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Introduction

The main objective of this thesis is to obtain existence and comparison results for some

classes of nonlinear elliptic Dirichlet problems. A leading role in such results is played

by a priori estimates of solutions, which will be proved mainly by means of Schwarz

symmetrization.

The symmetrization methods, a compound of techniques essentially referable to the

use of isoperimetric inequalities and of the properties of rearrangements, allow to obtain

explicit and sharp estimates of solutions of boundary value problems.

So we are devoted to the study of some classes of nonlinear elliptic Dirichlet problems

in divergence form, which can be formally written as

(1)

{
− div(a(x, u,Du)) = H(x, u,Du) + f in Ω,

u = 0 on ∂Ω,

where Ω is a bounded open set of Rn, n ≥ 2, a(x, s, ξ) is a Leray–Lions operator, and

H(x, s, ξ) and f verify suitable conditions. We look for a priori estimates for solutions u

of problems like (1), in the sense that

(2) ‖u‖ ≤ K ‖f‖ ,

where ‖u‖ and ‖f‖ are suitable norms of u and f . Usually, Schwarz symmetrization

permits to obtain the best constant in (2), in the sense that one can find the supremum

of the ratio
a norm of u

another norm of f
,

where the data of (1) are supposed to verify appropriate constraints, and Ω varies among

the domains of fixed Lebesgue measure.

The thesis is organized as follows.

Chapter 1 is devoted to recall some basic facts about rearrangements of functions.

The theory of rearrangements, whose beginning goes back to the works of Schwarz and

Steiner at the end of XIX century, was popularized and systematically developed by the

celebrated book of Hardy, Littlewood and Pólya of 1934 (see [64]). Referring to [64], [20],

[37], [67], [82], [84], [91], [93], we recall some fundamental definitions and properties.

In Chapter 2 we deal with the classical theory of pseudo–monotone operators in Ba-

nach spaces. The theory of monotone operators applied to boundary value problems has

its origins in the works of Minty and Browder, then it was generalized by Leray and Lions
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ii INTRODUCTION

([73]) to a wider class of operators, namely the pseudo–monotone ones. Such generaliza-

tion allows to treat several classes of boundary value problems, some of them deriving

from problems of calculus of variations. Referring to [73] and [76] (see also [72], [87]),

we recall some results on this theory and we show how it can be applied to Dirichlet

boundary value problems.

In Chapter 3 we deal with comparison results for nonlinear elliptic problems with

lower–order terms.

Our aim is to establish a comparison, in some sense, between a solution of a given

problem with the solution of a “symmetrized” one, whose data are spherically symmetric.

A first result in this direction is due to Weinberger (see [98]). Here we recall a more

general result given by Talenti in [89] (see also Maz’ja [80]). In [89] Talenti proved that

if u ∈ H1
0 (Ω) is a solution of the problem

(3) − (aij(x)uxi)xj + c(x)u = f, u ∈ H1
0 (Ω),

where Ω is a bounded open set of Rn (supposing n ≥ 3 for sake of simplicity),

aij(x)ξiξj ≥ |ξ|2, for a.e. x ∈ Ω, ∀ξ ∈ Rn,

c(x) ≥ 0 and f belongs to Lr(Ω), with r = 2n/(n + 2), and if v is the solution of the

problem

(4) −∆v = f#, v ∈ H1
0 (Ω#),

then

(5) u#(x) ≤ v(x), ∀x ∈ Ω#,

and ∫
Ω

(aij(x)uxiuxj)
q/2dx ≤

∫
Ω#

|Dv|q dx,

for 0 < q ≤ 2, where Ω# is the ball centered at the origin having the same measure of Ω

and f# denotes the spherically symmetric decreasing rearrangement of f (see Chapter 1

for definitions and properties of rearrangements).

Talenti’s result provides the “largest” solution in the class of equations (3) where the

measure of Ω is fixed and f has prescribed rearrangement. Moreover, the estimate (5)

allows to obtain, for example, that for any s ∈ [1,+∞]

‖u‖Ls(Ω) ≤ ‖v‖Ls(Ω#) .

In this order of ideas, here we present a comparison result for equations whose proto-

type can be written in the form

(6)

{
−∆pu+ h(x)|Du|p−1 = c(x)|u|p−2u+ f in Ω,

u = 0 on ∂Ω,
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where Ω is a bounded open set of Rn, ∆p is the p–laplacian operator (namely, ∆pu =

div(|Du|p−2Du)), 1 < p < +∞, ‖h‖L∞(Ω) ≤ β (here the case p = 2 models the linear

one), and c and f verify suitable summability hypotheses.

Our aim is to compare a solution of (6) with the radial solution v = v# of the problem

(7)

{
−∆pv + β|Du|p−2Du · x|x| =

(
(c+)# − (c−)#

)
|v|p−2v + f# in Ω#

v = 0 su ∂Ω#.

Observe that, differently from Talenti’s result, in the “symmetrized” problem (7) we

take into account also of the zero–order term. In general, this leads to loose a pointwise

comparison like (5) in all Ω# (see [36] for a counterexample). More precisely, if u is a

solution of (6), and v = v# is the solution of (7), then given s0 = inf{s∈ [0, |Ω|] : (c−)∗ > 0}
(if c− ≡ 0, we put s0 = |Ω|), we have

u∗(s) ≤ v∗(s), ∀s ∈ [0, s0],

and ∫ s

0

(u∗(t))p−1 exp

(
−βt

1/n

ω
1/n
n

)
dt ≤

∫ s

0

(v∗(t))p−1 exp

(
−βt

1/n

ω
1/n
n

)
dt, ∀s ∈ [s0, |Ω|].

Several results of this type can be found in literature. For linear case see, for example,

[7], [8], [9], [10],[15], [36], [77], [91], [96], and for nonlinear case see [21], [45], [50], [51],

[81], [90].

Here we present a result obtained in [42], where both the coefficients of zero and first

order are considered, c ∈ Lr(Ω), with r > n/p, and f ∈ Lq(Ω), with q > n/p. We remark

that the comparison result holds if there exists an unique (radial) solution of (7). This

is not guaranteed for any choice of the coefficients β ≥ 0 and c ∈ Lr(Ω). So we find a

structure condition on the the equation in order to obtain an existence and uniqueness

result for the “symmetrized” problem (7).

In Chapter 4 we deal with Dirichlet problems whose prototype is

(8)

{
− div(b(|u|) |Du|p−2Du) = k(|u|) |Du|q + f, in Ω

u = 0 on ∂Ω.

where Ω is a bounded open set in Rn, 0 < p− 1 < q ≤ p < +∞, k and b are continuous

functions such that k ≥ 0 and b > 0, and f ∈ Lr(Ω), r > max{n/p, 1}.
The study of (8) is also motivated by the fact that, in some particular cases, (8) is

equivalent to a problem like (6), with β = 0. This can be easily seen by means of a well–

known example, due to Kazdan and Kramer (see [66]). Furthermore, the same example

well explains the typical behaviour of problems like (8). Now we briefly sketch it (see

Chapter 4 for details).
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Let us consider the semilinear problem

(9)

{
−∆u = |Du|2 + λ, u ∈ H1

0 (Ω) ∩ L∞(Ω),

u > 0 in Ω,

where λ is a positive constant and Ω is a bounded open set in Rn. Performing the change

of variable v = eu − 1, we obtain that (9) is equivalent to the problem

(10)

{
−∆v = λ(v + 1), v ∈ H1

0 (Ω) ∩ L∞(Ω),

v > 0 in Ω.

By Fredholm alternative, Problem (10) (and then (9)) admits a solution if λ is smaller

than λ1(Ω), the first eigenvalue of the laplacian in Ω. Moreover, if λ ≥ λ1(Ω), is not

difficult to show that (10) (and then (9)) does not admit a solution. In particular this

means that in general one can expect that, in order to prove the existence of a solution

to problem (8), one has to assume some smallness condition on the source term f .

Problems like (8) have been widely studied in literature under various hypotheses. In

a series of papers by Boccardo, Murat and Puel (see [29], [30], [31], [32]) the existence of

solutions of problems like (8), with p = q and b constant, is proved under sign condition

on the lower order terms or assuming the existence of sub and super solutions. Moreover,

similar problems have been treated, for example, for k ≡ 0 in [3], [2], [26], and for k 6≡ 0

in [7], [62], [79], [2], [34], [94], [34], [53], [54], [84], [63] in the case p = q, and in [50],

[33], [63] in the case p− 1 < q ≤ p .

The quoted results are of two kinds: the first one establishes existence of solutions

without imposing any additional condition on f ; the second one requires conditions on the

smallness of some norm of f . More precisely, when it is possible to remove the smallness

hypotheses on f , appropriate hypotheses on the structure of the equation are needed, like

sign conditions or particular hypotheses on the functions k(s) and b(s).

Here we present an existence result for problems like (8) obtained in [43]. Our ap-

proach permits to treat in a unified way both the cases in which it is required a particular

hypothesis on f and the cases in which such hypothesis it is not necessary.

For example, when b ≡ 1 in (8), our result reads as follows: if

(11) c ‖f‖Lr(Ω) < sup
s>0

W (s),

where

W (s) =

∫ s

0

e−C
R s
r k(y)

1
1−p+q dydr

and the constants c and C depend only on p, q, n and |Ω|, there exists a solution of (8).

Depending on k(s), the function W (s) can be bounded or not. In the first case the

condition (11) is an hypothesis on the norm of f . In the second case, that is sups>0W (s) =

+∞, our result does not require any smallness assumption on f , because (11) is always

satisfied. On the other hand, our approach allows us to consider the more general condition
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sups>0W (s) = +∞ instead of lims→+∞W (s) = +∞ considered in previous papers (see

[34], [85]).

The central point is to obtain an a priori estimate for solutions of (8), that we prove,

by means of symmetrization methods, in terms of the function W , namely

(12) W (‖u‖L∞(Ω)) ≤ c ‖f‖Lr(Ω) ,

where c is the same constant which appears in (11). If the condition (11) is not satisfied,

it is clear that (12) cannot give any information on ‖u‖L∞(Ω), since it is trivially verified.

On the other hand, if, for example, W (s) is monotone, (11) and (12) immediately give

us a L∞−estimate for u. In general, under our assumptions, W (s) is not monotone, and

then (11) and (12) do not imply directly an estimate for u. The main point in the proof of

the existence result consists in showing that the only hypothesis (11) allows us to obtain

an uniform estimate for the solutions to suitable problems which approximate (8). After

passing to the limit such approximate problems we get the result.

We observe that, if k ≡ 0, the problem (8) takes the form

(13)

{
− div(b(|u|) |Du|p−2Du) = f in Ω,

u = 0 on ∂Ω.

A typical example is given by a function b(s) which goes to zero when s goes to +∞. In

this case the operator u 7→ − div(b(|u|)|Du|p−2Du)) is, in general, not coercive. Problems

like (13) have been investigated by several authors (see, for example, [4], [2], [26], [22]).

Another kind of degeneracy can be given, for instance, by means of functions b(s)

which blow up at finite values of s. A typical model of such problem is the following:

(14)


− div

(
|Du|p−2Du

(1− |u|)α

)
= f in Ω,

u = 0 on ∂Ω.

Here Ω is a bounded open set in Rn, 1 < p < +∞, α > 0 and f verifies suitable summa-

bility hypotheses. In the last chapter we study the existence of solutions of problems like

(14). So the main feature of this equation is the fact that the term b(u) = 1/(1 − |u|)α

blows up when u approaches the values ±1.

Existence results for such kind of problems have been obtained by several authors in

the case p = 2 under different assumptions on the equation (see, for example, [23], [24],

[25], [58], [59], [83]). More precisely, under suitable hypotheses, in [83] it is proved the

existence of weak solutions u ∈ H1
0 (Ω) of problem (14) such that ‖u‖L∞(Ω) < m or, in

a more general setting, the existence of distributional solutions which can approach the

values ±1 on a set of Lebesgue measure zero. In [24], [25], [58], [59], [23], problems

similar to (14) are considered. In this papers the idea of weak solutions is not well–suited,

because in such cases the solutions can achieve the critical values on a set of positive
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Lebesgue measure. For this reason, the authors adapt the definition of renormalized

solution to the structure of their problems, in order to obtain existence results.

Here we present some results obtained in [44], where we focus our attention on the

more general case 1 < p < +∞, obtaining existence results with respect to the summa-

bility of b and f .

First of all, let us consider the case b1/(p−1) 6∈ L1(0, 1). If f ∈ Lr(Ω), r > n/p, it

possible to prove that there exists a weak solution u of (14), belonging to ∈ W 1,p
0 (Ω), such

that ‖u‖L∞(Ω) < m (see also [83] for p = 2). We observe that this is the same behavior of

well–known standard elliptic problems. If we decrease the summability assumption on f ,

it is possible to obtain solutions still in W 1,p
0 (Ω), but which can reach the critical values

±1 on a set of Lebesgue measure zero. More precisely, if f ∈ Lr(Ω), np/(np − n + p) ≤
r < n/p, then we get weak solutions, otherwise if f ∈ L1(Ω), we adapt the definition

of entropy solution (see [19]) in order to have existence results. In the former case, our

result improves the one obtained in [83] when p = 2, where distributional solutions are

considered.

The case b ∈ L1(0, 1) is completely different from the previous one. Indeed, in order

to obtain existence of weak solutions u ∈ W 1,p
0 (Ω) such that ‖u‖L∞(Ω) < m we need to

require a smallness assumption on the Lr–norm of f , with r > n/p. If such smallness

hypothesis is not satisfied, it is not possible to obtain weak solutions because, in general,

the measure of the set {|u| = 1} is positive. To avoid this problem, we use the adapted

definition of entropy solution. This adaptation allows to treat also the case of the datum

f in L1(Ω).

We emphasize that all the obtained solutions are in the energy space W 1,p
0 (Ω), differ-

ently from the typical results on elliptic equations with datum in L1.

We observe that the behavior of the function b does not allow to apply the classical

methods for Leray–Lions operators. To overcome this problem, we approximate the equa-

tion (14) by cutting the function b near the critical value 1 and taking smooth data, in

order to obtain operators which belong to the class of Leray–Lions ones. For the solutions

of this class of approximated problems, using symmetrization methods, we will obtain a

priori estimates in Lebesgue and Sobolev spaces. Such estimates, together with a result

on a.e. convergence of the gradients, allow us to pass to the limit obtaining the existence

results. We observe that, due to the presence of the function b, the a.e. convergence of

the gradients of approximated solutions holds only on the set {|u| < 1}.

Finally, I want to thank Prof. Vincenzo Ferone, who introduced me in this subject,

and who continuously supported and encouraged me during these years.



CHAPTER 1

Rearrangements

1. Definitions

Let Ω be a Lebesgue measurable set of Rn, with n ≥ 1. We denote with |Ω| its

n–dimensional Lebesgue measure, which we suppose to be positive and, for the sake of

simplicity, finite. Let u : Ω→ R be a measurable function.

Definition 1.1. The distribution function of u is the map µu : [0,+∞[→ [0,+∞[

defined by

µu(t) = |{x ∈ Ω : |u(x)| > t}|.

Such function represents the measure of the level sets of u.

Proposition 1.1. The function µu enjoys the following properties:

(1) µu(t) is monotone decreasing;

(2) µu(0) = | sptu|;
(3) sptµu = [0, ess sup |u|];
(4) µu(t) is right–continuous;

(5) µu(t
−)− µu(t) = |{x ∈ Ω : |u(x)| = t}|.

Proof. (1), (2) and (3) are immediate from the definition. As regards (4) and (5),

being

{x ∈ Ω: |u(x)| > t} =
∞⋃
k=1

{
x ∈ Ω: |u(x)| > t+

1

k

}
,

and

{x ∈ Ω: |u(x)| ≥ t} =
∞⋂
k=1

{
x ∈ Ω: |u(x)| > t− 1

k

}
,

we get

µu(t
+) = lim

k→+∞

∣∣∣∣{x ∈ Ω: |u(x)| > t+
1

k

}∣∣∣∣ = µu(t),

µu(t
−) = lim

k→+∞

∣∣∣∣{x ∈ Ω: |u(x)| > t− 1

k

}∣∣∣∣ = µu(t) + |{x ∈ Ω: |u(x)| = t}|.

�

We observe that, by (5), µu(t) is discontinuous only for t such that

|{x ∈ Ω: |u(x)| = t}| 6= 0.

1
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Definition 1.2. The decreasing rearrangement of u is the map u∗ : [0,∞[→ [0,∞[

defined by

u∗(s) := sup{t ≥ 0: µu(t) > s}.

Essentially, u∗ is the “generalized” inverse of µu, in the sense that if t is a point

of discontinuity of µu, then the value of u∗ is fixed as t in the interval [µu(t), µu(t
−)];

moreover, the flat zones of µu become jump discontinuities in u∗.

Observe that u∗ is the distribution function of µu; therefore u∗ enjoys the following

properties:

(1) u∗ is monotone decreasing;

(2) u∗ is right–continuous;

(3) u∗(0) = ess supu;

(4) sptu∗ = [0, | sptu|];
(5) u∗(µu(t)) ≤ t and µu(u

∗(s)) ≤ s.

Proposition 1.2. The mapping u 7→ u∗ has the following property: given u, v mea-

surable functions on Ω, then

|u| ≤ |v| ⇒ u∗ ≤ v∗.

