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(Abstract)

We present a generalization of Signorini's method to the case of live loads which

allows us to derive approximate solutions to some pure traction-value problems

in �nite elastostatics. The boundary value problems and the corresponding com-

patibility conditions are formulated in order to determine the displacement of the

system up to the second-order approximation. In particular, we consider the case

of homogeneous and isotropic elastic bodies and we solve the following two pure

traction-value problems with live loads: (i) a sphere subjected to the action of a uni-

form pressure �eld; (ii) a hollow circular cylinder whose inner and outer surfaces

are subjected to uniform pressures. Then, starting from these solutions, we sug-

gest experiments to determine the second-order constitutive constants of the elastic

body. Expressions of the second-order material constants in terms of displacements

and Lamé coef�cients are determined. Further we apply the generalized Signorini's

perturbation scheme to analyze radial expansion/contraction of an hollow cylinder

made of an isotropic functionally graded elastic material, whose material moduli

depend upon the radial coordinate only. We study the case of an hollow circular

cylinder under uniform internal and external pressure. The displacement of the sys-
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tem and its state of stress are determined up to the second-order approximation. We

consider both compressible and incompressible functionally graded elastic bodies.

The quantitative analysis of all the described problems has been carried out with the

aid of the software Mathematica by Wolfram Research. The programs which have

allowed to �nd the solutions to these problems are presented and their characteris-

tics are discussed.
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Introduction

1.1 Preliminary Considerations

The nonlinear Theory of Elasticity presents many interesting problems both from mathe-

matical and physical points of view. The main issues are essentially related to the following

topics.

1. Equations governing the equilibrium and the motion of an elastic system are not

linear. This implies that, except for some cases of incompressible materials, it is not

possible to obtain an analytical solution to these equations. Then, it is necessary to

resort to procedures which allow us to determine approximate solutions, which are

extremely useful in practical applications. It is also common to turn to numerical

routines which are presently very effective thanks to the extraordinary developments

in modern computers.

2. A further complication of the theory for live loads is that boundary conditions can be

assigned only as a function of the unknown deformation.

3. Owing to the nonlinearity of the equations, the wave propagation problems are very

hard to study and may present blow-up phenomena.

4. The determination of the response of a nonlinear elastic material is not an easy

task. For homogeneous and isotropic solid bodies it reduces to �nding the form

of the speci�c strain energy. This situation is more complex than the one in the

1



Introduction 2

linear Theory of Elasticity. In the latter case the response of an isotropic material is

completely characterized by only two constants, the Lamé coef�cients, which can be

experimentally determined by a simple tension test.

In this thesis we deal with points 1, 2, and 4. The study of wave propagation in

nonlinear materials represents the next step of the present work.

1.2 A Brief Historical Survey

In 1930, Signorini [1] suggested a perturbation method to �nd approximate solutions of

boundary-value problems of �nite elasticity in the presence of dead loads (loads indepen-

dent of the deformation). This procedure is essentially an application of Poincarè's pertur-

bation method (e.g., see [2] and [3]) to equations of �nite elasticity. Furthermore, in [4]

and [5] Signorini's method was used to investigate the uniqueness of solutions as well as

the position of the classical linear theory with respect to the nonlinear theory. Later, Stop-

pelli [6-10] proved a local theorem of existence, uniqueness, and analytic dependence on

a parameter for the solution to the traction-value problem, when the applied dead loads do

not have an axis of equilibrium, and the existence and analyticity of solutions when the

dead loads have an axis of equilibrium (see also Tolotti [11]). A discussion of Stoppelli's

work can be found in [12-14]. In [15-19] Capriz and Podio-Guidugli investigate the com-

patibility of the linear and nonlinear elasticity theories and show that a very large class of

traction-value problems can be solved by perturbation methods of Signorini's type. In par-

ticular, in [16], the authors provide a series expansion to construct an approximate solution
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to the static balance equations of elastic bodies under dead loads and discuss the meaning

and implication of the Fredholm-type conditions for the existence of such an expansion.

Furthermore, in [18] and [19] traction-value problems of �nite elasticity are analyzed in

the presence of loads depending on the deformation (live loads). Although every realistic

load depends on the deformation, the introduction of live loads leads to dif�cult mathe-

matical problems. A crucial contribution in this framework, has been given by Valent in

many papers which are collected in [20]. In this book, Valent proves theorems of existence,

uniqueness, and analytic dependence on a parameter for boundary-value problems of place

and traction in �nite elastostatics with dead loads and some special types of live loads.

1.3 Detailed Summary of the Work

This thesis is divided into six chapters.

The �rst chapter is devoted to the statement of the equilibrium problem in �nite

elastostatics. First, the balance equations are written in the Eulerian and the Lagrangian

formulation for an arbitrary continuous system and then they are specialized to the case of

elastic systems, both in the linear and the nonlinear framework.

The second chapter is concerned with some issues regarding the formulation of the

equilibrium problem. We start from the classi�cation of boundary-value problems of �-

nite elastostatics and then discuss dif�culties related to the pure traction-value problem. In

particular, we analyze the concept of live loads and describe the resulting mathematical

complications. Further, we discuss the nature of the global equilibrium conditions, observ-
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ing that in the pure traction problem and in the presence of live loads they are essentially

compatibility conditions for the data and the displacements.

The third chapter deals with the description of the classical Signorini's method for

dead loads. In order to obtain conditions under which the perturbation method can be ap-

plied, the equilibrium equations, the boundary conditions and the corresponding compati-

bility conditions are written in a nondimensional form. Reference is made to the existence

and the uniqueness results obtained by Stoppelli [6, 7, 9, 10] and Van Buren [21].

In the fourth, starting from the results obtained by Valent in Chapter 6 of [20], we

provide a generalization of Signorini's method to the case of live loads. In the framework of

second-order elasticity theory we solve two traction-value problems with live loads and de-

sign four experiments which allow us to determine the second-order constitutive constants

for the given material.

In order to investigate the effects of material inhomogeneity on the response of

isotropic elastic bodies, we apply the generalized Signorini's perturbation technique to

study the equilibrium boundary value problem of functionally graded materials (FGMs),

whose material moduli depend on the radial coordinate only. Functionally graded com-

posite materials have been the subject of intense research in recent years. These materials

are special composites commonly made by ceramics and metals. The ceramic offers ther-

mal barrier effects and protects the metal from corrosion and oxidation, while the material

is toughened and strengthened by the metallic composition. The compositions and the

volume fractions of the constituents are varied gradually, thus giving a non-uniform micro-

structure in the material which results in continuously graded macroproperties, which are
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the most distinctive features of FGMs. Chapter 5 is devoted to a brief overview on design

and applications of these materials.

In the last chapter the generalized perturbation method obtained in Chapter 4 is used

to solve the traction-value problem of an hollow circular cylinder made of a functionally

graded material. In particular we analyze the case in which the inner and outer surface of

the hollow cylinder are loaded by a uniform pressure. We write the explicit solutions both

for compressible and incompressible FGMs.

1.4 Quantitative Analysis and the Software Mathematica

Even though the results described so far have a strict theoretical value, they would not have

been obtained without the aid of the software Mathematica by Wolfram Research. As we

have already remarked, the non linearity of the equations governing the equilibrium of an

elastic material usually prevents us from their explicit integration. Since the applications

require a quantitative descriptions of solutions (displacement and stress �elds), we have to

resort to a perturbation method which allows us to obtain approximate solutions to the ex-

amined problems. As we shall see in the sequel, this scheme simpli�es at some extent the

mathematical dif�culties of the equilibrium boundary value problems of �nite elasticity.

Its distinctive feature is that it transforms a non linear system of partial differential equa-

tions (PDEs) into a �nite set of linear PDEs. In spite of this, solving these linear PDEs is

not an easy task. Scienti�c computing based on the software Mathematica has represented

a crucial support to overcome this dif�culty. Indeed, it has contributed to the development

of analytic calculations by symbolic calculus, such as the integrations of differential equa-



Introduction 6

tions, the solutions of algebraic systems, the representation and the simpli�cation of some

quantities of interest in the analyzed problems. Besides its scienti�c purposes, this research

work is based on the idea that mathematical methods and scienti�c computing should be

dealt jointly. At the end of Chapters 4 and 6 we present and discuss the programs which

have been written to solve the described problems.



Chapter 1
Equilibrium of an Elastic System

1.1 Introduction

In this chapter the local equilibrium equations are written for a continuous system, both

in the Eulerian and in the Lagrangian formulation. These equations are general relations,

that is, they are valid for all continuous systems and do not depend on the material of the

body. However, it is well known from experience that two bodies having the same geo-

metric characteristics react differently when subjected to the same mechanical loads and

thermal conditions. Thus it is necessary to introduce some criteria which allow us to distin-

guish between the macroscopic behaviors of different material bodies. The mathematical

description of different material behaviors is the object of the theory of constitutive equa-

tions. Even if these equations represent the material constitution of the body, they must

ful�ll certain general principles, called constitutive axioms, which impose restrictions on

their forms.

In Section 5 of the present chapter the constitutive equations of a continuous elas-

tic system are derived. It is noted there that, although constitutive axioms impose severe

restrictions on the form of constitutive equations, they still allow the theory wide margin

of arbitrariness, which can be �lled only by experimental data. This is due to the fact that

the macroscopic behavior of a continuous body is related to its molecular structure. Since

7
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this structure does not enter into the continuum description, the constitutive equation of a

particular material must be determined experimentally. The experimental determination of

the constitutive equations of an elastic material is an extremely complicated task. It can be

simpli�ed by exploiting the symmetry of the material. After having introduced the concept

of isotropy group of a material, the constitutive equations of homogeneous and isotropic

elastic bodies are exhibited. In the last Section these equations are specialized to the case

of linear elastic materials.

1.2 Finite Deformations

We consider a three-dimensional continuous system S moving in an inertial reference frame

I in which is assigned a Cartesian coordinate system R � (O; ei), i = 1; 2; 3; where O is

the origin and ei the unit vectors. The region of space occupied by points of S at a certain

time instant t is called the con�guration of S at the instant t and denoted by C(t). In order

to determine the motion of S, it is necessary in the �rst place to "label" all points of S and

then to follow them during the motion, assigning their position in R at every instant.

To this aim a reference con�guration C� is introduced, that is a possible con�guration

of S, and we call material or Lagrangian coordinates the coordinates (XL), L = 1; 2; 3, in

R of a particle p 2 S in the con�guration C�.

The con�guration C (t) of S at the instant t is the actual or the present con�guration

of S and the coordinates (xi) in R of the particle p 2 S in C are referred to as spatial

or Eulerian coordinates. Any quantity � associated to the motion of S can be expressed
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in either the Lagrangian or the Eulerian form depending on whether it is intended as a

function of the variables (XL) or (xi) ; in other words depending on whether it is assumed

to be de�ned on C� or on C.

We call �nite deformation from C� to C the vectorial function

x = x (X) (1.1)

which maps any point X 2 C� onto the corresponding position in C, or equivalently, the

three scalar functions

xi = xi (XL) i; L = 1; 2; 3: (1.2)

The functions (1.2) are assumed to be

1. one-to-one, and

2. of class C1 together with their inverse.

The �rst assumption assures that the system neither fractures during the motion nor

does a crack close; the second one translates into mathematical terms the basic property of

the matter that two particles cannot simultaneously occupy the same place (impenetrability

principle). In particular, we require that at any point X 2 C� functions (1.2) ful�ll the

condition

J = det

�
@xi
@XL

�
> 0;

in order to guarantee the right-hand orientation of the frame of references. In other words

(1.2) are diffeomorphisms preserving the topological properties of the reference con�gura-
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tion. Differentiation of (1.2) yields

dxi =
@xi
@XL

(X) dXL; (1.3)

where we have used Einstein's summation notation in which the summation over two re-

peated indices is understood. Equation (1.3) de�nes at any point X 2 C� a linear trans-

formation which maps an in�nitesimal vector dX coming from X onto the corresponding

in�nitesimal vector dx coming from x (X). This transformation is called deformation gra-

dient atX and it is represented in the reference frameR by the matrix

F = (FiL) �
�
@xi
@XL

�
: (1.4)

It is easy to realize that equation (1.3) contains all the information regarding the deforma-

tion of the volume element atX when passing from C� to C.

In the sequel we shall make use of the following formulae, which can be deduced

from (1.3) and relate the corresponding in�nitesimal surface elements d�� and d�, as well

as the in�nitesimal volume elements dc� and dc in C� and C respectively (for their deriva-

tion see [23])

d� = J(F�1)Td��; (1.5)

dc = Jdc�: (1.6)

From equation (1.5) we can write

jd�j2 = d�id�i = J2 jd��j2 (F�1)LiN�L(F�1)KiN�K : (1.7)

If we introduce the right Cauchy-Green tensor

C = FTF; CLM =
@xk
@XL

@xk
@XM

;
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since

(F�1)Li(F
�1)Mi = (C

�1)LM ;

from (1.7) we obtain the following relation which will play an important role in the sequel

d� = J
p
N�C�1N�d��: (1.8)

The deformation of S when passing from C� to C can be described in a completely equiv-

alent way by resorting to the displacement �eld u (X) de�ned by the following relation

u (X) = x (X)�X: (1.9)

Introducing the displacement gradient H by the de�nition

H = ru; HiL =
@ui
@XL

;

from (1.9) it follows that

H = F� 1; (1.10)

where 1 is the 3 � 3 identity matrix.

1.3 Mass Conservation Equation

The mass of a continuous system S is assumed to be continuously distributed over the

whole regionC (t) occupied by S at the instant t. In other words, we postulate the existence

of a function � (x; t) of class C1, called mass density, such that, if c� is a part of S in C�

and c its image through the deformation x (X), the mass of c� at time t is given by

m (c�) =

Z
c

� (x; t) dc: (1.11)
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Like every quantity associated with S, the mass density can be expressed in Lagrangian

form. In this case it will be denoted by the symbol �� to highlight that it is a function

assigned on C�, namely �� = �� (X; t). Hence, the following relation holds

m (c�) =

Z
c

� (x; t) dc =

Z
c�

�� (X; t) dc�;

from which, having in mind the rule of the variable change in the multiple integrals (equa-

tion (1.6)), it follows thatZ
c�

[� (x (X; t) ; t) J � �� (X; t)]dc� = 0:

Since c� is an arbitrary volume, at any point of c� in which the integrand function is regular

we obtain the following local Lagrangian formulation of the mass conservation

�J = ��: (1.12)

1.4 Eulerian Formulation of the Equilibrium Equation

In the Mechanics of the Continuous Systems loads acting on the material region c � C

from its exterior ce are divided into mass forces (or body forces), continuously distributed

over the region c and contact forces (or surface loads) acting on the boundary @c. The

resultant force R and the resultant momentM0 with respect to a �xed point O are given

by

R (c; ce) =

Z
c

�bdc+

Z
@c

td�; (1.13)

M0 (c; c
e) =

Z
c

(x� x0)� �bdc+

Z
@c

(x� x0)� td�; (1.14)
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where x0 is the position vector of O, � is the mass density of S and the speci�c mass force

b and the traction t are de�ned on c and @c respectively.

The �rst integral in (1.13) takes into account all forces acting over c from the exte-

rior of S . These actions are assumed to be known "a priori". They may be gravitational,

electromagnetic, thermal etc. and are expressed by the assigned speci�c force �eld b (x; t)

acting on the whole volume c and whose values are not in�uenced by the motion of S.

On the contrary, t represents a contact force �eld acting at the boundary @c of c; the

behavior of these forces is deeply related to the motion of S and therefore they are unknown

quantities.

We remark that the previous assumptions, although natural, are extremely restrictive.

First of all, the mass forces acting on c can originate from the region outside of c but not

necessarily from that outside of S. However, in this case they cannot be assumed as known

since they depend on the motion of the system. Further, the assumption regarding the

contact forces implies that the action of all bodies contacting @c is equivalent to the vector

td�. If one takes into account phenomena related to the inner structure of the medium,

then it can be assumed that these forces are better represented by a force td� and a couple

md�. This assumption gives rise to a branch of Continuum Mechanics referred to as the

theory of Cosserat (or micropolar) Continua1. Hence in a micropolar body, in addition to

body forces, the existence of an independent body couple density m is postulated. If it is

assumed, as we do in the sequel, thatm = 0, S is called a simple continuum.

1 For a deteiled description of micropolar continua, see [24-27].
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We postulate that the force acting upon the surface element d� is related to the de-

formation of particles close to d� only, and depends on the orientation of d� only through

its outward normal vector n. This is known as Cauchy's postulate and can be expressed in

mathematical terms as

t = t (x; t;n) : (1.15)

This is one of the fundamental assumptions in the Mechanics of Simple Continua.

We assume that at equilibrium for any arbitrary material volume c � C of S the

following conditions hold

R (c; ce) = 0; M0 (c; c
e) = 0;

which, from (1.13) and (1.14), become

Z
@c

td� +

Z
c

�bdc = 0; (1.16)

Z
@c

(x� x0)� td� +
Z
c

(x� x0)� �bdc = 0: (1.17)

A fundamental theorem due to Cauchy shows that, under proper regularity conditions, t is

a linear function of n, i.e.,

t = T (x; t) � n; (1.18)

where T is a second order tensorial �eld independent of n known as the Cauchy stress

tensor2. Equation (1.18) allows us to write the local form of equation (1.16). In fact,

2 For a detailed treatment of the Cauchy theorem see [23].



1.4 Eulerian Formulation of the Equilibrium Equation 15

applying the Gauss theorem we can write the �rst integral asZ
@c

td� =

Z
@c

Tnd� =

Z
c

rx �Tdc; (1.19)

where rx � T is a vector whose components in R are
@Tij
@xj

. Substituting equation (1.19)

into (1.16) we obtain Z
c

(�b+rx �T)dc = 0:

Since the integration domain is arbitrary, at all points of c where the integrand functions

are regular, the relation written above implies the following local form of the equilibrium

of S

�b+rx �T = 0: (1.20)

In order to derive the local equation corresponding to equation (1.17), we remark that by

virtue of the Cauchy theorem, the second integral can be written asZ
@c

�ijk (xj � x0j) tk =

Z
@c

�ijk (xj � x0j)Tkhnh =Z
c

�ijkTkjdc+

Z
c

�ijk (xj � x0j)
@Tkh
@xh

dc

where �ijk is the Levi-Civita symbol. Then, substituting into (1.17) and taking into account

(1.20) we obtain Z
c

�ijkTkjdc = 0:

Since c is an arbitrary material volume, it follows that

�ijkTkj = 0;

which implies that the Cauchy stress tensor is symmetric

T = TT : (1.21)
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We conclude that the local equilibrium equation of a continuous body in the Eulerian form

is given by equation (1.20) in which T is a symmetric tensor.

1.5 Lagrangian Formulation of the Equilibrium Equation

In the previous section the �elds � and T have been written in Eulerian form. However

there are many physical problems of practical interest in which it is more convenient to

express these �elds as functions ofX in C�.

From the mass conservation equation in Lagrangian form, �� = �J , the following

identity follows Z
c

�bdc =

Z
c�

��bdc� (1.22)

for any region c� � C�, where c is the material volume corresponding to c� in the actual

con�guration C.

We de�ne the �rst Piola-Kirchhoff stress tensor T� by the conditionZ
@c�

T� �N�d�� =

Z
@c

T � nd�; (1.23)

where N� is the unit outward normal vector to the surface element d�� of @c�. Recalling

equation (1.5), i. e.,

d�ni = J
�
F�1

�
Li
N�Ld��;

equation (1.23) becomes

Z
@c�

(T�iL � TijJ
�
F�1

�
Lj
)N�Ld�� = 0; 8c� � C�;
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from which we have

T� = JT
�
F�1

�T
: (1.24)

Equation (1.24) expresses the relation between Cauchy's stress tensorT and the �rst Piola-

Kirchhoff stress tensor T�. From (1.22) and (1.23) it follows that the integral equilibrium

equation of S can be put in the formZ
@c�

T� �N�d�� +

Z
c�

��bdc� = 0; 8c� � C�: (1.25)

By employing the same arguments as those used in the previous section we conclude from

(1.25) that, if the involved �elds are regular, then the local equilibrium equation in La-

grangian form is

rX �T� + ��b = 0; (1.26)

whererX �T�is a vector whose i-th component in the reference frameR is given by
@T�iL
@XL

.

Equation (1.26) presents the following two advantages over equation (1.20):

1. the mass density �� is a known function of the pointX;

2. the involved �elds and the function x (X) are de�ned in the known and �xed region

C�.

1.6 Elastic Bodies

The local equilibrium equations are general relations, that is, they are valid for all continu-

ous systems and do not depend on the material of the body. However, it is well known from

experience that two bodies having the same geometric characteristics may react differently
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when subjected to the same mechanical loads and thermal conditions. This means that for

a continuous system the knowledge of the equilibrium conditions and of the external forces

acting upon the body is not suf�cient to determine the deformation �eld.

The above considerations can be expressed in a more formal way by noting that

equation (1.26) constitutes a system of three partial differential equations in the 6 unknown

components of T� (X)3. This means that the equilibrium equations do not form a closed

set of �eld equations, so we add additional relations connecting the stress tensor T� to the

the deformation x(X) or the displacement u(X). Thus it is necessary to introduce cri-

teria which allow us to distinguish between macroscopic behaviors of different material

bodies. These relations are called constitutive equations because they translate in mathe-

matical terms the material constitution of the body. In order to get these equations one can

start from the assumption that the macroscopic response of a body depends on its mole-

cular structure. This means that in principle the response functions can be obtained from

Statistical Mechanics in terms of the average of microscopic quantities. Such an investi-

gation is very stimulating both from theoretical and practical points of view. In this way,

we can improve material properties and create new materials that respond to technolog-

ical demands. But this approach is not straightforward if applied to complex materials,

which are of interest in applications. In Continuum Mechanics the basic assumption of a

continuously distributed matter cancels its discrete structure, so constitutive equations are

determined experimentally. Even if these equations translate the material constitution of

the body, they have to ful�ll certain general principles, called constitutive axioms, which

3 Because TT = T, from (1.24) it can be seen that only 6 components of the �rst Piola-Kirchhoff stress
tensor are independent.
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impose restrictions on their form. For an exhaustive study of this subject see pages 134-155

of [13].

