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Abstract

The coastal zone is a delicate and dynamic area in which the majority of a

water body's kinetic energy is dissipated through wave breaking, run-up and

bed friction. The most significant result of these processes is the erosion and

subsequent transport of the shore and beach materials. This littoral zone is

very important to the public for economic and social reasons and to wildlife

for habitat and food supply purposes. It is therefore very important that the

coastal zone be protected and maintained so that these considerations are

addressed in a compatible and effective fashion. In recent years, increased

attention has been given to a class of breakwaters collectively termed

submerged breakwaters. As indicated by the name, these structures are

constructed below a specified design water level. Some studies have put in

evidence that for the submerged barriers realized in various parts of the

world only a small percentage have a positive effect on the coastal zone.

Such result is probably due to a lack of knowledge of the complex

phenomena that develop in the interaction of the barrier with the wave

motion. The purpose of this thesis is to contribute through the high order

analysis a to a best knowledge of the nonlinear phenomena that develops in

the interaction of the waves with the submerged barriers.
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Sommario

Le zone costiere sono delle aree delicate e dinamiche nelle quali la maggior

parte dell’energia del moto ondoso viene dissipata attraverso il frangimento e

gli attriti sul fondo. Talvolta questi processi possono portare all’erosione delle

coste ed al trasporto di materiale fuori dell’unità fisiografica. Le zone costiere

sono molto importanti sia dal punto di vista economico che sociale e

rappresentano l’habitat per molte specie animali e vegetali. È quindi

importante che le zone costiere siano protette dall’erosione e vengano

rispettati gli ecosistemi esistenti. Tra gli interventi di protezioni dei litorali

negli ultimi anni si è diffuso l’uso delle barriere sommerse. Come indicato dal

nome si tratta di barriere costruite sotto il livello medio del mare. Dei recenti

studi effettuati su un vasto campione di barriere hanno evidenziato che solo

una piccola percentuale di tali opere effettivamente producono degli effetti

positivi per la stabilizzazione della linea di riva. Probabilmente questo è

dovuto alla scarsa conoscenza in merito ai fenomeni complessi che

intervengono nell’interazione tra il moto ondoso e la barriera. Lo scopo di

questo lavoro di tesi è quello di approfondire l’aspetto che riguarda le

interazioni non lineari tra il moto ondoso e le barriere sommerse attraverso

l’uso di analisi spettrali di ordine superiore.
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CHAPTER 1

INTRODUZIONE

The coastal zone is a delicate and dynamic area in which the majority of a

water body's kinetic energy is dissipated through wave breaking, run-up and

bed friction. The most significant result of these processes is the erosion and

subsequent transport of the shore and beach materials. This littoral zone is

very important to the public for economic and social reasons and to wildlife

for habitat and food supply purposes. It is therefore very important that the

coastal zone be protected and maintained so that these considerations are

addressed in a compatible and effective fashion. Engineered shoreline

protection measures have taken many forms in the past; some have met

with certain degrees of success while others have been obvious failures.

Although the most evident failures are those related to structural integrity,

there are many more subtle failures. The effects of which are often not

discovered for a number of years. These subtle failures are often directly

related to the disruption or destruction of natural habitats and processes.

Therefore the focus of shoreline protection design has been expanding to

include features which protect against and compensate for any loss of

natural habitat areas. Conventional emerged breakwaters are typically

designed to totally eliminate wave energy in their lee for a particular design

wave condition. Often, this design wave condition is relatively severe and as

a result, the structure must be very large. Where a minor degree of

overtopping is permissible, the physical requirements of the breakwater are

only slightly reduced. As such, these structures must be massive to

withstand the impact forces of breaking waves, and often they all but

eliminate water circulation in the protected area.
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Although this calm condition developed in the lee of the breakwater protects

the shoreline and can provide for good mooring conditions, under certain

circumstances, the hydrodynamics developed at emerged breakwaters and

the associated shoreline response can degrade water quality and natural

habitat (CEM; 2004).

In recent years, increased attention has been given to a class of breakwaters

collectively termed submerged breakwaters. As indicated by the name, these

structures are constructed below a specified design water level. In

comparison to emerged breakwaters, submerged structures permit the

passage of some wave energy and in turn allow for circulation along the

shoreline zone at the cost of a reduced level of protection. In addition to

providing environmental benefits these structures have also found

applications as preliminary defence measures in extreme wave climates

where they reduce the wave forces on the primary defence structures

(Cornett et al., 1994). This approach can be particularly beneficial in areas

where a primary defence structure has sustained some damage or in areas

where there is a projected long-term relative increase in sea levels and wave

heights. The class of submerged breakwaters includes numerous specific

types including active submerged, flexible membrane, fixed wave barriers,

reef breakwaters or conventional rubble mound submerged breakwaters.

Although there has been a considerable amount of research performed on

these various structures, the physical processes are very complex and there

are still several outstanding questions, especially with respect to practical

design guidelines and procedures. In fact the insufficiency of these

information has been underlined in some studies lead on sites (Seiji, Uda and

Tanaka, 1987 and Brigand et al., 2002), where it emerges that only the 60%

of the analyzed structures had produced shoreline, while in the 40% of the

cases the protection has not gotten any meaningful effect and in some cases

(Dean, Chen and Browder, 1997) a drastic withdrawal of the line of coast is

recorded with the loss of huge quantities of sand.
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This thesis deals with nonlinear transformation of wave spectra behind

submerged breakwaters, in particular those due to nonlinear triad

interactions. The study aims at increasing the knowledge and the physical

insight in the mechanism of these processes.

Thesis outline

In chapter I the various types of breakwaters have been analyzed putting in

evidence the advantage of the use of the submerged barriers. It has been

introduced besides the physical phenomena that concern the transformation

of the waves in the coastal zones, such as refraction, diffraction, reflection

and breaking.

In chapter II are analyzed hydraulic performances of submerged barriers.

Next, both experimental and analytical studies are analyzed on the

phenomena that concern the barriers as the wave transmission, the setup,

shoreline response, wave roller.

In chapter III theoretical models of interaction between submerged barriers

and wave motion are analyzed. Particularly the solution of Massel (1984) is

introduced. Subsequently are presented previous studies on wave barrier

interaction performed by van der Meer (2000), Yamashiro et al (1999) and

Black and Oumeraci (2001).

In chapter IV the experimental study performed at GWK (Hannover,

Germany) is described.

In chapter V GWK data are analyzed using bispectral analysis. High order

analysis allows to put in evidence phase coupling between frequencies and

non linear triad interaction. A parametrical analysis has been carried out to

understand the rules of barrier and wave behaviour in non linear
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phenomena. Also the Hilbert Huang Transform (HHT) analysis has been

carried out to perform time-frequency investigation. HHT results have been

compared to bispectral results in order to evaluate HHT capabilities in water

wave analysis.
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1.1 Types of Rubble Mound Breakwaters

Conventional rubble mound breakwaters are commonly used to provide

sheltered areas for marinas, erosion protection, beach formation and

recreational activities. Their design consists of a large volume of rock that

pierces the water surface, thus blocking the incoming waves and providing

shelter in their lee. Conventional rubble mound breakwaters do an excellent

job of reducing wave heights. However, there are some disadvantages using

conventional surface piercing structures including:

 reducing the water circulation resulting in water quality issues

 reducing the biologic activity or diversity in the area

 navigational problems

 deface the natural landscape of the sea

 large amounts of wave reflection causing increased incident wave

heights

Submerged breakwaters were introduced over the past few decades as a

means of solving some of the specific problems that surface piercing

breakwaters could not. As indicated by their name, submerged breakwaters

consist of a rubble mound structure with a crest set at some desired depth

below the surface. The offshore waves approach this structure and are

reduced by a number of energy dissipation mechanisms, including wave

breaking and frictional dissipation. There are still many uncertainties

associated with the submerged breakwater due to the complex physical

processes and relatively less information available to a designer than for the

surface piercing breakwater. A submerged breakwater does have some

advantages over their surface piercing counterpart including:
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 being invisible from the shoreline thus maintaining natural landscape

 improving navigational issues

 because they are submerged they do not cease the circulation of

water thus

 improving water quality

 Allowing for aquatic life to bypass the structure relatively unimpeded.

However, there are some drawbacks to the submerged breakwaters, mainly:

 they do not provide an impermeable barrier to the wave action thus

blocking only a portion of the incoming wave energy

 there are difficulties using them in areas of large water level

fluctuations design guidelines are relatively sparse, thus their

implementation is without

 the same confidence level as emerged structures.

 large offshore (rip) currents are usually experienced on the edges of

the breakwater and in the gap between barriers

The rubble mound breakwater is the most commonly applied type of

breakwater. A rubble mound breakwater dissipates the main part of the

incoming wave energy by wave breaking on the slope and partly by porous

flow in the mound. The remaining energy is partly reflected back to the sea

and partly transmitted into the protected area by wave penetration and wave

overtopping. Various kinds of rubble mound breakwaters have been

constructed depending on the purpose of the breakwater, cf. Fig. 1.1. The

most simple rubble mound breakwater consist only of a mound of stones

(Fig. 1.1 a). However, this type of structure is very permeable and will cause

heavy penetration of waves and sediment. Moreover, large stones are

expensive because most quarries yield a lot of finer material and relatively

few large stones. Figure 1.1-b and 1.1-c are the two most common types of

rubble mound breakwaters and are known as conventional rubble mound

breakwaters with and without a superstructure. Even though the two types

of structures appear different the structures have several points of
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resemblance. Both breakwaters consists of a core of fine material covered by

layers of larger units preventing the fine core material from being washed

out. The outer seaward layer, the armour layer, consist of units of rock or

concrete, large and heavy enough to remain in their position during design

wave conditions. The inclination of the front slope is one of the parameters

that determines the required mass of the armour unit. Concrete armour units

are typically more expensive than rock, but in some cases large enough rock

is not available nearby, unless a very flat front slope of the breakwater is

applied. Using a flat front slope increases the needed volume of material,

and hence the construction costs, dramatically. The maximum size of rocks

that quarries can yield and handle is at the moment 10-20 tons. For rock

typical front slope inclinations are in the range 1:1.5 to 1:4 depending on the

available rock and the soil conditions. In case of concrete armour units a

steep front slope is for most types of units used, as the weight of the above

lying units has a stabilizing effect. Typically 1:1 to 1:2 is used for concrete

units depending on the interlocking of the units. Unless the breakwater is

located on a rock bottom, a toe is constructed to provide a safe base for the

armour layer. On the rear side an armour layer is constructed to protect the

breakwater against overtopping waves and waves in the harbour basin.

Figure 1.1-b shows a structure primary used in relatively shallow water,

where berthing along the breakwater and access on the breakwater is not

required. In these cases relatively large amounts of wave overtopping are

typically allowed. In Figure 1.1-c is shown a breakwater with a concrete

superstructure, which works as a shelter for the overtopping waves and an

access road for repairment and traffic to and from the breakwater. For

similar overtopping conditions a structure with a crown wall needs significant

smaller volume of material. Since the 1980'ties a design based on natural

reshaping of the front rock armour during wave action has gained more

attention (Fig. 1.1-d). This type of breakwater is known as berm breakwaters

or reshaping breakwaters. The main advantage of this structure is that

simpler construction methods can be applied. In most cases this type of



12

structure is built with no superstructure as shown in Fig. 1.1. Furthermore,

the berm breakwater is considered as a more durable structure with much

easier and cheaper repair methods as compared to the conventional rubble

mound breakwater. The berm breakwater is typically built with a very steep

front slope and with relatively smaller armour units. The profile self-adjusts

to the wave climate leading to a profile stable for the given climate. Lately

also non-reshaping berm breakwaters have been considered, often with

several stone classes to maximize the total stability and quarry utilization, as

indicated in Fig. 1.1-e. Especially in Iceland this structure is widely used, and

is therefore also known as the Icelandic type of berm breakwater. Structures

constructed with an S-shaped profile are typically used in large water depths

to reduce the volume of material, but construction costs are in most cases

significantly larger than for the reshaping berm breakwater, resulting in

approximately the same profile. Fig. 1.1-g shows a reef breakwater which is

a submerged breakwater mainly use for protecting beaches.
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Figure 1.1 – Types of breakwaters
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1.2 Wave transformation phenomena

Shallow water wave theory and past studies on submerged breakwaters

indicate that these structures alter the wave climate by the following

transformation mechanisms:

 wave shoaling

 wave refraction

 wave diffraction

 wave reflection

 wave breaking

altering the fundamental wave frequency (or period) to higher harmonic

frequencies.

Longitudinal submerged breakwaters also use these physics processes to

transform the waves although the interaction of the transformation

mechanisms is very complex and unique to the wave characteristics and also

the geometry of the longitudinal submerged breakwater system. Identifying

the geometric properties of these longitudinal structures that most affect the

transmitted wave must come from an understanding of the physical wave

transformations taking place.

1.2.1 Shoaling

Shoaling describes wave transformations as the waves approach the

shoreline perpendicularly. It is extended from the integration of the

conservation of energy flux

equation:

  0gEC  [1.1]

where

 = differential vector operator
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E = wave energy ( 21 8 gH )

 = density of water

g = gravitational acceleration

H = wave height

gC = wave group celerity (speed)

Shoaling theory is based on the assumption that the wave energy and group

celerity product ( )gEC is constant since the energy flux is conserved. That is,

waves at any two depths cm be elated by their height and celerity. As waves

enter shallow water, interference with the sea floor causes the p u p celerity

to decrease. Therefore, the energy (wave height) must increase. However,

shoaling theory must be used in accordance with wave refraction, diffraction

and breaking, since shoaling theory alone would predict infinitely high wave

heights as the wave group celerity approached zero. in actuality, the wave

can only retain a certain form beyond which increased wave heights would

cause instability in the wave form and energy loss through diffraction and/or

breaking.

1.2.2 Wave refraction

Wave refraction describes wave transformations as the wave arrives at an

angle to the bottom contours. During refraction, wave crests align

themselves with the bottom contours (see Figure 1.2). Wave celerity is

dependent on water depth. Thus, the section of wave crest in deeper water

will travel faster than the section in shallow water and the
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Figure 1.2 – Wave refraction.

wave crest will bend itself to align with the bottom contours. The

conservation of energy flux between the wave rays is used to analyze

refraction effects and leads to the application of Snell's Law which is:

sin
C c


 [1.2]

Where

C = the wave celerity (or speed)

 = the incident angle between the wave crest and the bottom contour

c =constant
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However, Snell's Law can only be used for "relatively" straight bottom

contours that are "relatively" parallel. This assumption is valid for many

problems in coastal engineering, but not for longitudinal submerged

breakwaters where the bottom contours that influence refraction are in fact

the breakwater contours and are distinctly not parallel. Also, looking strictly

at refraction (pure refraction), irregularities in bottom contours cm cause

wave rays to cross (caustics), and since the energy density between rays is

constant, this would indicate an infinite wave height. As was the case for

pure shoaling, pure refraction does not allow diffraction or breaking in which

the wave energy would spi11 across the wave ray and dissipate, thus

reducing the wave heights and negating these caustics.

