
D R

S C I
C XX

Consorzio tra Università di Catania, Università di Napoli Federico II, Seconda
Università di Napoli, Università di Palermo, Università di Salerno

 : Ù N F II

Sabrina Baselice

On Program Grounding in ASP

2007

T D

Il Tutor Il Coordinatore
Prof. Piero A. Bonatti Prof. Aldo De Luca

Acknowledgments

Many thanks to Paolo Fiorenza for his help and for his confidence in myself,
he proved to be a very good and generous person. Thanks to my sister for her
company and support.

ii

D R

S C I

Ù S N “F II”

On Program Grounding in ASP

Sabrina Baselice

Abstract. Answer set programming (ASP) is a declarative problem solving framework in-
troduced by Michael Gelfond and Vladimir Lifschitz in the late ’80s. ASP has received much
attention by researchers for its expressiveness and simpleness so that well-engineered and opti-
mized implementations have been developed for it. However, state-of-the-art answer set solvers
have still a strong limitation: they are not be able to reason on nonground programs and then the
input program have to be instantiated before the solver can start to reason on it. Consequently,
answer set solvers (i) cannot handle infinite domains and (ii) use huge amounts of memory even if
domains are finite. This work wants to give some contribution for these two not trivial problems.

First, I analyze finitary programs as a class of programs that can effectively deal with function
symbols and recursion (hence infinite domains and models). Interestingly, even if finitary pro-
grams are computationally complete, their restrictions make it possible to keep complexity under
control. I study the consequences of relaxing the restrictions on finitary programs and my results
enforce a kind of minimality of the properties that characterize finitary programs.

Next, I investigate what happens when we “compose” two programs P and Q belonging
to some particular classes that imposing them some restrictions guarantee good computational
properties, so obtaining a program P ∪ Q that, as a whole, might not be subject to the restrictions
of P or Q but that again enjoys good computational properties.

Finally, I study a new approach to tackle the problem (ii) of ASP. The idea is to integrate
answer set generation and constraint solving to reduce the memory requirements for a class of
multi-sorted logic programs with cardinality constraints: constrained programs. I prove some
theoretical results, introduce provably sound and complete algorithms, and report experimental
results on my prototype system for evaluating constrained programs, showing that my approach
can solve problem instances with significantly larger domains.

iii

Contents

I Grounding problem in ASP 1

1 Introduction 2
1.1 Historical perspective . 2
1.2 Grounding problem . 4

1.2.1 Previous approaches . 5
1.2.2 The approach of this thesis 7

1.3 Structure . 9

2 Logic programs 11
2.1 Basic definitions . 11
2.2 Stable model semantics . 12
2.3 Datalog . 14
2.4 Stratified programs . 15
2.5 Acyclic programs . 16
2.6 Splitting set . 17
2.7 ω-restricted programs . 18
2.8 Complexity results . 19

3 Extended logic programs 23
3.1 Introduction . 23
3.2 Weight constraint rules . 24

3.2.1 Stable model semantics for weight constraint programs . . 25
3.2.2 Optimization statements 26
3.2.3 Weight constraint rules with variables and functions . . . 27

3.3 CLP: Constraint Logic Programming 28
3.3.1 Semantics for CLP . 30

iv

4 Finitary programs 32
4.1 Introduction . 32
4.2 Finitary programs . 33
4.3 Properties of finitary programs 34

4.3.1 Relevant subprograms 34
4.3.2 Compactness and consistency checking 36
4.3.3 Decidability and semi-decidability of inference 38

4.4 Handling local variables . 39
4.5 Recognizing finitary programs 40

5 Some implementations 41
5.1 Introduction . 41
5.2 Smodels . 41

5.2.1 Architecture . 43
5.3 DLV . 45

5.3.1 Architecture . 46
5.4 A prototype recognizer for finitary programs 47

II New proposals 51

6 Finitely recursive programs 52
6.1 Introduction . 52
6.2 Module sequences and a normal form for splitting sequences . . . 54
6.3 Properties of finitely recursive programs 61

6.3.1 Compactness . 63
6.3.2 Reasoning on finitely recursive programs 64

6.4 Skeptical resolution and finitely recursive programs 68
6.5 Conclusions . 71

7 Composing normal logic programs 72
7.1 Introduction . 72
7.2 Dependency relations for logic programs 72
7.3 Composing programs . 73
7.4 Structural and semantic properties 82
7.5 Conclusions . 91

v

8 Constrained programs 92
8.1 Introduction . 92
8.2 Basic terminology . 93
8.3 Constrained Programs . 94
8.4 Computing strong answer sets 99
8.5 The CASP prototype . 105
8.6 Experimental Results . 106
8.7 Conclusions . 111

vi

List of Figures

5.1 The way of a logic program in Smodels [70]. 43
5.2 Overall architecture of Smodels [58]. 43
5.3 Overall architecture of DLV [28]. 46

8.1 Morning Problem and Car-Pool Problem 106
8.2 USA Advisor Problem . 108
8.3 Scheduling Problem . 108
8.4 n-Queens Problem . 110
8.5 Ramsey Numbers Problem . 111

vii

Part I

Grounding problem in ASP

1

Chapter 1

Introduction

1.1 Historical perspective
Logic programming is a declarative formalism and a logic program specifies a
problem describing its domain in terms of logical relations between entities. Data
can be represented both “extensionally”, claiming explicitly the validity of some
facts, and “intentionally”, describing rules that recall facts and other rules. The in-
tentional representation makes the specification of particular worlds (or domains)
very compact so proving itself to be particular suited for expressing complex
ideas. The implementation of a logic programming language provides an auto-
matic theorem prover which is used to infer a description of possible solutions to
the problem. This makes logic programming languages inherently “high-level”
because developer can concentrate on what should be computed delegating the
task of exploiting how to reach the result to the inferential engine.

Logic programming has been mainly employed in the field of artificial intel-
ligence where, since in 1960, McCarthy [51] realized many of the advantages of
using logic formalisms as a basis for creating a language suitable to knowledge
representation: a declarative formalism ensures (i) an high-level abstraction of
problems only describing their features without giving how to solve them; (ii) a
modular way of expressing information: declarative sentences “can be true in
a much wider context than specific programs can be used”; (iii) suitability for
communication among different systems: “the supplier of a fact does not have to
understand much about how the receiver functions or how or whether the receiver
will use it” [51].

However, classical logic formalisms as subclasses of first order logic with Her-

2

brand semantics were proved to be not suitable for representing commonsense
knowledge and commonsense reasoning and new logic formalisms, nonmonotonic
logics, was needed [52, 53, 44, 63, 55, 54, 56, 37]. Indeed, commonsense rea-
soning is intrinsically nonmonotonic: more information forces to evaluate again
previous conclusions.

The most important feature of these nonmonotonic logics is negation as failure
[22, 62] and much technical work has been done to develop a declarative seman-
tics for this new logic construction [43, 22, 34, 60, 68, 32, 27, 19]. This work was
started by Clark and Reiter in the late 70’s but although much efforts was spent
for this purpose, there is still no universally accepted semantics for logic programs
with negation as failure. However, among various semantics that have been so far
proposed, the stable model semantics is the most famous and the main works on
nonmonotonic logic programming of the latest years are based on it.

The stable model semantics is a declarative semantics introduced by Michael
Gelfond and Vladimir Lifschitz [35] in 1988. A stable model of a logic program
P is a set of ground atoms, M, such that it is “a possible set of beliefs that a
rational agent might hold given P as his promises” [35]. M is a stable model of
a logic program P if and only if M is a minimal set of ground atoms such that
P ∪ M is closed under immediate consequence operator. It is easy to see that a
logic program can have more than one stable model (eventually infinite) or none.

For this characteristic, nonmonotonic logics under the stable model seman-
tics were proved to be a powerful representation formalism [52, 56, 63, 20] and
were used in many application areas, e.g. to model combinatorial problems. In
this approach a program P defines the problem to be solved and the models of P
represent the set of possible solutions for the problem.

One of the most interesting achievements in the area of logic programming
and nonmonotonic reasoning is a declarative problem solving framework called
answer set programming (ASP), introduced by Gelfond and Lifschitz in [36]. The
most popular ASP languages are basically extensions of function-free possibly
disjunctive logic programs where negation as failure is interpreted according to
the stable model semantics [35, 36]. From the expressiveness point of view, ASP
languages are able to encode efficiently and uniformly all search problems within
the first two levels of the polynomial hierarchy [49, 18]. Moreover, answer set
solvers are proving to be competitive with other reasoners on several benchmarks
[67].

In the last years, the use of nonmonotonic logics is going further to problem
solving and it is getting employment in various applications such as declarative
specifications. Indeed, logic programs are proved to be a useful tool for speci-

3

fication, verification and enforcement of security policies [17, 9] thanks to their
expressiveness power, formal foundations, flexibility and declarativeness (so that
users are not required to have any programming ability). Moreover, nonmono-
tonic semantics allow us to reason not only on the “presence” of specific rules but
also on the “absence” of rules or information and on the impossibility of inferring
some facts. For example, I can authorize some actions only if some information
is available or other authorizations are not inferrable. However, since a logic
program can have more than one stable model, for security specifications, are
used subclasses of logic programs for which the stable model semantics defines a
unique model guarantying, in this way, that it is always clear if an authorization is
derivable or not.

Summarizing, today nonmonotonic logics are employed in many application
areas the most important of which is still knowledge representation where these
logics are particularly suitable for representing commonsense knowledge, rea-
soning about action, planning problems, verification and configuration problems,
diagnostic systems, etc., but also in areas as security for specifying and verifying
negotiation policies or in areas as semantic web for representing preferences and
default information.

In the following with logic programs and logic programming I mean programs
over nonmonotonic logics.

1.2 Grounding problem
Although answer set programming has found employment in different applica-
tions, there are still important problems to solve in order that it can compete with
classical programming methodologies.

On this subject, there is much work to do for extending logic programming
and all nonmonotonic formalisms, for defining a methodology of using these lan-
guages to represent various forms of nonmonotonic reasoning and to describe
knowledge in specific domains, for developing query answering systems, for in-
vestigating the relationships between logic programming and other knowledge
representation methods.

ASP implementations have still some limitations that prevent ASP to be em-
ployed with success in many application areas. State-of-the-art answer set solvers,
indeed, are not be able to reason on nonground programs. Consequently, the com-
putational process of all solvers has to include two main phases: a grounding
phase and a successive solving phase. The answer set solvers, in fact, have to

4

compute the ground instantiation of the input program before they can reason on
it and this instantiation process is perhaps the most expensive computational phase
of these solvers. Two strong limitations follow:

1. they currently handle only finite domains, typically finite sets of constants;

2. they use huge amounts of memory even if domains are finite.

The above limitations mean that ASP languages do not support function symbols
(and hence both data constructors and infinite domains) or large domains. Then, it
is not possible to reason directly on recursive data structures or temporal domains
so reducing the potential expressiveness of ASP [16]. However in absence of some
restrictions, reasoning with function symbols and recursion is highly undecidable
[49], while simply admitting large domains, e.g. temporal domains, could make
memory requirements of the grounding phase of the solvers not fulfillable.

1.2.1 Previous approaches
A line of research started in 2001 [13, 16, 15, 12], has identified a very expressive
fragment of normal logic programs. These programs, called finitary programs
[13, 16], can effectively deal with function symbols and recursion (that is in-
finite domains and models) keeping complexity under control. Indeed, finitary
programs enjoy some interesting properties: a form of compactness hold, consis-
tency checking and ground credulous/skeptical entailment under the stable model
semantics are decidable while nonground credulous/skeptical entailment is r.e.-
complete. For doing this, the class of finitary programs impose that the recursion
is restricted to prevent infinite sequences of recursive calls without repeats (that
is, infinite paths without cycles in the dependency graph of a program) and the
number of possible sources of inconsistency (i.e. the number of odd-cycles) is
required to be finite. This guarantees that a query F can be answered using a
finite subset of the ground instantiation of a program P, R(P, F), called relevant
subprogram. Reasoning on a part of whole ground instance of the input program
may significantly reduce memory requirements and the search space. However,
in many practical applications, logic programs contain many odd-cycles and then
many odd-cyclic atoms. This increases the size of relevant subprogram, so reduc-
ing the advantages of this approach. Moreover, unfortunately, the class of finitary
programs is undecidable. So we cannot recognize a finitary program even if there
exists a sound but incomplete prototype recognizer for deciding the class of fini-
tary programs.

5

Strategies for query answering that aimed at evaluating only a part of the pro-
gram instantiation had already been proposed in 1986 in [5] where Ullman intro-
duced the concept of magic sets: a magic set for an argument of a predicate is
the set of legal values that this argument can assume consistently with values of
previous arguments occurring in that predicate.

The Magic Sets method is a compile-time algorithm to transform logical rules
into equivalent rules that can be implemented under the fixed point semantics (note
that the stable model semantics had not yet been defined) more efficiently bottom-
up in a way that cuts down the facts that are irrelevant for answering a query (as
a top-down evaluation). Ullman defined this algorithm only for linear logic pro-
grams with function-free Horn clauses as rules (because the least fixed point of
each set of function-free Horn clauses can be computed bottom-up) and not many
extensions have been introduced till now. So, not only recursion is much restricted
but we have also that the efficiency of this method is much affected by the order
in which the predicates occurring in the body of rules are evaluated. Then opti-
mization techniques are needed, even if these techniques are not guaranteed to be
effective.

However, both these methodologies are useful only for query answering while
they do not compute a complete model for a logic program. So, they are not appli-
cable in all those classes of problems in which a model is required as, for example,
planning problems where a logic program describes the state of the “world” and
the possible actions that are allowed and some constraints for these actions, and
a model for this program describes a sequence of actions that can be executed to
reach the goal. In fact, the above methodologies can only compute the decisional
problem of deciding if a sequence of actions is a solution for a planning problem
but they cannot build a plan.

Another approach that evaluates only a subset of ground instantiation of the
program but that computes a model for the input program, was proposed just in
the early 90’s [40, 41]. This approach, called “partial instantiation”, combines
unification with mixed integer programming and can solve a nonground program
with also function symbols (as finitary programs). The general strategy alternates
iteratively two phases: given a nonground logic program P, in which rules with
disjunctive heads and negations in their bodies can occur, first an evaluation phase,
using mixed integer programming, evaluates P and generates a set of true propo-
sitional atoms and a set of false propositional atoms. Then, a phase of partial
instantiation checks if a “conflict resolution” is possible between these two sets,
so computing some conflict-set unifiers. For each unifier θ, the process is repeated
on P∪Pθ. This process continues until either no more conflict-set unifier is found,

6

or the time taken has gone beyond a certain time limit (note that partial instantia-
tion may be infinite in the presence of function symbols). Actually, the evaluation
phase computes, for a program P, model(sizeopt(P)), that is it computes the mod-
els of P evaluating the program sizeopt(P) that has a size smaller than size of P
and such that the set of models of sizeopt(P) is the same of P. Moreover, some
optimizations are also proposed for computing incrementally sizeopt(P ∪ Pθ) by
reusing sizeopt(P) [57].

1.2.2 The approach of this thesis
This PhD thesis wants to give some contributions for the grounding problem of
which ASP suffers. In particular, I focus on two major limitations of the state-
of-the-art answer set solvers: the inability of handling infinite domains and huge
requirements of memory.

In Chapter 6, I analyze the class of finitary programs as a class of programs that
can effectively deal with infinite domains and models admitting function symbols
and recursion, and an its extension, the class of finitely recursive programs. Here,
I investigate the consequences of relaxing those restrictions imposed on finitary
programs that guarantee their good computational properties. I prove that the re-
striction on recursion ensures the compactness property and brings the complexity
of skeptical queries within r.e. so making logic programs more similar to classi-
cal logics, while the restriction on odd-cycles (i.e. on the number of potential
inconsistency sources) makes ground queries decidable and brings the complex-
ity of nonground credulous queries within r.e. . Moreover, I prove that by only
imposing that the number of potential inconsistency sources is finite we obtain a
superclass of stratified programs that isΠ1

1-complete. Then, we have no advantage
with respect to the class of unrestricted normal programs, while if we only impose
a restriction on recursion to prevent that a ground atom may depend on infinitely
many ground atoms in the dependency graph of the program, we obtain the class
of finitely recursive programs that is r.e.-complete.

In general, the class of finitely recursive programs cannot be of practical in-
terest but further restrictions are needed, e.g. restrictions on the number of odd-
cycles. These results enforce a kind of minimality of the two properties that char-
acterize finitary programs.

Next in Chapter 7, I introduce the “composition” of normal logic programs.
Classes of programs such as finitary programs and finitely recursive programs
discussed in Chapters 4 and 6 respectively, or ω-restricted programs discussed
in Chapter 2, guarantee good computational properties imposing different restric-

7

tions on their programs. I investigate if starting from two normal programs P and
Q belonging to these classes, it is possible to obtain a program P ∪ Q that, as a
whole, might not be subject to the restrictions of P or Q but that again enjoys good
computational properties. I prove that by composing a finitary program P that de-
pends on or is independent of a normal program Q for which tasks as consistency
checking and credulous inference are decidable, we obtain a program P ∪ Q for
which consistency checking and skeptical inference are decidable, as for finitary
programs, while these tasks are semidecidable if P is finitely recursive.

Finally in Chapter 8, I study a new approach to tackle the memory requirement
problem of the answer set solvers. The idea is to integrate answer set generation
and constraint solving to reduce memory requirements for a class of multi-sorted
logic programs with cardinality constraints [67], constrained programs [11, 10],
whose signature can be partitioned into: (i) a set of so-called regular predicates
over domains whose size can be handled by a standard answer set solver; (ii) a
set of constrained predicates that can be handled by a constraint solver in a way
that does not require grounding (so larger domains can be allowed here); (iii) a set
of predicates—called mixed predicates—that create a “bridge” between the above
two partitions.

The reasoning on constrained programs can be implemented by having an an-
swer set solver interact with a constraint solver. A critical aspect is the form that
the definitions of mixed predicates may take. If they were completely general,
then that part of the program would be just as hard to reason with as unrestricted
programs because mixed predicates may range over arbitrary domains. Accord-
ingly, the framework introduced in Chapter 8 supports restricted definitions for
mixed predicates, that can be either functions from “regular” to “large” domains
(strong semantics) or slightly weaker mappings where each combination of “reg-
ular” values must be associated to at least one vector of values from “large” do-
mains (weak semantics).

I study the relationships between strong and weak semantics, and I introduce
an algorithm for computing the strong semantics efficiently under the simplifying
assumption that mixed predicates do not occur in the scope of negation. Moreover,
I have implemented a prototype system for evaluating the class of constrained pro-
grams and then I report some experimental results providing preliminary evidence
that my approach can solve problem instances with significantly larger domains.

This approach has two important advantages: first, contrary to what happens
for those approaches that reason on a subset of the ground instantiation of in-
put program, there is no class of constrained programs for which computing the
strong semantics is more expensive because all those predicates, that could make

8

reasoning intractable, are evaluated by a constraint solver that requires no ground-
ing. Second, this approach allows not only to answer a query but also to compute
complete strong stable models (that, as I shall prove, are only a compact form for
representing sets of stable models) for constrained programs.

1.3 Structure
After this first chapter that has introduced the grounding problem as one of the
major problems of which ASP suffers, the historical background and the previous
approaches proposed till now for this problem, that allow to better understand the
context of this work, and an overview to the approaches that I propose for investi-
gating new ways for tackling the ground problem for the answer set programming,
this PhD thesis contains the following seven chapters organized as follows.

In Chapter 2 I report some basic definitions for introducing the reader to the
ASP. In particular I give some details on some important classes of programs
that enjoy particular computational properties that will be recalled in successive
chapters where other classes or evaluation methodologies are explained that use
these programs taking advantage of their good characteristics.

Chapter 3 presents some extensions for logic programs that can help devel-
opers to express particular domains in a more intuitively and compact way. The
extensions reported do not increase the actual expressiveness power of logic pro-
grams. Formalisms as constraint logic programming are also less expressive than
normal programs but they offers a methodology for evaluating rules that does not
require any grounding process, so that in Chapter 8 a new proposal for evaluat-
ing logic programs is introduced that merges answer set solving and constraint
solving techniques.

As discussed in this introductory chapter, state-of-the-art answer set solvers
are not be able to reason on programs with infinite ground instances because they
cannot work on nonground programs and they have to instantiate the input pro-
gram before the actual reasoning activity starts. So, Chapter 4 reports the class
of finitary programs (introduced in [13]) as a subclass of normal logic programs
that allow to reason on infinite domains and models even if, in general, it is not
possible to compute a whole stable model, that might be infinite, for a program.

In Chapter 5 some implementations to work effectively with logic programs
are presented. In particular two of the most known answer set solvers, Smodels
and DLV, and a recognizer for a subclass of finitary programs are described.

In Chapter 6 I exploit the role of the restrictions that make a normal program

9

a finitary program, that is the restriction on recursion for avoiding that a ground
atom in the dependency graph of a program depends on infinitely many ground
atoms and the restriction on the number of odd-cyclic atoms for avoiding that a
program contains infinitely many inconsistency sources. I will prove that the first
restriction makes nonmonotonic logics more similar to classical logics while the
second restriction does not decrease the complexity of logic programs.

In Chapter 7 I propose the idea of “composing” those programs belonging
to classes of logic programs, as those presented in Chapter 2, that enjoy good
computational properties so obtaining a program that, as a whole, might not be
subject to the restrictions of the original programs but that again enjoys good
computational properties.

In Chapter 8 I integrate answer set generation and constraint solving to reduce
the memory requirements for a class of multi-sorted logic programs with cardi-
nality constraints whose signature can be partitioned into: (i) a set of so-called
regular predicates over domains whose size can be handled by a standard answer
set solver, as those presented in Chapter 5; (ii) a set of constrained predicates that
can be handled by a constraint solver in a way that, as explained in Chapter 3,
does not require grounding (so larger domains can be allowed here); (iii) a set
of predicates—called mixed predicates—that create a “bridge” between the above
two partitions.

10

Chapter 2

Logic programs

2.1 Basic definitions
The reader is assumed to be familiar with the classical theory of logic program-
ming [47], including all its basic syntactic and semantic notions.

Let metavariables X, Y , Z range over variables, a, b, c range over constant
symbols, metavariables f , g, h over function symbols, and metavariables p, q,
r over predicate symbols. Metavariables A and B range over logical atoms. A
literal is a formula of the form A or not A, where not is the construct of negation
as failure (in the latter case the literal is negative). The metavariable L, possibly
with subscripts, will range over literals.

Definition 2.1.1 Normal logic programs are sets of rules

A← B1, ..., Bm, not Bm+1, ..., not Bn. (n ≥ m ≥ 0)

such that A, B1, ..., Bn are logical atoms.

Definition 2.1.2 Disjunctive normal logic programs are sets of rules

A1, ..., Ak ← B1, ..., Bm, not Bm+1, ..., not Bn. (n ≥ m ≥ 0)

such that each A j (j = 1, ..., k) and each Bi (i = 1, ..., n) are logical atoms.

By head(R) and body(R) I denote the head and the body of a rule R and I mean
{A1, ..., Ak} and {B1, ..., Bm, not Bm+1, ..., not Bn} respectively.

11

According to definition, a normal rule is a special case of a disjunctive rule
where in the head there is only one atom and then k = 1.

Note that, for a rule as A1, ..., Ak ← L1, ..., Ln, in the body L1, ..., Ln stands for
L1 ∧ ... ∧ Ln, while in the head A1, ..., Ak stands for A1 ∨ ... ∨ Ak.

In the following, the metavariable P will range over logic programs.
A local variable of a rule R is a variable occurring in body(R) and not in

head(R). The ground instantiation of a program P is denoted by ground(P) while
the set of its literals is denoted by lit(P) and the set of its atoms is denoted by
atoms(P). A program is positive if it contains no occurrence of not , that is the
bodies of its rules do not contain negation as failure.

The construct not of negation as failure denotes non derivable atoms. In this
way, a new kind of logical consequence |=n is defined, such that for each ground
atom A

P |=n not A⇔ P |,n A

and such that |=n extends the classical notion of logical consequence

P |= A⇒ P |=n A

so that if the new construct not does not occur in a program P then P preserves
its classical semantics. Hence for any positive program P+, |=n is equivalent to the
classical construct |= and then

P+ |= A⇔ P+ |=n A.

It is easy to see that |=n is nonmonotonic. For example, suppose P = ∅. Given an
atom A, we have that P |=n not A while P ∪ {A} |,n not A.

2.2 Stable model semantics
The stable model semantics is the most used semantics for logic programs with
negation as failure. The stable model semantics is a declarative semantics intro-
duced in 1988 by Michael Gelfond and Vladimir Lifschitz [35] for normal logic
programs and it was successively extended to disjunctive logic programs [36].

The Gelfond-Lifschitz transformation PI of a logic program P with respect to
an Herbrand interpretation I (represented as usual as a set of ground atoms) is
obtained by removing from ground(P)

• all the rules with a literal not B in their body, such that B ∈ I,

12

• all negative literals from the remaining rules.

Note that PI is a set of Horn clauses. Therefore, if PI is consistent then it has a
unique minimal Herbrand model, that will be denoted by lm(PI).

Definition 2.2.1 An interpretation M is a stable model for a normal program P if
M is the least Herbrand model for PM.

Note that, if P is a disjunctive program then PM may have more than one least
Herbrand model.

Definition 2.2.2 An interpretation M is a stable model for a disjunctive normal
program P if M is one of the least Herbrand models for PM.

Intuitively, stable sets are “possible sets of beliefs that a rational agent might
hold given P as his premises”, so “if M is the set of ground atoms that I consider
true” then “I can simplify the premises P and replace them by PM” and if “M
happens to be precisely the set of atoms that logically follow from the simplified
set of premises PM, then I am rational” [35].

An extended (disjunctive) logic program is a set of rules of the form

A1, ..., Ak ← L¬1 , ..., L
¬
m, not L¬m+1, ..., not L¬n .

where k ≥ 1 and n ≥ m ≥ 0, and each L¬i is a classical literal, then L¬i is an atom
B or a negative atom ¬B, where ¬ is the classical negation. Then, the extended
logic programs extend normal logic programs admitting classical negation in their
rules.

For extended programs the definition of stable model has been extended to the
notion of answer set [36]. An answer set is a set of ground literals S such that
S is the least model (or one of the least models) of PS , where PS is the extended
program obtained from P by deleting (i) each rule that contains not L¬ in its body
with L¬ ∈ S , and (ii) all formulas not L¬ in the bodies of the remaining rules.
However, in [36] it was proved that extended (disjunctive) logic programs have
the same expressiveness than (disjunctive) logic programs.

