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This thesis is a �rst e�ort to make a step further in the understanding of speech
recognition. The starting point of the ideas here presented goes back to the
early language scienti�c theories, which have been followed in time, by a set of
psychoacoustic experiments, models, and technical realization attempts.
An hypothesis will be assumed, which will be called multi-granular as the next
discussions will better de�ne. A speech signal contains information distributed
on di�erent time scales, and humans are able to catch it all. Furthermore, other
knowledge sources are used, which are not necessarily linked to the signal, but
can even come from semantics or pragmatics.
This work focuses on what can be extracted from the signal, without investi-
gating other knowledge sources.
Human auditory system needs that more parallel cognitive functions operate a
chunking on the unfolding of the information over time, to catch all information
coming from the signal. Humans seem to perform speech recognition successfully
also because of a partial parallelization process. The left-to-right speech stream
is captured in a multilevel grid in which several linguistic analyses take place
simultaneously.
An example of realization for a multi-granular automatic speech recognizer is
here presented. Dynamics coming from the signal, which are segmental or super-
segmental in nature, are catched in a single model which tries to take the best of
them, in order to improve system performances. Each analysis level, set up on
a certain scale, is a grain. The whole system is so de�ned as a grain-set, which,
in this experiment, will only come from signal characteristics. The elements of
the set are correlated and cooperate during the speech processing.
Some problems arise in the de�nition of such a system. Firstly the several
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sources of information have to be identi�ed and secondly they have to be coded
and modeled in some way. A further problem is in the time span of the events,
which are not synchronous to each other.
Despite of its essential usefulness in people interaction, speech recognition is one
of the most di�cult human feature to model with an automatic system. This
work is meant to go towards a better understanding of the problems lying in the
gap between human and machines on speech recognition. As usual, the main
aim is to simulate and not to emulate human behaviour.
The recognizer here developed, has been compared to a standard model, with
an improvement of absolute 17% in the task of number recognition in the range
0-999,999. The results come out from the experiment open several discussions
on speech events coding, on the behaviour of the machine learning models em-
ployed, and on further developments of the ideas.
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1 Introduction
Spoken language recognition in human beings is a natural, robust and perfor-
mant feature. This means that it is able to function correctly even in uncomfort-
able situations, in presence of background noise or reverber. According to many
perceptual experiments, human speech recognition system acts computations,
�lters and adaptations to speakers it deals with, and is then able to transform
a vocal signal in a succession of words to which associate an interpretation.
The details of how this is achieved goes beyond our current knowledge and,
besides many theoretical and experimental models, there are lots of further
aspects to discover.
Despite the many problems encountered during the development of scienti�c
models, the science of automatic speech recognition has evolved and achieved
success in creating arti�cial methods which can simulate some human behaviour,
but the goal is the complete understanding and catching of such topic and is still
very far. Automatic Speech Recognizers (ASR) are going to work well enough to
meet market requirements and many of them are employed as dictation systems.
The design and building issues for such arti�cial systems presents di�culties
because of complexity problems, as for the real-time requests of functioning and
robustness requirements, as they have to function almost �everywhere and for
everyone�. Factors yet studied in linguistics, as speech variability form person
to person, environmental noise, words confusion, coarticulation e�ects, are some
of the aspects in�uencing performances and e�ciency of ASRs, increasing the
gap to human system simulation.
Modern dictation systems, in which the user can speak into a microphone and
phrases are automatically written on an electronic page, can reach high perfor-
mances, but they need to be trained on a precise speaker, and no e�ectiveness is
granted on another voice. Such systems are generally called speaker dependent,
and are not involved in the present discussion.
This thesis is about speaker independent systems, whose performances are cal-
culated on many speakers, with di�erent genders and dialect in�ections. The
aim is surely more challenging respect to speaker dependent systems, because
it has to take into account the high speech variability between humans.

In ASR building, scientists have always started from hypotheses about human
communication. They also state that there exist an atomic unit, which is the
Base Unit around which human speech recognition is centred.
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Many aspects of speech signals have been formalized and lots of units have been
investigated, such as syllables, phonemes and so on. Generally a stochastic
system is employed, which �nds to associate a unit to a piece of signal, while
another process decodes the spoken phrase by assembling the best sequence
of units. The whole process is governed by a grammar, which contains the
probabilities of concatenation between units.
The problem of the choice of the best Base Unit is fascinating, and has risen
many debates in psychoacoustics as well as in informatics. The main problems
are in the balance between the possibility to represent such units, formalizing
their characteristics, and their robustness to environmental and speakers varia-
tions.
The choice of a domain of application1 for an experimental system is also critic.
It is not wise to face the problem of building a novel model, by running it
directly on a natural language application. The right subset of a language has
to be chosen, which must present many of the problems which can be found
in large vocabulary applications, and a fast implementation which focuses on
the model, rather than on performances. In this experiment a corpus has been
collected, which is a set of recordings with a related hand transcription, with
indications about units present in the speech signal, along with their position.
The corpus is necessary because ASRs are machine learning systems that need to
be trained on prepared examples. Also performances are calculated on a corpus
basis, because hand transcriptions are used as references to test the truth of the
automatic productions.
The above explained is the classic approach, which does not involve other as-
pects intervening in human recognition. Some theories and experiments have
highlighted that also long-time span processing is important and that events
like rhythm and accent are involved. All these features will be investigated in
this thesis on the strand of multi-granular approach, which integrates all those
information sources in a complex model for an ASR. As explained in the next
sections, such an idea has evolved during last years, bypassing initial problems
of complexity and scalability, also thanks to technology evolution.

1Domain of application means the semantic and syntactic area corresponding to a de�ned
environment for the application of an ASR. For example medical refertation or help desk
services put several restrictions on language and vocabulary.
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1.1 The Idea

At the beginning of the 20th century, Ferdinand de Saussure, the father of
modern linguistics, in his Lectures on General Linguistics [18] stated that, when
facing the problem of describing a �living� language, there is a unique rational
method to be used, which consists in

• Collecting the set of elementary sounds on direct observation.

• Putting apart the system of signs which serve to represent, imperfectly,
the sounds.

He said that many grammar scholars of his time, were still fond of the erroneous
methodology of researching how each letter of a language, they wanted to de-
scribe, was pronounced. In this way it is not possible to completely represent
the phonological system of an idiom. Such set of features has to be distinguished
from written language. Speech has its own life and a separation has to be made
between spoken language and its representation, the written language, which
has a slower evolution and sometimes adapts itself to speech. Furthermore de
Saussure stated that, during the reading process, two behaviours can take place.
A word which is new or unknown, is read letter by letter, while an usual word
is catched in �one shot�, independently from the letters which it is made of.
The discussion about written and spoken language is concluded by stating that
linguists have to limit themselves to <<desire that usual writing is free from
its biggest absurdities, because, if in language teaching a phonological alphabet
can give services, its use has no to be generalized>>.
The theory continues with a treatment of spoken language and its role respect to
written language, which is somewhat confusing because it is only a sort of image
of its spoken counterpart. In the end, the author states that speech follows other
kinds of grammars, structures and evolutions.
The considerations by de Saussure are important in two ways

• They make us understand that speech has to be considered separately
from writing. Also words, syllables and grammars representations have to
be changed and to be di�erent from written language ones.

• There exist some forms of grains, which are visible in writing, but also in
speech. When a word is new, we have to investigate at the �ne grain of
letters (or phonemes in speech) details. If it is a usual word, we make use
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of large grains, which catch the entire word without going to explore �ner
and, above all, slower details.

These two assumptions are the very starting point of this thesis, which so begins
from early studies about language. De Saussure was critic about its colleagues,
which focused only on �ne phonetic details.
The underlying idea is that many dynamics exist in a speech signal, which
can be extracted and used to reach a robust recognition. What is proposed
is not something new, but it has always been in speech research, in all the
environments. As said above, an evidence can be found in de Saussure's theories,
but also in psychoacoustics, linguistics and engineering.
The here presented model will give an organization to the concept of multi-
granular speech recognition, by introducing the ideas of speech grains and merg-
ing them together.
In the next sections, an introduction to some basic linguistic de�nitions is �rstly
depicted, in order to let the reader understand which are the speech units we
will refer to. Then psychoacoustic models will be introduced, in order to give
evidence about intuitions of multi-granular ideas, in environments which are
above informatics. Finally, an overview of the evolution in time of the concept
of multi-granular recognition follows, where it will be clear that the theory has
always been present since early ASRs models.

11



1.2 Speech Units
1.2.1 The Spoken Language

Communication by means of spoken language can be seen like an interaction
between an emitter (the speaker) and a receiver (the listener) which is achieved
by means of a physical support (air). Aside from a technical point of view, sev-
eral de�nitions can be found, which cannot synthesize the complexity contained
in the term Speech.
Speech is originated by the intention to communicate an idea, and the central
nervous system, by means of muscles, is able to transform it in act and to
transfer it to a listener. This one captures the signal, under the form of air
pressure variations, in the hearing system, processes it and converts it in neural
stimuli, which are then interpreted by the central nervous system. The speaker
constantly controls production organs, on the basis of acoustic signal hearing
[30].
When words are combined in sequences of spoken tokens, the pronunciation of
the single segments involved can be subject to changes. Speed and rhythm can
be responsible of low volume, deletions, insertions or complete modi�cation of
their common characteristics.
Words can be decomposed in syllables, which can assume strong (stressed) or
weak (unstressed) forms. Words which can represent grammar relations in a
language, are particularly subjected to these alterations. In fast speech some
sounds can be deleted or changed, in spoken Italian this happens when a �nal
vowel meets an initial vowel, and both are not stressed. E.g. the italian phrase
�è un vero amico� (he is a good friend) can sound like �ènveroamico�. Other
times, between two words a sound can be introduced, for example in presence
of dis�uences or of false starts. This is the case of embarrassing or uncertainty
situations: e.g. ca-can I invite you?.
All these factors contribute to make spoken speech a separated world respect
to written language. Some problems can be studied and rules can be found to
catch them, but it is not always possible. A distinction has to be made be-
tween phonological aspects, which are governed by rules, and phonetic aspects,
as those illustrated above, which could correspond to unsolvable problems. The
hypothesis on which automatic speech recognition is based, is that those phe-
nomena can be studied by means of stochastic methods.
Spontaneous speech presents situations which are very di�cult to solve, because
of the whole variability spectrum. A good starting point could be the study of
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human auditory system, in order to understand all those external factors which
act in human listening process.
In the aim to understand which are the entities involved in speech recognition,
a discussion about the concept of base unit has to be introduced. This will treat
the problem of the existence of a speech unit around which all human speech
recognition is based. Such a unit could so be fundamental for an ASR.

1.2.2 The Base Unit of Speech

One of the fundamental hypotheses which support the possibility of an auto-
matic speech recognition is that it is possible to collect a sequential type of
information in time, and that, when a su�cient amount of is reached, it is pro-
cessed. A bu�er must exist, whose length is related to the concept of Speech
Base Unit and to all the information which, at short or long range, contribute
to the recognition [39].
Speech Base Unit can be de�ned as the minimal form of acoustic information
around which the most part of human spoken language recognition is organized.
Linguists' and psycholinguists' general opinion about this argument is not really
clear. Some trends follow the idea that the entity does really exist and has few,
distinct, manifestations. Other trends argue that is not possible to identify a
single unit, but the manifestation of such a concept has to be searched among
combination of atomic units.
All these studies have �nally demonstrated that units perception is highly de-
pendent on the context. The recognition process is a real complex analysis
involving more than a single scale unit. This thesis will present a model for
such idea, which will be furtherly discussed in chapter 6.
Besides its existence in human processes, it could be very useful for an ASR,
provided that it is small enough to represent a good variety of manifestations
and that it is computationally e�cient. Syllables, for example, can include
many speech phenomena, and are able to build up all the words of a language.
Modelling such phenomena can then result in high performances. Unfortunately
this is not the case, because syllables are di�cult to formalize in terms of signal
characteristics, as well as prosodic units. On the other side, phonemes can
present quite well formalizable characteristics, but cannot contain important
aspects which are essential to recognition robustness.
In the following sections, the main speech entities will be de�ned, with a look
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also to the possibility of a formal representation.

1.2.3 Phonemes and Phones

As de Saussure stated in his theory, in the attempt to formalize a spoken lan-
guage, the writing can be a good starting point, even if it has to be abandoned
when going into the deep details of the study. It could be thought that alpha-
bet letters are the fundamental bricks by means of which also spoken phrases
are built up [66]. Alphabetic systems are born in the aim to graphically repro-
duce the uttered elementary sounds. Unfortunately there exist many languages
which use the same alphabet, but associate di�erent pronunciations to the same
symbols.
Example 1: the French word chic and the English word cheap present the
same initial sequence of characters but di�erent pronunciations.
Example 2: the French word chic and the English word ship have the same
initial sounds, but di�erent transcriptions.
In order to avoid those problems in language research, linguists have invented a
transcription system of uttered elementary sounds. The elements of this alpha-
bets are called phonemes, which so represent classes of sounds and are indepen-
dent from the language.
Words like the English can and the Italian casa will have a phonetic transcrip-
tion which begins with the same symbol /k/.
The most di�use phonetic alphabet is the International Phonetic Alphabet
(IPA).
The instances of the abstract classes which consitute the set of phonemes, are
called phones. E.g. the symbol /t/ indicates a phonemes which represents
all the utterable t sounds. Such e�ective sounds are the phones. In speech
production, the pronunciations of the phonemes vary from person to person
and from word to word. A sequence of phones in a stressed syllable is di�erent
from the same sequence when not in presence of stress, even if the reference
phonemes are always the same.
In a more formal framework, a phonetic transcription is an operation consisting
in representing the phonetic form of a word (or text) in written language.
Example : phonetic transcription of a word
Pietro -> ['p j e t r o]
The accent is generally placed before the stressed syllable.
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1.2.4 Syllables

Syllable: a phonetic unit constituted by one or more sounds, pronounced with
the same emission of voice. It can be formed by a vowel, a diphthong, alone or
accompanied by one or more consonants [23].
Syllable: a speech unit for which there is not a satisfying de�nition [37].
About Syllables: There are not common borders at which syllables unify, but
each is separated and distinct from the other (Aristotel, Categories)

Syllables have been described as pushes of respiration muscles, peaks of sonority,
energy impulses, necessary units in mental organization and in speech produc-
tion, a group of movements in a vocal signal and a base unit of speech.
An adequate de�nition of syllable does not exist, despite the long discussion
about their role in human speech recognition, . From the point of view of an
automatic system, based on them, there is a need for such a de�nition.
Humans seem to possess an intuitive concept of syllable. And that's why also
a �non expert� person is able to divide words in syllables, even if they are not
always able to say which rule they have used. Its a common opinion that a
syllable is constructed around a nucleus, which is the most intense and always
present part. Many syllables start with a �rst part, called onset, with increasing
energy, and terminate with a descending one, called coda.

Figure 1: Syllable Structure.

Even if this could seem a good de�nition of syllables segments, automatic sub-
division of words still �nds several problem, and the best performance is around
10% of error rate in placing syllabic markers. This is due to the high variability
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of spontaneous speech and to speech rate, which does not let the automatic
system to recognize the correct energy islands.
From an abstract point of view, a syllable has to necessarily contain groups of
phones and evident acoustic manifestations. Sometimes such phenomena are not
detected because people can hear syllables even when they have not been really
uttered. This event is called mirage and is present in fast speech situations.
From these considerations, researchers have deduced that syllable is a perceptive
entity rather than a linguistic one.
Many e�orts have been made in representing syllables in terms of acoustic tracts.
The overview in the next chapter illustrates some of them. One of the best
representation has been tried by Greenberg, with the Modulation Spectrogram
[36], followed by some experiments in ASR [17].
As said before, from the point of view of the methodology of modern recognition
systems, the ideal base unit of speech should be large enough to incorporate
the most part of phonological e�ects, for example co-articulation and prosodic
correlations between phonemes, and it should also have stable and well de�ned
boundaries. If a syllable had a formal de�nition, it so would result in outstanding
performances. Fujimura [21] proposed a work where he depicted the advantages
in using syllable rather than acoustic components in speech recognition. He also
proposed theories about prosodic structure interpretation in terms of syllabic
tracts and obtained interesting results in speech synthesis by means of such
units.
The lack for a well de�ned and accepted de�nition of syllable, is the main
reason for the phonemes to be used in commercial and more di�use ASRs.
Moreover a syllable oriented system is usually strictly linked to an automatic
syllabic segmenter or to poorly discriminative features. Finally, speech rate and
variability are particularly a�ecting for syllables, because entire pieces of that
structures (onsets or codas) can be deleted.

1.2.5 Prosody

Prosody is the part of linguistics which studies the set of phenomena which su-
perpose o accompany the primary articulation of sounds. It is meant to be the
set of melodic and rhythmic characteristics of speech. Prosody has been studied
deeply as an important source of knowledge for speech understanding. In last
years literature, lots of works have aimed to �nd a model for such phenomenon.

16



These studies have emphasized the fact that prosody is slightly related to the
segmental composition of the vocal signal. It is a super-segmental aspect, be-
cause it contains information which goes beyond the �ne phonetic details.
From an acoustic point of view, the term prosody means intensity, duration,
intonation and spectral pro�le of an utterance [15].
These characteristics let us disambiguate the meaning of some phrases.
Example : the following phrases

Mercy impossible, kill.

Mercy, impossible kill.

di�er only in the intonation and distribution of pauses, but the meaning changes
strongly.
Prosody can be de�ned formally by means of several acoustic characteristics,
which are not able to describe it completely. Some of these will be largely
described in the next chapter.

1.3 Multigranular Models in Psychoacoustics
In this section a brief overview is presented about the intuition of multi-granular
ideas in psychoacoustics in recent years.
During the search for the Base Unit (BU) of Speech in linguistics, experiments
have been carried out about establishing if the atomic entity of speech recog-
nition was the phoneme or the syllable[39]. As said in the previous sections,
the opinions of the scholars are not coherent, but they almost agree on the fact
that such a unit does really exist. The discussion about the identity of such a
unit has not come to an end, someone identi�es it with the phoneme, other ones
with the syllable, but there is another trend supporting the assumption that the
Base Unit of Speech has to be found in a combination of many units, segmental
and non-segmental in nature, so that it is not an atomic phenomenon.
Units like syllables are able to incorporate speech phenomena like co-articulation
between phones and other long span features, but the de�nition of syllable is
di�cult to catch even in linguistic environment. Researchers have so addressed
other units, related to phonemes or syllables, such as diphones, triphone or half-
syllables, in order to take a single unit with the characteristics of the searched
base unit.
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Nygaard et al. [46] have stated that there is not a single BU for all the situations,
even if human perceptive system uses few organizing entities. This is a new
direction in the research on speech segmentation and identi�cation, and the
multi-granular assumption here presented is very close to that.
The most used experiments for base unit detection are the Monitoring ones.
The main assumption here is that there is a correlation between how fast a
human subject is able to recognize and respond to an acoustic stimulus, and
how fundamental is the recognition unit, on which the experiment focuses.
Experiments can have many realizations, but in most cases a person is asked
to react as fast as possible to the perception of speech signal portions of the
length of a phoneme or a syllable. The researchers assume that the correlation
between the chosen unit and the reaction time is simple to identify [16].
Experimental results can be divide in three classes:

• The ones who calculate better reaction times for the syllables [39].

• The ones who identify the phoneme as the base unit [2].

• The ones who declare that such results are not signi�cant, because only
a single experimental paradigm has been used. Maybe there are more
sub-lexical units which are basilar for human speech recognition [35].

