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INTRODUCTION

La Natura é un libro scritto

in caratteri matematici

Galileo Galilei

The geometry of objects in Nature ranging in size from the atomic scale to the size of

the universe is central to models we develop in order to ”understand Nature”. The geometry

of particle trajectories of hydrodynamic (flow lines, waves, ships and shores), landscapes

(mountains, islands, rivers, glaciers and sediments), grains in rock (metals and composite

materials), plants, insects and cells, as well as the geometrical structure of crystals, chem-

icals and proteins, in short, the geometry of nature is so central to the various fields of

natural science that we tend to take the geometrical aspects for granted. Each field tends

to develop adapted concepts (e.g. morphology, four-dimensional spaces, texture, etc...) used

intuitively by the scientists in that field. Then, in order to understand the geometry of nat-

ural objects, mathematicians have developed recently geometrical concepts that transcend

traditional geometry. Hence, the traditional Euclidean lines, circles, spheres and tetrahedra

are inappropriate to describe shapes in Nature.

The most relevant author in this field has been Benoit B. Mandelbrot, who conceived and

developed a new geometry of Nature. Through his creative and monumental work, he has

generated a widespread interest in Fractal Geometry - concept introduced by Mandelbrot

himself. His book The Fractal Geometry of Nature [3] is the standard reference on such

matter and contains both the elementary concepts and broad range of new and rather ad-

vanced ideas, such as fractals and multifractals, currently under active study. In particular

he presented the concept of fractal, “a shape made of parts similar to the whole in some



way”, in an unusually inspring way.

Fractal geometry is an extension of classical geometry and provides a general framework

for the study of irregular sets. It can be used to develop models of physical structures from

ferns to galaxies.

In the last years, we find out an increasing interest in the use of fractal and multi-

fractal concepts. Indeed, they are usually introduced with the help of rain and turbulent

phenomenology, as well as with the help of very simple toy models. However, the fractals

thanks to their original fascinating and beautiful form, are able to link ”Art and Mathemat-

ics”. Surely, in this term we want to talk about the beauty of mathematics. Indeed, we talk

about the visual art, the architecture (like Hindi Prambanan Temple) and modern archi-

tecture (like Amsterdam housing by MVRDV in 1995), the painting (see Pollock’s fractal

painting), the wanderful drawings of M.C. Escher (1898-1972), the music as in a part of J.

S. Bach (1685-1750) known as the ”Trias Harmonica for 8 canon instruments”, etc.

Fractals can often be regarded as special cases of continuous or discrete multifractals. The

concept of multifractals, which are spatially interwined fractals, has replaced the concept

of fractals which are now often referred to as unifractals (or mixing the Latin with the

Greek:”monofractals”). Now that fractal and multifractals have become well established as

practical tools, it has also become apparent that, in nature, there are often situations that a

single, relatively simple fractal or multifractal model does not apply and mixtures of models

or other types of generalizations are required.

In particular, we focus our attention on an important property of fractals, called ”self-

similarity”. Indeed, a fractal is a geometric object that possesses the property of self-

similarity, often combined with non-integer dimensions.

The term self-similar was formally defined by Mandelbrot (see [3]) to describe the phe-

nomenon where a certain property of object is preserved with respect to scaling behavior in

space and time. The scaling behavior can be defined as a property of scale invariance, that

is, when there is no controlling characteristic or when all scales have equal importance. The

basic feature of self-similar process is the scale invariance, in the sense that it is identical

in terms of distribution to any of its rescaled version, up to some suitable renormalization

factor, which depends on a self-similarity parameter. In other words, we can say that fractals

may describe shapes by iteration of a very simple rule of self-similarity. For example, the

classical fractals, as Von Koch’s snow-flake and the third Cantor, are literally self-similar
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because their parts resemble the shape of the whole, that is, they are the smaller copies of

themselves. For this reason, the concept of self-similarity is intimately linked to fractals.

Many natural phenomena exhibit some sort of self-similarity and scientists have applied self-

similarity models to many areas including image processing (fractal image compression and

segmentation), dynamical systems (turbulence), biology and medicine (physical time series),

etc..

The notion of self-similarity, however, is also widely used in literature; especially, in this

dissertation, we consider the notion of self-similarity is linked to stochastic processes. Indeed,

the self-similar stochastic processes are the main topic of this Ph.D. thesis.

Although Self-Similar Stochastic Processes were first introduced in a theoretical context

by Kolmogorov in 1941, statisticians were made aware of the practical applicability of such

processes through the work of B. B. Mandelbrot (Mandelbrot and Van Ness (1968)).

In detail, a ”stochastic process Y (t) is a self-similar process with self-similarity parameter

H if for any positive stretching factor c, the distribution of the rescaled and reindexed process

c−HY (ct) is the same as that of the original process Y (t)”. The value of the self-similarity

parameter or scaling exponent H dictates the dynamic behavior of a self-similar process Y (t).

It is well known that Brownian motion is self-similar and also Fractional Brownian motion,

which is a Gaussian self-similar process with stationary increments, was first discussed by

Kolmogorov.

We had been personally motivated by recent applications of stochastic self-similar pro-

cesses in cosmology. What is the geometry of the Universe? Has the Universe a memory of

its quantum and relativistic origin? In the present work, we consider that the formation of

structures of the Universe appears as if it were classically self-similar stochastic process at all

astrophysical scales [50]. The observations shows that Universe has structures with scaling

rules, where the clustering properties of cosmological objects reveal a form of hierarchy. In

a number of valuable papers on the subject, the segregated Universe has been presented as

the result of a fundamental self-similar law. This results and many other are seen in the

context of El Naschie E-Infinity (ǫ(∞)) Cantorian space-time.

In particular, reading El Naschie’s papers, E-Infinity appears to be clearly a new frame-

work for understanding and describing Nature. Indeed, Nature clearly appears not con-

tinuous, not periodic, but self-similar and Mohamed El Naschie with ǫ(∞) has introduced
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a mathematical formulation to describe phenomena that are resolution dependent. As re-

ported by the author, ǫ(∞) space-time is an infinite dimensional fractal, which has D = 4

as the expectation value for the topological dimension [47], [48], [49]. The topological value

3 + 1 means that in our low energy resolution, the world appears to us as if it were four-

dimensional. This is a sweeping generalization of what Einstein did in his general theory of

relativity. El Naschie introduced a new geometry for space-time which differs considerably

from the space-time of our sensual experience. Consequently, entirely depends on the energy

scale through which we are making our observation. Observations of large scale structures

show that the dimension changes if we consider different energies, corresponding to different

lengths-scale in Universe, as reported in [50], [51], [52].

The purpose of this Ph.D. thesis is to investigate the properties of the involved stochastic

self-similar processes in the context of M. El Naschie’s ǫ(∞) Cantorian space-time and to

present new results obtained by using the fractal and multifractal properties within this

scenario. In particular, this work focuses on the fractal aspect of Brownian motion which

is the topic pivot of the discussion. In this dissertation, we analyze the stochastic processes

in a fixed framework applying them to large-scale phenomena, modeling the natural scaling

phenomenon in the context above mentioned.

The structure of Ph.D. thesis is as follows. Chapter 1 includes a short review of general

self-similar stochastic processes theory; moreover, the self-similar theme is analyzed in order

to connect brownian motion and fractals.

Chapter 2 presents the fractal dimensions along with some classical tools, such as Haus-

dorff dimension and multifractal formalism; it also includes an introduction to ǫ(∞) Cantorian

space-time, together with some classical material needed to understand the other chapters.

A number of excellent books and papers had been written on these subjects, some of them

have been discussed briefly in the notes and comments where, in particular, references and

credits are given.

In Chapter 3, some results are presented by using the context of ε(∞) Cantorian space-time

in connection with stochastic self-similar processes in order to give a possible explanation of

the segregation of the Universe at fixed scale in terms of brownian motion.

Finally, Chapter 4 presents the analysis of Multifractals in the context of El Naschie’s

ǫ(∞) Cantorian space-time applied to cosmology. In detail, it summarizes some recent results

concerning fractal structures and brownian paths in order to calculate the fractal dimensions
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and the characteristic parameters for large scale structures and for the atomic elements that

live in El Naschie’s ǫ(∞) Cantorian space-time. In this framework, brownian paths play a

crucial role if considered as multifractals.



1. SELF-SIMILAR STOCHASTIC PROCESSES

The self-similarity of many natural phenomena has recently generated much interest in the

representation and in the properties’s analysis of random sets and functions scale invariant.

Indeed, these natural objects are usually referred to as random fractal sets, self-similar

processes and multifractals. Self-similar processes such as fractional Brownian motion are

stochastic processes that are invariant in distribution under suitable scaling of time and space.

These processes also enter in the analysis of random phenomena exhibiting certain forms

of long-range dependence naturally. Obviously, these processes are closely related to the

notion of renormalization in statistical and high energy physics. They are also increasingly

important in many other fields of applications, such as economics and finance.

1.1 The mathematical tools of Self-similar stochastic processes

The concept of self-similarity is intimately linked to fractals; indeed, the term ”self-similar”

was formally defined by Mandelbrot [1] to describe the phenomenon where a certain property

of object is preserved with respect to scaling behavior in space and time. The scaling

behavior can be defined as a property of scale invariance, that is, when there is no controlling

characteristic or when all scales have equal importance.

Further applications and references on the theory of self-similar processes, can be found

Mandelbrot[3] and in the extensive bibliography within Taqqu in [2]’s work.

Indeed, the basic idea of self-similarity is simple: a set C is called a self-similar set if it

is a union of smaller and smaller copies of itself.

Example 1.1.1: The classical fractals,

• The von Koch’s snow flake consists of four copies of itself each one contracted by a

factor of 1/3;
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• The Sierpinski gasket consists of three copies of itself, each one contracted by a factor

of 1/2;

are literally self-similar in the sense that their parts resemble the shape of the whole,

that is, they are smaller copies of themselves.

Fig. 1.1: Construction of a Fractal Snowflake: the first four stages in the construction of the Koch

Snowflake.

Fig. 1.2: The Sierpinski gasket: a simple fractal produced by breaking up a triangle into successively

smaller ones.

In Nature, there are many examples of non-deterministic fractals that are self-similar

in a statistical sense over a wide range of scales. The scaling processes, or self-similar
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processes are largely used to describe these natural phenomena, such as landscape structure

and texture, network traffic [4], [5] and, lately, the hierarchy of Universe [50]. The basic

feature of self-similar processes is the scale invariance, in the sense that, it is identical in

terms of distribution, to any of its rescaled version, up to some suitable renormalization

factor, that depends on a self-similarity parameter.

The mathematical and statistical properties of self-similar processes that we are going to

outline are dealt with in [6].

The notion of self-similarity is not merely an intuitive description, but a precise concept

captured by the following rigorous mathematical definition.

In all this chapter, (Ω, ̥, P ) is a fixed probability space. Let {X(t), t ≥ 0} and {Y (t),

t ≥ 0} be ℜd-valued stochastic processes on this space. In the following, by {X(t)} d
= {Y (t)},

we mean the equality of all finite-dimensional distributions (i.e. scaling of time is equivalent

to an appropriate scaling of space).

Definition 1.1.1: An ℜd-valued stochastic process {X(t),t ≥ 0}, is said to be self-similar if

for any a > 0, there exists b > 0 such that

{X(at)} d
= {bX(t)} (1.1.1)

We recall that {X(t), t ≥ 0} is stochastically continuous at t, if for any ǫ > 0,

lim
h−→0

P{|X(t + h) − X(t)| > ǫ} = 0

and we also say that it is trivial if X(t) is a constant almost surely for every t.

In more recent literature, self-similar processes are usually defined as stochastic processes

{X(t), t ≥ 0} for which a parameter H > 0 exists such that for any a > 0, {X(at)} d
=

{aHX(t)}; in this case it is obvious that X(0) = 0 a.s., but the uniqueness of the exponent

H is not obvious. Hence, one might want to consider a seemingly more general notion of

self-similar processes, viz the definition 1.1.1, and to show that for an ℜd-valued stochastic

process, stochastically continuous at t = 0 and nontrivial, an unique scaling index H exists,

in order to connect the coefficient a with b.

The parameter H > 0 is called the Hurst index ; it is the exponent of self-similarity of

the process. For this reason, we refer to such a process as H-selfsimilar (or H-ss, for short).

Before giving the Theorem, we start with an easy Lemma.
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Lemma 1.1.1: If X is a nonzero random variable in ℜd, and if b1X
d∼ b2X

1 with b1, b2 > 0,

then b1 = b2.

Proof. Let us suppose that 0 < b2 < b1, we consider the parameter b = b1
b2

, then X
d∼ bX

with b ∈ (0, 1). Hence, for the mathematical induction, X
d∼ bnX 2, for any n ∈ N. For

n −→ ∞ we have X
d∼ 0 =⇒ X = 0 almost surely, which is a contradiction.

Consequently, the following Theorem holds.

Theorem 1.1.1: If {X(t), t ≥ 0} is nontrivial, stochastically continuous at t = 0 and self-

similar, then there exists a unique H ≥ 0 such that b in (1.1.1) can be expressed as b = aH .

Proof. Let us suppose X(at)
d∼ b1X(t)

d∼ b2X(t). By non-triviality of {X(t)} exists a t such

that X(t) is nonzero, and by previous Lemma we have b1 = b2. Consequently, the coefficient

b in (1.1.1) is uniquely determined by a, then b = b(a). Then we show the monotonicity of

b(a) and the following equality

b(aa′) = b(a)b(a′). (1.1.2)

Then

X(aa′t)
d∼ b(a)X(a′t)

d∼ b(a)b(a′)X(t),

X(aa′t)
d∼ b(aa′)X(t)

so the (1.1.2).

Consequently, we are going to prove only the monotonicity of b(a). Let us suppose that

a < 1, by (1.1.2) we obtain

X(an)
d∼ b(a)nX(1),

1 where
d∼ means the equality of marginal distributions.

2
Proof. For n = 1 is trivial, indeed we have X

d∼ bX. We suppose it true for some m, and we want it

prove for m + 1: X
d∼ bmX =⇒bX

d∼ b · bmX=⇒X
d∼ bX

d∼ b · bmX, so X
d∼ bm+1X. In detail, we have

X
d∼ bnX, ∀x ∈ N .
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but since for n −→ ∞, X(an) −→ X(0) in probability. By the stochastic continuity of

{X(t)} at t = 0 result b(a) ≤ 1.

If we consider a1 < a2 =⇒ a1

a2
< 1, according to previous considerations b(a1

a2
) ≤ 1;

furthermore by (1.1.2), we have b(a1

a2
) = a1

a2
≤ 1, then b(a1) ≤ b(a2). We can now conclude

that b(a) is non-decreasing.

Thus b(a) = aH for some unique constant H ≥ 0. Indeed, this exponent H is unique

because if we consider another exponent H ′ ≥ 0, we have b(a) = aH = aH′
=⇒ H = H ′.

By Theorem 1.1.1 the following results stem from.

Proposition 1.1.1: If {X(t), t ≥ 0} is H-self-similar process and H > 0, then X(0) = 0

almost surely.

Proof. Taking into consideration (1.1.1), it follows that X(0)
d∼ aHX(0) and for a −→ 0,

we obtain X(0) = 0.

Since the previous Proposition does not hold when H = 0, in this case we have the

following Theorem.

Theorem 1.1.2: Under the same assumptions of Theorem 1.1.1, H = 0 if and only if X(t) =

X(0) almost surely for every t > 0.

Proof. Let us suppose X(t) = X(0) a.s. for every t > 0, by property of H-ss, we have

{X(at)} d
= {aHX(t)} = {aHX(0)} d

= {X(0)} = {X(t)}, ∀a > 0

consequently, {X(at)} d
= {X(t)},∀a > 0, then H = 0.

Conversely, if H = 0, by the property 0-ss, {X(at)} d
= {X(t)},∀a > 0; then the joint

distributions at t = 0 and t = s/a are the same:

(X(0), X(s))
d∼ (X(0), X(s/a)),

Then, for any ε > 0 and a > 0 we have

P{|X(s) − X(0)| > ε} = P{|X(s/a) − X(0)| > ε};
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then from the stochastic continuity of X at 0, it follows that X is trivial and we have

lim
a−→∞

P{|X(s/a) − X(0)| > ε} = 0.

Hence, for each s > 0

P{|X(s) − X(0)| > ε} = 0, ∀ε > 0,

so that X(s) = X(0) almost surely.

From the above considerations, it seems natural to consider only self-similar processes

that fulfill the assumptions of Theorem 1.1.1.

Self-similar processes cannot be stationary, but they are strongly related to stationary

processes through a non linear time change, as the following Lamperti trasformation shows.

Theorem 1.1.3: If {X(t), t ≥ 0} is H-ss, then the process Y (t) = e−tHX(et), t ∈ ℜ, is

strictly stationary. Conversely, if {Y (t), t ∈ ℜ} is strictly stationary, then X(t) = tHY (log t),

t > 0.

Proof. Let c1, ...., cn ∈ ℜ be a real number. If the process {X(t), t ≥ 0} is H-ss, then for

any t1, ..., tn > 0 and h ∈ ℜ, we have

n∑

j=1

cjY (tj + h) =
n∑

j=1

cje
−tjHe−hHX(e−tj+h)

d
=

n∑

j=1

cje
−tjHX(etj)

=
n∑

j=1

cjY (tj)

thus the joint distributions of process {Y (t), t ∈ ℜ} are invariant under time shifts, hence

{Y (t), t ∈ ℜ} is strictly stationary.

Conversely, for any n ∈ N we consider c1, ...., cn∈ ℜ, t1, ..., tn > 0 and a ∈ ℜ, then
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n∑

j=1

cjX(atj) =
n∑

j=1

cja
HtHj Y (log a + log tj)

d
=

n∑

j=1

cja
HtHj Y (log tj)

=
n∑

j=1

cja
HtHj Y (log tj)

=
n∑

j=1

cja
HX(tj).

Thus {X(t), t ≥ 0} is H-ss.

1.1.1 Simple invariance properties of Brownian Motion and Fractional Brownian Motion

One of the topics of this chapter is about many natural sets which can be derived from the

sample paths of Brownian motion; they are in some sense random fractals. An intuitive

approach to fractals is that they are sets which have a nontrivial geometric structure at all

scales. A key role in this behaviour is played by the very simple scaling invariance property

of Brownian motion, which we are going to formulate. It identifies a transformation on the

space of functions, which changes the individual Brownian random functions but leaves their

distribution unchanged.

The fractional Brownian motion was originally introduced by Kolmogorov [7], in 1940. He

was interested in modelling turbulence (see Kolmogorov [8], or Shiryaev [9] for more details of

Kolmogorov’s studies connected to turbulence). Kolmogorov did not use the name fractional

Brownian motion. He called the process Wiener spiral. Kolmogorov studied the fractional

Brownian motion within a Hilbert space framework and deduced its covariance function

from a scaling property that we now call self-similarity. Among early works connected

to fractional Brownian motion we would like to mention Hunt [10]. He was interested in

almost sure convergence of random Fourier series and in the modulus of continuity of such

series. He also considered random Fourier transformations and their continuity properties.

In his work the fractional Brownian motion was implicitly introduced as a Fourier–Wiener
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transformation of a power function (nowadays we would call this a spectral representation

of the fractional Brownian motion). Hunt proved some results concerning a Hölder-type

modulus of continuity of the fractional Brownian motion. Let us also note that Lévy [11]

considered a process that is similar to the fractional Brownian motion. He introduced a

process that is obtained from the standard Brownian motion as a fractional integral in

the Riemann–Liouville sense. Although this process shares many of the (path) properties

of the fractional Brownian motion it does not have stationary increments. This process is

sometimes called the ”Lévy fractional Brownian motion” or the ”Riemann-Liouville process”.

Yaglom [12] was interested in generalizing the spectral theory of stationary processes to

processes from a more general class. Indeed, He was interested in linear extrapolation and

linear filtering. Yaglom studied processes with ”random stationary n th increments”. In

his work the fractional Brownian motion was considered as an example of a process with

stationary first increments. It was defined through its spectral density. Lamperti studied

semi-stable processes (which we nowadays call selfsimilar processes) [13]. The fractional

Brownian motion appears implicitly in his work as an example of a Gaussian semi-stable

process. Lamperti noted that the fractional Brownian motion cannot be Markovian, except

in the standard Brownian case. He showed that each self-similar process can be obtained

from a stationary process and vice versa by a time-change transformation. Also, Lamperti

proved a ”fundamental limit theorem” stating that each non-degenerate self-similar process

can be understood as a time-scale limit of a stochastic process. Molchan and Golosov studied

the derivative of fractional Brownian motion using generalized stochastic processes (in the

sense of Gelfand-Ito) [14]. They called this derivative a ”Gaussian stationary process with

asymptotic power spectrum” (nowadays it is called fractional Gaussian noise or fractional

white noise). Molchan and Golosov found a finite interval representation for the fractional

Brownian motion with respect to the standard one (the more well-known Mandelbrot-Van

Ness representation requires integration from minus infinity). In [14] there is also a reverse

representation, i.e. a finite interval integral representation of the standard Brownian motion

with respect to the fractional one. Molchan and Golosov noted the connection of these

integral representations with deterministic fractional calculus. They also pointed out how it’s

possible to obtain the Girsanov theorem and prediction formulas for the fractional Brownian

motion by using the integral representation. The name ”fractional Brownian motion” comes

from the influential paper by Mandelbrot and Van Ness [15]. They defined the fractional
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Brownian motion as a fractional integral with respect to the standard one (whence the

name). The notation for the index H and the current parameterization with range (0; 1)

are due to Mandelbrot and Van Ness too. The parameter H is called the Hurst index after

an English hydrologist studied the memory of Nile River maxima in connection with the

designing of water reservoirs [16]. Mandelbrot and Van Ness considered an approximation

of the fractional Gaussian noise by smoothing the fractional Brownian motion. They also

studied simple interpolation and extrapolation of the smoothed fractional Gaussian noise

and fractional Brownian motion.

Recently the fractional Brownian motion has paved the way to many applications. It (and its

further generalizations) has been studied in connection to financial time series, fluctuations in

solids, hydrology, telecommunications and generation of artificial landscapes, just to mention

few. Moreover, these potential applications the study of the fractional Brownian motion is

endorsed because it is one of the simplest processes that is neither a semimartingale nor a

Markov process.

The Fractional Brownian motion is a prime example of a stochastic process that is sta-

tistically self-similar with stationary increments. It is a generalization of the well-known

process of Brownian motion. It is the unique centred Gaussian self-similar process with

stationary increments [7], [17], in the sense that the class of all fractional Brownian motion

coincides with that of all Gaussian self-similar processes with stationary increments. It can

be obtained via a stochastic fractional integration of the standard Brownian motion. How-

ever, the increments of the fractional Brownian motion are not independent, except in the

standard Brownian case; it can be used as a model to describe a large number of natural

phenomena and shapes such as the range of rivers, time series of economic action, terrain

surfaces, etc...

The main disadvantages of Fractional Brownian motion is that it fails to model impul-

siveness due to its Gaussianity.

Within applications, a self-similar process is often a (continuous time) model for a cumu-

lative input of a system in steady state. Hence self-similar processes reflecting this feature,

namely, processes with stationary increments, become particularly interesting.

In the following, we will focus on self-similar processes having stationary increments. In

common abbreviation a self-similar process with stationary increments is SSSI (or H−sssi if

one wants to emphasize the exponent of self-similarity).
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We say that an ℜd-valued stochastic process {X(t), t ≥ 0} is said to have stationary

increments, if the distributions of {X(t + h)−X(h), t ≥ 0} are independent of h ≥ 0, that

is

{X(t + h) − X(h), t ≥ 0} d
= {X(t) − X(0), t ≥ 0}.

