds its correspondence in our formula (3.121). We 

have considered formula (3.37) for kmhc  5=  and the results are plotted in figure 

3.39, along with our expression (3.121). 

From the plots, it is clear that the missing term [11] in the model underlying 

the formulae lead to complete different results. 
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Figure 3.39: Induced voltage at 0=x  of a m 10  height line put at m 50  far apart 
from the lightning channel with kAI  100 =  and 4.0=β . For the Chowdhuri formula 

kmhc 5= . 
 

 

3.6.3 Liew and Mar Formulae 

The Liew and Mar formula refers to figure 3.19 b). This approach refers to 

an initially charged channel of finite length ch , to take into account the leader 

effect. The induced voltage ),( txv  at a arbitrary line abscissa is given by (3.49). 

Expression (3.49) finds its correspondence in our formula (3.121). We have 

considered formula (3.49) for kmhc  5=  and the results are plotted in figure 3.40, 

along with our expression (3.121). 

From the plots, it is clear that the missing term [11] in the coupling model 

underlying the formulae leads to complete different results. 
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Figure 3.40: Induced voltage at 0=x  of a m 10  height line put at m 50  far apart from the 

lightning channel with kAI  100 =  and 4.0=β . For the Liew and Mar formula kmhc 5= . 
 

3.6.4 Hoidalen Formulae 

Hoidalen formula refers to figure 3.19 a). The voltage at the point nearest to 

the lightning stroke ( 0=x ) is given by (3.64). This expression finds its 

correspondence with (3.124). A plot of (3.64) and (3.124) is presented in figure 

3.41. 

Since the Hoidalen approach is developed for finite length lines, we 

considered a suitable length line ( m 300 ) in order to show the “risers” effect with 

takes place for times grater than 2t . With a longer line this effect disappear in the 

graph. For 0=x  the formula is identical to that of Rusck (3.23) for times less 

than 2t , even if calculated with an another coupling model [6]. 
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Figure 3.41: Induced voltage at 0=x  of a m 10  height line put at m 50  far apart 
from the lightning channel with kAI  100 =  and 4.0=β . For the Hoidalen formula L 
= 5 km. 
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CHAPTER 4 
APPLICATION TO MV DISTRIBUTION SYSTEMS FOR 

IMPROVING THE QUALITY OF POWER SUPPLY 
 
 

 

 

 

 

 

Distribution line outages due to indirect lightning strokes is one important 

cause of disturbances in distribution systems. The overvoltages induced by 

lightning on an overhead line, infact, can cause phase to ground and phase to 

phase flashovers that need, for their removal, the use of recloser breakers. In the 

case of distribution networks the use of these breakers causes a temporal decrease 

of consumers voltage feeding, known as voltage sags. The duration of these  sags 

depends on the cycle type of the recloser breakers, which, in turn, depends on the 

fault removal time. The trouble caused to customers, because of the susceptibility 

of some loads, may be very severe even in the case of transient faults, i.e. those 

which disappear after the opening and high speed reclosure of protective breakers. 

Hence, it is useful and important to reduce the frequency of the occurrence of 

faults caused by such indirect strokes. 

To improve the lightning performances of overhead distribution lines, 

traditionally, distribution line designers use guides containing information on 

methods for improving system reliability and power quality or improving 

protection schemes, such as the use of additional reclosures or sectionalizers. By 

means of these methods designers may exercise control over structure material 

and geometry, shielding, amount of insulation, grounding, and placement of 

arresters. 
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An important tool to evaluate the lightning performances of the distribution 

lines, is the IEEE 1410 guide [1]. This guide is dedicated to suggest methods to 

estimate expected frequency of occurrence of faults due to indirect lightning of an 

overhead distribution line, and to suggest improvements options for lightning 

protections. To estimate this expected frequency of occurrence of faults the 

proposed method is divided into two parts: 

 

1. evaluation of the overvoltages induced on an overhead line by an 

indirect lightning; 

2. statistical evaluation of the behaviour of the overhead distribution 

line to estimate the expected frequency of lightning faults. 

 

As far as point 1) the IEEE method suggests  the Rusck formula (3.25) for the 

calculation of the lightning induced overvoltages, presented and discussed in 

chapter 3. This formula gives the maximum value of the induced voltage. 