1.2.3 Wave reflection

Like sound waves, surface waves can be bent (refracted) or bounced back

(reflected) by solid objects. Waves do not propagate in a strict line but tend

to spread outward while becoming smaller. Where a wave front is large, such

spreading cancels out and the parallel wave fronts are seen travelling in the

same direction. Where a lee shore exists, such as inside a harbour or behind

an island, waves can be seen to bend towards where no waves are. In the

lee of islands, waves can create an area where they interfere, causing steep

and hazardous seas. When approaching a gently sloping shore, waves are

slowed down and bent towards the shore. When approaching a steep rocky

shore, waves are bounced back, creating a 'confused sea' of interfering

waves with twice the height and steepness. Such places may become

hazardous to shipping in otherwise acceptable sea conditions.

1.2.4 Wave diffraction

Wave diffraction is concerned with the spilling of wave energy across wave

rays or the propagation of energy along the wave crest. In reality,

diffraction, refraction and shoaling al1 occur simultaneously. When waves

encounter an obstruction, or a sudden change in bathymetry, some of the
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wave energy will be forced to dissipate across the wave ray (or along the

wave crest). The most simple example is wave crests corning in contact with

an obstruction that causes a "shadow zone" behind the obstruction (Fig.

1.3). The wave energy leaks into the shadow zone and creates a diffraction

Figure 1.3 – Wave diffraction.

pattern. Figure 2-4 shows a diffraction pattern for the single obstacle case

described above and an idealized diffraction pattern for a double obstacle,

such as a longitudinal submerged breakwater. Obviously, the multiple

obstruction case has a very confused sea state seaward of the structures

which is almost beyond description. Attempts have been made to numeric

model the wave transformations occurring at submerged breakwaters by

applying equations of non-linear wave theory that are versatile enough to

describe the complete wave transformation process in shallow water,

including shoaling, refraction and diffraction. Boussinesq equations are for

long waves of moderate amplitude over a slowly varying bed, and despite

these simplifying assumptions have been used to model wave

transformations over a submerged breakwater (Cruz, Isobe, & Watanabe,
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1994). Their model seems to describe the wave well over the crest of the

structure, but is inaccurate in modelling the wave field leeward of the

breakwater. The Mild Slope equation can also be used to describe refraction

and diffraction

simultaneously, but due to the high number of variables and the large

variances in the contours of the longitudinal submerged breakwater system,

many simplifications and assumptions would need to be postulated in any

numerical models using the Boussinesq or Mild Slope equations, thus

clouding the results.

Figure 1.3 – Diffraction pattern for the single obstacle and an idealized diffraction pattern
for a double obstacle

1.2.5 Wave breaking

Although shoaling, refraction and diffraction theory may predict a wave of a

certain height, there is a physical limit to the steepness of a wave (steepness

is defined as wave height, H, divided by the wavelength, L or the steepness

of the front face of the wave. Beyond this steepness, the wave can no longer

retain its form, and will break, dissipating a large portion of its energy. Miche
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(1944) described wave breaking once this limiting steepness is exceeded.

McCowan (1894) and later Munk (1949) described the depth of water that

causes waves of limiting steepness using Solitary Wave Theory. The slope of

the sea floor also effects wave breaking, particularly the shape of the wave

at breaking, and Kamphuis (1991) expanded on the theories of McCowan,

Munk and Miche to incorporate the beach slope. The effect of wave breaking

on reducing the transmitted wave energy for longitudinal submerged

breakwaters is thought to be more efficient than for submerged breakwaters

mainly due to wave refraction (Goda 1996). Refraction through the valleys

between the structures and over the side slopes cause increased wave

heights over the crests of the submerged longitudinal breakwaters and thus

increased amounts of wave breaking and subsequently energy dissipation.
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CHAPTER 2

2.1 Wave Phenomena at Submerged Breakwaters

The physical processes involved in the wave-structure interaction at

submerged breakwaters are very complex. The complexities arise from two

distinct sources: the extreme variability of the local wave climate and the

numerous physical processes associated with the interaction of any specific

wave climate with the unique characteristics of a given submerged

breakwater configuration. It is this interaction which dictates the degree and

rate of wave transformation at a submerged structure and thereby defines

the resulting wave transmission, reflection and energy dissipation. The

energy dissipation at the structure, defines the forces which will influence the

stability of the breakwater. Basic physical processes at a submerged

breakwater can generally be separated into three regions. These regions are

shown in Fig. 2.1 for a typical submerged breakwater configuration with the

notation for physical variables used throughout this study. The three regions

are described briefly in the following paragraphs. Region 1 is located over

the seaward slope of the structure. In this region the incident wave field is

complex and irregular in nature, varying spatially and temporally at any given

location. incident waves may exhibit varying degrees of non linearities due to

the complex forces which have generated them and they may be transmitted

on a water surface which fluctuates with a much longer period due to tidal or

surge effects. Shoaling and refraction by the local bathymetric conditions

offshore of the breakwater increase the non-linearity of the wave field.
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Figure 2.1 – Typical submerged breakwater configuration with the notation for physical
variables used throughout this study

in Region 1, the incident wave encounters the rising face of the submerged

breakwater and begins to shoal. As a result of this shoaling, bound harmonic

waves are generated (Beji and Batjes, 1993). Some of the incident wave

energy is reflected and this reflection has been found to be strongly

dependent on the depth of submergence (Ahrens, 1987; Van der Meer,

1991) and somewhat dependent on the slope of the structure Dattatri et al.,

1979). Wave breaking characteristics at bars and artificial reefs are largely

influenced by the slope of the forward face of the structure and the depth of

submergence as well as the offshore velocity across the breakwater crest

(Smith and Kraus, 1990). Other phenomena found to occur in this region in

laboratory tests include the build-up of low-frequency wave heights, thought

to be the result of interaction between incident bond long waves, and an

offshore current developed by a set-up of water level behind the breakwater

(Petti and Ruol, 1991 and 1993; Liberatore and Petti, 1993).

Region 2 is located on the crest of the breakwater. In this region, energy

from the fundamental wave frequency is transferred to higher harmonic
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frequencies (Driscoll, Darlymple and Grilli, 1993). Beji and Battjes (1993)

demise this phenomenon (for long waves propagating over a bar) as a rapid

flow of energy from the primary wave to higher harmonics, generating

"dispersive wave tails" which appear to travel with nearly the same celerity

as the primary waves. For the case of submerged breakwater, where the

incident wave transformations will be more abrupt, the process may be

affected to some degree by the influence of reflected waves and wave

breaking onto the crest of the structure. As the waveform passes over the

breakwater crest energy is also dissipated through frictional resistance.

Because the breakwater is permeable, laminar and turbulent flows within the

structure also result in some energy dissipation.

Region 3, located beyond the shoreward limits of the breakwater crest is a

transition to deeper water where the higher frequency wave components

developed in Regions 1 and 2 separate from the fundamental components

and travel with their own celerity (Beji and Battjes, 1993). This process

generally results in a broad energy spectrum in the lee of the breakwater

with a decreased characteristic wave height (Hm0) and reduced peak wave

period (Tp). Again, this process has been observed in investigations involving

spectral analysis of wave transformations at submerged breakwaters (Petti

and Ruol, 1993; Cornett, Mansard and Funke, 1994). Studies of velocity

fields at submerged breakwaters show the development of eddies, indicating

flow separation and subsequent energy losses immediately shoreward of the

breakwater crest (Ting and Kim, 1994). Other general phenomena that may

occur in the vicinity of submerged breakwaters include a local setup of water

levels in the lee of the breakwater due to a net mass flux of water over the

breakwater crest, and wave current interactions as an offshore current

(return flow) is developed in the surface region over the breakwater (Petti

and Ruol, 1991 ) or in gaps between segmented breakwater structures

(Fulford 1985). It is therefore evident that there are numerous factors

associated with the incident wave field. The breakwater geometry and the

local bathymetry which can affect the wave transformation and the resulting
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energy transmission, reflection and dissipation at a submerged breakwater.

Previous physical and numerical investigations have been performed in an

effort to concisely define the effects of these various factors.

Laboratory experimental testing, numerical modelling approaches and field

studies continue to be developed for improved understanding of

hydrodynamic and morphodynamic effects of this kind of structure in the

coastal zone. The previous laboratory experimental research on submerged

breakwaters is summarized in Table 2.1. The table clearly indicates test

conditions (wave climate, breakwater type and geometry, water depth, wave

flume/basin dimensions, etc) of previous laboratory studies. This chapter

presents historical investigations and research of hydrodynamic studies on

submerged breakwaters including wave transformation/transformation,

wave-induced set-up and current across submerged breakwaters or reefs.

Wave Transmission

Various experiment laboratory studies and numerical models have been

developed for predicting wave transmission passing across low-crested

breakwaters.

2.2 Experimental Studies

Goda et al. (1979) carried out a series of laboratory experiments in a wave

channel with regular waves on vertical and composite overtopping

breakwaters. Results shown that the transmission coefficient is linked to

submergence ratio ( s ih H ) on the other hand the dimensionless wave

characteristics such as 0H L and iH hdid not influence the relation between

submergence ratio and wave transmission coefficient. Goda et al. (1967) also

observed that for large crest width of the breakwater, transmission

coefficient decrease. The following empirical formula was proposed by Goda

et al. (1967) for calculating transmission coefficient "Kt ":
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0.5 1 sin
2

s
t

i

h
K

H





  
    

  
[2.1]

in which sh is distance of still water lever from breakwater crest, and are

variables =2.0 and has the value of 0.1, 0.3 and 0.5 for high, medium

and low mound breakwaters respectively.

Seeling (1980) carried out a series of laboratory tests with a smooth and

impermeable overtopping breakwater using both regular and irregular waves.

He revealed, according to Goda (1969), that submergence ratio ( s ih H ) is

the parameter that mostly influence the transmission coefficient. The author

also shows, that the formula proposed by Goda (1969) is also approximately

valid for the irregular waves.

Abdul Khader and Rai (1980) performed a series of 2D laboratory tests

on smooth and impermeable submerged breakwaters with different shape

and geometry. Authors shown that energy dissipation the is very dependent

on relative crest height (d h ). Abdul Khader and Rai (1980) have shown that

the amount of energy dissipated is greater for larger values of the wave

steepness, both in the case of rectangular and of trapezoidal breakwaters.

However, trapezoidal breakwaters are effective even for low range of d h

due to the shoaling impacts caused by sloping sides of the breakwater.

Allsop (1983) in order to study the stability of the structure, number of

waves overtopping and transmission coefficient carried out a series of

experiments on low-crest rock armoured breakwaters. The tests were carried

out using random wave field with different climate (height and period ). He

modified Goda' s empirical model (Goda, 1969) for wave transmission

coefficient by substituting " 0.5tK  " instead of tK and introduced

*R parameter instead of s ih H to fit the model to measured data:

 *0.5 1 sin
2tK R





     
[2.2]

where
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
   
 

1 2
*

2
s

s

h s
R

H
[2.3]

in which Hs is significant wave height at breakwater location in absence of

the structure and s is the wave steepness (H/L0). Powell and Allsop (1985)

provided empirical curves (as design guidelines) for estimating wave

transmission coefficient over low-crested permeable breakwater with 40%

porosity (Figure 2.2).
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Water depth Flume/Basin
dimension

Wave condition Breakwater
type

Breakwater dimensionReferences

h (cm) (m) r/ir Hi (cm) Tp (sec) B (cm) d (cm) tan 
Johnson et al. (1951) - 0.33 R - plywood 10,22,33 - 0

Goda et al. (1967) 50,35 20x30 3-30 0.8-2.76 wall 40,90 20-70 ...
Diskin et al. (1970) 18 1.4x0.6x26 R 10.6-16.1 1.22-1.62 rubble 12-14 15,21 -

Seeling (1980) 125=-21 to 42 - Ir-r 0.08-0.177 0.91-3.46 rubble 30,40 33,66,75 var
Abdul Khader & Rai

(1980) - 0.9x0.9x30 R 4.7-13.1 - plywood 12-36 0.15-0.97(d/h) 0-1:2

Allsop (1983) Var. 1.5x3x42 Ir 5.5-19.4 0.4-1.71 rubble 13.9 16.6-22.2 1:2
Aminti et al. (1983) - 0.8x1.5x20 R 6.25-15.6 1.0,1.5,2.0 var var 6.25,9.4,12.5 1:1-var

Powell & Allsop (1985) h, = -7.9 to 18.6 Ir 9-22.9 1.39-2.3 rubble 14-30 25-66 var

Adams & Choule (1986) Var. 24x37 Ir 3.8-8.2 - rubble 22-48 h-d=3.6-(-3.6) 1:2
Ahrens (1987) 25-30 1.2(0.61)x46x42.7 Ir 2.25-18.2 1.45&3.6 rubble 5.6-9.0 17-35 1:1.5

van der Meer (1988) 40 - Ir 7.5-19.2 1.96-2.6 rubble 30 -12.8 to 9.4 1:2
Gómez and Valdés

(1990)
h,=6- 13 - R - 1.5-3.5 rubble 0.8-1.2 -

Daemen (1991) h,=-19.6 to 57 1.2x1.0x50 Ir 0.049-0.148 0.99-2.88 rubble 0.34 0.4 1:1.5

Petti & Roul (1992) h5 =6 0.8x0.8x50 Ir 8.6-14.1 1.2-1.53 impermeable 24 14 1:3.5,1:1.5
Chiaia et al. (1992) 30 1.2x1.0x45 Ir 1.58-2.63 - rubble 60 25 1:1.5

Davies &Kriebel (1992) h, =5.1,0,-5.1 Basin(0.61x16.61) r-ir 0.9-1.81 - PVC-rubble 15.2 10.2,15.2,20.3

De Later (1996) h5 =10 0.6x14x28 R 8,10,12 1.55 rubble 16 30 0.67
Gourlay (1996a) 32,37,42 6(3)x30 R 2.8-20.4 0.9-2.2 mortar 15 32 1:6

Groenewoud et al. (1996) 40 1.0x0.8x32 r-ir 10,13.3,6.7 1.29-2.07 rubble 16 30 0.67

Seabrook (1997)
h, =0,5,10,15,20
h5=3.2,6.3,12.6

1.2x1.0x47
1.2x25x30

r-ir
5,10,15,20

3.2,6.3,9.5

1.2,1.5,2.0

0.95-1.98

Rubble
rubble

30,250

19,38,95
- var

Rivero et al. (1997) h5 =38 5x3x100 r-ir 25,37.5,50 2.5,3,3.5,4 rubble 61 112 1:2
Loveless et al. (1998) 400-650

29.7,32,368
1.1x1.5x15

36x23 r-ir
50-200

5,6.6,7.35
4.5-11.2

0.83,1.1,1.7 rubble
20-80

0.14,35
35,50

21.5,12.5
1:2

Drei & Lamberti (1999) 40 0.8x0.8x48 r-ir 4,8,16 0.92-2.5 plywood - 40,41,43.45.5

Table 2.1 - Test conditions of previous laboratory experimental research on submerged breakwater.