Proof. Since {x ∈ Ω: |u(x)| > t} ⊂ {x ∈ Ω: |v(x)| > t}, we have that

{t ≥ 0: µu(t) > s} ⊂ {t ≥ 0: µv(t) > s};

then the result follows from the definition. �

Definition 1.3. Two real–valued functions are equimeasurable if they have the same

distribution function. Equimeasurable functions are said to be rearrangement of each

other.

Proposition 1.3. The functions u : Ω → R and u∗ : [0, |Ω|] → [0,+∞[ are equimea-

surable, that is for all t ≥ 0,

(1.1) |{x ∈ Ω: |u(x)| > t}| = |{s ∈ [0,Ω]: u∗(s) > t}|.

Proof. By the definition of u∗, it follows that

if u∗(s) > t, then s < µu(t);

if u∗(s) ≤ t, then s ≥ µu(t).

Hence

{s ≥ 0: u∗(s) > t} = [0, µu(t)[,

and this gives (1.1). �
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Corollary 1.1. With the preceding notations, we have

|{x ∈ Ω: |u(x)| ≥ t}| = |{s ∈ [0,Ω]: u∗(s) ≥ t}|(1.2)

|{x ∈ Ω: |u(x)| < t}| = |{s ∈ [0,Ω]: u∗(s) < t}|(1.3)

|{x ∈ Ω: |u(x)| ≤ t}| = |{s ∈ [0,Ω]: u∗(s) ≤ t}|(1.4)

Proof. Since (1.4) is equivalent to (1.1) and (1.2) is equivalent to (1.3), it is sufficient

to prove that (1.1) and (1.2) are equivalent. Indeed, being

lim
h→0+

|{x ∈ Ω: |u(x)| ≥ t+ h}| = |{x ∈ Ω: |u(x)| > t}|

and

lim
h→0+

|{x ∈ Ω: |u(x)| > t− h}| = |{x ∈ Ω: |u(x)| ≥ t}|,

we get the thesis. �

By Proposition 1.3 we get an important property of rearrangements: if u ∈ Lp(Ω),

with 1 ≤ p ≤ +∞, then u∗ ∈ Lp(0, |Ω|), and

(1.5) ‖u‖Lp(Ω) = ‖u∗‖Lp(0,|Ω|) ;

indeed, if p < +∞, a simple application of Fubini’s theorem gives

‖u‖Lp(Ω) = p

∫
Ω

tp−1µu(t)dt;

by equimeasurability of u and u∗, (1.5) follows. If p = ∞, the result follows from the

definition of rearrangement.

In general, (1.1) allows us to observe that if an operator Φ, acting on a measurable

function u, depends only on the measure of the level sets of u, then the operator is

invariant with respect to the action of the rearrangement (see [82], [92]). For example,

the operator Φ, defined as

Φ(u) :=

∫
Ω

F (|u(x)|) dx,

where F : R → [0,+∞[ is a Borel measurable function, is rearrangement invariant, as

stated in the following proposition.

Proposition 1.4. Let u : Ω→ R measurable. Let F : R→ R be a non–negative Borel

measurable function. Then∫
Ω

F (|u(x)|) dx =

∫ |Ω|
0

F (u∗(s)) ds.
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Proof. First, suppose that F = χ[t,+∞]
1. Then∫

Ω

χ[t,+∞](|u(x)|) dx = | {x ∈ Ω: |u(x)| > t} | =

= | {s ≥ 0: u∗(s) > t} | =
∫ Ω

0

χ[t,+∞](u
∗(s)) ds.

Similarly, the result holds for F = χE, where E is any interval and then if E is any open

set and, again, if E is any Borel set, by standard arguments. Hence the result is true for

any non–negative simple function F . If F is any non–negative Borel function, it can be

expressed as the limit of an increasing sequence {Fk} of non negative simple functions.

Thus, for each n we have ∫
Ω

Fk(|u(x)|) dx =

∫ |Ω|
0

Fk(u
∗(s)) ds.

Using the monotone convergence theorem, we can pass to the limit as k → +∞ to get

the thesis. �

We now prove another important property of rearrangements.

Proposition 1.5. Let u : [0, l]→ [0,+∞[ be non–increasing. Then u and u∗ coincides

a.e.

Proof. If t < u(s), then µu(t) ≥ s, being u non–increasing. Hence u∗(s) ≥ t, by

definition. This implies that

(1.6) u∗(s) ≥ u(s), for all s ∈ [0, l].

On the other hand, being u is non–increasing, we have that

µu(u(s− h)) ≤ s− h < s

for h > 0. Thus, by definition, u∗(s) ≤ u(s − h). Hence, if s is a point of continuity for

u, as h tends to 0 we obtain

(1.7) u∗(s) ≤ u(s);

then by (1.6) and (1.7) we obtain that u∗(s) = u(s) on all points of continuity of u;

observing that the set of points of discontinuity of a monotone function is countable, we

get the thesis. �

Here we have described only one kind of rearrangement, the decreasing rearrangement

ı̈¿1
2

la Hardy & Littlewood. Nevertheless, in literature several ways of rearranging a

1We will denote with χE the characteristic function of a set E ⊂ Rn, namely

χE(σ) :=

{
1 σ ∈ E
0 σ 6∈ E
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function have been defined. A good reference on this topic is, for example, [67]. Now we

just recall some definitions which will be useful in the following.

Definition 1.4. The increasing rearrangement of u is the map u∗ : [0,∞[→ [0,∞[

defined by

u∗(s) = u∗(|Ω| − s), s ∈ [0, |Ω|];

The increasing rearrangement enjoys similar properties than the decreasing rearrange-

ment; however, observe that u∗ is monotone increasing and left–continuous.

Definition 1.5. Let Ω# the ball centered at the origin having the same measure as

Ω. The spherically symmetric decreasing rearrangement of u is the function u# : Ω# → R
defined by

u#(x) = u∗(ωn|x|n), x ∈ Ω#,

where ωn is the measure of the unit ball in Rn, namely

ωn =
π
n
2

Γ(n
2

+ 1)
.

The function u# is also known as the Schwarz symmetrization of u. Likewise, the

spherically symmetric increasing rearrangement of u is the function u# : Ω# → R defined

by

u#(x) = u∗(ωn|x|n).

All the functions defined above are equimeasurable with u.

2. Some fundamental rearrangement inequalities

Theorem 2.1 (Hardy & Littlewood, [64]). Let u and v be two measurable functions

defined on a bounded open set Ω ⊂ Rn. Then:

(2.1)

∫ |Ω|
0

u∗(s)v∗(s)ds ≤
∫

Ω

|u(x)v(x)|dx ≤
∫ |Ω|

0

u∗(s)v∗(s)ds

Proof. Let us start to prove (2.1) in the case u and v are the characteristic functions

of two measurable subsets A and B of Ω, that is u(x) = χA(x), and v(x) = χB(x). Being

χ∗E(s) = χ[0,|E|[(s), ∀E ⊂ Ω,

we get ∫
Ω

|u(x)v(x)|dx =

∫
Ω

χA∩B(x)dx = |A ∩B| ≤(2.2)

≤
∫ min{|A|,|B|}

0

ds =

∫ |Ω|
0

χ[0,|A|[(s)χ[0,|B|[(s)ds =

=

∫ |Ω|
0

u∗(s)v∗(s)ds,
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and this proves the right–hand side inequality in (2.1). As regards the other inequality,

being A ∩B = A \ (Ω \B), we have

|A ∩B| ≥ max {0, |A|+ |B| − |Ω|}.

Hence, by using similar arguments as above, we get∫
Ω

|u(x)v(x)|dx ≥
∫ max {0,|A|+|B|−|Ω|}

0

ds =(2.3)

=

∫ |Ω|
0

χ[0,|A|[(s)χ]||Ω|−|B||,|Ω|](s) ds =

=

∫ |Ω|
0

χ[0,|A|[(s)χ[0,|B|](|Ω| − s) ds =

=

∫ |Ω|
0

f ∗(s)g∗(s) ds.

If u and v are any measurable functions, applying Fubini’s Theorem and (2.2), we

obtain:∫ |Ω|
0

u∗(s)v∗(s)ds =

=

∫ |Ω|
0

(∫ +∞

0

χ{z≥0:u∗(z)>r}(s)dr

)(∫ +∞

0

χ{z≥0:v∗(z)>t}(s)dt

)
ds =

=

∫ +∞

0

dr

∫ +∞

0

dt

∫ |Ω|
0

χ{z≥0:u∗(z)>r}(s)χ{z≥0:v∗(z)>t}(s)ds =

=

∫ +∞

0

dr

∫ +∞

0

dt

∫ |Ω|
0

χ∗{y∈Ω:|u(y)|>r}(s)χ
∗
{y∈Ω:|v(y)|>t}(s)ds ≥

≥
∫ +∞

0

dr

∫ +∞

0

dt

∫ |Ω|
0

χ{y∈Ω:|u(y)|>r}(s)χ{y∈Ω:|v(y)|>t}(s)ds =

=

∫
Ω

|u(x)v(x)|dx.

This completes the proof of the right–hand side inequality of (2.1). Using (2.3) and

applying similar argument as above, we get the other inequality and this completes the

proof. �

Remark 2.1. If u is a measurable function defined on a open bounded set Ω, and E

is a measurable subset of Ω, applying Theorem 2.1 with v = χE we get∫
E

|u(x)| dx ≤
∫ |E|

0

u∗(s)ds;

nevertheless, it is possible to prove that for any a ∈ [0, |Ω|] there exists a set Ea ⊂ Ω,

such that |Ea| = a and ∫
Ea

|u(x)| dx =

∫ a

0

u∗(s)ds.
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Remark 2.2. Theorem 2.1 allows to prove easily that the decreasing rearrangement

is a contraction mapping from Lp(Ω) to Lp(0, |Ω|), that is

(2.4) ‖u∗ − v∗‖Lp(0,|Ω|) ≤ ‖u− v‖Lp(Ω) ;

for example, if p = 2, we get:

‖u∗ − v∗‖2
L2(0,|Ω|) =

∫ |Ω|
0

u∗(s)2ds+

∫ |Ω|
0

v∗(s)2ds− 2

∫ |Ω|
0

u∗(s)v∗(s)ds ≤

≤
∫

Ω

|u(x)|2dx+

∫
Ω

|v(x)|2dx− 2

∫
Ω

|u(x)v(x)|dx =

= ‖u− v‖2
L2(Ω) .

Observe that (2.4) implies that the rearrangement is a continuous mapping from Lp(Rn)

to Lp(Rn); indeed, if ‖fk − f‖Lp → 0 as k → 0, also ‖f#
k − f#‖Lp → 0.

The following two technical lemmas will be useful in the next chapters.Spostare

Lemma 2.1. Let f1(s), f2(s) be measurable, nonnegative functions such that∫ r

0

f1(s)ds ≤
∫ r

0

f2(s)ds, ∀r ∈ [0, δ].

If ϕ ≥ 0 is a decreasing function then:∫ r

0

f1(s)ϕ(s)ds ≤
∫ r

0

f2(s)ϕ(s)ds, ∀r ∈ [0, δ].

Proof. The result follows immediately from the following identity:∫ r

0

f(s)ϕ(s)ds = −
∫ r

0

(∫ t

0

f(s)ds

)
dϕ(t) + ϕ(r)

∫ r

0

f(t)dt, r ∈ [0, δ].

�

Lemma 2.2. If f and g belong to L1
+(Ω), and

(2.5)

∫ r

0

f ∗(s)ds ≤
∫ r

0

g∗(s)ds ∀r ∈ [0, |Ω|],

then ∫
Ω

F (f(x))dx ≤
∫

Ω

F (g(x))dx,

for all convex, non–negative functions F such that F (0) = 0, F Lipschitz.

Proof. It is sufficient to show the result for F convex and C1. By Lemma 2.1 we get∫ |Ω|
0

f ∗(s)F ′(f ∗(s))ds ≤
∫ |Ω|

0

g∗(s)F ′(f ∗(s))ds,

being F ′(f)∗ = F ′(f ∗); hence∫ |Ω|
0

F (g∗(s))− F (f ∗(s))ds ≥
∫ |Ω|

0

F ′(f ∗(s))(g∗(s)− f ∗(s))ds ≥ 0,
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and by Proposition 1.4 we get the result. �

Remark 2.3. Applying the above Lemma, if F = |s|p, and f, g ∈ Lp(Ω), 1 ≤ p < +∞,

verify (2.5), then we get

‖f‖Lp(Ω) ≤ ‖g‖Lp(Ω) .

The following result states another important rearrangement inequality.

Theorem 2.2 (Riesz inequality). If f ,g and h are non–negative measurable functions

the following inequality holds:∫
Rn
dx

∫
Rn
f(x)g(y)h(x− y)dy ≤

∫
Rn
dx

∫
Rn
f#(x)g#(y)h#(x− y)dy

As regard the effect of symmetrization on Sobolev function, we have the following

important theorem, which affirms that a function in W 1,p
0 (Ω) is in W 1,p

0 (Ω#) and the

Lp−norm of the gradient decreases under the effect of rearrangement:

Theorem 2.3 (Pólya–Szegö principle). If u ∈ W 1,p(Rn), 1 ≤ p < +∞, is a non–

negative function with compact support, then u# ∈ W 1,p(Rn) and∫
Rn
|Du#|pdx ≤

∫
Rn
|Du|pdx.

A first proof of this result, not in its full generality, was given by Pólya and Szegö in

[84]. Another proof can be found, for example, in [88].

As regards the case of equality in the Pólya–Szegö principle, the following theorem

holds:

Theorem 2.4. Suppose that u ∈ W 1,p(Rn), 1 < p < +∞, is a non–negative function

with compact support, and∣∣{|Du#| = 0} ∩ (u#)−1(0, ess supu)
∣∣ = 0.

If ∫
Rn
|Du#|pdx =

∫
Rn
|Du|pdx

then Ω is equivalent to a ball, and u = u# a.e., up to translations.

The first proof of this theorem for Sobolev functions was given by Brothers and Ziemer

in [35]. Another proof can be found in [49] (see also [38]).

We observe that the Brothers and Ziemer result is false when p = 1. Indeed, the

equality
∫

Rn |Du
#|dx =

∫
Rn |Du|dx holds for any function whose level sets are balls, but

u 6= u# if the level sets of u are non concentric balls.

3. Lorentz spaces

In this section we introduce some functional spaces, called Lorentz spaces, which are

“intermediate” between Lebesgue spaces.
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Given a measurable function u : Ω→ R, we denote with u∗∗ the function

u∗∗(s) =
1

s

∫ s

0

u∗(σ) dσ.

Definition 3.1. A measurable function u : Ω → R belongs to the Lorentz space

L(p,q)(Ω), 1 ≤ p, q ≤ +∞, if the quantity

(3.6) ‖u‖p,q =


{∫ +∞

0

[
t1/pu∗∗(t)

]q dt
t

}1/q

, 1 ≤ q < +∞,

sup
0<t<+∞

t1/pu∗∗(t), q = +∞,

is finite.

The map ‖ · ‖p,q defines a norm, and the space (L(p,q)(Ω), ‖·‖p,q) is a rearrangement–

invariant Banach space. We observe that L(p,p) = Lp, for any 1 ≤ p ≤ +∞, and ‖u‖Lp =

‖u‖p,p. The space L(p,∞)(Ω), with 1 ≤ p < +∞, is also known as the Marcinkiewicz space

(or weak Lp), and denoted with Mp(Ω). Such space contains all the functions u such that

µu(t) ≤
1

tp
, ∀t > 0.

The following estimate establishes a relation between Lorentz spaces.

Proposition 3.1. If 1 ≤ p ≤ +∞ and 1 ≤ q ≤ r ≤ +∞, then

‖u‖p,r ≤
(
q

p

)1/q−1/r

‖u‖p,q .

In particular, we get the inclusions

Lr ⊂ L(p,1) ⊂ L(p,q) ⊂ L(p,p) = Lp ⊂ L(p,r) ⊂ L(p,∞) ⊂ Lq,

for 1 < q < p < r < +∞.

More details on Lorentz spaces can be found, for example, in [65], or in [20].

An useful tool when dealing with Lorentz spaces is the Hardy inequality, that we recall

in the following form:

Proposition 3.2 (Hardy). Suppose λ > 0, 1 ≤ γ < +∞. Let f a nonnegative

measurable function on (0,+∞). The following inequalities hold:

(3.7)

∫ +∞

0

(
t−λ
∫ t

0

f(s)ds

)γ
dt

t
≤ c

∫ +∞

0

(t1−λf(t))γ
dt

t

and

(3.8)

∫ +∞

0

(
tλ
∫ +∞

t

f(s)ds

)γ
dt

t
≤ c

∫ +∞

0

(t1+λf(t))γ
dt

t
.

Remark 3.1. By Hardy inequality and the fact that u∗ ≤ u∗∗, it follows easily that

the definition 3.1 can be equivalently stated replacing u∗∗ with u∗ in (3.6). We observe

that in this case, if p < q < +∞, (3.6) is not a norm.
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Now we want to recall a property of Marcinkiewicz functions which will be useful in

the following.

