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Introduction

The aim of this work is to study in probabilistic setting some spaces (weighted

or not) that are very important in Harmonic Analysis and PDEs. Study-

ing Bounded Mean Oscillation functions (BMO) and their relations with Ap

weights we saw that our results can be extended in the theory of probability.

In this work we present some of our sharp results in functional spaces that we

would like to extend to the BMO-Martingales space.

The theory of weights arises often in varied contexts of mathematical anal-

ysis: it has an important role also in the study of the boundary-value problems

for linear elliptic equations when “minimal” smoothness is assumed; for exam-

ple when the boundary of the domain is assumed only to be Lipschitz. Recent

references for this topics are [CKL], [K].

The Ap-class of weights was introduced in 1972 by B. Muckenhoupt [M1]

in connection with boundness properties of the Hardy-Littlewood maximal

operator on weighted Lebesgue spaces. Muckenhoupt weights are important

tools in harmonic analysis, partial differential equations and quasiconformal

mappings. An important and very useful property of these weights is the

“selfimproving” property (see section 1.4), studied also by Gehring in [G] where

he introduced another class of weights verifying a reverse Hölder inequality, the

Gq-class. Gehring class was singled out in connection with local integrability

properties of the gradient of quasiconformal mappings.

There is a number of works devoted to the study of relationships be-

tween Gehring and Muckenhoupt classes. In particular Coifman and Fefferman

[CoFe] proved that any Gehring class is contained in some Muckenhoupt class,

and viceversa.

Chapter 1 (section 1.1) contains properties and relations between Ap and
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Gq classes. In section 1.2 we present our first result about a limit case of a well

known Theorem of Johnson and Neugebauer [JN1]. Namely, following [C], we

prove that if h : R −→ R is an increasing homeomorphism onto such that

h, h−1 are locally absolutely continuous, then

A∞(h′) = G1((h−1)′).

This equality represents the best quantitative version of the known result that

h′ ∈ A∞ iff (h−1)′ ∈ A∞. Here we have defined for weights w : R −→ R+∪{0}
and v : R −→ R+ ∪ {0}the following constants

A∞(w) = sup
Q

(∫
Q

wdx

)(
exp

∫
Q

log
1

w
dx

)

G1(v) = sup
Q

(
exp

∫
Q

v

vQ
log

v

vQ

)
where vQ =

∫
Q

v dx, according to classical papers of Hruscev and Fefferman

([H],[CoFe]).

In section 1.3 we report results about the improvement of integrability

exponent of Ap and Gq classes (see [DS], [Ko], [Po], [BSW], [V]). At the end of

the Chapter we give an application to the solvability of the Neumann Problem

for elliptic operators in divergence form with Lp data in the half plane.

Another aim of this thesis is to extend Johnson and Neugebauer Theo-

rem to the more general Young functions. To do this, following Kerman and

Torchinsky [KT] and Migliaccio [M], we introduced the AΦ and GΨ weights

classes, where Φ,Ψ are Young functions (Chapter 2).

In sections 2.1 and 2.2 we report some preliminaries definitions and proper-

ties that we need in the following. In sections 2.3 and 2.4 we show AΦ and GΨ

relations. In the last section we present our Theorems about a generalization

of Johnson and Neugebauer result (see Theorem 2.16 and 2.17).

In Chapter 3 we show properties about Hardy-Littlewood maximal function

and the connection with Ap and Gq classes.

In Chapter 4 we investigated the space of funcions of Bounded Mean Oscil-

lation, BMO, introduced by John and Nirenberg [JN] in 1961. This space has
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become extremely important in various areas of analysis including harmonic

analysis, PDEs and function theory. BMO-Space is also of interest since it

may be considered an appropriate substitute for L∞. Since BMO contains

unbounded functions a natural question is “How large can be functions in

BMO?”. The answer is given by John and Nirenberg Theorem [JN].

In sections 4.1, 4.2, 4.3 we report the most important properties of this

functions space. In section 4.4 we show Korenovskii result that, in the one

dimensional case, give the exact constant in John and Nirenberg Theorem

and relations between Ap and BMO given by Garnett and Jones in [GJ]. In

section 4.5 we present our results about the improvement of a recent Theorem

of Gotoh [Go]. We proved that if h is an increasing homeomorphism from R

into itself and if ω = h′ verifies the A∞ condition:∫
E
ω dx∫

I
ω dx

≤ K

(
|E|
|I|

)α
for any interval I ⊂ R and for each measurable set E ⊂ I, where

K ≥ 1 ≥ α > 0, then

‖f ◦ h−1‖∗ ≤
K

α
e2+ 2

e‖f‖∗

for any f ∈ BMO(R) (see [ACS]).

Another aim consisted to give an explicit bound for the distance to L∞

after composition. We proved in [ACS] that if h : R −→ R is an increasing

homeomorphism such that (h−1)′ belongs to the Ap-class, then for any f ∈
BMO(R)

ε(f ◦ h−1) ≤ p ε(f).

Moreover, there exists an equivalent norm ‖ · ‖′∗ on BMO such that

dist ′(f ◦ h−1, L∞) ≤ p dist ′(f, L∞).

In the last section of the Chapter we introduced the BMOR-Space and

the class ARp , where in the definitions cubes are replaced by rectangles in Rn.

We had focus attention on the connections between AR2 -class and BMOR (see

[W1]).

In Chapter 5 we showed how BMO functions spaces can be extended in

probability theory. We investigated about BMO-martingales space and its

relations with the probabilistic version of Ap-condition.
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In section 5.4 we present how results about the distance in BMO to L∞

can be extended to probability setting. In the last section we give some ideas

for applications of BMO-martingales space in Mathematical Finance (see [Ge],

[DeS], [DMSSS]).
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Chapter 1

Weighted Integral Inequalities

In this Chapter, first we recall basic definitions and some known results about

weighted inequalities, in particular we focus attention on Ap and Gq weights,

respectively from Muckenhoupt and Gehring (reverse Hölder) weighted inequa-

lities. Then we show in details our results in the dimension one ( see [C]). In

the last section we show an application to partial differential equations.

1.1 Ap and Gq classes and constants

We begin recalling some definitions.

Definition 1.1. A non negative measurable function w (weight) on the space

Rn satisfies the Ap-condition, 1 < p < ∞ if there exists a constant A ≥ 1

such that, for any cube Q ⊂ Rn with edges parallel to the coordinate axes, one

has

(1.1)

∫
Q

wdx

(∫
Q

w−
1
p−1dx

)p−1

≤ A

where

∫
Q

w dx =
1

|Q|

∫
Q

w dx denotes the mean value of w over Q. We call

the Ap-constant of w as

(1.2) Ap(w) = sup
Q

∫
Q

wdx

(∫
Q

w−
1
p−1dx

)p−1

, 1 < p <∞

where the supremum is taken over all cubes Q ⊂ Rn with edges parallel to the

coordinate axes.
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The Ap-class was introduced in 1972 by B. Muckenhoupt [M1] in connection

with boundness properties of the Hardy-Littlewood Maximal Operator M (see

Chapter 3 for details) defined on the weighted space Lploc(Rn, wdx) by

(1.3) Mf(x) = sup
x∈Q

∫
Q

|f(y)|dy.

In fact, the following Theorem holds:

Theorem 1.1. [M1] If 1 < p <∞, then Mf is bounded on Lp(w) if and only

if w ∈ Ap.

Almost simultaneously (1973) another important class of weights was sin-

gled out by F.W. Gehring [G], the Gq-class, 1 < q < ∞, in connection with

local integrability properties of the gradient of quasiconformal mappings.

Definition 1.2. A weight v on the space Rn satisfies the Gq-condition if

there exists a constant G ≥ 1 such that, for all cubes Q ⊂ Rn as above, we

have

(1.4)

(∫
Q

vq(x)dx

) 1
q

∫
Q

v(x)dx
≤ G

and we refer to (1.4) as a “reverse” Hölder inequality. We call the Gq-constant

of v as

(1.5) Gq(v) = sup
Q


(∫

Q

vqdx

) 1
q

∫
Q

vdx


q′

with q′ = q
q−1

, where the supremum is taken over all cubes Q ∈ Rn with sides

parallel to the coordinate axes.

Note that the previous definitions hold when 1 < p < ∞, now we report

the specific definitions when p = 1 and p =∞.

Definition 1.3. A1-class consists of all weights w such that A1(w) is finite,

where

(1.6) A1(w) = sup
Q

∫
Q

wdx

ess inf
x∈Q

w(x)
.
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Definition 1.4. A∞-class consists of all weights w such that A∞(w) is finite,

where

(1.7) A∞(w) = sup
Q

(∫
Q

wdx

)(
exp

∫
Q

log
1

w
dx

)
.

The numbers in (1.6) (1.7) are respectively called A1 and A∞ constants

of w.

Note that Definition 1.4 is due to Hruscev in [H] but there is also a char-

acterization that gives an equivalent definition of A∞-class, namely

Proposition 1.2. ([M2], [CoFe]) A locally integrable weight w : Rn −→
[0,+∞) belongs to the A∞-class iff there exist constants 0 < α ≤ 1 ≤ K

so that

(1.8)
|F |
|Q|
≤ K

(∫
F
wdx∫

Q
wdx

)α

for each cube Q ⊂ Rn with sides parallel to the coordinate axes and for each

measurable set F ⊂ Q.

In the same spirit we define G∞-class and G1-class.

Definition 1.5. G∞-class consists of all weights v such that G∞(v) is finite,

where

(1.9) G∞(v) = sup
Q

ess sup v
x∈Q∫
Q

v dx

.

Definition 1.6. G1-class consists of all weights v such that G1(v) is finite,

where

(1.10) G1(v) = sup
Q

(
exp

∫
Q

v

vQ
log

v

vQ
dx

)

with vQ =

∫
Q

v dx.

The numbers in (1.9) (1.10) are respectively called G∞ and G1 constants

of v.

The following characterization gives an equivalent definition of G1-class

and is a somewhat “dual” definition of (1.8):
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Proposition 1.3. A locally integrable weight v : Rn −→ [0,∞) belongs to

G1-class iff there exist constants 0 < β ≤ 1 ≤ H so that

(1.11)

∫
E
wdx∫

Q
wdx

≤ H

(
|E|
|Q|

)β
for each cube Q ⊂ Rn with sides parallel to the coordinate axes and for each

measurable set E ⊂ Q.

Now we report two results that are very useful to illustrate the properties

of Ap and Gq weights.

Theorem 1.4. [W] A locally integrable weight w is in Ap, p > 1 if and only

if there exists 1 < p1 < p such that for every cube Q(
|F |
|Q|

)p1

≤ Ap1(w)

∫
F
wdx∫

Q
wdx

for every measurable subset F of Q.

Theorem 1.5. [M] A locally integrable weight v is in Gq, q > 1 if and only if

there exists q1 > q such that for every cube Q(∫
E
vdx∫

Q
vdx

)q′1

≤ Gq1(v)
|E|
|Q|

where q′1 = q1
q1−1

, for every measurable subset E of Q.

The following Theorem shows a first relation between Gehring and Muck-

enhoupt weights, namely when a Muckenhoupt weight verifies a reverse Hölder

inequality (Gehring condition).

Theorem 1.6. Let w ∈ Ap, 1 < p < ∞. Then there exist constants C and

ε > 0, depending only on p and the Ap constant of w, such that for any cube

Q, (∫
Q

w1+εdx

) 1
1+ε

≤ C

∫
Q

w dx

The following propositions resume some common properties of Ap and Gq

weights (see for instance [GR]).
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Proposition 1.7. [GR] Let w be a non negative measurable function on the

space Rn. Then

1. A1 ⊂ Ap ⊂ Aq, for 1 ≤ p ≤ q <∞.

2. G∞ ⊂ Gq ⊂ Gp, for 1 < p ≤ q <∞.

3. If w ∈ Ap, 1 < p <∞ , then there exists 1 < q < p such that w ∈ Aq.

4. If w ∈ Gq, 1 < q <∞ , then there exists q < p <∞ such that w ∈ Gp.

5. A∞ =
⋃

1≤p<∞
Ap =

⋃
1<q≤∞

Gq.

6. If 1 < p <∞, w ∈ Ap if and only if w1−p′ ∈ Ap′, with p′ = p
p−1

.

7. w ∈ Ap for some p, if and only if w ∈ Gq for some q.

Proposition 1.8. [GR] Let w be a non negative measurable function on the

space Rn. Then

1. w ∈ Ap =⇒ w ∈ Aq, q ≥ p and wα ∈ Ap, 0 ≤ α ≤ 1.

2. if w1, w2 ∈ Ap, then wα1w
1−α
2 ∈ Ap, 0 ≤ α ≤ 1.

3. If wo, w1 ∈ A1 then wow
1−p
1 ∈ Ap.

4. w ∈ Ap, 1 < p <∞, iff there exist u, v ∈ A1, so that w = uv1−p.

5. if w ∈ Ap, then wτ ∈ Ap for some τ > 1.

A∞ and Gq classes are closely related as the following theorem [StWh]

shows.

Theorem 1.9. [StWh] Let w : Rn −→ [0,+∞) be a weight, then

w ∈ Gq ⇐⇒ wq ∈ A∞

In 1972 Muckenhoupt proved the following result, also known “backward

propagation” of the Ap condition:

Theorem 1.10. [M1] Let w : Rn −→ [0,∞) be a locally integrable weight. If

w ∈ Ap, then ∃ δ > 0 such that w ∈ Ap−δ .

5



Two years later Coifman and Fefferman proved in [CoFe] the following

Lemma.

Lemma 1.11. [CoFe] If w ∈ Ap, then w ∈ Ap−ε, where ε ∼ Ap(w)1−p′,

1
p

+ 1
p′

= 1, and exists a constant C such that

Ap−ε(w) ≤ CAp(w).

The following Theorem is a well known result due to F.W. Gehring [G]

about the improvement of the integrability exponent in a reverse Hölder in-

equality also known “forward propagation” of Gq condition:

Theorem 1.12. [G] Let v : Rn −→ [0,∞) be a locally integrable weight. If

v ∈ Gq, then ∃ ε > 0 such that v ∈ Gp for p ∈ [q, q + ε).

There are some limiting relations between constants defined above, in fact

in [SW] was proved the following

Theorem 1.13. [SW] Let w : Rn −→ [0,∞) be a locally integrable weight.

Then

(1.12) A∞(w) = lim
p→∞

Ap(w)

and in [MS] the following

Theorem 1.14. [MS] Let v : Rn −→ [0,∞) be a locally integrable weight.

Then

(1.13) G1(v) = lim
q→1

Gq(v).

The formulas (1.12) and (1.13) give a quantitative version of the equalities

A∞ = ∪
p>1
Ap = ∪

q>1
Gq = G1.

proved by Muckenhoupt in [M2].

A more general class of weights, including both the Ap and Gq classes was

proposed by B. Bojarski [Bo] and I. Wik [Wi].
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Definition 1.7. Let u : Rn −→ [0,+∞) be a weight, u satisfies the Bs
r-

condition, 1 < r < s <∞ if there exists a constant B ≥ 1 such that, for any

cube Q ⊂ Rn with edges parallel to the coordinate axes, one has

(1.14)

(∫
Q

us dx

)1/s

(∫
Q

ur dx

)1/r
≤ B

and we call Bs
r-constant of u

Bs
r(u) = sup

Q

(∫
Q

us dx

)1/s

(∫
Q

ur dx

)1/r
,

where the supremum is taken over all cubes Q ⊂ Rn with sides parallel to the

coordinate axes.

It is immediate to check that

Bq
1(u) = Gq(u)1/q′

and

B1
− 1
p−1

(u) = Ap(u)

hence Ap and Gq classes are included in the system of Bs
r classes.

1.2 A precise relation among A∞ and G1 con-

stants in one dimension

In this section we confine ourselves to the case n = 1. The definitions intro-

duced before continue to hold if we consider intervals instead cubes. We prove

directly the equality

G1((h−1)′) = A∞(h′)

for an increasing homeomorphism h on the real line, where G1(v) is the limit

as q → 1 of the Gehring constant Gq(v) and A∞(w) is the limit as p → ∞ of

the Muckenhoupt constant Ap(w), for v, w non negative weights on R.
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We begin reporting a result contained in [JN1] that shows us the Ap-

regularity of the derivative of a homeomorphism of the real line and the deriva-

tive of his inverse.

Theorem 1.15. [JN1] (Johnson-Neugebauer) Let h : R −→ R be an increasing

homeomorphism onto such that h, h−1 are locally absolutely continuous. Then

(1.15) h′ ∈ Ap ⇐⇒ (h−1)′ ∈ Gq,
1

p
+

1

q
= 1

and

(1.16) Ap(h
′) = Gq(h

−1)′.

Proof. If (h−1)′ ∈ Gq then for every interval J ,(∫
J

[(h−1)′(t)]qdt

) 1
q

≤ Gq((h
−1)′)

1
p

∫
J

(h−1)′(t)dt

where p = q
q−1

and h(I) = J . Let

L =

∫
I

h′(x)dx

(∫
I

[h′(x)]1−qdx

)p−1

.

Note that

∫
I

h′(x)dx =
|J |
|I|

, so we have to estimate only the second average

integral in L. By change of variables t = h(x) we have∫
I

[h′(x)]1−qdx =
1

|I|

∫
J

1

h′[(h−1(t))]q
dt =

|J |
|I|

(∫
J

[(h−1)′(t)]qdt

)
≤

≤ |J |
|I|
Gq((h

−1)′)
q
p

(∫
J

(h−1)′(t)dt

)q
= Gq((h

−1)′)
q
p

(
|J |
|I|

)1−q

.

Consequently,

L ≤ |J |
|I|

(
|J |
|I|

)(1−q)(p−1)

Gq((h
−1)′)

q(p−1)
p = Gq((h

−1)′)

and taking the supremum over all intervals I ⊂ R, we get

Ap(h
′) ≤ Gq((h

−1)′).

Conversely, if h′ ∈ Ap, we have, by change of variables t = h(x)(∫
J

[(h−1)′(t)]qdt

) 1
q

∫
J

(h−1)′(t)dt
=

(
1

|J |

∫
I

[(h′(x)]1−qdx

) 1
q |J |
|I|

8



Raising both sides to the power p we have
(∫

J

[(h−1)′(t)]qdt

) 1
q

∫
J

(h−1)′(t)dt


p

≤ |J |
|I|

(∫
I

[(h′(x)]1−qdx

)p−1

≤ Ap(h
′).

Now taking the supremum over all interval J ⊂ R, we get

Gq(h
−1)′ ≤ Ap(h

′)

and the Theorem is proved.

An immediately consequence of the previous result is the following Lemma.