As far as point 2) the problem of the estimation of the occurrence of the 

lightning faults presents many uncertainties due to the random nature of the 

lightning phenomenon [2-4]. Hence, to obtain an estimation of the occurrence of 

lightning faults, a statistical treatment of the data is needed. The IEEE method 

follows the procedure presented by Chowdhuri in [5]. 

Concerning the statistical procedure, the IEEE method deals with two 

random variables of the lightning phenomenon: the peak value of the lightning 

current 0I , and the point of impact of the stroke location. Using the analytical 

results presented in chapter 3, we will carry out a statistical analysis which is an 

improvement of the IEEE method since it considers, besides the other parameters, 

also the return stroke velocity v  as a random variable. In fact, while it is 

considered fixed in [1] (120 m/µs), in this work it is considered, as it must be, a 

random variable [4,6-9]. 

The chapter is organised as follows: in paragraph 4.1 the random behaviour 

of the lightning parameters will be analysed; the IEEE method for the lightning 
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performance evaluation will be summarised in paragraph 4.2; an improved 

procedure to evaluate the expected frequency of the lightning faults will be 

presented in paragraph 4.3. In paragraph 4.4, the procedure will be extended to the 

operating phase of distribution networks for improving the quality of power 

supply by means of the real-time data providing by lightning detection systems. 

Hence in paragraph 4.5 some recent advances in instrumentation that can be used 

to detect and locate cloud-to-ground lightning are summarised. 

4.1. Lightning parameters 

The calculation of induced overvoltages is affected by three simultaneous 

random variables (e.g. see equations (3.121) or (3.25)): the lightning peak current 

0I , the distance between the lightning stroke point and the line y , and the return 

stroke velocity v . According to [1,4] the statistical variation of the lightning 

parameters can be approximated by standard probability distributions: the random 

variables 0I  and v  are lognormally distributed, whereas y  is uniformly 

distributed. In [1], in order to propose a simplified approach, the lightning peak 

current, instead of lognormally distributed, is assumed to have the probabilistic 

distribution given by the expression [10] 
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=≥       (4.1) 

 

This expression is calculated for the values of median value kA1.31=μ  and 

standard deviation kA484.0=σ , which are typical values [10]. We underline that 

(4.1) is a reasonable approximation of the corresponding lognormal distribution 

for a wide range of values [10].  

As far as the return stroke velocity v  we said that in [1] this is assumed 

constant to the value sm  /120 μ . However, a constant value is far from the 

physical situation, where the return stroke velocity must be instead considered a 

random variable [4,6-9]. 
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For this reason the random nature of the velocity will be assumed in what 

follows. For any random variable Z , the lognormal probability density function 

can be expressed as: 
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where μ  and σ2 are, respectively, mean and variance of the associated normal 

distribution of Z . The mean value zσ  and standard deviation zμ  of the random 

variable Z  are given by: 
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In particular, according to [4], the mean velocity is assumed equal to 

smv  /43.76 μμ =  and the standard deviation equal to smv  /01.51 μσ = . 

As far as the distance between the lightning impact point at the ground and 

the line, a uniform distribution is assumed. For an interval [ ]ba, , this kind of 

distribution is expressed as 
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with mean and variance given by  
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The lightning impact point is assumed within an interval [ ]ba, , considering a the 

closest point to the line and b the further point. The interval between a and b must 

be wide enough to include all the indirect lightning events that can cause an 

insulation flashover. Furthermore, as far as the closest point a, we need to 

consider that a stroke close to the line can strike either line conductors or ground, 

depending on the peak current of the return stroke. The Electrogeometric Model, 

proposed in [11] allows the calculation of the minimum distance below which a 

lightning stroke will strike directly the line. Figure 4.1 shows the application of 

the Electrogeometric Model which allows to evaluate whether a stroke will be 

direct or indirect. 

 

 

h 
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Figure 4.1: The Electrogeometric Model. 
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If the return stroke channel is vertical, a stroke, with a current peak 0I , will 

strike the phase if its final path is to the left of the intersection point A, being the 

arc centred on the phase and having radius rs , calculated by means of the 

following expression 

 
γα 0Irs =         (4.6) 

 

with sr  the striking distance to the conductor, and 10=α , 65.0=γ  [1]. So the 

minimum distance, ymin, is given by 
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where 9.0=β  [1]. 