Definition 2.2.3 (Dependency graph.) The dependency graph of a normal pro-
gram P is a labelled directed graph, denoted by DG(P), whose vertexes are the
ground atoms of P’s language. Moreover, (i) there exists an edge labelled ‘+’
(called positive edge) from A to B if and only if for some rule R ∈ ground(P),

13

A = head(R) and B ∈ body(R); (ii) there exists an edge labelled ‘-’ (called neg-
ative edge) from A to B if and only if for some rule R ∈ ground(P), A = head(R)
and not B ∈ body(R).

The dependency graph of an atom A occurring in a normal program P is the
subgraph of DG(P) including A and all vertexes reachable from A in DG(P).

Note 2.2.4 Note that in the following of this thesis I shall refer always to ground
dependency graphs.

An atom A depends positively (respectively negatively) on B if there is a di-
rected path from A to B in the dependency graph with an even (respectively odd)
number of negative edges. Moreover, each atom depends positively on itself. If A
depends positively (respectively negatively) on B we write A ≥+ B (respectively
A ≥− B). We write A ≥ B if either A ≥+ B or A ≥− B.

Definition 2.2.5 An odd-cycle is a cycle in the dependency graph with an odd
number of negative edges. A ground atom is odd-cyclic if it occurs in an odd-
cycle.

Note that there exists an odd-cycle if and only if for some ground atom A,
A ≥− A. Then, it is easy to see that the odd-cycles represent, for a logic program,
all its possible inconsistency sources, where as inconsistent program we mean
a program with no stable model (that is different than to have an empty stable
model). However, the presence of odd-cycles is only a necessary but not sufficient
condition for the inconsistency. As an immediate consequence we have that any
program that has no recursion through negation has at least one stable model.

2.3 Datalog
Datalog programs are a subclass of normal logic programs where only positive
literals are allowed and where function symbols cannot occur.

Then, any datalog program has exactly one least Herbrand model that coin-
cides with its only stable model (and then the stable model semantics is monotonic
for such programs) and this model is always finite.

Datalog programs have some limitations that make them useless in many prac-
tical applications. In fact, since the semantics of these programs is monotonic then
datalog programs, as fragment of the class of normal logic programs, renounce all
advantages and motivations that have driven to study nonmonotonic logics.

14

So, they was successively extended so to include negation as failure in their
rules and now they are referred as normal logic programs without function sym-
bols (and then with finite ground instances and models).

2.4 Stratified programs
A program is order consistent if there are no infinite chains A1 ≥ ... ≥ Ai ≥
Note that odd-cycles are a special case of such chains, where each atom occurs
infinitely often. This means that an order consistent program has no odd-cycle
and then it is always consistent.

Theorem 2.4.1 (Fages [33].) Every order consistent normal logic program has
at least one stable model.

Locally stratified programs are particular instances of order consistent pro-
grams that have one stable model.

Definition 2.4.2 A program P is locally stratified if there exists a function S map-
ping each ground atom in ground(P) onto an ordinal in such a way that for all
rules in ground(P)

A← B1, ..., Bm, notC1, ..., notCn.

1. S(Bi) ≤ S(A) (1 ≤ i ≤ m), and

2. S(C j) < S(A) (1 ≤ j ≤ n).

In the above definition, if S(Bi) < S(A) is satisfied also by all positive body atoms
Bi then the program is acyclic.

A subclass of locally stratified programs is the class of stratified programs
where the stratification function is defined not over the atoms in the Herbrand
base of the logic program, as for locally stratified programs, but over the predicate
symbols occurring in the program.

Definition 2.4.3 A program P is stratified if there exists a function S mapping
each predicate symbol in P onto an ordinal in such a way that for all rules in P

p(~X)← q1(~Y1), ..., qm(~Ym), not r1(~Z1), ..., not rn(~Zn).

15

1. S(qi) ≤ S(p) (1 ≤ i ≤ m), and

2. S(r j) < S(p) (1 ≤ j ≤ n).

It is easy to verify that stratified programs are also locally stratified programs and
again they have one stable model. In general the contrary does not hold as the
following example shows.

Example 2.4.4 Let P be the program

q(a).
p(f (X))← not p(X).

and let S be a local stratification function such that

S(q(a)) = 0,
S(p(f n(a))) = n, n ≥ 0.

Then P is locally stratified but not stratified because the predicate symbol p de-
pends negatively on itself.

2.5 Acyclic programs
A logic program in whose dependency graph there is no cycle is called acyclic.

Note that the class of acyclic programs is a subclass of locally stratified pro-
grams. Given an acyclic program P and its dependency graph DG(P), we can
label each vertex in DG(P) with an index in {0, 1, ..., n} (where n is the height of
the graph) by visiting DG−1(P) (the graph obtained from DG(P) by inverting the
direction of its edges) in a breadth first way. In this way we label root vertexes
(that there exist because DG−1(P) is again acyclic) with 0 and then, at each iter-
ation, we label current vertexes with the previous label incremented by one. It
is easy to see that what I have just described is a level mapping function that, for
each pair of atoms A and B such that A > B in P, assignes a (strictly) smaller index
to B than A. This proves that the class of acyclic programs is strictly included in
that of locally stratified programs. It follows that also acyclic programs have only
one stable model.

16

2.6 Splitting set
The definition of stable models is not a constructive definition and then in order
to compute a stable model of a logic program P we have to analyze any set of
ground atoms M whose elements belong to the language of P and test if M is the
least Herbrand model of PM. In this section I recall the notion of “splitting” that
provides us with an alternative way to compute stable models. The idea is of split-
ting a program into strata such that the literals in the body of a rule in any stratum
either belong to that stratum or a lower stratum, and the literals in the head of a
rule belong to that stratum. Note that splitting does not forbid recursion through
negation (contrary to stratification), and then it does not forbid the presence of
odd-cycles in the dependency graph of a logic program, that are possible incon-
sistency sources, but all atoms occurring in an odd-cycle must belong to same
stratum in the splitted program.

Definition 2.6.1 (Splitting set [6, 46].) A splitting set of a normal program P is
any set U of literals such that, for any rule R ∈ ground(P), if head(R) ∈ U then
lit(R) ⊆ U. If U is a splitting set for P, we also say that U splits P. The set of
rules R ∈ ground(P) such that lit(R) ⊆ U is called the bottom of P relative to the
splitting set U and is denoted by botU(P). The subprogram ground(P) \ botU(P)
is called the top of P relative to U and is denoted by topU(P).

Definition 2.6.2 (Partial evaluation [6, 46].) The partial evaluation of a normal
program P with splitting set U with respect to a set of literals S is the program
eU(ground(P), S) defined as follows:

eU(ground(P), S) = {R′ | there exists a rule R in ground(P) such that
(body+(R) ∩ U) ⊆ S and (body−(R) ∩ U) ∩ S = ∅,
and head(R′) = head(R), body+(R′) = body+(R) \ U,
body−(R′) = body−(R) \ U}

where body+(R) (respectively body−(R)) is the set of all positive atoms A such that
A occurs positively (respectively negatively) in body(R).

Theorem 2.6.3 (Splitting theorem [46].) Let U be a splitting set for a logic pro-
gram P. An interpretation M is a stable model of P if and only if M = J ∪ I,
where

1. I is a stable model of botU(P), and

17

2. J is a stable model of eU(ground(P) \ botU(P), I).

We can assume the stratification of a logic program as a strong form of split-
ting. In fact, given a locally stratified program P as in Definition 2.4.2 and any
ordinal i, the set of atoms {A | A ∈ atoms(ground(P)) and S(A) ≤ i} is a splitting
set for P.

2.7 ω-restricted programs
In 2001, Syrjänen introduced the class of ω-restricted programs [71] as extension
of stratified programs. As he himself says this is a “syntactic class” by meaning
that the good properties of this class are given only by the syntactic restrictions
imposed on rules.

An ω-restricted program can be divided in two part: i) a bottom, that contains
a stratified program where each predicate depends positively on predicates in the
same stratum or in lower strata, while it depends negatively only on predicates in
strictly lower strata; ii) a top, theω-stratum, that contains unstratifiable predicates.
Moreover, each variable occurring in a rule has to occur, in that rule, in a positive
body literal belonging to a strictly lower stratum. This means that each ground
instantiation for the stratified part is a ground instantiation also for the ω-stratum.
Then an ω-restricted program is also a range-restricted program.

Definition 2.7.1 A program is range-restricted if in every rule each variable that
occurs in the head or in a negative body literal also occurs in a positive body
literal.

Definition 2.7.2 An ω-stratification for a normal program P is a function S that
maps the predicate symbols in P onto N ∪ {ω}:

1. ∀p∀q(π+(p, q) =⇒ S(p) ≥ S(q)),

2. ∀p∀q(π−(p, q) =⇒ S(p) > S(q) ∨ S(p) = ω).

where π+(p, q) is a path in DG(P) from an atom with p as predicate symbol to an
atom with q as predicate symbol without negative edges, while π−(p, q) is a path
in DG(P) from an atom with p as predicate symbol to an atom with q as predicate
symbol containing negative edges.

18

Definition 2.7.3 P is an ω-restricted program if and only if there exists an ω-
stratification S for P such that for each rule R with p as head predicate symbol
and for each variable X in R, X occurs as argument in a positive body literal with
predicate symbol q and S(p) > S(q).

Then, an ω-stratification divides the predicate symbols in an ω-restricted program
in two sets: the set of domain predicates containing the predicate symbols to
which the ω-stratification assignes a finite value, and the set of non-domain pred-
icates defined in the ω-stratum. Moreover, note that the set of domain predicates
in an ω-restricted program P is a splitting set for P.

Definition 2.7.4 Let P be a logic program. A predicate p in P is a domain predi-
cate if there exists a stratification function S for P such that S(p) is finite.

2.8 Complexity results
In this section, I report some significant results on complexity and expressiveness
of logic programming paying attention to their practical consequences. Charac-
terizing the complexity of a class of logic programs allows us to identify the class
of problems that we are able to represent with that formalism and then the class of
problems that we can solve. Then, the complexity for a logic formalism is a mea-
sure of its expressiveness but it shows also its limitations in describing particular
problems and the computational obstacles in designing efficient programs.

I start exposing complexity results on consistency problem and entailment
problem for the class of variable-free (disjunctive) normal logic programs.

Theorem 2.8.1 (Consistency [50].) Given a ground normal logic program P, de-
ciding whether P has a stable model is NP-complete.

Theorem 2.8.2 (Credulous entailment [50].) Given a ground normal logic pro-
gram P, deciding whether an atom belongs to a stable model of P is NP-complete.

Theorem 2.8.3 (Skeptical entailment [50].) Given a ground normal logic pro-
gram P, deciding whether an atom belongs to each stable model of P is coNP-
complete.

Theorem 2.8.4 (Consistency [30].) Let P be a ground disjunctive normal logic
program, deciding whether P has a stable model is ΣP

2 -complete (NPNP-complete).

19

Theorem 2.8.5 (Skeptical entailment [30].) Given a ground disjunctive normal
logic program P, deciding whether an atom belongs to each stable model of P is
ΠP

2 -complete (coNPNP-complete).

Note that by allowing disjunction the expressive power of stable models in-
creases a lot. For example, with disjunction we can write a program which deter-
mines whether the maximum size of a clique in a graph is odd, which is not pos-
sible by a disjunction-free program (unless the polynomial hierarchy collapses).

The above results still hold for extended (disjunctive) logic programs. This
means that admitting classical negation occurs in rules does not increase the ex-
pressiveness of logic programs.

Let us now consider programs with variables. The above results still hold
for nonground logic programs if and only if their ground instantiation consists
of a finite set of ground rules. In general, we can only talk about definability of
relations defined by logic programs.

Definition 2.8.6 A relation s on the set of ground terms of a language L is defin-
able in logic programming under semantics |=n if there exists a program P and a
predicate symbol p in the language L such that for each ground term t of L

s(t) ≡ P |=n p(t) or s(t) ≡ P |=n not p(t).

To discuss the expressive power of logic programs, I will need to recall some
important complexity classes which are beyond the polynomial hierarchy: the
arithmetical and analytical hierarchies.

Arithmetical Hierarchy:

• Σ0
0: class of recursive decision problems.

• Σ0
1: class of recursively enumerable decision problems.

• Σ0
n+1: class of relations definable by means of a first order formula

Ψ(~X) = ∃ ~X0∀ ~X1...Qk ~Xnψ(~X0, ..., ~Xn, ~Y)

with free variables ~Y , with Qi is ∀ if i is odd and ∃ if i is even, and with ψ
quantifier free and recursive.

• Π0
n+1 =co-Σ0

n+1: class of relations definable by means of a first order formula

Ψ(~X) = ∀ ~X0∃ ~X1...Qk ~Xnψ(~X0, ..., ~Xn, ~Y)

20

with free variables ~Y , with Qi is ∃ if i is odd and ∀ if i is even, and with ψ
quantifier free and recursive.

Analytical Hierarchy:

• Σ1
1: class of relations definable by means of a second order formula

Ψ(~X) = ∃~Pψ(~P; ~X)

where ~P is a tuple of predicate variables and ψ is a first order formula with
free variables ~X.

• Π1
1: class of relations definable by means of a second order formula

Ψ(~X) = ∀~Pψ(~P; ~X)

where ~P is a tuple of predicate variables and ψ is a first order formula with
free variables ~X.

• Σ1
n+1: class of relations definable by means of a second order formula

Ψ(~X) = ∃ ~P0∀ ~P1...Qk ~Pnψ(~P0, ..., ~Pn, ~X)

where Qi is ∀ if i is odd and ∃ if i is even, ~Pi are tuples of predicate variables
and ψ is a first order formula with free variables ~X.

• Π1
n+1: class of relations definable by means of a second order formula

Ψ(~X) = ∀ ~P0∃ ~P1...Qk ~Pnψ(~P0, ..., ~Pn, ~X)

where Qi is ∃ if i is odd and ∀ if i is even, ~Pi are tuples of predicate variables
and ψ is a first order formula with free variables ~X.

It is well-known that general Σ1
1 formulas are far more expressive than first order

formulas, and general Π1
2 formulas are far more expressive than Σ1

1 formulas, and
so on.

The following theorem characterizes the expressiveness of the stable model
semantics for normal logic programs.

Theorem 2.8.7 ([48, 65].) Determining if a literal L is a stable model conse-
quence of a normal program P is Π1

1-complete.

21

Then the problem of determining if a literal L is a stable model consequence of a
program P is representative of the hardest decision problem in Π1

1.
If we restrict the class of logic programs imposing some additional constraints

about the form of the rules, the expressive power decreases and consequently, as
we expect, also the complexity decreases.

Theorem 2.8.8 ([50, 65].) Datalog programs are coNEXPT IME-complete.

Theorem 2.8.9 ([3].) The class of stratified logic programs is Σ0
n+1-complete (with

n levels of stratification).

ω-restricted programs enjoy good computational properties. Indeed, checking
whether anω-restricted program P has a stable model is decidable even if function
symbols are admitted.

Theorem 2.8.10 ([71].) Given an ω-restricted program P, deciding whether P
has a stable model is 2-NEXP-complete.

Moreover, checking whether a ground atom A belongs to the unique stable
model M of the bottom of an ω-restricted program P defining the domain predi-
cates or whether A occurs in the head of some rule in the ground instantiation of
the ω-stratum with respect to M is decidable.

22

Chapter 3

Extended logic programs

3.1 Introduction
The language of logic programs has been often extended not only for increasing
its expressiveness but also for representing problems in a more compact and sim-
ple way. It is the case of weight constraint rules that, even if I shall prove that they
can be translated into equivalent disjunctive logic rules, are particularly suited for
representing choices over sets of elements with different weights in a domain that
imposes lower and upper bounds on total weight of selected elements. Suppose to
model configuration problems where a combination of components, that respects
a set of restrictions according to the type of chosen elements, has to be calcu-
lated, or to model scheduling problems where a set of activities with some times
and resources requirements has to be executed satisfying global temporal and re-
source constraints. Weight constraint rules are very useful for representing such
problems. It follows an example of a configuration problem presented in [67].

Example 3.1.1 (Simons [67].) A simplified configuration model of a PC could
include the following. There is a set of different types of IDE hard disks, software
packages, and other components that can be chosen to be parts of a PC. A PC
must have from one to four IDE hard disks. In addition, the software packages
use and hard disks produce disk space. Different types of hard disks provide and
different software packages use varied amount of disk space. The amount of disk
space provided in a configuration must be larger than its use.

Moreover, often optimal combinations of elements have to be found.
Sometimes formalisms are useful for their methodology of evaluating rules in-

stead of their expressiveness. For example, constraint logic programming (CLP)

23

rules have the the same expressiveness of first order logic formulas but these rules
are evaluated without any grounding process is required. For this characteris-
tic, CLP has been proved to be very useful for reasoning on programs with large
domains whose ground instance may not be effectively computed by modern sys-
tems. In fact in Chapter 8, I combine normal logic programs with CLP rules so to
reduce memory requirements of modern answer set solvers.

3.2 Weight constraint rules
Weight constraint rules was introduced by Patrik Simons in [66] for extending nor-
mal logic programs in order to express in a compact way choices with lower and
upper cardinality bounds among a set of alternatives where each element can have
a different weight so that the admissible configurations may be only a subset of all
possible combinations of elements. Then, weight constraint rules are particularly
suited for specifying problems in many application areas such as configuration or
scheduling problems.

Definition 3.2.1 A weight constraint has a form as

l ≤ {A1 = wA1 , . . . , An = wAn , not B1 = wB1 , . . . , not Bm = wBm} ≤ u (3.1)

where Ai and Bi are atoms, wAi and wBi are real numbers and represent the weights
associated to literals Ai and not Bi, respectively, while l and u are real numbers
and represent the lower and the upper bounds of the constraint, respectively.

Note that both weights and bounds are real numbers so that also negative weights
or bounds are allowed.

Intuitively, a set of atoms S satisfies a weight constraint C if and only if the
sum of the weights of all literals in C satisfied by S is a value between the lower
and the upper bounds of C. When the lower bound is omitted it is assumed to be
−∞, while when the upper bound is omitted then +∞ is assumed as upper bound.

If we impose that all weights occurring in a weight constraint are to be equal
to 1 then we obtain, as a special case, a cardinality constraint.

Definition 3.2.2 A cardinality constraint has a form as

l {A1, . . . , An, not B1, . . . , not Bm} u

24

where Ai and Bi are atoms and l and u are real numbers and represent the lower
and the upper bounds of the constraint, respectively. The weights of literals in the
constraint are assumed to be equal to 1.

A weight constraint rule is a rule as

C0 ← C1, . . . ,Cn.

where each Ci is a weight constraint.
An integrity constraint

← C1, . . . ,Cn.

is, instead, a particular type of weight constraint rule where the head is assumed
to be an unsatisfiable weight constraint as 1 ≤ {}.

Then, a weight constraint program is a set of weight constraint rules.
The weight constraint rules do not really increase the expressiveness of logic

programs. Indeed, the computational complexity is the same. This means that
using cardinality and weight constraints is only a more compact way for modeling
some particular domains.

3.2.1 Stable model semantics for weight constraint programs
The stable model semantics can be extended to weight constraint rules and then, to
weight constraint programs extending the notion of reduct of a program as defined
in [35], to the class of weight constraint programs.

As for normal programs, a stable model for a weight constraint rule program P
is a set of ground atoms M such that M satisfies all rules in P. Then for each rule
C0 ← C1, . . . ,Cn in P, M satisfies C0 whenever it satisfies C1, . . . ,Cn and a weight
constraint C as (3.1) is satisfied by M if and only if l ≤ w(C,M) ≤ u, where

w(C,M) = ΣAi∈MwAi + ΣBi<MwBi

is the sum of the weights of the literals in C satisfied by M.

Definition 3.2.3 ([66].) The reduct CM of a weight constraint C as in (3.1) with
respect to a set of atoms M is the constraint

l′ ≤ {A1 = wA1 , . . . , An = wAn}

where
l′ = l − ΣBi<MwBi .

25

Then, the reduct CM of a constraint C is obtained deleting from C all negative
literals and its upper bound, and decreasing its lower bound by the weights of all
its negative literals satisfied by M.

The reduct of a weight constraint rule C0 ← C1, . . . ,Cn is H ← CM
1 , . . . ,C

M
n

where H is an atom and each CM
i is the reduct of Ci with respect to M.

The reduct PM of a weight constraint program P with respect to a set of atoms
M is the set of rules

H ← CM
1 , . . . ,C

M
n .

such that, for each of them, there exists in P a rule R : C0 ← C1, . . . ,Cn with
H ∈ lit(C0) and H ∈ M and such that M satisfies the upper bounds of each weight
constraint in R.

Definition 3.2.4 ([66].) Let P be a weight constraint program and M be a set of
atoms. The reduct PM of P with respect to M is

PM = {H ← CM
1 , . . . ,C

M
n | C0 ← C1, . . . ,Cn ∈ P and

for each Ci as in (3.1), H ∈ lit(C0) ∩ M and w(Ci,M) ≤ u
where i = 1, . . . , n}.

A stable model for a weight constraint program P is a set of atoms M that satisfies
all rules in P and that is the deductive closure lm(PM) of the reduct of P with
respect to M.

Definition 3.2.5 A set of atoms M is a stable model for a weight constraint pro-
gram P with non-negative weights if and only if the following holds

1. M |= P,

2. M = lm(PM).

Note that the reduct of a weight constraint rule is a Horn constraint rule. In
fact, each Ci contains only positive literals and only a lower bound condition.
Moreover, for a set P of Horn constraint rules, the deductive closure lm(P) is the
unique least set of ground atoms such that for each atom A, if P |= A then A ∈
lm(P). This set lm(P) is unique because the Horn constraint rules are monotonic.

3.2.2 Optimization statements
In many application areas, in order to solve a problem, computing a solution is
not enough. One should also find the optimal solution, that is a solution with min-
imal or maximal cost. For supporting these applications, the language of weight

26

constraint rules has been extended by introducing two optimization statements,
the minimize statement and the maximize statement. In these statements, cost
functions are expressed as linear sums of the weights of literals. A minimizing
statement m has the following form

minimize{A1 = wA1 , ..., An = wAn , not B1 = wB1 , ..., not Bm = wBm} (3.2)

and it means that a model M with the smallest weight

w(m,M) = ΣAi∈MwAi + ΣBi<MwBi

is required. In a constraint rule program P many minimize statements can oc-
cur and a stable model for P has to satisfy all of them. So, let m1, ...,mn be
the sequence of statements of the form (3.2) occurring in P. The ordering ≤P

for stable models is obtained by defining that M ≤P M′ holds if and only if
w(mi,M) = w(mi,M′) for all i = 1, ..., n or there exists some j ≤ n such that
w(m j,M) < w(m j,M′) and w(mi,M) = w(mi,M′) for all i = 1, ..., j − 1. A sta-
ble model M for a program P is optimal if for any other stable model M′ for P,
M ≤P M′.

3.2.3 Weight constraint rules with variables and functions
For many application problems it is needed to increase the expressiveness of
weight constraint programs allowing weight constraint rules with variables and
functions.

However, as proved in Chapter 2, nonground logic programs without restric-
tions are highly undecidable. But it is possible to impose syntactic restrictions
on weight constraint rules in such a way that decidability is guaranteed. These
restrictions impose a particular form on rules making a weight constraint program
P domain-restricted, that is P can be divided in two parts: PDo that defines the
domain predicates in P and such that it has a unique finite effectively computable
stable model, call it D, and POt that contains all other rules and such that for each
its rule R, a variable in R has to occur in a domain predicate in the body of R,
then P has to be an ω-restricted program. These restrictions guarantee that P has
the same stable model of PD, where PD is the subset of ground(P) containing all
ground rules in which the instances of domain predicates are satisfied by D. Since
PD is finite then computing the stable models for P is decidable.

A compact way to write such weight constraints is given by conditional liter-

27

als. A conditional literal is of the form L : d where L is a literal and the condi-
tional part d is a domain predicate. A ground instantiation of a conditional literal
includes all ground literals L′ obtained applying to L all ground substitutions for
L : d that result in L′ : d′ such that d′ is in the unique stable model of PDo.

3.3 CLP: Constraint Logic Programming
Constraint Logic Programming (CLP) is a declarative formalism that combines
constraint programming and logic programming. A constraint logic program is in
fact a set of logical normal rules where constraints are allowed in the body.

A signature Σ defines the set of predefined predicates and functional symbols
and their arieties, a Σ-structure D is the domain of computation, that is the struc-
ture over which computation is to be performed. D defines a set D and a mapping
of functions and relations in Σ on D that respects the arieties of those symbols.

Definition 3.3.1 If t1, ..., tn are terms built from variables and function symbols of
Σ and p ∈ Σ is a predicate symbol then p(t1, ..., tn) is a primitive constraint.

A constraint is a first order formula built from primitive constraints.

The class of Σ-formulas is the class of constraints definable on Σ and is denoted
by L.

Definition 3.3.2 A constraint domain is a pair (D,L) where D is a Σ-structure
and L is the class of Σ-formulas on a signature Σ.

A CLP program is a set of rules as

A← C1, ...,Cn.

where A is an atom and, for each 1 ≤ i ≤ n, Ci is an atom or a constraint.
As in constraint programming, also in constraint logic programming a problem

is specified in terms of variables and constraints on these variables and a computa-
tion is an iterative process where at each step decisions, represented as constraints,
are made on admitted values for some variables and then a “constraint propaga-
tion” is applied to propagate the consequences of these decisions. Then, during
the computation new variables and constraints may be created. Moreover at each
step, constraints are tested as a whole before the execution proceeds further. For
better understanding these key features of the CLP methodology, consider the fol-
lowing example that shows how it computes a query in a way that is different from
the answer set approach.

28

Example 3.3.3 (Jaffar [39].) The program below defines the relation sumto(n,
1 + 2 + ... + n) for natural numbers n.

sumto(0, 0).
sumto(N, S)← N >= 1,N <= S , sumto(N − 1, S − N).

The query S <= 3, sumto(N, S) gives rise to three answers (N = 0, S = 0),
(N = 1, S = 1), and (N = 2, S = 3), and terminates. The computation sequence
of states for the third answer, for example, is

S ≤ 3, sumto(N, S).

S ≤ 3,N = N1, S = S 1,N1 ≥ 1,N1 ≤ S 1,
sumto(N1 − 1, S 1 − N1).

S ≤ 3,N = N1, S = S 1,N1 ≥ 1,N1 ≤ S 1,
N1 − 1 = N2, S 1 − N1 = S 2,N2 ≥ 1,N2 ≤ S 2,
sumto(N2 − 1, S 2 − N2).