Another thread about multi-granularity can be found in neuroscience. Poeppel's
research [47] deals with parallel processing of speech. He states that speech sig-
nals contain information on di�erent time scales, which are processed bilaterally
in superior temporal cortex.
Starting from the above overview, a perceptive model can be described, in which
the concept of multiple levels of analysis, is explained and inserted into the gen-
eral framework of human speech recognition mechanisms. Hawkins et al. [55],
in last years, have presented and pursued Polysp (POLYsystemic SPeech Un-
derstanding), a general framework by which <<episodic multimodal sensory
experience of speech can be simultaneously processed into di�erent types of lin-
guistic and non-linguistic knowledge at a variety of levels of abstraction>>.
The main aim is the understanding of the processes which govern the interac-
tion with another person, rather than building a <<complete description of a
given utterance at successive, obligatory stages of formal linguistic analysis>>.
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Polysp focuses on how meaning is understood from spoken utterances, without
going to only analyze the �ne phonetic details of a speech signal.
Hawkins' et al. work explores the contribution of phonetic knowledge to how
we understand words, and some implications for what makes a plausible model
of spoken word understanding. They show certain types of �ne phonetic detail
systematically re�ect not just the phonemic content, but the wider phonological
and grammatical structure of the message and, while some systematic di�erences
in phonetic �ne detail are relatively localised in the speech signal, others stretch
over several syllables, and that both types can make speech easier to understand.
They state that one consequence of focusing only on �ne phonetic details in
models of spoken word recognition and understanding, is that other processes
and stages of analysis may be given inappropriate emphasis, and that this has
happened in models which adopt the convenient �ction that the phoneme is
the basic input unit to the lexicon. In consequence, no current phonetic or
psycholinguistic theory accounts satisfactorily for how normal connected speech
is understood.
The approach in Polysp starts from experiments where they explore character-
istics of human listeners, that may de�ne the way they make sense of richly
informative sensory signals. Amongst these, they emphasize various forms of
learning, and some current neuropsychological views about the nature of mem-
ory and the organisation of mental categories, both linguistic and non-linguistic.
Hawkins declares that <<phonetic categories are like all other mental cate-
gories: self-organising (emerging from the distribution of incoming sensory in-
formation in combination with pre-existing relevant knowledge), multimodal
and distributed within the brain, dynamic, and context-sensitive (or relational)
and therefore plastic, or labile>>.
So, the model main assumption is that the phoneme has dominated thinking
in both speech science and psycholinguistic research on spoken word recogni-
tion, at the expense of other types of phonological and grammatical structures.
Much of the systematic variation in speech that indicates linguistic structure
has been ignored. Short-domain spectral temporal events that relate most di-
rectly to phoneme identity have dominated perceptual research in speech sci-
ence, together with a tendency to separate segmental and prosodic information
in thinking and in research. Partly for practical reasons, this idea has either
been adopted in many computational models of spoken word recognition and
lexical access, or it has strongly in�uenced them.
The traditional view that speech is understood by being organised into inde-
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pendent prosodic and segmental abstract units is rejected, while they suggest
that the perceptual correlates of linguistic units are typically complex, often
spread over relatively long sections of the signal and simultaneously contribute
to more than one linguistic unit. They state that this complexity is a crucial
determinant of how we understand speech.
In Hawkins' model, the multi-granular idea is meant to be the basis of speech
understanding rather than of simple utterances recognition. They regard each
phonetic segment as best described in terms of all of its structural properties,
rather than solely or mainly in traditional phonetic terms. Long-domain seg-
mental information, instead, is de�ned in terms of time and syllables. Such
information is de�ned as a perceptual information extending for at least a syl-
lable, or, somewhat arbitrarily, for about 100 ms or more.
As for the realization of the model they suggest, some hints and guideline are
given, while only partial results are reported. The rest of the model will be
explored in European projects, as for example S2S [51].
What is de�ned as multi-granular, in the present thesis, is de�ned poly-systemic
in Hawkins et al. [55] work, in that language is seen as a set of interacting
systems.

1.4 Multigranular Models in the 80s
The 80s have been pioneer years for ASRs, because �rsts attempts were made
about improving systems performances, in an environment where technology
could not support ASR complexity.
Above all the attempts towards the building of systems to be employed in com-
mon applications, there are few examples of people who tried to understand if
such models could achieve human system simulation. The most famous general
framework, the Hearsay II model [50], is based on informatic structures largely
employed in the 80s, the blackboards.
The Hearsay II uses the concepts of stimulus and response frames of knowledge
source instantiations, competition among alternative responses, goals, and the
desirability of a knowledge source instantiation, for the development of a general
control mechanism.
Experimental results demonstrate the e�ectiveness of such a model. Inputs to
the system are temporal sequences of sets of acoustic segments and associated
hypothesized phonetic labels. Several kinds of speech understanding knowl-
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edge engines are encoded in several independent knowledge source modules
(KSs). Some of the employed domains are: acoustic-phonetic mappings, phone
expectation-realization relationships, syllable recognition, word hypothesation
and veri�cation, syntax and semantics. The model then addresses not only to
signal features, but goes beyond, considering also language knowledge.
The state of the system at any point in time is represented by a global data
base (the blackboard) which holds, in an integrated manner, all of the current
hypothesized elements, including alternative guesses, at the various levels of
interpretation (e.g., segmental, syllabic, lexical, and phrasal). In addition, any
inferred implicative or con�rmatory relationships among various hypotheses are
represented on the blackboard by weighted, directed links between associated
hypotheses. The weight and direction of a link re�ect the degree to which the
hypothesis at the tail of the link supports (or con�rms) the hypothesis at the
head. The blackboard may be viewed as a two-dimensional problem space,
where the time and information level of a blackboard hypothesis serve as its
coordinates.
Processing consists of additions, alterations, or deletions made to data on the
blackboard by the various KSs. Each KS is data-directed, that is it monitors the
blackboard for arrival of data matching its precondition pattern. Whenever its
precondition is matched, a copy of the KS is instantiated (invoked) to operate
separately on each satisfying data pattern. Finally, when the KS is executed,
its (arbitrarily complex) logic is evaluated to determine how to modify the data
base in the vicinity of the precondition pattern that triggered the invocation.
The data pattern matching the precondition of a KS is called the stimulus frame
(SF) of the invocation, and the changes it makes to the data base are referred
to as its response frame (RF). Each KS may be schematized as a production
rule of the form precondition => response.
The whole process set up in the blackboard, is parallelized as what is suggested
by the psychoacoustic models described in the above sections. Such an approach
presents problems in the parallel evaluation of numerous alternatives and in
the fact that, at any point in time, a great number of KS applications are
warranted by the existence of hypothesized interpretations matching the various
KS preconditions. A control process is introduced to schedule the numerous
potential activities of the KSs to prevent the intractable combinatorial explosion
that would inevitably result from an unconstrained application of KSs.
Going into details, the experimental results presented by the authors are ob-
tained as follows [50]:
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• All segmental hypotheses are generated from the parametric representa-
tion of the acoustic signal.

• All grammatically feasible sentence-initial and sentence-�nal words are
predicted top-down.

• Possible interior words are predicted bottom-up, based on stressed syllable
hypotheses constructed from segmental information.

• These predicted words are then rated, and the most likely words in each
time interval are placed on the blackboard.

• The control process is implemented, using thresholds.

• A heuristic word sequence hypothesizer attempts to identify the most
probable sequences of word hypotheses (consisting of successive language-
adjacent word pairs).

• KSs are invoked to attempt to parse the hypothesized word sequences to
determine if they are grammatically coherent, to predict possible time-
adjacent grammatical word extensions, to hypothesize and verify new
words satisfying these goals, to concatenate grammatical and time-adjacent
word sequences, to reject phrases and words, and to generate new word
sequence hypotheses.

• Whenever a more valid overall sentence hypothesis is generated, weak
hypotheses are deactivated, and associated pending actions are eliminated.

A signi�cant amount of tuning of the focussing parameters has to be made, in
order to make the system works properly. Nevertheless, the authors declare it
is impossible to determine what the optimal values are.
The results from the 61 test sentences in spontaneous speech achieved a 77% of
well recognized phrases. No other tests have been made on other confrontation
corpora.
Interesting is a statement about some aspects of their approach: <<the rela-
tively small grain size of knowledge representation and �ne identi�cation of the
type and location of knowledge source contributions, apparently a�ords great
advantages in experimenting with mechanisms to control a large, distributed,
knowledge-based understanding system>>. So, in authors' opinion, starting
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from a �ne grain is good for having an overall generalization, even if they con-
clude the work stating that the analysis of their results <<indicates that large
cost reductions can be obtained by straightforward realization of the proposed
focusing principles, particularly if a moderate grain size (the level of word hy-
potheses) is chosen as a basis for implementing the notions of current state,
competition, and stagnation>>.
The results were encouraging, even if there wasn't a comparison with other
standard models. Unfortunately there were elements which didn't allow the
model to go further. The main problems were that the Hearsay II made highly
use of the blackboard structures. Lee Erman, one of the original Hearsay-II
designers, stated that the reasons for the neglecting of blackboard technology
can be resumed in two observations.

• The advantages of blackboard systems do not scale down to simple prob-
lems. They are only worth pursuing for complex applications.

• A blackboard system is useful for prototyping an application, but, once
developed and understood, the application can be re-implemented without
the blackboard structure or opportunistic control machinery.

Other reasons can also be found around in literature.

• Lack of commercial software designed speci�cally for building blackboard
applications.

• The myth that blackboard applications are too slow or too hard to develop.

• Shortage of application developers with experience building blackboard
applications.
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1.5 Multigranular Models in the 90s
The '90s have been characterized by the development of dictation systems and
improvements of standard systems performances. With the spread di�usion of
personal computers and telephony technologies, a great stress has been given to
automatic speech recognition. In the end of the '90s an increasing interest rose
again on multi-granular models.
The most signi�cative example is that by Wu [65], which demonstrates that
the integration between information coming from syllabic scale and that com-
ing from a phonetic scale, can improve ASR performances, reducing also the
dependency from reverber.
The experiment is tested on English digits from 0 to 999 and presents an idea
for integrating syllable and phonemes in a single stochastic model.

Figure 2: Wu's ASR system.

The best integration is achieved by substituting the two blocks of syllabic and
phonetic ASRs, with a single decoding system constituted by a Markov chain
in which both syllabic and phonetic pronunciation models are present.
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Figure 3: Wu's pronunciation model.

As can be seen from the �gure above, from the two separated pronunciation
models, a single one is built in which every state represents both a phoneme
and a syllable. The whole schema of the recognizers is that in �gure 2, where at
the exit of Neural Network classi�cation sessions, the probabilities coming out
from each of the processing levels are employed together into the decoder. Wu's
ASR is based on a syllabic segmentator, developed on Greenberg's Modulation
Spectrogram technique [36]. At the end of the essay, results are reported in
situation of clear or reverberate speech. Respectively, the Word Error Rate2

reaches 5.1% on clean speech and 16.7% on reverberate speech, while the base-
line reference system had reached at best 6.7% on clean speech and 28,0% on
reverberate speech.
Wu notes how reverber is crucial in speech recognition, and that introducing
syllables can partially take care of this problem.
Following Wu's experiment, Ganapathiraju et al. [45], use a purely Markovian
approach, employing only HMMs. They try to demonstrate that a markovian
model based on syllabic acoustic units, can perform as well as standard systems
based phonetic units. They test their model on the same framework of Wu,
where a 6.3% of Word Error Rate is reached by the syllabic model, compared
to 5.4% of phonetic models. Even if the performances by the phonetic model are

2de�ned as 1− no. substitutions+no. deletions+no. insertion
total no. words in the correct sentence

× 100%
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better, they try to merge together the two levels, by combining the utterances
scores coming from the two models. The performance test is made on the
Switchboard corpus, where an absolute increase of 12% in performance respect
to the simple phonetic model is calculated.
Many other experiments can be quoted about the rescoring of phonetic recog-
nizers by means of prosodic features. In their work, Hirose et al. [52], after a
recognition process, generate pitch contours for recognition candidates using a
speech synthesis scheme, and compare them with the observed countours. The
system, tested on the task of detecting phrase boundaries (on the ATR contin-
uous speech corpus) gains an absolute improvement of 5% respect to a baseline
standard system.
Another work following this idea can be quoted. King et al. [58] face the prob-
lem of coarticulation modelling by means of syllable modelling. Phonetic tracts
(voicedness, tenseness, etc.) are automatically extracted and a segmental recog-
nition is performed. A Hidden Markov Model acts on syllabic units using those
feature instead of standard coding. The system shows an overall performance
of 36.5% accuracy on the TIMIT corpus, but the same score is calculated for
a standard HMM model of comparison, trained on standard features directly.
Their conclusion is that the same kind of information in carried out by standard
coding and phonetic "tracts".
Veilleux et al. [44] work is an example of bottom-up approach in prosody in-
tegration with phonetic information. Speech recognition rescoring is obtained
by prosodic pro�le classi�cation. In order to compute the score of a candidate
word sequence and associated parse, automatic break detection is �rstly used
and the parse is encoded as a sequence of decision trees.
The parse score of a word sequence is then given by

S =
1
n

n∑

i=1

log p(bi|ti)

Where bi and ti correspond to boundaries after the i -th word, ti is a �terminal
node� and p(bi|ti) is the distribution associated to the terminal node ti. The
factor 1/n accounts for di�erences in word length in comparing sentence hy-
potheses. Each recognized spoken utterance has at least a sequence of break
indices, which are scored according to the above expression. Veilleux et al.
choose the most probable parse as the intended interpretation. This procedure
leads to good performances improvements in phrase disambiguation. The un-
derlying idea is that prosody introduces a further kind of information which is
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more linked to speech than to written text, because it is in prosody that the
power of interpretation disambiguation lies.

All these works, at the end of the '90s, underline the importance of introducing
multi-granularity in speech processing as a crucial step for outperforming ASR
design and implementation. This is the starting point of the work described in
this thesis.

1.6 Multigranular Models Today
The experiments illustrated in the previous section, have been a fundamental
layer for the models of the last years, which have largely investigated the inte-
gration of multiple acoustic information with di�erent time span.
Following Greenberg's trend [28], and Wu's experiments, an approach to multi-
granularity representation is made by Chang [9]. He builds up a multi-tier
model (cfr. �gure 4) where speech is organized as a sequence of syllables, in
contrast to the conventional phonetic-segment based structure assumed in most
ASR systems. It di�ers from the standard syllabic models in representing single
syllables as sets of acoustic cues instead of a succession of phonetic features.
Acoustic cues refer to the phonetic structure of the syllable in terms of manner,
place of articulation, vowels, etc., and also to some non-segmental information
supporting the recognition of a syllable in a word. Word templates made up
of a succession of such syllabic-phonetic features are introduced and the possi-
bility of mutation for these descriptions is associated to pronounce variability.
Chang's system performance reach about 10% of Word Error Rate on numbers
recognition ranging from 0 to 999 (taken from the Switchboard corpus) .
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Figure 4: Chang's ASR model.

The above approach, as well as that in Wu [65] or in King et al. [58], can
be classi�ed as explicit models. They address the problem to understand the
perceptive phenomena which lie under a speech signal and model them in an
explicit way. E.g. King et al. experiment is an attempt to catch an explicit
representation of an hidden feature like coarticulation. Chang [9] tries to �nd
a description or a de�nition for a syllable and Wu addresses the explicit model
of the interaction between syllabic spanning information and phonetic charac-
teristics. These examples can be compared to other kinds of approaches, which
start from the basic assumption that the so called hidden features cannot be
explicitly described, but a good machine learning system could extract them
automatically from a standard description.
Wang et al. [53] explore the concept of stress modelling by means of prosodic
features and standard models. They add stress markers to a speech recognizer
in order to improve performances. The underlying idea is that stressed sylla-
bles provide islands of phonetical reliability, and this information can help an
ASR. The model tries to abstract the concept of stressed syllable from a well
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de�ned set of features, like energy, pitch, duration etc. Experiments are made
to estabilish the best combination of features which can describe lexical stress,
and a 5.3% improvement in relative accuracy, respect to a standard system, is
calculated on the JUPITER corpus.
Kocharov et al. [42] follow an implicit modelling approach on multiple acoustic
features combination. The spectrum derivative is introduced and combined with
the standard MFCCs and voicedness markers. Linear Discriminant Analysis is
applied to �nd the optimal combination of the di�erent acoustic features. Exper-
iments, performed on german continuous digit strings, recorded over telephone
line, reach a relative improvement of 20% in accuracy respect to standard base-
line models, while a 4% relative increment is reached in german large-vocabulary
conversational speech (VerbMobil II corpus).
Livescu et al. [3] investigate the use of Dynamic Bayesian Networks to catch
hidden features from phonetic characteristics. In previous works the represen-
tation has typically been implicit, relying on a single hidden state to represent
a combination of features.

Figure 5: Dynamic Bayesian Network for hidden features.

In �gure 5 the model is depicted. In each frame, there are N hidden features
A1A2...AN , each depending on the current phonetic state S and on its own
value in the previous frame. O is the vector of observations (i.e. acoustic
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features), which depends on the current Ai features. The intuition for this
structure is that, at any instant, each feature Ai is at the target value for the
current phoneme, but it is also a�ected by its own value in other frames because
of inertia and continuity constraints. The model is applied to words recognition
and performances gain a 25% of relative accuracy on clean speech in connected
digits recognition (on Aurora 2.0 corpus).

Prosody is a key feature because it introduces super-segmental information.
The reasons for using prosody in ASR has been investigated by several authors.
The integration between multi-granular levels has followed mostly a bottom-up
process where prosody has been used to rescore the results of phonetic or syl-
labic recognizers. In some cases a top-down approach is used, where segmental
recognizers act on parameters modi�ed by a prosodic analysis.
In this thesis the concept of multi-granularity is investigated towards the inte-
gration of the phonetic, syllabic and prosodic levels.
Vergyri et al. [54] analyze prosody in ASR by integrating this kind of knowledge
source into a state-of-the-art large vocabulary recognizer. According to them,
prosody manifests itself on di�erent levels in the speech signal: within the words
as a change in phone durations and pitch, inbetween the words as a variation
in the pause length, and beyond the words, correlating with higher linguistic
structures and non-lexical phenomena. They investigate three models, each one
corresponding to a prosodic model, and eventually merge them. Experiments on
the Switchboard corpus show word accuracy improvement adding each prosodic
knowledge source. A further improvement is observed with the combination of
all the models, demonstrating that each of them captures somewhat di�erent
prosodic characteristics of the speech signal.
The �rst model addresses word duration. For each word a duration feature
is a vector comprising the durations of the individual phones in the word. For
example, the word �that�, represented as the phone sequence dh+ae+t, is associ-
ated to the vector (10.0 8.0 4.0), where the three values represent the durations
of the three phones dh, ae, and t, respectively. The duration models are used
to rescore the recognition hypotheses in an N -best list. In this way, the stan-
dard acoustic features OA are accompanied by the word-duration features OD

in words representation.
The second model introduces pauses into the language model N -grams. Proba-
bilities associated to the transition between words are conditioned by the length
of the pauses following the words.
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The third model deals with hidden prosodic events. Prosody correlates also
with linguistic structures beyond the words themselves, and includes cues other
than durations. Some higher-level phenomena, such as sentence boundaries and
speech dis�uencies, manifest themselves prosodically and can be thought of as
hidden pseudo-words. Word sequences are tagged as alternations of word and
prosodic events W1E1W2E2..WnEn. During testing, the events are unknown,
and the model for the situation becomes equivalent to a HMM, whose states are
(word,event) pairs.
The merged model is obtained from the integration between all the levels. The
best sequence of words and pauses WS∗ is calculated by the following approxi-
mation, in which a product between the probabilities from the single models is
performed

WS∗ ' argmaxws(
∑

E

P (W,E)P (F, E))P (S, W )P (OA|W,S)P (OD|W,S)

OA are the standard acoustic features, OD the word-duration features, E is the
sequence of hidden prosodic events E1E2..En, F is the set of acoustic features for
the E events, W is the word sequence and S is the inter-word pauses sequence.
Improvements in performance are tested on the Switchboard corpus (the NIST
Hub-5 benchmarks), where an absolute increase of 1% is found respect to a
baseline standard HMM system.

Shriberg et al. [57] face the problem of the integration between prosody and
language models in speech recognition. The aim, as usual is to calculate the
joint probability P(W,S) of a sequence of words W and target classes S. A
prosody model is de�ned as a framework in which the probability P(S|F,W) is
calculated, where F is a set of prosodic features. After a phone level alignment
of the training set (taken from Switchboard and Broadcast News corpora) they
provide duration of pauses, syllables, rhyme, vowel duration and speaking rate
to a decision tree which acts a classi�cation. On another side they introduce a
language model P(S|W) used during the extimation of P(W,S). The probability
P(S|W) is calculated to predict the possible classes given the words. Finally a
merging phase follows, in which they suggest three methods for language and
prosodic model integration

• Posterior interpolation. Conditional probability P(S|F,W) is computed
via the prosodic model. Also P(S|W) is calculated and then a linear
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combination of the two is performed.

• Posteriors as features. P(S|W) is calculated via the language model and
this posterior estimate is used as an additional feature for a prosodic clas-
si�er.

• HMM-based integration. Likelihoods P(F|S,W) are obtained from the
prosodic model and used as observation probabilities in a HMM associated
to the language model. The HMM then calculates P(S|F,W) exploiting
both the kinds of knowledge.

Their experiments, using the third approach, demonstrate an improvement of
relative 2% in speech recognition accuracy respect to a simple N-gram baseline
model on the Switchboard corpus. Better results are showed in dis�uencies
detection. They think the weak point of the application to speech recognition is
in the integration method, which should be more sophisticated. Shiberg et al.
[57] experiment is an example of top-down approach because prosodic analysis
comes before phonetic recognition.

