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Preface 
 
 
 

Packaging has a significant role in the food supply chain and it is an integral part both of 

the food processes and the whole food supply chain. Food packaging has to perform several 

tasks as well as fulfilling many demands and requirements. Traditionally, a food package 

makes distribution easier. It has protected food from environmental conditions, such as light, 

oxygen, moisture, microbes, mechanical stresses and dust. Other basic tasks have been to 

ensure adequate labelling for providing information e.g., to the customer, and a proper 

convenience to the consumer, e.g., easy opening, reclosable lids and a suitable dosing 

mechanism. Basic requirements are good marketing properties, reasonable price, technical 

feasibility (e.g., suitability for automatic packaging machines, sealability), suitability for food 

contact, low environmental stress and suitability for recycling or refilling. A package has to 

satisfy all these various requirements effectively and economically. For a long time packaging 

has also had an active role in processing, preservation and in retaining quality of foods. 

Changes in the way food products are produced, distributed, stored and retailed, reflecting the 

continuing increase in consumer demand for improved safety, quality and extended shelf-life 

for packaged foods, are placing greater demands on the performance of food packaging. 

Consumers want to be assured that the packaging is fulfilling its function of protecting the 

quality, freshness and safety of foods. The trend to ensure the quality and safety of food 

without, or at least fewer, additives and preservatives means that packaging has a more 

significant role in the preservation of food and in ensuring the safety of food in order to avoid 

wastage and food poisoning and to reduce allergies. 

According to the definitions of the ACTIPAK-FAIR CT98-4170 project “Active packaging 

changes the condition of the packed food to extend shelf life or to improve safety or sensory 

properties, while maintaining the quality of the packaged food”. 
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Food condition in the definition of active packaging includes various aspects that may play a 

role in determining the shelf-life of packaged foods, such as physiological processes (e.g., 

respiration of fresh fruit and vegetables), chemical processes (e.g., lipid oxidation), physical 

processes (e.g., staling of bread, dehydration), microbiological aspects (e.g., spoilage by 

microorganisms) and infestation (e.g., by insects). Through the application of appropriate 

active packaging systems, these conditions can be regulated in numerous ways and, 

depending on the requirements of the packaged food, food deterioration can be significantly 

reduced. As reported in Table 1, active packaging techniques for preservation and improving 

quality and safety of foods can be divided into three categories; absorbers (i.e. scavengers), 

releasing systems and other systems. Absorbing (scavenging) systems remove undesired 

compounds such as oxygen, carbon dioxide, ethylene, excessive water, taints and other 

specific compounds. Releasing systems actively add or emit compounds to the packaged food 

or into the head-space of the package such as carbon dioxide, antioxidants and preservatives. 

Depending on the physical form of active packaging systems, absorbers and releasers can be a 

sachet, label or film type. Sachets are placed freely in the head-space of the package. Labels 

are attached into the lid of the package. Direct contact with food should be avoided because it 

impairs the function of the system and, on the other hand, may cause migration problems.  
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Table 1 - Examples of sachet, label and film type absorbing (scavenging) active packaging systems 
for  preservation and shelf-life extension of foods or improving their quality and usability 
for consumers.  

Packaging type 
 

Examples of working 
principle/ 

mechanism/reagents 

Purpose 
 

Examples of possible 
applications 

Oxygen absorbers 
(sachets, labels, 
films, corks) 
 

Ferro-compounds, 
ascorbic acid, metal 
salts, glucose oxidases, 
alcohol oxidase 
 

Reduction/preventing 
of mould, yeast and 
aerobic bacteria growth 
Prevention of oxidation 
of fats, oils, vitamins, 
colours. Prevention of 
damage by worms, 
insects and insect eggs 

Cheese, meat 
products, 
ready-to-eat products, 
bakery products, 
coffee, tea, nuts, milk 
powder 
 

Carbon dioxide 
Absorbers (sachets) 
 
 

Calcium hydroxide 
and sodium hydroxide 
orpotassium hydroxide 
Calcium oxide and silica 
gel 

Removing of carbon 
dioxide formed 
during storage in 
order to prevent 
bursting of a package 

Roasted coffee 
Beef jerkey 
Dehydrated poultry 
products 
 

Lactose remover  
 
 

Immobilised lactase 
in the packaging 
material 

 

Serving milk products to 
the people suffering 
lactose intolerance 

Milk and other dairy 
products 
 

Humidity absorbers 
(dripabsorbent 
sheets, 
films, sachets) 
 

Polyacrylates (sheets) 
Propylene glycol (film) 
Silica gel (sachet) 
Clays (sachet) 
 

Control of excess 
moisture in packed food 
Reduction of water 
activity on the surface of 
food in order to prevent 
the growth of moulds, 
yeast and spoilage 
bacteria 

Meat, fish, poultry, 
bakery products, cuts 
of fruits and 
vegetables 
 

Absorbers of off 
flavours, amines and 
aldehydes  
(films, sachets) 
 

Cellulose acetate film 
containing naringinase 
enzyme. Ferrous salt and 
citric or ascorbic acid 
(sachet) Specially 
treated polymers 
 

Reduction of bitterness 
in grapefruit juice 
Improving the flavour of 
fish and oilcontaining 
food 
 

Fruit juices Fish 
Oil-containing foods 
such as potato chips, 
biscuits and cereal 
products 
Beer 
 

UV-lightabsorbers 
 

Polyolefins like 
polyethylene and 
polypropylene doped 
the material with a 
UV-absorbent agent 
Crystallinity 
modification of nylon  
UV stabiliser in 
polyester bottles 

Restricting  lightinduced 
oxidation 
 

Light-sensitive foods 
such as ham 
 Drinks 
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Table 1 (continued)    

Packaging type 
 

Examples of working 
principle/ 

mechanism/reagents 

Purpose 
 

Examples of possible 
applications 

 
 
Cholesterol 
remover 
 

Immobilised cholesterol 
reductase 
in the packaging 
material 
 

Improving the 
healthiness of milk 
products 
 

Milk and other dairy 
products 
 

Carbon dioxide 
emitters (sachets) 
 
 

Ascorbic acid 
Sodium hydrogen 
carbonate and 
ascorbate 

Growth inhibition of 
gram-negative 
bacteria and moulds 

Vegetables and fruits, 
fish, meat, poultry 
 

 
Ethanol emitters 
(sachets) 
 

 
Ethanol/water 
mixture absorbed 
onto silicon dioxide 
powder generating 
ethanol vapour 
 

 
Growth inhibition of 
moulds and yeast 
 

 
Bakery products 
(preferably heated 
before consumption) 
Dry fish 
 

Flavouring 
emitters (films) 
 

Various flavours in 
polymers 
Minimisation of 
flavour scalping 
 

Masking off-odours 
Improving the 
flavour of food 
 

Miscellaneous 
 

Antimicrobial 
preservative 
releasers (films) 
 

Organic acids, e.g. 
sorbic acid 
Silver zeolite 
Spice and herb 
Extracts 
Alylisothiocyanate 
Enzymes, e.g. 
Lyzozyme bacteriocins 
 

Growth inhibition of 
spoilage and pathogenic 
bacteria 
 

Meat, poultry, fish, 
bread, cheese, fruit 
and 
vegetables 
 

Taken from: Han J.H. (2000) Antimicrobial Food Packaging. Food Technology 54, 56-65. 
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1. ANTIMICROBIAL FOOD PACKAGING 

 

 

1.1 Introduction 

Antimicrobial packaging is one of many applications of active packaging. Antimicrobial 

packaging is the packaging system that is able to kill or inhibit spoilage and pathogenic 

microorganisms that are contaminating foods. The new antimicrobial function can be 

achieved by adding antimicrobial agents in the packaging system and/or using antimicrobial 

polymers that satisfy conventional packaging requirements. Antimicrobial packaging 

materials have to extend the lag phase and reduce the growth rate of microorganisms to 

prolong the shelf life and maintain food quality and safety (Han, 2000).  

 

1.1.1. Developing the antimicrobial packaging systems 

Most food packaging systems represent either a package/food system or a 

package/headspace/food system (Fig. 1.1). A package/food system is a solid food product in 

contact with the packaging material, or a low-viscosity or liquid food without headspace. 

Diffusion between the packaging material and the food and partitioning at the interface are the 

main migration phenomena involved in this system. Antimicrobial agents may be 

incorporated into the packaging materials initially and migrate into the food through diffusion 

and partitioning (Han, 2000). Package/headspace/food systems are represented by foods 

packed in flexible packages, cups, and cartons. Evaporation or equilibrated distribution of a 

substance among the headspace, packaging material and/or food has to be considered as a part 

of main migration mechanisms to estimate the interfacial distribution of the substance. A 

volatile active substance can be used in these systems, as it can migrate through the headspace 

and air gaps between the package and the food. 
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Fig. 1.1 - Food packaging systems and relative behaviour of active substances 
(Han, 2000). 

 

Antimicrobial packaging can take several forms including:  

◊ Addition of sachets/pads containing volatile antimicrobial agents into packages 

◊ Incorporation of volatile and non volatile antimicrobial agents directly into 

polymers  

◊ Coating and adsorbing antimicrobials onto polymers surfaces 

◊ Immobilization of antimicrobials to polymers by ion or covalent linkages 

◊ Use of polymers that are inherently antimicrobial (Appendini et al., 2002). 

Besides diffusion and equilibrated sorption, some antimicrobial packaging uses covalently 

immobilized antibiotics or fungicides, or active moieties such as amine groups. This case 

utilizes surface inhibition of microbial growth by immobilization of the non-food grade 

antimicrobial substance without diffusion mass transfer. Figure 1.2 shows the mass transfer 

phenomena of an active substance incorporated into a film or coating, with different 

applications. The incorporation of an antimicrobial substance into a food packaging system 

can take several approaches. One is to put the antimicrobial into the film by adding it in the 

extruder when the film or the co-extruded film is produced. The disadvantage of doing so is 

poor cost effectiveness since antimicrobial material not exposed to the surface of the film is 

generally not totally available to antimicrobial activity. An alternative to extrusion is to apply 

the antimicrobial additive in a controlled matter where the material is needed and not lost; for 

Package     
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Chemical  
immobilization 

Food Package 

Evaporation 
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example, it can be incorporated into the food-contact layer (usually also serving as the inner 

heat-seal layer) of a multilayer packaging material.  

 

Fig. 1.2 - Migration of active substance in different applications 
of antimicrobial packaging systems (Han, 2000) 

 

1.1.2 Modelling of the antimicrobial film or package 

According to Han (2000), several factors must be taken into account in the design or 

modelling of the antimicrobial film or package: 

ü Chemical nature of films/coatings, casting process conditions and residual 

antimicrobial activity. The choice of the antimicrobial is often limited by the heat 

lability of the component during extrusion or by the incompatibility of the component 

with the packaging material. For example, 1% potassium sorbate in a LDPE film 

inhibited the growth of yeast on agar plates. 

ü Characteristics of antimicrobial substances and foods. Food components significantly 

affect the effectiveness of the antimicrobial substances and their release. Physico-

chemical characteristics of food could alter the activity of antimicrobial substances. 
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For example, the pH of food influences the ionisation (dissociation/association) of 

most active chemicals, and could change the antimicrobial activity of organic acids 

and their salts. The antimicrobial activity and chemical stability of incorporated active 

substances could be influenced also by the water activity of food. Moreover, each food 

has its own characteristic microflora. The release kinetics of antimicrobial agents has 

to be designed to maintain the concentration above the critical inhibitory concentration 

with respect to the contaminating microorganisms that are likely to be present. 

ü Storage temperature. Storage temperature can affect the antimicrobial activity of 

chemical preservatives. Generally, increased storage temperature can accelerate the 

migration of the active agents in the film/coating layers, while refrigeration slows 

down the migration rate. The temperature conditions during production and 

distribution have to be predicted to determine their effect on the residual antimicrobial 

activity of the active compounds. 

ü Mass transfer coefficients. The simplest system is the diffusional release of active 

substances from the package into the food. A multilayer design has the advantage that 

the antimicrobial can be added in one thin-layer and its migration and release 

controlled by the thickness of the film layer or coating. In practice, a matrix of several 

layers is used to control the rate of release of the active substance. Control of the 

release rates and migration amounts of antimicrobial substances from food packaging 

is very important. Han (2000) summarized traditional mass transfer models and his 

own proposed models that may be used to describe the migration of active agents 

through food packaging systems consisting of single, double, or triple layers.  

ü Physical properties of packaging materials. When antimicrobial activity is added to 

packaging materials to reduce microbial growth, it may affect the general physical 

properties of the packaging materials. Han and Floros (1997) found that the 
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transparency of the plastic film under study decreased with the addition of the active 

agent. The performance of the packaging materials must be maintained after the 

addition of the active substances, even though the materials contain more 

heterogeneous formulations. 

 

1.2 Applications of antimicrobial food packaging 

In table 1.1 reviews some typically compounds that have been proposed and tested for 

antimicrobial activity in food packaging including organic acids such as sorbate, propionate 

and benzoate or their respective acid anhydrides bacteriocins e.g. nisin and pediocin or 

enzymes such as lysozym. All antimicrobial agents have different activities which affect 

microorganisms differently. There is no ‘Magic Bullet’ antimicrobial agent effectively 

working against all spoilage and pathogenic microorganisms. This is due to the characteristic 

antimicrobial mechanisms and due to the various physiologies of the microorganisms (Han, 

2000). 

Simple categorisation of microorganisms may be very helpful to select specific antimicrobial 

agents. Such categories may consist of oxygen requirement (aerobes and anaerobes), cell wall 

composition (Gram positive and Gram negative), growth-stage (spores and vegetative cells), 

optimal growth temperature (thermophilic, mesophilic and psychrotropic) and acid/osmosis 

resistance.  
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Table 1.1 - Applications of antimicrobial food packaging. Incorporation of organic acids and their 
salts in plastic or edible films (Han, 2000). 

 
Antimicrobial agents Packaging materialsa Food References 

Acetic and propionic acid CHITOSAN water Ouattara et al.. (2000b) 

 CHITOSAN Bologna, cooked ham, 
pastram 

Ouattara et al. (2000a) 

  Colture media Weng and Chen (1997) 

Benzoic acid PE  and PE-co-MA Colture media Weng and Chen (1997) 

Sorbic acid  WPI Colture media Cagri et al.. (2001) 
 

p-aminobenzoico WPI Colture media Cagri, et al. (2001) 

Lactic acid  ALGINATE Lean beef muscle Siragusa and Dickinson 
(1992) 

Lauric acid Corn zein film Colture media Padgett, et al. (2000) 

 Corn zein film Colture media Hoffman, et al. (2001) 

benzoic anhydride  LDPE Colture media Weng and Hotchkiss (1993) 

sorbic anhydride PE Colture media Weng and Chen (1997) 

sodium benzoate  MC/CHITOSAN Colture media Chen, et al.  (1996) 

potassium sorbate  MC/HPMC/FATTY 
ACID MC/palmitic acid 
Starch/glycerol  
MC/CHITOSAN            
LDPE                              
LDPE   

Colture media Colture 
media Chicken breast 
Colture media Cheese           
Colture media 

Vojdani and Torres (1990) 
Rico-Pena and Torres (1991) 
Baron and Summer (1993) 
Chen et al. (1996) 
Han (1996) 
Han and Floros (1997) 

Glucose-oxidase ALGINATE Fish Field et al. (1986) 

Lysozyme PVOH, NYLON, 
CELLULOSE ACETATE        
SPI film, corn zein film  

Colture media 
Appendini and Hotchkiss 
(1996) 
Padgett et al. (1998) 

Pediocin CELLULOSE Cooked meats Ming et al. (1997) 

Nisin Silicon coating  
SPI, corn zein film  
PE  
Corn zein film  
PVC, LDPE, nylon  
PE  
HPMC  
SPI, WPI, WG, EA  
Corn zein film  

Beef tissue          
Culture media      
Broiler drumstick skin 
Culture media     
Culture media    
Phospate buffer   
Culture media    
Phospate buffer   
Culture media 

Daeschel, et al. (1992) 
Padgett et al. (1998) 
Siragusa, et al (1999) 
Padgett et al. (2000) 
Natrajan and Sheldon (2000) 
Cutter, et al (2001)      
Coma, et al. (2001)           
Ko, Janes, et al. (2001) 
Hoffman et al. (2001) 

a :LDPE, low-density polyethylene; MC, methyl cellulose; HPMC, hydroxypropyl MC; CMC, carboxyl MC; PE, 
polyethylene; MA, methacrylic; PVOH, polyvinyl alcohol; PVC, polyvinyl chloride; SPI, soy protein isolate; 
WPI, whey protein isolate; WG, wheat gluten; EA, egg albumen. 
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Besides the microbial characteristics, the characteristic antimicrobial function of the 

antimicrobial agent is also important to understand the efficacy as well as the limits of the 

activity. Some antimicrobial agents inhibit essential metabolic (or reproductive genetic) 

pathways of microorganisms while some others alter cell membrane/wall structure. For 

example, lysozyme destroys cell walls without the inhibition of metabolic pathways and 

results in physical cleavages of cell wall, while lactoferrin and EDTA act as coupling agents 

of essential cationic ions and charged polymers. 

 

1.3 Bacteriocin  

Bacteriocins are antimicrobial peptides or small proteins which inhibit, by a bactericidal 

or bacteriostatic mode of action, micro-organisms that are usually closely related to the 

producer strain (De Vuyst and Vandamme 1994b; Schillinger and Holzapfel 1996). 