First of all, we give a sense to the gradient Du of a function u ∈ L1(Ω) such that the

truncates of u are Sobolev functions (see [19]).

Given h > 0, we denote with Th(s) the truncation function at level ±h, defined as

Th(s) =

{
s if |s| ≤ h,

h sign s if |s| > h.

h

The following result holds (see [19]):

Lemma 3.1. Given a measurable function u : Ω → R such that for every k > 0 the

truncated function Tk(u) belongs to W 1,1
loc (Ω), there exists a unique measurable function

v : Ω→ Rn such that

(3.9) DTk(u) = vχ{|u|<k} a.e.

Furthermore, u ∈ W 1,1
loc (Ω) if and only if v ∈ L1

loc(Ω), and then v = Du in the usual weak

sense.

Therefore, if u : Ω → R is such that for every k > 0 the truncated function Tk(u)

belongs to W 1,1
loc (Ω) we define the weak gradient Du of u as the unique function v which

verifies (3.9).

The following technical lemma gives a sufficient condition in order that the gradient

of a function belongs to a Marcinkiewicz space.

Lemma 3.2 ([19]). Let v be a measurable function belonging to Mγ(Ω) for some γ ≥ 1,

such that, for every k ≥ 0, Tk(v) belongs to W 1,p
0 (Ω), p > 1. Suppose that

(3.10)

∫
{|v|≤k}

|Dv|pdx ≤ c kλ, ∀ k > k0,

for some non–negative λ, c and k0. Then the weak gradient of v (in the sense of the above

definition) is such that |Dv| belongs to M q(Ω), with q = γp/(γ + λ).
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Proof. Let k > 0 fixed. For every t > 0, we can write

|{|Dv| > k}| ≤ |{|Dv| > k, |v| ≤ t}|+ |{|v| > t}|

Using (3.10) and the fact that v ∈Mγ(Ω), we have, for t > k0,

(3.11) |{|Dv| > k}| ≤ 1

kp

∫
Ω

|DTt(v)|p dx+ |{|v| > t}| ≤ c

(
tλ

kp
+

1

tγ

)
.

For k sufficiently large, a minimization of the right–hand side of (3.11) gives

|{|Dv| > k}| ≤ c

tγp/(γ+λ)
.

Observing that, for any value of k, |{Dv} > k| ≤ |Ω|, we obtain the assertion. �





CHAPTER 2

Monotone operators

1. Definitions and first properties

In this section we give a review of some classical results about boundary value problem

for nonlinear elliptic equations. We will refer to equations involving monotone operators,

or, more generally, pseudo–monotone operators.

First, we recall some basic definition. In what follows we will denote with V a real

reflexive and separable Banach space and with V ′ its dual space. Let A : V → V ′ be a

mapping (nonlinear, in general).

Definition 1.1. We say that A is monotone if

(1.1) (A(u)− A(v), u− v) ≥ 0, for any u, v ∈ V ;

A will be strictly monotone if the inequality in (1.1) is strict whenever u = v.

Definition 1.2. We say that A is hemicontinuous if for any u, v ∈ V , the mapping

t→ (A(u+ tv), v)

is continuous from R to R.

Example 1.1. The differential DJ : V → V ′ of a convex Gâteaux differentiable map-

ping1 J : V → R is monotone. Indeed, let w = u − v. The function j(t) = J(v + tw),

t ∈ R, is convex and differentiable (therefore C1), with j′(t) = (DJ(v + tw), v). Hence j′

is non–decreasing, that implies

(DJ(v), v) = j′(0) ≤ j′(1) = (DJ(u), v).

By reversing the roles of u and v, we get the monotonicity of DJ . Moreover, the continuity

of j′ implies that DJ is also hemicontinuous.

We observe that if A is continuous from V strongly to V ′ weakly, then A is hemicon-

tinuous; conversely, we have the following surprising result, being the hemicontinuity a

very weak condition:

1We recall that a f : V → R is Gâteaux differentiable if there exists a mapping Df : V → V ′ such that
for any x ∈ V

lim
ε→0

f(x+ εy)− f(x)
ε

= (Df(x), y), for any y ∈ V.

13
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Lemma 1.1. If A be a bounded, hemicontinuous and monotone, then A is continuous

from V strongly into V ′ weakly.

Proof. Let uj a sequence such that uj → u strongly in V . Being A bounded, A(uj)

is bounded in V ′. Hence by reflexivity of V ′ we can extract a subsequence ujk such that

A(ujk) ⇀ ξ weakly in V ′ . By monotonicity, we get that for any v ∈ V ,

0 ≤ (A(ujk), ujk − v)− (A(v), ujk − v).

Clearly, (A(v), ujk − v) converges to (A(v), u − v). Moreover, by weak convergence of

A(ujk) in V ′ and strong convergence of ujk in V , it follows that

(A(ujk), ujk − v)→ (ξ, u− v);

consequently, we obtain that for any v ∈ V ,

(1.2) 0 ≤ (ξ − A(v), u− v).

Let w ∈ V , and t > 0. Applying (1.2) with v = u+ tw, we get

(ξ − A(u+ tw), w) ≤ 0.

By hemicontinuity of A, it follows that for any w ∈ V , (ξ − A(u), w) ≤ 0, that means

(ξ − A(u), w) = 0, ∀w ∈ V.

Hence ξ = A(u), and this completes the proof. �

2. Existence results for monotone operators: the Browder and Minty method

Here we prove a general existence result, which method of proof is due to Browder

and Minty.

First, let us recall that an operator A is said to be coercive if

lim
‖v‖→+∞

(A(v), v)

‖v‖
= +∞.

Theorem 2.1 (Minty–Browder). Let V a reflexive and separable Banach space. Let

A : V → V ′ a bounded, hemicontinuous, monotone and coercive mapping. Then A is

surjective, i.e. for any f ∈ V ′ there exists a solution u ∈ V of the equation

(2.1) A(u) = f.

To prove Theorem 2.1, it is fundamental the following technical lemma, which is a

variant of the Brouwer fixed point Theorem:

Lemma 2.1 (Zeros of a vector field). Assume the continuous function P : Rm → Rm

satisfies

P (x) · x ≥ 0, if |x| = r,
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for some r > 0.2 Then there exists a point x ∈ Br(0) such that

P (x) = 0.

Proof of Theorem 2.1. We intend to build a solution of the equation (2.1) by

first constructing solutions of certain finite–dimensional approximations to (2.1) and then

passing to the limit3. Let w1, . . . , wm, . . . be a basis of V ; for each m ∈ N, there exists

um ∈ span {w1, . . . , wm} such that

(2.2) (A(um), wm) = (f, wj), 1 ≤ j ≤ m.

Indeed, first observe that

(A(um), um)− (f, um) ≥ (A(um), um)− c ‖um‖ ;

the coercivity implies that for ‖um‖ sufficiently large, (A(um), um) − c ‖um‖ ≥ 0. On

the other hand, the function v → (A(v), v) is continuous on span {w1, . . . , wm}, by

Lemma 1.1. Applying Lemma 2.1 with P (η) = (P1(η), . . . , Pm(η)) such that Pj(η) =

(A (
∑m

i=1 ηiwi) , wj)− (f, wj), 1 ≤ j ≤ m, there exists um ∈ span {w1, . . . , wm} that solves

(2.2). Hence, by (2.2) we get

(A(um), um) = (f, um) ≤ ‖f‖V ′ ‖um‖ ;

by coercivity, and being A bounded, it follows that

‖um‖ ≤ C, ‖A(um)‖V ′ ≤ C.

Hence, up to subsequences,

um ⇀ u weakly in V,

A(um) ⇀ ξ weakly in V ′.
(2.3)

Passing to the limit into (2.2), we get that for any 1 ≤ j ≤ m

(ξ, wj) = (f, wj),

that implies

(2.4) ξ = f.

Moreover, by (2.2) we obtain (A(um), um) = (f, um)→ (f, u), and by (2.4) we get

(2.5) (A(um), um)→ (ξ, u).

Hence the Theorem is proved if we show that

(2.6) ξ = A(u).

2Here x · y =
∑n

1 xiyi denotes the scalar product of two vectors x, y ∈ Rn.
3This is the so–called Galerkin’s method.
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Starting from

(2.7) 0 ≤ (A(um)− A(v), um − v), ∀v ∈ V,

by (2.3) and (2.5) we can pass to the limit in (2.7) in order to obtain

(2.8) 0 ≤ (ξ − A(v), u− v), ∀v ∈ V.

Then we can reason exactly as in the proof of Lemma 1.1 in order to get (2.6). �

Remark 2.1. We observe that under the hypotheses of Theorem 2.1, if the mapping

A is strictly monotone, the solution of (2.1) is unique.

3. An example of monotone operator

Definition 3.1. Let Ω ⊂ Rn a bounded open set, and d ∈ N. We say that a function

(x, ξ) ∈ Ω× Rd 7→ f(x, ξ) ∈ R

is a Carathéodory function if

f(x, ·) is continuous for a.e. x ∈ Ω,

and

f(·, ξ) is measurable for every ξ ∈ Rd.

Given f a Caratḧı¿1
2
odory function, and u : Ω→ Rd, the mapping

(3.9) A(u)(x) := f(x, u(x))

is called the Nemytskii operator of f .

For such operators the following important result holds (see [69]):

Theorem 3.1. Let f : Ω× Rd → R be a Carathéodory function such that

|f(x, ξ)| ≤ g(x) + C |ξ|p−1 ,

with 1 < p < +∞ and g ∈ Lp
′
(Ω), where p′ is such that 1/p + 1/p′ = 1. Then the

Nemytskii operator defined by (3.9) is a bounded and continuous mapping from Lp(Ω) to

Lp
′
(Ω).

Example 3.1. Let Ω ⊂ Rn an open bounded set, 1 < p < +∞ and V = W 1,p
0 (Ω).

Suppose that F : Rn → Rn is a continuous monotone mapping, in the sense that for any

ξ, η ∈ Rn,

(3.10) (F (ξ)− F (η)) · (ξ − η) ≥ 0,

and F satisfies the growth condition

(3.11) |F (ξ)| ≤ C(1 + |ξ|p−1),
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for any ξ in Rn and for some constant C. Then, the mapping

u ∈ W 1,p
0 (Ω) 7→ A(u) = − div(F (Du)) ∈ W−1,p′(Ω)

is bounded, hemicontinuous and monotone. Indeed, if u ∈ W 1,p
0 (Ω), then F (Du) ∈ Lp′(Ω),

|F (Du)|p
′
≤ C(1 + |Du|p−1)p/(p−1) ≤ C ′(1 + |Du|p) ∈ L1(Ω);

hence − div(F (Du)) ∈ W−1,p′(Ω) with the duality

(− div(F (Du)), v) =

∫
Ω

F (Du) ·Dv dx,

for any v ∈ W 1,p
0 (Ω). The same computation as above gives that F (Du) is bounded

in Lp
′
(Ω; Rn), therefore A(u) is bounded in W−1,p′(Ω). By theorem 3.1, the mapping

z 7→ F (z) is continuous from Lp(Ω; Rn) strongly to Lp
′
(Ω; Rn) strongly, hence we deduce

that A is continuous from W 1,p
0 (Ω) to W−1,p′(Ω), and a fortiori hemicontinuous. Finally,

for any u, v ∈ W 1,p
0 (Ω), we have

(A(u)− A(v), u− v) =

∫
Ω

(F (Du)− F (Dv)) · (u− v) dx ≥ 0.

Moreover, if we add the hypothesis that

(3.12) F (ξ) · ξ ≥ α |ξ|p , ∀ξ ∈ Rn,

then A is also coercive, being

(A(u), u)

‖u‖
=

∫
Ω
F (Du) ·Dudx
‖|Du|‖Lp(Ω)

≥ ‖|Du|‖p−1
Lp(Ω) →∞,

as ‖|Du|‖Lp(Ω) → +∞. Applying Theorem 2.1, we get that if f ∈ W−1,p′(Ω), there exists

a solution u ∈ W 1,p
0 (Ω) of the problem− div(F (Du)) = f in Ω

u = 0 on ∂Ω,

in the sense that ∫
Ω

F (Du) ·Dϕdx = (f, ϕ) for any ϕ ∈ W 1,p
0 (Ω).

An example of function verifying (3.10), (3.11) and (3.12) is given by F (ξ) = |ξ|p−2ξ,

1 < p < +∞; then A(u) = −∆pu, where ∆pu = div(|Du|p−2Du) is the so–called p–

laplace operator.

4. Pseudo–monotone operators

In this section we want to examine a more general class of nonlinear mappings, namely

the pseudo–monotone operators. In applications, it often occurs that the hypotheses made

on the operator A in Theorem 2.1 are unnecessarily strong. In particular, the monotonicity
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assumption on A involves both the first–order derivatives and the function itself. Actually,

it is necessary only to have a monotonicity assumption on the first–order derivatives.

Definition 4.1. We say that the mapping A : V → V ′ is said to be of M–type if

uj ⇀ u weakly in V,

A(uj) ⇀ ξ weakly in V ′,

lim supj→+∞(A(uj), uj) ≤ (ξ, u),

⇒ ξ = A(u).

Remark 4.1. Such definition is suggested by the fact that, looking at the proof of

Theorem 2.1, if we substitute the monotonicity assumption on A with the assumption of

being of M–type, the Theorem continues to hold. Indeed, it is not difficult to show that

A is still continuous from V strongly into V ′ weakly, and the monotonicity used at the

end of the proof is replaced by the fact that (2.6) follows, by definition, from (2.5).

So the M–type assumption allows to avoid the monotonicity condition, but it is not

easy to test that such assumption holds; to avoid this problem we introduce the class of

pseudo–monotone operators. This class of mappings is intermediate between the class of

monotone operators and the one of M–type.

Definition 4.2. A mapping A : V → V ′ is called pseudo–monotone if whenever

uj ⇀ u weakly in V and lim supj→+∞(A(uj), uj − u) ≤ 0, it follows that

lim inf
j→+∞

(A(uj), uj − v) ≥ (A(u)− v) for all v ∈ V.

Remark 4.2. We observe that a pseudo–monotone operator is continuous from V

strongly to V ′ weakly; indeed, suppose that there exists uj → u strongly such that A(uj)

does not converges weakly to A(u) in V ′. Then, up to a subsequence, A(uj) ⇀ f in V ′

weakly, with f 6= A(u). Then

lim sup
j→+∞

(A(uj), uj − u) = 0,

hence, for any v ∈ V ,

lim inf
j→+∞

(A(uj), uj − v) = (f, u− v) ≥ (A(u), u− v),

and then f = A(u); this is a contradiction.

The class of pseudo–monotone operators is an “intermediate” class:

Proposition 4.1. A bounded, hemicontinuous and monotone operator is pseudo–

monotone, and a pseudo–monotone operator is of M–type.

Finally, combining Proposition 4.1 with Remark 4.1, we get the following existence

result.

Theorem 4.1. Let A : V → V ′ a coercive pseudo–monotone mapping. Then, for any

f ∈ V ′, the equation A(u) = f admits at least a solution.
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Definition 4.3. A mapping A : V → V ′ is said to be of the calculus of variations

type if it is bounded and it admits the representation

A(u) = A(u, u),

where the mapping

(u, v) ∈ V × V 7→ A(u, v) ∈ V ′

has the following properties:

(4.13)

{
∀u ∈ V, the mapping v 7→ A(u, v) is bounded and hemicontinuous

from V to V ′, and (A(u, u)− A(u, v), u− v) ≥ 0;

(4.14)

{
∀v ∈ V , the mapping u 7→ A(u, v) is bounded

and hemicontinuous from V to V ′;

(4.15)
uj ⇀ u weakly in V,

(A(uj, uj)− A(uj, u), uj − u)→ 0,

}
⇒

{
∀v ∈ V,
A(uj, v) ⇀ A(u, v) weakly in V ′;

(4.16)
uj ⇀ u weakly in V,

A(uj, v) ⇀ Ψ weakly in V ′,

}
⇒ (A(uj, v), uj)→ (Ψ, u).

Proposition 4.2. An operator of calculus of variations type is pseudo–monotone.

As before, by the above Proposition, the Proposition 4.1 and Remark 4.1 we get the

following result.

Theorem 4.2. Let A : V → V ′ be an operator of calculus of variations type. Then,

for any f ∈ V ′, the equation A(u) = f admits at least a solution.

5. Leray–Lions operators

Let Ω be a bounded open set in Rn. Given f ∈ W−1,p′(Ω), we consider Dirichlet

problems of the form

(5.17)

{
− div(a(x, u,Du)) +H(x, u,Du) = f, in Ω,

u = 0 on ∂Ω,

where the mappings a(x, s, ξ) : Ω× R× Rn → Rn and H(x, s, ξ) : Ω× R× Rn → R have

the following properties:

(i) a and H are Carathéodory functions, i.e. they are measurable with respect to

x ∈ Ω, and continuous with respect to (s, ξ) ∈ R× Rn;

(ii) there exist g ∈ Lp′(Ω) and a constant C such that

|a(x, s, ξ)| ≤ g(x) + C(|s|p−1 + |ξ|p−1),(ii1)

|H(x, s, ξ)| ≤ g(x) + C(|s|p−1 + |ξ|p−1),(ii2)
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with 1 < p < +∞, for a.e. x ∈ Ω, and for all s ∈ R, ξ ∈ Rn;

(iii) if (u,w) ∈ W 1,p
0 (Ω)×W 1,p

0 (Ω) 7→ B(u,w) ∈ R is the form defined as

B(u,w) =

∫
Ω

a(x, u,Du) ·Dw dx+

∫
Ω

H(x, u,Du)w dx,

then
B(v, v)

‖v‖W 1,p
0

−→ +∞ as ‖v‖W 1,p
0
−→ +∞;

(iv) for a.e. x ∈ Ω and uniformly for s on bounded sets, we have

a(x, s, ξ) · ξ
|ξ|+ |ξ|p−1 −→ +∞ as |ξ| −→ +∞;

(v) the function a is strictly monotone with respect to ξ, that is

(a(x, s, ξ)− a(x, s, ξ′)) · (ξ − ξ′) > 0,

for a.e. x ∈ Ω, s ∈ R and for all ξ, ξ′ ∈ Rn such that ξ 6= ξ′.