1.7 Discussion
So far a panorama ofmulti-granular models has been depicted. The idea belongs
to early studies about language. The concept has been developed during last
decades and several approaches are born, which aimed to catch the multiple
dynamics lying in a speech signal. A vocal signal appears to be a concurrence
of several acoustic events with di�erent time spans, which act together in order
to make human recognition robust and e�cient. Psychoacoustic models and
experiments support the hypothesis.
A border has been traced in modern approaches. Someone uses pure mathemat-
ical models to embed the acoustic phenomena, as they have the role to extract
such layers from the signal features. Other ones prefer to explicitly model those
events in order to discover what is the nature of such dynamics. All the results
are in agreement with the fact that using multiple sources of information is
fundamental for ASRs performances emprovement. All the approaches are not
meant to emulate human speech recognition system, but to partly simulate it.
The model presented in this thesis will follow an hybrid approach, respect to
the ones described above. There will be two layers, the former exploiting a
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mixture of syllabic and phonetic models, which makes use of a mathematical
model aiming to automatically extract phonetic and syllabic dynamics from a
sequence of acoustic features. This model follows what has been de�ned as
an implicit modelling approach. The latter will be an explicit model of the
prosodic information lying in the speech signal. The two models will be merged
together and results will show an evident improvement in performances respect
to a standard baseline system. The merging technique will be largely discussed
as it rises deep questions about the limits of acoustic information representation
and words structure.
The discussion will always focus on features coming from signal characteristics,
without going to explore other aspects, like semantics or pragmatics, which
could be equally fundamental. This choice as been made in order to understand
what kind of useful information lies in the pure speech signal and how to exploit
it at best.
Chapter II will deal with the di�erence between segmental and non-segmental
information, with a catalogue of several techniques to extract features for speech
units representation.
Chapter III illustrates the model chosen as the baseline for performances com-
parison. This model has been built with the standard ASR structure.
Chapter IV presents the ASR that has been taken as the layer for segmental
multi-granular recognition.
Chapter V introduces the model for prosodic representation and recognition.
Chapter VI focuses on the merging phase between the models.
Chapter VII summarizes the experimental results on the chosen corpus.
Chapter VIII analyzes the results and their meaning.
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2 Chapter II: Segmental and Non-Segmental Speech
Features

2.1 Introduction
Phenomena representation and coding is a big informatics branch, and the term
feature generally refers to a code related to some signal characteristics. The
term segmental feature generally indicates a characteristic of an acoustic signal
which acts in a well de�ned temporal length of a speech segment. Examples
can be found for the phonemes, because they generally include 10 ms stationary
speech portions with discriminant characteristics, which can be automatically
extracted. All the other phenomena associated to the articulatory structure or to
characteristics for which no borders can be marked, are de�ned non-segmental.
Examples for such events are the �segment internal temporal structures� which
does not necessarily directly depend to segment or sub-segment boundaries [10].
The so called super-segmental features, are included in the class of non-segmental
characteristics, as they refer to signal properties which �add� to segmental units
and typically have longer spans and a not well de�ned periodicity. An example
is prosody, which is a very useful information in speech understanding and adds
its information to the segmental layer.
The reason to make a di�erence between segmental and non-segmental infor-
mation, is that while the former is often associated to speech units with well
de�ned spectral characteristics, the latter refers to features which are not al-
ways formalizable. Many automatic speech recognizers make use of stochastic
classi�cation models set up on speech units. Such methods associate a speech
unit to a sequence of acoustic features, or are able to calculate the likelihood of
a speech unit to such sequence. Acoustic features associated to segmental in-
formation univocally correspond to a speech unit, but this is not the case with
non-segmental features. This is the �rst problem to face when building a speech
recognizer addressing to such information.
A more detailed explanation about the di�erences in information representation
can be given by showing phonemes and syllables biological production. As
stated in the previous chapter, syllables are units which have not well de�ned
boundaries, sometimes they are purely perceptive events and it is not possible
to detect a well de�ned set of features which is able to precisely discriminate
among them. They can be considered on the borderline between non-segmental
and segmental phenomena.
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Speech is produced by air-pressure waves emanating from the mouth and the
nostrils of a speaker. In most of the world languages, the inventory of phonemes,
as discussed in the previous chapter, can be split into two basic classes:

• Consonants - articulated in presence of constrictions in the throat or ob-
structions in the mouth (tongue, teeth, lips) as we speak

• Vowels - articulated without major constrictions and obstructions

The sounds can be further partitioned into subgroups based on certain artic-
ulatory properties. These properties derive from the anatomy of a handful of
important articulators and the places where they touch the boundaries of the
human vocal tract. Additionally, a large number of muscles contribute to artic-
ulatory positioning and motion [30].
The most fundamental distinction between sound types in speech is the voiced
/ voiceless distinction. Voiced sounds, including vowels, have in their time
and frequency structure, a roughly regular pattern that voiceless sounds, such
as consonants like s, lack. Voiced sounds typically have more energy as shown
in �gure 6.

Figure 6: Spectrogram representation of the word sees.
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Figure 7: Modulation Spectrogram representation of a vocal signal [36].

It can be seen that the waveform of the word sees, consists of three phonemes:
an unvoiced consonant /s/, a vowel /iy/ and, a voiced consonant /z/.
When the vocal folds vibrate during phoneme articulation, the phoneme is con-
sidered voiced, otherwise it is unvoiced. Vowels are voiced throughout their
duration. The distinct vowel timbres are created by using the tongue and lips
to shape the main oral resonance cavity in di�erent ways. As can be seen from
�gure 6, and can be argued from the discussion above, phonemes can present
well de�ned characteristics and can be inscribed in 20 ms segments. The repre-
sentation of the signal by means of the spectrogram emphasizes this aspect.
Di�erently from the segmental situation, a syllable is not well discriminable by
means of a precise scale analysis. They need about 100-200 ms segments in order
to be catched properly, but the lenght is highly variable in that range. As will be
largely discussed in the next section, a rough version of the spectrogram can be

36



associated to such a unit. This representation, called Modulation Spectrogram
makes clear two aspects:

• The syllables are not as well classi�able by an automatic system as phonemes

• Such units are more robust to reverber or environmental variability

This points are clear by looking at �gure 7, where in presence of reverber, the
spectrogram is completely altered, while the modulation spectrogram is still
recognizable.
The next section shows an overview of the most used techniques for features
extraction, either segmental or non-segmental, where a particular stress will be
given to di�culties in units coding.

2.2 Signal Representation
2.2.1 Segmental features

As yet explained, segmental features address to well temporally de�ned char-
acteristics of a speech signal. Most of the techniques used to extract such in-
formation, are aware about the identity of entities to search for. The following
sub-sections will present two methods for phonetic features extraction. The �rst,
the LPC method, is born as an attempt to �nd an information representation
which was univocally associated to the formant frequencies of phonemes, but
also be robust to little environmental changes. The second, the MFCC method,
is an evolution of the previous technique, which introduces di�erent focuses and
scales of analysis referring to human speech perception. Such an innovation is
to make the segmental features more robust, and to extract that part of the
phonetic information which is most invariant among di�erent speakers.

LPC LPC is the most classic method for phonetic features extraction. The
aim is to catch the formant frequencies of the phones constituting a vocal signal.
It is not an accurate or robust model, in that the technique produces values
which are strictly dependent on noise and recording modality.
The reported description has an historical motivation, because this is the start-
ing point for all the successive methodologies addressing to phonemes represen-
tation.

37



LPC is based on the Source-Filter model for speech production. In human
phonatory apparatus, air goes from lungs to larynx, where it can �nd resistance
by vocal cords. It then proceeds to the pharynx and mouth in the oral cave.
If vocal folds activity is present, then a sound is produced like a succession of
impulses which vary air pressure. From larynx on, the sound is ampli�ed by the
re�ections on the oral cave walls.
Only some of the frequency components of the signal are emphasized by reso-
nance, depending on the mouth and pharynx shape.
According to this predictive model, the production of consonants or vowels in
presence of vocal cords activity, can be seen like a train of impulses followed
by resonances. Such sounds are called voiced or sonorant. When there is no
activity by the vocal cords, then the sound is called voiceless, this is the case
of many consonants or few vowels in spoken language. The signal in this case
is similar to modulated noise. The oral cave can be represented by a single
dimension system, which can be dicretized into a succession of N �lters.
In vowels or sonorant consonants, there is a succession of impulses which prop-
agates from the glottis to the lips. The system shape will depend on the sound
produced.
In voiceless consonants a simple air �ow passes through the succession of �lters.
Figure 10 summarizes the whole process. The switch represents the choice
between voiced or voiceless sounds.
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Figure 8: Representation of the air route form the lungs to the lips.

Figure 9: Source-Filter model representation.
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Figure 10: Source-Filter model schema.

From the above schema it can be argued that, ones the exciting impulse train
and the �lter set has been detected, the signal is univocally determined.
The LPC technique tries to go up to �lters identities, and to the resonance
frequencies they produce.
In common applications the oral cave is approximated by an all poles �lter
[43]. In order to have a perfect approximation, those poles should be in�nite in
number.
If E (z) is the Z -transform of the glottis excitation, H (z) is that of the �lter
impulse response and S (z) is that of the exit signal, for the properties of such
systems it results that

S(z) = H(z) ∗ E(z)

Where
H(z) = 1

1
1−∑p

k=1 akz−k

Is the all pole �lter representing the oral cave.
In practical cases, we start from the signal and reconstruct the �lter. So the
inverse relation is used

s[n] =
p∑

k=1

aks[n− k] + e[n]

Where e[n] is the impulse train by the glottis.
The LPC technique takes its name from the fact that the n-th signal sample
can be predicted by a linear combination of p coe�cients, where p is the order
of the approximation.
The idea of the recognition systems based on LPC, is that the coe�cients ak are
univocally associated to the phonemes characteristics. The equation above can
be solved in order to calculate such coe�cients and use them as acoustic features
in phonetic models. The signal analyzed is typically a 20 ms segment of speech
and a vector of p elements is extracted, which represents the characteristics of
the phone lying in that piece.
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Typically a good approximation for p is 12. The reason for such choice is that
a low value results in a rough approximation, while an high value leads to a
confusing �lter, which models all the frequencies in the spectrum and not only
the formants.
There are standard methods for calculating the ak coe�cients from the equation
above. Among them the most famous methods, which will not be discussed here,
are [30]

• The covariance

• The autocorrelation

• The lattice formulation

MFCC Mel Frequency Cepstral Coe�cients is a short time coding technique
addressing 20 ms pieces of signal. Like LPC it refers to the source-�lter model,
but with an innovative idea. The frequency analysis is conducted on a �lterbank
rather than on a single �lter. This happens because a di�erent focus is given to
several regions of frequencies, according to human acoustic perception.
Suppose x [n] to be the vocal signal and X[k] its associated Discrete Fourier
Trasform [43].

X[k] =
N−1∑
n=0

x[n]e−j2πnk/N , 0 ≤ k < N

A �lterbank of M �lters is introduced, where the m-th �lter is

Hm[k] =

0 k < f [m− 1]
2(k − f [m− 1])

(f [m + 1]− f [m− 1])(f [m]− f [m− 1])
f [m− 1] ≤ k ≤ f [m]

2(f [m + 1]− k)
(f [m + 1]− f [m− 1])(f [m + 1]− f [m])

f [m] ≤ k ≤ f [m + 1]

0 k > f [m + 1]
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Figure 11: Representation of the �lterbank.

Such �lters emphasize the spectrum around certain frequencies, whose values
are obtained according to mel bands. Lower frequencies will be analyzed in
detail, while higher frequencies will have a lower focus.

f [m] = (
N

Fs
)B−1(B(fl) + m

B(fh)−B(fl)
M + 1

)

Where fl and fh are the lower and higher boundaries of the m-th �lter, Fs is
the sampling frequency of the signal, M the total numer of �lters and N the
FFT samples [43].
B is the mel scale transformation function for frequencies. It is de�ned as

B(f) = 1125ln(1 + f/700)

B−1 is its inverse, de�ned as

B−1(f) = 700exp((f/1125)− 1)

The number of �lters, M , is the coding order, that is the length of the vector
which will represent a 20 ms signal. From each �lter a single coe�cient is
calculated.
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Each Mel Frequency Cepstral Coe�cient is obtained by the following transfor-
mation of the signal and �lters.

c[n] =
M−1∑
m=0

S[m]cos(πn(m− 1/2)/M), 0 ≤ n < M

Where

S[m] = ln[
N−1∑

k=0

|Xe[k]|2Hm[k], 0 < m ≤ M

The coding vector is so the discrete cosinus transform of the production of the
M �lters.
Common uses of such technique, set M to a value of 13 on about 20 ms speech
segments overlapped by 10 ms.
Many experiments [30] have demonstrated that the nature of the introduced
�lterbank, in combination with the cosinus transform, makes these coe�cients
more robust to noise respect to LPC coe�cients. This is the most used technique
in automatic speech recognizers based on phonetic base units of speech.

2.2.2 Non-Segmental features

The following is an overview of non-segmental features extraction. While in
the previous case, the methods searched for a speci�c form of information, e.g.
formant frequencies, now some events or cues are investigated, which are non-
segmental features, but it is not always clear which are the units addressed
to.
The presentation in this section, will start from methods for syllabic features
extraction. Such techniques are not able to describe them completely, and this
is one of the most important problems in speech recognizers based on those
units. Other techniques will deal with prosodic information extraction. Even
in this case the list of features will not be su�cient to completely represent the
phenomenon.
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Modulation Spectrogram The Modulation Spectrogram technique is born
to catch syllabic information, to be employed into automatic syllables segmenta-
tors. It has been introduced by Greenberg [36] and applied in speech recognition
in [65].
Referring to �gure 12, the passages of information extraction are the following:

• The vocal signal is passed through a FIR �lterbank of trapezoidal shape,
with a relative superposition depending on the �lter frequencies. The
process, as in the MFCC analysis, tries to simulate the sensibility variation
of the human auditory system to di�erent frequencies. Each exit of the
�lterbank represents the signal, �ltered according to a di�erent frequency
band. The number of �lters usually employed in common applications is
20

• The signal is cut in the negative part and then enveloped (with a lowpass
�lter at 28 kHz), to better emphasize the units

Figure 12: Representation of the �rst two steps.

• The enveloped signal is downsampled to reduce processing complexity

• The Fourier Trasform is calculated on 250 ms windows, overlapped by 25
ms and the components at 4 Hz are recorded

The process, for each exit of the �lterbank, returns a succession of the spectrum
amplitude at 4 Hz for segments of 250 ms overlapped by 25 ms. These values
represent the spectral components of events with 250 ms periodicities, that
should correspond to a syllable. According to Greenberg [36], the analysis of 4
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Hz modulations are associated to low speech variations, which can be syllabic
events.
Psychoacoustic experiments [39] have showed that the slow modulations over 16
Hz are not necessary to human speech recognition and an acoustic signal can
be still understandable even if only the modulations up to 6 Hz are preserved.
From such results it can be guessed that long analysis segments can be much
robust to interferences or noise, even if they loose �ne aspects of speech structure
[41]. That means the modulation spectrogram is not performant, if used as a
recognition feature, but it can be useful in syllable segmentation.

Figure 13: The modulation spectrogram of the word cinque, compared to the
classic spectrogram.

In �gure 14 the behaviour of the technique in presence of white noise is depicted.
The disturb destroyes both the spectrogram and the modulation spectrogram,
even than the latter is a�ected in a weaker way.
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Figure 14: The modulation spectrogram of the word cinque, in presence of white
noise.

Figure 15 shows the case of reverbered signal. It is evident that the aspect
of the spectrogram changes strongly, while the Modulation Spectrogram is still
recognizable. That is because reverber duplicates the formant frequencies, while
it a�ects the slow variations in a minor way.
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Figure 15: The modulation spectrogram of the word cinque, in presence rever-
ber.

Pitch, Energy and Duration Fundamental prosodic aspects are de�ned
here, referring to the intonation and emphasis of an utterance:

• In the production of a speech signal, in a portion of about 20 ms, where
signal is supposed to be stationary, the fundamental frequency or pitch
is the frequency of oscillation of the vocal folds. Pitch is what makes
people perceive sounds as acute or grave. Other frequencies intervene in
a signal, which are related to resonances in the vocal tract. A segment
in which pitch presence is detected is called voiced, otherwise it is called
unvoiced or voicedless. The process which automatically extracts the pitch
is usually the autocorrelation procedure [30] which will not be described
in this frame. The general procedure uses short-term analysis techniques,
which calculate the signal autocorrelation value f(T |xm) for every frame
xm of length about 10-20 ms, where T is a possible pitch period. The
choice of the best pitch period in the segment, is taken by evaluating
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Tbest = argmax|T (f(T |xm))

• The energy of a speech segment is the intensity by means of which that
segment has been produced. It is calculated as

E =

√∑
x2

i

N

N indicates the number of elements in the speech portion, while xi is a single
sample. Generally the energy trend of a signal is extracted calculating the
energy of 10-20 ms segments every 5 ms.

• The duration of a speech segment is simply its time length. This aspect
is responsible for speech rate.

Duration is a key feature in speech representation, because it is related to stress
and metrics. The succession of long and short duration syllables is responsible
for the emphasis of some parts of the utterance as well as to the stress and the
rhythm.

Di�erenciated Energy The energy value for detecting the presence of a
fricative consonant in a speech segment, is called di�erenciated energy. Frica-
tives are characterized by the spectral presence of noise with high varying fre-
quency and weak formantic structure at low frequencies. If the signal is high-
pass �ltered, with a cut-o� frequency of 1100 Hz, then the obtained energy trend
will be very di�erent from the previous one, in the regions where a fricative con-
sonant is present.
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Figure 15.1: Di�erenciated energy representation and comparison.

Melodic Accents of Words Melodic accent is the accent related to intona-
tion and the height of a note. It can be de�ned at the level of words or phrases,
because for each scale such characteristics can be detected.
More formally, a melodic accent is de�ned as the variation of pitch in a time
unit. In human communication, it is used to give importance to a part of the
dialogue and to mark some parts of a phrase. It has not to be confused with
the rhythmic accent, especially because it has not a precise place of the word in
which to fall.
The melodic accent is usually calculated by means of Fujisaki accent components
(ref. 2.2.2), which will be discussed in further detail later.
It can be represented as a train of rectangular impulses (ref. �gure 16). The
interesting thing about this feature, is that, for short words, the con�guration
of the impulse trains is always the same, even if speaker changes.
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Figure 16: Melodic Accent representation, for the word quattro, pronounced by
two di�erent speakers. Notice that there is always an high rectangle, followed
by a shorter one.

Melodic Accents of Phrases Melodic accents of phrases are formally de-
�ned as the variation of the fundamental frequency in the domain of the entire
utterance, rather than in that of a single word.
Such dynamic is what is commonly de�ned the intonation pro�le� which is
responsible for the di�erence between interrogative and declarative phrases per-
ception.
As can be noticed from �gure 17, the speaker utters the phrase � la mamma
mangia la mela� with a declarative intonation. The pro�le presents a main
peak on the second syllable of the word mamma, and a light peak on the second
syllable of the word mangia, even if the important information lies in the rise
and descent of the pitch trend.
The second utterance, with an interrogative intonation, presents a smaller peak
on the second syllable, but another one on the �rst syllable of the word mangia
(ref. �gure 18).
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Figure 17: Pitch contour for the utterance la mamma mangia la mela.

Figure 18: Pitch contour for the utterance la mamma mangia la mela ?
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Rhythmic Accents Rhythmic accents can be seen as the set of features which
emphasize a syllables in a complex contex [3]. For example the accent of a phrase
in a poem, which gives a verse its cadence. Rhythmic accents accompany the
principal tonic accent. The Italian word �indiscutibilmente� has eight syllables,
where only one of them has a principal stress. Furthermore, from a rhythmic
point of view, it has also stresses on the �rst and �fth and seventh syllables.
Such characteristics are linked to the alternation of long and short syllables.
Languages tend to avoid two adjacent accented syllables, while regularity is
searched.
Stress is crucial in dialogues structure and listener attention. More formally,
the presence of a stress on a syllable depends on the syllables energy variation
and duration. The Silipo-Greenberg procedure [27] describes how to calculate
such feature, but it will not be discussed in this section.

Vowels Extraction Information coming from energy and pitch could be suf-
�cient to distinguish words like uno and due. Unfortunately such parameters
are not su�cient to discriminate more complex words as for example diciassette
and diciotto.
In order for prosodic information to be able to manage such cases in a speech
recognizer, it is necessary that more information is added.
Vowel con�guration is a good candidate for such an aim. An automatic vowel
extractor has been introduced in [20] for automatic speaker identi�cation. The
vowel con�guration is in fact strictly linked to a speaker identity, because it
includes formant frequencies information, which depend on the mouth and oral
cave shape.
As showed in �gure 19 the process acts in the following steps
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Figure 19: The Vowels extraction procedure schema.

• The signal is downsampled at 8kHz for computational bene�ts

• A pitch and energy synchronized analysis is performed, where stable and
prominent zones are extracted. The term stable refers to a segment where
pitch varies slowly, while prominent means that zone has even an high
energy value

• Each extracted piece of signal is then passed to a HMM model for vowels
classi�cation

The model is not really able to get all the vowels in the signal, but it catches
most of the prominent ones.

Fujisaki rectangles and impulses The Fujisaki-Hirose model [29] is a com-
plex prosody analyzer. According to such model, the melodic trend of a phrase
is made of two components:

• The phrase component, which is linked to intonative syntagms3, character-
ized by a fast ascending phase followed by a slow descending trend. Such
feature describes the pitch contour of an utterance

3A syntagm is a string of sounds which have the same logic function in a phrase, according
to a syntactic structure.
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• The accent component, which describes the modulations introduced by the
speaker to mark a particular melodic istant

The phrase and accent components are obtained by �ltering two signals coming
out from two linear systems.
The �rst signal is a Dirac impulses train, while the second is a rectangular
impulse train. Given a signal s(t) with a pitch curve described by the function
p(t), two signals x1(t) and x2(t) are extracted which represent the phrase and
accent components.