Bacteriocins produced by lactic acid bacteria are of great interest to the food fermentation 

industry as natural preservatives because of their ability to inhibit the growth of many food 

spoilage and pathogenic bacteria, including Listeria monocytogenes, Staphylococcus aureus, 

Bacillus cereus and Clostridium botulinum (Bredholt et al. 2001). 

These fermentation products include nisin, lacticins, pediocin, diolococcin, and propionicins 

(Daeschul, 1992; Han, 2002). The bacteriocins were first characterized in Gram-negative 

bacteria. The colicins of E. coli are the most studied (Lazdunski, 1988). The colicins 

constitute a diverse group of antibacterial proteins, which kill closely related bacteria by 

various mechanisms such as inhibiting cell wall synthesis, permeabilizing the target cell 

membrane, or by inhibiting RNase or DNase activity. Among the Gram-positive bacteria, the 

lactic acid bacteria have been comprehensively exploited as a reservoir for antimicrobial 

peptides with food applications. 

Bacteriocins from lactic acid bacteria (LAB) have been classified, initially by Klaenhammer 

(1993), in four classes on the basis of common, mainly structural, characteristics. In a later 
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review, Nes et al. (1996) restricted the LAB-produced bacteriocins to three classes because 

the existence of a fourth class proposed by Klaenhammer (1993), i.e. complex compounds 

needing a carbohydrate or lipid moiety for activity, had been based on unpurified, and 

therefore ill-defined, compounds. 

Class I are small, heat-stable peptides containing other amino acids, like lanthionine, and are 

for this reason named lantibiotics. 

Class II are small, hydrophobic, heat-stable, non-modified bacteriocins consisting of either a 

single peptide with antilisterial activity (class IIa) or two polypeptide chains (class IIb), and 

also include other peptide bacteriocins (class IIc).  

Class III consist of large, hydrophilic, heat-labile proteins (Klaenhammer 1993; Vaughan et 

al. 2001; Eijsink et al. 2002; Messens and De Vuyst 2002).  

Even if chemical, enzymatic or physical characteristics of the food, food processing, or the 

physiological state of the bacteriocin producing micro-organism can limit the bacteriocin 

activity in situ (Eckner 1992; Messens and De Vuyst 2002), it has been claimed that micro-

organisms producing bacteriocins possess a competitive advantage over other organisms 

living in the same natural environment (Vaughan et al. 2001). 

The bacteriocin nisin, discovered in England in 1928, is produced by strains of Lactococcus 

lactis subsp. lactis. Structurally, it is a 34-aminoacid polypeptide, a cationic molecule due to 

combination of three lysine residues and one or more histidine residues (Cleveland et al., 

2001). Purified nisin has been evaluated for toxicological effect and found harmless or at least 

with very low toxicity using rat and guinea pig models (Frazer and others 1962; Shtenberg 

and Ignatev 1970). Its use is approved as a food additive in over 50 countries. It is probably 

safe to say that in most of these countries, nisin is the only bacteriocin authorized for use as a 

food preservative. International acceptance of nisin was given in 1969 by the Joint Food and 

Agriculture Organization/World Health Organization (FAO/WHO) Expert Committee on 
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Food Additives (WHO 1969). Nisin is believed to bind to the outer membrane receptors by 

conjugation with other cell components (i.e., phospholipids), or by aggregation with other 

proteins (i.e., glycoproteins). Such binding creates ion channels in the cytoplasmic membrane, 

rendering the cell permeable (Delves-Broughton, 1990). Nisin is generally protected by food 

ingredients to which it is added, and does not lose its activity by processes such as 

pasteurization or sterilization (Henning et al., 1986). The binding of antimicrobial agents 

directly to polymeric packaging is an exciting development, which allows industry to 

combine the preservative functions of antimicrobials with the protective functions of the pre-

existing packaging concepts. 

 

1.3.1 Bacteriocins in packaging film 

Incorporation of bacteriocins into packaging films to control food spoilage and pathogenic 

organisms has been an area of active research for the last decade. Antimicrobial packaging 

film prevents microbial growth on food surface by direct contact of the package with the 

surface of foods, such as meats and cheese. For this reason, for it to work, the antimicrobial 

packaging film must contact the surface of the food so that bacteriocins can diffuse to the 

surface. The gradual release of bacteriocins from a packaging film to the food surface may 

have an advantage over dipping and spraying foods with bacteriocins. In the latter processes, 

antimicrobial activity may be lost or reduced due to inactivation of the bacteriocins by food 

components or dilution below active concentration due to migration into the foods (Appendini 

and Hotchkiss 2002). Two methods have been commonly used to prepare packaging films 

with bacteriocins (Appendini and Hotchkiss 2002). One is to incorporate bacteriocins directly 

into polymers. Examples include incorporation of nisin into biodegradable protein films 

(Padgett et al. 1998). Two packaging film-forming methods, heat press and casting, were used 

to incorporate nisin into films made from soy protein and corn zein in this study. Both cast 
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and heat press films formed excellent films and inhibited the growth of L. plantarum. 

Compared to the heat press films, the cast films exhibited larger inhibitory zones when the 

same levels of nisin were incorporated. Incorporation of EDTA into the films increased the 

inhibitory effect of nisin against E. coli. Siragusa and others (1999) incorporated nisin into a 

polyethylene based plastic film that was used to vacuum-pack beef carcasses. Nisin retained 

activity against Lactobacillus helveticus and B. thermosphacta inoculated in carcass surface 

tissue sections. An initial reduction of 2 log cycles of B. thermosphacta was observed with 

nisin impregnated packaged beef within the first 2 days of storage at 4°C. After 20 days of 

refrigerated storage at 4 or 12°C (to simulate temperature abuse), B.thermosphacta 

populations from nisin coated plastic wrapped samples were significantly less than control 

(without nisin). Coma et al. (2001) incorporated nisin into edible cellulosic films made with 

hydroxypropyl methyl cellulose by adding nisin to the film forming solution. Inhibitory effect 

could be demonstrated against L. innocua and S. aureus, but film additives such as stearic 

acid, used to improve the water vapour barrier properties of the film, significantly reduced 

inhibitory activity. It was noted that desorption from the film and diffusion into the food 

required further optimization for nisin to function more effectively as a preservative agent in 

the packaged food. Another method to incorporate bacteriocins into packaging films is to coat 

or adsorb bacteriocins to polymer surfaces. Examples include nisin/methylcellulose coatings 

for polyethylene films and nisin coatings for poultry, adsorption of nisin on polyethylene, 

ethylene vinyl acetate, polypropylene, polyamide, polyester, acrylics, and polyvinyl chloride 

(Appendini and Hotchkiss 2002). Bower et al (1995) demonstrated that nisin adsorbed onto 

silanized silica surfaces inhibited the growth of L. monocytogenes. Nisin films were exposed 

to medium containing L. monocytogenes and the contacting surfaces were evaluated at 4 h 

intervals for 12 h. Cells on surfaces that had been in contact with a high concentration of nisin 

(40000 IU/ml) exhibited no signs of growth and many displayed evidence of cellular 



 - 15 - 

deterioration. Surfaces contacted with a lower concentration of nisin (4000 IU/ ml) had a 

smaller degree of inhibition. In contrast, surfaces contacted with films of heat inactivated 

nisin allowed L. monocytogenes to grow. L. innocua and S. aureus (along with L. lactis subsp. 

lactis) were also used in a study by Scannell and others (2000) of cellulose based bioactive 

inserts and antimicrobial polyethylene/polyamide pouches. Lacticin 3147 and nisin were the 

tested bacteriocins. Although lacticin 3147 adhered to plastic film and was active for 3 

months with or without refrigeration. Bacterial reductions of up to 2 log cycles in vacuum 

packed cheese were seen in combination with modified atmosphere packaging (MAP) with 

storage at refrigeration temperatures. Cellulose based bioactive inserts were placed between 

sliced products of cheese and ham under MAP. Inserts with immobilized nisin reduced L. 

innocua (starting inocula of 2 to 4 x 105 CFU/g) by 3 log in cheese after 5 d at 4°C, and by 

approximately 1.5 log in sliced ham after 12 days, while S. aureus (starting inocula of 2 to 4 x 

105 CFU/g) was reduced by 1.5 and 2.8 log in cheese and ham, respectively. The efficacy of 

bacteriocins coatings on the inhibition of pathogens has also been demonstrated in other 

studies. For example, coating of pediocin onto cellulose casings and plastic bags has been 

found to completely inhibit growth of inoculated L. monocytogenes in meats and poultry 

through 12 week storage at 4°C (Ming et al. 1997). Coating of solutions containing nisin, 

citric acid, EDTA, and Tween 80 onto polyvinyl chloride, linear low density polyethylene, 

and nylon films reduced the counts of Salmonella typhimurium in fresh broiler drumstick skin 

by 0.4 to 2.1 log cycles after incubation at 4°C for 24 h (Natrajan and Sheldon 2000). 

Although shelf life was extended in food products as populations of food spoilage organisms 

were reduced, the primary thrust was towards control of specific anticipated pathogens in the 

product. In this regard, Rhodia, is developing a casing to be used in hot dog manufacture and 

other cooked meats. The film in combination of bacteriocins, enzymes, and botanicals. The 

components have received regulatory clearance. The approach is to cook the meat product 
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while tightly contained within the bioactive casing or wrapper. The target is L. monocytogenes 

and results are described as very promising. The added cost is considered economically sound 

given the large product recalls experienced by major meat brands as the result of product 

contaminated with L. monocytogenes. 

 

1.4 Allowing the introduction of “active” food packaging 

Approved on 27th October 2004 by the European Parliament and the Council of the 

European Union, Rules n° 1935/2004 “concerning materials and objects destined to come into 

contact with food products” abrogates the previous Directives 590/1980/EEC and 

109/1989/EEC. Note that these rules are already in force: in fact, unlike “directives”, “rules” 

do not have to be ratified by national parliaments to have legal effect. Rules n° 1935/2004 

disciplines the materials and the objects destined to contain food, both "those which 

reasonably foresee that they will come into contact with food products, or that they transfer 

their own components to the food products during normal or foreseeable conditions of use". It 

also defines the role of EFSA, the European Food Safety Authority (based in Parma) set up by 

the so-called "Food Law" n° 178/2002. Moreover, it foresees that materials and objects that 

have not yet come into contact with the food product at the moment of their entering the 

market must be marked with the wording "suitable for contact with food", with a specific 

indication as to their use or an appropriate symbol. Finally it requires that all materials and 

objects that come into contact with food must be traceable, in order to facilitate the control 

and withdrawal of defective products (this last obligation, as everyone knows, only comes 

into effect on 27th October 2006).  

One of the innovations concerns the so called active and intelligent packaging. Unless there 

will be last minute changes, the indication is to proceed with targeted authorisation for each 

case: the green light, after favourable evaluation by EFSA and the decision of the 
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Commission, will regard not so much the "substance used", a very generic concept, but the 

single commercial product, accompanied with explicit conditions of use.  

The main principles are that active packaging must protect the food and not mislead the 

consumer; therefore solutions that hide the state of deterioration of a food will never be 

authorised. Another much desired intervention (meeting Italian demands) concerns the 

"Declaration of Conformity" foreseen under 1935/2004: this must, in fact, be supported by 

scientific documentations, available to the competent authority upon request. 
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2. BACTERIOCIN PRODUCING LACTIC ACID BACTERIA AND 

BACTERIOCIN CHARACTERIZATION  

 
 

2.1 INTRODUCTION 

In recent years there is an increasing demand of minimally processed foods with fresh like 

quality; moreover, modern distribution systems require an adequate way to extend the shelf 

life of foods. The use of bacteriocins and other biologically derived antimicrobials in 

packaging material is attracting increasing interest recently, and patents have been filed in the 

area (Wilhoit 1996, 1997; Ming et al., 1997; Siragusa et al., 1999). The bacteriocin-producing 

bacteria are isolated from foods that normally contain lactic acid bacteria, such as meat and 

dairy products. The aim of this first activity of PhD thesis project was to screen a range of 

meat products, raw cow milk and dairy products for the presence of bacteriocin-producing 

strains. 

 

2.2 MATERIALS AND METHODS 

2.2.1 Isolation of bacteriocin-producing bacteria from foods  

One hundred and ninety six samples of a variety of food products obtained from different 

Italian manufacturers were analysed. They included: 

v fresh meat, cooked, matured, dried or fermented meat products; 

v raw milk, yogurt, dairy products, sheep’s milk cheese, goat’s milk cheese, soft cheese, 

aged cheese, processed cheese; 

v olives in brine. 

After purchase all the samples were stored at 4ºC for up to a maximum of 24 h before 

analysis. A 25 g portion of each sample was aseptically weighed and homogenized in 225 ml 
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of quarter-strength Ringer’s solution (Oxoid) for 2 min in a stomacher (LAB Blender 400, 

PBI, Italy) at room temperature. Decimal dilutions were prepared and aliquots of 0.1 ml of the 

appropriate dilutions were spread on MRS agar (Oxoid) for LAB isolation. The plates were 

incubated at 30°C for 48 h. After the incubation period, for each sample, ten colonies were 

picked from the plates containing up to 102 CFU/g. The cultures were purified on MRS agar 

plates and then cultivated in MRS broth at 30ºC for 18 h and used for all the experiments.  

 

2.2.2 Evaluation of the antimicrobial activity of isolates 

All bacterial colonies picked were screened for bacteriocin production. Listeria 

monocytogenes V7 was cultured in TSB broth (Oxoid) at 30°C for 24h and used as indicator 

strain. For detection of antimicrobial activity of the microorganisms and to verify the release 

of antimicrobial substance into the medium, an agar spot test and a well diffusion agar test 

were performed, respectively. 

ü Agar spot test. Each strain was cultured in 5 ml of MRS broth at 30°C for 16 h. 

Aliquots (10 µl) of the culture were spotted onto agar plates containing 10 ml of MRS 

medium. After 18 h at 30°C, the plates were overlaid with 5 ml of the appropriate soft 

agar (0.75% agar) inoculated with the cell suspension of the indicator strain at a final 

concentration of 105 CFU/ml. The plates were incubated for 24 h and the appearance 

of inhibitory zones was observed and measured. Inhibition was scored positive if the 

zone was wider than 2 mm.  

ü Well diffusion agar test. The indicator strain suspension was used to inoculate 20 ml 

of a melted (47°C) TSB soft agar (0.75% agar) medium at a final concentration of 105 

CFU/ml. After homogenizing, the agar was poured in Petri dishes (90 mm diameter), 

cooled at 25°C for 30 min and wells of 6 mm diameter were made with a sterile cork 

borer. Bacterial strains were grown in 5 ml of MRS broth and then were centrifuged 
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at 18000 g at 4°C for 15 min. After pH measuring, the supernatants were adjusted to 

pH 6.5 with NaOH 0.5 M and sterilized by filtration (0.22 µm). A 50 µl aliquot of 

supernatant was placed into each well of the seeded plates. After pre-diffusion at 

25°C for 20 min, the plates were incubated at 30°C. The antimicrobial activity, 

expressed in cm, was determined by measuring the diameter of the inhibition zone 

around the wells. 

The purified strains producing bacteriocin-like substances were examined by Gram staining 

and catalase production, assayed according to Harrigan and McCance (1976). 

 

2.2.3 Assays for bacteriocin activity 

The antimicrobial activity of bacteriocin raw extract solutions was expressed in arbitrary 

units per ml (AU/ml) and it was determined by an agar diffusion assay as described by Villani 

et al. (1993). Briefly, a serial two-fold dilution in phosphate buffer solution 50 mmol/l pH 7.0 

of bacteriocin was prepared, and 10 µl of each dilution were spotted onto a TSB agar soft 

plate seeded with about 105 CFU/ml Listeria monocytogenes V7.  

The AU/ml was calculated as: 

 

UA/ml = 1000 . D 
          A 

 

where: 

- A is the volume of bacteriocin aliquot spotted on agar plate (10 µl in this case); 

- D is the reciprocal of the highest dilution showing a clear inhibition of the indicator strain. 

In the table 2.1 is reported the calculation of AU/ml of each dilution and in figure 2.1 is 

showed a the title of a bacteriocin produced by Lactobacillus curvatus 32Y isolated from 

Naples type salami. 
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Table 2.1 - Calculation of AU/ ml of each dilution.  
 

N° spot Dilutions AU/ml 

1° 1 100 
2° 1/2 200 
3° 1/4 400 
4° 1/8 800 
5° 1/16 1600 
6° 1/32 3200 
7° 1/64 6400 
8° 1/128 12800 
9° 1/256 25600 
10° 1/512 51200 
11° 1/1024 102400 
12° 1/2048 204800 
13° 1/4096 409600 
14° 1/8192 819200 

 

 

Fig. 2.1 – Title of a bacteriocin produced by 
Lactobacillus curvatus 32Y 
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2.2.4 Genotypic identification of lactobacilli 

Unidentified Gram-positive and catalase-negative rods showing positive results after the 

well diffusion assay were subjected to genotypic identification. Two bacteriocin-producer 

strains were also identified by 16S rDNA gene sequencing. Genomic DNA of the isolates was 

extracted from isolated bacteria colony of overnight cultures grown on MRS agar by the 

method of InstaGene matrix. Briefly, the colonies were picked and resuspended in sterile 

water in microfuge tube and centrifuged for 1 min at 10000 rpm. The pellets were added of 

the 200 µl InstaGene matrix and incubated at 56°C for 15-30 minutes and after vortex at high 

speed for 10 seconds the tubes were treated for 8 minutes at 100°C. Finally, the mixtures were 

centrifuged at 10000 rpm for 2-3 min and 20 µl of the resulting supernatants were used for 50 

µl PCR reaction. PCR was carried out using Taq PCR (Qiagen, Hilden, Germany). 