S ≤ 3,N = N1, S = S 1,N1 ≥ 1,N1 ≤ S 1,
N1 − 1 = N2, S 1 − N1 = S 2,N2 ≥ 1,N2 ≤ S 2,
N2 − 1 = 0, S 2 − N2 = 0.

The constraints in the final state imply the answer N = 2, S = 3. Termination is
reasoned as follows. Any infinite computation must use only the second program
rule for state transitions. This means that its first three states must be as shown
above, and its fourth state must be

S ≤ 3,N = N1, S = S 1,N1 ≥ 1,N1 ≤ S 1,
N1 − 1 = N2, S 1 − N1 = S 2,N2 ≥ 1,N2 ≤ S 2,
N2 − 1 = N3, S 2 − N2 = S 3,N3 ≥ 1,N3 ≤ S 3,
sumto(. . .).

Note that this contains an unsatisfiable set of constraints, and in CLP, no further
reduction is allowed.

As in logic programming, also in CLP a program is a declarative specification
of a problem and does not define how to solve the problem. This task is in fact
delegated, for logic programming, to inferential engine while, for constraint logic
programming, to constraint solver that involves decision-making algorithms and

29

constraint propagation algorithms, but these algorithms do not require any ground-
ing process, as the Example 3.3.3 has shown. This means that a constraint solver
is able to reason on nonground programs. Moreover as the following example
shows, the power of CLP stands in the globally evaluation of constraints.

Example 3.3.4 (Jaffar [39].)

add(0,N,N).
add(s(N),M, s(K))← add(N,M,K).

where natural numbers n are represented by s(s(...(0)...)) with n occurrences of
s. Clearly, the meaning of the predicate add(N,M,K) coincides with the rela-
tion N + M = K. However, the query add(N,M,K), add(N,M, s(K)), which is
clearly unsatisfiable, runs forever in a conventional logic programming system.
The important point here is that a global test for the satisfiability of the two add
constraints is not done by the underlying logic programming machinery.

The example above wants to underline a weak point of logic programming with
respect to CLP: the add predicate is not evaluated considering the results of the
add constraints tested so far, and then after the evaluation of add(N,M,K), the
second subgoal of the query above is not tested taking into account that N+M = K.

3.3.1 Semantics for CLP
A declarative semantics of CLP programs over a constraint domain (D,L) inter-
prets a rule

p(~X)← C1, ...,Cn.

as the first order logic formula

∀~X, ~Y .p(~X) ∨ ¬C1 ∨ ... ∨ ¬Cn

where ~X ∪ ~Y is the set of all variables in the rule.
Given a constraint domain (D,L), a valuation v is a mapping from variables

to D, and the natural extension which maps terms to D and formulas to closed
L∗-formulas. A D-interpretation of a formula is an interpretation of the formula
with the same domain asD and the same interpretation for the symbols in Σ asD,
that is aD-interpretation BD = {p(~d) | ~d ∈ Dk}.

Definition 3.3.5 AD-model of a closed formula is aD-interpretation which is a
model of the formula.

30

If we denote by lm(P,D) the leastD-model of a constraint program P (least under
the subset ordering ⊆), then a solution to a query G with respect to P is a valuation
v such that v(G) ⊆ lm(P,D).

31

Chapter 4

Finitary programs

4.1 Introduction
As it is proved in Chapter 2, reasoning on not variable-free logic programs with
infinite ground instantiations is undecidable. In general, we have that normal logic
programs are Π1

1-complete. Moreover, as I have underlined in the introduction
to this PhD thesis, state-of-the-art answer set solvers are able to reason only on
ground programs and then they cannot manage programs with infinite domains
and models.

This limitations have induced many researchers to define classes of programs,
such as stratified programs, order-consistent programs [33], domain-restricted
programs [67], omega-restricted programs [71], that imposing particular forms
on rules guarantee the decidability of programs even if variables and functions
occur.

Another line of research [13, 12, 15, 16] has led to introduce the class of
finitary programs, a subclass of normal logic programs that generalizes acyclic
programs admitting only a finite number of ground instances of odd-cycles. For
finitary programs recursion is restricted so avoiding infinite recursive calls and the
number of possible inconsistency sources (that is the number of odd-cycles) is to
be finite. More precisely, requiring that in the ground instance of a finitary pro-
gram each atom depends on finitely many atoms and there are only finitely many
odd-cyclic atoms, it is possible to keep complexity under control. In fact, for
finitary programs both consistency checking and ground skeptical consequences
are decidable, while nonground skeptical and credulous consequences are r.e.-
complete. These results prove not only that this class of programs makes possible

32

to reason on recursive data structures and infinite domains, such as lists, trees,
XML/HTML documents, time, and so on, but, since it is r.e.-complete and then
Turing equivalent, also prove that finitary programs are a very expressive frag-
ment of normal logic programs. Moreover, for this class of programs a form of
compactness holds, that is an unusual property for logic programs under the stable
model semantics that are well-known do not enjoy this property.

4.2 Finitary programs
A finitary program P is a normal program for which two important conditions
hold: for each atom A in ground(P) the set {B | A ≥ B} is finite, that is P is finitely
recursive, and there are finitely many inconsistency sources, and then odd-cycles,
in ground(P).

Definition 4.2.1 (Finitely recursive programs [13].) A normal program P is fi-
nitely recursive if and only if each ground atom A depends on finitely many ground
atoms.

If P is a finitely recursive program then for each atom A in ground(P) the depen-
dency graph of A (cf. Definition 2.2.3), that is the subgraph of DG(P) including
A and all vertexes reachable from A in DG(P), is finite.

Example 4.2.2 Consider the program P as the set of following rules:

p(f (X))← p(X).
q(X)← not q(X).
s(X)← q(X).

Note that P is a finitely recursive program because each of its ground atoms de-
pends on finitely many ground atoms. In fact, for each ground term t, q(t) depends
on q(t), s(t) depends on q(t), while p(f (t)) depends on p(t) if t is a constant, oth-
erwise if t = f i(a) then p(f i+1(a)) depends on p(f i(a)), p(f i−1(a)), ..., p(a). Note
that, in this case, the sequence terminates because the argument f (X) of the head
recursive predicate of the first rule in P decreases in the body recursive predicate.

Definition 4.2.3 (Finitary programs.) We say a program P is finitary if the fol-
lowing conditions hold:

1. P is finitely recursive.

33

2. There are finitely many odd-cyclic atoms in the dependency graph of P.

Note that all finitely recursive programs with no negative cycles such as posi-
tive finitely recursive programs or locally stratified finitely recursive programs are
finitary.

Example 4.2.4 Consider a new version of the program P of the previous example:

p(f (X))← p(X).
q(a)← not q(a).
s(X)← q(X).

P is again a finitely recursive program but it is also a finitary program because
there exists only one odd-cyclic atom, q(a). Note that in the Example 4.2.2 there
were infinitely many odd-cycles, one for each ground instance of rule

q(X)← not q(X).

4.3 Properties of finitary programs

4.3.1 Relevant subprograms
According to well-known results, the stable model semantics does not enjoy rele-
vance property and then for answering a query F it is needed to analyze not only
the rules on which F depends but also all possible inconsistency sources, and then
all odd-cycles.

In this section I report some results in [13] that define the relevant subprogram
for a ground formula F with respect to a program P as the set of rules needed for
answering F and, mainly, these results prove that for a finitary program this rele-
vant subprogram is finite. This is the key for providing the compactness property
and decidability of consistency checking for finitary programs, besides decidabil-
ity and semidecidability of query answering.

Definition 4.3.1 (Kernel atoms, relevant universe and subprogram.) A kernel
atom for a normal program P and a ground formula F is either an odd-cyclic atom
or an atom occurring in F (note that the kernel atoms are ground by definition).
The set of kernel atoms for P and F is denoted by K(P, F).

34

The relevant universe for P and F, denoted by U(P, F), is the set of all ground
atoms B such that some kernel atom for P and F depends on B. In symbols:

U(P, F) = {B | f or some A ∈ K(P, F), A ≥ B}.

The relevant subprogram for a ground formula F (with respect to program P),
denoted by R(P, F), is the set of all rules in ground(P) whose head belongs to
U(P, F):

R(P, F) = {R | R ∈ ground(P) and head(R) ∈ U(P, F)}.

The following proposition is an immediate consequence of definition of rele-
vant subprogram.

Proposition 4.3.2 (Bonatti [13].) For all ground programs P and all ground for-
mulas F, U(P, F) is a splitting set for P, and R(P, F) = botU(P,F)(P).

Intuitively, if R(P, F) = botU(P,F)(P) then the consistency of P as well as the skep-
tical inference of F from P depend on R(P, F).

Example 4.3.3 Consider the program P as in Example 4.2.4:

p(f (X))← p(X).
q(a)← not q(a).
s(X)← q(X).

and let F = p(f (a)). There exists one odd-cyclic atom, q(a), so

K(P, F) = {q(a), p(f (a))},
U(P, F) = {q(a), p(f (a)), p(a)},
R(P, F) = {q(a)← not q(a), p(f (a))← p(a)}.

As the following proposition proves, all relevant subprograms for a finitary
program P are finite. In fact, for any ground formula F, K(P, F) must be finite
because ground(P) has finitely many odd-cycles and since P is finitely recursive
then also U(P, F) is finite.

Proposition 4.3.4 (Bonatti [13].) If P is finitary then, for all ground formulas F,
U(P, F) and R(P, F) are finite.

35

The next results are among the most important results proved in [13] and show
that the finite, relevant subprogram for a finitary program suffices for query an-
swering. This means that we have not needed of the whole ground instance of a
finitary program (that could be infinite) for answering to a query but we need of
only a partial instantiation of the program.

Lemma 4.3.5 (Bonatti [13].) For all ground formulas F and all finitely recursive
programs P, R(P, F) has a stable model MF if and only if P has a stable model M
such that M∩ U(P, F) = MF .

Theorem 4.3.6 (Bonatti [13].) For all finitely recursive programs P and all gro-
und formulas F,

1. P credulously entails F if and only if R(P, F) does.

2. P skeptically entails F if and only if R(P, F) does.

This theorem confirms what Proposition 4.3.2 intuitively suggested.
If P has no odd-cycle then the relevance property holds for P. In fact, U(P, F)

contains only the atoms on which F syntactically depends.

4.3.2 Compactness and consistency checking
Logic formalisms where an infinite set of formulas is inconsistent if and only if
it has an inconsistent finite subset, enjoy the compactness property. Normal logic
programs, and nonmonotonic logics in general, do not enjoy this property.

Here I report an important result for finitary programs: a finitary program is
consistent if and only if it has a finite unstable kernel, and then the compactness
property holds for this class of programs. This result proves all good computa-
tional properties that hold for finitary programs.

Definition 4.3.7 Given a normal program P, an unstable kernel for P is a set K ⊆
ground(P) with the following properties:

1. K is downward closed, that is, for each atom A occurring in K’s rules, K
contains all the rules R ∈ ground(P) such that head(R) = A.

2. K has no stable model.

36

Proposition 4.3.8 Let P be a normal program. Let

Ko(P) = {B | B ∈ ground(P) and B is odd − cyclic},
Uo(P) = {B | f or some A ∈ Ko(P), A ≥ B},
Ro(P) = {R | R ∈ ground(P) and head(R) ∈ Uo(P)}.

A finitely recursive program P has no stable model if and only if Ro(P) has no
stable model. Moreover, if P is finitary, then Ro(P) is finite.

Proof. Extend the language of P with a new propositional symbol q. Note that
R(P, q) = Ro(P), because q does not occur in P. The proposition follows immedi-
ately from Lemma 4.3.5 by setting F = q. Again, note that if Ro(P) is inconsistent
then it is an unstable kernel for P.

The second part follows from Proposition 4.3.4.

Proposition 4.3.9 If P is a finitary program then Ko(P), Uo(P) and Ro(P) are r.e.
sets.

Proof. For all programs P, the set of rules in ground(P) is an r.e. set. In fact, it
is possible to enumerate all ground substitution θ of P and then to enumerate all
ground rules Rθ in ground(P) such that R is a rule of P.

So, for each atom A in the rules of ground(P), it is possible to check if A is
odd-cyclic visiting the dependency graph of A, that is finite because P is finitely
recursive, and verifying if A occurs in any odd-cycle.

If Ko(P) is an r.e. set then also Uo(P) is an r.e. set because, for each atom
A ∈ Ko(P), its dependency graph is finite and all atoms occurring in this graph can
be included in Uo(P).

Again, if Uo(P) is an r.e. set then it is possible to check, for each rule R in
ground(P), if head(R) belongs to Uo(P) and then also Ro(P) is an r.e. set.

Theorem 4.3.10 (Compactness.) A finitary program P has no stable model if and
only if it has a finite unstable kernel.

Proof. This theorem follows immediately from Proposition 4.3.8. In fact P is
inconsistent if and only if Ro(P) is inconsistent and, if P is finitary, Ro(P) is finite.
Moreover, as I said in the proof of Proposition 4.3.8, if Ro(P) is inconsistent then
it is an unstable kernel for P.

Corollary 4.3.11 Let P be a finitary program. Given the set of odd-cyclic atoms
occurring in P, deciding whether P is inconsistent is decidable.

37

Proof. This corollary is an immediate consequence of Theorem 4.3.10. In fact,
deciding whether a finite set of normal rules is inconsistent is decidable.

4.3.3 Decidability and semi-decidability of inference
In this subsection I focus on the complexity of inference within the class of finitary
programs and on its upper bounds. As proved in [16] for all ground goals, both
credulous and skeptical inference are decidable.

Theorem 4.3.12 (Bonatti [16].) For all finitary programs P and ground goals F,
given the set of odd-cyclic atoms in P, both the problem of deciding whether F is a
credulous consequence of P and the problem of deciding whether F is a skeptical
consequence of P are decidable.

From the previous theorem it follows that existentially quantified goals ∃F are
semidecidable.

Theorem 4.3.13 (Bonatti [16].) For all finitary programs P and ground goals F,
given the set of odd-cyclic atoms in P, both the problem of deciding whether ∃F
is a credulous consequence of P and the problem of deciding whether ∃F is a
skeptical consequence of P are semidecidable.

The original version of these two theorems in [16] did not assume the set of
odd-cyclic atoms in P as given. Here I have corrected this mistake. Note that
we cannot compute the set of all odd-cyclic atoms occurring in P since we know
that they are finitely many but we do not know how many they are. Indeed, if
we assume that it is possible to compute all the odd-cycles in P then the prob-
lem of recognizing finitary programs would be at least semidecidable while, as
proved in [16], the problem of checking condition (2) of Definition 4.2.3 is not
semidecidable.

In Chapter 6, I shall prove some results on lower bounds to the complexity of
inference for the class of finitary programs by relaxing the second condition of
Definition 4.2.3, while, as proved in [16], if we relax the first condition of that
definition we obtain the following proposition.

Proposition 4.3.14 ([16].) Credulous and skeptical inference are not semidecid-
able for the class of all programs satisfying condition (1) in Definition 4.2.3.

38

4.4 Handling local variables
If P is a normal logic program, P is not finitely recursive if and only if its depen-
dency graph DG(P) contains:

1. an infinite branching, or

2. an infinite path.

When an infinite branching occurs in a dependency graph of a normal logic
program P there must exist in P a rule R with infinite different ground instances
that have the same ground head. Then, in the body of R there must be variables
whose instances are not bound by the ground instances of head. Such variables
may only be local variables, that is variables that do not occur in the head. In [16]
some conditions are given since local variables are admissible.

Let R be a rule in a logic program P with local variables. If the predicates
in R where local variables occur are domain predicates so that they are defined
by a locally stratified program that bounds local variables, it is possible replace
these predicates in P with their partial evaluated version (without local variables)
obtained by evaluating the locally stratified program that define them.

For example, consider the following program proposed in [16] where the first
two rules are a definition of member relation:

member(X, [X | Y]).
member(X, [Y | Z])← member(X,Z).
p(f (X))← member(Y, [a, b, c]), q(X,Y).

Note that the rule p(f (X)) ← member(Y, [a, b, c]), q(X,Y) with local variable Y
can be equivalently replaced by following finitely recursive rules

p(f (X))← q(X, a).
p(f (X))← q(X, b).
p(f (X))← q(X, c).

The program so obtained has the same stable models of the original program.
According to results proved in [16], each node in the dependency graph of a

normal program P without local variables has finitely many outgoing edges.
Local variables can also cause infinite paths occur in the dependency graph of

P. Consider the following rule

p(X1)← p(X2).

39

This rules defines a possible path of dependences

p(X1)→ p(X2)→ p(X3)→ p(X4)→ ...

that is a path in which infinite different variables occur and these variables could
be instantiated on an infinite domain and so an infinite path of dependences could
be generated.

4.5 Recognizing finitary programs
In [16] it has been proved that the class of finitary programs is undecidable. Actu-
ally, neither checking if a program is finitely recursive nor checking if a program
has finitely many odd-cycles is decidable because it is possible to reduce to these
problems a variant of the halting problem of a Turing machine with semi-infinite
tape.

Theorem 4.5.1 (Bonatti [16].) Checking whether a program is finitely recursive
is not decidable.

Theorem 4.5.2 (Bonatti [16].) The problem of checking condition (2) in Defini-
tion 4.2.3 is not semidecidable.

Even if finitary programs are not decidable, there exists an its subclass that can
be recognized. A sound but incomplete prototype has been, in fact, implemented
and it will be dealt with more details in Chapter 5.

40

Chapter 5

Some implementations

5.1 Introduction
In this chapter I report some implementations for working with logic programs
under the stable model semantics.

In first two sections I discuss about two of the major state-of-the-art answer
set solvers: Smodels and DLV. Even if these solvers have different characteristics,
implement different tasks and reason on different classes of programs, both have to
compute a ground instance of the input program, even if with some optimizations,
before the actual reasoning can start.

Next I describe an implementation of a recognizer for finitary programs. Since
this system is sound but not complete, it proves that it is effectively possible to
work with a subset of finitary programs.

5.2 Smodels
Smodels [58] is an answer set solver that implements both well-founded and sta-
ble model semantics for range-restricted function-free normal logic programs ex-
tended with weight constraint rules. The reasoner has been implemented to com-
pute the following tasks:

1. consistency checking;

2. computation of well-founded models and stable models;

3. credulous and skeptical entailment.

41

Moreover, Smodels is able to compute all stable models for a logic program or
only a given number of stable models.

The system is composed of two modules:

1. lparse,

2. smodels.

lparse is the grounding module and represents the user front-end. In fact, it
accepts the user program, that has to be written in the Smodels language, and
computes the ground instance of the input program. The ground program elabo-
rated by lparse is not really the whole ground instance of the input program but
an its optimized subset such that the original program and the program produced
by lparse have the same stable models. Intuitively, lparse drops all those rule in-
stances that cannot be applied and then that cannot contribute to derive any atoms.

The grounded program is then passed to smodels module that is the actual
reasoning engine of the Smodels system. It accepts the ground programs from
lparse module and computes for it the stable or well-founded models as well as
its credulous or skeptical consequences.

The implementation of the stable model semantics for ground programs is
based on a novel technique where a bottom-up backtracking search with a power-
ful pruning method is employed. One of the advantages of this technique is that
it can be implemented to work in linear space so ensuring that hard instances can
be solved provided that adequate amount of running time is allocated.

The Figure 5.1 shows the basic steps followed by Smodels for computing the
stable model of the simple program

a← not b.
b← not a.

that implements the OR function.
The Smodels system is implemented in C++ and it offers an API to program-

mers so that it is possible to make other systems communicate with Smodels. It is
the case of CASP system, a logic programming reasoner for constrained programs
described with more details in Chapter 8. CASP system, in fact, computes strong
answer sets by interleaving Smodels with a constraint solver.

42

Figure 5.1: The way of a logic program in Smodels [70].

Figure 5.2: Overall architecture of Smodels [58].

5.2.1 Architecture
In Figure 5.2 a simplified scheme of the general architecture of the Smodels sys-
tem is represented. As shown, the lparse module accepts the input program by
user. lparse does not accept any logic program but only range-restricted function-
free normal logic programs eventually extended with weight constraint rules. Ob-
viously, these programs have to be written in the Smodels language. lparse mod-
ule elaborate the input program and generate a simplified ground instance so that
it has the same stable models of input program. This is done by dropping all
those rules that cannot be applied because their bodies will never be true. In fact,
lparse divides the predicates of input program in domain predicates, whose defi-
nition does not admit recursion through negation, and non-domain predicates. The
subprogram of domain predicates is a stratified program and then it has only one

43

stable model. This means that all provable domain predicates are true in all sta-
ble models of input program. Since input program must be range-restricted then
the provable domain predicates provide a ground instance for all variables in the
input program. Then, lparse can compute a ground instance only of those rules
that depend on provable domain predicates. For example, consider the following
program as in [70]

d(a).
e(b).
e(c).
f oo(X)← d(X), not bar(X).
bar(X)← d(X), not f oo(X).

where d and e are domain predicates while f oo and bar are not since they are
defined using negative recursion. Its complete instantiation is:

d(a).
e(b).
e(c).
f oo(a)← d(a), not bar(a).
f oo(b)← d(b), not bar(b).
f oo(c)← d(c), not bar(c).
bar(a)← d(a), not f oo(a).
bar(b)← d(b), not f oo(b).
bar(c)← d(c), not f oo(c).

Since atoms d(b) and d(c) are not provable and any rule that depends on either
of them cannot be applied, those rules can be dropped without losing any stable
model. The optimized program is:

d(a).
e(b).
e(c).
f oo(a)← d(a), not bar(a).
bar(a)← d(a), not f oo(a).

At the last, lparse passes to smodels these ground rules translated into the lan-
guage that it accepts. The smodels language includes the following four different
rules:

• basic rules,

44

• constraint rules,

• choice rules,

• weight rules.

Basic rules are normal logic rules while constraint, choice and weight rules are as
explained in Chapter 2.

smodels searches the stable models for the program received from lparse by
a bottom-up algorithm. This algorithm exploits and prunes the search space ap-
proximating the admissible stable models by means of called full sets, that is the
sets of atoms occurring negated in the program and whose positive atoms cannot
occur in a stable model. In this way the search algorithm can also compute fo-
cused model searches and then it is able to compute those models containing or
not containing a given set of atoms.

5.3 DLV
DLV [21, 28] is an answer set solver for disjunctive datalog extended with in-
tegrity constraints and classical negation under the answer set semantics [36]. In-
deed, DLV support both default (or explicit) negation, denoted by ¬, and negation
as failure, denoted by not . It is also possible to compose these two forms of
negations and, for any atom A, not¬A is a legal literal while ¬not A is not.

The reasoner is able to compute the following tasks:

1. computation of answer sets,

2. credulous and skeptical entailment,

3. abductive diagnosis [61, 24, 42, 31] and consistency-based diagnosis [64],

4. SQL3 query computation,

5. planning analysis.

DLV system implements interfaces to classic relational database systems. This
means that it can read input data not only from user logic programs but also from
external databases as bases of ground facts.

45

Figure 5.3: Overall architecture of DLV [28].

5.3.1 Architecture
As shown in Figure 5.3, the architecture of DLV system involves a central core,
that represents the central answer set solver engine, and a set of front-ends and
interfaces towards user and other systems as file systems or relational databases.

The input program that the DLV core has to elaborate contains rules from a
user program or a program stored on file system as well as ground facts from
relational tables in a database. The DLV core reads the input program, that might
have been preprocessed by a front-end, evaluates it and returns an, eventually
postprocessed, answer to user.

The DLV core contains three main subsystems:

46

• the grounding module,

• the model generator, and

• the model checker.

First the grounding module computes an optimized subprogram of the ground
instance of the input program that is equivalent to the original program in the sense
that they have the same answer sets, and then the model generator and the model
checker, that are the actual solver engine of DLV system, evaluate the ground
program and solve the required task.

The evaluation process adopts an iterative “Guess&Check” methodology: at
each step a model candidate is identified and then checked if it is a real solution for
the input program, until no more models are to be computed or a given number of
answer sets has been returned to user. More precisely, the input program is divided
in two parts: a set of all disjunctive rules that define the search space of possible
answer sets for the input program, and a set of rules, as integrity constraints, that
cannot prove any atom but only drop those models that do not satisfy them. So,
the first part is evaluated by the model generator to search a possible answer set
candidate, while the second part is evaluated by the model checker for testing if
the candidate model computed by the model generator is really an answer set for
the input program.

5.4 A prototype recognizer for finitary programs
At the LPNMR’01 conference in Vienna [12] a sound but incomplete prototype
recognizer, implemented in XSB Prolog, was presented so proving that there ex-
ists a decidable subclass of finitary programs.

For checking whether a given program is finitely recursive (condition (1) of
Definition 4.2.3), the idea is to analyze the recursion patterns of the input program
making sure that the norm of arguments (a measure of term size [26]) does not in-
crease indefinitely. This analysis is also useful for identifying the potential cycles
with an odd number of negative edges.

For all predicate symbols p, let a p-atom be an atom whose predicate is p.
Similarly, let a p-literal be a literal whose predicate is p.

Definition 5.4.1 Let t be a (possibly nonground) term. The norm of t, denoted by
|t|, is the number of variables and function symbols occurrences in t (constants
are regarded as 0-ary functions).

47

Let ~t = t1, ..., tn be a term sequence. The norm of ~t, denoted by |~t|, is |t1, ..., tn| =

|t1| + ... + |tn|.

For all vectors of terms~t and ~u, following comparison relations can be defined:

• ~t ≺ ~u if and only if for all grounding substitution σ, |~tσ| < |~uσ|;

• ~t 4 ~u if and only if for all grounding substitution σ, |~tσ| ≤ |~uσ|;

• ~t - ~u if and only if ~t is almost never larger than ~u, that is, there exist only
finitely many (possibly no) grounding substitutions σ such that |~tσ| > |~uσ|.

Note that ~t ≺ ~u ⇒ ~t 4 ~u and ~t 4 ~u ⇒ ~t - ~u. Moreover, the norm over
term sequences and the three comparison relations are insensitive to permutations.
More precisely, for all permutations ~t1 of ~t, |~t1| = |~t|; therefore if l is any of the
relations 4, ≺ and - then for all ~u, ~t1 l ~u⇔ ~t l ~u and ~u l ~t1 ⇔ ~u l ~t.

It is possible to relate the term comparison relations to restricted sets of sub-
stitutions. For all sets of grounding substitutions Σ let

• Σ � ~t ≺ ~u if and only if for all σ ∈ Σ, |~tσ| < |~uσ|;

• Σ � ~t 4 ~u if and only if for all σ ∈ Σ, |~tσ| ≤ |~uσ|;

• Σ � ~t - ~u if and only if there exist only finitely many (possibly no) σ ∈ Σ
such that |~tσ| > |~uσ|.