Figure 20: Representation of the Fujisaki-Hirose model.

Figure 21: Representation of the prosody components extraction procedure.

54



Referring to �gure 21 a phase of pitch contour extraction, in which the pitch
trend is calculated and �ltered to reduce noise e�ects, is followed by the cal-
culation of the error e(t) between the pitch contour and the system exit. The
result is achieved by means of iterated passages.

2.2.3 Discussion

So far a presentation of the concepts of segmental, non-segmental and super-
segmental acoustic information has been made in order to understand which are
the most used speech units and events representations. A list of methods has
been illustrated, which will be used in the rest of the work.
It is clear there are no features which can completely describe non-segmental
or super-segmental information like prosody, or even speech units like syllables,
which are on the border line between segmental and non-segmental acoustic
events.
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3 Chapter III: ASR Techniques Overview
3.1 Introduction
This section presents an overview of modern Automatic Speech Recognizers
(ASR) building techniques. As previously said, humans can recognize speech by
means of a complex interactions between multiple levels of processing, by using
syntactic and semantic information, in combination with powerful processing
and classi�cation tools. The sophisticate algorithms developed nowadays, are
not su�cient to hold the confrontation with what happens in the central nervous
system, and speech is only one of the occasions in which the limitations of
technology are evident.
Many knowledge types exist (e.g. linguistic, semantic, pragmatic), which could
be integrated into an ASR, unfortunately the identity of all these aspects is not
completely clear. The construction of an automatic speech recognizer having
very high performances is a hard problem, which could also be not solvable at
all.
ASR building has seen many realizations, which came from Arti�cial Intelli-
gence, as in the case of the blackboards systems [63] [50] or expert systems
based on human experience [7]. Some other a pure mathematical approach, as
explained in Chapter I, using stochastic models like Neural Networks or Marko-
vian models.
In expert systems much weight is given to euristic knowledge, while in mathe-
matical models formally de�ned characteristics are searched.
Automatic speech recognizers are interesting even from a commercial point of
view, in that such structures have been applied to automatic dictation systems.
The structure of these systems is said to be �speaker dependent�, because they
address to a particular person, and no good performances are granted for other
speakers. Other applications which use speaker independent systems are rising,
especially in telephony applications, even if there are few examples of natural
language recognition services.
In this section, the most used structure for speaker independent ASRs will be
presented.
In the previous chapters the importance of the base unit of speech has been
discussed, with an accent to many units integration. The starting point of
common systems is the simplest one: the base unit of speech is assumed to be
the phoneme. That's because the phoneme has the most identi�able structure.
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The kind of signal which such systems address to, is the connected speech. In
informal dialogues many pronunciation errors are made, noisy pauses, unguess-
able environmental alterations are present, which completely disturb the signal
spectrogram. The detection of word separations, noise reduction and speech
alterations is not an easy task and constitute a fundamental goal for such sys-
tems.
In the next subsection, a general overview of the architecture of classic ASRs
is presented in detail, with a description of the mathematical models employed.
A particular focus will be given to the Viterbi algorithm in order to emphasize
the di�erences with a novel decoding strategy which will be described in 4.2.5.

3.2 General Architecture
The building process of an automatic speech recognizer is made up of two phases.
The �rst regards system training, the second is, instead, the recognition stage.
Figure 22 depicts the schema for the training phase. As can be noticed, this is
a modular system which is able to train some stochastic models on the basis of
prepared examples.

Figure 22: A classic ASR schema for the training phase.
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The training procedure can be divided into the following steps

• Features extraction

• Language decomposition in speech units

• Acoustic models training

The next sections will describe the blocks in detail. Roughly speaking, the �rst
module extracts the acoustic features referring to the chosen base unit. In the
case of classic ASRs these are phonetic features like MFCC or LPC (ref. 2.2.1).
The second phase divides the dictionary of all the recognizable words into a
representation in terms of basic units concatenation. The third phase sets the
stochastic models parameters to �t the training data, in order to prepare them
for the recognition phase.
The recognition procedure, depicted in �gure 23, can be organized as follows

• Features extraction

• Words decoding

Figure 23: A classic ASR schema for the recognition phase.
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Generally speaking, the �rst block extracts the units features from a speech
signal, while the second phase combines stochastic models for units recognition
and concatenation in order to reconstruct the uttered phrase.
The following sections will describe, in detail, the blocks and the di�culty of
the problems they have to solve.

3.2.1 Features Extraction Module

This module deals with signal segments codi�cation. Such problem has been
largely discussed in the previous chapter. As classic ASRs need phonetic infor-
mation, they make use of segmental techniques like MFCC or LPC (ref. 2.2.1),
which address to phonetic characteristics, related to fundamental and formant
frequencies.
The coding problem is crucial to an ASR, because the possibility to discriminate
a speech unit from another depends on this phase. A concise and informative
coding is the best possible, because it leads to a good recognition with the
minimum training. The search for this kind of information is crucial for signal
analysis techniques, but it is not easy to achieve.
A good unit representation is so a fundamental step to get high performances.
Segmental techniques have been consolidated in time, so that, for phonetic
ASRs, much of the focus has been set on the stochastic models of the back-
end blocks.

3.2.2 Decoding Module

In this phase, units are concatenated to reconstruct the uttered phrase. This
module is based on information coming from acoustic and language models. The
�rst are the stochastic systems which try to associate a unit to a piece of signal,
given a sequence of features, or, as in Bayesian models, try to calculate the
likelihood of a sequence of features, given the model. Language model instead,
deals with units concatenation probabilities .
The whole process can be so divided into two sub-modules

• The probability estimators for acoustic and language models

• The decoder
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Both the steps are fundamental for ASR performances. The �rst calculates
probabilities associated to pieces of signal and to units concatenations, the sec-
ond is responsible for the combination of these two probabilities. The main aim
of the process is to �nd the best sequence of units, according to concatenation
probabilities and signal �tting estimations.
Acoustic models are generally based on Markov models (ref. 3.2.4) or Neural
Networks [4].
The performances of such systems depend on

• The quality of the features

• The mathematical model employed to catch the dynamics of speech units

• The number of examples which are supplied in the training phase

The decoder is fundamental in equal measure. It makes use of a grammar, that
is a speci�cation about the probabilities of words concatenations, and of pronun-
ciation models, that is a model which contemplates all the possible variations
from the standard pronunciation.
In the next section the most common acoustic models, the Hidden Markov Mod-
els, will be described in details, while in section 3.2.6, the most used decoding
technique, the Viterbi algorithm, will be illustrated.

3.2.3 Acoustic Models

Acoustic models are de�ned as models which are able to associate a sequence of
features vectors to a speech unit, or which can calculate the probability of that
sequence, given a model.
In ASR building, generally a mathematical model is realized which is able to
classify an event. Formally, this means that the system has to be able to evaluate
the probability that the event belongs to one of the possible units, and classify
on the basis of the highest score.
The discriminative speech analysis techniques, which try to distinguish a speech
event from another starting from the coding, have the aim to evaluate the
maximum a posteriori probability for the event.
Such methods can be divided into discriminative and non-discriminative. The
former calculate the maximum a posteriori (MAP) directly, that is

m∗ = argmax|mP (m|w)
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Where m is one of the classes involved and w is the event to recognize, e.g. a
sequence of features.
The latter, instead, face the problem by calculating the maximum likelihood
(ML), that is the maximum probability P (w|m) of the event, given the model.
The MAP and the ML are linked by the Bayes rule

P (m|w) =
P (w|m)P (m)

P (w)

Neural Networks are generally employed in discriminative techniques, in that
the representation power of such instruments allows the direct modelling of the
MAP. In a Neural Network the output neurons represent speech units, while
their outputs can simulate the probabilities that the network inputs belong to
the class.
HMMs are generally employed in non-discriminative techniques. The algo-
rithms for such systems evaluate the ML directly.
The vantage in using Neural Networks is in the higher control of the training
and recognition phase, because an explicit calculation of the gap between the
simulated function and the network and can be given.
The HMM approach is less controllable, in the fact that there is no error function
which can be calculated. On the other side, the training phase is faster and
generally more performant.
The fundamental di�erence is in the fact that while HMMs can exploit the
dynamic process of features extraction, because the processing is synchronous
to the production, Neural Networks generally address to yet collected feature
vectors, as a picture had been made of a succession of speech segments.
Better performances in speech recognition have been given by hybrid approaches,
which exploit the characteristics of Neural Networks in combination with HMMs
[14]. Going slightly into details, Neural Networks are employed in modelling
HMM states emission probabilities.
Figure 24 depicts such schema. The Viterbi decoder has the role to combine
linguistic probabilities integrated into a HMM, with estimation probabilities
coming from Neural Networks.
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Figure 24: An hybrid ASR schema.

3.2.4 Hidden Markov Models

A Hidden Markov Model is a double stochastic model de�ned by the following
elements

• A �nite set of states, S = {s1, s2, .., sN}

• A set of observable features which can be discrete or continue

• A transition matrix, A = {aij}, in which aij is the probability of transi-
tion from the state i to the state j. More formally aij is de�ned as

aij = P (st = j|st−1 = i), 1 ≤ i, j ≤ N

• An emission probability distributions set, B = {bi(Ot)}, which is associ-
ated to the states set S. This is related to the probability that the i -th
state emits the observed vector of features Ot at the time t

62



• A set of initial probabilities Π = {πi}where

πi = P (s1 = i), 1 ≤ i ≤ N

is the probability distribution for i to be the initial state

Furthermore, the following relations must be valid,

aij ≥ 0, bi(k) ≥ 0, πi ≥ 0, ∀i, j, k

N∑

j=1

aij = 1, 1 ≤ i ≤ N

N∑

j=1

πi(k) = 1

and, in the case of M discrete features
M∑

k=1

bi(k) = 1, 1 ≤ i ≤ N

For standard uses of HMMs, two assumptions are valid

• The First Order Markov assumption, which states that

P (st|st−1
1 ) = P (st|st−1)

where st−1
1 = s1, s2, .., st−1 is the temporal state sequence.

So, it is assumed that the transition probability from a state to another
only depends on the �rst preceeding state in the temporal sequence

• The Output independence assumption, for which

P (Ot|Ot−1
1 , st

1) = P (Ot|st)

where Ot−1
1 = O1, O2, .., Ot−1 is the temporal observations sequence made

up of the features vectors. Such assumption means that the probability
distribution of a particular observation, at a certain time, depends only
on the current state

Given a temporal sequence of observations O, a HMM is able to calculate the
probability that the model has generated it. Such value can be obtained ac-
cording to the following equation
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P (O|φ) =
N∑

i=1

πiP (O1|si)
T∏

t=2

P (st|st−1)P (Ot|st)

Where φ is the HMM model.
The likelihood of the sequence given the model, is so the product between the
probability of the �rst observation to be generated by one of the states, and the
combined product of the emission and the transition probabilities.

3.2.5 The three base problems for HMMs

The three main problems associated to the HMMs are

• The evaluation problem. Given a temporal sequence of observationsO and
a model φ , how to calculate the probability P (O|φ) of the observations
given the model, with a treatable complexity?

• The decoding problem. Given a temporal sequence of observations O and
a model φ, how to calculate the best sequence of states associated to O?

• The training problem. Given a temporal sequence of observations O and a
model φ, how to change φ parameters in order to maximize the probability
P (O|φ)?

The evaluation problem is not always used in common applications, as it cal-
culates the probability along all the possible sequences of states. Usually, the
decoding problem solution gives the reference score that is used for speech units
classi�cation in ASRs. This is a variant of the evaluation problem and will be
discussed in detail in the next paragraph.
The training problem prepares the model for the recognition session. It sets the
models parameters in order to give the best performances on that observation
sequence. This sequence is associated to the particular unit the model repre-
sents. E.g. if φ is the model for the syllable ma, then the observation sequence
will be a sequence of feature vectors from a piece of signal where ma had been
uttered.
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3.2.6 Decoding problem solution: the Viterbi algorithm

Given a HMM model φ and a temporal sequence of observations,

O = {O1, O2, .., OT }

the decoding procedure �nds the most probable sequence of states, which the
model have passed to produce O.
More formally, the sequence S* has to be found which maximizes the probability
P (S,O|φ). This is a problem very close to the optimal path search in a graph,
which makes use of dynamic programming techniques.
The probability of the best sequence is indicated as Vt(i) and is the score as-
sociated to the best sequence of states till time t, which has generated the
observations and terminates in the i -th state.
The value of VT (i) is the score of the best sequence terminating in the i -th
state. So choosing the best among the states gives the highest total score. A
backtracking procedure is able to reconstruct the sequence from the best �nal
state.
The complexity of the Viterbi algorithm is obviously O(N2T ).
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Algorithm 1 The Viterbi algorithm.

Step 1: Initialization

V1(j) = πibi(O1) 1 ≤ i ≤ N

B1(i) = 0

Step 2: Induction

Vt(j) = max|1≤i≤N [Vt−1(j)aij ]bj(Ot) 2 ≤ t ≤ T ; 1 ≤ j ≤ N

Bt(j) = argmax|1≤i≤N [Vt−1(i)aij ] 2 ≤ t ≤ T ; 1 ≤ j ≤ N

Step 3: Termination

P (O|φ) = max|1≤i≤N [VT (i)]

s∗t = argmax|1≤i≤N [BT (i)]

Step 4: Backtracking

s∗t = [Bt+1(s∗t+1)] t = T − 1, T − 2, .., 1

S∗ = (s∗1, s
∗
2, .., s

∗
T )
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3.2.7 Training Problem solution: The Baum Welch algorithm

The Baum-Welch algorithm [30] for HMMs training is the standard solution
for such problem, it is based on the Expectation-Maximization paradigm,
which won't be discussed here in detail.
Given the model φ and a sequence of observations, the parameters of the models
have to be adjusted in order to increase the probability of the sequence given
the model.
There is no analytic solution for such problem, and it only gets an euristic one,
in that an error measurement cannot be calculated. The Baum-Welch is an
iterative method in which, at each step, the value of the probability is granted
to be equal or greater to its value in the previous passage, refer to [30] for further
details.
The current discussion won't go into the details of the technique, as it is not
fundamental in this framework, di�erently from the Viterbi algorithm which
will be compared to a novel method in the next chapters. Anyway the general
techniques is depicted in algorithm 2.
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Algorithm 2 A Baum-Welch algorithm summarization.

Step 1: Initialization of the HMMs parameters.

Step 2: E-M phase
the expectation function E[P (O|φ)] of the likelihood is maximized. An as-

sociated function Q(φ|φ̂) is calculated, which produces the model φ̂ for which it
results that

Q(φ|φ̂) ≥ Q(φ|φ)

Step 3: Iteration
the setting

φ = φ̂

is made and the step 2 is re-executed. The iteration is carried on for a
prede�ned number of passages.
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3.3 HTK
HTK [5] is a toolkit for ASRs building, based on Hidden Markov Models, and
it has been adopted in this thesis as the baseline system as well as prosodic
recognizer. The main aim of the toolkit is to build HMMs based processes.
Figure depicts the general schema of the recognizer.

Figure 25: Schema of the HTK ASR.

As shown in �gure 25, HTK is made up of two macro blocks, the �rst is a
training tool, in which parameters of the HMMs are calculated using a language
knowledge base, called corpus. This is a set of utterances with corresponding la-
bels. The second process is the recognizer block, which takes utterances without
labels as input, and produces their transcriptions according to the recognition
process.
For the training phase, the Baum-Welch algorithm is used, while for the decod-
ing phase, an adaptation of the Viterbi algorithm to continuous speech, called
Token Passing [5], is employed.
The toolkit is able to recognize isolated as well as connected words and to
produce N -Best lists, that are classi�cations of the utterances on the basis of
the calculated likelihood.
HTK gives a good basis of comparison to novel models, because the whole
system is able to simulate standard architectures. On the other side, the user
can choose and customize the language model and the dictionary, so that also
recognizers based on larger units can be simulated. The prosodic recognizer
employed in the multi-granular model here presented, has been built on this
methodology.
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3.4 Standard Performances
A search on conference proceedings can depict a good panorama about systems
performances in practical applications. Table 1 summarizes some of them.

Application Accuracy
Replacing Touch-Tone Menus 99.5%
Call Classi�cation and Routing ~95%
Interactive Voice Responser 90%

Desktop Dictation (speaker dependent) 95%
Transcription of Broadcast News 80-85%
Conversational Telephone Speech 65%

Universal Voice Interface ???

Table 1: Performances of common ASR applications [64].

Figure 26 reproduces, instead the evolution of the ASR performances in time4.
As can be seen, performances highly depend on the task they face. Today
common Interactive Voice Responsers (IVR) are able to manage a call with
a customer, by means of DTMF or simple voice communication. Telephony
constraints in�uence systems performances as well as the application of such
instruments to a large public with di�erent dialect in�ections. Few examples
can be found about call classi�cation and routing, where the user is routed to
a particular agent after he has �explained� his problem. Conversational agents,
instead are far to come either for technology lacks or for social questions, because
the success of an automatic system strongly depends on the grade to which
people are used to that service. This a�ection varies from country to country,
but the �eld is evolving fastly and IVRs are going through the direction of
intelligent automatic agents.

4For a de�nition of accuracy refer to 7.2.
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Figure 26: Performances evolution in time. Word Error Rate is represented on
the y axis.

3.5 Discussion
In this chapter an overview of the most used techniques for ASRs building has
been made. Phonetic and segmental recognizers have been described in their
inner parts, as they present modules for training and recognition. The most used
stochastic models, the Hidden Markov Models have been described, in particular
the methods for calculating the likelihood of the model to a sequence of feature
vectors and the training algorithm have been illustrated.
The overview, united to a schema of the performances on systems which employ
this technology, is the basis for the multi-granular model presented in the next
chapters. This constitutes the baseline the novel system will be compared to.
Such choice has been motivated by the fact that the structure, particularly in
its implementation with the HTK toolkit, is the simplest and basic one as well
as being the most used in common applications.
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4 Chapter IV: A Multigranular Segmental Sys-
tem

4.1 A �ne-grain speech recognizer
In this section a novel method is presented, in which, keeping apart pragmatic,
semantic and non-segmental features, the focus is strictly on the information
coming from the signal in its deep details. The recognizer is made up of a deep
analysis session in which acoustic models for syllables are used. This phase
represents an implicit model for all the events of segmental nature, in an average
period of a syllable (about 250 ms). It belongs to the class of systems which
don't explicitly model all the concurring dynamics of the recognition process.
It only addresses a �ne processing of the signal which has to extract hidden
features and dynamics from the acoustic observations.
The aim of this system is to create an ASR which is able to use information
coming from two temporal analysis levels. The temporal scales analyzed are
the phonetic and the syllabic ones. Wu [65] demonstrates that ASRs based
upon only one of them separately, make complementary errors so that a joint
recognition on the two scales of information can result in better performaces.
In this framework, a classic recognition model is modi�ed about the acoustic
model, in order to achieve a new structure. Factorial Hidden Markov Model
(FHMM ref. 4.1.2) are employed, so that a new probabilistic model is built,
which is able to directly catch information from the two scales. MFCC s (ref.
2.2.1) have been chosen for signal representation giving this approach the struc-
ture of an implicit modelling technique as described in section 1.5.
Figure 27 shows the schema of the ASR. As in standard models, the features
extraction session represents the signal by means of standard MFCC features. A
decoding process follows, in which FHMM syllabic acoustic models are combined
with the language model to perform a recognition. The di�erence respect to a
standard ASR is so in the acoustic models. A big importance is given to the
training session, because FHMMs have the duty to automatically abstract two
di�erent dynamics from a syllabic piece of signal, one with a slow, and the other
with a fast nature.
In the rest of this chapter a novel decoding procedure is presented, which is
able to exploit FHMMs power at best. This has been done in order to focus on
the model and performances rather than on Real-Time constraints. The loss in
performances by standard ASRs systems belongs also to the decoding procedure,
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which is not able to �nd the best solution for the alignment of the models to the
speech signal, beacause of Real-Time contraints. The here presented solution is
an exact alignment algorithm, which is a maximum point for ASRs that can be
built with classic, Real-Time procedures, as will be furtherly demonstrated by
experimental results.

Figure 27: Deep processing recognizer schema.

