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FOREWORD 

Salinity is one of the most critical abiotic stresses affecting crop yield and quality in 

various agricultural systems. Based on recent estimates, the cost of salinity to 

agriculture is approximately $US 12 billion a year. Scientists have therefore approached 

different aspects of salinization related to both soil and plant issues. For the latter, much 

effort in the last decades has been dedicated to understanding the fundamental biology 

of plant stress adaptation with the ultimate objective of identifying key stress tolerance 

functions that could be transferred via traditional breeding and/or trans-gene technology 

to crop plants. Salinization of soils is a natural phenomenon occurring in areas of the 

world where evaporation exceeds precipitation. Biological systems, however, have 

shown wide adaptation to environmental stresses including salt, and plants can be found 

growing in saline environments and indeed in seawater. Hence, plant growth is not 

incompatible with salt, even though this level of salinity would be toxic to most crop 

plants currently cultivated. Although, most of our current knowledge on plant response 

to salinity has been obtained through a thorough characterization of the molecular basis 

of stress adaptation in model plants (Arabidopsis), the transfer of the acquired 

knowledge to improve salinity tolerance of crop species has been slow. One reason for 

this is possibly the absence of a complete correspondence between tolerance 

mechanisms in model plants and crop species. Moreover the elucidation of the 

fundamental physiology of salt tolerance using model systems has revealed different 

facets of a complex scenario, which is not always controlled by single genetic 

components. Based on these facts, in this work we considered different approaches to 

study plant response to salinity: 1) the use of model species (Arabidopsis stress tolerant 

wild type relatives) to identify new relationships between morphological/physiological 
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characteristics and salt tolerance traits; 2) the study of the physiological basis defining 

diverse stress tolerance performances in two basil ecotypes; 3) the analysis of possible 

mechanisms of cross-talk between abiotic and biotic plant stress adaptation. The overall 

objective of this thesis was to define a new level of complexity in salt stress tolerance 

that is often overlooked when we move from models to crop plants and to identify new 

strategies that could be pursued in order to direct recent advances in the field of 

molecular biology to their application to crop species.  
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 ABSTRACT 

This PhD Thesis address fundamental mechanisms of salt stress response in plants 

from an agronomic, physiological, morphological and genetic point of view. 

Specifically we considered salt stress tolerance performances of eleven wild species 

of Cruciferae, closely related to Arabidopsis thaliana (Chapter 1). In the second 

chapter, salt tolerance has been related to main morphological and physiological 

traits of two cultivars of sweet basil (Genovese and Napoletano). Finally (Chapter 

3) we considered how salinity stress tolerance of tomato may be affected by a 

constitutive over-expression of genes involved in wounding responses. Part of this 

research has been conducted at Purdue University (Indiana - USA) and at the 

experimental station of the University of Bologna, located in Teresina (PI – Brazil).  
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Riassunto 

Il presente elaborato analizza, sotto l’aspetto fisiologico, morfologico, genetico e 

produttivo, i principali meccanismi di risposta a stress salino di alcune specie 

vegetali. In particolare, l’indagine ha riguardato la caratterizzazione della risposta 

a stress salino in undici specie di Brassicacee evolutivamente vicine ad Arabidopsis 

thaliana e caratterizzate da diversi livelli di tolleranza (Capitolo 1). Lo studio ha, 

altresì, valutato, da una prospettiva morfologica e fisiologica la tolleranza al sale di 

due cultivar di basilico (Genovese e Napoletano) con spiccate differenze nella 

risposta allo stress salino (Capitolo 2). Infine, sono stati indagati alcuni possibili 

meccanismi di cross-talk tra adattamento a stress abiotici e tolleranza indotta dalla 

sovra-espressione costitutiva di geni attivati da danni meccanici (da ferita) in 

piante di pomodoro (Capitolo 3). Parte della ricerca è stata effettuata presso 

l’Università di Purdue (Indiana, USA) e presso la stazione sperimentale 

dell’Università di Bologna locata in Teresina (Piaui, Brasile).  
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CHAPTER I.  

 

EVOLUTION OF SALT TOLERANCE IN PLANTS: THE 

LONG PATH FROM HALOPHYTES TO 

GLYCOPHYTES. A COMPARATIVE STUDY OF SALT 

TOLERANCE IN ELEVEN WILD RELATIVES OF 

ARABIDOPSIS THALIANA. 

 

1.1 INTRODUCTION 

Saline water covers 70 percent of the surface of the earth. NaCl concentration in 

the oceans is roughly 500 mM. If such a high salty solution was used to irrigate crops, 

the result would be fatal to plants. However, many marine plants and algae have 

developed ways to survive such conditions. In the evolution of terrestrial plants the 

ability to cope with an extremely saline medium has been largely lost, or was never 

acquired. It is not an essential adaptation in an environment rinsed by rain. However, 

there are terrestrial ecosystems that are saline. They are habitat of halophyte species, 

enabled to exist in their stressful environment through an array of structural, 

physiological and biochemical adaptations, always including several that minimize 
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water loss (Goyal et al., 2003). According to this, there is no fundamental biological 

incompatibility between salinity and plant life. 

An intricate and controversial topic in understanding salt tolerance is the origin 

of the typically terrestrial halophytes. There are reasons to believe that glycophytes 

developed from halophytes, rather than the other way around. The primacy of the 

halophytes follows logically from the concept that when life originated in the water, the 

oceans were salty bodies of water. As suggested by Kovda in the early seventies 

(Kovda, 1973), comparative research into the physiology of salt tolerance in marine, 

shoreline and typically terrestrial plants is therefore of major theoretical and practical 

interest. Studies in this field may help trace the development from marine plants to 

typically terrestrial halophytes and glycophytes. 

Arabidopsis (Arabidopsis thaliana) is a widely spread small annual weed of the 

mustard family (Cruciferae), that is native to Europe and Central Asia (Koornneef et 

al., 2004). Its reported low salt tolerance (Gong et al., 2005) and its adoption as the 

major model plant, make it ideal for studying natural variation of adaptive traits 

(Koorneef et al., 2004). Comparative studies between salinity stress adaptation in 

Arabidopsis and its relative halophyte Thellungiella halophila are reported in literature 

(Inan et al., 2004; Gong et al., 2005). The high genome similarity between the two, both 

belonging to the Brassicaceae/Cruciferae family, together with a different salt response, 

makes the study of Thellungiella extremely interesting. The Brassicacee/Cruciferae 

family is large, consisting of about 340 genera and more than 3350 species (Al-Shebaz, 

1984). This family is of particular interest from a genome evolution perspective because 

it has nuclear DNA contents that anchor the low range of angiosperm values (Johnston 

et al., 2005). In order to be a genetic model system, a plant must have desirable 
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botanical traits (small size, short life cycle, ability to self pollinate and to produce seeds 

in high number), as well as suitable genetic traits (small genome and easy 

transformation and mutagenesis capability). 

Among Cruciferae, other species have been tested for performances under 

abiotic stresses. Species of Hirschfeldia, Capsella, Thlaspi and Lepidium have 

repeatedly been reported to well perform for phyto-remediation (Aksoy et al., 1999; 

Davies et al., 2004; Fisherova et al., 2006; Fuentes et al., 2006; Gisbert et al., 2006; 

Jiménez-Ambriz et al., 2007; Madejon et al., 2005; Madejon et al., 2007; Pedras et al., 

2003). 

Comparison of salt tolerance traits between different species may contribute to 

define physiological mechanisms important in salt tolerance. As reported by Glenn et 

al. (1999), the existence in plants of variability in response to salt stress may suggests 

strategies for improving crop salt tolerance via genetic engineering (Lauchli, 1999; Mc 

Neil et al., 1999). 

Tightly controlled uptake of Na+ and Cl- ions is closely correlated with growth in 

halophytes (Inan et al., 2004). Nevertheless whether growth is limited by the ability to 

rapidly accumulate ions or whether the growth rate determines the physiology of salt 

accumulation still remains to be established (Flowers et al., 1986; Munns, 2002). 

Possibly, plants that are capable of both tightly-control cell uptake and high rates of 

vacuolar sequestration are able to maintain fast growth under high salinity conditions, 

presumably by taking advantage of the osmotic potential of accumulated ions. 

Regulation of water fluxes has emerged as another important feature of halophytes. 

They normally have reduced stomatal conductance compared to glycophytes and 

transpiration is often further decreased with increased exposure to salinity (Flowers et 
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al., 1986; Inan et al., 2004). Tolerance to cold stress has been also reported to be higher 

in halophytes (Inan et al., 2004), which indicates a possible cross-talk between stress 

adaptation mechanisms (Zhu, 2001). 

In this study we compared the response to abiotic stresses in several species of 

Arabidopsis close relatives. Growth parameters, water and hormone homeostasis were 

primarily considered to link morphological/physiological modifications to stress 

adaptation mechanisms. 
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1.2. MATERIAL AND METHODS 

Eleven wild relatives of Arabidopsis thaliana, belonging to the 

Brassicaceae/Cruciferae family were collected in salty/dry environments (e.g. seaside, 

desert land)  and their taxonomy identified with the help of Prof. Al Sheebaz (Missouri 

Botanical Garden, USA). The studied species were Thellungiella halophila, 

Hirschfeldia incana, Malconia triloba, Thellungiella parvula, Descurainia pinnata, 

Lepidium virginicum, Lepidium densiflorum, Capsella bursa pastoris, Barbarea verna, 

Thlaspi arvense, and Sysimbrium Officinale (Table 1). As controls, we used A. thaliana 

(Col-0), and two A. thaliana lines, with an over-expressed or disrupted SOS1 function, 

respectively. The SOS1 gene encodes for a plasma membrane Na+-H+ antiporter 

responsible for Na+ cellular exclusion and it has been reported to improve or reduce salt 

tolerance when is over-expressed transgenic plants or disrupted, respectively (Qiu et al., 

2004)   

1.2.1. SALT TOLERANCE  

 Test 1 – Effects of salt on plant growth 

Seeds of A. thaliana, T. halophila, H. incana, M. triloba, T. parvula, D. pinnata, L. 

virginicum, L. densifloru, C. bursa pastoris and S. officinale were sown on plastic trays 

filled with commercial soil. All seedlings were germinated after six days. Plants were 

transplanted on 3’’ plastic pots filled with Turface® eleven Days After Sowing (DAS). 

Four salt treatments were applied, respectively 0, 60, 150 and 300 mM NaCl, starting 

from 25 DAS, and 7 plants per treatment were considered, with 3 replications. The salt 

treatment lasted thirty days. At the end of the experiment, plants were collected to 

perform measures of root length and leaf area, using Image J® software (Abramoff et 

al., 2004).  
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Test 2 – Determination of L50 

 The ten species considered were A. thaliana, T. halophila, H. incana, M. triloba, 

T. parvula, D. pinnata, L .virginicum, L. densiflora, C. bursa pastoris and S. officinale. 

Plants were sown on plastic trays filled with commercial soil. Transplant was conducted 

twenty DAS, when all plants had at least two not-cotyledonal leaves fully expanded. 

Eleven salt treatments were imposed, respectively 0, 50, 100, 150, 200, 250, 300, 350, 

400, 450 and 500 mM NaCl, starting from thirty DAS. The experiment lasted thirty 

days with periodical counting of  survived plant material. 

 Test 3 –Effects of salt on germination 

 Seeds of H. incana, T. parvula, D. pinnata, T. halophila and A. thaliana sos1-

OE (piante overesprimenti il gene sos1, caratterizzate de migliorata tolleranza a stress 

salino) and A. thaliana sos1-KO (piante nelle quali l’espressione di sos1 è eliminate, 

caratterizzate da scarsa tolleranza allo stress) were sterilized and sowed on Petri dishes 

containing either MS agar medium or MS medium supplemented with 0, 60, 150 and 

300 mM NaCl. Plant material was stratified at 4°C for 4 days and transferred to a 

growth chamber with 16 h of light at 22 °C and 8 h of darkness at 18 °C. The number of 

germinated seeds was assessed seven and fourteen days after sowing. 

 Test 4 – Effects of salt on root growth 

 Seeds of H. incana, M. triloba T .parvula, D. pinnata, T. halophila, C. bursa 

pastoris, A.thaliana sos1-OE and A. thaliana sos1-KO were sterilised and plated on MS 

agar covered with a membrane. Ten plants per line were sown in each plate and we 

considered 12 plate repetitions. sos1 KO and sos1 OE were used as control in every 

dish. Dishes were then placed vertically in the growth chamber. After one week, the 

membranes with germinated seeds were moved and placed on new Petri dishes for salt 
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treatments, 0, 60, 150 and 300 mM NaCl, respectively. Plates were kept standing 

vertically and turned upside down, so the root would bend making an hook while 

growing (Verslues et al., 2006). Salt treatments lasted 10 days for all species. 