The 50 µl PCR mixtures contained 0.5 µl of Taq PCR, 0.1 µl of each primer, 5 µl of template 

DNA, 5 µl of buffer (PCR-MgCl2), 2.5 µl of MgCl2 and 0.5 µl of Mix of dNTPmix nucleotide 

25 mmol/l and sterile distilled H2O. PCR amplification of the 16S rDNA was performed using 

the PCR Cycler (Biorad). The primers utilized are fD1 5’AGAGTTTGATCCTGGCTCAG3’ 

and rD1 5’AAGGAGGTGATCCAGCC 3’.  

The PCR program comprised an initial template denaturation step for 3 min at 95°C followed 

by 30 cycles of denaturation for 45 s at 94°C, annealing for 45 s at 55°C and extension for 1 

min at 72°C. The final extension step was for 5 min at 72°C. 

 

2.2.5 Preparation of bacteriocin solution  

A partial purification of the bacteriocins produced by cultures isolated was performed 

with two methods with Amberlite resin and ammonium sulphate precipitation. 

ü Purification by Amberlite resin. The preparation of bacteriocin solution with 

Amberlite resin was performed as described in Villani et al, (2001). Briefly, overnight 
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MRS broth cultures of the strains were centrifuged at 19000 x g for 30 min, the 

supernatant was mixed with 5% (w/v) of Amberlite XAD 16 (Sigma) and the mixture 

was stirred at room temperature for 30 min. The mixture of supernatant broth and 

Amberlite resin was then used to pack a low pressure chromatographic column (1.5 x 

20 cm). After repeated column washings with deionized water the bacteriocin was 

eluted by using 1/10 the initial volume of a solution of 70% isopropanol and 30% 10 

mmol/l acetic acid. The partially purified bacteriocin solution was stored at 4°C prior 

to use.  

ü Precipitation by ammonium sulphate. Each strains producing bacteriocin-like 

substance were propagated in 1 L of MRS broth and after 16 h of incubation the 

cultures were centrifuged at 19000 x g for 10 min. The cell free solution was 

precipitated with ammonium sulphate (55% saturation). The mixture was stirred for 

24 h at 4°C and latter centrifuged at 19000 x g for 45 min at 4°C. The precipitates 

were resuspended in 20 ml of potassium phosphate buffer (50 mmol/l pH 7.0) and 

exhaustively dialysed overnight through 1000 molecular weigh-cut-off-dialysed 

membrane against the same buffer apposite membrane. The dialysed was then filtered 

(Millex®GV , 0.22 µm) and stored at 4°C until use. 

 

2.2.6 Characterization of bacteriocin-like substances 

The partially purified bacteriocins were characterized for: sensitivity to enzymes, 

spectrum of inhibitory activity and molecular weight. Detection and measurement of 

bacteriocin activity expressed in arbitrary units per ml (AU/ml), as well as proteinaceous 

nature of the substances were carried out as previously described in Villani et al.1994. 

ü Sensitivity of bacteriocin-like substance to enzymes. The sensitivity to proteolytic 

enzymes of each bacteriocin-like substances containing antimicrobial activity was 
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tested by treatment with protease, trypsin, pronase and pepsin. The enzymes (all from 

Sigma, St Louis, MO USA) were used at a final concentration of 1 mg/ml in 

phosphate buffer (pH 7.0). Aliquots (10µl) of the cell free solution were spotted onto 

agar plates containing 20 ml of the appropriate MRS soft agar (0.75% agar) 

inoculated with the cell suspension of Listeria monocytogenes at a final concentration 

of 105 CFU/ml. Then on the plats, near the spot of supernatants were spotted 6 µl of 

each enzyme solution. The plates were incubated for 24h and the appearance of 

inhibitory zones was observed. Proteinaceous nature of the substances was scored 

positive if the halo of inhibition was shaped like as half-moon. 

ü Spectrum of inhibitory activity. Bacteriocin-producing cultures isolated were also 

tested against the strains of spoilage and pathogen bacteria. Food spoilage and 

foodborne pathogenic bacterial strains used as indicator organisms for assays of 

antagonistic activity and respective incubation conditions are reported in Table 2.2. 

The well-diffusion assay was used as described before. The bacteriocins that 

presented a broad spectrum of activity were also assayed using the critical dilution 

assay. 

ü Detection of molecular weight. The molecular mass of bacteriocins was estimated in a 

SDS-PAGE system as described by Schägger H. & von Jagow G. (1987), using 

16.5%, 10% and 4% acrylamide in the separation, spacer and stacking gel 

respectively. Electrophoresis was performed in vertical gels in a Mini-Protean II cell 

(Bio-Rad Laboratories, Richmond, CA, USA) at 200V for 45 min. After 

electrophoresis, the gel was cut in two vertical parts. One part was fixed and stained 

with Coomassie brilliant blue R-250 (1 g/L) in 50% methanol and 10% acetic acid. 

The other part was assayed for antimicrobial activity according to Bhunia et al. 

(1987). Briefly, the gel was fixed for 30 min (25% isopropanol, 10% acetic acid), 
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rinsed with distilled water (1 h initial rinse followed by two washes of 5 min), and 

overlaid with 25 ml of soft TSB (1% agar) seeded with 105 CFU/ml of listeria. After 

incubation at 30°C for 24 h the gel was examined for the presence of an inhibitory 

zone. Molecular Mass Markers for Peptides (Sigma) were used for mass standards. 

 

Table 2.2 - Food spoilage and pathogenic bacterial strains used as indicator organisms 

Indicator strains Source Growth conditions 

Staphylococcus aureus DSM 20231 DSM aTSB 24h at 37°C 

Listeria monocytogenes V7 Carminati TSB 24h at 30°C 

Listeria monocytogenes CAL Carminati TSB 24h at 30°C 

Listeria monocytogenes ATCC 7644 ATCC TSB 24h at 30°C 

Listeria welshmani 3Z Meat TSB 24h at 30°C 

Escherichia coli O157:H7 25 Meat TSB 24h at 37°C 

Salmonella enterica serovar Thompson Poultry TSB 24h at 37°C 

Brochrothrix thermosphacta 7R2 Meat TSB 24h at 20°C 

Pseudomonas sp. 6P2 Meat TSB 24h at 30°C 

Lactobacillus sp. 3A Meat bMRS 24h at 30°C 

Enterococcus faecalis 227 NWC TSB 24h at 30°C 

aTSB: Tryptone Soya Broth (Oxoid, Milan - Italy) supplemented with 0.5% 
yeast extract 
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2.3 RESULTS AND DISCUSSION  

2.3.1 Bacterial isolation and antimicrobial properties 

Of the 2960 isolates, only 13 produced inhibition zones against L. monocytogenes V7. In 

Table 2.3 are reported foods analysed and the diameter of inhibition of strains producing 

bacteriocin-like substance showing positive results after agar spot test against indicator strain. 

In Figure 2.2 is reported the plate with agar spot test against listeria. The diameters of 

inhibition are included between 1.5 and 1.9 cm. The biggest diameter of 1.4 cm inhibition is 

obtained with the bacteriocin producer strain A2. These bacteriocin producing strains were all 

rods, Gram-positive and catalase negative. Only the strain A2 was Gram-positive and catalase 

positive. The strains 162W and AM09 were subjected to rDNA sequencing and were thus 

classified as Lb. curvatus and Lb. plantarum, respectively. Others strains remained 

unclassified. Work is in progress to further classify this strains.  

Table 2.3 - Food analysed and strains producing bacteriocin-like substances showing positive results 
after agar spot test against L. monocytogenes V7 

 

Food Producer strains  
Diameter of 

inhibition (cm) 

Minced chicken and pork 145 Z 1.6 

Soppressata from  Picerno (PZ) EMMEDUE 162 W 1.8  

Sousage pork 149 X 1.5 

Salsiccia dolce ‘Sorrentino’ 8 A 1.7 

Salsiccia fresca from beef A2 1.9 

Soppressata from Picerno(PZ) EMMEDUE 123 T 1.6 

Salame tipo Napoli 26 E. 27 E. 28 E 1.5-1.5-1.7 

Provolone del Monaco from Sorrento 1 060. 131 1.6-1.7 

Provolone del Monaco from Sorrento 2 5SD 1.7 

Artisanal fermented sausages AM 09 1.8 
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Subsequently, the cell free supernatants from the 13 strains were neutralized, sterilized by 

filtration and tested by the well diffusion assay against listeria. The measure of diameter of 

inhibition expressed in cm and the results as arbitrary units per millilitre (AU/ml) against 

listeria for all seven strains are reported in Table 2.4. 

Only the supernatants of seven strains called 8A, AM09, 123TG, 162W, 145 ZG, 149X and 

A2 were found to maintain the antimicrobial activity against the L. monocytogenes V7 

showing a measurable clear zone around the well (Table 2.4). On the other hand, remaining 

strains did not show antimicrobial activity of supernatants, probably due to absorption of 

antimicrobial substances on the cells. The biggest diameter of 1.4 cm inhibition is obtained by 

the strain A2. The supernatants of strains 123TG, 162W, AM09 and 149X showed the best 

activity against L. monocytogenes V7. The diameters of inhibition are included between 1.1 

and 1.4 cm. 

Fig 2.2 - Antimicrobial activity of strains 
producing bacteriocin-like 
substance against L. 
monocytogenes V7 
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Table 2.4 - Inhibitory activity of supernatants of selected bacteriocin-producing strains determined by 
well diffusion assay against L. monocytogenes V7 

 
Antimicrobial activity of supernatants 

Strains pH 

Diameter of inhibition 

(cm) UA/ml 

8A 4.24 1.1 1600 

AM09 4.52 1.3 6400 

123 TG 4.33 1.2 3200 

162 W 4.28 1.3 6400 

145 ZG 4.37 1.3 1600 

149 X 4.49 1.2 3200 

A2 4.75 1.4 1600 

 

2.3.2 Antimicrobial activity of partial purified bacteriocins 

The antimicrobial activity of partial purified bacteriocins against the indicator strain 

Listeria monocytogenes V7 is reported in Table 2.5. The two extraction methods showed 

different results. In fact, the extracts obtained by ammonium sulphate exhibit higher activity 

than the bacteriocins prepared by Amberlite resin. The bacteriocins 162W and 123TG showed 

the best activity against L. monocytogenes V7 of 25600 UA/ml.  

 

Table 2.5 - Antimicrobial activity of bacteriocins purified against L. 
monocytogenes V7 

 
Antimicrobial activity of bacteriocins purified (AU/ml) 

Bacteriocins (Bac) Amberlite resin Ammonium Sulphate 

162W 12800 102400 

123TG 3200 25600 

8A 6400 12800 

A2 nd 6400 

AM09 6400 56200 
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2.3.3 Sensitivity of bacteriocin-like substance to enzymes  

The bacteriocins from the five strains producing antimicrobial substances were assayed 

for sensitivity to hydrolytic enzymes. All antibacterial compounds produced by those strains 

were inactivated by all proteolytic enzymes (protease, trypsin and pronase) except pepsin 

(Table 2.6) indicating that the inhibitory compounds are of proteinaceous nature, a general 

characteristic of the bacteriocins. 

  

Table 2.6 - Effect of enzymes on inhibitory activity lactobacilli determined by well 
diffusion assay 

Enzymes 

 Supernatants  Protease Pepsin Trypsin Pronase 

123 TG + - + + 

162 W + - + + 

8A + - + + 

AM09 + - + + 

A2 + - + + 

 

2.3.4 Antimicrobial spectrum of bacteriocins 

The inhibitory spectra of antimicrobial substances evaluated against a range of Gram-

positive and Gram-negative bacteria are showed in Table 2.7. Each bacteriocin was able to 

inhibit all Listeria monocytogenes strains tested. In addition, Bac162W was also active 

against the strains of Brochrothrix thermosphacta and Lactobacillus sp. 3A and Enterococcus 

faecalis 227. The bacteriocins tested are only active against Gram-positive bacteria. The 

target of bacteriocins is the cytoplasmic membrane, so due to the protective barrier provided 

by the LPS of the outer membrane of Gram-negative bacteria. The bacteriocins are generally 

only active against Gram-positive cells (Stevens, K.A. et al., 1991).  
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Table 2.7 - Antimicrobial spectrum of bacteriocins purified by ammonium sulphate against foodborne 

pathogenic and spoilage microorganisms. 
 

 

 
2.3.5 Molecular mass determination of bacteriocins  

Electrophoretic analysis performed with bacteriocins extracted by ammonium sulphate 

showed a wide band, vertically occupying most of the gel. When the gel was overlaid with the 

indicator bacteria as described by Bhunia test a clear inhibition band in the indicator lawn 

Partial purified bacteriocins (AU/ml) 
Microorganisms 

123TG 162W 8A AM09 A2 

Foodborne pathogenic      

Staphylococcus  aureus DSM 20231 0 0 0 0 0 

Listeria monocytogenes V7 25600 102400 12800 56200 6400 

Listeria monocytogenes CAL 1600 12800 800 12800 100 

Listeria monocytogenes ATCC 7644 3200 12800 3200 12800 800 

Listeria welshmani 3Z 6400 12800 6400 25600 800 

Clostridium perfringens 0 0 0 0 0 

Escherichia coli O157:H7 25 0 0 0 0 0 

Salmonella enterica serovar Thompson 0 0 0 0 0 

Spoilage  

Brochrothrix thermosphacta 1R2 0 12800 0 0 0 

Brochrothrix thermosphacta 3R2 0 12800 0 0 0 

Brochrothrix thermosphacta 7R1 0 12800 0 0 0 

Pseudomonas 6P2 0 0 0 0 0 

Lactobacillus spp. 3A 0 12800 0 6400 0 

Enterococcus 227 100 6400 0 0 0 
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were found (Fig. 2.3). In table 2.8 are reported the molecular mass expressed in kDa of 

bacteriocins purified. The bacteriocins showed molecular mass included between 2.5 and 15.5 

kDa. The bacteriocin AM09 showed biggest molecular weight (15.5 kDa); on the contrary the 

smaller molecular weight was showed by the bacteriocin A2. 

  

 

 

 

 

 

 

 

Bacteriocins Weight (kDa) 

123TG 15.5 

162W 8.1 

8A 6.2 

AM09 15.5  

A2 2.5 

A2 

AM09 

162W 

Fig. 2.3 - Elettrophoretic Gel overlaid with TSB soft agar containing 
Listeria monocytogenes V7. Inhibition bands in the 
indicator lawn of bacteriocins purified: 8A, AM09, 162W 
and A2. 

Table 2.8: Molecular mass of 
bacteriocins  
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3. DEVELOPMENT OF POLYETHYLENE FILMS FOR FOOD 

PACKAGING ACTIVATED WITH AN ANTILISTERIAL 

BACTERIOCIN FROM LACTOBACILLUS CURVATUS 32Y 

 

 

3.1 INTRODUCTION  

Numerous types of food packaging, in combination with different storage techniques can 

be used in order to extend the shelf life of meat. One of the key technological measures 

needed during storage is the preservation of the meat from microbial spoilage and 

contamination/proliferation of pathogenic microorganisms. Listeria species have been found 

in meat and meat products (Johnson, et al., 1990) Foodborne transmission of L. 

monocytogenes has been implicated in human outbreaks of listeriosis involving the 

consumption of various foods. There is a further need to implement antimicrobial packaging 

systems that can prevent the growth of pathogenic bacteria. 

The aims of the second activities of PhD thesis were:  

v to use a bacteriocin produced by Lactobacillus curvatus 32Y active against Listeria 

monocytogenes to activate polyethylene films by different methods,  

v to implement a large-scale process for antilisterial polyethylene films production  

v to verify the efficacy of the developed films in inhibiting the growth of Listeria 

monocytogenes during the storage of meat products. 

3.2 MATERIALS AND METHODS 

3.2.1 Bacterial strains and growth conditions 

Lactobacillus curvatus 32Y (Mauriello et al., 1999) and Listeria monocytogenes V7 were 

maintained in storage at –20°C in 30% glycerol. L. curvatus 32Y was grown in MRS broth 
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(Oxoid) at 30°C and L. monocytogenes V7 in TSB (Oxoid) at 37°C prior to their use in the 

experiments. 

 

3.2.2 Preparation of the bacteriocin 32Y solution 

The partially purified bacteriocin 32Y solution (PPBAC) was prepared with Ambelite Xad 

16 resin as described in Materials and Methods of chapter 2 (see paragraph 2.2.5). The 

PPBAC showing an activity of 102400 AU/ml against L. monocytogenes V7 and was stored 

at 4°C prior to use. The concentration of the bacteriocin solution, expressed in arbitrary units 

(AU) per ml, was determined by an agar diffusion assay as described in chapter 2 (see 

paragraph 2.2.3). 

 

3.2.3 Procedures for antimicrobial polyethylene films preparation 

Four methods of film treatment with bacteriocin 32Y were tested. 

ü Soaking. Samples of coupled polyethylene-oriented polyamide (PE-OPA) films (2 x 2 

cm2) were soaked in PPBAC diluted in phosphate buffer 50 mmol/l pH 7.00 at 

concentration of 0, 6400, 12800 and 25600 AU ml/l for 10 min and 1, 6 and 8 hours. 

After the soaking, the films were air dried and assayed for antimicrobial activity 

against L. monocytogenes V7 as described below. 