This will be helpful in order to capture some semantic information, e.g. by setting
Σ to the set Ans(G, P) of all grounding substitutions σ such that goal Gσ is true
in the least model of P.

Note that � is inverse monotonic with respect to Σ, that is, for all term com-
parison relations l, if Σ � ~t l ~u and Σ′ ⊆ Σ then Σ′ � ~t l ~u.

Next from the term comparison relations, the predicate arguments comparison
relations can be formalized. For example, 1 ≺q 2 means that in the least model of
P, the first argument of any q-atom is always smaller than the second argument.

Definition 5.4.2 A n2k-projection index is a sequence of distinct integers ~a =
a1, ..., ak such that 1 ≤ ai ≤ n (1 ≤ i ≤ k).

A n-projection index is any n2k-projection index.

48

If ~a is a n2k-projection index and ~t = t1, ..., tn is a term sequence, then ~t[~a] =
ta1 , ..., tak . Similarly for all atoms A = p(t1, ..., tn), A[~a] = ta1 , ..., tak .

Moreover, −~a denotes the complement of a n-projection index ~a and is the
ordered sequence of integers between 1 and n that do not occur in ~a.

Let l range over ≺, 4 and -, and let q be a n-ary predicate of a program P:

• P � ~alq ~b if and only if, for any sequence ~x = x1, ..., xn of distinct variables,
Ans(q(~x), P) � ~x[~a] l ~x[~b].

Intuitively, these above notions are useful for testing if the rules in a program
P generate a dependency graph DG(P) where the size of arguments in the pred-
icates does not increase along its paths or where ground substitutions for some
arguments in a rule bound the admissible values for the other nonground terms.
Then it is possible to use these notions for a recursion and cycle analysis and then
for testing if the dependency graph of a program P might contain an infinite path
or an infinite branching, so testing the first condition in Definition 4.2.3 of finitary
programs, or if this dependency graph might contain cycles with an odd number
of negative edges, so testing the second condition in Definition 4.2.3.

In this respect, the finitary program recognition techniques differ from the
techniques for verifying termination. The latter require some arguments to de-
crease at each recursive call, while in our case some infinite loops are allowed.

The finitary program recognizer presented in [12] consists of four stages where
the first three phases aim to test if the input program is finitely recursive while the
last phase checks the second condition of finitary programs:

Interargument analysis: the relationships between the size of terms occurring
as predicate arguments in a rule of the input program are analyzed. In par-
ticular, the size of head arguments with respect to the size of body argu-
ments is checked for exploiting if the head arguments in a rule bound the
local variables in the body or if the head recursive predicate can occur in the
body on arguments with a bigger size (note that this could generate infinite
sequences of recursive calls without repeats).

Recursion analysis: starting from the results of the interargument analysis, the
recognizer finds, for each predicate symbol, the group of its arguments
whose size decreases (or at least does not increase “too mach”) at each
recursive call and so analyzes cyclic atom dependencies classifying them
in good recursion cycles and false cycles. Intuitively, a program where all
cyclic dependencies are good recursion cycles or false cycles, is finitely re-
cursive.

49

Recursive domain predicate identification: negative cycles classified as false
cycles during the previous phase, are analyzed for identifying domain pred-
icates that can be used to compute an optimized partial evaluation of the
input program. Since the subprogram of all domain predicates has exactly
one stable model which is contained in every stable model of the entire pro-
gram (domain predicates constitute the bottom program of a splitting set of
the given program), such model can be used to simplify the ground program
instantiation by considering only rule instances whose domain subgoals are
true. Depending on its recursion properties (such as the existence or lack of
positive cycles) a domain predicate may be evaluated in a naive top-down
fashion, in a bottom-up fashion, or in a tabled fashion.

A similar optimized grounding procedure is implemented by the lparse
module of Smodels system (see Section 5.2), but the finitary recognizer
evaluates all locally stratified recursive domain predicates, while lparse
evaluates only stratified domain predicates.

Cycle analysis: during this phase all potential cycles through an odd number of
negations are analyzed. If any potential odd-cycle is ground or is a false
cycle then the number of odd-cyclic atoms is finite. For example, program

p(a)← not p(a).

is accepted because this odd-cycle is ground, while

p(f (X))← not p(f (X)).

is rejected.

Also the program [12]

even(0).
even(s(X))← not even(X).

is accepted. In fact in this program, the argument in the body recursive
predicate of the second rule is strictly smaller than the head argument and
then these rules define a false cycle, that is actually they do not generate any
cycle in the dependency graph of the program. Moreover, potential odd-
cycles belonging to ω-restricted programs again are accepted since any their
ground instance contains a finite number of odd-cycles (cf. Section 2.7).

50

Part II

New proposals

51

Chapter 6

Finitely recursive programs

6.1 Introduction
The class of finitary programs has been introduced in Chapter 4 as a subclass of
logic programs interpreted according to the stable model semantics, and admit-
ting function symbols (therefore data constructors and infinite domains). In order
to make the main reasoning tasks decidable or at least semidecidable, finitary
programs are required to satisfy two restrictions: the dependency graph of each
ground atom and the number of odd-cyclic atoms must be finite.

In particular, in [16] it was proved that for finitary programs, consistency
checking is decidable as well as credulous reasoning and skeptical reasoning on
ground queries, while nonground queries were proved to be r.e.-complete. More-
over, a form of compactness holds: an inconsistent finitary program has always
a finite unstable kernel, i.e. a finite subset of the program’s ground instantiation
with no stable models. All of these properties are quite unusual for a nonmono-
tonic logic.

In [8] we extended these good properties to larger program classes. Two obvi-
ous candidate classes are obtained by dropping one of the two restrictions defining
finitary programs. It has already been noted in [16] that by dropping the first con-
dition on recursion, one obtains a superclass of locally stratified programs whose
complexity is then far beyond computability. If the second condition on odd-cyclic
atoms is dropped then queries are not decidable anymore [16], but we gave a pre-
cise characterization of their complexity and a detailed analysis of the effects that
dropping the second restriction has on the other properties of finitary programs.

The programs that satisfy only the first restriction are called finitely recursive

52

programs. They cover a wide range of practically interesting programs. For ex-
ample, most standard list manipulation programs (member, append, remove etc.)
are finitely recursive. The reader can find numerous examples of finitely recursive
programs in [16]. Many interesting programs are finitely recursive but not finitary,
due to integrity constraints that apply to infinitely many individuals.

Example 6.1.1 Figure 4 of [16] illustrates a finitary program for reasoning about
actions, defining—among others—two predicates holds(f luent, time) and do(ac-
tion, time). The simplest way to add a constraint that forbids any parallel ex-
ecution of two incompatible actions a1 and a2 is including a rule f ← not f ,
do(a1,T), do(a2,T) in that program, where f is a fresh propositional symbol (of-
ten such rules are equivalently expressed as denials← do(a1,T), do(a2,T)). This
program is not finitary (because f depends on infinitely many atoms since T has
an infinite range of values) but it can be reformulated as a finitely recursive pro-
gram by replacing the above rule with

f (T)← not f (T), do(a1,T), do(a2,T) .

Note that the new program is finitely recursive but not finitary, because the new
rule introduces infinitely many odd cycles (one for each instance of f (T)).

If P is finitely recursive then, for each atom A occurring in ground(P), the
dependency graph of A is a finite graph. Moreover, if A is an odd-cyclic atom then
its dependency graph contains all the odd-cycles in which A occurs. So, the set of
atoms on which A depends and the set of odd-cycles in which A occurs are finite.

We proved that for finitely recursive programs the compactness property still
holds, and inconsistency checking and skeptical reasoning are semidecidable.
Then, the restriction on recursion makes logic programs more similar to classi-
cal logics, while the restriction on odd-cycles (i.e. on the number of potential
inconsistency sources) makes ground queries decidable and brings the complexity
of nonground credulous queries within r.e. . Moreover, we extended the complete-
ness of skeptical resolution [14, 16] from finitary programs to all finitely recursive
programs. These results clarified the role that each of the two restrictions defining
finitary programs has in ensuring their properties.

In order to prove these results program splittings [45] was used, but the focus
was shifted from splitting sequences (whose elements are sublanguages) to the
corresponding sequences of subprograms. For this purpose the notion of module
sequence was introduced. It turns out that finitely recursive programs are exactly
those programs whose module sequences are made of finite elements. Moreover

53

a finitely recursive program P has a stable model if and only if each element Pi

of the sequence has a stable model, a condition which is not valid in general for
normal programs.

6.2 Module sequences and a normal form for split-
ting sequences

The stable models [35, 36] of a normal program can be obtained by splitting a
program into two modules—of which one is self-contained, while the other mod-
ule depends on the former—and then combining the stable models of the two
modules.

The splitting theorem has been extended to transfinite sequences in [45].

Definition 6.2.1 A (transfinite) sequence is a family whose index set is an initial
segment of ordinals, {α : α < µ}. The ordinal µ is the length of the sequence.

A sequence 〈Uα〉α<µ of sets is monotone if Uα ⊆ Uβ whenever α < β, and
continuous if, for each limit ordinal α < µ, Uα =

⋃
ν<α Uν.

Definition 6.2.2 (Lifschitz-Turner, [45]) A splitting sequence for a program P
is a monotone, continuous sequence 〈Uα〉α<µ of splitting sets for P such that⋃

α<µ Uα = atoms(P).

In [45] Lifschitz and Turner generalized the splitting theorem to splitting se-
quences. They proved that each stable model M of P equals the infinite union
of a sequence of models 〈Mα〉α<µ such that (i) M0 is a stable model of botU0(P),
(ii) for all successor ordinals α < µ, Mα is a stable model of eUα−1(botUα

(P) \
botUα−1(P),

⋃
β<α Mβ), and (iii) for all limit ordinals λ < µ, Mλ = ∅. They proved

also that each sequence of models with these properties yields a stable model of
P.

In this study on the computational properties of finitely recursive programs,
the notion of splitting sequence will replaced with suitable sequences of bottom
programs whose length is bounded by ω.

Definition 6.2.3 (GH, Module sequence) Let P be a normal program and let the
set of its ground heads be

GH = { A | A = head(R), R ∈ ground(P) }.

54

The module sequence P1, P2, P3, ..., Pn, ... induced by an enumeration A1, A2, A3,
..., An, ... of GH is defined as follows:

P1 = {R ∈ ground(P) | A1 depends on head(R) }
Pi+1 = Pi ∪ {R ∈ ground(P) | Ai+1 depends on head(R) } (i ≥ 1).

Example 6.2.4 Consider the finitely recursive program P [16]:

p(f (X))← p(X), q(X).
q(X)← s(X).
u(X)← not u(X).
z(X)← p(X).

The Herbrand Universe of P is {a, f (a), f (f (a)), ...}. One enumeration of the GH
is

e = {p(f (a)), q(a), u(a), z(a),
p(f (f (a))), q(f (a)), u(f (a)), z(f (a)),
p(f (f (f (a)))), ...}.

A module sequence for P induced by the enumeration e of GH is

P1 = {p(f (a))← p(a), q(a); q(a)← s(a)};
P2 = P1;
P3 = P2 ∪ {u(a)← not u(a)};
P4 = P3 ∪ {z(a)← p(a)};
P5 = P4 ∪ {p(f (f (a)))← p(f (a)), q(f (a)); q(f (a))← s(f (a))};
P6 = P5;
P7 = P6 ∪ {u(f (a))← not u(f (a))};
P8 = P7 ∪ {z(f (a))← p(f (a))};
...

Of course, those properties of module sequences which are independent of the
enumeration of GH are interesting.

The following proposition follows easily from the definitions. A ground sub-
program P′ ⊆ ground(P) is downward closed, if for each atom A occurring in P′,
P′ contains all the rules R ∈ ground(P) such that A = head(R).

Proposition 6.2.5 Let P be a normal program. For all module sequences P1, P2,
..., for P:

55

1.
⋃

i≥1 Pi = ground(P),

2. for each i ≥ 1 and j ≥ i, atoms(Pi) is a splitting set of P j and Pi =

botatoms(Pi)(P j),

3. for each i ≥ 1, atoms(Pi) is a splitting set of P and Pi = botatoms(Pi)(P),

4. for each i ≥ 1, Pi is downward closed.

Therefore, we immediately see that each module sequence for P consists of the
bottom programs corresponding to a particular splitting sequence 〈atoms(Pi)〉i<ω
that depends on the underlying enumeration of GH. Roughly speaking, such se-
quences constitute a normal form for splitting sequences. If P is finitely recursive,
then “normal form” sequences can be required to satisfy an additional property:

Definition 6.2.6 (Smoothness) A transfinite sequence of sets 〈Xα〉α<µ is smooth if
and only if X0 is finite and for each non-limit ordinal α + 1 < µ, the difference
Xα+1 \ Xα is finite.

Note that when µ = ω (as in module sequences), smoothness implies that each Xα

in the sequence is finite. Finitely recursive programs are completely characterized
by smooth module sequences:

Theorem 6.2.7 The following are equivalent:

1. P is finitely recursive;

2. P has a smooth module sequence (where each Pi is finite);

3. all module sequences for P are smooth.

Proof. Take any module sequence S of P. The fact that each Pi is finite is equiva-
lent to say that P1 is finite and, for each i > 0, Pi+1 \ Pi is finite. This is equivalent
to say that each Ak depends on a finite number of ground atoms of P, i.e. that P is
finitely recursive.

Since smooth module sequences clearly correspond to smooth splitting se-
quences, the above theorem implies that by working with module sequences we
are implicitly restricting our attention to smooth splitting sequences of length ω.
Then the characterization of finitely recursive programs can be completed as fol-
lows, using standard splitting sequences:

56

Corollary 6.2.8 For all programs P, the following are equivalent:

1. P is finitely recursive;

2. P has a smooth splitting sequence with length ω.

Proof. If P is finitely recursive then each module sequence P1, P2, ... for P is
such that each atoms(Pi) is finite and then 〈atoms(Pα)〉α<ω is a smooth splitting
sequence for P.

Now, suppose that 〈Uα〉α<µ is a smooth splitting sequence for P but P is not
finitely recursive. Then there exists a ground atom Ak such that there is an infinite
chain of ground atoms Ak ≤ B1 ≤ B2 ≤ Let α1 be the least ordinal such that
Ak belongs to Uα1 . Since Ak ∈ Uα1 then the infinite set {B1, B2, ...} is included in
Uα1 and Uα1 is infinite. Note that, since α1 is the least such that Ak belongs to Uα1 ,
then by definition of splitting sequence, α1 is not a limit ordinal. So, the difference
Uα1 \ Uα1−1 is finite and then Uα1−1 must be infinite. Moreover, Ak ∈ Uα1 \ Uα1−1.
Let Bi be the first atom such that Bi < Uα1 \ Uα1−1 and let α2 be the least ordinal
such that Bi ∈ Uα2 . Note that α2 < α1. Then, again, α2 is not a limit ordinal and
the difference Uα2 \ Uα2−1 is finite while Uα2−1 is infinite because Bi depends on
infinitely many ground atoms. If we iterate this procedure, we obtain a strictly
descendant sequence of not limit ordinal, α1, α2, ..., such that Uαi is infinite while
Uαi \ Uαi−1 is finite and then Uαi−1 must be infinite. Since 0 is the lower bound of
this sequence, then also U0 must be infinite and this is a contradiction.

Next I illustrate how module sequences provide an incremental characteriza-
tion of the stable models of normal logic programs.

Note 6.2.9 By Proposition 6.2.5 and the splitting theorem, if P is a normal pro-
gram and P1, P2, ..., Pn, ... is a module sequence for P, then for all j ≥ i ≥ 1 and
for all stable models M j of P j, the set Mi = M j ∩ atoms(Pi) is a stable model
of Pi. Similarly, for each stable model M of P, the set Mi = M ∩ atoms(Pi) is a
stable model of Pi.

Roughly speaking, the following theorem rephrases the splitting sequence the-
orem of [45] in terms of module sequences. The original splitting sequence theo-
rem applies to sequences of disjoint program “slices”, while our theorem applies
to monotonically increasing program sequences. Since no direct proof of the split-
ting sequence theorem was ever published (only the proof of a more general result
for default logic was published [72]), here I report a direct proof that we gave of
our result in [8].

57

Theorem 6.2.10 (Module sequence theorem) Let P be a normal program and
P1, P2, ... be a module sequence for P. Then M is a stable model of P if and only
if there exists a sequence M1,M2, ... such that :

1. for each i ≥ 1, Mi is a stable model of Pi,

2. for each i ≥ 1, Mi = Mi+1 ∩ atoms(Pi),

3. M =
⋃

i≥1 Mi.

Proof. Let M be a stable model of P. Since P1, P2, ... is a module sequence for
P then for each i ≥ 1, atoms(Pi) is a splitting set of P and Pi = botatoms(Pi)(P).
So, we consider the sequence M1 = M ∩ atoms(P1),M2 = M ∩ atoms(P2), ...
where, by the splitting theorem [46], for each i ≥ 1, Mi is a stable model of Pi,
Mi+1 ∩ atoms(Pi) = Mi and, by definition of M1,M2, ... and by property 1 of
Proposition 6.2.5,

⋃
i Mi = M. Then for each stable model M of P there exists a

sequence of finite sets of ground atoms that satisfies the properties 1, 2 and 3.
Now, suppose P ground and suppose that there exists a sequence M1,M2, ...

that satisfies the properties 1, 2 and 3. It is only to prove that the set M =
⋃

i≥1 Mi

is a stable model of P; equivalently,⋃
i≥1 Mi = lm(PM).

First
⋃

i≥1 Mi ⊆ lm(PM) will be proved. Property 2 implies that for all i ≥ 1,
(M ∩ atoms(Pi)) = Mi; consequently PM

i = PMi
i . Moreover, since Pi ⊆ P, then

PM
i ⊆ PM, and hence

PMi
i = PM

i ⊆ PM.

By the monotonicity of lm(.) [2, 73], ∀i ≥ 1.lm(PMi
i) ⊆ lm(PM). Moreover, Mi is

a stable model of Pi and then Mi = lm(PMi
i), so

∀i ≥ 1.Mi ⊆ lm(PM).

Now, it is left to prove the opposite inclusion, that is lm(PM) ⊆
⋃

i≥1 Mi.

Suppose A ∈ lm(PM). From PM
i = PMi

i and
⋃

i Pi = P it follows that
⋃

i PMi
i =⋃

i PM
i = PM. Moreover, by definition, for each i ≥ 1, Pi is downward closed, then

there must be a k such that A ∈ lm(PMk
k). Hence, A ∈ Mk and then A ∈

⋃
i Mi.

The module sequence theorem suggests a relationship between the consistency
of a program P and the consistency of each step in P’s module sequences.

58

Definition 6.2.11 A module sequence P1, P2, ... for a normal program P is in-
consistent if there exists an i < ω such that Pi has no stable model, consistent
otherwise.

Proposition 6.2.12 If a normal program P has an inconsistent module sequence
then P is inconsistent.

Proof. Suppose that P has an inconsistent module sequence P1, P2, Then there
exists a Pi that has no stable models. Hence, P has an inconsistent bottom set and
then P is inconsistent by the splitting theorem.

Next the inconsistency of a module sequence S will be proved to be invariant
with respect to the enumeration of GH inducing S .

Theorem 6.2.13 Let S = P1, P2, ... be a module sequence for a normal program
P. If S is inconsistent then each module sequence for P is inconsistent.

Proof. Let S = P1, P2, ... be an inconsistent module sequence for P induced
by the enumeration A1, A2, ... of GH and let i be the least index such that Pi

is inconsistent. Let S ′ = P′1, P
′
2, ... be any module sequence for P induced by

the enumeration A′1, A
′
2, ... of GH. Since i is finite, there exists a finite k such

that {A1, A2, ..., Ai} ⊆ {A′1, A
′
2, ..., A

′
k}. So, by construction, Pi ⊆ P′k and then

atoms(Pi) ⊆ atoms(P′k). Moreover, by definition, Pi is downward closed and
then Pi = botatoms(Pi)(P

′
k). Since Pi is inconsistent then P′k is inconsistent (by the

splitting theorem) and then also S ′ is inconsistent.

In other words, for a given program P, either all module sequences are inconsis-
tent, or they are all consistent. In particular, if P is consistent, then every member
Pi of any module sequence for P must be consistent.

It may be tempting to assume that the converse holds, that is, if a module se-
quence for P is consistent, then P is consistent, too. Unfortunately, this statement
is not valid, in general, as the following example shows.

Example 6.2.14 Consider the following program P f (due to Fages [33]):

q(X)← q(f (X)).
q(X)← not q(f (X)).
r(0).

59

Note that P f is not finitely recursive because, for each grounding substitution σ,
q(X)σ depends on the infinite set of ground atoms { q(f (X))σ, q(f (f (X)))σ, ... }.

The first two rules in P f are classically equivalent to

q(X)← [q(f (X)) ∨ not q(f (X))] .

Since the body is a tautology and the stable models of a program are also classical
models of the program, a stable model of P f should satisfy all ground instances of
q(X). However, the Gelfond-Lifschitz transformation with respect to such a model
would contain only the first and the third rules of the program, and hence the least
model of the transformation would contain no instance of q(X). It follows that P f

is inconsistent (it has no stable models). Now consider the following extension P
of P f :

1. q(X)← q(f (X)), p(X).

2. q(X)← not q(f (X)), p(X).

3. r(0).

4. p(X)← not p′(X).

5. p′(X)← not p(X).

6. c(X)← not c(X), not p(X).

To see that P is inconsistent, suppose M is a stable model of P. By rules 4 and
5, each ground instance of p(X) can be either true or false. But each ground
instance of c(X) is odd-cyclic, therefore if p(X) is false then rule 6 produces an
inconsistency. It follows that all ground instances of p(X) must be true in M. But,
in this case, the rules 1, 2 and 3 are equivalent to program P f and prevent M from
being a stable model, as explained above. So P is inconsistent.

Next, consider the enumeration e = {r(0), q(0), p(0), p′(0), c(0), q(f (0)),
p(f (0)), p′(f (0)), c(f (0)), ...} of the set GH. This enumeration induces the fol-
lowing module sequence for P.

P0 = {r(0)}
P1 = P0 ∪

⋃
k<ω{ q(X)← q(f (X)), p(X),

q(X)← not q(f (X)), p(X),
p(X)← not p′(X),
p′(X)← not p(X) } [X/ f k(0)]

Pi+1 = Pi ∪ {c(X)← not c(X), not p(X)} [X/ f i−1(0)] (i ≥ 1)

60

Note that M0 = {r(0)} is a stable model of P0 and for each i ≥ 1 and k ≥ i − 2

Mk
i = { r(0), p(f 0(0)), p(f 1(0)), p(f 2(0)), . . . , p(f k(0)),

p′(f k+1(0)), p′(f k+2(0)), . . . , p′(f k+ j(0)), . . .
q(f 0(0)), q(f 1(0)), q(f 2(0)), . . . , q(f k(0))}

is a stable model of Pi. Therefore, each Pi is consistent even if
⋃

i Pi = ground(P)
is inconsistent. This happens because for each stable model M of P1 there exists a
P j (j > 1) such that M is not the bottom part of any stable model of P j. Intuitively,
M has been “eliminated” at step j. In this example P1 has infinitely many stable
models, and it turns out that no finite step eliminates all of them. Consequently,
each Pi in the module sequence is consistent, but the entire program is not.

6.3 Properties of finitely recursive programs
The smoothness of finitely recursive programs overcomes the problem illustrated
by the above example. Since every module Pi is finite, no step in the sequence
has infinitely many stable models. Therefore if every Pi is consistent, the entire
program P must be consistent, too, and the following theorem holds:

Theorem 6.3.1 For all finitely recursive programs P:

1. if P is consistent then every module sequence for P is consistent;

2. if some module sequence for P is consistent, then P is consistent.

Proof. The point 1 will be proved by contraposition. Suppose that P has an
inconsistent module sequence P1, P2, Then, there exists a Pi with no stable
models. Therefore, P has an inconsistent bottom set and hence P is inconsistent
by the splitting theorem.

To prove point 2, consider a module sequence S for P. If S is consistent then
each Pi has a nonempty set of stable models. It suffices to prove that there exists
a sequence M1,M2, ... of stable models of P1, P2, ..., respectively, that satisfies the
properties of Theorem 6.2.10, because this implies that M =

⋃
i Mi is a stable

model of P.
A stable model Mi of Pi is “bad” if there exists a k > i such that no model

Mk of Pk extends Mi, “good” otherwise. Mk extends Mi if Mk ∩ atoms(Pi) = Mi

(cf. Note 6.2.9). It is possible to claim that each Pi must have at least a “good”
model.

61

To prove the claim, suppose that all models of Pi are “bad”. Since Pi is a finite
program it has a finite number Mi1 , ...,Mir of models. By assumption, for each Mi j

there is a program Pki j
none of whose models extends Mi j . Let k = max{ki1 , ..., kir};

then no model of Pk extends a model of Pi, and this is a contradiction because Pk,
by hypotheses, has at least a stable model Mk and by the splitting theorem Mk

extends a stable model of Pi. This proves the claim.
Now, let M1 be a “good” stable model of P1; then there must exist a “good”

stable model of P2 that extends M1, exactly for the same reasons, and so on.
Therefore there exists an infinite sequence M1,M2, ... that satisfies both properties
1 and 2 of Theorem 6.2.10 and hence M =

⋃
i Mi is a stable model of P.

Note that in Example 6.2.14 there is an infinite P1 with infinitely many stable
models, but all these models are “bad” and each of them is dropped by the stable
models, respectively, of programs P2, P3, There is no Pk that eliminates all of
them, becoming inconsistent, as it happens when the program is finitely recursive
and inconsistent. Indeed the program P of Example 6.2.14 is not finitely recursive.

This result can be extended to all smooth splitting sequences, including se-
quences with length µ > ω.

Theorem 6.3.2 Let 〈Uα〉α<µ be a smooth splitting sequence for a normal program
P. P is consistent if and only if for each α < µ, botUα

(P) is consistent.

Proof.[Sketch] If there exists an inconsistent botUα
(P) then P is inconsistent be-

cause it has an inconsistent bottom set.
Now, let 〈Uα〉α<ω be an enumerable splitting sequence for P and suppose that,

for each n ∈ N, Pn = botUn(P) is consistent. It will be proved that P is consistent.
Since the splitting sequence is smooth then P0 is finite and it is also consistent

by hypotheses. Hence, P0 must have at least a “good” model (cf. the proof of
Theorem 6.3.1), call it M′

0. By definition of splitting sequence, for each n, Un ⊆

Un+1 and then Pn ⊆ Pn+1 and Pn = botUn(Pn+1). In particular, P1 = botU1(P) =
botU0(P) ∪ P1 \ P0. Again, P1 is consistent and then, by splitting theorem, each
model of P1 must have the form M0 ∪ Me, where M0 is a stable model of P0 and
Me is a stable model of eU0(P1 \ P0,M0). But P1 \ P0 is finite (by definition of
smooth splitting sequence), hence P1 can have a finite number of stable models
and then, because M′

0 is “good”, there must exist an M′
e such that M′

1 = M′
0 ∪ M′

e
is a “good” model of P1.

