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Introduction and Historical background iii

Introduction and Historical
background

The transmission of electric signals through metallic wires is one of the most
important contributions to the development of modern technology. S.F.B.
Morse invented the electric telegraph in 1838 and the first commercial tele-
graph line was erected in 1844, between New York, Baltimore and Washington.
Nevertheless, at that time the theory of electric circuits was still at its dawn
and hardly anything was known about the transmission of electric signals along
conducting wires. The paper in which G. Kirchhoff formulated his well known
laws has been published in 1845.

The rapid development of telegraphic signal transmission by means of over-
land lines and undersea cables (the first undersea cable was laid between France
and England in 1851 and in 1853 the first transatlantic cable was installed)
gave rise to a long series of theoretical investigations on the transmission of
electrical signals through conducting wires.

Lord Kelvin (1855) studied the effects of transients in telegraphic signal
transmission through long cables and formulated the first distributed param-
eter model for an electric cable. He assumed that the effects of magnetic field
were negligible, and modelled the effects of electric induction by means of
the per unit length capacitance of the cable and the lossy effects by means
of the per unit length resistance, so deriving the well-known voltage diffusion
equation (Lord Kelvin, 1855).

Shortly after G. Kirchhoff (1857), using Weber’s electromagnetic theory
(e.g., [1] ), analysed the transmissions of electric signals through two wires with
finite conductivity, including the effects of the magnetic field, and obtained
what we can define as the first transmission line model [2]. He deduced that
the electric signals propagate along the conductors with the same velocity as
that which light propagates in the vacuum, several years before J. C. Maxwell
published (1864) his fundamental paper demonstrating the electromagnetic
nature of light [3].

Unfortunately, for reasons that are still not fully clear, Kirchhoff’s work has
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never been widely acknowledged and is even today largely unknown. There
is an interesting work by G. Ferraris (1872) in which Kirchhoff’s model is
reviewed and studied in depth [4].

O. Heaviside (1881−1887) was the first to study the ”guided” propagation
of electric signals along couples of rectilinear and parallel conducting wires,
with finite conductivity, immersed in a lossy homogeneous dielectric, using
Maxwell’s electromagnetic theory. He developed the transmission line theory
as it is still known today [5]. Hereafter the Heaviside transmission line model
is called ”standard” transmission line (STL) model.

G. Kirchhoff obtained his transmission line model starting with an inte-
gral formulation of the problem based on Weber’s theory of electromagnetism.
This theory is based on interaction at distance, described by two variables that
can be considered as a forerunner of the electric scalar potential and the mag-
netic vector potential. Heaviside, instead, obtained his transmission line model
starting from a formulation based directly on Maxwell’s field theory under the
assumption that the configuration of the electromagnetic field is quasi-TEM.

The STL model has since been extended to interconnects, even non-uniform
ones, with many wires, in the presence of conducting planes and non-homogeneous
dielectrics. The reader is referred to many excellent books and reviews existing
in the literature for a complete and comprehensive treatment of the subject
(e.g., [29], [30],[32]).

The STL model for conventional interconnects is based on the assumptions
that:

• The interconnect quasi-parallel wires are metals whose electrical be-
haviour is governed by Ohm’s law;

• the structure of the electromagnetic field surrounding the wires is of the
quasi-TEM type with respect to the wire axis;

• the total current flowing through each transverse section is equal to zero.

A transverse electromagnetic (TEM) field structure is one in which the elec-
tric and magnetic fields in the space surrounding the conductors are transverse
to the wire axis. The TEM fields are the fundamental modes of propagation
of ideal multiconnected guiding structures, i.e. guiding structures with trans-
verse section uniform along the wire axis, made by perfect conductors and
embedded in a homogeneous medium (e.g., [29], [30],[32]).

In actual interconnects the electromagnetic field is never exactly of the
TEM type. In ideal shielded guiding structures, high order non-TEM modes
with discrete spectra can propagate as well as the TEM fundamental modes.
In unshielded guiding structures there are also non-TEM propagating modes
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with continuous spectra. Actual guiding structures are most frequently em-
bedded in a transversally non homogeneous medium, and thus TEM modes
cannot exist. However, even if the medium were homogeneous, due to the
losses, the guiding structure could not support purely TEM modes. Further-
more, the field structure is complicated by the influence of non-uniformities
present along the axis of the guiding structures (bends, crossovers, etc.). How-
ever, when the cross-sectional dimensions of the guiding structure are smaller
than the smallest characteristic wavelength of the electromagnetic field prop-
agating along it, the transverse components of the electromagnetic field give
the “most significant” contribution to the overall field and to the resulting
terminal voltages and currents (e.g., [6]). In other words, we have that the
structure of the electromagnetic field is said to be of quasi-TEM type.

Nowadays, the speed of electronic signals is growing rapidly due to mar-
ket requirements and to progress in technology, e.g. allowing switching times
below 1 ns. Because of such high speed signals the distance between the
wires of interconnects existing at various levels in an electronic circuit may
become comparable with the smallest characteristic wavelength of the signal
themselves. As a consequence high frequency effects such as dispersion and
radiation losses are no more negligible and there is the need of a new model
to describe the propagation of the signals along the interconnects.

Several efforts have been made to obtain generalized transmission line mod-
els from a full-wave analysis based on integral formulations to overcome the
restrictions of the STL model [7, 8, 9, 10, 11, 12, 13, 14].
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Start point and aim of the thesis

Recently the Professors Maffucci A., Miano G., Villone F., [23, 24, 25] have
proposed an “enhanced” transmission line (ETL) model derived from a full-
wave analysis based on an integral formulation of the electromagnetic field
equations, which has the same simplicity and structure as the STL transmission
line model. The ETL model describes the propagation along cylindrical cables
in homogeneous dielectric, in frequency ranges where the STL model fails, takes
into account the shape effects of the transverse cross-section of the interconnect
wires and reduces to the STL model in the frequency ranges where the distance
between wires is electrically short.

Specifically, the ETL model allows to forecast phenomena that the STL
model cannot foresee, such as the distortion introduced by the non-local nature
of the electromagnetic interaction along the conductors, and the attenuation
due to radiation losses in the transverse direction. The ETL model considers
thick quasi-perfect conducting wires and evaluates correctly the kernel that
shows the logarithmic singularity that is typical of the surface distributions.
Such a singularity plays a very important role in the radiation problems, e.g.,
it may regularise the numerical models (e.g., [15, 16]). The approach on which
the ETL model is based bears a resemblance to the Kirchhoff approach [2]. The
ETL model has been formulated, in origin, for study only the propagation of
the differential mode on two conductor in homogeneous dielectric.

The aim of this thesis is extend the ETL model to take in account mul-
ticonductors buried in a stratified dielectric media and to describe both the
propagation of the differential mode and of the common mode and the crosstalk
in order to study the behaviour of the modern high-speed VLSI interconnects.
Two different ways are possible in order to take in account the dielectric me-
dia, we can introduce in the formulation as other unknown the polarisation
current in the dielectric media or we can compute the Green’s function of the
dielectric slab. The ETL model is developed in order to have full-wave results
with a computational cost comparable with the STL model, then we need to
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discard the first way because produce a big increase of the computational cost
due to the need of discretize the dielectric media. In this thesis is showed
as is possible include this kind of media in the ETL model with a very low
increase of the computational cost, the most popular approaches to compute
the Green’s functions [36], [35],[37], [34] are exposed and a method to decrease
furtherly the cost of the method using an approximated form of this functions
[35] is proposed and validated with commercial simulator. As very important
product of this research activity, we can use the ETL model to show the effect
of the unwanted TM and TE mode (associate to power loss) because we can
turn on and off the dynamic part of the Green’s functions. The ETL model for
VLSI interconnections exposed in this thesis is able to simulate multiconductor
interconnections of practical interest and can describe accurately the crosstalk
and the common mode propagation that are associated at noise on the victim
lines and radiation loss in a frequency range where the STL model fails.

This thesis is organised as follow:

Chapter 1 Integral relations for the potentials and the field/circuit problem;

Chapter 2 Generalisation of the ETL model at the case of multiconductors
buried in inhomogeneous medium;

Chapter 3 Numerical implementation of the method and the principal ap-
proaches for evaluate the Green functions of stratified media;

Chapter 4 Numerical results for two cylindrical cables in homogeneous media
are compared with numerical and analytical full-wave solutions;

Chapter 5 Numerical results for microstrip interconnections are compared
with two numerical full-wave solutions;
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Chapter 1

General formulation

1.1 Integral relation

In this thesis, we consider electric conductors buried in an inhomogeneous
dielectric as showed in figure:

Figure 1.1: conductors buried in inhomogeneus dielectric

We assume that the time dependencies of all the fields are exp(iωt) where ω is
the radiant frequency. We suppose that the geometrical dimensions are such
that the current density is mainly located on the conductor surfaces then the
sources of the electromagnetic field are the (superficial) current and charge
densities Js and σs , which must satisfy the charge conservation law :

∇s · Js + iωσs = 0 (1.1)

where (∇s) is the surface divergence operator defined as (∇− n̂ ∂
∂n

).
The Faraday-Neumann law relates the electric to the magnetic field as:

∇× E = −iωB (1.2)
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In order to impose the solenoidality of B we can define a magnetic vector
potential A like1:

B = ∇×A (1.3)

using this definition in (1.2)we have:

∇× (E + iωA) = 0 (1.4)

that can be automatically satisfied2 if we define an electric scalar potential ϕ
such that:

E = −iωA−∇ϕ (1.5)

The potentials A and ϕ are not uniquely defined, unless a suitable gauge
condition is imposed, as for instance the so-called Lorenz gauge, that will be
used in the present derivation:

∇ ·A + iωεrε0µ0ϕ = 0 (1.6)

where εr is the relative dielectric constant of the embedding material and
ε0 and µ0 are the dielectric constant and the magnetic permeability in the
vacuum space. Is important to note that this condition can be imposed when
the dielectric is homogeneous, instead on the discontinuity interfaces we need
to impose the continuity of the tangent component of the fields. The gauge
condition and the field continuity are imposed in the Green’s functions.
The sources Js and σs may be related to the potentials through the Green
functions defined for the domain of interest:

A (r) = µ0

∫∫

S

GA(r, r′)Js(r
′)dS ′ + A∗

EXT (r) (1.7)

ϕ (r) =
1

ε0

∫∫

S

Gϕ(r, r′)σs(r
′)dS ′ + ϕ∗EXT (r) (1.8)

where S represents the union of all the N conductor surfaces (S =
⋃

k=1,··· ,N Sk)
and A∗

EXT (r), ϕ∗EXT (r) are the contributes to the potential due at the charge
and current present in the device connected at the interconnect, GA and Gϕ

are the Green’s functions that take in account the inhomogeneous medium
hence we can avoid to discretize it. In order to close the problem we need to
impose the boundary condition on the conductor, if the conductors are perfect
we have to impose:

E× n̂ = 0|Sk
→ (−iωA−∇ϕ)× n̂ = 0|Sk

(1.9)

1∇ ·B = ∇ · (∇×A) = 0
2∇× (∇ϕ) = 0
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if the conductors have an ohmic behaviour , the boundary condition on the
conductor will be:

E× n̂|Sk
= ζkJs × n̂|Sk

→ (−iωA−∇ϕ)× n̂|Sk
= ζkJs × n̂|Sk

(1.10)

where ζk is the surface impedance of the k-th conductor that take in account
the ohmic losses. For high-frequency operating conditions, for instance, it
reduces to the well-known Leontovich expression

ζk = ηk
1 + i

δk

(1.11)

where ηk and δk are, respectively, the conductivity and the penetration depth
of the k-th conductor.
Is important to note that using the integral relations (1.7), the Sommerfeld
radiation condition is automatically imposed because we have the sources only
at the finite then we can’t have reflected energy from the infinity.