Lemma 1.16. Let h : R −→ R be an increasing homeomorphism onto such

that h, h−1 are locally absolutely continuous. Then

h′ ∈ A∞ ⇐⇒ (h−1)′ ∈ A∞.

Note that (1.16) continue to hold also in the limit case via limiting formulas

contained in [MS] and [SW]. A direct proof of this result is contained in [C]

where is proved the following Theorem.

Theorem 1.17. [C] Let h : R −→ R be an increasing homeomorphism onto

such that h, h−1 are locally absolutely continuous. Then

(1.17) A∞(h′) = G1((h−1)′).

We begin by proving the following Lemma.

Lemma 1.18. [C] Let I and J be two intervals such that h(I) = J . Set

LI =

∫
I

h′(x)dx exp

∫
I

log
1

h′(x)
dx

and

MJ = exp

∫
J

(h−1(t))′∫
J

((h−1(t))′)dt
log

(h−1(t))′∫
J

((h−1(t))′)dt
dt


Then we have

(1.18) LI = MJ .
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Proof. We have

(1.19)

∫
I

h′(x)dx =
|J |
|I|

and

∫
I

log
1

h′(x)
dx with the change of variables x = h−1(t) becomes

(1.20)
1

|I|

∫
J

log
1

h′(h−1(t))

dt

h′(h−1(t))
=

1

|I|

∫
J

log[(h−1(t))′](h−1(t))′dt

so we have

(1.21) LI =
|J |
|I|

exp

[
|J |
|I|

∫
J

log[(h−1(t))′](h−1(t))′dt

]
Now we consider that∫

J

(h−1(t))′∫
J

(h−1(t))′dt
log

(h−1(t))′∫
J

(h−1(t))′dt
dt =

1

|J |

∫
J

(h−1(t))′

|I|
|J |

log
(h−1(t))′

|I|
|J |

dt =

=
1

|I|

∫
J

log
(h−1(t))′

|I|
|J |

(h−1(t))′dt =
1

|I|

∫
J

(h−1(t))′[log(h−1(t))′ − log
|I|
|J |

]dt =

=
1

|I|

∫
J

(h−1(t))′ log(h−1(t))′dt− 1

|I|

∫
J

(h−1(t))′ log
|I|
|J |

dt =

=
1

|I|

∫
J

(h−1(t))′ log(h−1(t))′dt− log
|I|
|J |

.

So we have

MJ = exp

(
|J |
|I|

∫
J

(h−1(t))′ log(h−1(t))′dt− log
|I|
|J |

)
=

= exp

(
|J |
|I|

∫
J

(h−1(t))′ log(h−1(t))′dt

)
· exp

(
− log

|I|
|J |

)
and then

(1.22) MJ =
|J |
|I|

exp

[
|J |
|I|

∫
J

log[(h−1(t))′](h−1(t))′dt

]
In the end (1.21) is equal to (1.22) and the proof is completed.

Proof. (of Theorem 1.10)

By Lemma 1.18 we have to prove only that

sup
I
LI = sup

J
MJ

10



Fix the interval Io and set Jo = h(Io). By Lemma 1.18 we have

LIo = MJo ≤ sup
J
MJ ,

taking the supremum on the left hand side as Io varies among all intervals in

R we obtain

sup
I
LI ≤ sup

J
MJ

By a similar argument we get the reverse inequality and our result is proved.

1.3 Improvement of the integrability exponent

In this section we report some results about the so-called “sharp self-improvement

of exponents” property of the Ap and Gq classes in one dimension.

Let us begin with some results about the improvement of the integrability

exponent of a function that is in Gq. The following Theorem is contained in

[DS].

Theorem 1.19. [DS] Let v : R −→ R be a non increasing and nonnegative

function. If v ∈ Gq, then v ∈ Gp with p ∈ [q, β) and β is the solution of the

equation

ϕ(x) = 1−Bq x− q
x

(
x

x− 1

)q
= 0

where B is such that (∫
I

vqdx

) 1
q

≤ B

∫
I

vdx.

Then, for q ≤ σ < β we have

[Gσ(v)]
1
σ′ ≤ B

1
q′

[
q

σϕ(σ)

] 1
q

.

The result is sharp.

Note that Theorem 1.19 also shows that the best integrability exponent of

all non increasing functions in Gq is equal to the best integrability exponent

of a power type function in Gq.

Theorem 1.19 was generalized to all functions by Korenovskii [Ko] who also

gave a Ap version of the same result.
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Theorem 1.20. [Ko] Let 1 < q < ∞ and let f ∈ Lq(I). If f ∈ Gq, then

f ∈ Gp for p ∈ [q, β) and β verifies the equation

1−M qx− q
x

(
x

x− 1
)q = 0

where M is such that (∫
I

f qdx

) 1
q

≤M

∫
I

fdx.

Theorem 1.21. [Ko] Let w : R −→ R be a nonincreasing and nonnegative

function. If w ∈ Aq then w ∈ Ap with p ∈ [q, η) where η is the solution of the

equation

ψ(x) = 1− q − x
q − 1

(Ax)
1
q−1 = 0

where A is such that ∫
I

wdx

(∫
I

w−
1
p−1dx

)p−1

≤ A.

Then, for η < ρ ≤ q we have

Aρ(w) ≤ A

[
ρ− 1

(p− 1)ψ(ρ)

]p−1

.

It is worth noting that in the special case p = q = 2 we have explicit values

of β and η and the above theorems enjoy a simpler presentation.

Corollary 1.22. If G2(v) = G <∞, then for 2 ≤ r < 1 +
√

G
G−1

[Gr(v)]2 ≤ 2G(r − 1)2

r[(r − 1)2 −Gr(r − 2)]
.

Corollary 1.23. If A2(ω) = A <∞, then for 1 +
√

A−1
A

< s ≤ 2

As(ω) ≤ A(s− 1)

1− As(2− s)
.

Various relations occurring among Ap and A2 constants of weights and their

powers are collected in the following

Lemma 1.24. [S1] Let ω : R −→ R be a weight. For p > 1 we have

(1.23) [A2(ω
1
p−1 )]p−1 ≤ Ap(ω) Ap(ω

−1).

For 1 < p ≤ 2 we have

(1.24) Ap(ω) ≤ [A2(ω
1
p−1 )]p−1.

12



For q > 1 we have

(1.25) A2(ω) ≤ Aq(ω)Aq(ω
−1).

Proof. For any interval I ⊂ R, Hölder inequality implies

1 ≤
∫
I

ω

∫
I

ω−1

hence [∫
I

ω
1
p−1

∫
I

ω−
1
p−1

]p−1

≤

≤
∫
I

ω

(∫
I

ω−
1
p−1

)p−1

·
∫
I

ω−1

(∫
I

ω
1
p−1

)p−1

≤ Ap(ω)Ap(ω
−1)

taking supremum with respect to all intervals I we obtain (1.23).

Fix an interval I and take p such that 1 < p ≤ 2; then we have 1 ≤ 1
p−1

and Jensen inequality implies∫
I

ω ≤
(∫

I

ω
1
p−1

)p−1

hence ∫
I

ω

(∫
I

ω−
1
p−1

)p−1

≤
[∫

I

ω−
1
p−1 ·

∫
I

ω
1
p−1

]p−1

≤
[
A2(ω

1
p−1 )

]p−1

.

Taking supremum with respect to all intervals I we obtain (1.24).

If q > 1 assume

Aq(ω)Aq(ω
−1) = A <∞.

Since that Aq(w) = [Ap(w
− 1
q−1 )]q−1 where p = q/(q − 1), we have

Ap(ω
1
q−1 )Ap(ω

− 1
q−1 ) = A

1
q−1 .

Replacing ω with ω
1
q−1 in (1.23) we get[
A2((ω

1
q−1 )

1
p−1 )

]p−1

≤ Ap(ω
1
q−1 ) Ap(ω

− 1
q−1 )

But (q − 1)(p− 1) = 1, hence

A2(ω) ≤ A

that is (1.25).
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To state an exact continuation theorem in Bs
r -classes (see Definition 1.7 ),

in view of the optimal integrability results established in [Po], let us introduce

two auxiliary functions on [0, 1]. Given B ≥ 1, if 0 < r < s let us define

ϕ(y) = 1−Bs(1− y)

(
s

s− ry

)s/r
y ∈ [0, 1]

while, if r < 0 < s we define

χ(y) = 1−B−r(1− y)

(
r

r − sy

)r/s
y ∈ [0, 1]

Theorem 1.25. Assume the weight u : [a, b] −→ [0,∞) satisfies the condition

Bs
r(u) = B <∞

and let x0 be the unique solution to the equation(
x

x− s

)1/s

= B

(
x

x− r

)1/r

.

Then we have:

1. if 0 < r < s,

Bσ
r (u) ≤ B

[
s

σϕ( s
σ
)

]1/s

for s ≤ σ < x0 (and ϕ( s
x0

) = 0);

2. if r < 0 < s,

Bs
ρ(u) ≤ B

[
r

ρχ( r
ρ
)

]−1/r

for x0 < ρ ≤ r (and χ( r
x0

) = 0).

The proof follows through suitable calculations from the proof of Theorem

1.3 in [Po].

Up to now we have been dealing with the self-improvement of exponents p

and q in Ap and Gq classes respectively or of exponents r and s in Bs
r classes.

Now we consider the problem of the exact Gq-class pertaining to all Ap-

weights. This was solved for p = 1 in [BSW] and for p > 1 has been recently

settled by Vasyunin [V], who found the exact range of exponents q so that

a weight in the Ap-class belongs to the Gq-class. Let us first state the main

result in [BSW].
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Theorem 1.26. Let w belong to the A1-class with A1(w) = A. Then for every

1 ≤ q < A
A−1

(1.26) [Gq(w)]q−1 ≤ 1

Aq−1(A+ q − qA)
.

The constant on the right hand side as well as the upper bound of q cannot

be improved. In fact, the weight w(t) = t
1

(A−1)

A
is an extremal, which gives

equality in (1.26) and lies in Lq if and only if q < A
A−1

.

In order to state the result from [V], we fix p > 1 and δ > 1 and denote by

x = x(p, δ) the positive solution to the equation

(1− x)(1− x/p)−p =
1

δ
.

Then 0 < x ≤ 1 and we put

p∗ = p∗(p, δ) =
p− x
x(p− 1)

we have the following.

Theorem 1.27. [V] Suppose that a weight ω belongs to Ap and let A = Ap(ω).

Then ω belongs to Gq for each 1 ≤ q < p∗(p,A). The bound for q is optimal.

We report a result contained in [S1] that gives a simple proof of previous

theorem in a special case.

Theorem 1.28. [S1] Suppose that a non-decreasing weight ω : [a, b]→ [0,∞)

belongs to A2 and A = A2(ω). Then for 1 ≤ q <
√

A
A−1

, ω−1 belongs to Gq

and for any [c, d] ⊂ [a, b]

(1.27)

(∫ d

c

ω−q dx

)1/q

≤ q

A− q2(A− 1)

∫ d

c

ω−1 dx

The result is sharp.

Before proving Theorem 1.28 we state an useful Lemma ([Ko],[S2]).

Lemma 1.29. Let ω be a non-decreasing function in [a, b] and 0 < α < 1.

Then (∫ b

a

ω−1/α dx

)α
≤ α

∫ b

a

(x− a)α−1ω−1 dx.
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Proof. (of Theorem 1.28) To prove the Theorem we use the same method first

adopted in [S2] for reverse Hölder inequalities of G2 type.

Let us define for 0 < α < 1

γ(α) = 1− A(1− α2)

and note that γ
(√

A−1
A

)
= 0, γ(α) > 0 for α >

√
A−1
A

.

Let us prove that, for any c < d

(1.28)

∫ d

c

(x− c)α−1ω−1 ≤ (d− c)α−1

γ(α)

∫ d

c

ω−1

for α >
√

A−1
A

.

By Fubini’s theorem and our assumption on ω, we have

1

α− 1

[
(d− c)α−1

∫ d

c

ω−1 −
∫ d

c

(x− c)α−1ω−1

]
=

(1.29) =

∫ d

c

(x− c)α−1

∫ x

c

ω−1 ≤ A

∫ d

c

(x− c)α−1

(∫ x

c

ω

)−1

We invoke now the weighted Hardy’s inequality∫ d

c

(x− c)α−1

(∫ x

c

ω

)−1

≤ (1 + α)

∫ d

c

(x− c)α−1ω−1(x)

which enables us to deduce by (1.29) that

1

α− 1
(d− c)α−1

∫ d

c

ω−1 ≤
[

1

α− 1
+ A(1 + α)

] ∫ d

c

(x− c)α−1ω−1(x).

Hence

[1− A(1− α2)]

∫ d

c

(x− c)α−1ω−1(x) ≤ (d− c)α−1

∫ d

c

ω−1

which is (1.28).

Next, we combine (1.28) with Lemma 1.29 obtaining

1

α

(∫ d

c

ω−1/α dx

)α
≤ (d− c)(α−1)

γ(α)

∫ d

c

ω−1dx

hence (∫ d

c

ω−1/α dx

)α
≤ α

1− A+ Aα2

∫ d

c

ω−1dx

and (1.27) follows, for
√

A−1
A

< α < 1.
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Another point of view concerns the improvement of power exponents per-

taining to A2 weights. The following Theorem has a lot of applications in

BMO-spaces (see Chapter 4). Namely, assume that the weights ω belongs to

A2 and set A = A2(ω). Then, it is easy to check that

A2(ωθ) ≤ Aθ for 0 ≤ θ ≤ 1.

Passing to exponents τ > 1 is possible, as a consequence of Muckenhoupt’s

work, as we have already seen in this section. In fact the following Theorem

describes the so called optimal “self-improvement of exponents” property of

the A2 class.

Theorem 1.30. [AS] Assume A2(ω) = A < ∞, then for 1 ≤ τ <
√

A
A−1

we

have ωτ ∈ A2 and

(1.30) A2(ωτ )
1
2τ ≤ τA

A− τ 2(A− 1)
.

The upper bound on τ cannot be improved.

Proof. Let us recall that the exact continuation of Muckenhoupt condition A2

in one dimension ([Ko], [S1], [V]) reads as follows: for 1 +
√

A−1
A

< s ≤ 2

(1.31) As(ω) ≤ A

ψ(s)

with

(1.32) ψ(s) =
1

s− 1
[1− As(2− s)].

In particular, we deduce for any interval I ⊂ R

(1.33)

∫
I

ω−
1
s−1 ≤

 1∫
I

ω

· A

ψ(s)


1/(s−1)

and also, taking into account that A = A2(ω) = A2(ω−1) we deduce that

(1.34)

∫
I

ω
1
s−1 ≤

 1∫
I

ω−1

· A

ψ(s)


1/(s−1)

.
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Multiplying (1.33) and (1.34) and using the Hölder inequality in the form

1 ≤
∫
I

ω

∫
I

ω−1,

we obtain ∫
I

ω
1
s−1

∫
I

ω−
1
s−1 ≤

[
A

ψ(s)

]2/(s−1)

.

Hence, for 1 +
√

A−1
A

< s ≤ 2 we have

A2(ω
1
s−1 ) ≤

[
A

ψ(s)

]2/(s−1)

.

If we set τ = 1
s−1

we obtain immediately, for the range 1 < τ <
√

A
A−1

,

[A2(ωτ )]1/2τ ≤ A

ϕ(τ)

where ϕ(τ) = τ
[
1− A(1− 1

τ2 )
]

which coincides with (1.30).

The optimality is seen by mean of power functions. Namely, choose ω(x) = |x|r

with 0 < r < 1, then we have

A2(|x|r) =
1

1− r2

and A2(|x|rτ ) =
1

1− τ 2r2
<∞ if and only if 1 < τ <

√
A
A−1

=
1

r
.

1.4 Application: The Neumann Problem

In this section we report an application of Theorem 1.15 to the solvability of

Neumann Problem for divergence form elliptic operators and Lp data in the

half plane ([K]).

Let us start with the definition of Sobolev space.

Definition 1.8. Let Ω ⊂ Rn be an open set and let 1 ≤ p ≤ ∞, the Sobolev

space W 1,p(Ω) is the set of functions u ∈ Lp(Ω) : ∃g1, g2, ..., gN ∈ Lp(Ω) such

that ∫
Ω

u
∂ϕ

∂xi
= −

∫
Ω

giϕ, ∀ϕ ∈ C∞c (Ω), ∀i = 1, ..., N.
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Let A(x) = (aij(x))ni,j=1 be a real, symmetric, n × n matrix, with A(x) ∈
L∞(Rn), and A uniformly elliptic,

λ|ξ|2 ≤ 〈A(x)ξ, ξ〉 ≤ λ−1|ξ|2

for all ξ ∈ Rn\{0}, where λ > 0.

Let Ω ⊂ Rn be a bounded open set, and let

W 1,2(Ω) =

{
u ∈ L2(Ω) :

∫
Ω

|u|2 +

∫
Ω

|∇u|2 <∞
}

and

W 1,2
loc (Ω) =

{
u ∈ L2

loc(Ω) : ϕu ∈ W 1,2(Ω) ∀ϕ ∈ C∞o (Ω)
}
.

Let B be a bounded Lipschitz domain and given µ ∈ W 2,−1/2(∂B) =

(W 2,1/2(∂B))∗, with 〈1, µ〉=0, we say that u ∈ W 2,1(B) is the variational

solution to the Neumann problem

(1.35) (N)

 Lu = 0, in B

A∇u ·
→
N |∂B = µ,

if, given any ϕ ∈ W 2
1 (B),

∫
B
ϕ = 0, we have∫

B

A∇u · ∇ϕ = 〈Tr(ϕ), µ〉.

Note that the Lax-Milgran lemma shows that there exists a unique (modulo

constants) solution of the problem (1.35).

Now we report the definition of non-tangential maximal function given by

Kenig in [K].

Definition 1.9. [K] If Q ∈ ∂B, Γ(Q) ⊆ B is a truncated cone with vertex at

Q, for u ∈ L2
loc(B), the non-tangential maximal function

∼
N is

∼
N(u) = sup

X∈Γ

(∫
B(X, δ(X)

2 )
|u(z)|2 dz

)1/2

.

Definition 1.10. [K] We say that the Neumann problem 1.35 for L with data

in Lp(∂B, dσ) is solvable (abbreviated Np holds) if, whenever f ∈ L2(∂B, dσ)∩
Lp(∂B, dσ), and

∫
∂B
fdσ = 0, the solution to 1.35 with µ = f , verifies

‖
∼
N(∇u)‖Lp(∂B,dσ) ≤ C‖f‖Lp(∂B,dσ)

where
∼
N is the non-tangential maximal function of Definition 1.9.