In general, for each n ∈ N, Pn+1 must have a “good” model Mn+1 which con-
tains all the chosen “good” models M′

i , i ≤ n. Because all such models M′
0,M

′
1, ...,

62

satisfy the conditions 1 and 2 of Theorem 6.2.10, then M′
ω =
⋃

i∈N M′
i is a stable

model of ground(P) =
⋃

n<ω Pn.
This proof can be generalized to any smooth splitting sequence 〈Uα〉α<µ in the

following way. For each ordinal α let Pα = botUα
(P) and suppose that for each not

limit ordinal α, Pα is consistent. P is consistent if each Pα is consistent. It will
be proved by induction up to µ that for each ordinal α < µ holds the following
property:

1. Pα has a “good” model M′
α that contains all the “good” models M′

0, M′
1, ...,

M′
µ, ..., M′

β so far chosen for each Pβ, with β < α.

As proved, this is the case for each n < ω and for Pω =
⋃

n<ω Pn.
Now, if α is not a limit ordinal, being Pα = Pα−1 ∪ Pα \ Pα−1 = botUα−1(P) ∪

Pα \ Pα−1, then again each model Mα of Pα must have the form Mα−1 ∪ Me where
Mα−1 is a stable model of Pα−1 and Me is a stable model of eUα−1(Pα \ Pα−1,Mα−1),
which is finite because 〈Uα〉α<µ is smooth. If Pα−1 satisfies the property 1 and
M′

α−1 is the “good” model of Pα−1, then there must exist at least an M′
e such that

M′
α = M′

α−1∪M′
e is a “good” model of Pα and that contains all the “good” models

chosen so far.
If, instead, α is a limit ordinal then Pα =

⋃
β<α Pβ and M′

α =
⋃

β<α M′
β is

necessarily the “good” model of Pα, being 〈Uβ〉β<α a splitting sequence for Pα

and of course it satisfies the property 1. Therefore, ground(P) =
⋃

α<µ Pα is
consistent.

Note that if the enumeration of GH is effective, then for each i the correspond-
ing subprogram Pi can be effectively constructed. In this case 〈atoms(Pi)〉i<ω is
an effective enumerable splitting sequence for P. This observation is the basis for
the complexity results proved in the rest of this chapter.

6.3.1 Compactness
Here it will be proved that the compactness theorem for finitary programs actually
holds for all finitely recursive programs.

Theorem 6.3.3 Let P be a finitely recursive program and S be any module se-
quence for P. P is consistent if and only if S is consistent.

Proof. It follows from Theorems 6.3.1 and 6.2.7.

63

For understanding the following theorem, see Definition 4.3.7 of unstable ker-
nel.

Theorem 6.3.4 (Compactness) A finitely recursive program P has no stable mo-
del if and only if it has a finite unstable kernel.

Proof. By Proposition 6.2.12 and Theorem 6.3.1, P has no stable model if and
only if it has an inconsistent module sequence. So, let P1, P2, ..., Pn, ... be an
inconsistent module sequence for P and let i ≥ 1 such that Pi is inconsistent. By
Proposition 6.2.5, Pi ⊆ ground(P) and Pi is also downward closed. So it is an
unstable kernel for P. Moreover, by Theorem 6.2.7, Pi is finite.

The compactness theorem for finitary programs [16] can now be regarded as a
corollary of the above theorem.

6.3.2 Reasoning on finitely recursive programs
By taking an effective enumeration of the set GH, one can effectively compute
each element of the corresponding module sequence. Let us call (P, i)
an effective procedure that, given the finitely recursive program P and the index i,
returns the ground program Pi, and let SM(Pi) be an algorithm that computes the
finite set of the finite stable models of Pi:

Theorem 6.3.5 Let P be a finitely recursive program. Deciding whether P is
inconsistent is at most semidecidable.

Proof. Given a module sequence P1, P2, ..., Pn, ... for P, consider the algorithm
 (P).

By Proposition 6.2.12 and Theorem 6.3.1, P is inconsistent if and only if there
exists an i ≥ 1 such that Pi is inconsistent (note that the consistency of Pi can be
always checked because Pi is finite). Then, the algorithm returns FALS E if and
only if P is inconsistent.

Note that if ground(P) is infinite then any module sequence for P is infinite
and the algorithm (P) terminates if and only if P is not consistent.

Corollary 6.3.6 Let P be a finitary program and Ko(P) be the set of all odd-cyclic
atoms of ground(P). Deciding whether P is inconsistent is decidable.

64

Algorithm (P)
1: i = 0;
2: answer = TRUE;
3: repeat
4: i = i + 1;
5: Pi = (P, i);
6: if SM(Pi) = ∅ then
7: answer = FALSE;
8: until ¬answer OR Pi = ground(P)
9: return answer;

Proof. Consider the set

Ro(P) = {R | R ∈ ground(P) and head(R) ∈ Uo(P)}

where
Uo(P) = {B | f or some A ∈ Ko(P), A ≥ B}.

A finitary program P has no stable model if and only if Ro(P) has no stable model
[16]. Moreover, Ro(P) is finite. Therefore (Ro(P)) always terminates.

Next I deal with skeptical inference. Recall that a closed formula F is a skepti-
cal consequence of P if and only if F is satisfied (according to classical semantics)
by all the stable models of P.

Theorem 6.3.7 Let P be a finitely recursive program and P1, P2, ... be a module
sequence for P. A ground formula F is a skeptical consequence of P if and only
if there exists a finite k ≥ 1 such that F is a skeptical consequence of Pk and
atoms(F) ⊆ atoms(Pk).

Proof. Let h be the least integer such that atoms(F) ⊆ atoms(Ph) (note that there
always exists such a h because atoms(F) is finite). Suppose that there exists a
k ≥ h such that F is a skeptical consequence of Pk. Since Pk is a bottom for P,
then each stable model of P contains a model of Pk and then satisfies F. So, F is
a skeptical consequence of P. This proves the “if” part.

Now suppose that, for each k ≥ h, F is not a skeptical consequence of Pk. This
implies that each Pk is consistent (hence P is consistent) and, moreover, the set S
of all the stable models of Pk that falsify F is not empty.

65

Note that S is finite because Pk is finite (as P is finitely recursive). So, if all the
models in S are “bad” (cf. the proof of Theorem 6.3.1), then there exists a finite
integer j > k such that no model of P j contains any model of S . Consequently, F
is a skeptical consequence of P j — a contradiction.

Therefore at least one of these model must be “good”. Then there must be
a model M of P that contains this “good” model of Pk, and hence F is not a
skeptical consequence of P.

The next theorem follows easily.

Theorem 6.3.8 Let P be a finitely recursive program. For all ground formulas
F, the problem of deciding whether F is a skeptical consequence of P is at most
semidecidable.

Proof. Given a module sequence P1, P2, ..., Pn, ... for P, consider the algorithm
 (P, F) where P is supposed to be ground.

Algorithm (P, F)
1: answer = FALSE;
2: i = 0;
3: repeat
4: i = i + 1;
5: Pi = (P, i);
6: until atoms(F) ⊆ atoms(Pi)
7: repeat
8: if SM(Pi) = ∅ OR Pi skeptically entails F then
9: answer = TRUE;

10: else
11: i = i + 1;
12: Pi = (P, i);
13: until answer OR Pi = P
14: return answer;

For each Pi such that atoms(F) ⊆ atoms(Pi), the algorithm (P, F)
checks if F is a skeptical consequence of Pi. Since Pi is finite, we can always
decide if F is a skeptical consequence of Pi. So, by Theorem 6.3.7, the algorithm
returns TRUE if and only if F is a skeptical consequence of P.

66

Note that if ground(P) is infinite then any module sequence for P is infinite
and the algorithm (P, F) terminates if and only if F is a skeptical conse-
quence of P.

For a complete characterization of the complexity of ground queries and in-
consistency checking, it is only left to prove that the above upper bounds are tight.

Theorem 6.3.9 Deciding whether a finitely recursive program P is inconsistent
is r.e.-complete.

Proof. By Theorem 6.3.5 the inconsistency checking over the class of finitely
recursive programs is at most semidecidable.

Now it is proved to be also r.e.-hard by reducing the problem of skeptical in-
ference of a quantified formula over a finitary program (that is an r.e.-complete
problem [16, Corollary 23]) to the problem of inconsistency checking over a fini-
tely recursive program.

Let P be a finitary program and ∃F be a closed quantified formula. Let ((L11∨

L12 ∨ ...)∧ (L21∨ L22 ∨ ...) ∧ ...) be the conjunctive normal form of ¬F. Then ∃F
is a skeptical consequence of P if and only if the program P ∪ C is inconsistent,
where

C =

p1(~X1)← not L11, not L12, ..., not p1(~X1)
p2(~X2)← not L21, not L22, ..., not p2(~X2)

...

 ,
p1, p2, ... are new atom symbols not occurring in P or F, and ~Xi is the vector of
all variables occurring in (Li1∨ Li2 ∨ ...). Note that P ∪ C is a finitely recursive
program.

The constraints in C add no model to P, but they only discard those models
of P that satisfy Fθ (for some substitution θ). So, let SM(P) be the set of stable
models of P. Then each model in SM(P ∪C) satisfies ∀¬F. SM(P ∪C) = ∅ (that
is P ∪ C is inconsistent) if and only if either SM(P) = ∅ or all stable models of P
satisfy ∃F. Then SM(P ∪ C) = ∅ if and only if ∃F is a skeptical consequence of
P.

Theorem 6.3.10 Deciding whether a finitely recursive program P skeptically en-
tails a ground formula F is r.e.-complete.

Proof. As proved in Theorem 6.3.8 deciding whether a finitely recursive program
P skeptically entails a ground formula F is at most semidecidable.

67

Now it is proved to be also r.e.-hard by reducing the problem of inconsistency
checking over a finitely recursive program to the problem of skeptical inference
of a ground formula over a finitely recursive program.

Let P be a finitely recursive program and A be a new ground atom that does
not occur in P. Then, P is inconsistent if and only if A is a skeptical consequence
of P. Since A occurs in the head of no rule of P, A cannot occur in a model of P.
So, P skeptically entails A if and only if P has no model.

Corollary 6.3.11 Deciding whether a finitely recursive program P does not cred-
ulously entail a ground formula F is co-r.e. complete.

Proof. The proof follows immediately from Theorem 6.3.10 and from the fact
that a ground formula F is not a credulous consequence of P if and only if ¬F is
a skeptical consequence of P.

6.4 Skeptical resolution and finitely recursive pro-
grams

In this section the work in [14, 16] is extended by proving that skeptical resolu-
tion (a top-down calculus which is known to be complete for datalog and finitary
programs under the skeptical stable model semantics) is complete also for the
class of finitely recursive programs. Skeptical resolution has several interesting
properties. For example, it does not require the input program P to be instanti-
ated before reasoning, and it can produce nonground (i.e., universally quantified)
answer substitutions.

For a complete description of the five inference rules of skeptical resolution,
the reader is referred to [14]. Here, I only recall that a crucial rule called failure
rule is expressed in terms of an abstract negation-as-failure mechanism derived
from the notion of support. Recall that a support for a ground atom A is a set
of negative literals obtained by unfolding the goal A with respect to the given
program P until no positive literal is left.

Definition 6.4.1 ([14]) Let A be a ground atom. A ground counter-support for A
in a program P is a set of atoms K with the following properties:

1. For each support S for A, there exists not B ∈ S such that B ∈ K.

2. For each B ∈ K, there exists a support S for A such that not B ∈ S .

68

In other words, the first property says that K contradicts all possible ways
of proving A, while the second property is a sort of relevance property. Infor-
mally speaking, the failure rule of skeptical resolution says that if all atoms in a
counter-support are true, then all attempts to prove A fail, and hence not A can be
concluded.

Of course, in general, counter-supports are not computable and may be infinite
(while skeptical derivations and their goals should be finite). In [14] the notion of
counter-support is generalized to nonground atoms in the following way:

Definition 6.4.2 A (generalized) counter-support for A is a pair 〈K, θ〉 where K
is a set of atoms and θ a substitution, such that for all grounding substitutions σ,
Kσ is a ground counter-support for Aθσ.

The actual mechanism for computing counter-supports can be abstracted by
means of a suitable function CounterSupp, mapping each (possibly nonground)
atom A onto a set of finite generalized counter-supports for A. The underlying
intuition is that function CounterSupp captures all the negative inferences that can
actually be computed by the chosen implementation. To achieve completeness for
the nonground skeptical resolution calculus, the negation-as-failure mechanism is
needed to be complete in the following sense.

Definition 6.4.3 The function CounterSupp is complete if and only if for each
atom A, for all of its ground instances Aγ, and for all ground counter-supports
K for Aγ, there exist 〈K′, θ〉 ∈ CounterSupp(A) and a substitution σ such that
Aθσ = Aγ and K′σ = K.

Skeptical resolution is based on goals with hypotheses (h-goals for short)
which are pairs (G | H) where H and G are finite sequences of literals. Roughly
speaking, the answer to a query (G | H) should be yes if G holds in all the stable
models that satisfy H. Hence (G | H) has the same meaning in answer set seman-
tics as the formula (

∧
G ←

∧
H). Finally, a skeptical goal (s-goal for short) is

a finite sequence of h-goals, and a skeptical derivation from P and CounterSupp
with restart goal G0 is a (possibly infinite) sequence of s-goals g0,g1,..., where
each gi+1 is obtained from gi through one of the five rewrite rules of the calculus,
as explained in [14]. This calculus is sound for all normal programs and counter-
support calculation mechanisms, as stated in the following theorem.

Theorem 6.4.4 (Soundness, [14]) Suppose that an s-goal (G | H) has a success-
ful skeptical derivation from P and CounterSupp with restart goal G and answer

69

substitution θ. Then, for all grounding substitution σ, all the stable models of P
satisfy (

∧
Gθ ←

∧
Hθ)σ (equivalently, ∀(

∧
Gθ ←

∧
Hθ) is skeptically entailed

by P).

However, skeptical resolution is not always complete. Completeness analy-
sis is founded on ground skeptical derivations, that require a ground version of
CounterSupp.

Definition 6.4.5 For all ground atoms A, let CounterSuppg(A) be the least set
such that if 〈K, θ〉 ∈ CounterSupp(A′) and for some grounding σ, A = A′θσ, then
〈Kσ, ε〉 ∈ CounterSuppg(A), where ε is the empty substitution.

Theorem 6.4.6 (Finite Ground Completeness [14]) If some ground implication∧
G ←

∧
H is skeptically entailed by a finite ground program P and the function

CounterSupp is complete with respect to P, then (G | H) has a successful skepti-
cal derivation from P and CounterSuppg with restart goal G. In particular, if G
is skeptically entailed by P, then (G | ∅) has such a derivation.

This basic theorem and the following standard lifting lemma allow to prove
completeness for all finitely recursive programs.

Lemma 6.4.7 (Lifting [14]) Let CounterSupp be complete. For all skeptical
derivations D from ground(P) and CounterSuppg with restart goal G0, there ex-
ists a substitution σ and a skeptical derivationD′ from P and CounterSupp with
restart goal G′0 and answer substitution θ, such thatD = D′θσ and G0 = G′0θσ.

Theorem 6.4.8 (Completeness for finitely recursive programs) Let P be a fini-
tely recursive program. Suppose CounterSupp is complete with respect to P and
that for some grounding substitution γ, (

∧
G ←

∧
H)γ holds in all the stable

models of P. Then (G | H) has a successful skeptical derivation from P and
CounterSupp with restart goal G and some answer substitution θ more general
than γ.

Proof. By Theorems 6.2.7 and 6.3.7, there exists a smooth module sequence for P
with finite elements P1, P2, ..., and a finite k such that (

∧
G ←

∧
H)γ holds in all

the stable models of Pk. Since each Pi is downward closed, the ground supports
of any given A ∈ atoms(Pk) with respect to program Pk coincide with the ground
supports of A with respect to the entire program P. Consequently, also ground
counter-supports and (generalized) counter-supports, respectively, coincide in Pk

70

and P. Therefore, CounterSupp is complete with respect to Pk, too. As a con-
sequence, since Pk is a ground, finite program, the ground completeness theorem
can be applied to conclude that (G | H)γ has a successful skeptical derivation
from Pk and CounterSuppg with restart goal Gγ. The same derivation is also a
derivation from P (as Pk ⊂ ground(P)) and CounterSuppg. Then, by the Lifting
lemma, (G | H) has a successful skeptical derivation from P and CounterSupp,
with restart goal G and some answer substitution θ, such that (G | H)γ is an in-
stance of (G | H)θ. It follows that θ is more general than γ.

6.5 Conclusions
In this chapter I have shown some important properties of the class of finitely re-
cursive programs, a very expressive fragment of logic programs under the stable
model semantics. Finitely recursive programs extend the class of finitary pro-
grams by dropping the restrictions on odd-cycles. Many of the nice properties of
finitary programs are extended to finitely recursive programs: (i) a compactness
property (Theorem 6.3.4); (ii) the r.e.-completeness of inconsistency checking and
skeptical inference (Theorem 6.3.9); (iii) the completeness of skeptical resolution
(Theorem 6.4.8).

Unfortunately, some of the nice properties of finitary programs do not carry
over to finitely recursive programs: (i) ground queries are not decidable (Theo-
rem 6.3.10 and Corollary 6.3.11); (ii) nonground credulous queries are not semi-
decidable (as ground queries are co-r.e.).

The results reported in this chapter clarify precisely the role of each of the
two conditions defining finitary programs: the restriction on recursion ensures
compactness and brings the complexity of skeptical queries within r.e.; then,
roughly speaking, this restriction makes logic programs more similar to classical
logic. The restriction on odd-cycles (i.e., on the number of potential inconsistency
sources) is necessary to make ground queries decidable and reduce the complexity
of nonground credulous queries to r.e. .

As a side benefit, a normal form for splitting and module sequences is in-
troduced, where sequence length is limited to ω and—if the program is finitely
recursive—the sequence is smooth (i.e., the “delta” between each non-limit ele-
ment and its predecessor is finite). Such properties constitute an alternative char-
acterization of finitely recursive programs.

71

Chapter 7

Composing normal logic programs

7.1 Introduction
In previous chapters I discussed about classes of logic programs such as finitary
programs, finitely recursive programs, ω-restricted programs, etc. . All of these
classes guarantee good computational properties imposing different restrictions on
their programs. If P and Q are two normal programs belonging to these classes,
is it possible to reason on the program P ∪ Q by taking advantage of properties
of P and Q? The idea is to “compose” P and Q so obtaining a program P ∪ Q
that, as a whole, might not be subject to the restrictions of P or Q (in particular
this happens when P and Q belong to different classes) but that again enjoys good
computational properties.

To do this it is necessary to distinguish what relation there exists between
predicates defined in P and predicates defined in Q, that is if P can call predicates
defined in Q without redefine them, in that case P depends on Q, or if predicates
defined in Q cannot occur in P and vice versa, in that case P and Q are indepen-
dent.

7.2 Dependency relations for logic programs
In this chapter, metavariables P and Q are supposed to range over normal pro-
grams. Def(P) denotes the set of predicates defined in P, that is, the set of all
predicate symbols occurring in the head of some rule in P, while Called(P) is the
set of predicates called by P, that is, the set of all predicate symbols occurring in
the body of some rule in P.

72

Now, dependency relations for normal logic programs can be defined as fol-
lows:

P depends on Q, in symbols P B Q, if and only if

Def(P) ∩ Def(Q) = ∅ , (7.1)
Def(P) ∩ Called(Q) = ∅ , (7.2)
Called(P) ∩ Def(Q) , ∅ . (7.3)

Conversely, P and Q are independent (equivalently, P is independent of Q), in
symbols P‖Q, if and only if

Def(P) ∩ Def(Q) = ∅ , (7.4)
Def(P) ∩ Called(Q) = ∅ , (7.5)
Called(P) ∩ Def(Q) = ∅ . (7.6)

Note that P‖Q if and only if Q‖P.

7.3 Composing programs
In this section I propose some important observations for better understanding
what resulting program we obtain by composing dependent or independent pro-
grams. In particular, given two normal programs P and Q such that PBQ or P‖Q,
I shall focus on two questions:

• What is the set of odd-cyclic atoms occurring in P ∪ Q? Recall that the
odd-cycles represent for a program its possible inconsistency sources.

• What relation there exists between the ground instance of P ∪ Q and the
ground instances of P and Q? Since ground(P)∪ ground(Q) ⊆ ground(P∪
Q), does the projection of ground(P ∪ Q) over the rules in P (resp. Q) still
enjoy good properties of ground(P) (resp. ground(Q))?

Let OC(P) be the set of odd-cyclic atoms occurring in the dependency graph
DG(P) of P.

Proposition 7.3.1 If P B Q or P‖Q, then OC(Q) ∩ OC(P) = ∅.

Proof. Let p be a predicate symbol of a ground atom A belonging to an odd-cycle
c in DG(Q) (resp. DG(P)). Since c is a cycle, A must have in c at least an outgoing

73

edge. Then p ∈ Def(Q) (resp. p ∈ Def(P)). By definition of dependency relation
B and independency relation ‖, Def(Q) ∩Def(P) = ∅ and then any ground atom A
with predicate symbol p cannot belong both to OC(Q) and to OC(P).

Note that, even if P and Q cannot have odd-cyclic atoms in common, they can
have in common the predicates on which their odd-cyclic atoms depend.

Proposition 7.3.2 Let P and Q be normal logic programs with the same Herbrand
universe. Then ground(P ∪ Q) = ground(P) ∪ ground(Q).

Proof. The proof follows immediately from the definition of ground instantiation.

The above proposition does not hold for programs P and Q with different lan-
guages, in particular with different function symbols and constants, and then with
different Herbrand universes. For this reason, even if P (and hence ground(P))
belongs to a class of programs (e.g., the class of finitary programs) it might be the
case that the projection of ground(P ∪ Q) over the rules in P is not in that class
(e.g., it is not finitary).

Theorem 7.3.3 Let P and Q be finitely recursive and PBQ or P‖Q. P∪Q might
not be finitely recursive.

Proof. Consider Q as
R : p(a)← q(X).

Note that the Herbrand universe for Q is {a} and then ground(Q) = {p(a)← q(a)}.
However we choose a finitely recursive program P such that P B Q or P‖Q, and
such that P contains a function symbol f , we have that in ground(P ∪ Q) the rule
R has infinitely many ground instances

p(a)← q(a).
p(a)← q(f (a)).
p(a)← q(f (f (a))).
...

and then p(a) depends on infinitely many ground atoms.

Corollary 7.3.4 Let P and Q be finitary and P B Q or P‖Q. P ∪ Q might not be
finitary.

74

Proof. If P and Q are finitary, by definition of finitary programs, they have to be
finitely recursive. Hence, by Theorem 7.3.3, P∪Q might not be finitely recursive
and then neither finitary.

Moreover, consider Q as

R : q(X)← not q(X).

Note that the Herbrand universe for Q is {a} and then ground(Q) = {q(a) ←
not q(a)}. However we choose a finitary program P such that P B Q or P‖Q, and
such that P contains a function symbol f , the rule R has infinitely many ground
instances in ground(P ∪ Q)

q(a)← not q(a).
q(f (a))← not q(f (a)).
q(f (f (a)))← not q(f (f (a))).
...

and then there are infinitely many ground odd-cyclic atoms.

Note that in Theorem 7.3.3 and Corollary 7.3.4, Q is finitary or finitely recur-
sive only because its Herbrand universe is finite, while for any infinite Herbrand
universe this property does not hold. This means that Q is finitary or finitely re-
cursive not for a particular form of its rules (that have no syntactic restriction) but
only because the language of Q does not contain function symbols.

Next, I give sufficient (even if not necessary) conditions in order that a normal
program P is finitely recursive. These conditions impose only syntactic restric-
tions on the rules of P and are independent from the universe with respect to
which P is grounded. Since these conditions are merely syntactic, for any pro-
gram P satisfying them and for any universe U1 of ground terms, ground(P,U) is
finitely recursive, where ground(P,U) is the ground instance of P with respect to
the universe U.

Definition 7.3.5 Let p(~t) be an atom that occurs in the head of some rules of P. A
dependency sequence for p(~t) and a (possibly nonground) substitution θ over the
language of P is a sequence as

(p1(~t1)← p2(~t′2))θ1, (p2(~t2)← p3(~t′3))θ2, ...

1I assume that the number of function symbols and constants in U is finite.

75

where p(~t) = p1(~t1) and θ = θ1 and where for each i = 1, 2, ...

1. θi is a possibly nonground substitution over the language of P,

2. pi+1(~t′i+1)θi = pi+1(~ti+1)θi+1,

3. there exists a rule Ri belonging to P and such that pi(~ti)θi is unifiable with
head(Ri) and pi+1(~t′i+1)θi is unifiable with some atom that occurs (possibly
negated) in body(Ri).

Note that a dependency sequence may be also a nonground sequence.

Note 7.3.6 Note that we can write equivalently a dependency sequence as

p1(~t1)θ1 ← p2(~t′2)θ1, p2(~t2)θ2 ← p3(~t′3)θ2, ...

In the following I assume a substitution is trivial if it is the empty substitution
or if it is only a variable renaming. Then a trivial substitution is a substitution
equivalent to the empty substitution. In general, two substitutions θ and σ are
equivalent if and only if θ is more general than σ and σ is more general than θ.
Moreover, θ is strictly more general than σ if θ is more general than σ but θ and
σ are not equivalent.

Theorem 7.3.7 Let P be a normal logic program. For each pair of atoms p(~t)
and p(~t′), such that p(~t) occurs in the head of some rules of P and p(~t′) occurs
(possibly negated) in the body of some rules of P, and for each substitution σ over
the language of P, if the following holds

• whenever p(~t) and p(~t′) are in different rules of P then

σ is non trivial =⇒ tσ , t′;

• whenever p(~t) and p(~t′) are in the same rule of P then

σ is non empty =⇒ tσ , t′;

then each dependency sequence for p(~t) and some substitution θ (possibly non-
ground) contains only finitely many (possibly nonground) distinct instances for
p(~t).