1.2 The field/circuit coupling problem

The circuit theory say that a component is completely describe through a re-
lations between the terminal currents and the voltages, this theory provide
correct results if the characteristic dimensions of the components are small
compared to the smallest wavelength in the signal. In the case of the inter-
connects, this condition is not satisfied and in principle the wave propagation
can be described only using the field theory, we need to match this description
with the circuit description of the terminal components. To do this we have to
derive a multi-port representation of the interconnect, that can be used with
the circuit description of the rest of the circuit. Hence, we assume that it
would be possible to characterise it regardless of the actual devices on which
it is terminated. In other words, the terminal elements are taken into account
only through the relations that they impose on the terminal currents and volt-
ages, but the sources located on the components are neglected in computing
the potentials (1.7) then we suppose that:

A (r) ≈ µ0

∫∫

S

GA(r|r′)Js(r
′)dS ′ (1.12)

ϕ (r) ≈ 1

ε0

∫∫

S

Gϕ(r|r′)σs(r
′)dS ′ (1.13)
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This is a crucial point in the field/circuit coupling problem. This condition is
approximately satisfied if the characteristic dimensions of the terminal devices
are small compared to the interconnect length.
Anyway, as a consequence of this approximation, the potentials in (1.12) and
(1.13) do not wholly satisfy the Lorenz gauge condition. However,it is easy to
verify that, starting from (1.7) and (1.6)

∇ ·A + iωεrε0µ0ϕ = −∇ ·A∗
EXT − iωεrε0µ0ϕ

∗
EXT (1.14)

The two right-hand terms of this expression are negligible only if the dimension
of the terminal device is small respect the length of the interconnect.
Conversely, when the assumption does not hold, there is no way to separate
the behaviour of the interconnect from that of terminal devices and the elec-
tromagnetic system has to be analysed as a whole.
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Chapter 2

TL formulation

2.1 TM type field

The first fundamental assumption is that the surface current density is mainly
directed along x̂: Js = Jxx̂ . In other words we neglect any transverse com-
ponent of the current density, taking into account only the longitudinal one.
This assumption is well-founded when the interconnect length is infinite and
only the fundamental mode is excited. Even with an infinite length, high-order
propagation modes may exhibit non-longitudinal current density components,
hence this assumption defines an upper limit in the frequency range. The first
consequence of this assumption is a drastic simplification of (1.12) and (1.13).

We need to distinguish two cases:

1) The conductors are buried in an homogeneous dielectric, the magnetic vector
potential (1.12) and (1.13) is directed only along x̂

A (r) = µ0

∫∫

S




Gxx
A 0 0
0 Gxx

A 0
0 0 Gxx

A







Jx(r
′)

0
0


 dS ′ (2.1)

then there is only the Ax component:

Ax (r) = µ0

∫∫

S

Gxx
A (r|r′)Jx(r

′)dS ′ (2.2)

and so the magnetic field is rigorously of TM type indeed:

B = ∇×



Ax

0
0


 → Bz = 0 (2.3)
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2) The conductors are buried in a multilayered media.

Figure 2.1: Generic cross-section of a multilayered interconnect

Since the layers properties are assumed to change only along ẑ direction (see
Figure 2.1), GA has the structure

GA =




Gxx 0 Gzx

0 Gyy Gzy

Gzx Gzy Gzz


 (2.4)

then the magnetic vector potential (1.12) is:

A (r) = µ0

∫∫

S




Gxx
A 0 Gxz

A

0 Gyy
A Gyz

A

Gzx
A Gzy

A Gzz
A







Jx

0
0


 dS ′ (2.5)

hence

Ax(r) = µ0

∫∫

S

Gxx
A (r|r′)Jx(r

′)dS ′ (2.6)

Az(r) = µ0

∫∫

S

Gzx
A (r|r′)Jx(r

′)dS ′ ≈ 0 (2.7)

hence, there is also the Az component but, in practical case, this component
are negligible respect the Ax component,then we suppose that Az ≈ 0, so the
magnetic field is approximately of TM type.
In this conditions, it is uniquely defined the voltage between any couple of
points lying on a plane x = const.

V (x) =

∫

γ

E · dl 0 ≤ x ≤ l. (2.8)
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2.2 The first governing equation

The second assumption is that the current and charge densities have a spatial
dependence of separable type:

Js (r)|r∈Sk
= Ik (x) F ′

k (sk) , σ (r)|r∈Sk
= Qk (x) F ′′

k (sk) (2.9)

where Ik(x) and Qk(x) are the total current and p.u.l. charge associated to
the conductor, F ′

k and F ′′
k are shape functions dimensionally homogeneous with

m−1 , describing the distribution of currents and charges along the contour lk
and sk is the curvilinear abscissa in the transverse plane. In other words, we
are assuming that only the total current Ik(x) and p.u.l. charge Qk(x) vary
along x, whereas the spatial distributions of current and charge densities are
independent on x. Imposing the charge conservation law (1.1) on the k-th
conductor and using (2.9) we obtain

dIk (x)

dx
F ′

k (sk) + iωQk (x) F ′′
k (sk) = 0 (2.10)

which yields:
F ′

k (sk) = F ′′
k (sk) = Fk (sk) (2.11)

dIk (x)

dx
+ iωQk (x) = 0 (2.12)

The shape functions for the charge and current distributions must be the same.
If we impose the following normalization condition:∮

lk

Fk (sk) dsk = 1 (2.13)

then the current Ik and the p.u.l. charge Qk are obtained by integrating (2.9)
along lk. With the position (2.9) the problem may be solved by separating
the transverse and longitudinal behaviour of the current and charge distribu-
tions. When the characteristic transverse dimensions of the conductors are
electrically short and the interconnect is geometrically long, the transverse be-
haviour Fk(sk) is obtained by solving once for all a quasi-static 2D problem in
the transverse plane.

This assumption imposes the high-frequency validity limit for the ETL model,
but produce a drastic reduction of the computational cost of the method.
Eq. (2.12) may be written for every conductor, introducing the numerical
vectors I (x) = {Ik (x)}k=1..N and Q (x) = {Qk (x)}k=1..N :

dI (x)

dx
+ iωQ (x) = 0 (2.14)

This is the first of the two governing equations for any transmission line model.
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2.3 The second governing equation

Let us now focus on the relation between the voltage and p.u.l. magnetic
flux. Let ak indicates a characteristic dimension of the cross-section of the k-
th conductor and let a = maxk(ak): assuming operating conditions such that
ka ¿ 1 it is possible to approximate at any abscissa x the values of A(x, y, z)
and ϕ(x, y, z) on the surfaces Σk with their average values along the conductor
cross-sections contours lk, say Ãk(x) and ϕ̃k(x) .

Ãk(x) =
1

ck

∮

lk

Ax(x, y, z)dsk (2.15)

ϕ̃k(x) =
1

ck

∮

lk

ϕ(x, y, z)dsk (2.16)

using this average values, the (1.10) become:

(
−iωÃk(x)− d

dx
ϕ̃k(x)

)
= Zkk

s (iω)Ik(x) (2.17)

where

Zkk
s (iω) =

1

ck

∮

lk

ζk
s (sk)F

′(sk)dsk (2.18)

If the conductor are cylindrical and the proximity is negligible the (2.18) reduce

to Zkk
s (iω) = ζk

s

πak
. As already pointed out, it is possible to define uniquely the

voltage between any two pair of points lying on a plane x = const. If we assume
the (N+1)th conductor as ground reference, we may introduce the grounded
mode voltage of the k-th conductor as follows

Vk(x) = ϕ̃k(x)− ϕ̃N+1(x) (2.19)

The p.u.l. magnetic flux linked to a closed loop connecting the k-th conductor
and the ground one in the plane y-z may be expressed as

Φk(x) = Ãk(x)− ÃN+1(x) (2.20)

Let us introduce the vectors V (x) = {Vk (x)}k=1..N and Φ (x) = {Φk (x)}k=1..N

using (2.19) and (2.20) in (2.17) we obtain

−dV (x)

dx
= iωΦ (x) + Zs(iω)I (x) (2.21)

where Zs(iω) is a diagonal matrix with Zkk
s (iω) on the diagonal.