Observe that the form w 7→ B(u,w) is linear and continuous on W 1,p
0 (Ω); hence we can

write

B(u,w) = (A(u), w), A(u) ∈ W−1,p′

0 (Ω),

where A(u), u ∈ D(Ω), is given by

(5.18) A(u) = − div(a(x, u,Du)) +H(x, u,Du).

Theorem 5.1 (Leray & Lions, [73]). Let A : W 1,p
0 (Ω) → W−1,p′(Ω) be the operator

defined as in (5.18), where a(x, s, ξ) and H(x, s, ξ) verify (i)− (v). If f ∈ W−1,p′(Ω), then

there exists u ∈ W 1,p
0 (Ω) such that

A(u) = f.

To prove Leray–Lions theorem, we need some preliminary lemmas.

First, we recall the following result:

Lemma 5.1. Let hj a bounded sequence in Lq(Ω), 1 < q < +∞ such that hj → h a.e;

then hj ⇀ h weakly in Lq(Ω).

Next result is crucial in what follows.

Lemma 5.2. Suppose that (i), (ii), (iv) and (v) hold. Let

(5.19) uj, u ∈ W 1,p
0 (Ω) such that uj ⇀ u weakly in W 1,p

0 (Ω).

Put

Fj = (a(x, uj, Duj)− a(x, u,Du)) · (Duj −Du),

and suppose that ∫
Ω

Fj(x)dx→ 0.
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Then, up to a subsequence,

Duj → Du a.e. in Ω,

and

H(x, uj, Duj) ⇀ H(x, u,Du) weakly in Lp
′
(Ω).

Proof. By the monotonicity assumption, Fj ≥ 0; moreover, being uj → u in Lp(Ω),

by (5.19), up to a subsequence we have that

(5.20) uj(x)→ u(x), Fj(x)→ 0 in Ω \ Ω0,

with |Ω0| = 0. Fix x 6∈ Ω0 such that g(x) < +∞, and let ξ∗ be a limit of Duj(x). We

prove that |ξ∗| is finite. By (ii) we have:

Fj(x) ≥ a(x, uj(x), Duj(x)) ·Duj(x)− c(|Duj(x)|p−1 + |Duj(x)|+ 1),

where the constant c involves the all the terms which does not depend on j; hence (iv)

implies that if |ξ∗| = +∞, then Fj(x)→ +∞, and this contradict the fact that Fj(x)→ 0.

Therefore, |ξ∗| < +∞. Moreover, (5.20) together with the continuity of a(x, s, ξ) with

respect to (s, ξ) gives

(a(x, u(x), ξ∗)− a(x, u(x), Du(x))) · (ξ∗ −Du(x)) = 0,

that implies

Du(x) = ξ∗

by the strict monotonicity. Being this limit independent of the extracted sequence, Duj(x)

converges to Du(x). So we have

H(x, uj, Duj)→ H(x, u,Du) a.e. in Ω;

being H(x, uj, Duj) bounded in Lp
′
(Ω), by Lemma 5.1 we get that

(5.21) H(x, uj, Duj) ⇀ H(x, u,Du) weakly in Lp
′
(Ω).

�

Proof of Theorem 5.1. We will prove that the operator

A(u) = − div(a(x, u,Du)) +H(x, u,Du)

is of calculus of variations type. Then the result follows from Theorem 4.2.

First, we introduce the operator A(u, v). Put

A1(u, v, w) =

∫
Ω

a(x, u,Dv) ·Dw dx,

A2(u,w) =

∫
Ω

H(x, u,Du)w dx.
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The form w 7→ B1(u, v, w) +B2(u,w) is continuous on W 1,p
0 (Ω), hence

A1(u, v, w) + A2(u,w) = Ã(u, v, w) = (A(u, v), w), A(u, v) ∈ W−1,p′(Ω),

so we have

A(u, u) = A(u).

Proof of (4.13), (4.14). By (v), we have

(A(u, u)− A(u, v), u− v) = (A1(u, u, u− v)− A1(u, v, u− v)) ≥ 0;

moreover the mapping v 7→ A(u, v) is bounded and hemicontinuous from V to V ′; indeed

for u, v1, v2 ∈ W 1,p
0 (Ω) we have, for λ→ 0,

a(x, u,D(v1 + λv2)) ⇀ a(x, u,Dv1) weakly in Lp
′
(Ω),

H(x, u,D(v1 + λv2)) ⇀ H(x, u,Dv1) weakly in Lp
′
(Ω),

hence for any w ∈ W 1,p
0 (Ω) we have

Ã(x, v1 + λv2, w)→ A(x, v1, w) if λ→ 0,

and this proves (4.13). We can reason analogously to prove (4.14).

Proof of (4.15). Using the notation of Lemma 5.2, we get

(A(uj, uj)− A(uj, u), uj − u) =

∫
Ω

F (x)dx;

then if uj ⇀ u weakly in W 1,p
0 (Ω) and (A(uj, uj)− A(uj, u), uj − u) → 0, by Lemma 5.2

we get H(x, uj, Duj) ⇀ H(x, u,Du) weakly in Lp
′
; moreover, being

a(x, uj, Dv) ⇀ a(x, u,Dv) weakly in Lp
′
(Ω)

we have

Ã(uj, v, w)→ Ã(u, v, w) for any w ∈ W 1,p
0 (Ω);

hence A(uj, v)→ A(u, v) weakly in W−1,p′(Ω).

Proof of (4.16). Let uj ⇀ u weakly in W 1,p
0 (Ω) and A(uj, v) ⇀ Ψ weakly in W−1,p′(Ω).

So uj → u strongly in Lp, hence by Carathéodory theorem

a(x, uj, Dv)→ a(x, u,Dv) strongly in Lp
′
;

hence

A1(uj, v, uj)→ A1(u, v, u).

Moreover, being

|A2(uj, uj − u)| ≤ c ‖uj − u‖Lp
it follows that

(5.22) A2(uj, uj − u)→ 0.



5. LERAY–LIONS OPERATORS 23

But

A2(uj, u) = (A(uj, v), u)− A1(uj, v, u)→ (Ψ, u)− A1(u, v, u),

hence by 5.22 we get

A2(uj, uj)→ (ψ, u)− A1(u, v, u)

and finally

(A(uj, v), uj) = A1(uj, v, uj) + A2(uj, u,j)→ (Ψ, u).

�

Remark 5.1. A typical condition in order that (iv) holds is

(iv′) a(x, s, ξ) · ξ ≥ α |ξ|p ,

for a.e. x ∈ Ω and for any s ∈ R, ξ ∈ Rn, with α > 0. An operator

u 7→ − div(a(x, u,Du))

where a(x, s, ξ) is a Carathéodory function verifying (ii1), (iv′), (v), is called a Leray–Lions

operator; by Theorem 5.1 the equation

− div(a(x, u,Du)) = f, u ∈ W 1,p
0 (Ω)

has a solution for any f ∈ W−1,p′(Ω). Clearly, the operator in the Example 3.1 is of

Leray–Lions type.

Remark 5.2. We observe that the condition (iv′) implies that a(x, s, 0) = 0. Indeed

a(x, s, tξ) · ξ > 0 if t > 0, and a(x, s, tξ) · ξ < 0 if t < 0. Being a(x, s, ξ) a Carathéodory

function,

a(x, s, 0) = lim
t→0

a(x, s, tξ) · ξ = 0.

Example 5.1. Let u 7→ − div(a(x, u,Du)) be a Leray–Lions operator, and suppose

thatH(x, s, ξ) is a Carathéodory function such that (ii2) holds. If we consider the Dirichlet

problem

− div(a(x, u,Du)) +H(x, u,Du) = f, u ∈ W 1,p
0 (Ω)

with f ∈ W−1,p′(Ω), we can apply Theorem 5.1 if, for example, H(x, s, ξ) is bounded, or

if it satisfies a sign condition.





CHAPTER 3

Nonlinear elliptic problems with lower–order terms

1. Comparison results

In this chapter we deal with Dirichlet problems for nonlinear elliptic equations, whose

prototype can be written in the form

(1.1)

{
−∆pu+ h(x)|Du|p−1 = c(x)|u|p−2u+ f in Ω

u = 0 on ∂Ω

where Ω is a bounded open set in Rn, ∆p is the p–laplacian operator, 1 < p < +∞,

‖h‖L∞(Ω) ≤ β and c and f satisfy suitable conditions.

Our aim is to give some a priori estimates for solutions of equations like (1.1). More

precisely, we want to establish a comparison, in some sense, between a solution of a given

problem with the solution of a “symmetrized” one, whose data are spherically symmetric.

Such comparison allows us to obtain sharp estimates for the solutions of (1.1).

The first result in this order of ideas is due to Weinberger (see [98]), who proved that

if u is a solution of the problem

− (aij(x)uxi)xj = f, u ∈ H1
0 (Ω),

where (aij(x)uxi)xj are bounded measurable coefficients such that

aij(x)ξiξj ≥ ν |ξ|2 , for a.e. x ∈ Ω,∀ξ ∈ Rn, ν > 0,

and f ∈ Lp(Ω), p > n/2, then the following estimate holds:

(1.2) ‖u‖L∞(Ω) ≤ K ‖f‖Lp(Ω) ,

where K is the best possible constant. The first general result is due to Talenti, in his

pioneering work [89]. He proved the following theorem:

Theorem 1.1 (Talenti). Let u(x) be a solution of the problem

(1.3) − (aij(x)uxi)xj + c(x)u = f, u ∈ H1
0 (Ω)

where aij(x) are bounded measurable coefficients such that

aij(x)ξiξj ≥ ν |ξ|2 , for a.e. x ∈ Ω,∀ξ ∈ Rn, ν > 0,

25
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c(x) ≥ 0, f ∈ Lr(Ω), r = 2n/(n + 2) if n > 2, r > 1 if n = 2. If v is the solution of the

problem

(1.4) −∆v = f#, v ∈ H1
0 (Ω#),

then

(1.5) u#(x) ≤ v(x) ∀x ∈ Ω#,

and ∫
Ω

(aij(x)uxiuxj)
q/2dx ≤

∫
Ω#

|Dv|q dx,

for 0 < q ≤ 2.

Remark 1.1. We observe that Talenti’s result immediately gives estimates of the type

‖u‖ ≤ C ‖f‖ ;

to this aim, let us observe that the solution of (1.4) can be explicitly written as

(1.6) v(x) =
1

n2ω
2/n
n

∫ |Ω|
ωn|x|n

r−2+2/ndr

∫ r

0

f ∗(s)ds;

hence,

ess sup |u| = u#(0) ≤ v#(0) =
1

n2ω
2/n
n

∫ |Ω|
0

s−2+2/nds

∫ s

0

f ∗(σ)dσ,

that gives an optimal estimate in the Lorentz space L(n/2,1)(Ω), or, if n > 3,

ess sup |u| = u#(0) ≤ v#(0) =
1

n2ω
2/n
n

∫ |Ω|
0

s−1+2/n − |Ω|−1+2/n

n(n− 2)ω
2/n
n

f ∗(s)ds ≤

≤ |Ω|2/n−1/r

n(n− 2)ω
2/n
n

(
n(r − 1)

2r − n

)1/p′

‖f‖Lp(Ω) .

In Talenti’s theorem, the influence of zero–order term c(x)u is disregarded. This is

due to the sign condition on c, which allows to get rid of it.

Nevertheless, it is possible to obtain comparison results with problems which “remind”

the zero–order term.

For example, under the hypotheses of Theorem 1.1, if u is a solution of (1.3), and v is

the solution of the problem

−∆v + c#v = f#, v ∈ H1
0 (Ω#),

we have

(1.7)

∫ |Ω|
0

u∗(s)ds ≤
∫ |Ω|

0

v∗(s)ds

(see [7], [36], [77]). Actually, we loose pointwise comparison; indeed it is possible to show

that, in general, (1.5) does not hold (see [36] for a counterexample). Nevertheless, we
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have an integral comparison. The quantities involved in (1.7) are sometimes called the

concentrations of u and v.

In the linear case, a very general result, with no sign hypothesis on c and with addi-

tional lower–order terms, was given by Alvino, Lions and Trombetti in [7]:

Theorem 1.2 (Alvino, Lions & Trombetti). Let

(1.8) − (aij(x)uxi)xj + (bi(x)u)xi + d(x) ·Du+ c(x)u = f(x),

where aij(x) are measurable functions in Ω, and

aij(x)ξiξj ≥ ν |ξ|2 , for a.e. x ∈ Ω,∀ξ ∈ Rn, ν > 0,

b(x) = (b1(x), . . . , bn(x)) and d(x) = (d1(x), . . . , dn(x)) are such that

n∑
i=1

|bi(x) + di(x)|2 ≤ R2,

n∑
i=1

(bi(x))xi + c(x) ≥ c0(x) in D′(Ω),

where R is a constant and c0 ∈ L∞(Ω). If v(x) = v(|x|) is a weak solution of the problem

(1.9) −ν∆u+R
x

|x|
·Dv + (c+

0 )#(x)v − (c−0 )#(x)v = f#(x) in Ω#, v ∈ H1
0 (Ω#),

where c+
0 and c−0 are respectively the positive and negative part of c0, then the problem

(1.8) has a solution u ∈ H1
0 (Ω) and we have that:

(1) if c0 ≥ 0 and c0 6≡ 0, then

(1.10) u∗(s) ≤ v∗(s)

for any s ∈ [0, s1], where s1 = sup{s : (c0)∗(s) = 0}, and

(1.11)

∫
Ω

exp

(
− R

νω
1/n
n

σ1/n

)
u∗(σ) dσ ≤

∫
Ω

exp

(
− R

νω
1/n
n

σ1/n

)
v∗(σ) dσ

holds for any s ∈ [s1, |Ω|];
(2) if c0 ≤ 0, then (1.10) holds for any s ∈ [0, |Ω|];
(3) if c+

0 , c
−
0 6= 0, then (1.10) holds in [0, s2], and (1.11) holds in ]s2, |Ω|], where

s2 = inf{s : (c+
0 )∗(s) > 0}.

The nonlinear case, first studied by Talenti in [90], has been treated by several authors

with different conditions on the lower order terms, and recently studied in a series of papers

by Ferone and Messano (see [50], [51], [81]).
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The main aim is to prove a comparison result which allows to estimate a solution of

(1.1) with the solution of the following problem:

(1.12)

{
−∆pv + β|Dv|p−2Dv · x|x| = ĉ(x)|v|p−2v + f# in Ω#

v = 0 on ∂Ω#

where ĉ denotes the function ĉ(x) = (c+)#(x)− (c−)#(x).

If c and f are bounded, it is possible to prove a comparison result if the positive part

of the function c(x) is small enough (see [51], [81]).

More precisely, if one defines the eigenvalue problem:

(1.13)

{
−∆β

pψ = λe−β|x||ψ|p−2ψ in Ω#

ψ = 0 on ∂Ω#,

where ∆β
p is the operator ∆β

pu = div(e−β|x||Du|p−2Du), it has been proved that if c+ is

smaller than the first eigenvalue of (1.13), then

(1.14) u∗(s) ≤ v∗(s), ∀s ∈ [0, s0],

and

(1.15)

∫ s

0

u∗(t) exp

(
−βt

1/n

ω
1/n
n

)
dt ≤

∫ s

0

v∗(t) exp

(
−βt

1/n

ω
1/n
n

)
dt, ∀s ∈ [s0, |Ω|],

where s0 = inf{s ∈ [0, |Ω|] : (c−)∗(s) > 0}.
We are interested in studying what happens in the more general case when c ∈ Lr(Ω),

with r > n
p
, and f ∈ Lq(Ω), with q > n

p
(see [42]).

2. Some basic tools

Now we recall some basic definitions and properties which will be fundamental tools

in what follows, namely the isoperimetric property of the sphere and the coarea formula

for Sobolev mappings.

Definition 2.1. Let Ω an open subset of Rn and E ⊂ Ω measurable. We define the

perimeter of E in Ω as

(2.16) PΩ(E) = sup

{∫
E

divϕdx : ϕ ∈ C∞0 (Ω,Rn), ‖|ϕ|‖L∞(Ω) ≤ 1

}
.

We will denote PRn(E) with P (E).

The definition for Ω = Rn coincides with the one given by De Giorgi in [39].