19



Recall that an orientation preserving homeomorphism Φ : R2 −→ R2,

Φ(x, t) = (α(x, t), β(x, t)) is called K-quasiconformal if Φ ∈ W 1,2
loc (R2), and(

∂α

∂x

)2

+

(
∂α

∂t

)2

+

(
∂β

∂x

)2

+

(
∂β

∂t

)2

≤ K

[
∂α

∂x

∂β

∂t
− ∂α

∂t

∂β

∂x

]
,

i.e. Φ maps infinitesimal discs onto infinitesimal ellipses, with uniformly

bounded eccentricity.

The connection with the subject is that quasiconformal mappings in the

plane preserve the class of solutions to divergence form elliptic operators with

bounded measurable coefficients. In fact if Φ in addition is a homeomorphism

from R2
+ −→ R2

+, and 4v = 0 in R2
+, then u = v ◦ Φ verifies Lu = 0 in

R2
+, where L = div A∇, and A(x, t) = (DΦt)−1|DΦ|(DΦ)−1, where DΦ is

the matrix of partial derivatives of Φ, and |DΦ| its determinant. We quote

an important result due to Beurling-Ahlfors [BA] that is very useful in the

following,

Theorem 1.31. [BA]

(i) Let h : R −→ R be a homeomorphism. Then, there exists Φ : R2 −→ R2 K-

quasiconformal such that h = Φ|R if and only if dh is a doubling measure,

i.e. ∫
2I

dh ≤ C

∫
I

dh

for all intervals I ⊂ R, where 2I is the interval concentric with I, of

double length.

(ii) There exist h : R −→ R a homeomorphism with dh doubling, such that dh

is purely singular with respect to Lebesgue measure (i.e. the support of

dh has Lebesgue measure 0), and hence the two measures are mutually

singular.

Now we show how Theorem 1.15 can be applied to the solvability of Neu-

mann problems for divergence elliptic operators with Lp data. Let us consider

the following Neumann problem

(1.36)

 ∆v = 0, in R2
+

∂v
∂t
|R = f.
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Let us consider a quasiconformal mapping Φ : R2
+ −→ R2

+ with Φ(x, 0) = h(x)

where h : R −→ R is a homeomorphism and let us consider the pull-black

Laplacian matrix: A(x, t) = (DΦt)−1|DΦ|(DΦ)−1. If we compose a solution of

(1.36) with Φ we have that u = v ◦Φ is the solution of the following Neumann

problem

(1.37) (Np)

 div A∇u = 0, in R2
+

A∇u ·
→
N |R = (f ◦ h)h′.

In fact using the variational formulation of the Neumann problem and assum-

ing that dh = h′dx, we can see that the Neumann data for u = v ◦ Φ are

(f ◦ h)h′. For this to belong to Lp, we need that∫
|f ◦ h|p|h′|p <∞

which is equivalent to, if y = h(x), dy = h′(x)dx, the fact that f ∈ Lp(wdx),

where w(y) = |h′(h−1(y))|p−1.

Now if (Np) was solvable for L, then all derivatives of u, restricted to R

would be in Lp. This implies, in particular, that, if in (Np) f ∈ Lp(wdx),

∂v
∂y

= H(f) ∈ Lp(wdx), where H(f) is the classical Hilbert transform

Hf(y) = lim
ε→0

1

π

∫
|x−y|>ε

f(x)

x− y
dy,

the bound

(1.38) ‖Hf‖Lp(w) ≤ C‖f‖Lp(w)

would hold. But it is well known that (1.38) holds if and only if w ∈ Ap (see

[HMW]). But w ∈ Ap is equivalent to (h−1)′ ∈ Aq, with q = p
p−1

. Now by

Theorem 1.15 we know that this equivalent to h′ ∈ Gp. So we have that if

(Np) holds, then h′ ∈ Gp.

In general it is possible construct h such that dh is doubling, h is absolutely

continuous but h′ /∈ Gp and so (Np) does not always hold.

Remark 1.1. Note that by geometric properties of quasiconformal mappings,

the condition h′ ∈ Gp is also sufficient to solve Neumann problems for such

divergence elliptic operators in the half plane.
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Remark 1.2. Another relevant fact is that the condition h′ ∈ Gp is necessary

and sufficient for the solvability of Dirichlet problem in Lp
′

for such an oper-

ator, where p′ is the conjugate exponent of p. It can, in fact, be shown that

the Neumann problem in Lp is solvable if and only if the Dirichlet problem is

solvable in Lp
′
, 1
p

+ 1
p′

= 1 for operators in R2
+ which arise as the pullback of

the Laplacian under quasiconformal change of variable.
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Chapter 2

Weighted Integral Inequalities

in Orlicz Spaces

In this chapter we extend some results contained in the Chapter 1 to Orlicz

Spaces. In particularly we prove in the context of Orlicz classes a result of

Johnson and Neugebauer contained in [JN1] (see Theorem 1.15).

2.1 Preliminaries

Let us fix notations and recall some definitions.

A Young function is a convex function Φ : [0,∞) −→ [0,∞) such that Φ is

increasing on [0,∞) , satisfying

lim
t→0

Φ(t)

t
= 0, lim

t→∞

Φ(t)

t
=∞.

Φ has a derivative ϕ which is nondecreasing and nonnegative, ϕ(0+) = 0 and

ϕ(∞) =∞, so that

Φ(t) =

∫ t

0

ϕ(x)dx

and we can take ϕ to be right-continuous. The Young function complementary

to Φ is given by

Ψ(t) = sup
s
{st− Φ(s)} =

∫ t

0

ψ(x)dx

where ψ(x) = inf{s : ϕ(s) ≥ x}. These functions verify the Young’s inequality

ab ≤ Φ(a) + Ψ(b) ∀ a, b > 0.
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More in general, if a Young function Φ is not necessarily convex we have an

Orlicz function. The Orlicz space, LΦ(Ω) consists of all measurable functions

f on Ω such that ∫
Ω

Φ

(
|f |
λ

)
dx <∞ for some λ > 0.

LΦ(Ω) is a complete linear metric space with respect the following distance

function:

distΦ(f,g) = inf

{
λ > 0 :

∫
Ω

Φ

(
|f − g|
λ

)
dx ≤ λ

}
.

If Φ is a Young function, LΦ(Ω) can be equipped with the Luxemburg norm

‖f‖LΦ = inf

{
λ > 0 :

∫
Ω

Φ

(
|f |
λ

)
dx ≤ 1

}
,

and becomes a Banach space. If we put Φ(t) = tp, 0 < p <∞ then the space

LΦ(Ω) coincides with the usual Lebesgue space Lp(Ω). Note that Lp(Ω) is a

Banach space only when p ≥ 1.

In the same way we can define the weighted Orlicz classes. The weighted

Orlicz class is the set of all functions f for which∫
Ω

Φ

(
|f |
λ

)
wdx <∞ for some λ > 0,

where w is a non negative measurable function on the space Rn. As before

LΦ
w(Ω) denotes the weighted Orlicz space.

In the following we are going to report some common important properties

and results about Young functions.

Definition 2.1. Let Φ be a Young function. Φ satisfies the ∆2-condition

(Φ ∈ ∆2) if there is c > 0 such that

(2.1) Φ(2t) ≤ cΦ(t), ∀t ≥ 0.

Note that if ∀Φ,Ψ ∈ LΦ(Ω) complementary functions we have that both

verify ∆2- condition, LΦ(Ω) is a reflexive Orlicz space.

Definition 2.2. Let Φ ∈ ∆2 be a Young function and let us define

(2.2) hΦ(λ) = sup
t>0

Φ(λt)

Φ(t)
, λ > 0
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the numbers

(2.3) α(Φ) = lim
λ→0+

log hΦ(λ)

log λ
= sup

0<λ<1

log hΦ(λ)

log λ

and

(2.4) α(Φ) = lim
λ→∞

log hΦ(λ)

log λ
= inf

1<λ<∞

log hΦ(λ)

log λ

are called the lower index of Φ and the upper index of Φ, respectively. Some-

times these indices are called the fundamental indices of Φ.

The numbers α(Φ) and α(Φ) are reciprocals of the Boyd indices (see [B]).

In the same way we can define the fundamental indices of the complementary

function Ψ, α(Ψ) and ᾱ(Ψ). We have the following properties:

(2.5) 1 ≤ α(Φ) ≤ α(Φ), and α(Φ) > 1⇐⇒ Ψ ∈ ∆2.

(2.6) 1 ≤ α(Ψ) ≤ α(Ψ), and α(Ψ) > 1⇐⇒ Φ ∈ ∆2.

and, moreover, the couples α(Ψ), α(Φ), and α(Ψ), α(Φ) behave similarly as

conjugate exponents of power functions, namely we have

(2.7) α(Ψ) =
α(Φ)

α(Φ)− 1

and

(2.8) α(Ψ) =
α(Φ)

α(Φ)− 1
.

The following Theorem gives a simple formula to compute fundamental

indices.

Theorem 2.1. [F2] If there exist

r0 = lim
t→0

tΦ′(t)

Φ(t)
and r∞ = lim

t→∞

tΦ′(t)

Φ(t)
,

then

α(Φ) = min{r0, r∞} and α(Φ) = max{r0, r∞}.

By previous Theorem we give some examples of Young functions and fun-

damental indices.
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Example 2.1. The Young function Φ(t) = |t|p logα(a + |t|), with 1 < p < ∞
and α ≥ 0 has the following fundamental indices: α(Φ) = α(Φ) = p, if a > 1,

α(Φ) = p, α(Φ) = p+ α, if a = 1.

Example 2.2. The Young function Φ(t) = t2 − log(1+t2)
2

, t ≥ 0 has lower and

upper index equal to 2.

The following Proposition is very useful in practice because give a list of

results about fundamental indices.

Proposition 2.2. [FK] Let Φ and Ψ be complementary Young functions ver-

ifying ∆2-condition. Let er = |t|r, r > 0. Then

1. α(Φ−1) =
1

α(Φ)
; α(Φ−1) =

1

α(Φ)

2. α(Φ ◦Ψ) ≥ α(Φ)α(Ψ); α(Φ ◦Ψ) ≤ α(Φ)α(Ψ)

3. α(er ◦ Φ) = α(Φ)r; α(er ◦ Φ) = α(Φ)r

4. α(Φ ◦ er) = α(Φ)r; α(Φ ◦ er) = α(Φ)r

5. α(ΦΨ) ≥ α(Φ) + α(Ψ); α(ΦΨ) ≤ α(Φ) + α(Ψ)

6. α(Φer) = α(Φ) + r; α(Φer) = α(Φ) + r

2.2 Characterizations of indices by growth ex-

ponents and integral means

At first we report a result about the equivalence between a growth condition

and ∆2-condition.

Theorem 2.3. [KR] Let Φ be a Young function, then

(2.9) Φ ∈ ∆2 ⇐⇒ pΦ(t) ≤ tΦ′(t) ≤ qΦ(t) ∀t > 0

with 1 < p ≤ q.

Moreover we have this connections with fundamental indices:

26



Lemma 2.4. [FK] Let Φ be a Young function satisfying the growth condition

pΦ(t) ≤ tΦ′(t) ≤ qΦ(t), ∀t > 0, with 1 < p ≤ q, then we have

(2.10) p ≤ α(Φ) ≤ α(Φ) ≤ q.

where α(Φ) and α(Φ) are fundamental indices of Φ (see (2.3) and (2.4)).

Theorem 2.5. [KR] Let Φ and Ψ be complementary Young functions and

suppose that their derivatives are continuous, then

(2.11)

pΨ(t) ≤ tΨ′(t) ≤ qΨ(t)⇐⇒ q

q − 1
Φ(t) ≤ tΦ′(t) ≤ p

p− 1
Φ(t), ∀ t > 0

with 1 < p ≤ q.

Now we give an example of growth exponents of a Young function.

Example 2.3. The Young function

Φ(t) =


t2 t ∈ [0, 1]

e2(t−1) t ∈ [1, 2]

e2

16
t4 t ∈ [2,+∞[

verifies the following growth condition

2Φ(t) ≤ tΦ′(t) ≤ 4Φ(t), ∀t > 0.

In many applications (calculus of variations, interpolation etc) it is useful

to assume that a Young function is, in a certain sense between two powers tp

and tq, namely we have

Lemma 2.6. [CF] If Φ is a Young function verifying a growth condition

pΦ(t) ≤ tΦ′(t) ≤ qΦ(t), ∀ t > 0

with 1 < p ≤ q, then ∃C > 0 such that

(2.12) Φ(λt) ≤ C max{λp, λq}Φ(t), ∀ λ, t > 0.

This inequality, in turn gives also

(2.13) Φ(λt) ≥ C−1 min{λp, λq}Φ(t), ∀ λ, t > 0.

Now we report a theorem due to Fiorenza [F] where is proved that the

Jensen mean Ψ−1

(∫
Q

Ψ(w)dx

)
lies between the Lp- norm and the Lq-norm.
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Theorem 2.7. [F] Let w ∈ L1
loc(Rn) be a nonnegative weight and let Ψ a

Young function verifying the condition

pΨ(t) ≤ tΨ′(t) ≤ qΨ(t), ∀ t > 0

then

(2.14)
1

C

(∫
Q

wp
) 1

p

≤ Ψ−1

(∫
Q

Ψ(w)dx

)
≤ C

(∫
Q

wq
) 1

q

where C = ( q
p
)

1
p .

Furthermore we have the following proposition that slightly improve the

previous theorem.

Proposition 2.8. [FK] The inequality (2.14) holds with every 0 < p < α(Ψ)

and every α(Ψ) < q <∞.

2.3 AΦ and GΨ classes and constants

In this section we report the extension of definitions of Ap and Gq condition

to more general Young functions and also some known results about them.

In [KT], Kerman and Torchinsky extended the definition of Ap-condition

to Orlicz spaces, we have

Definition 2.3. Let w ∈ L1
loc(Rn) be a nonnegative weight and let Φ, Ψ be

complementary Young functions verifying ∆2-condition, we say that w satisfies

AΦ-condition if ∃ A ≥ 1 such that

(2.15) ∀ε > 0,

(∫
Q

εwdx

)
ϕ

(∫
Q

ϕ−1

(
1

εw

)
dx

)
≤ A

where ϕ(t) = Φ′(t). Moreover, we define AΦ-constant as

(2.16) AΦ(w) = sup
ε>0

sup
Q

[∫
Q

εwdx ϕ

(∫
Q

ϕ−1

(
1

εw

)
dx

)]
for any cube Q ⊂ Rn.

Furthermore we can extend the definition of Gq-condition to Orlicz spaces,

we have
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Definition 2.4. Let v ∈ L1
loc(Rn) be a nonnegative weight and let Φ, Ψ be

complementary Young functions verifying ∆2-condition, we say that v satisfies

GΨ-condition if ∃B ≥ 1 such that

(2.17) ∀ε > 0,

Ψ−1

(∫
Q

Ψ
(v
ε

)
dx

)
∫
Q

v

ε
dx

≤ B.

Moreover, we define GΨ-constant as

(2.18) GΨ(v) = sup
ε>0

sup
Q

Φ


Ψ−1

(∫
Q

Ψ
(v
ε

)
dx

)
∫
Q

v

ε
dx


for any cube Q ⊂ Rn.

Note that if we put Φ(t) =
tp

p
and Ψ(t) =

tq

q
, with 1

p
+ 1

q
= 1, we get Ap

and Gq conditions.

Now we are going to report properties about connections between AΦ and

Ap classes and between GΨ and Gq classes.

In [KT], Kerman and Torchinsky proved the following

Theorem 2.9. [KT] Let w ∈ L1
loc(Rn) be a nonnegative weight and let Φ,

Ψ be complementary Young functions verifying ∆2-condition. The following

conditions are equivalent:

i) w(x) ∈ AΦ

ii) w(x) ∈ Ap − class, where p = α(Φ).

In [M], Migliaccio proved the following

Theorem 2.10. [M] Let w ∈ L1
loc(Rn) be a nonnegative weight and let Φ, Ψ

be complementary Young functions verifying ∆2-condition. We have

(2.19) w ∈ GΨ =⇒ for q ≤ α(Ψ), w ∈ Gq.
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2.4 The RHΨ condition

In the paper [HSV] the authors introduced another definition that extend Gq-

condition in the context Orlicz spaces. Furthermore, they proved a result like

Theorem 2.10 but they proved a necessary and sufficient condition between Gq

and RHΨ.

Definition 2.5. Let v ∈ L1
loc(Rn) be a nonnegative weight and let Φ, Ψ be

complementary Young functions verifying ∆2-condition, we say that v satisfies

RHΨ-condition if ∃C > 0 such that

(2.20)

∫
Q

Ψ

Ψ−1( ε
|Q|)

C

∫
Q

vds

v(x)

 dx

ε
≤ 1

for any cube Q ⊂ Rn and ε > 0.

Note that if Ψ(t) = tq, q > 1 we have that RHΨ-condition coincides with

Gq-condition. We also remark that the parameter ε is necessary to make the

class RHΨ invariant under dilatations, in the sense that if v(x) ∈ RHΨ then

v(λx) ∈ RHΨ with the constant C independent of λ > 0.

Theorem 2.11. [HSV] Let v ∈ L1
loc(Rn) be a nonnegative weight and let Φ,

Ψ be complementary Young functions verifying ∆2-condition. The following

conditions are equivalent:

i) v ∈ RHΨ

ii) For any b ≥ 0, Ψ(bv) ∈ A∞ with a uniform constant.

iii) vq ∈ A∞

iv) v ∈ Gq, where q = α(Ψ).

The proof of the previous Theorem is based on the following important

property of RHΨ classes.

Proposition 2.12. Let Φ, Ψ be complementary Young functions verifying ∆2-

condition. If v ∈ RHΨ, then ∃ r > 1 such that v ∈ RHΨr .
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2.5 The One Dimensional Case

In this section we prove an extension of Theorem 1.15 to more general Young

functions that preserve the same property of monotonicity and convexity of

power functions. We begin to prove some auxiliary Lemmas and then main

Theorems.

Lemma 2.13. If ϕ is a Young function such that

(2.21) ∃ ε ∈]0, 1[ : ϕε is concave,

then the function Γρ defined by

Γρ : t ∈ [0,+∞[→ Γρ(t) = ϕ−1(tρ)

is convex for all ρ ≥ 1/ε.

Proof. Let us fix ρ > 1/ε. It is

Γ′ρ(t) =
d

dt
(ϕ−1(tρ)) = (ϕ−1)′(tρ) · ρtρ−1 =

1

ϕ′(ϕ−1(tρ))
· ρtρ−1 ∀t > 0

so that, setting t = ϕ(s)1/ρ, it is

Γ′ρ(ϕ(s)1/ρ) =
1

ϕ′(s)
· ρ[ϕ(s)1/ρ]ρ−1 =

ρ

ϕ′(s)
ϕ(s)1/ρ′ ∀s > 0.