76

Proof. Suppose that standardization apart has been applied to P. Let

S = p1(~t1)θ1 ← p2(~t′2)θ1, p2(~t2)θ2 ← p3(~t′3)θ2, ...

be a dependency sequence for an atom p1(~t1) belonging to P and a substitution θ1.
Note that, for each i, θi is not strictly more general than θi+1. Indeed, if θi is

strictly more general than θi+1 then there exists a substitutionσ such that θiσ = θi+1

(with σ non trivial) and then t′i+1θi = ti+1θiσ implies that there exists a non trivial
substitution ψ such that t′i+1 = ti+1ψ, and this is a contradiction.

Suppose p(~t) a recursive atom in P (that is an atom that occurs both in the head
of some rule in P and in the body of some rule in P) and let S be

p(~t)θ11 ← q12(~s′12)θ11, q12(~s12)θ12 ← q13(~s′13)θ12, ..., q1k1(~s1k1)θ1k1 ← p(~t1)θ1k1 ,

p(~t)θ21 ← q22(~s′22)θ21, q22(~s22)θ22 ← q23(~s′23)θ22, ..., q2k2(~s2k2)θ2k2 ← p(~t2)θ2k2 ,
...

a dependency sequence for p(~t)θ11. Since standardization apart has been applied
on P, the fact that in the sequence an atom q(~s) occurs more than once means that
a rule is applied more than once.

I will prove that if p(~t) does not occur finitely many times in S then there exists
only a finite set Θ = {θ1, θ2, ..., θm} of distinct substitutions such that p(~t)θi (i ≤ m)
occurs in S .

Consider the sequence θ11, θ21, θ31, ..., of substitutions applied to p(~t) in S . By
what has been proved, for each i, either θ(i+1)1 is strictly more general than θi1 or
θ(i+1)1 and θi1 are equivalent.

If for each i, θ(i+1)1 is strictly more general than θi1 then, since the variables in
~t are finitely many and the terms in ~t are finite, then there exists a finite integer h
such that θh1 is equivalent to the empty substitution.

Otherwise, suppose that there is an i such that θi1, θ(i+1)1, θ(i+2)1, ..., is a (pos-
sibly infinite) sequence of equivalent substitutions. I will prove that this sequence
contains only finitely many distinct substitutions. Indeed, if θi1 is equivalent to
θ(i+1)1 then all substitutions θi1, θi2, ..., θiki are equivalent and, since in P no local
variable occurs in a recursive predicate, the variables occurring in p(~ti)θiki (that
is the variables occurring in the atom p(~ti) after that the substitution θiki has been
applied to it) occur also in p(~t)θi1 and, since p(~ti)θiki = p(~t)θ(i+1)1, also variables
occurring in p(~t)θ(i+1)1 occur in p(~t)θi1. Moreover, both θi1 and θ(i+1)1 are substi-
tutions over ~t. Then the set of terms and variables of ~t occurring in θ(i+1)1 is a

77

subset of those in θi1. For the same reasons, terms and variables of ~t occurring in
θ(i+2)1 are also in θ(i+1)1, and so on. Since ~t and p(~t)θi1 are finite, then the number
of substitutions in θi1, θ(i+1)1, θ(i+2)1, ..., that are distinct with respect to terms and
variables in ~t, is finite.

Corollary 7.3.8 Let P be a normal logic program without local variables. Under
the conditions of Theorem 7.3.7, P is finitely recursive.

Proof. If P has no local variable then its dependency graph cannot contain an
infinite branching. Moreover, if P satisfies the conditions of Theorem 7.3.7 then
any path in its dependency graph contains finitely many distinct atoms.

Definition 7.3.9 A finitely recursive program P is domain independent if:

1. P has no local variable;

2. for each pair of atoms p(~t) and p(~t′), such that p(~t) occurs in the head of
some rules of P and p(~t′) occurs (possibly negated) in the body of some rules
of P, however we choose a non trivial substitution σ over the language of
P, tσ , t′.

The following example shows how a domain independent finitely recursive pro-
gram allows us to encode a bounded simulation of a given Turing machine while
it cannot simulate a general Turing machine.

Example 7.3.10 LetM be a deterministic Turing machine with semi-infinite tape
and with S as set of states and V as tape alphabet. An instruction for M is a
5-tuples 〈s, v, v′, s′,m〉 ∈ S ×V ×V ×S ×{left, right}, where s and v are the current
state and symbol respectively, v′ is the symbol to be written in the current cell of
tape, s′ is the next state and m is theM’s head movement.

Let t(s, L, v,R) be the predicate that encodes a configuration of M where s
is the current state, L is the list of symbols (in reverse order) on the left of M’s
head, v is the current symbol and R is the list of symbols on the right ofM’s head
(R might have a tail of blank symbols) and let the following program PM (due to
Bonatti [16]) be an encoding of all bounded simulations ofM:

R1 : t(s, L, v, [V |R])← t(s′, [v′|L],V,R). f or all instr. 〈s, v, v′, s′, right〉
R2 : t(s, [V |L], v,R)← t(s′, L,V, [v′|R]). f or all instr. 〈s, v, v′, s′, left〉
R3 : t(s, L, v,R). f or all f inal states s
R4 : blank list([]).
R5 : blank list([b|L])← blank list(L).

78

Note that PM is a domain independent finitely recursive program (and also a
finitary program because it is positive). Indeed, PM contains no local variable.
Moreover, for any substitution σ, t(s, L, v, [V |R])σ , t(s′, [v′|L],V,R) and t(s, L, v,
[V |R])σ , t(s′, L,V, [v′|R]) because there is no substitution σ′ such that [V |R]σ′ =
R or vσ′ = V. The same holds for t(s, [V |L], v,R) and t(s, L, v,R) with respect to
t(s′, [v′|L],V,R) and t(s′, L,V, [v′|R]), and for blank list([]) and blank list([b|L])
with respect to blank list(L).

As proved in [16], for any ground substitution θ the goal

G = (blank list(R), t(s, [], v0, [v1, ..., vn|R]))θ

can be derived from PM if and only ifM terminates on 〈v0, v1, ..., vn〉 using only k
cells, where k is the tape length for the encoding of ([], v0, [v1, ..., vn|Rθ]).

If we add to PM the rule

R6 : u(R)← blank list(R), t(s, [], v0, [v1, ..., vn|R]), not u(R).

then we obtain a finitely recursive (but not finitary) program P′
M

that is inconsis-
tent if and only ifM terminates on 〈v0, v1, ..., vn〉.

Note that P′
M

is not finitary because the rule R6 generates infinitely many odd-
cycles and it is neither a domain independent finitely recursive program because
we can unify the head of the instance of rule R1 with v0 as third argument, with
t(s, [], v0, [v1, ..., vn|R]) in the body of rule R6:

t(s, L, v0, [V |R]){L/[],V/[v1, ..., vn]} = t(s, [], v0, [v1, ..., vn|R]).

Definition 7.3.11 A finitary program is domain independent if it is a domain in-
dependent finitely recursive program and its odd-cycles are ground.

Domain independent finitary (and then also domain independent finitely recursive)
programs can codify most of the standard predicates on lists [69] as shown by the
following example.

79

Example 7.3.12 The programs here illustrated

member(X, [X|Y]).
member(X, [Y |Z])← member(X,Z).

append([], L, L).
append([X|Xs], L, [X|Ys])← append(Xs, L,Ys).

reverse(L,R)← reverse(L, [],R).
reverse([],R,R).
reverse([X|Xs], A,R)← reverse(Xs, [X|A],R).

implement operations, such as member, append and reverse, on lists.
All of these programs are domain independent finitary programs. Indeed they

are all positive programs without local variables. Moreover, consider the re-
cursive predicate member. Then, for any substitution σ, member(X, [Y |Z])σ ,
member(X, Z) and member(X, [X|Y])σ , member(X,Z) because [Y |Z] and [X|Y]
are not unifiable with Z without applying any substitution to Z.

For the same reasons, however we choose a substitution σ, append([X|Xs],
L, [X|Ys])σ , append(Xs, L,Ys) and append([], L, L)σ , append(Xs, L,Ys) and
again, this holds for reverse predicate.

Domain independent finitely recursive programs and domain independent finitary
programs satisfy the conditions of Theorem 7.3.7 and Corollary 7.3.8, then fol-
lowing theorems hold.

Theorem 7.3.13 Let P be a domain independent finitely recursive program. For
each ground universe U, ground(P,U) is finitely recursive.

Proof. The theorem follows from Theorem 7.3.7 and Corollary 7.3.8.

Note that, under the conditions of Theorem 7.3.7, the rules in P can contain
local variables only if body recursive predicates in which local variables occur
cannot be unified with the same recursive predicates in the head of some rule.
This, in fact, prevents infinite paths to be in the dependency graph of P while does
not prevent infinite branching. Intuitively, this is because under the conditions of
Theorem 7.3.7, we cannot simulate recursion through increasing terms, as in the
following example.

80

Example 7.3.14 Consider the rule:

p(X1)← p(X2).

This rule allows us to simulate the rule

p(X)← p(f (X)).

whose dependency graph has an infinite path

p(a)→ p(f (a))→ p(f (f (a)))→

Theorem 7.3.15 Let P be a domain independent finitary program. For each gro-
und universe U, ground(P,U) is finitary.

Proof. By Definition 7.3.11, P is a domain independent finitely recursive pro-
gram and, by Theorem 7.3.13, ground(P,U) is still finitely recursive. Moreover,
since in P the odd-cycles are ground, and then are finitely many, it follows that
ground(P,U) has again finitely many odd-cycles. So, ground(P,U) is finitary.

For achieving program composition, I suppose a very general class of pro-
grams that can be composed with finitely recursive programs or finitary programs
preserving good computational properties.

I define ELP as a class of normal logic programs for which two of the main
tasks, consistency checking and credulous inference, are effectively computable.

Definition 7.3.16 Let U be the set of all universes U of ground terms and S be
the set of all sets S of ground literals. A normal logic programs P is an ELP
program if there exist effective functions Fm : {P} × U → {yes, no} and Fc :
{P} × U × S → {yes, no} such that

1. Fm(P,U) returns yes if ground(P,U) has at least one stable model, no oth-
erwise;

2. Fm(P,U, S) returns yes if ground(P,U) has at least one stable model that
satisfies S , no otherwise.

From the above definition follows that if P is an ELP program then, for any uni-
verse of ground terms U, ground(P,U) ∈ ELP.

Note that any ω-restricted program P belongs to ELP. Indeed, if we consider
U as the Herbrand universe of P then ground(P,U) is the ground instance of P

81

and it is always possible to check if P is consistent. Moreover, given a ground
atom A, P ∪ {A} is still an ω-restricted program and also P ∪ { f ← not f , A},
where f is a ground atom not occurring in P. So, we can always decide whether P
has a stable model containing A or not containing A. Adding to P similar rules for
each literal in a set of ground literals S it is possible to check if S is a credulous
consequence of P. If U is any ground universe then ground(P,U) is again an
ω-restricted program (the definition of ω-restricted program is based only on the
predicate symbols occurring in P and not on their instances [71]). Then an ω-
restricted program satisfies the properties 1 and 2 of the ELP class.

Let PP∪Q be the projection of ground(P ∪ Q) over the rules in P, then PP∪Q

is ground and, by Theorems 7.3.13 and 7.3.15, PP∪Q is finitely recursive if P is
finitely recursive and finitary if P is finitary while, by definition of class ELP, it
belongs to ELP if P does. Moreover, PP∪Q∪ QP∪Q = ground(P ∪ Q) and if P and
Q has the same Herbrand universe then, by Proposition 7.3.2, PP∪Q = ground(P)
and QP∪Q = ground(Q).

Theorem 7.3.17 If PBQ or P‖Q, then PP∪Q BQP∪Q or PP∪Q‖QP∪Q, respectively.

Proof. Let U be the Herbrand universe of P∪Q. Since PP∪Q = ground(P,U) then
Def(P) = Def(PP∪Q) and Called(P) = Called(PP∪Q) (resp. Def(Q) = Def(QP∪Q)
and Called(Q) = Called(QP∪Q)). Then the relations that hold among Def(PP∪Q),
Called(PP∪Q), Def(QP∪Q) and Called(QP∪Q) are the same than for P and Q.

7.4 Structural and semantic properties
In the following I analyze the characteristics of programs resulting from composi-
tion. First, I prove the relationships between the class which the resulting program
belongs to and the classes of programs involved in the composition, and then the
relationships between the structural properties of the composed program and the
structural properties of programs that compose it. Then, I investigate the com-
plexity of some of the main reasoning tasks on the resulting program with respect
to the complexity of the same tasks on the starting programs.

Theorem 7.4.1 Let P B Q, then:

1. if P and Q are domain independent finitely recursive programs then P ∪ Q
is finitely recursive;

2. if P ∪ Q is finitely recursive then P and Q are finitely recursive.

82

Proof. Suppose P and Q domain independent finitely recursive programs, then
by Theorem 7.3.13 PP∪Q and QP∪Q are finitely recursive. For each atom A in
ground(P∪Q), if A depends on some atoms then the predicate symbol in A either
belongs to Def(Q) or to Def(P). If the predicate symbol in A belongs to Def(Q)
then A depends on finitely many atoms because QP∪Q is finitely recursive and, by
Theorem 7.3.17, A cannot depend on atoms in PP∪Q not occurring in QP∪Q.

If the predicate symbol in A belongs to Def(P) then A depends, in PP∪Q, on
a finite set of atoms DS(PP∪Q, A) = {B1, B2, ..., Bk} and, in QP∪Q, on the set of
atoms

⋃
1≤i≤k DS(QP∪Q, Bi) (note that the predicate symbol in A does not belong

to Def(Q)). So, in ground(P ∪ Q), A depends on DS(P ∪ Q, A) = DS(PP∪Q, A) ∪⋃
1≤i≤k DS(QP∪Q, Bi). The set DS(PP∪Q, A) is finite because PP∪Q is finitely recur-

sive. Moreover, since QP∪Q is finitely recursive, each DS(QP∪Q, Bi) is finite.
Now, suppose that P (resp. Q) is not finitely recursive. Then, in P (resp.

in Q) there exists an atom A that depends on infinitely many atoms DS(P, A) =
{B1, B2, ...} (resp. DS(Q, A) = {B1, B2, ...}). Again in P ∪ Q, A depends on
{B1, B2, ...} (and maybe on also other adding atoms) and then P ∪ Q is not fini-
tely recursive.

Theorem 7.4.2 Let P B Q, then:

1. if P and Q are domain independent finitary programs then P∪Q is finitary;

2. if P ∪ Q is finitary then P and Q are finitary.

Proof. Suppose P and Q domain independent finitary programs. Then it must to
be proved that

1. P ∪ Q is finitely recursive,

2. there are finitely many odd-cyclic atoms in the dependency graph of P∪Q.

By Theorem 7.4.1 the condition 1 holds.
The condition 2 is satisfied because, by Proposition 7.3.1, the number of odd-

cyclic atoms in P∪Q is the sum of odd-cyclic atoms in P and of odd-cyclic atoms
in Q, and both are finite.

Now, suppose that P (resp. Q) is not finitary. Then, P (resp. Q) does not
satisfy the condition 1 or the condition 2. If P (resp. Q) is not finitely recursive
then, by Theorem 7.4.1, P ∪ Q is not finitely recursive.

If P (resp. Q) contains infinitely many odd-cyclic atoms these atoms again, by
Proposition 7.3.1, occur in P ∪ Q as odd-cyclic atoms.

83

Theorem 7.4.3 Let P‖Q, then:

1. if P and Q are domain independent finitely recursive programs then P ∪ Q
is finitely recursive;

2. if P ∪ Q is finitely recursive then P and Q are finitely recursive.

Proof. Suppose P and Q domain independent finitely recursive programs. By
Theorem 7.3.13, PP∪Q and QP∪Q are finitely recursive and then, for each atom
A in ground(P ∪ Q), if A depends on some atoms then the predicate symbol of
A either belongs to Def(Q) or belongs to Def(P). If the predicate symbol of A
belongs to Def(P) (resp. Def(Q)) then A depends on finitely many atoms because
PP∪Q (resp. QP∪Q) is finitely recursive and A cannot depend on atoms in QP∪Q

(resp. PP∪Q) not occurring in PP∪Q (resp. QP∪Q) by Theorem 7.3.17.
Now, suppose that P (resp. Q) is not finitely recursive. Then, in PP∪Q (resp.

in QP∪Q) there exists an atom A that depends on infinitely many atoms DS(PP∪Q,
A) = {B1, B2, ...} (resp. DS(QP∪Q, A) = {B1, B2, ...}). Again in P ∪ Q, A depends
on {B1, B2, ...} and then P ∪ Q is not finitely recursive.

Theorem 7.4.4 If P‖Q, then:

1. if P and Q are domain independent finitary programs then P∪Q is finitary;

2. if P ∪ Q is finitary then P and Q are finitary.

Proof. Suppose P and Q domain independent finitary programs. Then it must to
be proved that

1. P ∪ Q is finitely recursive,

2. there are finitely many odd-cyclic atoms in the dependency graph of P∪Q.

By Theorem 7.4.3 the condition 1 holds.
The condition 2 is satisfied by P∪Q because, by Proposition 7.3.1, its number

of odd-cyclic atoms is the sum of odd-cyclic atoms in P and of odd-cyclic atoms
in Q, and both are finite.

Now, suppose that P (resp. Q) is not finitary. Then, P (resp. Q) does not
satisfy the condition 1 or the condition 2. If P (resp. Q) is not finitely recursive
then, by Theorem 7.4.3, P ∪ Q is not finitely recursive.

If P (resp. Q) contains infinitely many odd-cyclic atoms, these atoms again,
by Proposition 7.3.1, occur in P ∪ Q as odd-cyclic atoms.

84

The definition of ELP does not impose syntactic restrictions and so programs
belonging to different classes with different syntactic characteristics could be ELP
programs while their union not, because by merging their different rules we might
obtain a program for which the consistency checking or credulous inference is not
decidable. So, if we consider two normal programs P and Q belonging to ELP
and such that a dependency relation holds, the program P ∪ Q might not belong
to ELP.

Example 7.4.5 Let Q′ be any logic program not belonging to ELP and let Q be
the program Q′ ∪ {p ← not q, not p} where the predicate symbols p and q are
not in Q′. The program Q ∈ ELP because it has a finite inconsistent bottom
{p ← not q, not p}. Let P = {q} be a ground program (note that P B Q). Then
P ∈ ELP but clearly P ∪ Q is not an ELP program.

However, if P and Q are independent then, by properties of the independency
relation ‖, again P ∪ Q is an ELP program as the following theorem proves.

Theorem 7.4.6 Suppose P‖Q. If both P and Q belongs to ELP then P∪Q belongs
to ELP.

Proof. If P‖Q then each stable model for P ∪ Q is the union of a stable model for
PP∪Q and a stable model for QP∪Q, and vice versa. So, P ∪ Q is consistent if and
only if PP∪Q and QP∪Q are consistent, and this check is decidable.

Moreover, for the same reasons, each ground atom is a credulous consequence
of P∪Q if and only if it is a credulous consequence of PP∪Q or of QP∪Q and P∪Q
is consistent, and again this check is decidable.

In general, when PBQ or P‖Q and P∪Q ∈ ELP, P and Q are not necessarily
ELP programs. In this regard, consider the following example.

Example 7.4.7 Let Q be the following ELP program

{p← not p}.

Since Q is inconsistent however we choose a program P such that P B Q or P‖Q,
P ∪ Q is inconsistent and no ground atom is a credulous consequence of P ∪ Q.
Then, P ∪ Q belongs to ELP, while P might not be an ELP program.

Now, let analyze some semantic properties for composed programs.

85

Theorem 7.4.8 Suppose that either P B Q or P‖Q. If P and Q are domain in-
dependent finitary programs and the set OC(P ∪ Q) of all odd-cyclic atoms in
ground(P ∪ Q) is given, then

1. Skeptical and credulous ground queries, G, are decidable in P ∪ Q.

2. Skeptical and credulous nonground queries, ∃G, are semidecidable in P∪Q.

Proof. By Theorems 7.4.2 and 7.4.4, P ∪ Q is finitary and, as proved in [16, 8]
the assertions 1 and 2 hold for finitary programs.

Theorem 7.4.9 Suppose that P‖Q. If P and Q belong to ELP, then skeptical and
credulous ground queries for P ∪ Q are decidable.

Proof. By Theorem 7.4.6, P ∪ Q belongs to ELP. Credulous ground queries are,
then, decidable for P ∪ Q. A ground query G is skeptical inferred from P ∪ Q if
and only if P∪Q is inconsistent or notG is not a credulous consequence of P∪Q
(that are decidable tasks).

Theorem 7.4.10 Let P be a domain independent finitely recursive program and
Q ∈ ELP such that P B Q. If QP∪Q has a finite number of stable models then
deciding whether P ∪ Q is inconsistent is at most semidecidable.

Proof. Let P1, P2, ... be a module sequence (cf. Definition 6.2.3) for PP∪Q (note
that PP∪Q is still finitely recursive by Theorem 7.3.13) and let PQ0, PQ1, ..., be the
module sequence for PP∪Q ∪ QP∪Q such that

• PQ0 = QP∪Q

• PQ1 = P1 ∪ QP∪Q

• PQ2 = P2 ∪ QP∪Q

•

For each Pi, let S i be the set of all atoms in Pi whose predicate symbols belong to
Def(Q). S i is finite and is a set of ground atoms because Pi is finite and ground.
If there not exists a subset S S i of S i such that Pi ∪ S S i has a model that does not
satisfy S i\S S i and QP∪Q has a model that satisfies S S i and that does not satisfy S i\

S S i, then PQi = Pi∪QP∪Q is inconsistent. Since, for each i, PQi = botatoms(PQi)(P∪
Q) then if PQi is inconsistent also P ∪ Q is inconsistent. It follows that if there

86

exists a finite i such that PQi is inconsistent then also P ∪ Q is inconsistent, and
deciding whether there exists such an i is semidecidable.

Now it will be proved that if, for each i ≥ 1, PQi is consistent then also P ∪ Q
is consistent. This means that deciding whether P ∪ Q (and then PP∪Q ∪ QP∪Q) is
inconsistent, is semidecidable.

By hypotheses, for each i ≥ 1, PQi is consistent and then QP∪Q is consistent.
Now, it is proved that there exists a sequence M0, M1, M2, ... of stable mod-

els for PQ0, PQ1, PQ2, ..., respectively, that satisfies the conditions of Theo-
rem 6.2.10. So it is proved that PP∪Q∪QP∪Q has a stable model M =

⋃
i≥0 Mi, that

is PP∪Q ∪ QP∪Q is consistent.
A stable model Mi for PQi is “bad” if there exists a k such that no model Mk

for PQk extends Mi, “good” otherwise. Mk extends Mi if Mk ∩ atoms(PQi) = Mi

(note that by construction PQi = botatoms(PQi)(PQk)).
If PQi is consistent then it must have at least a “good” model. Indeed, suppose

that all models of PQi are “bad”. Since PQi = Pi ∪ QP∪Q, Pi is finite, QP∪Q has
finitely many stable models and QP∪Q = botatoms(QP∪Q)(PQi) because PP∪Q B QP∪Q

and Pi ⊆ PP∪Q, then PQi has a finite number of stable models Mi1 , ...,Mir . By
assumption, for each Mi j there is a program PQk j none of whose models extends
Mi j . Let k = max{ki1 , ..., kir}. Then no model of PQk extends a model of PQi

and this is a contradiction because, by hypotheses, PQk has at least a stable mo-
del Mk and, by splitting theorem, Mk extends a model of PQi. Now let M0 be a
“good” stable model for PQ0; then there must exist a “good” stable model M1

for PQ1 that extends M0, exactly for the same reasons, and so on. Therefore, there
exists a sequence M0,M1,M2, ... of stable models for PQ0, PQ1, PQ2, ..., respec-
tively, where each model extends the previous model in the sequence. Then, by
Theorem 6.2.10, M =

⋃
i≥0 Mi is a stable model for PP∪Q ∪ QP∪Q.

The proof of previous theorem proves that if P is a domain independent finitely
recursive program and Q ∈ ELP then there is a module sequence S for P∪Q such
that P ∪ Q is consistent if and only if S is consistent. Theorem 6.3.1 proves that
this holds for finitely recursive programs because all of their module sequences
are smooth and then each element Pi of such a module sequence is a finite ground
program and then it has finitely many stable models. Since a module sequence for
QP∪Q may be not smooth it is needed to impose that QP∪Q has a finite number of
stable models.

Proposition 7.4.11 If P‖Q, then a set of ground atoms M is a stable model of
P ∪ Q if and only if M = MQ ∪ MP where MQ is a stable model of QP∪Q and MP

is a stable model of PP∪Q.

87

Proof. By definition of independency relation ‖ and by Theorem 7.3.17, we have
that QP∪Q = botatoms(QP∪Q)(P ∪ Q). So, by splitting theorem [45], M is a stable
model of P∪Q if and only if M = MQ ∪MP where MQ is a stable model of QP∪Q

and MP is a stable model of eatoms(QP∪Q)(PP∪Q,MQ). Since eatoms(QP∪Q)(PP∪Q,MQ) =
PP∪Q because, by definition of independency relation MQ cannot contain atoms
that occur in the body of some rule of PP∪Q, then MP is also a stable model of
PP∪Q.

Theorem 7.4.12 Let P be a domain independent finitely recursive program and
Q ∈ ELP such that P‖Q. Deciding whether P ∪ Q is inconsistent is at most
semidecidable.

Proof. If P‖Q then P ∪ Q is consistent if and only if, by Proposition 7.4.11,
both PP∪Q and QP∪Q are so. Deciding whether QP∪Q is consistent is decidable by
definition of ELP class, and deciding whether PP∪Q is consistent is semidecidable
because PP∪Q, by Theorem 7.3.13, is finitely recursive. Then deciding whether
P ∪ Q is consistent is semidecidable.

Theorem 7.4.13 Let P be a domain independent finitary program and Q ∈ ELP
such that P B Q or P‖Q. Deciding whether P ∪ Q is inconsistent is decidable.

Proof. Let Podd be the ground subprogram of PP∪Q containing all its odd-cycles
(note that P is domain independent finitary program and then its odd-cyclic atoms
are ground) and the ground instances of rules on which they depend (that are
finitely many because PP∪Q is finitary by Theorem 7.3.15). Let S be the set of
all atoms in Podd whose predicate symbols are in Def(Q). S is finite and ground
because Podd is finite and ground. If P B Q or P‖Q then P ∪ Q is consistent if and
only if there exists a subset S S of S such that Podd ∪ S S has a model that does
not satisfy S \ S S and such that QP∪Q has a model that satisfy S S and not S \ S S .
Since it is always possible to decide the above task then deciding whether P ∪ Q
is consistent is decidable.