14
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Water depth
Flume/Basin

dimension
Wave condition Breakwate

r
Breakwater dimensionReferences

h (cm) (m) r/ir Hi (cm) Tp (sec) B (cm) d (cm) tan 
Bleck & Oumeraci (2001) 70 2.0x100 r-ir 8-12-16-20 1.1-6.0 plywood 50,100 40,50,60 0

Vidal et al. (2001) h, =-0.05,0,0.05 0.8x0.6x24 r-ir 5, 10, 15 1.6,2.4,3.2 rubble 25,100 30,35,40 1:2
Schlurmann et al. (2002) 62,72,82 2.0x100 r-ir 8-20 1.0-5.0 plywood 100 52 0

Roul & Faedo (2002) 10,15,20 1.2x1.0x36 Ir 2.4-15.5 1.1-2.33 rubble 20 10,15,20,25,30 1:2
Calabrese et al.

(2002,2003)
100-170 7.0x5.0x300 - 60-100 3.5,4.5,6.5 rubble 100 130 1:2

Gironella et al. (2002) - 1.5x3.0x35 Ir - - rubble 122.5 158.5 1:2
Melito and Melby (2002) 20,50,70 2x3(0.9)x74.6 Ir 3.5-22.4 1.12,1.88,2.62 Core-loc 24.3 40,80 1:1.5
Zanuttigh & Lamberti

(2003) h, =0,7,-3 1x12x18 r/ir 4-12.1 0.7-1.97 rubble 20,60 20 0.5

Garcia et al. (2004) 30,35,40 0.8x0.6x24.05 r/ir 5,10,15 1.6,2.4,3.2 rubble 25,100 24 0.5
Table 2.1(continued) - Test conditions of previous laboratory experimental research on submerged breakwater.
Notes: Wave conditions tested being "r" regular or "ir" irregular waves
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Hi Ht

hs [Submerged]

-hs [Semi-submerged]

B

h


d50

Figure 2.2 – Definition of submerged (semi-submerged) breakwater parameters and wave
transmission.

Ahren (1987) investigated the performance of low-crested breakwaters by

conducting a wide series of experimental tests (Table 2.1) at the US Army

Engineer Waterways Experiment Station's Coastal Engineering Research

Centre. The aim of the laboratory tests was to study stability of rouble-

mound reef-type breakwaters and their effects on wave transmission and

reflection. He proposed the following expression for wave transmission

coefficient Kt:

0.592

2
50

1.0
for 1

1.0

s
t

s
s r

p

h
K

HH A
L d

 
 

  
 

[2.4]

21 3 2

2
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1.0
for 1

1.0 exp 3 4

s
t CC

s
r s r

p s p

h
K

Hd A h A
C C

h hL H d L

 
                        

[2.5]
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where the constant C1=1.188, C2=0.261, C3=-0.592 and C4=0.00551. The

parameters Hs indicates the significant wave height, At is area of breakwater

cross section, d50 is dimension of stone, LP is wave length corresponding to

peak wave period, d is reef crest height, h is stili water level and hs is the

distance between water surface and the crest reef (positive above the crest

reef). Ahren (1987) found that the reflection coefficient is not much

dependent on dimensionless submergence (hs/Hs) and can be calculated by

the following equation:

1

2
exp 1 2 3 4t s

r
p s

h d A h
K C C C C

L h d H

                          
[2.6]

where C1= -0.6774, C2= -0.293, C3= -0.0860 and C4= 0.0833.

Gómez Pina and Valdés (1990) analyzing the data of laboratory

experiments have suggested that the wave transmission coefficient shows a

oscillatory trend according to relative crest width (B/L0). They also shown

that for both breaking and non-breaking wave conditions, the transmission

coefficient is related to the Iribarren parameter (B/hs)as shown in Figure

2.3 gives reasonable results for predicting transmission coefficientIribarren

number can be calculated by knowing the onshore face slope of breakwater

and incident wave steepness:

0

tan

iH L
 [2.7]

in which Hi is incident wave height and L0 is incident wave length in

deepwater.
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Figure 2.3 – Influence of braking conditions on wave transmission coefficient by Gómez

Pina and Valdés (1990)

van der Meer (1988, 1990 and 1991) using previous laboratory data

found a new formula for wave transmission coefficient. This empirical

formula is based on relative freeboard values (Figure 2.4):

0.8 for 1.13 2.0
0.46 0.3 for 0.2 1.13
0.1 for -2.0 1.2

t s i

t s i s i

t s i

K h H
K h H h H
K h H

  
   
  

[2.8]



32

Figure 2.4 – Proposed wave transmission coefficient by van der Meer (1990)

Daemen (1991) carried out 2D tests in a wave flume at Delft Hydraulics in

random wave conditions. van der Meer (1991) and van der Meer and

Daemen (1994) proposed an empirical formula for low-crested breakwaters

related to crest width and height, wave steepness and incident wave height.

They found a linear relationship between the wave transmission coefficient Kt

and relative crest height hs/d50:

50

s
t

hK a b
d


  [2.9]

where

 500.031 / 0.24ia H d  [2.10]

and the coefficient b is defined by:

  1.84
0 50 505.42 / 0.0323( / ) 0.0017( / ) 0.51i ib H L H d B d    [2.11]
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and for reef type (gradually deforming) breakwaters:

 0 502.6 / 0.05( / ) 0.85i ib H L H d   [2.12]

in which hs is water depth over the breakwater d50 is nominal diameter of

armour rock, H i is significant incident wave height and L0 is wave length of

the incident wave height in deep water. This empirical formula is valid within

the dimensionless parameters used in tests. The range of variation of

transmission coefficient Kt in the test for conventional breakwaters is 0.075

< Kt < 0.75 and for reef type breakwaters is 0.15 < Kt < 0.6.

Davies and Kriebel (1992) performed a series of experimental tests on

solid and rubblemound breakwater models using both regular and random

wave field. They proposed a new dimensionless parameter of freeboard ratio

(hs+Ru)/Hi They proposed a new parameter to predict the transmission

coefficient past a reef breakwater at all values of freeboard where is the

potential run-up as proposed by Ahrens and McCartney (1975) This new

parameter is function of Iribarren number defined above:

1
u

i

R a
H b







[2.13]

in which a and b are empirical coefficients which have the values of a=0.775

and b=0.361, as proposed by Gunbak (1979) for rubble mound breakwaters.

Davies and Kriebel (1992) carried out a large number of 2D tests in a

wave using two types of breakwater (rubble-mound and solid) and imposing

both regular and irregular waves. They found that transmission coefficient

does not significantly differ between the solid and rubble-mound breakwater

in the case of submerged breakwater. The tests also indicated that the Bulk

Number (B =At/d2
50) does not appear to affect much wave transmission for

submerged breakwater and small difference in transmission coefficient were
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observed between the rubblemound and solid (smooth) breakwater,

particularly for low steepness waves (Figure 2.5).

Figure 2.5 – Transmission coefficient over submerged breakwater by Davies and Kriebel

(1992)

d'Angremond et al. (1996) reanalysed data sets collected from other

experimental test (Seeling, 1980; Allsop, 1983; Daemrich and Kahle, 1985;

Powel and Allsop, 1985; van der Meer, 1988; Daemen, 1991) in order to find

a better formulation for transmitted wave height passing over permeable and

impermeable submerged breakwaters:

 
0.31

0.50.4 1s
t

i i

h BK a e
H H





 
     

 
[2.14]

where a=0.64 and 0.8 for permeable and impermeable breakwaters

respectively with limits 0.075< Kt < 0.80 for both conditions and is the

Iribarren parameter that was defined in Equation 2.8.

Seabrook and Hall (1997, 1998) performed 2D and 3D laboratory tests

with irregular waves to investigate transmitted wave height passing over

submerged rubble mound breakwaters. They shown that the formula

provided by Ahrens (1987) and van der Meer (1991) are not suitable to

forecast Kt when crest width is large. Seabrook and Hall (1998) observed
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that the relative submergence and crest width are most important in

determining transmission coefficient. They suggested a new design formula

for transmission coefficient Kt taking in count the effect of crest width:

0.56 1.09

0 50 50

1 0.047 0.67
s i

i

h H
H B s s i

t
h h HBK e

L d B d

   
          

                     

[2.15]

The following ranges were recommended for applying the proposed

equation:

0 50

50

0 7.08

0 2.14

s

s i

hB
L d
h H
B d

  

  
[2.16]

Seabrook and Hall (1997) also found that the d50 has modest effect on wave

transmission (Figure 2.6) and the effect of crest width on transmission

coefficient is evidenced in the energy transfer to higher harmonic frequencies

of spectra behind submerged breakwaters (Figure 2.7).

Figure 2.6 – The effect of armour rock size on transmission coefficient by Seabrook (1997)
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Figure 2.7 – Variation of transmission against breakwater width by Seabrook (1997)

Gironella and Sanchez-Arcilla (1999) reanalysing some data sets,

elaborated a wave transmission and reflection coefficient model for

submerged breakwater. These expressions is based on ratio of hi/L0

(submergence over deepwater wavelength) and Iribarren number as

expressed in Equation 2.8. The authors applied a multilinear regression and

found:

1 2 3
0 0

s s
t

h hK C C C
L L


 

    
 

[2.17]

where the empirical coefficient of C1, C2 and C3 were determined as 6.43,

14.63 and 0.52, respectively, which leads to a level of correlation of R2=0.98.

The proposed equation is valid in the range of experimental test values,

which were:

0 0

3.2 5.5; 0 0.04; 0.015 0.04s ih H
L L

     

Roul and Faedo (2002) performed some experimental tests in wave flume

at IMAGE Department of University of Padova, Italy, in order to better

understand the hydraulic performance of rubble-mound submerged
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breakwaters under breaking waves conditions. They developed an empirical

expression for wave transmission coefficient using the dimensionless

freeboard (hs+Ru)/Hi as proposed by Davies and Kriebel (1992):

2

0.0928 0.1862 0.1176s u s u
t

s s

h R h RK
H H

    
           

[2.18]

Calabrese et al., (2002 and 2003) carried out a series of large-scale

laboratory model tests on rubble mound submerged breakwaters at "Grosser

WellenKanal" of Hannover, Germany. The tests were performed under

random wave field conditions in order to verify, at large scale, the accuracy

of existing formula . Calabrese et al. (2002) used hs/B ratio as adimensional

parameter instead of incident wave height. Results shown that d'Angremond

et al. (1996) equation (Equation 2.15) was more accurate than other for

estimating wave transmission coefficient. Authors using data obtained from

the large-scale experimental tests developed a new expression for

transmission coefficient

s
t

hK a bB   [2.19]

in which the intercept b is expressed by an exponential formula:

0.0845
i

B
Hb e



  [2.20]

where
0.05071 0.562 e     [2.21]

and the angular coefficient a was expressed as a function of relative crest

width B/Hi:

0.2568
i

B
Ha e  [2.22]

in which is a scale parameter where water depth has been included:

0.6957 0.7021iH
h  [2.23]
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Calabrese et al. (2002) formula was calibrated in the test range of:

0.3 0.4
1.06 8.13
0.31 0.61

3.0 5.20

s

i

i

h B
B H
H h


  
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 

van der Meer et al. (2004) in order to improve the formula provided by

van der Meer (1991) and d'Angremond et al. (1996) analyzed previous

collected data, considering the value of crest width ratio B/Hi. van der Meer

et al. (2004) found that equation provided by d'Angremond et al. (1996) are

suitable for rubble mound structures with B/Hi< 10 and for B/Hi > 10, a little

modification of [2.18] (d'Angremond et al., 1996) provides more realistic

results. They proposed the following modified equation for low crested

rubblemound breakwater in case of B/Hi > 10:

 
0.65

0.410.35 0.51 1s
t

i i

h BK e
H H





 
      

[2.24]

The authors set a maximum value of Ktu in function of ratio of B/Hi (as

proposed by d'Angremond et al., 1996) For Kt values higher than Ktu formula

may give inaccurate results:

0.006 0.93tu iK B H  [2.25]

The lower limit of transmission coefficient Kt was kept constant as proposed

by d'Angremond et al. (1996).

They also studied the influence of wave angle  on transmission coefficient

and found that, in case of rubble mound structures, transmission coefficient

is not sensitive to incident wave angle.
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2.2 Analytical/Numerical Modelling of Wave

Transmission

The phenomena of waves transmission behind submerged barriers was also

studied using numerical models.

Kobayashi and Wurjanto (1988) developed a numerical model to predict

wave reflection and transmission over an impermeable submerged

breakwater in case of monochromatic wave. The model provided quite good

prediction of transmission coefficient over submerged impermeable

breakwaters in comparison with the limited data measured in laboratory by

the authors.

Rojanakamthorn et al. (1990) developed a mathematical model for the

estimation of wave transformation over a permeable submerged breakwater.

Model are based on equation of waves on a porous layer as a two-

dimensional elliptic equation analogous to the mild slope equation. Results

shown a good agreement with 2D experiments conducted by

Rojanakamthorn et al. (1990). However, the calculated transmitted wave

height was slightly smaller than the measured one.

Shen et al. (2004) developed a VOF (Volume Of Fluid) type model in order

to simulate the propagation of cnoidal waves over a submerged bar

(breakwater). The calculated water surface elevation around a breakwater

was compared with the 2D experimental data collected by Ohyama et al.

(1995). The results of numerical model were relatively in good agreement

with measured water surface even if some differences are observed due to

to higher harmonics generation over the breakwater in the laboratory test.

Garcia et al. (2004) used a numerical model named COrnell BReaking

waves And Structures (COBRAS Lin & Liu 1998; Liu et al. 1999) to calculate

water surface elevation and circulation in the presence of permeable low-

crested breakwaters for regular breaking waves. The COBRAS model solves

the 2DV Reynolds Averaged Navier-Stokes (RANS) equation that was firstly

provided by Lin and Liu (1998). “The model is based on the composition of
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the instantaneous velocity and pressure fields into mean and turbulent

components”, Garcia et al. (2004). The results of surface elevation around

the breakwater, the pressure field inside the rubble and the flow field were

compared with data collected from 2D experimental tests carried out by Vidal

et al. (2001) showing a good agreement.

Johnson (2006) used MIKE 21 PMS ( developed by DHI water &

environment) to model wave field in the presence of submerged

breakwaters. MIKE 21 PMS is based on parabolic mild slope equations. The

results put in evidence that using dissipation model of Battjes and Janssen

(1978) MIKE 21 PMS predict higher energy dissipation than experimental

data (Zanuttigh and Lamberti, 2003) over a submerged breakwater. The

breaker parameter in the Battjes and Janssen' s dissipation model was used

to calibrate the model by Johnson (2006) .

Wave set-up

Breaking waves passing over a submerged breakwater causes water to flow

into the protected area (onshore) of the breakwater. On the other hand, the

difference in mean water level inside and outside of the protected zone

results in water flowing out of this area. Piling-up will occur when a quasi-

equilibrium between inflow and out-flow is reached. Few experimental,

theoretical or numerical studies have been undertaken that provide a good

understanding of set-up and the behaviour of longshore current behind

submerged breakwaters.

For a submerged breakwater, where no breaking is considered, an analytical

solution for set-up, , has been given by Longuet-Higgins (1967). His

approach applies vertical momentum flux balance above the still water level

and yields the following expression:

 2 2 2

1 28 sinh2 8 sinh2
i r i t t

i i

H H k H k
k h k h


  [2.26]
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in which Ht is the transmitted wave height; Ht
2 is the sum squared of incident

and reflected wave heights; is the water depth; k is the wave number; the

numerical subscripts denote parameters values before and behind the

breakwater. Eq. 2.40 basically represents the difference between the “set

down” (Longuet-Higgins and Stewart, 1964) expected respectively at rear

and in front of the barrier. Measurements of 2D laboratory measurements by

Dick (1968) showed that the equation provided by Longuet-Higgins (1967)

greatly underestimates the mean sea level difference .