We also say that an ℜd-valued stochastic process {X(t), t ≥ 0} has independent incre-

ments, if ∀m ≥ 1, and for any partition 0 ≤ t0 < t1 < ... < tm, X(t1) − X(t0), ..., X(tm) −
X(tm−1) are independent.

We define the fractional Brownian motion (FBM, for short) by its scaling property and

discuss some basic properties of the process. An indepth introduction to fractional Brownian

motion can be found in the book by Samorodnitsky and Taqqu, [18], Chapter 7.2 (which is

surprising given the name of the book), or in a recent book by Embrechts and Maejima [6].

As we show in the following (see Theorem 1.1.4) the Brownian motion is a special H-ss

process. We consider on (Ω, ̥, P ) a stochastic continuous time stochastic process {B(t), t ≥
0} which is to say that for each t ≥ 0 one considers a real random variable B(t).

Definition 1.1.2: The stochastic process {B(t), t ≥ 0} is said to be a standard brownian

motion if

(a) B(0) = 0 almost surely;

(b) it is a process with independent and stationary increments;

(c) for each t > 0, B(t) has a Gaussian distribution with mean zero and covariance matrix

E[B(t)B(t)′] = tI, where I is the identity matrix, where B(t)′ is the mean value of

B(t);

(d) its sample paths t −→ B(ω) are continuous almost surely.

We will not talk about the construction of such a process which can be studied in most

standard reference books.

We can observe that with the above definition, one gets that for s < t, B(t) − B(s)

is Gaussian, centered with variance t − s, which say that Brownian motion is stationary.

Indeed, one has
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B(t) = B(s) + [B(t) − B(s)].

Therefore, using characteristic functions3 and the independence of B(s) and B(t)−B(s),

one has

E(eir[B(t)−B(s)]) = e−
r2

2
(t−s)

As anticipated before, it is fundamental the following result.

Theorem 1.1.4: Brownian motion {B(t), t ≥ 0} is 1
2
-ss.

Proof. We will show that for each a > 0, {a− 1
2 B(at)} is a Brownian motion; indeed, if

we prove it, then {a− 1
2 B(at)} d

= {B(t)}; consequently, {B(t), t ≥ 0} is H-ss, with H = 1
2
.

Conditions (a), (b), and (d), follow from the same conditions for {B(t)}. For the condition (c),

it is trivial that if {B(t)} has a Gaussian distribution with mean zero, then also {a− 1
2 B(at)}

has the same distribution with mean zero. In particular, the covariance matrix is

E[(a− 1
2 B(at))(a− 1

2 B(at))′] =
1

a
E[B(at)B(at)′]

=
1

a
atI = tI

thus, {a− 1
2 B(at)} is a Brownian motion.

Moreover, the covariance matrix of Brownian motion fulfills the following theorem.

Theorem 1.1.5: E[B(t)B(s)′] = min{t, s}I
3 Let X a random variable, then it is convenient to define the characteristic function of X by

a

µ(θ) = E[eiθX ], −∞ < θ < ∞

where i =
√
−1. It can be shown that

a

µ(θ) always exists and, like the moment generating function,

uniquely determines the distribution of X (For more details, see [24]).
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Proof. Suppose that s < t . Then by considering the stationarity of the increments, we have

E[B(t)B(s)′] =
1

2
{E[B(t)B(t)′] + E[B(s)B(s)′] − E[(B(t) − B(s))(B(t) − B(s))′]}

=
1

2
{E[B(t)B(t)′] + E[B(s)B(s)′] − E[B(|t − s|)B(|t − s|)′]}

=
1

2
{t + s − |t − s|}I

=








s for t ≥ s

t for t ≤ s






 I

= min{t, s}I.

To define a Fractional Brownian motion we will show a basic result for general self-similar

processes with stationary increments.

Theorem 1.1.6: Let {X(t)} be real-valued H−ss with stationary increments and suppose

that E[X(1)2] < ∞. Then

E[X(t)X(s)] =
1

2
{t2H + s2H − |t − s|2H}E[X(1)2].

Proof. By self-similarity and stationarity of increments, we have

E[X(t)X(s)] =
1

2
{E[X(t)2] + E[X(s)2] − E[(X(t) − X(s))2]}

=
1

2
{E[X(t)2] + E[X(s)2] − E[X(|t − s|)2]}

=
1

2
{t2HE[X(1)2] + s2HE[X(1)2] − |t − s|2HE[X(1)2]}

=
1

2
{t2H + s2H − |t − s|2H}E[X(1)2].

Consequently, we can give the following definition.
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Definition 1.1.3: Let 0 < H ≤ 1. A real-valued Gaussian process {BH(t), t ≥ 0} is called

”fractional Brownian motion” (or FBM, for short) if E[BH(t)] = 0 and

E[BH(t)BH(s)] =
1

2
{t2H + s2H − |t − s|2H}E[BH(1)2]. (1.1.3)

Hence, for 0 < H ≤ 1 there is a unique zero Gaussian process whose covariance function

is consistent with self-similarity with exponent H and stationary increments and, hence, is

given by (1.1.3) and the condition E[BH(t)] = 0. Conversely, a Gaussian process with a

covariance function given by (1.1.3) is, clearly, both self-similar with exponent H and has

stationary increments. That is, for every 0 < H ≤ 1 there is a unique (up to a global

multiplicative constant) H−sssi zero mean Gaussian process (this process is a FBM).

Theorem 1.1.7: {B1/2(t)} is a Brownian motion up to a multiplicative constant.

Proof. If we put in the equation (1.1.3) and in E[BH(t)] = 0 the value H = 1/2, then

E[B 1
2
(t)B 1

2
(s)] =

1

2
{t + s − |t − s|}E[B 1

2
(s)2] = min (t, s)I

Hence, the Fractional Brownian motion with H = 1/2 has the same mean and covariance

structure of Brownian motion, as mentioned in Remark 1.1.1.

Remark 1.1.1: It is known that the distribution of a Gaussian process is determined by its

mean and covariance structure. Indeed, the distribution of a process is determined by all

joint distributions and the density of a multidimensional Gaussian distribution is explicitly

given through its mean and covariance matrix. Thus, the previous conditions (see Definition

1.1.3) determine a unique Gaussian process.

The following Theorem is fundamental; indeed, it is very handy because it provides an

useful criterion for checking whether a given process is FBM.

Theorem 1.1.8: A Fractional Brownian motion {BH(t), t ≥ 0} is H-sssi. Moreover, the

Fractional Brownian motion is unique in the sense that the class of all Fractional Brownian

motion coincides with that of all Gaussian self-similar processes with stationary increments.

Finally, {BH(t)} has independent increments iff H = 1/2.
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Proof. Let {BH(t), t ≥ 0} a Fractional Brownian motion.

1) Initially, we prove that it is a self-similar process.

Indeed, we have that

E[BH(at)BH(as)] =
1

2
{(at)2H + (as)2H − a(|t − s|)2H}E[BH(1)2]

= a2HE[BH(t)BH(s)]

= E[(aHBH(t))(aHBH(s))].

Since, Fractional Brownian motion is mean zero Gaussian, this equality in covariance

implies that {BH(at)} d
= {aHBH(t)}.

2) We now show that it has stationary increments.

We must prove that {BH(t + h) − BH(h), t ≥ 0} d
= {BH(t) − BH(0), t ≥ 0}, but thank

to the result of proposition 1.1.1, we can show that {BH(t + h) − BH(h), t ≥ 0} d
= {BH(t),

t ≥ 0}.
It is enough to consider only covariances:

E[(BH(t + h) − BH(h))(BH(s + h) − BH(h))] =

= E[BH(t + h)BH(s + h)] − E[BH(t + h)BH(h)]+

− E[BH(s + h)BH(h)] + E[BH(h)2]

=
1

2
{((t + h)2H + (s + h)2H − |t − s|2H)+

− ((t + h)2H + h2H − t2H)+

− ((s + h)2H + h2H − s2H) + 2h2H}E[BH(1)2]

=
1

2
(t2H + s2H − |t − s|2H)E[BH(1)2]

= E[BH(t)BH(s)].

Thus, {BH(t), t ≥ 0} is H-sssi.

3)To show the uniqueness of the class of all Fractional Brownian motions, it is enough

to prove that any H-sssi process with Gaussian distribution and mean zero is a Fractional

Brownian motion.

Let {X(t), t ≥ 0} be a mean zero Gaussian process, first note that once it is H-sssi and

has stationary increments, by Theorem 1.1.6, it results that {X(t), t ≥ 0} has the following

covariance structure
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E[X(t)X(s)] =
1

2
{t2H + s2H − |t − s|2H}E[X(1)2],

then X(t) is the same of {BH(t)} in law.

4)In conclusion, we prove that {BH(t)} has independent increments iff H = 1/2 .

Let {BH(t)} be a Fractional Brownian motion with H = 1/2 , by Theorem 1.1.7 it

is a Brownian motion up to a multiplicative constant, then trivially it has independent

increments. Conversely, if {BH(t)} has independent increments also, then for 0 < s < t,

E[BH(s)(BH(t) − BH(s))] = E[BH(s)BH(t)] − E[BH(s)2]

=
1

2
{t2H + s2H − |t − s|2H − 2s2H}E[BH(1)2]

=
1

2
{t2H − s2H − |t − s|2H}E[BH(1)2]

= 0

The latter however only holds for H = 1/2.

Remark 1.1.2: We can prove that if H = 1, B1(t) = tB1(t). In this case, the covariance

structure become E[(B1(t) − tB1(1))2] = tsE[(B1(t))
2]; consequently,

E[(B1(t) − tB1(1))2] = E[B1(t)
2] − 2tE[B1(t)B1(1)] + t2E[B1(t)

2]

= (t2 − 2t2 + t2)E[B1(t)
2]

= 0

so that B1(t) = tB1(t) a.s.

In order to show the next result, we use the notion of a Wiener integral. Indeed, we give

in the following Theorem the integral representation of Fractional Brownian motion through

a Wiener integral (for details, see [6]).

Theorem 1.1.9: When 0 < H < 1, Fractional Brownian motion {BH(t), t ≥ 0} has a

stochastic integral representation
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CH =

{∫ 0

−∞
((t − u)H− 1

2 − (−u)H− 1
2 )dB(u) +

∫ t

0

(t − u)H− 1
2 dB(u)

}
, (1.1.4)

where

CH = E[BH(t)]
1
2

{∫ 0

−∞
((t − u)H− 1

2 − (−u)H− 1
2 )du +

1

2H

}− 1
2

Sample path properties of Brownian motion have been well studied.

As Brownian motion, Fractional Brownian motion is also:

• sample continuous;

• nowhere differentiable;

• unbounded variation almost surely.

Several properties of trajectories of multidimensional Fractional Brownian motion with

multiparameter have also been studied. Let {BH(t), t ∈ ℜN} be a mean-zero Gaussian

process with covariance

E[BH(t)BH(s)] = |t|2H + |s|2H − |t − s|2H ,

where |t| is the Euclidean norm of t ∈ ℜN .

1.1.2 Stable Lévy Processes

Stable Lévy Processes (including Brownian motion) are the only selfsimilar processes with

independent and stationary increments.

Definition 1.1.4: An ℜd−values stochastic process {X(t), t ≥ 0} is called a Lévy process if

(a) X(0) = 0 almost surely,

(b) it is stochastically continuous at any t ≥ 0,

(c) it has independent and stationary increments,
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(d) its sample paths are right-continuous and have left limits almost surely.

Definition 1.1.5: A probability measure µ on ℜd is called ”strictly stable”, if it is not a

delta measure, the characteristic function
a

µ(θ) does not vanish and for any a > 0 there

exists b > 0 such that

a

µ(θ)a =
a

µ(bθ), ∀θ ∈ ℜd.

Each stable distribution has a unique index as follows.

Theorem 1.1.10: If µ on ℜd is stable, there exists a unique 0 < α ≤ 2 such that b = a1/α.

Such a µ is referred to as α−stable. When α = 2, µ is a mean zero Gaussian probability

measure.

Non Gaussian stable distributions are, sometimes by physicists, called Lévy distributions

[19]. In particular, the case with α = 1, is called Cauchy distribution (or Lorentz distribution

by physicists). A significant difference between Gaussian distributions and non-Gaussian

stable ones like the Cauchy is that the latter have heavy tails, namely their variances are

infinite. Such models were for a long time not accepted by physicists. More recently, the

importance of modeling stochastic phenomena with heavy-tailed processes is dramatically

increasing in many fields.

In the following Theorem, we show as self-similar processes with independent and sta-

tionary increments are the only stable Lévy processes.

Theorem 1.1.11: Suppose {X(t), t ≥ 0} is a Lévy process and let 0 < α ≤ 2. Then ÃL(X(1))

4 is α−stable if and only if {X(t)} is selfsimilar. The index α of stability and the exponent

H of selsimilarity satisfy α = 1/H.

Proof. Let µt = (X(t)) and µ = µ1. Since {X(t)} is a Lévy process, for each t ≥ 0, the

characteristic function
a

µt satisfies
a

µt(θ) =
a

µ(θ)t. Indeed, for any n and m,

4 Where ÃL is the Lebesgue measure.
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X(
m

n
) =

{
X(

m

n
) − X(

m − 1

n
)

}
+ ... +

{
X(

1

n
) − X(0)

}
, (1.1.5)

where X( k
n
) =

{
X( k

n
) − X(k−1

n
)
}
, k = 1, ...,m, are independent and identically dis-

tributed (for short i.i.d.).

From (1.1.5) we have that
a

µm/n(θ) =
a

µ1/n(θ)m and in particular that
a

µ1/n(θ) =
a

µ(θ)1/n.

Thus

a

µm/n(θ) =
a

µ1/n(θ)m =
a

µ(θ)m/n.

This, with the stochastic continuity of {X(t)}, implies that
a

µt(θ) =
a

µ(θ)t for any t ≥ 0.

1) Initially, we prove that the measure the probability ÃL(X(1)) is α−stable.

By selfsimilarity, for some H > 0, X(a)
d
∽ aHX(1), ∀a > 0, hence

a

µ(θ)a =
a

µ(aHθ),∀θ ∈
ℜd,∀a > 0, implying that µ is stable with α = 1/H, necessarily H ≥ 1

2
.

2)We now show that ÃL(X(1)) is a self-similar process.

Suppose that µ is α−stable and 0 < α ≤ 2. Since {X(t)} has independent and stationary

increments, it is enough to show that for any a > 0,

X(at)
d
∽ a1/αX(t).

Hence,

E[exp{i〈θ, X(at)〉}] =
a

µat(θ) =
a

µ(θ)at =
a

µ(a1/αθ)t =
a

µt(a
1/αθ)

= E[exp{i〈θ, a1/αX(t)〉}].

This completes the proof.

If {X(t), t ≥ 0} is a Lévy process and ÃL(X(1)) is α−stable, then it is called an α−stable

Lévy process and denoted by {Zα(t), t ≥ 0}. {Z2(t)} is Brownian motion.

The process {X1(t), t ≥ 0} is H-sssi, {X1(t)} with α = 2 is a fractional Brownian motion

and {X1(t)} with 0 < α < 2 is an extension of {BH(t)} to infinite variance processes. It

is called the linear fractional stable motion. Finally, {X2(t)} is 1
α
−ss, si. This is called the

log-fractional stable motion. Note that {X2(t)} with α = 2 is no more Brownian motion.
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Moreover, the self-similarity there is another property that makes the fractional Brownian

motion a suitable model for many applications that we will show in following section.

1.2 Long and Short Range dependence

The notion of ”long memory” or ”Long Range Dependence” (LRD) has intrigued many

at least since B. Mandelbrot brought it to the attention of the scientific community in

the 1960s in a series of papers (Mandelbrot-1965 [21], Mandelbrot and Van Ness-1968 [22],

Mandelbrot and Wallis-1968/1969 [23]) that, among other things, explained the so-called

”Hurst phenomenon”, having to do with unusual behaviour of the water levels in the Nile

river.

Today this notion has become especially important as potentially crucial applications

arise in new areas such as communication networks and finance [17], [20].

There is an agreement in probability that the notion of long range dependence should be

considered in application to stationary processes only, i.e. only in the context of phenomena

”in steady state”. The point is, however, delicate.

First, in various applications of stochastic modeling this term is applied to non-stationary

processes. Thus, for example, the usual Brownian motion is sometimes viewed as having LRD

because it never really forgets where started from (this is very unreasonable to a probabilist

who immediately thinks about independent increments of the Brownian motion).

Second, stationary processes with LRD (in whatever sense) sometimes resemble their

non-stationary counterparts. It is, therefore, possible to think of LRD processes as being that

layer among the stationary processes that is ”near the boundary” with non-stationarity, or as

the layer separating the non-stationary processes from the ”well behaved, usual” stationary

processes.

Let us consider a stationary process, the decrease’s speed of its autocorrelation function

describes the behavior of process to long or short range; then, we say that the process has

a Long or Short range dependence. In general, in a stationary time series the Long range

dependence occurs when the covariances tend to zero like a power function and so slowly

that their sums diverge, vice versa (otherwise) the short range dependence happens when

the covariance’s sums converge. Through the increments process of a H-sssi process, there
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is a close relationship between long range or short range dependence and selfsimilar process

with stationary increment. Consequently, to define this correlation we have to introduce the

increments process of H-sssi process {X(t), t ≥ 0}, and its autocorrelation function.

Let {X(t), t > 0} be a H-sssi process, 0 < H < 1, non degenerate for each t > 0 with

E[X(1)2] < ∞, then the increments process is

ξ(n) = X(n + 1) − X(n), n ∈ N0

Moreover, the self-similarity there is another property that makes the fractional Brownian

motion a suitable model for many applications.

Definition 1.2.1: If {X(t), t > 0} is a Fractional Brownian motion, then {ξ(n)}n∈N0 is called

Fractional Gaussian Noise (FGN).

The autocorrelation function r = rH of the fractional Gaussian noise with H 6= 1/2

satisfies

r(n) ∼ H(2H − 1)n2H−2

as n tends to infinity.

Therefore, H > 1/2 then the increments of the corresponding fractional Brownian motion

are positively correlated and exhibit the long-range dependence property. The case 0 < H <

1/2 corresponds to negatively correlated increments and short-range dependence. When

H = 1/2 the FGN is simply the standard Brownian motion, so it has independent increments.

Let us further illustrate the dependence structure of the fractional Brownian motion.

Proposition 1.2.1: The fractional Brownian motion with Hurst index H is a Markov process

if and only if H = 1/2.

Definition 1.2.2: If {X(t), t > 0} is Brownian motion, then {ξ(n)}n∈N0 is called White

Gaussian Noise.

Consequently, the autocorrelation function of {ξ(n)}n∈N0 is

r(n) = E[ξ(0)ξ(n)], n ∈ N0
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Remark 1.2.1: It is trivial to observe that {ξ(n)}n∈N0 is stationary process.

Definition 1.2.3: Let {X(t), t > 0} be a H-sssi process, 0 < H < 1, non degenerate for each

t > 0 with E[X(1)2] < ∞, then when autocorrelation function r(n) decays hyperbolically

such that the following condition holds

+∞∑

n=0

|r(n)| = ∞,

we call the increments process {ξ(n)}n∈N0 long-range dependent, while {ξ(n)}n∈N0 is

short-range dependent if the autocorrelation function is summable.

Indeed, if r decays exponentially, i.e. r(n) ∼ ρn as n tends to infinity, then the stationary

sequence (ξn)n∈N exhibits short-range dependence.

In conclusion, we can give the fundamental result of this subsection, which represents a

characterization of long and short range dependence process in term of H, scaling exponent

(Hurst parameter).

Proposition 1.2.2: Let {X(t), t > 0} be a H-sssi process, 0 < H < 1, non degenerate

for each t > 0 with E[X(1)2] < ∞, then when autocorrelation function r(n) has following

asymptotical course

• r(n) ∽ H(2H − 1)n2H−2E[X(1)2], as n −→ ∞, if H 6= 1
2
,

• r(n) = 0, as n −→ ∞, if H = 1
2
.

Consequently, it results

(a) if 0 < H < 1,
+∞∑
n=0

|r(n)| < ∞, so there is the short range dependence;

(b) if H = 1
2
, {ξ(n)}n∈N0 is uncorrelated;

(c) if 1/2 < H < 1,
+∞∑
n=0

|r(n)| = ∞, so there is the long range dependence.
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Proof. Noticing that X(0) = 0 a.s. and by using Theorem 1.1.6, we have, for n ≥ 1,

r(n) = E[ξ(0)ξ(n)]

= E[X(1)X(n + 1) − X(n)]

= E[X(1)X(n + 1)] − E[X(1)X(n)]

=
1

2
{(n + 1)2H − 2n2H + (n + 1)2H}E[X(1)2]

=
1

2
n2H{(1 +

1

n
)2H − 2 + (1 − 1

n
)2H}E[X(1)2]

=
1

2
n2H{1 + 2H

1

n
+ 2H(2H − 1)

1

n2
− 2 + 1 − 2H

1

n
+ 2H(2H − 1)

1

n2
}E[X(1)2]

= 2H(2H − 1)n2H−2

which implies the conclusion.

The previous result indicates that there are self-similar processes which are not long-range

dependent and vice versa; for example Brownian motion is 1
2
−sssi with White Gaussian noise

as its increments, but the latter is not long-range dependent.



2. FRACTALS DIMENSIONS, MULTIFRACTALS AND CANTORIAN

SPACE

Dimensions are a tool to measure the size of mathematical objects on a crude scale. For

example, in classical geometry dimension is able to tell us that in three-dimensional space

a line segment (a one-dimensional object) is smaller than the surface of a ball (a two-

dimensional object), but there is no difference between line-segments of different lengths.

It may therefore come as a surprise that dimension is able to distinguish the size of so many

objects in probability theory, for example:

• the ranges of stable processes with different indices,

• the boundaries of supercritical Galton-Watson trees with different mean offspring num-

bers,

• the n-fold self-intersection of a planar Brownian motion for different n.

Non integer dimensionalities have recently entered physics from at least two separate

directions: continuous ǫ expansions near an integer d in the theory of critical phenomena,

and fractals. Fractals might appear at first to be unrelated to our current studies. However,

they are connected to dynamical systems in an interesting way: a number of dynamical

systems have orbits that approach a set which is itself a fractal. This portion of the lecture

will cover the definition of a fractal and a few examples of such.

In this chapter we introduce the notion of dimension. One can use a notion of dimension

taking variations of the size in the different sets in a covering into account. This captures

finer details of the set and leads to the notion of Hausdorff dimension.

We show how Hausdorff dimension is used to determine the size of a set and describe

techniques to calculate the Hausdorff dimension.

In what follows, we will also introduce the concept of Multifractals.
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Fractals can be often be regarded as special cases of continuous or discrete multifractals.

The concept of multifractals which are spatially interwined fractals has succeeded the concept

of fractals which are now often referred to as unifractals (or mixing the Latin with the

Greek:”monofractals”). The multiplicative cascade model originally developed by physicists

to explain characteristic behaviour of turbulence yields a spatial frequency distribution on

the one hand, and a corresponding multifractal dimension spectrum on the other. The

statistical estimation of fractal dimensions remains an important topic of investigation as

well.

Now that fractal and multifractals have become well established as practical tools, it

also has become apparent that, in Nature, there are often situations that a single, relatively

simple fractal or multifractal model does not apply and mixtures of models or other types

of generalizations are required.

In particular, reading El Naschie’s papers, E-Infinity (ǫ(∞)) appears to be clearly a new

framework for understanding and describing Nature. Indeed, Nature appears clearly not

continuous, not periodic, but self-similar and Mohamed El Naschie with ǫ(∞) has introduced a

mathematical formulation to describe phenomena that are resolution dependent. As reported

by the author, ǫ(∞) space-time is an infinite dimensional fractal, that happens to have D = 4

as the expectation value for the topological dimension [47], [48], [49]. The topological value

3 + 1 means that in our low energy resolution, the world appears us as if it were four-

dimensional. This is a sweeping generalization of what Einstein did in his general theory of

relativity. El Naschie introduces a new geometry for space-time which differs considerably

from the space-time of our sensual experience. Consequently, it all depends on the energy

scale through which we are making our observation. Observations of large scale structures

show that the dimension changes if we consider different energies, corresponding to different

lengths-scale in Universe, as reported in [50], [51], [52].