ü Spray-coating. PPBAC diluted in 70% iso-propanol at a concentration of 6400 AU/ml 

was sprayed onto PE-OPA film samples (20 x 20 cm2). The films were then treated 

with warm air in order to let the solution dry and promoting a homogenous 

distribution of the bacteriocin onto the surface of the plastic film. After the treatment 

the films were assayed for antimicrobial activity against Listeria monocytogenes V7 

as described below. 
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ü Industrial production of bacteriocin coated PE-OPA films. The coating procedure 

was also used to produce bacteriocin coated PE-OPA films in an industrial plant 

patent right of Flex Packaging AL spa from Cava de’ Tirreni (Salerno). A solution of 

PPBAC in 70% isopropanol was prepared with an activity of 6400 AU/ml against L. 

monocytogenes V7 and used in a large scale coating plant; a scheme is depicted in 

Figure 3.1. A 46 cm wide PE-OPA film (300 m in length) was employed for the 

activation. Briefly, PPBAC solution was spread on the PE-OPA film in thin layer by a 

spreading roll that dipped in a vessel containing the antimicrobial solution. The 

isopropanol fraction of the PPBAC solution was immediately evaporated in a warm 

air tunnel at 70°C. Eventually, the activated film was cooled at room temperature and 

collected in a reel. The antimicrobial activity of the activated PE-OPA films was 

tested, as described below, soon after the treatment and after 24 h, 1, 2, and 3 weeks 

and 1, 2 and 3 months during which the film reel was kept at room temperature. 

Fig. 3.1 - Industrial plant for PE-OPA film treatment  

Inlet air 

 

Vessel with 
bacteriocin solution 

Treated film 

Warm air (70°C) tunnel  

Untreated film 

Outlet air 

Spreading roll 
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ü Incorporation of lyophilized BAC32Y during plastic film extrusion. The PPBAC 32Y 

solution at concentration of 6400 AU/ml, determined against L. monocytogenes V7, 

was freeze dried. One hundred grams of powdered low density polyethylene (0.9 

g/cm3 and melt flow index at 190°C=5.5 g/min) was blended with 0.05 – 0.1 – 0.2 – 

0.4 e 0.8 g of lyophilized PPBAC 32Y. Film was produced at Dipartimento di 

Ingegneria Chimica Alimentare from Università degli Studi in Salerno, using a pilot 

plant extruder equipped with a plain head and a single screw. The temperature profile 

was 190/180/175/184°C, from the first barrel zone to the dye; screw speed was 75 

rpm. The plastic films produced under these conditions were 50 µm thickness and 10 

cm wide. Control film was produced with no addition of bacteriocin. 

 

3.2.4 Antimicrobial activity assay of the developed PE-OPA films 

After the above treatments of activation with the bacteriocin 32Y the PE-OPA films were 

assayed for antimicrobial activity against the indicator Listeria monocytogenes V7. Samples 

(2 x 2 cm2) of the treated PE-OPA films were located onto the surface of a TSB (Oxoid) soft 

(0.75%) agar plates seeded with 2.5% of an overnight culture of Listeria monocytogenes V7. 

The treated face of the film was in contact with the agar, untreated films were also assayed as 

negative controls. The plates were incubated at 37°C for 16 h and the antagonistic activity 

was evaluated by observing a clear zone of growth inhibition in correspondence of the active 

PE-OPA film. 

In order to resemble a superficial development of listeria on the surface of food products and 

the antimicrobial effect of the developed films on superficial growth of listeria, a further 

inhibition assay was performed. 0.1 ml of a suspension containing about 1.0 x 105 UFC/ml of 

Listeria monocytogenes V7 were spread plated on TSB agar plates, the active face of the 

bacteriocin treated PE-OPA film was located in contact with the agar surface and the Petri 
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dish was incubated at 37°C for 16 h. After the incubation, the antimicrobial activity was 

revealed by the absence of growth of the indicator Listeria in the part of the plate in contact 

with the activated PE-OPA film. 

 

3.2.5 Adsorption and release of the Bac 32Y from the PE-OPA films 

For adsorption assays, 20 µl of PPBAC were spotted on the surface of samples of 

untreated PE-OPA films, removed after 1, 2, 3, 5 and 10 min and tested for antimicrobial 

activity on TSB agar plates inoculated with Listeria monocytogenes V7 as above described. 

For bacteriocin release assays, the simulating solution chosen was water, as recommended by 

analytic method defined in DM 21 Marzo 1973, which indicates water as simulating solution 

to be used for release experiments regarding meat products. Therefore, 20 µl of sterile 

deionized water were spotted onto the surface of industrially developed PE-OPA films and 

removed for every 5 min for 1 h. Afterwards, both film and water spots were assayed for 

antimicrobial activity against Listeria monocytogenes V7. 

 

3.2.6 Antilisterial activity of bacteriocin 32Y coated films during the storage of meat 

products: pork steaks and minced beef 

The industrially developed antilisterial PE-OPA film in challenge tests of control of L. 

monocytogenes growth during the storage of meat products. Pork steaks were superficially 

spiked with a 2 ml suspension of Listeria monocytogenes V7 at 1.0 x 106 CFU/ml, the steaks 

were then packed with the active PE-OPA films and stored at 4°C. Steaks packed with 

untreated films, and unpacked steaks were included in the analysis as controls. After 0, 24, 48 

and 72 h of storage, selective viable counts of listeria on Oxford agar (Oxoid) were performed 

on 4 pieces (3.8 cm2 each) of pork steak ten-fold diluted in a quarter Ringer solution (Oxoid). 

The experiments were performed in triplicate and the results were expressed as CFU/cm2. 
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Similarly, minced beef was contaminated at 1% with a suspension of L. monocytogenes V7 at 

1.0 x 106 CFU/ml and 45 g hamburgers were prepared 1 cm thick. The hamburgers were 

packed on both faces with the antilisterial PE-OPA films and stored at 4°C. Hamburgers 

unpacked and packed with untreated films were included in the analysis as controls. After 0, 

24, 48 and 72 h of storage, selective viable counts of Listeria on Oxford agar were performed 

and the results were expressed as CFU/g. 

3.3 RESULTS 

3.3.1 Antimicrobial activity of polyethylene coated with bacteriocin 32Y  

The activation of PE-OPA films with the bacteriocin 32Y was performed by different 

methods. The soaking procedure yielded positive results; in fact, after immersion for different 

times of the PE-OPA films into bacteriocin 32Y solutions at different concentrations, the 

films showed to be always active against L. monocytogenes V7 in agar inhibition assays. In 

all the cases untreated films and the polyethylene films obtained after extrusion did not show 

any antimicrobial activity. An example of the detection of antimicrobial activity of the 

bacteriocin-soaked PE-OPA films is shown in Figure 3.2 (Panels A and B). There was no 

difference in inhibition intensity when films were treated for 10 minutes (Fig. 3.2, panel A) 

and 1 h (Fig. 3.2, panel B). Moreover, the growth inhibition area was not confined to the film 

area but irregularly spread across the plate (Fig. 3.2, panel A). 

 
Fig. 3.2 - Antimicrobial activity of bacteriocin-soaked PE-OPA films against the indicator 

strain. A, antimicrobial activity after 10 min soaking; B, antimicrobial activity 
after 1 h. 
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In order to assess whether the bacteriocin was actually absorbed by the surface of the PE-OPA 

film or migrated from the cut margins into the film, another experiment was carried out. 

Aliquots of the PPBAC 32Y solution at 6400 AU/ml were spotted on the surface of the film 

for different contact times and the antimicrobial activity of the films was then tested. As 

shown in Figure 3.3, the antimicrobial activity was observed in correspondence to the spot 

area and the intensity of the activity was the same, regardless of the bacteriocin solution 

contact time. 

 

 

 

 

 

The same PPBAC 32Y solution at 6400 AU/ml was sprayed on the surface of the plastic films 

and the results of the antimicrobial activity are shown in Figure 3.4. Also in this case the 

spray-activated films showed antilisterial activity and it could be noted that the bacteriocin 

diffused from the plastic film as the inhibition zone was not confined to the film area.  

Fig. 3.3 - Antimicrobial activity of PE-
OPA films spotted with 
PPBAC 32Y solution at 6400 
AU/ml. The inhibition zones 
correspond to 2, 3, 4, 5 and 10 
min of PPBAC 32Y contact 
with the film. 
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Fig. 3.4 - Antimicrobial activity of the PE-OPA film spray-activated with 
PPBAC 32Y solution at 6400 AU/ml against the indicator strain 
Listeria monocytogenes V7. A, treated film; B, untreated film. 

 
 
The spray-coated PE-OPA films were also assayed for activity against superficial growth of 

Listeria monocytogenes V7 on agar plates. As shown in Figure 3.5, the superficial growth of 

indicator strain was limited to the area surrounding the activated film that could clearly inhibit 

the development of the pathogen; in contrast, the pathogen could grew homogeneously on the 

surface of the plate and underneath the untreated PE-OPA film used as control (Fig. 3.5, panel 

B). 

 

Fig. 3.5 - Antimicrobial activity of the PE-OPA film spray-activated with 
PPBAC 32Y solution at 6400 AU/ml against the indicator strain 
Listeria monocytogenes V7 spread-inoculated on TSA plates. A, 
treated film; B, untreated film. 
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Since the bacteriocin 32Y showed good potential for the development of antimicrobial PE-

OPA films, an industrial procedure of coating was developed in order to produce 32Y 

activated PE-OPA films in an industrial plant. The activation of the PE-OPA films did not 

alter their mechanical properties nor influenced its transparency and appearance. Moreover, 

the activated films did not show solvent release as detected by head space gas 

chromatography analysis (Figure 3.6). 
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Fig. 3.6 - Results of head space gas chromatography analysis A: treated film B: untreated film  
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Interestingly, the coated films displayed a clear and stable antilisterial activity during 3 

months after the treatment. As shown in Figure 3.7, the antimicrobial activity of the 

bacteriocin coated PE-OPA films was tightly confined to the area of the film and was not 

diffused across the plate as did the antimicrobial activity of soaked and sprayed films. 

 

 

Fig. 3.7 - Antimicrobial activity of the PE-OPA film coated in the industrial plant 
with PPBAC 32Y solution at 6400 AU/ml against the indicator strain 
Listeria monocytogenes V7. A, treated film; B untreated film. 

 
The coated films were also subjected to experiments release of the bacteriocin as consequence 

of prolonged contact of the film with water spots. The water spots collected after different 

times (every five minutes for 1 h) did not show any antimicrobial activity in agar plate assays. 

However, the bacteriocin-coated PE-OPA films, after being assayed for bacteriocin release in 

water spots, displayed loss of antilisterial activity in correspondence of the zones where the 

water spots were left. 

 

3.3.2 Effect of antimicrobial packaging in meat products  

The industrially developed antimicrobial films were also used in challenge tests of storage 

of meat products artificially contaminated by Listeria monocytogenes V7. The results of the 

viable counts of listeria in meat during the storage of meat in antimicrobial and control plastic 

films are reported in Table 3.1. 
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Table 3.1 - Viable counts of Listeria monocytogenes V7 in pork steak and in hamburgers during 
storage at 4°C for 72 h. 

 

 

 

 

 

 

 

 

L: meat contaminated with listeria 
LF: meat storage untreated film 
LFB: meat storage in antimicrobial film 
a: average of the three replicates ± standard deviations 
 

 

The results of the viable counts of Listeria on pork steaks at different times of storage at 4°C 

are reported in Figure 3.8. The film was washed prior to viable counts and the washing liquid 

was plated on Oxford agar plates yielding only occasionally viable listeria counts after 48 h at 

37°C. The trend of the Listeria population appeared to be the same during the storage of the 

pork steaks in PE-OPA films both with and without bacteriocin treatment. However, the 

viable counts of Listeria were lower during the whole period of storage when the pork steaks 

were packed with bacteriocin activated films (Fig. 3.8). Good results were also obtained by 

storing hamburgers in bacteriocin activated films. The initial load of Listeria was reduced of 

almost 1 log during the first 24 h of storage (Fig. 3.9). Moreover, the Listeria viable counts 

after 24 h of storage in activated films were kept lower than the counts of hamburgers packed 

with untreated films or unpacked hamburgers (Fig. 3.9). 

 

 

Viable count of Listeria monocytogenes V7. 

Time 

(hours) 

Pork steak 

UFC/cm2 

 Hamburgers 

UFC/g 

 LF LFB  L LF LFB 

0 208 ± 79a 208 ± 79  16233 ± 4966 16233 ± 4966 16233 ± 4966 

24 105 ± 9 89 ± 13  13350 ± 1202 15100 ± 2687 2200 ± 163 

48 98 ± 0 59 ± 37  11550 ± 3464 10050 ± 70 3800 ± 320 

72 180 ± 144 120 ± 27  9150 ± 3747 10100 ± 3535 5233 ± 980 
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Fig. 3.8 - Viable counts of listeria population during the storage at 4°C of pork steaks 
spiked with Listeria monocytogenes V7. 
 ( n ) Steaks packed with industrially developed bacteriocin activated PE-
OPA film; ( n) Steaks packed with untreated film. 

Fig. 3.9 - Viable counts of listeria population during the storage at 4°C of hamburgers 
spiked with Listeria monocytogenes V7. 
(l) Unpacked hamburgers; (n) Hamburgers packed with industrially developed 
bacteriocin activated PE-OPA film; (•) Hamburgers packed with untreated 
film. 
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3.4 DISCUSSION 

For active antimicrobial packaging to be effective, an adequate procedure of activation is 

necessary in order to assure that the antimicrobial is linked to the film and to keep the 

antimicrobial activity during the film shelf life. Moreover, the activated film has to exert its 

preservative antimicrobial potential during packed food storage. 

In this study different methods were used to bind the bacteriocin 32Y from Lactobacillus 

curvatus 32Y to PE-OPA films. All the activation procedures adopted, except extrusion, were 

successful, although the results of the antimicrobial activity were substantially different. The 

soaking procedure proved to be effective. However, the distribution of the bacteriocin on the 

surface of the soaked PE-OPA films was shown to be not homogeneous and the results of the 

antilisterial activity suggested that the bacteriocin irregularly diffused from the film into the 

agar. The further test consisted of spotting the bacteriocin on the surface of the PE-OPA film, 

which demonstrated that even a quick contact of the bacteriocin with the surface of the film 

conferred activation. As it appears in Figure 3.3, the bacteriocin seemed to migrate from the 

spots and it was not possible to determine whether the bacteriocin migrated into the film from 

the margins. This is an important characteristic of the substance to be employed because it is 

essential that preservatives have low diffusivity in their host film and remain at the surface of 

the food. In fact, diffusion into the food matrix may result in reduction of the preservative 

concentration at the surface increasing the possibility for the microorganisms to escape their 

antimicrobial effect (Han and Floros 1997; Scannel et al., 2000). The spray-coating also 

yielded positive results. Also in this case the bacteriocin did not prove to bind homogeneously 

and firmly to the surface of the film. The spray-coated films proved to be effective in 

containing the surface-development of Listeria monocytogenes V7 on agar plates (Fig.3.5). 

As a matter of fact, this should be the function of an antimicrobial film used for fresh food 

packaging where the possible contamination of the food is on the surface and thus the 
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prevention of the surface microflora is important for long and safe food storage. Many studies 

have dealt with the activation of plastic films with bacteriocins. Several authors reported on 

the efficacy of antimicrobial films activated by nisin alone or in combination with other 

preservatives or chelators and by using different methods of activation (Siragusa et al., 1999; 

Scannell et al., 2000; Coma et al., 2001; Cutter et al., 2001). Some other authors (An et al., 

2000; Kim et al., 2000; Lee et al., 2004) described a coating of low density polyethylene 

films with bacteriocins different from nisin. However, the procedures used for the activation 

of the films were not shown to be adjustable to an industrial production, although the 

antimicrobial PE film proved to be effective in inhibiting the growth of Listeria and 

Micrococcus (An et al., 2000; Kim et al., 2000; Lee et al., 2004). Similarly, Ming et al. 

(1997) developed pediocin-coated casings that showed useful in controlling the growth of L. 

monocytogenes in meat and poultry products. Also in this case, the spray-mediated activation 

procedure did not exactly fit an industrial model of production. The spray-coating was also 

used by Natrajan and Sheldon (2000) to develop antimicrobial films activated with nisin. 

Therefore, to date little work has been done to prove the suitability of the bacteriocin and of 

the activation system for a real production. In this study, a film coating procedure with 

bacteriocin 32Y was developed using an industrial plant. The PE-OPA films used for the 

active packaging manufacture were checked for their necessary technological standard 

characteristics such as solderability, resistance to tensile stress, transparency etc. before and 

after the activation treatment and they were always shown to keep their quality after being 

coated with bacteriocin 32Y. Only about 1 l of PPBAC 32Y solution at 6400 AU/ml were 

used to activate about 300 m of PE-OPA film and this proved the process to be not expensive 

as only 500 ml of Lactobacillus curvatus 32Y in broth are needed to produce 1 litre of 

PPBAC 32Y ready for the coating. The bacteriocin coated films were active against Listeria 

monocytogenes V7 in agar plates assays and yielded clean, homogeneous and confined 
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inhibition areas, suggesting that the bacteriocin was uniformly bound to the surface of the 

film and did not diffuse irregularly into the agar. Therefore, the procedure used for the large-

scale PE-OPA film activation, including spreading of the bacteriocin on the surface of the 

film and immediate air drying of the bacteriocin solution by a hot air flux, did not negatively 

affect the antimicrobial potential of the bacteriocin 32Y. Experiments of migration of the 

bacteriocin in water, used as simulator of meat products according to the regulation 

2002/72/CE, demonstrated that the coated films lost the antilisterial activity in 

correspondence of the water-treated zones, although no residual antimicrobial activity was 

registered in the water drops after their contact with the activated film up to 1 h. The 

concentration of the bacteriocin released in water is probably below the detection limit of the 

agar diffusion assay used to detect the antagonistic activity. However, migration and activity 

of the bacteriocins incorporated in food packaging and their effect on microbial development 

should be assessed in vivo in challenge tests directly performed in foods. Before applications 

to food products can be considered, it is important to first ascertain, insofar as is possible, the 

shelf life of the bioactive films. Previous studies have shown that bacteriocins retain their 

activity when applied to various surfaces (Daeschel and Mc Guire 1992; Bower et al., 1995a, 

1995b; Ming et al., 1997). Experiments used to qualitatively monitor the activity and stability 

of the bacteriocin coated PE-OPA films developed in this study demonstrated that the 

antilisterial activity was still stable after 4 months of film storage at room temperature. 