Since ϕ is strictly increasing, the assertion is proven if we show that the func-

tion on the right hand side is increasing. But this follows observing that, since

0 < 1/ρ ≤ ε, the function ϕ1/ρ is concave, and therefore its derivative

(ϕ1/ρ)′ =
1

ρ
ϕ

1
ρ
−1ϕ′ =

1

ρ
ϕ
− 1
ρ′ϕ′

is decreasing.

The following example shows that there exist Young functions satisfying

the ∆2-condition along with their complementary function, such that (2.21)

does not hold.

Example 2.4. It is sufficient to consider the function

ϕ(t) =


t2 t ∈ [0, 1]

e2(t−1) t ∈ [1, 2]

e2

16
t4 t ∈ [2,+∞[
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It is straighforward to check that 2ϕ(t) ≤ tϕ′(t) ≤ 4ϕ(t) ∀t > 0. Moreover,

(2.21) does not hold because

ϕε(t) = (2ε)2e2ε(t−1) > 0 ∀t ∈ [1, 2].

Lemma 2.14. In the same hypothesis of Lemma 2.13, ∀ρ ≥ 1
ε
, we have

(2.22)

[∫
I

f
1
ρds

]ρ
≤ ϕ

(∫
I

ϕ−1(f)ds

)
, ∀f : ϕ−1(f) ∈ L1(R)

for all intervals I ⊂ R.

Proof. If we set in (2.22) f
1
ρ = g, then the thesis of Lemma becomes:[∫

I

gds

]ρ
≤ ϕ

(∫
I

ϕ−1(gρ)ds

)
and equivalently ∫

I

gds ≤ ϕ
1
ρ

(∫
I

ϕ−1(gρ)ds

)
.

If we set in previous inequality ϕ−1(tρ) = λ(t) = s, then we have to show that∫
I

g ds ≤ λ−1

(∫
I

λ(g)ds

)
and this is true iff λ is convex, by Jensen inequality. The fact that λ is convex

comes from Lemma 2.13, with λ = Γ.

Lemma 2.15. Let Φ, Ψ be complementary Young functions verifying ∆2-

condition. Suppose that ∃ σ : 0 < σ < σo such that q(Ψ) = sup tΨ′(t)
Ψ(t)

<

(ρ+ 1)′ + σ, then

Ψ−1

(∫
I

Ψ(f)ds

)
≤
(∫

I

f (ρ+1)′+σds

) 1
(ρ+1)′+σ

, ∀f ∈ L1
loc(R)

for all intervals I ⊂ R.

Proof. From Theorem 2.7 we know that

Ψ−1

(∫
I

Ψ(f)ds

)
≤
(∫

I

f q(Ψ)ds

) 1
q(Ψ)

since q(Ψ) < (ρ+ 1)′ + σ, the Lemma is proved.
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Now we are able to prove a first important Theorem.

Theorem 2.16. Let h : R −→ R be an increasing homeomorphism onto such

that h, h−1 are locally absolutely continuous. Let Φ, Ψ be complementary Young

functions verifying the ∆2-condition, then

(h−1)′ ∈ GΨ =⇒ h′ ∈ AΦ

Proof. To prove this implication we use some known results presented before.

If (h−1)′ ∈ GΨ from Theorem 2.10 we know that (h−1)′ ∈ Gq, where q = α(Ψ).

By Theorem 1.15 we know that (h−1)′ ∈ Gq ⇐⇒ h′ ∈ Ap, with p = q
q−1

=

α(Φ). Moreover, Kerman and Torchinski in [KT](see Theorem 2.9) proved

that h′ ∈ Ap ⇐⇒ h′ ∈ AΦ. So we have (h−1)′ ∈ GΨ =⇒ h′ ∈ AΦ.

Let us set

ϕp,α(s) =
sp

logα(e+ s)
, α > 0, p > 1

Φp,α(t) =

∫ t

0

ϕp,α(s) ds

Ψp,α(t) = complementary function of Φp,α(t).

Now we are able to prove the main Theorem of the section.

Theorem 2.17. Let h : R −→ R be an increasing homeomorphism onto such

that h, h−1 are locally absolutely continuous, then

∀M > 1 ∃α > 0 : h′ ∈ AΦp,α , AΦp,α(h′) ≤M =⇒ (h−1)′ ∈ GΨp,α .

Proof. We know, by definition, that

(2.23)

AΦp,α(h′) ≤M ⇐⇒ ∀ε > 0,

(∫
I

εh′ds

)
ϕp,α

(∫
I

ϕ−1
p,α

(
1

εh′

)
ds

)
≤M, ∀I ⊂ R.

By Lemma 2.14 applied to f = 1
h′

, ρ = p (note that ε = 1
p

is such that ϕεp,α is

concave) we have[∫
I

(
1

h′

) 1
p

ds

]p
≤ ϕp,α

(∫
I

ϕ−1
p,α

(
1

h′

)
ds

)
, ∀I ⊂ R.

which together with (2.23) gives(∫
I

h′ds

)
ϕp,α

(∫
I

ϕ−1
p,α

(
1

h′

)
ds

)
≤M
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i.e.

h′ ∈ Ap+1, Ap+1(h′) ≤M.

By Theorem 1.15 we have

h′ ∈ Ap+1 ⇐⇒ (h−1)′ ∈ G(p+1)′

and

Ap+1(h′) = G(p+1)′((h
−1)′) ≤M.

Therefore, by Theorem 1.19,

∃β = β(p,M) : (h−1)′ ∈ Gq, ∀q ∈ [(p+ 1)′, (p+ 1)′ + β[.

Fix σ ∈]0, β[ and define τ = τ(p,M) > 0 by

(p+ 1)′ + σ = (p+ 1− τ)′

and choose α > 0 sufficiently small, so that

(2.24) (p− τ)ϕp,α(t) ≤ tϕ′p,α(t) ∀t.

Inequality (2.24) comes from the following

inf
t

tϕ′p,α(t)

ϕp,α(t)
= p− α sup

t

t

(e+ t) log(e+ t)
−→
α→0

p.

Now integrating (2.24)

(p+ 1− τ)Φp,α(t) ≤ tΦ′p,α(t) ∀t

tΨ′p,α(t) ≤ (p+ 1− τ)′Ψp,α(t) = [(p+ 1)′ + σ]Ψp,α(t) ∀t

Finally, using Lemma 2.15 applied to f = (h−1)′

ε
, we get

Ψ−1
p,α

(∫
I

Ψp,α

(
(h−1)′

ε

)
ds

)
≤

(∫
I

(
(h−1)′

ε

)(p+1)′+σ

ds

) 1
(p+1)′+σ

, ∀ε > 0 ∀I ⊂ R

for all 0 < σ < β, and therefore by Theorem 1.19 we get that for some M > 0

it is {∫
I

[(h−1)′](p+1)′+σds

} 1
(p+1)′+σ

≤M

∫
I

(h−1)′ds
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dividing by ε {∫
I

[
(h−1)′

ε

](p+1)′+σ

ds

} 1
(p+1)′+σ

≤M

∫
I

(h−1)′

ε
ds

and so

Ψ−1
p,α

(∫
I

Ψp,α

(
(h−1)′

ε

)
ds

)
≤M

∫
I

(h−1)′

ε
ds

i.e.

(h−1)′ ∈ GΨp,α .

Corollary 2.18. ∀M > 1 ∃ α > 0 : h′ ∈ AΦp,α , AΦp,α(h′) ≤ M =⇒ (h−1)′ ∈
GΨp,α , ∀α ∈ [0, α].

Remark 2.1. Let Φ be such that α(Φ) = α(Φ) = p. Then for any τ > 0 there

exists Φ1 equivalent to Φ such that

p− τ ≤ sΦ′1(s)

Φ1(s)
.

If Φ
1
p

1 is concave, then the argument of Theorem 2.17 applies, and we can assert

that

h′ ∈ AΦ =⇒ (h−1)′ ∈ GΨ

getting the converse of Theorem 2.16.

Remark 2.2. Choosing α = 0 in Corollary 2.18 we can see that our result

generalizes Theorem 1.15 ([JN]).
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Chapter 3

The Hardy-Littlewood Maximal

Function

In this chapter we will introduce the Hardy-Littlewood maximal function and

some properties related to it. We focus attention on weighted norm inequalities

for Hardy-Littlewood type maximal operators. The importance of the maximal

operator stems from the fact that it controls many operators arising naturally

in analysis.

3.1 Definitions

We begin recalling some definitions.

The concept of the maximal function can be traced back to G.H. Hardy

and J.E. Littlewood [HL] and has been under study since then.

Definition 3.1. Let Br = B(0, r) be the Euclidean ball of radius r centered

at the origin. The Hardy-Littlewood maximal function of a locally inte-

grable function f on Rn is defined by

(3.1) Mf(x) = sup
r>0

∫
Br

|f(x− y)|dy.

Note that the maximal operator M is sublinear and homogeneous, that is,

M(f + g) ≤Mf +Mg and M(λf) = λ(Mf), ∀λ ≥ 0.

Another definition of Hardy-Littlewood maximal function is based on cubes

in place of balls, namely
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Definition 3.2. If Qr is the cube [−r, r]n, we define the centered Hardy-

Littlewood maximal function as

(3.2) Mcf(x) = sup
r>0

1

(2r)n

∫
Qr

|f(x− y)|dy.

Note that when n = 1, M and Mc coincide. If n > 1 then there exist

constants cn and Cn, depending only on n, such that

(3.3) cnMcf(x) ≤Mf(x) ≤ CnMcf(x)

Because of inequality (3.3), the two operators M and Mc are essentially

interchangeable, and we will use whichever is more appropriate, depending on

the circumstances. In fact, we can also define a more general maximal function:

Definition 3.3. Let f be a locally integrable function on Rn. The non-

centered Hardy-Littlewood maximal function is defined by:

(3.4) M∗f(x) = sup
x∈Q

∫
Q

|f(y)|dy.

where the supremum is taken over all cubes Q ⊂ Rn with sides parallel to

coordinate axes and containing x.

Again, M∗ is pointwise equivalent to M , so in the following we call M the

Hardy-Littlewood maximal operator.

Now we give a generalization of the maximal function. Let µ be a posi-

tive Borel measure on Rn, finite on compact sets and satisfying the following

doubling condition:

(3.5) µ(2Q) ≤ Cµ(Q)

for every cube Q, with C > 0 indipendent of Q. We say that µ is a doubling

measure.

Definition 3.4. Let µ as above, dµ = w(x)dx, and let f ∈ L1
loc(Rn). The

weighted Hardy-Littlewood maximal function is defined by:

(3.6) Mwf(x) = sup
x∈Q

1

w(Q)

∫
Q

|f(y)|w(y)dy.

where the supremum is taken over all cubes Q ⊂ Rn with sides parallel to

coordinate axes containing x.
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3.2 Weak-type inequalities

We begin recalling the definition of weak-type inequality.

Definition 3.5. Let (X,µ) and (Y, ν) be measure spaces, and let T be an

operator from Lp(X,µ) into the space of measurable functions from Y to C.

We say that T is weak (p, q), q <∞, if

ν({y ∈ Y : |Tf(y)| > λ}) ≤
(
C‖f‖p
λ

)q
,

and we say that it is weak (p,∞) if it is a bounded operator from Lp(X,µ) to

L∞(Y, ν).

We say that T is strong (p, q) if it is bounded from Lp(X,µ) to Lq(Y, ν).

If T is strong (p, q) then it is weak (p, q), in fact if we let Eλ = {y ∈ Y :

|Tf(y)| > λ}, then

ν(Eλ) =

∫
Eλ

dν ≤
∫
Eλ

∣∣∣∣Tf(x)

λ

∣∣∣∣q dν ≤ ‖Tf‖qqλq
≤
(
C‖f‖p
λ

)q
.

When (X,µ) = (Y, ν) and T is the identity, the weak (p, p) inequality is

the classical Chebyshev inequality.

Definition 3.6. Let (X,µ) be a measure space and let f : X −→ C be a

measurable function. We call the function af : (0,∞) −→ [0,∞] , given by

af (x) = µ({x ∈ X : |f(x)| > λ}),

the distribution function of f associated with µ.

Proposition 3.1. Let φ : [0,∞) −→ [0,∞) be differentiable, increasing and

such that φ(0) = 0. Then∫
X

φ(|f(x)|)dµ =

∫ ∞
0

φ′(λ)af (λ)dλ.

To prove the previous equality it is enough to observe that the left-hand

side is equivalent to ∫
X

∫ |f(x)|

0

φ′(λ)dλdµ

and change the order of integration. If, in particular, φ(λ) = λp then

(3.7) ‖f‖pp = p

∫ ∞
0

λp−1af (λ)dλ.
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Since weak inequalities measure the size of the distribution function, rep-

resentation (3.7) of the Lp norm is ideal for proving the following interpolation

theorem, which will let us deduce Lp boundness from weak inequalities. It

applies to a larger class of operators than linear ones (note that maximal

operators are not linear): an operator T from a vector space of measurable

functions to measurable functions is sublinear if

|T (f0 + f1)| ≤ |Tf0|+ |Tf1|,

and

|T (λf)| = |λ||Tf |, ∀λ ∈ C.

Theorem 3.2. (Marcinkiewicz Interpolation) Let (X,µ) and (Y, ν) be

measure spaces, 1 ≤ p0 < p1 ≤ ∞, and let T be a sublinear operator from

Lp0(X,µ) + Lp1(X,µ) to the measurable functions on Y , that is weak (p0, p0)

and weak (p1, p1). Then T is strong (p, p) for p0 < p < p1.

Theorem 3.3. The operator M is weak (1, 1) and strong (p, p), 1 < p ≤ ∞.

It is immediate from the definition that

‖Mf‖∞ ≤ ‖f‖∞,

so by the Theorem 3.2, to prove Theorem 3.3, it will be enough to prove that

M is weak (1, 1). Here we give a proof when n = 1 and to do this we need the

following one-dimensional covering lemma.

Lemma 3.4. Let {Iα}α∈A be a collection of intervals in R and let K be a

compact set contained in their union. Then there exists a finite subcollection

{Tj} such that

K ⊂
⋃
j

Ij and
∑
j

χIj(x) ≤ 2, x ∈ R.

Proof. (of Theorem 3.3, n = 1) Let Eλ = {x ∈ R : Mf(x) > λ}. If x ∈ Eλ
then there exists an interval Ix centered at x such that

1

|Ix|

∫
Ix

|f | > λ.
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Let K ⊂ Eλ be compact. Then K ⊂
⋃
Ix, so by lemma 3.4 there exists a finite

collection {Ij} of intervals such that K ⊂
⋃
j

Ij and
∑
j

χIj ≤ 2. Hence,

|K| ≤
∑
j

|Ij| ≤
∑
j

1

λ

∫
Ij

|f | ≤ 1

λ

∫
R

∑
j

χIj |f | ≤
2

λ
‖f‖1.

Since the previous inequality holds for every compact K ⊂ Eλ, the weak (1, 1)

inequality for M follows immediately.

Note that Lemma 3.4 is not valid in dimensions greater than 1. Theorem

3.3 can be proved in Rn using dyadic maximal function but we don’t investigate

it here.

3.3 Weighted norm inequalities for maximal

operators

A very interesting question in harmonic analysis is what type of weights w

have the property that an operator T is bounded in Lp(w), 1 < p <∞ where

T is bounded in Lp(Rn). An operator T such that is the Hardy-Littlewood

maximal operator, M , in fact we have that M is bounded in Lp(Rn).

Theorem 3.5. For every p, with 1 < p ≤ ∞, there is a constant Cp such that,

for every f ∈ Lp(Rn), we have

‖Mf‖Lp ≤ Cp‖f‖Lp .

Note that M is not bounded in L1(Rn), in fact for f ≥ 0, Mf is not in L1

unless f(x) = 0 for a.e. x, since Mf(x) ≥ C|x|−n for large x, with C > 0 if

f 6= 0.

We have the following very important Theorem about local integrability of

maximal operator.

Theorem 3.6. (Hardy-Littlewood Maximal Theorem) Let f be an integrable

function supported in a cube Q ⊂ Rn. Then Mf ∈ L1(Q) if and only if

f log f ∈ L1(Q).
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The analogous of Theorem 3.5 for weighted maximal operators is the fol-

lowing

Theorem 3.7. Let µ a doubling measure in Rn such that dµ = w(x)dx, then

for every p, with 1 < p < ∞, there is a constant Cp > 0 such that for every

f ∈ Lp(w), we have(∫
Rn

(Mwf(x))pw(x)dx

) 1
p

≤ Cp

(∫
Rn
|f(x)|pw(x)dx

) 1
p

.

Also the Theorem 3.6 can be extended to Mw for a doubling measure µ

such that dµ = w(x)dx.

One of the first important Theorem about weights for which the maximal

operator is bounded in Lp(Rn) is due to Muckenhoupt [M1], he proved the

following:

Theorem 3.8. [M1] Let 1 < p < ∞, then M is a bounded operator in Lp(w)

if and only if w ∈ Ap.

The analogous of Theorem 3.8 in Orlicz Spaces was proved by Kerman and

Torchinsky in [KT].

Theorem 3.9. [KT] Let w ∈ L1
loc(Rn) be a nonnegative weight and let Φ,

Ψ be complementary Young functions verifying ∆2-condition. The following

conditions are equivalent:

i) w(x) ∈ AΦ

ii)
∫

Rn Φ((Mf)(x))w(x)dx ≤ C
∫

Rn Φ(|f(x)|)w(x)dx,

where in ii) C is independent of f .

A generalization of Theorem 3.8 was done by Jawerth [J] in 1986, we have

the following

Theorem 3.10. [J] Let 1 < p <∞, and let w be a weight and set σ = w1−p′,

where 1
p

+ 1
p′

= 1. Then  M : Lp(w) −→ Lp(w)

M : Lp
′
(σ) −→ Lp

′
(σ)
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if and only if 
w ∈ Ap
Mw : Lp

′
(w) −→ Lp

′
(w)

Mσ : Lp(σ) −→ Lp(σ).

It is fundamental the fact that Mw is bounded in Lp(w) for every 1 < p <

∞, if the weight w is doubling (see Theorem 3.7). In particular Mw is bounded

if w is a A∞ weight. The following Theorem due to Perez is a generalization

of the previous results.

Theorem 3.11. [P] The following statements are equivalent.