Theorem 2.1 (Isoperimetric inequality). If E is a measurable set of Rn, one of the

following inequalities holds:

P (E) ≥ nω1/n
n |E|1−1/n

or

P (E) ≥ nω1/n
n |Rn \ E|1−1/n .
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A proof without particular restrictions of the isoperimetric inequality was given by De

Giorgi in [39].

The following result is a very useful tool in analysis.

Theorem 2.2 (Fleming & Rishel [56]). Let f ∈ W 1,1(Ω), with Ω open set in Rn.

Then ∫
Ω

|Df | dx =

∫ +∞

−∞
PΩ ({x ∈ Ω : f(x) > t}) dt.

3. Nonlinear eigenvalue problems

In this section we want to recall some results about the following Dirichlet problem:

(3.1)

{
−∆pv + β|Dv|p−2Dv · x|x| = m(x)|v|p−2v + f in Ω,

v = 0 on ∂Ω,

where 1 < p < +∞, β is a nonnegative constant, Ω ⊂ Rn is a bounded domain, m ∈
Lr(Ω), with r > max{n/p, 1}, m ≥ 0, and f ∈ Lq(Ω), with q > max{n/p, 1}.

We observe that to solve the problem (3.1) is equivalent to solve the following one:

(3.2)

{
−∆β

pv = m(x)e−β|x||v|p−2v + fe−β|x| in Ω

v = 0 on ∂Ω

where ∆β
p is the operator defined as ∆β

pu = div(e−β|x||Du|p−2Du). We want to study

existence and uniqueness of (3.1).

In the linear case, with p = 2 and β = 0, if m(x) ∈ L∞(Ω), the problem (3.2) can be

approached with the classical Fredholm alternative theory (see [60], for example).

In general, if the coefficient of the zero–order term is bounded, it is possible to relate

the problem (3.1) with the eigenvalue problem

(3.3)

{
−∆β

pψ = λe−β|x||ψ|p−2ψ in Ω,

ψ = 0 on ∂Ω.

It is possible to prove existence and uniqueness results of related to a smallness assumption

on the L∞ norm of m (see [14], [46],[51]).

We want to focus our attention on the general case with m unbounded. In this case

we have to consider a weighted eigenvalue problem which reminds the coefficients of the

lower–order terms; namely, we consider the problem

(3.4)

{
−∆β

pϕ = λm(x)e−β|x||ϕ|p−2ϕ in Ω

ϕ = 0 on ∂Ω.

We recall that λ is an eigenvalue of (3.4) if there exists v ∈ W 1,p
0 (Ω) such that v 6≡ 0 and

the couple (λ, v) satisfies∫
B

e−β|x| |Dv|p−2Dv ·Dϕdx =

∫
B

m(x)e−β|x| |v|p−2 vϕ dx+

∫
B

e−β|x|fϕ dx,
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and the function v is called eigenfunction relative to λ. We will denote with Λ(β,m) the

spectrum of (3.4).

We have the following result ([11], [14], [57], [71]):

Theorem 3.1. If |{x ∈ Ω : m(x) > 0}| > 0, then there exists a sequence λβk(Ω) of

positive eigenvalues of (3.2) such that

lim
k→+∞

λβk(Ω) = +∞.

Such eigenvalues can be evaluated by using Lyusternik–Schnirelmann method (see

[78]) as critical values of the functional

F(w) =

∫
Ω

e−β|x||Dw|pdx∫
B

e−β|x|m(x)|w|pdx

on a family of subsets of W 1,p
0 (Ω) with particular topological properties. One of these

eigenvalues is characterized as the minimum of F on W 1,p
0 (Ω):

(3.5) λβ1 (Ω) = min
w∈W1,p

0 (Ω)

w 6=0

∫
Ω

e−β|x||Dw|pdx∫
Ω

e−β|x|m(x)|w|pdx
.

Clearly, λβ1 (Ω) is such that no other eigenvalue belongs to the interval [0, λβ1 [. We refer

to λβ1 (Ω) as the first eigenvalue of (3.2).

Such value enjoys some important properties ([12], [74]): Verifica

bibliografia
(1) λβ1 (Ω) is simple; this means that if u and v are two eigenfunctions relative to

λβ1 (Ω), then u = αv for some α ∈ R;

(2) λβ1 (Ω) is isolated, in the sense that no other eigenvalue is contained in the set

]λβ1 (Ω)− ε, λβ1 (Ω) + ε[ for some ε > 0. verifica

In the case β = 0, by symmetrization methods is possible to prove the following result

(see, for example, [40], [4], [1]):

Theorem 3.2 (Faber–Krahn inequality). Let Ω be an open, bounded and connected

subset of Rn, 1 < p < n. If λ1(Ω#) is the first eigenvalue of the problem

(3.6)

{
−∆pv = λm#(x)|v|p−2v in Ω#

v = 0 on ∂Ω#,

then

λ1(Ω#) ≤ λ0
1(Ω),

and equality holds if and only if Ω = Ω# and m = m# a.e. in Ω, modulo translations.
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As regards the solvability of problem (3.1), it is possible to prove a Fredholm al-

ternative type result related to the spectrum Λ(β,m) of the operator u 7→ −∆β
pu −

m(x)e−β|x| |u|p−2 u (see, for example, [14]):

Theorem 3.3. If λ 6∈ Λ(β,m), then the problem (3.1) admits a solution in W 1,p
0 (Ω)

for any f ∈ W−1,p′(Ω).

The proof relies on the Leray–Schauder degree theory (see, for example, [99]).

Proof. Let λ 6∈ Λ. Applying for example the results of Chapter 2, we get that

−∆β
p is an homeomorphism from W 1,p

0 (Ω) to W−1,p′(Ω); moreover, W 1,p
0 (Ω) is compactly

embedded in Lp(Ω), so the operator

(t, u) ∈ [0, 1]×W 1,p
0 (Ω) 7→ At(u) = (−∆β

p )−1(λme−β|x||u|p−2u+ te−β|x|f) ∈ W 1,p
0 (Ω)

is compact. If we prove that A1 admits a fixed point, we get the theorem.

By degree theory, it is sufficient to show that the set

(3.7) {u ∈ W 1,p
0 (Ω) : ∃t ∈ [0, 1] such that (I − At)(u) = 0}

is bounded. This means that the solutions in (3.7) are a priori bounded. By contradiction,

there exists a sequence uj ∈ W 1,p
0 (Ω) and tn ∈ [0, 1] such that

At(uj) = uj and ‖uj‖W 1,p
0 (Ω) → +∞ as j → +∞.

Let vj = uj/ ‖uj‖W 1,p
0 (Ω). Up to a subsequence,

vj ⇀ v weakly in W 1,p
0 (Ω),

vj → v strongly in Lp(Ω).

Moreover, vj satisfies

vj = (−∆β
p )−1

λme−β|x||vj|p−2vj +
tje
−β|x|f

‖uj‖p−1

W 1,p
0 (Ω)

 ,

hence we deduce that vj → v in W 1,p
0 (Ω), ‖v‖W 1,p

0 (Ω) = 1, and v solves the problem{
−∆β

pv = λm(x)e−β|x||v|p−2v in Ω

v = 0 on ∂Ω

Consequently, λ ∈ Λ and this is a contradiction. �

4. The radial case: existence and uniqueness

Now we want to study the Dirichlet problem (3.1) with radially symmetric data, that

is

(4.1)

{
−∆pv + β|Dv|p−2Dv · x|x| = b(x)|v|p−2v + f in B

v = 0 on ∂B
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where β is a nonnegative constant, B is a ball centered at the origin, and b and f are

radially decreasing symmetric functions, b(x) = b(|x|), f(x) = f(|x|) ≥ 0 with b ∈ Lr(B),

r > max{n/p, 1}, and f ∈ Lq(B), with q > max{n/p, 1}.
Equivalently, we will study the following problem:

(4.2)

{
−∆β

pv = b(x)e−β|x||v|p−2v + fe−β|x| in B

v = 0 on ∂B

where ∆β
p is the operator defined in the previous section.

More precisely, we prove the following result:

Theorem 4.1. If

(4.3) 1 < λβ1 (B),

then the problem (4.1) admits a unique nonnegative solution v(x) such that

(4.4) v(x) = v#(x).

Moreover, v minimizes the functional

E(w) =
1

p

∫
B

|Dw|pe−β|x|dx− 1

p

∫
B

b|w|pe−β|x|dx−
∫
B

fwe−β|x| dx, w ∈ W 1,p
0 (B).

In order to prove Theorem 4.1, we recall a technical result (see [74]).

Lemma 4.1. If p ≥ 2, then

|ξ2|p ≥ |ξ1|p + p|ξ1|p−2ξ1 · (ξ2 − ξ1) +
|ξ2 − ξ1|p

2p−1 − 1

for every ξ1, ξ2 ∈ Rn. If 1 < p < 2, then:

|ξ2|p ≥ |ξ1|p + p |ξ1|p−2 ξ1 · (ξ2 − ξ1) + h(p)
|ξ2 − ξ1|2

(|ξ1|+ |ξ2|)2−p

for every ξ1, ξ2 ∈ Rn, where h(p) is a positive constant depending on p.

Proof of theorem 4.1. By the hypothesis (4.3), the operator

−∆β
pu− b(x)e−β|x| |u|p−2 u

is coercive with respect to the weighted norm ‖u‖β,1,p =
∫

Ω
e−β|x| |Du|p dx; then, by The-

orem 5.1 of Chapter 2, there exists a solution v ∈ W 1,p
0 (B) of (4.1). By well–known

regularity results, the summability assumptions on b and f guarantee that the solutions

are bounded (see [61], Theorem 7.5 and Remark 7.6).

Let f ≡ 0 in B. Suppose that there exists a function v ∈ W 1,p
0 (B) such that v 6≡ 0 in

B and ∫
B

e−β|x||Dv|p−2Dv ·Dϕdx =

∫
B

e−β|x|b(x)|v|p−2vϕdx ∀ϕ ∈ W 1,p
0 (B).
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We have∫
B

e−β|x||Dv|pdx =

∫
B

e−β|x|b(x)|v|pdx ≤

≤
∫
B

e−β|x|b+(x)|v|pdx < λβ1 (B)

∫
B

e−β|x|b+(x)|v|pdx;

from the variational characterization (3.5) of λβ1 (B), we have a contradiction. So the

theorem is completely proved when f ≡ 0.

Now let f 6≡ 0 in B, and let v be a solution of (4.1). Suppose v− 6≡ 0 in B. We have

v− ∈ W 1,p
0 (B), and∫

B

e−β|x||Dv−|pdx =

∫
B

e−β|x|(b+(x)− b−(x))|v−|pdx−
∫
B

e−β|x|fv−dx ≤

≤
∫
B

e−β|x|b+(x)|v−|pdx < λβ1 (B)

∫
B

e−β|x|b+(x)|v−|pdx;

again from (3.5), we have a contradiction. So, we have that any solution of (4.1) is

nonnegative. Furthermore, we observe that v is positive and ∂v
∂ν

is negative, where ν is the

exterior normal to ∂B, due to well known maximum principles (see, for example, [61],

Chapter 7, and [86]).

As regards the uniqueness of solution of (4.1), we follow an argument which can be

found in [74] (see also [4], [12], [18], [46], [51]), using suitable test functions in (4.1). Ifva bene?

u and v are solutions of (4.1), we set

ϕ1(x) =
up − vp

up−1
e−β|x|, ϕ2(x) =

vp − up

vp−1
e−β|x|.

Applying l’Hôpital rule, we have that u/v and v/u are bounded. So we can use ϕ1 in the

equation solved by u and ϕ2 in the equation solved by v, obtaining

(4.5)

∫
Ω

e−β|x||Du|p−2Du ·
[
Du− p

(v
u

)p−1

Dv + (p− 1)
(v
u

)p
Du

]
dx =

=

∫
Ω

e−β|x|(up − vp)
[
b+

f

up−1

]
dx,

and

(4.6)

∫
Ω

e−β|x||Du|p−2Du ·
[
Du− p

(u
v

)p−1

Du+ (p− 1)
(u
v

)p
Dv

]
dx =

=

∫
Ω

e−β|x|(vp − up)
[
b+

f

vp−1

]
dx,
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The sum of the right–hand side of (4.5) and (4.6) in less or equal than zero, hence by

adding (4.5) and (4.6) we get

(4.7)

∫
Ω

e−β|x|up
[
|D(log u)|p − p|D(log v)|p−2D(log u) ·D(log v)+

+(p− 1)|D(log v)|p] dx+

+

∫
Ω

e−β|x|vp
[
|D(log v)|p − p|D(log u)|p−2D(log u) ·D(log v)+

+(p− 1)|D(log u)|p] dx ≤ 0.

From (4.7), using lemma 4.1, we get that if p ≥ 2,

(4.8)

∫
Ω

e−β|x|(up + vp)
|D(log u)−D(log v)|p

2p−1 − 1
dx ≤ 0,

or, if 1 < p < 2, there exists a positive constant h(p) such that:

(4.9)

∫
Ω

e−β|x|(up + vp)h(p)
|D(log u)−D(log v)|p

(|D(log u)|+ |D(log u)|)2−p dx ≤ 0.

Consequently, from (4.8) and (4.9) it follows, for p > 1, that |D(log u) − D(log v)| = 0

a.e. in B. Then, there exists a constant a > 0 such that u = av a.e. in B. Thus, being u

and v solutions of (4.1) and |{x ∈ B : f(x) 6= 0}| > 0, it follows that u = v a.e. in B.

Finally, we have to prove that v = v# in B (see [50], [51], [81]). An immediate

consequence of uniqueness is that v is radially symmetric, v(x) = v(|x|). So let us write

v(x) = ṽ(ωn|x|n), and set s = ωn|x|n. Observing that b(x) = (b+)#(x) − (b−)#(x), from

(4.1) we get

(4.10) −|ṽ(s)|p−2ṽ′(s) = exp

(
βs1/n

ω
1/n
n

)
s−(1−1/n)p

(nω
1/n
n )p

ψ(s),

where

ψ(s) =

∫ s

0

exp

(
−βt1/n

ω
1/n
n

)
[f ∗(t) + ((b+)∗(t)− (b−)∗(t))(ṽ(t))p−1]dt.

To prove (4.4) it is enough to show that

(4.11) ψ(s) ≥ 0, for any s ∈ (0, |B|).

To this aim, set s0 = inf{s ∈ [0, |B|] : (b−)∗(s) > 0} (s0 = |B| if b− ≡ 0); we have

ψ(s) =


∫ s

0

exp

(
−βt1/n

ω
1/n
n

)
[f ∗(t) + (b+)∗(t)(ṽ(t))p−1]dt, ∀s ∈ [0, s0],

ψ(s0) +

∫ s

s0

exp

(
−βt1/n

ω
1/n
n

)
[f ∗(t)− (b−)∗(t)(ṽ(t))p−1]dt, ∀s ∈ [s0, |B|].

The condition (4.11) is obviously true when s ≤ s0. So, let us suppose that there ex-

ists s > s0 such that ψ(s) < 0. Therefore, there exists s̄ ∈]s0, |B|] such that ψ(s̄) =

mins∈[s0,|B|] ψ(s) < 0. Clearly s̄ < |B|, otherwise from (4.10) it follows that ṽ′(s) > 0
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in some neighborhood of |B|, in contrast with the fact that ṽ(s) ≥ 0 in [0, |B|] and

ṽ(|B|) = 0. Moreover, let us note that there is an s ∈]s̄, |B|[ such that ψ(s) > 0. Indeed,

if ψ(s) ≤ 0 in [s̄, |B|], from (4.10) it follows that ṽ(s) is increasing in [s̄, |B|] from which,

being ṽ(|B|) = 0, ṽ is equal to zero in [s̄, |B|]. So ψ(s) = 0 in [s̄, |B|], but this is absurd.

Then, we can conclude that there exist s1, s2 ∈]s0, |B|[ such that s1 < s̄ < s2, ψ(s2) =

0, ψ(s) < 0, ∀s ∈ [s1, s2[. In particular we have

ψ(s̄) = min
s∈[s1,s2]

ψ(s).

As regards ṽ, we can say that ṽ′(s) ≥ 0, ∀s ∈ [s1, s2], then the function h(s) = f ∗(s) −
(b−)∗(s))

p−1 is decreasing in [s1, s2].

Moreover, let us show that h(s) ≥ 0 in [s1, s2]. The assertion is obvious if h(s2) ≥ 0;

otherwise, if h(s2) < 0 there exists t ∈ [s1, s2] such that

ψ′(s) < 0 and ψ(s) ≤ 0, ∀s ∈]t, s2],

but this is absurd because ψ(s2) = 0.