This is the second governing equations for any transmission line model.
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2.4 The ETL constitutive relations

Using the assumptions (2.9) in (2.15) we have:

Ãk(x) = µ0
1

ck

∮

lk

∑
n

∫∫

Sn

Gxx
A (r|r′)In (x′) Fn (sn) dS ′dsk (2.22)

ϕ̃k(x) =
1

ε0

1

ck

∮

lk

∑
n

∫∫

Sn

Gϕ(r|r′)Qn (x′) Fn (sn) dS ′dsk (2.23)

then we can split the surface integral in a linear integral on the contour ln and
an integral on the x direction

Ãk(x) = µ0
1

ck

∮

lk

∑
n

∮

ln

l∫

0

Gxx
A (sn; sk; x− x′)In (x′) Fn (sn) dsndx′dsk (2.24)

ϕ̃k(x) =
1

ε0

1

ck

∮

lk

∑
n

∮

ln

l∫

0

Gϕ(sn; sk; x− x′)Qn (x′) Fn (sk) dsndx′dsk (2.25)

Changing the integration order we can write

Ãk(x) = µ0

∑
n

l∫

0

(
1

ck

∮

lk

∮

ln

Gxx
A (sn; sk; x− x′)Fn (sn) dsndsk

)
In (x′) dx′

(2.26)

ϕ̃k(x) =
1

ε0

∑
n

l∫

0

(
1

ck

∮

lk

∮

ln

Gϕ(sn; sk; x− x′)Fn (sn) dsndsk

)
Qn (x′) dx′

(2.27)

hence, using the position (2.20) and (2.19) these relations may be obtained
from (1.12) and (1.13):

Φ(x) = µ0

l∫

0

HI(x− x′)I(x)dx′ (2.28)

V(x) =
1

ε0

l∫

0

HQ(x− x′)Q(x)dx′ (2.29)

These constitutive relations are spatial convolutions, hence their meaning is
straightforward: in the general case the value of the p.u.l. magnetic flux (the
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voltage) at a given abscissa x depends on the whole distribution of the current
intensity (p.u.l electric charge) along the line. The kernels in (2.28) and (2.29)
are matrices whose entries are:

Hnk
I (ζ) =

1

ck

∮

lk

∮

ln

Gxx
A (sn; sk; ζ)Fn (sn) dsndsk+

− 1

cN+1

∮

lN+1

∮

ln

Gxx
A (sn; sk; ζ)Fn (sn) dsndsk (2.30)

Hnk
Q (ζ) =

1

ck

∮

lk

∮

ln

Gϕ(sn; sk; ζ)Fn (sn) dsndsk+

− 1

cN+1

∮

lN+1

∮

ln

Gϕ(sn; sk; ζ)Fn (sn) dsndsk (2.31)

When the N+1 term in (2.30) and (2.31) is take in account in the Green’s
function then the kernels are simplified as

Hnk
I (ζ) =

1

ck

∮

lk

∮

ln

Gxx
A (sn; sk; ζ)Fn (sn) dsndsk (2.32)

Hnk
Q (ζ) =

1

ck

∮

lk

∮

ln

Gϕ(sn; sk; ζ)Fn (sn) dsndsk (2.33)

The system of Eqs.(2.14),(2.21),(2.28) and (2.29), represents a generalised
transmission line model: in the following we will refer to it as the enhanced
transmission line (ETL) model. The 3D full-wave problem has been recast in
a transverse quasi-static 2D problem and a 1-D propagation problem. The
first problem is solved once for all and provides the source distributions Fk(sk)
along the conductor contours. The 1D propagation problem provides, instead,
the distributions of voltages, currents, p.u.l. charge and magnetic flux along
the line axis.

2.5 The STL constitutive relations

Letting the frequency go to zero and the interconnect length go to infinity,
it is possible to prove that the kernels in (2.32)-(2.33) have a quasi-impulsive
behaviour respect to ζ [24] then:

Φ(x) = µ0

l∫

0

HI(x− x′)I(x)dx′ ≈ µ0




+∞∫

0

HI(x
′)dx′


 I(x) (2.34)

V(x) =
1

ε0

l∫

0

HQ(x− x′)Q(x)dx′ ≈ 1

ε0




+∞∫

0

HQ(x′)dx′


Q(x) (2.35)



2.6 The quasi-static 2D problem 11

hence we have the local relations

Φ(x) ≈ µ0HI0I(x) = LI(x) (2.36)

V(x) ≈ 1

ε0

HQ0Q(x) = C−1Q(x) (2.37)

where L = µ0HI0 and C = ( 1
ε0

HQ0)
−1 are the p.u.l. inductance and capaci-

tance matrices of the STL problem.
In conclusion, when the interconnect is enough long to neglect the effect of the
finite length and the frequency is enough low to make the transverse dimen-
sions electrically small the ETL model tends to the STL model:

−dV (x)

dx
= Z(iω)I (x) , −dI (x)

dx
= Y (iω)V (x) (2.38)

where Z(iω) = iωµ0HI0(ω) + Zs(iω), Y (iω) = iωε0H
−1
Q0(ω) are the per-unit-

length impedance and admittance matrices.

2.6 The quasi-static 2D problem

The shape functions for the charge and the current can be founded solving
once for all a quasi static 2D problem along the conductor contours in the
additional hypothesis of geometrical long interconnect. The scalar potential
depends solely on the spatial variable x

ϕk(x) ≈ Q(x)

ε0

∑
n

(∮

ln

gϕ(sn; sk)Fn (sn) dsn

)
(2.39)

where gϕ(sn; sk) is the quasi static Green’s function and sn, sk are, respectively,
the source point and the observation point in the transverse section. ... ...

ϕk(x)

Q(x)
=

1

ε0

∑
n

(∮

ln

gϕ(sn; sk)Fn (sn) dsn

)
(2.40)

these equations are verified for every x

αk =
1

ε0

∑
n

(∮

ln

gϕ(sn; sk)Fn (sn) dsn

)
(2.41)

where αk are real dimensionless and unknown constants that have to be im-
posed in such away to satisfy the normalization conditions (2.13) in this way
the shape functions Fk(sk) are univocally determine.
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A way to solve this problem, if we choose N+1 conductors as ground
reference, is choose α

(1)
1 = 1, α

(1)
j=2···N = 0 and compute the shape function

F
(1)
1 , F

(1)
2 , · · · , F

(1)
N from the integral problem (2.41), then evaluate the charge

on the conductors as

Qj1 =

∮

lj

F
(1)
j (sj)dsj 6= 1 (2.42)

hence these values are equal at the first row of the capacitance matrix C1j,
because we have choose unitary potential value, repeating this procedure for
α

(i)
i = 1, α

(i)
j 6=i = 0 i = 2, · · · , N we can fill in all the capacitance matrix.

The shape functions, that we have found, don’t satisfy the normalization
condition (2.13), in order to do this we have to compute the coefficient αk as
follow: 



α1

α2
...

αN


 =




C11 C12 · · · C1N

C21 C22 · · · C2N

· · · · · · · · · · · ·
CN1 CN2 · · · CNN







1
1
...
1


 (2.43)

then with this value we can solve the integral problem (2.41) that provide the
normalized shape functions that we need. As sub product of this procedure we
have found the capacitance matrix of the structure, if we repeat all but with
the free space Green’s function we can found the capacitance matrix for only
the conductor, using the relation

CvuotoL = ε0µ0I (2.44)

where I is the identity matrix, we can compute the inductance matrix of the
structure.

2.7 Mode conversion

A correct analysis of the mixed-mode propagation of differential and common
mode currents along interconnects is of great interest in high-speed circuits.
For instance, the accurate evaluation of the common-mode currents is a crucial
point in the analysis of systems like printed circuit boards (PCB), because of
their remarkable effect on the overall EMI performance. Although they may
be even some order of magnitude lower than the differential mode currents,
their effects may be comparable, for instance, in terms of radiated emissions
[18]. In the PCBs the control of the emissions generated by the common-mode
currents on the circuitry is one of the crucial points in the analysis of the
EMI performance [20]-[22]. This is because the common-mode currents drive
the interconnects in the so-called antenna-mode (the radiated fields generated
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by such currents tend to sum up), while the differential-mode currents is the
transmission-mode (the radiated fields tend to cancel each others). Usually
the common-mode currents are due to unwanted effects: the presence of an
external field, the coupling between differential and common mode currents
due to asymmetric conductor cross-sections and non-ideal behaviour of the
ground. In other cases the common-mode is not due to unwanted effect. In
the differential signalling technique, a signal is defined as the difference be-
tween the signals of two conductors with respect to a third reference one, so
that the performance is not affected by a floating reference. However, due to
the presence of the ground, a common-mode solution may propagate. Let us
consider the interconnect of Fig. 2.7, of total length l, made by two signal
conductors and a ground plane.

Figure 2.2: Coupled microstrip

In the differential signalling technique the signal is defined as the difference
between the signals of the two conductors:

Id (x) ≡ I1 (x)− I2 (x)

2
, Vd (x) ≡ V1 (x)− V2 (x) . (2.45)

This propagating mode is known as the differential mode. The presence of
the ground plane allows of course the interconnect to support a second mode,
which is referred to as the common mode:

IC (x) ≡ I1 (x) + I2 (x) , VC (x) ≡ V1 (x) + V2 (x)

2
. (2.46)

The grounded mode solution
[

V1

V2

]
=

[
Z11 Z12

Z21 Z22

] [
I1

I2

]
(2.47)

where the terminal voltages and currents are defined as X1 = [X1(0) X2(0)]T ,
X2 = [X1(l) X2(l)]

T . A simple linear combination may lead to the mixed-mode
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representation [
VM1

VM2

]
=

[
ZM11 ZM12

ZM21 ZM22

] [
IM1

IM2

]
(2.48)

where the terminal mixed-mode voltages and currents are defined as the above
terminal voltages and currents, and

[
ZM11 ZM12

ZM21 ZM22

]
=

[
B 0
0 B

] [
Z11 Z12

Z21 Z22

] [
A−1 0
0 A−1

]
(2.49)

where A =

[
1/2 −1/2
1 1

]
and B =

[
1 −1

1/2 1/2

]

2.8 Scattering parameter

2.8.1 Scattering parameter, general definition

At high frequency is very difficult measure directly the impedance matrix be-
cause we need to open a terminal or close a terminal on a short circuit that
can produce oscillating behaviour if active device are present, furthermore if
very difficult to build broadband open or short circuit . The S parameter
can be measured connecting the Device Under Test (DUT) at a transmission
line (usually coaxial cable) whose ends are connected to a Vector Network
Analyzer (VNA).[31]
The measurement setup can be modelled as

Figure 2.3: Measurement setup
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we define a forward and backward wave respect the x̂ direction as

a′k(x) =
Vk(x) + Z0Ik(x)

2
√

Z0

(2.50)

b′k(x) =
Vk(x)− Z0Ik(x)

2
√

Z0

(2.51)

for simplicity we consider the two port case, at the port 1 we can define

a1 = a′1(0) (2.52)

b1 = b′1(0) (2.53)

at the port 2 we can define 1

a2 = b′1(l) (2.54)

b2 = a′1(l) (2.55)

then the scattering matrix are defined as
[

b1

b2

]
=

[
S11 S12

S21 S22

] [
a1

a2

]
(2.56)

we can simply measure these parameters if we close a terminal on a matched
load ZL = Z0, then there is no reflected wave a2 = 0 and

S11 =
b1

a1

∣∣∣∣
a2=0

(2.57)

S21 =
b2

a1

∣∣∣∣
a2=0

(2.58)

close the DUT on a matched load that is the better work condition for the
DUT.