Dick (1968) measured the set-up for an impermeable rectangular breakwater

and found out that Eq. 2.40 greatly underestimated experimental values.

Subsequently, Diskin (1970) performed a study on a two dimensional

physical model of a trapezoidal breakwater with an homogeneous cross

section. Using regular waves, the Author developed an empirical relationship

between set-up, incident wave height, Hi and depth of submergence, Rc:

breakwaters:

2

0.6 exp 0.7 s

i i

h
H H
           

[2.27]

The equation is valid in the range of the tested values of submergence ratio

(-2.0<hs/Hi<1.5). It should be noted the test conditions were such that the

piled-up water behind the breakwater could return offshore only by passing

over and through the structure. In this case no longshore current can

develop behind the breakwater. Eq. 2.41 indicates that set up increases with

Hi and that, for a given wave height, it attains a maximum when the water

level is just below the crest, Rc = 0.7 Hi. For water levels above and below

this value, set-up lowers and tends to zero. In the Diskin’s formula neither

crest extent, B, or period, T, influences have been considered. Since only one

size of rock was tested, Diskin was unable including permeability of the

barrier in the formula.
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Figure 2.9 – Examples of mean water surfaces curves under wave action by Diskin at al.

(1970)

A more extensive program of experiments have been carried out by Loveless

et al. (1998) in the random wave flume at the Hydraulics Laboratory of

University of Bristol’s Civil Engineering Department. On the whole, eight

different models have been tested including variations in crest width, front

slope angle and rock size. All the models were homogeneous rubble mound

structures, made up on rock of narrow grading. Most of experiments were

conducted with regular waves; some irregular wave trains have been also

run in order to study how information obtained under monochromatic waves

should be transferred to spectral ones. First the Authors noted that Diskin’s

formula predicted with some accuracy the values of set-up for submerged

breakwaters (Rc < 0), while it largely overestimated experimental data for

emerged or “no freeboard” ones (Rc ³ 0). This was attributed to permeability

(Diskin’s model had median diameter, D50, of 40% less than the smallest of

the Loveless models), which is expected to have no influence for submerged
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breakwaters, but to greatly affect the behaviour of emerged ones. Moreover

the Authors found out that to adapt monochromatic waves results to

irregular waves, the average wave height should be used instead of

significant one. Finally following expression has been proposed: breakwaters:

 200.125 exp 20i
s

H L h d
T h

       
[2.28]

where Hi is incident wave height, T is wave period, L0 is wave length in

deepwater, h is water depth at the offshore toe of the breakwater and d is

the breakwater crest height.

Figure 2.10 – The influence of crest width on set-up by Loveless and Debsky (1997)

The experiments also demonstrated that set-up is significantly influenced by

the porosity (influenced by the rock size d50) and the crest width B of the

breakwater. Loveless et al. (1998) improved the original Equation 2.42 by

linear regression analysis and provided the following expression for

calculating set-up behind a permeable submerged breakwater:
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   
2

0

50

exp 20
8

i
s

H L hT
h d

B gd
   

 
[2.29]

Calabrese et al. (2003) developed a model based on hypothesis that wave

set-up is dominated by the amount of momentum released by the breaking

waves on the breakwater m plus a further contribution called "continuity set-

up" s,:

m s    [2.30]

Applying the momentum equation and assuming that the surf zone extends

from the breaker point on the sea-face slope to the inshore toe of the

breakwater (linear increasing of set-up), Calabrese et al. (2003) provided the

following equation for the momentum set-up m :

 
0.5

20.5 4m b b c      [2.31]

where

 2b h A  [2.32]

1 b b s
b

s s

x B h hA d x
L L

   
         

[2.33]

 2 23 1
8 i tc H K  [2.34]

in which Kt is wave transmission coefficient, hb is wave breaker depth over

the offshore slope, hs is submergence depth, d is breakwater crest height

and Ls is the effective crest width of the breakwater (Figure 2.12).

The continuity set-up s may be determined by assuming uniform return

flow:

2

10 32s eq
c

q B
f R

 


[2.35]

where
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21
8 i

gq H
h

   [2.36]

coteqB B d g   [2.37]

Figure 2.11 – Definition of flux theory setup by Calabrese et al. (2003)
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Summary

The functional design knowledge of submerged breakwaters including their

impacts on wave transmission, currents, sediment processes and shoreline

response is stili developing.

Many numerical modelling and empirical approaches for estimating wave

transmission over submerged breakwaters have been developed (Johnson et

al., 1951; Adams and Sonu, 1986; Losada et al., 1996; d'Angremond et al.,

1996; Seabrook and Hall, 1998; Schlurmann et al., 2002; van der Meer et al.

2005). Most of the previous experimental research on wave transmission

over submerged breakwaters has been carried out as a subset of

investigations into relatively narrow crested semi submerged breakwaters.

The results of these previous experiments are limited to the tested ranges of

breakwater crest width. As indicated in Chapter 1, narrow crested (fully)

submerged breakwaters have been found to be ineffective in coastal

protection in most field applications. Therefore more investigations are

needed to extend the studies of wave transmission over submerged

breakwaters with wide to broad crest width due to their improved efficiency

in protection of coastal area.

The gradient of wave-induced set-up behind submerged breakwaters causes

water to flow along the shoreline. Only a few experimental, theoretical or

numerical studies have been undertaken that provide an understanding of

set-up and the behaviour of longshore current behind submerged

breakwaters (Longuet-Higgins, 1967; Diskin et al. ,1970; Debski and

Loveless ,1997; Calabrese et al. ,2003).
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CHAPTER 3

Interaction between wave and submerged barrier.

The study of the propagation of the wave on a varying topography

constitutes one of the topic of greater interest in the field of the coastal

engineering, in fact it is tightly connected to the problem of the description

of the propagation of the waves from breadth toward shore. A synthesis of

the principals developments of the subject can be found in Mei & Liu (1993)

and Liu & Losada (2002). Coherently with the purposes of the present job,

now the models of interaction between the wave motion and the submerged

obstacles will be analyzed. In Figure 3.1 the geometry of the computational

dominion are represented for the two schemes of obstacle, of endless length

and of ended length. Both h the depth of the bottom to wide and, eventually,

to back of the obstacle, and is ht the depth of the obstacle.

Figure 3.1 – Geometry of computational domain
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The first studies on the argument have been conducted primarily using the

linear theory; in the hypothesis of depth h, very small ht in comparison to the

wavelength, the solution proposed by Lamb (1932), brought in numerous

texts is:

1 2and T=
1 1

t

t t

h h
R

h h h h




 
[3.1]

In the formulas, R expresses the relationship between the height of reflected

wave and the height of incidental wave (coefficient of reflection), while T is

the relationship among the height of wave above the obstacle and the height

of incidental wave (coefficient of transmission). In the case of very deep

obstacle (ht/h=1) R=0, T=1, correspondent to the condition to the absence

of obstacle, while, in the case of void depth on the threshold (ht/h=0),

correspondent to the case of total reflection on a vertical wall, while the

coefficient of transmission loses meaning.

Among the solutions, in the general case of wave of any period, in linear

theory, Rey et al. (1992), have found the solution for an arbitrary bottom

profile. The adopted procedure consists of schematizing the profile as a

whole lines of constant depth, to seek the solution of the differential problem

for every line and to impose the opportune conditions of congruence along

the ideal surfaces that separate two lines adjacent at different depth. The

solution described show that, on every line of bottom, are present two

progressive waves , of which one is propagated in the positive verse of the

axle of the abscissas, the other in the negative verse. The formulation of the

differential problem and the relative solutions are not brought for brevity.

The hypothesis of linearity constitutes, for the examined problem, a very

restrictive condition, especially above the obstacle, because the depth is

normally small, and than is expected that the problem is strongly conditioned

by nonlinear effects.
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The development of non linear theories for the description of the interaction

among the wave motion and a obstacle is relatively recent.

3.1 Massel solution

Massel (1983) gives the general formulation and the resolution of the

differential problem for an impermeable step of ended or endless length ,

using second order Stokes theory. With reference to the geometric scheme

of Fig. 3.1, xp is the abscissa offshore parameter of the step, and is xt, in the

case of obstacle of ended length, is the abscissa of the inshore parameter.

Pedicis I, II, III indicate respectively the zones before, above and,

eventually, to back of the step. The differential problem can be so

formulated:

2 0 [3.2]

z=
z t x x

 


  
 

   
[3.3]

2 21 z=
2

g
t x z

 
                   

[3.4]

0 tz h z h
z

  


[3.5]

To such conditions they are added those that define the incident wave

motion at endless distance from the obstacle:

     

(1) (2)

2

3

cosh 2 cosh2
cos cos24 sinh

i i

kh khkaa kx t kx t
kh

  

 

  


  

[3.6]

   
   

(1) (2)

2
4

cosh
sincosh

cosh23 sin28 sinh

i i i

k h zag kx tkh
k h z

a kx t
kh




 

   


 


 

[3.7]
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The conditions (3.2,3,4,5) must be verified in the whole dominion of

integration. To them the followings conditions are added in correspondence

of the contours of the regions I, II, III:

, 0

0 ,

I II p

II
I p t

p t

x x

x x z h
xx x x z h h

  
             

[3.8]

and, in the case of obstacle of ended length:

, 0

0 ,

II III p

III
II p t

p t

x x

x x z h
xx x x z h h

  
             

[3.9]

Illustrated conditions express the congruence among the solutions of the

differential problems in the different regions.

Using the perturbation method of Stokes, the differential problem is divided

in a problem at first order and a problem at second order, in which the

unknown are (1) ed (2)
.

First order problem

In every of the three zones where the field of motion is divided, the solution

of the problem includes a part that describes the waves that are propagated

long x and endless evanescent modes that produce local oscillations around

the surfaces of bonduary; they are pointed out with the apexes P and L,

respectively, the first one and the second type of so that (propagative and

places). In the development of the theory, to the purpose to get more

compact expressions the complex notation has been used.

In the region The the solution is the following:



51

   
   

     

(1) (1) (1)

(1)

(1) 2 (1)
4

(1) (1)

con:
cosh

sin
cosh

cosh23 sin28 sinh
cos

Im sin
cos

p

P L
I I I

P
I

k

x xL
I R

k h zag kx t
kh
k h z

R a kx t
kh

h zag R e t
h 









 


 

 


  


   


  

 
   
  


[3.10]

In the (3.10) the first addendum represents the incidental wave, the second

the wave reflected on vertical wall of the obstacle. The coefficient of

reflection Rk is a complex number whose modulus is the relationship between

the amplitude of the reflected wave and that of the incidental wave, while

the argument is function of the difference of phase among the two waves:

 1 1argI k PR kx     
[3.11]

The wavenumber k is tied up to the frequency  from linear dispersion

relation:

 2 tanhgk kh  [3.12]

In the summation that appears in (3.10), every addendum corresponds to

one of the infinite solutions of the equation:

 2 tang h   [3.13]

For every value of a coefficient of reflection is gotten for the evanescent

part, whose meaning is analogous to that for the propagation part; it results,

therefore:

(1)argR R
      [3.14]

In the region II, above the step, can be written, likewise observed

for the region I:

[3.15]
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 
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 
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[3.16]

Can be observed that both propagative and evanescent terms are constituted

by two part, the first represent the wave transmitted from region I to region

II, the second represents the wave formed at bound between region II and

region III. In case of step of endless lenght this term are null.

The coefficients Pkt and Qkt are respectively the coefficient of transmission

from region I to region II, and a coefficient of partial reflection at bound

between region II and III. They can be expressed as:

(1) (1)

(1) (1)

(1) (1)

(1) (1)

arctan
arctan
arctan
arctan

t

t

t t

t t

P k t P

Q k t t

P

Q

P k x
Q k x
P
Q













    
    
   
   

[3.17]

In the case in which the step has finite length, in the region III the potential

can be expressed in the following form:

   
     

(1) (1) (1)

(1) (1) (1)

(1) (1)

con:
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sincosh
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t

P L
III III III

P
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x xL
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k h zagT kx tkh
h zag T e t
h 










 

 


  


   

 
   
  


[3.18]
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Therefore wave motion in region III are constituted both for propagative and

evanescent part from wave transmitted through region II. Transmission

coefficient can be expresses as follows:

(1) (1)

(1)

arg
arctan

t k t

T

T kx
T

 

    
   

[3.19]

Second order problem

The second order solution is gotten gathering the terms that depend on the

parameter perturbatinn (k . a); it can be so formulated:

2 (2) 0  [3.20]

2 22 (2) (2) (1) (1)

2

2 (1) 2 (1)
(1) (1)

2 '

g
z t x zt

g Gz zt


               
         

             

[3.21]
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       

     

[3.22]

(2)

0 tz h z hz


  


[3.23]

Matching condition can be expressed as follow
(2) (2)

(2)
(2) , 0

0 ,
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II
I p t

p t

x x

x x z h
xx x x z h h
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
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[3.25]
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The differential problem is linear in the unknown (2) and (2), it is possible

to express the solution in the following way:
(2) (2) (2)f   [3.26]

The first addendum of the (3.26) satisfies the non homogeneous equations

(3.21,3.22) and represents the dependent terms of the second order from

the solution to the first order. Therefore, it represents the bounds wave of

pulsation 2, tied up to the principal harmonic of pulsation .

The second addendum is the solution of the homogeneous form of the

differential problem, comprehensive of the matchings condition (3.24,3.25)

at the bound surface. Such term, insofar represents wave of pulsation 2that

are propagated independently by the principal harmonic (free wave).

The solutions for second order are omitted for reasons for brevity. At the

other hand such solution are available on many texts concerning this

argument.

Synthesis of solutions

Neglecting the evanescent modes, whose amplitude exponentially weakens

increasing distance from the obstacle, the presence of the following wave

can be noticed:

FREE WAVES-REGION I

1. Incident principal harmonic, of amplitude a

2. Reflected principal harmonic, of amplitude (1)
ka R

3. Reflected second harmonic, of amplitude (2)
2ka R

BOUND WAVES-REGION I

1. Second harmonic tied to the incident principal harmonic (Stokes)

2. Second harmonic tied to the reflected principal harmonic (Stokes)

FREE WAVES-REGION II
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1. Transmitted principal harmonic, of amplitude (1)
kta P

2. Reflected principal harmonic, of amplitude (1)
kta Q

3. Transmitted second harmonic, of amplitude (2)
2k ta P

4. Reflected second harmonic, of amplitude (2)
2k ta Q

BOUND WAVES-REGION II

1. Second harmonic tied to the transmitted principal harmonic (Stokes)

2. Second harmonic tied to the reflected principal harmonic (Stokes)

FREE WAVES-REGION III

1. Transmitted principal harmonic, of amplitude (1)
ka T

2. Transmitted second harmonic, of amplitude (2)
2ka T

BOUND WAVES-REGION III

1. Second harmonic tied to the transmitted principal harmonic (Stokes)

Free waves of second order propagated with smaller velocity respect to the

corresponding bounds wave, the amplitude of the second harmonic, resultant

from the interaction among the different components, is not constant long x,

but it oscillates with spatial periodicity. The phenomenon is known in

undulated mechanics as beat and it repeats in space according to a

characteristic distance (beat length).