1. For every 1 < p <∞, and whenever w ∈ Ap

M : Lp(w) −→ Lp(w)

2. For every 1 < p <∞, and whenever w ∈ A∞

Mw : Lp(w) −→ Lp(w).

We have also a weak-type of Theorem 3.8.

Theorem 3.12. For 1 ≤ p <∞, the weak (p,p) inequality

w({x ∈ Rn : Mf(x) > λ}) ≤ C

λp

∫
Rn
|f(x)|pw(x)dx

holds if and only if w ∈ Ap.

Some years later Buckley in [Bu] proved a result which shows how the

operator norms specifically depend from the Ap-constant of w.

Theorem 3.13. [Bu] If w ∈ Ap, then

‖Mf‖pLp(w) ≤ C(p)Ap(w)p
′‖f‖pLp(w)

where p′ is the conjugate exponent of p. The power Ap(w)p
′

is the best possible.

Before proving the Theorem 3.13 we need some preliminary Lemmas.

Lemma 3.14. If f ∈ Lp(w) and fQk ≥ α > 0 for each of the disjoint cubes

{Qk}, then ∑
k

w(Qk) ≤ Ap(w)

(
‖f‖Lp(w)

α

)p
.
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Proof. (of Theorem 3.13) First, we show that for 1 ≤ p <∞,

(3.8) w({Mf > α}) ≤ CAp(w)

(
‖f‖Lp(w)

α

)p
.

Without loss of generality, we assume that f(x) ≥ 0 and that ‖f‖Lp(w) = 1.

Suppose that Mf(x) > α > 0 so that fQk ≥ α for some cube Qk centered at x.

Let Er = {x : |x| < r,Mf(x) > α}. The Besicovich covering Lemma [Be] tells

us that Er can be covered by the union of Nn collections of disjoint cubes, on

each of which the mean value of f is at least α. Choose the collection {Qk},
whose union has maximal w-measure. Thus,

w(Er) ≤ Nnw

(⋃
k

Qk

)
≤ CAp(w)

αp
,

by Lemma 3.14. Letting r −→∞, we get (3.8).

Suppose now that p > 1, if w ∈ Ap then w ∈ Ap−ε by Theorem 1.10,

with comparable norm, where ε ∼ Ap(w)1−p′ , see Lemma 1.11, and trivially

w ∈ Ap+ε, with norm no larger than Ap(w). Applying the Marcinkiewicz

Interpolation Theorem to the corresponding weak-type results at p − ε and

p + ε, we get the strong type result we require with the indicated bound for

the operator norm.

To see that the power Ap(w)p
′

is best possible, we give an example for R

(a similar example works in Rn for any n). Let w(x) = |x|(p−1)(1−δ), so that

Ap(w) ∼ 1
δp−1 . Now, f(x) = |x|−1+δχ[0,1] ∈ Lp(w). It is easy to see that

Mf ≥ f
δ

and so
‖Mf‖pLp(w)

‖f‖pLp(w)

≥ Cδ−p ∼ Apw
p′ .

Buckley result can be rewritten also as follows:

‖Mf‖Lp(w) ≤ C ′(p)Ap(w)
p′
p ‖f‖Lp(w).

Note that Ap(w)
p′
p cannot be replaced by ϕ(Ap(w)

p′
p ) for any function ϕ :

R+ −→ R+ that grows slower than p′

p
-th power. This can be easily seen by

using power functions and power weights. Taking w ≡ 1 we see that the

constants C(p) must blow up as p→ 1.

43



Buckley [Bu] also showed that the Hilbert transform is bounded on Lp(w)

with an operator norm which is at most a multiple ofAp(w)α, where max{1, p′
p
} ≤

α ≤ p′. In particular, for p = 2 he showed that the dependence on A2(w) was

at least linear, and at most quadratic.

Recently there has been renewed interest in computing the exact depen-

dence of the operator norms from Ap(w). Sharp linear dependence on A2(w)

was obtained by Hukovic, Treil and Volberg [Hu], [HTV] for the dyadic square

function on L2(w) and for the martingale transform. Analogous results were

recently obtained for the Beurling transform by Petermichl and Volberg [PV],

and latter by Dragic̆ević and Volberg [DV]. Petermichl and Pott [PP] showed

that α ≤ 3
2

for the Hilbert transform. Petermichl [Pe] improved this estimate

to α = 1 when p ≥ 2.

All of the previous results can be summarized in the following Theorem

contained in [DGPP].

Theorem 3.15. [DGPP] Let T be any of the Hilbert transform, the Beurling

transform, the martingale transform, or the dyadic square function. Then for

any 1 < p <∞ there exist positive constants C(p) such that for all weights w

in Ap we have

‖T‖Lp(w) ≤ C(p)Aαp (w),

where α = max{1, p′
p
}. The exponent α in this estimate is sharp for the Hilbert,

Beurling and martingale transforms for all 1 < p <∞. For the dyadic square

function the exponent is sharp for 1 < p ≤ 2.

In 2006 Theorem 3.15 was extended to Riesz transforms by Petermichl

[Pe2].

Now we report some others characterizations of weighted integral inequal-

ities for the Maximal Operator by mean of Gehring condition (see definition

1.2).

Lemma 3.16. [P] Let 1 < p <∞. The following statements are equivalent.

1. There is a constant c > 0, indipendent of B, such that for every nonneg-

ative locally integrable function f

(3.9)
1

w(Q)

∫
Q

f(y)w(y)dy ≤ c

(
1

|Q|

∫
Q

f(y)pdy

) 1
p
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2. w ∈ Gp′, with 1
p

+ 1
p′

= 1.

Proof. If we put f = w
p′
p in (3.9) we get that w ∈ Gp′ . Conversely (3.9) follows

from 2. by Hölder’s inequality:

1

w(Q)

∫
Q

f(y)w(y) ≤ 1

w(Q)

(∫
Q

f(y)pdy

) 1
p
(∫

Q

w(y)p
′
dy

) 1
p′

=

=
|Q|
w(Q)

(∫
Q

f(y)pdy

) 1
p
(∫

Q

w(y)p
′
dy

) 1
p′

≤ c

(∫
Q

f(y)pdy

) 1
p

.

Theorem 3.17. [P] Let 1 < p <∞. Then Mw : Lp(Rn) −→ Lp(Rn)

Mw : Lp
′
(wp

′
) −→ Lp

′
(wp

′
)

if and only if 
w ∈ Gp′

M : Lp
′
(Rn) −→ Lp

′
(Rn)

Mwp′ : Lp(wp
′
) −→ Lp(wp

′
).

Proof. We prove in particular that w ∈ Gp′ =⇒ Mw : Lp(Rn) −→ Lp(Rn).

Suppose that w ∈ Gp′ , by Gehring Theorem we know that w ∈ G(p−ε)′ , for

some ε > 0. Then by Lemma 3.16 we have

1

w(Q)

∫
Q

f(y)w(y)dy ≤ c

(
1

|Q|

∫
Q

f(y)p−εdy

) 1
p−ε

and so ∫
Rn
Mwf(y)pdy ≤

∫
Rn

(M(fp−ε(y)))
p
p−εdy ≤ c

∫
Rn
f(y)pdy

and Mw is bounded in Lp(Rn).

45



Chapter 4

BMO-Space

In this chapter we will examine some properties related to the space of functions

of Bounded Mean Oscillation, BMO, introduced by John and Nirenberg [JN] in

1961. This space has become extremely important in various areas of analysis

including harmonic analysis, PDEs and function theory. BMO-Spaces are also

of interest since, in the scale of Lebesgue Spaces, they may be considered

an appropriate substitute for L∞. Appropriate in the sense that are spaces

preserved by a wide class of important operators such as the Hardy-Littlewood

maximal function, the Hilbert transform and which can be used as an end point

in interpolating Lp spaces.

4.1 Definitions and notations

We begin with some notations. If Ω ⊂ Rn is any measurable set of finite

positive measure |Ω| and f is an integrable function, let us recall that fΩ =
1

|Ω|

∫
Ω

fdx =

∫
Ω

fdx indicates the integral mean of f over Ω.

Definition 4.1. If f ∈ L1
loc(Rn) , the sharp maximal function f ] of f is defined

by

f ](x) = sup
x∈Q

∫
Q

|f(y)− fQ| dy,

where the supremum is taken over all cubes Q containing x .

The sharp function f ] measures locally, at the point x, the average oscilla-

tion of f from its mean value over cubes containing x.
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The sharp maximal operator f −→ f ] is an analogue of the Hardy-Littlewood

maximal operator M , but it has certain advantages over it. Of course, f ](x) ≤
2Mf(x). Note that in the definition of f ](x) one can take only those cubes Q

containing x in its interior.

If f is such that f ] is bounded, we say that f is a function of bounded

mean oscillation, and we denote by the initials BMO the space formed by

these functions.

Definition 4.2. A real valued locally integrable function f on Rn has bounded

mean oscillation, f ∈ BMO(Rn) if

(4.1) sup
Q

∫
Q

|f − fQ| dx = ‖f‖∗ <∞

where the supremum runs over all cubes Q ⊂ Rn with sides parallel to the

coordinate axes. And also

BMO(Rn) = {f ∈ L1
locRn : f ] ∈ L∞}.

Endowed with the norm given in (4.1), BMO becomes a Banach space

provided we identify functions which differ a.e. by constant; clearly, ‖f‖∗ = 0

for f(x) = c a.e. in Rn.

Remark 4.1. Note that L∞(Rn) is contained in BMO(Rn) and we have

‖f‖∗ ≤ 2‖f‖∞

Moreover BMO contains unbounded functions, in fact the function log |x| on

R, is in BMO but it is not bounded, so L∞(Rn) ⊂ BMO(Rn).

Now we sketch the proof of the fact that log |x| is in BMO(R).

Let I = (a, b) ⊂ R. We show for an appropriate choice of CI ,

(4.2)

∫
I

| log |x| − CI | dx ≤ 1,

which in turn implies that ‖ log | · |‖∗ ≤ 2.

To prove (4.2) we consider three cases:

i) 0 < a < b

ii) −b < a < b

47



iii) the rest

In the case i), we pick CI = log b and note that∫
I

| log |x| − log b| dx =

∫
(a,b)

(log b− log x) dx =

=

∫
(a,b)

log b dx−
∫

(a,b)

log x dx = (b− a)− a(log b− log a).

Therefore, ∫
I

| log |x| − log b| dx = 1− a log b− log a

b− a
,

and (4.2) follows since 0 < a < b.

In the case ii) we may restrict ourselves to −b < a < 0 < b. Again pick

CI = log b and note that∫
I

| log |x|−log b| dx =

∫
(a,−a)

| log |x|−log b| dx+

∫
(−a,b)

(log b−log x) dx = W+K.

From the above computation we have

K = (b+ a) + a(log b− log(−a)).

To compute W we observe that the integrand is an even function, so

W = 2 lim
ε→0+

∫
(ε,−a)

(log b− log x) dx = 2(−a log b+ a log(−a)− a).

Thus

W +K = (b− a) + a(log b− log(−a))

and so ∫
I

| log |x| − log b| dx = 1− (−a)
(log b− log(−a))

b+ a

b+ a

b− a
.

Since −b < a < 0 < b also in this case (4.2) follows.

The remaining cases can be reduced to either i) or ii) since we are dealing

with an even function.

Now we give an example of function that does not belong to BMO.

Example 4.1. Let us show that the function g(x) = sign (x) log 1
|x| does not

belong to BMO([−1, 1]). Indeed, for 0 < h < 1 and I ≡ [−h, h] we have

gI = 0 and∫
I

|g(y)− gI | dy =
1

2h

∫ h

−h

∣∣∣∣log
1

|x|

∣∣∣∣ dx =
1

h

∫ h

0

log
1

x
dx = 1 + log

1

h

h→0−→∞

This example shows that if the absolute value of a function belongs to the

BMO-class, this does not imply that the function itself is a BMO-function.
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We shall give a result which provide many example of BMO functions.

Theorem 4.1. [GR] If w is an A1 weight (see definition 1.3), then logw ∈
BMO with a norm depending only on the A1(w).

4.2 Estimates of rearrangements of the BMO-

functions

The aim of the present section is to show that the non-increasing rearrangement

f ∗ of a BMO-function f is also a BMO-function. The importance of the

equimeasurable rearrangements of functions comes from the fact that in certain

cases they preserve the properties of the original functions and in the same time

have a simpler form. Let us give the definitions.

Definition 4.3. The non-increasing rearrangement of the function f is a

non-increasing function f ∗ such that it is equimeasurable with |f |, i.e., for all

y > 0 they have the same distribution function (see Definition 3.6)

af∗(y) = |{x ∈ [0, |E|] : f ∗(x) > y}| = |{t ∈ E : f ∗(t) > y}| = af (y)

for any measurable set E ⊂ Rn.

This property does not define the non-increasing rearrangement uniquely:

it can take different values at points of discontinuity (the set of such points is

at most countable). For definiteness let us assume in addition that the function

f ∗ is continuous from the left on (0, |E|]. The relation between the distribution

function and the non-increasing rearrangement is given by the following

equality:

f ∗(x) = inf{y > 0 : af (y) < x}, 0 < x < |E|.

This formula shows that in a certain sense the non-increasing rearrange-

ment is the inverse function to the distribution function.

An equivalent definition of the non-increasing rearrangement can be written

in the following way:

f ∗(x) = sup
D⊂E, |D|=x

inf
y∈D
|f(y)|, 0 < x < |E|
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Sometimes instead of the non-increasing rearrangement it is more conve-

nient to use the non-decreasing rearrangement. For the function f , mea-

surable on the set E ⊂ Rn, the non-decreasing rearrangement is defined via

the following equality:

f∗(x) = inf
D⊂E, |D|=x

sup
y∈D
|f(y)|, 0 < x < |E|.

The function f∗ is non-negative, it is equimeasurable with |f | on E and it

is non-decreasing on [0, |E|). The connection between the non-increasing and

non-decreasing rearrangements is given by the equality

f∗(x) = f ∗(|E| − x)

which holds true at every point of continuity, i.e. almost everywhere on (0, |E|).
The equimeasurability of functions f ∗, f∗ and |f | implies that∫ |E|

0

ϕ(f ∗(u)) du =

∫ |E|
0

ϕ(f∗(u)) du =

∫
E

ϕ(|f(x)|) dx

The most important properties of the equimeasurable rearrangements f ∗

and f∗ follow directly from their definition and consist in the identities:

sup
D⊂E, |D|=x

∫
D

|f(y)| dy =

∫ x

0

f ∗(u) du, 0 < x < |E|

inf
D⊂E, |D|=x

∫
D

|f(y)| dy =

∫ x

0

f∗(u) du, 0 < x < |E|.

Often it is useful to consider the following functions

f ∗∗(t) =
1

t

∫ t

0

f ∗(u) du, f∗∗(t) =
1

t

∫ t

0

f∗(u) du, t > 0.

Theorem 4.2. [BDS] Let f ∈ BMO(Rn), then

f ∗∗(x)− f ∗(x) ≤ 2n+4‖f‖∗, 0 < x <∞.

In particular, from Theorem 4.2 it follows that the rearrangement operator

is bounded in BMO.

The following Theorem shows that the non-increasing rearrangement f ∗ of

a BMO-function f is also a BMO-function.
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Theorem 4.3. ( (n = 1), [GRo]; (n ≥ 1), [BDS]) Let f ∈ BMO(Rn). Then

f ∗ ∈ BMO([0,∞)) and

‖f ∗‖∗ ≤ C‖f‖∗ ,

where the constant C depends only on the dimension n of the space (one can

take C = 2n+5).

4.3 The John-Nirenberg inequality

We know that BMO functions are not necessarily bounded, so a natural ques-

tion is “how large they can be?”. Let us consider again the function log |x|.
Fix (0, b) = I ⊂ R and consider those x ∈ I where log |x| is large, i.e., consider

the set

Eλ = {x ∈ I : | log |x| − CI | > λ}, λ > 0,

where CI = (log | · |)I . We are interested in Eλ for large values of λ. We can

write Eλ as the sum of two sets:

Eλ = {x ∈ I : x > eλ+CI} ∪ {x ∈ I : x < e−λ+CI}.

If λ is large the first set is empty and so for λ big enough we get:

|Eλ| ≤ |{x ∈ I : x < e−λ+CI}| = e−λeCI .

Now by Jensen inequality

eCI ≤
∫
I

elog x dx =
|I|
2

and consequently

|Eλ| ≤
|I|
2
e−λ.

The remarkable fact is that a similar estimate holds for arbitrary f ∈ BMO

and I ⊂ R. More precisely we have

Theorem 4.4. (John-Nirenberg, [JN]) There exist constants C1, C2, de-

pending only on the dimension n, such that for every f ∈ BMO(Rn) and

every cube Q ⊂ Rn

(4.3) |{x ∈ Q : |f(x)− fQ| > λ}| ≤ C1 |Q| e−( C2λ
‖f‖∗ ), λ > 0.
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In the previous important Theorem the authors showed that the distri-

bution function, corresponding to a function of bounded mean oscillation, is

exponentially decreasing.

Remark 4.2. In terms of equimeasurable rearrangements inequality 4.3 can

be rewritten in the following form:

(4.4) (f − fQ)∗(x) =
‖f‖∗
C2

log
C1|Q|
x

, 0 < x ≤ |Q|.

So, if f ∈ BMO, then its equimeasurable rearrangement do not grow faster

than the logarithmic function as the argument tends to zero.

Remark 4.3. In a certain sense the John-Nirenberg theorem is invertible.

Namely, if f is a locally summable on Rn function such that for any cube

Q ⊂ Rn

(4.5) |{x ∈ Q : |f(x)− fQ| > λ}| ≤ C1|Q| e−C2λ, λ > 0

where the constants C1 and C2 do not depend on Q, then we want to prove

that f ∈ BMO(Rn).

Indeed, let us rewrite (4.5) in the form

(f − fQ)∗(x) ≤ 1

C2

log
C1|Q|
x

, 0 < x ≤ |Q|.

Then

1

|Q|

∫
Q

|f(x)− fQ| dx =
1

|Q|

∫ |Q|
0

(f − fQ)∗(y)dy ≤ 1

C2

1

|Q|

∫ |Q|
0

log
C1|Q|
y

dy =

=
1

C2

∫ 1

0

log
C1

u
du =

1

C2

(1 + logC1)

Taking the supremum over all cubes Q ⊂ Rn, we obtain

‖f‖∗ ≤
1

C2

(1 + logC1).

The John-Nirenberg theorem implies the following

Corollary 4.5. If f ∈ BMO(Rn), then f ∈ Lploc(Rn), for any p <∞.