Theorem 7.4.14 Let Q ∈ ELP, P be a domain independent finitely recursive
program, P B Q and G be a ground atom. If QP∪Q has a finite number of stable
models then deciding whether G is a skeptical consequence of P ∪ Q is at most
semidecidable.

Proof. Suppose that the predicate symbol in G belongs to Def(P). G is a skeptical
consequence of P ∪ Q if and only if P ∪ { f ← not f ,G} ∪ Q (with f predicate

88

symbol not occurring in P ∪ Q) is inconsistent. Note that the same dependency
relation between P and Q again holds between P ∪ { f ← not f ,G} and Q. More-
over, P∪ { f ← not f ,G} is still a domain independent finitely recursive program.
Then, by Theorem 7.4.10, proving that P ∪ { f ← not f ,G} ∪ Q is inconsistent is
at most semidecidable.

Suppose that the predicate symbol in G belongs to Def(Q). If notG is not
a credulous consequence of QP∪Q (that is decidable) then G is a skeptical conse-
quence of P ∪ Q.

If the predicate symbol in G does not belong either to Def(Q) or to Def(P) then
G may be a skeptical consequence of P ∪ Q if and only if P ∪ Q is inconsistent,
that is at most semidecidable by Theorem 7.4.10.

Theorem 7.4.15 Let Q ∈ ELP, P be a domain independent finitely recursive
program, P‖Q and G be a ground atom. Deciding whether G is a skeptical conse-
quence of P ∪ Q is at most semidecidable.

Proof. If P‖Q then G is a skeptical consequence of P ∪ Q if and only if G is a
skeptical consequence of QP∪Q or G is a skeptical consequence of PP∪Q.

Suppose that the predicate symbol of G belongs to Def(Q). If notG is not
a credulous consequence of QP∪Q (that is decidable) then G is a skeptical conse-
quence of P ∪ Q.

Suppose that the predicate symbol in G belongs to Def(P). Since by Theo-
rem 7.3.13 PP∪Q is finitely recursive then checking whether G is an its skeptical
consequence is semidecidable.

If the predicate symbol in G does not belong either to Def(Q) or to Def(P) then
G may be a skeptical consequence of P ∪ Q if and only if P ∪ Q is inconsistent,
that is at most semidecidable by Theorem 7.4.10.

Theorem 7.4.16 Let Q ∈ ELP, P be a domain independent finitary program,
P B Q or P‖Q, and G be a ground atom. Deciding whether G is a skeptical
consequence of P ∪ Q is decidable.

Proof. Suppose that the predicate symbol in G belongs to Def(P). G is a skeptical
consequence of P ∪ Q if and only if P ∪ { f ← not f ,G} ∪ Q (with f predicate
symbol not occurring in P ∪ Q) is inconsistent. Note that the same dependency
relation between P and Q again holds between P ∪ { f ← not f ,G} and Q. More-
over, P∪ { f ← not f ,G} is still a domain independent finitary program. Then, by
Theorem 7.4.13, proving that P∪ { f ← not f ,G} ∪Q is inconsistent is decidable.

89

Suppose that the predicate symbol G belongs to Def(Q). If notG is not a cred-
ulous consequence of QP∪Q (that is decidable) then G is a skeptical consequence
of P ∪ Q.

If the predicate symbol in G does not belong either to Def(Q) or Def(P) then
G may be a skeptical consequence of P ∪ Q if and only if P ∪ Q is inconsistent,
that is decidable by Theorem 7.4.13.

Theorem 7.4.17 There exist P and Q such that

1. P B Q,

2. P belongs to ELP and Q is a domain independent finitary program,

3. Skeptical and credulous ground queries are not semidecidable.

Proof. Consider the positive finitary program Q, as defined in Example 7.3.10,
that encodes all bounded simulations of a deterministic Turing machineM with
semi-infinite tape:

t(s, L, v, [V | R])← t(s′, [v′ | L],V,R) . for all instr. 〈s, v, v′, s′, right〉
t(s, [V | L], v,R)← t(s′, L,V, [v′ | R]) . for all instr. 〈s, v, v′, s′, left〉
t(s, L, v,R) . for all final states s.

Note that Q is a domain independent finitary program.
Let P be

p(X)← p([b | X]) .
p(X)← t(s0, [], v0, [v1, . . . , vn | X]) .

P ∈ ELP because it is a positive logic program without facts and then its only
stable model is ∅.

Note that p(x) holds if x is a list of blank symbols such thatM terminates on
[v0, v1, . . . , vn | x] starting from the initial state s0.

Consider the ground query p([]). For checking if p([]) is a skeptical/credulous
consequence of P∪Q we have to check ifM terminates on [v0, v1, . . . , vn], then if
M terminates on [v0, v1, . . . , vn, b], then on [v0, v1, . . . , vn, b, b], and so on (note that
OC(P ∪ Q) = ∅). That is, we have to do possibly infinitely many semidecidable
tests.

The previous proof shows that the composition of an ELP program P and a do-
main independent finitary program Q, such that P B Q, does not necessarily yield
a finitary program.

90

7.5 Conclusions
What I have presented in this chapter is only a preliminary study and much work
has still to be done for better investigating the potential of composition.

The classes of domain independent finitely recursive and domain independent
finitary programs allow us to reason on infinite domains and models as well as
finitely recursive and finitary programs do. But the former classes are closed un-
der the grounding operation ground(. , .), that is the ground instance of a domain
independent finitely recursive (resp. finitary) program over any universe of gro-
und terms again belongs to that class, and then these classes are more suitable
to be composed with programs with different Herbrand universes. So, a complete
characterization of domain independent finitely recursive and domain independent
finitary programs would be useful to define their complexity and what problems
they can really express.

Moreover, I would extend the results on composition by exploiting the proper-
ties of programs obtained by composing ELP programs with other programs not
belonging to the class of domain independent finitely recursive or domain inde-
pendent finitary programs.

91

Chapter 8

Constrained programs

8.1 Introduction
In this chapter, as we first proposed in [11], I integrate answer set generation
and constraint solving to reduce the memory requirements for a class of multi-
sorted logic programs with cardinality constraints [67] whose signature can be
partitioned into: (i) a set of so-called regular predicates over domains whose size
can be handled by a standard answer set solver; (ii) a set of constrained predicates
that can be handled by a constraint solver in a way that does not require grounding
(so larger domains can be allowed here); (iii) a set of predicates—called mixed
predicates—that create a “bridge” between the above two partitions.

Then reasoning can be implemented by having an answer set solver interact
with a constraint solver. A critical aspect is the form that the definitions of mixed
predicates may take. If they were completely general, then that part of the program
would be just as hard to reason with as unrestricted programs because mixed pred-
icates may range over arbitrary domains. Accordingly, the framework presented
in [11] and reproposed in this chapter supports restricted definitions for mixed
predicates, that can be either functions from “regular” to “large” domains (strong
semantics) or slightly weaker mappings where each combination of “regular” val-
ues must be associated to at least one vector of values from “large” domains (weak
semantics).

In [11] we studied the relationships between strong and weak semantics, and
introduced an algorithm for computing the strong semantics efficiently under the
simplifying assumption that mixed predicates do not occur in the scope of nega-
tion. Here, I report new experimental results providing evidence that this approach

92

can solve problem instances with significantly larger domains. In this chapter I
focus only on the comparison with a standard answer set programming approach.

8.2 Basic terminology
Here a sorted first-order language based on a given signature Σ is adopted. Let S
be a finite set of sorts. Assume a sort specification is given, that is, a function sort
mapping:

• each constant c onto a set sort(c) ⊆ S;

• each variable X onto a (single) sort sort(X) ∈ S;

• each n-ary function symbol f onto a tuple sort(f) = 〈S 1, . . . , S n+1〉 ∈ S
n+1;

• each n-ary predicate symbol p onto a tuple sort(p) = 〈S 1, . . . , S n〉 ∈ S
n.

Note that sorts may overlap because constants may be associated to two or more
sorts.

Example 8.2.1 ([11].) A sort steps, modeling plan steps, may contain the integer
constants in the interval [0, 10], while a sort time, modeling time points, may
contain the integer constants in [0, 600000].

All the other terms have a unique sort. Intuitively, in sort(f), S i is the sort of the
i-th argument of f (1 ≤ i ≤ n) and S n+1 is the sort of the output. Similarly, in
sort(p), S i is the sort of the i-th argument of predicate p (1 ≤ i ≤ n).

Terms and atoms are defined accordingly. Each variable X with sort(X) = S
and each constant c such that S ∈ sort(c) are terms of sort S . Each expression
f (t1, . . . , tn) such that sort(f) = 〈S 1, . . . , S n, S 〉 and each ti is a term of sort S i is a
term of sort S . Nothing else is a term. I write t : s to state that term t belongs to
sort s.

All expressions p(t1, . . . , tn) such that sort(p) = 〈S 1, . . . , S n〉 and each ti is a
term of sort S i are atoms. As usual, literals are either atoms (positive literals) or
expressions of the form not A where A is an atom (negative literals).

A variable substitution over {X1, . . . , Xn} is a function mapping each variable
Xi onto a term of sort(Xi). The notions of instance and ground instantiation are
defined as usual from the above notion of (typed) substitution. The ground instan-
tiation of a set of expressions E will be denoted by ground(E).

93

8.3 Constrained Programs
The sorts of constrained programs are partitioned into regular and constrained
sorts. Intuitively, regular sorts are small enough to be handled by standard answer
set solvers, while constrained sorts are large enough to require reasoners that do
not instantiate the corresponding variables.

Variables and constants are called regular or constrained according to their
sorts. A function f is regular (resp. constrained) if all the sorts in sort(f) are
regular (resp. constrained). Function f is mixed if sort(f) comprises both regular
and constrained sorts. Predicate symbols are classified in a similar way.

I assume that the output sort of all functions is a constrained sort. The rea-
son is that most answer set solvers do not (yet) support function symbols, while
constraint solvers do (functions are typically standard arithmetic functions).

According to the above classification, signature Σ is partitioned into Σr, Σc and
Σm, where r, c and m stand for regular, constrained and mixed respectively.

The atoms over Σr, Σc, and Σm are referred to as r-atoms, c-atoms, and m-atoms
respectively. Similarly for literals. The parameters of an m-atom whose sorts are
constrained (regular) will be often referred to as c-parameters (r-parameters).

I assume that c-predicates have a predefined interpretation, and that the equal-
ity predicate is a c-predicate. The intended interpretation of c-predicates will be
represented by a set of ground atoms Mc (the set of all true ground c-atoms).

Regular predicates can be defined with normal programs, as in standard ASP.
The definitions of mixed predicates are restricted, instead. Let an atom be free
if its arguments are all pairwise distinct variables. For all free atoms A I write
A(~Xr, ~Xc) to state that the r-variables (resp. c-variables) of A are those in ~Xr (resp.
~Xc). I denote with A(~a, ~b) the instance of A such that ~Xr is replaced by ~a and ~Xc

with ~b.
I deal with two possible semantics of mixed predicates.1 Under the weak se-

mantics, for all free mixed atoms A(~Xr, ~Xc) there is an implicit axiom

∀~Xr∃~Xc.A(~Xr, ~Xc) , (8.1)

that can be expressed by including into the program a cardinality constraint 1{A(~a,
~Xc)} (cf. Chapter 3) for each sequence of ground arguments ~a of the appropriate
type and length.2

1A more general approach is described in the final discussion.
2In Smodels this can be done with a single rule having a cardinality constraint in the head. A

similar remark applies to the encoding of (8.2). I refer the reader to [67] for more details.

94

Under the strong semantics, for all free mixed atoms A(~Xr, ~Xc) there is an
implicit axiom

∀~Xr∃!~Xc.A(~Xr, ~Xc) , (8.2)

that can be encoded in a similar way with a suitable set of cardinality constraints
like 1{A(~a, ~Xc)}1.

Moreover, constrained programs may contain constraints that relate all kinds
of predicates (regular, constrained, and mixed).

Definition 8.3.1

1. A regular rule (r-rule) is a rule of the form A ← B or ← B where A is an
r-atom and B is a collection of r-literals.

2. A (proper) constraint is a rule of the form ← B where B is a collection of
arbitrary literals, including at least one nonregular literal.

3. A constrained program, P, is the union of a set of regular rules, R(P), and a
set of constraints, C(P).

Example 8.3.2 ([11].) In the running example (a planning and scheduling prob-
lem) there are two regular sorts: step (representing plan steps) and action. I write
step : 0.. 10 to state that the constants c with step ∈ sort(c) are those in the integer
interval [0, 10]. Analogously, I may write action : a1, . . . , an to enumerate all
possible actions.

The regular signature Σr contains only one relation o over action× step. Intu-
itively, o(A, S) means that action A occurs at step S .

The regular part R(P) contains n rules that force at least one action to be
executed at each step. For i = 1, . . . , n:

o(ai, S)← not o(a1, S), . . . , not o(ai−1, S), not o(ai+1, S), . . . , not o(an, S).

Moreover, R(P) contains a denial that forbids concurrent actions:

← o(A, S 1), o(A, S 2), not eq(S 1, S 2).

eq(X, X).

The constraint signature Σc comprises the sort time : 0..600000 with the standard
arithmetic functions: +,−, | | etc., and relations: >,≥, etc.

95

The mixed signature Σm comprises a relation time(S ,T) associating each plan
step S to at least one time point T under the weak semantics (exactly one under
the strong semantics).

The following constraints C(P) ensure that time is assigned to steps mono-
tonically and that each step is associated to exactly one time point (the latter is
needed only under the weak semantics);

← time(S 1,T1), time(S 2,T2), S 1 < S 2,T1 ≥ T2.

← time(S ,T1), time(S ,T2),T1 , T2.

Moreover, one can specify a minimal duration for each action, e.g., 3 time units
for a1

← o(a1, S 1), time(S 1,T1), o(A2, S 2), time(S 2,T2), |T2 − T1| < 3 . (8.3)

Formally, the semantics of constrained programs is a specialization of the sta-
ble model semantics for logic programs with weight constraints, taking into ac-
count the intended interpretation Mc of Σc and the implicit semantics of mixed
predicates.

First a generalization of the program reduct PI (cf. Chapter 2) is needed,
where P is now a constrained program and I a set of ground atoms. The reduct PI

is obtained from ground(P) by removing:

• all the rules and constraints with a literal not B in their body, such that
B ∈ I ∪ Mc;

• all rules and constraints with a c-atom A in their body, such that A < Mc;

• all negative literals and c-atoms from the remaining rules and constraints.

Note that PI is a set of Horn clauses also under the generalized definition (cf.
Chapter 2). Therefore, if PI is consistent, then it has a unique minimal Herbrand
model lm(PI). Like the standard notion of reduct, PI results from the evaluation
of negative literals against I. Moreover, the generalized notion evaluates all the
constrained literals with respect to their intended semantics Mc .

Definition 8.3.3 A weak answer set of a constrained program P is a set of ground
atoms M = Mr ∪ Mm satisfying the following conditions:

AS1 Mr is a set of r-atoms and Mm is a set of m-atoms;

96

AS2 R(P)Mr is consistent and Mr = lm(R(P)Mr);

AS3 each constraint (← ~L) ∈ ground(C(P)) contains a literal Li false in M;

AS4 for each free m-atom A(~Xr, ~Xc), and for each vector of r-constants ~a of the
appropriate length, Mm contains at least one instance of A(~a, ~Xc).

A strong answer set of a constrained program P is a weak answer set M =
Mr ∪ Mm satisfying the following additional condition:

AS5 for each free m-atom A(~Xr, ~Xc), and for each vector of r-constants ~a of the
appropriate length, Mm contains at most one instance of A(~a, ~Xc).

Note that AS2 basically states that Mr is a stable model of the regular part of P.
The semantics of a constrained program P can be alternatively specified as

the stable models of the program obtained by extending P with Mc and with the
cardinality constraints that encode (8.1) and (8.2). Then AS1-AS5 might have
been proved as theorems. This requires an extension of the splitting set theorem
[46].

Theorem 8.3.4 (Extended Splitting Theorem [7]) Let U be a splitting set for a
normal logic program P with cardinality constraints. A set M of ground atoms is
a stable model for P if and only if M = I ∪ J, where

1. I is a stable model of botU(P), and

2. J is a stable model of eU(ground(P) \ botU(P), I).

Proof. Suppose P ground. P can be always translated into an equivalent logic
program P′ without cardinality constraints replacing each cardinality constraint in
P

l{A1, . . . , An, not B1, . . . , not Bm}u

with the following three sets of rules:

{← Ai1 , . . . , Aik , not Aik+1 , . . . , not Ain , not B j1 , . . . , not B jk , B jk+1 , . . . , B jm :
1 ≤ i1 < . . . < ik ≤ n, 1 ≤ ik+1 < . . . < in ≤ n,
1 ≤ j1 < . . . < jk ≤ m, 1 ≤ jk+1 < . . . < jn ≤ m,
|{Ai1 , . . . , Aik , B j1 , . . . , B jk}| < l},

{← Ai1 , . . . , Aik , not B j1 , . . . , not B jk :
1 ≤ i1 < . . . < ik ≤ n,
1 ≤ j1 < . . . < jk ≤ m,
|{Ai1 , . . . , Aik , B j1 , . . . , B jk}| > u}

97

and

{Ai1 , . . . , Aik , B jk+1 , . . . , B jm ← not Aik+1 , . . . , not Ain , not B j1 , . . . , not B jk :
1 ≤ i1 < . . . < ik ≤ n, 1 ≤ ik+1 < . . . < in ≤ n
1 ≤ j1 < . . . < jk ≤ m, 1 ≤ jk+1 < . . . < jn ≤ m,
l ≤ |{Ai1 , . . . , Aik , B j1 , . . . , B jk}| ≤ u},

such that {i1, . . . , ik} ∩ {ik+1, . . . , in} = ∅, { j1, . . . , jk}∩ { jk+1, . . . , jn} = ∅.
According to this translation, P′ is the set of all normal rules in P and of rules

that translate cardinality constraints occurring in P.
Follows that if U is a splitting set for P then it is a splitting set also for P′,

botU(P′) is the set of all normal rules in botU(P) and of rules that translate car-
dinality constraints occurring in botU(P), and topU(P′) is the set of all normal
rules in topU(P) and of rules that translate cardinality constraints occurring in
topU(P) (note that the translation does not introduce new predicate symbols). So,
botU(P) ≡ botU(P′) and topU(P) ≡ topU(P′).

Since P ≡ P′, a set M is a stable model for P if and only if it is a stable
model for P′. By splitting theorem, a set M is a stable model for P′ if and only
if M = I ∪ J where I is a stable model for botU(P′) and J is a stable model for
eU(P′ \ botU(P′), I). Since botU(P) ≡ botU(P′) and topU(P) ≡ topU(P′), then I
(resp. J) is a stable model for botU(P′) (resp. for eU(P′ \ botU(P′), I)) if and only
if it is a stable model for botU(P) (resp. for eU(P \ botU(P), I)).

Theorem 8.3.5 (Strong vs. Weak semantics) Let P be a constrained program in
which m-atoms never occur in the scope of negation. For each weak answer set
M of P, there exists a strong answer set M′ of P such that M′ ⊆ M and M \ M′ is
a set of m-atoms.

Proof. Let M be a weak answer set of P. Then M = Mr ∪ Mm is a set of ground
atoms and M satisfies the properties AS1, AS2, AS3, AS4.

Let K11(M), . . ., K1m1(M), . . ., Kn1(M), . . ., Knmn(M) be the subsets of M such
that, for each 1 ≤ i ≤ n and 1 ≤ j ≤ mi, Ki j(M) = {Ai(~a

j
i ,
~b) : Ai(~a

j
i ,
~b) ∈

Mm is a ground instance of Ai(~a
j
i ,
~Xc)}. Note that no Ki j(M) is empty because M

satisfies the property AS4.
If there exists at least one couple (i, j) (1 ≤ i ≤ n and 1 ≤ j ≤ mi) such that the

set Ki j(M) has cardinality greater than one, then let ma ∈ M be a ground m-atom
belonging to Ki j(M). Note that, by construction, ma must belong to only one of
the sets K11(M), . . ., K1m1(M), . . ., Kn1(M), . . ., Knmn(M). Because ma is not the
unique element of Ki j(M), then M′ = M \ {ma} must satisfy the property AS4.

98

Moreover M′ satisfies the property AS3. In fact, for each constraint (← ~L) ∈
ground(C(P)), either ma does not occur in ~L, and then the value of each Li is the
same in M′ than M, or ma occurs in ~L and so (← ~L) contains one more literal false
in M′ than M because negative m-literals do not occur in ~L.

Moreover M′ and M have the same r-literals and then M′ satisfies also the
properties AS1 and AS2. Then M′ is a weak answer set of P as M is.

By iterating the same process starting from M′, a set M∗ can be obtained such
that all sets K11(M∗), . . ., K1m1(M∗), . . ., Kn1(M∗), . . ., Knmn(M∗) contain only one
element. For the same reasons of M′, M∗ is still a weak answer set of P and
M \ M∗ is a set of m-atoms by construction. Note that M∗ is a strong answer set
of P because it satisfies also the property AS5.

Note that the assumption on negative m-atoms is satisfied by running example.

Corollary 8.3.6 Under the hypothesis of Theorem 8.3.5, the strong answer sets
of P are the minimal weak answer sets of P.

Proof. Corollary follows from Theorem 8.3.5 and from the fact that a strong
answer set is also a weak answer set.

Corollary 8.3.7 Under the hypothesis of Theorem 8.3.5, the strong and weak
skeptical semantics of P (i.e., the intersection of the strong, resp. weak answer
sets) coincide.

Proof. Let Mw be the skeptical weak answer set for P and Ms be the skeptical
strong answer set, then Mw =

⋂
j Mw j (where each Mw j is a weak answer set for P)

and Ms =
⋂

i Msi (where each Msi is a strong answer set for P). By Theorem 8.3.5,
for each Mw j there exists a Msi s.t. Msi ⊆Mw j . This means that each Mw j in

⋂
j Mw j

contains a Msi occurring in
⋂

i Msi . Moreover, each Msi occurs in
⋂

j Mw j because
a strong answer set is also a weak answer set. Then, by set theory,

⋂
j Mw j =⋂

i Msi .

In the light of the above corollaries, we can focus on the strong semantics, which
is a way of computing a “representative” class of answer sets.

8.4 Computing strong answer sets
In this section I present a nondeterministic algorithm, that we introduced in [11],
for computing strong answer sets. The actual implementation used in the exper-
iments is derived from the nondeterministic algorithm by adding backtracking.

99

This algorithm can be applied to constrained programs where mixed predicates
have only positive occurrences. More general approaches require further work
(cf. Section 8.7).

This algorithm computes strong kernels, that is, compact representations of a
(potentially large) set of strong answer sets.

Definition 8.4.1 1. A strong completion of a set of ground atoms I is a set I∪J
such that:

• J is a set of ground m-atoms;

• for each free m-atom A(~Xr, ~Xc) and each vector of r-constants ~a of the
appropriate length, I ∪ J contains exactly one instance of A(~a, ~Xc).

2. A strong kernel of a constrained program P is a set of ground atoms K which
has at least one strong completion, and such that all the strong completions
of K are strong answer sets of P.

In general, K is the intersection of exponentially many strong answer sets of P.
Since all strong completions of K are strong answer sets, it is trivial to generate
any particular answer set including K, given K itself.

The algorithm that integrates answer set solving and constraint solving is for-
mulated in terms of a generic answer set solver and a generic constraint solver.
The former, called ASG, takes as input a regular program P and a set of gro-
und literals S . Intuitively, ASG is an incremental solver, and S is the previous
partial attempt at constructing an answer set for P. The solver may either fail to
further extend S to an answer set of P, or it may return a refined attempt S ′. So
ASG is assumed to enjoy following formal properties:

1. ASG(P, S) returns either NULL or a set S ′ of ground literals consistent
with P.

2. If ASG(P, S) returns a set S ′ then S ⊂ S ′.

3. If ASG(P, S) returns a complete set S ′ then S ′ is an answer set of P; here,
by complete I mean that each ground literal occurs in S ′, either positively
or negatively.

4. ASG is nondeterministically complete, that is for each answer set S of P
there exists an integer n ≥ 0 such that at least one computation of ASGn(P,
∅) returns S .

100

As usually, when I write ASGn(P, ∅) I mean:

ASG0(P, ∅) = ∅

ASGn(P, ∅) = ASG(P,ASGn−1(P, ∅)).

Note that this formulation is compatible with virtually any strategy for interleaving
the answer set construction and constraint solving. Note also that as a special case,
ASG may immediately return complete sets (upon success) like Smodels.

The only requirements on the constraint solver are that it should be sound
and nondeterministically complete for each set of c-clauses χ. In other words, all
substitutions σ returned by the constraint solver should be solutions of χ (i.e., χσ
should be satisfiable), and for each solution σ of χ, there should be a computation
that returns σ.

The constraint solver is applied to a partially evaluated version of the con-
straints. To specify the partial evaluation procedure some auxiliary notation is
needed.

For each constraint c =← B, I denote by reg(c), con(c), and mix(c), respec-
tively, the collections of regular, constrained and mixed literals belonging to B.

I say that a substitution γ is r-grounding if and only if γ replaces each r-
variable with a ground r-term and leaves the other variables unchanged.

Definition 8.4.2 The partial r-evaluation of a set of constraints C with respect to
a set of ground literals S , denoted by PE(C, S), is defined by

PE(C, S) = {(← mix(c), con(c))γ | c ∈ C, γ r-grounding, and reg(c)γ ⊆ S } .

Note that the members of PE(C, S) contain no r-atoms and no r-variables, because
the former have been simplified away and the latter have been replaced with r-
constants. Note also that in this process some constraints may disappear, as reg(c)
may match no literals in S . Intuitively, S is to be provided by the answer set
solver.

The constraint processing algorithm applies to a normalized version of PE(C,
S), denoted by PEn(C, S), satisfying the following properties:

N1 No m-literal occurring in PEn(C, S) contains two or more occurrences of the
same variable;

Moreover, for all free m-atoms A(~Xr, ~Xc),

N2 If both A(~a, ~yc) and A(~a,~zc) occur in PEn(C, S), then ~yc = ~zc.

101

N3 If both A(~a, ~yc) and A(~b,~zc) occur in PEn(C, S) and ~a , ~b, then ~yc and ~zc have
no variables in common.

Note that condition N2 is the opposite of the classic standardization apart ap-
proach. N2 and N3 together require the vectors of c-variables to be in one-to-one
correspondence with the vectors of regular arguments. Condition N1 can be ful-
filled by introducing equations Xi = X j in con(c) when needed. Condition N2 and
N3 can be fulfilled by variable renaming.