Consequently, ψ′(s) = h(s) exp(−βs1/n/ω
1/n
n ) is decreasing in [s1, s2]. So, ψ(s) is

concave in [s1, s2], then ψ(s) is constant in [s1, s2], in contrast with the fact that ψ(s̄) < 0

and ψ(s2) = 0. This concludes the proof of (4.4). �

Remark 4.1. Remind that v is a solution of (4.1) if and only if it is a solution of

(4.2); so, let us consider k ∈]0, sup v[, and set Bk = {x ∈ B : v(x) > k}. If v is a solution

of (4.1), then v is solution of the following problem:{
−∆β

pv = e−β|x|b|v|p−2v + fe−β|x| in Bk

v = k on ∂Bk

Moreover, v satisfies the condition below:

1

p

∫
Bk

e−β|x||Dv|pdx− 1

p

∫
Bk

e−β|x|b|v|pdx−
∫
Bk

e−β|x|fvdx ≤

≤ 1

p

∫
Bk

e−β|x||Dw|p − 1

p

∫
Bk

e−β|x|b|w|pdx−
∫
Bk

e−β|x|fwdx,

for all w ∈ W 1,p(Bk) such that w − k ∈ W 1,p
0 (Bk). So, if w = w#, and s = ωn|x|n, we

have:

(nω
1/n
n )p

p

∫ |Bk|
0

exp

(
−βs

1/n

ω
1/n
n

)
s(1−1/n)p| − (v∗)′(s)|pds+

−1

p

∫ |Bk|
0

exp

(
−βs

1/n

ω
1/n
n

)
b̃(s)(v∗(s))pds−

∫ |Bk|
0

exp

(
−βs

1/n

ω
1/n
n

)
f ∗(s)v∗(s)ds ≤
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≤ (nω
1/n
n )p

p

∫ |Bk|
0

exp

(
−βs

1/n

ω
1/n
n

)
s(1−1/n)p| − (w∗)′(s)|pds+

− 1

p

∫ |Bk|
0

exp

(
−βs

1/n

ω
1/n
n

)
b̃(s)(w∗(s))pds−

∫ |Bk|
0

exp

(
−βs

1/n

ω
1/n
n

)
f ∗(s)w∗(s)ds,

where b(x) = b̃(ωn|x|n).

5. Main result

Consider the problem

(5.1)

{
− div(a(x, u,Du)) = g(x, u) +H(x, u,Du) in Ω

u = 0 on ∂Ω

We assume that a(x, s, ξ) : Ω × R × Rn → Rn, H(x, s, ξ) : Ω × R × Rn → R, and

g(x, s) : Ω × R → R are Caratḧı¿1
2
odory functions satisfying for some p ∈]1,+∞[ the

following conditions:

|a(x, s, ξ)| ≤ α(|ξ|p−1 + |s|p−1 + k(x)), a.e. x ∈ Ω, ∀(s, ξ) ∈ R× Rn,(5.2)

a(x, s, ξ) · ξ ≥ |ξ|p, a.e. x ∈ Ω, ∀(s, ξ) ∈ R× Rn,(5.3)

g(x, s)s ≤ c(x)|s|p, a.e. x ∈ Ω, ∀s ∈ R,(5.4)

|g(x, s)| ≤ θ(x)|s|p−1 a.e. x ∈ Ω, ∀s ∈ R,(5.5)

|H(x, s, ξ)| ≤ β|ξ|p−1 + f(x) a.e. x ∈ Ω, ∀(s, ξ) ∈ R× Rn,(5.6)

where α > 0, k ∈ Lp
′

+(Ω), c, θ ∈ Lr(Ω), with r > max{n/p, 1}, f ∈ Lq(Ω), with q >

max{n/p, 1}, and β is a nonnegative constant.

Theorem 5.1. Let u ∈ W 1,p
0 (Ω) be a solution of the problem (5.1), under the assump-

tions (5.2)–(5.6). If

(5.7) λβ1 (Ω#) > 1

and v ∈ W 1,p
0 (Ω#) is the solution of (1.12), we have:

(5.8) u∗(s) ≤ v∗(s), ∀s ∈ [0, s0],

and

(5.9)

∫ s

0

(u∗(t))p−1 exp

(
−βt

1/n

ω
1/n
n

)
dt ≤

∫ s

0

(v∗(t))p−1 exp

(
−βt

1/n

ω
1/n
n

)
dt, ∀s ∈ [s0, |Ω|],

where s0 = inf{s ∈ [0, |Ω|] : (c−)∗ > 0} (If c− ≡ 0, then s0 = |Ω|).

Before giving the proof of the above theorem, we introduce some notation which will

be used in the following. Let c̃(s) = (c+)∗(s)− (c−)∗(s), s ∈ [0, |Ω|], and

U(s) =

∫ s

0

c̃(t)(u∗(t))p−1 exp

(
−βt

1/n

ω
1/n
n

)
dt, ∀s ∈ [0, |Ω|],
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U+(s) =

∫ s

0

(c+)∗(t)(u∗(t))p−1 exp

(
−βt

1/n

ω
1/n
n

)
dt, ∀s ∈ [0, s0],

U−(s) =

∫ s

0

(c−)∗(t)(u
∗(t))p−1 exp

(
−βt

1/n

ω
1/n
n

)
dt, ∀s ∈ [s0, |Ω|],

where s0 is defined in Theorem 5.1. Analogously, we define V (s), V+(s), V−(s), related to

v∗. Moreover, let us set:

F (s) =

∫ s

0

f ∗(t) exp

(
−βt

1/n

ω
1/n
n

)
dt, ∀s ∈ [0, |Ω|],

and γ(s) =
s−(1−1/n)p′

(nω
1/n
n )p′

, where p′ =
p

p− 1
.

To prove Theorem 5.1 we need some lemmas.

First, we recall the following generalization of well–known Gronwall lemma:

Lemma 5.1. If ϕ is a bounded function and ϕ(t) ≤
∫ +∞
t

g(s)ϕ(s)ds + ψ(t), for a.e.

t > 0, where g ≥ 0 is an integrable function and ψ is a BV function so that ψ(+∞) = 0,

then, for a.e. t > 0, we have

ϕ(t) ≤
∫ +∞

t

e
R s
t g(r)dr[−dψ(s)].

Lemma 5.2. Under the hypotheses of Theorem 5.1, we have, a.e. in (0, |Ω|), the

following relations:

(−u∗(s))′ ≤ γ(s)

[
exp

(
βs1/n

ω
1/n
n

)
(F (s) + U(s))

]1/(p−1)

(5.10)

(−v∗(s))′ = γ(s)

[
exp

(
βs1/n

ω
1/n
n

)
(F (s) + V (s))

]1/(p−1)

(5.11)

Proof. We will follow [8] and [81].

Let u ∈ W 1,p
0 (Ω) be a weak solution of (5.1); hence,∫

Ω

a(x, u,Du) ·Dϕdx =

∫
Ω

[g(x, u) +H(x, u,Du)]ϕdx ∀ϕ ∈ W 1,p
0 (Ω).

Using in (5.1) the truncation functions Tt(u), Tt+h(u), with t, h > 0, as test functions,

and subtracting, we get:∫
{t<|u|≤t+h}

a(x, u,Du) ·Dudx =

=

∫
{|u|>t}

[g(x, u) +H(x, u,Du)]h signu dx+

+

∫
{t<|u|≤t+h}

[g(x, u) +H(x, u,Du)](|u| − t) signu dx;
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so, dividing both sides by h, using ellipticity condition (5.3), and the conditions (5.4),

(5.6) we get

(5.12)
1

h

∫
{t<|u|≤t+h}

|Du|p dx ≤

≤ β

∫
{|u|>t}

|Du|p−1 dx+

∫
{|u|>t}

[f(x) signu+ c(x) |u|p−1]dx.

On the other hand, by Hardy–Littlewood inequality it follows that∫
{|u|>t}

c(x)|u|p−1 dx ≤
∫ µu(t)

0

[(c+)∗(s)− (c−)∗(s)](u
∗(s))p−1 ds;

hence, letting h→ 0 in (5.12) we get

(5.13) − d

dt

∫
{|u|>t}

|Du|p dx ≤

≤ β

∫
{|u|>t}

|Du|p−1 dx+

∫ µu(t)

0

{f ∗(s) + [(c+)∗(s)− (c−)∗(s)](u
∗(s))p−1} ds.

Denoting with J(σ) the function

J(σ) =

∫ σ

0

{f ∗(s) + [(c+)∗(s)− (c−)∗(s)](u
∗(s))p−1} ds,

we obtain

(5.14) − d

dt

∫
{|u|>t}

|Du|p dx ≤

≤ J(µu(t)) +
β

nω
1/n
n

∫ +∞

t

(
− d

dσ

∫
|u|>σ
|Du|p dx

)
(−µ′u(σ))µu(σ)−1+1/n dσ.

Indeed, using Hölder inequality we have that

(5.15)

∫
{|u|>t}

|Du|p−1 ≤
∫ +∞

t

(
− d

dσ

∫
{|u|>σ}

|Du|pdx
)1−1/p

(−µ′(σ))1/p dσ

and (
− d

dσ

∫
{|u|>σ}

|Du|p dx
)1/p

≥
(
− d

dσ

∫
{|u|>σ}

|Du| dx
)

(−µ′(σ))
−1+ 1

p ,

that is

(5.16)

(
− d

dσ

∫
{|u|>σ}

|Du|p dx
)1−1/p

(−µ′(σ))1/p ≤

≤
(
− d

dσ

∫
{|u|>σ}

|Du| dx
)−1(

− d

dσ

∫
{|u|>σ}

|Du|p dx
)

(−µ′(σ)).
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On the other hand, the coarea formula implies that∫
{|u|>σ}

|Du|dx =

∫ +∞

σ

P ({x ∈ Ω : |u(x)| > ξ});

hence, by isoperimetric inequality we obtain

− d

dσ

∫
{|u|>σ}

|Du|dx = P ({x ∈ Ω : |u(x)| > σ}) ≥ nω1/n
n µu(σ)1−1/n.

Using the above inequality in (5.16) we get

(5.17)

(
− d

dσ

∫
{|u|>σ}

|Du|pdx
)1−1/p

(−µ′(σ))1/p ≤

≤ 1

nω
1/n
n

µ(σ)−1+1/n

(
− d

dσ

∫
{|u|>σ}

|Du|pdx
)

(−µ′(σ)).

From (5.13) and (5.17) we deduce (5.14).

Using Gronwall lemma 5.1, and again Fleming–Rishel formula, the isoperimetric in-

equality and the properties of rearrangements, we get (see [8])Sistemare

per bene.

Scrivere

tutti i

conti?

(−u∗(s))′ ≤ 1

(nωn)p′sp′−p′/n
×

×
[
exp

(
βs1/n

ω
1/n
n

)∫ s

0

{[(c+)∗(r)− (c−)∗(r)](u
∗(r))p−1 + f ∗(r)} exp

(
−βr

1/n

ω
1/n
n

)
dr

]1/(p−1)

a.e. in (0, |Ω|), that is (5.10).

As regards equality (5.11), we have proved that there exists a unique solution v ∈
W 1,p

0 (Ω#) of problem (4.1), and this solution is positive, radially symmetric and coincides

with his Schwarz symmetrization, namely v(x) = v#(x). Hence we can proceed in the

same way we did before, except that the inequalities are replaced by equalities, end we

have the differential equality (5.11). This concludes the proof. �

Lemma 5.3. Under the hypotheses of Theorem 5.1, the following inequality holds:

(5.18) U+(s) ≤ V+(s), s ∈ [0, s0].

Proof. Inequality (5.18) is trivial when c+ ≡ 0, so, from now on, we suppose c+ 6≡ 0.

If f ≡ 0 in Ω, we are also in a trivial case. Indeed, it is easy to prove that

u∗(s) = v∗(s) = 0, s ∈ [0, |Ω|].

As regards v, we can argue as in Theorem 4.1. As regards u, we can use inequality (5.10).

If u 6≡ 0, using (5.7), we have:

((−u∗(s))′)p−1 < λβ1 (Ω#)
s−(1−1/n)p

(nω
1/n
n )p

exp

(
βs1/n

ω
1/n
n

)∫ s

0

c̃(t)(u∗(t))p−1 exp

(
−βt

1/n

ω
1/n
n

)
dt;
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a straightforward calculation allows us to obtain that:∫
Ω

|Du#|pe−β|x|dx = (nω1/n
n )p

∫ |Ω|
0

|(−u∗(s))′|ps(1−1/n)p exp

(
−βs

1/n

ω
1/n
n

)
ds <

< λβ1 (Ω#)

∫ |Ω|
0

|(−u∗(s))′|
[∫ s

0

c̃(t)(u∗(t))p−1 exp

(
−βt

1/n

ω
1/n
n

)
dt

]
ds =

= λβ1 (Ω#)

∫ |Ω|
0

(u∗(s))p c̃(s) exp

(
−βs

1/n

ω
1/n
n

)
ds =

= λβ1 (Ω#)

∫
Ω

|u#|p ĉ e−β|x|dx ≤ λβ1 (Ω#)

∫
Ω

|u#|p c#e−β|x|dx,

which gives a contradiction according to the variational characterization of λβ1 (Ω#). It

follows that u ≡ 0 in Ω.

Now suppose f 6≡ 0. We argue as in [51]. Let us distinguish two different cases:

1) U+(s0) ≤ V+(s0);

2) U+(s0) > V+(s0).

Let us consider the case 1). If (5.18) is not satisfied, then there exists s ∈]0, s0[ such that:

U+(s)− V+(s) = max
s∈[0,s0]

(U+(s)− V+(s)) > 0.

Let us set:

s1 = inf{s ∈ [0, s] : U+(t) > V+(t), ∀t ∈ [s, s]},

s2 = sup{s ∈ [s, s0] : U+(t) > V+(t),∀t ∈ [s, s]},

and define the following functions:

ϕ1(s) =
(U+(s))p

′ − (V+(s))p
′

(U+(s))p′−1
,

ϕ2(s) =
(U+(s))p

′ − (V+(s))p
′

(V+(s))p′−1
.

Observe that, in view of hypothesis made on f , u and v are bounded (see [61], Theorem

7.5 and Remark 7.6); consequently also the functions U+/V+ and V+/U+ are bounded

in [0, |Ω|], and ϕ1, ϕ2 can be used as test functions in (5.10) and (5.11), respectively.

Integrating between s1 and s2, we have:

(5.19)

∫ s2

s1

(−u∗(s))′ϕ1(s)ds ≤

≤
∫ s2

s1

γ(s) exp

(
βs1/n

ω
1/n
n

)
((U+(s))p

′ − (V+(s))p
′
)

(
F (s)

U+(s)
+ 1

)p′−1

ds,
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and:

(5.20)

∫ s2

s1

(−v∗(s))′ϕ2(s)ds =

=

∫ s2

s1

γ(s) exp

(
βs1/n

ω
1/n
n

)
((U+(s))p

′ − (V+(s))p
′
)

(
F (s)

V+(s)
+ 1

)p′−1

ds.

Being U+(s) > V+(s) in ]s1, s2[, we have that the difference of the second members of

(5.19) and (5.20) is less than zero, so:

(5.21)

∫ s2

s1

[(−u∗(s))′ϕ1(s)ds+ (v∗(s))′ϕ2(s)] ds < 0.

Integrating by parts the first member of (5.21) and bearing in mind that U+(s1)−V+(s1) =

U+(s2)− V+(s2) = 0, we have:

(5.22)

∫ s2

s1

[u∗(s)(ϕ1(s))′ − v∗(s)(ϕ2(s))′] ds < 0.

After some calculation (see [51] for details), setting x = (u∗)p/p
′

U+
and y = (v∗)p/p

′

V+
, we have:∫ s2

s1

[u∗(s)(ϕ1(s))′ − v∗(s)(ϕ2(s))′] ds =

=

∫ s2

s1

exp

(
βs1/n

ω
1/n
n

)[
(U+)p

′
(
xp
′ − p′xyp′−1 + (p′ − 1)yp

′
)

+

+(V+)p
′
(
yp
′ − p′yxp′−1 + (p′ − 1)xp

′
)]
ds.

According to Lemma 4.1, if p′ ≥ 2:

(5.23)

∫ s2

s1

[u∗(s)(ϕ1(s))′ − v∗(s)(ϕ2(s))′] ds ≥

≥
∫ s2

s1

exp

(
βs1/n

ω
1/n
n

)
(c+)∗((U+)p

′
+ (V+)p

′
)
|y − x|p′

2p′−1 − 1
ds

and, if 1 < p′ < 2, there exists a positive constant h(p′) such that:

(5.24)

∫ s2

s1

[u∗(s)(ϕ1(s))′ − v∗(s)(ϕ2(s))′] ds ≥

≥
∫ s2

s1

exp

(
βs1/n

ω
1/n
n

)
(c+)∗((U+)p

′
+ (V+)p

′
)
|y − x|2

(|x|+ |y|)2−p′ ds.

Consequently, being (5.23) and (5.24) greater than or equal to zero, from (5.22) we have

a contradiction. So, condition (5.18) is verified if U+(s0) ≤ V+(s0).

Now, let us consider the case 2). If u∗(s0) ≤ v∗(s0), set:

s1 = inf{s ∈ [0, s0] : U+(t) > V+(t),∀t ∈ [s, s0]}.
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Let us observe that U+(s1) = V+(s1); moreover, being u∗(s0) ≤ v∗(s0) and U+(s0) >

V+(s0), we have:(
− u∗(s0)

(U+(s0))p′−1
+

v∗(s0)

(V+(s0))p′−1

)(
(U+(s0))p

′ − (U+(s0))p
′
)
≥ 0.

Then we can proceed as in case 1). Inserting ϕ1 and ϕ2 in the relations (5.10) and (5.11),

respectively, and integrating between s1 and s0, we obtain a contradiction.