2.1 Introduction to Fractals

The geometry of natural objects ranging in size from the atomic scale to the size of the

universe is central to models we develop in order to ”understand nature” [25]. The geometry

of particle trajectories; of hydrodynamic flow lines, waves, ships and shores; of landscapes,

mountains, islands, rivers, glaciers and sediments; of grains in rock, metals and composite
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materials; of plants, insects and cells, as well as the geometrical structure of crystals, chem-

icals and proteins - in short the geometry of nature is so central to the various fields of

natural science that we tend to take the geometrical aspects for granted. Each field tends

to develop adapted concepts (e.g. morphology, four-dimensional spaces, texture, etc...) used

intuitively by the scientists in that field. Traditionally the Euclidean lines, circles, spheres

and tetrahedra have served as the basis of the intuitive understanding of the geometry of

nature.

Mathematicians have developed geometrical concepts that transcend traditional geom-

etry, but unfortunately these concepts have failed in the past to gain acceptance in the

natural sciences because of the rather abstract and ”pedantic” presentations, and because

of warnings that such geometries were ”dangerous to use”.

Benoit B. Mandelbrot, with his creative and monumental work, has generated a widespread

interest in Fractal Geometry ; a concept introduced by Mandelbrot himself. In particular he

has presented what he has called fractals in an unsually inspring way. His book The Fractal

Geometry of Nature [3] is the standard reference and contains both the elementary con-

cepts and an unusually broad range of new and rather advanced ideas, such as multifractals,

currently under active study (as we will see in the next section) .

There are many examples of sets that are commonly referred to as fractals. The word

”fractal” was coined by Mandelbrot in his fundamental essay from the latin fractus, meaning

broken, to describe objects that were too irregular to fit into a traditional geometrical setting.

Fractal geometry will make you see everything differently.

Fractal geometry is an extention of classical geometry and provides a general framework

for the study of such irregular sets. It can be used to make precise models of physical

structures from ferns to galaxies.

Fractal geometry is a new language. Once you can speak it, you can describe the shape

of a cloud as precisely as an architect can describe a house [26].

A fractal, as defined by Mandelbrot, “is a shape made of parts similar to the whole in

some way”; it is a geometric object that possesses the property of self-similarity and it can

possess non-integer dimensions. Fractals can be classified in numerous manners, of which one

stands out rather distinctly: exact (regular) fractals versus statistical (random) fractals. An

exact fractal is an “object which appears self-similar under varying degrees of magnification

in effect, possessing symmetry across scale, with each small part replicating the structure of
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the whole”. Taken literally, when the same object replicates itself on successively smaller

scales, even though the number of scales in the physical world is never infinite, we call this

object an “exact fractal.” When, on the other hand, the object replicates itself in its statistical

properties only, it is defined as a “statistical fractal.” Statistical fractals have been observed in

many physical systems, ranging from material structures (polymers, aggregation, interfaces,

etc.), to biology, medicine, electric circuits, computer interconnects, galactic clusters, and

many other surprising areas, including stock market price fluctuations. In optics, fractals

were identified in conjunction with the Talbot effect and diffraction from a binary grating

and with unstable cavity modes. Exact fractals, on the other hand, such as the Cantor

set, occur rarely in nature except as mathematical constructs. The distinction between

”natural fractals” and the mathematical ”fractal sets” that might be used to describe them

was emphasized in Mandelbrot’s original essay, but this distinction seems to have become

somewhat blurred. There are no true fractals in nature.

2.2 Fractal Dimension

How big is a fractal? When are two fractals to one another in some sense? What experimental

measurements might we make to tell if two different fractals may be metrically equivalent?

There are various numbers associated with fractals which can be used to compare them.

They are generally referred to as fractal dimensions. They are attempts to quantify a sub-

jective feeling which we have about how densely the fractal occupies the metric space in

which it lies. Fractal dimensions provide an objective means for comparing fractals.

Fractal dimensions are important because they can be defined in connection with real

world data, and they can be measured approximately by means of experiments. Fractal

dimensions can be attached to clouds, trees, coastlines, feathers, networks of neurons in the

body, dust in the air at an instant in time, the clothers you are wearning, the distribution

of frequencies of light reflected by a flower, the colors emitted by the sun, and the wrinkled

surface of the sea during a storm. These numbers allow us to compare sets in the real world

with the laboratory fractals.

When we refer to a set F as a fractal, therefore, we will typically have the following in

mind.

1) F has a fine structure, i.e. detail on arbitrarily small scales.
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2) F is too irregular to be described in traditional geometrical language, both locally and

globally.

3) Often F has some form of self-similarity, perhaps approximate or statistical.

4) Usually, the ”fractal dimension” of F (defined in some way) is greater than its topological

dimension.

5) In most cases of interest F is defined in a very simple way, perhaps recursively.

It is known that there are several ways of measuring a fractal dimension. This means that

several alternative definitions exist, but in the extensively studied case of strictly self-similar

fractals all these definitions yield the same value.

How can we capture the dimension of a geometric object? One requirement for a useful

definition of dimension is that it should be intrinsic. This means that it should be inde-

pendent of an embedding of the object in an ambient space like ℜd. Intrinsic notions of

dimension can be defined in arbitrary metric space.

2.2.1 The Minkowski dimension

Suppose S is a bounded metric space with metric d. Here bounded means that the diameter

|S| = sup{d(x, y) |x, y ∈ S} of S is finite [27].

The example we have in mind is a bounded subset of ℜd.

In order to give the definition of Minkowski dimension we define for ǫ > 0,

M(S, ǫ) = min{k ≥ 1 there exist x1, ..., xk ∈ S with S ⊂
k⋃

i=1

B(xi, ǫ)}

where B(x, ǫ) = {y ∈ S : d(x, y) < ǫ} is the open ball around x of radius ǫ. Intuitively,

when S has dimension d the number M(S, ǫ) should be approximately C/ǫd. This can be

verified in simple cases like line segments, planar squares, etc. This argument motivates the

definition of Minkowski dimension.

Definition 2.2.1: For a bounded metric space S we define the lower Minkowski dimension

as
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dimMS = lim inf
ǫ↓0

log M(S, ǫ)

log(1/ǫ)

and the upper Minkowski dimension as

dimMS = lim sup
ǫ↓0

log M(S, ǫ)

log(1/ǫ)

We always have dimMS ≤ dimMS , but equality need not hold. If it holds we write

dimM S = dimMS = dimMS.

These definitions of Minkowski dimension have limitations. In particular, we shall see

below that Minkowski dimension does not have the countable stability property

dim
∞⋃

k=1

Sk = sup{dim Sk : k ≥ 1}

this is one of the properties we expect from a reasonable concept of dimension there are

two ways out of this problem.

(i) One can use a notion of dimension based on covering with balls of varying size this

captures finer details of the set and leads to the notion of Hausdorff dimension.

(ii) One can enforce the countable stability property by subdividing every set in countably

many bounded pieces and taking the maximal dimension of them. The infimum over

the numbers such obtained leads to the notion of packing dimension.

The dimension (ii) was introduced surprisingly late by Tricot (1982) and should per-

haps be called Tricot dimension can be founded on regularization of the upper Minkowski

dimension (for details, see [27]).

2.3 The Hausdorff and Self-Similarity Dimension

The Hausdorff dimension and Hausdorff measure were introduced by Felix Hausdorff in 1919.

Of the wide variety of ”fractal dimensions” in use, the definition of Hausdorff, based on a

construction of Carathèodory, is the oldest and probably the most important. Hausdorff

dimension has the advantage of being defined for any set, and is mathematically convenient,
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as it based on measures, which are relatively easy to manipulate. A major advantage is that

in many cases it is hard to calculate or to estimate by computational methods. However,

for an understanding of the mathematics of fractals, familiarity with Hausdorff measure and

dimension is essential [1].

Hausdorff dimension can be based on the notion of a covering of the metric space S by

sets of finite diameter [28].

A covering of S is a finite or countable collection of sets S1, S2, ... with

S ⊂
∞⋃

i=1

Si (2.3.1)

Therefore, like the Minkowski dimension, in order to give the dimension of Hausdorff

dimension we can use a covering of the metric space S by balls; indeed, a covering of S by

balls is an at most countable collection of balls

B(x1, r1), B(x2, r2), B(x3, r3), ...

In this case the relation (2.3.1) became

S ⊂
∞⋃

i=1

B(xi, ri) (2.3.2)

(for details see [28]).

In the (2.3.1), for every α ≥ 0 we say that the α−value of the covering is

∞∑

i=1

|Si|α

where |Si| denotes the diameter of the set Si.

Informally speaking, the α−value of the most efficient covering by small sets is the

α−Hausdorff measure of the set.

The terminology of the α−values of a covering allows to formulate a concept of dimension,

which is sensitive to the effect that the fine features of this set occur in different scales at

different places.
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Definition 2.3.1: For every α ≥ 0 the α−Hausdorff content of a metric space S is defined

as

Hα
∞(S) = inf

{ ∞∑

i=1

|Si|α : S1, S2, ... is a covering of S

}
, (2.3.3)

informally speaking the α−value of the most efficient covering. If 0 ≤ α < β, and

Hα
∞(S) = 0, then also Hβ

∞(S) = 0. Thus we can define

dim S = inf{α ≥ 0 : Hα
∞(S) = 0} = sup{α ≥ 0 : Hα

∞(S) > 0},

the Hausdorff dimension of the set S.

The definition (2.3.3) can be write in other terms. Indeed, for every α ≥ 0 the (spherical)

α−Hausdorff content of a metric space S is defined as

Hα(S) = inf

{ ∞∑

i=1

ri
α : (B(xi, ri)) is a covering of S

}
,

informally speaking the α−value of the most efficient covering.

The concept of the α−Hausdorff content plays an important part in the definition of the

Hausdorff dimension. However, it does not help distinguish the size of the sets of the same

dimension. For example, a line segment of unit length and a plus consisting of two orthogonal

line segments of unit length have the same 1-Hausdorff content. Therefore, one considers a

refined concept, the Hausdorff measure. Here the idea is to consider only coverings by small

sets, which need not be balls.

In the following we give the definition of the Hausdorff measure.

Let X be a metric space and S ⊂ X. For every α ≥ 0 and δ > 0 define

Hα
δ (S) = inf

{ ∞∑

i=1

|Si|α : S1, S2, ... is a covering of S, and |Si|α ≤ δ

}
,

i.e. we are considering covering of S by sets of diameter no more than δ. Then

Hα(S) = sup
δ>0

Hα
δ (S) = lim Hα

δ (S)
δ↓0
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is the α−Hausdorff measure of the set S.

The α−Hausdorff measure has two obvious properties which, together with Hα(∅) = 0,

make it an outer measure. These are countable subadditivity,

Hα

( ∞⋃

i=1

Si

)
≤

∞∑

i=1

Hα(Si), for any sequence S1, S2, ... ⊂ X

and monotonicity,

Hα(S) ⊂ Hα(D), if S ⊂ D ⊂ X.

In the following, we recall the crucial properties of the Hausdorff dimension.

• if A ⊂ B, then dim A ≤ dim B in particular subsets of ℜd have Hausdorff dimension

no longer than d;

• dim
∞⋃

k=1

Sk = sup{dim Sk : k ≥ 1}, this is the countable stability property;

• if f : A −→ B is Lipschitz, then dim f(A) ≤ dim A.

From the definition of the Hausdorff dimension it is plausible that in many cases it is

relatively easy to give an upper bound on the dimension: just find an efficient covering of

the set.

However it looks more difficult to give lower bounds as we must obtain a lower bound on

α−values of all covering of the set. There are three important techniques to obtain lower

bounds for the Hausdorff dimension:

1) the mass distribution principle: if it is possible to distribute a positive amount of

mass on a set S in such manner that its local concentration is bounded above, then

the set must be large in a suitable sense.

2) the potential theoretic method: it is particularly interesting in applications to random

fractals and it is based on a localization of the mass distribution principle.

3) stochastic co-dimension (see [28]).
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One can express the Hausdorff dimension in terms of the Hausdorff measure. Indeed, for

every metric space S we have

dim S = inf {α : Hα(S) = 0} = inf{α : Hα(S) < ∞}

= sup {α : Hα(S) > 0} = sup {α : Hα(S) = ∞} .

The Hausdorff dimension was used by Mandelbrot in order to offer the following tentative

definition of a fractal:

Definition 2.3.2: A fractal is by definition a set for which the Hausdorff-Beicovitch fractal

dimension (D) strictly exceed the topological dimension (DT )

D > DT (2.3.4)

The dimension DT is always an integer, but D need not be an integer ; the two dimensions

need not coincide.

Every set with a non-integer D is a fractal.

Example 2.3.1: In the following we give some examples of classical fractals:

• The original Cantor set is a fractal because (we will see in the next section):

D = log 2/ log 3 ∼ 0.6309 > 0, while DT = 0

• The original Koch curve (see Fig. 1.1) is a fractal because

D = log 4/ log 3 ∼ 1.2618 > 1, while DT = 1

• The trail of Brownian motion is a fractal because

D = 2, while DT = 1
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The striking fact that D need not be an integer deserves a terminological aside. If one

uses fraction broadly, as synonymous with a non-integer real number, several of the above

listed values of D are fractional, and indeed the Hausdorff-Besicovitch dimension is often

called fractional dimension. Hence, D may be an integer which is called a fractal dimension.

The fractal we discuss may be considered to be sets of points embedded in space. For

example, the set of points that make up a line in ordinary Euclidean space has the topo-

logical dimension DT = 1, and the Hausdorff-Besicovitch dimension D = 1. The Euclidean

dimension of space is S = 3. Since D = DT for the line it is not fractal according to Mandel-

brot’s definition, which is reassuring. The concept of a distance between points in space is

central to the definition of the Hausdorff-Besicovitch dimension and therefore of the fractal

dimension D.

How do we measure the ”size” of a set S of points in space? A simple way to measure

the length of curves, the area of surfaces or the volume of an object is to divide space into

small cubes of side δ.

Indeed, we can utilize the relations (2.3.2) and (2.3.3) referred to the balls.

Mandelbrot [3] has retracted this tentative definition and proposes instead the following:

Definition 2.3.3: A fractal is a shape made of parts similar to the whole in some way.

A neat and complete characterization of fractals is still lacking. The point is that the

first definition, although correct and precise, is too restrictive. It excludes many fractals that

are useful in physics. The second definition contains the essential feature that is emphasized

in this thesis, and seen in experiments: a fractal looks the same whatever the scale. In this

definition we have the concept of self-similarity, that we have discussed in detail in the first

chapter.

In order to understand the fractal dimension (see definition 2.3.3), we introduce the

intuitive concept of the topological dimension. Topological dimension is a concept meant

to correspond to our intuitive notion of the number of independent ways one can move

within an object. We intuitively think of a line as one dimensional because there’s only one

independent way one can move on a line, and similarly, a plane would be two dimensional.

We define topological dimension as an inductive concept. First we have the base case:
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Definition 2.3.4: A set S has topological dimension if every point has arbitrary small neigh-

borhoods, that is, neighborhoods U with sup(d(x, y) | x, y ∈ U) arbitrarily small whose

boundaries do not intersect the set.

The following Theorem is connected with topological dimension.

Theorem 2.3.1: Every connected component of a nonempty set of topological dimension

zero is a point.

Proof. Say a connected component C of a set of topological dimension zero contains two

distinct points, call them p and q, and let d = d(p, q) . Given an open set U containing p

such that sup(d(x, y) | x, y ∈ U) < d. Then U does not contain q, and thus the boundary U

must intersect C or else U and the interior of U c separate C, which is impossible since C is

connected. But then the set is not of topological dimension zero. Hence C has either one or

zero points.

Definition 2.3.5: The topological dimension of a subset S of ℜn is the least non-negative

integer k such that each point of S has arbitrarily small neighborhoods whose boundaries

meet S in a set of dimension k − 1.

Example 2.3.2: A line in a higher dimensional space has topological dimension 1, since

p contained in the line implies that B(p, r)’s boundary intersects the line in two disjoint

points, which comprise a set of topological dimension 0. The line is connected, and so is not

of topological dimension 0.

However, the topological dimension of objects is not sensitive enough of a measure to

describe the intrinsic properties of fractals. In fact, using the notion of topological dimension,

we essentially get a lower bound for the dimension of a set.

The best way to approach the matter of non-integer dimensions is to examine examples of

objects with integer dimensions that we are familiar with. Indeed, many fractals have some

degree of self-similarity. They are made up of parts that resemble the whole in some way.

Sometimes, the resemblance may be weaker than strict geometrical similarity; for example,

the similarity may be approximate or statistical.
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We are familiar enough with the idea that a (smooth) curve is a 1-dimensional object and

a surface is 2-dimensional. It is less clear that, for many purposes, the Cantor set should be

regarded as having dimension log 2/ log 3 and the other examples that we have given before.

The following argument gives one (rather crude) interpretation of the meaning of these

”dimensions” indicating how they reflect scaling properties and self-similarity.

Consider a line segment, which has one dimension. If we break this line segment up into

N equally sized portions, where r is the scaling ratio, then we observe that Nr = 1. So, for

instance, say a line segment one unit in length is divided into 4 equal pieces, then r = 1
4
, and

4(1
4
) = 1. Similarly, we can expand this to a two-dimensional square. If we use the scaling

ratio r = 1
3

such that we divide each of its sides into 3 equal pieces, then this will result in

dividing the original square into 9 sub-squares. Note that 9(1
3
)2 = 1, and in general Nr2 = 1.

If we extend this notion to a three-dimensional object, one can derive the relation Nr3 = 1.

Notice that in each case, when we partition the original object into N equal sub-units, the

exponent of r is the dimension of the object under scrutiny. In general, continuing along

these lines, our relation will be

NrD = 1

We can find a formula for D by doing some simple algebra, and if we do we get

Ds =
log(N)

log(1
r
)

(2.3.5)

There are any number of values of N and r such that when put into the formula above

for D will generate non-integral solutions for D. The number obtained in this way is usually

referred to as the similarity dimension of set. The Hausdorff-Besicovitch dimension D equals

Ds for self-similar fractals and we drop the index s for such fractals. One such example we

wish to explore is the Cantor ”middle thirds” set (or Cantor Dust). Unfortunately, similarity

dimension is meaningful only for a small class of strictly self-similar sets. Nevertheless, there

are other definitions of dimension that are much more widely applicable. For example the

Hausdorff dimension and the box-counting dimensions may be defined for any sets, and, in

the example as Cantor set (see Fig. 2.1), von Kock curve (fitting together three suitably

rotated copies of the Koch curve produces a figure, which for obvious reason is called the

snowflake curve or the Koch island), as in the last stage of Fig. 1.1, Sierpinski Gasket (see
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Fig. 1.2) and Sierpinski Carpet (see Fig. 2.2) be shown to equal the similarity dimension

[1].

Fig. 2.1: The Cantor set emerges as the middle third is removed from a segment and iterated

infinitely.

Fig. 2.2: The Sierpinski carpet is the intersection of all the sets in this sequence

In the next section we introduce only the classical fractal note as Cantor set.

2.3.1 The Cantor set

Georg Cantor, a mathematician from the late 19th to early 20th centuries, introduced us to

a contrived fractal which has come to be known as Cantor Set (Fig. 2.1), or, for reasons

which will become obvious, Cantor Dust. The set has some interesting properties which

have led to further research and discovery in fractals and chaos theory. The so called Cantor

set is a famous construction in mathematics, much older than the relatively recent interest
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in Chaos and Fractal Geometry. It is the simplest example of a fractal. A Cantor set is

best characterized by describing its generation. In this section we will see in detail the first

of example 2.3.1. The general approach for constructing the set is by starting with a line

segment, and then removing the middle third of the segment. This leaves two sub-segments

each with length one-third of the original one. The geometric construction is iterated by

removing the middle thirds of these, and so on, ad infinitum. At every stage of the process,

the result is self-similar to the previous stage, i.e., identical upon rescaling. This triplet set

is not the only possible Cantor set: any arbitrary cascaded removal of portions of the line

segment may form the repetitive structure.

Formally, the Cantor set has the following definition:

Definition 2.3.6: To define the Cantor set in ℜ, we first define the following sequence of

subset of ℜ, C0, C1, ...,that satisfy the following conditions:

1. C0 = [0, 1];

2. Each Cn is the union of 2n closed intervals and C0 ⊃ C1 ⊃ ... ⊃ Cn ⊃ Cn+1...

3. Cn is constructed by removing the open middle third of each interval in Cn−1, i.e.,

replacing each [a, b] in Cn−1 by two closed intervals L[a, b] = [a, a + 1
3
(b− a)] and

R[a, b] = [a + 2
3
(b − a), b];

4. Then we let C =
∞⋂
n

Cn be the Cantor set.

The object that remains when this geometric construction has been iterated into trans-

finite is the Cantor Set.

The middle thirds Cantor set or Cantor Dust. Since the Cantor set is totally disconnected,

it has topological dimension equal to 0.

The construction of the Cantor dust is as follows: starting with the unit interval [0, 1],

use r = 1
3

to scale the interval into 3 equal pieces. Now remove the open interval in the

middle, that is (1
3
, 2

3
). We continue repeating this process for each remaining segment, i.

e., scale each remaining line segment by r = 1
3
, and remove the open middle third of the

segment. Notice that since we are removing the middle third, we partition this segment into

N = 2 equal sub-units.

We can calculate the fractal dimension of the Cantor Dust by plugging N = 2 and r = 1
3

into formula (2.3.5). We obtain
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Ds =
log(2)

log(3)
≈ 0.63092975... (2.3.6)

Also, if we plug in N = 2, r = 1
3
, and D = log(2)

log(3)
into NrD then we will indeed obtain 1

for an answer. Thus, the Cantor dust has as its dimension Ds ≈ 0.63092975. So, the Cantor

set possesses non-integer dimension, which fulfills one condition for being a fractal. Since,

in the Cantor set, the self-similar dimension is identical to Hausdorff dimension. In general,

we can call (2.3.6) fractal dimension of the Cantor set.

We can examine its self-similarity. Notice if we ”zoom in” or focus on half of the first

iteration, it looks similar to the original set [0, 1] that is, a straight line of one dimension.

Now if we ”zoom in” on the second iteration, focusing on half of one half of the first iteration,

again we see a straight line, resembling the original set. if we only focus on one half of the

entire second iteration, then we see an object similar to that of the first iteration. We can

generalize this process like this: if we focus on half ( 1
21 ) of the nth iteration, we will see an

object similar to Cn−1. If we focus in on one fourth ( 1
22 ) of the nth iteration, then we will see

an object similar to Cn−2, and so on.

We list some of the features of the middle third Cantor set C; as we shall see, similar

features are found in many fractals.

(1) C is self-similar. It is clear that the part of C in the interval [0, 1/3] and the part of C

in [2/3, 1] are geometrically similar to C, scaled by a factor 1/3. Again, the parts of C

in each of the four intervals of C2 are similar to C but scaled by a factor 1/9, and so

on. The Cantor set contains copies of itself at many different scales.

(2) The set C has a fine structure; that is, it contains detail at arbitrarily small scales. The

more we enlarge the picture of the Cantor set, the more gaps become apparent to the

eye.

(3) Although C has an intricate detailed structure, the actual definition of C is very straight-

forward.

(4) C is obtained by a recursive procedure. The construction consisted of repeatedly remov-

ing the middle thirds of intervals. Successive steps give increasingly good approxima-

tions Cn to the set C.
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(5) The geometry of C is not easily described in classical terms: it is not the locus of the

points that satisfy some simple geometric condition, nor is it the set of solutions of any

simple equation.