2.8.2 S parameters, ETL model

We can reformulate the ETL model in order to compute directly the S param-
eters, indeed deriving the (2.50) we have

da′

dx
=

1

2
√

Z0

(
dV

dx
+ Z0

dI

dx

)
(2.59)

db′

dx
=

1

2
√

Z0

(
dV

dx
− Z0

dI

dx

)
(2.60)

1note that the incident wave a2 on the port 2 is in −x̂ direction then is the backward
wave defined in (2.50)
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using (2.14),(2.21), we obtain

da′

dx
=

1

2
√

Z0

(−jωΦ− jωZ0Q) (2.61)

db′

dx
=

1

2
√

Z0

(−jωΦ + jωZ0Q) (2.62)

using (2.28) we have

da′

dx
=

1

2
√

Z0


−jωµ0

l∫

0

HI(x− x′)I(x)dx′ − jωZ0Q


 (2.63)

db′

dx
=

1

2
√

Z0


−jωµ0

l∫

0

HI(x− x′)I(x)dx′ + jωZ0Q


 (2.64)

from the definitions (2.59),(2.60) and the equation (2.29) we obtain

a′(x) =
1

2
√

Z0

(
1

ε0

∫ l

0

Hv(x− x′)Q(x′)dx′ + Z0I(z)

)
(2.65)

b′(x) =
1

2
√

Z0

(
1

ε0

∫ l

0

Hv(x− x′)Q(x′)dx′ − Z0I(x)

)
(2.66)

2.8.3 S parameters, mode conversion

Let us consider the structure of fig. 2.7, we can define on the port 1

aI
1 = a′1(0) bI1 = b′1(0) aI

2 = a′2(0) bI2 = b′2(0)

on the port 2

aII
1 = b′1(l) bII1 = a′1(l) aII

2 = b′2(l) bII2 = a′2(l)

using this definition the S matrix is



bI1
bI2
bII1
bII2


 =




S11 S12 S13 S14

S21 S22 S23 S24

S31 S32 S33 S34

S41 S42 S43 s44







aI
1

aI
2

aII
1

aII
2


 (2.67)

furthermore we can relate the 4-port single-ended scattering-matrix to the
mixed-mode scattering matrix, using the definition proposed in [17]

S
M

= MSM−1 (2.68)
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where

M =
1√
2




1 −1 0 0
0 0 −1 1
1 1 0 0
0 0 1 1


 (2.69)
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Chapter 3

ETL, numerical implementation

3.1 ETL, Cylindrical cable, an analytical test

case

Let us study the simple case of a straight pair in the vacuum space, made by
two cylindrical perfect conductors of radius a. Let hc be the center to center
distance in the transverse plane (Fig.3.1) and l the total length. The example
can be also used to analyse the case of a cylindrical conductor above a perfect
ground plane. In vacuum the Green functions reduce to the function

G(r) =
e−ikr

r
(3.1)

where r is the distance between the source and field points.

Figure 3.1: Cylindrical wires
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in this case the (2.41) become

α1 =
1

ε0

(∮

l1

gϕ(s1; s1)F1 (s1) ds1

)
+

(∮

l1

gϕ(s2; s1)F2 (s2) ds2

)
(3.2)

where gϕ(r) = − 1
2π

ln r.
We consider the case of differential feed then the current on the conductor are
equal and opposite J1 = −J2 → F1 = −F2, using the geometry of the problem
we have

α1 =
1

ε0

2a

(∫ 2π

0

gϕ(|r⊥1 − r′⊥1|)F1 (θ′) dθ′1

)
−

(∫ 2π

0

gϕ(|r⊥1 + hŷ − r′⊥2|)F1 (θ′) dθ′
)

(3.3)
this is a Fredholm integral equation of the first kind.
The F1(θ) is the surface charge distribution in the transverse plane if the
conductor are of infinite length and the linear charge density are 1C/m for the
first conductor and −1C/m for the second one, this a canonical problem and
the solution is [33]

F1(θ) =
1

2πa
[F−(θ)− F+(θ)] (3.4)

where [24]:

F±(θ) =
a2 cos2(θ)± a sin(θ)

[
b± (

h/2 + a sin2(θ)
)]2

a2 cos2(θ) +
[
b± (

h/2 + a sin2(θ)
)]2 (3.5)

b =

√(
h

2

)2

− a2 (3.6)

When considering widely separated conductors it results F1(θ) = 1/(2πa) and
it is possible to give a closed-form expression to the kernel (2.28) and (2.29),
which are equal and may be split as the sum of a static and a dynamic term,
H = HI = HQ = Hstat + Hdyn :

Hstat (ζ) =
1

π2

κ [m (ζ)]

Rs (ζ)
− 1

2π

1

Rm (ζ)
(3.7)

Hdyn (ζ) = −ik

π
exp

[
−ikRm (ζ)

2

]
sinc

[
kRm (ζ)

2

]
(3.8)

Here κ (m) is the complete elliptic integral of the first type, and

m(ζ) =
ζ2

4a2 + ζ2
, Rm (ζ) =

√
h2

c + ζ2, Rs (ζ) =
√

4a2 + ζ2 (3.9)
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The dynamic term depends on the frequency and vanishes as ω → 0 . The
static term is independent on frequency but shows a singularity of logarithmic
type:

Hs (ζ) ≈ − 1

2aπ2
ln (ζ) for ζ → 0 (3.10)

This is the characteristic singularity associated with surface distribution and
it is integrable. As already pointed out, if we consider infinitely-long lines
and assume frequency operating conditions such that hc/λ ¿ 1 , λ being
the characteristic signal wavelength, H(ζ) reduces to a spatial Dirac pulse
H(ζ) → H0δ(ζ) , where

H0 =

∞∫

−∞

H(x)dx =
1

π
ln

(
hc

a

)
(3.11)

In this case the cylindrical pair is described by the classical telegrapher’s equa-
tions for ideal two-conductor lines, and we retrieve the classical result:

L = µ0H0 =
µ0

π
ln

(
hc

a

)
(3.12)

C =
ε0

H0

=
ε0π

ln

(
hc

a

) (3.13)
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3.2 ETL, Coupled microstrip

A structure of great interest for high-speed electronic applications is the mi-
crostrip line: Figure 3.2 shows a simple example of a three conductor mi-
crostrip, made by two signal conductors on a dielectric layer and a ground
plane the references for the voltages and currents are showed, note that the
grounded modes are considered.

Figure 3.2: Coupled microstrip

From a qualitative point of view, the results highlighted in paragraph 3.1
still hold: the kernels (2.32)-(2.33) show a singularity of logarithmic type and
the standard transmission line model may be obtained as a limit case of the
generalised one.

3.2.1 The Green’s function

In this case the kernels (2.32)-(2.33) are different, due to the dielectric influ-
ence, since we have to consider two different Green functions in (1.12)-(1.13).
The Green function GA involved in (1.12) is in general dyadic but in many
practical applications the thickness of conductors t is small compared to their
width w therefore the magnetic field is approximable with a TM type field, as
already pointed out in the paragraph 2.1, hence the only component that we
need is GA

xx.
For the considered structure the Green functions may be evaluated in closed
form in the spectral domain [34],[35],[36],[37] :

G̃xx
A (kρ; z > 0|z′ > 0) =

1

2ikz0

[
e−ikz0|z−z′| + RTEe−ikz0(z+z′)

]
(3.14)

G̃ϕ(kρ; z > 0|z′ > 0) =
1

2ikz0

[
e−ikz0|z−z′| + (RTE + Rq) e−kz0(z+z′)

]
(3.15)



3.2 ETL, Coupled microstrip 22

where

RTE = − rTE + e−i2kzrt

1 + rTEe−i2kzrt
;

Rq =
2k2

z0(1− εr)(1− e−i4kzrt)

(kzr + kz0)(kzr + εrkz0)(1 + rTEe−i2kzrt)(1− rTMe−i2kzrt)
?

kz0 =
√

k2
0 − k2

ρ; kzr =
√

εrk2
0 − k2

ρ; rTE =
kzr − kz0

kzr + kz0

; rTM =
kzr − εrkz0

kzr + εrkz0

The spatial domain functions are obtained by evaluating the Sommerfeld in-
tegrals [35]

Gxx
A (ρ; z, z′) =

1

4π

+∞∫

−∞(SIP )

G̃xx
A (kρ)H

(2)
0 (kρρ)kρdkρ = S0{G̃xx

A (kρ)} (3.16)

Gϕ (ρ; z, z′) =
1

4π

+∞∫

−∞(SIP )

G̃ϕ(kρ)H
(2)
0 (kρρ)kρdkρ = S0{G̃ϕ(kρ)} (3.17)

where H
(2)
0 is the Hankel function of second kind and order 0, ρ is the distance

in the plane xy, z and z′ are, respectively, the horizontal positions of the
observe and the source and SIP is an integration path in the first and third
quadrant of the kρ complex plane that detours around the poles and the branch
point of the argument.

Due to the slowly decaying and highly oscillating behaviour of the function to
be integrated, the brute force numerical computation is time consuming.
A way to speed up the evaluation of the Sommerfeld integral is approximate
the spectral domain Green’s functions G̃xx

A (kρ) and G̃ϕ(kρ) in terms of certain
functions for which Sommerfeld integrals can be obtained in closed form.