Afterward, photographs of Petri dishes were collected using a transmissive scanner. 

Roots were then measured using Image J software (Abramoff et al., 2004). 

1.2.2. WATER LOSS  

 Test 1 – Characterisation of species-specific water loss 

Seeds of A. thaliana, T. halophila, H. incana, M. triloba, T. parvula, D. pinnata, L. 

virginicum, L. densiflorum and S. officinale were sown on plastic trays filled with 

commercial soil. After complete expansion of the first non cotyledonal leaves, all plants 

were moved into plastic pots filled with commercial Turface®. Fourty days after 

sowing, each pot was sealed with a plastic film to prevent water loss from the soil 

surface, leaving the shoot protruding from the film. Each plant was then placed on an 

electronic balance under a light intensity of 140 µmol m2 s-1 at 25 °C, and the weight 

loss was automatically measured every hour for 24 h using a PC software. Water loss 

values were normalized for plant dry weights taken at the end of the experiment. 

 Test 2 – Determination of salt influence on water loss 

Plants of A. thaliana, T. halophila, T. parvula, D. pinnata, L. virginicum were 

prepared as reported above. Before starting the experiment, plants were watered 

adopting two salt treatment 0 (control) and 300 mM NaCl. Weight variations were then 

recorded for the next 5 days to monitor influence of salt on leaf transpiration. Four 

plants per treatment were considered. 
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1.2.3. COLD TOLERANCE 

 Test 1 – Characterisation of species-specific cold tolerance 

Plants of A. thaliana, T. halophila, T. parvula, D. pinnata, L. virginicum, L . 

densiflorum were grown on plastic pots filled with turface. At thirty DAS, ten plants per 

species were moved into a cold chamber set at 4°C and acclimated for 15 days. 

Afterward, all plants underwent a 24 hour cold treatment at -15°C and then moved back 

to the refrigerated chamber, according to the procedure described in Verslues et al. 

(2006). Five days after the treatments, images of the plants were collected and tolerance 

was evaluated by visual scoring by two independent evaluators. Scoring varied from 0 

(extreme sensitivity) to 5 (no visible effects). 

1.2.4. ABA SENSITIVITY 

 Test 1 – Characterisation of influence of ABA and salt treatment on root growth 

Seeds of L. virginicum, T. parvula, D. pinnata, C. bursa pastoris and A. thaliana 

sos1 KO were sown on Petri dishes containing MS medium. Seed germination was 

recorded after 7 days. The experiment considered two salt treatments (0 and 150 mM 

NaCl) and three ABA treatments (0, 0.5 and 1 µM NaCl). At 14 DAS, seedlings were 

moved to salinised plates, considering 10 plants per species and 3 repetitions per 

treatment. At 25 DAS, survived plants were counted. Photo pictures of the plates were 

taken. Measures of root length was performed by using Image J software. 

1.2.5. STOMATAL SIZE AND DENSITY 

Counting and sizing of stomata were performed using a bright-field light 

microscope. Leaf surface imprints were obtained by using transparent nail polish. 

Leaves selected for sampling were of uniform age. Leaf samples from ten plants were 

taken from the middle portion of the blade between the midrib and leaf margin.  
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1.3. RESULTS 

1.3.1. Morphology and life cycles 

The species selected in this study share many important features with 

Arabidopsis. All plant material belongs to the Cruciferae (Table 1). Life cycles can be 

completed in 6 to 12 weeks. Some of the species (T. halophila, D. pinnata) showed 

slower growth of seedlings, compared to Arabidopsis, while most of them (L. 

virginicum, L. densiflorum, H. incana, M. triloba, C. bursa pastoris, T. parvula) 

displayed higher growth rate and reached a much bigger size than Arabidopsis. 

Differences in leaf pubescence (Tab. 1, Fig. 1) among species were observed ranging 

from pubescent species (H. incana, C. bursa pastoris and S. officinale) to glabrous 

species (D. pinnata; L. virginicum; L. densiflorum; B. verna; T. parvula; T. halophila; 

M. triloba; T. arvense). 

Differences in stomatal size and density were also found among the analyzed 

species (Fig. 2). A smaller stomatal size (Fig. 3a) was detected in T. parvula and T. 

halophila, whereas bigger stomata were found in L. Virginicum, C. bursa pastoris, A. 

thaliana and D. pinnata. Interestingly, the lower stomatal size was correlated to higher 

stomatal density (Fig. 3b). 

 

1.3.2. Response to Salt Stress 

T. halophila is an halophyte able to tolerate very high NaCl concentrations (Inan 

et al., 2004). Arabidopsis and Thellungiella halophila (salt cress) were then adopted as 

extreme models to assess salt responses among other close relatives. At 150 mM NaCl, 
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root and leaf area growth rates in M. triloba, L. virginicum and T. parvula were 

comparable to T. halophila (Fig. 4 A and B). 

To confirm these results, root growth under saline treatments was evaluated by 

the root bending essay (Verslues et al., 2006). At 300 mM NaCl, values comparable to 

T. halophila were observed in T .parvula, H. incana and M. triloba (Fig. 5). 

Identification of the NaCl dose lethal to 50% of the population is crucial in 

determining species-specific tolerance to salt. Being 500 mM NaCl the threshold for T. 

halophila as described by Inan et al. (2004), comparable responses were observed in L. 

virginicum, L .densiflorum, M. triloba and T. parvula (Fig. 6). 

Inan et al. (2004) reported that despite the observed tolerance of T. halophila to 

salt at plant stage, its germination is extremely sensitive to salt. Germination sensitivity 

to elevated salinity has been reported also in other halophytes (Flowers et al., 1986). 

Thus, it is not surprising that best performers for growth under salt are not germinating 

in a saline environment (Fig. 7). Apparently, seeds dormancy could have been enhanced 

by a salty environment as a consequence of endogenous production of ABA, which has 

been proved to dramatically reduce T. halophila, A. thaliana and L. sativum 

germinability (Inan et al., 2004; Muller et al., 2006). 

 

1.3.3. Stomatal control in halophytes and glycophytes 

Halophytes typically exhibit reduced transpiration rates compared to 

glycophytes (Lovelock and Ball, 2002). The decreased stomatal apertures of halophytes 

prevent excessive water loss and, more importantly, reduces the movement of ions into 

the shoots during salt exposure (Lovelock and Ball, 2002). Three different responses 

could be detected in our experiments (Fig. 8). Some species showed a particularly low 
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transpiration rate, below 1 g H2O loss g-1 DW h-1, namely H. incana, S .officinale, D. 

pinnata, L. virginicum and T. halophila. We ranked these species all together under 

group 1. Transpiration rates were just over 1 g H2O loss g-1 DW h-1, in M. triloba and T. 

parvula. These species gave best performances under salt stress and were ranked as 

group 2. Finally, high transpiration rates, over 3 g H2O loss g-1 DW h-1 (group 3), were 

recorded for A. thaliana (Fig. 9). 

In general, lower water loss values were found in species showing a certain 

tolerance to salt (higher than A. thaliana). At the same time, these species were not the 

best performers under salt stress. In contrast high salt tolerant species (M .triloba and T. 

parvula), showed enhanced transpiration rates compared to the previous ones, though 

still below Arabidopsis thaliana (Fig. 10 A and B). Although Lovelock and Ball (2002) 

reported a reduced transpiration in halophytes compared to glycophytes, apparently this 

may not be the case of extremophiles for which multiple adaptation pathways may be 

involved in addition to that controlling ion uptake and homeostasis. 

 

1.3.4. Stomatal control and salt stress 

Control of transpiration fluxes through stomata regulation is critical in 

hyperosmotic environment. Differences were found among different species (Fig. 11 

and 12). High reduction of water loss in response to salt stress was recorded in both A. 

thaliana and D. pinnata, leading, by the end of the experiment, to plant death. In 

halophytes, though, two different responses were observed. While in L.virginicum the 

effects of salt on transpiration rates were minimal, great reduction were observed in T. 

halophila and T.parvula, although no visible symptoms were observed at the end of the 

treatment in either of these species.  
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1.3.5. Cold tolerance 

Plants of A. thaliana; T. halophila; T. parvula; D. pinnata; L. virginicum and L. 

densiflorum  were acclimated at 4°C for 2 weeks and subsequently brought to -15°C. 

Arabidopsis plants were killed by a 24 h -15°C treatment, since they could not recover 

upon transferring in the greenhouse. Significant damages were also observed in T. 

parvula plants, while milder injuries were recorded in T. halophila, D. pinnata, L. 

virginicum and L. densiflorum. D. pinnata was the best performer under cold stress, 

with a moderate cold injury (Fig. 13). The shoot apex and young expanding leaves were 

always more tolerant to subfreezing temperatures than mature leaves.  

The relation between salt and cold tolerance is reported in Fig. 14. Most salt 

tolerance species are sensitive to cold, even if they perform better than Arabidopsis. 

 

1.3.6. Effects of ABA on salt tolerance 

Results with salt and cold stress experiments indicated that T. parvula, had the 

highest salt tolerance, a moderate stomatal closure and reduced performances under cold 

stress. It has been reported that ABA plays an important role on both inducing stomatal 

closure under salt stress in halophytes (Desikan et al., 2004) and enhancing plant 

tolerance to cold (Chinnusamy et al., 2004). In this experiment, seedling of L. 

virginicum; T. parvula; D. pinnata; C. bursa pastoris and A. thaliana sos1 KO were 

sown on MS medium and, after germination, moved to plates containing different 

concentrations of NaCl and ABA. At the end of the experiment, root length was 

measured and the relative growth was compared (Fig. 15 a and b). 

Based on our data, no effects were attributable to ABA on control sos1 KO 

plants, whereas a 150 mM NaCl treatment was fatal. Two different responses could be 
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detected in other species. ABA treatment alone dramatically reduced root length. When 

salt was added, most species (L. virginicum, D. pinnata and C. bursa pastoris) were not 

affected by increased ABA on plates. However, ABA reduced the root length of T. 

parvula. 

 

1.3.7. Genetic analysis of stress tolerance determinants  

In a first approach towards the identification of stress tolerance components that 

could be associated to different levels of stress tolerance, we attempted to isolate the 

genetic counterparts of the Arabidopsis SOS1, NHX, AKT, genes involved respectively 

in cytoplasmic Na+ exclusion, vacuolar Na+ accumulation and K+ homeostasis. Primers 

specific to each gene were designed within conserved regions identified on cDNA 

sequences available for different species. The list of primers used is reported in Table 2.  

Six week old plants of A. thaliana, T. halophila, D. pinnata, T. parvula, C. bursa 

pastoris, S. officinale were treated with 150 and 300 mM NaCl. Samples were collected 

after 1, 2, 4 and 8 hours for RNA extraction. 

Partial sequences of PCR fragments (Fig. 16) were cloned in the pGEM vector 

(Invitrogen) and sequenced to confirm the presence of SOS1, NHX, AKT homologues 

in wild relatives of A. thaliana. The PCR amplified fragments will be used as probes in 

Northern blots for expression studies and/or to screen cDNA libraries to isolate full 

length genes. Possibly, the follow-up of this study should allow the identification of 

specific relationships between gene sequences and tolerance phenotypes. 
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1.4. DISCUSSION 

1.4.1. Comparative analysis of stress-response 

Plants ability to cope with abiotic stresses involves morphological as well as 

physiological adjustments. As reported by Munns (2002), plant adaptation to salt stress 

consists in a sudden reduction of plant growth (with the effect of reducing plant water 

requirement and adjusting osmotic potentials), which is then restored once plant normal 

functions resume. In our experiments, after thirty days of severe salt treatment, leaf and 

root growth was efficiently restored only in most tolerant species, namely T. parvula, L. 

virginicum, M. triloba, T. halophila and H. incana. 

Leaf pubescence was not associated with plant salt tolerance. We recorded a 

higher number and lower size of stomata in the most tolerant species, T. parvula and T. 

halophila, compared to the other ones. This result was consistent with previous studies 

by Inan et al. (2004), who also documented morphological adjustments usually found in 

halophytes, including a reduced stomata size, which is probably associated to a more 

efficient control of leaf gas exchanges and higher water retention capacity. 