(6) It is awkward to describe the local geometry of C. Near each of its points are a large

number of other points, separated by gaps of varying lengths.

(7) Although C is in some ways quite a large set (it is uncountably infinite), its size is not

quantified by the usual measures such as length by any reasonable definition C has

length zero.

2.3.2 More on Scaling

A different point of view is often useful in discussing scale invariance. If we consider the

Koch curve (see Fig. 1.1) to be the graph of a function f(t).

The graph is the set of points (x1, x2) in the plane given by relation it is clear that the

triadic Koch curve has the property

f(λt) = λαf(t)

with scaling exponent α = 1. Note that for the Koch curve we have that f(t) is not

single-valued, but the scaling relation above still holds for any point in the set. The same

type of construction may be used on functions defined over all real positive numbers. For

example, the power law function f(t) = btα, satisfies the homogeneity relation

f(λt) = λαf(t) (2.3.7)

for all positive values of the scale factor λ. Functions that satisfy this relation are said

to be scaling.

The power-law function and many other functions that exhibit scaling are not frac-

tal curves. However, scaling fractals have nice scaling symmetry, and most of the fractals

discussed by Mandelbrot are scaling in some sense.
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2.4 Introduction to Multifractals

The concepts underlying the recent development of what are now called multifractals were

originally introduced by Mandelbrot [30], [31] in the discussion of turbulence and expanded

by Mandelbrot to many other contexts as in physical and mathematical [3]. The application

to turbulence was further developed by Fisch and Parisi (1985) and Benzi et al. (1984) (for

details of the authors see [25]). Much of recent interest started out with many works of

general setting, for details see [32], [33]. Indeed, Multifractals are applied in many contexts

such as DLA patterns investigation, earth quake distribution analysis, signal processing and

internet data traffic modelling. The goal of this section is to sketch the theory of self similar

measures which are usually called multifractals.

Let be µ a mass distribution over a region in such a way that the concentration of mass

varies widely. If often happens that the sets where the mass concentration has a given

density, say where µ(Br(x)) ⋍ rα for small r, display fractal-like features, with different sets

corresponding to different α. A mass distribution or measure µ with this sort of property

is called a multifractal measure. In detail, we can say that the Multifractal measures are

related to the study of a distribution of physical or other quantities on a geometric support.

The support may be an ordinary plane, the surface of a sphere or a volume, or it could itself

be a fractal. The idea that a fractal measure may be represented in terms of intertwined

fractals subsets having different scaling exponents opens a new realm for the applications of

fractal geometry to physical systems.

As with fractals, an exact definition of multifractal measures tends to be avoided. There-

fore, an important class of multifractal occurs in connection with attractors in dynamical

systems [1].

In general, the Multifractal analysis is concerned with describing the local singular

behavior of measures or functions in a geometrical and statistical fashion. Much of recent

interest started out with many works, for details see [32], [33]. The Multifractals are in-

troduced in order to give a new approach to dealing with data or with geometrical and/ or

probabilistic objects and a new set of models for such is at hand.

At the beginning stands the discovery that on fractals local scaling behavior as measured

by exponents is not uniform in general. In other words, the exponents are typically not

constant in one variable but assume a whole range of values, thus imprinting a rich structure
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on the object of interest. This structure can be characterized either in geometrical terms

making use of the concept of dimension, or in statistical terms based on sample moments.

A tight connection between these two descriptions emerges from the multifractal formalism.

As we will see, as far as the validity of the multifractal formalism is concerned there is no

restriction in choosing a singularity exponent which seems fit for describing scaling behavior

of interest, as long as one is consistent in using the same exponents for both, the geometrical

and statistical description.

2.4.1 Simple Examples of Multifractals

There are many examples of multifractal but in this section we give an easy construction of

one of this.

Consider a geographical map of a continent or island [34]. An example of a measure µ

on such a map is ”the quantity of ground water”. To each subset S of the map the measure

attributes a quantity µ(S), which is the amount of ground water below S, down to some

prescribed level. Now divide the map into two equally sized pieces S1 and S2. It will not

come as a surprise if their respective ground water contents µ(S1) and µ(S2) are unequal.

If S1 is subdivided further into two equally sized pieces S11 and S12, their ground water

contents would again different. This subdivision could be extended until the pieces are the

size of pores in rocks where some pores are found filled with water and others are found

empty. This is a familiar story some countries have more ground water than others parts

of a country contain more ground water than others you may drill a well and find flowing

water, while your neighbor finds none and so on. Many other quantities exhibit the same

behavior, that is, the quantity

µ = the amount of ground water below S

is an example of a measure which is irregular at all scales.

When the irregularity is the same at all scales, or at least statistically the same, one

says that the measure is self-similar or that it is a multifractal. A Sierpinski gasket is a self

similar set, in the sense that each small piece is identical to the whole after some rescaling

and translation; something similar holds for multifractal measures.
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The Binomial measure and singular behavior

The techniques of multifractal analysis are best illustrated with the binomial measure on the

unit interval also called the Bernoulli or Besicovitch measures. The binomial measure is a

probability measure µ which is defined conveniently via a recursive construction.

Let us consider a uniformly distributed unit of mass on the unit interval I = [0, 1]. Start

by splitting I = [0, 1] into two sub-intervals I0 and I1 of equal length and assign the masses

m0 uniformly on the left half I0 = [0, 1/2] of the unit interval and m1 = 1 − m0 uniformly

on the right half I1 = [1/2, 1].

At this stage, the left half carries the measure µ(I0) = m0 and the right half carriers

the measure µ(I1) = m1. In this process, because µ(I) = µ(I0) + µ(I1) = m0 + m1 = 1, the

original measure of the unit intervals is conserved; the µ’s appear like probabilities, and one

says that µ is a probability measure.

With the two sub-intervals one proceeds in the same manner and so forth (it is obvious

that the condition m0+m1 = 1 continues to insure that the original unit of mass is conserved).

Indeed, at the stage two, the sub-intervals I00, I01, I10 and I11 have masses m0m0, m0m1,

m1m0 and m1m1 respectively. In other words, the intervals receive the same treatment as

the original unit interval.

At stage nth , the total mass 1 is distributed among the 2n dyadic intervals of order

n such that Iǫ1, ..., Iǫn has mass mǫ1 , ...,mǫn
. This defines a sequence of measures µn, all

piecewise uniform. Since µk(Iǫ1 , ..., Iǫn
) = µn(Iǫ1 , ..., Iǫn

) for all k ≥ n we may define the

limit measure µ by µ(Iǫ1 , ..., Iǫn
) = mǫ1, ...,mǫn, in other words, µn converges weakly towards

µ. By construction, the restrictions of µ to the intervals I0 and I1 have the same structure

as µ itself. Indeed, they are reduced copies of µ where the reductions in space and mass are

by 1/2 and mi respectively.

Hence, µ is self-similar in a very strict way for all intervals [a, b]

µ[a, b] = m0µ([2a, 2b]) + m1µ([2a − 1, 2b − 1]).

Another way of defining µ is the following. Let x = .σ1σ2...σn be the dyadic representation

(or x have the binary expansion) of a point in [0, 1] :

x = σ12
−1 + σ22

−2 + ... + σn2−1 with σi ∈ [0, 1].
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Here we don’ t have to care about points with multiple expansion since our results

concern almost all points x. Imagine that the digits n are picked randomly such that P [

σn = i] = mi independently of n. With dyadic point it is possible to give an other definition

of µ; in this way µ is the law or probability distribution of the corresponding point x on

[0, 1].

In conclusion, this measure µ has no density, unless m0 = m1 = 1/2. More precisely,

M(x) = µ([0, x]) has zero derivative almost everywhere. Nevertheless any coarse graining of

µ, e. g. through dyadic intervals Iǫ1 , ..., Iǫn
as above will naturally result in a distribution with

density It is therefore essential to understand the limit behavior of such an approximation.

The absence of a density for µ is responsible for its erratic, or ”fractal” appearance. It

is the aim of multifractal analysis to characterize this erratic behavior. The multiplicative

construction of µ plays a crucial role in the multifractal analysis.

The construction of the binomial measure is important in order to introduce the cascade.

The innovation of the multifractal analysis is found in the multiplicative iterative schemes

that are essentially different from the additive ones. Indeed, if we consider a single process

fragments a set into smaller and smaller components according to a fixed rule, and at the

same time fragments the measure of the components by another rule. Such a process is

called multiplicative process or cascade. Hence, multiplicative processes are a very important

paradigm in the theory of multifractals.

We recall the multiplicative construction of µ; in this way it is clear that the mass of

a sequence of intervals µ(Iǫ1 , ..., Iǫn
) will decay roughly exponentially fast as the Iǫ1 , ..., Iǫn

shrinks down to a point x, say approximately as 2−nα(x). The α(x) exponent could be

view as a generalization of the local degree of differentiability of M(x) = µ([0, x]). Indeed,

M(x′) − M(x) ⋍ |x′ − x|α is called Holder continuity of order α at x (where M(x) 6= 0 =
∫ x

0
M(x′)dt ). We can write the exponent as

αn(x) =
log µ(Iǫ1 , ..., Iǫn

)

log |Iǫ1 , ..., Iǫn
| = − 1

n
log2 µ(Iǫ1 , ..., Iǫn

), and α(x) = lim
n−→∞

αn(x)

whenever this limit exists.
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In general, α(x) exist for many points x and that it takes quite different values depending

on the dyatic expansion x =
∑
k

ǫk2
−k. Let ln(x) be the number of ones among the first n

binary digit of x. In this way we can find µ(Iǫ1 , ..., Iǫn
) = m

n−ln(x)
0 m

ln(x)
1 and the exponent

assuming this form:

α(x) = − lim
n−→∞

n − ln(x)

n
log2 m0 +

ln(x)

n
log2 m1

We conclude that the exponent α(x) can take all values between log2 m0 and log2 m1 and

some of these values will be assumed more likely than others. In particular, the points x

where α(x) assumes a given value α will typically form highly interwoven fractal sets, whence

the term multifractal. Therefore, the term fractal is not so much referring to this fractured

appearance as rather to the fact that aforementioned sets have a dimension which is not

integer. For more details see [33].

2.4.2 Characterization of Multifractals: Multifractal spectra and formalism

Given a compact K in Euclidean space ℜd, such as the attractor of the dynamical systems,

the notion of Hausdorff dimension [1] has been used successfully to characterize K [35].

But one single number such as the dimension is usually too crude and can only describe a

global aspect of the geometry of K. More subtle structures may be detected when considering

an appropriate measure with support K. Moreover, fractals sets are often insufficient in order

to model nature. In a dynamical system, e.g. many essential features such as the long time

behaviour of orbits can not be represented by a set, but rather by a measure. To give a

second example, fractal sets, may approximate porous media but not their content of some

liquid. So, measures have become of increasing interest, in particular their local properties.

A priori we consider the metric space S of dimension d and a distribution of points in S

that have a form of a Borel measure µ (with bounded support K). Hence, each point in a set

S have probability µ(S). Therefore, if this distribution is singular one cannot describe it by

means of a density and multifractal analysis proves useful in characterizing the complicated

geometrical properties of µ.

Hence, the aim is to classify the singularities of µ by strength; this, strength is measured

as a singularity exponent α(x), called Holder exponent. If the points have the equal strength

than they lie on interwoven fractal sets Kα :
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Kα = {x ∈ ℜd : α(x) = lim
B−→{x}

log µ(B)

log |B| = α}; (2.4.1)

Hence, we can think K as the union of infinitely many interwoven subsets Kα, usually

fractals, with homogeneous concentration of µ. Based on this motivation µ has been termed

multifractal with the multifractal decomposition Kα.

In (2.4.1) B is a ball that containing x and that its diameter |B| −→ 0.

To be more precise let B(x, δ) denote the closed ball of radius δ centered in x. The

quantities

dµ(x) = lim sup
δ−→0

log µ(B(x, δ))

log δ
, dµ = lim inf

δ−→0

log µ(B(x, δ))

log δ

are called upper (lower) pointwise dimension at x. When they coincide, the common value

is denoted by dµ(x). In multifractal theory, one is interested in the Hausdorff dimension of

sets like

Kα = {x : dµ(x) = dµ(x) = α}

The following expression give us the size of the sets Kα and in particular the characteri-

zation of the geometry of the singular distribution µ

fH(α) = dim(Kα) (2.4.2)

in detail with (2.4.2) we obtain (as in [1]) the Hausdorff dimension of the singular dis-

tribution µ.

Thereby, the Legendre transform has turned out to be a useful tool linking (2.4.2) as

a function of α, called the multifractal spectrum of µ, with the singularity exponents τ(q),

which are given by

τ(q) = lim sup
δ−→0

log sδ(q)

− log δ
with sδ(q) =

∑

µ(B) 6=0

µ(C)q (2.4.3)

In (2.4.3), the sum runs over a partition of ℜd into cubes C of size δ .
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According to the particular interests different notions of singularity exponents and dimen-

sion distributions have been developed in various fields such as measure theory, dynamical

systems and applied mathematics, i.e. with emphasis on box-counting methods.

The self-similar measures are probably the best known multifractals. The multifractal

spectrum for a large class of such measures has been calculated in [37].

Thereby, the code space is an invaluable tool. As an interesting corollary (we can find it

in subsection 3.3 of [36]) one has

dµ(x) = dµ(x) = α1 for µ almost every x (2.4.4)

where α1does not depend on x. But note, that the range of dµ(x) is a whole interval

[α∞, α−∞]. The multifractal spectrum of a broader classes of invariant measures have been

found by Falconer and al.

If we consider µ a measure supported by a bounded region of ℜd, with total mass µ(ℜd) =

1. The support of µ itself may or may not be a fractal. For each 0 < δ < 1, let Nδ the number

of cubes C of size δ with coarse Holder exponent α(C)1 roughly equal to α.

Then we consider the following object called large deviation spectrum

fG(α) = lim
ǫ−→0

lim sup
δ−→0

log Nδ(α, ε)

log 1/δ
. (2.4.5)

If we consider the footnote, we can write Nδ in this way:

1 In order to give the form of coarse Holder exponent, we consider Gδ the set of all cubes of the form

C = [l1δ, (l1 + 1)δ) × ... × [ldδ, (ld + 1)δ)

with integer l1, ..., ld and with µ(C) 6= 0.Then we set

C∗ = [(l1 − 1)δ), (l2 + 2)δ),×... × [(ld − 1)δ, (ld + 2)δ).

Hence, we define with

α(C) =
log µ(C∗)

log δ

the coarse Holder exponent.

In order to understand the use of C∗ instead of C you can see [36].
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Nδ(α, ε) = number{C ∈ Gδ : α(C) ∈ (α − ε, α + ε]}.

In particular we remember that fG is not the box dimension 2 of Kα but it is a function

explained in statistical terms. Indeed, the number Nδ of cubes in Gδ behaves roughly as

Nδ ⋍ δ−D0 where D0 denotes the box dimension of the support of µ. It follows that fG ≤ D0

for all α. If we suppose that one picks a cube C out of Gδ randomly and its coarse Holder

exponent is given by α(C) = log µ(C∗)/ log δ.Then the probability of finding α(C) ⋍ α

behaves roughly like

Nδ(α, ε)/Nδ = Pα[α(C) ⋍ α] ⋍ δD0−fG(α) (2.4.6)

This is the statistical interpretation of fG. In the limit δ −→ 0 the only Holder exponent

which is observed with non-vanishing probability is α0, where fG(α0) = D0. For more details

see [33].

Of great interest are the ergodic invariant measures in the theory of dynamical systems.

Relations between dimension like quantities (such as generalized dimensions and Hausdorff

dimension) and characteristics of dynamical systems (such as Lyapunov exponents, entropy

and pressure) are given in many papers (as is pointed out in: [36], [40], [41], [39]). Thereby,

some authors develop own notions of singularity exponents which serve as a powerful tool,

but which only apply to the special situations under consideration. Pesin gives a survey

of different notions of generalized spectra for dimensions which apply to arbitrary Borel

measures µ.

The approach by Cutler [38] is tailored to measures theory and applies to finite Borel

measures µ, providing a dimension distribution µ̂ of a random variable α̂(x), which is related

2 The box-counting dimension is perhaps the simplest notion amongst the variety of fractal dimensions in

use; see Falconer [1]. For every non-empty bounded subset S ⊆ [0,∞), let Nε(S) be the smallest number of

intervals of length (at most) ε > 0 which can cover S. The lower and upper box-counting dimensions of S

are defined as

dimB(S) = lim
ε→0+

inf
log Nε(S)

log 1/ε
dimB(S) = lim

ε→0+
sup

log Nε(S)

log 1/ε

respectively. When this two quantities are equal, their common value is referred to as the box-dimension

(or also the Minkowski dimension) of S.
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to dµ(x) through µ̂([0, α]) = µ(Cα). In (2.4.4), µ̂ reduces to the Dirac measure concentrated

in α1.

Finally, Falconer developed a multifractal formalism [1] which is based on box-counting

methods [42]. The advantage of such an approach is its relevance in numerical simulations.

Unfortunately, (2.4.3) turns out to be unsatisfactory for reasons of convergence as well as

for an undesired dependence on coordinates. The difficulties (as with the notions of Pesin)

are imperceptibly hidden in the negative q domain.

The multifractal formalism is not aim of this section but we will show some important

result about it in the following.

In order to give some information about multifractal formalism, we will show an impor-

tant tool in multifractal theory that is the Legendre transform.

First, we give the follows Ellis’ theorem [46].

Theorem 2.4.1: Assume that the moment generating function

c(q) = lim
n−→∞

−1

n
log2 E[exp(q log µ(C∗

n(x)))]

exists and is convex and differentiable for all q ∈ ℜ. Then,

lim
ε→0

lim
n→∞

1

n log 2
Pn[| − 1

n
log2 µ(C∗

n(x)) − α| ≤ ε] = c∗(α)

where c∗(α) = infq(qα − c(q)) is the Legendre transform of c.

So, it is natural to introduce the partition function τ(q) in (2.4.3); indeed,

τ(q) = lim
δ−→0

log Sδ(q)

log δ
with Sδ(q) =

∑

C∈Gδ

µ(C∗)q.

We can find the definition of C∗ in footnote (1) of this Chapter.

As a matter of fact, τ(q) stands at the beginning of multifractal analysis and has since

played a central role.

We can note that in (2.4.3) sδ(0) simply counts the number of cubes with non-vanishing

measure. Thus, −τ(0) is actually the box-dimension of the support of µ, i.e..
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D0 = −τ(0)3

It follows then the definitions that c(q) = τ(q)− τ(0) = τ(q)+D0. If we assume the Ellis’

theorem (2.4.1), i.e assuming that τ(q) exists and is differentiable, it follows that (2.4.6)

holds with c∗ = fG(α) − D0, i.e.

fG(α) = τ ∗(α). (2.4.7)

This has been termed the multifractal formalism. The similarity to the well-known

thermo-dynamical formalism ([33] and [45]) is immediate.

We note that τ(q) is obtained by averaging, it depends more regularly on the data than

fG(α) is easier to compute; in particular, it contains in general less information than fG(α).

Indeed, the partition function τ(q) is always convex since sδ(q) is convex for all δ.In general,

it is not necessarily differentiable in every q and the multifractal formalism may not hold for

all α.At this point, i is natural to introduce the Legendre spectrum

fL(α) = τ ∗(α). (2.4.8)

This spectrum is sometimes referred to as obtained by the method of moments.

While (2.4.8) may be wrong for certain α, the opposite relation holds for all q as in shown

in [33] and [44]:

Theorem 2.4.2:

τ(q) = f ∗
G(q) = inf

α∈ℜ
(qα − fG(α)) (2.4.9)

By means of (2.4.9) it is easy to calculate the singularity exponents once the spectrum

is known. In typical applications however one will meet the converse situation: one would

like to be able to deduce the spectrum from the singularity exponents. This would be

3 Where D0 denotes the box dimension of the support of µ and represent the following :

D0 = fG(α0)

with fG(α0) large deviation spectrum.
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straightforward if differentiability and concavity of the spectrum would be known in advance.

Such properties can be established a priori only for a multifractal formalism.

As consequences of (2.4.9), we have :

1. D0 is indeed the maximal value of fG in general;

2. fL = τ ∗ = f ∗∗
G is the concave hull of fG =⇒ fG(α) ≤ fL(α).

3. it follows than even a not everywhere differentiable τ(q) determines fG(α) at least in

its concave points.

An alternative way of displaying the scaling of moments is through the so-called gen-

eralized dimensions Dq = τ(q)/(q − 1).They are interesting of their own: in the case of

dynamical system they are directly observable from the longtime behaviour of orbits. More-

over, they depend more regularly on the data µ(C) and are easier to handle analytically and

numerically.

We conclude the section by noting that in all generality we have

fH(α) ≤ fG(α) ≤ fL(α) (2.4.10)

if the equality (2.4.10) holds for a particular measure µ then the multifractal formalism

is said to hold for µ.

For more details see [33] and [43].

2.5 Cantorian Space-time E infinity (ε(∞)): some fundamental concepts

In what follows we would like to give a short account of the so-called E Infinity theory starting

from El Naschie in 1995 [53], [54], [55]; this ε(∞) is a physical space-time, i.e. an infinite

dimensional fractal space, where time is specialized and the transfinite nature manifests

itself. El Naschie’s Cantorian space-time is an arena where the physics laws appear at each

scale in a self-similar way linked to the resolution of the act of observation.
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The idea of using fractals to model the space goes back to some pioneering works by

Feynmann, Zeldovich, Ord, Nottale, Svozil as well as Mohamed El Naschie [56], [57], [58],

[59], [60], [61].

In the last 10 years, following El Naschie’s vision of E Infinity, an International Commu-

nity has studied various physical phenomena in the context of Cantorian space-time. Among

these, Sidharth considered many aspects of E Infinity [62].

The main conceptual idea of Mahamed El Naschie [63] is a sweeping generalization of

what Einstein did in his general theory of relativity, namely introducing a new geometry for

space-time which differs considerably from the space-time of our sensual experience. This

space-time is taken for granted to be Euclidean. By contrast, general relativity persuaded

us that the Euclidean 3 + 1 dimensional space-time is only an approximation and that the

true geometry of the Universe in the large, is in reality a four dimensional curved manifold.

In ε(∞) El Naschie takes a similar step and allege that space-time at quantum scales is far

from being the smooth, flat and passive space which we use in classical physics [64],[65],

[66]. On extremely small scales, at very high observational resolution equivalent to a very

high energy, space-time resembles a stormy ocean [64]. The picture of a stormy ocean

is very suggestive and may come truly close to what we think the high energy regime of

the quantum world probably looks like (see Figg. 2.3-2.7). However such a picture is not

accessible to mathematical formulation, let alone an exacting solution. The crucial step

in ε(∞) formulation was to identify the stormy ocean with vacuum fluctuation and in turn

to model this fluctuation using the mathematical tools of non-linear dynamics, complexity

theory and chaos [64], [67], [68]. In particular the geometry of chaotic dynamics, namely

fractal geometry is reduced to its quintessence, i.e. Cantor sets and employed directly in

the geometrical description of the fluctuation of the vacuum. How this is done and how to

proceed from there to calculating for instance the mass spectrum of high energy elementary

particle is what the author explains in his papers [63].

As is well known, special relativity fused time and space together, then came general

relativity and introduced a curvature to space-time. Subsequently Kaluza and later on Klein

added one more dimension to the classical four in order to unify general relativity and

electromagnetism. From this time on, the dimensionality of space-time played a paramount

role in the theoretical physics of unification leading to the introduction of the 26 dimensions

of string theory, the 10 dimensions of super string theory and finally the Heterotic string
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Fig. 2.3: Tiling the plane using Klein’s modular curve in the Beltrami-Poincaré representation. E

infinity theory alleges that the quantum gravity of space-time is a hyperbolic fractal on a

Klein modular group akin to what in shown in the figure. The relevance to high energy

physics is more direct than one may suspect.

theory dimensional hierarchy 4, 6, 10, 16 and 26 [69]. This is all apart from the so-called

abstract or internal dimensions of various symmetry groups used.