Example 8.4.3 ([11].) In the running example, whenever the set S contains the
pair o(a1, 1), o(ai, 2), constraint (8.3) yields the partially evaluated constraint

← time(1,T1), time(2,T2), |T2 − T1| < 3.

After normalization, and assuming this particular constraint has not been modi-
fied, for all the atoms time(1, X) occurring in PEn(C(P), S), I have X = T1. In
this way—roughly speaking—any solution to the constraints is forced to fulfill the
property (8.2) of strong semantics.

Now soundness and completeness for Algorithm 1 can be proved.

Theorem 8.4.4 If a non-failed run of Algorithm 1 returns a set of literals K, then
K is a strong kernel of P.

Proof. Let K be a set returned by a non-failed run of Algorithm 1.
In order to prove that K is a strong kernel of P, it has to be proved that for each

set of m-atoms J, if K∪J is a strong completion of K then K∪J is a strong answer
set of P. That is, it is needed to prove that K∪ J satisfies the properties AS1, AS2,
AS3, AS4, AS5, when K ∪ J satisfies the properties of the Definition 8.4.1 of
strong completion.

If a run r of the algorithm returns a set K then K = S ∪ M(C)σ where S is
a stable model of R(P) and M(C)σ is a set of ground m-atoms. Then K ∪ J =
S ∪ M(C)σ ∪ J satisfies the properties AS1 (because M(C)σ ∪ J is still a set of
ground m-atoms) and AS2.

Suppose that K ∪ J does not satisfy the property AS3. Then there exists a
constraint c = (← ~L) ∈ ground(C(P)) such that all literals Li in ~L are true in K∪ J.
If c = (← ~L) ∈ ground(C(P)) then there exists a constraint c′ ∈ C(P) and a ground
substitution γ = γrγc of c′ such that c = c′γ and γr is r-grounding. If ~L is true in
K∪J then reg(c) ⊆ S and then← (mix(c′))γr, (con(c′))γr ∈ PE(C(P), S). Because

102

Algorithm 1
CS (P)

1: Inputs: P = R(P)∪C(P): a constrained program with no negative m-literals.
2: Outputs: either a strong kernel of P or FAIL
3: begin
4: S := ∅;
5: loop
6: S := ASG(R(P), S);
7: if S =NULL then
8: FAIL;
9: else

10: C := PEn(C(P), S);
11: if

∧
c∈C ¬con(c) has no solution then

12: FAIL;
13: else if S is complete then
14: choose a solution σ of

∧
c∈C ¬con(c);

15: Let M(C) be the set of mixed literals in C;
16: return S ∪ M(C)σ;
17: end

103

con(c) = (con(c′))γ = (con(c′))γrγc and mix(c) = (mix(c′))γ = (mix(c′))γrγc are
true in K ∪ J, then γc is not a solution of ¬(con(c′))γr. Then the solution σ
of
⋃

c∈C ¬con(c) chosen at the step 14 of the algorithm cannot be factorized in
σ = σ1γcσ2 (where σ1 and σ2 are substitution possibly empty). Consequently,
mix(c) = (mix(c′))γrγc cannot be added to K at the step 16, while (mix(c′))γrσ
is added to K. Because, by hypotheses, K ∪ J is a strong completion of K then
(mix(c′))γrγc cannot belong neither to J. So mix(c) is false in K ∪ J and this is a
contradiction. Then K ∪ J satisfies the property AS3.

By the definition of strong completion, K ∪ J satisfies also the properties AS4
and AS5. Consequently K ∪ J is a strong answer set of P.

Theorem 8.4.5 For each strong answer set M of P there exists a run of Algo-
rithm 1 that returns a strong kernel K ⊆ M.

Proof. By the Definition 8.3.3, if M is a strong answer set of P then M = Mr∪Mm

and M satisfies the properties AS1, AS2, AS3, AS4, AS5. According to properties
AS1 and AS2, Mr is a stable model of R(P). Then, by the properties of AS Gen,
there exists a set of runs, RUN, of the algorithm that execute with success the test
at the step 13 on the set Mr. For each r ∈ RUN, if r does not return FAIL, then r
returns a set K = Mr ∪M(C)σ that, by the soundness of the algorithm, is a strong
kernel of P.

Now, it is only to prove that there always exists an r ∈ RUN that at the step 14
chooses a solution σ of

⋃
c∈C ¬con(c) such that K ⊆ M. From M = Mr ∪ Mm and

K = Mr ∪ M(C)σ follows that K ⊆ M if and only if M(C)σ ⊆ Mm.
So it is needed to prove that there must always exist a solution σ such that

M(C)σ ⊆ Mm. If such a substitution σ exists then σ can be nondeterministically
chosen by a run r ∈ RUN.

Let Mc f ree be a set of all r-grounded m-atoms of C(P). Then Mm = Mc f reeγ

where γ is a ground substitution of Mc f ree such that for each A(~a, ~X′) and A(~a, ~X′′),
A(~a, ~X′)γ = A(~a, ~X′′)γ. Immediately follows that M(C) ⊆ Mc f ree. γ can be always
factorized in γ = σρ where σ is a ground substitution of M(C). Then M(C)σ ⊆
Mc f reeσρ, but it is also need that σ is a solution of

⋃
c∈C ¬con(c).

Suppose thatσ is not a solution of
⋃

c∈C ¬con(c). Then there exists a constraint
c ∈ C such that (con(c))σ is true in M. Then mix(c) ∈ M(C), because c ∈ C, and
mix(c)σ ∈ Mm, because M(C) ⊆ Mc f ree. By construction of C, there exists a
constraint c′ ∈ ground(C(P)) such that reg(c′) ⊆ S and mix(c′) = (mix(c))σ and
con(c′) = (con(c))σ. This implies that the constraint c′ is not true in M because

104

its body is true in M, but this is a contradiction because M is a strong answer set
of P.

Then there exists a solution σ of
⋃

c∈C ¬con(c) such that M(C)σ ⊆ Mm.

8.5 The CASP prototype
The CASP prototype is an implementation of Algorithm 1, based on the answer
set solver Smodels [58], that computes a strong kernel for any input constrained
program.

CASP is meant to be an exploratory prototype that allow us to exploit the
potential interleaving of answer set solving and constraint solving, supported by
Algorithm 1, optimizing the process of incrementally computing strong kernels
made by the answer set solver and the constraint solver: at each iteration, as the an-
swer set solver returns a partial attempt S ′ at constructing an answer set for R(P),
the constraint processor computes a solution γ′ for constraints in PEn(C(P), S ′)
starting from the solution γ of PEn(C(P), S) computed at previous iteration with
respect to previous attempt S of the answer set solver, and backtracking if no
solution γ′ can be built extending γ.

CASP consists of a script CS that first computes a grounding of R(P)
by lparse and then runs a C++ program that implements the interleaving between
Smodels and a GNU Prolog constraint logic program with finite domains, that
implements steps 10-16 of Algorithm 1. In case of failure (step 12), CS
does not always fail; if R(P) has more (partial) stable models, the C++ program
feeds the next one to the Prolog module.

The finite domain (FD) constraint solver of GNU Prolog is an instance of the
Constraint Logic Programming scheme introduced by Jaffar and Lassez in 1987
[39] and is based on the CLP(FD) framework [23]. Constraints are defined on FD
variables and solved by means of arc-consistency (AC) techniques [38]. Arc con-
sistency is not a complete inference mechanism; it ensures only that all solutions
(if any) are in the current variable domains. In general, some variable assignments
over the current domains are not solutions. Therefore, a final solution generation
and checking phase is needed. In many cases, though, the domains produced
by arc consistency are tight enough to speed up significantly the computation of
solutions.

105

Figure 8.1: Morning Problem and Car-Pool Problem

8.6 Experimental Results
I experimented CASP system over three common types of problems: planning,
scheduling and combinatorial problems. The tests have been run on a Pentium(R)
M processor 1.5GHz, with 1MB cache and 1.5GB core memory. I started from
two very simple planning problems, the morning problem and the car-pool prob-
lem [25].

Morning Problem: Coffee and toast are to be prepared and they are to be ready
within two minutes of each other. Coffee is to be brewed for 3-5 minutes
and toast is to be toasted for 2-4 minutes. If you take shower in 5-8 minutes
and get dressed in 5 minutes, how can you be ready to go by 8:20?

Car-Pool Problem: John goes to work either by car (30-40 minutes), or by bus
(at least 60 minutes). Fred goes to work either by car (20-30 minutes), or in
a car-pool (40-50 minutes). Today John left home between 7:10 and 7:20,
and Fred arrived between 8:00 and 8:10. Moreover, John arrived at work
about 10-20 minutes after Fred left home. Is the information in the story
consistent? Is it possible that John took the bus, and Fred used the car-pool?
What are the possible times at which Fred left home?

Even if these two problems might seem apparently harmless in both cases, as
shown in Figure 8.1, after more than ten minutes the front-end lparse of Smodels
had not yet terminated the grounding phase (the main reasoning process was not
yet reached) while the CASP system returns a solution in less than half a second.
Moreover, note that in these two problems there are some temporal domains but

106

they do not cover more than eight hours and twenty minutes and these domains
have only minute granularity.

Then I tested CASP system on a planning problem of significant interest. Pro-
grams similar to this example have been used in the USA Advisor project, related
to NASA missions [4, 59], and for protocol verification [1]. In both cases memory
requirements happened to cause problems.

USA Advisor Problem: A given number of steps are to be done executing at
each step one of the two possible actions, an action can be executed more
than once. Is it possible to fix a starting time for each step so that the
following conditions hold?

• one starting time point has to be assigned to each step,

• successive steps have to start in successive time points,

• the total time needed to execute all steps has an upper bound,

• the first step cannot starts before a fixed time point,

• each of the two actions takes a given time to be terminated,

• actions cannot overlap one each other.

The results of this test are shown in Figure 8.2, where fails that are reported give
us how many times the Smodels module in the CASP system has done backtrack.
It can be noted that for any instance of the problem, CASP system takes less time
than Smodels even if Smodels has been run over a temporal domain of 60 time
units, that is the equivalent of a minute, while CASP has been run over a temporal
domain of 6.000.000 time units, that is the equivalent of about 70 days.

A simple scheduling problem has then tested.

Scheduling Problem: A set of machines is available to execute a given set of
jobs. Each job is computable only on some machines and for each of them
a computation time is defined. As usual, on each machine one job at a time
can run and a nonpreemptive scheduling algorithm has to be implemented,
that is when a job starts it frees the machine only if it has terminated its task.
Is it possible to assign to each job a start time and a machine on which it is
executed such that the following conditions hold?

• on a machine cannot be executed three jobs such that the execution
time of one of them is smaller than the sum of the execution times
needed for the other two jobs (intuitively this prevents that smaller
jobs have to wait for bigger jobs before they can start),

107

Figure 8.2: USA Advisor Problem

Figure 8.3: Scheduling Problem

• the total time needed to execute all jobs has an upper bound.

The results of this test are in Figure 8.3. Only for small instances of the problem,
Smodels takes less time than CASP while for bigger sizes of the input CASP
terminates in a time rather smaller than which Smodels takes.

At the last I have tested the CASP system over two well-known combinatorial
problems: n-Queens and Ramsey numbers problems.

n-Queens Problem: How can you place n queens on an n× n chess board so that
no two queens attack each other? Two queens are said to attack each other
if they are in the same row or in the same column or in the same diagonal.

Ramsey Numbers Problems: The Ramsey number R(k,m) is the least integer

108

such that however we color the edges of the complete graph (clique) with n
vertexes using two colors red and blue, there is a red clique with k vertexes
(a red k-clique) or a blue clique with m vertexes (a blue m-clique). Ramsey
numbers exist for all pairs of positive integers k and m. Given a graph with
n vertexes and two integer k and m, is it n < R(k,m)? That is, is there a
coloring such that neither a red k-clique nor a blue m-clique exists?

The results of these tests reported in Figures 8.4 and 8.5 are very different one
each other.

The computational times of CASP system over the n-queens problem are very
good. In fact, if the number of queens is small (5-10 queens) Smodels terminates
before than CASP does, while when the number of queens increases then, as the
graphic in Figure 8.4 shows, the time that Smodels takes increases more than the
computational time of CASP does.

Instead, over the second combinatorial problem, the Ramsey numbers prob-
lem, the performance of CASP is not very good. In fact it takes always more time
than Smodels to return the result and, as shown in Figure 8.5, both in the test over
the Ramsey number R(4, 4) and in the test over the Ramsey number R(4, 6) there
is a point after which the performance of CASP suddenly degrades.

From the tests reported in this section it can be deduced that the CASP system
and constrained programs are very suited for representing planning and scheduling
problems and for reasoning on them where often big domains, as well as temporal
domains, are to be represented so that answer set solvers as Smodels might have
some difficulties to reason on them. Note that in all planning problems exploited
in this section, there are big temporal domains but only few elements of these
domains have a role in the solution. This means that of all ground rules in the
ground instance of logic programs that implement these problems only few rules
are applicable and the constraint solving module of the CASP system drops all of
them without any grounding process is needed.

Over combinatorial problems, instead, the performance of CASP is not always
very good above all when the most of search space of solutions has to be visited.

Another important limitation of CASP system is in expressing minimization
and maximization statements. These statements are, in fact, not supported by
the constrained part of a constrained program. Again, even if Smodels supports
these statements, it is not possible to put them in the regular part of a constrained
program because during the interleaving of Smodels with the constraint solver,
Smodels is not be able to make backtrack for computing an alternative stable
model for regular rules when these statements occur.

109

Figure 8.4: n-Queens Problem

110

Figure 8.5: Ramsey Numbers Problem

8.7 Conclusions
The experimental results show that the integration of answer set programming and
constraint solving techniques may significantly enhance the applicability range
of ASP. A simple planning and scheduling problem can be naturally formulated
and solved, while one of the most powerful state-of-the-art answer set solvers
cannot even reach the main reasoning phase. The method that I have presented
in this chapter shares with constraint logic programming frameworks the ability
of returning answers that may be compact representations of exponentially many
distinct problem solutions, each of which can be easily extracted from the answer.

This work can be extended along several directions.
I mentioned that constrained programs are basically a subclass of weight con-

straint programs. It may be possible to extend the class of weight constraints
supported by this approach, e.g., by using different bounds (e.g., mixing weak
and strong semantics), and by dropping the requirement that for all free m-atoms
A and all vector of r-constants ~a, answer sets must contain at least one instance
of A(~a, ~Xc). Many of the results presented in this chapter can be adapted under
the assumption that for all distinct weight constraints l1{A1}u1 and l2{A2}u2 in a
program, A1 and A2 are not unifiable.

111

Moreover, it would be nice to support negative mixed literals. Unfortunately,
this approach cannot be easily adapted; the solutions I have explored so far re-
quire blind grounding over constrained domains, which is exactly what should be
avoided.

112

Bibliography

[1] L. C. Aiello and F. Massacci. Verifying security protocols as planning in
logic programming. ACM Trans. Comput. Log., 2(4):542–580, 2001.

[2] K. R. Apt. Introduction to Logic Programming. In J. van Leeuwen, edi-
tor, Handbook of Theoretical Computer Science, volume B: Formal Model
and Semantics, pages 495–574. Elsevier, Amsterdam and The MIT Press,
Cambridge, 1990.

[3] K. R. Apt and H. A. Blair. Arithmetic classification of perfect models of
stratified programs. In ICLP/SLP, pages 765–779, 1988.

[4] M. Balduccini, M. Gelfond, R. Watson, and M. Nogueira. The usa-advisor:
A case study in answer set planning. In Eiter et al. [29], pages 439–442.

[5] F. Bancilhon, D. Maier, Y. Sagiv, and J. D. Ullman. Magic sets and other
strange ways to implement logic programs. In PODS, pages 1–15. ACM,
1986.

[6] C. Baral. Knowledge Representation, Reasoning and Declarative Problem
Solving. Cambridge University Press, Cambridge, 2003.

[7] S. Baselice. Integrazione di tecniche di Answer Set Programming e Con-
straint Solving. Tesi di laurea, Università degli studi di Napoli Federico II,
Naples, Italy, October 2004.

[8] S. Baselice, P. A. Bonatti, and G. Criscuolo. On finitely recursive programs.
In V. Dahl and I. Niemelä, editors, ICLP, volume 4670 of Lecture Notes in
Computer Science, pages 89–103. Springer, 2007.

[9] S. Baselice, P. A. Bonatti, and M. Faella. On interoperable trust negotiation
strategies. In POLICY, pages 39–50. IEEE Computer Society, 2007.

113

[10] S. Baselice, P. A. Bonatti, and M. Gelfond. A preliminary report on inte-
grating of answer set and constraint solving. In M. De Vos and A. Provetti,
editors, Answer Set Programming, volume 142 of CEUR Workshop Proceed-
ings. CEUR-WS.org, 2005.

[11] S. Baselice, P. A. Bonatti, and M. Gelfond. Towards an integration of answer
set and constraint solving. In M. Gabbrielli and G. Gupta, editors, ICLP,
volume 3668 of Lecture Notes in Computer Science, pages 52–66. Springer,
2005.

[12] P. A. Bonatti. Prototypes for reasoning with infinite stable models and func-
tion symbols. In Eiter et al. [29], pages 416–419.

[13] P. A. Bonatti. Reasoning with infinite stable models. In B. Nebel, editor,
IJCAI, pages 603–610. Morgan Kaufmann, 2001.

[14] P. A. Bonatti. Resolution for skeptical stable model semantics. J. Autom.
Reasoning, 27(4):391–421, 2001.

[15] P. A. Bonatti. Reasoning with infinite stable models ii: Disjunctive pro-
grams. In P. J. Stuckey, editor, ICLP, volume 2401 of Lecture Notes in
Computer Science, pages 333–346. Springer, 2002.

[16] P. A. Bonatti. Reasoning with infinite stable models. Artif. Intell., 156(1):75–
111, 2004.

[17] P. A. Bonatti and P. Samarati. Logics for authorization and security. In
Logics for Emerging Applications of Databases, pages 277–323, 2003.

[18] M. Cadoli, F. M. Donini, and M. Schaerf. Is intractability of nonmonotonic
reasoning a real drawback? Artif. Intell., 88(1-2):215–251, 1996.

[19] D. Chan. Constructive negation based on the completed database. In
ICLP/SLP, pages 111–125, 1988.

[20] P. Cholewinski, V. W. Marek, A. Mikitiuk, and M. Truszczynski. Experi-
menting with nonmonotonic reasoning. In ICLP, pages 267–281, 1995.

[21] S. Citrigno, T. Eiter, W. Faber, G. Gottlob, C. Koch, N. Leone, C. Mateis,
G. Pfeifer, and F. Scarcello. The dlv system: Model generator and advanced
frontends (system description). In WLP, pages 0–, 1997.

114

[22] K. L. Clark. Negation as failure. In Logic and Data Bases, pages 293–322,
1977.

[23] P. Codognet and D. Diaz. Compiling constraints in clp(fd). J. Log. Program.,
27(3):185–226, 1996.

[24] L. Console, D. T. Dupré, and P. Torasso. On the relationship between abduc-
tion and deduction. J. Log. Comput., 1(5):661–690, 1991.

[25] R. Dechter, I. Meiri, and J. Pearl. Temporal constraint networks. Artif. Intell.,
49(1-3):61–95, 1991.

[26] S. Decorte, D. De Schreye, and M. Fabris. Exploiting the power of typed
norms in automatic inference of interargument relations, 1994.

[27] P. M. Dung. Negations as hypotheses: An abductive foundation for logic
programming. In ICLP, pages 3–17, 1991.

[28] T. Eiter, W. Faber, C. Koch, N. Leone, and G. Pfeifer. Dlv - a system for
declarative problem solving. CoRR, cs.AI/0003036, 2000.

[29] T. Eiter, W. Faber, and M. Truszczynski, editors. Logic Programming and
Nonmonotonic Reasoning, 6th International Conference, LPNMR 2001, Vi-
enna, Austria, September 17-19, 2001, Proceedings, volume 2173 of Lecture
Notes in Computer Science. Springer, 2001.

[30] T. Eiter and G. Gottlob. On the computational cost of disjunctive logic pro-
gramming: Propositional case. Ann. Math. Artif. Intell., 15(3-4):289–323,
1995.

[31] T. Eiter, G. Gottlob, and N. Leone. Abduction from logic programs: Seman-
tics and complexity. Theor. Comput. Sci., 189(1-2):129–177, 1997.

[32] K. Eshghi and R. A. Kowalski. Abduction compared with negation by fail-
ure. In ICLP, pages 234–254, 1989.

[33] F. Fages. Consistency of Clark’s completion and existence of stable models.
Methods of Logic in Computer Science, 1:51–60, 1994.

[34] M. Fitting. A kripke-kleene semantics for logic programs. J. Log. Program.,
2(4):295–312, 1985.

115

[35] M. Gelfond and V. Lifschitz. The stable model semantics for logic program-
ming. In ICLP/SLP, pages 1070–1080, 1988.

[36] M. Gelfond and V. Lifschitz. Classical negation in logic programs and dis-
junctive databases. New Generation Comput., 9(3/4):365–386, 1991.

[37] M. L. Ginsberg and D. E. Smith. Possible worlds and the qualification prob-
lem. In AAAI, pages 212–217, 1987.

[38] P. Van Hentenryck, Y. Deville, and C. Teng. A generic arc-consistency algo-
rithm and its specializations. Artif. Intell., 57(2-3):291–321, 1992.

[39] J. Jaffar and M. J. Maher. Constraint logic programming: A survey. J. Log.
Program., 19/20:503–581, 1994.

[40] V. Kagan, A. Nerode, and V. S. Subrahmanian. Computing definite logic
programs by partial instantiation. Ann. Pure Appl. Logic, 67(1-3):161–182,
1994.

[41] V. Kagan, A. Nerode, and V. S. Subrahmanian. Computing minimal models
by partial instantiation. Theor. Comput. Sci., 155(1):157–177, 1996.

[42] A. C. Kakas, R. A. Kowalski, and F. Toni. Abductive logic programming. J.
Log. Comput., 2(6):719–770, 1992.

[43] K. Kunen. Negation in logic programming. J. Log. Program., 4(4):289–308,
1987.

[44] V. Lifschitz. Computing circumscription. In IJCAI, pages 121–127, 1985.

[45] V. Lifschitz and H. Turner. Splitting a logic program. In ICLP, pages 23–37,
1994.

[46] V. Lifschitz and H. Turner. Splitting a Logic Program. In Proceedings of
the 12th International Conference on Logic Programming, Kanagawa 1995,
MIT Press Series Logic Program, pages 581–595. MIT Press, 1995.

[47] J. W. Lloyd. Foundations of Logic Programming, 1st Edition. Springer,
1984.

[48] V. W. Marek, A. Nerode, and J. B. Remmel. The stable models of a predicate
logic program. J. Log. Program., 21(3):129–153, 1994.

116

[49] V. W. Marek and J. B. Remmel. On the expressibility of stable logic pro-
gramming. In Eiter et al. [29], pages 107–120.

[50] V. W. Marek and M. Truszczynski. Autoepistemic logic. J. ACM, 38(3):588–
619, 1991.

[51] J. McCarthy. Programs with common sense. In Proceedings of the Tedding-
ton Conference on the Mechanization of Thought Processes, pages 75–91,
London, 1959. Her Majesty’s Stationary Office.

[52] J. McCarthy. Circumscription - a form of non-monotonic reasoning. Artif.
Intell., 13(1-2):27–39, 1980.

[53] J. McCarthy. Applications of circumscription to formalizing common-sense
knowledge. Artif. Intell., 28(1):89–116, 1986.

[54] D. V. McDermott. Nonmonotonic logic ii: Nonmonotonic modal theories.
J. ACM, 29(1):33–57, 1982.

[55] D. V. McDermott and J. Doyle. Non-monotonic logic i. Artif. Intell., 13(1-
2):41–72, 1980.

[56] R. C. Moore. Semantical considerations on nonmonotonic logic. Artif. In-
tell., 25(1):75–94, 1985.

[57] R. T. Ng and X. Tian. Incremental algorithms for optimizing model compu-
tation based on partial instantiation. Technical report, University of British
Columbia, Vancouver, BC, Canada, Canada, 1994.

[58] I. Niemelä and P. Simons. Smodels - an implementation of the stable mo-
del and well-founded semantics for normal lp. In J. Dix, U. Furbach, and
A. Nerode, editors, LPNMR, volume 1265 of Lecture Notes in Computer
Science, pages 421–430. Springer, 1997.

[59] M. Nogueira, M. Balduccini, M. Gelfond, R. Watson, and M. Barry. An a-
prolog decision support system for the space shuttle. In I. V. Ramakrishnan,
editor, PADL, volume 1990 of Lecture Notes in Computer Science, pages
169–183. Springer, 2001.

[60] A. Di Pierro, M. Martelli, and C. Palamidessi. Negation as instantitation: A
new rule for the treatment of negation in logic programming. In ICLP, pages
32–45, 1991.

117

[61] D. Poole. Explanation, prediction: an architecture for default, abductive
reasoning. Computational Intelligence, 5:97–110, 1989.

[62] R. Reiter. On closed world data bases. In Logic and Data Bases, pages
55–76, 1977.

[63] R. Reiter. A logic for default reasoning. Artif. Intell., 13(1-2):81–132, 1980.

[64] R. Reiter. A theory of diagnosis from first principles. Artif. Intell., 32(1):57–
95, 1987.

[65] J. S. Schlipf. The expressive powers of the logic programming semantics. J.
Comput. Syst. Sci., 51(1):64–86, 1995.

[66] P. Simons. Extending the stable model semantics with more expressive rules.
In M. Gelfond, N. Leone, and G. Pfeifer, editors, LPNMR, volume 1730 of
Lecture Notes in Computer Science, pages 305–316. Springer, 1999.

[67] P. Simons, I. Niemelä, and T. Soininen. Extending and implementing the
stable model semantics. Artif. Intell., 138(1-2):181–234, 2002.

[68] R. F. Stärk. A complete axiomatization of the three-valued completion of
logic programs. J. Log. Comput., 1(6):811–834, 1991.

[69] L. Sterling and E. Y. Shapiro. The Art of Prolog - Advanced Programming
Techniques, 2nd Ed. MIT Press, 1994.

[70] T. Syrjanen. Lparse 1.0 user’s manual, February 06 2001.

[71] T. Syrjänen. Omega-restricted logic programs. In Eiter et al. [29], pages
267–279.

[72] H. Turner. Splitting a default theory. In AAAI/IAAI, Vol. 1, pages 645–651,
1996.

[73] M. H. van Emden and R. A. Kowalski. The semantics of predicate logic as
a programming language. J. ACM, 23(4):733–742, 1976.

118