 

1.4.2. Ranking abiotic stress responses 

According to Munns (2002) salt tolerance in plants may be assessed based on 

two indexes: the percent biomass production in saline versus non-saline control 

conditions over a prolonged period of time, or the assessment of the survival rate. Best 

performances for these two indexes are usually found in nature among halophytes. Our 

results also demonstrate that some of the studied species exhibit growth and other 

physiological properties typical of halophytes, i.e. a rapid growth at moderate NaCl 
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concentrations and an increased survival at extremely high salt conditions, including 

near-seawater concentrations. Based on these results, we classified the studied species 

into four main groups: 

1. Extremely salt sensitive species: A. thaliana; 

2. Salt sensitive species: H. incana; S. officinale; D. pinnata; C. bursa pastoris; T. 

arvense; B. verna; 

3. Salt tolerant species: L .virginicum; L. densiflorum; T. halophila;  

4. Extremely salt tolerant species: T .parvula and M. triloba. 

In a recent study by Inan et al. (2004), T. halophila was described as an 

extremophylic higher plant. The experiments presented in this paper showed that T. 

halophila was able to survive to high salt stress and low-temperature stress. These 

results were confirmed by our tests. The ability of withstanding several abiotic stresses 

should be interpreted as a general feature of halophytes. Conceivably, halophytes should 

have a reduced stomatal opening to reduce water loss and allow physiological 

adjustment, for plant growth maintenance. Nevertheless, T. parvula, which was the best 

performer under salt, suffered more than other species under cold treatment and showed 

a high water loss rate, which was slightly reduced under salt treatment. L. virginicum, 

another species with halophytic behaviour, displayed relatively low stomatal closure 

when treated with salt. 

These results indicate that the physiological bases of stress adaptation in 

halophytes cannot be restricted to water homeostasis control, yet it involves more 

complex mechanisms. Indices of tolerance may vary among different species and 

comparison should consider a wide number and type of experiments. As reported by 

Zhu (2001), the mechanisms of salt tolerance in halophytes are substantially the same as 
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those known to exist in glycophytes and subtle differences in regulation result in large 

variations in tolerance or sensitivity. 

 

1.4.3. Role of ABA in modulating plant response to salt 

ABA is involved in plant response to abiotic stresses such as low temperature, 

drought and salinity as well as the regulation of plant growth and development, 

including embryogenesis, seed dormancy, leaf transpiration, shoot and root growth 

(Leung and Giraudat, 1998; McCourt, 1999; Rock, 2000). 

According to Chinnusamy et al. (2004), however, two gene-induction pathway 

are activated upon osmotic stress. While an ABA-dependent pathway binds to both 

MYB/C Responsive Sequences (MYB/C RS) and ABA Responsive Sequences (ABRE), 

DREB2 transcription factors induce ABA-independent transcription of stress responsive 

genes. The effect of these pathways are concurrent and lead to plant stress tolerance. 

According to our data, we could suppose that ABA treatment in L.virginicum, 

D.pinnata and C.bursa pastoris grown at 150 mM NaCl did not affect root growth 

because the threshold ABA level required to activate stress adaptation responses  was 

already triggered by osmotic stress. Indeed, T.parvula seedling root growth was reduced 

by ABA treatment even at 150 mM NaCl. Most likely, relatively lower amount of ABA 

were produced as a consequence of the salt treatment. According to this, the higher salt 

tolerance score found in T.parvula could be possibly related to the ABA-independent 

pathway rather than the ABA-dependent. 
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TABLES 

Species Origin Leaf Pubescence  Leaf area Root length Salt tolerance 

   cm2 plant-1 cm  

Arabidopsis thaliana Europe, Asia Glabrous 22.9±1.85 9.5±0.48 Sensitive ++ 

Barbarea verna Indiana - USA Glabrous 83.0±30.99 16.6±3.32 Sensitive 

Capsella bursa pastoris Indiana – USA Pubescent 88.4±28.96 22.1±6.35 Sensitive 

Descurainia pinnata Indiana – USA Glabrous 57.5±2.72 18.8±2.40 Sensitive 

Hirschfeldia incana  Central Turkey Pubescent 79.0±8.16 13.4±1.60 Sensitive 

Lepidium densiflorum Byron Bay – Australia Glabrous 9.7±0.43 11.0±0.98 Tolerant 

Lepidium virginicum Byron Bay – Australia Glabrous 9.8±0.68 11.2±0.63 Tolerant 

Malconia triloba Central Turkey Glabrous 27.2±1.91 6.5±0.10 Tolerant ++ 

Sysimbirium officinale Southern Italy Pubescent 150.8±31.96 22.6±1.38 Sensitive 

Thellungiella halophila China  Glabrous 4.2±0.02 8.8±0.69 Tolerant 

Thellungiella parvula Central Turkey Glabrous 7.9±0.72 9.3±0.16 Tolerant ++ 

Thlaspi arvense Indiana - USA Glabrous 66.1±6.00 14.8±1.22 Sensitive 

Table 1. List of the species considered in the experiments. Values of Leaf area, root length and fresh weight refers to 6 weeks old plants Mean 
values ± std errors. 
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Primer set Forward sequence Reverse sequence 

Insitu F: 5’- GATTTCCTTTGGCAGGAAAGTGC-3’ R: 5’- GTACACATTAACCATGCTGCCG-3’ 

Thsos1 F: 5’- TCAGGTTCTCCGTGTTGTGA -3’ R: 5’- GCAGCGAGTGATTGTTGCTT -3’ 

sos1Th F: 5’- GGGACTCTACGAAGTCCTCA-3’ R: 5’- CCCACCGAAACTTACACTCCTT-3’ 

Psos1 F: 5’- CCCTGATGAATGATGGGAC -3’ R: 5’- ACCATTTCCCAGAAGTGATG – 3’ 

Qpcr F: 5’ - TGAACGAGCGATGCAACTTA -3’ R: 5’- GTTATCTTGTGCCTTGTTATTGTTCA -3’ 

At3181S1 F: 5’- CGGCAGCATGGTTAATGTGTAC -3’ R: 5’- CATAGATCGTTCCTGAAAACG -3’ 

Th2891s1 F: 5’- GCAAGAGTAATCATCTTCAAC -3’ R: 5’- CATAGATCGTTCCTGAAAACG -3’  

Th328s1 F: 5’- CGATGGAAGTTCACCAGATCAAG -3’ R: 5’- GTAGCTCACTGCAATCGTAAGAG -3’ 

Th915s1 F: 5’- CATCACTTCTGGGAAATGGT -3’ R: 5’- GGATCCATTAACTATCAGAG -3’ 

Pesos1 F: 5’- CCCTGATGAATGATGGGAC -3’ R: 5’- GGATCCATTAACTATCAGAG -3’ 

Sos1le F: 5’- GGATGTGGAACGAACTGG -3’ R: 5’- GTAGCTCACTGCAATCGTAAGAG -3’ 

HKT1 F: 5’- ATTCGGACAGTTCCATCGAG -3’ R: 5’- ATTTTGCCTTTCGGTGATTG -3’ 

SOS1 F: 5’- GGCGATTGTTGTTTTCCAGT -3’ R: 5’- CAGGTCCTAGCTCCTCATCG -3’ 

NHX1 F: 5’- CGAATTCGCCTCTCTGTTTC -3’ R: 5’- TCACCCAAGTCAAAGGTTCC -3’ 

Tab. 2. Primers used on cDNA of wild relatives of A. thaliana in order to identify SOS1, HKT and NHX1 genes. 
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FIGURES  
 

 

Fig. 1. Images of leaves of the tested species taken with optical microscopy. a) H. incana; b) C. bursa pastoris; c) S. officinale; d) D. pinnata; e) L. 
virginicum; f) L. densiflorum; g) T. parvula; h) T. harvense; i) B. verna; l) T.halophila; m) M. triloba. 
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Fig. 2. Images of stomata of the tested species taken through optical microscopy. a) C. bursa pastoris; b) A. thaliana; c) T.halophila; d) T. parvula; 
e) L. virginicum. Top row 20x, lower row 60x. 
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Fig. 3. Stomatal size (A) and density (B) as measured by electron microscopy. Values refer to 20 independent measures per leaf on three leaves per 
species. Values ± standard errors. 

A 
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Fig. 4. Leaf area (A) and Root growth (B) as influenced by 150 mM NaCl. Salt treatment started 25 DAS and lasted 30 days. Values ± standard 
errors. 

A 

B 
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Fig. 5. Root elongation as observed by Root Bending Essay on plants undergoing 300 mM NaCl treatment. After germination seedlings were moved 
into salt-treated plates and placed vertically, with roots directed upward. Measures of the hook on the roots were performed after 10 days. Values ± 
standard errors. 
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Fig. 6. Species-specific L50. Salt treatment started 30 DAS and lasted 30 days. Salt 
treatment ranged from 0 to 500 mM NaCl. Rate of survival over a sample of twenty 
plants replicated three times was assessed at the end of the experiment. 
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Fig. 7. Seed germination on MS medium enriched with 150 mM NaCl. Germination rate was determined at 14 DAS. Values ± standard errors. 
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Fig. 8. Four-week-old seedlings grown under long-day conditions with cool-white fluorescent lighting were used for measurements of whole-plant 
water loss. Single plants were grown in 9-cm pots, which were sealed in plastic wrap and placed on electronic balances. Weight was determined 
every 60 min for 5 d. Values are means of transpiration rate throughout the experiment of 4 plants. Values ± standard errors. 
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Fig. 9. Four-week-old seedlings grown under long-day conditions with cool-white fluorescent lighting were used for measurements of whole-plant 
water loss. Plants were grown singularly in 9-cm pots, which were sealed in plastic wrap and placed on electronic balances. Weight was determined 
every 60 min for 5 d. Values are means of 4 plants. White circles, group 1 (A.thaliana), grey circles, group 2 (M.triloba and T.parvula) and black 
circles, group 3 (H.incana, S.officinale, D.pinnata, L.virginicum and T.halophila). 
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Fig. 10. Water loss (g H2O loss g-1 DW h-1) and salt tolerance (expressed as L50, (A), 
or root elongation (B) at 150 mM NaCl) of tested species. In the figures: a) A. thaliana; 
b) D. pinnata; c) H. incana; d) T. halophila; e) S. officinale; f) L. virginicum; g) M. 
triloba; h) T. parvula; i) B. verna; j) C. bursa pastoris.  
 
 
 

A 
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 1 

Fig. 11. Water loss (g H2O loss g-1 DW h-1) was determined in A.thaliana; D.pinnata; T.halophila; T.parvula and L.virginicum. Four-week-old 2 
seedlings grown under long-day conditions with cool-white fluorescent lighting were used for measurements of whole-plant water loss. Plants were 3 
grown singularly in 9-cm pots, which were sealed in plastic wrap and placed on electronic balances. Weight was determined every 60 min for 5 d. 4 
Values are means of transpiration rate throughout the experiment of 4 plants. White, control, Black 300 mM NaCl.  5 
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Fig. 12. Relative water loss in 300 mM NaCl stressed plants, as compared with control values. 
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Fig. 13. Images of plants after cold stress. Plants were acclimated for 15 days at 4°C and then transferred at -15°C for 24 hours, and subsequently 
moved back to the refrigerated chamber. The plants reported are a) T. parvula; b) D. pinnata; c) A.thaliana; d) L. virginicum; e) L. densiflorum; f) T. 
halophila. 
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Fig. 14. Cold tolerance (score) and salt tolerance (expressed as L50) of tested species. In the figure: a) T. parvula; b) D. pinnata; c) A.thaliana; d) 
L. virginicum; e) L. densiflorum; f) T. halophila. 



 

 44 

 

 

Fig. 15. Influence of ABA treatment and salt stress on Relative Root elongation. After germination 
seedlings were moved to ABA-treated plates (A) and ABA-treated plates containing MS+150 mM 
NaCl (B). Measures of root length were performed after 15 days. Values are shown as percentage of 
maximum length. 

A 
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Fig. 16. Preliminary identification of NHX (A), HKT1 (B) and SOS1 (C) homologues in 1) A. 
thaliana, 2) T. halophila, 3) D. pinnata, 4) T. parvula, 5) C. bursa pastoris; 6) S. officinale. Agar gel 
showing DNA amplified fragments that will be used as probes in Northern blots analyses for 
expression studies and/or screening of cDNA libraries to isolate full length genes. Further studies 
will consent to define a specific relationship between gene sequences and/or expression patterns and 
tolerance phenotypes.  

B 

A 
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CHAPTER II.  

 

FROM CROP SPECIES TO MODEL PLANTS:  

SALT STRESS EXPERIMENTS WITH SWEET BASIL (OCIMUM 

BASILICUM L.). 

 

2.1. INTRODUCTION 

Establishing a link between basic mechanisms of salt tolerance and functional traits that may 

actually improve crop production in saline environments is a major task. High salt stress disrupts 

homeostasis in water potential and ion distribution both at a cellular and at whole plant level. 

Furthermore, prolonged salt stress may lead to molecular damage, growth arrest and even death. 