By contrast, in ε(∞) theory the author admits formally infinite dimensional ”real” space-

time. However, this infinity is hierarchical in a strict mathematical way and he shows that

although ε(∞) has formally infinitely many dimensions, seen from a distance, i.e. at low

resolution or equivalently at low energy, it mimics the appearance of a four dimensional

space-time manifold which has only four dimensions. Thus the four dimensionality is a

probabilistic statement, a so-called expectation value.

It is remarkable that the Hausdorff dimension of this topologically four dimensional like

”pre” manifold is also a finite value equal to 4+φ3, where φ = (
√

5−1)/2 with the remarkable

self-similar continued fracture representation (which is in a sense self-similar) :

4 + φ3 = 4 +
1

4 + 1
4+ 1

4+...

(2.5.1)

There are various ways for deriving the result (2.5.1) which was given in detail in nu-

merous El Naschie’s publications. However, maybe the simplest and most direct way is to
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Fig. 2.4: A depiction of T. Right’s cosmos as a form of sphere packing on all scales.

proceed from the mathematical definition of ε(∞).

2.5.1 Definition of the E-Infinity space and some fundamental concepts

If we focus our attention on hierarchy and self-similarity rather than on mathematical trans-

finiteness, then one may be surprised to see an unsuspected long history of ideas which bear

a striking resemblance to the geometrical concept of E infinity.

Definition 2.5.1: E Infinity refers to the limit set of a pre-geometry model of the transfinite

extension of a projective Borel hierarchy. [70]

From the definition of the above and in particular the definition of Borel sets and projec-

tive hierarchy [70], it follows that if the sets involved in the Borel set are taken themselves

to be transfinite Cantor sets (Fig. 2.7), then the Hausdorff dimension of E Infinity could be

written as

〈DimE −∞〉H =
∞∑

0

n(d(0)
c )n (2.5.2)
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Fig. 2.5: A fractal-like universe, with clusters of clusters ad infinitum as envisaged by the Swedish

astronomer C. Charlier who lived between 1862 and 1934.

where d
(0)
c is the Hausdorff dimension of the involved transfinite sets where the superscript

refers to the Menger- Urysohn dimension of the one dimensional Cantor set, namely 1−1 = 0

(for more details see [64], [65], [67], [68]). Suspending the classical triadic Cantor set in n-

dimensional space through amplification with a certain geometrical probability quotient, it

was shown that this leads to the following Hausdorff capacity dimensions, d
(n)
c :

d
(0)
c = log 2/ log 3; d

(5)
c = 6.31067;

d
(1)
c = 1; d

(6)
c = 10.00218;

d
(2)
c = log 3/ log 2 = 1.58496; d

(7)
c = 15.85309;

d
(3)
c = 2.51210; d

(8)
c = 25.12655;

d
(4)
c = 3.98159;

where n = d
(n)
M is the Menger-Urysohn dimension for n ≥ 0 (for more details see [59]).

These results were recently reinforced using statistical mechanics in conjunction with a cel-

lular space setting for which the following Gibbs-Shanon entropies S
(n)
S were found:

S
(2)
S = 0.69314; S

(6)
S = 10.3837;

S
(3)
S = 1.7351; S

(7)
S = 16.0277;

S
(4)
S = 3.68148; S

(8)
S = 25.101 ∼= d

(8)
c

S
(5)
S = 6.1202;
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Fig. 2.6: An artistic impression of E- Infinity space-time published by El Naschie. The figure

represents a form of space made up of turbulent disorderly packed 3D spheres. E infinity

space is similar only it has infinitely more dimensions.

There are several interesting points here which may be relevant to the remarks of Hawking

and Feyman. First for n < 4 we have d
(n)
c < d

(n)
M = n while for n > 4 we have d

(n)
c >> d

(n)
M .

The jump takes place exactly at n = 4 also for S
(n)
S . It is only when n = 4 that we have

quasi ergodic behaviour for which d
(n)
c

∼= d
(n)
M = n = 4. Putting it in stability terms we may

say that for n < 4 our ”world” set is stable but could not account for physical reality as we

know it while for n > 4 the set is totally unstable, in fact, chaotic [59].

Now there is a well known theorem due to Mauldin and Williams which states that with

a probability equal to one, a one dimensional randomly constructed Cantor set will have the

Hausdorff dimension equal to (
√

5 − 1)/2 = 0.618033, i.e. the golden mean φ [64], [65].

Setting d
(0)
c = φ one finds

〈DimE −∞〉H = (0)(φ)0 + (1)(φ)1 + (2)(φ)2 + (3)(φ)3 + ...

= 4 + φ3

= (1/φ)3

= 4.236067977...
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Fig. 2.7: An alternative two dimensional construction of a topological equivalent to the Cantor set

using pairs of circles. The E infinity limit set is very similar but has infinitely many

dimensions and not only two like her.

as anticipated. It is now instructive to contemplate the following. The intersection rule

of sets shows that we can lift d
(0)
c to any dimension n as follows

d(n)
c = (1/d(0)

c )n−1

If we consider d
(0)
c = φ and n = 4, one finds

d(4)
c = (1/d(0)

c )3 = 4 + φ3 = (1/φ)3 = 4.236067977...

In other words, we can write (2.5.2) as

〈DimE −∞〉H = d(4)
c = 4 + φ3 (2.5.3)

The (2.5.3) shows that the expectation value of the Hausdorff dimension of E Infinity is

4+φ3 but its intrinsic embedding ”expectation” dimension is exactly 4 and that although the

formal dimension is infinity. Indeed, the expression
∑∞

0 n(d
(0)
c )n in (2.5.2) may be regarded

as the sum of the weighed n = 1, n = 2, n = 3, ... dimensions where the weights are the

golden mean and its power. That is why E Infinity is hierarchical. Note that intrinsic
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embedding is just another name for the Menger- Urysohn dimension and that our intuitive

embedding dimension for d
(0)
c is not zero, but one. The same is for d

(4)
c it is 5 and not 4.

Now if we look closely at d
(2)
c = 1.58496 we clearly recognize it as the Hausdorff dimension

of a Serpinski triangular space with its well-known infinite hierarchy of semi-loops. It is thus

not particularly difficult to imagine how these loops evolve with increasing n to become for

n = 4 almost identical to a space filling Peano like curve.

Remark 2.5.1: It then turns out that the limit set of any Kleinian like group is a set which

is best described in terms of chaotic Cantor sets and E Infinity. This fact is clear from the

work of Mumford et al. [68]. In particular, it was clear in many works the following result:

〈DimE −∞〉H = 4 + φ3 = 〈dc〉 =∼ 〈n〉

is just twice the isomorphic length of the so called Penrose- hyperbolic fractal tiling

l ≤ 1

2
(4 + φ3)(ρ)

where ρ is the radius of the circular region considered.

Indeed, if one projects the space-time of vacuum fluctuation on a Poincare circle we will

see a hyperbolic tesselation of this circle with predominantly Klein curve like geometry which

ramifies at the circular boundary exactly as in many of the famous pictures of the artist M.

Escher. Fore more details see [59].

It is important to look closely at the continuous fraction representation of ∼ 〈n〉 and

〈dc〉:

∼ 〈n〉 = 〈dc〉 = 4 +
1

4 + 1
4+ 1

4+...

2.5.2 Cantorian space and E-Infinity Cantorian space

In descriptive set theory and the theory of polish spaces it is shown that [71],

Definition 2.5.2: When a space AN is viewed as the product of infinitely many copies of A

with discrete topology and is completely metrizable and if A is countable, then the space is

said to be polish.
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In particular, when A = {0, 1}, |A| = 2, then we call C = 2N Cantor space. For

A−1 defined in an interval A−1 ⊂]0, 1[ then CF = AN is called a fuzzy Cantor space. If

|A−1| = (
√

5 − 1)/2 and N = n − 1, where −∞ ≤ n ≤ ∞, then CF = ε(n) is the E-Infinity

Cantorian space. Mohamed El Naschie showed the relationship between the Cantor space

C and ε(∞) in [72] (for details see [52]). As he reports: ”the relationship comes from the

cardinality problem of a Borel set in polish spaces; thus we call a subset of a topological

space a Cantor set if it is homeomorphic to the Cantor space”.

Preliminaries

Let Ω be a nonempty open set in Rm ([104]). We denote by D(Ω) the set of C∞(Ω) functions

with compact support in Ω, D(Ω) := C∞
c (Ω).

Definition 2.5.3: A distribution is a linear mapping T 7→< T,ϕ > from D(Ω) to R, which

is (sequentially) continuous, i.e. if ϕn → ϕ in D(Ω), then < T,ϕn >→< T,ϕ >. The set of

all distributions is called D′(Ω).

Each L1(Ω) function, say f ∈ L1(Ω) can be regarded as a distribution setting

< f, ϕ >=

∫

Ω

ϕ(x)f(x)dx.

But D′(Ω) is much larger, for instance one may consider the Dirac mass centered at 0, with

0 ∈ Ω, δ0 defining

< δ0, ϕ >:=

∫

Ω

ϕ(x)δ0 = ϕ(0).

Definition 2.5.4: A sequence {Tn} in D′(Ω) converges to T ∈ D′(Ω) if

< Tn, ϕ >→< T,ϕ >, for every ϕ ∈ D(Ω).

Definition 2.5.5: Let Ω be an open set in Rm. Let T ∈ D′(Ω). Then the derivative of T

with respect to xj is defined as

〈
∂T

∂xj

, ϕ

〉
= −

〈
T,

∂ϕ

∂xj

〉

for every ϕ ∈ D(Ω).
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If T ∈ D′(Ω), the support of T is the smallest closed set K outside which T vanishes, in

the sense that ϕ = 0 outside K, i.e. < T,ϕ >= 0.

We also recall that the derivative operator, defined above is (sequentially) continuous, in

the sense that if a sequence of distributions {Tn} converges to T in D′(Ω), then the sequence

{DTn} still converges to DT .

Assume that S, T ∈ D′(Rm), either S or T has compact support, then the convolution of

S and T is defined by

〈S ∗ T, ϕ〉 = 〈S(x)T (y), ϕ(x + y)〉 (2.5.4)

and convolution is easily seen to be a commutative operation.

Theorem 2.5.1: Let S be in D′(Rm). Assume that Tn → T in D′(Rm) and one of the

following holds:

i) The supports of all the Tn are contained in a common compact set;

ii) S has compact support;

iii) m = 1 and the supports of the Tn and of S are bounded on the same side, independently

of n.

Then Tn ∗ S → T ∗ S in D′(Rm).

For further details about the Theory of Distributions we refer to [73].

In the remainder of this section we recall well known facts of measure theory for reader’s

convenience. This section is very much inspired by [74].

Let X be a non empty set and M a σ-algebra in X (closed to ∅, X complementation and

countable union).

Definition 2.5.6: Let (X,M) be a measure space and µ : M → [0,∞]. We say that µ is

a positive measure if µ(∅) = 0 and µ is σ-additive, i.e., for any sequence {Eh} of pairwise

disjoint elements of M,

µ

( ∞⋃

h=0

Eh

)
=

∞∑

h=0

µ(Eh).

A positive measure µ such that µ(X) = 1 is called a probability measure.



2. Fractals dimensions, Multifractals and Cantorian space 60

Definition 2.5.7: Let X be a locally compact and separable metric space, B(X) its Borel

σ-algebra (σ-algebra generated by open sets), and consider the measure space (X,B(X)).

Definition 2.5.8: A positive measure on (X,B(X)) is called a Borel measure. If a Borel

measure is finite on compact sets, it is called a positive Radon measure.

By [Mloc(X)]m it is usually denoted the space of the Rm-valued Radon measures on X.

Definition 2.5.9: Let µ ∈ [Mloc(X)]m and let {µh}h ⊂ [Mloc(X)]m; the sequence {µh}h

locally weakly ∗ converges to µ if

lim
h→+∞

∫

X

udµh =

∫

X

udµ

for every u ∈ Cc(X); if µ and µh are finite, we say that {µh}h weakly ∗ converges to µ if

lim
h→+∞

∫

X

udµh =

∫

X

udµ

for every u ∈ C0(X), where we recall that C0(X) is the space of continuous functions with

compact support in X and C0(X) its completion with respect to the sup norm.

It can be useful to recall that weak ∗ convergence of a sequence {µh}h of finite Radon mea-

sures is equivalent to the local weak ∗ convergence together with the condition suph |µh|(X) <

+∞.

Next we recall a very useful compactness criterion.

Theorem 2.5.2: If {µh}h is a sequence of finite Radon measures on the locally compact

and separable metric space X with sup{|µh|(X) : h ∈ N} < +∞, then it has a weakly ∗
converging subsequence. Moreover the map µ 7→ |µ|(X) is lower semicontinuous with respect

to the weak ∗ convergence.

Remark 2.5.2: It is useful for our aims to recall that if X coincides with a non empty open

set Ω in Rm, then any Radon measure in M(Ω) is a distribution, (< µ,ϕ >=
∫

X
ϕdµ) for

every ϕ ∈ D(Ω).
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Definition 2.5.10: Let (X, E) and (Y,F) be measure spaces, and let φ : X → Y be such

that φ−1(F ) ∈ E whenever F ∈ F . For any positive measure µ on (X, E) we define a measure

φ♯µ(F ) in (Y,F) by

φ♯µ(F ) := µ(φ−1(F )) for every F ∈ F .

Given any Radon measure ν on the measure space (X, E), and any subset G in E , with

the symbol ν⌊F , we mean the measure ν acting on G ∩ E, for any E ∈ E .

Hausdorff measure and dimension

The notions of Hausdorff measure and dimension will be needed in the sequel.

Consider the metric space (Rm, d), where d is the metric induced from the Euclidean

norm. Let A ⊂ Rm be bounded. By A we denote the set of sequences of subsets {Ai ⊂ A},
such that A = ∪∞

i Ai.

Let 0 < ε < +∞, and 0 ≤ s < +∞. We define

Hs
ε(A) = inf

{ ∞∑

i=1

(diamAi)
s : {Ai} ∈ A, diamAi < ε for every i ∈ N

}

Clearly Hs
ε(A) increases as ε → 0, hence

Hs(A) = lim
ε→0

Hs
ε(A) (2.5.5)

is well posed.

The next Theorem is proven in [75].

Theorem 2.5.3: Let m be a positive integer. Let A be a bounded subset of (Rm, d). Then

there exists a unique real number dimH ∈ [0,m] such that

Hs(A) =





∞ if s < dimH and s ∈ [0, +∞[

0 if s > dimH and s ∈ [0, +∞[.

Convergence

Let C be the Cantor middle third set. The well known construction we adopt here, is based

on an IFS scheme (see [76] for details and [88] where an analogous construction has been

performed).
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Consider first two points {0, 1} =: K1, and two contractive similitudes s1, s2 defined as

s1 : x → 1
3
x

s2 : x → 1
3
x + 2

3

(2.5.6)

then applying these functions to {0, 1} one obtains

{
0,

1

3
,
2

3
, 1

}
=: K2,

next one evaluate s1 and s2 to the last four points and gets

{
0,

1

9
,
2

9
,
1

3
,
2

3
,
7

9
,
8

9
, 1

}
=: K3,

and so on {
0,

1

3n
, . . . , cn

i , . . . ,
3n − 1

3n
, 1

}
:= Kn. (2.5.7)

An inductive process leads from the sequence {Kn} to C, (see the Fig. 2.8). We also

Fig. 2.8: Pre Cantor set

recall that dimH(C) = log2
log3

and HdimH (C) = 1, (see [1]), where C is the closure of the union

of the Kn. Starting from the construction of C presented above we can define a sequence of

probability measures on the (locally compact and separable) metric space (R, d), where d is
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the Euclidean metric, namely

µ1 = 1
2
(δ0 + δ1)

µ2 = 1
22 (δ0 + δ 1

3
+ δ 2

3
+ δ1)

µ3 = 1
23 (δ0 + δ 1

9
+ δ 2

9
+ δ 1

3
+ δ 2

3
+ δ 7

9
+ δ 8

9
+ δ1)

.................................................

..................................................

µn = 1
2n

∑2n

i=1 δcn
i

.................................................

(2.5.8)

where cn
i is the i-th point in 2.5.7 which leads to the construction of C at level n.

By virtue of Theorem 2.5.2 the sequence {µn} admits a weakly ∗ converging subsequence

{µkn
}. From Definitions 2.5.3 and 2.5.7 it follows that the sequence {µnk

} converges also in

the sense of distributions.

In order to identify the limit probability measure µ, we consider the primitives
∫
· dµn =

fn, (we recall that if a sequence {Tn} ⊂ D′(R) converges to T in D′(R) then the sequence
∫
· Tn still converges to

∫
· T , cf. [73]) where fn : R → [0, 1] is the step function below:

fn(x) =





0 if x < 0

1
2n if 0 ≤ x < 1

3n

1
2n−1 if 1

3n ≤ x < 2
3n

....................

....................

1 − 1
2n if 1 − 1

3n ≤ x < 1

1 if x ≥ 1

(2.5.9)

The sequence {fn} converges uniformly to the Cantor-Vitali function f .

It can be easily shown that f is increasing and continuous with ’classical’ derivative

coinciding with 0 a.e. On the other hand one can prove that the distributional derivative of

f , namely Df is a probability measure µ supported on C, and it results

µ = H
log2
log3 ⌊C. (2.5.10)

Hence

f(t) = H
log2
log3 ([0, t] ∩ C) for any t ≥ 0 (2.5.11)
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Fig. 2.9: Cantor Vitali function approximant

(see [74] for details).

In Fig. 2.9 there is f4.

Consequently we can say that the sequence of distributional derivatives {Dfn}, namely

{µn} converges in the sense of distributions to the derivative of f , the probability measure

Df in 2.5.10, i.e.

Dfn = µn → Df = H
log2
log3 ⌊C in D′(R) (2.5.12)

We also emphasize that this measure is the only probability measure on C which satisfies

a scaling property as C itself does, namely

µ =
1

2
[s1♯(µ) + s2♯(µ)] (2.5.13)

As a consequence we can also say that H
log2
log3 ⌊C is the limit in the sense of Definition

2.5.10 of the whole sequence {µn}.
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Next taking any distribution (potential) Π ∈ D′(R) satisfying the assumptions of The-

orem 2.5.1, we may define, again keeping in mind the IFS scheme above, a sequence of

’potentials’ {Πn}, defined as

Πn(x) :=
1

2n

2n∑

i=1

Π(x − ci) (2.5.14)

where ci is a generic point as in 2.5.7.

Clearly we may rewrite 2.5.14 as

Πn = Π ∗ 1

2n

2n∑

i=1

δci
= π ∗ µn (2.5.15)

Again Theorem 2.5.1 and convergence 2.5.12 give us that

Πn → Π ∗ H
log2
log3 ⌊C in D′(R). (2.5.16)

This argument proves the following theorem

Theorem 2.5.4: Let {µn} be the sequence of probability measures in 2.5.8 and let Π be any

distribution in D′(R) satisfying the assumption of 2.5.1. Then 2.5.16 holds, with Πn defined

in 2.5.14.

Remark 2.5.3: We stress that if the potential Π is more regular than required by Theorem

2.5.1, the convergence in 2.5.16 can be shown to be much stronger.

Remark 2.5.4: It is worthwhile to mention that the argument above can be easily adapted to

other kinds of Fractals, more general than C. The potential Π can be, as already mentioned,

very general, thus leaving the opportunity to describe many physical problems. For instance

a Gaussian potential will work for describing a barrier or an obstacle on the support where

the motion happen. Furthermore the sequence {µn} presented in 2.5.8 can be replaced by

any other probability measures’ sequence converging to H
log2
log3 ⌊C. Our choice was aimed

just by the reason of working out a basic case. Clearly other choices are possible, even not

probability measures’ sequences, but just uniformly bounded ones, thus leading to describe

other limit measures µ still supported on the same fractals but with different weights.
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2.5.3 E-Infinity Cantorian space-time and stochastic self-similar random processes

If we consider the considerations in the previous section, we have the following scenario with

respect to stochastic self-similar processes.

Let ℜ be real space and γr ∈ ℜ+, then we define a self-similar (ss) random process for

every r > 0,

X(s)
d
= γrX(rs), with s ∈ ℜ (2.5.17)

where
d
= denotes equality as distributions.

The relation (2.5.17) is invariant under the group of positive affine transformations,

X −→ γX, s −→ rs, γr > 0. (2.5.18)

We recall that γr satisfies the properties

γr1r2 = γr1γr2 , ∀ r1, r2 > 0 with γ1 = 1 (2.5.19)

then it must have the form

γr = r−δ, with δ ∈ ℜ (2.5.20)

Thanks to (2.5.20), the relation (2.5.21) becomes

X(s)
d
= r−δX(rs), with s ∈ ℜ (2.5.21)

When a process satisfies (2.5.17) or (2.5.21), it is said to be self-similar or δ−self-similar.

A generalization of self-similar random process is obtained by replacing the deterministic

scaling factor γr = r−δ in (2.5.17) or (2.5.21) with a random variable γ̃r ∈ ℜ+
0 . This variable

is independent of the process to which such a variable is multiplied. Then equation (2.5.21)

becomes

X(s)
d
= γ̃rX(rs), with s ∈ ℜ.
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Veneziano demonstrated in [77] that γ̃r can also be written as γr = r−δ̃ with δ̃ real random

variable.

We call this kinds of processes stochastic self-similar random processes (sss) and the

previous ones (ss). This type of processes can be treated in the same theory.

In detail Gupta and Waymire showed that for 0 < r ≤ 1 the sss processes are dilations,

while for r > 1 the sss processes are contractions [78] and [79].

In [77] the author proved the following relevant theorem:

if δ̃r1

d
= δ̃r2 for some r1 6= r2 =⇒ δ̃ must be a deterministic constant δ.

For this fact, one can treat ss and sss random processes in a unique scheme. In [77] the

author gives many relevant properties and generalizations to a d-dimensional space.



3. STOCHASTIC SELF-SIMILAR PROCESSES AND RANDOM WALK

IN NATURE

During the last few years, the idea of hierarchy and Self-similarity in science first started

in cosmology before moving to the realm of quantum and particle physics. Actually, many

consequences of a stochastic self-similar and fractal Universe are studied; indeed, it was

demonstrated that the observed segregated Universe is the result of a fundamental Self-

similar law that we will show in this chapter.

In particular, it is well known the link between the universal scaling law and the Random

Walk.

Because of the extraordinary importance of Random Walk and Brownian motion, the

most important of all stochastic processes, which can be studied as Fractals, we will start

the chapter with a discussion of this processes and their fractal properties; we discuss some

aspects of the relation between random walk and Brownian motion.

Moreover, we will show some results obtained by using the context of ε(∞) Cantorian

space-time in connection with stochastic Self-similar processes in order to give a possible

explanation of the segregation of the Universe at fixed scale in terms of Brownian motion.

3.1 Preliminaries: Random Walks and Fractals

Randomness is inherent in all natural phenomena. Even the most perfect crystal has many

impurities and other placed at random. Therefore the actual state of even the most perfect

system has elements of randomness. There is good evidence that many natural phenomena

are best described as fractals. However, if fractals are to be useful in the description of

nature we must develop the concepts of random fractals (for more details see [25]).

First we consider how to define the Brownian motion the simplest and more interesting
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stochastic process is called Random Walk [[95], [96], [97], [98], [99]]. The simplest version is

the one-dimensions random walk, which then may be extended to higher dimensions.