In the region I, the second reflected harmonic recurs according to the

distance:

(2)

2

2
2k k

 


[3.27]

while, for the incident progressive wave, it results:
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(2)

2

2
2k k

 


[3.28]

In Fig. 3.2 are brought the amplitude of the first and the second harmonics,

in the case of the obstacle of endless length, obtained arresting the solution

to 20 evanescent modes. The incident wave has an amplitude a=2.3 cm and

pulsation =5 rad/s (f=0.796 Hz).

Figure 3.2 – Wave amplitude of first and second harmonic. Massel solution (1993)
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3.2 Experimental study on wave/barrier

interaction

The forecast of wave characteristics resultant from the interaction of the

waves and a submerged barrier constitutes one of the argument of great

application interest, testified by the number of jobs in literature.

From the theoretical point of view, the mechanism of interaction has been

described in the previous chapter.

The introduced solutions, nevertheless, are not lent to an easy use, both for

formal complexity, both for the consequential theoretical limitations. In fact

the solutions are derived for a flat bottom and rectangular step.

Insofar, in the practical applications, for the evaluation of the characteristics

of the wave motion in presence of a submerged barrier it is frequent the use

of experimentation in the laboratory or the mathematical modelling of

phenomena. From the theoretical point of view, a mathematical model able

to describe with enough accuracy the interaction between wave motion and

barrier should satisfy the followings conditions (Ohyama & Nadaoka, 1994):

2. Accurate description of the phenomenon of the dispersion, in presence

of components of different frequency over an arbitrary depth;

3. Modeling of the effects of strong nonlinearity that can develop above

of the barrier;

4. Description of the evolution of the wave motion on a bottom of

elevated inclination;

5. Possibility to consider an irregular waves;
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The comparison among the different mathematical formulations present in

literature it underlines, that, besides the models based on the theory of

Stokes, of which is discussed, are present three great typologies of models.

 The first type includes the models based on Boussinesq equations to

the whose use. The use of this models are limited to cases of weak

non linearity, in fact it is not possible to describe in correct way the

generation of the free wave of superior order over the structure.

 The second typology of models are named BEM (Boundary Element

Method), which found the solution, in the dominion of the time, of the

integrated differential problem along the contour of the field of

motion. Such approach seems to overcome the limitations shown by

the formulations described in precedence, as shown in the comparison

with experimental results.

 The third type of models are based on the direct solution of the

equations of Navier-Stokes, in combination with opportune boundary

conditions on the free surface. Such models, little used in past

because of the great computational time, have known in times tightly

tied up to the development of the computational tools.

Close to the mathematical models, in literature numerous jobs are based on

experimental approach. The use of physical models, besides improving the

knowledge of the qualitative and quantitative aspects of the studied

phenomena, has allowed, through the comparison of the results, the

validation of the proposed mathematical models.

In the present chapter are analyzed some work in literature on modelling of

the interaction submerged wave-barrier. Coherently with the nature primarily

experimental of the job of thesis, they are examined, particularly, the studies

on physical models.
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Yamashiro et al. (1999) have conducted some experimental studies in

channel using regular waves of periods 1.20 sec, 1.43 sec, 1.79 sec and

heights 2 cm, 4 cm and 6 cm. Further tests have been conducted with

irregular waves, using the same values of regular waves as significant wave

periods and wave heights

A scheme of the experimental installation is reported in Fig. 3.3

Figure 3.3. – Experimental installation scheme used by Yamashiro et al. (1999)

The Authors have used two different berm widths B (equal to 2h and 4h,

with h=0.38 cm) and three different values of the freeboard above the crest

f the barrier (equal to 0.1h, 0.2h and 0.3h). The barrier is trapezoidal with

1:1. slope. In some tests conditions waves break on the barrier.

In Fig. 3.4 are shown the energy spectra of the incident and transmitted

wave, related to the test with wave of height H=4 cm, period T=1.43 s,

width of the dike B=2h, freeboard of the structure 0.2h.
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Figure 3.4. – Energy spectra of incident and transmitted waves by Yamashiro et al. (1999)

In the case of regular wave, pointing out with PA the energetic content of the

spectra of transmitted wave, and with P1, P2, P3 the energetic contents of the

first , second and third harmonica, the modifications of the wave spectra

result described by P1/PA, P2/PA, P3/PA, that expresses the relative power of

the i-th harmonic.

In the case of the irregular waves, the Authors propose another variable,

representative of the energetic contents of the lowest frequencies and of the

highest frequencies. In particular, with reference to the Fig.xxx, “low

frequency” FL is equal to the least value of frequency of the distribution

incident spectrum, while the value of “high frequency” FH represent the

frequency in which is distributed the 10% of the energy of the incidental

wave. The value PL, PF, PH are obtained integrating energy spectra,

respectively, in the interval [0, FL], [FL, FH], and for f> FH and

they represent, respectively, the energetic content of the spectra “in low

frequency”, in the range of the incidental spectra and in “high frequency.”
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Figure 3.5. – Values of relative power of harmonics by Yamashiro et al. (1999)

In the Fig. 3.5, with reference at two different widths of the dike, are

represented the relative powers of the hermonics in same wave conditions

described through the following parameter of non linearity:

3coth ( )q q
q

H k h
L

 [3.29]

in which H is the height of incidental wave, hq the depth above the barrier

and Lq, kq, respectively, length and the wavenumber above the barrier.

The Authors observe that, for the waves of lower height, characterized by

the absence of breaking, the course of the relative powers is irregular, and

characterized by a progressive growth of the energetic content of the

superarmonics, particularly of the second. Increasing , the relative powers 

seem to extend to a constant value. Such result can be attributed by the the

effect of the breaking, that seems therefore to limit the growth and the

propagation of the harmonics of superior order.

Van der Meer et al (2000) have investigated the modifications of the wave

spectra to back of a submerged structure, through experimental tests in
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channel with irregular waves. Authors have adopted a scale factor for the

lengths of 1:15. The tests are been performed for different values of the

water depth, between 4.5 m and 7.0 m, and significant wave height between

1.3 m and 2.2 m, and for two different values of the peak period Tp, equal to

5.0 sec and 7.0 sec. During the tests, various typologies of submerged

structure are been used, as shown in the Fig. 3.6.

The relation between the freeboard (Rc) above the crest structure and the

significant wave height vary between 0 (correspondent to the case of barrier

with crest on the s.w.l.) and 1.0. The comparison among the characteristics

of the wave motion offshore and back to the structure shows a general

reduction of the energetic content of the wave and a change of the form of

the spectra, characterized, for the transmitted wave, from a greater

distribution of energy on the more elevated frequencies in comparison to the

incidental wave, as already underlined by the studies previously examined.

Such considerations are express in effective way comparing the moments of

the spectral distributions. Pointing out with E(f) the function that defines the

spectral density, the n-order moment is defined :


0

n
nm f E f df



 [3.30]

In particular, the significant spectral wave height is function of zero order

moment through this relation:

0 04mH m [3.31]



63

Figure 3.6. – Experimental installation scheme used by van der Meer et al. (2000)

while, for the mean spectral period, the Authors propose to use the following

relationship:





0.5

0.5
0 0

02
22

0

m

E f dfmT T m f E f df





 
               




[3.32]
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The relationship among the transmitted wave heights and incident wave

height (coefficient of transmission) is expressed, in terms of spectral

moments as:

 
 

0

0

t
t

i

m
k

m
 [3.33]

In the Fig. 3.7 and 3.8 are shown the relationships among the peak period of

the transmitted wave to back of the barrier and the incident wave, in

function of the coefficient of transmission. Is is evident that the interaction

wave-barrier doesn't involve a substantial alteration of the peak period, for

all the types of structure examined.

The, contrarily, is modified in the interaction with the barrier, and, in

particular, because of the distribution of energy on the high frequency, at the

back of the structure, takes smaller values. For coefficients of transmission

greater than 0.15 the relationship among the mean spectral period to back

and to front of the structure seems to reach a constant value around 0.62.

Figure 3.7. – Relationship between peak period of incident and transmitted wave by Van
der Meer et al (2000)
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Figure 3.8. – Relationship between mean spectral period of incident and transmitted wave
by Van der Meer et al (2000)

On the base of the effected observations, the Authors propose a method to

represent the transmitted spectra, based on the form of the incident spectra

and on the coefficient of transmission kt. The method is based on the

observation that, pointing out with fp the peak frequency, the spectra

measured to back of the structure, shows, generally, a constant contents of

energy in the interval [1.5 fp, 3.5 fp] in which is distributed about 40% of the

total wave energy. Generalizing the result, and assuming the value 1.5 fp as

representative of the limit between “high” and “low” frequency, the spectra

proposed by the Authors for the transmitted wave introduces same form of

the incident spectra for smaller frequencies to 1.5fp and a constant density

for frequencies between 1.5fp and 3.5fp; the energetic content of this last

part of the spectra, that contains the contribution of the most elevated

frequencies, is equal to the 40% of the total energy of the transmitted wave,

valued on the base of the coefficient of transmission.
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Figure 3.9. – Spectral shape of transmitted wav proposed by Van der Meer et al (2000)

The experimental work of Black & Oumeraci, 2001 , likewise to that

examined in the previous paragraph, is based on the modifications of the

spectral characteristics of the wave motion induced by the presence of a

submerged barrier. The tests have been conducted in presence of

impermeable rectangular obstacle with different values of height (h=0.40 m,

0.50 m, 0.60 m) and width (B=0.5 m, 1.0 m); the depth of the channel has

been maintained constant, and equal to 0.70 m.

The scheme of the experimental installation is illustrated in Fig. 3.10. During

the tests have been reproduced regular and irregular wave conditions, with

JONSWAP type spectra. Significant wave height and peak period are reported

in tab. 3.1.
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Figure 3.10. – Experimental installation scheme used by Bleck & Oumeraci (1999)

Tab 3.1. – Wave conditions used by Bleck & Oumeraci (1999)

For the computation of the mean spectral period the Authors have used the

following relationships:









0 0
01

1

0

1

1 0
10

0

0
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m fE f df

f E f dfmT m E f df









 

 

 









[3.34]

Both the periods are calculated by the average of the frequencies of the

spectral distribution, weighted for the respective density of energy; the

period T01 mainly take in count the effect of the higher frequencies, while the

period T-10 mostly take in count the contributions of the lower frequencies.

As previously observed, the transmitted spectra has, in comparison to the

spectra of the incident wave, a lower energetic content and a different
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shape, because of the transfer of energy to the higher harmonics (Fig. 3.11).

The analysis of the experimental results has conducted to the proposal of the

following regression formula, that ties the value of the coefficient of

transmission to the relationship among her depth above the obstacle (dr) and

the height of the incident wave.

0.72
1.0 0.83

r

i

d
H

tk e
 
  
   [3.35]

The formula [3.35] show a good correlation with the experimental data,

despite not takes in count the width of the obstacle, that also influence,

transmission of the wave motion in the protected area.

Figure 3.11. – Comparison between incident and transmitted amplitude spectra by Bleck &
Oumeraci (1999)
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CHAPTER 4

4.1 2D Large WaveFlume Experiment At GWK

Within the European Community funded program “Access to Research

Infrastructures action of the Human Potential” attention has been given to

low crested/submerged breakwaters located on shallow foreshores. This

because despite these kind of structures are frequently placed in the

nearshore, very little studies are until now available about their performances

under pre-breaking to post-breaking wave conditions. The large scale tests

were carried out at LARGE WAVE CHANNEL (GWK) of the Coastal Research

Centre (FZK), Hannover, Germany.

Test facility

The model tests were carried out at the ”Grosser WellenKanal ” of Hannover,

Germany. The wave flume has a lenght of 300 m, a width of 5 m and a

depth of 7 m. The facility is equipped with a piston type paddle for

generating regualr and random waves. The installed power of the piston type

wave generator combined with an upper flap is about 900 kW. The

gearwheel driven carrier gives a maximum stroke of ± 2.10 m to the wave

paddle. The stroke can be superimposed by upper flap movements of ± 10

degree in order to simulate natural water wave kinematics most accurately. A

large cylinder integrated in the carrier compensates the water force in front

of the paddle (rear is free of water). The wave generation is controlled by an

online absorption system. This special system works with all kinds of regular

and irregular wave trains. Thus, the tests are unaffected by re-reflections at

the wave generator and can be carried out over nearly unlimited duration

(Fig. 4.1).
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Figure 4.1. Online Absorption Control System for the Wave Generator of the Large Wave
Channel

Model set-up and instrumentation

The bathymetry in the flume was formed by moulding sand over fill in the

channel to the required shape. From deep water near the paddle, the seabed

was flat for 105.3 m than it sloped initially at 1:20 for 20 m to change for a

more gentle slope of 1:50, and terminated in a 15 m horizontal section. The

bed level at the test structure was + 3 m relative to the flume floor at the

wave paddle. To minimize effects of any reflection from the end of the flume,

an absorbing sand beach with 1:18 slope was built (Fig. 4.2 and 4.3).

Figure 4.2. Seabed profile, wave probes position and five different tested s.w.l.
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Figure 4.3. Wave probes position.

A 1.3 m high rubble mound breakwater was installed on a flat area at the

end of 1:50 sand beach.

Three different cross sections were tested (Fig. 4.4):

1. 1 m berm width, with an impermeable sheet in the middle of the

structure;

2. 1 m berm width, without impermeable sheet in the middle of the

structure;

3. 4 m berm width, without impermeable sheet in the middle of the

structure.

The impermeable sheet was located during the installation of cross section a)

for a better understanding of permeability effects on hydraulic performance

of low crested and no freeboard breakwater (Fig. 4.5). Afterward the cross

section b) was obtained removing the sheet by lifting it up. In this way there

was no modification of the cross section shape (Fig. 4.6).
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Figure 4.4. Structure configurations and instruments

Figure 4.5. Structure installation with an impermeable sheet in the middle
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Figure 4.6. Removal of impermeable sheet from middle of structure

Two different type of armour rock were used as material for the rubble

mound model, Normal Density Rock (armour layer) and High Density Rock

(core). Both types were supplied by NCC Industries Norway. The High

Density Rock came from NCC quarry at Valberg, Kragerø Norway, the Normal

Density Rock came from NCC quarry at Skien, Norway. For both rock types

two samples from the breakwater model were weighed and measured to

determine statistical data for each type. The following Table 1 and 2

summarises technical data for the Normal Density Rock (NDR) and High

Density Rock (HDR) and it was performed by Einar Helgason (Hydraulic and

Coastal Engineering Laboratory Aalborg University).

Description of quarry Skien Quarry, Skien, 100 km south of Oslo, Norway

Rock type Granitites Gneiss

Properties Standard testing

method

Value Note

Particle density prEN 1097-6, B -

Rock density app. 2.65

kg/m3Water absorption prEN 1097-6, B - Not measured

Shape CIRIA A1.5 - Thickness : Length

>1:3Block integrity CIRIA A2.11 - Drop test breakage

index
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Compressive strength prEN 1926, A - No data available

Resistance to freezing and

thawing

prEN 1367-1, B 0,2 % Estimated

Resistance to salt crystallisation prEN 1367-2 - Not measured

Table 4.1. Technical data for the Normal Density Rock (NDR).