An important parameter is the ground flash density per km2 and year, gN ; 

infact, the reliability of a distribution line is dependent on its exposure to 

lightning. To determine exposure, the annual number of flashes per unit time 

needs to be known. This number is the ground flash density gN  and may be 

estimated from the keraunic level, using the following equation [12] 

 

yrTN dg /flashes/km     04.0 225.1=      (4.8) 

 

where dT  is the number of thunderstorm days per year, (the keraunic level). 

Another estimate of ground flash density gN  may be obtained from thunderstorm 

hour records [13], as shown by the following equation 
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1.1054.0 hg TN =         (4.9) 

 

where hT  is the number of thunderstorm hours per year. Eventually, 

estimates of average ground flash density may also be obtained directly from 

lightning detection network data or from flash counters. If enough years are 

present, this has the advantage of identifying regional variations. Figure 4.2 shows 

the Italian isokeraunic map with the typical value of ground flash density. 

 

 
Figure 4.2 Italian isokeraunic map. 

 

4.2. The IEEE Method 

In this paragraph the procedure used to infer the lightning performance of a 

distribution line in the IEEE Guide 1410 [1] is summarised. In this guide the 

maximum value of the lightning induced voltages are calculated using the Rusck 

formula (3.25), which reads: 
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■ yrNg /flashes/km 4 2=  

■ yrNg /flashes/km .52 2=  

■ yrNg /flashes/km 5.1 2=  
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Using (4.10) and by means of a statistical analysis, the IEEE method 

evaluates the flashover rate of the line. The results are presented in the form of a 

graph of flashover rate versus the insulation level of the line, i.e. the critical 

flashover. Even though the designers may be more familiar with the basic impulse 

insulation level (BIL) of a given combination of insulating materials, the results in 

the IEEE 1410 Guide, are given in terms of the critical flashover (CFO) of these 

combinations. The CFO is defined as the voltage level at which statistically there 

is a 50% chance of flashover and a 50% chance of withstand. This value is a 

laboratory-definable point. If a Gaussian distribution of flashover data is assumed, 

then any specific probability of withstand may be statistically calculated from the 

CFO mean value and the standard deviation [1]. 

The statistical procedure can be summarised as follows: the amplitude of the 

return stroke current is varied from 1 to 200 kA in intervals of 1 kA. For each 

current value, both the minimum distance ymin, for which lightning will not divert 

to the line, and the maximum distance ymax , at which the stroke may produce an 

insulation flashover are calculated. The number of annual flashover per km of 

distribution line Fp is obtained as the summation of the contributions from all 

intervals considered as expressed by [5] 
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where iP  is the probability of current peak to be within interval i; it is 

determined as the difference between the probability for current to be equal or 

lager than the lower limit and the probability for current to reach or exceed the 

higher limit of the interval. For the probabilistic distribution of the lightning 

current peak, the expression (4.1) is adopted while the value of the return stroke 

velocity v  is chosen equal to sm  /120 μ . 

The minimum distance ymin is evaluated by means of equation (4.7), while 

the maximum distance ymax for every peak current interval is the maximum 
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distance for which lightning stroke may produce insulation flashover (figure 4.1). 

According to [1], the minimum overvoltage which can produce an insulation 

flashover is assumed CFO5.1min ×=v . The 1.5 factor is an approximation that 

accounts for the turnup in the insulation volt-time curve. This approximation is 

used for induced voltage, shield wire, and arresters-spacing calculations. These 

voltages are assumed to have much shorter duration waveshape than the standard 

1.2/50 µs [1]. 

The results for an ungrounded overhead m 10 high line are shown in figure 

4.3. The ungrounded circuit does not have a grounded neutral wire or a shield 

wire, such as a typical Italian MV distribution network. In the figure 4.3 also the 

results relevant to a grounded neutral or shielding wire are reported. These results 

are obtained in [1] from the preceding ones by applying a scale factor of 0.75 to 

the induced voltages. 
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Figure 4.3: Number of annual induced flashover versus critical flashover. The curves 
are obtained by applying the IEEE method. 
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From figure 4.3 we note that induced voltage flashover frequency may 

dramatically increase for low levels of insulation. The values are normalised for a 

ground flash density of yrNg /flashes/km 1 2= . 

 

4.3. Method Based on Monte Carlo Technique 

In this paragraph we use a procedure for the evaluation of the distribution 

line performances based on the application of the Monte Carlo technique. This 

technique has already adopted by others authors, e.g. [14]. 