Here we only remark that constitutive equations are assumed to be objective, i.e., we

postulate that the material behavior is independent of the observer ( principle of material

frame indifference) and further that in any evolution of the system they satisfy the second

law of thermodynamics ( principle of dissipation of Coleman and Noll )4.

A material point X in a continuous system S is elastic if the Cauchy stress tensor T

at the point X of S depends on the deformation which S has experienced in the neighbor-

hood ofX when passing from the reference con�guration C� to the actual con�guration C.

Having in mind that the deformation atX 2 C� is completely described by the deformation

gradient F, the material pointX is said to be elastic if

T(X; t) = f (F;X; t) : (1.27)

It can be shown (see [13]) that equation (1.27) satis�es the principle of dissipation and the

material frame indifference principle if the Cauchy stress tensor has the following form

T = �
@ 

@F
FT ; (1.28)

where  =  (F) is called the speci�c strain energy.

An elastic material pointX is incompressible if it can undergo only volume preserv-

ing deformations,i.e.,

detC = 1: (1.29)

4 See the fundamental memoir [28].
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For an incompressible material equation (1.28) becomes

T = �p1+ �
@ 

@F
FT ; (1.30)

where the pressure p(x) = �
p(X) is an unknown function. In other words, the constitutive

equation for an incompressible elastic material contains a pressure which is unknown in

the problem. This is similar to the situation in the Dynamics of Rigid Bodies. There, the

assumption of material rigidity makes all components of stress tensor unknown.

From equation (1.28), having in mind the relation (1.24) and the mass conservation

equation in Lagrangian form (1.12), we obtain the following expression for the �rst Piola-

Kirchhoff stress tensor for an unconstrained elastic medium

T� = ��
@ 

@F
: (1.31)

We conclude that the Lagrangian equilibrium equations for an elastic system are given by

(1.26) in which the �rst Piola-Kirchhoff stress tensor is given by (1.31).

We point out that although constitutive axioms impose severe restrictions on the con-

stitutive equation (1.27), they still allow the theory a wide margin of arbitrariness, which

can be �lled only by experimental data. The experimental determination of the constitutive

equations of an elastic material is an extremely complicated task. From equations (1.28)

and (1.31) it can be seen that it consists in the determination of the speci�c strain energy

function  (F). On the other hand the symmetry properties of the material can simplify it

to some extent. We recall that the material symmetry group or simply the isotropy group is

the group of unimodular transformations (i.e. whose determinant equals 1) of the material
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coordinates under which the constitutive equations are invariant.5 In this sense, the sym-

metry group of an isotropic material, i.e., a material whose properties are independent of

the particular direction, is the whole group of orthogonal transformations. In mathematical

terms, for any orthogonal matrixQ the function f(F) must satisfy

f(F)= f(FQ):

It can be shown (see [23]) that an elastic material point, whose constitutive equations satisfy

the objectivity principle and the second principle of thermodynamics, is an isotropic solid

if and only if

 =  (I; II; III) ; T = '01+ '1B+ '2B
2; (1.32)

where I; II; III; are the three principal invariants of the left Cauchy-Green tensor B =

FFT and functions 'i, i = 0; 1; 2, are de�ned as follows

'0 = 2�III
@ 

@III
;

'1 = 2�

�
@ 

@I
+ I

@ 

@II

�
; (1.33)

'2 = �2�
@ 

@II
:

A simple application of the Cayley-Hamilton theorem allows us to obtain the following

form of (1.32)2

T = f01+ f1B+ f2B
�1; (1.34)

5 This form of the notion of symmetry group was introduced by W. Noll [29].
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where fi, i = 0; 1; 2, are related to the 'i by the following relations:6

f0 = '0 � II'2;

f1 = '1 � I'2; (1.35)

f2 = III'2:

Using (1.33) in (1.35), we obtain

f0 = 2�

�
II

@ 

@II
+ III

@ 

@III

�
;

f1 = 2�
@ 

@I
; (1.36)

f2 = �2�III @ 
@II

:

For an incompressible isotropic solid, we have

 =  (I; II); T = �p1+ 2�@ 
@I
B� 2� @ 

@II
B�1: (1.37)

For the proof of these results and a detailed description of the symmetry properties of a

continuum system we refer the reader to [13] and [23].

6 The Cayley-Hamilton theorem states that an n� n square matrixA satis�es the following identity

(�A)n + I1(�A)n�1 + :::+ In�1(�A) + In1 = 0;

where I1; I2; :::; In are scalar functions depending on the components ofA and are called principal invariants
ofA. For n = 3 we have

A3 � IAA2 + IIAA� IIIA1 = 0;
where

IA = Akk = trA;

IIA =
1

2
(AkkAll �AklAlk) =

1

2
(trA)

2 � 1
2
trA2;

IIIA = detA:

In particular for the left Cauchy-Green tensor we obtain

B3 � IB2 + IIB� III1 = 0:

Multiplying the preceding equation by B�1 and solving for B2 we get

B2 = IB� III+ IIIB�1;

which, substituted into (1.32)2 gives (1.34).
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1.7 Linear Elastic Bodies

The deformation x(X) is said to be in�nitesimal if components of the displacement �eld

(1.9) and those of the displacement gradient (1.10) are �rst order quantities, that is, if their

powers or products can be neglected as compared to the quantities themselves. When the

deformation x(X) from C� to C is in�nitesimal and C� represents a natural state (that is

T = 0 in C�), from (1.32) we derive the constitutive equation for an isotropic linear elastic

material. We note that for an in�nitesimal deformation we obtain the following expressions

for B and B2:

B = FFT = (1+H)
�
1+HT

�
= 1+ 2E+ :::; (1.38)

B2 = 1+ 4E+ :::;

where the symmetric tensor

E =
1

2

�
H+HT

�
(1.39)

is known as the in�nitesimal strain tensor and plays a fundamental role in the theory of

in�nitesimal deformations. If we assume that functions 'i, i = 0; 1; 2, can be approximated

by their Taylor series expansions in the invariants of B in the neighborhood of B = 1

(absence of deformation), up to �rst order terms inH, we obtain

'i = ai + bi (I � 3) = ai + 2biIE; (1.40)

where IE is the �rst principal invariant of E. The condition T = 0 for B = 1 requires that

constants ai and bi satisfy the relation

a1 + a2 + a3 = 0:
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Hence, for small deformations of an elastic isotropic material, the stress tensor becomes

T = �IE1+ 2�E; (1.41)

where coef�cients � and �, which depend in a proper way on constants ai and bi, are called

Lamé coef�cients of the elastic material.

From (1.41), it follows

trT = (3�+ 2�) trE;

so that, assuming (3�+ 2�) 6= 0, combining with (1.41) we obtain the following inverse

relation

E =
1

2�
T� �

2�(3�+ 2�)
(trT)1: (1.42)

In order to provide a physical interpretation to these coef�cients, we assume that the elastic

body S is loaded by a uniform traction whose intesity is t along the direction parallel to the

base unit vector e1, so that

te1 = T e1 = te1:

The only nonvanishing component of the stress tensor T, relative to the basis (e1; e2; e3) ;

is T11 = t: From (1.42) we get the deformation components

E11 =
�+ �

�(3�+ 2�)
t;

E22 = E33 = �
�

2�(3�+ 2�)
t;

E12 = E13 = E23 = 0:
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The quantities

EY =
t

E11
=
�(3�+ 2�)

�+ �
;

� = �E22
E33

= �E33
E11

=
�

2(�+ �)
;

are called Young's modulus and Poisson's ratio, respectively and for a homogeneous body

are constants. Young's modulus indicates the ratio between the traction per unit surface area

and the linear dilation produced in the same direction; Poisson's ratio is the ratio between

the contraction, in the direction orthogonal to t, and the dilation along t.

The Cauchy stress tensor for in�nitesimal deformations of an anisotropic elastic ma-

terial can be written as

T = CE; (1.43)

where the elasticity tensor C is a fourth order tensor characterized by the following sym-

metries

Cijhk = Cijkh = Cjikh:

These properties can be proved starting from the symmetry properties of tensors T and E:

Tij = CijhkEhk = CijkhEkh = CijkhEhk = Tji = CjihkEhk:

In particular, for an isotropic linear elastic medium, from (1.41) and (1.43) it follows that

the elasticity tensor becomes

Cijhk = ��ij�hk + �(�ih�jk + �jh�ik):
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In the Theory of Elasticity it is useful to consider the Green-Saint Venant strain ten-

sor

G = E+
1

2
HTH: (1.44)

It is easy to see that in an in�nitesimal deformation

G w E; (1.45)

where the notation w means that quantities on the left and the right-hand side of (1.45)

differ by an order greater than juj and jHj. The following relations between the invariants

ofG and B hold:

2IG = I � 3;

4IIG = II � 2I + 3; (1.46)

8IIIG = III � II + I � 1;

and

I = 2IG + 3;

II = 4IIG + 4IG + 3; (1.47)

III = 8IIIG + 4IIG + 2IG + 1:



Chapter 2
Nonlinear Elastostatics

2.1 Introduction

In this chapter we formulate the boundary-value problems of �nite elastostatics. We study

in depth the meaning and the dif�culties related to the assignment of the traction boundary

conditions. In fact, in the case of the pure traction-value problem the boundary condition

depends on the unknown deformation. In order to describe this, we discuss two examples.

The �rst example is concerned with an elastic system at equilibrium in an uniform pressure

�eld acting upon its boundary. The second example deals with an elastic system subjected

to the action of elastic surface forces.

A further complication is represented by the fact that, for the case of pure traction-

value problem, the global equilibrium conditions depend also on the unknown deformation.

2.2 The Local Equilibrium Equations

Let S be an elastic system at equilibrium in a reference con�guration C�. Let us assume

that under the action of body forces and surface tractions acting on a part or on the whole

boundary @S, S reaches a new equilibrium con�guration C. The task of an elastostatic

problem is to determine the �nite deformation x (X), or equivalently the displacement

27
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u (X), which S undergoes when passing from C� to C, under the action of the aforesaid

forces.

Since the function x = x (X) is de�ned on the reference con�guration C�, it is

necessary to resort to the Lagrangian equilibrium equations. Also the traction acting upon

the boundary @C of the equilibrium con�guration C can not be assigned since @C appears

among the unknowns of the problem. At the equilibrium the following equations hold (see

(1.24)): �
rX �T� + ��b = 0; 8X 2 C�;
T� �N� = t�; 8X 2 @C 0�;

(2.48)

where �� is the mass density in the reference con�guration, T� the �rst Piola-Kirchhoff

stress tensor and N� the outward unit vector normal to the part @C 0� of @C� on which the

surface forces with density t� act. (If @C
0
� 6= @C�, then boundary conditions on @C�� @C

0
�

need to be given).

For an elastic material, by virtue of (1.28), we have

T = �
@ 

@F
FT ; (2.49)

from which, remembering the de�nition (1.24) of the �rst Piola-Kirchhoff stress tensor,

the Lagrangian formulation of the mass equation �J = �� and the de�nition (1.10) of the

displacement gradientH, we obtain

T� = ��
@ (F)

@F
= ��

@e (H)
@H

: (2.50)

Substitution of (2.50) into (2.48)1 yields the following system of three non linear second

order partial differential equations in the three scalar unknown functions xj (X) which are
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regular in the domain C�:

ALMij (X;H)
@2uj

@XL@XM

+ ri (X;H) + ��bi (X) = 0; i = 1; 2; 3; (2.51)

where

ALMij =
@T�iL
@HjM

= ��
@2 

@HiL@HjM

; ri =

�
@T�iL
@XL

�
: (2.52)

In particular, when the body is homogeneous in the reference con�guration, the coef�cients

ALMij do not depend explicitly onX and ri = 0, 8i:

The main goal of the non linear elastostatics is to �nd the �nite deformation x(X) of

S from equations (2.51), together with boundary conditions (2.48)2.

2.3 Some Considerations about Boundary Conditions

In the boundary-value problem (2.48) there is no mention of conditions on the part @C 00� =

@C � @C 0� of the boundary of S on which no surfaces forces are applied. Here, we assume

that this part is �xed or deformed in a known way by virtue of suitable constraints. That is

x (X) = x0 (X) ; 8X 2 @C 00� : (2.53)

If @C 0� = �, the boundary-value problem (2.48) is a pure displacement problem; if @C 00� = �

we deal with a pure traction-value problem, and �nally the problem is said to be mixed if

@C 00� � @C�.

The following remarks can be made concerning the boundary-value problems.

1. In a boundary-value problem the data are usually assigned functions on the boundary

of the domain which is to be determined as a part of the solution. For instance, in the
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Dirichlet problem for the Laplace equation on the domain 
, we assign the value of

the unknown function on the boundary of 
. In the Neumann problem the value of

the normal derivative of the unknown function is given. Finally, in the mixed problem

we assign the value of the unknown function on a part of @
 and the value of the

normal derivative on the remaining part of @
. However, the assignment of the surface

traction on the boundary in a non linear elastostatic problem is not as easy as it may

appear.

Let us consider, for example, an elastic system S at equilibrium in the absence of

body forces (i.e., b = 0) under a uniform pressure p0 acting on the boundary @C of

the actual con�guration. The corresponding Eulerian boundary-value problem is (see

(1.20)) �
rx �T = 0; 8x 2 C;

T �N = �p0N; 8x 2 @C 0: (2.54)

This boundary-value problem can be formulated in the Lagrangian form. Having in

mind equation (1.5) and the de�nition of the �rst Piola-Kirchhoff stress tensor we

obtain

TijNj = TijJ
�
F�1

�
Lj
N�L

d��
d�

= T�iLN�L
d��
d�

:

From (1.5) and (2.54)2, it follows that

ti = TijNj = �p0Ni = �p0J
�
F�1

�
Li
N�L

d��
d�

:

Comparing the two preceding relations we obtain

T�iLN�L = �p0J
�
F�1

�
Li
N�L:
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Thus the Lagrangian formulation of the problem (2.54) becomes�
rX �T� = 0; 8X 2 C�;

T� �N� = �p0J (F�1)T N� � t�; 8X 2 @C 0�:
(2.55)

It is easy to realize that t� is not a known function of the point X 2 @C�. In fact it

contains the unknown deformation x (X) through its gradient F. In other words, the

function t� (X) can not be given.

Similarly, let us consider an elastic system S subjected to the action of the elastic

forces t (x) = �kh (x) i (where h (x) is the elongation of a linear spring at the point

X, k is a constant, and i is a unit vector) acting on the part @C 0 of the boundary @C

of its present equilibrium con�guration. Because of (1.8) and having in mind that the

relation between t� and t is

t�d�� = td�;

we obtain the following relation between t� and the actual stress vector t

t� = Jt
p
N�C�1N�: (2.56)

Hence, the data to assign on the part @C 0� corresponding to the part @C 0 is

t� (F;X) = t
d�

d��
= �J

p
N�C�1N� kh (x (X)) i; (2.57)

which depends on the unknown deformation and, consequently, can not be assigned.

These two examples together with the fact that equations (2.51) are essentially non

linear make the boundary-value problems of elastostatics very complicated. Hence, it

is natural to attempt to simplify the problems described above by limiting the analysis

to those problems in which boundary conditions can be assigned. All loads, which

in C� depend on the deformation are called live loads; differently, loads which can
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be given as known functions of X 2 @C� are called dead loads. These dead loads

have been widely studied in the literature. However, they are very dif�cult to realize

in practice. As a matter of the fact, from the condition

t� (X) =
d�

d��
t

it follows that the traction t acting upon @C 0 has to be assigned in such a way that t�

be independent of the deformation but depend only onX.

2. Equations (2.48) represent necessary conditions for the equilibrium of S. Therefore,

together with (2.48), we have to consider the global equilibrium conditions which

express the vanishing of the resultant force and the resultant moment with respect to a

point O of all forces acting on S. In order to write them, we denote by � the reaction

due to constraints which are necessary to realize the displacement (2.53). Then the

following global equilibrium conditions must holdR
C�
��bdc� +

R
@C0�
t�d�� +

R
@C0�
�d�� = 0;R

C�
��r� bdc� +

R
@C0�
r� t�d�� +

R
@C0�
r��d�� = 0:

(2.58)

It is plain that for a mixed-value and a displacement-value problem the constraints

have to satisfy these conditions. On the contrary, for the traction-value problem

conditions (2.58) reduce to the followingR
C�
��bdc� +

R
@C�
t�d�� = 0;R

C�
��r� bdc� +

R
@C�
r� t�d�� = 0:

(2.59)

Since t� depends on x (X) andF on @C� and owing to the presence of r = (x(X)�x0)

in (2.59), it is not possible to establish if the data satisfy these conditions unless we

know the deformation corresponding to the force system (t�;b). For this reason,
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Signorini [1] suggested to regard (2.59) as compatibility conditions, i.e., if there exists

no deformation satisfying equations (2.48) and (2.53), then the traction boundary-value

problem has no solution. In the particular case of dead loads, condition (2.59)1 is an

"a priori" restriction upon the traction data, while (2.59)2 still remains a compatibility

condition due to the presence of r.



Chapter 3
Signorini's Method for Dead Loads

3.1 A Citation

In the footnote 1 at page 118 of the Non-Linear �eld Theories of Mechanics by C. Truesdell

and W. Noll [33] there is written:"In the period between the two great wars, knowledge of

the classical theory of �nite elastic strain sank so far that "engineering" paper sprouted here

and there with "new" theories, all either pointlessly special or wrong. Only in Italy, due

to the teaching and writing of SIGNORINI, was the true theory still widely known. The

experts of the older generation, such as Hadamard, HILBERT, and HAMEL, seem to have

lost interest".

3.2 Dimensional Analysis of the Equilibrium Equations

In 1930, Signorini [1] suggested a perturbation method to �nd approximate solutions of

boundary-value problems of �nite elasticity in the presence of dead loads. First the elastic

system S is assumed to be in equilibrium, in the absence of forces, in a homogeneous,

isotropic and unstressed con�guration C�. Subsequently, under the action of a system of

mass forces b and surface tractions t, the continuum S deforms until it assumes a new

equilibrium con�guration C. The basic assumption of Signorini's perturbation method is

that the response of S to applied loads is not so different from its response if the system

34
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behaved like a linear elastic material. Consequently, the �rst step in order to check if the

method can be applied is to write equations (2.48) in a nondimensional form. To this aim,

we introduce the following reference quantities

~T ; l; L; ~b; ~t; ~�; (3.60)

where ~T has the dimension of stress and describes the internal state of the system in C�;

l and L are lengths which represent measures for the displacements and the characteristic

dimensions of the body, respectively; ~b and ~t are reference mass and surface forces, and

�nally ~� has the dimension of mass density. If we continue to use the same notations for

the nondimensional quantities, the pure traction boundary-value problem (2.48) becomes

~T

L
r� �T� = �~���~bb; (3.61)

~TT� �N� = ~tt:

On the other hand, if we use the Cauchy stress tensor of linear elasticity as a measure of

the state of stress of the body, from the constitutive equation (1.41)

T = �IE1+2�E;

in which IE is the trace of the in�nitesimal deformation tensor E and � and � are the Lamé

coef�cients, it follows that

~T ' � l
L
� ��;
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where � = maxf�; �g and � � l

L
: Substituting into (3.61) the preceding expression of ~T ,

we obtain the following system

r� �T� = �L
~b~�

��
��b; (3.62)

T� �N� =
~t

��
t;

where all quantities are nondimensional. It is now easy to understand that if we want C� to

be the unperturbed state of S , we must have

� � L~b~�

��
'

~t

��
<< 1: (3.63)

This relation allows us to estimate the order of magnitude of the body forces and surface

tractions acting upon S starting from the material of the body (�), its dimensions (L) and

the relative magnitude of displacements (� = l=L).

In terms of reference and nondimensional quantities, the compatibility condition

(2.59)1 can be written as

~�~bL3
Z
C�

��bdc� + ~tL
2

Z
@C�

t�d�� = 0;

which, dividing by ��L2 and having in mind the value of the small parameter � given by

(3.63) becomes Z
C�

���bdc� +

Z
@C�

�t�d�� = 0: (3.64)

In the same way, for the second compatibility condition (2.59)2 we have

~�~blL3
Z
C�

��r� bdc� + ~tlL2
Z
@C�

r� t�d�� = 0;

and, dividing by ��lL2, we obtainZ
C�

��r� �bdc� +

Z
@C�

r� �t�d�� = 0: (3.65)



3.3 Signorini's Method for Dead Loads 37

3.3 Signorini's Method for Dead Loads

We note that the use of an approximation procedure makes no sense unless we have en-

sured that there exists at least a solution to the equilibrium problem. Consequently, the

existence and uniqueness results play a crucial role within the boundary-value problems of

�nite elasticity. Unfortunately, the known existence and uniqueness theorems for solutions

to the partial differential equations are not general enough to include the boundary-value

problems we have described above. Van Buren [21] proved an existence and uniqueness

theorem for the solution of the mixed problem involving dead loads. This result starts from

the Banach-Caccioppoli theorem on the inverse functions and is local, i.e., it is valid for �-

nite deformations which are not far from the linear deformations. Furthermore, it requires

that an existence and uniqueness theorem hold for the corresponding linear problem. For

a mixed boundary-value problem Van Buren showed that if the �rst Piola-Kirchhoff stress

tensor depends analytically on the displacement gradient and the applied body and surface

loads are analytical functions of the perturbation parameter � then there exists a unique so-

lution of the problem which is an analytical function of �. Hence, provided that �� 1, the

perturbation method can be applied if the following main hypotheses are satis�ed:

1. The �rst Piola-Kirchhoff stress tensor T� = JT (F�1)
T depends analytically on the

displacement gradientH;

2. b(�;X) and t�(�;X) are analytical functions of �.
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In order to derive a sequence of linear problems to be solved, we write

T� = A (H) =

1X
n=1

An (H) ; A (0) = 0; (3.66)

where functionsAn (H) are homogeneous polynomials of degree n inH7, and further

b =

1X
n=1

�nbn; t� =

1X
n=1

�nt�n; (3.68)

u =

1X
n=1

�nun; (3.69)

where series (3.66), (3.68), and (3.69) are absolutely and uniformly convergent in a proper

radius of convergence.