Salt tolerance is achieved in many plants through three interconnected mechanisms (Zhu, 2001). 

First, damage may be prevented or alleviated (detoxification). Second, homeostatic conditions 

should be re-established in the new stressful environment (homeostasis). Third, growth must 

resume, although at a reduced rate (growth regulation). Extreme salt stress is responsible for 

damages of cellular structures, as well as the inhibition of enzymatic activities, nutrient uptake and 

photosynthetic functions. Most of these events are generally associated to the generation of reactive 

oxygen species (ROS) which can signal and/or exacerbate the occurrence of a stressful event. To 

recover from the effects of toxic molecules and ions, plants respond with the synthesis of stress 

proteins and compatible osmolytes, which are likely to be involved in plant detoxification (Zhu et 

al., 1997). Most of the improvements in plant salt tolerance via trans-gene technology has been 

achieved by enhancing this detoxification strategy (Rus et al., 2004). In addition to their 
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involvement in osmotic adjustment, several osmolytes including mannitol, fructans, trehalose, 

ononitol, proline, glycinebethaine and ectoine have been reported to be active in scavenging ROS 

(Shen et al., 1997). This is consistent with their relatively low concentration in plant tissues that has 

been found in response to various stresses, which could not explain exclusively an osmotic function. 

Furthermore, osmolytes-producing transgenic plants often possess improved performance not only 

in saline environment, but also in various other stresses including chilling, freezing, heat and 

drought, all generating ROS (Kalir and Poljakoff-Mayber, 1981) but not always presenting osmotic 

disturbances. 

Another strategy for achieving greater salt-stress tolerance is to help plants re-establish both 

ionic and osmotic homeostasis in stressful environments. The terminal determinants of such 

mechanisms are various ion transporters that re-allocate/distribute toxic ions in plants at both the 

cellular and organ level (Zhu, 2001). The accumulation of high Na+ levels in the cytoplasm inhibits 

many enzymes and therefore its entry into the cell should be avoided or at least reduced. An 

important objective of salt tolerance studies is to determine which transporters are involved in Na+ 

entry into the cells. This would be the way to block its influx and therein increase salt tolerance. A 

major gene involved in Na+ transport in plants is SOS1, which has been shown to encode a putative 

plasma membrane Na+-H+ antiporter (Shi et al., 2000). Mutations of SOS1 render Arabidopsis 

plants extremely sensitive to Na+ stress. Overexpression of SOS1 reduces shoot Na+ concentration 

and improved salt tolerance in Arabidopsis (Zhu, 2001). 

Finally, salt stress, like many other abiotic stresses inhibits plant growth. Slower growth 

may be an adaptive feature for plant survival under stress because it could allow plants to save 

resources, restore damaged structures and restart physiological functions. Some plants are 

excessively responsive to a mild stress and they almost cease growing. On the other hand, plants 

that do not have a sufficiently prompt response to the prevailing stress conditions may not be able to 

survive (Wilkinson and Davies, 2002; Farnsworth, 2004; Yang et al., 2005). In natural ecosystems, 

the extent of salt or drought tolerance often appears to be inversely related to the growth rate 
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(Munns, 2002). Among the causes for growth-rate reduction under salt stress there is an inadequate 

photosynthesis due to stomata closure and consequently limited carbon dioxide uptake. 

Nevertheless it has been demonstrated that salt stress and adaptation mechanisms may directly 

involve cell division and expansion (Maggio et al., 2002; Zhu, 2001). 

Studies on the effects of salt stress on crop plants have traditionally been based on an 

assessment of plant response to increasing salinity levels (Maggio et al., 2004). Although this 

approach may provide practical indications for growing crop plants in saline environments, it does 

not allow to elucidate the basic physiology underlying salt tolerance. For this purpose, model plants 

such as Arabidopsis have been successfully introduced in recent years to understand the 

fundamental mechanisms that confer salt tolerance (Zhu, 2000). To date, many fundamental 

components of stress tolerance have been revealed, however it sill remains to translate the acquired 

knowledge in practical implication/applications for agricultural plants, a process that turned out to 

be more complex than expect. In this respect, the individuation of agricultural model plants is 

advisable and sought after the so-called post-Arabidopsis revolution (Zhu, 2001), which will allow 

overtaking the limits of studying only traits possessed by Arabidopsis or its close wild relatives. 

Searches for such potential models have already begun. Several species have served as genetic 

models such as tomato (Lycopersicon esculentum) (Giovannoni, 2004), snapdragon (Antirrhinum 

majus L.) (Saedler, 1994), and maize (Zea mays L.) (Sachs, 2005). The Gramene 

(www.gramene.org) database studies comparatively several species within the grass family, such as 

rice (Oryza sativa L.), maize, sorghum (Sorghum bicolour L.), barley (Hordeum vulgare L.), wheat 

(Triticum aestivum L.), and oat (Avena sativa L.) (Ware et al., 2002). In these cases there are 

certainly many traits where mutants are already available (Bressan, 2001). One important issue that 

come up by using model plants is that most tolerant traits found in Arabidopsis do not necessarily 

have their counterpart in crop species. In contrast, less amenable model plants that may have an 

agricultural value may present some interesting stress tolerance traits that may deserve further 

attention. In the following section, we will provide an example in which we identified stress 
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tolerance determinants in basil that may have a counterparts in Arabidopsis. In this respect, we 

followed a sort of reverse thinking process from crop plant to model species. The potential 

implications of this approach in stress tolerance research is discussed. Two cultivars of sweet basil 

(Ocimum basilicum L.), characterised by a different response to salt stress, were compared for their 

main agronomic and physiological features. Major results were also referred to other plants 

belonging to the Lamiaceae (or Labiatae) family, such as mint (Mentha spp. L.), rosemary 

(Rosmarinus officinalis L.), sage (Salvia officinalis L.), savory (Satureja spp. Tourn. ex Mill.), 

marjoram (Origanum majorana L.), oregano (Origanum vulgare L.), thyme (Thymus spp. L.), 

lavender (Lavandula spp. L.), and perilla (Perilla frutescens Shiso), for which salt-stress resistance 

mechanisms have been documented, yet poorly understood.  
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2.2. MATERIAL AND METHODS 

Two experiments were carried out at the University of Naples Federico II (40°49’ N, 14° 15’ 

E, 30 m.a.s.l.) in a cold glasshouse, in the summer 2007. Two cultivar of sweet basil (Ocimum 

basilicum), Napoletano and Genovese, were sown in 4 m2 polystyrene containers filled with 

sterilised soil and grown in floating systems. Each growing unit was filled with 1.000 L of aerated 

nutrient solution, replaced every week. Oxygenation of the solution was maintained with electric 

pumps. Planting density was 100 plants m-2, as commercially adopted for hydroponic production of 

basil. The first cycle was conducted in June (seed-to-harvest time was 25 days), while the second in 

September (seed-to-harvest time 30 days).The composition of the standard nutrient solution adopted 

in all experiments was N-NO3
- 14 mM; N-NH4

+ 6 mM; Cl- 3.0 mM; PO4
- 3.5 mM; S 6.0 mM; Ca 

5.0 mM; Mg 3.7 mM; K 10.5 mM; Na 2.2 mM; Bo: 0.02 mM; Fe 0.04 mM, (Pimpini et al., 2001; 

Marschner, 1995). Plant stress was imposed as follows:  

• Experiment A: starting from sowing, plants were exposed to 0, 50, 100 and 200 mM NaCl. 

The experimental design was a randomized block with four replications.  

• Experiment B: starting from 10 DAS, plants were exposed to a salt stress of 0, 100, 200 and 

300 mM NaCl. The experimental design was a randomized block with four replications.  

Leaf area was measured with a scanner and the images were analysed using the ImageJ software 

(Abramoff et al., 2004). Fresh and dry yield were measured at harvest and after drying at 60°C, 

respectively. Stomatal conductance (expressed in cm s-1) was measured in two events (at 15 and 25 

DAS) for each growing cycle on the abaxial surface of the youngest fully expanded leaves with a 

diffusion porometer (AP-4, Delta-T Devices, Cambridge). At least 20 measurements were done per 

each treatment. Stomatal size and density were assessed in leaves using a digital microscope. Leaf 

water potentials (Ψt) were determined using a dew-point psychrometer (WP4, Decagon Devices, 

Washington). Osmotic Potential (Ψπ) was measured on frozen/thawed leaf samples and Pressure 

Potential (Ψp) was estimated as the difference between Ψt and Ψπ, assuming a matric potential equal 
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to 0. Leaf osmotic adjustment (OA) was determined as the difference Ψπo Vo - Ψπ V, where Ψπo Vo is 

the product of (osmotic potential)x(osmotic volume) of unstressed plants and Ψπo Vo is the product 

of (osmotic potential)x(osmotic volume) of leaves from plants under salt treatment. For each 

measurement, the osmotic volume was approximated by the corresponding RWC value calculated 

as: RWC = (leaf fresh weight - leaf dry weight)/(leaf saturated weight – leaf dry weight) (Morgan, 

1984). ABA determinations were performed on crude extracts of the youngest fully expanded 

leaves using an immunoassays kit (Hormondetek-ISCI Research Institute for Industrial Crops, 

Bologna, Italy) (Quarrie et al., 1988). Proline was determined on leaves of plants of 0, 20 and 40 

mM NaCl treatments, according to Claussen et al. (2005). Nitrate contents were measured on leaf 

extracts by spectrophotometric (HACH DR/2000 spectrophotometer) determination after cadmium 

reduction. Two different cation assays were utilized to measure the antioxidant activity of 

hydrophilic (HAC, Hydrophilic Antioxidant Capacity) and lipophilic (LAC, Lipophilic Antioxidant 

Capacity) fractions on lyophilized leaf samples. The antioxidant activity was measured on the 

water-soluble fraction using the DMPD (N, N-dimethyl-pphenylenediamine) method and expressed 

in μmol of trolox equivalents per g of dry weight. The ABTS [2,2’-azinobis(3- 

ethylbenzothiazoline-6-sulphonic acid)] method was utilized to assess the antioxidant activity of 

water-insoluble fractions expressed as μmol of Ascorbic Acid (AA) equivalents per g of dry weight 

(De Pascale et al., 2006). Ascorbic acid (AsA) and dehydroascorbate (DAsA) were determined by 

using an assay based on the reduction of Fe3+ to Fe2+ by AsA and spectrophotometer detection of 

Fe2+ reaction with 2,2’dipiridyl method (Kampfenkel et al., 1995). 

Chloride, phosphate and potassium concentrations were measured on dried and ground 

tissue samples from fully expanded, not-senesced leaves from the first truss (here defined as mature 

leaves) and the second truss (here defined as young leaves) of nine plants per each treatment (three 

plants per each replication. The determination was carried out by colorimeter titration after 

extraction with water (Walinga et al., 1995).  
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Plant water use was measured by using an automated electronic balance system. Seeds were 

sown on plastic trays filled with commercial soil and, after complete expansion of the first non-

cotyledonal leaves, plants were moved into plastic pots. At day 20 after sowing, each pot was 

covered with a plastic film with the sealed shoot protruding outside the film. This system was used 

to avoid water loss from the soil surface. Each plant was then placed on an electronic balance under 

a light intensity of 140 µmol m2 s-1 at 25 °C, and the weight loss was automatically measured every 

hour for 24 h using a PC software (A&D WinCT Data Communication Software). Water loss values 

were normalized for the plant leaf area. 

Data were analyzed with ANOVA and means were compared by the LSD test. 
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2.3. RESULTS 

2.3.1. Growth response 

ANOVA results are reported in Table 1. Plant development was affected by the salt 

concentration of the nutrient solution (Fig. 1). The fresh weight of both cultivars decreased at 

increasing salinization, although it decreased less in Genovese (GEN) plants compared to 

Napoletano (NAP) at 100 mM NaCl treatment. Specifically, the fresh weight was reduced to 50% 

and 75% compared to control plants, in GEN and NAP respectively. Similarly, the leaf area 

decreased upon salinization whereas no differences were observed in absence of salt and at 50 mM 

treatments between the two cultivars. At 100 mM the development of NAP was significantly 

affected more than GEN plants. 