52



Proof. It is enough to prove that f − fQ ∈ Lp(Q) for any cube Q ∈ Rn. The

John-Nirenberg inequality in the form 4.4 yields∫
Q

|f − fQ|pdx =

∫ |Q|
0

(f − fQ)∗(t) dt ≤

≤
(
‖f‖∗
C2

)p ∫ |Q|
0

logp
(
C1|Q|
t

)
dt =

=

(
‖f‖∗
C2

)p
|Q|C1

∫ 1
C1

0

logp
(

1

u

)
du <∞.

Corollary 4.6. Let f ∈ L1
loc(Rn) verify (4.3), then for λ > ‖f‖∗

C2
and for any

cube Q, ∫
Q

e
|f(x)−fQ|

λ dx ≤ C1

(C2
λ
‖f‖∗ )− 1

.

In [GJ] Garnett and Jones gave upper and lower bounds for the distance

distBMO(f, L∞) = inf
g∈L∞

‖f − g‖∗

by mean of the quantity

(4.6) ε(f) = inf{λ > 0 : sup
Q

∫
Q
e
|f−fQ|

λ dx <∞}.

Theorem 4.7. [GJ] If f ∈ L1
loc(Rn) then

(4.7) k1 ε(f) ≤ distBMO(f, L∞) ≤ k2 ε(f)

where k1, k2 are constants depending only on the dimension.

Let p(f) = inf{p > 1 : ef , e−f ∈ Ap}, ∀f ∈ L1
loc(Rn), the following Lemma

gives an important relation between Ap and BMO functions.

Lemma 4.8. [GJ] If f ∈ L1
loc(Rn) and p(f) 6=∞, then f ∈ BMO(Rn) and

p(f)− 1 = ε(f).

We now digress for a second to mention a parallel result to Theorem 4.7

in which BMO is replaced by EXP, the space of exponentially integrable func-

tions.
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Let Ω be a measurable set with finite measure |Ω|. We denote by EXP=EXP(Ω)

the set of functions g : Ω −→ R such that there exists λ > 0 for which∫
Ω

e|g|/λ dx <∞

equipped with the norm

(4.8) ‖g‖EXP (Ω) = inf

{
λ > 0 :

∫
Ω

e|g|/λ dx ≤ 2

}
.

Theorem 4.9. ([FLS], [CS]) For every g ∈ EXP (Ω) we have

distEXP (g, L∞) = inf

{
λ > 0 :

∫
Ω

e|g|/λ dx <∞
}

where the distance is evalued with respect to norm 4.8.

4.4 The one dimensional case

In the first part of this section we report John-Nirenberg inequality in the one

dimensional case giving optimal constants. In the second part we show the

connection between Ap-class and BMO.

In [Kor] Korenovskii improves the John-Nirenberg Theorem getting the

exact exponent in the inequality 4.3 for the one-dimensional case.

Theorem 4.10. [Kor] Let f ∈ BMO(R). Then for any interval I and for

any λ > 0

1

|I|
|{x ∈ I : |f(x)− fI | > λ}| ≤ e1+ 2

e exp

(
−2λ

e‖f‖∗

)
.

The constant (2/e) in the exponent cannot be increased.

It is well known that a locally integrable function f belongs to BMO(R)

if and only if there exists λ > 0 such that

(4.9) s(f, λ) = sup
I

∫
I

e
|f−fI |
λ dx <∞

The following Proposition, whose proof is contained in [T], illustrates the con-

nection among A2 and BMO.
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Proposition 4.11. [T] A locally integrable function f belongs to BMO(R) if

and only if there exists λ > 0 such that A2

(
e
f
λ

)
<∞. Actually, for any λ > 0

the following inequalities hold:

(4.10)
1

2
s(f, λ) ≤ A2(e

f
λ ) ≤ s(f, λ)2

Now we are able to prove the following Proposition (exercise in [Ga]).

Proposition 4.12. If f ∈ BMO(R) and s(f, λ) <∞, then there exists ε > 0

such that

s

(
f,

λ

1 + ε

)
<∞.

Proof. If f ∈ BMO then there exists λ > 0 such that A2(e
f
λ ) < ∞ (Proposi-

tion 4.11). So if we put, in Theorem 1.30, w = e
f
λ and τ = 1 + ε we have

wτ = e(1+ε) f
λ ∈ A2

and

A2

e(1 + ε)
f

λ


1

2(1 + ε)
≤ (1 + ε)A

A− (1 + ε)2(A− 1)

Now by (4.10) we have

1

2
s

(
f,

λ

1 + ε

)
≤ A2

e(1 + ε)f

λ

 ≤ s

(
f,

λ

1 + ε

)2

and then

s

(
f,

λ

1 + ε

)
<∞

that completes the proof.

Now let us consider the following set

(4.11) If = {λ > 0 : A2(e
f
λ ) <∞}

and describe its properties.

Proposition 4.13. [AS] The function f belongs to BMO if and only if If is

a non empty set. If we define

ε(f) = inf If
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then

(4.12) If = (ε(f),∞)

and

(4.13) ε(f) ≤ e

2
‖f‖∗.

Proof. Condition A2(ef/λ) <∞ is equivalent to

(4.14) s(f, λ) = sup
I

∫
I

e
|f−fI |
λ dx <∞

where the supremum is taken with respect to all intervals I ⊂ R. Actually, for

λ > 0 the following inequalities hold (see (4.10))

(4.15)
1

2
s(f, λ) ≤ A2(ef/λ) ≤ s(f, λ)2.

Then it is obvious that

λ0 ∈ If , λ1 > λ0 =⇒ λ1 ∈ If .

Moreover, due to the Theorem 1.30 the set If does not contain its infimum

ε(f). This means that (4.12) holds true. To establish (4.13) we repeat a

standard argument ([GR]) invoking Theorem 4.10∫
I

e|f−fI |/λ =

∫ ∞
0

et/λ

λ
|{x ∈ I : |f(x)− fI | > t}| dt ≤

≤
∫ ∞

0

et/λ

λ
e(1 + 2/e) e−(2/e‖f‖∗) t |I| dt =

= |I| e
(1 + 2/e)

λ

∫ ∞
0

e( 1
λ
− 2/e‖f‖∗) t dt = |I| e

(1 + 2/e)

λ

(
2

e‖f‖∗
− 1

λ

)−1

if λ > e
2
‖f‖∗.

Corollary 4.14. [AS] For any f ∈ BMO(R)

(4.16) ε(f) ≤ e

2
dist(f, L∞).
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Proof. It is easy to check that for g ∈ L∞

ε(f) = ε(f − g).

Then, using (4.13) we obtain

ε(f) ≤ e

2
‖f − g‖∗

for any g ∈ L∞. This immediately implies (4.16).

More precisely, we obtain another representation for ε(f).

Theorem 4.15. [AS] For any f ∈ BMO

(4.17) ε(f) = inf

{
λ

√
A2(ef/λ)− 1

A2(ef/λ)
: λ ∈ If

}
.

Proof. By Theorem 1.30 we deduce that, if A2(ef ) = A <∞, then

(4.18) ε(f) ≤
√
A− 1

A
.

In fact, for ω = ef and λ >
√

A−1
A

, we deduce A2(ω
1
λ ) < ∞. Hence the

inclusion (√
A− 1

A
,∞

)
⊂ If

holds and this implies (4.18).

Moreover, by applying this observation with f/λ in place of f and using the

following property of the functional ε(f):

ε(µf) = µ ε(f) for µ > 0,

we deduce, for λ ∈ If
1

λ
ε(f) ≤

√
A2(ef/λ)− 1

A2(ef/λ)
,

hence

ε(f) ≤ inf

{
λ

√
A2(ef/λ)− 1

A2(ef/λ)
: λ ∈ If

}
.

To get the inequality (4.17) it is sufficient to observe that

inf

{
λ

√
A2(ef/λ)− 1

A2(ef/λ)
: λ ∈ If

}
≤ inf{λ : λ ∈ If} = ε(f).
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Corollary 4.16. [AS] For any f ∈ BMO, we have

(4.19) 0 ≤ ε(f) ≤ 1;

moreover

(4.20) ε(f) < 1

if and only if

A2(ef ) <∞.

Proof. Let us introduce, as in [GJ] and in [T], for f ∈ BMO

p(f) = inf{p > 1 : Ap(e
±f ) <∞},

then by Lemma 4.8 one has

p(f) = ε(f) + 1 ≤ 2.

Hence (4.19) holds true.

From (4.18) we deduce that if A2(ef ) <∞, then

ε(f) ≤
√
A− 1

A
< 1.

Conversely, if ε(f) < 1, there exists λ0 < 1 such that

A2(ef/λ0) <∞.

In view of (4.14), (4.15) we obtain

s(f, λ0) <∞

and therefore s(f, 1) <∞, which in turns implies A2(ef ) <∞.

4.5 Explicit bounds for the norm of composi-

tion operators acting on BMO(R)

In this section we improve a recent result of Gotoh [Go] who establishes a pre-

cise relation among constants in the P. W. Jones [Jo] Theorem about home-

omorphisms of the line preserving BMO. We give also an explicit bound for

the distance to L∞ after composition (see [ACS]).
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Let h : R −→ R be an increasing homeomorphism. In the recent paper

[Go], the relation between the norm of the operator

U : f ∈ BMO −→ f ◦ h−1 ∈ BMO

and the A∞-constants α,K of ω = h′ according to Proposition 1.2 , was

determined.

Theorem 4.17. [Go] Let h : R −→ R be an increasing homeomorphism, if h′

verifies
|I|
|J |
≤ K

(∫
I
h′ dx∫

J
h′ dx

)α
for any interval J ⊂ R and for each measurable set I ⊂ J , where K ≥ 1 ≥
α > 0, then

(4.21) ‖f ◦ h−1‖∗ ≤ C
K

α

where C > 0 is some universal constant.

The following Theorem gives an important relation betweenA∞ andBMO(R)

that we need in the following.

Theorem 4.18. [Jo] The following conditions are equivalent

i) There exists c ≥ 1 such that

‖f ◦ h−1‖∗ ≤ c‖f‖∗

for any f ∈ BMO(R);

ii) h′ ∈ A∞;

iii) (h−1)′ ∈ A∞.

In the following Theorem we identify the constant C in (4.21).

Theorem 4.19. [ACS] Let h be an increasing homeomorphism from R into

itself and assume that ω = h′ verifies the A∞ condition:

(4.22)

∫
E
ω dx∫

I
ω dx

≤ K

(
|E|
|I|

)α

59



for any interval I ⊂ R and for each measurable set E ⊂ I, where

K ≥ 1 ≥ α > 0. Then

(4.23) ‖f ◦ h−1‖∗ ≤
K

α
e2+ 2

e‖f‖∗

for any f ∈ BMO(R).

Proof. Following [Go], we fix the interval I and set I ′ = h(I). It is worth

noting that assumption (4.22) for ω = h′ reads as

(4.24)
|h(E)|
|h(I)|

≤ K

(
|E|
|I|

)α
for E measurable, E ⊂ I. Fix f ∈ BMO and set g = f ◦ h−1. By the

John-Nirenberg Theorem, see Theorem 4.10, if we define for t > 0

Et = {x ∈ I : |f(x)− fI | > t}

we have

(4.25)
|Et|
|I|
≤ e

1 +
2

e · e
− 2t

e‖f‖∗ .

On the other hand, let I ′ be an interval of R, if we set

µ(t) = |{y ∈ I ′ : |g(y)− fI | > t}|

we have, by (4.24) and (4.25),

(4.26) µ(t) = |h(Et)| ≤ |h(I)| ·K

e1 +
2

e · e
− 2t

e‖f‖∗


α

.

By well known inequalities and identities from measure theory:

(4.27)

∫
I′
|g − gI′ | ≤ 2

∫
I′
|g − fI | =

2

|I ′|

∫ ∞
0

µ(t) dt

and by the simple calculations induced by (4.26)∫ ∞
0

µ(t) dt ≤ |I ′| ·Ke(1+ 2
e

)α e

2α
‖f‖∗

we arrive at the estimate∫
I′
|g − gI′ | ≤

K

α
e(2+ 2

e
)‖f‖∗.

Taking supremum with respect to the intervals, we obtain (4.23).
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Now our aim is to give an explicit bound for the distance to L∞ after

composition. Let us begin with the following Lemma which is in the same

spirit as Theorem 2.7 in [JN1].

Lemma 4.20. [ACS] Let h : R −→ R be a homeomorphism such that (h−1)′ ∈
Ap, 1 < p < ∞. Let ω be a weight on R and set A2(ω) = A; then, for

0 ≤ σ < 1
p

√
A
A−1

we have

(4.28) A2(ωσ ◦ h−1)
1
2 ≤

[
Ap(h

−1)′
] 1
p

[
σpA

A− σ2p2(A− 1)

]σ
.

The inequality is sharp.

Proof. We will use Theorem 1.30 which describes the so called optimal “self-

improvement of exponents” property of the A2 class. Let σ to be determined

later and set

L =

∫
I

(ω ◦ h−1(x))σ dx

∫
I

1

(ω ◦ h−1(x))σ
dx.

We make the change of variables t = h−1(x), h−1(I) = J in the first integral:

1

|I|

∫
I

ωσ ◦ h−1(x) dx =
1

|I|

∫
J

ωσ(t)

(h−1)′(h(t))
dt ≤

by Hölder’s inequality

≤
(

1

|I|

∫
J

ωσp(t)dt

) 1
p
(

1

|I|

∫
J

1

[(h−1)′(h(t))]p′

) 1
p′

.

We change back to the x variable into the last integral, obtaining

1

|I|

∫
J

1

[(h−1)′(h(t))]p′
dt =

1

|I|

∫
I

[(h−1)′(x)]1−p
′
dx

hence, taking into account that
|I|
|J |

=

∫
I

(h−1)′,

1

|I|

∫
I

ωσ ◦ h−1(x) dx ≤
[
|J |
|I|

] 1
p
(∫

J

ωσp(t)dt

) 1
p
(∫

I

(h−1)′(1−p
′)(x) dx

) 1
p′

≤

≤
(∫

J

ωσp(t)dt

) 1
p [
Ap(h

−1)′
] 1
p .

Similarly, the second factor in L can be majorized as follows∫
I

(ωσ ◦ h−1(x))−σ dx ≤
(∫

J

ω−σp(t)dt

) 1
p [
Ap(h

−1)′
] 1
p
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and hence

L ≤
[∫

J

ωσp
∫
J

ω−σp
] 1
p [
Ap(h

−1)′
] 2
p .

Taking supremum with respect to J , we obtain

L ≤ [A2(ωσp)]
1
p
[
Ap((h

−1)′)
] 2
p

and, finally, taking supremum with respect to I on L

A2(ωσ ◦ h−1) ≤ [A2(ωσp)]
1
p
[
Ap((h

−1)′)
] 2
p .

We now choose σ. From Theorem 1.30 it follows that, if τ = σp <
√

A
A−1

, then

A2(ωσp) <∞. Then, we choose σ < 1
p

√
A
A−1

and (1.30) gives

[A2(ωσp)]
1
p ≤

[
σpA

A− σ2p2(A− 1)

]2σ

.

It remains to show that the inequality (4.28) is sharp. This is a consequence

of the choice h(t) = t which reduces (4.28) to the form

A2(ωσp)1/σp ≤ σpA

A− σ2p2(A− 1)
.

which agrees with the sharp implication in Theorem 1.30.

Let us now consider the functional ε(f) = inf If where f ∈ BMO and If

is defined by (4.11). From Proposition 4.13 and Theorem 4.7 we know that f

belongs to BMO if and only if If is not empty and that ε(f) is equivalent to

the distance functional

dist(f, L∞) = inf
g∈L∞

‖f − g‖∗.

Let us prove the following:

Theorem 4.21. [ACS] Let h : R −→ R be an increasing homeomorphism such

that (h−1)′ belongs to the Ap-class. Then for any f ∈ BMO(R)

(4.29) ε(f ◦ h−1) ≤ p ε(f).

Moreover, there exists an equivalent norm ‖ · ‖′∗ on BMO such that

(4.30) dist ′(f ◦ h−1, L∞) ≤ p dist ′(f, L∞).
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Proof. Fix λ ∈ If and set Aλ = A2(ef/λ). Let us prove that

(4.31) ε(f ◦ h−1) ≤ λ p

√
Aλ − 1

Aλ
.

By previous lemma, with ω = ef/λ we deduce that for 0 ≤ σ < 1
p

√
Aλ
Aλ−1

one

has

A2

eσf ◦ h
−1

λ

 <∞.

In other words, for µ > λ p
√

Aλ−1
Aλ

, µ belongs to the set If◦h−1 and this

immediately implies (4.31).

Let us recall that actually (see Theorem 4.15)

ε(f) = inf{λ
√
Aλ − 1

Aλ
: λ ∈ If}.

Then by (4.31) we get (4.29).

Let us note that if h is an increasing homeomorphism such that

(h−1)′ ∈ A1 and also h′ ∈ A1, then inequality (4.29) reduces to the optimal

identity

ε(f ◦ h−1) = ε(f)

for any f ∈ BMO. In this sense our result is sharp. In fact we benefit of the

coupled inequality to (4.29)

ε(g ◦ h) ≤ p ε(g)

for any g ∈ BMO and for any p > 1. Passing to the limit in both inequalities

we obtain the stated identity.

Now let us observe that, since (h−1)′ belongs to Ap, in particular it belongs

to A∞ and then by Theorem 4.18 there exists c > 0 such that

(4.32) ‖f ◦ h−1‖∗ ≤ c ‖f‖∗

for any f ∈ BMO. Now it is a routine matter to see that

(4.33) dist(f ◦ h−1, L∞) ≤ c dist(f, L∞)

with the same constant c than in (4.32), for any f ∈ BMO. To this end, we

note that for any f, g ∈ BMO (4.32) implies that

(4.34) ‖f ◦ h−1 − g ◦ h−1‖∗ ≤ c ‖f − g‖∗.
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If we restrict ourselves to g ∈ L∞ by (4.34) we deduce

(4.35) dist(f ◦ h−1, L∞) ≤ ‖f ◦ h−1 − g ◦ h−1‖∗.

In view of (4.34),(4.35) we conclude with (4.33). By mean of Theorem 4.7 and

Theorem 4.10 we deduce the inequality

ε(f ◦ h−1) ≤ c k2
e

2
ε(f)

which is largely less precise than (4.29).