Assuming thatHn = run; from (3.69) it follows that

H =
1X
n=1

�nHn: (3.70)

Substituting from (3.70) into (3.66), we have

T�iL = C(1)iLjM
�
�H1jM + �2H2jM + :::

�
+

+C(2)iLjMhN

�
�H1jM + �2H2jM + :::

� �
�H1hN + �2H2hN + :::

�
+ :::

= �C(1)iLjMH1jM + �2
�
C(1)iLjMH2jM + C(2)iLjMhNH1jMH1hN

�
+ :::

or equivalently

T� =
1X
n=1

�n
�
C(1)Hn +Bn

�
H1; :::;Hn�1

��
; (3.71)

where C(1) is a fourth order tensor and Bn
�
H1; :::;Hn�1

�
, n = 2; 3; :::, are homogeneous

polynomial of degree n in variables H1; :::;Hn�1, while B1 = 0. From (3.67) it follows

7 In fact it is suf�cient to note that

T�iL = AiL (H) = C(1)iLjMHjM + C(2)iLjMhNHjMHhN + ::: (3.67)
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also that C(1) has to be identi�ed with the tensor C of the linear theory of elasticity (see

equation (1.43)), so that (3.71) becomes

T� =

1X
n=1

�n
�
C � En +Bn

�
H1; :::;Hn�1

��
; (3.72)

where En =
�
Hn +H

T
n

�
2

.

Substituting from (3.68) and (3.72) into (2.48) with homogeneous displacement bound-

ary condition, we obtain 8>>>><>>>>:
r � (C � En) + ��b̂n = 0; on C�;

(C � En) �N� = t̂�n; on @C 0�;

un = 0; on @C 00� ; n = 1; 2; :::

(3.73)

where the following de�nitions have been made8<: ��b̂n � ��bn +r �Bn
�
H1; :::;Hn�1

�
;

t̂�n � t�n �Bn
�
H1; :::;Hn�1

�
�N�:

(3.74)

When n = 1, b̂1 = b1; t̂�1 = t1 and equations (3.73) coincide with those of the

mixed boundary-value problem in the linear theory of elasticity. More generally, if we

assume that �elds u1; :::;um�1 are solutions to the problems (3.73) for n = 1; :::;m � 1;

then, equations (3.73) written for n = m de�ne a new mixed boundary-value problem

for the same material and for the same domain C�, but with loads b̂n; t̂�n depending in a

known way on u1; :::;um�1: In other words, the determination of them� th term of series

(3.69) reduces to the solution of m mixed boundary-value problems for the same body in

C� , but with different loads. The great advantage of using Signorini's method lies in the

fact that it allows us to pass from a non linear problem to a set of linear problems.
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Van Buren's theorem can not be directly extended to the case of the pure traction-

value problem for the following two reasons. First, the linear and the nonlinear pure traction

boundary-value problems admit at least a solution if the applied loads are balanced , i.e.,

Z
C�

��bdC� +

Z
@C�

t�d�� = 0; (3.75)Z
C�

r� b��dC� +
Z
@C�

r� t�d�� = 0; r = r� + u: (3.76)

Second, for the linear problem there does not exist a uniqueness theorem since the solution

is determined to within an arbitrary in�nitesimal rigid displacement (see Theorem 10.4 of

[23]). This means that in order to obtain a unique solution to the linear pure traction-value

problem, we have to add further conditions to the displacement. For instance, we may

require that

u(0) = 0; H(0) = HT (0); (3.77)

which exclude the translation and the in�nitesimal rigid rotation respectively. Concerning

Signorini's method for the pure traction-value problem with dead loads, Stoppelli [6-10]

proved a local existence and uniqueness theorem, and analytic dependence of the solution

on a parameter, when the applied dead loads do not have an axis of equilibrium, and the

existence and analyticity of solutions when the dead loads have an axis of equilibrium

(see also Tolotti [11]). As Van Buren's theorem, Stoppelli's theorem is an application of

Banach-Caccioppoli theorem on the inverse functions to the pure traction-value problem

and is local. A discussion of Stoppelli's papers can be found in [12-14], and [33].

In [4] and [5] Signorini's method was used to investigate the uniqueness of the above

solutions as well as the position of the classical linear theory with respect to the nonlinear
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theory. Later, Capriz and Podio-Guidugli [15-19] investigated the compatibility of the

linear and the nonlinear elasticity theories and showed that a very large class of traction-

value problems can be solved by perturbation methods of Signorini's type.



Chapter 4
Signorini's Method for Traction-Value

Problems with Live Loads

4.1 Introduction

Starting from the fundamental paper [1], the research relative to pure traction-value prob-

lems (see [4-17]) has essentially been developed only in the presence of dead loads b =

b(X) and t� = t�(X). Nevertheless, it is easy to realize that the physically meaningful

loads depend on the deformation. Further the hypothesis of live loads in the pure traction-

value problems introduces the following mathematical dif�culties (see Section 2.3):

1. The boundary conditions depend on the unknown deformation.

2. The global equilibrium conditions represent compatibility conditions for the data and

the displacement and can not be veri�ed a priori.

Only since the 80's the research in �nite elastostatics has been devoted to pure

traction-value problems with live loads. In fact, in [18], [19], and [30] Signorini's method

has been extended to live traction-value problems by Grioli, Capriz and Podio-Guidugli. In

particular, in [30] Grioli studied an equilibrium problem for a heavy solid immersed in a

homogeneous incompressible �uid and, later, in [31] and [32] Grioli provided a new pertur-

bation procedure for the pure traction boundary-value problems introducing a convenient

42
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constitutive parameter. In [19], starting from two problems suggested by Grioli, Capriz and

Podio-Guidugli generalized the results of [18] and presented a perturbation method for the

pure traction-value problems with live loads for almost rigid hyperelastic bodies. An im-

portant contribution in the framework of non linear elasticity with live loads has been made

by Valent in many papers which are collected in [20]. In this book, Valent extended Stop-

pelli's theorem to some pure traction-value problems with live loads. In particular, Valent

proved some local theorems of existence, uniqueness and analytic dependence on a para-

meter which allow us to use Signorini's method for pure traction-value problem in which

the prescribed surface traction is parallel to the normal to the boundary of the body. More

precisely, within this class Valent considered the traction-value problem for loads invariant

under translations and rotations, and the case of a heavy body submerged in a homogeneous

liquid.

In this chapter, starting from the results of Valent [Chapter 6, 20], we study traction-

value problems for a body subjected to a uniform pressure. Besides the introduction, this

chapter is divided into �ve sections. In the second section, we provide a generalization of

Signorini's method to the case of live loads. Furthermore, we formulate the boundary-value

problems and the corresponding compatibility conditions (global equilibrium conditions) in

order to determine the displacement of the system up to the second-order approximation.

In the third section, we solve two live traction-value problems for an elastic continuous

system of simple geometry (sphere and hollow cylinder) in a uniform pressure �eld. The

obtained solutions allow us to propose four experiments for determining the second-order

constitutive constants for the given material (Section 4.4). Finally, in the last two sections
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we present the programs Sphere and HollowCylinder which have been used to solve

the described problems.

4.2 A Generalization of Signorini's Method to Live Loads

4.2.1 Dimensional Analysis

For the sake of clarity, here we reproduce brie�y the same arguments as used earlier to de-

scribe the dimensional analysis for dead loads. We assume that the elastic system S is in

equilibrium in the absence of forces in a homogeneous, isotropic and unstressed con�gura-

tion C�. Then, by virtue of the action of a system of mass forces b and surface tractions t,

S assumes a new equilibrium con�guration C. We assume that the response of S is close

to the linear elastic response. Consequently, the �rst step in order to check if Signorini's

method can be applied is to write equations (2.48) in a nondimensional form. In order to

do that, we introduce the following reference quantities (see section 3.1)

~T ; l; L; ~b; ~t; ~�; (4.78)

and continue to use the same notations for the nondimensional quantities, the pure traction

boundary-value problem (2.48) and compatibility conditions (2.59) (see equations (3.64)

and (3.65)). We write them as

�
r� �T� = ��b in C�;
T� �N� = �t� on @C�;

(4.79)
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8>><>>:
Z

C�

���bdc� +

Z
@C�

�t�d�� = 0;Z
C�

��r� �bdc� +

Z
@C�

r� �t�d�� = 0;
(4.80)

where, adopting the Cauchy stress tensor T of the linear theory to describe the stress state,

the perturbation parameter � is given by

� � L

��
~�~b '

~t

��
(4.81)

in which � = maxf�; �g, � and � are the Lamé coef�cients, and � = l=L.

Provided that � � 1, the perturbation method can be applied if the following hy-

potheses are satis�ed:

1. The �rst Piola-Kirchhoff stress tensor T� depends analytically on the displacement

gradientH;

2. b(�;X;u;H) and t�(�;X;u;H) are analytical functions of �.

Note that in this case the body force and surface tractions depend on the displacement

�eld and its gradient.

Then, if local theorems of existence and uniqueness for the problem (4.79) hold and

the solution is an analytic function of � which satis�es the compatibility conditions (4.80)

together with the assigned loads, problem (4.79)-(4.80) reduces to solving a set of linear

pure traction boundary-value problems with dead loads.



4.2 A Generalization of Signorini's Method to Live Loads 46

4.2.2 Signorini's Method for Live Traction-Value Problem

In view of the applications of Section 4.3 and 4.4, the aforesaid perturbation method will

be used to solve up to the second order of approximation the following problem

�
r� �T� = 0 in C�;
T� �N� = �t� on @C�;

(4.82)

Z
@C�

�t�d�� = 0;

Z
@C�

r� �t�d�� = 0; (4.83)

where

t� = Jt
p
N� �C�1N�; (4.84)

(see equation (2.56)).

The �rst Piola-Kirchhoff stress tensor T� of an elastic, isotropic and homogeneous

body up to second order inH is given by (see [13])

T� = �IEI+ 2�E+

�
�

2

�
IHHT + 2I2E

�
+ �1I

2
E + �2IIE

�
I

+�3IEE+ �4E
2 � �IEH

T � �
�
HT
�2
; (4.85)

where E =1
2

�
H+HT

�
is the in�nitesimal strain tensor, �i, i = 1; � � � ; 4, are the sec-

ond order constitutive constants, and IE and IIE denote the �rst and the second principal

invariants of the tensor E, respectively.

The series expansion of the displacement u up to second-order terms in the small

parameter � is given by

u = �u1 + �2u2: (4.86)
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From (4.86) we can easily deduce the following relations:

H = �H1 + �2H2; E = �E1 + �2E2; IE = �IE1 + �2IE2 ;

IHHT = �2IH1HT
1
; I2E = �2I2E1 ; IIE = �2IIE1 ; IEE = �2IE1E1; (4.87)

E2 = �2E21; IEH
T = �2IE1H

T
1 ; (HT )2 = �2(HT

1 )
2:

Substituting the second-order expansions (4.87) into (4.85) we obtain

T� = �T�1 + �2 (T�2 +B�1) ; (4.88)

where

T�i = �IEiI+ 2�Ei i = 1; 2; (4.89)

B�1 =

�
�

2

�
IH1HT

1
+ 2I2E1

�
+ �1I

2
E1
+ �2IIE1

�
I+ �3IE1E1

+�4E
2
1 � �IE1H

T
1 � �

�
HT
1

�2
:

(4.90)

We now derive the form of the traction (4.84) up to second order terms. First, from (4.86)

we get the following expression for t = t (X;u (�) ;H (�))

�t = �t1 (X) + �2 [(rut)0 u1 + (rHt)0H1] : (4.91)

Furthermore, for a matrixA written as

A = 1+ S;

detA = 1 + IS + IIS + IIIS; (4.92)

A�1 = 1� S+ S2 + 0(S2): (4.93)
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Therefore, for

F = 1+H;

from (4.92) and (4.93), to within an error of third order in the components ofH, we get

J = detF ' 1 + IH + IIH = 1 + IH +
1

2

�
I2H � IH2

�
; (4.94)

F�1 = 1�H+H2 + o
�
H2
�
; (4.95)

C�1 =
�
FTF

��1
= F�1

�
FT
��1 ' �1�H+H2

� �
1�HT +

�
HT
�2� (4.96)

' 1�
�
H+HT

�
+
�
HT
�2
+HHT +H2:

From (4.87)1 it follows that

H2 ' �2H2
1 (4.97)

IH = �IH1 + �2IH2 ; IH2 = �2IH2
1
: (4.98)

Substituting relations (4.98) into (4.94) we obtain

J ' 1 + �IH1 + �2IH2 +
1

2

h�
�IH1 + �2IH2

�2 � �2IH2
1

i
' 1 + �IH1 + �2IH2 +

1

2
�2
�
I2H1

� IH2
1

�
and, since

IIH1 =
1

2

�
I2H1

� IH2
1

�
;

we �nally come to the following second-order expression for J

J = 1 + �IH1 + �2 [IH2 + IIH1 ] : (4.99)
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By using equations (4.87)1, (4.87)10, and (4.97) we get

C�1 = 1�
�
�H1 + �2H2 + �HT

1 + �2HT
2

�
+
�
�HT

1 + �2HT
2

�2
+�

�H1 + �2H2

� �
�HT

1 + �2HT
2

�
+
�
�H1 + �2H2

�2
' 1�

�
�H1 + �2H2 + �HT

1 + �2HT
2

�
+
�
�HT

1

�2
+ �2H1H

T
1 + �2H2

1

' 1� �
�
H1 +H

T
1

�
+ �2

�
H2
1 +

�
HT
1

�2
+H1H

T
1 �H2 �HT

2

�
;

and remembering that

2Ei =
�
Hi +H

T
i

�
; i = 1; 2;

we have

C�1 ' 1� 2�E1 � �2
�
2E2 �H2

1 �H1H
T
1 �

�
HT
1

�2�
: (4.100)

From (4.100) it follows that

N� �C�1N� = 1� 2�N� � E1N� � �2N� �
�
2E2 �H2

1 �H1H
T
1 �

�
HT
1

�2�
N�:

Using the Taylor series expansion

p
1� 2a�� b�2 = 1� �a�

�
a2 + b

2

�
�2 + o(�2);

and introducing the following constants

a = N� � E1N�

b = N� �
�
2E2 �H2

1 �H1H
T
1 �

�
HT
1

�2�
N�;

we obtain

p
N� �C�1N� =

p
1� 2a�� �2b

' 1� �a�
�
a2 + b

2

�
�2: (4.101)
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Thus from equations (4.91), (4.99), and (4.101) the relation (4.84) can be written as

�t� = J�t
p
N� �C�1N� ' (1 + �IH1 + �2 [IH2 + IIH1 ])�

�t1 (X) + �2f
� �
1� �a�

�
a2 + b

2

�
�2
�
;

where

f = (Out)0 u1 + (OHt)0H1:

Retaining only the terms up to second order in � we obtain

�t� =
�
�t1 + �2f + �2IH1t1

� �
1� �a�

�
a2 + b

2

�
�2
�

' �t1 � �2t1a+ �2f + �2IH1t1

= �t1 + �2 [IH1t1 � t1N� � E1N� + (Out)0 u1 + (OHt)0H1] :

Thus, the the traction (4.84) assumes the following form up to second order terms

�t� = �t�1 + �2t�2; (4.102)

where

t�1 = t1; (4.103)

t�2 = IH1t1 � t1N� � E1N� + (Out)0 u1 + (OHt)0H1:

Finally, because of equations (4.88) and (4.102), problem (4.82) reduces to solving

the following two linear boundary-value problems with dead loads�
r� �T�1 = 0 in C�;
T�1 �N� = t�1 on @C�;

(4.104)

�
r� � (T�2 +B�1) = 0 in C�;
(T�2 +B�1) �N� = t�2 on @C�;

(4.105)
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respectively with the following compatibility conditionsZ
@C�

t�1d�� = 0; (4.106)

Z
@C�

(X+ u1)� t�1d�� = 0;

Z
@C�

t�2d�� = 0; (4.107)

Z
@C�

[(X+ u1)� t�2 + u2 � t�1] d�� = 0:

Here moments are taken with respect to the origin of the coordinate system.

In the next section, we solve the problem (4.82)-(4.83) only when S is subjected to

a uniform pressure. Furthermore, since the uniform pressure �elds are live loads which

are invariant under translations, the theorems of existence, uniqueness, and continuous

dependence on a parameter, proved in [20], hold for the problem (4.82)-(4.83).

Equations (4.106) are compatibility conditions imposing restrictions both on the ap-

plied forces and on the corresponding displacement which is solution to the problem (4.104).

In other words, in (4.106) the following relationsZ
@C�

t�1d�� = 0;

Z
@C�

X� t�1d�� = 0;

representing a restriction on the applied forces, have to be veri�ed a priori. However, the

condition which guarantees the physical meaning of the displacement u1Z
@C�

u1 � t�1d�� = 0;

can only be veri�ed a posteriori.

The inspection of the compatibility conditions (4.107) can only be made a posteriori.
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4.3 Two Live Traction-Value Problems

In this section problems (4.104)-(4.107) are solved for the case of a continuum with spher-

ical and cylindrical geometry. Then, starting from the obtained solutions, some experimen-

tal procedures are suggested to determine the constitutive constants �i of the body.

4.3.1 The First Traction-Value Problem: Sphere

Let S be a sphere of radius R made of an elastic, homogeneous, and isotropic material.

Suppose S be at equilibrium in a current con�guration C under the action of a uniform

pressure �eld

t = �p0N; (4.108)

where p0 is a positive constant and N is the unit outward normal vector to the boundary

@C of S (see Figure 4.1).

Fig. 4.1. A sphere loaded by a uniform pressure.
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In order to write the Lagrangian equilibrium equations in a nondimensional form, it

is useful to introduce the following characteristic quantities (see (4.78))

~t = ~p; l = ~u (R) ;

~T = maxf�; �g � �; L = R;

(4.109)

where ~p is a pressure which induces a linear response and ~u (R) is the displacement of the

boundary of S in the linear approximation.

From (4.81) and (4.109), the perturbation parameter � is given by

� =
~p

��
: (4.110)

Owing to spherical symmetry, we search for the solution of pure traction-value problem

(4.79)-(4.80) in the following form

u (r) =
�
�u1 (r) + �2u2 (r)

�
ar; (4.111)

where ar is the radial unit vector of the physical basis associated with the spherical coordi-

nates fr; '; �g.

The �rst-order boundary-value problem (4.104) is

�
r� �T�1 = 0 in C�;
T�1 �N� = t�1 on @C�:

(4.112)

In order to write the problem (4.112) in spherical coordinates we start by writing the metric

tensor (gij) associated with the natural (or holonomic) basis (ei):

(gij) =

0@ 1 0 0
0 r2 sin2 � 0
0 0 r2

1A ; (gij) = (gij)
�1 =

0@ 1 0 0
0 1

r2 sin2 �
0

0 0 1
r2

1A : (4.113)
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First, we recall that the relation between the unit vectors of the natural basis (ei) and the

unit vectors (ai) of the physical basis is8

ai =
1
p
gii
ei (no sum over i), (4.114)

while the relation between the reciprocal basis is

ai =
p
giie

i (no sum over i). (4.115)

The covariant components of the �rst-order displacement gradient H1 in the basis ei 
 ej

are given by

(H1)ij =
@ui
@xj

� �hijuh (4.116)

where the Christoffel symbols �hij are related to the metric coef�cients gij and gij by the

following formulae

�ljh =
1

2
gli(gij;h + ghi;j � gjh;i): (4.117)

From (4.113) it follows that the non-zero Christoffel symbols are

�331 = �313 = �
2
21 = �

2
12 =

1

r
; �122 = �r sin2 �; �133 = �r; (4.118)

�223 = �232 = cot �; �322 = � sin � cos �: (4.119)

It is now an easy task to compute from (4.116), (4.118), and (4.119) the covariant compo-

nents of the �rst-order displacement gradientH1 in the basis ei 
 ej

(H1)11 = u01; (H1)22 = r sin2 � u1; (H1)33 = r u1;

(H1)ij = 0; i 6= j;

8 Note that from (4.113) and (4.114) it follows that

a1 = e1; a2 =
e2

r sin �
; a3 =

e3
r
:
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where u01 =
du1
dr
. The non-zero contravariant components ofH1 are given by the relation

(H1)
ij = gikgjh(H1)kh

and, from (4.113), they assume the following values

(H1)
11 = u01; (H1)

22 =
u1

r3 sin2 �
; (H1)

33 =
u1
r3
:

Hence, we can write

H1 = u01e1 
 e1 +
u1

r3 sin2 �
e2 
 e2 +

u1
r3
e3 
 e3

and, from (4.114), we �nally obtain

H1 = u01a1 
 a1 +
u1
r
a2 
 a2 +

u1
r
a3 
 a3;

or in matrix notation

H1 =

0BB@
u01 0 0

0
u1
r

0

0 0
u1
r

1CCA : (4.120)

From (4.120) we have

IH1 = u01 + 2
u1
r
; E1 = H1;

and from (4.89) we obtain

T�1 =

0BBB@
(�+ 2�)u01 + 2�

u1
r

0 0

0 �u01 + 2(�+ �)
u1
r

0

0 0 �u01 + 2(�+ �)
u1
r

1CCCA : (4.121)
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We recall that the physical components of the divergence of a symmetric tensor �eld T in

spherical coordinates are given by (see [33])

(r �T)r =
@Trr
@r

+
1

r

@Tr�
@�

+
1

r sin �

@Tr'
@'

+

1

r
(2Trr � T�� � T'' + cot �Tr�);

(r �T)� =
@Tr�
@r

+
1

r

@T��
@�

+
1

r sin �

@T�'
@'

+ (4.122)

1

r
[3Tr� + cot �(T�� � T'')];

(r �T)' =
@Tr'
@r

+
1

r

@T�'
@�

+
1

r sin �

@T''
@'

+

1

r
(3Tr' + 2 cot �T�'):

It can be easily seen from (4.121) that the relations (4.122) assume the following form

(r �T�1)r =
d(T�1)rr
dr

+
1

r
[2(T�1)rr � (T�1)�� � (T�1)'' ]

= (�+ 2�)

�
u001 +

2

r
u01 �

2

r2
u1

�
; (4.123)

(r �T�1)� = 0; (r �T�1)' = 0;

and, having in mind thatN� = (1; 0; 0)
T ,

T�1 �N� = (�+ 2�)u
0
1 +

2�

r
u1: (4.124)

Furthermore, from (4.108) and (4.103)1 it follows that

t�1 = �p0N�: (4.125)

Hence, from (4.123) and (4.124), and (4.125), the boundary-value problem (4.112) be-

comes 8<:
r2u001 + 2ru

0
1 � 2u1 = 0;�

(�+ 2�)u01 +
2�

r
u1

�
r=R

= �p0:
(4.126)
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The general integral of the differential equation (4.126)1 is

u1 (r) = �Ar +
�B

r2
: (4.127)

Substituting from (4.127) into the boundary condition (4.126)2 and due to the spherical

symmetry of the problem we must have

u (0) = 0;

by routine calculations we get

�A = � p0
3�+ 2�

; �B = 0:

Thus, the solution of system (4.126) is

u1 (r) = �
p0

3�+ 2�
r: (4.128)

On the other hand, t�1 = �p0N�, so that from (4.128) we easily verify that the

�rst-order compatibility conditions (4.106) are satis�ed.