Non-stressed GEN plants had a leaf number three times higher than NAP (22±2.4 vs 7±0.4, 

respectively). However, in response to salinization, the leaf number decreased in GEN and at 

200mM the leaf number was halved compared to 0 NaCl level. The leaf number in NAP was not 

affected by salt. As shown in Fig. 1, the specific leaf area (SLA) of NAP was twice that measured in 

GEN without stress, yet at 100 mM the SLA was similar for the two cultivars. The dry matter of 

both cultivars increased upon salinization. In unstressed NAP plants, the stomatal conductance was 

higher than GEN (Fig. 2). However these results were reversed in stressed plants where the stomatal 

conductance was higher in GEN compared to NAP plants. These differences were amplified on 

relative terms (data not shown). At 50 mM, the stomatal conductance was reduced more in NAP 

relatively to GEN, where no reduction from non-stressed conditions were observed. This response 

was observed in GEN also at 100 mM, although differences between the two cultivars were 

cancelled at higher salinization. In unstressed NAP plants, the water loss was 30% higher respect to 

GEN and such differences were confirmed also for diurnal/nocturnal water loss measurements. In 

this respect, NAP transpiration was always higher than GEN even though differences were reduced 

upon salinization (Fig. 3).  
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In absence of stress, the stomatal density of GEN was 40% lower than NAP. Interestingly, 

upon salinization, the stomatal density was significantly reduced in NAP, while no variations were 

observed in GEN. The size of stomata was higher in GEN than in NAP and no effects were 

attributable to salinization. The leaf chlorophyll content (Fig. 4) decreased under salt stress. 

However, the lower concentration was greater in NAP. Interestingly, the total chlorophyll content in 

GEN was reduced of 50% at 50 mM NaCl and it did not further decrease at higher salinity. 

ABA contents (Fig. 5) varied respect to both cultivar and salinization. In absence of stress, 

the ABA level was very low (0.7 µg ABA g DW-1) with no difference between cultivars. However 

salt stress moderately increased ABA in GEN whereas it greatly enhanced it in NAP.  

 

2.3.2. Accumulation of compatible solutes and ROS scavengers 

Salt stress increased the proline content of both cultivars. An increase in proline 

accumulation among cultivars was observed between 100 and 200 mM NaCl. At 300 mM NaCl, a 

further increase in proline content was observed only in NAP (Fig. 5). Both hydrophilic (HAC) and 

lipophilic (LAC) antioxidant capacity were significantly enhanced upon salt stress, with no 

differences observed among cultivars. Interestingly, upon extreme salinization (300 mM NaCl), 

LAC was higher in GEN compared to NAP. In unstressed plant, the polyphenol oxidase activity 

(PPO) showed similar value among cultivars. PPO activity in GEN was not reduced at increasing 

NaCl concentration. In contrast, the PPO activity in NAP decreased of approximately 6 fold already 

at 50 mM. 

 

2.3.3. Water relations and ion accumulation 

Leaf water and osmotic potentials were reduced upon salinization. Furthermore, the pressure 

potential reached its highest value in GEN at 100 mM NaCl (Tab. 2). Consistently, the leaf osmotic 

adjustment (LOA) increased upon salinization . Highest LOA values were achieved in GEN at 100 
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mM NaCl. The presence of NaCl in the rooting medium induced an increase in Cl- concentration in 

leaves in both cultivars. The K+ concentration of the NAP leaves gradually decreased in response to 

salt treatment, whereas the K+ content in GEN was not affected upon salinization, suggesting that 

the K+ uptake was not compromised by increasing the Na+ concentration in the nutrient solution.  

The nitrate content in leaves of both cultivars decreased at increasing salinity. In absence of 

salt, the nitrate content was higher in NAP while differences disappeared upon salinization. Both 

cultivars experienced a decrease of phosphate content upon salinization (Fig. 6). 
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2.4. DISCUSSION 

2.4.1. A NaCl concentration threshold of 100 mmol differentiates Genovese from 

Napoletano performances 

The response of Genovese at 100 mM NaCl revealed a higher tolerance of these plants to 

salinity compared to Napoletano. Nevertheless, a higher salt treatment had a similar detrimental 

effect on both cultivars (Fig. 1 and Tab. 1). Below 100 mmol NaCl, we observed in Napoletano 

plants a great biosynthesis of ABA and proline, a sudden stomatal closure and reduction of leaf 

transpiration. These responses were coupled to a significant decrease of stomatal density, leaf area, 

plant biomass and specific leaf area, respect to control conditions. Moreover, up to this salt 

concentration (100 mmol NaCl), we observed significant changes in nitrate, phosphate and 

potassium contents, as well as the decrease of both polyphenol-oxidase activity and chlorophyll 

content in leaves. Such harsh responses were only partially observed in Genovese, which apparently 

had a better control of the stress experienced. Interestingly, a great increase in pressure potential, at 

this salt concentration, was observed in Genovese, but not in Napoletano, indicating that the former 

was able to better adjust to the hyperosmotic environment. 

 

2.4.2. Physiology of salt stress response in basil: control of water and ion 

homeostasis 

Our results indicate that the two cultivars studied may use different strategies to adapt to 

high salinity. Napoletano dramatically reduced its growth rate by activating a prompt stomatal 

closure in response to stress. This is typical of a short-term stress response strategy which, over the 

whole cycle, will result in poor agronomic performances (low yield). In contrast, Genovese was 

able to adapt more efficiently to a stressful environment with a resulting reduced growth to an 

agronomically acceptable limit. 
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A different control of ion uptake and translocation was observed between the two ecotypes. 

Potassium content did not vary upon salinization in Genovese leaves. Indeed, a great reduction of 

such ion was observed in Napoletano leaves already at 100 mM NaCl. In comparative studies 

among the glycophyte A.thaliana and its salt-resistant relative T.halophila, Volkov et al. (2003) 

suggested the presence of specific ion-channel features supporting K+/Na+ homeostasis under 

salinity stress in the halophyte (Volkov and Amtmann, 2006). Genovese seems to possess selective 

mechanisms that are able to cope with the Na/K competition however such mechanisms are often 

linked to a less efficient uptake and/or allocation of other important nutrients. Consistently, in 

Genovese plant tissues we found lower nitrate and phosphate contents in absence of salt compared 

to Napoletano, even though their reduction upon salinization was always lower than in Napoletano.  

Under control conditions, stomatal conductance and leaf transpiration were higher in 

Napoletano plants. However, following salinization, the stomatal conductance was drastically 

reduced in Napoletano, whereas little variation was observed in Genovese. A reduced transpiration 

limits salt loading to the shoots and may be useful in short-term stress adaptation. In the longer 

term, however, this response will limit nutrient supply and growth of the shoots and is therefore 

required to restore normal plant functions. The role of ABA in mediating stomatal closure under salt 

stress and drought is well known (Zhu et al., 1997). However, it appears that in some halophytes 

(such as T. halophila), ABA signalling under the same conditions is either absent or modified 

(Volkov et al., 2003). Therefore, it becomes of great interest to understand whether ABA functions 

may be different even between two cultivar within the same species with so diverse salt stress 

response. 

Considering the high concentration of Na and Cl ions found in leaves that are still 

functioning normally, these ions have to necessarily be sequestered in the cellular vacuole, upon 

salinization, to guarantee normal metabolic functions (Munns, 2002). Although obtaining direct 

experimental evidence for compartmentalization is technically difficult, in tobacco cells growing in 
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salt medium was confirmed the higher vacuolar concentration of Na and Cl despite of the 

cytoplasmatic concentration of both ions (Munns, 2002). 

It is widely accepted that during osmotic adjustment the cells tend to compartmentalize most 

of the absorbed ions in the vacuoles at the same time that they synthesize and accumulate 

compatible organic solutes in the cytoplasm in order to maintain the osmotic equilibrium between 

these two compartments (Serrano and Gaxiola, 1994; Hare et al., 1998; Hasegawa et al., 2000). The 

osmotic regulation contributes to maintain water uptake and cellular turgor, which are essential to 

sustain physiological processes such as cell expansion, stomatal opening, photosynthesis, and many 

others plant functions (Zhang et al., 1999). Both salt stress and endogenous signals control the 

development, density and opening of stomata: these factors influence both water loss by 

transpiration and net photosynthesis (Chaerle et al., 2005). The main response to water stress is the 

reduction of transpiration through stomatal closure, even though it could also be optimized through 

the control of stomatal size and density (Woodward et al., 2002). Actually, it was shown that a 

lower stomatal index enhances drought (Aharoni et al., 2004) and salt tolerances (Bray and Reid, 

2002). Consistently with the published literature, the lower stomatal density of GEN compared to 

NAP at 100 mM, could allow the plant to optimize water loss vs. photosynthesis and consequently 

to cope with salt stress more efficiently than NAP. 

We found also other differences between the two ecotypes that could be associated to the 

different level of stress tolerance observed. The total chlorophyll content was reduced upon 

salinization, but this decline was less evident in GEN compared to NAP. According to Aslam et al. 

(1984), chlorophyll content decreases upon salinization, and therefore we could suggest that GEN 

would be facing lower stressful conditions compared to NAP.  

 

2.4.5. ABA: one signal, many stimuli 

The ABA content in NAP dramatically increased from 0 to 100 mM NaCl, whereas no 

increases were observed in GEN. The role of ABA on many feature of salt stress response has been 
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widely explored in literature (Chinnusamy et al., 2004; LeNoble et al., 2004; Desikan et al., 2004; 

Ruggiero et al., 2004). Studies on ABA-mutants have mainly considered Arabidopsis accessions 

(Savouré et al., 1997; Xiong et al., 2002), even though there are few cases of studies on 

horticultural crops such as, for instance, tomato (Burbidge et al., 1999; Mäkelä et al., 2003; 

Mulholland et al., 2003). ABA controls many stress adaptation responses, including stomatal 

closure (Hetherington, 2001; Neill et al., 2003), activation of genes involved in osmotic adjustment 

(Savouré et al., 1997), ion compartmentalization (Verslues and Zhu, 2005), regulation of shoot 

versus root growth and modifications of root hydraulic conductivity properties (Ruggiero et al., 

2004;). The ABA production in Genovese did not vary at increasing salt stress conditions (Fig. 7). 

Consistently, a large stomatal closure was experienced by Napoletano plants undergoing salt stress, 

whereas little conductance reduction was observed in Genovese.  

Furthermore, we observed a decrease in plant leaf area in both cultivars upon salinization. 

Such reduction was either attributable to a reduced number of leaves (Genovese) or to their specific 

area (Napoletano). Since ABA may inhibit cell-division (Chaerle et al., 2005), we may suggest that 

the reduced expansion of leaves in Napoletano is a response to an increased ABA level. Apparently, 

a different (and more effective) strategy was put in order by Genovese. 

 

2.4.6. Proline accumulation: activator or indicator of stress responses? 

Many plants accumulate high levels of proline in response to osmotic stress, and proline is 

thought to play an adaptive role during osmotic stress (Delauney and Verma, 1993). Proline content 

increased upon salinization, and its accumulation was higher in Napoletano. However, up to 100 

mM NaCl treatment, proline accumulation in plant tissue did not vary among the two cultivars, 

even though ABA biosynthesis was much higher in Napoletano than in Genovese. Savouré et al. 

(1997) reported on the presence of two alternative path for proline biosynthesis as a consequence of 

plant stress, respectively ABA-dependent and ABA-independent. Even though an ABA 

transduction cascade may possibly be involved in the expression of the proline biosynthesis genes 
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(Yoshiba et al. 1995), several Arabidopsis genes induced by osmotic stress (Gosti et al. 1995) or 

cold treatments (Gilmour and Thomashow 1991; Nordin et al. 1991) are not regulated by 

endogenous ABA. The characterisation of ABA biosynthetic mutants revealed that the induction of 

a particular gene by exogenously applied ABA does not necessarily imply that the regulation of 

gene expression is ABA-dependent upon stress (Giraudat et al. 1994). Therefore, ABA-independent 

and ABA-dependent pathways interact to regulate the expression of certain genes in response to 

osmotic stress. Interestingly, proline accumulates in a tomato flacca mutant that does not contain 

elevated levels of ABA even after osmotic stress (Stewart and Voetberg 1987), and an addition of 

the ABA biosynthesis inhibitor, fluridone, to wilted barley leaves did not influence proline 

accumulation (Stewart and Voetberg 1987). Possibly the accumulation of proline in Napoletano was 

caused by an activation of an ABA-independent pathway or alternatively by inhibition of its 

catabolism (Maggio et al., 1997). More interestingly, such accumulation confirmed the role of 

proline as a stress indicator, since an increased level of this metabolite was associated to a higher 

stress perceived by Napoletano compared to Genovese plants.  