To prove (4.30) remember ([Ga], p. 258) that, if H denotes the Hilbert

transform:

Hg(x) =
1

π

∫ +∞

−∞

g(y)

x− y
dy,

and ϕ ∈ BMO, then ϕ = f + Hg + α with f ∈ L∞, g ∈ L∞ and α constant,

and

(4.36) ‖ϕ‖′∗ = inf{‖f‖∞ + ‖g‖∞ : ϕ = f +Hg + α}

defines a norm on BMO equivalent to ‖ϕ‖∗. Now if we set

dist ′(ϕ,L∞) = inf
ψ∈L∞

‖ϕ− ψ‖′∗

the identity

(4.37) dist ′(ϕ,L∞) =
π

2
ε(ϕ)

holds for any ϕ ∈ BMO ([Ga], Corollary 6.6). If we equipe BMO with the

norm (4.36) in view of (4.29), (4.30) holds.
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4.6 BMOR-Space and the class AR
p

In this section we will introduce the BMOR-Space and the class ARp , where

in the definitions cubes are replaced by rectangles. We will focus attention on

the connections between AR2 -class and BMOR.

Let us begin with some definitions.

Definition 4.4. A non negative measurable function w on the space Rn satis-

fies the ARp -condition, 1 < p <∞ if there exists a constant A ≥ 1 such that,

for any rectangle R ⊂ Rn with sides parallel to the coordinate axes, one has

(4.38)

∫
R

wdx

(∫
R

w−
1
p−1dx

)p−1

≤ A

We call the ARp -constant of w as

(4.39) Ap(w) = sup
R

∫
R

wdx

(∫
R

w−
1
p−1dx

)p−1

, 1 < p <∞

where the supremum is taken over all rectangles R ⊂ Rn with sides parallel to

the coordinate axes.

Definition 4.5. Let f ∈ L1
loc(Rn), then f ∈ BMOR(Rn) if

(4.40) sup
R

∫
R

|f − fR| dx = ‖f‖∗,R <∞

where the supremum runs over all rectangles R ⊂ Rn with sides parallel to the

coordinate axes.

Note that in the multidimensional case the problem of finding the upper

bound of C2 constant in the John-Nirenberg inequality 4.3 is still open. If,

instead, we consider the space BMOR, the maximal value of the constant C2

in John-Nirenberg inequality is equal to
2

e
, as in the one-dimensional case.

Namely,

Theorem 4.22. [Kor] Let f ∈ BMOR(Rn). Then for every rectangle R ⊂ Rn

(4.41) |{x ∈ Q : |f(x)− fR| > λ}| ≤ e1+ 2
e |R| e

−
(

2
e λ

‖f‖∗,R

)
, λ > 0.

The following proposition gives the exact estimate of the equimeasurable

rearrangements of functions satisfying the inverse Jensen inequality respect to

rectangles of Rn.
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Proposition 4.23. [Kor] Let φ be the class of all positive convex downwards

functions ϕ on (0,+∞) and let R0 a fixed rectangle of Rn. Let f be a non-

negative function on R0 satisfying the inverse Jensen inequality

(4.42)

∫
R0

ϕ(f(x))dx ≤ A ϕ

(∫
R0

f(x)dx

)
with A > 1. Then for any interval I ⊂ [0, µ(Ro)]

(4.43)

∫
I

ϕ(f∗(t))dt ≤ A ϕ

(∫
I

(f∗(t))dt

)

(4.44)

∫
I

ϕ(f ∗(t))dt ≤ A ϕ

(∫
I

(f ∗(t))dt

)
with the same constant A > 1 as in condition (4.42).

Since for ϕ(u) = u−
1
p−1 (p > 1) the inverse Jensen inequality becomes the

Muckenhoupt condition also for the equimeasurable rearrangements of f , we

have:

(4.45) ARp [f ∗] ≤ A ARp [f∗] ≤ A

Note that Bojarski, Sbordone and Wik ([BSW]) proved that inequalities

(4.45) with p = 1 are not true for cubes in Rn, but are true in the one dimen-

sional case.

Theorem 4.24. [Kor] Assume that the non-negative function f satisfies

(4.46) AR2 (f) = A <∞

uniformly over all rectangles R ⊂ Ro, where Ro ⊂ Rn is a fixed rectangle and

A > 1. Then for every s ∈
(
−
√

A
A−1

,−1
)
∪
(

1,
√

A
A−1

)
there exist positive

constants B′ and B′′ depending only by A and s such that

(4.47)
1

B′

(∫
R

f−1(x)dx

)−1

≤
(∫

R

f s(x)dx

) 1
s

≤ B′′
(∫

R

f(x)dx

)
The proof of Theorem 4.24 requires two Lemmas about monotone functions

of one variable:
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Lemma 4.25. [Kor] Let h be a non-increasing function of one variable in [a,b]

such that

(4.48)

∫ t

a

h(x)dx ≤ A

(∫ t

a

h−1(x)dx

)−1

a ≤ t ≤ b

namely A2(h) = A < ∞, then for any s ∈
(

1,
√

A
A−1

)
there exists a constant

B′′ > 0 such that

(4.49)

(∫ b

a

hs(x)dx

) 1
s

≤ B′′
(∫ b

a

h(x)dx

)
Lemma 4.26. [Kor] Let h be a non-decreasing function of one variable in

[a,b] such that

(4.50)

∫ t

a

h(x)dx ≤ A

(∫ t

a

h−1(x)dx

)−1

a ≤ t ≤ b

namely A2(h) = A < ∞, then for any s ∈
(
−
√

A
A−1

,−1
)

there exists a

constant B′ > 0 such that

(4.51)

(∫ b

a

hs(x)dx

) 1
s

≥ 1

B′

(∫ b

a

h−1(x)dx

)−1

Now we are able to prove Theorem 4.24.

Proof. (of Theorem 4.24)

From properties of equimeasurable rearrangements we have

(4.52)

∫ µ(R)

0

(f∗(x))pdx =

∫ µ(R)

0

(f ∗(x))pdx =

∫
R

fp(x)dx

for any real p. Fix some segment R ⊂ Ro, then by (4.45) the function h ≡ f∗

satisfies the condition of Lemma 4.25 with [a, b] = [0, µ(R)]. Hence if s ∈
(1,
√

A
A−1

) we have:

(∫ µ(R)

0

((f∗(x))sdx

) 1
s

≤ B′′

(∫ µ(R)

0

f∗(x)dx

)

and from (4.52) (∫
R

f s(x)dx

) 1
s

≤ B′′
(∫

R

f(x)dx

)
that is the right inequality in (4.47).
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Similarly by (4.45) the function h ≡ f ∗ satisfies the condition of Lemma

4.26 with [a, b] = [0, µ(R)]. Hence if s ∈ (−
√

A
A−1

,−1) we have:

(∫ µ(R)

0

(f ∗)s(x)dx

) 1
s

≥ 1

B′

(∫ µ(R)

0

(f ∗)−1(x)dx

)−1

and from (4.52)

1

B′

(∫
R

f−1(x)dx

)−1

≤
(∫

R

f s(x)dx

) 1
s

that is the left inequality in (4.47).

Remark 4.4. Rewriting (4.47) in this way

1

B′′
(∫

R

f(x)dx

) ≤ (∫
R

f s(x)dx

)− 1
s

≤ B′
(∫

R

f−1(x)dx

)

and multiplying by

∫
R

f(x)dx we have

1

B′′
≤
(∫

R

f s(x)dx

)− 1
s
∫
R

f(x)dx ≤ B′
(∫

R

f−1(x)dx

)(∫
R

f(x)dx

)
Now if we put s = 1

1−τ we have

1

B′′
≤
(∫

R

f
1

1−τ (x)dx

)τ−1∫
R

f(x)dx ≤ B′
(∫

R

f−1(x)dx

)(∫
R

f(x)dx

)
taking the supremum over all rectangles R we have:

1

B′′
≤ ARτ (f) ≤ B′A

for any τ ∈
(

0, 1−
√

A−1
A

)
∪
(

1 +
√

A−1
A
, 2
)

.

We can observe that the constant B′ is the same of Lemma 4.26 and from

Corollary 1.23 we have

(4.53) ARτ (f) ≤ A
(τ − 1)

1
A
− τ(2− τ)

for any τ ∈
(

1 +
√

A−1
A
, 2
)

.

Now we are able to prove the analogous of Theorem 1.30 for AR2 -class:
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Theorem 4.27. Assume AR2 (w) = A < ∞, then for 1 < γ <
√

A
A−1

we have

wγ ∈ AR2 and

(4.54) AR2 (wγ)
1

2γ ≤ γA

A− γ2(A− 1)
.

Proof. If we put ψ(τ) =
1
A
−τ(2−τ)

τ−1
in (4.53) we have

ARτ ≤
A

ψ(τ)

for any τ ∈
(

1 +
√

A−1
A
, 2
)

. In particular we deduce for any rectangle R ⊂ Rn

(4.55)

∫
R

w−
1

τ−1 ≤

 1∫
R

w

· A

ψ(τ)


1

τ−1

and also, taking into account that A = AR2 (w) = AR2 (w−1), we deduce that

(4.56)

∫
R

w
1

τ−1 ≤

 1∫
R

w−1

A

ψ(τ)


1

τ−1

Multiplying (4.55) and (4.56) and using the Hölder inequality in the form

1 ≤
∫
R

ω

∫
R

ω−1,

we get ∫
R

ω
1

τ−1

∫
R

ω−
1

τ−1 ≤
[
A

ψ(τ)

]2/(τ−1)

.

Hence, for 1 +
√

A−1
A

< τ ≤ 2 we have

AR2 (ω
1

τ−1 ) ≤
[
A

ψ(τ)

]2/(τ−1)

.

If we set γ = 1
τ−1

we obtain immediately, for the range 1 < γ <
√

A
A−1

,

[AR2 (ωγ)]1/2γ ≤ A

ϕ(γ)

where ϕ(γ) = γ
[
1− A(1− 1

γ2 )
]

which coincides with (4.54).

The optimality is seen by mean of power functions. Namely, choose ω(x) = |x|r

with 0 < r < 1, then we have

AR2 (|x|r) =
1

1− r2

and AR2 (|x|rγ) = 1
1−γ2r2 <∞ if and only if 1 < γ <

√
A
A−1

= 1
r
.
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Theorem 4.28. Let λ > 0 and f ∈ BMOR(Rn) satisfy

AR2

(
e
f
λ

)
= A <∞.

Then for 0 < ε <
√

A
A−1
− 1 we have

AR2

(
e(1+ε) f

λ

)
<∞

The bound for ε is sharp.

Proof. If we put w = e
f
λ in Theorem 4.27 and γ = 1 + ε we have

wγ = e(1+ε) f
λ ∈ AR2

and

AR2 (e(1+ε) f
λ )

1
2(1+ε) ≤ (1 + ε)A

A− (1 + ε)2(A− 1)

for 0 < ε <
√

A
A−1
− 1. Since A > 1 we have

AR2

(
e(1+ε) f

λ

)
<∞

that completes the proof.

Another important fact related to AR2 weights class is due to B.D. Wick

([W1]) that proves the following

Lemma 4.29. [W1] A weight w : R2 −→ R2 is in AR2 if and only if w ∈ A2

uniformly in each variable separately. Moreover, we have the relationship

max{sup
x
A2(w(x, ·)), sup

y
A2(w(·, y))} ≤ AR2 (w) ≤

≤ C2(max{sup
x
A2(w(x, ·)), sup

y
A2(w(·, y))})2,

and the constant C depends only on the dimensions of the space being consid-

ered.

Wick also proved that there is an equivalent norm in the space BMOR,

namely we have the following

Lemma 4.30. [W1] Let f ∈ BMOR(R2), then

1

4
‖f‖∗,R ≤ max{sup

x
‖f(x, ·)‖∗, sup

y
‖f(·, y)‖∗} ≤ ‖f‖∗,R.
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The following Theorem shows that there is also in the rectangles case the

same log-exp relationship between Ap classes and BMO spaces like in the one

dimensional case (see Proposition 4.11), namely

Theorem 4.31. [W1] Let w ∈ AR2 . Then logw ∈ BMOR. Conversely, if

v ∈ BMOR, then for |α| < C
‖v‖∗,R

we have eαv ∈ AR2 , where C is an absolute

dimensional constant.
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Chapter 5

BMO-Martingales and

Applications

In this chapter we will show how we can extend BMO functions spaces to

probability theory.

After preliminaries basic definitions and notations we focus attention on the

space ofBMO-martingales and its connections with probabilisticAp-condition.

In the forth section we speak about the distance in BMO to L∞ and the

connection with the classical functions case. In the last section we report

some applications in mathematical finance.

5.1 Preliminaries

At first we recall some concepts from general probability theory.

Definition 5.1. If Ω is a given set, then a σ-algebra F on Ω is a family F
on Ω with the following properties:

(i) ∅ ∈ F

(ii) F ∈ F =⇒ FC ∈ F , where FC = Ω\F

(iii) A1, A2, ... ∈ F =⇒ A :=
⋃
i=1

∞Ai ∈ F .

The pair (Ω,F) is called a measurable space.
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Definition 5.2. A probability measure P on a measurable space (Ω,F) is

a function P : F −→ [0, 1] such that

(a) P (∅) = 0, P (Ω) = 1

(b) if A1, A2, ... ∈ F and {Ai}∞i=1 is disjoint then P

(⋃
i=1

∞Ai

)
=
∑
i=1

∞P (Ai).

The triple (Ω,F , P ) is called probability space.

The subsets F of Ω which belong to F are called F -measurable sets. In a

probability context these sets are called events and we use the interpretation

P (F ) = “the probability that the event F occurs”.

In particular, if P (F ) = 1 we say that “F occurs with probability 1”, or

“almost surely (a.s.)”.

Definition 5.3. If (Ω,F , P ) is a given probability space, then the function

Y : Ω −→ Rn is called F-measurable if

Y −1(U) := {w ∈ Ω;Y (w) ∈ U} ∈ F

for every open sets U ∈ Rn.

Definition 5.4. Let (Ω,F , P ) be a complete probability space. A random

variable X is an F -measurable function X : Ω −→ Rn. Every random

variable induces a probability measure µX on Rn, defined by

µX(B) = P (X−1(B)), ∀B ∈ B

where B is the Borel σ-algebra on Rn and µX is called the distribution of X.

If
∫

Ω
|X(w)|dP (w) <∞, then the number

E[X] :=

∫
Ω

X(w)dP (w) =

∫
Rn
xdµX(x)

is called the expectation of X. More generally, if f : Rn −→ R is Borel

measurable and
∫

Ω
|f(X(w))|dP (w) <∞ then we have

E[f(X)] :=

∫
Ω

f(X(w))dP (w) =

∫
Rn
f(x)dµX(x).
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Definition 5.5. Two subsets A,B ∈ F are called independent if

P (A ∩B) = P (A) · P (B).

If two random variables X, Y : Ω −→ Rn are independent, then

E[XY ] = E[X]E[Y ],

provided that E[X] <∞ and E[Y ] <∞.

Definition 5.6. Let T ⊂ R+, a stochastic process is a parametrized collec-

tion of random variables

{Xt}t∈T

defined on a probability space (Ω,F , P ) and assuming values in Rn.

The parameter space T is usually the halfline [0,∞). It may be useful for

the intuition to think of t as “time” and each w as an individual “particle” or

“experiment”.

Definition 5.7. Let (Ω,F , P ) be a complete probability space. A filtration

Ft is a family of σ-algebras Ft ⊂ F such that

(i) F0 contains all the P -null sets of F ,

(ii) Ft =
⋂
u>tFu for all t ≥ 0.

Definition 5.8. A real valued stochastic process M = (Mt,Ft) is called a

martingale (resp. supermatingale, submartingale)if

(i) each Mt is Ft-measurable, i.e., M is adapted to the filtration Ft,

(ii) E[|Mt|] <∞ for all t,

(iii) E[Ms|Ft] = Mt for all s ≥ t

(resp. E[Ms|Ft] ≤Mt, E[Ms|Ft] ≥Mt).

There are two very important classes of stochastic processes, one is mar-

tingales the other is Markov processes, and there is the most important (con-

tinuous) stochastic process Brownian motion which belongs to both classes.
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The two-dimensional Brownian motion was observed in 1828 by Robert

Brown as diffusion of pollen in water. Later the one-dimensional Brownian mo-

tion was used by Louis Bachelier around 1900 in modeling of financial markets

and in 1905 by Albert Einstein. A first rigorous proof of its (mathematical)

existence was given by Norbert Wiener in 1921. Later on, various different

proofs of its existence were given.

Definition 5.9. Let (Wt,Ft)t∈T be an R-valued continuous stochastic process

on (Ω,F , P ). Then (Wt,Ft)t∈T is called a standard Brownian motion if

1. W0 = 0 a.s.

2. Wt −Ws ∼ N (0, t− s), where N is the normal standard distribution

3. Wt −Ws independent of Fs

Definition 5.10. A random variable τ : Ω −→ T ∪{+∞} is a stopping time

if ∀t ∈ T, {ω ∈ Ω : τ(ω) ≤ t} ∈ Ft.

Definition 5.11. An adapted process M = (Mt,Ft) is said to be a local

martingale if there exists a sequence of increasing stopping times τn with

lim
n→∞

τn =∞ a.s. such that (Mt∧τnI{τn>0},Ft) is a martingale for each n. Such

a sequence (τn) of stopping times is called fundamental sequence.

Now we suppose that any local martingale adapted to this filtration is

continuous. Note that the following properties are equivalent (see [ESY]):

1. any local martingale is continuous,

2. any stopping time is predictable,

3. for every stopping time τ and every Ft-measurable random variable U ,

there exists a continuous local martingale M with Mτ = U a.s..

In the following we assume that M0 = 0. Let us denote by 〈M〉 the

continuous increasing process such that M2 − 〈M〉 is also a local martingale.

In plain words, the martingale property means, that the process, given the

present time s has no tendency in future times t ≥ s, that is the average over

all future possible states of Xt gives just the present state Xs. In difference

to this, the Markov process has no memory, that is the average of Xt knowing

the past is the same as the average of Xt knowing the present.
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Definition 5.12. An adapted process M = (Mt,Ft) is said to be a semi-

martingale if Xt can be written as Mt +At where M is local martingale and

A is a stochastic process that is locally of bounded variation.

The next formula plays an extremely important role in stochastic calculus.

Theorem 5.1. (Itô’s formula) Let X = M + A be a continuous semimartin-

gale, and let f be a real valued function on R which is twice differentiable.

Then

(5.1) f(Xt) = f(X0) +

∫ t

0

f ′(Xs)dXs +
1

2

∫ t

0

f ′′(Xs)d〈Ms〉.

Note that the second term on the right hand side is the stochastic integral.

The Itô’s formula shows that the class of semimartingales is invariant under

composition with C2-function.