If u∗(s0) > v∗(s0), we observe that necessarily s0 < |Ω| and we set:

s = inf{s ∈ [s0, |Ω|] : u∗(t) > v∗(t), ∀t ∈ [s0, s]}.

Let us distinguish the following cases:

2a) U(s) ≥ V (s);

2b) U(s) < V (s).

In the case 2a), being:

d

ds
(U(s)− V (s)) = (c−)∗(s) exp

(
−βs

1/n

ω
1/n
n

)
(−(u∗)p−1(s) + (v∗)p−1(s)) < 0,

a.e. in [s0, s],

we have that U(s)−V (s) is decreasing in [s0, s]. Thus, being U(s)−V (s) ≥ 0, it follows:

(5.25) U(s) ≥ V (s), ∀s ∈ [s0, s].

Now let us consider the following function:

w(s) = max{u∗(s), v∗(s)}, ∀s ∈ [0, s].

Set W (s) =

∫ s

0

c̃(t)(w(t))p−1 exp

(
−βt

1/n

ω
1/n
n

)
dt, ∀s ∈ [0, s], it is easy to show that w(s)

satisfies the following relation:

(5.26) −w′(s) ≤ γ(s)[F (s) +W (s)]
1
p−1 , a.e. in [0, s].

We also observe that a simple calculation gives:

(5.27) W (s) ≥ U(s), ∀s ∈ [s0, s].

Moreover, because u∗(s0) > v∗(s0), we have that v∗ 6≡ w. Then, bearing in mind Remark

4.1, as v is the unique solution of the radial problem (1.12), we have:

(5.28)
1

p

∫ s

0

(nω1/n
n )ps(1−1/n)p| − (v∗(s))′|p exp

(
−βs

1/n

ω
1/n
n

)
ds+

− 1

p

∫ s

0

c̃(s)(v∗(s))p exp

(
−βs

1/n

ω
1/n
n

)
ds−

∫ s

0

f ∗(s)v∗(s) exp

(
−βs

1/n

ω
1/n
n

)
ds <
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<
1

p

∫ s

0

(nω1/n
n )ps(1−1/n)p| − w′(s)|p exp

(
−βs

1/n

ω
1/n
n

)
ds+

− 1

p

∫ s

0

c̃(s)w(s)p exp

(
−βs

1/n

ω
1/n
n

)
ds−

∫ s

0

f ∗(s)w(s) exp

(
−βs

1/n

ω
1/n
n

)
ds.

On the other hand, from (5.11) and (5.26), respectively, it follows:

(5.29) |(−v∗(s))′|p = −(v∗(s))′(nω1/n
n )−ps(1−1/n)(−p)

[
exp

(
βs1/n

ω
1/n
n

)
(F (s) + V (s))

]

(5.30) | − w′(s)|p ≤ −w′(s)(nω1/n
n )−ps(1−1/n)(−p)

[
exp

(
βs1/n

ω
1/n
n

)
(F (s) +W (s))

]
Substituting (5.29) and (5.30) in (5.28) and integrating by parts between 0 and s, from

(5.25) and (5.27) we obtain:∫ s

0

v∗(s)f ∗(s) exp

(
−βs

1/n

ω
1/n
n

)
ds >

∫ s

0

w(s)f ∗(s) exp

(
−βs

1/n

ω
1/n
n

)
ds;

so we have a contradiction because v∗(s) ≤ w(s) in [0, s].

Finally, let us examine the case 2b). Being u∗(s) > v∗(s) in [s0, s[, we have again

d

ds
(U(s)− V (s)) < 0 a.e. in [s0, s[,

then U(s)− V (s) is decreasing in [s0, s]. So, there is s̃ ∈]s0, s[ such that

(5.31) U(s̃) = V (s̃) and U(s) < V (s), ∀s ∈]s̃, s].

As s̃ ∈]s0, s[, thence:

(5.32) u∗(s̃) > v∗(s̃).

On the other hand, integrating (5.10) and (5.11) between s̃ and s and using (5.31) we

have:

u∗(s̃)− u∗(s) < v∗(s̃)− v∗(s),

in contrast with (5.32) because u∗(s) = v∗(s). So we have a contradiction in the case 2b),

too.

�

Lemma 5.4. Under the hypotheses of Theorem 5.1, the following inequality holds:

(5.33) U−(s) ≤ V−(s), s ∈ [s0, |Ω|].

Proof. If f ≡ 0 we are in a trivial case; indeed, as already observed in Lemma 5.3,

u∗ = v∗ = 0 in [0, |Ω|].
Let f 6≡ 0. Suppose that U−(s) > V−(s), for some s ∈ [s0, |Ω|].

Let us set Z(s) = U−(s)−V−(s), s ∈ [0, |Ω|]. We observe that Z(s0) = 0; moreover, there
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exists s ∈]s0, |Ω|] such that Z(s) = max[s0,|Ω|] Z(s) > 0. Observe that by the hypothesis

made on c, the derivative of Z(s) can be not defined in s = |Ω|. We have to distinguish

two cases:

a) s = |Ω|,
b) s < |Ω|.

Let us consider case a). We put

s1 = inf{s ∈ [s0, |Ω|] : Z(t) > 0,∀t ∈ [s, |Ω|]}.

Observe that s1 ≥ s0, Z(s1) = 0 and Z(s) > 0, ∀s ∈]s1, |Ω|]. If s ∈]s1, |Ω|], integrating

(5.10), (5.11) between s and |Ω|, and using Lemma 5.3, we have:

u∗(s) ≤
∫ |Ω|
s

γ(t) exp

(
βt1/n

ω
1/n
n

)
[F (t) + U(t)]

1
p−1dt =

=

∫ |Ω|
s

γ(t) exp

(
βt1/n

ω
1/n
n

)
[F (t) + U+(s0)− U−(t)]

1
p−1dt ≤

≤
∫ |Ω|
s

γ(t) exp

(
βt1/n

ω
1/n
n

)
[F (t) + V+(s0)− V−(t)]

1
p−1dt =

∫ |Ω|
s

(−v∗(t))′ dt = v∗(s).

So, because s is a generic element of ]s1, |Ω|], we have, recalling Z(s1) = U−(s1)−V−(s1) =

0,

U−(s) = U−(s1) +

∫ s

s1

(c−)∗(t)(u
∗(t))p−1 exp

(
−βt

1/n

ω
1/n
n

)
dt ≤

≤ V−(s1) +

∫ s

s1

(c−)∗(t)(v
∗(t))p−1 exp

(
−βt

1/n

ω
1/n
n

)
dt = V−(s), ∀s ∈]s1, |Ω|],

but this is absurd because Z(s) > 0, ∀s ∈]s1, |Ω|].
Now consider case b). Since Z(s) > 0, and being Z absolutely continuous, we can

choose s1, s2 ∈]s0, |Ω|[ such that s1 < s ≤ s2, and

(5.34) Z(s) > 0, ∀s ∈]s1, s2], and Z(s1) = 0;

moreover,

(5.35) Z is differentiable in s2 with Z ′(s2) ≤ 0.

By (5.34) we have that U−(s1) = V−(s1) and, moreover,

(5.36) U−(s) > V−(s), ∀s ∈]s1, s2].

Integrating (5.10) and (5.11) between s and s2, and using Lemma 5.3, we have:

u∗(s)− u∗(s2) ≤
∫ s2

s

γ(t) exp

(
βt1/n

ω
1/n
n

)
[F (t) + U(t)]

1
p−1dt =
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=

∫ s2

s

γ(t) exp

(
βt1/n

ω
1/n
n

)
[F (t) + U+(s0)− U−(t)]

1
p−1dt ≤

≤
∫ s2

s

γ(t) exp

(
βt1/n

ω
1/n
n

)
[F (t) + V+(s0)− V−(t)]

1
p−1dt = v∗(s)− v∗(s2).

Recalling (5.35) and the fact that Z(s1) = U−(s1)− V−(s1) = 0, it follows

U−(s) ≤ V−(s), ∀s ∈]s1, s2];

so by (5.36), we have again a contradiction. �

Proof of Theorem 5.1. From Lemma 5.4 we have:∫ s

s0

(c−)∗(t)(u
∗(t))p−1 exp

(
−βt

1/n

ω
1/n
n

)
dt ≤

∫ s

s0

(c−)∗(t)(v
∗(t))p−1 exp

(
−βt

1/n

ω
1/n
n

)
dt,

∀s ∈ [s0, |Ω|].

So, according to Lemma 2.1 we have:

(5.37)

∫ s

s0

(u∗(t))p−1 exp

(
−βt

1/n

ω
1/n
n

)
dt ≤

∫ s

s0

(v∗(t))p−1 exp

(
−βt

1/n

ω
1/n
n

)
dt, ∀s ∈ [s0, |Ω|].

From Lemma 2.2, we have

(5.38) u∗(s0) ≤ v∗(s0).

On the other hand, from (5.10), (5.11), (5.18), we have:

u∗(s)− u∗(s0) ≤ v∗(s)− v∗(s0), ∀s ∈ [0, s0].

Then, from (5.38) we obtain (5.8).

Finally, the condition (5.9) easily follows from (5.8) and (5.37). �





CHAPTER 4

Non–uniformly elliptic equations with general growth in the

gradient

1. Statement of the problem

In this chapter we deal with Dirichlet problems of the form

(1.1) − div(a(x, u,Du)) = H(x, u,Du) + f, u ∈ W 1,p
0 (Ω) ∩ L∞(Ω),

where 1 < p < +∞, Ω is a bounded open set of Rn, n ≥ 2, a : Ω × R × Rn → Rn and

H : Ω× R× Rn → R are Carathéodory functions verifying the following assumptions:

(1.2) (a(x, s, ξ)− a(x, s, ξ′)) · (ξ − ξ′) > 0,

for a.e. x ∈ Ω, ∀ s ∈ R and ∀ ξ, ξ′ ∈ Rn, ξ 6= ξ′,

(1.3) a(x, s, ξ) ≥ b(|s|)|ξ|p,

for a.e. x ∈ Ω, ∀ s ∈ R, ∀ ξ ∈ Rn, and b : [0,+∞[→]0,+∞[ is a continuous function,

(1.4) |a(x, s, ξ)| ≤ c0(|ξ|p−1 + |s|p−1 + g(x)),

for a.e. x ∈ Ω, ∀ s ∈ R,∀ ξ ∈ Rn, with g ∈ Lp′(Ω),

(1.5) |H(x, s, ξ)| ≤ k(|s|)|ξ|q,

for a.e. x ∈ Ω,∀ s ∈ R,∀ ξ ∈ Rn, with p − 1 < q ≤ p, and the function k : [0,+∞[→
[0,+∞[ is continuous. Moreover, assume

(1.6) f ∈ Lr(Ω), r > max

{
n

p
, 1

}
.

The prototype equation therefore is

(1.7)

{
− div(b(|u|) |Du|p−2Du) = k(|u|) |Du|q + f, in Ω

u = 0 on ∂Ω,

We look for bounded solutions of (1.1); namely, we say that u ∈ W 1,p
0 (Ω) ∩ L∞(Ω) is

a weak solution of (1.1) if∫
Ω

a(x, u,Du) ·Dϕdx =

∫
Ω

H(x, u,Du)ϕdx+

∫
Ω

fϕ dx, ∀ϕ ∈ W 1,p
0 (Ω) ∩ L∞(Ω).

The following example, due to Kazdan and Kramer (see [66]), explains the typical

behaviour of this kind of equations.

47
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Example 1.1. Let us consider the Dirichlet problem for the semilinear equation

(1.8) −∆u = K |Du|2 + λ, u ∈ H1
0 (Ω) ∩ L∞(Ω)

with K and λ nonnegative constants. Any solution u of (1.8) is nonnegative: using u− as

test function, we get that

−
∫

Ω

∣∣Du−∣∣2 dx = K

∫
Ω

∣∣Du−∣∣2 u− dx+

∫
Ω

u− dx ≥ 0,

hence u− ≡ 0. Performing the change of variable

v = eu − 1,

we obtain a nonnegative function v ∈ H1
0 (Ω) ∩ L∞(Ω), whenever u ∈ H1

0 (Ω) ∩ L∞(Ω).

Moreover, v satisfies the linear equation

(1.9) −∆v = λK(v + 1).

Now let λ1 be the first eigenvalue of the −∆ operator, and v1 ∈ H1
0 (Ω) ∩ L∞(Ω) the

associated positive first eigenfunction; therefore∫
Ω

Dv1 ·Dϕdx = λ1

∫
Ω

v1ϕdx, ∀ϕ ∈ H1
0 (Ω).

By Fredholm alternative, if

λK < λ1,

the equation (1.9) (and thus (1.8)) admits a unique solution.

On the other hand, suppose that there exists a solution v of (1.9). Using v1 as test

function in (1.9), we get∫
Ω

Dv ·Dv1 dx = λK

∫
Ω

v1(v + 1) dx = λ1

∫
Ω

v1v dx,

that is

(λ1 − λK)

∫
Ω

v v1 dx = λ

∫
Ω

v1 dx > 0,

so we have necessarily that λK < λ1. This means that if

λK ≥ λ1,

the equation (1.9) (and thus (1.8)) has no solution.

Remark 1.1. Similar examples have been given for b and k constant and for p− 1 <

q ≤ p (see [52]).

The Example 1.1 shows that, in general, we need some additional hypotheses on the

data of the equation in order to get existence results.

Such kind of problems have been widely studied in literature under various hypotheses.
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The first results for this type of equations are contained in a series of papers of Boc-

cardo, Murat and Puel (see [29, 31, 30, 32]), where the existence of solutions of problems

like (1.1), with p = q and b constant, is proved.

For example, in [29] and [30] the existence of a solution of (1.1) is proved assuming

the existence of a subsolution and a supersolution of (1.1); more precisely, the following

theorem holds:

Theorem 1.1. Let a(x, s, ξ), H(x, s, ξ) and f verify the hypotheses (1.2)–(1.6), with b

constant, p = q and k monotone increasing. If there exist two functions u, u which belong

to W 1,p(Ω) ∩ L∞(Ω) such that u ≤ u a.e. in Ω, and{
− div(a(x, u,Du)) ≥ H(x, u,Du) + f in Ω,

u ≥ 0 on ∂Ω,

and {
− div(a(x, u,Du)) ≤ H(x, u,Du) + f in Ω,

u ≤ 0 on ∂Ω,

then there exists a solution u of (1.1) with u ≤ u ≤ u a.e. in Ω.

The existence of subsolutions and supersolutions can be avoided, for example, assum-

ing a sign condition on the lower order terms (see [31] and [32]).

Similar problems with p–growth in the gradient have been considered, always with

b constant, in [79] (for p = 2) and [62] (see also [7] for the case in which b and k are

constant). The case where b is not necessarily constant is treated, for k ≡ 0, in [3], [2],

[26], and for k 6≡ 0 in [94], [34]. Existence of (possibly unbounded) solutions for equations

similar to (1.7) in the case f ∈ Ln/p(Ω), is obtained in [53], with p = 2, and, with an

additional term in the equation, in [54], always with further hypotheses on f . Moreover,

existence results which do not depend on f when q = p are given in [34] (for p = 2) and

in [84].

As far as it concerns with the case of q–growth in the gradient, p−1 < q ≤ p, existence

results with b and k constant are given in [50], and in [33], [63].

The quoted results are of two kinds: the first one establishes existence of solutions

without imposing any additional condition on f (see [34], [84]); the second one requires

conditions on the smallness of some norm of f (see [79], [62], [94], [52], [53], [54], [63]).

More precisely, when it is possible to remove the smallness hypotheses on f , it is needed

appropriate hypotheses on the structure of the equation, like sign conditions or particular

hypotheses on the functions k(s) and b(s).

Our aim is to obtain an existence result for problems like (1.7). Our approach permits

us to treat in a unified way both the cases in which it is required a particular hypothesis

on f and the cases in which such hypothesis it is not necessary.

The standard method to obtain existence results consists in defining approximate

problems, then to obtain a priori estimates for their solutions and then passing to the
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limit in such approximate problems. The main goal is to prove an L∞ estimate for

bounded solutions; so we turn the qualitative information u ∈ L∞(Ω) into a quantitative

estimate

‖u‖L∞(Ω) ≤ C.

2. Main result and comments

Let us define the following functions:

(2.1) Q : s ∈ [0,+∞[→ C

∫ s

0

[
k(y)

b(y)

] 1
1−p+q

dy;

(2.2) F : s ∈ [0,+∞[→
∫ s

0

eQ(t)b(t)
1
p−1dt;

(2.3) W : s ∈ [0,+∞[→ F (s)

eQ(s)
,

where

C =
1− p+ q

p− 1

(
|Ω|
ωn

) p−q
n

.

We can state the following existence theorem:

Theorem 2.1. Under assumptions (1.2)–(1.6), if

(2.4) C0V (0) < sup
s>0

W (s),

where C0 is a constant depending only on the data, namely C0 = e
p′
p

(p−q)(|Ω|/ωn)
p−q
n

, and

(2.5) V (x) =
(
nω1/n

n

)−p′ ∫ |Ω|
ωn|x|n

t−(1− 1
n)p′

(∫ t

0

f ∗(r)dr

) p′
p

dt

is the solution of the equation

(2.6)

{
−∆pV = f# in Ω#,

V = 0 on ∂Ω#,

then there exists a weak solution of (1.1).