Moreover, the mechanical and standard required properties of the PE films were also stable 

during the storage proving to be unaffected by the bacteriocin treatment. Therefore, the 

developed active PE-OPA films, appearing suitable for a real production, were assayed for 

their antimicrobial activity against Listeria monocytogenes V7 in challenge tests involving 

storage of fresh meat products at refrigeration temperatures. The growth of the indicator 

during the storage of pork steaks was inhibited by both treated and untreated films and the 
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effect of the activated films in providing an increasing reduction of Listeria population 

compared to the control was fully different only after the first 24 h. In contrast, a significant 

decrease in Listeria viable counts was registered during the first 24 h of storage of 

hamburgers packed with antimicrobial PE-OPA film. The overall effect of control of the 

growth of Listeria resulted better in hamburgers than pork steaks storage. This may be due 

either to the higher superficially-concentrated contamination of Listeria on the pork steaks, 

which was more difficult to control, or to the nature of the meat products itself and their 

possible effect on bacteriocin release and action. In both cases, moreover, an increase in 

Listeria viable counts was registered after 48 hours of storage, which may be due to the 

particular mechanism of action of bacteriocins that can inhibit as many cells as molecules 

available in the medium (Moll et al., 1999). Increasing the concentration of the bacteriocin in 

the coating solution may be also experimented with the aim of improving the preservative 

performance of the bacteriocin coated PE-OPA films in storage of meat as well as other food 

products. Addition for further hurdle molecules such as EDTA, lisozima, citric acid, lactic 

acid, lauric acid into the coating solution may improve the antimicrobial performance of 

bacteriocin activated films as reported in other studies. (Natrajan and Sheldon 2000). 

Antimicrobial packaging can play an important role in reducing the risk of pathogen 

development, as well as extending the shelf-life of foods although it should not substitute for 

good quality raw materials and good manufactures practices. Studies of new food-grade 

bacteriocins as preservatives and development of suitable systems of bacteriocin treatment of 

plastic films for food packaging are important issues in applied microbiology and 

biotechnology, both for implementing and improving effective hurdle technologies for a 

better preservation of food products. 
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4. EFFECT OF A BACTERIOCIN-ACTIVATED POLYETHYLENE 

FILM ON LISTERIA MONOCYTOGENES AS EVALUATED BY 

VIABLE STAINING AND EPIFLUORESCENCE MICROSCOPY 

 

 

4.1 INTRODUCTION 

The aim of this third activity of project thesis was to examine the effect of the 

bacteriocin 32Y on resting and growing populations of L. monocytogenes in function of 

time and temperature of exposure to the bacteriocin. Moreover, the effect of bacteriocin 

activated polyethylene films on L. monocytogenes population was also evaluated both 

when the pathogen was directly in contact with the active film and when the film was used 

to pack a liquid medium contaminated by L. monocytogenes and frankfurters superficially 

contaminated with pathogenic strain.  

 

4.2 MATERIALS AND METHODS 

4.2.1 Bacterial strains, growth conditions and bacteriocin production 

Listeria monocytogenes V7 was used as indicator strain for all the challenge tests. The 

strain was daily cultivated in Tryptic Soy Broth (TSB, Oxoid) at 30°C. Lb. curvatus 32Y was 

used as bacteriocin 32Y producer strain and was cultivated in MRS broth (Oxoid) at 30°C. 

The bacteriocin solution to be used for the activation of polyethylene films was obtained as 

previously described in chapter 2 (see paragraph 2.2.5). After the extraction and partial 

purification with Amberlite, the concentration of the bacteriocin solution, expressed in 

arbitrary units (AU) per ml, was determined by an agar diffusion assay. The bacteriocin 

solution was stored at 4°C prior to use. 
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4.2.2 Viable staining 

The reduction of L. monocytogenes V7 populations was evaluated by using Live/Dead 

BacLight Bacterial Viability Kit (Molecular Probes Inc., Eugene, OR, USA). The stock 

solution of the two fluorochromes was prepared with 0.7 µl of SYTO 9 and 1 µl of propidium 

iodide in 330 µl of sterile deionized water. After the viable staining, the fluorescent cells were 

observed using a Nikon Eclipse E400 epifluorescence microscope equipped with an UV lamp 

and a 100 X magnification objective. An untreated control of L. monocytogenes V7 was 

analysed in each determination as control. Enumeration of cells was performed randomly 

counting 30 microscopic fields.  

 

4.2.3 Effect of BAC 32Y activated polyethylene film on L. monocytogenes V7 

A solution of bacteriocin in 70% of isopropanol was prepared with an activity of 6400 

AU/ml against L. monocytogenes; the bacteriocin solution was used to industrially 

manufacture antimicrobial polyethylene films in a large scale coating plant as previously 

described in chapter 3 (see paragraph 3.2.3). The antagonistic activity of the polyethylene 

films was checked by observing a clear zone of growth inhibition in correspondence of the 

activated PE film in contact with TSA (Oxoid) inoculated with the indicator strain. 

 

4.2.4 L. monocytogenes V7 in contact with activated polyethylene film  

In order to monitor the behaviour of Listeria in contact with the antimicrobial film, the 

bacteriocin-activated film was stuck on a microscopy slide and 20 µl of BPS or TSB 

containing about 107 CFU/ml of L. monocytogenes V7 were spotted on the film. The viable 

staining solution (6 µl) was directly applied to the suspension on the film; live and dead cells 

were counted immediately and after 2, 5, 7, and 24 h of incubation at room temperature (RT) 

or at 4°C in a humid chamber. The epifluorescence microscopy counts were performed 
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directly on the film stuck onto the slide. The results were expressed as average number of 

cells per microscopic field calculated counting 30 microscopic fields.  

Bacteriocin release from the polyethylene film was also evaluated. A sample of activated 

polyethylene film and a phosphate buffer saline (PBS: 50 mmol/L, pH 7.00) were pre-adapted 

at 4°C and RT. After 1 h, 20 µl of PBS were spotted onto the surface of the activated film, 

sucked every 5 min for 1 h and assayed for antimicrobial activity against L. monocytogenes 

V7 in agar diffusion assays as described in chapter 2 (see paragraph 2.2.3). 

 

4.2.5 Efficacy of a bacteriocin 32Y activated package for the inhibition of L. monocytogenes 

V7 in liquid medium 

An active package was obtained by using antimicrobial films as internal coating of a 

plastic package. A sheet of antimicrobial film of 70 x 70 cm2 was cut in a cross-like shape and 

the borders were thermally sealed to obtain a pack of 13 x 13 x 9 cm3 (Fig. 4.1).  

           

Fig. 4.1 – Antimicrobial package after thermally sealed 

 

The package was filled with 1 L of L. monocytogenes V7 suspensions (107 CFU/ml) in PBS 

(Power buffer solution) or TSB and stored at 4°C and room temperature. Viable staining of 

the suspensions was performed immediately and after 2, 5, 7 and 24 h.  
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One ml aliquots of L. monocytogenes V7 suspensions after exposure to the antimicrobial film 

were filtered through a black, non-fluorescent polycarbonate membrane (25 mm diameter, 0.2 

µm pore size, Sigma). Then 10 µl of the fluorochromes stock solution were applied to the 

filters and the membranes were incubated in the dark for 15 min at room temperature. The 

number of live and dead cells was calculated as follows: 

N = x • A/a • V 

Where: 

N = cells/ml;  

x = the average number of cells per observation field (based on 30 fields);  

A = filtration area (mm2);  

a = observation field area (mm2); 

V = volume of filtered sample. 

 

4.2.6 Efficacy of a bacteriocin 32Y activated package for the inhibition of L. monocytogenes 

V7 contaminating the surface of frankfurters 

Pork frankfurters were superficially contaminated by immersion in a cell suspension at 107 

CFU/ml of L. monocytogenes V7. The frankfurters were then packed in bacteriocin 32Y 

activated film and stored at 4°C for 48 h. During the storage, the frankfurters were washed 

with 20 ml of PBS, the solution was filtered through a black, non-fluorescent polycarbonate 

membrane (25 mm diameter, 0.2 µm pore size, Sigma), and then subjected to viable staining. 

The results were expressed as number of live or dead cells per package. Frankfurters packed 

in untreated films were analysed as control. Each time, the viable staining was also performed 

on the film surface as above described in order to detect cells possibly attached to the film. 
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4.2.7 Statistical analysis.  

All the experiments were repeated three times and the final results were calculated as the 

average of the replicates; standard deviations were calculated. For each sample, t-test analysis 

was carried out to ascertain that there were no significative differences between the averages 

calculated on the basis of the results of 30 microscopic fields count. Significance was declared 

at P<0.05. 

 

4.3 RESULTS 

4.3.1 L. monocytogenes V7 in contact with a bacteriocin activated polyethylene film 

Bacteriocin 32Y activated polyethylene films were industrially obtained as previously 

described in chapter 3 (see paragraph 3.2.3). Figure 4.2 showed antimicrobial activities 

against L. monocytogenes V7.  

 
Fig. 4.2 – Antimicrobial activity of the polyethylene film coated in the industrial plant with PPBAC 

32Y solution at 6400 AU/ml against the indicator strain Listeria monocytogenes V7. (a), 
treated film, (b) untreated film; (c) treated film after rubbing. 

 

A PBS suspension (20µl) of L. monocytogenes V7 (about 107 CFU/ml) was spotted onto the 

surface of the film, incubated at RT and 4°C and monitored over the time by directly applying 

the viable staining procedure to the plastic film stuck on a microscopy slide. Immediate 

reduction of the number of viable cells was observed after the contact of the PBS suspension 

b 

a 

c 



 - 61 - 

with the activated film compared to the control (Fig. 4.3 panels A, B). However, while at RT 

the average number of live cells per microscopic field dropped to zero within two hours (Fig. 

4.3A), at 4°C the initial number of live cells remained constant for 7 hours (Fig. 4.3B). When 

a TSB suspension with L. monocytogenes V7 (about 107 CFU/ml) was spotted on the 

activated film, an immediate reduction of the number of viable cells was registered compared 

to the control; regardless of the incubation temperature, the number of live cells per field 

decreased to zero within two hours (Fig. 4.3C, D). By contrast, both at RT and at 4°C, the 

population of L. monocytogenes V7 in contact with the untreated film rapidly increased (Fig. 

4.3C, D). 

Remarkably, after a few minutes of contact the decrease of live cell number was not linked to 

an increase in dead cells, indicating that the cells were directly damaged to lysis as result of 

the bacteriocin action. The time-dependent fate of Listeria population in contact with the 

bacteriocin activated film is shown in Figure 4.4. Immediately after the contact between film 

and suspension (time zero), both live and dead cells of Listeria could be observed, while after 

two hours of incubation no cells were present as result of lysis and background fluorescence 

caused by cellular debris was observed (Fig. 4.4). 
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Fig. 4.3 – Counts of live cells of L. monocytogenes V7 after viable staining following the contact with the bacteriocin 32Y activated polyethylene 

film. (•) untreated film used as control (•) bacteriocin activated polyethylene film. (A) PBS suspension at RT; (B) PBS at 4°C; (C) TSB 
at RT; (D) TSB at 4°C.  

A B 

C D 
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A

B

C 

 
 
 
 
 

Fig. 4.4 – Viable staining of 
L. monocytogenes V7 
suspensions in direct contact 
with polyethylene films.All 
the observation were 
performed directly on the 
surface of the polyethylene 
film stuck on a microscopy 
slide. (A) live cells on 
untreated polyethylene film 
used as control; (B) live and 
dead cells of L. 
monocytogenes V7 on the 
bacteriocin activated film 
observed immediately after 
the contact (time zero) 
between cellular suspension 
and film; (C) cellular debris 
observed in epifluorescence 
microscopy after two hours 
of incubation of L. 
monocytogenes V7 
suspensions spotted onto the 
surface of a bacteriocin 
activated film.  
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4.3.2 Behaviour of L. monocytogenes V7 in liquid media packed in bacteriocin activated 

polyethylene film 

Liquid medium contaminating with listeria was packed in bacteriocin 32Y activated 

polyethylene films spread with industrial plant. An active package was manufactured as described 

in materials and methods, filled with 1L of L. monocytogenes V7 suspension in PBS or TSB 

(about 107 CFU/ml) and incubated at RT or 4°C. 

Regardless of the incubation temperature, the live listeria population in PBS was reduced of about 

1 log in 24 h (Fig. 4.5, Panels A, B). However, while an immediate appearance of almost 106 dead 

cells was observed at RT, the occurrence of dead cells at 4°C was registered in 2 h (Fig. 4.5B). 

The untreated pack used as control did not have effect on the population as dead cells were never 

observed and the number of live cells remained constant. When the activated film was used to 

control a growing population of L. monocytogenes V7 in TSB, a slight reduction of live cells was 

observed at both temperatures of incubation. The number of live cells was kept lower than the 

control at RT for the first 7 h (Fig. 4.5C). The treated and untreated films gave about the same 

result at 4°C where the growth was controlled for the first 24 h followed by an increase of live 

population after 24 h (Fig. 4.5D). 
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Fig. 4.5 – Trends of (•) live and (•) dead cells of L. monocytogenes V7 in liquid media packed in bacteriocin activated polyethylene film and (•) 

live cells of L. monocytogenes V7 packed in untreated film used as control. The counts were performed in 1 ml of filtered suspensions 
after viable staining. (A) PBS at RT; (B) PBS at 4°C; (C) TSB at RT; (D) TSB at 4°C.  
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4.3.3 L. monocytogenes V7 population in frankfurters 

The effect of the activated polyethylene film was evaluated on L. monocytogenes 

superficially contaminating frankfurters during storage at 4°C. The results are reported in 

Figure 4.6. The frankfurters stored in untreated packaging did not show reduction of live cells 

per package during storage and did not show the presence of dead cells. However, when the 

frankfurters were stored in active package a 0.5 log reduction was obtained after 7 h of 

storage followed by a complete extinction of live cells of Listeria after 24 h. In addition, dead 

cells appeared soon after the frankfurters were packed (Fig. 4.6) although their number 

decreased to zero in 48 h as consequence of cell lysis. 
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No cells were found in 30 field of observation of the internal surface of treated and untreated 

polyethylene films at each time of analysis, indicating that the cells remained attached to the 

Fig. 4.6 – Changes of L. monocytogenes V7 population superficially contaminating 
frankfurters during storage at 4°C in bacteriocin activated polyethylene 
film. (•) live and (•) dead cells of L. monocytogenes V7 in bacteriocin 
activated packages; (•) live cells of L. monocytogenes V7 in untreated 
packages used as control. 
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sausage after the package was removed. The cells were efficiently removed from the surface 

of the frankfurters, as repeated washings of the frankfurters did not lead to more cells to be 

analysed. 

 

4.4 DISCUSSION 

In this work, the efficacy of a bacteriocin 32Y activated polyethylene film was evaluated 

on resting and growing populations of L. monocytogenes. The viable staining procedure by 

using the Live/Dead BacLight Bacterial Viability Kit was chosen to rapidly assess the 

bacterial viability in the bacteriocin treated samples. This method is used to microscopically 

count live and dead bacteria in environmental samples or in laboratory conditions, and several 

applications can be found in the recent literature (Boulos et al., 1999; Decker, 2001; Bunthof 

et al., 2001; Nohynek et al., 2003; Lee et al., 2003). In the Live/Dead BacLight bacterial 

viability kit the SYTO 9 labels all the bacteria in a population staining them green, while 

propidium iodide penetrates only bacteria whose cell membrane has been damaged, staining 

them red. Therefore, undamaged cells will be stained green and scored as live whereas cells 

whose membrane is damaged will appear red and scored as dead. In each experiment 

performed in this work, the contact of the bacteriocin 32Y with cells of L. monocytogenes 

turned all or part of the cells into red. This not only confirms the antimicrobial activity of 

BAC32Y against L. monocytogenes carried out before in other experiments, but also supports 

the hypothesis that the action of this bacteriocin against listeria cells involves the cytoplasmic 

membrane as target of the bactericidal effect. Membrane damage and cell permeabilisation 

caused by bacteriocins (Cleveland et al., 2001) would be responsible for propidium iodide 

entry inside the cell and for cell colour turning red. Beyond supporting the mechanism of 

action of bacteriocins this effect also makes it possible to use the viable staining technique to 

study bacterial viability following exposure to bacteriocins. 