4.1.1 The choice of the base unit

The model here introduced is meant to be multi-granular, in the fact that it
puts together two levels of analysis, the syllabic and phonetic ones. The acous-
tic models employed in this framework try to extract two dynamics from a
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speech signal. The �rst has a slow trend, and could be associated to slow evo-
lutions of signal characteristics. The second dynamic has a fast trend and can
be associated to fast information evolutions. These two phenomena could be
identi�ed as the syllabic and phonetic information lying in the signal, even if a
demonstration for such correspondence is not easy. The here presented model
has so the aim to extract such dynamics. The base unit of the resulting ASR
will be set on the syllable, because of the necessity to extract also slow varia-
tions, which could not be detected in a brief temporal interval corresponding to
a phoneme. This choice for a multi-granular system is good from the point of
view of the acoustic models, which will so calculate the likelihood of the pho-
netic observations to a syllabic model. Instead, as it could be argued, this is
not good from a language model point of view, in the fact that syllables have
some counter indications:

• Too many models have to be used to cover a large vocabulary

• The pronunciation models are harder to build

The problems above are important for a theoretical investigation, but some
practical considerations have to be kept into account.
Syllables include coarticulation phenomena which phonetic models are not able
to catch. Giving the right examples during the training phase, can result in
models to be able to recognize also altered structures. This means that the
pronunciation models can be included into syllabic models, if they are trained
on many cases. So the syllabic models can present an overall robustness to
pronunciation variations, because these are included in the training.
Also the need for many models to cover the vocabulary can be discussed. A
large number of models to be employed could result in system's slowness and
di�culties in language representation. On the other side in English language,
even if the complete dictionary is covered by over 30 000 syllables, only few of
them are su�cient to cover the most part of it.
In �gure 28 the Switchboard corpus [12] cover by english syllables is depicted. As
can be noted 6000 syllables compose such corpus, but only 2000 are su�cient
to cover the 95% of it, and only 250 for the 75%.
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Figure 28: Syllabic statistics on the Switchboard corpus. From Wu [65].

Figure 29 shows that the most common words used in Switchboard corpus dia-
logues are composed by monosyllables.
In common speech dialogues, the syllables to be employed are only little more in
number respect to phonemes. The di�erence is about one order of magnitude,
but the overall recognition process can manage them with treatable complexity.
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Figure 29: Percentage of syllables in vocabulary and corpus words. From Wu
[65].

4.1.2 Factorial Hidden Markov Models

A Factorial Hidden Markov Model (FHMM), �rstly introduced in [25], is a
HMM whose state set can be decomposed in L subsets. Each subset evolves
independently as a standard Markov chain and they all contribute jointly to the
observable variables generation, as shown in Figure 30.

Figure 30: Factorial HMM dynamic from Jordan [25].
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As stated in 3.2.4, in a standard Hidden Markov Model, a sequence of observa-
tions

X = X1, X2, ..., XT

is modeled by specifying a probabilistic relation between the observations and
a sequence of hidden states S = S1, S2, ..., ST taken by a �nite set of states of
dimension K. Moreover the model assumes that observations are independent
of each other and, in many cases, that each St is only dependent on St−1 (�rst
order Markov property). HMMmodels are de�ned by the probability P (St−1|St)
of state succession, which is a K × K transition matrix and by the emission
probabilities P (Xt|St) which link the states to the observations. Such values
can be calculated in many ways, in the case of continuous obervation vectors a
gaussian mixture or a neural network can be used[6].
Factorial Hidden Markov Models expand the concept of HMM by representing
a single state St as a collection of M states

St = S
(1)
t , S

(2)
t , ..., S

(m)
t , ..., S

(M)
t

each of which can take on K(m) values (for simplicity it will be assumed K(m) =
K for all m). So, a FHMM consists of a state space which can be described by
a KM × KM transition matrix. Such a system is equivalent to a HMM with
KM states, and all variables are allowed to interact arbitrarily. The processing
complexity is obviously exponential inM. Interesting phenomena come out when
constraints are introduced in the state transition matrix. For what concerns the
present application, each state variable S

(m)
t is allowed to evolve according to

its own dynamic, so that

P (St|St−1) =
M∏

m=1

P (S(m)
t |S(m)

t−1)

Figure 30 depicts this structure. The transition between states can be repre-
sented as M dinstinct K ×K matrices.
About the emission probability of the observation Xt, instead, a gaussian dis-
tribution can be introduced, whose mean will depend on the S

(m)
t states

µt =
M∑

m=1

W (m)S
(m)
t

where each W (m) is the contribution of S
(m)
t to the mean. The covariance matrix

length depends on the Xt observation vector length.

P (Xt|St) ∝ exp(−1
2
[(Xt − µt)′C−1(Xt − µt)])
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FHMMs have shown to be able to decompose automatically the state space into
features di�erentiating multiple dynamics concurring in a single phenomenon.
This is particularly e�cient for cases in which the data are known to be gener-
ated from the interaction of multiple, loosely-coupled processes [25].
The idea here is that the multi-granular information in speech production, com-
ing from syllabic and phonetic structure, may be thought as generated by over-
lapping processes with di�erent time spanning, and a factorial model can catch
these dynamics. The training can be able to associate di�erent time-scale phe-
nomena to di�erent chains of the state set automatically. The layer nature of
the model arises by only allowing transitions between states in the same layer.
In this work only two levels of chains are used, such structure constitutes the
acoustic model of the deep processing speech recognizer.

4.1.3 Applications of FHMMs

In ASR the factorial models has been used for the �rst time by [40]. In their
work the authors use an acoustic model based on Factorial HMMs with two
levels and three states for each level. They also use two di�erent methods for
the de�nition of the emission probability distribution P (Ot|St), where Ot is an
observation vector and St is a state of the factorial chain, according to section
4.1.2 notation.
The �rst method, which is called Linear Factorial HMM, is based on the idea
of Jordan et al. [34], that the emission function is a multi-dimensional gaus-
sian, while the second method, called Streamed Factorial HMM, use gaussian
mixtures.
The Linear FHMMs give the best results, which are reproduced in table 2

Model Word Error Rate
Baseline HMM 42.9%
Linear FHMM 71.3%

Table 2: Comparison between Standard HMMs and Linear Factorial HMMs
using Cepstral features.

The Streamed FHMM performances, are instead reported in table 3
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Model Features Type Word Error Rate
Baseline HMM Cepstrum + Delta Cepstrum 42.9%
Baseline HMM Cepstrum 51.6%
Baseline HMM Delta Cepstrum 62.3%

Streamed FHMM Cepstrum + Delta Cepstrum 46.3%

Table 3: Comparison between Standard HMMs and Streamed Factorial HMMs
using Cepstral features.

Another application of the factorial model can be found in Duh [19], which em-
ploys them in Part of Speech tagging. He takes two kind of information, lexical
and morpho-syntactic. The dynamics correspond to two levels of tagging and
to two FHMMs layers. Respect to the classical model, Duh introduces a depen-
dency between the states with the same index, e.g. s

(1)
i and s

(2)
i . Furthermore

he adds also dependency between adjacent states, e.g. between s
(1)
i and s

(2)
i+1,

and between s
(2)
i and s

(1)
i+1.

The performances get an absolute 2% increase in performances respect to a
state of the art system.
Another application of Factorial HMMs can be found in [31], in ovelapped voices
separation. In this case the superpositions are considered as concurrent pro-
cesses to be separated.

4.2 Implementation Details

The studies by Jordan [25] have stated that Factorial HMMs are able to catch a
di�erent dynamic at each level, during the same process. In the case of syllable
modelling, the dynamics to take into account are two: the phonetic and syllabic
one. The number of levels will necessarily be two. About the number of states
for each level, it has been set on the basis of experiments on classic HMMs.
Standard models have given the best results with 7 states, when using MFCC
features. So it has been decided the factorial model to have the same number
of states for each level, which has been set to 7.
To better follow the production of the feature vectors, each chain has been
de�ned and set as a Bakis model [1]. Such model does not allow a HMM to
have backward transitions. The only possible ones are the self loops or forward
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connections. Imposing a Bakis structure to a Factorial HMM means to allow
only left-to-right process for each single chain in the layer.

Figure 31: Factorial HMM with Bakis structure representation.

The probability transitions of the states will be initialized as

a
(m)
ij+1 = a

(m)
ij = 0.5, 1 ≤ i ≤ 6 m = 1, 2

a
(m)
77 = 1 m = 1, 2

furthermore

π(1(m)) = 1 m = 1, 2

π(i(m)) = 0 1 ≤ i ≤ 7 m = 1, 2

Figure 31 represents the schema of the acoustic models employed in the seg-
mental recognizer.
In the next sections the details of the training and recognition processes are
explained.

4.2.1 FHMMs Training

Even in FHMMs the Expectation-Maximization (EM) algorithm is employed,
but in the variant introduced by [25]. The algorithm is like the one described
in section 3.2.7, and can be divided in two steps: the �rst expectation (E)
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stage, �xes the current parameters and calculates the emission probabilities for
the states. The second phase, maximization (M), uses those probabilites to
maximize the likelihood of the observations to the model.
The calculation of the M step does not give problems, and has the same com-
plexity as a standard HMMs. The problems arise in the E step, which could
have an untreatable complexity, in the case of many levels. A FHMM having
M layers and K states for each level is equivalent to a standard HMM with KM

states, so referring to the Baum-Whelch algorithm, the complexity is O(TK2M ).
To overcome this problem, approximated methods can be used, like

• The Montecarlo method [62]

• Gibbs sampling procedure [24]

• Completely factorized variational inference method [33]

• Structured variational inference method [32]

An overview of all those methods is presented in [26].
In the here presented model, the number of levels was narrow enough to allow
the use of the exact training procedure. The Factorial HMM is �rstly exploded
into a single standard HMM with KM states, so that the classic Baum-Welch
algorithm can be used. This procedue makes the cartesian product of all the
possible couples of states.
The transition probability from a couple to another is calculated as the product
of the single transition probabilities, as shown in �gure 32.

P (s(1)
i s

(2)
k |s(1)

j s(2)
g ) = P (s(1)

i |s(1)
j )P (s(2)

k |s(2)
g ) 1 ≤ i, j, k, g,≤ 7

The initial probabilities are set to 0 except for the state s
(1)
1 s

(2)
1 , while the only

�nal state is s
(1)
7 s

(2)
7 .

The training function starts from a succession of the observations vectors con-
taining MFCC parameters, which represents a syllable. Obviously the number
of vectors is variable, according to the length of the syllable. Each vector refers
to a 20 ms speech segment.
In the realization of the algorithm used in this thesis, the training is arrested
after a maximum number of 100 iterations or if, after a while, the Maximization
step does not produce sensible improvements.
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Figure 32: FHMM expansion. Each couple-state comes from the cartesian prod-
uct of two states of the FHMM. The state with label x1y2 belongs to the product
of the x state of level 1 and the y state of level 2.

4.2.2 Likelihood Calculation

The Viterbi algorithm (ref 3.2.6) has been used for the calculation of the like-
lihood of the observations to the model. This procedure uses the standard
algorithm on the expanded HMM obtained from the original Factorial model.
Figure 33 depicts the likelihood logarithm vs the number of frames provided to
the model for the syllable �di�. The log-likelihood trend increases at each frame
if those features refer to the syllable the model represents. If this is not the
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case, then the HMM based recognition does not guarantee that the likelihood
decreases. The ASR logic is that the likelihood must be highest for the right
model.
Figure 34 depicts the log-likelihood for the word �qua� on the obervations se-
quence for the syllable �di�. Even in this case the quantity is higher and higher,
but in the end it reaches a lower value respect to the �di� model.
The algorithm has a computational complexity of O(S2T ), where S is the num-
ber of states in the expanded HMM and T is the number of observation frames.
The treatability strictrly depends on the number of states for each layer of the
Factorial HMM.

Figure 33: Log-Likelihood trend for the model of the syllable �di� , on frames
by a �di� utterance.
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Figure 34: Log-Likelihood trend for the model of the syllable �qua� , on frames
by a �di� utterance.

4.2.3 The Silence Model

The silence detection is an important feature for an ASR, because pieces of
silence should not be given to acoustic models. Such method avoids the possi-
bility of an initial piece of silence, or inter-word pauses, to be recognized as a
words.
The silence model has been considered a further unit, similar to a syllable,
but di�erent in the meaning, for which a Factorial HMM has been created.
It presents a Bakis structure too. In other realizations [5], the silence model
presents a simple three states structure, where also a connection between the
�rst and the last state is allowed. This structure, has given bad perfromances
in the present model, especially in initial long silence deletion. So the employed
model uses a 2 layers Factorial HMM with 7 states for each layer.
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Figure 35: Representation of a Standard HMM for silence model [5].

4.2.4 The Language Model

The aim of the language model is to associate a probability to a sequence of
words or, more generally of units. If W = w1, w2, .., wn is a sequence of units,
the language model calculates the probability of such sequence by the following
equation

P (W ) = P (w1, w2, .., wn) =

P (w1)P (w2|w1)P (w3|w1w2) .. P (wn|w1, w2, .., wn−1) =
n∏

i=1

P (wi|w1, w2, .., wi−1)

For complexity needs, the backward dependency is often limited to only N pre-
ceeding units. The resulting language model is said to be based on N -grams.
The choice here has been a bi -gram language model, which stores the probabili-
ties P (wi|wi−1) of the concatenation between the syllable wi and its immediate
preceeding. The language model score will be so calculated as

P (W ) = P (w1, w2, .., wn) = P (w1)P (w2|w1)P (w3|w2) .. P (wn|wn−1) =
n∏

i=1

P (wi|wi−1)

The set of syllables used in the current experiment has been taken from the
numbers from 0 to 999,999, so that the language model has been built upon
those words. In that case the introduction of a probabilistic grammars was not
necessary. The above formula for probabilities calculations are still correct even
if they are calculated on exact estimations. Chapter VII explains the details of
the implementation.
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4.2.5 The Decoding Algorithm

In order to exploit the model at best, an e�cient algorithm for syllable decoding
had to be developed. Standard algorithms usually act in real time using dynamic
programming methods and some approximations (as in the case of the beam
search algorithm) with the aim to reduce execution time. These procedures
can introduce many errors as the recognition is strongly dependent on the left-
to-right time processing. A more e�cient procedure could try any possible
alignment between words and signal, as it could retreat some decisions made
during the left-to-right processing, and could try to shift the models backwards
or forwards to achieve the best alignment and words separation. This procedure
has been developed using dynamic programming. It does not act in real time
because of the request to be independent from the signal runtime generation.
This is undoubtedly an high complexity procedure, however it can drive acoustic
models performance at best. The main aim of the algorithm is to navigate the
structure formed by the union of the language and acoustic model in order to
maximize the probability P (W |X) for a sequence of units (syllables in this case)
W = w1w2..wn given the observation sequence X = X1X2..XT .
P (W |X) could be calculated as follows

P (W |X) = P (w1w2..wm|Xt
1)P (wn|wm)γP (wn|XT

t+1)

where wn is the last unit if W is not empty and wm is the preceeding syllable in
the sequence. P (wn|wm) is the language model probability between wmand wn,
γ is the language model weight, and t is the optimal time boundary between
the units. Lets demonstrate that if P (W |X) is the optimal solution for the
units alignment problem, then P (w1w2..wm|Xt

1) is the optimal solution for the
problem of units alignment in the time interval [1,t ], where t is the best �rst
boundary for wn. This is trivial in the fact that if there was another sequence
w
′
1w

′
2..w

′
m for which P (w

′
1w

′
2..w

′
m|Xt

1) > P (w1w2..wm|Xt
1) then it would be

P (w
′
1w

′
2..w

′
m|Xt

1)P (wn|w
′
m)γP (wn|XT

t+1) > P (w1...wmwn|XT
1 )

against the hypothesis of P (W |X) to be the optimal solution for the problem.
This discussion leads us to introduce the following recurrence relation for the
solution f(m, t) to the subproblem of units alignment in the time interval [1,t ]

f(m, t) = max

{
P (Xt

1|m)π(m)
max|1≤t∗<t,n∈Syl{f(n, t∗)P (m|n)P (Xt

t∗+1|m)}
where Syl is the set of all the units involved, P(m|n) is the probability of n
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and m unit concatenation, P (Xt
1|m) is the likelihood of the model m to the

observations X1X2..Xt, and π(m) is the probability for m to be a starting unit
for a sequence. Notice the dependency from f(n, t∗), which is the best solution
to the subproblem of units alignment till time instant t∗. The optimal solution
will be retrieved as follows

P (W |X) = max|m∈Syl{f(m, T )E(m)}

Where E(m) is the probability for the model m to be a plausible ending unit.
Starting from this solution, a backtracking procedure produces the best align-
ment. The algorithm is also based on the calculation of the matrix V, which
contains the likelihoods of a model m to all the intervals of observations

The algorithm complexity is O(T 2N2C(V )), where C(V) is the complexity of
the likelihood calculations for a single model. If S is the number of states in the
acoustic model, then C(V ) = O(S2T ). This value can be reduced by considering
that using controlled (even if connected) speech, a single syllable can rarely have
a maximum duration greater than a �xed values (e.g. 500 ms). At this point,
the matrix V will get a band aspect which allows optimization about complexity
issues.
If observations are taken every 10 ms, then we can calculate the likelihoods
only on 50 observations intervals leaving to zero longer span probabilities. The
complexity of this algorithm seems to be quite high for practical applications,
especially if the utterance is too long, but it leads to an optimal alignment.
Tests have stated that, on an AMD 2800+ processor, the response is about 30
seconds, for a 3 seconds utterance, after the recording stops. E�orts should be
fronted in the next future to improve this performance.
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Figure 36: Band matrix for complexity reduction based on assumptions about
syllable length.

4.3 Discussion

A novel approach to segmental multi-granular recognition has been introduced[8].
An ASR employing Factorial HMMs and a new decoding algorithm has been
described. Factorial HMMs have the power to extract information coming from
ovelapping dynamics and use them in likelihood calculation. In the here pre-
sented model, FHMMs constitute the acoustic models, whose sequence is man-
aged by a language model. The perfomances of such system will be presented in
chapter VII, where the property of dynamics separation will be con�rmed by ex-
periments on numbers recognition. The model outperforms standard segmental
ASRs because the use of Factorial HMMs with syllabic acoustic model is able
to catch multiple information lying in a succession of �ne features addressing
to phonetic characteristics. This is the �rst layer of the whole multi-granular
model here presented. The further information that will be added, belongs to
signal analysis, but with super-segmental nature. The next chapter clari�es
such approach.
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5 Chapter V: A Non-Segmental Speech Recog-
nizer

5.1 Non-Segmental Recognition
Starting from the assumption we have a speech signal containing at least a single
complete word (without fragmentation), we can try to �nd a rough description
which can help the system in guessing a set of possible identities for the word,
without going deeply into the analysis of the segment. If we had been in presence
of a unit like a phoneme we could have found a set of features with a certain
amount of discriminant power. In some experiments words have been modeled as
sequences of phonetic features but no e�ort has been made towards the discovery
of new features addressing a whole word unit. In the model here presented, a set
of tracts is introduced which could entirely characterize a quasi-syllabic unit,
which is harder to describe than a phoneme, but is simpler than a word. A
choice has been made among non-segmental features, and eventually prosodic
pro�le, vowel con�guration and syllabic borders have been chosen to de�ne a
feature set which can have a rough discriminant power. The idea is to build up
a recognizer using a little amount of the computational e�ort required by a deep
analysis involving segmental recognition, which does not aim to �nd a precise
matching for a word, but instead to reduce the number of possible candidates.
The recognizer proposed, makes use of a stochastic model in order to associate
a set of features, extracted from the segment, to a set of syllables in the vo-
cabulary. In order to choose the proper set of features that could describe an
entire syllable, some considerations have to be made. Referring to Iwano et
al. [22], an interesting feature is the derivative of the pitch curve. In [22] syl-
labic HMMs act on both phonetic and prosodic features on a connected digits
dictionary. The experimental results show an absolute improvement of about
4.5% with a signal-to-noise ratio of 20dB. Delta pitch is used in combination
with phonetic features to achieve the result, while the stochastic model is what
they call multi-streaming5, which reduces to the Factorial HMMs described in
section 4.1.2, when the covariance matrix is diagonal. Following the discussion
in section 1.6 , this is an implicit approach, because the issue of extracting a
model for the phenomenon is deployed to the stochastic learning session. The
sole delta pitch feature is obviously not enough to discriminate among a set of
words, so some other information has to be introduced.