The term ”random walk” was originally proposed by Karl Pearson in 1905 1 in a letter

to Nature he gave a simple model to describe a mosquito infestation in a forest. Pearson

wanted to know the distribution of the mosquitos after many steps had been taken. The

letter was answered by Lord Rayleigh, who had already solved a more general form of this

problem in 1880, in the context of sound waves in heterogeneous materials.

As its historical origins demonstrate, the concept of the random walk has incredibly broad

applicability, and today it is nearly ubiquitous in science and engineering.

We wish to find the probability density function of the sound waves after many steps

have been taken. We let PN(R)dR be the probability of traveling a distance between R and

R + dR in N steps. For steps of unit length, Rayleigh showed that as N → ∞,

PN(R) ∼
2R

N
e−R2/N (essentially the Central Limit Theorem)

(Gaussian behavior) (3.1.1)

Rayleigh had also found the solution for a random walk in 1 − D, with steps of unit

length

PN(R)dR =
1√
2πN

e−R2/2NdR (Gaussian process with σ2 ≡ N)

so, spreading about the origin ∼ σ (standard deviation) ∼
√

N .

We see that the expected distance traveled scales according to the square root of the

number of steps, 〈R2〉 ∼ N, which is typical of ”diffusion” phenomena.

Note the ”square-root scaling” of the width of the probability density function (pdf),

which grows like

R ∝

√
〈r2〉N (3.1.2)

which is characteristic of spreading by ”normal diffusion”.

1 See B. Hughes, Random Walk and Random Environments, Vol. I, Sec. 2.1 (Oxford, 1995), for excepts

and an entertaining historical discussion.
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As well known, the random walk represents the movement of a particle in the space,

identifying its position to the time n. Such a position depends on the preceding position

and on an independent random variable; formally, it is defined as the sum of a sequence

{Yi} of independent and identically distributed random variables, for which the total path

Xn =
∑n

i=1 Yi. Alternatively, the random walk process consists of a sequence of discrete

steps of fixed length.

The state space of the process Xn will be discrete or continuous corresponding to the vari-

ables Yi (discrete or continuous).

Let us consider specifically the random walk in one-dimension.

Suppose that the particle moves on the x-axis in the following hypotheses:

1. the particle occupies the position X0 = 0 to the n = 0 instant, with n ∈ N0

2. the particle occupies the following Xn position for all of the aforesaid moments:

Xn = X0 + Y1 + ... + Yn, (3.1.3)

where {Yi} is a sequence of independent and identically distributed random variables.

Alternatively, we may write (3.1.3) as:

Xn = Xn−1 + Yn (n = 1, 2, ...) (3.1.4)

Therefore, the relation (3.1.4) gives the equation of the particle motion; consequently, we

obtain the following system of difference equations of the first order:

X0 = 0

X1 = Y1

X2 = Y1 + Y2

...

By iterating the procedure we have from (3.1.4):

Xn =
n∑

i=1

Yi (3.1.5)
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In the specific case in which the random variables Yi can only take the value 1, 0, -1 with

distribution:

P (Yi = 1) = p, P (Yi = −1) = q, P (Yi = 0) = 1 − p − q,

we name the process a simple random walk. Sometimes in literature, it is usual to find a

simple random walk as one for which each step is either + 1 or - 1 with p + q = 1. However,

we will assume that p + q ≤ 1 with 1 − p − q as the probability of a zero step.

Besides, we denote with µ and σ2 the mean value and variance of a step respectively:

1. E[Yi] = µ = p − q;

2. Var[Yi] = σ2 = p + q − (p − q)2 = 4pq.

where, to calculate the variance we have used the relation p + q = 1.

Consequently, we obtain for the entire process

1. E[Xn] = nµ = n(p − q);

2. Var[Xn] = nσ2 = 4npq.

If the distribution of the steps -1 and 1 assumes value 1/2:

P (Yi = 1) = P (Yi = −1) = 1/2, (n = 1, 2, ...), (3.1.6)

it is well known that

E[Xn] = 0, Var[Xn] = 1. (3.1.7)

The Xn process with probabilities (3.1.6) is called symmetric random walk (see for example

[96] pag.321 for more details).

3.1.1 Unrestricted

In the present section we briefly introduce the unrestricted random walk ([95], pag. 25). We

consider the equation (3.1.5) and suppose that the random walk starts at the origin and that

the particle is free to move indefinitely in either directions.

The possible positions of the particle at some times n are k = 0,±1, ...,±n. To obtain

the position of the particle we fix N+
1 , N−

2 and N0
3 non-negative integers that represent
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respectively positive steps, negative steps and zero steps. The integers have to fulfill the

simultaneous equalities:

N+
1 + N−

2 + N0
3 = n, N+

1 − N−
2 = k (3.1.8)

Let p be the probability of taking a step to the right, q the probability of taking a step to

the left, (1 − p − q) the probability of zero steps.

Hence, the probability that Xn = k is conditioned from initial condition X0 = 0, where

P(X0 = 0) = 1, is given by:

P (Xn = k|X0 = 0) =
∑ n

N+
1 !N−

2 !N0
3 !

pN+
1 qN−

2 (1 − p − q)N0
3 , (3.1.9)

where the summation is over the values of N+
1 , N−

2 and N0
3 , satisfying (3.1.8).

We notice that for all integers j it follows:

P (Xn = k|X0 = 0) = P (Xn = k + j|X0 = j).

In general, the relation (3.1.9) gives the probability for any initial state (j) too.

However, the summation (3.1.9) of multinomial probabilities introduces a lot of difficulties

above all when n takes great values. In order to find an approximation, for this inconvenient

summation of a large number of multinomial probabilities, we introduce the central limit

theorem. Using such theorem Xn will be approximate by a normal distribution with mean

equal to nµ and variance equal to nσ2 (when n is sufficiently large).

Hence, we have:
n∑

i

Yi ≈ N(nµ; nσ2).

In general, for the central limit theorem the succession Zn of random variables which are

defined as follows:

Zn =
Xn − nµ√

nσ

convergence in law to N(0, 1) random variable; ∀ǫ > 0 ∃ n0 ∈ Z : ∀n ≥ n0 we have:

|P (Zn ≤ x) − 1√
2π

∫ x

−∞
e−y2/2dy| < ǫ

Thus, with n sufficiently large:

P (Zn ≤ x) ≃ 1√
2π

∫ x

−∞
e−y2/2dy.
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Hence

P (
Xn − nµ√

nσ
≤ x) = P (Xn ≤ nµ + x

√
nσ) ≃ 1√

2π

∫ x

−∞
e−y2/2dy,

where, for k = nµ + x
√

nσ it follows:

P (Xn ≤ k) ≃ 1√
2π

∫ k−nµ√
nσ

−∞
e−y2/2dy. (3.1.10)

The equation (3.1.10) allows us to give immediately an answer to some interesting questions:

1. the determination of the probability P (Xn > a) that (for n sufficiently large) the

particle occupies a position with an abscissa greater than a fixed real number a, with

a ∈ ℜ, arbitrarily;

2. the determination of the probability P (−b < Xn < a) that (with n sufficiently large)

the particle is found in an interval (−b; a).

By using the relation (3.1.10) to calculate the probability distribution of the particle in

the first case:

P (Xn > a) ≃ 1√
2π

∫ +∞

a−nµ√
nσ

e−y2/2dy,

we have:

lim
n→∞

P (Xn > a) =





1 for µ > 0

1/2 for µ = 0

0 for µ < 0

Thus, when n → ∞ we can say that, for:

• µ > 0 (with p > q) the particle occupies the positions over a predetermined level

(spatial threshold);

• µ < 0 (with p < q) the particle occupies the positions under a predetermined level

(spatial threshold);

• µ = 0 (with p = q) the particle asymptotically occupies, with equal probability, the

positions over and under a predetermined level (spatial threshold).

These considerations justify the term drift to which it is designated the parameter µ =

p − q.
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By using the relation (3.1.10), the distribution of the probability that the particle is found

in the inclusive strip (−b; a) (second case) is :

P (−b < Xn < a) ≃ 1√
2π

∫ a−nµ√
nσ

−b−nµ√
nσ

e−y2/2dy.

When n → ∞ the distribution of probability P (−b < Xn < a) → 0

Hence, the study of the asymptotic behaviour of the random walk provides an application

of central limit theorem.

Remark 3.1.1: The random walk shows the utility of the central limit theorem when we

wish a quantitative analysis of the behaviour for a system of the described type, abdicating to

quantitative evaluations. Besides, there are cases, such as the Brownian motion, in which it is

natural and necessary to consider a sufficiently large n. The Brownian motion is characterized

by a time constant smaller than the measurements or the observations time, so that, for

example, between two following measurements the test particle suffers an extremely high

number of impacts, and so it is subjected to possible displacements.

3.1.2 Absorbing Barriers

In this section, we briefly consider the equation (3.1.5) when the random walk starts at the

origin and the particle moves in the presence of two absorbing barriers to the points −b and

a (with a, b > 0) [95] [98]; for our purpose we do not consider the case of reflecting barriers.

The probability that the particle moves indefinitely between the two barriers is zero.

The particle moves in the strip (−b; a) and its motion is stopped when it touches one of the

two barriers. We calculate the probability that the particle is absorbed by barrier a (likewise

−b) at exactly the time n under the hypothesis that the particle starts at the point X0 = j

(−b ≤ j ≤ a):

f
(n)
j,a = P (−b < Xi < a, i = 1, 2, ..., n − 1; Xn = a|X0 = j) (n = 1, 2, ...).

While, for n = 0 it follows the initial condition:

f
(0)
j,a =





1 for j = a

0 for j 6= a.
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The hypothesis makes sense when the process is time- and spatial-homogeneous because it

is invariant for temporal and spatial translations.

We still notice that: ∞∑

n=0

(f
(n)
j,a + f

(n)
j,−b) = 1.

The probabilities for each step are the following:

• p for a forward step (that is +1) when the particle stars at the point X0 = j + 1;

• q for a backward step (that is −1) when it stars at the point X0 = j − 1;

• 1 − p − q for a zero step (that is 0) when it stars at the point X0 = j.

Hence, we can write f
(n)
j,a as:

f
(n)
j,a = pf

(n−1)
j+1,a + qf

(n−1)
j−1,a + (1 − p − q)f

(n−1)
j,a (3.1.11)

where, j = −b + 1, ..., a − 1 and n = 0, 1, ... .

Again, together with the initial condition we must write the boundary condition:

f (n)
a,a = 0

and

f
(n)
−b,a = 0

with n ∈ N .

Since, fn
j,a is a function of the two discrete variables (n and j) and we have a difference

equation of the first order in n and of the second order in j, we can use generating functions

in order to calculate the solution of (3.1.11). By using the generating functions, we eliminate

one of the variables and we obtain:

Fj,a(s) =
∞∑

n=0

f
(n)
j,a sn = Fj(s). (3.1.12)

Let us observe that when the barrier b → ∞ we obtain the case of one absorbing barrier.

Let us suppose that the particle starts from the state X0 = j (or X0 = 0 equivalently) and

that an absorbing barrier is placed at the point a > j (or a > 0), so that the particle is free

to move among the states x < a if and until it reaches the state a which, once entered, holds

the particle permanently.
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Let g
(n)
j,a the probability that the particle is absorbed by the barrier which is posed in a at

exactly the time n under the hypothesis that the particle is free to move among the states

x < a and it starts at the state X0 = j:

g
(n)
j,a = P {Xi < a, i = 1, 2, ..., n − 1; Xn = a|X0 = j} (3.1.13)

For n = 0 we have the initial conditions:

g
(0)
j,a =





1 for j = a

0 for j 6= a.

Moreover, we have the boundary conditions:

g(n)
a,a = 0, if n 6= 0.

It is possible to define the generating function as:

Gj,a(z) =
∞∑

n=0

g
(n)
j,a zn. (3.1.14)

This case, corresponding to a single barrier, will be used in the following with respect to

a practical application in cosmology.

3.1.3 Brownian motion

It is curious that in the same year as Pearson’s letter (see before section), Albert Einstein

also published his seminal paper on Brownian motion - the complicated path of a large

dust particle in air (Robert Brown (1828) was the first to realize that the erratic motion

of microscopic pollen was physical, not biological in nature as was believed before his time)

- which he modeled as a random walk, driven by collisions with gas molecules. Einstein

did not seem to be aware of the related work of Rayleigh and Bachelier, and he focused

on a different issue: the calculation of the diffusion coefficient in terms of the viscosity

and temperature of the gas. Similar theoretical ideas were also published independently by

Smoluchowski in 1906.

The Random-Walk theory of Brownian motion had an enormous impact, because it gave

strong evidence for discrete particles (”atoms”) at a time when most scientists still believed

that matter was a continuum. In particular, in Brownian motion it is not the position of the

particle at one time that is independent of the position of the particle at another; it is the
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displacement of that particle in one time interval that is independent of the displacement of

the particle during another time interval. Increasing the resolution of the microscope and the

time resolution only produces a similar random walk. As we have seen in the first chapter

the Brownian motion is self-similar.

In this section, we are going to show the main probabilistic tools generally used to

formulate the Brownian motion.

The Brownian motion is the most fundamental continuous time stochastic process. Since,

it is not our aim to expose this continuous-time stochastic process thoroughly, we will em-

phasize the main results and formulae useful for our purpose.

We begin by considering the Brownian motion process {(Bt), t ≥ 0}, sometimes called Wiener’s

process. Typically, the term ”Brownian motion” is used to describe a wide class of processes;

(Bt)t≥0 is only a particular case (i.e. motion of a free particle with negligible acceleration).

In detail, the Brownian motion will be developed as a limit of a random walk.

In all this section, (Ω, ℑ P ) is a fixed probability space with Ω nonempty set, ℑ σ-algebra

of subsets of Ω and P probability measure on ℑ. On this space we consider a stochastic

process (Bt)t≥0 with t ≥ 0 and a real random variable Bt.

Definition 3.1.1: The stochastic process (Bt)t≥0 is said to be a Brownian motion if:

1. B(0) = 0 almost surely;

2. (Bt)t≥0 is a process with independent increments;

3. Bt is a centered Gaussian random variable with σ2t variance2, ∀t and for some positive

constant σ;

4. γ : t −→ B(t)t, with t ≥ 0 is continuous almost surely.

A full development of the Brownian motion can be found in [95], [96], [97], [98], [99].

Thanks to the previous definitions, one obtains that for s < t, Bt − Bs is of Gaussian type,

centered with variance t − s, which says that Brownian motion is stationary.

Indeed, one has

Bt = Bs + (Bt − Bs)

2 When σ = 1, the process is often called standard Brownian motion or standard Wiener process.
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Therefore, using characteristic functions and the independence of Bs and Bt − Bs one

has

E[eir(Bt−Bs)] = e
−r2(t−s)

2

because s < t, Bt − Bs
L
= N(0, t − s), where ”L” means that we have a convergence in

law.

One can also compute the covariance function of the Brownian motion: for all (s, t) ∈ (ℜ+)2,

E(BsBt) = s ∧ t

where the symbol ∧ denotes the minimum between s and t.

Indeed, suppose that s < t then

E(BsBt) = E {Bs[Bs + (Bt − Bs)]} = E(B2
s ) + E[Bs(Bt − Bs)] =

= E(B2
s ) = Var(Bs) = s

Since, a standard Brownian motion {Bt} is normal with mean 0 and variance t, its density

function is given by

ft(x) = 1√
2πt

exp[−x2/2t].

The Brownian motion process can also be defined as the limit of the random walk. The

random walk model is a first approximation of the theory of diffusion and Brownian motion.

In the limit, the process will appear as a continuous motion (for example see [98], pag. 323;

[97], pag. 356; [96] pag.323).

In order to prove the intuitive properties (see definition 3.1.1) of this limiting process we

consider the relation (3.1.7) and the central limit theorem (see symmetric random walk,

relation 3.1.6). In detail, if we begin with a simple random walk we obtain a Brownian

motion process with drift coefficient µ of the form:

Xt = Bt + µt t ≥ 0 (3.1.15)

where {Bt} is the standard Brownian motion [97].

Definition 3.1.2: The stochastic process (Xt)t≥0 is said to be a Brownian motion with drift

coefficient if:
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1. X(0) = 0 almost surely;

2. (Xt)t≥0 is a process with independent increments;

3. Xt is normally distributed with mean µt and variance σ2t, with µ and σ positive real

constants.

3.2 Introduction to stochastic processes in cosmology

The observations show that Universe has structure with scaling rules, where the clustering

properties of cosmological objects reveal a form of hierarchy (to clustering properties from

cosmological to nuclear objects). Mohamed El Naschie has realized a very wide scientific

production in few hundred papers on ǫ(∞) Cantorian space-time. Most relevant results were

in theoretical physics and high energy physics. Nevertheless his point of view is applicable

in many other contexts such as cosmology. Reading El Nachie’s papers and other previous

contributions it clearly appears that the E-Infinity theory is more than a new framework for

understanding and describing nature and not only a set of equations. Probably the main

point of the theory is the fact that everything we see or measure is resolution dependent. As

reported by El Naschie, in the Cantorian E-Infinity view, space-time is an infinite dimensional

fractal that happens to have D = 4 as the expectation value for the topological dimension

[85]. In particular, the topological dimension 3 + 1 = 4 means that in our low energy

resolution, the world appears to s as if it were four-dimensional. As stated in the work [50],

the observations of the large scale structures show that the dimension changes if we consider

different energies, corresponding to different lengths scale in the Universe. There, it was

reported that the spatial dimension for objects such as globular clusters, galaxies, cluster

of galaxies and superclusters are typically greater than 3. In particular, if we also add the

time dimension, we can obtain a manifold dimension, that can be approximated by 4+ φ3,

where φ is the Golden Mean. This means that the dimension becomes resolution dependent;

consequently it all depends on the energy scale with which we are making our observation.

Hence, El Naschie used an infinite dimensional space, that is a ǫ(∞) Cantorian space-time,

and his approach shows us a new point of view represented by classical dynamical processes

on the infinite dimensional Cantorian space E-Infinity. In other words, ǫ(∞) [[80], [51]] behaves

as an infinite set of mirrors; this behaviour finds its foundation in the waveguide channel
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mechanism, which was anticipated in [50] and analyzed in detail in a companion paper.

If this interpretation is correct, then the difference between micro and macro-physics only

depends on the resolution by which the observers look at the world. The confirmation of this

question is given in [50] where it is pointed out that nature shows us structures with scaling

rules; in the same paper the author considered the compatibility of Stochastic Self-Similar,

Fractal Universe with the observation and the consequences of this model.

In [52] [80] [81] the author presented the observed segregated Universe as the result of a

fundamental self-similar law, which generalizes the Compton wavelength relation, R(N) =

(h/Mc)N1+φ, where R is the radius of the structures, h is the Planck constant, M is the

total mass of the self-gravitating system, c the speed of light, N the number of the nucleons

within the structures, and φ ∼= 1/2 [82].

As noted by Mohamed El Naschie, this expression agrees with the Golden mean and with

the gross law of Fibonacci and Lucas [83] and [84].

In the context of El Nashie’s ǫ(∞) Cantorian space-time [85] starting from a universal

scaling law, the author showed its agreement with the well-known Random Walk equation

or Brownian motion relation used by Eddington for the first time [86], [87]. Consequently,

he arrived at a self-similar Universe. In [82], [88], [51] and [90] the relevant consequences of

a stochastic self-similar and fractal Universe were presented. It appears that Universe has a

memory of its quantum origin as suggested by Sir Roger Penrose with respect to quasi-crystal

[91]. Particularly, the model is related to Penrose tiling and thus to ǫ(∞) theory (Cantorian

space-time theory) as proposed by El Naschie [92] and [93] as well a Connes Noncommutative

Geometry [94].

In order to understand the intricacies of Iovane’s result, R(N) = (h/Mc)N1+φ = (h/mnc)N
φ,

where mn is the mass of a nucleon (proton or neutron), first of all we have presented the

well-know stochastic process named Random Walk. In detail, in the paper [106] we use a

Brownian motion process and we develop this type of process as limit of a Random Walk.

Let us consider this point of view, more specifically the relation R(N) = (h/mnc)N
φ will

be seen as a Brownian motion process. Indeed, in the paper [106] we consider the result

which was obtained by the first author of the work to describe scaling rules in nature,

R(N) = (h/mnc)N
φ, in connection with the well-know Random Walk. By adopting this

prospect, we will present the result as a Brownian motion process developed as a limit of a
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Random Walk in the context of Mohamed El Naschie’s ǫ(∞) Cantorian space-time applied

in cosmology. Consequently, the results give us a mathematical formulation of the model

presented in [52] in terms of a deep analysis with respect to the Brownian motion.

3.2.1 Astrophysical scenario

In [88], [89] the authors presented a study on the dynamical systems on Cantorian space-time

to explain some relevant stochastic and quantum processes, where the space acts a harmonic

oscillating support, such as it often happens in Nature. The observations show a structure

of Universe with scaling rules, where clustering properties, from cosmological to nuclear ob-

jects, reveals a form of hierarchy. As an example, it is possible to distinguish among globular

cluster, galaxies, clusters and superclusters of galaxies through their spatial lengths [100],

[101]. Table 1 recalls the dimensions and masses of the previous systems [102].

System Type Length Mass(M⊙)

Globular Clusters RGC ∼ 10pc MGC ∼ 106÷7

Galaxies RG ∼ 1 ÷ 10kpc MG ∼ 1010÷12

Cluster of galaxies RCG ∼ 1.5h−1Mpc MCG ∼ 1015h−1

Supercluster of galaxies RSCG ∼ 10 ÷ 100h−1Mpc MSCG ∼ 1015÷17h−1

Table 1: Classification of astrophysical systems by length and mass,

where h is the dimensionless Hubble constant whose value is in the

range [0.5,1].

Sys Type N.of Nucleons Eval. Length

Glob. Clusters NG ∼ 1063÷64 RGC ∼ 1 ÷ 10pc

Galaxies NG ∼ 1068 RG ∼ 1 ÷ 10kpc

Cluster of gal. NCG ∼ 1072 RCG ∼ 1h−1Mpc

Superc. of gal NSCG ∼ 1073 RSCG ∼ 10 ÷ 100h−1Mpc

Table 2 : Evaluated Length for different self-gravitating systems
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In [52], [82], [51], [90] the first author of the present paper considered the compatibility

of a Stochastic Self-Similar Fractal Universe by the observation and the consequences of

the model. In detail, it was demonstrated that the observed segregated Universe is the

result of a fundamental self-similar law, which generalizes the Compton wavelength relation,

R(N) = (h/mnc)N
φ. A typical interaction length can be defined as a quantity, which is

proportional to the size of the system which contains the constituents [50]. In other words,

consider a maximum length corresponding to its size for each a system. In 1985 Sakharov

argued that quantum primordial fluctuations had to be related to cosmological evolution

and to the dynamics of astrophysical systems [103]. Eddington and later on Weinberg wrote

the relevant relationship between quantum quantities and the cosmological ones:

h ∼= G1/2m3/2R1/2,

where h is the Plank constant, G is the gravitational constant, m is the mass of nucleon,

and R is the radius of Universe.

By following Eddington Weinberg is (E−W) approach, the first author and his team wrote

a general relationship between the radius R of the self-equilibrated system and its number

of nucleons. While the E−W relationship was only written for the radius of Universe, they

presented a relationship which is scale invariant, so adoptable for all types of self-gravitating

systems (and also for the entire universe):

R(N) =
h

Mc
Nα =

h

mnc
Nφ (3.2.1)

with α = 3/2, for M = MG ≈ 1010−12M⊙,mn mass of the nucleons, φ = 1/2 N = 1068 (this is

approximately the number of nucleons in a galaxy), again they reproduce exactly R ≈ 1−10

kpc 3. In general, the authors evaluate the number of nucleons in a self-gravitating system

as

N = M
mn

,

where N is the number of nucleons of mass mn into self-gravitating system of total mass M.