 68 

When the activated film was used for the packaging of PBS containing high loads of L. 

monocytogenes V7, dead cells promptly appeared indicating that the bacteriocin was exerting 

its bactericidal effect into the buffer. This effect was shown to be dependent on the 

temperature and we supposed this to be caused to a slower release of the bacteriocin from the 

polyethylene film at 4°C. Therefore, the release was immediate at RT, causing an immediate 

occurrence of dead cells; while the effect of the bacteriocin release into the buffer was 

registered only 2 hours later at 4°C (Fig. 4.5A, B). The effect of temperature on bacteriocin 

release from the polyethylene film was confirmed by the release experiments. The bacteriocin 

release experiment showed that at RT the spots of PBS solution were active after 5 min of 

contact showing a 1.10 cm inhibition halo in agar diffusion assay. At 4°C, the same 

antimicrobial activity was registered only after 1 h of contact of the PBS solution with the 

activated film. This clearly showed that the low temperature delays the release of active 

bacteriocin from the film. An improved efficacy of the antimicrobial treatment would be 

obtained at RT even though this does not fit the optimal storage conditions of most food 

products. However, a more effective action of bacteriocins at low temperatures has been 

recently reported by other authors (García et al., 2004). When growing populations of L. 

monocytogenes V7 in TSB were stored into the active package, a control of the growth was 

obtained both at RT and at 4°C. However, the faster release of the bacteriocin at RT kept the 

number of live cells lower than the control up to 7 h; at 4°C the growth was delayed of 24 h 

but in this case there was only a slight influence of the active package because the low 

temperature contained the growth also in the untreated control. The concentration of active 

bacteriocin molecules represents a limiting factor due to the single-hit mechanism of action 

(Tagg et al., 1976). Therefore, in applications of bacteriocin activated antimicrobial films, the 

quantity of bacteriocin that is possibly released or that is actually able to exert the bactericidal 

action has to be considered in order to predict the reduction of the population and the probable 

amount of survivors that may keep growing in the food matrix. We also evaluated the effect 
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of the antimicrobial film on the cells of L. monocytogenes V7 by observing the behaviour of 

the listeria population directly on the surface of the film. The antimicrobial film did not 

interfere with the observations in epifluorescence microscopy as it did not give background 

fluorescence. The cells of L. monocytogenes V7 in PBS were killed at RT in two hours after 

which no more live cells could be observed in 30 fields of observation. The system did not 

prove as much successful for the same PBS suspension at 4°C where after an early reduction 

in 2 h, the number of live cells remained constant for 7 h. Regardless of the incubation 

temperature, in both cases there was an immediate reduction of live cells after the contact 

compared to the control indicating that an immediate effect was exerted on the population. 

Also in this case the temperature influenced the release of the bacteriocin in PBS making the 

system more effective at RT. By contrast, the live Listeria population in TSB rapidly 

decreased regardless of the incubation temperature, probably due to a higher sensitivity of the 

metabolically active cells. Interestingly, the growing cells of L. monocytogenes V7 in TSB 

were rapidly killed in 2 h after the contact with the activated film, while population of L. 

monocytogenes V7 in contact with the untreated film grew rapidly in the first hours of 

incubation both at RT and at 4°C. The close contact of the cell suspension with the 

bacteriocin-activated film determined an exposure of the cells to a high concentration of 

bacteriocin causing a rapid inactivation of the population. In contrast with the previous 

experiment, in this case there was a decrease in live cells that was not accompanied by 

appearance of dead cells. Immediately after the contact between the activated film and the cell 

suspension a number of dead cells were observed, while no dead cells could be observed after 

a few minutes of incubation and only cellular debris occurred after 2 h (Fig. 4.4). This result 

indicates that cells die when they come in contact with the film and cell lysis follows 

immediately afterwards. With the viable staining procedure a red cell with a damaged 

membrane appears red and is scored as dead; however, it may be repaired in appropriate 

conditions. Therefore, the contact with the listeria with the antibacterial film resulted 
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particularly effective as the cells died and lysed at the same time and in this case no cell 

recover can take place. While the active packaging system was not satisfactorily effective in 

controlling the growth of listeria in liquid media, the close contact of the cell suspension with 

the active film reduced the population with efficacy. This result indicates that the system 

would probably work better for solid foods superficially contaminated by the pathogen. The 

results of the challenge test against L. monocytogenes V7 contaminating frankfurters packed 

in the activated film supported this hypothesis by revealing that the antimicrobial package was 

effective in reducing the live population of listeria during the storage at 4°C. The direct 

contact between the cells and the bacteriocin 32Y coated on the film caused an immediate 

reduction of live and appearance of dead cells just after 15 min from the packaging. A 

reduction to complete elimination of both live and dead cells followed in 24 h satisfactorily 

assuring the control of both presence and growth of Listeria on the surface of the frankfurters. 

Luchansky and Call (2004), in a similar experiment could not control L. monocytogenes in 

frankfurters by nisin activated casings unless additional antimicrobials, such as potassium 

lactate and sodium diacetate, were employed. 

 

4.5 CONCLUSION 

The overall results demonstrate that the developed active polyethylene film for food 

packaging has an antimicrobial effect on both resting and growing populations of L. 

monocytogenes. The number of live resting cells could be reduced while the growth in liquid 

medium could be delayed as a consequence of the bacteriocin treatment. Moreover, the direct 

contact of the population with the active film surface resulted effective for an irreversible 

inactivation of the L. monocytogenes V7 population. According to these results, the use of the 

antimicrobial film is encouraged especially for solid food products were the superficial 

contaminants come immediately in contact with the antimicrobial film. The effect would be a 

fast inactivation of the population, which coupled with appropriate condition of storage, might 
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improve the quality and safety and prolong the shelf life of the food products packed in 

antimicrobial films. 
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5. NISIN AND EDTA APPLIED TO FOOD PACKAGING MATERIALS 

TO INHIBIT MICROBIAL POPULATION ON MEATS PRODUCTS 

 

 

5.1 INTRODUCTION 

A plastic active packaging for the storage of milk was never employed before, especially 

for raw milk, although a nisin activated chitosan package was used for pasteurized milk 

storage by Lee et al. (2004). The bacteriocin nisin, discovered in England in 1928, is 

produced by certain strains of Lactococcus lactis subsp. lactis. Structurally, it is a 34-

aminoacid polypeptide, a cationic molecule due to combination of three lysine residues and 

one or more histidine residues (Cleveland et al., 2001). Nisin is believed to bind to the outer 

membrane receptors by conjugation with other cell components (i.e., phospholipids), or by 

aggregation with other proteins (i.e., glycoproteins). Such binding creates ion channels in the 

cytoplasmic membrane, causing the cell permeable (Delves-Broughton, 1990). Nisin is 

generally protected by food ingredients to which it is added, and does not lose its activity by 

processes such as pasteurization or sterilization (Henning et al., 1986). 

The objective of this study was to determine the effectiveness of a packaging film coated with 

nisin to inhibit Micrococcus luteus ATCC 10240 in TSB and the microbial population during 

the storage of milk and to examine the release of the nisin from the activated film. The aim of 

this activities was to study the spoilage related microbial populations in beef steaks and 

hamburgers to investigate the effect of a nisin activated antimicrobial packaging on the beef 

spoilage development at refrigerate condition.   
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5.2 MATERIALS AND METHODS 

5.2.1 Bacterial strains and growth conditions  

Micrococcus luteus ATCC 10240, which is usually used as an indicator strain in the nisin 

bioactivity assay, was daily propagated in Tryptone Soya Broth (TSB, Oxoid) supplemented 

with 0.5% yeast extract at 30°C. 

5.2.2 Bacteriocin preparation and activity 

1 g of nisin (2.5% pure, Sigma Chemical Co.) was suspended in 5 mL of 0.02 N HCl and 

it was centrifuged at 19000 x g for 5 min. The pellet was resuspended by stirring in 5 ml of 

0.02 N HCl and recentrifuged at 19000 x g for 5 min. The supernatant, showing an activity of 

51200 AU/ml against M. luteus ATCC 10240, represented a stock solution of nisin and it was 

stored at 4°C prior to use. The concentration of the nisin solution was determined by an agar 

diffusion and critical dilution assay as previously described in chapter 2. 

5.2.3 Preparation of antimicrobial plastic film and its activity 

The nisin was coated onto low-density polyethylene (LDPE) film. As a preliminary step 

the stock nisin solution was diluted at a concentration of 6400 AU/ml and it was coated 

manually on one side of the film using a coating rod (Fig. 5.1) (Lee et al., 2003).  

 

 
 

Fig. 5.1 - Coating rod  
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The film was dried by exposure to warm air and assayed for antimicrobial activity against the 

indicator M. luteus ATCC 10240. Samples (2 x 2 cm2) of activated film were placed in a Petri 

dish and then covered with TSA soft agar inoculated with 2.5% of an overnight culture of M. 

luteus ATCC 10240. After the incubation at 30°C for 24 h, the antimicrobial activity was 

observed as a zone of inhibition of the indicator organism around the packaging material. 

Besides, the film was rubbed and then assayed for residual antimicrobial activity, in order to 

evaluate the possible removal of the bacteriocin from the film during handling. Untreated film 

was assayed as control. 

 

5.2.4 Antimicrobial efficacy of the nisin-coated polymer film on Micrococcus luteus ATCC 

10240 in TSB 

An active package (13x13x9 cm3) was obtained from the nisin-coated film by thermo-

welding and it was placed into a rigid support in order to simulate the internal side of a brick 

as showed in chapter 4. The active package was filled with 1 liter of M. luteus suspension (107 

CFU/ml) in TSB and stored at 4°C and 25°C. The cultures were analyzed by viable staining 

and plate counts as described below at 0, 1, 2, 5, 7, 24 and 48 h. An untreated package was 

included in each determination as control. 

 

5.2.5 Antimicrobial efficacy of the nisin-coated plastic film on the microbial stability of milk 

during storage 

In the challenge tests three different types of milk were used: raw cow milk, pasteurized 

milk and U.H.T. milk, the latter of which was artificially inoculated with a M. luteus ATCC 

10240 suspension obtaining a contamination of about 107 CFU/ml. 

One litre of the milk was poured into the package and it was then stored at 4°C for a week. 

During the storage period, samples of milk were taken periodically to measure pH (0, 1, 2, 3, 
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4 and 7 days) and to estimate microbial growth (0, 1, 3 and 4 days). Total viable counts were 

performed on Plate Count Agar (PCA, Oxoid) after incubation at 30°C for two days.  

5.2.6 Bacterial enumeration 

A rapid epifluorescence staining method using the LIVE/DEAD® Bacterial Viability Kit 

(BacLight™, Molecular Probes Inc., Eugene, OR, USA) was applied to estimate the reduction 

of M. luteus ATCC 10240 populations in TSB. The stock solution of the two stains was 

prepared mixing 330 µl of sterile deionized water, 0.7 µl of SYTO 9 and 1 µl of propidium 

iodide. The number of live green and dead red cells was calculated on one ml aliquots or 

dilutions of M. luteus ATCC 10240 suspensions as described in Materials and Methods of 

Chapter 4. 

 

5.2.7 Release of nisin from the antimicrobial coated film 

The study of the nisin release was performed using a film coated with a solution showing 

an activity of 25600 AU/ml.  

In a first experiment 20 µl of sterile deionized water were spotted onto the surface of the 

treated film, the film was incubated in a humid chamber and the water was removed every 5 

min for 1 h. Water spots were then assayed for antimicrobial activity against M. luteus ATCC 

10240. In a second experiment a circular treated film (Ø 8.5 cm) was placed into a Petri dish 

as showed in figure 5.2, and covered with 15 ml of two different simulating solutions: sterile 

water and phosphate buffer saline (PBS) at pH 3.5. The dishes were shaken continuously at 

75 rpm by an orbital shaker at room temperature (25°C). After 1, 2, 3, 4, 5, 6, 7, 24, 30, 48 

and 72 h, samples of 10 µl of both solutions were taken and tested for antimicrobial activity. 

The remaining simulating solution was lyophilized, resuspended in 250 µl of 0.02 N HCl and 

analyzed by HPLC in order to quantify the nisin released in the contact solution. A C18 

reversed-phase column (250 x 4.6 mm) and a gradient elution with water-acetonitrile 

gradients (1 ml/min) containing 0.1% TFA were used (Buonocore et al., 2003). The gradient 
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was 20-60 % of acetonitrile over 25 min, with nisin eluting at about 17-18 min. The 

calibration curve was constructed for peak area against concentration of standard solutions of 

nisin (94,6% pure, donated by Aplin and Barrett, Dorset, UK) from 10 to 100 ppm, with three 

replicate samples for each nisin concentration. Furthermore, the film resulting from each 

release experiment was assayed for antimicrobial activity in agar diffusion assays. The last 

experiment was performed to evaluate the effect of exposure temperature on nisin release into 

liquid media. The active package was filled with different media (water, PBS and TSB, PBS 

and TSB inoculated with M. luteus ATCC 10240) and stored at 4°C and 25°C. After a 48 h 

contact, the film was dried and assayed for the antimicrobial activity against the indicator 

strain. 

 

 

 

 

 

 

 

 

5.2.8 Nisin-EDTA activated plastic film for the storage of meat products 

A nisin antimicrobial solution (NIS) was prepared as follows. Briefly, 1 g of nisin (2.5% 

pure, Sigma-Aldrich, Milan - Italy) was suspended in 10 ml of 0.4 N lactic acid with 0.1 g/ml 

of EDTA. The mixture was centrifuged at 19000 x g for 5 min. The pellet was resuspended by 

stirring in 10 ml of 0.4 N lactic acid and centrifuged at 19000 x g for 5 min. The supernatant 

represented the NIS solution which at a concentration of 6400 AU/ml against M. luteus 

ATCC 10240 was used to coat polyethylene film. Beef steaks were packed in nisin activated 

film under vacuum and stored at 4°C. Before packaging and after 2, 7, 15 days of storage, 

Fig. 5.2 - Release of nisin from 
the antimicrobial 
coated film 
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selective viable counts of natural spoilage microorganisms (Microbial total count, Brochothrix 

thermosphacta, Enterobacteriaceae, Pseudomonas spp. and lactic acid bacteria) were 

performed on 10 g of beef steak stored at 4°C. The counts of spoilage microorganisms were 

performed in triplicate and the results were expressed as CFU/g. Similarly, 45 g hamburger 

were packed on both faces with the nisin–activated film and stored at 4°C. Furthermore, 

minced meat mixed with 2.5% NIS solution was utilized to make hamburger packed with 

untreated film. Samples packed with untreated film was analysed as control. The behaviour of 

spoilage bacteria was analysed after 0, 1, 5 and 7 days of storage and the results were 

expressed as CFU/g. 

The experiments were performed in triplicate and the results were expressed as CFU/g. For 

lactic acid bacteria (LAB), MRS agar (Oxoid) was employed with incubation at 30°C for 48h; 

for Enterobacteriaceae Violet Red Bile Glucose Agar (Oxoid) was employed with incubation 

at 30°C for 48h; for Pseudomonas spp. Pseudomonas Agar with CFC selective supplement 

(Oxoid) was employed with incubation at 30°C for 48h; Brochothrix thermosphacta STAA 

(Sreptomycin Thallous Acetate Agar) (Oxoid) with STA selective supplement (Oxoid) was 

employed with incubation at 20°C for 48h 
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Fig. 5.3 - Antimicrobial activity of nisin-coated 
film against Micrococcus luteus 
ATCC 10240: (a) treated film; (b) 
spot of a nisin solution (c) treated 
film after rubbing; (d) untreated 
film. 

5.3 RESULTS AND DISCUSSION 

5.3.1 Antimicrobial efficacy of the nisin-coated polymer film against Micrococcus luteus 

ATCC 10240 in TSB 

The nisin-coated films showed antimicrobial activity against M. luteus ATCC 10240 (Fig. 

5.3) and the inhibition area spread beyond the film perimeter. Moreover, the activated film 

maintained its activity even after rubbing (Figure 5.3, d). In both cases the untreated film did 

not show any activity against the indicator strain.  

 

 

 

 

 

In the antimicrobial package at 4°C a slight reduction of live cells was observed by viable 

staining after 48 h compared with the control in which the number of live cells remained 

constant (Fig. 5.4). When the M. luteus ATCC 10240 population in TSB was incubated at 

25°C there was a remarkable reduction of live cells in the bacteriocin-coated package (Fig. 

5.4).  

a 
b 

d 

c 
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Fig. 5.4 - Trends of live cells of Micrococcus luteus ATCC 10240 in TSB packed in activated and 
non-activated film during storage at 4°C and 25°C. (•) Untreated package at 25°C; (•) 
Treated package at 25°C; (•) Untreated package at 4°C; (•) Treated package at 4°C. 
Values in the graph are means of two experiments and the result of each single experiment 
was calculated as average of counts of 30 microscopic fields. 

 
In fact after 5 h of contact with active film the live population was reduced of 0.9 log 

compared with the untreated package, and after 7 h of storage the number of live cells 

continued to decrease in the treated package, while it increased rapidly in the control. A 

remarkable increase of M. luteus ATCC 10240 viable cells was registered after 25 h of 

storage, which may be due to the particular mechanism of action of bacteriocins that can 

inhibit as many cells as molecules available in the medium (Moll et al., 1999). In fact the total 

viability in the active package was restored after 48 h of storage. The results of viable staining 

by BacLight Kit were compared with those from plate counts. The counts on TSA plates at 

4°C showed the same trend as the counts after viable staining; however, during the first hours 

of incubation up to 7 h the difference between treated sample and control at 25°C, detected by 

plate counts, was narrow compared to the difference appreciated by viable staining. A 
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possible explanation is that red cells scored as “dead” in the BacLight assay under certain 

condition may be able to recover and reproduce. When the number of red cells decreased as a 

consequence of cell lysis, after 24 h of storage, plate counts showed a difference of 2.4 log 

between control and active package. The viable staining technique supported the hypothesis 

that the mechanism of action of nisin involves the cytoplasmic membrane as target (Cleveland 

et al., 2001), causing the cell permeabilisation that is responsible of propidium iodide entry 

inside the cell. 