In this procedure the lightning induced voltages will be evaluated using 

equation derived in chapter 3, which reads: 
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and )(0
2 tv  obtained by changing the sign of h in )(0

1 tv , and the other symbols 

meaning already given in (3.124). 

The Monte Carlo technique is a statistical process, which operates 

generating casual variables (i.e. I0, v, d) and produces as result the probability 

function of the output variable (i.e. vmax). Monte Carlo simulation is a widely used 

computational method already used in many power system applications. In this 
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study we generate a significant number of events, each characterised by the 

following random variables: 

 

o the peak value of the lightning current 0I ; 

o the return stroke velocity v ; 

o the position of the stroke location with respect to the line. 

 

Now we will first make a comparison between the statistical method based 

on our formula (4.12) and the IEEE method based on the Rusck formula, when the 

same probability distribution of the lightning current (4.1), the same values of 

return stroke velocity ( sm  /120 μ ), and the same lateral distance expression (4.7) 

are assumed. 

The results of the comparison are shown in figure 4.4. A 10 m height line has 

been considered and yrNg /flashes/km 1 2= . The plot shows that, for this case, 

the two methods predict basically the same results. 
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Figure 4.4: Number of annual induced flashover versus critical flashover. 
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We have then repeated our computation by setting the return stroke velocity 

as a lognormal probability density function of mean smv  /43.76 μμ =  and 

standard deviation smv  /01.51 μσ = . The results are presented in figure 4.4, along 

with the results computation with constant return stroke velocity smv  /120 μ= . 

Figure 4.5 shows that by considering the return stroke velocity as a random 

variable, the expected number of annual induced flashover decreases. 
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Figure 4.5: Number of annual induced flashover versus critical flashover. 

 

 

4.4. Application to operating condition of MV Distribution 

Network 

Lightning Detection Network are used in order to obtain accurate data on the 

time, location, amplitude, and polarity of the individual return strokes in cloud-to-

ground flashes. In power system operation, data providing by lightning detection 

networks are usually stored and used for the classification of faults on 

transmission and distribution systems and the evaluation of the performance of 

various methods that are used in lightning protection, as discussed in the first part 

of this chapter. The knowledge of the time, location, and peak current of each 

return stroke provides a valuable empirical database with which to address the key 
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issues. A comprehensive review on lightning detection network, with some useful 

observations on the use of lightning data by power utilities, is presented in [15]. 

The lightning detection network data can be used to understand and quantify 

the performance of transmission and distribution systems that are exposed to 

lightning. Figure 4.6 shows an “asset exposure map” for a power line. The 

number of these events characterizes the exposure of the line to nearby and direct 

lightning strikes during the observation time. 

 

 
Figure 4.6: A map of the could to ground strokes that struck in the region of  power 
line, adapted from [16]. 
 

Real-time lightning data can also be combined with online monitoring of 

circuit breakers, relays, and/or substation alarms to improve operations and 

minimize damage. Typical practice is to clear nonpersistent faults, such as 

lightning, with an instantaneous circuit breaker or relay operation. During 

lightning storms, however, multiple strokes, improper relay reclosures, or 

temporary faults that persist for the duration of the breaker sequence can cause 

feeder lockouts. Such lockouts can be restored by reclosing the feeder breaker, but 

an important concern at the time of lockout is whether or not the fault is 

permanent or whether it was caused by lightning. The real-time lightning data 
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provide this information, giving utilities a powerful tool both for averting damage 

to and speeding the restoration of their systems. In this view real-time data can 

also be useful to define an optimal control strategy of distribution network for 

improving the quality of service. In fact these data can be used to evaluate the 

location, amplitude, and polarity of the individual return strokes that, in real time, 

by means of a statistical procedure, provide a probability distribution of the 

expected induced overvoltages. For example the use of procedure presented in 

paragraph 4.3, provide a expected frequency of induced voltages occurrence. 

As application now we will evaluate this occurrence by means of a statistical 

method based on our formula (4.12), when the probability distribution of the 

lightning current (4.1) is assumed, and the return stroke velocity is assumed 

lognormally distributed with probability density function of mean 

smv  /43.76 μμ =  and standard deviation smv  /01.51 μσ =  and considering 

yrNg /flashes/km 1 2= . In figure 4.7 and 4.8 the expected occurrence 
maxvf of the 

induced voltages maximum value maxv  on the line is plotted. 
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Figure 4.7: occurrence of the induced voltages maximum value for an interval 2 km 
centred on the line. 
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Figure 4.8: occurrence of the induced voltages maximum value for an interval 1 km 
centred on the line. 