 

2.4.7. Genetic control of water relations: from Basil to Arabidopsis 

In our experiments we observed two alternative pathways of salt stress response in the two 

cultivars, which are based on different mechanisms that may control cellular hydration in stressful 

environments. Simplistically, these two mechanisms can be conducted to 1) a short-term stress 

tolerance response (i.e. rapid stomatal closure) which would be functional to a transitory stress 

situation and 2) a long-term stress adaptation (reduced leaf stomatal density) which would be 

consistent with an increased ability to compromise between water loss and CO2 uptake in non-

transitory stress situation. The latter is, in other words, an improved water use efficiency (WUE), a 

functional trait that is very important in water-limiting environments. The genetic basis of WUE has 

been obscure for many years and it certainly is a very complex to study (Martin et al., 1989; 

Thumma et al., 2001). Nevertheless, Masle et al. (2005) have recently demonstrated that the 
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ERECTA gene is responsible of plant transpiration efficiency in Arabidopsis. The function of 

ERECTA is rather complicated and is involved in the regulation of stomatal density, epidermal cell 

expansion, mesophyll cell proliferation and cell–cell contact (Masle et al., 2005). It was 

demonstrated that the WUE efficiency could be enhanced by reducing the stomatal density in 

Arabidopsis plants. These results, in some respect, are consistent with the pronounced stress 

tolerance of Genovese plants, which was also associated to a reduced stomatal density.  
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TABLES 

 Leaf Area Yield Dry 
Matter 

Stomatal 
conductance

Stomatal 
size 

Stomatal 
density 

 cm2 plant-1 g plant-1 % cm s-1 µm n mm-2 
Cv       
GEN 89.5 6.44 10.22 0.69 18.9 70.2 
NAP 79.0 5.49 9.55 0.58 14.4 178.6 
Salt 
0 199.7 12.38 8.30 1.24 15.7 175.0 
50 87.9 6.59 8.89 0.65 17.1 131.3 
100 52.2 3.99 10.04 0.55 16.9 95.5 
200 22.1 2.81 11.17 0.34 16.5 89.4 
300 17.0 2.30 11.14 0.32 18.9 70.2 
Significance       
Cv ns ** 

(0.82) 
* 

(0.53) 
* 

(0.08) 
** 

(1.18) 
** 

(13.7) 
Salt ** 

(19.8 [1]) 
** 

(1.17) 
** 

(1.07) 
** 

(0.16) 
ns ** 

(19.4) 
Cv x Salt * 

(19.7) 
** 

(1.65) 
ns ** 

(0.22) 
ns ** 

(27.4) 
Tab. 1. Results of the ANOVA. Effects of NaCl treatments on main morphological indicators (Leaf 
area, Yield, Dry matter, Stomatal Conductance, Stomatal size and Stomatal density). (Mean values; 
ns = not significant; * = significant at P≤0.05; ** = significant at P≤0.01) [ [1] lsd]. 
 
 Ψt Ψπ Ψp RWC OA 
 (MPa) (MPa) (MPa) (%)  
Cv      
GEN -0.846 -1.33 0.48 81.3 0.62 
NAP -0.823 -1.33 0.51 76.8 0.71 
Salt      
0 -0.34 -0.63 0.28 84.0 - 
50 -0.74 -1.17 0.43 82.7 0.44 
100 -0.91 -1.58 0.66 78.8 0.71 
200 -1.34 -1.94 0.60 70.6 0.84 
300 -1.85 -2.69 0.84 64.2 1.47 
Significance      
Cv 
 

ns ns ns ns ns 

Salt ** 
(0.18 [1]) 

** 
(0.17) 

** 
(0.20) 

** 
(8.20) 

** 
(0.19) 

Cv x Salt ns * 
(0.17) 

ns * 
(7.96) 

ns 

Tab. 2. Influence of salt stress (0, 50, 100 and 200 mM NaCl) on plant water status in two cultivars 
of sweet basil (Genovese and Napoletano). Water potential (Ψt), osmotic potential (Ψπ), pressure 
potential (Ψp), relative water content (RWC), and leaf osmotic adjustment (OA). (Mean values; ns = 
not significant; * = significant at P≤0.05; ** = significant at P≤0.01) [ [1] lsd]. 
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FIGURES 

 

Fig. 1. Influence of salt stress (0, 50, 100 and 200 mM NaCl) on biometric indexes (leaf area, yield, number of leaves and specific leaf area) in two 
cultivars of sweet basil.  
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Fig. 2. Influence of salt stress (0, 50, 100 and 200 mM NaCl) on leaf transpiration (stomatal conductance, water loss, stomatal size and stomatal 
density) in two cultivars of sweet basil.  
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Fig. 3. Influence of salt stress (0, 100 and 200 mM NaCl) on leaf transpiration in two cultivars of 
sweet basil (Genovese, black, and Napoletano, white). 
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Fig. 4. Influence of salt stress (0, 50, 100 and 200 mM NaCl) on leaf composition (chlorophyll content, polyphenol-oxidase activity, hydrophilic 
antioxidant capacity and lipophilic antioxidant capacity) in two cultivars of sweet basil. Vertical bars mean least significant difference (lsd). 
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Fig. 5. Influence of salt stress (0, 50, 100 and 200 mM NaCl) on ABA and proline accumulation in 
leaves of two cultivars of sweet basil.  
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Fig. 6. Influence of salt stress (0, 50, 100 and 200 mM NaCl) on leaf composition (nitrate, phosphate, potassium and chloride contents) in two 
cultivars of sweet basil.  
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Fig. 7. Diagram summarizing the effects of 100 mmol NaCl salt stress on Genovese and Napoletano 
cultivars of sweet basil (Ocimum basilicum L.). Variation from control conditions are presented as 
follows: ● = no differences; - - : high reduction; - reduction; + increase; + + high increase. 
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CHAPTER III.  

 

ELEMENTS OF CROSS-TOLERANCE TO BIOTIC AND 

ABIOTIC STRESSES. RESPONSE TO SALINITY OF TOMATO 

(LYCOPERSICON ESCULENTUM) PLANTS OVER-

EXPRESSING GENES ACTIVATED BY WOUNDING. 

 

3.1. INTRODUCTION 

In all multi-cellular organisms the interaction between cells is fundamental. For many years 

it has been believed that five hormones (auxin, cytokinin, ethylene, gibberellin and abscisic acid) 

were responsible for virtually all mechanisms related to intercellular signal transport in higher 

plants (Guern, 1987). Recently short peptides with hormone-like function have been proved to be 

involved in plant growth and development, response to biotic stresses, cellular division and auto-

incompatibility of pollen (Lindsey et al., 2002). Tomato plants and other Solanaceae respond to 

chewing insects and mechanical wounding by releasing a highly mobile peptide called systemin 

(Bergey et al., 1996; Schilmiller and Howe, 2005). In tomato, this 18-amino acid (aa) molecule is 

synthesized as a 200-aa precursor protein named prosystemin (McGurl and Ryan, 1992). After 

proteolytic cleavage, the peptide binds a plasma membrane-bound receptor kinase (Scheer and 

Ryan, 2002). Subsequently, it is assumed that the signalling pathway proceeds via the activation of 

a phospholipase, with the release of linolenic acid and the formation of jasmonic acid (JA) and its 

derivative, methyl jasmonate (Bergey et al., 1996). Eventually, the transcriptional activation of a 
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number of genes, not fully identified, leads to an increase of metabolites (i.e., proteinase inhibitors 

and polyphenoloxidase) that are directly toxic to phytophagous insects (Bergey et al., 1996). 

Currently, evidence gained through mutational analysis supports the hypothesis that long-distance 

defence signalling is transmitted mainly by JA as a wave travelling via a positive amplification loop 

that involves systemin release (Schilmiller and Howe, 2005). 

Jasmonic acid and its methyl-ester are both involved in plant growth regulation (Parthier, 

1990) and their role in stress response has been documented in many studies (Creelman et al., 1992; 

Farmer and Ryan, 1990; Sembdner and Parthier, 1993). Moreover, higher levels of these molecules 

have been found in plants undergoing to water-, osmotic-, and wound-stress (Reindbothe et al., 

1992; Creelman et al., 1992). Interaction between JA and stress hormones has also been 

demonstrated. Staswick et al. (1992) reported that exogenous application of jasmonic acid to seeds 

of Arabidopsis, increased the inhibitory effect of the ABA on seedling germination. Dombrowski 

(2003) investigated the effects of salt stress on the wound response signal cascade in tomato plants. 

Salt stress alone was found to induce wound related genes and this gene activation was mediated via 

the octadecanoid pathway. The salt-dependent activation of the octadecanoid pathway was found to 

be independent of the wound pro-hormone prosystemin, yet prosystemin (PS) activity was 

necessary to achieve maximal accumulation of proteinase inhibitors. In addition, salt stress was 

found to strongly enhance plant’s ability to cope with wounding. 

Under conditions of water and salt stress, roots of many angiosperms synthesize ABA and 

transport it into the shoots (Jia et al., 2002). ABA is therefore an essential mediator of plant 

adaptation to adverse environmental stimuli. This is known to occur in a number of crop plants 

including rice (Henson, 1984), barley (Stewart and Voetberg, 1985), soybean (Benson et al., 1988), 

tomato (Bray, 1988), cotton (Hartung et al., 1988), and alfalfa (Luo, 1992). Increased ABA levels 

limit water loss by reducing stomatal opening. Recent evidences suggest that under water stress the 

ABA hormonal signal may interact with an hydraulic signal to reduce leaf expansion rates during 

periods of high transpirational demand (Salah and Tardieu, 1997; Munns et al., 2000). Maggio et al. 
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(2007) have found in salt-stressed tomato, a reduction of leaf area, an increase of root/shoot ratio, 

an increase of leaf turgor and ABA content, which were all correlated to stomatal closure. The ABA 

biosynthesis is also followed by the accumulation of osmolytes such as proline, which have the role 

of reducing the osmotic effect of salt stress. This mechanism is usually called “osmotic adjustment”, 

and it consists of a decrease of the cellular osmotic potential which will facilitate water uptake in 

hyperosmotic environment (Maggio et al., 2002). The magnitude of proline accumulation under 

abiotic stress conditions such as salinity stress and drought depends on the species and the extent of 

stress (Delauney and Verma, 1993; Bohnert and Jensen, 1996) and may vary from 10x to 100x in 

Arabidopsis and tomato, respectively (Liu and Zhu, 1997; Fujita et al., 1998). 

Based on a documented evidence of an hormone mediated cross-talk between biotic- and 

abiotic-stress adaptation mechanisms, we hypothesised that a constitutive overproduction of 

systemin would enhance tomato tolerance to salinity stress.  
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3.2. Material and Methods 

Three experiments were carried out at the University of Naples Federico II (40°49’ N, 14° 

15’ E, 30 m.a.s.l.) in a cold glasshouse, in 2006 and 2007.  

Transgenic tomato plants over-expressing the prosystemin cDNA under the control of the 

35S RNA CaMVpromoter (BBS) and their relative control (cv. Better Boy, BB) were obtained by 

the Dept. of Sciences of the soil, plant, environment and animal production of the University of 

Napoli and obtained as described by Mc Gurl et al. (1994). Plants were grown in sterilized soil and 

maintained in controlled environmental chambers for 3 weeks from sowing at 25±1°C with a 

photoperiod of 14/10 hr light/dark. Experiments A and B were carried out in summer 2006, 

experiment C in summer 2007. 

Two hydroponic systems were used. For experiment A, plants were grown on grodan slabs, 

while for experiments B and C, plants were grown in plastic pots (∅ 20 cm) filled with perlite. 

For all three experiments, we used a closed irrigation system, with a complete recycling of the 

nutrient solution. The re-circulating nutrient solution was automatically pumped in five daily 

irrigation events, of 3 minutes at 2 litres per minute. The composition of the standard nutrient 

solution used in all experiments was N = 18.25 mM (N-NO3- = 17.00 mM; N-NH4+ = 1.25 mM); 

P2O5 = 1.40 mM; K2O = 8.75 mM; S = 5.00 mM; Ca = 7.00 mM; Mg = 3.50 mM; Cl = 10.00 mM; 

Na = 10.00 mM; Fe = 15.00 μM; Cu = 0.75 μM; Zn = 7.00 μM; B = 50.00 μM; Mn = 10.00 μM; 

Mo = 5.00 μM. Plant stress was imposed as follows:  

• Experiment A: starting from 40 Days After Sowing (DAS), plants were irrigated with a 

nutrient solution containing 0, 20 and 40 mM NaCl. The experimental design, which 

factorially combined 2 lines (BB and BBS) and three salinisation levels (0, 20 and 40 mM 

NaCl) was a randomized block with three replications.  

• Experiment B: starting from 40 DAS, plants were irrigated with a nutrient solution 

containing 0, 20 and 40 mM NaCl. Moreover, two treatments with L-proline were applied, 
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respectively 0 (plain nutrient solution) and 5 mM, dissolved in the nutrient solution on 40 

DAS. The experimental design was split-plot (replicated 4 times) with the salinization levels 

(0, 20 and 40 mM NaCl) assigned to the main plots, the +/- proline treatment (0 and 5 mM) 

assigned to the elementary plots and the “cultivar” (BB and BBS) assigned to the sub-plot.  