Here we summarise the ideas at the base of the most popular algorithms
(DCIM [35],[34], RFFM [36], TLSM [37])to do this task.
All the methods, that we’ll show, first remove the asymptotic behaviour G̃as

(see paragraph 3.2.2 for detail) of the Green’s functions for kρ → ∞ that
dominate the near field interaction ρ → 0, in order to improve the conver-
gence of the fitting procedure of the remaining part done with the algorithm
summarised in the next.
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Discrete Complex Image Method (DCIM)

G̃−G̃as is approximated in terms of complex exponentials using the Generalised
Pencil of Function Method (GPFM) as

G̃− G̃as ≈
N∑

k=1

ake
−bkkzr (3.18)

To obtain the spatial domain Green’s function we can use the Sommerfeld
Identity:

e−ikrk

rk

=

+∞∫

−∞

eikzr|z|

ikzr

e−bkkzrH2
0 (kρρ)kρdkρ (3.19)

where rk =
√

ρ2 − b2
k

1 then we have:

G ≈ Gas +
N∑

k=1

ak
e−ikrk

rk

(3.20)

In order to increase the convergence of this method, and have the correct
behaviour for large distance, is needed to extract the poles of the spectrum
domain green function that in the spatial domain give the TM/TE Surface
Waves that dominate the far field behaviour:

G̃− G̃as ≈
N∑

k=1

ake
−bkkzr +

NTE∑

k=1

aTE
k

k2
ρ − (pTE

k )2
+

NTM∑

k=1

aTM
k

k2
ρ − (pTM

k )2
(3.21)

where aTE; aTM and pTE; pTM are, respectively, the residuals and the poles of
the TE and TM Surface Wave. To obtain the spatial domain Green’s function
we can use the identity:

−j

4
H

(2)
0 (pρ) =

+∞∫

−∞(SIP )

1

k2
ρ − p2

H2
0 (kρρ)kρdkρ (3.22)

then we have:

G ≈ Gas+
N∑

k=1

ak
e−ikrk

rk

− j

4

NTE∑

k=1

aTE
k H

(2)
0 (pTE

k ρ)− j

4

NTM∑

k=1

aTM
k H

(2)
0 (pTM

k ρ) (3.23)

1that is complex in general and hence this method is called Complex Image Method
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The first problem of this technique is that the extraction of the poles and the
evaluation of the residue require a time consuming algorithm and, in addition, a
large number of Image is needed to have the correct evaluation of the Green’s
Function. The second problem is that the Hankel functions introduces not
physical near-field singularities even when the field point and source point are
in different horizontal plane (z 6= z′).

Rational Fitting Function Method (RFFM)

G̃−G̃as is approximated in terms of rational functions using the Vector Fitting
algorithm as

G̃− G̃as ≈ +

Nvf∑

k=1

ak

k2
ρ − p2

k

(3.24)

with the constrain −π < arg(pk) ≤ 0, in order to have only cylindrical waves
with physical meaning.
Using the relation (3.22) we have

G ≈ Gas − j

4

Nvf∑

k=1

akH
(2)
0 (pkρ) (3.25)

This technique solve the first problem of the DCIM because the Vector Fitting
algorithm is very efficient and use less poles to have the correct approximation
of the Green’s function, but the second problem is still present because the
Green’s function is fitted with Hankel functions without any constrain in the
case ρ → 0 with z 6= z′.

Total Least Square Method (TLSM)

G̃− G̃as is approximated as a fraction of two polynomials

G̃− G̃as ≈
P̃ (M−2)(k2

ρ)

Q̃(M)(k2
ρ)

(3.26)

where P̃ (M−2)(k2
ρ) and Q̃(M)(k2

ρ) are polynomial in the variable k2
ρ of degrees

M − 2 and M , respectively. Using the Total Least Square Technique the pole
and the residual of G̃− G̃as are founded and we can write

G̃− G̃as ≈
Ntls∑

k=1

ak

k2
ρ − p2

k

(3.27)
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hence finally we have

G ≈ Gas − j

4

Ntls∑

k=1

akH
(2)
0 (pkρ) (3.28)

This technique solve all the problems of the DCIM, indeed the TLSM use less
poles of the RFFM with a minor computational cost and the choice of use two
polynomial of degrees M − 2 and M , impose that G−Gas → 0 when ρ → 0,
solving the second problem.

3.2.2 The Quasi Static Green’s function Gas

All the approaches described above needed of the extraction of the Quasi Static
Green’s function [35], this term dominate the near field interaction (ρ → 0)
and can be founded from the Spectral Domain Green’s function in the limits
kρ →∞. This terms give an analytical approximation of the Green’s function
for the low frequency and low distance usable to simplify the numerical code
in many practical case. Here we consider only the Green’s functions when
z > 0 and z′ > 0 (3.14),(3.15), because are used in the microstrip case, for the
general case see [28].
If kρ →∞⇒ kz0 ≈ kzr we have

rTE → 0; rTM → K =
1− εr

1 + εr

;

RTE → RTE0 = −e−i2kz0t; Rq → Rq0 =
K(1− e−i4kz0t)

1−Ke−i2kz0t

then

G̃xx
Aas(kρ; z > 0|z′ > 0) =

1

2ikz0

[
e−ikz0|z−z′| + RTE0e

−ikz0(z+z′)
]

(3.29)

G̃ϕas(kρ; z > 0|z′ > 0) =
1

2ikz0

[
e−ikz0|z−z′| + (RTE0 + Rq0) e−kz0(z+z′)

]
(3.30)

in the Spatial Domain 2 we have

GAas(ρ; z, z′) =
1

4π

e−ikr

r
− 1

4π

e−ikr1

r1

(3.31)

Gϕas(ρ; z, z′) =
1 + K

4π

e−ikr

r
+

K2 − 1

4π

∞∑
n=1

Kn−1 e−ikrn

rn

(3.32)

where r =
√

ρ2 + (z − z′)2 and rn =
√

ρ2 + (z + z′ + 2nt)2

2remember that
∞∑

k=1

xk = 1
1−x if |x| < 1
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3.2.3 The Static Green’s function gϕ

From the Quasi Static Green’s Function (3.32) is simple derive the static
Green’s function for the transverse problem of fig.3.2 (b)

gϕ(s, s′) =
1 + K

2π
log(

√
(y − y′)2 + (z − z′)2 )+

+
K2 − 1

2π

∞∑
n=1

Kn−1 log(
√

(y − y′)2 + (z − z′ + 2nt)2 ) (3.33)

The singular part of the Static Green’s function is:

gϕS(s, s′) =
1 + K

2π
log(

√
(y − y′)2 + (z − z′)2 ) (3.34)

3.2.4 The shape functions

We consider the case of fig.3.2 (b), on the conductor contour l1 we choose N1

point s11, s12, · · · · · · , s1N1 and N2 point s21, s22, · · · · · · , s2N2 on the conductor
countor l2 then l1 =

⋃
h L1h and l2 =

⋃
h L2hwhere L1h is the piece of contours

between s1h and s1(h+1) (similarly for L2h) and define N1 − 1 pulse functions
u1h like that u1h(s1) = 1 if s1 ∈ L1h and u1h = 0 otherwise (similarly for the
second conductor) then we have

F ′
1(s1) =

N1∑

h=1

f1hu1h(s1) F ′
2(s2) =

N2∑

h=1

f2hu2h(s2) (3.35)

On every point s1j of the conductor 1 we can write the (2.41) as

α1 =
1

ε0

(∮

l1

gϕ(s1j; sn)

N1∑

h=1

f1huh(s1)ds1

)
+

1

ε0

(∮

l2

gϕ(s1j; s2)

N2∑

h=1

f2huh(sn)ds2

)

(3.36)
similarly on point s2j of the conductor 2:

α2 =
1

ε0

(∮

l2

gϕ(s2j; sn)

N1∑

h=1

f1huh(s1)ds1

)
+

1

ε0

(∮

l1

gϕ(s2j; s2)

N2∑

h=1

f2huh(sn)ds2

)

(3.37)
Using the definition of the pulse functions we can write:

α1 =
1

ε0

2∑
n=1

Nn∑

h=1

fnh

(∫

Lnh

gϕ(skj; sn)dsn

)
for j = 1; · · · ; N1 (3.38)

α2 =
1

ε0

2∑
n=1

Nn∑

h=1

fnh

(∫

Lnh

gϕ(skj; sn)dsn

)
for j = 1; · · · ; N2 (3.39)
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Defining the vectors
α1 = α1 ∗ ones(N1, 1); α2 = α2 ∗ ones(N2, 1)
f1 = [f11f12 · · · f1N1 ]

T ; f2 = [f21f22 · · · f2N2 ]
T ;

We can rewrite these equation in a more compact form

ε0

[
α1

α2

]
=

[
A11 A12

A21 A22

] [
f1
f2

]
(3.40)

with

Amn =




amn(1, 1) amn(1, 2) · · · amn(1, NNn)
amn(2, 1) amn(2, 2) · · · amn(2, NNn)

...
...

...
...

amn(NNm , 1) amn(NNm , 2) · · · amn(NNm , NNn)


 (3.41)

where

amn(k, h) =

∫

Lnh

gϕ(smk; sn)dsn (3.42)

These integrals can be evaluated with the midpoint integration rule if m 6= n
or k 6= h in this case we have:

amn(k, h) = gϕ(smk; snh)(snh − sn h+1) (3.43)

Due to the logarithmic behaviour of the Green’s function is needed, instead, an
analytical evaluation of the singular part of the diagonal terms of the matrices
Amm. To do this we split the Green’s function in the singular part gS(smk; sm)
and the remaining regular part gϕR(smk; sm)

amm(k, k) =

∫

Lmk

gϕS(smk; sm)dsm +

∫

Lmk

gϕR(smk; sm)dsm (3.44)

The first part of the second term can be integrate analytically and we obtain

amm(k, k) =

[
1 + K

2π
(1.5− log(dist(smk; sm k+1))) + (3.45)

+ gϕR(smk; sm k+1)

]
dist(smk; sm k+1) (3.46)

where dist(smk; sm k+1) =
√

(ymk − ym k+1)2 + (zmk − zm k+1)2

In order to impose the shape normalization (2.13), we impose

Nm∑
m=1

fkm = 1 for k = 1; · · · ; Nc (3.47)
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Is simple generalise this approach at the case of Nc conductors, indeed, on
every contours we can write

αk =
1

ε0

Nc∑
n=1

Nn∑

h=1

fnh

(∫

Lnh

gϕ(skj; sn)dsn

)
for j = 1; · · · ; Nk (3.48)

3.2.5 The kernels

Due to the dielectric influence we have two different Green’s function for the
Vector and Scalar potentials hence, we have two different Kernels (2.32)-(2.33).
In this configuration we can’t find an analytical formulation for the kernel that
may be evaluated numerically as follow.