5The concept of multi-streaming they introduce in this framework is what is meant here
by multi-granular.
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The energy pro�le of a word can indicate some areas corresponding to vowels
or sonorant consonants. The derivative of such pro�le could do the same work
of the pitch trend to suggest how the word has been pronounced. Such an
information can be another feature for a word model, e.g. �uno� and �due�
can be separated istantaneously by only means of pitch and energy derivatives.
As can be guessed, such set of features is too rough for performing a good
recognition. Word more complex than monosyllables can be easily confused,
e.g. �kwattro� and �tsinkwe� can have very similar pro�le in some situations. A
furtherly bit more speci�c information has to be given. The vowel con�guration
is a good candidate for such a task. The term refers to the sequence of vowels
included in the word, their distribution among the syllables involved and the
distance between them. As said above, vowels can be a strong aid in words
discrimination and can be suitable for a prosody based level of a multi-granular
model. The process of vowels identi�cation in a speech segment has not to be
carried on by a complex analysis as in the case of phoneme based recognition.
The recognition process follows a pitch analysis and the vowel identi�cation is
made only on areas where the pitch has a slow variation and the signal has a
strong energy. So the computational complexity is mantained less than that of
the deep analysis level.
Furthermore some other information can be added in order to make the system
more performant. Remind that the aim of this phase is not to build a very
performant recognizer, but only to aid the deep analysis level in the recognition
process. The process of dictionary pruning has to be able to reduce the number
of candidate words even of some orders of magnitude.
Other useful information coming from prosodic analysis is the set of voiced parts,
stressed segments and syllables pro�le, which are recognizable phenomena and
can be discriminant features.
Such a set has to be translated to some word succession taken from the dictio-
nary, but a stochastic model has to be used because of the high speech variability
even in prosodic aspects. A Hidden Markov Model can be suitable for such a
purpose. The output will be constituted by an N -Best hypotheses list for the
candidate words.
This kind of recognizer is able to perform a rough recognition of some segments
using a kind of information which comes from prosody and is so complementary
to that of the deep syllabic or phonetic analysis. Vowels, and other information
about phonetic tracts enrich high level information and can make the system
more perfomant. This is the �rst part of the multi-granular model presented,
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which has to be integrated with the second kind of process, that is more complex
in computation but also more discriminant. The merging session between the
upper and the lower level will be discussed in later section, where the role of
the rough recognizer here presented will be properly clari�ed.
A second approach has been attempted, following the trend by other experi-
ments. Prosody can be used in post-processing phase, when a speech recognizer
has produced a list of the �rst N best phrases, according to the score coming
from the decoding process. Prosody can be a good method to rescore such list
and get the correct solution. Vergyri et al. [54], as explaind in 1.6 have worked
in this way. The authors have inserted prosodic analysis at multiple levels, but
alway basing on a �ne-grain recognizer. According to them, prosody is a feature
that can be introduced as a feature either at the acoustic lever or at the lan-
guage level. Also the work by Hirose [52] is an example of bottom-up approach,
in that prosodic information is used after the phonetic recognizer computation.
In the here presented model, two methods for prosodic information use in ASRs
will be proposed. The �rst is an attempt to build a stand-alone recognizer, which
is only based on prosodic features. The second is a procedure, to be attached to
a �ne-grain recognizer, which makes a decision on a syllable segment of speech
to mark its prosodic �coherence�. This will be inserted in a rescoring module
for a segmental ASR.

5.2 A Top-Down Prosodic Recognizer

5.2.1 Description

The prosodic recognizer, has the aim to output a list of phrases as candidates
for the utterance transcription. The ASR produced in this phase cannot be able
to perform as well as a phonetic or syllabic one, because

• Prosodic information is not suitable to ASR classical structure

• Commonly used feature coding, does not completely catch the phenomenon

• Prosodic features do not contain full discriminative information

The ASR here presented has been created to build an initial stage, in which
the whole space of solutions can be reduced by means of a rough prosodic
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recognition. The system starts from prosodic and non-segmental features in
order to catch all the possible information to help an underlying recognizer.
Prosody is meant to be a substitution of the �ne-grain recognizer only in the
case in which the problem is trivial. Referring to de Saussure [18], the idea is
that the power of the �ne analysis has to be used only in non-trivial cases. The
model here proposed has been developed by means of standard HMMs, because
it has to be fast and has not the requirement of producing an exact recognition.
Two problems have been faced, the �rst is the choice for the acoustic models.
Here the basic unit of speech is supposed to be prosody, an entity without a
precise formal de�nition and which is distributed along the whole utterance.
Building a recognizer for such phenomenon using a classic structure, means
that a forcing has to be made.
The second issue is about the representation of prosody. In section 2.2.2 a
discussion has been made about common methods to formally describe prosodic
characteristics. The description does not completely de�ne the phenomenon, in
the fact that other information is present in the signal, even if some parts of
it are still unknown. In the present realization, all the methods described in
section 2.2.2 have been used together in order to catch as much as possible
information. Redundancy has been useful in increasing system's performances.

5.2.2 The choice for the Base Unit

The choice for the Base Unit of speech has alway been searched among segmental
or quasi-segmental entities. In the present case such choice is not easy, because
prosodic information is distributed along the whole signal. Units representation
is crucial to an ASR, and usually refers to a succession of feature vectors, each
referring to a speech segment of a certain length.
The choice made in this thesis has been of two types: the prosodic phenomena
will be extracted from a piece of signal much larger than a phoneme. Speech
segments of 150 ms have been chosen, with 75 ms superpositions. This is
because the most part of the methods for features extraction refer up to such
length, as in the case of the Modulation Spectrogram (ref. 2.2.2), which catches
the slow variations of the spectrum.
Prosody has been modeled as a succession of long range features, in which the
slow modulations, united to pitch and energy trends, to accent and phrase com-
ponent, and to vowels indications are mixed together. The forcing here is in the
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fact that, even if prosody is not a phenomenon identi�able in a single speech
segment, the succession of long range features could catch it into an ASR struc-
ture. The vantage here is that a standard ASR using wide analysis windows,
has a much lower complexity, because less vectors are needed to represent an
utterance.
On the other side, an acoustic model has to be used in order to associate such
successions of features to a speech unit. Theoretically the choice would have
required a direct correspondence between the vectors and an utterance, in that
prosody cannot be divided into classes. Obviously this cannot be possible for
computational and language representation reasons. Having an acoustic model
for each single word in the dictionary, would have implied to build up a huge
number of models which could have made the �ne-grain processing less complex.
On the other side, features describe too long units to be catched by a phonetic
model.
Syllables have been chosen as acoustic models for the ASR. In this case, the
classi�cation is separated from the representation, because the model has to
recognize syllables from non-syllabic observations. Some experiments [11] have
demonstrated that features like the Modulation Spectrogram are able to build
up a syllabic recognizer, which does not get the performances of a phonetic
recognizer, but is able to catch some discriminant information. The next section
explains the details of the resulting ASR.
5.2.3 The ASR

The features employed in this thesis, are the ones described in 2.2.2. As the
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Figure 37: Representation of the features extraction process in the Prosodic
Recognizer.

�gure above depicts, the analysis is taken on 150 ms windows overlapped by 75
ms. For each segment, a vector of features is extracted, containing the element
resumed in table 4.
The meaning of the features has been explained in section 2.2.2.

Features # Features #
Energy+∆+∆∆ 3 Modulation Spectrogram 18

Di�. Energy+∆+∆∆ 3 Accents Markers 1
Pitch+∆+∆∆ 3 Vowels 1

Voiced/Unvoiced 1
Fujisaki Rectangles 3

Table 4: Features employed in the Prosodic Recognizer. The right column
reports the corresponding number of parameters, for each feature.

As can be argued from the table, a single 150 ms segment of speech is represented
by 33 prosodic features.
The �rst phase of the ASR building has interested the con�guration of the
acoustic models.

Figure 38: Representation of the complete model for a word.

The emission probability function has been investigated, in order to get the
more performant acoustic models con�guration. Experiments have been made
varying the number of states and gaussians for emission probability simulation.
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Table 5 reports the results on the recognition of numbers ranging from 0 to
999,999.

# States # Mixtures # Features Sentence Correctness
4 3 32 28.64%
4 3 36 30.05%
4 3 36 37.52%
5 4 36 33.86%
6 3 36 61.74%
6 0 36 30.52%
6 10 36 30.40%

Table 5: Reporting of the recognizer scores, at the variation of the number of
gaussian mixtures, features and states for the acoustic models.

The number of features has been changed too, in order to understand if the
carried information, was completely redundant. The results show that the best
con�guration uses all the features, 6 states for each acoustic model and 3 gaus-
sians mixture for the emission probability.

Figure 39: Acoustic model employed in the �nal Prosodic ASR.

The model has been implemented using the HTK toolkit [5]. The general struc-
ture follows the standard ASR architecture, modi�cated in order to meet the
requirements of prosodic recognition.
The output of the recognizer is a list of N -Best recognized phrases, because the
ASR is born with the idea to be an overlying recognizer for a successive deep
processing phase. For each phrase, the con�dence level is calculated and the list
is truncated when a very low score is registred. In the experiments made for
this thesis, the produced N -Best list either contained the correct word at least
in the �rst 24 phrases or it didn't include it at all, so N has been set to 24.
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Relating to the decoding and classi�cation algorithms, the overall complexity is
reduced by the fact that the number of frames is about one order of magnitude
less than a standard phonetic recognizer.

5.3 A Bottom-Up Prosodic Recognizer
The second approach for prosodic information integration, can be de�ned bottom-
up because it acts after another recognizer has transcribed an utterance. The
basic idea is that a segmental ASR can indicate the succession of syllables which
the utterance is made of, with their relative borders. Those syllables could be
even insertions or errors by the recognizer, but a prosodic analysis could revise
such segments and decide that some of them are not coherent with the adjacent
syllables.
In section 1.6 approaches using prosody for N -Best list rescoring have been
presented. The present approach does not address to the whole utterance, but
the syllables it is made of. The idea is so to understand how prosody can be
useful at more detailed scale. The system here presented is a syllable rather
than utterance rescoring process.
The system acts on the basis of the following rules

• A syllabe is analyzed only if an anomaly is detected

• Such syllable is altered or deleted on the basis of a static rule

The concept of anomaly for a syllable has been introduced in order to distinguish
between correct and altered syllables. Referring to the words of a vocabulary,
some reference values can be calculated for the prosodic characteristics of the
syllables composing them.
A statistical evaluation on a rich corpus can be done and, for each syllable the
following values can be calculated

• The minimum value of the energy the syllable assumes on the entire corpus
Emin

• The minimum number of voiced samples the syllable contains on the entire
corpus Uvmin

96



• The minimum duration in samples Durmin

• A �ag indicating if a prominent vowel is always present in all the instances
of the syllable V ow

All the parameters are calculated on a normalized signal.

Emin Uvmin Durmin V ow

di 0.0278 0 321279 0
die 0.153 2071 1325000 0
do 0.657 2052 1300000 1
due 0.084 0 1000000 0
dze 0.004 48 1625000 0
sei 0.110 0 1525000 0
... ... ... ... ...

Table 6: An example of some values for the prosodic rescoring.

A syllable taken from the result of a recognition on the test set, is said to �present
an anomaly� if its value of energy or duration or the number of voiced samples
is less than the minimum calculated on the training corpus.

When a syllabic anomaly is detected, a set of rules decides the transformation
of such syllable. The rules have been extracted from the notice that systematic
errors were committed by the segmental recognizer employed.

• First Rule: Assimilation. If the anomaly is on a syllable with structure
CV1, and the next syllable is a vowel, V2, which does not present an
anomaly, then from the two a unique syllable is obtained which is CV2.
Example : a possibile segmental recognition output could be �o-ttan-to-
u-no� with �to� being anomaly while �u� not. Then the result will be
�o-ttan-tu-no�6.

• Second Rule: Deletion. If a syllable presents an anomaly, and the assim-
ilation rule does not apply, then the right and left adjacent syllables are
taken into account. The tri-syllable is analyzed checking if it could belong
to a word of the language, if not, the syllable is deleted.

6The syllable division here follows acoustic rather than linguistic rules.
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Example : suppose the tri-syllable �sei-tre-sil �7 has been recognized, and
the word �tre� presents an anomaly. Then if the language is only made up
of numbers ranging from 0 to 999,999, then the syllable �tre� is deleted.

• Third Rule: Exception. If an anomaly is presented at the �rst syllable
after the initial silence, then the tri-sillable to analyze will start from the
anomaly.
Example : suppose an anomaly is registred on �due� from the tri-syllable
�sil-due-mi-lle�. Then the tri-syllable to be analyzed will be �due-mi-lle�,
where the deletion rule will apply.

The bene�ts due to the use of this rescoring procedure will be evident in chapter
VII, where the results of the multigranular model with the bottom-up approach
will be showed. The rules above refer to systematic events associated to the
particular segmental recognizer employed, but the adopted paradigm can be
applied to all the segmental recognizers which are able to produce a sequence
of syllabic markers. Notice that even in this framework the syllable is adopted
as the minimal functional unit, in which the prosodic phenomena can be used.

5.4 Discussion
So far two di�erent systems aiming to integrate prosodic information into a
speech recognizer have been presented. The �rst adopts an approach which can
be de�ned as �top-down�, in that the prosodic information results as a reduction
of the search space for a successive segmental recognizer. The second approach
aims to set the coherence of the recognized syllables by a segmental ASR, and
so uses a �bottom-up� approach. In both cases, the syllable is assumed to be
the minimal form of information which can incapsulate prosodic features. In
the case of the top-down approach, an ASR is built, based on syllabic acoustic
models but using prosodic features taken from large analysis windows. This is a
novel approach in that the feature sequence is not a direct representation of the
syllable, but can be useful for discriminating among the phrases. In the case
of the bottom-up system, syllables are decided to be deleted, or altered as they
mantain a coherence with all the other corresponding instances in the corpus.
Also in this case syllabic decisions are taken depending on prosodic cues.

7sil is the syllabic model for the silence.
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The next chapter faces the problem of integrating this two models with the
multi-granular segmental ASR, described previously. Many methods can be
used, depending on word structure and nature hypotheses.
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6 Chapter VI: A Multi-Granular Speech Recog-
nizer

6.1 Architecture
The present section illustrates several methods for multi-granular integration
between the systems showed in sections IV and V.
There are two proposed merging phases, each corresponding to a certain paradigm
of integration. The �rst can be classi�ed as bottom-up in that the merging hap-
pens after the segmental recognition session. In section 5.3 a prosodic rescoring
has been illustrated, which is able to state the prosodic coherence of a syllable.
Such method, discussed in further sections, tries to improve system's perfor-
mances. It starts from the basic assumption that segmental recognition has to
be the real core of an ASR, and its results can be only incremented, but nothing
can substitute it in signal recognition. All the information coming from the
signal has to be processed at segmental level, even if multi-granular analysis is
allowed at that level. In the here presented case, the system uses a mixture of
phonetic and syllabic information by means of Factorial HMMs (ref. 4.1.2) and
only after, the prosodic rescoring is used.
All this theory about multi-granularity is based on considerations about the
signal, without exploring other kind of knowledge sources. This choice has been
made because only signal processing is investigated by current methods, which
is linked to more informatic, rather than social, environment. Multi-granularity
theories have explored also human behaviour, by means of many experiments
as seen in section 1.5, and many of them give a great importance to the pure
signal analysis, which can be processed in parallel on di�erent scales.
The second proposed approach, follows a top-down trend, which is linked to the
general framework of multi-pass strategies in ASR building.
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Figure 40: Representation of the Multi-Pass method for ASRs [30]. In the
N -best search framework, the most discriminant and unexpensive knowledge
sources (KS 1) are used �rst to generate the N -best. The remaining knowledge
sources (KS 2, usually expensive to apply) are used in the rescoring phase to
pick up the optimal solution.

Ideally, a search algorithm set on a single level of analysis, for example fo-
cusing the phonemes, should consider all possible hypotheses based on a uni-
�ed probabilistic framework that integrates information coming from acous-
tic, language, and lexical pronunciation models, which can be integrated in
an HMM state search. It is desirable to use the most detailed models, such as
context-dependent models, interword context-dependent models, and high-order
n-grams, in the search as early as possible. When the explored search space be-
comes unmanageable, due to the increasing size of vocabulary, search might
be infeasible to implement. As the development of more powerful techniques
grows up, the complexity of models tends to increase dramatically. For example,
language understanding models can require long-distance relationships. In ad-
dition, many of these techniques are not operating in the standard left-to-right
manner.
The Multi-pass search is a possibile alternative to such situation. Several knowl-
edge sources are applied at di�erent stages (ref. �gure 40), in the proper order
to constrain the search progressively. In the initial pass, computationally af-
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fordable knowledge sources are used to reduce the number of hypotheses. In
subsequent passes, progressively reduced sets of hypotheses are examined, and
more powerful and expensive KSs are then used until the optimal solution is
found. In top-down approaches, the �rst stage of the process is also the less
discriminant one, while in the bottom-up approaches it is the most discriminant
but also complex one.
In the top-down case, the early passes of multipass search can be considered fast
matches that eliminate the unlikely hypotheses. Multi-pass search is, in general,
not admissible because the optimal word sequence could be wrongly pruned pre-
maturely, due to the fact that not all sources are used in the earlier passes. How-
ever, for complicated tasks, the bene�ts of computation complexity reduction
usually outweigh the non-admissibility. In practice, a multi-pass search strategy
using progressive knowledge sources, could generate better results than a search
algorithm forced to use less powerful models due to computation and memory
constraints.
The most straightforward strategy is the so-called N -best search paradigm. The
idea is to use a�ordable sources to �rst produce a list of the N most probable
word sequences in a reasonable time. Then these hypotheses are rescored using
more detailed models to obtain the most likely word sequence. The idea of the
N -best list can be furtherly extended to create a more compact representation
namely word lattice or graph, which will not be discussed in this section.
The approach using the standalone recognizer, introduced in section 4.1, will
be a multi-passing strategy using a �rst prosodic stage for N -best production,
followed by a deep segmental recognizer.

6.2 Multi-Granular Integrations
6.2.1 Long and Short Utterances

Before introducing the proposed integrations for ASRs in a multi-granular model,
a set of considerations have to be made about the acoustic features on which the
prosodic analysis takes place. A deep gap exists between long and shord words.
In the �rst case the prosodic pro�le can be very complex and the system can be
confused, while in the second case, short words can be discriminated because
their prosodic pro�les can be very di�erent as well as simple.
From the point of view of an ASR, instead, the di�erences can be resumed by
the following points
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• Features are poorly discriminant

• Syllabic acoustic models are not directly associated to the information
extracted

• Sometimes there is not di�erence between a long word and a short one
pronunciated slowly

• There are neither pauses or Tone Units8 which can separate the words

All the points above imply that the recognition of long words by only the
prosodic information can be an hard task.
A di�erent treatment has been used to long word recognition in multi-granular
systems. The main problem is about the inner nature of such linguistic phe-
nomena. Three hypotheses can be made about

• A long word is a composition of more short words

• A long word is an entire word to be recognized at whole

• A long word is an unexpected phenomenon which can only be treated at
�ne detail

The �rst assumption means that a long word is like a fastly uttered phrase, and
it should be treated as a succession of words. Algorithms for words separation
can be used in order to cut the utterance, and detect the component subwords.
Much of the e�ort is deployed to this last phase.
The second assumption refers to the fact that a long word has to be treated
like any other word in the language. So an attempt has to be made in order to
extract a list of hypotheses in which also the long word is contained.
The third assumption states that neither the �rst or the second approach are
su�cient to de�ne a long word, and only a successive analysis can be made in
this case.
According to the above assuptions, ASRs have been constructed. The results
will also be interesting for understanding which is the real nature of a � long�

8Features describing the intonative contour of a phrase. Often they mark an utterance in
which a concept has been exposed.
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word. The word long, has be de�ned in this framework, as a word presenting
more than 6 syllables.
The next section illustrates the models in detail.

6.2.2 Systems Integrations

A set of ASRs has been contructed in order to account for prosodic recognition
with di�erent approaches. The here presented models are multi-granular in
the fact that they employ multiple levels of analysis and address to di�erent
information sources with di�erent temporal scales. The �rst described will be
the bottom-up model, which uses the prosodic processing after the segmental
recognition. Later, the top-down approaches will be shown, in which a pre-
processing is made following the multi-passing paradigm. The post processing
phase is introduced anyway, for model robustness. The several systems refer
to di�erent hypotheses about the nature of �long� words, with �long� indicating
words with more than 6 syllables (counted with the automatic procedure in
[67]).

Bottom-Up Multi-Granular ASR (BU )

Figure 41: Multi-Granular ASR using a bottom-up approach.

This system is made up of a phonetic-syllabic recognizer based on Factorial
HMMs (4.1.2), followed by a prosodic post-processor (5.3) for results control.
The basic assumption here is that a word must always be analyzed in its �ne
details. The prosodic information is useful only in results veri�cation and re-
arrangement. The integration method is bottom-up and the basic steps can be
resumed as follows
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• A phonetic-syllabic recognition is acted on the entire signal

• A successive processing rearranges the syllabic succession by the previous
phase, on the basis of prosodic analysis

Multi-Granular ASR with Entire word recognition (TDE)

Figure 42: Multi-Granular ASR with single prosodic analysis.

The system is made up of a multi-pass architecture (ref. 6.1) which uses an
initial prosodic recognizer, followed by a phonetic-syllabic recognizer. In the
end a rescoring procedure modi�cates the syllabic successions by the previous
step. The approach stresses the top-down method, but also bottom-up processing
is used. The assumption on which the model is based is that the �ne-analysis
can be helped by a prosodic pruning. The integration is at the acoustic models
and at the language model levels. The not involved syllables are not processed,
and the syllabic connections not appearing in the N -Best list are annihiled. A
long word is here treated as an entire word which cannot be decomposed in
sub-words.
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The process can be resumed as follows

• A prosodic recognition is performed

• From the previous stage a N -Best list is obtained

• The phonetic-syllabic recognizer acts by setting to zero the acoustic models
scores and the connection to the syllables not included in the N -Best list

• A successive processing rearranges the syllabic succession by the previous
phase, on the basis of prosodic analysis

The above model has not been useful in long word recognition. In such cases the
word was not included at all in the N -Best list, and so the model was equivalent
to perform the deep analysis directly, when in presence of long words.
The process can be so riformulated as follows

• Analysis of a signal and classi�cation in long or short. The choice is
based on Fujisaki impulses and on the number of automatically extracted
syllables

• In the case of a long signal, a �ne-recognition is performed

• A bottom-up processing is made on the result

• In the case of a short signal a prosodic recognition is performed

• From the previous stage a N -Best list is obtained

• The phonetic-syllabic recognizer acts by setting to zero, the acoustic mod-
els scores of the syllables not included in the N -Best list

• A successive processing rearranges the syllabic succession by the previous
phase, on the basis of prosodic analysis
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Multi-Granular ASR with Multiple sub-words recognition (TDM )

Figure 43: Multi-Granular ASR, decomposing a long signal in short signals
succession, with a factorial recognizer for each extracted piece.