 

5.3.2 Antimicrobial efficacy of the nisin-coated polymer film against Micrococcus luteus 

ATCC 10240 in milk 

Another experiment was carried out in order to monitor the microbial growth in milk. The 

results are reported in Fig. 5.5 A, B and C. The antimicrobial package retarded the microbial 

growth and lowered the maximum growth levels in raw milk, pasteurized milk and U.H.T. 

milk, confirming the results of a similar study (Lee et al., 2004). Only in the raw cow milk a 

decrease of the pH was observed, and the final pH value was lower in the control than in 

treated sample. In fact a difference of 1.1 units of pH between the treated and control samples 

was observed after 7 days suggesting that the nisin affected the activity of the acidifying 

microbiota (Fig.5.5, panel C). 
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Fig. 5.5 – Effect of nisin activated package and untreated 
package on microbial stability and pH of raw 
milk (A), pasteurized milk (B) and U.H.T. milk 
inoculated with Micrococcus luteus ATCC 
10240 (C), during storage at 4°C.  
(—•—) CFU/ml in untreated package;  
(—•—) CFU/ml in treated package;  
(---•---) pH in untreated package; 
 (--•---) pH in treated package. 
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5.3.3 Release of nisin from the antimicrobial-coated film 

The nisin-coated films were also subjected to studies of release of the bacteriocin in water 

or PBS at pH 3.5. All the experiments suggested a mechanism of release and back-absorption 

of nisin from/to the film. Back-absorption is to be intended as absorption of nisin to the film 

after the release. In fact, during the contact time between active film and simulating solutions 

high values of antimicrobial activity alternated to low values of antimicrobial activity (Table 

5.1).  

 

Table 5.1 – Antimicrobial activity of simulating solutions and activated film in the nisin 
release experiment. 

 
Water PBS pH 3.5 

Time (h) 
Diameter of 
inhibition 

halos (mm) 

Residual 
activity of the 
activated film 

Diameter of 
inhibition 

halos (mm) 

Residual 
activity of the 
activated film 

1 2 + 8 - 

2 2 + 9 - 

3 3 + 9 - 

4 3 + 9 - 

5 4 - 9 - 

6 5 - 9 - 

7 5 - 9 - 

24 0 + 6 - 

30 0 + 6 - 

48 0 + 8 + 

72 4 - 9 + 

 

Particularly, when antimicrobial activity increased in the simulating solutions, the 

antimicrobial activity of the activated films ceased and vice versa. This behaviour was also 

observed in the study of Grower et al., (2004) who evaluated the release of nisin into peptone 

water from LDPE film coated with cellulose. This result was also confirmed by the 

quantitative determination of nisin in the surrounding solution by means of HPLC. At this 
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stage of the research is not possible to speculate on the reason of this back absorption 

behaviour because the mechanism of nisin binding to the plastic film is still unknown.  

Lower pH favoured the migration of the active compound from the film in fact at pH 3.5 

higher values of activity of the simulating solution and higher concentrations of nisin, as 

determined by HPLC, were registered. The explanation may be that the nisin is more soluble 

at acid than neutral pH as reported by Liu and Hansen (1990). On the other hand, the nisin is 

more active at lower pH and consequently, higher activity may be registered with the same 

quantity of nisin at lower pHs (Huot et al., 1996). Moreover, the results showed that the low 

temperature delayed the release of the nisin from film, since after contact with a liquid 

medium bacteriocin-coated film maintained its antimicrobial activity at 4°C but not at 25°C. 

Similar results were obtained by Dawson et al. (2003) and in the study described in chapter 4. 

The nisin-activated film was shown to be effective in inhibiting a population of M. luteus 

ATCC 10240 in TSB. Moreover, the antimicrobial package could contribute to control the 

development of bacterial flora in milk. Finally, the release of nisin from the plastic film was 

shown to be unpredictable but temperature and pH-dependent. 
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6. ANTIMICROBIAL ACTIVITY OF A NISIN-ACTIVATED 

PACKAGING AGAINST SPOILAGE MICROORGANISMS DURING 

STORAGE OF MEAT PRODUCTS 

 
 
6.1 INTRODUCTION 

Numerous types of food packaging, in combination with different storage techniques can 

be used in order to extend the shelf life of meat. One of the key technological measures 

needed during storage is the preservation of the meat from microbial spoilage and 

contamination/proliferation of pathogenic microorganisms. Active packaging is one of the 

innovative food packaging concepts that has been introduced as a response to demands of 

consumers for high quality, safety and extended shelf-life of food products (Vermrein et al., 

1999; Quintavalla and Vicini, 2002; Cagri et al., 2004). Among the active packaging 

applications, the incorporation of antimicrobials is receiving considerable attention as a means 

of inactivating bacterial cells, slowing the growth rate of microorganisms and maintaining 

food quality and safety (Han, 2000; Gill, 2003; Guerra et al., 2005). The use of bacteriocins 

and other biologically derived antimicrobials in packaging material (Ming et al., 1997; 

Siragusa et al., 1999) is recently attracting increasing interest. Bacteriocin activated plastic 

films for food packaging have been profitably developed for the storage of milk (Mauriello et 

al., 2005), hamburgers (Mauriello et al., 2004), frankfurters (Ercolini et al., 2006) and cooked 

ham (Marcos et al., in press). In all the cases the activation of plastic films with bacteriocin 

solutions was helpful to retard the growth of pathogenic and/or spoilage bacteria. Among the 

known bacteriocins, nisin is currently the only bacteriocin whose employment in food as 

antimicrobial is allowed. The shelf-life of meat mostly depends on the number and types of 

microorganisms initially present and their subsequent growth (Borch et al., 1996). Many 

groups of organisms contain members potentially contributing to meat spoilage under 
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appropriate conditions. This makes the microbial ecology of spoiling raw meat very complex 

and thus the spoilage very difficult to prevent. The main bacteria implicated in the spoilage of 

refrigerated beef include Brochothrix thermosphacta, Lactobacillus spp., Leuconostoc spp., 

Carnobacterium spp., Pseudomonas spp. and Enterobacteriaceae (Dainty, et al., 1992; Borch 

et al., 1996; Huis in’t Veld, et al., 1996; Jay et al., 2003). The aim of research described in 

this chapter was to determine the effectiveness of a packaging film coated with nisin-EDTA to 

inhibit the natural microflora of hamburgers and beef steaks during storage 

 

6.2 MATERIALS AND METHODS 

6.2.1 Antimicrobial solution preparation and activity 

A nisin antimicrobial solution (NIS) was prepared as follows. Briefly, 1 g of nisin (2.5% 

pure, Sigma Chemical Co.) was suspended in 10 ml of 0.4 N lactic acid with 0.1 g/ml of 

EDTA. The mixture was centrifuged at 19000 x g for 5 min. The pellet was resuspended by 

stirring in 10 ml of 0.4 N lactic acid and centrifuged at 19000 x g for 5 min. The supernatant, 

represented a stock solution of nisin and it was stored at 4°C prior to use. The concentration 

of the nisin solution was determined by an agar diffusion and critical dilution assay as 

previously described. The supernatant represented the NIS solution, showing an activity of 

102400 AU/ml against M. luteus ATCC 10240. 

 

6.2.2 Preparation of antimicrobial plastic film and its activity against bacterial strains 

The NIS solution diluted at concentration of 6400 AU/ml against M. luteus ATCC 10240 

was used to spread manually one side of the polyethylene film using a coating rod. 

Antimicrobial activity of NIS treated film was determined against M. luteus ATCC 10240, 

Brochothrix thermosphacta 7R1, Pseudomonas fragi 6P2, Enterococcus faecalis 227 and 

Lactobacillus spp 3A. The indicator strains was from the culture collection of the Department 

of Food Science, the University of Naples Federico II, Italy. 
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6.2.3 Antimicrobial efficacy of the nisin-coated plastic film on the microbial stability of beef 

steak  

The films spread with NIS solution were used to study the behaviour of natural spoilage 

microorganisms on beef steaks stored under vacuum at 4°C. Before packaging and after 2, 7, 

15 days of storage, selective viable counts of natural spoilage microorganisms such as 

microbial total count, Brochothrix thermosphacta, Enterobacteriaceae, Pseudomonas spp. 

and lactic acid bacteria (LAB) were performed on 10 g of beef steak. Beef steaks packed 

under vacuum in untreated film were examined as control samples. The counts of spoilage 

microorganisms were performed in triplicate and the results were expressed as CFU/g. 

 

6.2.4 Antimicrobial efficacy of the nisin-coated plastic film on the microbial stability of 

hamburgers  

Hamburgers of 45 g each were packed on both faces with the NIS–activated film and 

stored at 4°C. Furthermore, minced meat mixed with 2.5% NIS solution was utilized to make 

hamburger packed with untreated film. Samples packed with untreated film were examined as 

control. The behaviour of spoilage bacteria was analysed after 0, 1, 5 and 7 days of storage 

and the results were expressed as CFU/g. 

 

6.2.5 Microbial analysis  

Samples (25 g) arising from each samples were aseptically weighed, homogenized in 

quarter strength Ringer’s solution (Oxoid) for 2 min in a stomacher (LAB Blender 400, PBI, 

Italy) at room temperature. Decimal dilutions were prepared and aliquots of 0.1 ml of the 

appropriate dilutions were spread in triplicate on the following media: Plate Count Agar 

(PCA, Oxoid) incubated at 30°C for 72 h; Violet Red Bile Glucose Agar (VRBGA, Oxoid) 

for the Enterobacteriaceae, incubated at 30°C for 24-48 h; MRS agar (Oxoid) for LAB, 
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incubated at 30°C for 48 h; Pseudomonas Agar with cetrimide-fucidin-cephaloridine (CFC) 

selective supplement (Oxoid) for Pseudomonas, incubated at 30°C for 48 h; STAA medium 

(Oxoid) for Brochothrix thermosphacta, incubated at 25°C for 48 h. Results were calculated 

as the means of three determinations. MRS and VRBGA plates were incubated in anaerobic 

conditions by using an Anaerogen kit (Oxoid). 

 

6.3 RESULTS AND DISCUSSION 

6.3.1 Plastic films activation 

The antimicrobial activity of the plastic films tested in agar plates (Mauriello et al., 2004) 

against the indicator strain of B. thermosphacta 7R1, Enterococcus faecalis 227 and 

Lactobacillus spp. 3A proved that the NIS solution, and also the antimicrobial activity, were 

homogeneously distributed on the surface of the plastic. The active packaging did not show 

inhibition of Pseudomonas fragi 6P2. Figure 6.1 showed the antimicrobial activity against B. 

thermosphacta 7R1. 

 

Fig. 6.1 - Antimicrobial activity of the 
polyethylene film coated with NIS 
solution against B. thermosphacta 
7R1 (a), treated film, (b) untreated 
film; (c) treated film after rubbing 

 
 
 

b 

a 

c 
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6.3.2 Effect of activated film on natural bacterial population in meat storage  

The results of viable counts on appropriate media of the meat spoilage target groups from 

beef steaks are reported in table 6.1. The nisin-coated polymer film was effective to control 

Brochothrix thermosphacta population and showed its antagonistic power from the beginning, 

in fact the counts of B. thermosphacta in beef steaks storage in antimicrobial packaging was 

more than about 5, 4, and 3 log cycles lower than the counts in meat storage in untreated film 

after 2, 7 and 15 days, respectively. The sample stored in active packaging did not show 

reduction of Pseudomonas sp. On the other hand, after 15 days of refrigerated storage LAB 

population showed 1.9x103 and 1.1x106 CFU/g in meat packed in treated and untreated film, 

respectively. At the same time the level of Enterobaceriaceae decreased by 1 log cycle in 

antimicrobial film packed meat. The results of hamburger experiments are reported in Figure 

6.2 and values are means of three replicates. Before packaging the hamburger prepared with 

the meat mixed with NIS solution showed an immediate reduction of Brochotrhix 

thermosphacta (Fig. 6.2 panel A); in fact the counts of the test organisms presented 2 log 

cycles lower than control samples. After 5 and 7 days of refrigerated storage the counts of 

Brochotrhix population was of 1x10 e 3.1 x102 CFU/g while in the control samples was of 3.5 

x106 e 3.1 x108 CFU/g, respectively (Fig. 6.2 panel A). At the same times the hamburgers 

packed with Nisin-coated film exhibited a Brochotrhix population of 1.8x105 CFU/g. After 5 

and 7 days in every hamburger that was prepared with NIS solution and that was packed in 

treated film, Pseudomonas level decreased of 1 log cycles (Fig. 6.2, panel B); LAB and 

microbial total count decreased of 2 log cycles (Fig. 6.2 panel C and D). No reduction of 

Enterobacteriaceae population was registered in any hamburger sample (Fig, 6.3). The 

inhibition on Pseudomonas population could be explained by the use of EDTA in the NIS 

solution developed in this study. In fact, it has been previously reported that coupling nisin 

and EDTA, an improved antimicrobial effect could be obtained (Gill and Holley, 2002; Cutter 

et al., 2001) and, in some cases, also an enhancement of nisin efficacy against Gram negative 
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bacteria (Delves-Broughton, 1993). On the other hand, it was interesting to note that 

antagonistic activity of NIS solution in minced meat was more efficacy than the NIS solution 

spread on plastic film. However, this evidence is in contrast with results of other authors (Han 

et al., 2000), whose reported the reduction of efficacy of antimicrobial substances added 

directly in foods because of their interaction with food components. 
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Table 6.1 - Microbiological analysis of beef steaks in antimicrobial packaging stored at 4°C 
 

 

 

 

 

 

 

 

 

 

a: values are means of three replicates; 
C: beef steaks packed in untreated film nisin  
A: beef steaks packed in treated film 

 
                                            

Behaviour of natural bacterial population in beef steaks CFU/g a 

 Microbial total 

count 

Enterobacteriaceae Brochothrix 

thermosphacta 

Pseudomonas spp. Lactic acid 

bacteria 

Time 

(days) 
C A C A C A C A C A 

0 2.2x104 1.9x104 1.5x102 1.6x102 4.7x103 3.5x103 2.9x104 5.5x104 4.0x102 1.4x102 

2 4.5x104 8.5x104 3.1x102 1.0x102 3.5x104 <10 2.0x104 2.3x104 4.4x103 2.0x103 

7 1.5x104 2.5x104 4.0 x102 1.0 x102 2.0x105 <10 3.7x105 8.5x105 8.0x104 5.0x104 

15 2.8x106 1.1x106 1.5x104 1.5x103 1.1x106 1.9x103 2.0x106 3.3x106 1.0x106 3.9x103 
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Fig. 6.2 - Effect of NIS solution, nisin activated film and untreated film on spoilage bacteria during storage at 4°C in 
hamburgers. (—•—) log CFU/g in control sample; (—•—) log CFU/g with treated film; (—•—) log CFU/g in 
hamburger mixed with NIS solution. 

E 
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7. CHARACTERIZATION OF BACTERIOCIN COATED 

ANTIMICROBIAL POLYETHYLENE FILMS BY ATOMIC FORCE 

MICROSCOPY 

 

 

7.1 INTRODUCTION 

Antimicrobial packaging is a promising and rapidly emerging technology in which 

antimicrobial agents are incorporated into or coated onto food packaging materials to prolong the 

shelf-life of the packed food. Different kinds of antimicrobial packaging are described in the 

current literature and the bacteriocin coating of polyethylene surface is reported as an effective 

method to confer antimicrobial properties to food packages (Lee et al.  2003, 2004; Grower et al. 

2004; Vartiainen et al. 2004; Mauriello et al. 2004, 2005; Ercolini et al. 2006). Film composition, 

bacteriocins as active compounds, effects of processing conditions, film microstructure, nature of 

foods in contact with film and controlled release are the major properties affecting the activity of 

antimicrobial packaging and have been the topic of several works (Han, 2000; Kim et al. 2002; 

Cha et al. 2003; Grower et al. 2004). However, unsatisfactory information is available on the 

interactions between the bacteriocin and the surface of the plastic film. Along with adhesion and 

release mechanisms of the antimicrobials, such interactions are fundamental in determining the 

antimicrobial efficacy of the activated film. Atomic Force Microscopy (AFM) is a powerful 

technique that can provide direct spatial mapping of surface morphology with nanometer 

resolution allowing investigations on surface topography and roughness.  
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7.1.1 Atomic Force Microscopy  

Exhaustive explanations of AFM and its application are available in the literature (Smith et 

al. 1996; Fang et al. 2005). Typically, AFM is carried out to investigate the correct surface 

allocation of ions during superconductors preparation (Staszczuk et al. 2006). However, a lot of 

researches have been performed by using AFM to monitor the change in the surface features of 

the same material after different treatments (Jones et al. 2005). The atomic force microscope used 

in this study is the EasyScan 2 (Nanosurf AG, Switzerland). The representative model is showed 

in Figure 7.1.  

 

 

 

 

 

 
 
 
 
 
 
 
  Fig. 7.1 - EasyScan 2 (Nanosurf AG, Switzerland) 
 

The Atomic Force Microscopy (AFM) allows studying the surface topography and roughness. 