Hnk(ζ) =
1

ck

Nm∑
m=1

Np∑
p=1

G(snm; skp; ζ)fnmdsnmdskp if ζ 6= 0 (3.49)

where fnm = Fn (snm)

Hnk(ζ) =
1

ck

(G(ζ)dfn)T dsk if ζ 6= 0 (3.50)

where dsn = [|sn1 − sn2|, |sn2 − sn3|, · · · , |sn Nn−1 − snNn|]T ;
dfn = [(fn1dsn1), (fn2dsn2), · · · , (fnNndsnNn)]T and

G(ζ) =




G(sn1; sk1; ζ) G(sn1; sk2; ζ) · · · G(sn1; skNp ; ζ)
G(sn2; sk1; ζ) · · · · · · G(sn2; skNp ; ζ)

· · · · · · · · · · · ·
G(snNm ; sk1; ζ) G(snNm ; sk2; ζ) · · · G(snNm ; skNp ; ζ)


 (3.51)

when ζ → 0 the Green’s functions are singular and the integral need to be
evaluated analytically.

GS
A(snm; skm; ζ → 0) =

1

4π

e−ikr

r
(3.52)

GS
ϕ(snm; skm; ζ → 0) =

1 + K

4π

e−ikr

r
(3.53)

That are the same of the cylindrical case then the singular parts of the Kernels
it may be proven to be

Hnk
IS (ζ) = − 1

2akπ2
ln (ζ) for ζ → 0 (3.54)

Hnk
QS(ζ) = −1 + K

2akπ2
ln (ζ) for ζ → 0 (3.55)
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with ak =
ck

π
. This behaviour can be integrate analytically.

Then the regular parts can be computed as:

Hnk
IR(0) =

1

ck

(
GRxx

A (0)dfn

)T
dsk (3.56)

Hnk
QR(0) =

1

ck

(
GR

ϕ (0)dfn

)T
dsk (3.57)

3.2.6 Some details on the use of the Green’s function

When we write eq. (2.6) we use a Green’s function derived for a stratified
medium, we write the integral equation on the surface of the conductors then
the use of this Green’s function is equivalent to fill the conductor of a dielectric
with the same permeability of the layer where it is. This is possible because
the field inside the conductors is zero then we can put inside material without
change the external solution.
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3.3 The 1D propagation problem

3.3.1 The differential operator

We need to numerical solve the equations (2.14),(2.21),(2.28), (2.29). In order
to approx the differential operator with an error of second order we consider
two staggered mesh as showed in figure:

Figure 3.3: Staggered mesh

the numeric unknowns are

Ih = I(z
(I)
h ) Φh = Φ(z

(I)
h ) (3.58)

evaluated in the collocation points z
(I)
h = +h∆z for h = 1, 2, . . . , N

and

Vh = V (z
(V )
h ) Qh = Q(z

(V )
h ) (3.59)

in the collocation points z
(V )
h = +

(
h− 1

2

)
∆z per h = 1, 2, . . . , N + 1.

The boundary condition are the currents imposed at the ends of the line i.e.:

Ia = I0 and Ib = IN+1

In order to discretize the differential operator we use the finite difference tech-
nique obtaining:

−D(V )V = jωΦ (3.60)

−D(I)I = jωQ + b (3.61)

where I = [I1, . . . , IN ]T , Φ = [Φ1, . . . , ΦN ]T , V = [V1, . . . , VN+1]
T , Q =

[Q1, . . . , QN ]T ;
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the matrices D(V ) and D(I), have dimension N × (N + 1) and (N + 1) × N ,
respectively and are

D(V ) =
1

∆z




−1 1 0 · · · 0

0
. . . . . . . . .

...
...

. . . . . . . . . 0
0 · · · 0 −1 1


 and D(I) = D(V )T

(3.62)

the boundary conditions are take in account with the vector b, defined as:

b =
1

∆z
[−Ia, 0, · · · , Ib]

T (3.63)

Now we need to discretize the integral equations (2.28), (2.29).

3.3.2 The first constitutive equation

We want to evaluate Φh = Φ(z
(I)
h ) in the collocation points z

(I)
h = +h∆z

for h = 1, 2, . . . , N . The mesh for I(z) contain the extremes of integration,
hence for compute the integral (2.28) is possible to use the trapezoid rule3 of
integration as follow:

Φh =

+l∫

0

HI(|z(I)
h − z′|)I(z′)dz′ =

zh−1∫

0

·+
zh+1∫

zh−1

·+
+l∫

zh+1

· (3.64)

The kernel HI(|ζ|) have a singular behaviour of logarithmic type for ζ = 0
then, the second integral need to be evaluated analytically, instead the first
and the third integral can be evaluated with the trapezoid integration rule.
The current is assumed piece-wise linear then:

I(z) =





Ih − Ih−1

∆z
(z − zh) + Ih zh−1 ≤ z ≤ zh

Ih+1 − Ih

∆z
(z − zh) + Ih zh ≤ z ≤ zh+1

The grid current contain the extreme of the line then this approximation can
be used on all the line obtaining:

Φ = µM (f)I + µc (3.65)

3this is the American term, the British term is trapezium rule
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where:

M
(f)
hp =





∆z

2aπ2

(
ln

2a

∆z
+

3

2
+ 2aπ2H0

)
per p = h

∆z

[
H(∆z) +

1

8aπ2

]
per p = h− 1 ≥ 1 e p = h + 1 ≤ N

∆z H(|h− p|∆z) altrimenti

with h = 1, · · · , N , p = 1, · · · , N and

ch =





1

2
∆zH(∆z)I0 +

∆z

8aπ2
I0 +

1

2
∆zH[(N − 1)∆z]IN+1 for h = 1

1

2
∆zH(∆z)I0 +

1

2
∆zH[(N + 1− h)∆z]IN+1 for 2 ≤ h ≤ N − 1

1

2
∆zH[(N + 1)∆z]I0 +

1

2
∆zH[∆z]IN+1 +

∆z

8aπ2
IN+1 for h = N

3.3.3 The second constitutive equation

We want to evaluated the (2.29) in the collocation points z
(V )
h = −l+

(
h− 1

2

)
∆z

for h = 1, 2, . . . , N + 1 we have:

Vh =
1

ε

l∫

−l

HQ(z
(V )
h − z′)Q(z′)dz′ =

z
(I)
h∫

−l

·+
z
(I)
h+1∫

z
(I)
h

·+
+l∫

z
(I)
h+1

· (3.66)

for h = 2, · · · , N
The kernel HQ(|ζ|) have a singularity of logarithmic type for ζ = 0 hence, the
second integral need to be evaluated analytically instead, the first and the third
can be evaluated using the mid point integration rule, because the mesh for
V (z) doesn’t contain the extreme of integration. In the intervals [z

(V )
1 , z

(V )
N+1]

the charge is assumed piece-wise linear

Q(z) =





Qh −Qh−1

∆z
(z − z

(V )
h ) + Qh z

(I)
h−1 ≤ z ≤ z

(V )
h

Qh+1 −Qh

∆z
(z − zh) + Qh z

(V )
h ≤ z ≤ z

(I)
h+1

instead in the interval [z
(I)
1 , z

(V )
1 ] e [z

(V )
N+1, z

(I)
N+1] the charge is assumed piece-wise

constant4:

Q(z) =

{
Q1 0 = z

(I)
1 ≤ z ≤ z

(V )
1

QN+1 z
(V )
N+1 ≤ z ≤ z

(I)
N+1 = l

4note that we have an error that go to zero as ∆z2
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Then we obtain

V =
1 + K

ε0

M (V )Q (3.67)

where:

M
(V )
hp =





7∆z

16aπ2

(
ln

4a

∆z
+

15

16
+

16aπ2

7

HQ0

1 + K

)
per p = h = 1 e p = h = N + 1

3∆z

8aπ2

(
ln

4a

∆z
+

7

6
+

8aπ2

3

HQ0

1 + K

)
per p = h = 2, · · · , N

∆z

[
HQ(∆z)

1 + K
+

1

16aπ2

(
ln

4a

∆z
+

1

2

)]
per p = h + 1

∆z
H(|h− p|∆z)

1 + K
per p ≥ h + 2, N − 2

Remain to compute V (0) e V (l) because are not included in the mesh for V (z).

V (0) =
1

ε0

l∫

−l

HQ(z′)Q(z′)dz′ (3.68)

V (l) =
1

ε0

l∫

−l

HQ(l − z′)Q(z′)dz′ (3.69)

(3.70)

using the mid-point integration rule we obtain:

V (0) =
1

ε0

N+1∑
i=1

QiHQ

[(
i− 1

2

)
∆z

]
∆z (3.71)

V (l) =
1

ε0

N+1∑
i=1

QiHQ

[
l −

(
i− 1

2

)
∆z

]
∆z (3.72)

(3.73)

3.3.4 Numerical solution

Now is possible to compute the current unknown, using equations (3.60),(3.61),(3.65)
and (3.67) we have:

[
D(V )M (V )(D(V ))T − k2M (I)

]
I = d (3.74)
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where

d = D(V )M (V )b + k2c (3.75)

is a known terms that take in account the boundary conditions.
Hence we have:

I = inv
([

D(V )M (V )(D(V ))T − k2M (I)
])

d (3.76)

This method use as boundary condition the terminal currents, is simple rewrite
the algorithm in order to use the terminal voltages as boundary condition.
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Chapter 4

ETL for cylindrical cables,
numerical result

In this section, we consider two ideal conductors in the vacuum space (see
fig.4.1). This example exhibits a lot of phenomena which can be found also
in more complex applications as the microstrip case. Some benchmark with
commercial code (NEC simulator) and with an analytical solution [11] are
provide.

Figure 4.1: Cylindrical cable

When the transverse dimension of the structure is comparable with the
wavelength the STL model doesn’t give correct result and a very expensive
fullwave solution is, in principle, needed. We will show that the ETL solu-
tion produce the correct behaviour of the structure with a computational cost
similar at the STL model.
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4.1 The shape function and the Kernel be-

haviour

Here we focus our attention on the influence of the proximity effect on the
behaviour of the shape functions and the kernels. In Figure 4.2 is show the
behaviour of F1(θ) (3.5) for a = 1mm and for different values of the ratio
hc/a. When hc/a is very large, the proximity effect is negligible and the shape
distribution is uniform F1(θ) = 1

2πa
, for small values of hc/a (say < 10) this

distribution differs significantly from the uniform case because the proximity
effect is not negligible. In fig.4.3 the kernel behaviour for different value of
hc/a and khc is showed. We can observe the influence of the proximity effect
on the kernel and that the kernel tend to have a quasi-impulsive behaviour
when khc have a low value.