Then, they obtain the relevant results recalled in Table 2. In the second column the number

of evaluated nucleons is shown, while they find the expected radius of self-gravitating system

3 The value φ = 1/2 is what is found by the observation. If we assume a Cantorian ǫ(∞) space time, as

suggested by Mohamed El Nashie the expectation value is φ =
√

5−1
2 , that is the golden Mean.
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in the last column.

Moreover, the relation (3.2.1) can be written in terms of Plakian quatities:

Rp(N) =
lp
mp

√
hc

G
N (1+φ) (3.2.2)

and from eq. (3.2.2) we obtain:

Rp(N) ∝ lpN
3/2

where we have assumed φ = 1/2.

If we consider the R radius as a fixed quantities, equalizing the equations (3.2.1) and

(3.2.2), we get:

lp
mp

√
hc
G

N3/2 = h
Mc

N3/2

and so

M =
mp

lp

√
Gh

c3
. (3.2.3)

The mass M of the structure is written, through the relation (3.2.3), in terms of Plank’s

length.

As reported in [104], and [52], the following theorems can be obtained.

Theorem 3.2.1: The structures of the Universe appear as if they were a classically self-

similar random process at all astrophysical scales. The characteristic scale length has a

self-similar expression

R(N) =
h

Mc
N1+φ =

h

mnc
Nφ,

where the mass M is the mass of the structure, mnis the mass of a nucleon, N is the number of

nucleons into the structure and φ is the Golden Mean value. In terms of Plankian quantities

the scale length can be recast in

Rp(N) =
lp
mp

√
hc

G
N (1+φ).

The previous expression reflects the quantum (stochastic) memory of Universe at all scales,

which appears as a hierarchy in the clustering properties.
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Theorem 3.2.2: The mass and the extension of a body are connected with its quantum

properties, through to the relation

EE,N(N) = EP N1+φ,

that links Plank’s and Einstein’s energies.

The quantum (stochastic) memory is reflected at all scales and it manifests itself through a

clusterization principle of mass and extension of the body.

3.3 Application to dynamical system and cosmology

3.3.1 Random Walk process and the segregated Universe

In [50] the authors noted that all astrophysical scales have a particular length. For this rea-

son, they obtained the exact lengths of the self-gravitation system just by using an interesting

power law. An invariant scale relation, from the quantum lengths to the astrophysical ones,

plays a fundamental role. As a macroscopic system, Universe shows a sort of quantum and

relativistic memory of its primordial phase. The choice to start with a α = 1/2 is suggested

by the Statistical Mechanics.

Indeed eq. (3.2.1) is strictly equivalent to

R(N) = lNα (3.3.1)

where l = h/mnc. The relation (3.3.1) is the well-known Random Walk or Brownian motion

developed as limit of a Random Walk, when α = 1/2

In this paragraph, we consider a segregated Universe as the result of an aggregation process,

in which a test particle in its motion in the Fractal Cantorian ǫ(∞) space-time can be captured

or not.

The model. Let us consider a test particle with mass mn, moving in a physical space S

(like the entire Universe). Moreover, let us also consider S composed by some substructures

Si (like a galaxy, a cluster of galaxy, and so on) on the N-axis (see Figg. 3.1, 3.2).

Due to the interaction between the systems and the test particle, the probability that

the particle is captured by a component Si can be expressed through a Random Walk Xn

process. In detail, we can make the hypothesis that Xn is the aggregation process of a fixed

structure Si.
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Fig. 3.1: A Sketch of a long bang in the Universe’s Expansion

In this case, if we introduce a sequence of independent and identically distributed random

variables {Yi}, which are the single steps of aggregation, that is the single possibilities that

a text particle is captured or not, then XN =
∑N

i=1 Yi is the aggregation process, thanks to

which a structure Si after a fixed time (or a fixed number of steps) reaches the mass Mi and

so the radius Ri.

We consider the simple random walk process (see previous section) since in this case, the

mass-step Yi can only take the value 1 or -1 with the distribution:

P (Yi = 1) = p = φ, P (Yi = −1) = q = 1 − φ,

where in the symmetric case φ = 1/2; in the main context of our application φ ∼= 1/2.

Specifically when φ =
√

5−1
2

, that is the Golden Mean, we have a Cantorian ε(∞) Universe,

according to Mohamed El Naschie is theory.

It is assumed that each mass-step is either + 1 (with probability φ) or - 1 (with probability

1 − φ).

In our context the steps assume the following meaning :

• corresponding to Yi = +1 the test particle is captured by the system Si, and mSi
grows;

• corresponding to Yi = −1 the test particle is not captured by Si.
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Fig. 3.2: A simulated result for the long bang in the Universe’s Expansion
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If the particle is not captured by Si, it can be captured by an Sj, that is at the same scale

(for example a galaxy scale) or at a different scale (for example globular cluster, cluster of

galaxy and so on).

From the point of view of the structure Si the particle can be captured (corresponding

to Yi = +1) or not captured (corresponding to Yi = −1). Consequently, the case with Yi = 0

becomes irrelevant.

Anyway, in a more realistic model, where we consider a space-time structure which is

not homogeneous and isotropic and where the aggregation process follows a hierarchical

approach, we will analyze if the case Yi = 0 makes sense.

Remark 3.3.1: On the other hand, either there is a +1 mass-step linked to the energy of

bounding or there is a -1 less-mass-step linked to the dissipative energy from the structure.

Remark 3.3.2: We notice that in our model, for all integer j, it remains the equality between

the probability that the particle starts from zero and the probability that the particle starts

from k + j:

P (XN = k|X0 = 0) = P (XN = k + j|X0 = j),

where k = 0,±1,±2, ... and N = 1, 2, ... While from a mathematical point of view this is

not so interesting, from a physical point of view this is relevant due to the fact that we must

start from a system with a mass mn corresponding to a system composed by a single mass

and not a zero mass system.

Let us denote µ and σ2 the mean and variance of a mass-step.

Then µ = p− q and σ2 = p + q − (p− q)2 and hence in our case, the mean and variance are

respectively:

E(Yi) = µ = p − q = (2φ − 1) = φ3, (3.3.2)

Var(Yi) = σ2 = p + q − (p − q)2 = 4pq = 4φ(1 − φ) = 4/ < dimHǫ(∞) > (3.3.3)

with
1

φ(1 − φ)
=

1

φφ2
=

1

φ3
= 4 + φ3 =< dimHǫ(∞) >

the Hausdorff’s dimension.

We notice that E(Yi) is the mean of the number of mass-steps to obtain the structure of
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radius Ri; consequently the mean and variance of our simple random walk for the structure

Si are respectively:

E(XN) = µN = N(2φ − 1) = Nφ3

Var(XN) = σ2N = 4Npq = 4Nφ(1 − φ) = 4N/ < dimHǫ(∞) > .

In the case of φ =
√

5−1
2

, it follows p > q; consequently, the probability that a new mass

will be captured by the structure Si is greater than the particle is not captured.

Viceversa is for p > q.

In the case of p = q we have the same probabilities that the particle is accepted or refused.

In a different vision for a fixed structure Si we could have the above three cases at

different time, corresponding to different eras in the life of Si. By adopting this point of view

φ =
√

5−1
2

could be linked to the present, in which we carry out measurements.

This analysis is not conclusive; obviously this is just a toy model to start the investigation

of cosmology in ε(∞) Cantorian space-time by using a stochastic approach based on Random

Walk.

Indeed, in future analysis we will consider some other parameters such as:

1. the homogeneity and the isotropic of the space-time;

2. the hierarchy between structures at different scale for accepting or not new mass in

terms of new particles;

3. the presence of hidden variables for describing internal rules for a structure Si to accept

or do not accept a particle.

This hidden variables could represent the maximum capability to accept new mass with

respect to the spatial dimension of the structure, or a changed number as it often it happens

in particle physics, when we consider the colour, the flower and so on.

By using the result of the central limit theorem XN will be approximated by a normal

distribution with mean Nµ and variance Nσ2 (when N is sufficiently large):

N∑

i

Yi ≈ N(Nφ3; 4Nφ(1 − φ)).

In general, for the central limit theorem the succession ZN of random variable:

ZN =
XN − Nµ√

nσ
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converges in law to N(0, 1) random variable.

In detail, the particle will be within a distance of order Nφ from its starting point after

N = M/mp mass-steps. From the previous considerations and by reading the earlier papers

of first author, it clearly appears that the relation R(N) = (h/mnc)N
φ, is a Brownian

motion process developed as a limit of the Random Walk.

Indeed, by using the central limit theorem, the Random Walk R(N) = (h/mnc)N
φ will

appear as a Brownian motion with drift coefficient φ3 and from the relation (3.1.15) it follows:

(XN)N
L→ B̃N = BN + φ3N (3.3.4)

where L is a convergence in Law and BN is the standard Brownian motion process.

Hence, we notice that the process R(N) = (h/mnc)N
φ is a Brownian motion with drift co-

efficient φ3.

It is interesting to note that each scale (with radius Ri) of Universe has a Gaussian distri-

bution with mean µi = Nφ3 and variance σ2
i = 4N/ < dimHǫ(∞) >:

f(x) =
1√
2πσ2

i

exp[−(x − µi)
2

2σ2
i

] x ∈ ℜ.

In our model, we can see the different scales of Universe and so the segregation of Universe,

as sequence of fundamental lengths. These lengths have gaussian distribution with mean µi

and variance σ2
i .

Moreover, we are assuming that there is no overlapping among different scales.

In other words, each scale has a Gaussian distribution, with the mean value that is Ri and

with a dispersion that is given by the standard deviation.

For example, this implies that in the case of a system Si on galaxy scale the best value

will be of the order of Ri = 10kpc, corresponding to µi = 1068.

By taking into account the results in [105] we can easily understand that the present

Universe can be obtained as a Brownian motion at some different scales. Equivalently, we

can consider a fundamental length scale that has Gaussian distribution and that generates

the segregated Universe thanks to translation and processes in scale.

3.3.2 Application to cosmology

From the previous analysis, the state of a system with scale length Ri appears to be more

probable than the other with length Ri+α, α ∈ ℜ, α 6= j, where j is another scale with high



3. Stochastic Self-similar processes and Random walk in nature 90

probability. The choice of fixed length (see table 1 and table 2) instead of others is more

stable, since it is more probable.

In order to prove the stability of the structures, we introduce the specific case of an absorbing

barrier. Let us suppose that the structure starts in the state X0 = j and that an absorbing

barrier is placed at the point a > j [95]. We suppose that the different scales of Universe

are the absorbing barriers ai and ǫ(∞) Cantorian space gives the minimal distance between

two points among which it is possible to allocate an unitary mass (mn), in connection with

the Plank’s length.

In other words, we have a process thanks to which a test system grows its mass step by

step of quantities mn . This goes on until the upper limit, fixed by the barriers value ai,

is reached. This means that if a particle arrives at the structure when this one has a mass

smother than the value linked to ai, then the particle with mass mn is absorbed; otherwise

the mass mn is refused.

In order to have the barriers ai, as dimensionaless number, we define:

ai =
Ri

Rp(1)
=

h
mnc

Nφ
i

lp
√

hc

mp

√
G

=
mp

mnlp

√
Gh

c3
Nφ

i .

Since, the barriers ai are the absorbing barriers, the equation (3.1.14) gives the probability

that the absorption occurs at ai at the time Ni. Here we measure the time evolution in

connection with the aggregation of the matter. In other words, Ni indicates both the number

of components into a structure and a possible time scale, that is the number of steps to obtain

the mass Mi corresponding to the length Ri.

Let us consider the random variable T (ai|j):

T (ai|j) = inf {Ni : XNi
= ai|X0 = j} (ai > j)

that denotes the time to absorption at ai or equivalently the first passage time to state ai

from j.

We can write:

T (ai|j) = Tj+1 + Tj+2 + ... + Tai

where Tj+i (i = 1, 2, ..., ai − j) are independent and identically distributed random variables.
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By taking into account that T (ai|0) is the sum of independent random variables with

finite variance and by using the central limit theorem, in terms of the mean µ = p − q and

variance σ2 = p + q − (p − q)2 of a single mass-addition-step, we have

E[T (ai|0)] =
ai

µ
=

ai

(2φ − 1)
,

Var[T (ai|0)] = ai
σ2

µ3
= ai

4
<dimHǫ(∞)>

(2φ − 1)3
.

By using the number of absorbed particles at a T (ai|j), we can write (see [95], pag.35):

Gj,ai
(z) =

∞∑

Ni=1

zNiP [T (ai|j) = Ni]

for z = 1 we have

Gj,ai
(1) = P [T (ai|j) < ∞].

Thus

Gj,ai
(1) = P [T (ai|j) < ∞] =





[p
q
]ai−j (p < q)

1 (p ≥ q).
(3.3.5)

Example 3.3.1: The first passage time T (1|0) denotes the number of absorbed particles

(components) on the first length scale R1 structure from state j (free-state) to state 1 (posi-

tion of structure); it has a generating function equally to G1(z).

Corresponding to T (ai|j), we have the mass of the fixed structure equal to M(ai|j) =

mnT (ai|j). Since, T (ai|j) denotes the duration of the Random Walk, (3.3.5) is the probability

that the absorption occurs for each fixed barriers ai.

Having posed

ai =
mp

mnlp

√
Gh

c3
Nφ

i = αNφ
i

where α = mp

mnlp

√
Gh
c3

and by taking into account the expression for the mean value

Ei(XN), that we have introduced in the previous section, that is

Ei = (2φ − 1)Ni
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and passing to the logarithms, we obtain

Ei =

{
2[

log ai − log α

log Ni

] − 1

}
Ni

By simple calculations is gotten

ai = αN
1
2
(

Ei
Ni

+1)

i

and since

Ri = aiRp(1)

it follows that

Ri =
h

mnc
N

1
2
(

Ei
Ni

+1)

i . (3.3.6)

In the specific case Ni = 1 the relation (3.3.5) becomes

R1 =
h

mnc
.

The relation (3.3.6) represents the scaling law in terms of the means Ei in connection with the

Random Walk process. Thanks to this approach, when the structure reaches the maximum

permitted mass Mi−max that is compatible with the fractal structure with the fixed Ri, a

free particle (test-particle) meets the barrier of that structure with probability equal to 1.

This means that for:

M = Mi = mnT (ai|j)

the structure with length scale equal to Ri does not accept any other component (particle)

but reflects it. Consequently, this free particle of mass mn will tend to find a new accepting

structure with the same scale length Ri or with Rj.

In this way, it is possible to create a segregated Universe at different length scales.

3.4 Conclusions

In the paper [106] we have considered the link between the scale invariant law, R(N) =

(h/mnc)N
φ, introduced by the first author, and the Random Walk. The first law represents

the observed segregated Universe as the result of a fundamental self-similar law, which gener-

alizes the Compton wavelength relation, while the second is a well-known stochastic process.

We have used a Brownian process in order to prove that this type of process, developed as a
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limit of a Random Walk, has the same form of the relation R(N) = (h/mnc)N
φ. Moreover,

we have noticed that R(N) = (h/mnc)N
φ is a Brownian motion with drift coefficient µ of

the form: B̃N = BN + φ3N .

In the last section of this work, we have studied the state of the system with different length

scales. In this way, we have seen that the system with a length Ri is more probable than

other with Ri+α (α ∈ ℜ) with a different radius. To be more precise, choosing a fixed length

the masses take values, which are more stable. In order to prove this, we have considered the

random walk with an absorbing barrier; here the different scales of Universe are considered

in connection with some absorbing barriers and the ǫ(∞) Cantorian space-time is directly

linked with the minimal distance between two massive points and Plank’s length.



4. MULTIFRACTALS AND EL NASCHIE E-INFINITY CANTORIAN

SPACE-TIME

In this chapter, we present the analysis of Multifractals in the context of El Naschie’s ǫ(∞)

Cantorian Space-Time applied to cosmology. In detail, we summarize some recent results

concerning fractal structure and the Brownian paths in order to calculate fractal dimension

and characteristic parameters for large scale structures and for the atomic elements that live

in El Naschie’s ǫ(∞) Cantorian Space-Time. As starting point we consider the results that

describing scaling rules in nature. Then we use multifractal analysis to show that the result,

already developed by the authors as Brownian motion in the Chapter 3, is a Multifractal

process. Consequently, in the framework Brownian paths play a crucial role if considered to

be a multifractal.

4.1 Introduction

Multifractal analysis has recently emerged as an important concept in various fields, in-

cluding strange attractors of dynamical systems, stock market modelling, image processing,

medical data, geophysics, probability theory and statistical mechanics, etc... [107].

Multifractal analysis is concerned with describing the local singular behaviour of measures

or functions in a geometrical and statistical fashion. It was first introduced in the context

of turbulence, and then studied as a mathematical tool in increasing general settings [32].

Multifractal theory has been discussed by numerous authors and it is developing rapidly

[108]. Mandelbrot firstly mentioned multifractal theory in 1972. In 1986, T.C. Halsey drew

attention to the concept of multifractal spectrum; that is an interesting geometric character-

istic for discrete and continuous models of statistical physics. Olsen was motivated by the

heuristic ideas of Halsey. In 1995 Olsen established a multifractal formalism. This formal-

ism has been designed in order to account for the statistical scaling properties of singular
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measures when it happens that a finite mass can be spread over a region of phase space in

such a way that its distribution varies widely. The multifractal formalism is build on the

definition of the singularity spectrum which is connected to the subset of the support of the

measure where singularity has a given strength namely its Hausdorff dimension.

The purpose of this work is firstly to reconsider the case of the Bownian paths in the

context of El Naschie’s ǫ(∞) Cantorian space-time, from the point of view of the previous

model of the authors [106] and by using multifractal analysis [109].

As shown in [52],[80] Nature shows us structures with scaling rules, where clustering

properties from cosmological to nuclear objects reveals a form of hierarchy. In [81], [82],

the consequences of a stochastic, self-similar, fractal model of Universe was compared with

observations. Indeed, it was demonstrated that the observed segregated Universe is the

result of a fundamental self-similar law, which generalizes the Compton wavelength relation,

R(N) = (h/Mc)N1+φ, where R is the radius (characteristic length) of the structures, h is

the Planck constant, M is the total mass of the self-gravitating system, c the speed of light,

N the number of the nucleons within the structures and φ =
√

5−1
2

is the Golden Mean. As

noted by Mohamed El Naschie, this expression agrees with the Golden Mean and with the

gross law of Fibonacci and Lucas [83], [84], [85].

Starting from an universal scaling law, the author showed its agreement with the well known

Random Walk equation that was used by Eddington for the first time [86], [87]. In [82], [88],

[51] and [90] the relevant implications of a stochastic self-similar and fractal Universe were

presented.

The main aim of this paper is to investigate the link between our previous result B̃N =

BN +φ3N (indeed we will use the Brownian paths) and its multifractal nature in the context

of El Naschie’s ǫ(∞) Cantorian space-time [85].

Secondly, we are interested to evaluate, through the results in [90], the fractal dimension

and characteristic parameters of the time for some objects.

4.2 Some fractal properties of Brownian paths

Models using fractional Brownian motion (fBm) have helped to advance the field through

their ability to assess the impact of fractal features such as statistical self-similarity and
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Long-Range Dependence (LRD) to performance [33]. Roughly speaking, a fractal entity is

characterized by inherent, ubiquitous occurrence of irregularities which governs its shape

and complexity.

First, we consider the fBm BH(t); its paths are almost surely continuous but not where

H ∈ (0, 1) is the self-similarity parameter:

BH(at) = aHBH(t) (4.2.1)

However, the scaling law (4.2.1) implies also that the oscillations of fBm at fine scales are

uniform and this comes as a disadvantage in various situations. Indeed, fBm is a model with

poor multifractal structure and does not contribute to a larger pool of stochastic processes

with multifractal characteristics. Hence, in order to describe real world signals that often

possess an erratically changing oscillatory behavior (multifractals) fBm is not an appropriate

model.

The first ”natural” multifractal stochastic process to be identified is Lévy motion [110], [111].

A Lévy process {(Xt), t ≥ 0} valued in ℜd is a stochastic process with stationary independent

increments. Brownian motion and Poisson processes are examples of Lévy processes that

can be qualified as monofractal ; for instance the Holder exponent of the Brownian motion

is everywhere 1/2 (the variations of its regularity are only of a logarithmic order of magni-

tude). Most Lévy processes are multifractal under the condition that their Lévy measure

is neither too small nor too large near zero. Furthermore, their spectrum of singularities

depends precisely on the growth of the Lévy measure near the origin.

Before applying the multifractal analysis to our cosmological scenario, we need recall

some basic definitions and results about Brownian path [112].

Let Bd = {Bd(t)} be a standard d-dimensional Brownian motion; this process (also

named Wiener process) is (stochastically) self-similar with index 1/2 by which it means that,

for any c ≥ 0, the time-scaled process {Bd(ct)} and the space-scaled process {√cBd(t)} are

equivalent in the sense of finite-dimensional equivalence. This self-similar property is central

in our study, from which various dimension formulae concerning Brownian paths can be

figured out.

Brownian sample paths exhibit highly erratic patterns, despite the continuity. Thus, this
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should be rich source of fractal analysis/geometry and be one prevailing topic in nonlinearity.

As well known fractal sets connected with Brownian motion can be written as:

[Bd] = {x : x = Bd(t), some t},
Z = {t : B1(t) = 0},

Id = [Bd] ∩ [B′
d],

where B′
d denotes an independent copy of Bd. Thus, the three sets are simply the trail

(range), the zero set, and the set of intersections of Brownian paths. Note that the zero set

is meaningful only for the 1-dimensional case, while the trail and the intersection are mean-

ingful only for the multidimensional case. These are due to the fact that the 1-dimensional

Brownian motion is point-recurrent while it is not so for the multi-dim case. These sets

are random, since they depend on a particular sample path realization Bd(t, ω), and so we

must interpret any statement about these sets and their associated measures (random too)

as being true ”with probability one”.

Let dim K denote the Hausdorff dimension of a Borel K. The following results are well-

Known:

d = 1 dimZ = 1/2,

d ≥ 2 dim[Bd] = 2,

d = 2, 3 dimId = d − 2(d − 2).

There are natural measures associated with the above fractals Z, [Bd] and Id; there are

respectively Brownian local time measure, occupation measure and intersection measure.

These measure are regarded as fractal measures, since each of them is singularly continuous

(non-atomic and supported by a set of Lebesgue measure zero) and exhibits a certain self-

similarity which is inherited from the self-similarity of the process. The main difference (and

difficulty) from pure analysis is that the self-similarity is now always in the distributional

sense rather than the strict (analytic) sense.
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4.2.1 Intersection of exponents

In the present section, we give a recent results on the intersection exponents and the multi-

fractal spectrum for measures on Brownian paths (for more details see [113]). Intersections

of Brownian motion or random walk paths were studied for quite a long time in probability

theory and statistical mechanics. There is trivial behaviour in all dimensions exceeding a

critical exponent which determines the universality class of the model and enter into most of

its quantitative studies. Finding the intersection exponents of planar Brownian motion was

one of the first problems solved by the rigorous techniques based on the stochastic Lowner

evolution devised by Lawler, Schramm and Werner (for more details see [114], [115], [116] ).

Above, we have seen that an interesting geometric characteristic for discrete and continuous

models of statistical physics is the multifractal spectrum. This evaluates the degree of varia-

tion in the intensity of a spatial distribution. A multifractal formalism is used for computing

multifractal spectrum, based on a large-deviation heuristic (see [117]).