Description of quarry Valberg Quarry, Kragerø, 200 km south of Oslo, Norway

Rock type Gabbro

Properties Standard testing

method

Value Note

Particle density prEN 1097-6, B 3.05 0.05

kg/m3Rock density 2.98 – 3.02

kg/m3Water absorption prEN 1097-6, B 0.12 0.05 %

Shape CIRIA A1.5 < 5 % Thickness : Length

>1:3Block integrity CIRIA A2.11 < 5 % Drop test breakage

indexCompressive strength prEN 1926, A 150 50 MPa

Resistance to freezing and

thawing

prEN 1367-1, B 0,5 %

Resistance to salt crystallisation prEN 1367-2 1.0 0.2 %

Table 4.2. Technical data for the High Density Rock (HDR).

Weight distribution was obtained using two samples from the breakwater

model in GWK of 1.5 x 1.5m where weighted and measured.

The grading is calculated as the ratio between the 85 percent and 15 percent

value as:

85

15
1.51D

D  (NDR)

85

15
1.59D

D  (HDR)

From the measured weight the nominal diameter is calculated as:

1
3

n
a

WD


 
  
 

[4.1]

where W is the weight and a denotes the density. Statistics for weighing is

reported in Figure 4.7 and 4.8 it gave the following results:
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Armour layer

 W50 = 30.4 kg, W15 = 16.2 kg, W85 = 55.7 kg (NDR)

 D50 = 22.5 cm, D15 = 18.3 cm, D85 = 27.6 cm (NDR)

Core

 W50 = 19.0 kg, W15 = 11.0 kg, W85 = 42.0 kg (HDR)

 D50 = 18.4 cm, D15 = 15.3 cm, D85 = 24.5 cm (HDR)
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Figure 4.7. Statistics for weighing for NDR
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Rubble mound front and rear slopes were kept constant, equal to 1:2. Five

s.w.l. have been changed in order to obtain different configurations ranging

from low crested to submerged.

To measure the wave characteristics, a set of 27 probes was sampled at 50

Hz (Figure 4.2). Wave velocities were measured using the following

instruments supported by Coastal Research Centre:

 a set of 4 ADV (Acoustic Doppler Velocity-meter), 3 placed 1.5 m in the

front and 1 located 1.5 m at the rear side of the structure, only for the

cross section c) there was an extra ADV supported by UoB;

 a set of 6 EMC (Electro Magnetic Currentmeter), 3 placed on the front

slope and 3 on the back slope of the structure;

 2 propellers were placed on the top of the berm;

 1 seabed profiler mounted on a movable carriage.

All the velocimeters were sampled at 50 Hz with the exclusion of UoB’s ADV

that it sampled at 100Hz.
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Calibration and model test programm

TMA spectra were run giving wave conditions at the structure variable from

shoaling to post-breaking (Tab.4.3). Each test was preliminary run (at least

for 500 waves) without the structure, in order to achieve reliable estimates

of incident wave parameters, Hmoi and Tpi.

Test h (m) Hmo (m) Tp (s) Rc (m) B (m) Test h (m) Hmo (m) Tp (s) Rc (m) B (m)

1 1 0.6 3.5 0.3 1 25 1.3 0.6 3.5 0 4

2 1 0.8 4.5 0.3 1 26 1.3 0.8 4.5 0 4

3 1 0.9 4.5 0.3 1 27 1.3 1 4.5 0 4

4 1 1 4.5 0.3 1 28 1.3 1 6.5 0 4

5 1 1 6.5 0.3 1 29 1.5 0.6 3.5 -0.2 1

6* 1 0.6 3.5 0.3 1 30 1.5 0.8 4.5 -0.2 1

7* 1 0.8 4.5 0.3 1 31 1.5 1 4.5 -0.2 1

8 1.1 0.6 3.5 0.2 1 32 1.5 1 6.5 -0.2 1

9 1.1 0.8 4.5 0.2 1 33 1.5 1.1 6.5 -0.2 1

10 1.1 1 4.5 0.2 1 34 1.5 0.6 3.5 -0.2 4

11 1.1 1 6.5 0.2 1 35 1.5 0.8 4.5 -0.2 4

12* 1.1 0.6 3.5 0.2 1 36 1.5 1 4.5 -0.2 4

13* 1.1 0.7 4.5 0.2 1 37 1.5 1 6.5 -0.2 4

14* 1.1 0.8 4.5 0.2 1 38 1.5 1.1 6.5 -0.2 4

15* 1.1 0.9 4.5 0.2 1 39 1.7 0.6 3.5 -0.4 1

16 1.3 0.6 3.5 0 1 40 1.7 0.8 4.5 -0.4 1

17 1.3 0.8 4.5 0 1 41 1.7 1 4.5 -0.4 1

18 1.3 0.9 4.5 0 1 42 1.7 1 6.5 -0.4 1

19 1.3 1 4.5 0 1 43 1.7 1.1 6.5 -0.4 1

20 1.3 1 6.5 0 1 44 1.7 0.6 3.5 -0.4 4

21* 1.3 0.6 3.5 0 1 45 1.7 0.8 4.5 -0.4 4

22* 1.3 0.7 4.5 0 1 46 1.7 1 4.5 -0.4 4

23* 1.3 0.8 4.5 0 1 47 1.7 1 6.5 -0.4 4

24* 1.3 0.9 4.5 0 1 48 1.7 1.1 6.5 -0.4 4

* Tests with an impermeable sheet in the middle of the cross section.
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CHAPTER 5

Data analysis and results

5.1 Linear and nonlinear transformations

As ocean surface gravity waves propagate toward the shore in shoaling

waters, they undergo substantial evolution from their deep-water state. In

the shoaling waters, linear and nonlinear processes act simultaneously to

transform the wave characteristics. Changing bottom topography causes

refraction and shoaling of the wavefield, which result in spatial variations in

the amplitudes and directions. Although linear theory predicts the observed

increasing wave amplitudes and narrowing directional distributions of swell

and sea waves in a qualitative sense, nonlinear effects are important.

Nonlinear evolution can alter the spectral (frequency-direction)

characteristics of the wavefield as well as the wave profiles. Initially

symmetric wave profiles and oscillatory velocities become asymmetric and

skewed. In addition, phase speeds substantially differ from those predicted

by the linear dispersion relationship.

As waves travel from deep to shallow water, the dispersion characteristics of

the wavefield play an important role in the mechanism of the nonlinear wave

interactions. Three regions of different dispersion characteristics can be

distinguished. In deep water (relative depth kh>> 0(1), where k is a

characteristic wavenumber and h the water depth), the wavefield undergoes

strong frequency dispersion. Strong frequency dispersion is the dependency

of phase speed c on frequency w (deep-water waves c=g/w, where g is the

gravitational acceleration). In this region, the dispersion characteristics

permit resonant interactions among quartets of waves to occur, resulting in

slow cross-spectral energy transfers. Although energy exchanges due to

these cubic nonlinearities are very small on wavelength scales, the wave

spectrum is substantially modified over hundreds of wavelengths

(Hasselmann, 1962).
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In very shallow water (kh 1, a condition approximately satisfied by wind

waves within the surf zone), waves are almost nondispersive (shallow-water

waves c=/gh). Near-resonant interactions among triads of waves occur,

resulting in rapid spectral evolution.

In intermediate depths (kh= 0(1)), between the deep-water region with

strongly dispersive waves and the shallow-water region with nondispersive

waves, waves are weakly dispersive (c= (g/co)tanh kh) and undergo

substantial changes caused by the off-resonant energetic triad interactions.

Triad interactions drive rapid spectral evolution over several (rather than

hundreds of) wavelengths.

5.1.1 Non linear triad wave interaction

In the shoaling region, the short evolution distance and moderate dispersion

suggest that second-order (quadratic) nonlinearities involving triads of waves

are important. triad interactions occur among waves with frequencies and

wavenumbers such that:

1 2 3f f f  [5.1]

1 2 3k k k  [5.2]

where f and k are the scalar frequency and vector wavenumber, respectively.

k2

k1

k1+
k 2

y

x

k2

k1

k1-k2

y

x
Figure 5.1. – Wavenumber vectors of triad interactions (a): sum interaction, (b):
difference interaction

The wave components (f1,k1) and (f2,k2) each satisfy the linear dispersion
relation:
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 2 tanhgk kh  [5.3]

in which k is the wavenumber magnitude. The physical meaning of [5.1] and

[5.2] is that the sum (or difference) interaction between wave components 1

and 2 forces motions with the scalar-sum (or difference) frequency and the

vector-sum (or difference) wavenumber (Fig. 5.1). If component 3 satisfies

the linear dispersion relation [5.3] then the interaction is resonant

(Armstrong et al., 1962) implying a continued one-way transfer of energy to

component 3. Note that for gravity surface waves this is only possible in very

shallow water where the waves are non dispersive. In fact theories for

weakly nonlinear wind-generated surface gravity waves show that the

nonlinear triad interactions do not support resonances (e.g. Phillips, 1960;

Hasselman, 1962). If component 3 does not satisfy the linear dispersion

relation [5.3] then the interaction is non-resonant (in intermediate depths

where waves are weakly dispersive) and the transfer is back-and-forth

because of the mismatch in the phase speed.

The intensity of the triad interactions is mainly controlled by the phase

mismatch. The difference between the so-called bound wavenumber given

by k1±k2 and the free wavenumber obtained from the linear dispersion

relation k(f3) represents the wavenumber mismatch:

1 2 3k k k k f    [5.4]

The normalized wavenumber mismatch:

3k k k f [5.5]

is a measure of the departure from exact resonance. Its magnitude

determines the intensity of energy exchanges between the interacting

waves. Zero mismatch (nondispersive shallow-water waves) represents the

limiting case in the interaction process, in which the interacting waves

remain intact and in phase (resonant interaction) during evolution. Thus, the

magnitude of energy transfer is maximum and a continued one-way transfer

takes place to the harmonics over relatively short evolution distance. When

the mismatch δk<<1 (weakly dispersive shoaling waves), phase relations
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between the interacting waves vary slightly over a wavelength. Consequently

the magnitudes and the sign of energy transfers between the interacting

waves vary slowly over a wavelength, allowing significant net energy

transfers over several wavelengths. Large values of the mismatch (strongly

dispersive deep-water waves), imply that phase relations between interacting

waves vary rapidly over a wavelength, not allowing for significant energy

transfers.

It is common practice to distinguish between the sum and difference

interactions. In shallow water, the sum interactions between the primary

waves at the energetic part of the spectrum (with peak frequency fp) lead to

the generation of harmonics around a frequency 2f (first harmonic of the

primary). Eventually, the sum interactions between the primary waves near

fp and the first harmonics at 2fp give rise to harmonics near 3fp. The

difference interactions between primary waves within the energetic part of

the spectrum lead to the generation of bound long waves.

5.2 Bispectral analysis of water waves

In this section, aspects of nonlinear dynamics of waves propagating in

shallow water and aver obstacle are investigated using the bispectral

analysis. Since its introduction, the bispectrum has been used extensively to

examine nonlinearity in shoaling surface gravity waves. The purpose of this

chapter is to gain more understanding and physical insight in the nonlinear

transformation of wave spectra in shallow water and aver obstacle with aid

of the bispectral analysis.
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5.2.1 The bispectrum

The bispectrum was introduced by Hasselmann et al. (1963) to examine

wave nonlinearity in intermediate water depths. Since its introduction,

bispectral analysis has been used to study nonlinear phenomena in a wide

variety of fields such as seismic action (Haubrich, 1965), fluid turbulence

(Yeh and Van Atta, 1973), plasma fluctuations (Kim and Powers, 1979) and

deep-water surface gravity waves (Masudo and Kuo, 1981b). Recently, it has

been used extensively to examine nonlinearity in shoaling surface gravity

waves (Elgar and Guza, 1985b; Herbers and Guza, 1992).

The sea surface elevation can be represented using spatially varying Fourier

components, in which the time variation can be factored out (assuming time

periodicity) as follows:

    , expp P
p

x t C x i t 




    [5.6]

where ωp is the radian frequency (=2f), p is the rank of the harmonic, Cp is

the complex Fourier amplitude varying with position x.

For a Gaussian sea, the sea surface can be represented as a superposition of

statistically independent waves in which the phases are random.

Consequently the sea surface can be fully described by the continuous

energy spectrum, which is defined as the Fourier transform of the second-

order correlation function R() of the time series,

   1 exp2E R i d   






  [5.7]

where R(τ) is given by

   R t t     [5.8]

in which is a time lag, and < > denotes the expected-value, or average,

operator. Note that the spectral energy density function E(ω) is defined for 

positive and negative frequencies.
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For discretely sampled data, the discrete energy spectrum Ep can be

represented in terms of Fourier amplitudes,

*
p p pE C C [5.9]

where C is the complex conjugate amplitude of C*. The discrete energy

spectrum Ep is related to the continuous one by  forp pE E       ,

in which 2 f    is the angular frequency v band. The energy spectrum

[5.9] is independent of the phases. If the phases of Fourier components are

not random and statistically correlated, the sea surface is not Gaussian

(Hasselmann et al., 1963). Departure from a Gaussian form cannot be

detected by the energy spectrum. Higher-order spectra such as the

bispectrum can be used to investigate nonlinearity in shallow-water waves. It

is a complex quantity, formally defined as the Fourier transform of the third-

order correlation function of the time series:

     
2

1 2 1 2 1 1 2 2 1 2
1, , exp2B R i d d     






         
 [5.10]

In which

  1 2 1 2( , )R t t t       [5.11]

The digital (discrete) bispectrum, for discretely sampled data, is (Haubrich,

1965; Kim and Powers, 1979)

,l m l m l mB C C C  [5.12]

in which l and m are the frequency indices. The digital bispectrum for

discretely sampled data can be estimated from [5.12] by ensemble

averaging. It relates to a triad of waves with frequency indices 1, m and l+

m.

The bispectrum Bl,m vanishes if:

1. There is no energy present at frequencies l or m or l+m (i.e., zero

Fourier amplitude of any component participating in the triad

interactions);
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2. There is no phase relation (coherence) between the waves forming

the triad (i.e., statistically independent free waves).

On the other hand, if the wave at (n=l+m) is generated through the

interaction between l and m, then a phase coherence will exist and the

expected value of the bispectrum will be nonzero.

The bispectrum can be efficiently computed using symmetry properties, in

which it can be uniquely described by its values in a bi-frequency octant. For

a digital time series with Nyquist frequency fN, the bispectrum is uniquely

defined within a triangle in (f1, f2) space (bi-frequency plan) with vertices at

(1=0, m=0), (1=fN, m=0), and (l=fN/2, m=fN/2).

The bispectrum can be used to identify coupled modes, however it does not

give a qualitative measure of the intensity of nonlinear interactions cince its

value depends on the amplitudes of the three waves involved in the

interaction. It is convenient to cast the bispectrum into its normalized

magnitude and phase, the so-called bicoherence and biphase.