Figure 4.2: Cylindrical case, shape function

Figure 4.3: Kernel behaviour
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4.2 Current distributions

The first reference case is a lossless interconnect with l = 0.1 m, h = 10 mm,
and a = 1 mm, this case is compared with a full wave solution obtained from
the NEC simulator and with the STL solutions. In fig.4.4 and 4.5 the current
distributions predicted by the STL and ETL models have been compared with
those obtained by the NEC simulator obtaining a satisfactory accordance,
Ia = 1 is unitary and the far end is open (see fig. 4.1).

Figure 4.4: Case 1, amplitude (in arbitrary units) of the current distribution
for open far end, at 1 Ghz

Figure 4.5: Case 1, amplitude (in arbitrary units) of the current distribution
for open far end, at 5Ghz
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In fig.4.6 we compute the difference between the currents distribution ob-
tained from the STL and ETL models. For low frequencies, that is, kh ≤ 1,
there is a good agreement between STL and ETL models (|I(x)− ISTL(x)| <
10% of |Ia|) , whereas for kh ≈ 1 there is a significant difference (|I(x)− ISTL(x)| >
80% of |Ia|) because in this condition the transverse dimensions of the struc-
ture are comparable with the wavelength hence the STL model doesn’t give
the correct behaviour.

Figure 4.6: Spatial distribuzion of |I(x) − ISTL(x)|/|Ia| for khc = 0.1 and
khc = 1

The second test case that we have study is wire pair with l = 1 m, h =
5.7 mm, and a = 2.5 mm. The line is fed at one end by a voltage source
of 1V and is terminated on a short circuit at the other end. This case has
been analyzed in [11] where a full-wave solution is provided by using the wire
antenna theory. The proximity effect is there taken into account by introducing
a set of ”equivalent” wires whose artificial electrical axes are positioned so to
satisfy the static problem in the transverse plane. Figure 4.7 shows the current
distribution at 1.2 GHz for this case, computed by means of ETL and STL
models and compared to the quoted full-wave solution. An approximated
ETL solution is also plotted, obtained by disregarding the proximity effect
and hence assuming uniform distributions. The agreement from the complete
ETL solution and the full-wave solution is satisfactory.
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Figure 4.7: Case 2, amplitude of the current distribution computed at 1.2 GHz

4.3 Radiated power

The radial power flux density in the far field region, is given by (see fig.4.1)

SR =
µ0

ε08λR2
|d(θ, φ)|2 (4.1)

d(θ, φ) = sin θ
[
1− e−ikh sin θ sin φ

] ∫ l

0

I(x)eikx cos θdx (4.2)

The mean power radiated from the interconnect is given by

Prad =
µ0

ε08λ

∫ 2π

0

dθ sin θ

∫ π

0

dφ|d(θ, φ)|2 (4.3)

We are considered two ideal wires, than the radiated power need to be feed
from the terminations, in this case from the current generator Ia (see fig.4.1)
then we have:

Prad = Re

(
VaI

∗
a

2

)
−Re

(
VbI

∗
b

2

)
= Re

(
VaI

∗
a

2

)
(4.4)

In fig.4.8 we compare the frequency behaviour of the Prad computed with (4.3)
and with (4.4). The agreement between the two curves is satisfactory with
respect to the prediction of the position and amplitude of the resonances, but
in correspondence with the minima of Prad, Re(VaI∗a

2
) is slightly negative. This

unacceptable behaviour is due at the fact that we are characterising the inter-
connect as a two port, and hence, regardless of what is actually connected to
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it, as pointed out in the paragraph 1.2 the Lorentz condition is not perfectly
satisfied, the error is magnified when the feed current have a low value as we
can see in fig.4.8 and fig. 4.9.

Figure 4.8: Case 1, Comparison between the frequency behaviour of the mean
radiated power, f0 = 1.5 GHz

A way to solve this problem is add the contribution of the four linear charge
distributions

Λ
(1)
0 =

j

ω
Js(Q1) · x̂

∣∣∣∣
x=0

(4.5)

Λ
(1)
+l =

j

ω
Js(Q1) · x̂

∣∣∣∣
x=+l

(4.6)

Λ
(2)
0 =

j

ω
Js(Q2) · x̂

∣∣∣∣
x=0

(4.7)

Λ
(2)
+l =

j

ω
Js(Q2) · x̂

∣∣∣∣
x=+l

(4.8)

located, respectively, at the extremities of the two conductors on circumfer-
ences Γ

(1)
0 Γ

(1)
+l Γ

(2)
0 Γ

(2)
+l (see fig. 3.1) in order to satisfied the Lorentz condition.

In fig.4.8 we also show the quantity ReV
(lg)
a I∗a

2
obtained by evaluating the volt-

age distribution V
(lg)
a as

V (lg)
a (x) = j

c

k

dΦ

dx
(4.9)

according to Lorentz gauge, evidently this new solution is not affected by the
same problem. As showed in fig.4.9 the NEC solution predict the correct be-
haviour of the input impedance, also in correspondence of the minima, but it



4.3 Radiated power 41

can only solve the overall system including the terminal devices. The resonance
frequencies of the ETL model and NEC are shifted to lower frequencies com-
pared with those of STL model, which means that the interconnect described
by the STL model appears electrically shorter than it actually is. Further,the
amplitudes at the resonance frequencies are finite due to the spatial dispersion,
and the maxima decrease with increasing frequency due to radiation losses. In
figure 4.10 the radiation diagram of the structure for the case 1 is computed
by the (4.2)

Figure 4.9: Case 1, comparison of the frequency behaviour of |Zin| , f0 = 1.5
GHz

Figure 4.10: Case 1, radiation diagram of the i
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4.4 Cylindrical wires, conclusion

In this section we have showed that the ETL model is able to predict the shift
of the resonance frequencies toward lower values which is typical of a lossy line
with frequency-dependent losses. Besides, the ETL model well predicts the
amplitudes at the resonance frequencies, that are finite and decreasing with
increasing frequency. In VLSI applications it is of great interest the study of
the proximity effect, because of the short distances between the signal traces
The kernel of the ETL formulation can take in account this effect, providing
the correct result. In conclusion, the ETL can compute the correct behaviour
of the interconnect without the numerical cost of the finite elements codes.
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Chapter 5

ETL for coupled microstrip,
numerical results

A structure of great interest for high-speed electronic applications is the mi-
crostrip line: Figure 5.1 (a) shows a simple example of a three conductor
microstrip, made by two signal conductors on a dielectric layer and a ground
plane. Figure 5.1 (b) shows the references for the voltages and currents (note
that the grounded modes are considered).

Figure 5.1: Coupled microstrip

In this section we’ll analyse the behaviour of this kind of structure when the
STL approximations fails, we’ll show that the ETL code can reproduce the
correct behaviour of the interconnects as the shift of resonance frequency at
low value respect the prediction of the STL model or the radiation without
the high computational cost typical of the finite elements code.
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5.1 The shape function

In the section 4.1 we show that the shape function for two cylindrical cables
are known analytically, in this case the shape functions are no longer known
in analytical form.

Figure 5.2: Numerically computed shape function for a microstrip

However they may be easily numerically computed by solving the electrostatic
problem in the cross-section: for instance Figure 5.2 shows the computed be-
haviour of the shape function for the signal conductor of a single microstrip
with w1 = 5mm , h = 8.7mm, εr = 4 and with thickness t = 1.25mm. It is
here evident the effect due to the sharp edges of the rectangular section.
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5.2 The Green’s functions

In this section we’ll showed the Green Function behaviour for a microstrip
and we’ll show a good approximation of this function usable for the practical
interconnect. As showed in the section 3.2.1 the Green Function can be split
in two terms , a quasi-static term that is the only terms left when f → 0
and that dominate the local range interactions, and the dynamic term that is
associated to parasitic waves (surface waves, leaky waves), vanish as f → 0
and dominate the long-range interactions.

Figure 5.3: Scalar potential Green’s function Gϕ

Figure 5.3 gives an example of scalar potential Green’s function Gϕ computed
at 2.1 GHz for a single microstrip with εr = 4.0, h = 0.7mm. The quasi-
static term dominates the near-field region, whereas for increasing distances
the dynamic terms become the principal ones. For the antenna problems is
very important know the correct behaviour of the Green Function for large
distance, because in this case is fundamental estimate the far field. Instead in
practical interconnects, the quasy-static terms are dominant for a very large
range of frequency, hence the approximation of the remainder is usually sat-
isfactorily pursued by a low-order model. A reliable criterion [35] states that
the Green functions are accurately represented by the quasi-static terms when
k0t
√

εr − 1 < 0.1 , k0 being the vacuum space wavenumber. The use of this
approximation can reduce drastically the computational cost of the simulator.
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5.3 Radiation and finite length effect

As case 1,we consider a PCB microstrip, with the geometry of Fig. 5.1, as-
suming a single signal conductor above a ground plane and a length of 36 mm.
The signal conductor has zero thickness, width w1 = 1.8mm and lies on a FR-4
dielectric layer of thickness h = 1.016mm , dielectric constant εr = 4.9 and
magnetic permeability µ = µ0 . The conductors and dielectric are assumed
ideal.

Figure 5.4: Case 1, absolute value of the input impedance in low frequency
range

The ETL model solution is compared to the STL one and two 3D full-
wave solutions, one provided by the commercial FEM code HFSS [39] and the
other by the tool SURFCODE, which is based on the Electric Field Integral
Equation formulation [26]. Assuming for this case hc = h , since εreff ≈ 3.65
we have khc ≈ 0.1 at 1.4 GHz, which is in agreement with the results shown
in Fig.5.5, where it is plotted the absolute value of the input impedance of the
line with the far-end left open.
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Figure 5.5: Case 1, absolute value of the input impedance in high frequency
range

Indeed, the results of all the models agree satisfactorily in the low frequency
range (Fig. 5.4), whereas in the high-frequency range the full-wave solutions
start to deviate significantly from the ideal STL solution (Fig. 5.5) with a shift
of the resonance frequency to low value which means that the interconnect
described by the STL model appears electrically shorter than it actually is.