The second-order boundary-value problem is�
r� � (T�2 +B�1) = 0 in C�;
(T�2 +B�1) �N� = t�2 on @C�:

(4.129)

From the �rst-order displacement (4.128) we obtain

H1 = E1 = �A1; E21 = (H
T
1 )
2 = �A21; (4.130)

IH1 = IE1 = 3 �A; IH1HT
1
= 3 �A2; IIE1 = 3 �A

2:

Substitution of expressions (4.130) into (4.90) and (4.103)2 yields

B�1 = � �A
21;

t�2 = �2p0 �AN�;
(4.131)
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where

� =
15

2
�� �+ 9�1 + 3�2 + 3�3 + �4:

Since � and �A are constants, equation (4.131)1 implies that

r� �B�1 = 0: (4.132)

Using the same arguments as those used to derive the expression of the divergence of the

�rst-order stress tensor we obtain

(r �T�2)r =
@(T�2)rr
@r

+
1

r
[2(T�2)rr � (T�2)�� � (T�2)'' ]

= (�+ 2�)

�
u002 +

2

r
u02 �

2

r2
u2

�
; (4.133)

(r �T�2)� = 0; (r �T�2)' = 0:

Furthermore

T�2 �N� = (�+ 2�)u
0
2 +

2�

r
u2: (4.134)

Therefore, from (4.133), (4.132) and (4.131), the second-order boundary-value problem

(4.105) becomes 8<:
r2u002 + 2ru

0
2 � 2u2 = 0;�

(�+ 2�)u02 +
2�

r
u2

�
r=R

+ � �A2 = �2p0 �A;
(4.135)

and it admits the following solution

u2 (r) =

�
2 �A2 +

� �A3

p0

�
r: (4.136)

From (4.131)2 and (4.136), it is easy to verify that the second-order compatibility conditions

(4.107) are also satis�ed.

In conclusion, the pure second-order traction-value problem has the solution

u =

�
�A�+

�
2 �A2 +

� �A3

p0

�
�2
�
r ar: (4.137)
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It is in�uenced by the second-order elastic constants through the presence of � in (4.137).

Even if all the second-order elastic constants vanish, the second-order displacement �eld is

non-zero.

4.3.2 The Second Traction-Value Problem: Hollow Cylinder

We consider an in�nite hollow cylinder S made of an elastic, homogeneous and isotropic

material. Let Ri and Re be the internal and the external radii, respectively. Let S be at

equilibrium in the current con�guration C under the action of the uniform pressure �eld

t =

�
�piNi on @Ci;
�peNe on @Ce;

(4.138)

where pi and pe are positive constants, Ni and Ne are the unit outward normal vectors to

@Ci and @Ce, respectively (see Figure 4.2).

Fig. 4.2. Schematic sketch of a circular hollow cylinder subjected to pressure on the inner
and outer surfaces.

Adopting the same arguments as in the previous section, assuming that L = Re; ~t = p̂

and l = ~u (Re), where ~u (r) is an in�nitesimal displacement, the parameter � can be written
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as

� =
p̂

��
:

Adopting the cylindrical coordinates fr; �; zg, the following �rst-order pure traction-value

problem has to be solved 8<:
r� �T�1 = 0 in C�;
T�1 �N�i = t

(i)
�1 on @C�i;

T�1 �N�e = t
(e)
�1 on @C�e;

(4.139)

for the unknown displacement u1 (r) = u1 (r) ar, where ar is the radial unit vector of the

physical basis far; a�; azg associated with the cylindrical coordinates. In order to write

the problem (4.139) in cylindrical coordinates we start by writing the metric tensor (gij)

associated with the natural basis (er; e�; ez)9

(gij) =

0@ 1 0 0
0 r2 0
0 0 1

1A ; (gij) = (gij)
�1 =

0@ 1 0 0
0 1

r2
0

0 0 1

1A : (4.140)

From (4.140) and (4.117) it follows that the non-zero Christoffel symbols are

�122 = �r; �212 = �
2
21 =

1

r
: (4.141)

It is now easy to see from (4.116) and (4.141) that the non-zero covariant components of

the �rst-order displacement gradientH1 in the basis ei 
 ej are

(H1)11 = u01; (H1)22 = ru1:

The corresponding contravariant components ofH1 are given by the relation

(H1)
ij = gikgjh(H1)kh

9 Note that from (4.140) and (4.114) it follows that

ar = er; a� =
e�
r
; az = ez:
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and, from (4.140), they take the following values

(H1)
11 = u01; (H1)

22 =
u1
r3
:

Hence, we can write

H1 = u01e1 
 e1 +
u1
r3
e2 
 e2;

and, from (4.114), we obtain

H1 = u01a1 
 a1 +
u1
r
a2 
 a2;

or in matrix notation

H1 =

0B@ u01 0 0

0
u1
r

0

0 0 0

1CA : (4.142)

From (4.142) we have

IH1 = u01 +
u1
r
; E1 = H1;

and from (4.89) we get

T�1 =

0BBB@
(�+ 2�)u01 + �

u1
r

0 0

0 �u01 + (�+ 2�)
u1
r

0

0 0 �
�
u01 +

u1
r

�
1CCCA : (4.143)

We recall that the physical components of the divergence of a symmetric tensor �eld T in

cylindrical coordinates are given by (see [33])

(r �T)r =
@Trr
@r

+
1

r

@Tr�
@�

+
@Trz
@z

+
Trr � T��

r
;

(r �T)� =
@Tr�
@r

+
1

r

@T��
@�

+
@T�z
@z

+
2

r
Tr�; (4.144)

(r �T)z =
@Trz
@r

+
1

r

@T�z
@�

+
@Tzz
@z

+
1

r
Trz:
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It can be easily seen from (4.143) that quantities in (4.144) assume the following values

(r �T�1)r =
@(T�1)rr
@r

+
(T�1)rr � (T�1)��

r

= (�+ 2�)

�
u001 +

u01
r
� u1
r2

�
; (4.145)

(r �T�1)� = 0; (r �T�1)z = 0;

and, since

N�i = (�1; 0; 0)T ; N�e = (1; 0; 0)
T ; (4.146)

we have

T�1 �N�i = �
�
(�+ 2�)u01 +

�

r
u1

�
;

T�1 �N�e = (�+ 2�)u01 +
�

r
u1: (4.147)

Furthermore from (4.138) and (4.103)1 we have

t
(i)
�1 = �piN�i; t

(e)
�1 = �peN�e: (4.148)

Hence, from (4.145), (4.147) and (4.148), the boundary-value problem (4.139) becomes

8>>>><>>>>:
r2u001 + ru01 � u1 = 0;�
(�+ 2�)u01 +

�

r
u1

�
r=Ri

= �pi;�
(�+ 2�)u01 +

�

r
u1

�
r=Re

= �pe:

(4.149)

The general solution of (4.149) is

u1 (r) = Ar +
B

r
: (4.150)
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Substituting (4.150) into boundary conditions (4.149)2;3, we obtain following values of

constants A and B

A =
R2epe �R2i pi

2 (�+ �) (R2i �R2e)
; B =

R2eR
2
i (pe � pi)

2� (R2i �R2e)
: (4.151)

The second-order boundary-value problem is

8<:
r� � (T�2 +B�1) = 0 in C�;
(T�2 +B�1) �N�i = t

(i)
�2 on @C�i;

(T�2 +B�1) �N�e = t
(e)
�2 on @C�e;

(4.152)

Adopting the same arguments that brought us to the expression of the �rst-order stress

tensor (4.143), we obtain

T�2 =

0BBB@
(�+ 2�)u02 + �

u2
r

0 0

0 �u02 + (�+ 2�)
u2
r

0

0 0 �
�
u02 +

u2
r

�
1CCCA ; (4.153)

from which we get

(r �T�2)r =
@(T�2)rr
@r

+
(T�2)rr � (T�2)��

r

= (�+ 2�)

�
u002 +

u02
r
� u2
r2

�
; (4.154)

(r �T�2)� = 0; (r �T�2)z = 0:

From the �rst-order displacement (4.150) we obtain

IH1 = IE1 = 2A; IH1HT
1
= 2

�
A2 +

B2

r4

�
; IIE1 = A4 � B2

r4
: (4.155)
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Substituting relations (4.155) into (4.90) we obtain

(B�1)11 = A2 (3�� �) +
2AB (�+ �)

r2
+
B2 (�� �)

r4

+4A2�1 +

�
A2 � B2

r4

�
�2 +

�
2A2 � 2AB

r2

�
�3 +

�
A� B

r2

�2
�4;

(B�1)22 = A2 (3�� �)� 2AB (�+ �)

r2
+
B2 (�� �)

r4
(4.156)

+4A2�1 +

�
A2 � B2

r4

�
�2 +

�
2A2 +

2AB

r2

�
�3 +

�
A+

B

r2

�2
�4;

(B�1)33 = 5A2�+
B2�

r4
+ 4A2�1 +

�
A2 � B2

r4

�
�2;

(B�1)ij = 0; i 6= j:

It is now easy to compute from (4.144) components of the divergence of B�1

(r �B�1)r =
@(B�1)rr

@r
+
(B�1)rr � (B�1)��

r

=
4B2 (�� �+ �2 � �4)

r5
; (4.157)

(r �B�1)� = 0; (r �B�1)z = 0:

In order to write boundary conditions (4.152)2;3 we start by noting that (4.153), (4.156),

and (4.146) give

(T�2 +B�1) �N�i = �
�
(�+ 2�)u02 +

�

r
u2 + (B�1)11

�
ar; (4.158)

(T�2 +B�1) �N�e =

�
(�+ 2�)u02 +

�

r
u2 + (B�1)11

�
ar: (4.159)

Further, from (4.138) and (4.103)2 it follows that

t
(i)
�2 = pi

�
HT
1 � IH11

�
N�i;

t
(e)
�2 = pe

�
HT
1 � IH11

�
N�e;
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which, recalling (4.155) and (4.146), become

t
(i)
�2 = pi

�
A+

B

r2

�
ar; t

(e)
�2 = �pe

�
A+

B

r2

�
ar: (4.160)

Hence, from (4.154), (4.157), (4.158), (4.159), and (4.160) the second-order boundary-

value problem (4.152) becomes8>>>>>><>>>>>>:

r2u002 + ru02 � u2 = �
4B2 (�� �+ �2 � �4)

(�+ 2�) r3
;�

� (�+ 2�)u02 �
�

r
u2 � (B�1)11

�
r=Ri

= Dipi;�
(�+ 2�)u02 +

�

r
u2 + (B�1)11

�
r=Re

= �Depe;

(4.161)

where

Di = A+
B

R2i
; De = A+

B

R2e
: (4.162)

It will be useful in the sequel to write (B�1)11 as follows (see (4.156))

(B�1)11 = �0 +

4X
i=1

�i�i; (4.163)

where

�0 = A2 (3�� �) +
2AB (�+ �)

r2
+
B2 (�� �)

r4
;

�1 = 4A
2; �2 = A2 � B2

r4
; �3 = 2A

2 � 2AB
r2

;

�4 = A2 +
B2

r4
� 2AB

r2
= �3 � �2:

(4.164)

The problem (4.161) has the following solution

u2 (r) = rC1 +
C2
r
+
C3
r3
; (4.165)

where

C3 =
B2 (�� �� �2 + �4)

2 (�+ 2�)

and the integration constants C1 and C2 have to be determined from the boundary condi-

tions (4.161)2,3.
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In anticipation of the developments in the next section, it is useful to write constants

Ch, h = 1; 2; 3, in such a way as to highlight their dependence on the second-order material

moduli. In particular, it is possible to write them as

Ch = Ah0 +

4X
j=1

Ahj�j; h = 1; 2; 3; (4.166)

where for h = 1; 2;(
Ah0 = ĝh0 � (�� �)fh � hh; Ah1 = ĝh1; Ah2 = ĝh2 + fh;

Ah3 = ĝh3; Ah4 = ĝh4 � fh;
(4.167)

and

A30 =
B2 (�� �)

2 (�+ 2�)
; A31 = A33 = 0; A32 = �

B2

2 (�+ 2�)
; A34 = �A32; (4.168)

where we have introduced the notations

ĝ1j =
R2i�j(Ri)�R2e�j(Re)

2(�+ �)(R2e �R2i )
; ĝ2j =

R2iR
2
e(�j(Ri)� �j(Re))
2� (R2e �R2i )

; j = 0; � � � ; 4;

(4.169)

f1 =
B2(�+ 3�)

2(�+ �)(�+ 2�)R2eR
2
i

; h1 =
�A(R2i pi �R2epe) +B(pe � pi)

2(�+ �)(R2e �R2i )
;

f2 =
B2(�+ 3�)(R2i +R2e)

2�(�+ 2�)R2eR
2
i

; h2 =
AR2iR

2
e(pe � pi) +B (R2i pe �R2epi)

2�(R2e �R2i )
:

(4.170)

Since �1 = 4A2, (4.167) gives A21 = 0.

Finally, it can be seen that, owing to the symmetry of the problem and the loads acting

on S, the compatibility conditions (4.106) and (4.107) are evidently satis�ed.

For a solid cylinder with pressure applied on the outer surface, we must have

B = 0; C2 = 0; C3 = 0:
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Thus the second-order traction boundary-value problem has the solution

u(r) = (�A+ �2C1)ra1:

4.4 The Experimental Procedures

The analyses presented in the previous two sections suggest experiments to determine the

second-order constitutive constants �i. Consider a homogeneous and isotropic elastic ma-

terial S, whose Lamé coef�cients are � and �. Let Ss and Sc be two specimens of S of

spherical and cylindrical geometry, respectively, and assume that geometrical characteris-

tics and forces acting upon Ss and Sc be those described in the previous subsections (see

Figures 1 and 2). Then, the displacement �elds for Ss and Sc are given by (4.137), (4.150),

and (4.165), which can be written in the following dimensional form

us =

�
�A+ 2 �A2 +

� �A3

p0

�
r ar; (4.171)

uc =

�
(A+ C1) r +

(B + C2)

r
+
C3
r3

�
ar: (4.172)

We propose the following experiments:

1. For a sphere Ss subjected to a uniform pressure t = �p0N, we experimentally

measure the displacement us (R) of the external surface. Then, (4.171) provides one

equation in the unknowns �i:�
�A+

�
2 �A2 +

� �A3

p0

��
R = us (R) : (4.173)
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2. Consider a very long hollow cylinder Sc and assume that pi = 0 and pe = �1. Then, if

we denote by uc1 (Re) the experimentally measured displacement of the outer surface,

from (4.172) we get the following equation in the unknowns �i:

�
A(1) + C

(1)
1

�
Re +

�
B(1) + C

(1)
2

�
Re

+
C
(1)
3

R3e
= uc1 (Re) ; (4.174)

where A(1) = Aj(pi=0;pe=�1) ; B
(1) = Bj(pi=0;pe=�1) ; and C

(1)
i = Cij(pi=0;pe=�1), for

i = 1; 2; 3.

3. Let the hollow cylinder Sc be subjected to the pressures pi = �2 and pe = 0. Then,

instead of (4.174), we obtain

�
A(2) + C

(2)
1

�
Re +

�
B(2) + C

(2)
2

�
Re

+
C
(2)
3

R3e
= uc2 (Re) ; (4.175)

where A(2) = Aj(pi=�2;pe=0) ; B
(2) = Bj(pi=�2;pe=0), and C

(2)
i = Cij(pi=�2;pe=0), for

i = 1; 2; 3.

4. Finally, let uc3 (Re) be the displacement corresponding to the pressures pi = pe = �3.

Then

�
A(3) + C

(3)
1

�
Re +

�
B(3) + C

(3)
2

�
Re

+
C
(3)
3

R3e
= uc3 (Re) ; (4.176)

where A(3) = Aj(pi=�3;pe=�3) ; B
(3) = Bj(pi=�3;pe=�3) ; and C

(3)
i = Cij(pi=�3;pe=�3), for

i = 1; 2; 3.

It is now easy to verify that (4.173)-(4.176) provide an algebraic system of four equa-

tions in the unknowns �1; � � � ; �4 which has a unique solution. In fact, the determinant of
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the coef�cient matrix A given by

detA = RR4iR
5
ep
2
0�
2
1�
2
2�
2
3

64�4 (�+ �)5 (3�+ 2�)3 (R2e �R2i )
3 ;

is non-zero.

In particular, the solution of the system (4.173)-(4.176) is

�1 = 2
�2 (�+ �) (R4e �R4i )

R2iR
3
e�
2
1

uc1 (Re)� 4
�2 (�+ �) (R2i �R2e)

R2iRe�
2
2

uc2 (Re)�

2

"
(�+ �)3

Re�23
+ 2

�2 (�+ �)

Re�23
+
�2 (�+ �)Re

R2i�
2
3

#
uc3 (Re)+

3

2
�+

(�+ �)R2i
2R2e

+ 2
� (�+ 2�)

�2
� (�+ �)2

�3
+ 2�2

�
1

�1
� 1

�3

�
�

�2R2e
R2i�3

+
��

�1
+
� (�+ �)R2i

R2e�1
+
�2R2e
R2i�1

;

(4.177)

�2 = �2
�
�2 (�+ �) (R4e �R4i )

R2iR
3
e�
2
1

+ 2
�2 (�+ �) (R2e �R2i )

R2iRe�
2
1

�
uc1 (Re)+

8
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2
2
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2

"
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(�+ �)3
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3

#
uc3 (Re)�

(3�+ 2�)3

Rp20
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;

(4.178)
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�3 = 2

�
�3�

2 (�+ �) (R4e �R4i )

R2iR
3
e�
2
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+ 4
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(4.179)

�4 = 6

�
�2 (�+ �) (R4e �R4i )

R2iR
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� 2�
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(�+ �)2
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2R2e
R2i�1

:

(4.180)

It must be noted that expressions (4.177)-(4.180) of the second-order constitutive

constants just appear to be complicated. Indeed, once Lamé coef�cients of the material

S together with its geometry and the forces acting on it are known, (4.177)-(4.180) only

depend on the displacements uc1 (Re) ; uc2 (Re) ; uc3 (Re), and us (R) which are measured

in the experiments. Thus the four second-order elastic constants can be evaluated. Note

that loads applied must be such that � << 1, otherwise the response of S to applied loads

may not be governed by the second-order elasticity theory used to derive equations (4.177)-

(4.180).
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4.5 The Program Sphere

Aim of the Program

The program Sphere �nds the displacement of a homogeneous, isotropic, com-

pressible, second-order elastic sphere subjected to a live uniform pressure �eld on its sur-

face (see Section 4.3.1 for a detailed statement of the problem).

Description of the Algorithm

The program is based on the theoretical apparatus built in Section 4.2. First-order

displacement gradient, strain tensor, and Piola-Kirchhoff tensor are computed in a symbolic

way in order to formulate and solve the �rst-order equilibrium boundary value problem.

Then, starting from the knowledge of �rst-order displacement and stresses the second-order

equilibrium boundary value problem is obtained and solved.

Command Line of the Program Sphere

Sphere[N, fext]

Input Data

N = unit vector �eld normal to the spherical surface;

fext = hydrostatic pressure applied to the spherical surface.