5.2.2 Skewness and asymmetry

The so-called skewness and asymmetry of the sea surface are profile

distortions caused by the presence of bound harmonics due to nonlinear

interactions. The so-called skewness is the lack of symmetry with respect to

the horizontal. Skewed profiles of gravity water waves are characterized by

sharp crests and flat troughs (Stokes-type wave), in which the harmonics are

phase-locked and in phase with the primary. The name derives from the fact

that the probability density function of these profile is skewed. On the other

hand, the asymmetry is the lack of symmetry with respect to the vertical.

Asymmetric profiles are usually characterized by steep forward fronts and

mild rear faces (nearly saw-toothed shape), in which the harmonics are

phase-locked and leading the primary. The skewness of a random variable

(a) is conventionally defined as its normalized third central moment:
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3
x

x

x
S






 [5.13]

The mean square, or the variance of the surface elevation can be recovered

from the integral of the energy spectrum, i.e. (using the discrete form)

2
p

p
t E





 [5.14]

Hasselmann et al. (1963) showed that the integral over the real part of the

bispectrum recovers the mean cube, or third-order moment of the surface

elevation:

  3
,Re l m

t m
t B

 

 

 [5.15]

The skewness or the nondimensional mean cube of the surface elevation can

be obtained by normalizing [5.15] by the variance to the power 3/2:




3

3 22

t
S

t




 [5.16]

Similarly, the asymmetry of the surface elevation can be obtained from the

integral over the imaginary part of the bispectrum after normalization with

the variance to the power 3/2:

 


,

3 22

Im l m
l m

B
A

t

 

 


[5.17]

The skewness and asymmetry represent overall measures of nonlinearity and

indicate the departure of the wave profile statistics from the Gaussian
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distribution. These parameters are used in the analysis of data presented in

the following sections.

Bispectral evolution of waves

Observations of shoaling waves are analyzed to elucidate the phenomenon of

harmonic generation in the region back to submerged breakwater. The

objectives of these analyses are to determine the significant interactions that

lead to harmonic generation and the influence of wave breaking on the

intensity of nonlinear couplings.

5.3 Analysis and results

For the purpose of this work only submerged barrier conditions have been

take in count. Referring to Tab. 4.3 only tests from 25 to 34, from 43 to 46

and from 51 to 56 will be used. The surface elevation spectra are shown in

Fig. 3.2. In the breakwaters regions, strong energy transfers occur from the

primary to the higher harmonics. In shallow water over the obstacle, wave

breaking takes place leading to reduction of the total energy.

The bispectra are computed according to equation [5.10], in which the

complex Fourier amplitudes Ap were determined from the time records with a

standard FFT-algorithm. The data were processed by dividing the record into

equal segments, each of 20 seconds duration resulting in a frequency

resolution for the raw data of 0.002 Hz. The bispectral estimates are

obtained by ensemble averaging over all segments. Therefore the number of

degrees of freedom in the estimates is variable.

Absolute values of the continuous bispectra (bicoherence computed using

equation [5.10]) for gauge 18 are given from Figure. 5.2 to 5.21, where only

the positive quadrants f2>0) are shown. Note that the bispectra are

symmetric around the diagonal f1 =f2.
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The bicoherence is shown in panel (b) of Figure 5.2 in which a bispectral

peak exists at (0.28 Hz, 0.28 Hz). This peak indicates the self-interaction of

the primary at 0.28 Hz with itself leading to the first harmonic at 0.56 Hz,

according with power spectra shown in panel (a). In Figure 5.3 are shown

three bispectral peak; the first at f1=f2=0.22 Hz that indicates the self-

interaction of the primary at 0.22 Hz with itself leading to the first harmonic

at 0.44 Hz; the second one at f1=f2=0.44Hz that indicates the self-interaction

of the second harmonic at 0.44 Hz with itself leading to the forth harmonic at

0.88 Hz. The third peak indicates a phase coupling between first harmonic at

0.22 Hz and third harmonic at 0.66 Hz. In Figure 5.4 are shown a self

interacting bispectral peak at f1=f2=0.22 Hz; it is also shown a peak at

f1=0.22 Hz and f2=0.

All bispectral panels indicate a phase coupling at (fp,fp) and at (fp,2fp).

Intensity of phase coupling depends on wave and breakwater characteristics.

To summarize the effect of barrier in Figure 5.22 and 5.23 are reported the

values of bicoherence for all data sets at (fp,fp) and (fp,2fp) against B/L ratio.

Note that the self interaction at fp depends on crest width, in fact for large

width (B=4.0m) bicoherence tends to be constant; instead for smaller crest

width (B=1.0 m) bicoherence tends to increase rapidly.

This seems to be due to non linearity as can be noted comparing Figure 5.22

and 5.23 with Figure 5.28. Results are summarized in table 5.1
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Gauge 2 16 17 18 19 20

Test fp(Hz) B(fp,fp)
25 0.18 0.5273 0.8067 0.7260 0.6534 0.5881
26 0.22 0.4801 0.7467 0.6720 0.6048 0.5443
27 0.19 0.4970 0.7000 0.6300 0.5670 0.5103
28 0.14 0.3787 0.5333 0.4853 0.4368 0.3931
29 0.19 0.2935 0.4133 0.3699 0.3329 0.2996
30 0.21 0.5349 0.7533 0.6780 0.6102 0.5492
31 0.16 0.5112 0.7200 0.6480 0.5832 0.5249
32 0.17 0.4591 0.6467 0.5691 0.5122 0.4609
33 0.19 0.4023 0.5667 0.5100 0.4590 0.4131
34 0.23 0.3692 0.5200 0.4680 0.4212 0.3791
43 0.20 0.6153 0.8667 0.8407 0.7986 0.7906
44 0.18 0.4260 0.6000 0.5820 0.5529 0.5474
45 0.17 0.4497 0.6333 0.6112 0.5806 0.5748
46 0.19 0.4118 0.5800 0.5643 0.5361 0.5308
51 0.14 0.3313 0.4667 0.4527 0.4300 0.4257
52 0.23 0.5451 0.7467 0.7243 0.6881 0.6812
53 0.16 0.5065 0.7133 0.6898 0.6553 0.6619
54 0.1 0.4970 0.7000 0.6790 0.6451 0.6386
55 0.22 0.3692 0.5200 0.5044 0.4792 0.4744
56 0.16 0.4023 0.5667 0.5497 0.5222 0.5170

Table 5.1. Summary of bispectral analysis
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Figure 5.2. – Bicoherence test 25 gauge 18

Figure 5.3. – Bicoherence test 26 gauge 18

Figure 5.4. – Bicoherence test 27 gauge 18
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Figure 5.5. – Bicoherence test 28 gauge 18

Figure 5.6. – Bicoherence test 29 gauge 18
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Figure 5.7. – Bicoherence test 30 gauge 18



93

Figure 5.8. – Bicoherence test 31 gauge 18

Figure 5.9. – Bicoherence test 32 gauge 18

Figure 5.10. – Bicoherence test 33 gauge 18
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Figure 5.11. – Bicoherence test 34 gauge 18

Figure 5.12. – Bicoherence test 43 gauge 18
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Figure 5.13. – Bicoherence test 44 gauge 18

Figure 5.14. – Bicoherence test 45 gauge 18
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Figure 5.15. – Bicoherence test 46 gauge 18

Figure 5.16. – Bicoherence test 51 gauge 18
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Figure 5.17. – Bicoherence test 52 gauge 18

Figure 5.18. – Bicoherence test 53 gauge 18
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Figure 5.19. – Bicoherence test 54 gauge 18

Figure 5.20. – Bicoherence test 55 gauge 18
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Figure 5.21. – Bicoherence test 56 gauge 18
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Figure 5.22. – Bicoherence value at (fp,fp) against B/L at gauge 18
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Figure 5.23. – Bicoherence value at (fp,2fp) against B/L at gauge 18

The overall nonlinearity parameters, skewness and asymmetry, have been

calculated at gauge 18 using equations [5.16] and [5.17]. Their variations

against fp, K t, M0low/M0high ratio, Ursell number, and B/L ratio are shown in

Figure from 5.24 to 5.29. The asymmetry increases linearly increasing fp and

Kt, M0low/M0high ratio and decrease increasing Ursell number . Regarding

asymmetry variations in function of B/L ratio (Figure 5.28), its value shows a

different tendency for short crest width. The variation of the skewness shows

a different trend than the variation of the asymmetry (Figure 5.29). In most

of the shoaling region, the values of the asymmetry remain rather low. They

increase rapidly over the barrier. For B=1.0m asymmetry and skewness

rapidly decrease (Figure 5.30 and 5.31), instead for large crest width (B=4.0

m) non linear parameters seem to continue to increase (Figure 5.31 and

5.32).
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A question which deserves attention in this context relates the possibility of a

“memory” in the wavefield on the downwave side of the barrier, of what

happened over the bar. Such “memory” is equivalent to a persistent phase

lock between harmonics. This in turn imply spatial nonhomogeneity. This

possibility is well established for interaction between a discrete, finite set of

wave components, in particular monochromatic wave and its harmonics,

where a recurrent pattern of cross spectral energy transfer back and forth

occurs, resulting in spatially periodic amplitude variations. However these

effects are expected to cancel out in case of continuous spectrum. Analyzing

spatial variation of bicoherence (Figure 5.24) can be noted the different

behaviour of large crest width (B=4.0 m, tests 52 and 53) and short crest

width (B=1.0 m, tests 25 and 26). Bicoherence variations indicate a

significant increase on the upslope, to a maximum at guage 17 near the top

of the barrier, bicoherence decrease rapidly for short crest width to values

between 0.5 at gauge 20. These values are similar to those at gauge 16

before the barrier. This implies that there is no memory of bar location. For

large crest width bicoherence decrease on the downslope less rapidly than

the case of B=1.0 m and seem to became constant after gauge 19 with

values higher than the values at gauge 16. This implies that for large crest

width there is a sort of “memory” of bar location. Can be noted that the

length of zone after barrier that retain the memory of bar can be longer than

the zone covered by wave gauge.
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Figure 5.24. – Spatial variation of bicoherence at guage 16, 17, 18, 19 and 20 for tests 25,

26, 52 and 53
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Figure 5.25. – Asymmetry value at against fp at gauge 18
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Figure 5.26. – Asymmetry value at against M0low/M0high ratio at gauge 18
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Figure 5.27. – Asymmetry value at against transmission coefficient ratio at gauge 18
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Figure 5.28. – Asymmetry value at against Ursell number at gauge 18

-1,50

-1,00

-0,50

0,00

0,50

1,00

0,00 0,01 0,01 0,02 0,02 0,03 0,03 0,04

B/L

A

B=1.0m

B=4.0m

Figure 5.29. – Asymmetry value at against B/L ratio at gauge 18
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Figure 5.30. – Skewness value at against B/L ratio at gauge 18

Figure 5.31. –Spatial variation of asymmetry for test 25
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Figure 5.32. –Spatial variation of asymmetry for test 52
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5.4 Hilbert Huang transform

Fourier-based spectral analysis methods have been widely used for studying

random waves. One major weakness of these methods is the assumption of

linear superposition of wave components. As a result, the energy of a

nonlinear wave spreads into many harmonics, which are phase-coupled via

the nonlinear dynamics inherent in ocean waves. In addition to the

nonlinearity issue, Fourier spectral analysis should, strictly speaking, be used

for periodic and stationary processes only, but wave propagation in the

ocean is certainly neither stationary nor periodic. Recently, Huang and his

colleagues developed a new analysis technique, the HHT. Through analytical

examples, they demonstrated the superior frequency and temporal

resolutions of the HHT for analyzing non stationary and nonlinear signals (

Huang et al. 1998, 1999). Using this analysis, the physical interpretation of

nonlinearity is frequency modulation, which is fundamentally different from

the commonly accepted concept associating nonlinearity with harmonic

generation. Huang et al. argued that harmonic generation is caused by the

perturbation method used in solving the nonlinear equation governing the

physical processes; thus, the harmonics are produced by the mathematical

tools used for the solution rather than being a true physical phenomenon.

HHT consists of two phase, the first step is to preprocess the data by the

empirical mode decomposition method, with which the data are decomposed

into a number of intrinsic mode function components. Thus, we will expand

the data in a basis derived from the data. The second step is to apply the

Hilbert transform to the decomposed IMFs and construct the energy-

frequency-time distribution, designated as the Hilbert spectrum, from which

the time localities of events will be preserved. In other words, we need the

instantaneous frequency and energy rather than the global frequency and

energy defined by the Fourier spectral analysis. Therefore, before going any

further, we have to clarify the definition of the instantaneous frequency.
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5.4.1 Instantaneous frequency

In the traditional Fourier analysis, the frequency is definedfor the sine or

cosine function spanning the whole data length with constant amplitude. As

an extension of this definition, the instantaneous frequencies also have to

relate to either a sine or a cosine function. Thus, we need at least one full

oscillation of a sine or a cosine wave to define the local frequency value.

According to this logic, nothing shorter than a full wave will do. Such a

definition would not make sense for non-stationary data for which the

frequency has to change values from time to time. For an arbitrary time

series, X(t), we can always have its Hilbert Transform, Y (t), as

 '1 '
'

X t
Y t P dt

t t





 [5.18]

where P indicates the Cauchy principal value. This transform exists for all

functions of class Lp (see, for example, Titchmarsh 1948). With this

definition, X(t) and Y (t) form the complex conjugate pair, so we can have an

analytic signal, Z(t), as

   i tZ t X t iY t a t e    [5.19]

in which

    


1 22 2 , arctan
X t

a t X t Y t t
Y t


 

         
[5.20]

Theoretically, there are infinitely many ways of defining the imaginary part,

but the Hilbert transform provides a unique way of defining the imaginary

part so that the result is an analytic function. A brief tutorial on the Hilbert

transform with the emphasis on its physical interpretation can be found in

Bendat & Piersol (1986). Essentially equation [5.18] defines the Hilbert

transform as the convolution of X(t) with 1/t; therefore, it emphasizes the

local properties of X(t). In equation [5.19], the polar coordinate expression

further clarifies the local nature of this representation: it is the best local fit

of an amplitude and phase varying trigonometric function to X(t). Even with



109

the Hilbert transform, there is still considerable controversy in defining the

instantaneous frequency as:

d t
dt


 [5.21]

5.4.2 Intrinsic mode function

An intrinsic mode function (IMF) is a function that satisfies two conditions:

(1) in the whole data set, the number of extrema and the number of zero

crossings must either equal or differ at most by one; and (2) at any point,

the mean value of the envelope defined by the local maxima and the

envelope defined by the local minima is zero. The first condition is obvious; it

is similar to the traditional narrow band requirements for a stationary

Gaussian process. The second condition is a new idea; it modifies the

classical global requirement to a local one; it is necessary so that the

instantaneous frequency will not have the unwanted fluctuations induced by

asymmetric wave forms. Ideally, the requirement should be “the local mean

of the data being zero”. For non-stationary data, the “local mean” involves a

“local time scale” to compute the mean, which is impossible to define. As a

surrogate, we use the local mean of the envelopes defined by the local

maxima and the local minima to force the local symmetry instead. This is a

necessary approximation to avoid the definition of a local averaging time

scale. Although it will introduce an alias in the instantaneous frequency for

nonlinearly deformed waves, the effects of nonlinearity are much weaker in

comparison with non-stationarity. With the physical approach the method

does not always guarantee a perfect instantaneous frequency under all

conditions. Nevertheless even under the worst conditions, the instantaneous

frequency so defined mis still consistent with the physics of the system

studied. The name “intrinsic mode function” is adopted because it represents

the oscillation mode imbedded in the data. With this definition, the IMF in

each cycle, defined by the zero crossings, involves only one mode of

oscillation, no complex riding waves are allowed. With this definition, an IMF



110

is not restricted to a narrow band signal, and it can be both amplitude and

frequency modulated. In fact, it can be non-stationary.