Let us give the definition of multifractal spectrum; suppose that µ is a (fractal) measure on

ℜd. The value f(a) of the multifractal spectrum is the Hausdorff dimension of the set of

points x ∈ ℜd with d ≥ 2

limr↓0
logµ(B(x, r))

logr
= a (4.2.2)

where B(x, r) denotes the open ball of radius r centered in x. In many cases of interest,

the limit in (4.2.2) has to be replaced by liminf or limisup to obtain an interesting nontrivial

spectrum. in detail, in fractal geometry the relation between Hausdorff dimension and the

critical exponents of statistical physics is shown with intersection exponents. To define the

intersection exponents for Brownian motion with d = 2, 3, suppose n,m ≥ 1 are integers

and let W1, ...,Wm+n be a family of independent Brownian motion in ℜd started uniformly

on ∂B(0, 1) and running up to the first exit time T i(r) from a large ball B(0, r) 1. We divide

the motions into two packets and look at the union of the paths in each family

1 We refer to (see [99] pag. 344)

Ti(r) = inf{t ≥ 0 : W i

t /∈ B(0, r)} (W i is a d-dimensional Brownian motion)

as the exit time from the open ball B = (0, r) = {x ∈ ℜd : q(0, x) < r} , where q is the distance in ℜd.
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ß1(r) =
m⋃

i=1

Wi([0, T
i(r)]) ß2(r) =

n+m⋃

i=m+1

Wi([0, T
i(r)]). (4.2.3)

The event that two packets of Brownian paths fail to intersect has a decreasing probability

as r ↑ ∞. Using subadditivity, it can be shown that there exists a constant 0 < ξd(m,n) < ∞
such that

P {ß1(r) ∩ ß2(r) = ∅} = r−ξd(m,n)+o(1), (4.2.4)

as r ↑ ∞.

The numbers ξd(m,n) are called the intersection exponents (for more details see [113]).

Then, we consider a number of Brownian motion paths started at different points. As

known the intersection among the paths depends on the dimension.

From a mathematical point of view our aim can be formulated in term of the following

theorem ([118] pag. 172)

Theorem 4.2.1: (Dvoretsky, Erdös, Kakutani, Taylor). Suppose d ≥ 2 and

{B1(t) : t ≥ 0}, ..., {Bp(t) : t ≥ 0}

are p independent d-dimensional Brownian motions started in the origin. Let S1 =

B1(0,∞), ..., Sp = Bp(0,∞) be their ranges. Then, almost surely,

S1 ∩ ... ∩ Sp = {0} if and only if p(d − 2) ≥ d

and otherwise

dim(S1 ∩ ... ∩ Sp) = d − p(d − 2) > 0.

4.3 Astrophysical context and fundamental scale invariant law

In [88], [89] the authors presented a study on the dynamical systems on Cantorian space-time

to explain some relevant stochastic and quantum processes, where the space acts as harmonic

oscillating support, such as it often happens in Nature. The role of oscillating structures



4. Multifractals and El Naschie E-Infinity Cantorian Space-Time 100

is played by cosmological objects as globular cluster, galaxies, clusters and superclusters

of galaxies through their spatial lengths [100], [101]. Table 1 in the Chapter 3 recalls the

dimensions and masses of the previous systems [102].

In [52], [82], [51], [90] the first author of the present paper considered the compati-

bility of a Stochastic Self-Similar Universe with the observation and the consequences of

the model. Indeed, it was demonstrated that the observed segregated Universe is the re-

sult of a fundamental self-similar law, which generalizes the Compton wavelength relation,

R(N) = (h/mnc)N
φ. A typical interaction length can be defined as a quantity, which is

proportional to the size of the system which contains the constituents N (nucleons)[50].

In general, the authors evaluate the number of nucleons in a self-gravitating system as

N = M
mn

,

where N is the number of nucleons of mass mn into self-gravitating system of total mass

M. Then, they obtain the relevant results recalled in Table 2 in Chapter 3. In the second

column the number of evaluated nucleons is shown, while we find the expected radius of

self-gravitating system in the last column.

Moreover, for more details we recall that the equation (3.2.1) in Chapter 3,

R(N) =
h

Mc
Nα =

h

mnc
Nφ

can be written in terms of Plankian quatities (3.2.2).

As reported in [104], and [52], we can obtain the Theorems (3.2.1) and (3.2.2) that we

can find in the Chapter 3.

4.4 Application to cosmology: Brownian Multifractals Structures

Brownian paths have rich fractal structure, as we have seen in previous section. However,

the path is usually qualified as a monofractal, in view that the Holder exponent of the

path is everywhere 1/2 (the variations of the regularity are only of a logarithmic order of

magnitude). Thus, it is a first approximation to use Brownian path as a curve fitting to those

data exhibiting the intermittence. In [50] the authors noted that all astrophysical scales have

a particular length. For this reason, they obtained the lengths of the self-gravitation system
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just by using the previous power law. As a macroscopic system, Universe shows a sort of

quantum and relativistic memory of its primordial phase. The choice to start with a α = 1/2

is suggested by the Statistical Mechanics.

Indeed eq. (3.2.1) is strictly equivalent to eq. (3.3.1) that represent the well-known

Random Walk or Brownian motion.

In a previous article [106], the authors considered a segregated Universe as the result of

an aggregation process, in which a test particle in its motion in the Fractal Cantorian ǫ(∞)

space-time can be captured or not.

They shown that R(N) = (h/mnc)N
φ, the law represents the observed segregated Universe

as the result of a fundamental self-similar law, is a Brownian motion with drift as to show

us the equation (3.3.4):

B̃N = BN + φ3N

where φ = (
√

5 − 1)/2.

Let B(N) be a real-valued Brownian motion (or a fractional Brownian motion if one count

the long range dependent), and let M(N) be an increasing process (that is, a process which is

pathwise increasing in N) [112]. Assume that B and M are totally independent (quite rough

from the viewpoint of practical applications). The application N → B(M(N)) is named

Brownian motion in multifractal time. The path of the new process has some multifractal

(= intermittent) structure and some dimension spectrum can be computed.

In order to construct a multifractal cosmological’s scenario the ingredients are: a multifrac-

tal ”time warp”, i.e., an increasing function or process M(N), for which the multifractal

formalism is known, and a function or process B with strong mono-fractal scaling properties

such as considered Brownian motion (equation (3.3.4)). Let us recall the method of mid-

point displacement which can be used to define simple Brownian motion B1/2 iteratively at

dyadic points. Indeed, the increments of the Brownian motion in multifractal time become

independent Gaussian once the path of M(N) is realized.

In case that M is a subordinator, then the resulting process is a Lévy process. This case

is also known in probability as Brownian (time) substitution. We recall that a Lévy process

is a stochastic process (real-valued or vector-valued) with stationary and independent incre-

ments, and that a subordinator is a real-valued Lévy process with increasing paths.

Jaffard in [110] proved that the paths of ”most” Lévy processes are multifractals and he also
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determined their spectrum of Holder exponents.

Since, the Brownian motion is an example of Lévy processes that can be defined as a

monofractal (see Paragraph 4.2), here, we continue that study by considering the inter-

section of the exponents of the Brownian motion paths to obtain the multifractal model in

the context of Cantorian ǫ(∞) spacetime.

4.4.1 Multifractal Universe

We consider a Boundaryless Fractal Model of Universe in (3+1)-dimension (for more details

see ”The Origin of Universes” by Nagasawa [119] ). Assume that a distribution of points in

i-space, fractal set, (like a structures Si of the physical space S) is given from the measure

µ: the probability for a point to fall in a set Si is µ(Si). The spatial distribution of points

is on a ball of radius Ri(t) and hence, the different structures have a fixed radius Ri(N) and

thanks an aggregation process (like Brownian motion) after a fixed time it reaches the mass

Mi. Each structure belongs to one different scale on the N-axis (see Fig. 4.1).

If this distribution is singular one cannot describe it by means of a density and multifractal

analysis useful in characterizing the complicated geometrical properties of µ. In our case, we

have more Brownian paths, indeed, everyone constructs a specific length scale (like galax-

ies, globular cluster, etc...). Let us consider a bunch of p independent Brownian motions

W1, ...,Wp starting uniformly on ∂S(0, 0) in ℜd (with d ≥ 2); we call their first exit times

N1, ..., Np the time to emerge from a large ball, that is a sort of segregated inflation. Indeed,

in our model (as in Fig. 4.1) we start with four Brownian motions and in different time steps

they arrive on the different balls. For this reason we have in the first structure the inter-

section of four paths, in the second structure the intersection of three paths and so on. In

relation to Universe’s structure at the end we obtained just one Brownian motion. By clas-

sical results of Dvoretzky, Erdos, Kakutani and Taylor (see Theorem 4.2.1) the intersection

of the paths of these motions is

Si =

p⋂

k=1

{
x ∈ ℜd : x = Wk(N) for some N ∈ [0, Ni)

}
, (4.4.1)

with i = 1, ..., 4 and contains different points from the starting point if and only if
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p < d/(d − 2).

This means that in our fractal model, in (3+1)-dimensional space we obtain for different

ball-structures:

• Globular clusters S1(0, RGC(N)) : four intersections of Brownian paths

• Galaxies S2(0, RG(N)) : three intersections of Brownian paths

• Cluster of galaxies S3(0, RCG(N)) : two intersections of Brownian paths

• Supercluster of galaxies S4(0, RSCG(N)) : just one Brownian path.

In order to classify the singularities of µ by strength, we use a Holder exponent and con-

sider the value of the multifractal spectrum (4.2.2) which represents the Hausdorff dimension

of structures:

fi(a) = dim

{
x ∈ ℜd : a = limRi(N)−→0

logµ(Si(x,Ri(N)))

logRi(N)

}
(4.4.2)

where Si(x,Ri(N)) denotes the open ball of radius Ri of the structures centered in x and

local dimension a. The structures have the same center x = 0 that correspond to the origin

of the system (like Big Bang).

Example. For instance, we consider the structure Si corresponding to a Galaxy with

i = G and RG
∼= 1 ÷ 10kpc. The relation (4.4.2) becomes

S
[a]
G =

{
x ∈ ℜd : a = limRG−→0

logµ(SG(0, RG))

logRG

}

The center x of the open ball S(0, RG) is the origin of Universe and it is the same for all

structures.

Let us recall that our space-time domain (structure’s domain) is

D = {(x,N); N ≥ 0, x ∈ [−Ri(N), Ri(N)]}. (4.4.3)

and thank to the result in [50], we can write the dimension (4.4.3) as

D = limRi→∞
log(N < Ri)

logRi

(4.4.4)

where N < Ri is the number of nucleons inside the radius of the structure Ri.
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Fig. 4.1: Model of Universe with Brownian paths.

4.5 Fractal Dimension and Time for astrophysical structures

4.5.1 Fractal Dimension

Thanks to (4.4.4), we can estimate the fractal dimensions of all astrophysical structure and of

Universe too. Hence, the relation (4.4.4) represents in this paper our multifractal spectrum.

By recasting (4.4.4) in

D =
log(N < Ri)

logRi

(4.5.1)

we obtain the fractal dimension of different structures. This recast makes sense due to

we are summing that for R > Ri the structure of length scale Ri do not take other N and so

other matter. Indeed, in the following Tables we summarize these results.

Thank to relation (4.5.1) and values of Table 1 and Table 2 we can calculate the Fractal

dimension of astrophysical objects (see Table 3).
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Fig. 4.2: Trend of Space-time Fractal Dimension of astrophysical ob-

jects.

System Type D

Globular Clusters 4.61 ÷ 4.66

Galaxies (giant) 4.27 ÷ 4.54

Galaxies (dwarf) 4.18 ÷ 4.39

Clusters of galaxies 4.20

Superclusters of galaxies 3.94 ÷ 4.15

Universe 4.13

Table 3: Space-time Fractal Dimension of astrophysical objects

In the following graph (Fig. 4.2) we have ordered the objects for considering their Mass

in terms of Solar Mass M⊙ (see Table 1) where:

M⊙ = 1.98892 × 1030kg

In Table 4, we summarize the results with respect to solar system objects.
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Fig. 4.3: Graph of Fractal Dimension of Solar System Objects.

Solar system objects Radius (106m) Mass (kg) N D

Sun 6.96 × 102 M⊙ 1.1892 × 1057 7. 454 6

Mercury 2.439 3.2868 × 1023 1.9650 × 1050 8. 874 1

Venus 6.052 4.8704 × 1024 2.9112 × 1051 8. 588 4

Earth 6.378 5.976 × 1024 3.5728 × 1051 8. 576 1

Mars 3.3935 6.3943 × 1023 3.8229 × 1050 8. 745 4

Jupiter 71.4 1.8997 × 1027 1.1358 × 1054 7. 882 8

Saturn 59.65 5.6870 × 1026 3.4000 × 1053 7. 884 5

Uranus 25.6 8.6652 × 1025 5.1806 × 1052 8. 115 6

Neptune 24.75 1.0279 × 1026 6.1453 × 1052 8. 139 8

Pluto 1.1450 1.7928 × 1022 1.0718 × 1049 9. 092 4

Moon 1.738 7.3505 × 1022 4.3946 × 1049 8. 955 5

Table 4: Space-time Fractal Dimension of Solar system objects

In the last column in Table 4 we have calculated the Fractal dimension of the Solar

system objects.

In the following graph (Fig. 4.3) we have ordered the objects to considering their Solar Mass.

The previous results suggest a Solar System that lives in a fractal space-time with extra-

dimension or in a conventional (3+1) space-time but with a presence of dark energy to

reduce the extra-dimensions. In Table 5 we calculate Space-time Fractal dimensions for

atomic elements. In Fig. 4.4, we show the fractal dimension of 73 elements of the table
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Fig. 4.4: Graph of Space-time Fractal Dimension of atomic elements.

because we have not considered the Lanthanoids, Actinoids and the elements from 89 and

so on, while Fig. 4.5. gives us the Fractal dimensions at different scales.

The fact that we obtain a Space-time Fractal Dimension with a value that is smaller than

1 suggests that these elements are not stable but tend to create stable chemical links.
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Elements D Elements D Elements D

H 1 Mn 0, 87782 ln 0, 85424

He 0, 95883 Fe 0, 87725 Sn 0, 85314

Li 0, 94189 Co 0, 87559 Sb 0, 85233

Be 0, 93422 Ni 0, 87559 Te 0, 85078

B 0, 92808 Cu 0, 87301 I 0, 85103

C 0, 92539 Zn 0, 8725 Xe 0, 85003

N 0, 92064 Ga 0, 87015 Cs 0, 84954

O 0,91651 Ge 0,86881 Ba 0, 84858

F 0, 91118 As 0, 86794 Hf 0, 84009

Ne 0, 90958 Se 0, 86628 Ta 0, 83956

Na 0, 90524 Br 0, 86588 W 0, 83902

Mg 0, 90390 Kr 0, 86432 Re 0, 83867

Al 0, 90023 Rb 0, 86393 Os 0, 83797

Si 0, 89909 Sr 0, 86284 Ir 0, 83763

P 0, 8959 Y 0, 86247 Pt 0, 83713

S 0, 89491 Zr 0, 86175 Au 0, 8368

Cl 0, 89208 Nb 0, 86106 Hg 0, 83615

Ar 0, 88789 Mo 0, 86004 Tl 0, 83566

K 0, 88868 Tc 0, 85971 Pb 0, 83518

Ca 0, 88789 Ru 0, 85841 Bi 0, 83487

Sc 0, 88417 Rh 0, 85778 Po 0, 83487

Ti 0, 88213 Pd 0, 85685 At 0, 83472

V 0, 88021 Ag 0, 85626 Rn 0, 8329

Cr 0, 87959 Cd 0, 85508 Fr 0, 83276

Ra 0, 83232

Table 5: Fractal dimension of atomic elements.
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Fig. 4.5: The Space-time Fractal Dimension model: atomic elements, Solar System Objects, astro-

physical objects.

4.5.2 Characteristic parameters of time

In addition, to the Theorems (3.2.1) and (3.2.2) in Chapter 3, we can evaluate the charac-

teristic parameters of the time of Universe. As we see below it can be written as a function

of its components N. Indeed, starting from the relation

RU = cTU (4.5.2)

where RU is the radius of Universe, TU its time and c = 2.99792458 × 108ms−1 by using

the relation (3.2.3), we easily obtain

T =
h

EE

Nφ (4.5.3)

where EE is the Einstein energy for a nucleon, that is EE = mcc
2.

The relation (4.5.3) appears interesting since it connects the characteristic parameters

of the time of Universe with the number of its components trough quantum and relativistic
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Fig. 4.6: The characteristic time parameter for Cosmological structures

contents. In the following Table 6 we calculate the the characteristic time parameter for

Cosmological structures.

System type Time(s)

Globular Cluster 1.0293 × 109

Galaxies 1.0293 × 1011 ÷ 1. 029 3 × 1012

Cluster of galaxies 1. 543 9 × 1014h−1

Supercluster of galaxies 1. 029 3 × 1015h−1 ÷ 1. 029 3 × 1016h−1

Universe 6.1756 × 1017

Table 6: Characteristic parameter time of cosmological structures

where h = 6.6260755 × 10−34Js (Fig. 4.5).

Table 7 summarizes the results with respect to the Solar System objects (Fig. 4.6)
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Fig. 4.7: Characteristic parameter time for Solar system objects

Solar system objects Time(s)

Sun 2. 321 6

Mercury 8. 135 6 × 10−3

Venus 2. 018 7 × 10−2

Earth 2. 127 5 × 10−2

Mars 1. 131 9 × 10−2

Jupiter 0.238 16

Saturn 0.198 97

Uranus 8. 539 2 × 10−2

Neptune 8. 255 7 × 10−2

Pluto 3. 819 3 × 10−3

Moon 5. 797 3 × 10−3

Table 7: Characteristic parameter time for Solar system objects

Table 8 summarizes the results with respect to the periodic table of elements.

What is the meaning of this characteristic time? If we assume TU as the age of Universe

the other times can be seen as a thermalization time, that is the time which different struc-

tures take to start the dynamics as we know now. In other words, it is a sort of fluctuation

before the structures born or emerge from their quantum or chaotic status (see Fig. 4.7-4.9)
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Fig. 4.8: Characteristic parameter time for atomic elements
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Fig. 4.9: Characteristic parameter time at all scales.

4.6 Conclusions

In the paper [109] we have considered the link between the scale invariant law, R(N) =

(h/mnc)N
φ, introduced by authors as a Brownian motion, with drift of the form: B̃N =

BN + φ3N , and Multifractal processes.

We have used the tools of multifractal in the context of Mohamed El Naschie’s ǫ(∞) Cantorian

space-time applied as to cosmology. In order to prove the multifractal nature of the cosmo-

logical’s scenario we built a multifractal process. Brownian motion is an example of Lévy

process. Thus it is qualified as monofractal, because its Hölder exponent is everywhere 1/2.

However in general, most Lévy processes are multifractal. Furthermore, we have considered

a Brownain motion in a multifractal time and calculated the intersection of the exponent for

obtaining a multifractal process starting from a Brownian motion.

In conclusion, we showed some physical consequences with respect to the Fractal Dimension

of Cantorian time and we discovered a characteristic parametric time linked to the quantum

or chaotic fluctuation preceding the inciption of the structures.
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Elements Time (s) Elements Time (s) Elements Time (s)

H 5.0165 × 10−24 Mn 1.9021 × 10−23 ln 2.4319 × 10−23

He 7.9442 × 10−24 Fe 1.9125 × 10−23 Sn 2.4589 × 10−23

Li 9.5443 × 10−24 Co 1.9471 × 10−23 Sb 2.4798 × 10−23

Be 1.0412 × 10−23 Ni 1.9445 × 10−23 Te 2.5189 × 10−23

B 1.1063 × 10−23 Cu 1.9966 × 10−23 I 2.5144 × 10−23

C 1.1459 × 10−23 Zn 2.0157 × 10−23 Xe 2.5431 × 10−23

N 1.2061 × 10−23 Ga 2.0593 × 10−23 Cs 2.5534 × 10−23

O 1.2608 × 10−23 Ge 2.0872 × 10−23 Ba 2.5815 × 10−23

F 1.3351 × 10−23 As 2.1093 × 10−23 Hf 2.8171 × 10−23

Ne 1.3622 × 10−23 Se 2.1466 × 10−23 Ta 2.83 × 10−23

Na 1.4227 × 10−23 Br 2.1551 × 10−23 W 2.8451 × 10−23

Mg 1.4493 × 10−23 Kr 2.1895 × 10−23 Re 2.8572 × 10−23

Al 1.5007 × 10−23 Rb 2.2040 × 10−23 Os 2.8775 × 10−23

Si 1.5209 × 10−23 Sr 2.2223 × 10−23 Ir 2.8876 × 10−23

P 1.5713 × 10−23 Y 2.2331 × 10−23 Pt 2.9019 × 10−23

S 1.5895 × 10−23 Zr 2.2523 × 10−23 Au 2.9112 × 10−23

Cl 1.6437 × 10−23 Nb 2.2661 × 10−23 Hg 2.9289 × 10−23

Ar 1.7104 × 10−23 Mo 2.2906 × 10−23 Tl 2.9472 × 10−23

K 1.6982 × 10−23 Tc 2.2990 × 10−23 Pb 2.9607 × 10−23

Ca 1.7123 × 10−23 Ru 2.3306 × 10−23 Bi 2.9692 × 10−23

Sc 1.7791 × 10−23 Rh 2.3447 × 10−23 Po 2.9693 × 10−23

Ti 1.8171 × 10−23 Pd 2.3709 × 10−23 At 2.974 × 10−23

V 1.8548 × 10−23 Ag 2.3818 × 10−23 Rn 3.0296 × 10−23

Cr 1.8675 × 10−23 Cd 2.4147 × 10−23 Fr 3.0342 × 10−23

Ra 3.0478 × 10−23

Table 8: Characteristic parameter time for atomic elements.



5. CONCLUSIONS

In this thesis we presented a specific scenario of stochastic self-similar processes in the context

of large scale structure and cosmology. Thanks to El Naschie’s works, ǫ(∞) become the natural

framework for describing the scenario of High Energy Physics. In other papers (e.g. [50],

[51], [52] ) fractals and multifractals become the natural language for describing Nature at

all the scales in terms of its dynamical processes. In this work, we presented the stochastic

self-similar processes in a fixed framework applying them to large-scale phenomena, modeling

the natural scaling phenomenon in the context of M. El Naschie’s ǫ(∞) Cantorian space-time.

In particular, after an introduction on the mathematical context with respect to stochastic

self-similar processes, fractals and multifractals concepts, our focus was on the following

issues: we studied different analytical and numerical approaches to get stochastic self-similar

processes applications for describing ǫ(∞) Cantorian space-time and presented new results

obtained by using the fractal and multifractal properties within the above mentioned context.

In Chapter 3, we studied the implications of a stochastic self-similar and fractal Uni-

verse; indeed, it was demonstrated that the observed segregated Universe is the result of a

fundamental Self-similar law (as anticipated in previous papers, e.g. [50], [51], [52] ). In

particular, we studied some aspects of the relation between the universal scaling law and the

Random Walk; specifically, we used a Brownian motion developed as a limit of a Random

Walk.

Moreover, we have showed some results obtained by using the context of ε(∞) Cantorian

space-time in connection with stochastic Self-similar processes in order to provide for a

possible explanation of the segregation of the Universe at fixed scale in terms of Brownian

motion.

In Chapter 4, we presented the analysis of Multifractals in the context of El Naschie’s ǫ(∞)

Cantorian Space-Time applied to cosmology. In detail, we summarized some recent results

concerning fractal structure and the Brownian paths, in order to calculate fractal dimensions
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and characteristic parameters for large scale structures and for the atomic elements that live

in El Naschie’s ǫ(∞) Cantorian Space-Time. At the very beginning, we considered the results

describing scaling rules in Nature as our starting point. Then, we used multifractal analysis

to show that the result obtained by the author as Brownian motion in the Chapter 3, is a

Multifractal process. In conclusion, we showed some physical consequences with respect to

the Fractal Dimension of Cantorian time and we discovered a characteristic parametric time

linked to the quantum or chaotic fluctuation preceding the inciption of the structures.
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