Output Data

Metric tensor is the metric tensor (gij) in spherical coordinates;

Inverse Metric Tensor is the inverse metric tensor (gij)�1;
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Non-zero Christoffel Symbols are the Christoffel symbols �kij different

from zero;

First-order Displacement Gradient H1;

First-order Strain Tensor E1;

First-order First Piola-Kirchhoff Stress Tensor T�1;

First-order Equilibrium Boundary Value Problem;

First-order Displacement u1(r);

First Invariant of Displacement Gradient IH1;

First Invariant of Strain Tensor IE1;

First Invariant of H1H
T
1 ;

Second Invariant of Strain Tensor E1;

Second-order Displacement Gradient H2;

Second-order Strain Tensor E2;

Second-order Stress Tensor T�2;

Non-zero Components of Tensor B�1;

Second-order Components of the applied loads t�2;

Second-order Equilibrium Boundary Value Problem;

Second-order Displacement u2(r).
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4.6 The Program HollowCylinder

Aim of the Program

The program HollowCylinder �nds the displacement of a homogeneous, isotropic,

compressible, second-order elastic, in�nite hollow cylinder corresponding to a live uniform

pressure �eld applied to the inner and outer surface (see Section 4.3.2 for a complete de-

scription of the problem in exam).

Description of the Algorithm

The program has been written starting from the theoretical considerations made in

Section 4.2. It computes in a symbolic way all the relevant quantities to formulate and

solve the �rst-order equilibrium boundary value problem. Then, �rst-order deformation

and stresses are used to write the second-order equilibrium boundary value problem and to

obtain the corresponding solution.

Command Line of the Program HollowCylinder

HollowCylinder[Nint, Next, fint, fext]

Input Data

Nint = unit vector �eld normal to the inner surface of the hollow cylinder;

Next = unit vector �eld normal to the outer surface of the hollow cylinder;

fint = hydrostatic pressure applied to the inner surface of the hollow cylinder;

fext = hydrostatic pressure applied to the outer surface of the hollow cylinder.
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Output Data

Metric tensor is the metric tensor (gij) in cylindrical coordinates;

Inverse Metric Tensor is the inverse metric tensor (gij)�1;

Non-zero Christoffel Symbols are the Christoffel symbols �kij different

from zero;

First-order Displacement Gradient H1;

First-order Strain Tensor E1;

First-order First Piola-Kirchhoff Stress Tensor T�1;

First-order Equilibrium Boundary Value Problem;

First-order Displacement u1(r);

First Invariant of Displacement Gradient IH1;

First Invariant of Strain Tensor IE1;

First Invariant of H1H
T
1 ;

Second Invariant of Strain Tensor E1;

Second-order Displacement Gradient H2;

Second-order Strain Tensor E2;

Second-order Stress Tensor T�2;

Non-zero Components of Tensor B�1;

Second-order Components of the applied loads t�2;

Second-order Equilibrium Boundary Value Problem;

Second-order Displacement u2(r);
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Expressions of Constants C0is are the integration constants appearing in

the second-order displacement.



Chapter 5
Functionally Graded Materials

5.1 Functionally Graded Materials. An Overview.

Composite materials are made by combining different materials in order to achieve speci�c

properties otherwise not available. However this simple approach may present many limi-

tations. These are essentially due to the presence of a discontinuity of the material structure

and/or composition at the interface between the different constituents, which may originate

undesirable effects such as residual stresses and lack of adhesion.

In order to overcome these limitations, the concept of Functionally Graded Materials

has been recently introduced. In a Functionally Graded Material (FGM) the composition

and the structure gradually change over the volume, resulting in corresponding smooth

variations in the properties of the material. The basic structural unit of an FGM is referred

to as an element [34] or a material ingredient [35, 36].

In the simplest case an FGM is made by two different material ingredients which

change gradually from one to the other. A nitrided steel, for instance, could be also regarded

as an FGM. The most familiar FGM is compositionally graded from a refractory ceramic

to a metal. It can achieve incompatible properties such as the heat, wear, and oxidation

resistance of ceramics with the high toughness, high strength, machinability, and bonding

capability of metals, avoiding severe internal thermal stress. Modern FGMs are constructed

for complex requirements, such as the heat shield of a space vehicle entering the earth

76
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atmosphere or implants for humans. The gradual transition between the heat or corrosion

resistant outer layer (often made of a ceramic material) and the tough metallic base material

increases in most cases the life time of the component.

Even if the gradation of the material ingredients does not extend to the whole volume

but is located at a speci�c part of the material such as the surface, an interface or a joint,

the material can be still considered an FGM.

The �rst general idea of structures whose properties vary continuously was intro-

duced for composites and polymeric materials in 1972 ([37, 38]). Various models were

suggested for gradients in compositions and concentration along with possible applications

for the resulting graded structures. However there was no investigation about how to de-

sign, fabricate and study the response of such a structure. In 1985, a new technique was

introduced to build a composite material with continuously varying structure (see [39]).

The designers recognized that this continuos control of a property could be applied to im-

part desired properties to any material. At this point the idea of FGMs was introduced to

design such materials [34].

5.2 Applications

FGMs can be usefully applied to many �elds. Table 5.1 shows a variety of real and potential

applications of FGMs in transport system, cutting tools, machine parts, semiconductors,

optics and biosystem. Potential applications cover all those cases in which a combination

of incompatible functions is required.
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Aerospace space vehicle components, space plane body
Engineering Cutting tool, shaft, roller, turbine blade
Nuclear Energy Nuclear reactor components, �rst wall of fusion reactor
Biomaterials Implant, Arti�cial skin, drug delivery system
Optics Optical �bers, lens
Chemical Plants Heat exchanger, heat pipe, reaction vessel
Electronics graded band semiconductor, sensor
Energy Conversion Thermoelectric generator, fuel cell, solar cell
Commodities Sport goods, car body, window glass

Table 5.1. Potentially applications for FGMs

In the present section we describe real applications of FGMs. In particular we deal

with space vehicle components, cutting tools, machine parts and applications to biomate-

rials for arti�cial joints. For an exhaustive treatment of this subject we refer the interested

reader to the Chapter 7 of [40].

5.2.1 The Problem of Reentry: Vehicle Protection

Space vehicles �ying at hypersonic speed are subjected to extremely high temperatures due

to friction between the vehicle surface and the atmosphere. At the present time there exist

two type of space vehicles: vehicles which are launched vertically into space by a rocket

propulsion system 10; and fully reusable spacecraft which are based on a horizontal takeoff

either from a ground-based runway or from horizontally �ying carrier11.

In the �rst case, during takeoff, after a suf�cient acceleration, the space vehicle sep-

arates from the rocket system. During reentry at a velocity greater than 11 km= s the space

vehicle is exposed to a rapid heating at altitudes between 120 and 50 km. The leading

10 This category include the U.S. space shuttle and the capsules used for the Apollo missions.
11 These spacecrafts have been planned during the late 1980s by the U.S. National Aerospace Plane, the
Japanese Single Stage to Orbit, and the German Sanger program.
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edge, where the protection shield is located, experiences a maximum temperature which is

above 2500 �C. Since the protection shield is exposed to the high reentry temperature only

for a few minutes and it is used only one time, it is made by a composite ablative material,

and there is no matter if its deterioration makes it unusable for an eventual future mission.12

Horizontally launched space vehicles �y in the atmosphere at hypersonic velocities

for a longer time than vertically launched vehicles. This means that these latter vehicles

are exposed to extreme heating during the takeoff. This is a crucial issue. As a matter

of fact, protection system must guarantee that all structural components remain unaltered

and work properly during the mission. Initially, the properties of FGMs processed by a

particular technique called chemical vapor deposition (see [41-45]13) were investigated in

order to design and develop thermic shields for horizontally launched space vehicles.

In [47] a comparison test between classical C/C composites and FGMs was made

in order to establish the different responses to extreme heating exposure. Models of the

components of a nose cone made of an hemispherical C/C composites whose diameter

was 50mm were coated with an ungraded 100�m thick protective layer of SiC (Silicon

carbide). Similar C/C composite models were coated by 100�m thick Si/C FGM. All the

coated nose models were exposed for 1 minute at 1900 �C to a supersonic gas �ow (at

Mach 3) containing an amount of oxygen approximately equal to a standard atmosphere.

The nose cones with the Si/C FGM layer showed no discernible change in structure even

12 The reentry velocity of the U.S. shuttle at an altitude of 120 km is about 8 km= s and the maximum tem-
perature is about 1500 �C for few minutes. The structural components exposed to the maximum temperature
such as the nose cone or the leading edges are made by non metallic carbon/carbon composites (C/C). Nickel
and Titanium alloys are usually used for other parts which are subjected to lower temperatures. The only
problem here is represented by weight penalties.
13 Comprensive reviews on the processing of FGMs can be found in [34, 35, 40, 46]
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after 10 cycles. On the contrary, the classical C/C composites deteriorated after the �rst

cycle.

5.2.2 Cutting Tools

FGMs are also used in cutting tools for high speed cutting. One is a graded tungsten car-

bide/cobalt (WC/Co) throwaway chip [48]. It is designed with a decreasing Co concentra-

tion from the surface to the interior, which causes the hardness at the cutting tool's surface

to be higher than its interior. A comparison between graded and ungraded cutting tools has

been made in [48]. This gradient in hardness result in both considerably higher damage

resistance and higher wear resistance than a cutting tool with homogeneous composition.

Tough FGM cutting tools based on this model were commercialized in 1996.

5.2.3 Machine parts

The major application of FGMs for machine parts is for joints, largely metal-ceramic joints

for gas and steam turbines [49, 50, 51]. The advantage of using an FGM joint is chie�y for

thermal stress relaxation and improving the strength and toughness of the joints. Because

the rupture strength of graded joints is 3� 8 times higher than for directly bounded joints,

they are expected to provide longer service life at elevated temperature.
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5.2.4 Biomedical Applications

FGMs have been recently used to obtain biomaterials for arti�cial joints. Several of the

organs of animal such as skin, blood vessels, and bones are composed of multilayers that

have different properties. These layers constitute a functionally graded material. Therefore,

incompatibility and separation at the interface never occur under normal physiological con-

ditions. This implies that the ideal technique in biomedical applications would be to mimic

such natural bonding in order to obtain a �xation to bone that will be stable for many years.

Prostheses coated with a porous graded material have been used for �xation. In this

case, the prosthesis is expected to become mechanically �xed to the bone due to ingrowth

into the pores of the porous metal coating. Further several calcium phosphate ceramics

that can bond to a bone physicochemically, such as bioactive ceramic, have been studied

and their clinical applications has been rapidly adopted. The interested reader can refer to

[52-61].



Chapter 6
Second-Order effects for FG Elastic Materials

6.1 Introduction

The investigation of the mechanical and thermomechanical behavior of FGMs has created

a new �eld of study in Materials Engineering and Applied Mathematics. For example, an-

alyzing the equilibrium problem or the crack propagation in a non homogeneous material

that has a gradually changing composition and structure represents a challenging prob-

lem. Local structures and properties and the external thermal and mechanical loads are

correlated with FGM's geometry. The pro�le of stress or strain is determined by this type

of correlation, which strongly affects an FGM's thermomechanical stability. The role of

stress is essential for both the structural and the functional applications to FGMs.

The mechanical and mathematical modelling of FGMs is currently an active research

area. When a continuummechanics approach is appropriate, the material has to be modeled

as a nonhomogeneous body with continuously varying properties. Fracture Mechanics of

FGMs using this viewpoint has been discussed in [62], [63], and [64]. Nonhomogeneous

theory of elasticity has been used to address some other problems like thick plate theory

[65], torsion [66, 67], elastic vibrations [68, 69], and the analysis of Saint-Venant end

effects [70 - 73].

In [74] Horgan and Chan have investigated the effects of material inhomogeneity in

another fundamental boundary-value problem of linear inhomogeneous isotropic elastosta-
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tics, that is the pressurized hollow cylinder (or disk problem). They have analyzed the case

of compressible elastic bodies. The solution to the analogous problem for homogeneous

isotropic materials (i.e. the classic Lamé problem) have been discussed in many books on

linear elasticity (see e.g. Sokolnikoff [75] and Love [76]). However little is known about

the corresponding problem for inhomogeneous materials. In the classical textbooks on lin-

ear elasticity of Southwell [77] and Timoshenko and Goodier [78], special inhomogeneous

con�gurations have been studied, for example, compound tubes composed of two different

homogeneous isotropic materials. Some aspects of the Lamé problem for inhomogeneous

materials with continuously varying properties have also been considered in [80 - 83].

A commonly used model is to assume that Poisson's ratio is constant while Young's

modulus has a power-law dependence on the radial coordinate14.

Froli [82] has considered the more complicated case in which both the young mod-

ulus and Poisson ratio depend on the spatial variable. When a power-law dependence is

taken for both these quantities, a perturbation technique is used to obtain solutions.

The idea of �nding optimal values for the coef�cients in order to minimize the hoop

stress at the inner surface is also considered in [82].

Further, there is a mathematical analogy between the problem of internally pressur-

ized hollow plates of variable thickness (see Vocke [83]) and the problem of pressurized

hollow cylinder. In fact, a power-law variation in the plate thickness leads to consideration

of an Euler ordinary differential equation of the type we shall consider in a next section.

14 Poisson's ratio and Young's modulus have been de�ned in Section 1.7.
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In this Chapter we apply the generalized Signorini's perturbation method, presented

in Section 4.2, to analyze radial expansion/contraction of hollow cylinders made of elas-

tic and isotropic FGMs, whose material moduli depend upon the radial coordinate only.

In particular we consider a very long hollow cylinder whose inner and outer surfaces are

loaded by a uniform live pressure. As we have done for the case of homogeneous elastic

materials, we formulate the equilibrium boundary value problem in order to determine the

displacement of the system and its state of stress up to second-order of approximation. This

case has never been investigated before. We analyze both compressible and incompressible

hollow cylinders. In the case of compressible material the �rst-order approximation solu-

tion is the same as the solution of the nonhomogeneous linear problem solved in [74], [80

-83]. The second-order solution is completely new.

In most of earlier work the composite materials have assumed to be compressible.

However, with the increasing use of rubberlike materials in structural components, there

is increasing interest in analyzing deformations of FG incompressible materials. We also

note that biological materials are often modeled as incompressible. For this reason, we

have discussed the case of incompressible FG hollow cylinders too.

The purpose of this research is to investigate the effects of material inhomogeneity

on the nonlinear response of isotropic hollow cylinders or disks under uniform internal

and external pressure. This work is motivated by the recent research activity in FGMs as

well. It must be noted that mathematical problems arising from nonhomogeneous theory

of elasticity are more complicated than those concerning homogeneous theory, even in the

linear case. Thus it is easy to realize that when we pass to second-order elasticity we
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have to face very tough mathematical problems and the expressions of the solutions we

�nd are much more complicated than the classical ones. Further, these solutions, as their

analogous in the second-order homogeneous case, are expressed in terms of the material

moduli. This implies that we shall be able to appreciate the nonlinear effects only when a

proper experimental work will be carried out on FGMs. However the analytical solutions

presented here provide checks on the accuracy of eventual numerical schemes and allow for

widely applicable parametric studies. For instance, they might be of interest for the design

of a set of experiments to determine the second-order material moduli of compressible and

incompressible FGMs.

Besides this introduction, the present chapter is divided into eleven sections. In the

second section we obtain the constitutive equations for an isotropic FG incompressible

elastic material. The �rst Piola-Kirchhoff stress tensor is written up to the second order

of approximation. Next, in Section 6.3 and 6.4, we formulate the �rst and second-order

equilibrium equations, boundary conditions, and incompressibility conditions and we �nd

the corresponding solutions. These latter are then specialized to the case of homogeneous

elastic materials. It comes out that displacement, pressure, and stress �elds present a sin-

gularity in two special cases. Section 6.5 and Section 6.6 are devoted to the computation

of displacements and pressure �elds in these two cases. A particular dependence of elastic

moduli upon the radial coordinate is studied in Section 6.7. In many practical applica-

tions it is important to study the state of stress of a pressurized cylindrical cavity. This

problem has been addressed in Section 6.8. In the ninth section we consider a compress-

ible elastic FGM. The �rst Piola-Kirchhoff stress tensor (4.85) is properly written for a
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nonhomogeneous material and the displacement �eld is obtained up to the second-order

of approximation. In Section 6.10, we show that in the homogeneous limit the found dis-

placement �eld reduce to the solution (4.165) - (4.170). Finally, in the last section, we

present the features of the program FGHollowCylinder whose use has been crucial for

the resolution of the equilibrium problem of a functionally graded, incompressible hollow

cylinder.

6.2 Second-Order Effects for Incompressible FG Elastic
Bodies

The constitutive equation of an incompressible, homogeneous, isotropic, elastic material

may be written as

T = �~p1+ f1B+ f2B
�1; (6.181)

where B = FFT is the left Cauchy-Green tensor, F is the deformation gradient, f1 and f2

are functions of the two invariants of B, I and II , and ~p = P (x) = p(X) is an undeter-

mined function.

To the second order in the displacement gradient H = F � 1 we have the following

expansions

B = 1+ 2E+HHT ;

B�1 = 1� 2E�HHT + 4E2 + :::;

f1 = a11 + a12(I � 3) + a13(II � 3) + a14(I � 3)2:::;
f2 = a21 + a22(I � 3) + a23(II � 3) + a24(I � 3)2:::;

(6.182)

where

E =
1

2

�
H+HT

�
:
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From (6.182)1 it results

I � Tr(B) = 3 + 2IE + IHHT : (6.183)

Hence, up to second order terms inH, we have

II � 1

2
(I2B � IB2) = 3 + 4IE + 2IHHT + 4IIE: (6.184)

Substituting (6.182) into (6.181) and taking into account relations (6.183) and (6.184), we

obtain the following expression for the second - order Cauchy stress tensor

T = �p1+ 2�1E+ �5IEE+ �1HH
T + �6E

2; (6.185)

where the three material constants �1; �5; and �6 can be expressed in terms of some of the

eight constants aij , i = 1; 2, j = 1; 2; 3; 4, by means of the following relations

�1 = a11 � a21;

�5 = 4a12 + 8a13 � 4a22 � 8a23; �6 = 4a21;

and the pressure p is given by

p = ~p� a11 � a21�
h
�2IE +

�2
2
IHHT + �3IIE + �4I

2
E

i
;

where

�2 = 2a12 + 4a13 + 2a22 + 4a23;

�3 = 4(a13 + a23); �4 = 4(a14 + a24):

We recall that the �rst Piola-Kirchhoff stress tensor is de�ned as follows

T� = JT(F�1)T ; (6.186)

where J = detF.
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For an incompressible material it results

J = 1: (6.187)

Hence, having in mind that up to second-order terms inH we have

(F�1)T = 1�HT + (H2)T ;

from (6.186) and the incompressibility restriction (6.187) we obtain

T� = �p[1�HT + (H2)T ] + 2�1

�
E� EHT +

HHT

2

�
+ �5IEE+ �6E

2: (6.188)

We assume that the pressure p, as well as the displacement �eld u, has a second order

expansion in the perturbation parameter �

p = �p1 + �2p2; (6.189)

u = �u1 + �2u2:

From (6.189) we easily come to the following relations

H = �H1 + �2H2; E = �E1 + �2E2; IE = �IE1 + �2IE2 ; (6.190)

IEE = �2IE1E1; E2 = �2E21; (HT )2 = �2(HT
1 )
2:

Substituting the second-order expansions (6.190) into (6.188) we obtain

T� = �T�1 + �2(T�2 +B�1); (6.191)

where

T�i = �pi1+ 2�1Ei; i = 1; 2; (6.192)

B�1 = ��1 (2E1 �H1)H
T
1 + p1H

T
1 + �5IE1E1 + �6E

2
1: (6.193)
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If we interpret �1 as the classic shear modulus �, as we shall do, then

T�i = �pi1+ 2�Ei; i = 1; 2; (6.194)

B�1 = �� (2E1 �H1)H
T
1 + p1H

T
1 + �5IE1E1 + �6E

2
1: (6.195)

For a matrixA written as

A = 1+ S;

detA = 1 + IS + IIS + IIIS: (6.196)

Therefore, for

F = 1+H;

from (6.196), to within an error of third-order in the components ofH, we get

J = detF ' 1 + IH + IIH = 1 + IH +
1

2

�
I2H � IH2

�
: (6.197)

From (6.190) it follows that

IH = �IH1 + �2IH2 ; IH2 = �2IH2
1
: (6.198)

Substituting (6.198) into (6.197) we obtain

J = 1 + �IH1 + �2 [IH2 + IIH1 ] ; (6.199)

which yields the following incompressibility restrictions at the �rst and second-order of

approximation respectively

IH1 = 0; (6.200)

IH2 + IIH1 = 0:
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Having in mind that IH1 = IE1 , (6.200)1 implies that

IE1 = 0: (6.201)

In view of (6.201) equations (6.194) and (6.195) become

T�i = �pi1+ 2�Ei; i = 1; 2; (6.202)

B�1 = �� (2E1 �H1)H
T
1 + p1H

T
1 + �6E

2
1: (6.203)

For a functionally graded material we assume that the material moduli � and �6 depend on

the radial coordinate in the following way

� = b1r
n; �6 = b2r

n; (6.204)

where b1 and b2 are constants and n is an arbitrary dimensionless constant.

6.3 Hollow Cylinder

We consider a very long hollow cylinder S made of an incompressible, elastic, homoge-

neous and isotropic material. Let Ri and Re be the internal and the external radii, re-

spectively. Let S be at equilibrium in the current con�guration C under the action of the

uniform pressure �eld

t =

�
�piNi on @Ci;
�peNe on @Ce;

(6.205)

where pi and pe are positive constants, Ni and Ne are the unit outward normal vectors to

@Ci and @Ce, respectively.
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Owing to cylindrical symmetry, we search for the solution of pure traction-value

problem in the following form

u (r) =
�
�u1 (r) + �2u2 (r)

�
ar; (6.206)

p(r) = �p1 (r) + �2p2 (r) ;

where ar is the radial unit vector of the physical basis associated with the cylindrical coor-

dinates fr; '; zg.