Even in this case the system is made up of a multi-pass architecture which
uses an initial prosodic recognizer, followed by a phonetic-syllabic recognizer.
In the end a rescoring procedure modi�cates the syllabic successions by the
previous step. The approach stresses the top-down model, but also bottom-up
processing is used. The assumption on which the model is based is that the
�ne-analysis can be helped by a prosodic pruning. The di�erence respect to the
previous recognizer is that now a long word is assumed to be a composition of
more sub-words by the language, which have to be separately recognized. The
merging phase is after the recognition of the single sub-words is teminated. The
bottom-up rearrangment acts on the output by the merging phase.
This is the procedure summary

• Analysis of a signal and classi�cation in long or short. The choice is base in
Fujisaki impulses and on the number of automatically extracted syllables

• In the case of a short signal, the procedure in TDE is performed

• In the case of a long signal, the following procedure applies

• The signal is segmented according to Fujisaki impulses and automatic
syllabic separation
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• Each segment is treated as a separate word

• A bottom-up processing is made on the result

• A prosodic recognition is performed

• From the previous stage a N -Best list is obtained

• For each word-segment, the phonetic-syllabic recognizer acts by setting to
zero, the acoustic models scores of the syllables not included in the N -Best
list

• In the end, the results are concatenated in order to get a unique result

• A successive processing rearranges the syllabic succession by the previous
phase, on the basis of prosodic analysis
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Multi-Granular ASR with sub-words Prosodic recognition (TDP)

Figure 44: Multi-Granular ASR, decomposing a long signal in short signals
succession, with a unique factorial recognizer for all the pieces.

As in the previous case, the system is made up of a multi-pass architecture which
uses an initial prosodic recognizer, followed by a phonetic-syllabic recognizer.
In the end a rescoring procedure modi�cates the syllabic successions by the
previous step. The approach stresses the top-down method, but also bottom-up
processing is used. The assumption on which the model is based is that the
�ne-analysis can be helped by a prosodic pruning. The di�erence here is that
a long word is identi�ed, only at prosodic level, as a composition of sub-words
from the language.
The following is a summary of the process

• Analysis of a signal and classi�cation in long or short. The choice is base in
Fujisaki impulses and on the number of automatically extracted syllables

• In the case of a short signal, the procedure in TDE is performed
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• In the case of a long signal, the following procedure applies

• The signal is segmented according to Fujisaki impulses and automatic
syllabic separation

• Each segment is treated as a separate word

• A bottom-up processing is made on the result

• A prosodic recognition is performed

• From the previous stage a N -Best list is obtained

• A merging phase is performed, where from the many lists, a single one is
obtained

• On the merged list, the phonetic-syllabic recognizer acts by setting to zero,
the acoustic models scores of the syllables not included in the N -Best list

• In the end, the results are concatenated in order to get a unique result

• A successive processing rearranges the syllabic succession by the previous
phase, on the basis of prosodic analysis

The merging phase here is obtained by the cross product between all the occur-
rences in the lists, respecting the temporal order of the segments they belong
to.

6.3 Discussion
So far we have showed two multi-granular kinds of systems. The one based on
a multi-pass strategy and another using a rescoring module for multi-scale inte-
gration. Each of them try to integrate information coming out from a prosodic
scale of analysis into a more detailed process, based on a mixture of base units.
The multi-granular analysis acts at di�erent stages. It can be implicitly found
into the segmental recognizer, or it can be noticed in the systems interaction.
A particular attention has to be kept to � long� words. They can be treated as
combinations of shord words or they can be thought as entire units. The soltion
to this problem is not trivial and strongly in�uences systems performances. The
�rst hypothesis leads to �nd an algorithm for words decomposition in subwords,
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which could extract also units that are not contemplated by the language. The
second hypothesis, instead, has to deal with the fact that the only prosodic
information cannot distinguish among long words, because their internal com-
plexity increases. Prosodic features discriminant power is limited only to �short�
words.
Each proposed multi-granular ASR start from a di�erent set of initial assump-
tions about the nature of words and speech processing.
The next chapter exposes the results by all the systems, introducing also the
chosen experimental framework.
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7 Chapter VII: Results
7.1 The Corpus
In this section the employed corpus will be described. As stated previously, this
is a collection of audio �les, each with an associated transcription at multiple
levels. Transcriptions about phonemes as well as words or syllable are present,
and often also prosodic events annotations can be found. The corpus used for
this thesis has been taken from SPEECON [13]. 18 di�erent languages are
present, which cover the most used european languages. Also dialect in�ections
can be found in the collection.
The extracted piece is a set of spoken numbers in Italian language, pronounci-
ated by only male speakers. Each signal has a sampling frequency of 16000 Hz.
There are 1906 recordings, pronounciated by about 400 di�erent speakers, who
have recorded about 5 sentences for each one. Among these, 4007 �les have been
taken corresponding to numbers ranging from 0 to 999,999. In each recording
a single word in the range is present.

Table 7: Dictionary words with relative occurrencies count.

112



A grammar and a dictionary have been extracted from the corpus, where only
47 words are necessary to build up all the words in the language. The occurency
of the dictionary words are reported in table 7.
The here presented experiment is centred on the syllables other than phonemes
and prosody. A syllabic transcription was necessary for the learning session
of the models, unfortunately this was not present in the corpus. A syllabic
annotation session has been manually made on the entire corpus to set up the
experimental environment by means of the Wavesurfer tool [61].
The corpus has been divided as follows

• 1
3 of the corpus as been used for testing and development, the rest has
been used for training

• A speaker present in training set is not present in the test set and viceversa

Some considerations must be made about the motivations for the choice of
numbers as the experimental environment. First of all the choice for numbers
will be justi�ed along with the subdivision of the dictionary in 47 words, along
with the �perceptive� subdivision in syllables.

7.1.1 The Language

In experiments about speech recognition, it is necessary to select a dictionary,
which is neither too big, because of development time problems, or too little,
because it would not represent all the problems can be found with large dictio-
naries.
The domain of numbers is su�ciently varied and has a wide number of features
can be found in natural language applications. Such domain is quite little but
not trivial. The chosen range is 0-999,999, where few syllables can build up all
the vocabulary and even long words. Numbers have a well de�ned grammar, for
which no statistical analysis is necessary, but ambiguities and superpositions
are present because the same set of syllables is shared among several words.
The same thing would not happen in the case of digits (numbers from 0 to 9 )
where few ambiguities and superpositions are present. The possibility to have a
static and de�ned grammar avoids the use of approximation in the extimations
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of concatenation probabilities. So the focus can be set on the acoustic models
and the decoding procedure, as the experiment here presented needs.
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$zero=zero;

$uni1 =due|tre|quattro|cinque|sei|sette|nove;

$uni2 =uno|otto;

$uni3=due|tre|quattro|cinque|sei|sette|otto|nove;

$uni=$uni1|$uni2;

$dec=dieci|undici|dodici|tredici|quattordici|quindici|sedici|diciassette|
|diciotto|diciannove|venti|venti-$uni1|ventuno|trenta|trenta-$uni1|
|trentuno|trentotto|quaranta|quaranta-$uni1|quarantuno|quarantotto|
|cinquanta|cinquanta-$uni1|cinquantuno|cinquantotto|sessanta|
|sessanta-$uni1|sessantuno|sessantotto|settanta|settanta-$uni1|
|settantuno|settantotto|ottanta|ottanta-$uni1|ottantuno|ottantotto|
|novanta|novanta-$uni1|novantuno|novantotto;

$cen=cento|cento-$dec|cento-$uni|$uni3-cento|$uni3-cento-$dec|
|$uni3-cento-$uni;

$mi1=mille|mille-$cen|mille-$dec|mille-$uni;

$mi2=$cen-mila|$cen-mila-$cen|$cen-mila-$dec|$cen-mila-$uni|$dec-mila|
|$dec-mila-$cen|$dec-mila-$dec|$dec-mila-$uni|$uni3-mila|
|$uni3-mila-$cen|$uni3-mila-$dec|$uni3-mila-$uni;

( SENT-START ($zero|$uni|$dec|$cen|$mi1|$mi2) SENT-END )

Figure 45: ABNF Grammar for numbers from 0 to 999,999
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7.1.2 The Acoustic Models

Syllables representation for words in the vocabulary had to be chosen, along
with words representing the utterances. An acoustic-perceptive choice has been
made. Starting from the signal, energy islands have been isolated and annotated
by hand. Table 8 reports the extracted syllables along with their number of oc-
curencies. As can be noticed, the subdivision does not agreee with the linguistic
decompositions. This is because automatic systems have to be used in ASRs,
some of them addressing to automatic syllabic decompositions. The annotation
criteria has so been alligned to the rules used by automatic syllabators, like that
in [67]. Energy islands presenting an onset, nucleus and coda, have so been
detected and the signal transcribed.

Figure 46: Example of syllabic annotation.
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Table 8: Syllables extracted from the corpus.

Words in the dictionary have been also chosen according to this criteria, because
a word like diciotto has a spectral realization which cannot be decomposed
in units (e.g. dici-otto), as in that case also other words (e.g. dici) should
be introduced in the dictionary, which are not frequent and are also highly
dependent on pronunciation.
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7.2 Results
The following sections show the performances of the systems previously de-
scribed. For each ASR results are reported at various levels.

• At Syllable level. That is in syllables classi�cation

• At Dictionary Words level. That is in dictionary words recognition

• At Sentence level. That is in the recognition of the uttered number

Notice that the experiments are on single number recognition in the range 0-
999999. So, for syllables and dictionary words, also a calculation about false
insertions, deletions or substitutions will be reported, in the value for the accu-
racy. In the case of sentences, only the report of the number of correct words
will be shown, as there are no cancellations, substitutions or deletions.
For results interpretation some de�nitions have to be introduced, which are
commonly used reference values in literature.

Correctness = H
N X100

Accuracy = H − I
N X100

Word Error Rate = I + S + D
N X100 = 1−Accuracy

Where

• H : number of correctly recognized units

• I : number of over-inserted units

• S : number of substituted units

• D : number of deleted units

• N = H+S+D : total number of units present in the manual transcription
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The �rst value accounts only for the fact that the unit (syllable, word or sen-
tence) is in the transcription, the second value controls if the recognition is
e�ectively �right�, by checking also if a substitution, deletion or insertion is
associated to the unit.
The next sections will report the results, which will be discussed in the next
chapter.

7.2.1 Baseline ASR Performances

The baseline system is described in section 3.2. Results are reported at the
variation of the speech unit considered for acoustic models.
The employed algorithm for decoding is the Viterbi (ref. 3.2.6).

• Using phonetic acoustic models, the results on the transcription of the
entire utterance and of dictionary words are

On Utterance On Dictionary Words
Number of states Corr Corr Acc WER

5 58.15% 79.65% 69.87% 30.13%
6 60.69% 81.65% 75.32% 24.68%
7 62.14% 80.21% 75.56% 24.45%

Table 9: Performances of the baseline system with phonetic units, at the varia-
tion of the number of states.

The best results are achieved using 7 states acoustic models. The experiments
have detected a fast reduction in performances when the number of states is
more than 7, because units larger than phonemes are modelles in that case.

• Using syllabic acoustic models, the results on the transcription of the
entire utterance and of dictionary words are
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On Utterance On Dictionary Words
Number of states Corr Corr Acc WER

7 30.07% 67.47% 37.18% 62.82%
9 46.38% 70.11% 57.69% 42.30%
10 41.85% 66.03% 51.12% 48.88%
11 52.90% 73.00% 63.46% 36.53%
12 50.54% 68.51% 60.02% 39.98%
13 50.72% 68.43% 61.30% 38.70%

Table 10: Performances of the baseline system with syllabic units, at the varia-
tion of the number of states.

In this case, the best results are achieved with 11 states.

• Using an acoustic model for each word in the dictionary, the results
on the transcription of the entire utterance and of dictionary words are

On Utterance On Dictionary Words
Number of states Corr Corr Acc WER

18 29.17% 55.85% 37.74% 62.26%

Table 11: Performances of the baseline system with entire dictionary words
taken as units, at the variation of the number of states.

This experiment has produced very low results when the number of states is
di�erent from 18. This last model has not been used in the rest of the exper-
iments because using an acoustic model for each word leads to a complex and
not generalizable ASR.
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7.2.2 Factorial ASR Performances

The Factorial system is described in section 4.1. Results are reported in com-
parison to the baseline system at the variation of the focus unit.
The employed algorithm in such model is the new algoritm introduced in section
4.2.5.

• In syllables classi�cation, the performances between the Factorial and
Standard HMMs are reported in the following table

Syllabic Model Accuracy Correctness
FHMM 2 lev. with 7 states each 84.81% 94.30%

Standard HMM with 7 states and syllabic models 81.33% 89.11%
Standard HMM with 5 states and phonetic models 85.74% 93.91%

Table 12: Results on syllables classi�cation.

Factorial model seem to use better the multiple information inside a syllabic
length segment.

• In utterance transcription, the performances of the Factorial model is
compared to the baseline system, referred to as HTK, and to a system
employing standard HMMs acoustic models for syllables, but the new
presented algorithm for word decoding.
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Model Correctness
ASR with Factorial HMMs and proposed Decoding Algorithm 68.84%
ASR with Standard HMMs and proposed Decoding Algorithm 65,19%

HTK with 7 states phonetic models 62.14%
HTK with 11 states syllabic models 52.90%

Table 13: Results on utterances transcription.

Even in this case, the Factorial model performs better. The bene�t comes
from the dual layer nature and the decoding procedure. Better performances
are calculated also for classical models employing the exact decoding algorithm
introduced in section 4.2.5.

7.2.3 Mean permanence in state for each layer

In order to put in evidence the behaviour of the Factorial HMMs, a measure
has been introduced, which is able to demonstrate that the Factorial model is
e�ectively able to extract a slower and a faster dynamic from the signal.
This is achieved by means of the mean permanence in state , which is cal-
culated as

t(φ,m) =
1

N − 2

N−1∑

i=2

1

1− a
(m)
ii

, m = 1, 2

where φ is the acoustic model, m is the layer and a
(m)
ii is the probability transi-

tion from the state i to itself. The quantity refers to the mean number of times
the system makes self loops for each state in the layers.
The calculation can be made on all the models to have an overall idea of the
e�ective presence of two dynamics.

t(m) =

∑
∀φ t(φ,m)
Numb.φ

m = 1, 2

The results for this quantity is reported in table 14.

122



Slow Level Fast Lever
4.50 7.84

Table 14: Mean permanence in state for the two Factorial levels.

It is evident that two dynamics are present for the di�erent layers. One evolves
fastly, the other slowly. This is in agreement to the hypothesis for Factorial
HMMs to be able to model multiple dynamics of the signal. According to the
model, this should refer to syllabic and phonetic phenomena, even if the real
nature of such trends cannot be extracted fromt the results. The identi�cation
can be only supposed but not demonstrated.

7.2.4 Multi-Granular ASR Performances

The multigranular systems showed, are that described in section 6. In particular

• BU: Multigranular ASR with Factorial HMMmodels, followed by prosodic
rescoring

• TDE: Multigranular ASR with Factorial HMMmodels preceed by prosodic
recognition, in the case of short signals (less than 6 syllables). On long
signals the BU process is directly applied.

• TDM: Multigranular ASR with Factorial HMMmodels preceed by prosodic
recognition, in the case of short signal (less than 6 syllables). Long signals
are instead divided in short signals which are recognized separately.

• TDP: Multigranular ASR with Factorial HMMmodels preceed by prosodic
recognition, in the case of short signal (less than 6 syllables). Long sig-
nals are instead divided in short signals which are prosodically recognized
separately. The factorial recognition is acted on the merged result coming
from the previous stage.
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Model Accuracy Correctness
BU Multi-Granular System 90.15% 93.69%
TDE Multi-Granular System 89.11% 92.80%
TDM Multi-Granular System 64.42% 72.02%
TDP Multi-Granular System 1.33% 73.74%

FHMM 2 lev. with 7 states each 84.81% 94.30%
Standard HMM with 7 states and 81.33% 89.11%

syllabic models
Standard HMM with 5 states and 85.74% 93.91%

phonetic models

Table 15: Results on syllables classi�cation.

• Table 15 shows the results on syllables recognition. The Bottom-up
approach gets the best results, nearly followed by the TDE model.

Model Accuracy Correctness
BU Multi-Granular System 84.49% 89.89%
TDE Multi-Granular System 82.77% 88.84%
TDM Multi-Granular System - 56.14%
TDP Multi-Granular System - 57.11%

Table 16: Results on Dictionary Words recognition.

• Table 16 shows the results on dictionary words recognition. While the BU
is very close to the TDE, the other two systems get no results on accuracy,
in that always insertion, cancellations or substitutions are produced. This
means that the automatic subdivision of a long signal in many short signals
does not perform well.
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Model Correctness
BU Multi-Granular System 79.17%
TDE Multi-Granular System 78.06%
TDM Multi-Granular System 68.04%
TDP Multi-Granular System 65.98%

FHMM 2 lev. with 7 states each 68.84%
Standard HMM with 12 states, 65,19%

syllabic models and proposed decoding alg.
Standard HMM with 7 states, 64.09%

phonetic models and proposed decoding alg.
HTK with 7 states phonetic models 62.14%
HTK with 11 states syllabic models 52.90%

Table 17: Results on entire utterance transcription.

• Table 17 shows the results on entire word recognition. Notice that ac-
curacy is not reported because the recognition is on a single word in the
range 0-999,999. Even in this case the BU system gets the best perfor-
mances. Scores are reported also for a system using standard HMMs using
the exact decoding algorithm introduced in section 4.2.5.

From the above results, it is clear that the multi-granular system really intro-
duces useful factors, which are able to improve performances of 17.03% respect
to stardard architectures, and of 26.27% respect to standard syllabic systems!
The next chapter will also talk about the di�culties in applying the model to
real cases, because the constraint here is that the real-time requirements have
been ignored.
Notice that even the exact decoding algorithm introduces sensible improve-
ments, as the performances respect to the standard Viterbi are increased by
12.29% in the case of syllabic models.
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7.3 Discussion

The performances of the implemented systems have been shown on the task
of numbers recognition ranging from 0 to 999,999. The choice for the corpus
and the language is due to the need of a workbench which is able to let the
experiment focus on the acoustic models and decoding phase, rather than on
the language model statistical estimation or large vocabulary recognition. The
numbers have been chosen because they present many of the problems can be
found with big vocabularies.
The performances of the systems have been calculated starting from the baseline
ASR built with HTK, and then with the multi-granular segmental ASR, based
on Factorial HMMs. In the end, the multi-granular system has been compared
to the others and the results show a very high performance improvement. Other
experiments can be found in the comparison table, with systems using standard
acoustic models in combination with a novel, exact, algorithm for utterance
decoding. Such algorithm is able to exploit the acoustic models at best and
gives the best alignment of the models to the signal. The bene�ts are evident
in that the performances strongly change.
The next chapter will argue the consequences of the obtained results, each of
which is associated to some assumptions about the nature of words and of the
recognition process. The discussion will focus on the meaning of the model as
it can also guess something about human recognition, as previewed by psicoa-
coustic theories.

126



8 Chapter VIII: Discussion
8.1 Summary
The multi-granular system presented has shown to get very high performances
respect to a baseline system.
The following �gures shows a comparison between a standard system (e.g. HTK,
ref 3.2) and the proposed multi-granular model.

Figure 47: HTK ASR schema [5].
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Figure 48: Multi-Granular ASR schema.

As can be noticed, a distinction is made between long and short signals, which is
taken on the basis of the number of syllables. A long signal is one having more
than 6 syllables, on which a prosodic recognizer is completely unable to guess
the result. It does not appear even in the list of the �rst 200 best recognized
phrases. This means that a separation in the functioning has to be made in
order to exploit system's functionalities at best. On the other side the results in
section 7.2.4 show that the best results are achieved when the only bottom-up
system is employed. So it seems that the prosodic recognizer used in the multi-
pass step is not so useful. Going deeply into details, the di�erence is in the fact
that the complexity of the factorial model strongly depends on the number of
active models and the likelihood calculation.
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Signal Name TDE M-G ASR Bottom-Up ASR Reduction Perc.

SA005CI 40.24 65.29 38.37%
SA015CI 43.59 72.17 39.61%
SA305CI 48.12 71.01 32.23%
SA401CI 41.44 61.77 32.93%
SA524CI 57.37 82.11 30.13%
SA541CI 45.99 75.32 38,94%
SA287CI 52.55 71.72 26,72%
SA230CI 42.63 69.58 38.73%
SA209CI 47.08 80.02 41.17%
SA178CI 52.70 85.23 38.16%

Table 18: Comparison (in seconds) between Multi-Granular Top-Down and
Bottom-Up recognizers.