Further, the amplitudes at the resonance frequencies are finite due to the
spatial due to dispersion, and the maxima decrease with increasing frequency
due to radiation losses as see before in the cylindrical case.
Figure 5.6 shows the absorbed real power computed with I0 = 1mA . The
ETL solution is in good agreement with the full-wave one around the peak,
whereas there is a deviation in the other ranges (where, however the values of
power are very low). Note that, since we are in the ideal case, the STL input
impedance is strictly imaginary, hence the absorbed real power predicted by
the STL model is always zero.
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Figure 5.6: Case 1, absorbed real power

Figure 5.7: Case 1, absorbed real power with ideal and real dielectric

Let us now introduce a lossy dielectric described by the Debye model,

εr = ε∞ +
εDC − ε∞
1 + iωτ

(5.1)

with ε∞ = 4.07, εDC = 4.178 and τ = 1.15ps . Fig.5.7 shows the dissipated
power computed in the same conditions described for Fig.5.6, both considering
a real and an ideal dielectric with εr = εDC = 4.178 It is clear that in this case
the dielectric losses are negligible with respect to the losses associated to the
other high-frequency phenomena.
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5.4 Differential and common mode

As second case, let us consider the interconnect of Fig.5.1 with w1 = 5 mm,
w2 = 10 mm, w = 2.5 mm, h = 8.7 mm , a total length of l = 50 mm
and a conductor’s thickness t = 1.25 mm We assume to be in the free space,
hence ε = ε0, µ = µ0. This case is a particular case of microstrip structure,
where the Green’s function is known analytically using the image theorem, is
important to note that this Green’s function can be obtained from the 3.32
when εr = 1. For such a structure, a characteristic dimension in the transverse
plane may be assumed as hc = 9.35 mm i.e. the average value between h
and the distance between the signal conductors. We investigate the range
(0.1÷ 3) GHz, corresponding to khc ∈ (0.02 ÷ 0.59). Figg.5.8, 5.9 shows the
frequency behaviour of the input impedance Zs1

1 predicted by the ETL model
and compared to the full-wave solution and the STL one. Fig.5.10 shows the
frequency behavior of the transfer impedance Zm . It can be clearly observed
that the three models agree in the low frequency range, where the transverse
dimensions of the interconnect are electrically short and hence the propagation
is of quasi-TEM type. The standard TL solution gives a satisfactory prediction
up to 0.5 GHz, corresponding to khc ≈ 0.1 . For higher frequencies the results
of the STL model are inaccurate. The ETL model, on the contrary, agrees
very well with the full-wave solution, both in reproducing the positions of the
resonances and their peak values.

Figure 5.8: Case 2, absolute value of the input impedance |Zs1|

1Zs1 = V11I11 when I12 = I21 = I22 = 0
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Figure 5.9: Case 2, phase of the input impedance ∠Zs1

Figure 5.10: Case 2, absolute value of the transfer impedance |Zm|
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Similar considerations hold for the mixed-mode impedance matrix defined
as in (2.49), whose entries are depicted in Fig.5.11, 5.12, 5.13.

Figure 5.11: Case 2, Frequency behaviour of the absolute value of the mixed-
mode impedance |Zdd|

Figure 5.12: Case 2, Frequency behaviour of the absolute value of the mixed-
mode impedance |Zcc|



5.4 Differential and common mode 52

Figure 5.13: Case 2, Frequency behaviour of the absolute value of the mixed-
mode impedance |Zcd|

Let us now focus on the mixed-mode power balance. Let us assume the line
to be fed at x = 0 by Id = Id1 = 1 and Ic = Ic1 = 1 (arbitrary units) and open
at the far end. The active power delivered to the modes may be evaluated as

Pd =
1

2
Re {Vd1I

∗
d1} =

1

2
Re {Zdd}+

1

2
Re {Zdc}

Pc =
1

2
Re {Vc1I

∗
c1} =

1

2
Re {Zcd}+

1

2
Re {Zcc}

Assuming low frequencies (khc ¿ 1) and symmetric structures (Zcd = Zdc = 0),
since the conductors are ideal the active power must be zero. For symmetric
structures with increasing frequency we may observe an increasing value of
such a power, clearly related to the radiation loss which starts to become
significant. The modes are decoupled in power and the power dissipated in
radiation is related to the real parts of Zdd and Zcc. In the general case of
asymmetric conductors, the power balance should include the fraction of the
power converted from one mode to the other one, which is related to the real
parts of Zcd and Zdc . Fig.5.14, 5.15 and 5.16, shows the frequency behaviour
of the real part of Zdd ,Zcc and Zcd . Note that the model proposed here is
able to predict the radiation loss, whereas the standard transmission line does
not include such phenomenon, hence it would always give Pd = Pc = 0 .
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Figure 5.14: Case 2, Frequency behaviour of the real parts of Zdd

Figure 5.15: Case 2, Frequency behaviour of the real parts of Zcc



5.4 Differential and common mode 54

Figure 5.16: Case 2, Frequency behaviour of the real parts of Zcd
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For such structures it could be of interest to evaluate the scattering pa-
rameters in the high-frequency range. This is extremely useful for a correct
interpretation of the experimental high-frequency characterisation of mixed-
mode systems, as pointed out for instance in [17, 19]. For the mixed-mode
scattering matrix, we adopt definition (2.68). Fig.5.17, 5.18 shows the fre-
quency behaviour of the differential mode Sdd and Sdc the mode conversion
parameter at port 1(z = 0).

Figure 5.17: Case 2, Frequency behaviour of the mixed-mode S-parameters
|Sdd|

Figure 5.18: Case 2, Frequency behaviour of the mixed-mode S-parameters
|Sdc|
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Let us consider two cases, feeding the structure with a pure differential mode
or with a pure common mode:

Case 1 Id1 = 1(a.u.) and Ic1 = 0
Case 2 Id1 = 0 and Ic1 = 1(a.u.)

Figure 5.19: Case 2, Spatial distribution of the amplitude of the currents for
two values of frequency |Id(x)| for a pure differential-mode feeding

Figure 5.20: Case 2, Spatial distribution of the amplitude of the currents for
two values of frequency |Ic(x)| for a pure common-mode feeding
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Figure 5.21: Case 2, Spatial distribution of the amplitude of the currents for
two values of frequency |Ic(x)| for a pure differential-mode feeding, normalized
to the maximum of |Id(x)|

The agreement at 1.7 GHz is excellent, whereas there is a difference in
the distributions computed at 2.5 GHz. I have computed the distributions at
2.8 GHz which show an agreement similar to what obtained at 1.7 GHz. The
difference at 2.5 GHz is probably due to the influence of the spurious resonance
in the transverse plane observed around 2.4 GHz (see Figs.5.8 and 5.10 ), and
the fact that the ETL model and the full-wave model treat in a different way
the behaviour in the transverse plane.
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5.5 Coupled microstrip, crosstalk

A third example is provided by a coupled microstrip made by two signal con-
ductor and a ground plane. In this case (see Fig.5.1) we have considered
w1 = w2 = w = 1.8mm, h = 1mm, εr = 4.17 and a total length of 36 mm.
The line behaviour is investigated in the frequency range (0÷ 6Ghz) GHz, so
extending to values of khc high enough to expect inaccurate results from the
STL model. Here a crosstalk analysis has been performed, by assuming line 1
(see references in Fig.5.1) to be fed at the near end by a unitary sinusoidal
voltage source and open at far end. The near and far ends of line 2 are both
terminated on open circuits. The Figures 5.22 and 5.23 shows the frequency
behaviour of the near and the far end crosstalk voltage defined as V21/V11 and
V22/V 11 , respectively. Note that in this case-study we have approximated the
complete Green functions, considering only the contribution of the quasi-static
term, which is again the dominant one. In fig.5.24 the mutual impedance ob-
tained from the complete ETL model and with this approximation is compared,
showing a good accordance.

Figure 5.22: Case 3, Near end xtalk
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Figure 5.23: Case 3, Far end xtalk

Figure 5.24: Case 3, Mutual impedance
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5.6 Microstrip, conclusion

In this section we have showed the extension of the ETL model to study struc-
ture like microstrip. The dielectric media is included in the formulation using
the Green’s functions for layered media in order to reduce the computational
cost of the model. An approximate version of the Green’s Function (see para-
graph 3.2.2), used in order to decrease furtherly this cost, is compared with
the complete one showing that is usable in the case of interest. We have found
again the behaviour see for the cylindrical cables the shift to low value of the
frequency resonance and the amplitudes at this frequency are well predicts by
the ETL model. In conclusion, the ETL can compute the correct behaviour of
the interconnect used in the VLSI applications, without the numerical cost of
the finite elements codes.
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Conclusions and future works

In this Thesis, the extension of the popular transmission line model to high-
speed VLSI interconnections is discussed. Starting from a full-wave integral
formulation, an enhanced transmission line model is derived, able to describe
interconnections with transverse dimensions comparable to the characteristic
wavelength of the propagating signals. The model allows to describe, with a
computational cost typical of a TL model, phenomenas which are not included
in the solution of the classical TL model but could be only taken into account
by a full-wave solution.
In Chapter 4, are showed some numerical results for two cylindrical cables in
homogeneous media and this results are compared with numerical and analyt-
ical full-wave solutions, this is the start point of the thesis (for other details
see the articles [23],[25],[24]).
In Chapter 5, are showed the principal results of this thesis, the numerical
results for microstrip interconnections are compared with two numerical full-
wave solutions, a good agreement is obtained.
As show in this Chapter, the principal advantage of the ETL model proposed
in this thesis is the possibility of a qualitative study of the solution, indeed
the Green’s functions used in this work enable to separate the contribute of
the guided modes from the contribute of unwanted modes and the formulation
can evaluate correctly the radiation loss that is completely neglect in the STL
model. This model can study the principal phenomenas of interest in the VLSI
structures, like cross talk and the differential and common mode propagation.
The results showed in this chapter are also published in the articles [42],[43],
in Chapter 6 of the book Transmission line models for high-speed conventional
interconnects and metallic carbon nanotube interconnects [44] and in the con-
ference proceedings [45] - [51]
As future works, we’ll remove from the ETL model the assumption of invari-
ance of the interconnects along the x direction, in order to study for example
the meander lines used in the VLSI interconnections to equalise the delay on
different lines and we’ll extend the ETL to take in account an external field.
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