The �rst-order boundary-value problem and the �rst-order incompressibility condi-

tion are 8<:
r� �T�1 = 0 in C�;
T�1 �N�i = t

(i)
�1 on @C�i;

T�1 �N�e = t
(e)
�1 on @C�e;

(6.207)

IH1 = 0; (6.208)

for the unknown �rst-order displacement �eld u1 (r) = u1 (r) ar, and �rst-order pressure

p1(r).

The �rst-order displacement gradient assumes the following form

H1 = E1 =

0B@ u01 0 0

0
u1
r

0

0 0 0

1CA ; (6.209)

which implies that

IH1 = u01 +
u1
r
; E1 = H1: (6.210)

The �rst-order incompressibility condition reduces to the following �rst-order differential

equation

u01 +
u1
r
= 0; (6.211)
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whose solution is

u1(r) =
B1
r
; (6.212)

in which B1 is a constant.

Once we know the form of the �rst-order displacement �eld, we derive the pressure

p1 from the equilibrium equation (6.207)1: From (6.202)1, (6.209), (6.210)2, and (6.212),

it follows that

(T�1)11 = �2B1b1r�2+n � p1;

(T�1)22 = 2B1b1r
�2+n � p1; (6.213)

(T�1)33 = �p1; (T�1)ij = 0; i 6= j:

Substitution for T from (6.213) into (6.207)1 gives

2nr�3+nB1b1 + p01(r) = 0:

Thus

p1(r) = B2 �
2nB1b1
n� 2 r

�2+n; (6.214)

where B2 is a constant of integration which must be determined from the boundary condi-

tions. Since

N�i = (�1; 0; 0)T ; N�e = (1; 0; 0)
T ; (6.215)

and

t
(i)
�1 = �piN�i; t

(e)
�1 = �peN�e; (6.216)

boundary conditions (6.207)2 and (6.207)3 can be written as

�4b1R
�2+n
i

n� 2 B1 +B2 = pi;
4b1R

�2+n
i

n� 2 B1 �B2 = �pe;
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from which, if we assume n 6= 2, it results

B1 =
R2iR

2
e(pi � pe)(n� 2)

4b1(RneR
2
i �R2eR

n
i )

; B2 =
piR

2
iR

n
e � peR

2
eR

n
i

(RneR
2
i �R2eR

n
i )

: (6.217)

It is easy to realize from the expressions of the �rst-order applied loads (6.216) and the

symmetry of the displacement (6.206) that the �rst-order compatibility conditions (4.106)

are veri�ed.

The second-order boundary-value problem and the second-order incompressibility

condition become 8<:
r� � (T�2 +B�1) = 0 in C�;
(T�2 +B�1) �N�i = t

(i)
�2 on @C�i;

(T�2 +B�1) �N�e = t
(e)
�2 on @C�e;

(6.218)

IH2 + IIH1 = IH2 �
1

2
IH2

1
= 0: (6.219)

The second-order displacement gradient assumes the following form

H2 =

0B@ u02 0 0

0
u2
r

0

0 0 0

1CA ; (6.220)

while, from (6.212)

IIH1 = �
B2
1

r4
: (6.221)

Owing to (6.220) and (6.221) equation (6.219) becomes

u02 +
u2
r
� B2

1

r4
= 0;

and has the following solution

u2(r) =
B3
r
� B2

1

2r3
; (6.222)

where B3 is a constant of integration.
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The second-order pressure p2(r) can be derived from the second-order equilibrium

equation (6.218)1. From (6.222) it follows

(H2)11 = �B3
r2
+
3B2

1

2r4
;

(H2)22 =
B3
r2
� B2

1

2r4
; (H2)33 = 0; (6.223)

(H2)ij = 0; i 6= j; E2 = H2;

and

(T�2)11 = �2b1B3r�2+n + 3b1B2
1r
�4+n � p2;

(T�2)22 = 2b1B3r
�2+n � b1B

2
1r
�4+n � p2; (T�2)33 = �p2; (6.224)

(T�2)ij = 0; i 6= j:

From (6.209), (6.210), (6.212),and (6.214) we obtain the following components of B�1

(B�1)11 =
B2
1 [b1 (n+ 2)� b2 (2� n)]

(n� 2) r�4+n � B1B2
r2

;

(B�1)22 =
B2
1 [b1 (2� 3n) + b2 (n� 2)]

(n� 2) r�4+n +
B1B2
r2

; (6.225)

(B�1)33 = 0; (B�1)ij = 0; i 6= j;

in which n must different from 2.

Owing to (6.224) and (6.225), the second-order equilibrium equation (6.218)1 be-

comes

�p02 +B2
1 [4b1 (n� 1) + b2 (n� 4)] rn�5 � 2nB3b1rn�3 = 0;

from which we obtain

p2(r) = B4 +
B2
1 [4b1 (n� 1) + b2 (n� 4)]

(n� 4) rn�4 � 2nB3b1
(n� 2)r

n�2; (6.226)

where B4 is a constant of integration and n 6= 2; 4.
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Constants B3 and B4 can be determined from boundary conditions (6.218)2 and

(6.218)3. First, we note that from (4.103)2, (6.209), (6.210), and (6.216) we have

t
(i)
�2 =

B1pi
R2i

ar; t
(e)
�2 = �

B1pe
R2e

ar: (6.227)

Then, from (6.224), (6.225) and (6.227) boundary conditions (6.218)2 and (6.218)3 can be

written as

eqp = 0; p = fi; eg ;

where, assuming, as we have done above, that n 6= 2; 4,

eqp = �4(n� 4)b1R2+np B3 + (8� 6n+ n2)R4pB4 +

B1
��
8� 6n+ n2

�
R2p(B2 � pi) + 8(n� 1)b1B1Rnp

�
;

from which, having in mind expressions (6.217) of constants B1 and B2;we get

B3 =
3(n� 2)3(pe � pi)

2R2eR
2
i (R

4
eR

n
i �RneR

4
i )

16(n� 4)b21(R2eRni �R2iR
n
e )
3

; (6.228)

B4 =
3(�2 + n)2(pe � pi)

2R2+ne R2+ni (R2e �R2i )

4(n� 4)b1(R2eRni �R2iR
n
e )
3

:

We note that from (6.227) and (6.206) the second-order compatibility conditions (4.107)

are satis�ed.

We conclude this section by writing the explicit form of the �rst and second-order

solutions to the equilibrium problem.

u1(r) =
(n� 2)R2iR2e(pi � pe)

4b1(RneR
2
i �Rni R

2
e)

1

r
; (6.229)

p1(r) =
piR

n
eR

2
i � peR

n
i R

2
e

(RneR
2
i �Rni R

2
e)

� n(pi � pe)R
2
iR

2
e

2(RneR
2
i �Rni R

2
e)
rn�2; (6.230)
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u2(r) =
3(n� 2)3(pe � pi)

2R2eR
2
i (R

4
eR

n
i �RneR

4
i )

16(n� 4)b21(R2eRni �R2iR
n
e )
3

1

r
� (6.231)

(n� 2)2(pe � pi)
2R4iR

4
e

32b21(R
2
eR

n
i �R2iR

n
e )
2

1

r3
;

p2(r) =
3(�2 + n)2(pe � pi)

2R2+ne R2+ni (R2e �R2i )

4(n� 4)b1(R2eRni �R2iR
n
e )
3

� (6.232)

3(n� 2)2n(pe � pi)
2R2eR

2
i (R

4
eR

n
i �R4iR

n
e )

8(4� n)b1 (R2eR
n
i �R2iR

n
e )
3

rn�2 +

(n� 2)2 [4b1 (n� 1) + b2 (n� 4)] (pe � pi)
2R4iR

4
e

16(n� 4)b21(R2eRni �R2iR
n
e )
2

rn�4:

We point out again that the above expressions for the �rst and second order displacement

and pressure �elds hold when n 6= 2; 4. This implies that we need to work out these

solutions again for the cases n = 2 and n = 4; as we shall do in the next two sections.

If the material is homogeneous, then we have n = 0, and solutions (6.229)-(6.232)

reduce to the following ones

u1(r) =
R2iR

2
e(pe � pi)

2b1(R2i �R2e)

1

r
; (6.233)

p1(r) =
piR

2
i � peR

2
e

(R2i �R2e)
;

u2(r) =
3(pe � pi)

2R2eR
2
i (R

2
e +R2i )

8b21(R
2
e �R2i )

2

1

r
� (pe � pi)

2R4iR
4
e

8b21(R
2
e �R2i )

2

1

r3
; (6.234)

p2(r) = �3(pe � pi)
2R2eR

2
i

4b1(R2e �R2i )
2
+
(pe � pi)

2R4iR
4
e (b1 + b2)

4b21(R
2
eR

n
i �R2iR

n
e )
2

1

r4

We note that in the homogeneous case the second-order displacement �eld u2 does not de-

pend on the second-order material modulus �6, while the second-order pressure p2 depends

on it. This implies that for the case of an hollow cylinder subjected to a uniform pressure,

the second-order effects on the displacement can be evaluated starting from its geometry,

loads acting upon it and the shear modulus �.
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6.4 Radial and Hoop Stress

In this section we analyze the state of stress induced in S by the applied tensions. In par-

ticular, we give the explicit forms and their variations through the thickness of the hollow

cylinder of the radial, tangential and axial components of the �rst Piola-Kirchhoff stress

tensor. It is clear that it is desirable to have a state of stress independent of the radial co-

ordinate and whose values are not too high. We remember that in literature the tangential

component of the stress tensor is often referred to as hoop stress15. Substitution from equa-

tions (6.214) and (6.217) into (6.213) gives the following expressions for the �rst-order

stresses

T (1)rr =
pe(R

n�2
i � rn�2) + pi(r

n�2 �Rn�2e )

(Rn�2e �Rn�2i )
;

T
(1)
�� =

pe
�
(1� n) rn�2 +Rn�2i

�
+ pi [(n� 1) rn�2 �Rn�2e ]

(Rn�2e �Rn�2i )
; (6.235)

T (1)zz =
�pe

�n
2
rn�2 �Rn�2i

�
+ pi

�n
2
rn�2 �Rn�2e

�
(Rn�2e �Rn�2i )

:

It is clear from equation (6.235)2 that for n = 1, the hoop stress is uniform throughout the

cylinder thickness, and

T
(1)
�� = �

peRe � pi Ri
(Re �Ri)

:

Thus T (1)�� = 0 throughout the cylinder thickness for peRe = pi Ri.

15 In order to lighten the notation, we shall make use of the following symbology

(T�1)11 = T (1)rr ; ; (T�1)22 = T
(1)
�� ; (T�1)22 = T

(1)
zz ;

(T�2 +B�1)11 = T (2)rr ; (T�2 +B�1)22 = T
(2)
�� ; (T�2 +B�1)33 = T

(2)
zz :
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For a solid circular cylinder subjected to pressure pe on the outer surface, the constant

B1 into equation (6.212) must vanish in order for the displacement to be �nite at the center.

Equation (6.212) and (6.214) imply that u1 = 0 and p1 = B2: From the boundary condition

T�1 �N�e = t
(e)
�1 ;

having in mind that, if u1 = 0, T�1 = �p11, we obtain B2 = pe and

T (1)rr = T
(1)
�� = T (1)zz = �pe:

The radial displacement of every point is zero, the cylinder does not deform, and the state

of stress at any point is that of hydrostatic pressure.

We now consider the case when the hollow cylinder is subjected to internal pressure

only, i.e., pe = 0. Thus

T (1)rr =
(rn�2 �Rn�2e )

(Rn�2e �Rn�2i )
pi;

T
(1)
�� =

[(n� 1) rn�2 �Rn�2e ]

(Rn�2e �Rn�2i )
pi; (6.236)

T (1)zz =

�n
2
rn�2 �Rn�2e

�
(Rn�2e �Rn�2i )

pi:

For n = 0, i.e., a cylinder made of a homogeneous material, we recover the classical

expressions for stresses given in a linear elasticity book even when the cylinder material is

incompressible; e.g. see [84]. Note that most linear elasticity books consider the cylinder

material to be compressible.

For n = 1

T
(1)
�� =

Ri
Re �Ri

pi
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and is uniform throughout the cylinder.

We now investigate the sign of T (1)rr and T (1)�� for n 6= 1; 2; 4 and limit our analysis to

the case n � Z. We start by noting that the function

f(r) = rn�2; Ri � r � Re; (6.237)

is always positive and, since f 0(r) = (n � 2) � rn�3, it is monotonically increasing when

n > 2, and monotonically decreasing when n < 2. Its absolute minimum and maximum

are summarized in the following table together with the sign of the differenceRn�2e �Rn�2i

Max min Rn�2e �Rn�2i

n > 2 (Re; R
n�2
e ) (Ri; R

n�2
i ) positive

n < 2 (Ri; R
n�2
i ) (Re; R

n�2
e ) negative

We �rst study the case n > 2.

From (6.236)1 and the values of the table it can be easily seen that for n > 2 the

radial stress is everywhere compressive, i.e. T (1)rr < 0 throughout the thickness of the

hollow cylinder.

From (6.236)2 we derive that

T�� � 0 () (1� n)rn�2 +Rn�2e � 0;

which implies that

rn�2 � Rn�2e

n� 1 : (6.238)

We de�ne

�(n) = (n� 1)
1

n�2 ;

and note that �(3) = 2, and, since

lim
n�>1

ln(n� 2)
n� 2 = 0;
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then

lim
n�>1

(n� 1)
1

n�2 = e
lim

n�>1
ln(n�2)
n�2 = 1:

This means that

1 < �(n) � 2: (6.239)

Hence from (6.236)2, (6.238) and (6.239) we can conclude that, if

Ri <
Re
�(n)

< Re =)
Ri
Re

<
1

�(n)
; (6.240)

then

T�� � 0 when
Re
�(n)

� r < Re; (6.241)

T�� � 0 when Ri < r � Re
�(n)

:

If

Re
�(n)

� Ri =)
1

�(n)
� Ri
Re

< 1; (6.242)

then

T�� � 0 for all Ri � r � Re: (6.243)

Now we study the case n < 2.

From (6.236)1 and the table written above it results that the radial stress is again

compressive. Further from (6.236)1 we derive that

T�� � 0 () (1� n)rn�2 +Rn�2e � 0;

which implies that

rn�2 � Rn�2e

n� 1 : (6.244)
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Since the quantity
Rn�2e

n� 1 is negative when n < 2, then

T�� � 0 for all Ri � r � Re: (6.245)

We note that

d

dr
T�� = �

pi(1� n) (n� 2)
Rn�2e �Rn�2i

rn�3;

which is positive for all r when n > 2 and negative for all r when n < 2.

From the analysis made above we can conclude that the inhomogeneity in the shear

modulus � strongly affects the through-the-thickness variation of hoop stress.

Further, if we write (6.236)2 as

T�� = �pi
(1� n)

�
r

Re

�n�2
+ 1

1�
�
Ri
Re

�n�2 ;

it is easy to recognize that if r 6= Re

lim
n!+1

T�� = �pi; lim
n!�1

T�� = +1:

If r = Re, then

lim
n!+1

T�� = +1; lim
n!�1

T�� = 0:

Substituting equations (6.228) and (6.232) into (6.224), we obtain the following expres-

sions for second-order radial and hoop stresses

T (2)rr = c10 + c11r
�2 + c12r

�2+n + c13r
�4+n; (6.246)

T
(2)
�� = c20 + c21r

�2 + c22r
�2+n + c23r

�4+n;

T (2)zz = c30 + c31r
�2+n + c32r

�4+n;
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where constants cij are given by

c10 =
3(n� 2)2(pe � pi)

2R2+ni R2+ne (R2e �R2i )

4(n� 4)b1(RneR2i �R2eR
n
i )
3

;

c11 = �(n� 2)(pe � pi)R
2
iR

2
e(�piRneR2i + peR

2
eR

n
i )

4b1(RneR
2
i �R2eR

n
i )
2

; (6.247)

c12 =
3(n� 2)2(pe � pi)

2R2iR
2
e(R

4
eR

n
i �RneR

4
i )

4(n� 4)b1(RneR2i �R2eR
n
i )
3

;

c13 = �(n� 2)(n� 1)(pe � pi)
2R4iR

4
e

2(n� 4)b1(RneR2i �R2eR
n
i )
2
;

c20 =
3(n� 2)2(pe � pi)

2R2+ni R2+ne (R2e �R2i )

4(n� 4)b1(RneR2i �R2eR
n
i )
3

= c10;

c21 =
(n� 2)(pe � pi)R

2
iR

2
e(�piRneR2i + peR

2
eR

n
i )

4b1(RneR
2
i �R2eR

n
i )
2

; (6.248)

c22 =
3(n� 2)2(n� 1)(pe � pi)

2R2iR
2
e(R

4
eR

n
i �RneR

4
i )

4(n� 4)b1(RneR2i �R2eR
n
i )
3

;

c23 = �(n� 2)(n
2 � 4n+ 3)(pe � pi)

2R4iR
4
e

2(n� 4)b1(RneR2i �R2eR
n
i )
2

;

and

c30 = c20 = c10;

c31 = �3(n� 2)
2 n (pe � pi)

2R2iR
2
e(R

4
eR

n
i �RneR

4
i )

8(n� 4)b1(RneR2i �R2eR
n
i )
3

; (6.249)

c32 = �(n� 2)
2 n (pe � pi)

2R4iR
4
e [4b1 (n� 1) + b2 (n� 4)]

16(n� 4) b21 (RneR2i �R2eR
n
i )
2

:

We note that the second-order elastic constant b2 appears only in the pressure �eld but not

in the expressions for the radial and hoop stress. Whereas the �rst-order stresses are inde-

pendent of the elastic moduli, b1 appears in the expressions for the second-order stresses.

Even though stresses (except for the axial stress) and the radial displacement do not explic-

itly depend upon b2, their values for the �rst-order and second-order elastic materials are

different.
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For n = 1, from (6.248)3;4 it follows that c22 = c23 = 0. Thus, from (6.246)2; it

is easily seen that the second-order hoop stress is constant throughout the thickness of the

cylinder if the constant c21, evaluated for n = 1, is equal to zero, i.e. if it results

piRi = peRe: (6.250)

If the relation written above holds then we have

T
(2)
�� = �

(pe � pi)
2(R2e �R2i )

4b1(Ri �Re)3
:

For a homogeneous second-order isotropic, incompressible elastic material the �rst-order

state of stress is obtained putting n = 0 into (6.235) and is described by the quantities

written below

T (1)rr =
pi(r

2 �R2e)R
2
i + pe(R

2
i � r2)R2e

r2(R2e �R2i )
;

T
(1)
�� =

pi (r
2 +R2e)R

2
i � peR

2
e (r

2 +R2i )

r2(R2e �R2i )
; (6.251)

T (1)zz =
peR

2
e � piR

2
i

(R2i �R2e)
:

In the same way the second-order stresses for a homogeneous body can be written from

(6.246), (6.247), (6.248) and (6.249)

T (2)rr = d10 + d11r
�2 + d12r

�4;

T
(2)
�� = d20 + d21r

�2 + d22r
�4;

T (2)zz = d30 + d32r
�4;
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where

d10 = d20 = d30 =
3(pe � pi)

2R2iR
2
e

4b1(R2e �R2i )
2
; d12 =

(pe � pi)
2R4iR

4
e

4b1(R2e �R2i )
2
;

d11 = �R
2
iR

2
e [�4 pepi(R2e +R2i ) + p2i (3 R

2
e +R2i ) + p2e (R

2
e + 3R

2
i )]

4b1(R2e �R2i )
2

;

d21 = �d11; d22 = �
3(pe � pi)

2R4iR
4
e

4b1(R2e �R2i )
2
; d32 = �

(b1 + b2)(pe � pi)
2R4iR

4
e

4b21(R
2
e �R2i )

2

We conclude this section giving an experimental procedure to measure the second-

order constant b2. Recalling that the axial force, Fax, acting on a cross-section of the

cylinder is given by

Fax = 2 �

Z Re

Ri

Tzz r dr;

and that the axial stress depends upon b2, an accurate measure of this force can be used to

estimate the value of the second-order elastic constant.

6.5 The Case n = 2

From equations (6.225), (6.231), and (6.232) it can be easily seen that the case when n = 2

must be treated separately. Hence we assume that the material moduli � and �6 depend on

the radial coordinate r as follows

� = b1r
2; �6 = b2r

2; (6.252)

where b1 and b2 are constants16.

16 We note that only for the sake of simplicity we have denoted the material constants b1 and b2 using the
same notation adopted in (6.204). However we must take into account that the nature of these constants
depend on the constitutive equations (6.204), that is on the choice of n. For instance, once we pass to
dimensional quantities, the physical dimensions of b1 and b2 depend on n.
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First we note that the �rst-order incompressibility condition (6.208) remains un-

changed, so that the �rst-order displacement �eld can be still written as

u1(r) =
�B1
r
; (6.253)

where �B1 is a constant.

By the same arguments we have used in the previous section, we obtain the pres-

sure �eld p1 from the equilibrium equation (6.207)1: From (6.202), (6.209), and (6.253), it

follows that

(T�1)11 = �2 �B1b1 � p1;

(T�1)22 = 2 �B1b1 � p1; (6.254)

(T�1)33 = �p1; (T�1)ij = 0; i 6= j:

Substitution for T from (6.254) into (6.207)1 gives

4 �B1b1
r

+ p01(r) = 0;

whose solution is

p1(r) = �B2 � 4 �B1b1 ln r; (6.255)

where �B2 is a constant of integration.