The core of the microscope is constituted by a cantilever, which has a typical length of about 

100-400 µm, and the probe, also called tip (Fig. 7.2). The tip long and often less than 100 Å in 

diameter is located at free end of the cantilever. 
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Fig. 7.2 – Schematic representation of an AFM scanning 

 

The cantilever and the probe move on the surface of the sample in the x direction until all the 

surface is scanned in the y direction. Contemporaneously, they deflects in z direction according to 

the surface shape. The probe motion is determined by the forces between the probe and the 

sample: such forces identified with Van der Waals interaction. The bends and deflections of the 

cantilever are detected by a laser ray which is reflected to a special detector amplified by an 

optical lever system combined with a photodetector. Finally, the signal is transferred to the PC 

and a specific software processes the data. Each scanning line produces just one profile 

characterized by a bearing area and by peaks and valleys. Finally, the signal is transferred to the 

specific software. All the profiles registered in x direction are then assembled and the software 

creates bi-dimensional and three-dimensional topographies (Fig. 7.3). 

 

Detector 

Laser 

Probe or Tip  
(10 Å) 

Cantilever 
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Additionally, AFMs require no specific sample preparation procedure: measurements can be 

operated in environmental condition and provides information about the sample surface in a non 

destructive way. With the advent of Atomic Force Microscopy, new possibilities are opened to 

evaluate the features of polymers, natural polymers and biopolymers. New developments see 

application of AFM to investigate mechanical properties of edible films and biomaterials 

(Herrmann et al. 2004; Puskas et al. 2003). The instrument is suitable to monitor changes on 

surface topography of a sample after different treatments (Smith et al. 1996; Jones et al. 2005). 

Furthermore, AFM is often applied to characterize differences in the properties of individual 

components of heterogeneous materials, is also useful for compositional mapping in polymer 

blends and copolymers, and for heterogeneity mapping in polymer coatings (Magonov et al. 

1997; Cleveland, et al. 1998). Because of its high resolution in describing surface topography, 

AFM may help explaining the adhesion mechanisms of different antimicrobials used to activate 

plastic films by coating. However, no literature is available on the possible use of AFM to study 

the surface topography of plastic films activated with bacteriocins. Therefore the aim of this 

Fig. 7.3 - Representative topographies from 
Atomic Force Microscopy analysis 
A: Bi-dimensional image. B: screen of 
one profile C: three-dimensional 
image  

 

A 

B 

C 
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study was to investigate the interaction between three bacteriocins and five different polyethylene 

films for food packaging by using AFM. 

 

7.2 MATERIALS AND METHODS 

7.2.1 Bacterial strains 

Listeria monocytogenes V7 was used as indicator strain of bacteriocin solutions and to reveal 

the antimicrobial packaging activity. 

 

7.2.2 Preparation and activity of bacteriocin solutions 

A partial purified preparation of both bacteriocins, named Bac162W and BacAM09, was 

obtained as previously described in chapter 2 with an antimicrobial activity against Listeria 

monocytogenes V7 of 102400 and 56200 AU/ml, respectively. A nisin antimicrobial solution 

(NIS) used to activate plastic films was prepared as reported in chapter 6. The antimicrobial 

concentration of NIS solution was determined by an agar diffusion and critical dilution assay as 

previously described in chapter 2. Solutions of Bac162W, BacAM09 and NIS were prepared in 

70% isopropanol at a final concentration of 6400 AU/ml against Listeria monocytogenes V7 and 

used for plastic film activation experiments. 

 

7.2.3 Characteristics of plastic films 

In this study five different commercial Linear Low Density Polyethylene films, differing in 

vinyl acetate ethylene (EVA) and erucamide contents (Table 7.1), were used for the coating 
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treatment with bacteriocin solutions. The films underwent a Corona treatment (Jones et al. 2005) 

before the bacteriocin coating. 

 

Table 7.1 - Composition of the five Linear Low Density Polyethylene films used 
in this study. 

 
Plastic film EVAa (%) Erucamide (ppm) 

A 5 500 

B 0 500 

C 0 600 

D 3 550 

E 0 500 
aEVA: Ethylene Vinyl Acetate  

 

7.2.4 Preparation of antimicrobial plastic films and their activity 

All bacteriocin solutions were spread manually onto one side of the film using a coating rod 

(Mauriello et al. 2005). Then, the plastic films were dried by exposure to warm air for the solvent 

removal and assayed for antimicrobial activity against L. monocytogenes V7. Samples of 

activated film were placed in the bottom of an empty Petri dish, then overlaid with Tryptone Soya 

Broth (Oxoid) added of 0.75% agar and seeded with an overnight culture of the indicator strain. 

After the incubation at 30°C for 24 h, the antimicrobial activity was observed as an inhibition 

zone of the indicator organism around the plastic material. Untreated film samples were assayed 

as control. 

 

7.2.5 Surface characterization by AFM: calculation of surface roughness  

The atomic force microscope EasyScan 2 (Nanosurf AG, Switzerland) was used in this study 

(Figure 7.1). Measurements were carried out in dynamic force no-contact mode; scan size was set 
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to 20 x 20 µm2, with a 1024 x 1024 pixels resolution and a 20 µm/sec scan speed. Scan force was 

kept low (<0.10 nN), ensuring a complete absence of deformations of the measured films. 

Samples of treated and control films were analysed on ten different positions, randomly selected 

all over the sample. The output results of the AFM analysis were further analysed by SPIP 

(Scanning Probe Image Processor, Image Metrology A/S, Lyngby - Denmark). A simple and 

repeatable quantitative approach, widely applied for characterization of surface functionalities is 

the study of surface roughness. In particular, the attention was focused on analysis of these 

roughness parameters that best describe the smoothness of a surface and the dimension of the 

exchange area at the interface. These are: the mean roughness (Sa) and the surface area ratio 

(Sdr) (Blunt et al. 2000). Mean roughness Sa (Equation 1) is expressed in nm and is defined as 

the arithmetic average of the deviation from the median plane; surface area ratio Sdr (Equation 

3), expressed as a percentage, gives the ratio between actual surface area and projected area on a 

flat horizontal plane.  
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where:  

- a x,y,z coordinate system is taken as reference for the measurement, with the origin (x = 0, y = 

0) coincident with the beginning of the scan (bottom left corner of the measured topographies);  

- z is the vertical elevation of the surface measured by the AFM in the position (x,y);  

- xr and yr are the measured scan sizes, respectively in x and y direction; 

- µ is the mean value, as reported in the Equation 2. 

 

7.3 RESULTS  

7.3.1 Antimicrobial activity of the bacteriocin solutions 

The results of the antimicrobial activity of the bacteriocins used in this study are reported in 

Table 7.2. The bacteriocins were shown to be active against strains of Listeria spp. and 

Lactobacillus spp. (Table 7.2). In addition, Bac162W was also active against Brochothrix 

thermosphacta 7R2 and Enterococcus faecalis 227. By contrast, nisin antimicrobial solution 

(NIS) with lactic acid and EDTA showed antimicrobial activity against all the indicator strains 

tested. The best activity was obtained against Brochothrix thermosphacta 7R2.  
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Table 7.2 Antimicrobial spectrum of bacteriocins produced by L. curvatus 162W and L. plantarum AM09 
and the NIS solution 

 
Antimicrobial activity of 

bacteriocins (AU/ml) Indicator strains Source 
Growth  

conditions 162W AM09 NIS 

Staphylococcus aureus DSM 20231 DSM aTSB 24h at 37°C 0 0 6400 

Listeria monocytogenes V7 Carminati TSB 24h at 30°C 102400 56200 102400 

Listeria monocytogenes CAL Carminati TSB 24h at 30°C 12800 12800 102400 

Listeria monocytogenes ATCC 7644 ATCC TSB 24h at 30°C 12800 12800 102400 

Listeria welshmani 3Z Meat TSB 24h at 30°C 12800 12800 102400 

Escherichia coli O157:H7 25 Meat TSB 24h at 37°C 0 0 6400 

Salmonella enterica serovar Thompson Poultry TSB 24h at 37°C 0 0 6400 

Brochothrix thermosphacta 7R2 Meat TSB 24h at 20°C 12800 0 204800 

Pseudomonas sp. 6P2 Meat TSB 24h at 30°C 0 0 6400 

Lactobacillus sp. 3A Meat bMRS 24h at 30°C 12800 6400 6400 

Enterococcus faecalis 227 NWC TSB 24h at 30°C 6400 0 6400 
aTSB: Tryptone Soya Broth (Oxoid, Milan - Italy) supplemented with 0.5% yeast extract. 
bMRS: de Man Rogosa Sharp (Oxoid) 
 

7.3.2 Antimicrobial activity of activated plastic films  

The activation of the polyethylene films was performed with a coating rod using the three 

different bacteriocin solutions with concentration of 6400 AU/ml against L.  monocytogenes V7. 

The films showed to be always active against L. monocytogenes V7 in agar inhibition assays (Fig. 

7.4). However, some active films showed a homogeneous inhibition of the indicator strain in the 

agar assay, while other films displayed a spot-like antimicrobial activity. In Figure 7.4A, an 
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example is given of a homogeneous activity displayed by film A activated by the bacteriocin 

AM09 solution. In the cases of spot-like activity the inhibition was strictly confined in some 

points of contact between film and agar plate (Fig. 7.4B). Such activity was shown by films B, C, 

D and E activated with bacteriocins 162W and AM09. The NIS-treated films showed the most 

effective antimicrobial activity highlighted by a very clear inhibition area spread beyond the film 

perimeter (Fig. 7.4C). The untreated films did not show any antimicrobial activity (Fig. 7.4D).  

 

  

 
 

 
Fig. 7.4 - Antimicrobial activity of  bacteriocin treated polyethylene films against Listeria monocytogenes 

V7. A, homogeneous inhibition of the indicator strain (film A activated by BacAM09); B, 
spot-like inhibition of the indicator strain (film D activated by BacAM09); C, inhibition 
beyond the film perimeter (Film A activated by NIS solution); 1D, untreated film.  

 

7.3.3 Active film surface topography by AFM 

Figure 7.5 shows representative images of the films surface with the scan size of 20x20 µm2 

for each sample. The distribution of bacteriocin solutions on the surface of the plastic films was 

investigated by AFM images. The control images evidenced the same topography surface in all 

the directions. By contrast, deposits of the bacteriocin solutions could be observed on the surface 

of the treated plastic films. However, the three antimicrobial solutions were not evenly distributed 

in the same way (Fig. 7.5).  
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As shown in Figure 7.5, the control samples displayed different topographies suggesting that their 

peculiar surface characteristics may influence the coating attitude of each film. All the 

bacteriocin solutions could be homogeneously spread on film A, which appeared as completely 

covered by surface layer after AFM analysis (Fig. 7.5). The NIS solution was coated as 

agglomerates of crystals upon the surface of the films probably due to the EDTA salt content. 

However, only on the film A the NIS solution was homogeneously distributed, while in films B 

to E the NIS distribution was uneven (Fig. 7.5). Overall, the Bac162W showed the most 

homogeneous distribution except for film B. As already pointed out, AFM can provide not only 

qualitative, but also quantitative characterization of interfaces. Therefore we tried to correlate 

functional behaviour of the analyzed films to topographic properties using the roughness 

parameters. Analyses and comparisons of the roughness parameters are presented in Figure 7.6; 

Sa (Fig. 7.6A) and Sdr (Fig. 7.6B) values are shown for every film-bacteriocin couple. All data 

processing was performed by means of SPIP software. Parameters were directly evaluated after 

a standard pre-processing operation, consisting of a first order profile levelling. Qualitative 

analyses performed on topographies were confirmed by quantitative analyses. Surface treated 

with NIS, showing a sort of micro-texturing, always gave the highest roughness values, in terms 

of both Sa and Sdr (Fig. 7.6). This was true for the different tested contents of EVA and 

erucamide (Table 7.2). For the NIS treated surface, Sdr values up to ten times higher compared to 

the other bacteriocin solutions were detected (Fig. 7.6B). 
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Fig. 7.5 - Representative images from Atomic Force Microscopy analysis of polyethylene 

films (20 x 20 µm2) treated with different bacteriocin solutions. 
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Fig. 7.6 - Mean roughness (Sa, panel A) and surface area ratio (Sdr, panel 
B) of different polyethylene films coated by three bacteriocin solutions. 
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7.4 DISCUSSION 

In this study we prepared antimicrobial polyethylene films by using different bacteriocin 

preparations and evaluated the coating of the antimicrobial solutions on the surface of the 

plastic films by AFM. Furthermore, we carried out a roughness analysis on AFM images. The 

bacteriocin solutions used were active against most of the indicator strains used. However, the 

NIS solution showed the broader spectrum of activity. The usual antimicrobial activity of the 

nisin is exclusively exerted against Gram positive bacteria. However, nisin is often used in 

combination with other substances in order to make it active also against Gram negative 

bacteria (Gill et al. 2000; Ukuku et al. 2004; Samelis et al. 2005). In our case the 

antimicrobial activity of NIS solution may be related to the ability of EDTA to bind 

magnesium and other bivalent cations from the outer membrane of Gram negative bacteria 

destabilizing the lipopolysaccharide layer and producing cells with increased outer membrane 

permeability allowing the nisin to penetrate easily and kill the cells (Stevens et al. 1991).  

All the developed antimicrobial films, activated by coating, proved to be active against L. 

monocytogenes V7. However, as clear from Figure 7.4, each couple film-bacteriocin showed 

a different behaviour in inhibiting the indicator strain in the antimicrobial tests performed in 

agar plates. We had three different behaviours: a homogeneous, spot-like and expanded 

distribution of the antimicrobial activity of the plastic films (Fig. 7.4 panels A, B and C, 

respectively). 

Overall, all the activated Film A (with the highest EVA content) showed the best 

antimicrobial performances as well as all the film types treated with the NIS solution. 

Interestingly, although all the bacteriocin solutions were employed at the same concentration 

(6400AU/ml) the NIS-treated films showed the most effective antimicrobial activity 

highlighted by a very clear inhibition area spread beyond the film perimeter (Fig. 7.4C). This 

behaviour may be due to the different interaction between film and bacteriocin solutions and 

to the mechanisms of release of the bacteriocin from the plastic surface. A similar result was 
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already observed in one of our previous researches when different methods for film activation 

with bacteriocins were used leading to different results in terms of size and diffusion of the 

antimicrobial in the agar (Mauriello et al. 2004). Differences were also observed comparing 

the antimicrobial activity of the five different films. In particular, the film A displayed a good 

performance with all the three bacteriocin solutions used. 

AFM images were used to evaluate the morphology and the roughness of the surface of 

antimicrobial polyethylene films activated with bacteriocin solutions, providing qualitative as 

well as quantitative information. 

As shown in Figure 7.5, the control samples displayed different topographies suggesting that 

their peculiar surface characteristics may influence the coating attitude of each film. In fact, 

the surface topography of the activated plastic films resulted very different depending on film 

and bacteriocin solution used. Such evidence was appreciated by both surface images (Fig. 

7.5) and by the evaluation of the roughness parameters (Fig. 7.6). 

The film A gave the most homogeneous distribution of the bacteriocin solutions, related to a 

homogeneous appearance of the antimicrobial activity in agar plates. The NIS solution also 

gave a satisfactory antimicrobial performance in all the plastic films associated to a 

considerable increase of the surface roughness. In fact, for the NIS treated surfaces, Sdr 

values were up to ten times higher compared to the other bacteriocin solutions.  

This means that the exchange area at the interface for the NIS treated surface is up to ten 

times the one available in the case of the same films activated with the other bacteriocin 

solutions. This is in agreement with the crystallized structure of the spread NIS solution on 

film A evidenced in Figure 7.5; the presence of the agglomerates increased the spread surface 

with a consequent increase of Sdr values compared to the smooth covering layers obtained 

with the other bacteriocins. This may be relevant; in fact a larger interface area is normally 

synonymous of higher chemical reactivity. Furthermore, the presence of agglomerates with 

dimension in the order of a few microns could be noticed. The role and the behaviour of such 
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agglomerates are to be further investigated; their presence may provide a sort of slow release 

deposit protecting the surface for a long time. A slight growth in the dimensions of the 

agglomerates was also observed for increased contents of erucamide, corresponding to higher 

values of Sa and Sdr. For the bacteriocin solutions BacAM09 and Bac162W, differences were 

much more limited. Sensibly lower values of Sa and Sdr are symptomatic of a flatter surface, 

with a reduced area at the interface. Such topography can explain the lower antimicrobial 

activity of the BacAM09 and Bac162W activated films. As above pointed out, Bac162 

generally seems to give a more homogeneous surface topography (Fig. 7.5). However, this 

was not confirmed or put in evidence by the roughness analysis. This results seem to be 

reasonable and in agreement with the similar behaviour of the two bacteriocin solutions. 

As a matter of fact, specific couples film-bacteriocin showed different interactions leading to 

different results in film topography after coating and differences in the antimicrobial 

activities. Although all the films displayed the antimicrobial activity against the indicator 

strain, the higher EVA content of the film A seems to cause a homogeneous distribution of 

the antimicrobial solutions with a consequent higher antimicrobial efficacy. Moreover, the 

NIS solution, though interacting differently with the films used, gave the highest roughness 

values associated with clear and homogeneous inhibition halos of the activated films in the 

antimicrobial assays. 

The AFM analysis proved to be useful to investigate the coating attitude of polyethylene films 

with different bacteriocin solutions and to correlate the surface topography to the 

antimicrobial activities. However, further studies are necessary to understand the chemical 

interactions between films and bacteriocin solutions in order to predict and improve the 

release of the antimicrobials from the packages. 

Significant differences were found between the bacteriocin activated and control films and the 

activated surfaces showed lower values of average roughness and surface area ratio. A 

homogeneous distribution of the bacteriocin preparation could not always be obtained 
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following the coating procedure. This result was dependent on the bacteriocin used and its 

distribution on the different plastic films. Information on the interactions between plastic film 

and antimicrobial preparations could improve the production and implementation of 

bacteriocin activated food packages. 
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