 
Figure 4.7 refers to an area wide 2 km centred on the line and figure 4.8 

refers to an area wide 1 km centred on the line. For both the figure we have 

generated 410 8 ⋅ events for the Monte Carlo technique. 

From the expected occurrence 
maxvf of maxv  we can also evaluate, for each 

area, the cumulative probability function 
maxvF  of maxv  by means of 

 

∫=
*

0
)(*)(

maxmax

v

vv dvvfvF        (4.14) 

 

maxvF  allows us to determine different area around the line each 

characterised by a 
maxvF  (figure 4.9). Eventually, if the CFO of the line is known, 

this information provide also the probability of flashover (e.g. with the same 

procedure defined in the previous paragraph) or fault hazard.  
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Figure 4.9: Each area around the line is characterised by a fault hazard. 

 

In conclusion, the data provided by the lightning detection network can give, 

in real time, the feature of the lightning parameters. By means of these data we are 

able to evaluate the actual fault hazard for each area around the line. 

Consequently, by the tracking of the lightning storm, a preventive alarm can be 

given to improve operations in substation for minimize damage. 

A1A1 A2 A2 
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CONCLUSIONS 
 

 

 

 

 

 

In recent years, in literature many efforts have been directed to improve the 

knowledge of the lightning phenomenon and its effects on power circuits. In 

particular, many numerical approaches have been proposed for the evaluation of 

the overvoltages induced on an overhead line by indirect lightning. Also closed 

form solutions have been proposed and it is important to underline that they are 

very important both in the design phase, in parametric evaluation and sensitivity 

analysis. All the closed form proposed so far presented in literature are 

approximated and/or incomplete as shown in the thesis. The first significant 

contribution of the thesis has been that of obtaining the exact closed form solution, 

overcoming errors and/or approximations in the closed form solutions so far 

available in literature. Another contribution has been that of using our exact 

formulation to check the accuracy of the other closed form solutions, so 

definitively closing a still on-going international debate. We also believe we made 

a contribution both for the statistical evaluation of lightning effects and to show a 

possible implementation during the operational phase of the results we have 

obtained. 
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APPENDIX A.1 
 

 

 

 

 

 

In this appendix details are given for the process for getting integrals (3.115), 

(3.116), (3.129) and (3.130) of chapter 3. 

A.1.1 Integral (3.115) 

Integral (3.115) is 
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Now, by considering the field expression (3.85) and (3.112), we can split this 

integral into three parts: 
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First we deal with integrals (A.1-2) and (A.1-3) which can be written as 
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where mh ττ = in (A.1-2) and ph ττ =  in (A-3), with hxctm −−= )(βτ , 

hxctp +−= )(βτ . Integral (A.1-5) can be brought to a standard form [1], and the 

solution reads 
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As far as integral (A.1-4), it is easy to evaluate it 

 

222

222

222

222

22222

 lnln                      

 2 

xhdh
xhdh

xhdh

xhdh

d
dhd

h

l

l

x

x

l

+++

+++−
+

+++−

+++
=

=∫
+++

ξ
ξ

ξ
ξ

  (A.1-7) 

 

In conclusion, the solution of (A.1-1) is obtained by evaluating (A.1-6), once for 

mh ττ =  and once for ph ττ = , by evaluating (A.1-7), and then by adding these 

three contributions. The final result reads 
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A.1.2 Integral (3.116) 

Integral (3116) is 
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this integral, also, by considering (3.85) and (3.112), can be split in three parts: 
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To solve this integral, we show that it can be brought to the same form of integral 

(A.1-2). Infact, by changing the sign of ξ  and x  in (A.1-10), we obtain the 

integral 
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with the integration limit lx'−  (given in (3.119)) 
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We note that the R.H.S. of (A.1-14) is the same as (3.118). Then, the integral 

(A.1-13) is the same of (A.1-2), and the solution of (A.1-13) is the same solution 

of (A.1-2) evaluated by changing the sign of x . 