5.2 BMO-Martingales

In this section we will speak about the BMO-Martingales space. We recall

that the space of BMO functions was introduced by John and Nirenberg in

1961 [JN] and they gave the first important result on BMO functions (see

Chapter 4). In 1971 Fefferman [Fe] characterize the space of BMO-functions

as the dual of the Hardy space H1. On the other hand, in 1972 Getoor and

Sharpe [GS] introduced the concept of a conformal martingale and by using

conformal martingales they established the duality of H1 and BMO in prob-

abilistic setting.

Let us begin with some definitions.

Definition 5.13. Let M be a continuous local martingale, then we can define

the exponential local martingale ε(M)t as

ε(M)t = exp

(
Mt −

1

2
〈M〉t

)
(0 ≤ t <∞)

with ε(M)0 = 1.

A noteworthy fact is that, supposing that the exponential local martingale

ε(M) is uniformly integrable, it is not necessarily a true martingale. In fact,
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generally, we have E[ε(M)t] ≤ 1 for every t, because ε(M) is a positive su-

permartingale with ε(M)0 = 1. Therefore, it is a martingale if and only if

E[ε(M)t] = 1 for every t.

Example 5.1. Let B = (Bt,Ft) be a one-dimensional Brownian motion start-

ing at 0. For each t > 0 we have

E[ε(B)t] =

∫ ∞
−∞

exp

(
x− t

2

)
1√
2πt

exp

(
−x

2

2t

)
dx =

=

∫ ∞
−∞

1√
2πt

exp

(
−(x− t)2

2t

)
dx = 1

and hence ε(B) is a true martingale. However, since ε(B)∞ = 0 a.s., it is not

a uniformly integrable martingale.

Definition 5.14. Let M = (Mt,Ft) be a uniformly integrable martingale with

M0 = 0 and set

‖M‖BMO = sup
τ
‖E[|M∞ −Mτ ||Fτ ]‖∞

where the supremum is taken over all stopping times τ . The space of BMO-

martingales is the class of all uniformly integrable martingale such that

‖M‖BMO <∞,

and ‖ · ‖BMO is a norm in this space.

More in particular we can also define the space BMOp.

Definition 5.15. Let M = (Mt,Ft) be a uniformly integrable martingale with

M0 = 0 and for 1 ≤ p <∞ we set

‖M‖BMOp = sup
τ
‖E[|M∞ −Mτ |p|Fτ ]

1
p‖∞

where the supremum is taken over all stopping times τ . The space of BMOp-

martingales is the class of all uniformly integrable martingale such that

‖M‖BMOp <∞,

and ‖ · ‖BMOp is a norm in this space.
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From the Hölder inequality it follows at once that for p < q, BMOq ⊂
BMOp.

Now let L∞ be the class of all bounded martingales and let H∞ be the

class of all martingales M such that 〈M〉∞ is bounded. Since

‖M‖BMO ≤ 2‖M‖∞ ‖M‖BMO2 ≤ ‖〈M〉‖
1
2∞,

then L∞ and H∞ are contained in BMO, but in general there is not an in-

clusion relation between L∞ and H∞. In fact, for example, if B = (Bt)

is a one dimensional Brownian motion, the process B stopped at τ , where

τ = inf{t : |Bt| = 1}, belongs to L∞\H∞. On the other hand, one can see

that (Bt∧1) ∈ H∞\L∞.

The following Theorem is the John-Nirenberg inequality inBMO-martingales

space.

Theorem 5.2. [Ka] (John-Nirenberg inequality) If ‖M‖BMO < 1
4
, then for

any stopping time τ

(5.2) E[exp(|M∞ −Mτ |)|Fτ ] ≤
1

1− 4‖M‖BMO

.

Corollary 5.3. [Ka] Let 1 < p < ∞. There is a positive constant Cp such

that for any uniformly integrable martingale M

‖M‖BMO ≤ ‖M‖BMOp ≤ Cp‖M‖BMO.

The following inequality, which is also called the John-Nirenberg inequality,

was given by Garsia [Gar] for discrete parameter martingales and by Meyer

[Me] for general martingales.

Theorem 5.4. ([Gar], [Me]) If ‖M‖BMO2 < 1, then for every stopping time

τ

(5.3) E[exp(〈M〉∞ − 〈M〉τ )|Fτ ] ≤
1

1− ‖M‖2
BMO2

.

The following Remark shows the connection between BMO-functions and

BMO-martingales.

Remark 5.1. Let D = {z : |z| < 1} be the unit disc in the complex plane, ∂D

its boundary and m(dθ) the normalized Lebesgue measure on ∂D. An integrable
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real valued function f is in BMO(R) if there exists a positive constant C such

that for all intervals I ⊂ ∂D,

1

m(I)

∫
I

|f − fI | m(dθ) ≤ C,

where fI = 1
m(I)

∫
I
f dm and the smallest constant with the previous property

is denoted by ‖f‖∗ is the BMO-norm of a function. Now, let

h(z) =

∫ 2π

0

f(t)P (r, θ − t) m(dt) (z = reiθ ∈ D),

where P (r, η) = 1−r2

1−2r cos(η)+r2 is the Poisson kernel. Then h is the harmonic

function in D with boundary function f . Let now B = B(Bt,Ft) be the complex

Brownian motion starting at 0 and let τ = inf{t : |Bt| = 1}. The process

(h(Bt∧τ ),Ft∧τ ) is a uniformly integrable martingale. In particular, if f is in

BMO, then the process h(Bτ ) is a BMO-martingale and there are constants

C1, C2 > 0, independent of f , such that

C1‖f‖∗ ≤ ‖h(Bτ )‖BMO ≤ C2‖f‖∗.

Conversely, if X is a uniformly integrable martingale adapted to the filtra-

tion (Ft∧τ ), then there is a unique Borel measurable function f defined on ∂D

such that f(Bτ ) = E[X∞|σ(Bτ )]. Let us consider the mapping J : X −→ f .

Then there is a constant C such that

‖J(X)‖∗ ≤ C‖X‖BMO

for all BMO-martingales X adapted to the filtration (Ft∧τ ). The family of all

real-valued BMO-functions on ∂D is identified in this way with the family of

all BMO-martingales X which have X∞ measurable with respect to σ(Bτ ).

The following Theorem gives a sufficient condition to have a uniformly

integrable martingale.

Theorem 5.5. [Ka] Let M be a martingale in BMO, then ε(M) is an uni-

formly integrable martingale.

Moreover, in general, ε(M) is not a true martingale, so the previous The-

orem gives also a sufficient condition to have an exponential martingale. This

fact is very useful when we have to solve mathematical finance problems where

we need the Girsanov Theorem about the change of probability measure (see

section 5.5).
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5.3 Relation between Ap-condition and BMO-

martingales in probabilistic setting

The following Definition is the analogous of Ap-condition (see Definition 1.1)

in probabilistic setting.

Definition 5.16. Let 1 < p < ∞. We say that ε(M) satisfies Ap-condition

if

sup
τ
‖E[{ε(M)τ/ε(M)∞}1/(p−1)|Fτ ]‖∞ <∞,

where the supremum is taken over all stopping times τ . In particular, if p = 1

sup
τ
‖ε(M)τ/ε(M)∞‖∞ <∞,

then we say that it satisfies A1-condition.

The following Theorem shows connections betweenAp andBMO-martingales.

Theorem 5.6. [Ka] The following conditions are equivalent.

(a) M ∈ BMO.

(b) ε(M) satisfies Ap for some p ≥ 1.

(c) sup
τ

∥∥∥E[log+ ε(M)τ
ε(M)∞

|Fτ ]
∥∥∥
∞
<∞.

Remark 5.2. In the case where M is right continuous local martingale satis-

fying −1 < ∆M ≤ C for some constant C > 0, if ε(M) satisfies Ap for some

p > 1, then M is a BMO-martingale.

In the following remark we report the connection between Ap-condition

for functions (see Definition 1.1) and probabilistic Ap-condition (see Definition

5.16).

Remark 5.3. Let D = {z : |z| < 1} be the unit disc in the complex plane

and let 0 < w ∈ L1(∂D, dm), where m(dθ) denotes the normalized Lebesgue

measure on ∂D. Let B = (Bt,Ft) be the complex Brownian motion starting

at 0 and let τ = inf{t : |Bt| = 1}. Then the positive martingale W given by
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Wt = E[w(Bτ )|Ft], (0 ≤ t < ∞) satisfies E[W∞] = 1, and further from an

important Theorem due to Kakutani it follows that

Wt = Pw · (Bt) on {t < τ}

where Pw is the Poisson integral of w. In this setting Kazamaki [Ka] proved

the following Theorem

Theorem 5.7. If the martingale W satisfies Ap-condition, then the function

w is in Ap.

The converse of the previous Theorem in not true. For example, let w(t) =

|t|λ where 1 < λ <∞. Then w ∈ Ap, for p > 1 + λ, but W doesn’t satisfy any

Ap-condition.

Note that only in the case p = 2 we have w ∈ A2 ⇐⇒ W ∈ A2.

5.4 About the distance in BMO to L∞

In this section we will give comparable upper and lower bounds for the distance

in BMO to L∞ in probabilistic setting.

For every M ∈ BMO-martingales, let a(M) be the supremum of the set of

a for which

a(M) = sup
a
{sup

τ
‖E[exp(a|M∞ −Mτ |)|Fτ ]‖∞ <∞},

and let dp be the distance on the space BMO deduced from the norm ‖·‖BMOp ,

by usual procedure. Then there is a very beautiful relation between a(M) and

d1(M,L∞) as the following Theorem shows

Theorem 5.8. ([V], [E]) Let M ∈ BMO be a martingale, then we have

(5.4)
1

4d1(M,L∞)
≤ a(M) ≤ 4

d1(M,L∞)
.

Note that Theorem 5.8 is the probabilistic version of Theorem 4.7 where

a(M) “plays the role” of
1

ε(f)
.

Next example show us that L∞ is not dense in BMO.
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Example 5.2. We know that there exists a BMO-martingale M such that

expM∞ is not integrable. In such a case we have a(M) ≤ 1, and so using

Theorem 5.8, d1(M,L∞) ≥ 1
4
. This is an instance where L∞ is not dense in

BMO.

Dellacherie, Meyer and Yor proved in [DMY] that L∞ is neither closed nor

dense in BMO whenever BMO 6= L∞. In the classical setting Garnett and

Jones [Ga] proved for locally integrable function f on Rn that

f ∈ BMO − closure of L∞ ⇐⇒ ef , e−f ∈ Ap, ∀p > 1.

Now we report a probabilistic analogue of this result. For a uniformly

integrable martingale M , let

(5.5) p(M) = inf{p > 1 : E[exp(M∞)|F ], E[exp(−M∞)|F ] ∈ Ap}.

From Hölder inequality it follows that E[exp(M∞)|F ] ∈ Ap, ∀p > p(M).

Lemma 5.9. [Ka] If p(M) <∞, then p(M) ≤ 2, M ∈ BMO and

p(M)− 1 =
1

a(M)
.

Lemma 5.9 is the analogous of Lemma 4.8.

Theorem 5.10. [Ka] Let M ∈ BMO, then

M ∈ BMO−closure of L∞ (L∞)⇐⇒ E[exp(M∞)|F ], E[exp(−M∞)|F ] ∈ Ap,∀p

.

Corollary 5.11. [Ka] Let M ∈ BMO, then

ε(M), ε(−M) ∈ Ap,∀p⇐⇒ E[log ε(M)∞|F ] ∈ L∞.

Following Theorems show that in general L∞ is neither closed nor dense in

BMO.

Theorem 5.12. [Ka] The following conditions are equivalent:

1. BMO = L∞

2. The filtration (Ft) is constant, that is, Ft = F0, ∀t > 0.

Theorem 5.13. [Ka] If Ft is not constant, then L∞ is not closed in BMO.

Theorem 5.14. [Ka] If Ft is not constant, then L∞ is not dense in BMO.
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5.5 Application: Mathematical Finance

The aim of this section is to give some ideas about the possible applications

of previous results in mathematical finance.

Mathematical Finance is the mathematical theory of financial markets. It

tries to develop theoretical models, that can be used by practitioners to eval-

uate certain data from real financial markets. Roughly speaking a financial

market is a place where people can buy or sell financial derivatives. A finan-

cial derivative is a financial contract, whose value at expire is determined by

the prices of the underlying financial assets (here we mean Stocks and Bonds).

The most important application of the Itô calculus in financial mathematics

is that of option pricing. In this area, the most famous result is the Black-

Scholes formula for pricing European put and call options. Options are so-

called derivative securities, i.e. securities which are derived from underlying

assets.

To understand the following we report some basic notions.

• call option is a contract that gives the holder the right (but not the

obligation) to buy a fixed amount of an asset at a specified time in

future for an already agreed price, the strike price, from the seller, also

called writer of the option.

• put option is a contract that gives the holder the right to sell a fixed

amount of an asset to the writer of the option for the strike price. Here

the writer of the put option is obliged to buy the asset while the holder

can decide on selling or not.

• expiration date is the date when the contact ceases to exist.

• American option is when the holder of the option is free to sell or to

buy the asset during the whole timspan of the contract.

• European option is when the holder of the option can only exercise his

option at maturity of the contract (expiration date).
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The extension of BMO functional spaces results to BMO probability spaces

has lot of applications in mathematical finance. A first possible application is

about the application of Girsanov Theorem about the change of probability

measure.

In probability theory, the Girsanov Theorem tells how stochastic processes

change under changes in measure. The Theorem is especially important in the

theory of financial mathematics as it tells how to convert from the physical

measure which describes the probability that an underlying instrument (such

as a share price or interest rate) will take a particular value or values to the

risk-neutral measure which is a very useful tool for evaluating the value of

derivatives on the underlying.

Theorem 5.15. [O] (Girsanov Theorem) Let B(t), 0 ≤ t ≤ T , be a Brow-

nian motion on (Ω,F , P ) and let Θ(t), 0 ≤ t ≤ T , be a stochastic process

adapted to the filtration Ft. Let us set

∼
B(t) =

∫ t

0

Θ(s)ds+B(t), 0 ≤ t ≤ T

and

Z(t) = e

−
∫ t

0

Θ(s)ds− 1

2

∫ t

0

Θ2(s)ds


Assume that Θ(s) satisfies “Novikov’s condition”

E

e
(

1

2

∫ T

0

Θ2(s)ds

) <∞.
Define the new probability measure

∼
P :

∀A ∈ F ,
∼
P (A) =

∫
A

Z(t)dP.

Then
∼
B(t) is a Brownian motion with respect to the new probability law

∼
P ,

∀t ≤ T .

Remark 5.4. Novikov’s condition is sufficient to guarantee that Zt is a mar-

tingale. Actually, the result holds if we only assume that Zt is a martingale

(see [KS]).
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By previous Remark we can write Girsanov Theorem in the following way:

Theorem 5.16. Let B(t), 0 ≤ t ≤ T , be a Brownian motion on (Ω,F , P ) and

let Θ(t), 0 ≤ t ≤ T , be a stochastic process adapted to the filtration Ft. Let us

set
∼
B(t) =

∫ t

0

Θ(s)ds+B(t), 0 ≤ t ≤ T

and

Z(t) = e

−
∫ t

0

Θ(s)ds− 1

2

∫ t

0

Θ2(s)ds


.

If Zt is a martingale, then
∼
B(t) is a Brownian motion with respect to the new

probability law
∼
P , ∀t ≤ T , where

∼
P (A) =

∫
A
Z(t)dP , ∀A ∈ F .

Remark 5.5. So the important hypothesis in Girsanov Theorem is that Zt is

a martingale. We know from Theorem 5.5 that if Θ(t) ∈ BMO, then Zt is an

uniformly integrable martingale.

Why Girsanov Theorem is so important in Mathematical finance? Because

by Girsanov transformation we can pass to the risk-neutral measure. A risk-

neutral measure is the probability measure that results when one assumes that

the future expected value of all financial assets are equal to the future payoff

of the asset discounted at the risk-free rate. In other words, in an actual

economy, the price of assets is affected by the amount investors are willing to

pay to assume or eliminate risk. However, it is sometimes possible to calculate

the prices of asset assuming that there was no risk. When the asset prices

are corrected so that there is no risk, the probability that result are those

of the risk-neutral measure. The measure is so-called because, under that

measure, all financial assets in the economy have the same expected rate of

return, regardless of the riskiness - i.e. the variability in the price - of the

asset. This is in contrast to the physical measure - i.e. the actual probability

distribution of prices where (almost universally) more risky assets (those assets

with a higher price volatility) have a greater expected rate of return than less

risky assets.

Another name for the risk-neutral measure is the equivalent martingale

measure. A particular financial market may have one or more risk-neutral

measures. If there is just one then there is a unique arbitrage-free price for
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each asset in the market. This is the fundamental theorem of arbitrage-free

pricing. If there is more than one such measure then there is an interval of

prices in which no arbitrage is possible. In this case the equivalent martingale

measure terminology is more commonly used.

Another application of BMO-martingales results to mathematical finance

is, for example, the approximation of stochastic integrals by integrals over

piece-wise constant integrands. This necessity is very useful in financial prob-

lems because of, very often, one pass from continuous problems to discrete

problems.

In a recent paper of Geiss [Ge] we can see how one can use BMO estimates

in mathematical finance. The problem analyzed in [Ge] is a classic problem of

stochastic finance in continuous time in a Black-Scholes context: an investor

who has to continuously re-balance the payoff of his portfolio. The wealth

process associated to the portfolio is analytically represented by a stochastic

integral with respect to the discounted stock price process under the risk-

neutral measure. In practise is impossible re-balanced continuously a portfolio

so one can replaced it by the pay-off of a portfolio re-balanced at finitely many

trading dates only. The approximation error between the stochastic integral

and its approximation by discretization, can be interpreted as risk.

Usually the approximation error is measured in a distributional way with

respect L2 estimate. This approach gives some problems like the fact that

the resulting tail-estimates are rather weak. So Geiss used spaces of weighted

bounded mean oscillation (weighted BMO) that provide much more informa-

tion for the purpose. He used the following norm

Definition 5.17. [Ge] Let (Ω,F , P ) be a probability space and let {Xt}t∈T
be an adapted stochastic process, with X0 = 0 and {Φt}t∈T be a geometrical

Brownian motion with Φt > 0, ∀t ∈ T , then

‖X‖Φ
BMO = sup

τ

∥∥∥∥E [ |XT −Xτ |p

Φp
τ

|Fτ
]∥∥∥∥ 1

p

∞
,

where the supremum is taken over all stopping times τ .

In the paper was shown that BMO-spaces are of advantage because of two

principal reasons. The first is that in general estimates with respect to BMO-
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spaces imply Lp estimates and secondly by a weighted John-Nirenberg type

Theorem one can obtain significant better tail-estimates than we would get

from L2 estimates.
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