• Experiment C: this was a stress-recovery experiment. Starting from 40 DAS, plants were 

salinised with a 40 mM NaCl nutrient solution for 15 days. Afterward, half of the plants 

were irrigated with regular nutrient solution (control), while the other half was irrigated with 

a 40 mM NaCl solution. The experimental design which included 2 lines (BB and BBS) and 

two salinisation (0 and 40 mM NaCl after an initial 40 mM NaCl stress) was a randomized 

block, with three replications.  

 

Leaf area measurements were done with a Li-Cor 3000 area meter (Li-Cor, Lincoln, NE, 

USA). Fresh and dry (60 °C) yield were both measured separately on plant and fruits. Stomatal 

conductance was measured on the abaxial surface of the youngest fully expanded leaves with a 

diffusion porometer (AP-4, Delta-T Devices, Cambridge). The size and density of stomata was 

recorded with a microscope. The leaf water potentials (Ψt) were determined using a dew-point 

psychrometer  (WP4, Decagon Devices, Washington). The Osmotic Potential (Ψπ) was estimated on 

frozen/thawed leaf samples and the Pressure Potential (Ψp) as the difference between Ψt and Ψπ, 

assuming a matric potential equal to 0. Leaf osmotic adjustment (OA) was determined as the 

difference Ψπo Vo - Ψπ V, where Ψπo Vo is the product of (osmotic potential)x(osmotic volume) of 

unstressed plants and Ψπo Vo is the product of (osmotic potential)x(osmotic volume) of leaves from 

salinized plants. For each measurement, the osmotic volume was approximated by the 

corresponding RWC value calculated as: RWC = (leaf fresh weight - leaf dry weight)/(leaf 

saturated weight – leaf dry weight) (Morgan, 1984). ABA determinations were performed on crude 

extracts of the youngest fully expanded leaves using an immunoassays kit (Hormondetek-ISCI 

Research Institute for Industrial Crops, Bologna, Italy) (Quarrie et al., 1988). Proline was 
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determined on leaves of plants stressed (0, 20 and 40 mM NaCl), according to Claussen et al. 

(2005). Data were analyzed with ANOVA and means were compared with the LSD test. For gene 

expression analysis total leaf RNA was isolated from young fully expanded leaves as described in 

Corrado et al., 2007. All primers for candidate genes were designed as reported in Corrado et al., 

2007. 
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3.3. RESULTS 

3.3.1 Plant growth and yield  

When plants were grown on a standard nutrient solution (without NaCl), we did not observe 

substantial differences in plant fresh and dry weight (mean values of respectively 138 g FW plant-1 

and 12.4 g DW plant-1, Tab. 1), although the leaf area was moderately yet significantly larger in BB 

plants (2550 vs. 2120 cm2 plant-1) (Fig. 1). No differences were recorded on yield, which was 

1863±177 and 1787±150 g plant-1 of commercial fruits for BBS and BB respectively (Fig. 1). No 

differences were detected respect to dry matter (9.6±0.2  and 8.6±0.5 % for BBS and BB 

respectively). Salt treatments caused a progressive reduction of leaf area (Fig. 1). However, while at 

0 and 20 mM NaCl, BB and BBS had quite similar leaf areas, significant difference were noticed  at 

40 mM NaCl. Although 40 mM NaCl reduced the leaf area in both lines, a smaller area 

development was observed in BB plants, which had a total leaf area smaller than 1000 cm2 plant-1. 

In relative terms, BBS plants treated with 40 mM NaCl had a 25% reduction of the leaf area respect 

to the non salinized control, whereas a 66% reduction was observed in BB plants. 

Plant height was also inhibited by salinity. In absence of salt, BBS plants were generally 

higher than BB (147 ± 7 and 107 ± 4 cm, respectively at 120 DAS, data not shown), but the plant 

height was reduced in both lines already at 20 mM NaCl (115 ± 6 and 53.5 ± 2.5 cm for BBS and 

BB respectively) and even more at 40 mM NaCl (65.5 ± 2.5 cm and 65.5 ± 2.5 cm for BBS and BB 

respectively). 

Salt stress decreased yield. Both lines performed similarly at 0 and 20 mM NaCl, while BB 

yield was significantly lower than BBS at 40 mM NaCl. The plant dry mass content was linearly 

reduced by salt treatments, while the plant dry matter percentage was enhanced under salt stress.  
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3.3.3. Leaf gas exchanges and osmo-treatments 

Measurements of stomatal conductance are reported in Fig. 1. In absence of stress, stomatal 

conductance was slightly higher in BB plants compared to BBS (1.18±0.02 vs 0.88±0.02  cm s-1, 

respectively). In addition, stomata of BB plants were smaller compared to BBS, but their average 

aperture was bigger (Tab. 2).  

Salt treatments reduced stomatal conductance in both lines, with some differences. In 

absence of salt stress, the stomatal conductance of BB was higher than BBS (1.18±0.02 vs 

0.88±0.02 cm s-1, respectively), while these differences disappeared at 20 mM NaCl. Moreover, at 

40 mM NaCl treatment, the stomatal conductance of BBS plants was higher than BB (0.54±0.02 vs 

0.23±0.02 cm s-1, respectively). The salinity-induced reduction of stomatal conductance was 

confirmed in experiment B, where a 40 mM NaCl stress caused a 27±2 and 71±13% inhibition of 

stomatal conductance in BBS and BB, respectively.  

The response to proline applications was remarkable. In absence of proline, the stomatal 

conductance of BB plants was higher than BBS at 0 mM NaCl, while these differences disappeared 

at 20 mM NaCl. Once again, the stomatal conductance of BBS was relativey higher than BB at 40 

mM NaCl, thus confirming the results of experiment A. As a consequence of proline application, the 

stomatal conductance was significantly reduced in BB plants whose values were always lower than 

BBS. The results of stomatal responses to the stress-recovery experiment are displayed in Figure 3. 

Once again, before salt application, BB plants had a higher stomatal conductance compared to BBS. 

In response to salinization, this response was reverted and BBS plants maintained a higher stomatal 

conductance, respect to BB. Upon stress recovery, all plants that were irrigated with the standard 

nutrient solution partially restored the initial conductance value. However, the recovery rate was 

higher in BBS compared to BB plants (Fig. 3).  
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3.3.4. Plant water status 

Salinity decreased the total water potential in both BB and BBS plants (Tab. 3 and 4). At 20 

mM NaCl, the total water potential of BB plants was more negative than BBS, and this difference 

was enhanced at 40 mM NaCl. Similarly, the osmotic potential decreased linearly upon salinisation, 

and it was in generally more negative in BB than BBS. Therefore, the osmotic adjustment appeared 

higher in BB than BBS. The Relative Water Content (RWC) (i.e. the water retained in the plant 

cells, compared to the amount of water at optimal hydration) was reduced upon NaCl treatments. 

The lowest values were observed in BB plants at 40 mM NaCl.  

 

3.3.5. Biosynthesis of stress metabolites 

The ABA content (Fig. 3) was always lower in BBS compared to BB plants. Differences in 

ABA content were already visible at 20 mM NaCl with higher value in BB plants respect to BBS. 

In general, salt stress caused an increased production of ABA, whose accumulation may have 

triggered other adaptive responses. Consistently, we noticed higher levels of proline in both BB and 

BBS plants (Fig. 3). In particular, highest amounts of proline were recorded at 20 and 40 mM NaCl 

treatments in BB plants, whereas these were generally lower in BBS plants, where we measured 

values lower than 20 μmol g DW-1 in correspondence of 20 mM NaCl treatment. 

 

3.3.6. Expression of genes involved in salt stress response 

In collaboration with the Department of Sciences of the soil, the plant, the environment and 

animal production of the University of Napoli, we assessed the expression of some genes that could 

have been involved in the activation of the salt stress response in the two lines. The gene CAT1A is 

involved in the protection from oxidative stress (Giles et al., 2006). The gene JERF3 is usually 

induced by ethylene, jasmonic acid and salt stress (Hui et al., 2004). The gene SAM (S-adenosyl-L-

methionine synthetase enzyme) and TomPro2 are both involved in the biosynthesis of 
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osmoprotective compounds (Sanchez-Aguayo et al., 2004; Fujita et al., 1998; Maggio et al., 2002). 

The gene TAS14 is usually induced by salt stress and ABA, but not by wound (Del Mar Parra et al., 

1996), and finally the gene TFT1 activates the biosynthesis of a protein considered to play an 

important role on salt-stress response (Xu and Shi, 2006). Systemin overexpressing plants 

constitutively expressed less SAM (43% of BB), TFT1 (69% of BB) and TomPro2 (53% of BB) 

(Fig. 4).  
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3.4. DISCUSSION 

3.4.1. Effects of salt stress on plant morphology and physiology 

The exposure to salt stress affected more strikingly BB plants compared to BBS (Figure 1 

and 2; Table 1). Numerous studies report on the consequences of salt stress on plant architecture 

(Chen et al., 2007; Zhu, 2001), ion partitioning (Ashraf and Bashir, 2003, Maggio et al., 2007), leaf 

area expansion (Salah and Tardieu, 1997; Munns et al., 2000) and yield (Botia et al., 2005; Maggio 

et al., 2004). Salt stress tolerance is usually described as the ability to overcome salt stress. 

However, the complexity of salt stress responses in plants throughout their growth cycle depends on 

several interacting variables, including the cropping environment, the plant phenological stage and 

the magnitude (salt concentration and time of exposure) of the stress experienced over time (Munns, 

2002). Different mechanisms of salt tolerance, including short and long term adaptive responses, 

contribute to stress adaptation. In this respect, recent reports indicate that the physiological basis for 

short (24 h) and long-term (entire growth season) osmotic adjustment may respond to different 

biological and environmental cues, since physiological mechanisms that contribute to short-term 

adaptation are not necessarily the same that are involved in long-term stress responses (Maggio et 

al., 2004). Stomatal closure is a short term stress adaptation that is functional to the control of water 

fluxes and tissue dehydration. However, this mechanism is generally followed by other 

modifications that should allow the recovery of normal physiological functions to re-start growth. 

Our results indicate a faster and tighter stomatal closure in BB plants compared to BBS, which led 

to a reduced leaf area development and yield. Possibly, after the initial stress, recovering 

mechanisms were more efficient in BBS plants, which were able to re-open the stomata and restart 

their biological functions. 
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3.4.2. Effects of salt stress on plant water status 

Plant response to water and salt stress share common features mostly associated to the 

control of water relations. In this respect, the osmotic pressure of salty water acts against root water 

uptake generating conditions that are comparable to drought stress (Romero-Aranda et al., 2001). In 

our experiments, salinization increased plant dry matter and reduced the leaf relative water content 

(RWC) in both lines. Although, in absence of salt, BB plants appeared more hydrated than BBS,  

the RWC of BB plants decreased more than BBS in response to salinity. Variation in leaf water 

potentials were observed, concurrently to the dehydration pattern. Leaf water potential (Ψt) and 

osmotic potential (Ψπ) values became more negative at increasing levels of salt stress. However, 

while a NaCl increase of the nutrient solution caused a significant reduction of both total and 

osmotic potentials, a similar response was observed in BBS plants only under severe salt stress. It is 

known that salinization of the root zone can lead to an osmotic adjustment that is considered as a 

fundamental mechanism of adaptation to salinity (Shannon et al., 1997; Alarcòn et al., 1994; 

Guerrier, 1996). A reduction of the cellular Ψπ would contribute to re-establish a positive water flux 

that had been impaired upon salinization. However, if on one side a higher osmotic adjustment may 

be associated to an enhanced salt tolerance, on the other side plants that have a moderate osmotic 

adjustment may have activated other stress/tolerance mechanisms and/or may have not perceived an 

external stressful environment.  

Based on all the above and considering the modifications observed in terms of plant 

architecture under salt stress (Figure 1; Table 1), BBS plants were likely sensing a lower stressful 

environment than BB plants. This was possibly associated to a constitutive activation of stress 

response mechanisms that may have induced a pre-adaptation state of BBS plants.  