The details of both Empirical Mode Decomposition (EMD) and the Hilbert

Spectral Analysis (HSA) are given in Huang et al. (1996, 1998 and 1999).

The following summary is based on a simplified version given in Huang

(2005). The EMD method is necessary to reduce any data from non-

stationary and nonlinear processes into simple oscillatory function that will

yield meaningful instantaneous frequency through the Hilbert transform.

Contrary to almost all the previousdecomposing methods, EMD is empirical,

intuitive, direct, and adaptive, with the a posteriori defined basis derived

from the data. The decomposition is designed to seek the different simple

intrinsic modes of oscillations in any data based on the principle of scale

separation. The data, depending on it complexity, may have many different

coexisting modes of oscillation at the same time. Each of these oscillatory

modes is represented by an Intrinsic Mode Function (IMF) with the following

definitions: (a) in the whole data set, the number of extrema and the

number of zero-crossings must either equal or differ at most by one, and (b)

at any point, the mean value of the envelope defined by the local maxima

and the envelope defined by the local minima is zero. The IMF is a counter

part to the simple harmonic function, but it is much more general: instead of

constant amplitude and frequency, IMF can have both variable amplitude

and frequency as functions of time. This definition is inspired by the simple

example of constant plus sinusoidal function given above. The total number

of the IMF components is limited to ln2N, where N is the total number of

data points. It satisfies all the requirements for a meaningful instantaneous

frequency through Hilbert transform. Pursuant to the above definition for

IMF, one can implement the needed decomposition of any function, known

as sifting, as follows: Take the test data; identify all the local extrema; divide

the extrema into two sets: the maxima and the minima. Then connect all the

local maxima by a cubic spline line to form an upper envelope. Repeat the

procedure for the local minima to form a lower envelope. The upper and
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lower envelopes should encompass all the data between them. Their mean is

designated as m1, and the difference between the data and m1 is

designated as, h1, a proto-IMF:

 1 1X t m h  [5.22]

Ideally, h1 should satisfy the definition of an IMF by construction of h1

described above, which should have made it symmetric and having all

maxima positive and all minima negative. Yet, in changing the local zero

from a rectangular to a curvilinear coordinate system some inflection points

could become additional extrema. New extrema generated this way actually

reveal the hidden modes missed in the initial treatment. The sifting process

sometimes can recover signals representing low amplitude riding waves with

repeated siftings. The sifting process serves two purposes: to eliminate riding

waves and to make the wave profiles more symmetric. While the first

condition is absolute necessary for Hilbert transform to give a meaningful

instantaneous frequency, the second condition is also necessary in case the

neighboring wave amplitudes having too large a disparity. As a result, the

sifting process has to be repeated many times to reduce the extracted signal

an IMF. In the subsequent sifting process, h1 is treated as the data for the

next round of sifting; therefore,

1 11 11h m h  [5.23]

After repeated sifting, up to k times, h1k :

  1 11 1 k kkh m h


  [5.24]

If h1k becomes an IMF, it is designated as c1:

1 1kc h [5.25]

the first IMF component from the data. Here one has a critical decision to

make: when to stop. Too many rounds of sifting will reduce the IMF to FM

page criterion; too few rounds of sifting will not have a valid IMF. In the

past, different criteria have been used, including Cauchy type criterion

(Huang et al. 1998), S-number criterion (Huang et al. 2003), fixed-number



112

criterion (Wu and Huang 2004), and etc. With any stoppage criterion, the, c1

should contain the finest scale or the shortest period component of the

signal. one can, then, remove c1 from the rest of the data by

 1 1X t c r  [5.26]

Since the residue, r1, contains all longer period variations in the data, it is

treated as the new data and subjected to the same sifting process as

described above. This procedure can be repeated to all the subsequent rj’s,

and the result is

1 2 2

1

,
...
n n n

r c r

r c r

 

 
[5.27]

The sifting process should stop when the residue, rn, becomes a constant, a

monotonic function, or a function contains only a single extrema, from which

no more IMF can be extracted. By summing up Equations [5.26] and

[5.27] we finally obtain


1

n

j n
j

X t c r


  [5.28]

Thus, sifting process produces a decomposition of the data into n-intrinsic

modes, and a residue, rn. When apply the EMD method, a mean or zero

reference is not required; EMD needs only the locations of the local extrema.

The sifting process generates the zero reference for each component.

Without the need of the zero reference, EMD avoids the troublesome step of

removing the mean values for the large non-zero mean.

5.4.4 Data analysis

The data of surface elevation used in this chapter is the same data used for

bispectral analysis in previous section. In order to show the results of data

analysis only tests 25, 26, 52 and 53 are reported.
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In figure 5.33, 5.34, 5.35 and 5.36 are reported respectively Fourier power

spectra for tests 25, 26, 52 and 53 at gauge 2 and 18.

Figure 5.33. –Fourier power spectra for test 25 at gauge 2 and 18

Figure 5.34. –Fourier power spectra for test 26 at gauge 2 and 18
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Figure 5.35. –Fourier power spectra for test 52 at gauge 2 and 18

Figure 5.36. –Fourier power spectra for test 53 at gauge 2 and 18

The wave characteristics are first estimated by Fourier spectrum. The mean

spectral wave height Hm0, mean period Tp, and first spectral moment m0 are

shown in Tab. 1.
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Test 25 Test 26 Test 52 Test 53

Gauge 2 16 18 2 16 18 2 16 18 2 16 18

Hm0 (m) 0.69 0.6 0.34 0.94 0.835 0.419 0.66 0.62 0.285 0.94 0.87 0.375

Tp (s) 3.45 3.45 3.45 4.5 4.5 4.5 3.5 3.5 3.55 4.55 4.55 4.55

m0(m2) 0.0296 0.0226 0.0072 0.054 0.0436 0.011 0.0273 0.0243 0.0051 0.0553 0.048 0.0088
Table 1 – Spectral characteristics for tests 25, 26, 52 and 53

m0(m2) m0h(m2) m0l(m2) m0h/m0 Kt

25 0.0072 0.0027 0.0045 0.380.566666667
26 0.0110 0.0049 0.0061 0.440.501796407
52 0.0051 0.0025 0.0026 0.500.459677419
53 0.0088 0.0035 0.0053 0.400.431034483

Table 2 – Spectral moments of total spectrum and spectral moments of high and low part of spectra, according to van der Meer et al. (2000)
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In Tab. 2 are reported values of spectral moments of total spectra and of

high and low part of spectra according to methodology proposed by van der

Meer et al. (2000) as reported in chapter 3.

Next, the data are analyzed by HHT non-linear and non-stationary time

series analysis method. Sets of Intrinsic Mode Functions were obtained

applying the Empirical Mode Decomposition method to each wave record.

The detailed results of the decomposition of test 25 gauge 18 into four IMF

are presented in Fig. 5.37 and the sea surface elevation data are shown in

Fig. 5.37 (a). Since the time scales are identified as the intervals between

the successive alternations of local maxima and minima, IMF represents

oscillation modes, embedded in the data analyzed. The different IMFs

correspond to the different physical time scales, which characterize the

various dynamical oscillations in the time series. A wave component with

nearly constant time scale exists and dominates in each IMF, representing

the carrier wave constituent at the specific time scale. These oscillations

have not only different time scales, but also have a different range of

energy. The limits of the vertical axis in Fig. 5.37 are different for the

different IMF. The most energetic IMF in the decomposition is the second

(c), and third (d) components, which have a close range of amplitude

variation. The shortest oscillations in the decomposition, represented by the

first IMF (b) have smaller amplitudes than the ones of (c) and (d). Physically

these high frequency oscillations, extracted in the first constituent, may

represent short period waves generated by interaction between wave and

submerged breakwater. The complete representation of the sea surface

elevation recorded in this data can be considered as a composition of three

dominant wave oscillations, extracted in the first (b), second (c) and third (d)

IMF and a several, but finite number of components with smaller amplitudes.

The contribution of different IMF to the energy and frequency contents of

wave data is investigated. The spectra of wave records are compared with

spectra of its IMF in Fig. 5.38, 5.39, 5.40
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Figure 5.37. – Empirical Mode Decomposition for test 25 at gauge 18

Figure 5.38. – Spectrum of wave data and its IMFs for test 25 at gauge 18
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Figure 5.39. – Spectrum of wave data and its IMFs for test 26 at gauge 18

Figure 5.40. – Spectrum of wave data and its IMFs for test 52 at gauge 18
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Figure 5.41. – Spectrum of wave data and its IMFs for test 53 at gauge 18

A mixture of three wave systems is registered, whose Fourier spectrum is

correspondingly two-peaked with first peak frequency fp1 = 0.28 Hz and

second one fp2 = 0.54 Hz. These two dominant wave oscillations are well

separated by the EMD method into two different IMF (c), and (d) whose

spectra are shown by dashed line and dotted line, respectively.

The energy and time characteristics of individual IMF are estimated and

compared with wave characteristics in order to estimate quantitatively the

contribution of different IMF to the wave data. The zero-th moment m0 is

proposed as a measure of integrally determined energy of IMFs while pectral

peak frequency fp is utilized as the representative frequency.

The characteristics are presented in Tab. 3. The second and third IMF have

the highest energy in the decomposition and their peak frequencies agree

with the major two peaks of wave spectrum.
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IMF Hm0 (m) fp (Hz) m0(m
2)

(b) 0.079 0.78 0.0040
(c) 0.198 0.55 0.0025

(d) 0.228 0.27 0.0033

Table 3 – Spectral characteristics of IMFs for test 25 at gauge 18

The results of application of EMD presented here are also valid for other

wave records. The energy hierarchy of IMF in decomposition of a wave

record reflects clearly the specific peculiarity of particular wave data.

The peculiarities in the variations of the IMF are reflected in the frequency-

time distribution of the energy. The Hilbert spectrum H(,t) of record are 

shown in Fig. 5.38.

Figure 5.38. – Hilbert spectrum of IMFs for test 25 at gauge 18
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The Hilbert spectrum in Fig. 5.38 shows high wave energy in the higher

frequency range around 0.55 Hz, where the spectral peak of the second IMF

is located, as well as in the lower frequency range around 0.27 Hz, the

location of the peak of the third, IMF in Fig. 5.37.

At this point, in analogy to the methodology used by van der Meer et al.

(1999), the spectrum is divided not by an arbitrary criterion imposing the

high frequencies confined between 1.5fp and 3.5fp, and low frequency

between 0.5fp and 1.5 fp. In order to evaluate the amount of energy

transferred behind breakwater at high and low frequency, will be used IMFs

obtained by EMD, representing embedded mode at high and low frequency.

Results are reported in Tab. 4

m0(m2) gauge 16 m0h(m2) IMF (b) m0l(m2)IMF (c) m0h/m0

25 0.0072 0.0027 0.0045 0.38
26 0.0110 0.0053 0.0056 0.48
52 0.0051 0.0017 0.0035 0.32

53 0.0088 0.0019 0.0070 0.21

Table 4– Spectral moments of total spectrum and spectral moments of high and low part
of spectra, according decomposition.

Comparing Tab. 2 and Tab. 4 it can be noticed that for short crest width

(tests 25 and 26) results are in substantial agreement with those obtained

applying van der Meer technique. In contrast for large crest width van der

Meer’s technique overstates the amount of energy transferred at high

frequencies. In fact ratios between m0h/m0 computed using van der Meer

criteria are about 30% higher than those calculated using IMFs as

representative of high and low frequencies.
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CONCLUSION

This study was undertaken with the aim of increasing the knowledge of the

nonlinear dynamics in the transformation of wave spectra in passing over

submerged breakwater.

With the purpose to study the spectral evolution of the wave motion in the

rear side of submerged barriers have been used an extensive data set in 2D

large scale wave flume carried out at GWK of Hannover (Germany). This

data set represents a unique set for the purposes of this thesis. In fact

having to analyze the connected non linear phenomena to the transformation

of the wave motion is essential that the data are not affections from scale

effects.

In fact the effects induced by the model scale on the evolution of the non

linear phenomena are not quantifiable because of nonlinear nature of the

phenomena.

Bispectral analysis is used to elucidate aspects of nonlinear dynamics of

shallow-water waves acting with submerge barrier. Analyses of laboratory

observations of nonlinear wave field have yielded the following conclusions:

 Harmonic generation in shallow water after barriers is ascribed to

nonlinear triad wave interactions. The generation of the second

spectral peak results from the sum interactions between pairs of

waves at the primary spectral peak. On the other hand the generation

of the low-frequency waves is due to the difference interactions

between pairs of waves at the primary spectral peak.

 In the initial shoaling region, weak nonlinearity leads to increase in the

skewness values only but not in those of the asymmetry, whereas

strong nonlinearity in the region just before wave breaking leads to a

significant increase in the asymmetry values.
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 Nonlinear couplings induced by a bar region in a random wave field

shows a different behavior for short and large crest width. For short

crest vanish in the deepening region beyond the bar due to

decreasing nonlinearity. There is no memory of phase locks which

existed over the barrier. The wave field on the rear side is statistically

homogeneous and can be fully described by the energy density

spectrum, without the need for additional, site-dependent phase

information. For large crest width wave field show a sort of “memory”

of barrier location due to nonlinearity, in fact values of asymmetry are

constant after the obstacle.

The importance of the analyzing technique for the correct understanding of

the wind wave phenomenon is discussed. Widely used methods for wave

analysis assume linear and stationary sea waves.

The Hilbert-Huang Transform method is proposed as alternative one for the

investigation of non-linear and non-stationary wave field.

The specific peculiarities of wave process are well captured by EMD and

reproduced by IMF.

 Easy separation of the different time and energy associated with

the oscillations in the data is well achieved by EMD.

 The energy hierarchy of IMF in decomposition of wave records,

observed during different wave and breakwater conditions, reflects

the specific peculiarities of the particular wave data.

 The EMD method with its great ability to extract different

oscillation modes embedded in the data can facilitate the investigation

of sea waves. The attention can be concentrated on a finite number of
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IMF, each of them characterizing much simply, than the original one,

the dynamical system.

 HHT has been used to quantify the amount of energy that is

transferred to the highest frequencies. Results have been compared to

van der Meer (2000) results. It is shown a substantial agreement for

short crest width, although for large crest width van der Meer

technique shows an overstatement of the amount of energy

transferred at high frequencies.

High order spectral analysis constitute an useful tool to show the t non linear

nature of the phenomena that occur in of interaction between the wave

motion and the submerged barriers. On the base of these results has been

possible to define the behaviour of the barriers to vary of their geometry.

The following step of the research in this field could be represented by

laboratory tests performed in presence of sand with the purpose to appraise

the influence of the non linearity on the sand transport.
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