Model Correctness
BU Multi-Granular System 79.17%
TDE Multi-Granular System 78.06%
TDM Multi-Granular System 68.04%
TDP Multi-Granular System 65.98%

FHMM 2 lev. with 7 states each 68.84%
Standard HMM with 12 states, 65,19%

syllabic models and proposed decoding alg.
Standard HMM with 7 states, 64.09%

phonetic models and proposed decoding alg.
HTK with 7 states phonetic models 62.14%
HTK with 11 states syllabic models 52.90%

Table 19: Remind of the results on entire utterance transcription.

Table 18 shows a comparison between the computational time for the recognition
of some �les, in the case of the BU and the TDE model. A mean di�erence
of 35,7% is calculated on the entire corpus, so that the TDE model has the
advantage to reduce the processing time.
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A particular stress has to be given to the novel decoding algorithm introduced
in section 4.2.5. The advantage is in the fact that even standard models can
achieve better results, even if the computational time increases.
In summary the following considerations can be argued from the results

• The Bottom-Up approach reaches the best score of 79.17% in correctness

• The Multi-Pass Strategy makes only sense as a catalyst of the entire pro-
cess

• The exact decoding algorithm is able to increase the recognizer perfor-
mances, even in the case of standard HMMs acoustic models

• The automatic segmentation of the signal in sub-words is not e�ective

The multi-granular approach seems to make sense if the prosodic information is
employed after the segmental recognition. The top-down approach, instead, can
be used, on short �les, where it is useful as a catalist of the whole processing.
The automatic segmentation is not able to divide the signal in elements corre-
sponding to dictionary words. This is due to the fact that the signal is severely
altered by the fast inner coarticulation of a word. The next section analyzes
such problems.

8.2 Issues
In this section, the problems of the here presented models will be highlighted.
The main evident issue regards the distinction between �long� and �short� words,
where the �rst term refers to more than 6 syllables words. Why such dinstiction
has to be made?
This problem refers to the real nature of long words, which must be distinguished
from long sentences. This di�erence is evident in the recognition of single words
ranging from 0 to 999,999. From the point of view of a prosody based recognizer,
there is no way to recognize a long word, not even in the �rst 200 best utterances.
From a spectral point of view this long signal can be confused with a shord
word pronunciated slowly. This is because features are quite rough, and models
cannot discriminate by only means of them. Another problem can be the fact
that the used architecture is a standard one, referring to syllabic acoustic models
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which are not in a direct correspondence to the observations. The acoustic
models could be not suitable, but even the decoding strategy could lack in
something.
In summary, the problems for the long words are

• The poorly discriminant features

• The acoustic models not corresponding to the observations

• A decoding algorithm not suitable to the problem complexity

Attempts to solve such problems have been made, by varying the type of acous-
tic models employed, but no way has been found. Maybe the real nature of the
problem, which is the main reason of the failure of the TDM and TDP recogniz-
ers, is that a long word is not really made up of many sub-words corresponding
to dictionary words, but it is made up of altered sub-words. Such di�erences
can be due to the deletion or substitution of some phonemes.
In this framework the bottom-up approach, discussed in section 5.3, can be
introduced, which is an attempt to model the prosodic events in another way.
A set of static rules is employed on syllables, in order to make the intervention of
prosody more generalizable. A rescoring process on the whole utterance, would
have not been generalizable to other vocabularies.
The problem of long words decomposition can have two explanations

• A procedure for decomposing a sentence in sub-words from the dictionary
cannot exist, but the obtained segments can only be associated to altered
sub-words, to be managed in the dictionary

• The procedure can exist but the features to use for the decomposition are
not yet clear

In the �rst case a possible solution is to alter the grammar in order to con-
template also altered words, but this could compromise the whole recognizer
performances.
On the other side, it could be guessed if it makes sense to build up a speech rec-
ognizer based on prosody. Prosody could be used only in bottom-up approaches

131



because of its super-segmental nature, in the sense that it only adds information
to the segmental level, but cannot substitute it. This is another open point left
by the present thesis.
The problem can be generalized to a more wide question: Does it make sense to
build up a multi-pass structure for an ASR, using prosody as �rst step? From
the discussion above it seems that the procedure is not so useful, but it can be
confusing sometimes. As can be seen from table 19, the bottom-up process is
more performant, while the top-down approach is useful only as catalyst. So it
seems the multi-pass strategy is not so useful in this framework.

8.3 Future Work
In this section, future work about multi-granular ASRs will be discussed. Com-
mercial ASRs lack in the fact that applications to wide public is not robust.
Speech variability is too complex to be catched with a simple phonetic recog-
nizer. A factorial or a multi-granular model could be more robust, but it can
present complexity issues. To overcome this problem, approximate methods, as
described in section 4.2.1 could be used. The calculation of factorial models like-
lihood is the most complex phase in the presented approach, but an increment
in speed can be achieved by getting the results with approximate algorithms.
The important thing is to preserve the relative di�erences between the likeli-
hoods during the decoding phase: the correct recognition must have the highest
likelihood.
Further work will so focus on the real-time processing, which has been neglected
in this thesis.
Also the decoding strategy employs much more time than the standard Viterbi
algorithm, even if the benefts are evident. A workaroud in this case can be to
use beam seach strategies [30], to reduce the solution search space.
In summary, the experiment is really encouraging besides the high computa-
tional complexity. Notice that this highly depends on the number of frames
and states. On the other side if the word is short such problems do not arise.
This means that with little vocabularies containing short words, this kind of
recognizer can achieve very high results and be also e�cient.
Interactive Voice Responsers (IVR) are among the systems which highly use
such kind of recognition. Automatic telephony agents address to a wide public
and so usually employ simple speech recognition on little static grammars. A
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factorial model can be embedded in one of these systems and could be perfect for
many applications. An example can be the recognition of isolated or connected
digits, which are the most employed in IVR applications. A recent proposal
has been that of introducing multi-granular recognizer in the Avaya Devconnect
Program [49] for experimentation.
A last note is about applications on large vocabularies. With the present situ-
ation, it is not thinkable to apply the multi-granular recognizer to the so called
Natural Language applications, in which a person can speak freely to an auto-
matic system. The problem is in the high dependency on the number of frames
which the signal is made of. In real cases it can be guessed if a dialogue is really
made up of long signals. The prosodic analysis of the TDM and TDP models,
has stressed the possibility to subdivide the signal in many signals. In spoken
dialogues words are made up of two syllables on average (in Italian language).
A segmentation by means of tone units and Fujisaki accent components, could
so divide the whole signal in many sub-signals with a treatable complexity from
a multi-granular ASR point of view. The result would not achieve bad results
as in the case of long words segmentation, in that sentences are very di�erent
from long words. Prosodic variations are evident, especially when a complete
meaning has been expressed in a sentence [67]. A dialogue can be seen as a set
of many short sentences, many constituted of two syllables. So a multi-granular
strategy could in principle be applied.
The discussion about multigranular models can be resumed by the following
points

• Multi-Granular models are more robust to speech variations

• They can be used in little vocabularies, with short words, achieving very
high performances

• IVR framework can be suitable for such application

• Application to large vocabularies need to introduce approximated methods
for likelihood calculation and words decoding

• Long Dialogues can be seen like sequences of shorter phrases, where multi-
granular models can be applied
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All this statements are left as future work on such models.
The striking thing here is that an automatic speech recognizer has been built,
starting from ideas belonging to the origin of the language studies, supported
in time by psycoacoustic experiments and by some mathematical models. The
results demonstrate that those ideas are able to equip an arti�cial system of
powerful instruments to overperform a standard approach. In our opinion, this
can be really the base for robust and future generation automatic speech recog-
nizers.
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9 Chapter IX: A Practical Application
9.1 Introduction
The previous chapter has highlighted the good and bad aspects of a model for
a multi-granular ASR, based on syllabic acoustic models and prosodic features.
The resulting system is depicted in �gure 49.

Figure 49: Overall ASR schema.

The next step, before any further work aiming to make the system perform
better or faster, is the following question:

Is it suitable to face real application problems, and in which context?

First of all notice that the preliminar prosodic analysis, in the novel system,
is able to accelerate the whole recognition process, even if such technique is
e�ective only on �short� words recognition. The algorithms here presented have
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a complexity strictly dependent on the number of frames to analyze and the
number of models involved into the task. It would be impossible to apply this
ASR to a spontaneous speech dialogue, without any further work in the direction
of complexity reduction.
On the other side, the power of multi-granular processing, makes the ASR suit-
able to application addressing large public, where speaker independence and
robustness requirements are necessary.
In summary the enviroment for a straightforward application of the here pre-
sented model must have the following characteristics:

• Words to be recognized have to be short, for the response to be faster.

• Few words in the dictionary are needed, because the decoding strategy
complexity is strictly dependent on that.

• The environment needs to face large speaker variety and has robustness
requirings.

The landscape above could seem very restrictive, but that is not completely true.
Many applications in real word, do not need all the power of large vocabulary
ASRs, while they really need something suitable for the task they are going to
face. Powerful speech recognizers in commerce, such Nuance [38] or Loquendo
[59] products, are hard to adapt to small tasks where the recognizer has a little
set of words among which to choose, but the variety of speakers is really large,
as well as a very noisy enviroment is generally present. Think for example to an
application for an energy supply company, which has to develop an automatic
telephonic responser for its services. In that case, people variety is very high in
pronunciation and use to automatic services, moreover noisy environment will
be surely present, expecially when the call comes from people in street tra�c.
A task speci�c recognizer for digits was introduced by Avaya [48] in 2004, with
the Interactive Responser platform. The machine accounted for automatic tele-
phony answering, for call �ows �ltering and management. The applications
running on the platform were able to integrate also ASR or Text-To-Speech
facilities during the interaction with the caller. For digits recognition, a task
speci�c ASR, called �whole word � recognizer, was introduced. This system pre-
sented a single HMM for each digit, and classi�ed on the basis of the highest like-
lihood. Usually on such tasks, whole word HMMs perform better than systems
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addressing to sub-word units, but this is not the case for telephony applications.
The �whole word � failed when in presence of a large number of customers and
people preferred the interaction by means of DTMFs, moreover problems rose
when in presence of �barge-in�, that is when a user was allowed to interrupt
the machine speaking. A demostration was given by the Interactive Response
System of A.E.M. (a company for electricity and gas furniture in Milan, Italy),
which could accept up to 120 contemporary calls. Each menu of the response
system had a barge-in-able prompt, and interaction by means of DTMF or voice
was possible. Statistics showed that over the 70% of the callers preferred the
DTMF interaction because the whole word recognizer was really not performant
from their point of view, and people didn't like the time loss due to recognition
errors. The issue was only on speech recognition, because the agreement on the
overall service was over the 90%. Simple structure recognizers are not suitable
to such applications, so that a more powerful tool has to be used. The whole
word recognizer is not embedded in the Avaya IR systems anymore, and its use
is discouraged for customer applications.
From the discussion above, it could be argued that the introduction of a multi-
granular ASR could be suitable on such tasks, which represent the largest part
of today automatic telephonic responsers using speech recognition facilities.
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9.2 ASR for an IVR application
The most suitable ASR schema for an IVR application for isolated digits recog-
nition could be that in �gure 50.

Figure 50: Multi-Granular ASR for isolated digits recognition.

A single digit is short enough to meet the above requirements, and the multi-
granular structure can account for the robustness requirements. The role of
the preliminary prosodic analysis is to make the computation fast enough for
practical applications.
Problems can arise in the recognition of sequences of digits. In that case, a long
sequence can be viewed as a long word, where the constituting elements are
more easily separable. So that the schema of an ASR could be the one in �gure
51.
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Figure 51: Multi-Granular ASR for connected digits recognition.

Obviously the last schema should be veri�ed and results are necessary to state
its e�cacy on such task.

9.3 The Environment
A possible enviroment for the employment of a multigranular ASR is that of
IVR applications. In the most cases a user is asked to choose among a �nite
set of possibilities, by voice or touchtones. A typical IVR system is depicted in
�gure 52.
The application lies on a web server while a VoiceXML interpreter manages the
call details. A telephonic interface has the duty to answer the call and use the
ASR and Text-To-Speech features.
When the user is asked to interact, the telephonic interface gets the audio input
and processes it, in order to set the start and the end of speech. The recognition
process acts while the caller is speaking, or sometimes in �batch� mode, after
the user has �nished to talk.
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A multigranular ASR can act in this situation when the choice is on a menu or
there is a little �nite set of words, associated to some actions.

Figure 52: General IVR Architecture.

The most IVR systems are oriented to such applications, where the set of pos-
sibilities is very narrow, but a very powerful ASR is needed.
Even if the interactive responsers are moving towards the direction of arti�cial
agents, this aim is very far to come. This is due to the lack in performances
of modern commercial speaker independent ASRs. Nuance [38] has abandoned
the idea to build up a telephony speaker independent recognizer with large
vocabulary, so that spontaneous dialogues are even discouraged by the builders
themselves. This world is so suitable to the introduction of task speci�c ASRs,
like multi-granular ones.
Dialogues design literature is wide and all the advices are oriented to build up
applications using fragmentation of information, so that the user has to answer
to simple questions and has to use a simple set of words. This is because tele-
phony applications are oriented to people not used to this technology, which have
many di�culties to interact with a machine. Such users need the most powerful
speech recognition processing techniques, and the use of general purpose systems
is not revealing successful. Ignoring the needs of practical applications is not
useful, because success and people education on such systems start from simple
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but functioning cases. Common people interest and trust, on these solutions,
are the most important parameters for companies investments.

9.4 Proposals
The above reasons have been the principal impulse for some companies to set
up a connection network between IVR solutions developers. The aim is to
create more robust applications and multichannel services, which can integrate
many di�erent worlds and technologies. The trend is towards the invention of
interactive agents which can be really useful and very fast. The main problem
of standard applications is that the users choices are very controlled and no
much freedom is left to the caller about the expression of his needs. A sequence
of menus can be really tyring and the user is not always able to �nd the point
he is searching for. The possibility of free speech requires much research, but
the technology nowadays is ready for the development of robust applications in
that way. The problem is that information and techniques have to be shared.
Examples of developers networks are given by companies like Avaya, Genesys
[56] and HP . The �rst has introduced an international program (Avaya Dev-
Connect [49]), which aims to bring as many natural language processing skills as
possible, as well as telephony integrations for speech recognition and synthesis.
As the author of the tesis is a member of this program, the here presented
project has been submitted to the attention of the other members, in order to
make the multi-granular ASR the successor of the old whole word recognizer,
and there are high probabilities the new approach will be experimented as the
next embedded recognizer for simple words or digits on the Avaya IR platforms.
Other products oriented to natural language processing have been successfully
accepted as o�cial IVR solutions, about probabilistic grammars developments
and about Computer-Telephony integrations [60].
The proposed solution is so the insertion of a multigranular ASR on IVR plat-
forms in order to test the performances on a large public.
In summary, the result of this thesis has not only been the exploration of the
multigranular theory, in order to get evidence of was stated in psychoacoustics
and linguistics, but it has become also a useful tool which will be experimented
on real cases, with a large quantity and variety of speakers, in order to test the
usefulness, other than the robustness of the model. The perception of the good
performances of a system is intersected with its robustness, but the two aspects
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do not coincide.

Further Reading
It is not possible to quote all the literature about multi-granularity, so, before
the reference section, adviced lectures for a better understanding of the contents
of this thesis will be listed.

In acoustics and psychoacoustics, there are important works referring to human
speech recognition as a multiple sources concurrency:

Prosodic organization of speech based on syllables: the C\D model,
O. Fujimura, In Proceedings of the XIIIth International Congress of Pho-

netic Sciences, V. 3, p. 10-17, 1995.

Speech Perception: New directions in research and theory,
L. C. Nygaard, D. B. Pisoni, In Joanne L. Miller and Peter D. Eimas, (Eds.)

Speech, Language and Communication, Vol. 11 of Handbook of Perception and
Cognition, Ch. 3 , pp. 63-96. Academic Press, 1995.

The Temporal Unfolding of Local Acoustic Information and Sentence Con-
text,

S. Borsky, L. P. Shapiro, B. Tuller, Journal of Psycholinguistic Research, 29,
155-168.

The vowel-sequence illusion: Intrasubject stability and intersubject agreement
of syllabic forms,

R. M. Warren, E. W. Healy, M. H. Chalikia, Journal of the Acoustical Soci-
ety of America, 100(4): 2452-2461, October 1996.

The origins of speech intelligibility in the real world,
S. Greenberbg, In Proceedings of the ESCA Workshop on Robust Speech

Recognition for Unknown Channels, p. 23-32. ESCA, 1997.
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Perceptual processing of speech and other perceptual: some similarities and
di�erences,

R. M. Warren, In Steven Greenberg and William Ainsworth, Eds. Listening
to Speech: An Auditory Perspective. Oxford University Press,1998.

Syllable timing computation in the C\D model,
O. Fujimura, In ICSP, pp. 519-522, 1994.

Phonetics and Phonology,
J. Clark, C. Yallop, Chapter 5, p. 124-127,287. Basil Blackwell, 1990.

Multigranular models have been experimented in other ways, aside the one here
showed. The followings are other works, not mentioned in Chapter I, which can
make the reader know other paradigms in ASR building:

Architetture parallele basate su modelli nascosti di Markov per il riconosci-
mento di numeri,

F. Persico, Thesis in Informatics at Università degli Studi di Napoli Federico
II aa. 2004/05.

Multiresolutional hierarchical decision support systems,
A.M. Meystel, Systems, Man and Cybernetics, Part C: Applications and

Reviews, 2003.

Speech Recognition by Composition of Weighted Finite Automata,
F. C. N. Pereira, M. D. Riley, Available as cmp-lg/9603001 from http://xxx.lanl.gov/cmp-

lg.

Merging information in speech recognition: Feedback is never necessary,
D. Norris, Medical Research Council Cognition and Brain Sciences Unit
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The literature about ASRs using multiple knowledge sources is wide. Many peo-
ple have used several kinds of information to improve recognizers performances,
not referring to a multi-granular inner structure of speech. The followings are
examples of those experiments:

Use of word level side information to improve speech recognition,
D. Vergyri, In Proceedings of the IEEE International Conference on Acous-

tics, Speech and Signal Processing, 2000.

Using Natural language knowledge sources In Speech Recognition,
R. Moore, In Keith Ponting, editor, Speech Pattern Processing ,1999.

Using multiple time scales in a multi-stream speech recognition system,
S. Dupont, H. Bourlard, C. Ris, In Eurospeech 1997, pp. 3-6.

Syllabe segmentation of continuos speech with arti�cial neural networks,
W. Reichl and G. Ruske, in Proceedings of Eurospeech 93, 3rd European

Conference on Speech Communication and Technology, Berlin, pp. 1771-1774,
1993.

Syllabe detection and segmentation using temporal �owneural networks,
L. Shastri , S. Chang , S. Greenberg, Proceedings of the Fourteenth Inter-

national Congress of Phonetic Sciences, San Francisco. 1999.

Syllabe segmentation of continuos speech with arti�cial neural networks,
W. Reichl and G. Ruske, in Proceedings of Eurospeech 93, 3rd European

Conference on Speech Communication and Technology, Berlin, pp. 1771-1774,
1993.

Syllabe detection and segmentation using temporal �owneural networks,
L. Shastri , S. Chang , S. Greenberg, Proceedings of the Fourteenth Inter-

national Congress of Phonetic Sciences, San Francisco. 1999.

Using Dialog-Level Knowledge Sources to Improve Speech Recognition,
A. G. Hauptmann, S. R. Young, W. H. Ward, National Conference on Arti-

�cial Intelligence,p. 729-733,1988.
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A comparison of Statecharts step semantics,
A. Maggiolo-Schettini, A. Peron, S. Tini, Theoretical Computer Science, 2

October 2001.

Connected word recognition using whole word templates,
J. S. Bridle and M. D. Brown, Proc. Inst. Acoust., pp. 25-28, 1979.

High Level Knowledge Sources in usable speech recognition systems,
S. R. Young, A. G. Hauptmann, W. Ward, E. Smith, P. Werne, Communi-

cations of the ACM archive V. 32, Issue 2 1989

Many works on prosody and non-segmental features have shown their usefulness
in speech recognition. The followings are examples of this approach in speech
recognition and understanding:

A prosodical guided speech understanding strategy,
W. A. Lea, M. F. Medress, T. E. Skinner, IEEE Transactions on Acoustic,

Speech and Signal Processing, 38(1), p. 35-45, 1990.

Automatically predicting dialogue structure using prosodic features,
H. W. Hastie, M. Poesio, S. Isard ,Speech Communication V. 36 , 2002.

Phonetic characterisation and lexical access in non-segmental speech recog-
nition,

M. Huckval, Proc. 13th Int. Congress.Phonetic Sciences, 1995.

Using high level dialogue information for dialogue act recognition usign prosodic
features,

H. Wright, M. Poesio, S. Isard, Int. Journal of Network Management, V. 9
(2), p. 118-125, 1999.

Word Fragment Identi�cation Using Acoustic-Prosodic Features in Conver-
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