 

3.4.3. Effects of salt stress on ABA and proline accumulation 

ABA controls many stress adaptive features, including stomatal closure, activation of genes 

involved in osmotic adjustment, ion compartmentalization, regulation of shoot-to-root ratio and 
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modifications of root hydraulic conductivity properties (Ruggiero et al., 2004; Verslues and Zhu, 

2005). ABA concentration in leaves is inversely related to their stomatal conductance (Mulholland 

et al., 2003). Moreover, some authors (Salah and Tardieu, 1997; Munns et al., 2000) suggested that, 

under water stress conditions, the ABA may interact with an hydraulic signal to reduce leaf 

expansion rates particularly during periods of high transpirational demand. Therefore, the 

mechanism based on which the ABA regulation occurs is still not completely understood. We 

observed that salt stress increased the ABA content in leaves and this would lead both to stomatal 

closure and to a reduced leaf area expansion. However, ABA content was much higher in leaves of 

BB plants, compared to the BBS. Mechanistically, higher ABA levels may be required for 

controlling short-term adaptation processes such as stomatal closure (Wilkinson and Davies, 2002). 

In contrast, long-term stress responses should restore basal levels of ABA content in leaves which 

would allow stomatal re-opening and the complete/partial recovery of plant functions.  

In our experiments, proline pretreatments were performed to enhance plant tolerance to 

salinity and to induce a sort of synergistic effect between osmoprotection (Makela et al., 1996; 

Heuer, 2003) and a constitutive systemin overexpression. The biosynthesis of proline appears as a 

common response of the plant to stressful environments (Claussen et al., 2005). Proline 

accumulates in plant tissue under a broad range of stress conditions such as water shortage, salinity, 

extreme temperatures, and high light intensity (Aspinall and Paleg, 1981; Mansour, 2000) and is 

believed to play a major role in plants osmotic adjustment. Controversial results, however have 

questioned whether proline accumulation would exclusively act as a compatible solute or via other 

unknown/less documented mechanisms (Pérez-Alfocea et al., 1993). Transgenic plants engineered 

to accumulate proline exhibited a partial tolerance that could not be associated to an osmotically 

active concentration (Kavi Kishor et al., 1995; Maggio et al., 1997). This raised some doubts on the 

actual contribution of proline to osmotic adjustment and it pointed to other functions that may be 

important in stress adaptation, including the control of cell division (Maggio et al., 2002; Ruggiero 

et al., 2004). According to Hare et al. (1999), the metabolic effects of osmolyte accumulation may 
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be equal or even more important than their role in osmotic adjustment, since stress-regulated 

changes in proline synthesis and degradation may also affect expression of other genes, ensuring 

that the genetic response to stress is appropriate to the prevailing environmental stress conditions. In 

our experiments we observed that proline accumulation was higher in control plants, compared to 

the systemin over-expressing, and that BB plants were adapting to the same stressful conditions less 

favourably than BBS plants. Enhancement of the ABA content in leaves would lead to higher 

proline biosynthesis and such induction was higher in BB plants. Therefore, the different proline 

accumulation was consistent with the hypothesis that the effect of salt stress was stronger in BB 

plants compared to BBS. 

 

3.4.4. Effects of Salt Stress on gene expression 

 Down-regulation of stress genes was consistent with some of the physiological mechanisms 

described above. TFT1 gene expression has been documented to be up-regulated on tomato plants 

undergoing salt stress (Xu and Shi, 2006). Its expression is considered to be crucial within the salt 

signalling pathway, and therefore a lower relative expression is consistent with a reduced stress 

perception of BBS plants. Moreover, also the constitutive expression of the TomPro2 gene was 

reduced in BBS. TomPro2 encodes for a key enzyme of proline biosynthesis (Maggio et al., 2002). 

Similarly to TomPro2, SAM (S-adenosyl-L-methionine synthetase enzyme) is involved in the 

byosinthesis of osmotically active compounds, which are usually induced by plant perception of 

osmotic stress (Zorb et al., 2004). Consistently, BBS plants undergoing stressful conditions had a 

lower TomPro2 expression compared to BB plants, which mirrored the level of proline 

accumulation. This results confirmed the hypothesis that a pre-adaptation of BBS plants would 

make these more tolerant to saline stress, as demonstrated by the higher yield and the absence in 

BBS plants of most of those metabolic responses that are typically activated upon stress. 
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TABLES 

 
 Yield Plant Fresh 

Weight 
Plant Dry 

Weight 
Plant Dry 

Matter 
 g plant-1 g plant-1 g plant-1 % 
Line     
BBS 1491.0 87.2 9.0 10.6 
BB 1127.6 81.8 8.2 11.3 
Salt     
0 1845.4 134.9 12.3 9.1 
20 1334.4 73.7 8.0 10.9 
40 748.0 44.8 5.5 12.8 
Proline     
0 1409.6 87.1 8.7 10.6 
5 1008.5 79.2 8.4 11.7 
     
Significance     

Line - L 
**  

(141.0[1]) 
n.s. **  

(0.71) 
*  

(0.41) 

Salt - S 
**  

(172.7) 
**  

(9.89) 
**  

(0.87) 
**  

(0.73) 

Proline - Pr 
**  

(141.0) 
*  

(5.65) 
n.s. **  

(0.59) 

L x S 
**  

(244.2) 
**  

(13.99) 
**  

(1.23) 
**  

(1.03) 

L x Pr 
**  

(199.4) 
n.s. n.s. *  

(0.59) 

S x Pr 
n.s. n.s. n.s. *  

(0.72) 
 
L x S x Pr 

n.s. n.s. n.s. n.s. 

Tab. 1. Results of the ANOVA. Yield, plant fresh weight, plant dry weight and plant dry matter in 
response to salt stress, proline application and salt stress recovering in systemin over-expressing 
tomato (BBS) and its control (BB). (Mean values; ns = not significant; * = significant at P≤0.05; ** 
= significant at P≤0.01).[ [1] lsd]. 
 

 Stomatal density stomatal 
length 

stomatal 
aperture 

 n° of stomata mm-2 μm μm 
BBS 180.04 16.2 2.3 
BB  190.52 10.4 2.8 
 ns ** ** 

Tab. 2. Stomatal size, aperture and density in systemin over-expressing tomato (BBS) and control 
plants (BB). (Mean values; ns = not significant; * = significant at P≤0.05; ** = significant at 
P≤0.01). 
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 Ψt  Ψπ   Ψp  OA RWC 
 (MPa) (MPa) (MPa)  % 

Line      
BBS -0.76 -1.60 0.84 0.27 76.8 
BB -1.05 -2.01 0.96 0.60 74.2 
Salt      
0 -0.47 -1.14 0.68  87.8 
20 -0.92 -1.82 0.90 0.38 77.3 
40 -1.33 -2.45 1.12 0.49 61.4 
Proline      
0 -0.82 -1.60 0.78 0.49 79.4 
5 -1.08 -2.21 1.13 0.31 67.8 
      
Significance       

Line - L 
**  

(0.050 [1]) 
**  

(0.080) 
**  

(0.100) 
**  

(0.060) 
n.s. 

Salt - S 
**  

(0.061) 
**  

(0.098) 
**  

(0.122) 
**  

(0.073) 
**  

(3.93) 

Proline - Pr 
**  

(0.049) 
**  

(0.080) 
**  

(0.100) 
**  

(0.060) 
**  

(3.21) 

L x S 
**  

(0.086) 
**  

(0.139) 
**  

(0.173) 
**  

(0.104) 
**  

(5.56) 

L x Pr 
**  

(0.070) 
**  

(0.114) 
*  

(0.099) 
**  

(0.085) 
n.s. 

S x Pr 
*  

(0.060) 
n.s. n.s. n.s. n.s. 

L x S x Pr 
**  

(0.122) 
**  

(0.197) 
*  

(0.171) 
n.s. *  

(5.5) 
Tab. 3. Total leaf water potential (Ψt), osmotic potential (Ψπ), pressure potential (Ψp), osmotic adjustment (OA), and relative water content (RWC) 
in response to salt stress and proline application in systemin over-expressing tomato (BBS) and its control (BB). (Mean values; ns = not significant; 
* = significant at P≤0.05; ** = significant at P≤0.01). [ [1] lsd] 
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  Ψt Ψπ  Ψp  RWC  OA  
  (MPa) (MPa) (MPa) %  

Line      
BBS -0,87 -1,32 0,45 79 -0,87 
BBS -1,08 -1,77 0,68 71 -1,08 
Recovery      
recovered -0,87 -1,26 0,39 84 -0,87 
not recovered -1,08 -1,82 0,74 65 -1,08 

       
Significance       

Line - L 
**  

(0.077 [1]) 
**  

(0.095) 
**  

(0.075) 
**  

(2.64) 
ns 

Salt – S 
**  

(0.094) 
**  

(0.118) 
**  

(0.092) 
**  

(3.23) 
- 

L x S 
**  

(0.133) 
**  

(0.166) 
ns  ns - 

Tab. 4. Total leaf water potential (Ψt), osmotic potential (Ψπ), pressure potential (Ψp), osmotic 
adjustment (OA), and relative water content (RWC) in response to salt stress recovery in systemin 
over-expressing tomato (BBS) and its control (BB). (Mean values; ns = not significant; * = 
significant at P≤0.05; ** = significant at P≤0.01). [ [1] lsd] 
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FIGURES 

 

Fig. 1. Influence of salt stress on leaf area, fresh yield, stomatal conductance and relative water 
content in systemin over-expressing tomato (BBS) and its control (BB).  
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Fig. 2. Stomatal conductance in systemin over-expressing tomato (BBS) and its control (BB) as 
influenced by 40 mmol l-1 salt stress and recovery.  
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Fig. 3 ABA content, proline and proline/ABA content in systemin over-expressing tomato (BBS) 
and its control (BB) as influenced by salt stress.  
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Fig. 4. Constitutive expression of genes involved in stress response in systemin-overexpressing 
tomato (BBS) and its control (BB) - (RQ=Relative Quantity). [* = significant at P≤0.05; ** = 
significant at P≤0.01]. 
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CHAPTER IV.  

 

CONCLUSIONS. 

The control of water fluxes with respect to both growth, water uptake and thermoregulation 

plays a fundamental role in hyperosmotic environment. In the first chapter of this thesis we showed 

how extremely low transpirational fluxes were not associated with best performances under salt 

stress. In contrast, among halophytes, plants extremely tolerant to salt seemed to be those with a 

slightly higher leaf transpirational flux in absence of stress, a physiological trait that may contribute, 

upon salinisation, to reach over time a relatively delayed stomatal closure and consequent restriction 

of CO2 uptake. 

In the second chapter we confirmed, in crop species, how a reduced transpiration limits salt 

loading of the shoots an event that may be useful in short-term stress adaptation. More interestingly, 

while short term responses, typical of Napoleatano, were consistent with physiological mechanisms 

able to overcome a transitory stress situation, a long-term adaptation strategy based on an optimal 

regulation of water fluxes (increased stomata size and reduced stomata density) was present in 

Genovese, which was able to better cope with the stressful environment. These results were 

consistent with recent findings in which the genetic basis of water use efficiency was associated to 

several, metabolic, signalling and morphological traits, including stomatal density. 

 Cross-talk in stress response has been previously suggested in several studies. However, the 

mechanisms involved in the stress adaptation are still unclear. In the first chapter we showed how 

tolerance to drought would increase salt tolerance, although plants that were best performers on salt 

would display higher leaf transpiration. Similarly, plant salt tolerance was associated to an 

increased adaptation to freezing, even though plants showing extreme adjustment to high 

salinization would show poor tolerance to cold. Among these stresses, the role of ABA in 
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modulating stress responses has been repeatedly reported. However, we hypothesised that, in 

extremely salt tolerant species (T. parvula and M. triloba), mechanisms of salt stress adaptation 

would only be partially related to ABA-dependent pathway, while a strong influence could be 

related to an ABA-independent cascade. In line with the role of hormones and hormone-like 

signalling molecules involved in stress adaptation, in the third chapter, we showed how a peptide, 

involved in the wound-stress response in tomato, may interact with other mechanisms mediating 

salt stress adaptation. Through a reduced induction of other genes involved in osmotic adjustment 

and salt signalling, transgenic plants seemed to have a sort of pre-induced tolerance or a lower 

perception of stressful conditions. Transgenic tomato plants also displayed a more efficient 

recovery mechanisms, which would allow plants to re-open the stomata and restart their biological 

function. As previously indicated, higher ABA levels may be required for controlling short-term 

adaptation processes such as stomatal closure. In contrast, long-term stress responses should restore 

basal levels of ABA content in leaves which would allow stomatal re-opening and the 

complete/partial recovery of plant functions. Consistently, the accumulation of proline in plant 

tissue, which proved to be a good indicator of stress, was significantly higher in plants facing 

stronger stressful conditions.  

From this work it emerged that most progress in salinity research it is expected by an 

interdisciplinary approach. Advancement in science will consent more and more to fast move from 

model plants to crop species, and viceversa. This will consent to unravel more efficiently the 

functional biology of salt stress adaptation and to define margins for improving salinity tolerance of 

agricultural crops.  
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