From (6.254), boundary conditions (6.207)2 and (6.207)3 become

2(1� 2 lnRi)b1 �B1 + �B2 = pi; 2(2 lnRe � 1)b1 �B1 � �B2 = �pe;

from which we can derive the values of the constants �B1 and �B2

�B1 = �
(pe � pi)

4b1 ln(Re=Ri)
; �B2 = �

pe [2 ln(Ri)� 1]� pi [2 ln(Re)� 1]
2 ln(Re=Ri)

: (6.256)
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The second-order incompressibility condition (6.219) yields the following second-order

displacement �eld

u2(r) =
�B3
r
�
�B2
1

2r3
; (6.257)

in which the constant �B3 must be determined from boundary conditions.

The second-order pressure p2(r) can be derived from the second-order equilibrium

equation (6.218)1. We note that the expression of the second-order displacement gradient

H2 has the same shape we found in the previous section (see (6.223)) while the second-

order Piola-Kirchhoff stress tensor T�2 becomes

(T�2)11 = �2b1 �B3 � p2 +
3b1 �B

2
1

r2
;

(T�2)22 = 2b1 �B3 � p2 �
b1 �B

2
1

r2
; (T�2)33 = �p2; (6.258)

(T�2)ij = 0; i 6= j;

which coincides with (6.224) for n = 2. Substituting equations (6.209), (6.212), and

(6.255) into (6.203), we obtain the following components of B�1

(B�1)11 =
�B1
�
� �B2 + �B1 [(4 ln r � 1) b1 + b2]

	
r2

;

(B�1)22 =
�B1
�
�B2 + �B1 [(�4 ln r � 1) b1 + b2]

	
r2

; (6.259)

(B�1)33 = 0; (B�1)ij = 0; i 6= j:

From (6.258) and (6.259), the second-order equilibrium equation (6.218)1 becomes

�p02 �
4 �B3 b1
r

+
2 �B2

1(2b1 � b2)

r3
= 0;

from which we obtain

p2(r) = �B4 �
�B2
1(2b1 � b2)

r2
� 4 �B3b1 ln r; (6.260)
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where �B4 is a constant of integration.

From (6.258), (6.259) and (6.227) boundary conditions (6.218)2 and (6.218)3 can be

written as

2R2i b1 [1� 2 ln(Ri)] �B3 +R2i �B4 = 4 [1 + ln(Ri)] �B
2
1b1 + �B1(pi � �B2)

2R2eb1 [1� 2 ln(Re)] �B3 +R2e �B4 = 4 [1 + ln(Re)] �B
2
1b1 +

�B1(pe � �B2)

from which, having in mind expressions (6.217) of constants B1 and B2;we get

�B3 =
3(pe � pi)

2 (R2e �R2i )

32 b21 R
2
e R

2
i [ln(Re=Ri)]

3 ; (6.261)

�B4 =
3(pe � pi)

2 [(2 ln(Re)� 1)R2e � (2 ln(Ri)� 1)R2i ]
16 b1 R2e R

2
i [ln(Re=Ri)]

3 :

Hence, from (6.256), the �rst-order displacement and pressure �elds (6.253), (6.255) as-

sume the following form

u1(r) = �
(pe � pi)

4b1 [ln(Re=Ri)]

1

r
; (6.262)

p1(r) = �
pe [2 ln(Ri)� 1]� pi [2 ln(Re)� 1]

2 ln(Re=Ri)
+
(pe � pi)

ln(Re=Ri)
ln r: (6.263)

In the same way, substituting (6.261) into (6.257) and (6.260) we get

u2(r) =
(pe � pi)

2

32 b21 [ln(Re=Ri)]
2 r

�
3 (R2e �R2i )

R2e R
2
i ln(Re=Ri)

� 1

r2

�
; (6.264)

p2(r) =
3(pe � pi)

2 [(2 ln(Re)� 1)R2e � (2 ln(Ri)� 1)R2i ]
16 b1 R2e R

2
i [ln(Re)� ln(Ri)]

3 � (6.265)

(pe � pi)
2(2b1 � b2)

16b21 [ln(Ri)� ln(Re)]
2

1

r2
�

3(pe � pi)
2 (R2e �R2i )

8 b1 R2e R
2
i [ln(Re)� ln(Ri)]

3 ln r:
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Substitution from equations (6.263) and (6.256) into (6.254) gives the following expres-

sions for the �rst-order stresses

T (1)rr =
pi ln(r=Re)� pe ln (r=Ri)

ln (Re=Ri)
;

T
(1)
�� =

pi [1 + ln(r=Re)]� pe [1 + ln(r=Ri)]

ln (Re=Ri)
; (6.266)

T (1)zz =
pi [1 + 2 ln(r=Re)]� pe [1 + 2 ln(r=Ri)]

2 ln (Re=Ri)
:

Having in mind equations (6.265) and (6.261), from (6.258) and (6.259) we derive the

following expressions for the second-order stresses

T (2)rr = e10(r) + e11(r) r
�2;

T
(2)
�� = e20(r) + e21(r) r

�2; (6.267)

T (2)zz = e30(r) + e31(r) r
�2;

where

e10 =
3 (pe � pi)

2 [ln (r=Re)R
2
e � ln (r=Ri)R2i ]

8 b1 [ln (Re=Ri)]
3 R2e R

2
i

;

e11 =
(pe � pi) [(3 + 2 ln (r=Ri)) pe � (3 + 2 ln (r=Re)) pi]

8 b1 [ln (Re=Ri)]
2 ;

e20 =
3 (pe � pi)

2 [(1 + ln (r=Re))R
2
e � (1 + ln (r=Ri))R2i ]

8 b1 [ln (Re=Ri)]
3 R2e R

2
i

; (6.268)

e21 = �(pe � pi) [(1 + 2 ln (r=Ri)) pe � (1 + 2 ln (r=Re)) pi]
8 b1 [ln (Re=Ri)]

2 ;

e30 =
3 (pe � pi)

2 [(1 + 2 ln (r=Re))R
2
e � (1 + 2 ln (r=Ri))R2i ]

16 b1 [ln (Re=Ri)]
3 R2e R

2
i

;

e31 =
(2 b1 � b2) (pe � pi)

2

16 b21 [ln (Re=Ri)]
2 :
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As for the problem studied in Section 6.3, it can be seen from (6.265) that only the second-

order pressure depends upon b2. The stress distribution in this case has a more complicated

variation through the thickness as compared to that when n 6= f2; 4g

6.6 The Case n = 4

Equations (6.231), and (6.232) present another singularity for n = 4. This implies that

the case n = 4 must be treated separately as well. The material moduli � and �6 have to

depend on the radial coordinate r in the following way

� = b1r
4; �6 = b2r

4: (6.269)

The �rst-order displacement �eld is still given by

u1(r) =
B̂1
r
; (6.270)

where B̂1 is a constant.

From (6.202), (6.209), and (6.270), it follows that

(T�1)11 = �2 B̂1b1r2 � p1;

(T�1)22 = 2 B̂1b1r
2 � p1; (6.271)

(T�1)33 = �p1; (T�1)ij = 0; i 6= j;

and equation (6.207)1 becomes

8 r B̂1b1 + p01(r) = 0;
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whose solution is

p1(r) = B̂2 � 4 B̂1b1r2; (6.272)

where B̂2 is a constant of integration.

From (6.271), boundary conditions (6.207)2 and (6.207)3 become

�2b1R2i B̂1 + B̂2 = pi; 2b1R
2
eB̂1 � B̂2 = �pe;

from which we can derive the values of the constants �B1 and �B2

B̂1 =
(pe � pi)

2b1 (R2i �R2e)
; B̂2 =

peR
2
i � piR

2
e

(R2i �R2e)
: (6.273)

The second-order displacement �eld is

u2(r) =
B̂3
r
� B̂2

1

2r3
; (6.274)

in which the constant B̂3 must be determined from boundary conditions.

The second-order Piola-Kirchhoff stress tensor T�2 becomes

(T�2)11 = 3 B̂2
1b1 � 2b1B̂3r2 � p2;

(T�2)22 = �b1B̂2
1 + 2b1B̂3r

2 � p2; (T�2)33 = �p2; (6.275)

(T�2)ij = 0; i 6= j;

which coincides with (6.224) for n = 4. Substituting equations (6.209), (6.212), and

(6.272) into (6.203), we obtain the following components of B�1

(B�1)11 =
B̂1

h
�B̂2 + r2B̂1 (3b1 + b2)

i
r2

;

(B�1)22 =
B̂1

h
B̂2 + r2B̂1 (�5b1 + b2)

i
r2

; (6.276)

(B�1)33 = 0; (B�1)ij = 0; i 6= j:
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From (6.275) and (6.276), the second-order equilibrium equation (6.218)1 becomes

�p02 � 8 B̂3 b1r +
12 B̂2

1b1
r

= 0;

from which we obtain

p2(r) = B̂4 � 4 B̂3 b1r2 + 12 B̂2
1b1 ln r; (6.277)

where B̂4 is a constant of integration.

Substituting equations (6.275), (6.276) and (6.227) into boundary conditions (6.218)2

and (6.218)3, and having in mind expressions (6.273) of constants B̂1 and B̂2 , we �nally

obtain

B̂3 =
3(pe � pi)

2 [ln(Re)� ln(Ri)]
2 b21 (R

2
e � R2i )

3 ; (6.278)

B̂4 =
(pe � pi)

2 fb2(R2i �R2e) + 4b1 [(3 ln(Ri)� 1)R2e � (3 ln(Re)� 1)R2i ]g
4 b21 (R

2
i �R2e )

3 :

Hence, from (6.273), the �rst-order displacement and pressure �elds (6.270), (6.272) as-

sume the following form

u1(r) =
(pe � pi)

2b1 (R2i �R2e)

1

r
; (6.279)

p1(r) =
peR

2
i � piR

2
e

(R2i �R2e)
� 2(pe � pi)

(R2i �R2e)
r2: (6.280)

In the same way, substituting (6.278) into (6.274) and (6.277) we get

u2(r) =
3(pe � pi)

2 [ln(Re)� ln(Ri)]
2 b21 (R

2
e � R2i )

3

1

r
� (6.281)

(pe � pi)
2

8b21 (R
2
i �R2e)

2

1

r3
;
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p2(r) =
(pe � pi)

2 fb2(R2i �R2e) + 4b1 [(3 ln(Ri)� 1)R2e � (3 ln(Re)� 1)R2i ]g
4 b21 (R

2
i �R2e )

3 �

6(pe � pi)
2 [ln(Re)� ln(Ri)]

b1 (R2e � R2i )
3 r2 +

3(pe � pi)
2

b1 (R2i �R2e)
2 ln r: (6.282)

If we substitute equations (6.273) and (6.273) into (6.271), we obtain the following expres-

sions for the �rst-order stresses

T (1)rr =
pi (r

2 �R2e)� pe(r
2 �R2i )

R2e �R2i
;

T
(1)
�� =

pi (3 r
2 �R2e)� pe(3 r

2 �R2i )

R2e �R2i
; (6.283)

T
(1)
�� =

pi (2 r
2 �R2e)� pe(2 r

2 �R2i )

R2e �R2i
:

Substitution of equations (6.282) and (6.278) into (6.275) and (6.276) yields the second-

order stresses

T (2)rr = l10 (r) + l11 r
�2 + l12r

2;

T
(2)
�� = l20 (r) + l21 r

�2 + l22r
2; (6.284)

T (2)zz = l30(r) + l32r
2;

where

l10(r) = �
(pe � pi)

2 [(6 ln (r=Ri)� 1)R2e � (6 ln (r=Re)� 1)R2i ]
2 b1 (R2e �R2i )

3 ;

l11 = �
p2i R

2
e + p2eR

2
i � pe pi (R

2
e �R2i )

2 b1 (R2e �R2i )
2 ; (6.285)

l12 =
3 [ln (Re=Ri)] (pe � pi)

2

b1 (R2e �R2i )
3 ;
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l20 (r) = �
(pe � pi)

2 [(6 ln (r=Ri) + 5)R
2
e � (6 ln (r=Re) + 5)R2i ]

2 b1 (R2e �R2i )
3 ; (6.286)

l21 = �l11; l22 =
9 [ln (Re=Ri)] (pe � pi)

2

b1 (R2e �R2i )
3 ;

l30(r) = �
(pe � pi)

2 [b2 (R
2
e �R2i ) + 4b1 (1 + 3 ln (r=Ri))R

2
e � (1 + 3 ln (r=Re))R2i ]

4 b21 (R
2
e �R2i )

3 ;

l32 =
6 [ln (Re=Ri)] (pe � pi)

2

b1 (R2e �R2i )
3 :

6.7 Af�ne Variations of Elastic Moduli

In this section we present analytical solutions of the pressurized cylinder problem for an

af�ne variation of elastic molduli � and �6 upon the non-dimensional radial coordinate r,

i.e. when

� (r) = b1 (1 + n r) ; �6 (r) = b2 (1 + n r) (6.287)

Adopting the same scheme presented in the previous sections, we obtain the following form

for the �rst-order displacement and pressure �elds

u1(r) =
(pi � pe) R

2
e R

2
i

2 r b1 (Re �Ri) [Ri +Re (1 + 2 n Ri)]
; (6.288)

p1(r) =
peR

2
e (1 + 2 n Ri)� piR

2
i (1 + 2 n Re)

(Re �Ri) [Ri +Re (1 + 2 n Ri)]
+

n (pi � pe) R
2
e R

2
i

r (Re �Ri) [Ri +Re (1 + 2 n Ri)]
:

Further, at the second-order of approximation, it results
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u2 (r) =
(pi � pe) R

4
e R

4
i

8 r3 b21 (Re �Ri)
2 [Ri +Re (1 + 2 n Ri)]

2 +

(pi � pe)
2 R2e R

2
i [3 R

3
i + (R

3
e +R2eRi +ReR

2
i ) (3 + 4 n Ri)]

8 r b21 (Re �Ri)
2 [Ri +Re (1 + 2 n Ri)]

3 ; (6.289)

p2(r) = �(pi � pe)
2R2eR

2
i [3Ri (1 + 2nRi) + 2nR

2
e (3 + 4nRi) +Re (8n

2R2i + 10nRi + 3)]

4b1 (Re �Ri)
2 [Ri +Re (1 + 2nRi)]

3 +

n (pi � pe)
2 R2e R

2
i [3 R

3
i + (R

3
e +R2eRi +ReR

2
i ) (3 + 4 n Ri)]

4 r b1 (Re �Ri)
2 [Ri +Re (1 + 2 n Ri)]

3 +

n b2 (pi � pe)
2R4eR

4
i

4 r3 b21 (Re �Ri)
2 [Ri +Re (1 + 2 n Ri)]

2 +

(b1 + b2) (pe � pi)
2R4eR

4
i

4 r4 b21 (Re �Ri)
2 [Ri +Re (1 + 2 n Ri)]

2

The �rst-order radial and hoop stresses are given by

T (1)rr =
pi (r �Re) [r + (1 + 2 n r)Re]R

2
i � pe (r �Ri) [r + (1 + 2 n r)Ri]R

2
e

r2 (Re �Ri) [Ri +Re (1 + 2 n Ri)]
;

T
(1)
�� =

pi (r
2 + 2 n r2 Re +R2e)R

2
i � pe (r

2 + 2 n r2 Ri +R2i )R
2
e

r2 (Re �Ri) [Ri +Re (1 + 2 n Ri)]
; (6.290)

while these quantities at the second-order of approximation assume the following expres-

sions

T (2)rr = g10 + g11r
�1 + g12r

�2 + g13r
�4; (6.291)

T
(2)
�� = g20 + g21r

�1 + g22r
�2 + g23r

�4;
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where

g10 =
(pe � pi)

2R2eR
2
i [3 Ri (1 + 2nRi) + 2nR

2
e (3 + 4nRi) +Re (8n

2R2i + 10nRi + 3)]

4b1 (Re �Ri)
2 [Ri +Re (1 + 2nRi)]

3 ;

g11 = �n (pe � pi)
2R2eR

2
i [3R

3
i + (R

3
e +R2eRi +ReR

2
i ) (3 + 4nRi)]

2b1 (Re �Ri)
2 [Ri +Re (1 + 2nRi)]

3 ;

g12 = (pe � pi)R
2
eR

2
i

�
pe [�R2eRi � 3R3i �ReR

2
i (3 + 4nRi) +R3e (8n

2R2i + 4nRi � 1)]
4b1 (Re �Ri)

2 [Ri +Re (1 + 2nRi)]
3 +

pi [R
3
i +R3e (3 + 4nRi) +Re (R

2
i � 4nR3i ) +R2e (3Ri � 8n2R3i )]

4b1 (Re �Ri)
2 [Ri +Re (1 + 2nRi)]

3

�
;

g13 =
(pe � pi)

2R4eR
4
i

4b1 (Re �Ri)
2 [Ri +Re (1 + 2nRi)]

2 ; (6.292)

and

g20 = g10; g21 = 0; g22 = �g12; g23 = �3 g13: (6.293)

6.8 Pressurized Cylindrical Hole in an In�nite Space

In the present section we analyze the response of an elastic body with a cylindrical hole

subjected to a uniform pressure on the inner surface. It is clear that, in order to study this

problem, we have to assume that

pe = 0; Re !1: (6.294)

Before passing to explicit results, we want to underline that the analysis of the state of stress

of an elastic solid with a cylindrical cavity under applied tractions is a topic of considerable

interest in both practical and theoretical mechanics. As a matter of fact this study can be

usefully applied to foundation drilling, oil wells, in situ geotechnical testing, structural and

mechanical designs, and borehole technology.
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6.8.1 Power law Variation of the Elastic Moduli

For elastic moduli given by equation (6.204), the �rst-order radial and hoop stress for a

pressurized cylindrical hole for n 6= 2; 4 are obtained from (6.235)1;2 letting pe = 0 and

taking the limit as Re goes to in�nity. For the radial stress it results

T (1)rr =

8>><>>:
�pi; n > 2;

�pi
�
Ri
r

�2�n
; n < 2;

(6.295)

while for the hoop stress we have

T
(1)
�� =

8>><>>:
�pi; n > 2;

pi (1� n)

�
Ri
r

�2�n
; n < 2:

(6.296)

From (6.295) and (6.296) it follows that in the case of a homogeneous material (n = 0) the

�rst-order radial and hoop stress reduce to

T (1)rr = �pi
�
Ri
r

�2
; T

(1)
�� = pi

�
Ri
r

�2
:

Further, we note that the �rst-order hoop stress vanishes for n = 1.

For the second-order radial stress from (6.247) we obtain the following results

lim
Re!+1

c10 = 0; lim
Re!+1

c11 = 0; 8 n;

lim
Re!+1

c12 =

8>><>>:
0; n > 2;

3 (n� 2)2 p2i R2�2ni

4(n� 4)b1
; n < 2;

lim
Re!+1

c13 =

8>><>>:
0; n > 2;

�(n� 1) (n� 2) p
2
i R

4�2n
i

2(n� 4)b1
; n < 2;
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which imply that

T (2)rr =

8>><>>:
0; n > 2;

p2iR
2�2n
i (n� 2)r�2+n
2(n� 4)b1

�
3 (n� 2)

2
� (n� 1) R

2
i

r2

�
; n < 2:

(6.297)

Finally, since from (6.248) it is

lim
Re!+1

c20 = 0; lim
Re!+1

c21 = 0; 8 n;

lim
Re!+1

c22 =

8>><>>:
0; n > 2;

3 (n� 2)2 (n� 1) p2i R2�2ni

4(n� 4)b1
; n < 2;

lim
Re!+1

c23 =

8>><>>:
0; n > 2;

�(n
2 � 4n+ 3) (n� 2) p2i R4�2ni

2(n� 4)b1
; n < 2;

we get the following expression for the second-order hoop stress

T
(2)
�� =

8>><>>:
0; n > 2;

p2iR
2�2n
i (n� 2)(n� 1)r�2+n

2(n� 4)b1

�
3 (n� 2)

2
� (n� 3) R

2
i

r2

�
; n < 2;

(6.298)

which vanishes when n = 1. Thus, letting

T�� = �T
(1)
�� + �2T

(2)
��

Trr = �T (1)rr + �2T (2)rr ;

we reach the following conclusions

T�� = 0; n = 1;

T�� = Trr = �pi; n > 2;

while the values for n < 2 can be obtained combining (6.295)2, (6.296)2, (6.297)2, and

(6.298)2.
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For a homogeneous cylindrical cavity at the second-order of approximation we have

T (2)rr =
p2iR

2
i

4b1

�
�3r2 +R2i

r4

�
;

T
(2)
�� = �3p

2
iR

2
i

4b1

�
R2i � r2

r4

�
:

We conclude this section noting that for n = 2 and n = 4; from (6.266)-(6.268) and

(6.283)-(6.286), in the limiting case (6.294) it results

T (1)rr = T
(1)
�� = �pi;

while the corresponding second-order quantities vanish, i.e.