We can also find, with an analogous process, that the solutions of (A.1-11) 

and (A.1-12) are the same of (A.1-3) and (A.1-4), respectively, evaluated by 

changing the sign of x . In conclusion, the solution of integral (24) is obtained by 

changing the sign of x  in (A.1-8). 

A.1.3 Integral (3.129) 

The integral (3.129) is 
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First, we evaluate the solution of the first integral in (A.1-15). By considering the 

field expressions (3.126) and (3.127), it can be split in two parts: (A.1-2) and 

(A.1-3), already been evaluated in this Appendix, and the solutions are given by 

adding (A.1-6), evaluated for mh ττ = , to the same (A.1-6), this time evaluated for 

ph ττ = . The second integral in (A.1-15) is easy to evaluate it, and the solution 

reads 
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In conclusion, the solution of (3.129) is obtained by evaluating (A.1-6), once for 

mh ττ =  and once for ph ττ = , by evaluating (A.1-16), and then by adding these 

three contributions. Te final result is reported reads 

 

( )
( )

( )
( )

( )
( )

( )
( ) ⎪⎭

⎪
⎬
⎫

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

+−+−

+−+−
+

+−+−

+−+−
−+

+
+++

+++−
+

+−+−

+−+−
+

⎪⎩

⎪
⎨
⎧

+−+−

+−+−
∫ =⎟

⎠
⎞

⎜
⎝
⎛ −

+

22

22

22

22

222

222

22

22

22

22
002

lnln              

lnln                                

ln
4

 ,,

δτββτ

δτββτ

δτββτ

δτββτ
β

δτββτ

δτββτ

δτββτ

δτββτ
πβ
ζξξ

pp

mm

lplpl

lmlml

l

l

pp

mm

lmllm

lpllp
x

x
x

xx

xx

xx

xx

xhdh

xhdh 

xx

xx

xx

xxId
c

xthxe
l

          (A.1-17) 

 

A.1.4 Integral (3.130) 

The integral in (3.130) is 
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By considering the field expressions (3.126) and (3.127), we note that also the 

first has already been evaluated in this Appendix. It can be split into two parts 

(A.1-10) and (A.1-11) and the solution is given by adding (A.1-6), evaluated for 

mττ =  and x− , to the same (A.1-6), evaluated, this time, for pττ =  and x− . 

The second integral in (3.130) is  
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To solve this integral we show that it can be brought to the same form of integral 

(A.1-16). Infact, by changing the sign of ξ  and x  in (A.1-16), we obtain the 

integral 
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By considering (A.1-13), we can observe that (A.1-20) is the same of the 

integral in (A.1-14). Then, the solution of (A.1-20) is given by changing the sign 

of x  in the R.H.S. of (A.1-16). In conclusion, the solution of (3.130) is obtained 

by changing the sign of x  in (A.1-17). 
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APPENDIX A.2 

 
 

 

 

 

 

 

A.2.1 Derivation of the Rusck Formula 

In this appendix we derive the formula of Rusck (3.23) from the exact 

closed form solution (3.124). This solution is 
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1 tv  and )(0

2 tv  given in (3.125). First of all we evaluate the first term of the 

series expansion around 0=h  of )(0
1 tv  in (A.2-1). To do that we consider (3.125) 

and we split it in three parts as 
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which first term of the series expansion around 0=h  is zero. 



Appendix A.2 

 150

The second term of (A.2-2) is 
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which first term of the series expansion is 
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The third term of (A.2-2) is 
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which first term of the series expansion is 
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By adding (A.2-7) to (A.2-5) the first term of the series expansion of )(0
1 tv  is 

obtained. Now, according to (A.2-1) we have to evaluate the first term of the 

series expansion of )(0
2 tv  which is, however, obtained by changing the sign of h  

in )(0
1 tv . It can obviously be evaluated still by adding (A.2-5) to (A.2-7). Hence, 

the first term of the series expansion around 0=h  of (A.2-1) is 
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   (A.2-8) 

 

Now, we show that this expression can be brought to the same form of the Rusck 

formula (3.23). First we rewrite (A.2-8) in a more suitable form that is 
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          (A.2-9) 

After some algebraic manipulation to the numerator and denominator of the term 

in the brackets we obtain 
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          (A.2-10) 

 

This expression can easily be brought to a simpler form which reads 
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          (A.2-11) 

 

At last, by a trivial simplification, we obtain a simple expression which reads 
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which is exactly the same of (3.23) given by Rusck. 

 
 