T (2)rr = T
(2)
�� = 0:

Thus we �nally have

Trr = T�� = �pi:

6.8.2 Af�ne Variation of Elastic Moduli

If the elastic moduli have the form given in (6.287), the �rst-order radial and hoop stress

can be obtained in the pressurized hole limiting case (6.294) from (6.290):

T (1)rr = �(1 + 2 n r) pi R
2
i

(1 + 2 n Ri) r2
;

T
(1)
�� =

pi R
2
i

(1 + 2 n Ri) r2
:
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Further, if we note that taking the limit as Re goes to in�nity into constants (6.292) and

(6.293), we get

lim
Re!+1

g10 = 0;

lim
Re!+1

g11 = �n p
2
i R

2
i (3 + 4 n Ri)

2 b1 (1 + 2 n Ri)
3 ;

lim
Re!+1

g12 = �p
2
i R

2
i (3 + 4 n Ri)

4 b1 (1 + 2 n Ri)
3 ;

lim
Re!+1

g13 =
p2i R

4
i

4 b1 (1 + 2 n Ri)
2 ;

and

lim
Re!+1

g20 = 0;

lim
Re!+1

g22 =
p2i R

2
i (3 + 4 n Ri)

4 b1 (1 + 2 n Ri)
3 ;

lim
Re!+1

g23 = � 3 p2i R
4
i

4 b1 (1 + 2 n Ri)
2 ;

the second-order radial and hoop stresses (6.291) assume the following expressions

T (2)rr =
p2i R

2
i

2 b1 (1 + 2 n Ri)
2

1

r

�
(3 + 4 n Ri)

(1 + 2 n Ri)

�
�:n� 1

2 r

�
+
R2i
2r3

�
;

T
(2)
�� =

p2iR
2
i

4 b1 (1 + 2 n Ri)
2

1

r2

�
(3 + 4 n Ri)

(1 + 2 n Ri)
� 3 R

2
i

r2

�
:

6.9 Second-Order Effects for an FG Isotropic Compressible
Hollow Cylinder

In the present section we solve the problem of the pressurized hollow cylinder presented

above for a functionally graded, isotropic, compressible material. In this case the second

order expansion of the �rst Piola-Kirchhoff stress tensor assumes the following form (see
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(4.88)-(4.90))

T� = �T�1 + �2 (T�2 +B�1) ; (6.299)

where

T�i = a1(r)IEi1+ 2a2(r)Ei i = 1; 2; (6.300)

B�1 =
h
a1(r)
2

�
IH1HT

1
+ 2I2E1

�
+ a3(r)I

2
E1
+ a4(r)IIE1

i
1+ a5(r)IE1E1

+a6(r)E
2
1 � a1(r)IE1H

T
1 � a2(r)

�
HT
1

�2
:

(6.301)

Here we assume, like in [74], that the material moduli depend on the radial coordinate in

the following way

ai(r) = air
n; (6.302)

where ai are constants and n is a dimensionless arbitrary constant.

We consider a very long hollow cylinder S made of a compressible, elastic, function-

ally graded, and isotropic material. Let Ri and Re be the internal and the external radii,

respectively. Let S be at equilibrium in the current con�guration C under the action of the

uniform pressure �eld

t =

�
�piNi on @Ci;
�peNe on @Ce;

(6.303)

where pi and pe are positive constants, Ni and Ne are the unit outward normal vectors to

@Ci and @Ce, respectively.

As we have already done, owing to cylindrical symmetry, we search for the solution

of pure traction-value problem in the following form

u (r) =
�
�u1 (r) + �2u2 (r)

�
ar; (6.304)
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where ar is the radial unit vector of the physical basis associated with the cylindrical coor-

dinates fr; '; zg.

The �rst-order boundary-value problem (4.104) can be written as8<:
r� �T�1 = 0 in C�;
T�1 �N�i = t

(i)
�1 on @C�i;

T�1 �N�e = t
(e)
�1 on @C�e;

(6.305)

where from (4.138) and (4.103)1 the applied loads are given by

t
(i)
�1 = �piN�i; t

(e)
�1 = �peN�e: (6.306)

Equations (6.305) lead to the following problem8>><>>:
u001 +

(n+ 1)

r
u01(r) + (n� � 1)

u1
r2
= 0;

[(a1 + 2a2)r
nu01 + r�1+na1u1]r=Ri = �pi;

[(a1 + 2a2)r
nu01 + r�1+na1u1]r=Re = �pe;

(6.307)

where

� =
a1

a1 + 2a2
: (6.308)

The solution to equation (6.307) is

u1(r) = A1r
� (n+k)

2 + A2r
(�n+k)

2 ; (6.309)

in which

k =
p
n2 � 4n� + 4; (6.310)

andA1 andA2 are constants which have to determined from boundary conditions (6.307)2;3.

It results

A1 =
2
h
piR

1
2
(2+k�n)

i Rke � peR
k
iR

1
2
(2+k�n)

e

i
[(�2 + k + n) a1 + 2 (k + n) a2] (Rke �Rki )

; (6.311)

A2 =

2

�
piR

(2+k)
2

i R
n
2
e � peR

n
2
i R

(2+k)
2

e

�
[(2 + k � n) a1 + 2 (k � n) a2] (Rke �Rki )

:
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The resulting stresses are

(T�1)rr =
r
1
2
(�2�k+n)R

�n
2

e R
�n
2

i

h
piR

2+k
2

i R
n
2
e

�
rk �Rke

�
+ peR

n
2
i R

2+k
2

e

�
�rk +Rki

�i
Rke �Rki

;

(6.312)

(T�1)'' =
r
1
2
(�2�k+n)R

�n
2

e R
�n
2

i

Rke �Rki

264
�
piR

2+k
2

i R
n
2
e

�
rk �Rke

�
� peR

n
2
i R

2+k
2

e

�
rk(2 + �k � n�)

(k � n+ 2�)
+

R
k
2
i R

k
2
e

�
peR

n+k
2

i Re � piRiR
n+k
2

e

�
(�2 + �k + n�)

(k + n� 2�)

375 ; (6.313)

(T�1)zz =
r
1
2
(�2�k+n)

Rke �Rki
�

264
�
piR

2+k�n
2

i � peR
2+k�n

2
e

�
rk(2 + k � n)

(k � n+ 2�)
+

�
peR

k
iR

2+k�n
2

e � piR
k
eR

2+k�n
2

i

�
(�2 + k + n)

(k + n� 2�)

375 (6.314)

which are in accordance with those found in [74], [80 - 83].

The second-order boundary-value problem is8<:
r� � (T�2 +B�1) = 0 in C�;
(T�2 +B�1) �N�i = t

(i)
�2 on @C�i;

(T�2 +B�1) �N�e = t
(e)
�2 on @C�e;

(6.315)

where

t
(i)
�2 = �piN�i (IH1 �N�i � E1N�i) ; (6.316)

t
(e)
�2 = �peN�e (IH1 �N�i � E1N�i) :

From (6.300), (6.301), and (6.309) the second-order equilibrium equation (6.315)1 be-

comes

u002 +
(n+ 1)

r
u02(r) + (n� � 1)

u2
r2
= f(r); (6.317)
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where

f(r) =
1

8(a1 + 2a2)

�
f1r

�3�k�n + f2r
�3�n + f3r

�3+k�n� ; (6.318)

and fi are given by

fp =
6X
j=1

fpjaj; p = 1; 2; 3: (6.319)

in which

f11 =
�
k3 + 2k2n+ k (2 + n)2 + 4

�
4� 2n+ n2

��
A21;

f12 = �2
�
4 + k3 + n2 + kn (2 + n) + k2(1 + 2n)

�
A21;

f13 = 2(2 + k)(�2 + k + n)2A21; (6.320)

f14 = �4(2 + k)(k + n)A21;

f15 = 2
�
k3 + (n� 2)2 + k2(�1 + 2n) + k(n2 � 4)

�
A21;

f16 = 2
�
4 + k3 + n2 + kn (2 + n) + k2(1 + 2n)

�
A21;

f21 = �8
�
�4 + k2 + 2n� n2

�
A1A2;

f22 = 4
�
�4 + k2 � n2

�
A1A2;

f23 = �8
�
k2 � (n� 2)2

�
A1A2; (6.321)

f24 = �16nA1A2;

f25 = �4
�
k2 � (n� 2)2

�
A1A2;

f26 = �4
�
�4 + k2 � n2

�
A1A2;
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and

f31 = �
�
k3 � 2k2n+ k (2 + n)2 � 4

�
4� 2n+ n2

��
A22;

f32 = 2
�
�4 + k3 � n2 + kn (2 + n)� k2(1 + 2n)

�
A22;

f33 = �2(�2 + k)(2 + k � n)2A22; (6.322)

f34 = �4(�2 + k)(k � n)2A22;

f35 = �2
�
k3 + k2(1� 2n)� (n� 2)2 + k(n2 � 4)

�
A22;

f36 = �2
�
�4 + k3 � n2 + kn (2 + n)� k2(1 + 2n)

�
A22:

The solution to equation (6.312) is given by

u2 = A3r
� (n+k)

2 + A4r
(�n+k)

2 + y(r); (6.323)

where A3 and A4 are constants,

y(r) = C1r
�1�k�n + C2r

�1�n + C3r
�1+k�n; (6.324)

and

Cq =
6X
j=1

cqjaj; q = 1; 2; 3; (6.325)

in which

c1j =
f1j
�c1
; �c1 = 2(2 + k + n)(2 + 3k + n)(a1 + 2a2);

c2j =
f2j
�c2
; �c2 = �2(�2 + k � n)(2 + k + n)(a1 + 2a2); (6.326)

c3j =
f2j
�c3
; �c3 = 2(�2 + k � n)(�2 + 3k � n)(a1 + 2a2):
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ConstantsA3 andA4 must be determined from boundary conditions (6.315)2;3, which

from (6.300), (??), and (6.316) can be written as(
[(a1 + 2a2)r

nu02 + r�1+na1u2 + (B�1)11]r=Ri = �Dipi;

[(a1 + 2a2)r
nu02 + r�1+na1u2 + (B�1)11]r=Re = �Depe;

(6.327)

where

Di = R
1
2
(�2�k�n)

i

�
A1 +RkiA2

�
; De = R

1
2
(�2�k�n)

e

�
A1 +RkeA2

�
(6.328)

and

(B�1)11 =
6X
j=1

�j(r) � aj: (6.329)

in which

�1(r) =
1

8

�
12 + k2 + 2k (n� 2)� 4n+ n2

�
A21 r

�2�k +

1

8

�
12 + k2 � 2k (n� 2)� 4n+ n2

�
A22 r

�2+k +

(12� k2 � 4n+ n2)

4r2
A1A2;

�2(r) = �1
4

�
(k + n)2A21 r

�2�k + (k � n)2A22 r
�2+k�+ (k2 � n2)

2r2
A1A2;

�3(r) =
1

4

�
(�2 + k + n)2A21 r

�2�k + (2 + k � n)2A22 r
�2+k�+ (6.330)

[(n� 2)2 � k2]

2r2
A1A2;

�4(r) = �1
2

�
(k + n)A21 r

�2�k � (k � n)A22 r
�2+k�� nA1A2

r2
;

�5(r) =
1

4

�
k2 + 2k (n� 1) + n(n� 2)

�
A21 r

�2�k +

1

4

�
k2 � 2k (n� 1) + n(n� 2)

�
A22 r

�2+k +

[�k2 + (n� 2)n]A1A2
2r2

;

�6(r) =
1

4

�
(k + n)2A21 r

�2�k + (k � n)2A22 r
�2+k�+ (n2 � k2)

2r2
A1A2:
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It results

A3 =

6P
j=1

F3jaj +
2P
j=1

G3jAj

[(�2 + k + n) a1 + 2(k + n)a2] (Rke �Rki )
; (6.331)

A4 =

6P
j=1

F4jaj +
2P
j=1

G4jAj

[(2 + k � n) a1 + 2(k � n)a2] (Rke �Rki )
;

where

F31 = 2
�
RkeR

1
2
(2+k�n)

i �1(Ri)�R
1
2
(2+k�n)

e Rki�1(Re)
�
+

3X
j=1

bjCj; (6.332)

F32 = 2
�
RkeR

1
2
(2+k�n)

i �2(Ri)�R
1
2
(2+k�n)

e Rki�2(Re)
�
+

3X
j=1

djCj;

in which

b1 = �2(k + n)R
1
2
(�2�k�n)

e R
1
2
(�2�k�n)

i

h
R

1
2
(2+3k+n)

e �R
1
2
(2+3k+n)

i

i
;

b2 = 2n
h
R

1
2
(�2+k�n)

e Rki �RkeR
1
2
(�2+k�n)

i

i
;

b3 = 2(k + n)R
�1+k�n

2
e R

�1+k�n
2

i

h
R
1+n

2
e R

k
2
i �R

k
2
e R

1+n
2

i

i
; (6.333)

d1 = �4(1 + k + n)R
1
2
(�2�k�n)

e R
1
2
(�2�k�n)

i

h
R

1
2
(2+3k+n)

e �R
1
2
(2+3k+n)

i

i
;

d2 = �4(1 + n)R
1
2
(�2+k�n)

e R
1
2
(�2+k�n)

i

h
R

1
2
(2+k+n)

e �R
1
2
(2+k+n)

i

i
;

d3 = 4(�1 + k � n)R
�1+k�n

2
e R

�1+k�n
2

i

h
R
1+n

2
e R

k
2
i �R

k
2
e R

1+n
2

i

i
;

F41 = 2
�
R

1
2
(2+k�n)

i �1(Ri)�R
1
2
(2+k�n)

e �1(Re)
�
+

3X
j=1

�bjCj (6.334)

F42 = 2
�
R

1
2
(2+k�n)

i �2(Ri)�R
1
2
(2+k�n)

e �2(Re)
�
+

3X
j=1

�djCj;
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in which

�b1 = �2(k + n)R
1
2
(�2�k�n)

e R
1
2
(�2�k�n)

i

h
R

1
2
(2+k+n)

e �R
1
2
(2+k+n)

i

i
;

�b2 = 2n
h
R

1
2
(�2+k�n)

e �R
1
2
(�2+k�n)

i

i
;

�b3 = 2(k + n)R
�1�n

2
e R

�1�n
2

i

h
R
1+n

2
e R

3k
2
i �R

3k
2
e R

1+n
2

i

i
; (6.335)

�d1 = �4(1 + k + n)R
1
2
(�2�k�n)

e R
1
2
(�2�k�n)

i

h
R

1
2
(2+k+n)

e �R
1
2
(2+k+n)

i

i
;

�d2 = �4(1 + n)R
�1�n

2
e R

�1�n
2

i

h
R
1+n

2
e R

k
2
i �R

k
2
e R

1+n
2

i

i
;

�d3 = 4(�1 + k � n)R
�1�n

2
e R

�1�n
2

i

h
R
1+n

2
e R

3k
2
i �R

3k
2
e R

1+n
2

i

i
;

F3l = 2
h
RkeR

1
2
(2+k�n)

i �l(Ri)�R
1
2
(2+k�n)

e Rki�l(Re)
i
; (6.336)

F4l = 2
h
R

1
2
(2+k�n)

i �l(Ri)�R
1
2
(2+k�n)

e �l(Re)
i
; l = 3; :::6;

and

G31 = 2(piR
k
eR

�n
i � peR

�n
e Rki ); (6.337)

G32 = 2RkeR
k
i (piR

�n
i � peR

�n
e );

G41 = 2(piR
�n
i � peR

�n
e ); (6.338)

G42 = 2(piR
k�n
i � peR

k�n
e ):

It is possible to verify from the expressions of the applied �rst and second-order loads

(6.306) and (6.316) and the symmetry of the displacement (6.304) that the compatibility

conditions (4.106) and (4.107) are satis�ed.
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6.10Homogeneous Isotropic Solutions

The homogeneous isotropic displacements are recovered from (6.309) and (6.323) on let-

ting n ! 0 (so that, owing to (6.310), k ! 2). Moreover, functions (6.302) reduce to

classic material moduli of homogeneous elastic bodies, i.e.

a1 = �; a2 = �;

ai+2 = �i; i = 1; :::4;

where � and � are the Lamé coef�cients and constants �0is are the second-order elastic-

ities of the material. Thus, from (6.309) and (6.311) the �rst-order displacement u1(r)

becomes

u1(r) =
�A1
r
+ �A2r; (6.339)

where

�A1 =
R2iR

2
e (pe � pi)

2a2(R2i �R2e)
; �A2 =

peR
2
e � piR

2
i

2 (a1 + a2) (R2i �R2e)
; (6.340)

and coincides with the �rst-order solution found in [?].

In order to �nd the expression of the homogeneous second-order displacement u2(r),

we start from noting that as n! 0, from (6.325) and (6.326), we obtain

�C1 =
(a1 � a2 � a4 + a6)

2(a1 + 2a2)
�A21;

�C2 =
[a21 � 2a2 (2a3 + a4 + a5) + a1 (�3a2 � a4 + a6)]

2(a1 + a2)(a1 + 2a2)
�A1 �A2; (6.341)

�C3 = � [a
2
1 + 2a2 (�a2 + a5 + a6) + a1 (�5a2 + 4a3 + a4 + 4a5 + 3a6)]

2(a1 + a2)(a1 + 2a2)
�A22;

in which we have used the notation

�Ci = lim
n!0

Ci:



6.10 Homogeneous Isotropic Solutions 129

In fact, as n! 0, from (6.321), (6.322), and (6.326)2;3 it can be seen that while

f2j = f3j = 0; j = 1; :::6; �c2 = �c3 = 0;

their ratios

f2j
�c2
;

f3j
�c3
; j = 1; :::6;

tend to a �nite value.

Therefore, from (6.323) and (6.324) it follows that the homogeneous second order

displacement assumes the following form

u2 = D1r +
D2

r
+
�C1
r3
;

where

D1 = �A4 + �C3 D2 = �A3 + �C2:

and �A3, �A4 are the values of constants A3 and A4 in the limit as n ! 0. From (6.331)-

(6.338) and (6.341), it can be seen that constants D1 and D2 can be written as

Dq = Dq0 +
4X
j=1

Dqjaj+2; q = 1; 2; (6.342)

where (
Dq0 = ĝq0 � (a1 � a2)fq � hq; Dq1 = ĝq1; Dq2 = ĝq2 + fq;

Dq3 = ĝq3; Dq4 = ĝq4 � fq
(6.343)

in which we have introduced the notations

ĝ1j =
R2i�j(Ri)�R2e�j(Re)

2(a1 + a2)(R2e �R2i )
; ĝ2j =

R2iR
2
e [�j(Ri)� �j(Re)]
2a2 (R2e �R2i )

; j = 0; � � � ; 4;

(6.344)
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f1 =
�A21(a1 + 3a2)

2(a1 + a2)(a1 + 2a2)R2eR
2
i

; h1 =
� �A2(R2i pi �R2epe) +

�A1(pe � pi)

2(a1 + a2)(R2e �R2i )
;

f2 =
�A21(a1 + 3a2)(R

2
i +R2e)

2a2(a1 + 2a2)R2eR
2
i

; h2 =
�A2R

2
iR

2
e(pe � pi) + �A1 (R

2
i pe �R2epi)

2a2(R2e �R2i )
;

and

�0 = �A22 (3a1 � a2) +
2 �A1 �A2 (a1 + a2)

r2
+
�A21 (a1 � a2)

r4
;

�1 = 4 �A22; �2 = �A22 �
�A21
r4
; �3 = 2 �A

2
2 �

2 �A1 �A2
r2

;

�4 = �A22 +
�A21
r4
� 2

�A1 �A2
r2

;

which coincides with the second-order solution found in.(4.165) - (4.170).
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6.11The Program FGHollowCylinder

Aim of the Program

The program FGHollowCylinder provides analytical expressions for displace-

ments and stresses induced in a functionally graded hollow cylinder by uniform pressures

applied to its inner and outer surfaces. The cylinder material is isotropic second-order elas-

tic with all material moduli having similar variation in the radial direction (see Section

6.3 for an exhaustive description of the problem). The results obtained using the program

FGHollowCylinder allow a complete analysis of the �rst and second-order state of

deformation and stress of the cylinder. Further they can be specialized to the case of the

pressurized cylindrical cavity in an in�nite space and can be used to design an experimental

procedure to measure the second order elastic constant b2.

Description of the Algorithm

Theoretical bases of the program are provided in Sections 4.2 and 6.2. The program

allows to obtain a symbolic form of �rst and second-order quantities which characterize

the response of the cylinder to the applied loads. In particular �rst and second-order dis-

placements are obtained together with radial, hoop, and axial stresses. The algorithm is

structured in such a way to obtain the cylinder response for different material constitutions.

In other words it is possible to vary in input the dependence of the elastic moduli upon the

radial coordinate and the grade n of the nonhomogeneous material (see equations (6.204)

and (6.287)). This means that the program can be usefully used to make a comparison be-
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tween two different nonhomogeneous material responses and between a homogeneous and

a nonhomogeneous material response.

Command Line of the Program FGHollowCylinder

FGHollowCylinder[Nint, Next, fint, fext, matmod, grad]

Input Data

Nint = unit vector �eld normal to the inner surface of the hollow cylinder;

Next = unit vector �eld normal to the outer surface of the hollow cylinder;

fint = hydrostatic pressure applied to the inner surface of the hollow cylinder;

fext = hydrostatic pressure applied to the outer surface of the hollow cylinder;

matmod = constitutive relations giving the dependence of the elastic moduli upon

the radial coordinate r;

grad = grade of the functionally graded material.

Output Data

Metric tensor is the metric tensor (gij) in cylindrical coordinates;

Inverse Metric Tensor is the inverse metric tensor (gij)�1;

Non-zero Christoffel Symbols are the Christoffel symbols �kij different

from zero;

First-order Displacement Gradient H1;
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First-order Strain Tensor E1;

First-order Incompressibility Condition;

First-order Displacement u1(r);

First-order First Piola-Kirchhoff Stress Tensor T�1;

First-order Equilibrium Boundary Value Problem;

First-order pressure p1(r);

First-order Radial Stress T
(1)
rr ;

First-order Hoop Stress T
(1)
�� ;

First-order Axial Stress T
(1)
zz ;

Second-order Displacement Gradient H2;

Second-order Strain Tensor E2;

First Invariant of the Second-order Displacement Gradient

H2;

Second Invariant of the Fisrt-Order Deformation Gradient H1;

Second-order Incompressibility Condition;

Second-order Displacement u2(r);

Second-order Stress Tensor T�2;

Non-zero Components of Tensor B�1;

Second-order Components of the applied loads t�2;

Second-order Equilibrium Boundary Value Problem;

Second-order Pressure p2(r);
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First-order Fields: is a synthetic list of �rst-order relevant quantities (dis-

placement and pressure �elds);

Second-order Fields: second-order displacement and pressure �elds;

Second-order Radial Stress T (2)rr ;

Second-order Hoop Stress T (2)�� ;

Second-order Axial Stress T (2)zz .
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