Remark 2.1. If p < n the condition (2.4) is a smallness assumption on the norm of

f in the Lorentz space L(n/p, p′/p)(Ω). Indeed, in view of (2.5), the hypothesis (2.4) can be

rewritten in the form

C0n
−p′ω−p

′/n
n ‖f‖L(n/p, p′/p)(Ω) < sup

s>0
W (s);

as recalled in chapter 1, L(n/p, p′/p)(Ω) contains Lr(Ω), for any r > n/p .
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Remark 2.2. We observe that if p = q and b and k are respectively monotone decreas-

ing and monotone increasing, the hypothesis (2.4) coincides with the existence condition

given in [94].

Remark 2.3. We explicitly note that if

(2.7) sup
s>0

W (s) = +∞,

no smallness assumption on f is needed, therefore a solution exists for any f ∈ Lr(Ω),

r > max{n/p, 1}. In this case the hypothesis (2.7) also weakens, when q = p, the existence

condition given in [84] (see also [34]), in which it is required that lims→+∞W (s) = +∞.

As a matter of fact, if b ≡ 1, a simple condition which verifies (2.7) is, for example,

the following:

lim
s→+∞

k(s) = 0.

In this case, sups>0W (s) = lims→+∞W (s) = +∞. The condition (2.7) is obviously more

general, as we explicitly see in the following example.

Let b ≡ 1, and p = q = 2. Let us define k in the following way:

k(s) =


π
2

tan π
4
s, if 0 ≤ s ≤ 1;

3π−2[
√

2 sin(log s+π
4 )+1− 2

s2
]

2s[sin(log s)+1+ 2
s2

]
, if s > 1.

We have that k is continuous in [0,+∞[ and positive for any s > 0, and

lim sup
s→+∞

k(s) = +∞, lim inf
s→+∞

k(s) = 0.

If we compute W (s), we have that for s > 1,

W (s) =
2

3π
s

[
sin(log s) + 1 +

2

s2

]
;

so we easily find that

lim sup
s→+∞

W (s) = +∞,

and

lim inf
s→+∞

W (s) = 0.

Remark 2.4. As regards the problem of uniqueness of solutions for equations like

(1.1), we recall some known results. In the semilinear case, it is possible to prove that

the problem

−∆u = k(|u|)|Du|2 + f, u ∈ H1
0 (Ω) ∩ L∞(Ω),

for suitable hypotheses on k and f , has at most an unique solution. More precisely, the

following result holds (see [17]): suppose that u1, u2 belong to H1(Ω) ∩ L∞(Ω) and are
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respectively a subsolution and a supersolution of the Dirichlet problem

(2.8) −∆u+H(x, u,Du) = 0, u ∈ H1
0 (Ω) ∩ L∞(Ω),

where Ω is a bounded domain (connected open set) in Rn, H is a Carathéodory function

on Ω × R × Rn such that (u, ξ) ∈ R × Rn → H(x, u, ξ) is continuously differentiable,∣∣∣∂H∂ξ ∣∣∣ ≤ k1(|u|)(1+ |ξ|) and |H(x, u, 0)| ≤ k2(|u|), where k1 and k2 are continuous functions

of |u|, and ∂H
∂u

(x, u, ξ) ≥ α0, where α0 is a nonnegative constant, and f ∈ H−1(Ω). If

(u1 − u2)+ ∈ H1
0 (Ω), then

u1 ≤ u2 in Ω.

In particular, the equation (2.8) admits at most one solution in H1
0 (Ω) ∩ L∞(Ω).

The uniqueness property does not hold for unbounded solutions, as shown by some

counterexamples (see [70], [54], [52], [63]). For instance, if we consider the problem

(2.9)

{
−∆pu = |Du|q in B,

u = 0 on ∂B,

where 0 < p
n

+ p − 1 < q < p < n and B is the ball of Rn centered at the origin with

radius R, it obviously admits the solution u = 0. Moreover, the function

u(x) = c(|x|−
p−q

1−p+q −R−
p−q

1−p+q ),

where c is a suitable positive constant which depends on q, p and n, belongs to W 1,p
0 (B)

and solves (2.9). However, the solution u = 0 is the unique bounded solution of (2.9).

In the case p = q, with p < n, it is possible to show that the function

u(x) = (p− 1) log

(
|x|−(n−p)/(p−1) −m
R−(n−p)/(p−1) −m

)
,

where m is any constant such that mR(n−p)/(p−1) < 1, is a solution of the equation

(2.10)

{
−∆pu = |Du|p in B,

u = 0 on ∂B,

(see [54]), but (2.10) admits the unique bounded solution u = 0.

3. A priori estimates

The aim of this section is to prove a priori estimates of the solutions of (1.1). We

prove a L∞ estimate of u in terms of the function W .

Theorem 3.1. Let V be the solution of (2.6). Under assumptions (1.2) − (1.6), if u

is a weak solution of (1.1), then

(3.1) W (u∗(0)) ≤ C0V (0),

where C0 is the constant defined in Theorem 2.1.
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Proof. Let u be a solution of (1.1). Using in (1.1) the test functions Tt(u), Tt+h(u),

with t, h > 0, and subtracting, we have:∫
{t<|u|≤t+h}

a(x, u,Du) ·Dudx =

=

∫
{t<|u|≤t+h}

H(x, u,Du)(|u| − t) signu dx+

∫
{t<|u|≤t+h}

f(|u| − t) signu dx+

+ h

∫
{|u|>t+h}

H(x, u,Du) signu dx+ h

∫
{|u|>t+h}

f signu dx;

so, dividing both sides by h and using (1.3) and (1.5), we get:

(3.2)
1

h

∫
{t<|u|≤t+h}

b(|u|)|Du|pdx ≤
∫
{|u|>t}

k(|u|)|Du|qdx+

∫
{|u|>t}

|f |dx.

We note that from (3.2) and from the fact that u is a solution of (1.1), it follows that the

function

Φ(t) =

∫
{|u|>t}

b(|u|)|Du|pdx

is Lipschitz continuous. If h → 0, being b continuous, and using Hardy - Littlewood

inequality, from (3.2) we get

(3.3) −b(t) d
dt

∫
{|u|>t}

|Du|pdx ≤
∫
{|u|>t}

k(|u|)|Du|qdx+

∫ µ(t)

0

f ∗(s)ds

By the continuity of k we have∫
{|u|>t}

k(|u|)|Du|qdx =

∫ +∞

t

k(s)

(
− d

ds

∫
{|u|>s}

|Du|qdx
)
ds;

moreover, by Hölder inequality we have

− d

ds

∫
{|u|>s}

|Du|qdx ≤
(
− d

ds

∫
{|u|>s}

|Du|pdx
) q

p

(−µ′(s))1− q
p ,

and therefore

(3.4)

∫
{|u|>t}

k(u)|Du|q ≤
∫ +∞

t

k(s)

(
− d

ds

∫
{|u|>s}

|Du|pdx
) q

p

(−µ′(s))1− q
pds.

Now, using again Hölder inequality, we get(
− d

dt

∫
{|u|>t}

|Du|pdx
) p−q

p

≥
[(
− d

dt

∫
{|u|>t}

|Du|dx
)

(−µ′(t))−1+ 1
p

]p−q
,
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that is(
− d

dt

∫
{|u|>t}

|Du|pdx
) q

p

(−µ′(t))1− q
p ≤

≤
(
− d

dt

∫
{|u|>t}

|Du|dx
)q−p(

− d

dt

∫
{|u|>t}

|Du|pdx
)

(−µ′(t))(1− 1
p

)(p−q)+(1− q
p

).

Using Fleming and Rishel formula and isoperimetric inequality, and observing that p−q =

(1− 1/p) (p− q) + (1− q/p), we get

(3.5)

(
− d

dt

∫
{|u|>t}

|Du|pdx
) q

p

(−µ′(t))1− q
p ≤

≤
(
nω1/n

n µ(t)1− 1
n

)q−p(
− d

dt

∫
{|u|>t}

|Du|pdx
)

(−µ′(t))p−q.

So, from (3.4) and (3.5) we have

(3.6)

∫
{|u|>t}

k(u)|Du|qdx ≤

≤
(
nω1/n

n

)q−p ∫ +∞

t

k(s)

(
− d

ds

∫
{|u|>s}

|Du|pdx
)(

−µ′(s)
µ(s)1− 1

n

)p−q

ds.

From (3.3) and (3.6) we obtain

− b(t) d
dt

∫
{|u|>t}

|Du|pdx ≤

≤
(
nω1/n

n

)q−p ∫ +∞

t

k(s)

(
− d

ds

∫
{|u|>s}

|Du|pdx
)(

−µ′(s)
µ(s)1− 1

n

)p−q

ds+

∫ µ(t)

0

f ∗(s)ds.

The previous inequality and Gronwall lemma imply:

− b(t) d
dt

∫
{|u|>t}

|Du|pdx ≤

≤
∫ +∞

t

exp

{(
nω1/n

n

)q−p ∫ s

t

k(y)

b(y)

(
−µ′(y)

µ(y)1− 1
n

)p−q

dy

}
f ∗(µ(s))[−dµ(s)].

and then

(3.7) − b(t) d
dt

∫
{|u|>t}

|Du|pdx ≤

≤
∫ µ(t)

0

exp

{(
nω1/n

n

)q−p ∫ u∗(r)

t

k(y)

b(y)

(
−µ′(y)

µ(y)1− 1
n

)p−q

dy

}
f ∗(r)dr.
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On the other hand, if p− 1 < q < p, using Hölder inequality we have

(3.8)

∫ u∗(r)

t

k(y)

b(y)

(
−µ′(y)

µ(y)1− 1
n

)p−q

dy ≤

≤

[∫ u∗(r)

t

(
k(y)

b(y)

) 1
1−p+q

dy

]1−p+q [∫ u∗(r)

t

−µ′(y)

µ(y)1− 1
n

dy

]p−q
.

(Observe that last inequality is trivial if q = p). Furthermore, by the properties of the

distribution function µ of u, we have

(3.9)

∫ u∗(r)

t

−µ′(y)

µ(y)1− 1
n

dy ≤
∫ +∞

0

−µ′(y)

µ(y)1− 1
n

dy ≤ n|Ω|
1
n .

Using (3.8) and (3.9) in (3.7), we get

(3.10) − b(t) d
dt

∫
{|u|>t}

|Du|pdx ≤

≤
∫ µ(t)

0

exp


(
|Ω|
ωn

) p−q
n

[∫ u∗(r)

t

(
k(y)

b(y)

) 1
1−p+q

dy

]1−p+q
f ∗(r)dr.

Now we recall that if x ≥ 0, and 0 ≤ α ≤ 1, we have

(3.11) xα ≤ αx+ (1− α);

so applying (3.11) to (3.10), we have

− b(t) d
dt

∫
{|u|>t}

|Du|pdx ≤

≤
∫ µ(t)

0

exp

{(
|Ω|
ωn

) p−q
n

[
(p− q) + (1− p+ q)

∫ u∗(r)

t

(
k(y)

b(y)

) 1
1−p+q

dy

]}
f ∗(r)dr,

that is

(3.12) b(t)

(
− d

dt

∫
{|u|>t}

|Du|pdx
)
≤ e(p−q)(|Ω|/ωn)

p−q
n

∫ µ(t)

0

e(p−1)[Q(u∗(r))−Q(t)]f ∗(r)dr,

with

Q(t) =

(
|Ω|
ωn

) p−q
n 1− p+ q

p− 1

∫ t

0

(
k(y)

b(y)

) 1
1−p+q

dy.

On the other hand, we have by Hölder inequality that

− d

dt

∫
{|u|>t}

|Du|pdx ≥
(
− d

dt

∫
{|u|>t}

|Du|dx
)p

(−µ′(t))−
p
p′

Applying again the coarea formula and the isoperimetric inequality, we have

− d

dt

∫
{|u|>t}

|Du|dx ≥ nω1/n
n µ(t)1− 1

n ,
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and then

b(t)
(
nω1/n

n

)p
µ(t)p−

p
n (−µ′(t))−

p
p′ ≤ e(p−q)(|Ω|/ωn)

p−q
n

∫ µ(t)

0

e(p−1)[Q(u∗(r))−Q(t)]f ∗(r)dr,

that is

b(t)e(p−1)Q(t) ≤ e(p−q)(|Ω|/ωn)
p−q
n
(
nω1/n

n

)−p(−µ′(t) 1
p′

µ(t)1− 1
n

)p ∫ µ(t)

0

e(p−1)Q(u∗(r))f ∗(r)dr.

recalling that u∗ is a decreasing function, we have

b(t)1/(p−1)eQ(t)

eQ(u∗(0))
≤ e

p′
p

(p−q)(|Ω|/ωn)
p−q
n
(
nω1/n

n

)−p′ −µ′(t)
µ(t)p

′− p′
n

(∫ µ(t)

0

f ∗(r)dr

) p′
p

.

Integrating between 0 and σ,

F (σ)

eQ(u∗(0))
≤ e

p′
p

(p−q)(|Ω|/ωn)
p−q
n
(
nω1/n

n

)−p′ ∫ σ

0

−µ′(t)
µ(t)p

′− p′
n

(∫ µ(t)

0

f ∗(r)dr

) p′
p

dt,

where F (s) and Q(s) is the function defined in (2.1), (2.2). If σ = u∗(s), using the

properties of the rearrangements, we have

(3.13)
F (u∗(s))

eQ(u∗(0))
≤ e

p′
p

(p−q)(|Ω|/ωn)
p−q
n
(
nω1/n

n

)−p′ ∫ |Ω|
s

t−(1− 1
n)p′

(∫ t

0

f ∗(r)dr

) p′
p

dt.

that is

W (u∗(0)) ≤ e
p′
p

(p−q)(|Ω|/ωn)
p−q
n
V (0).

�

From the proof of Theorem 3.1 we get easily a W 1,p estimate of u:

Proposition 3.1. Let V be the solution of (2.6). Under assumptions (1.2)− (1.6), if

u is a solution of (1.1), then

(3.14)∫
Ω

|Du|pdx ≤ u∗(0)

m
exp


(
|Ω|
ωn

) p−q
n

[∫ u∗(0)

0

(
k(y)

b(y)

) 1
1−p+q

dy

]1−p+q

∫ |Ω|

0

f ∗(r)dr,

where m = mint∈[0,u∗(0)] b(t).

Proof. By (3.10) it follows that

− b(t) d
dt

∫
{|u|>t}

|Du|pdx ≤

≤ exp


(
|Ω|
ωn

) p−q
n

[∫ u∗(0)

0

(
k(y)

b(y)

) 1
1−p+q

dy

]1−p+q

∫ |Ω|

0

f ∗(r)dr;

so integrating between 0 and u∗(0) we obtain the estimate (3.14). �
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4. Proof of Theorem 2.1

In order to prove Theorem 2.1, we need to define some auxiliary functions and to

study their behaviour. For any λ > 0, we put

kλ(s) = k(Tλ(s)), bλ(s) = b(Tλ(s)).

Furthermore, we set

Qλ : s ∈ [0,+∞[→ C

∫ s

0

[
kλ(y)

bλ(y)

] 1
1−p+q

dy;(4.1)

Fλ : s ∈ [0,+∞[→
∫ s

0

eQλ(t)bλ(t)
1
p−1dt;(4.2)

Wλ : s ∈ [0,+∞[→ Fλ(s)

eQλ(s)
;(4.3)

where

C =
1− p+ q

p− 1

(
|Ω|
ωn

) p−q
n

.

We observe that W is continuously differentiable, W (0) = 0 and

W ′(s) = b(s)
1
p−1 − CW (s)

(
k(s)

b(s)

) 1
1−p+q

.

It follows that W ′(0) > 0. When s > 0, we have

(4.4) W ′(s) > 0 if k(s) = 0,

while if k(s) 6= 0 then

(4.5) W ′(s) ≥ 0 ⇐⇒ W (s) ≤ C−1 b(s)
1
p−1( q

p−1)
′

k(s)
1

1−p+q
.

Clearly we have:

Wλ(s) = W (s) if 0 ≤ s ≤ λ,

while for s > λ, it holds:

Wλ(s) =

∫ s

0

e
C

R r
s

h
kλ(y)

bλ(y)

i 1
1−p+q dy

bλ(r)
1
p−1dr

= W (λ)e
C

R λ
s

h
kλ(y)

bλ(y)

i 1
1−p+q dy

+

∫ s

λ

e
C

R r
s

h
kλ(y)

bλ(y)

i 1
1−p+q dy

bλ(r)
1
p−1dr =

= W (λ)eC(λ−s)( k(λ)
b(λ) )

1
1−p+q

+ b(λ)
1
p−1

∫ s

λ

e(r−s)( k(λ)
b(λ) )

1
1−p+q

dr.
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It follows that, for s > λ,

(4.6) Wλ(s) =

=


W (λ) + (s− λ)b(λ)

1
p−1 if k(λ) = 0;[

W (λ)− C−1 b(λ)
1
p−1( q

p−1)
′

k(λ)
1

1−p+q

]
eC(λ−s)( k(λ)

b(λ) )
1

1−p+q
+ C−1 b(λ)

1
p−1( q

p−1)
′

k(λ)
1

1−p+q
if k(λ) > 0.

Thus from (4.4), (4.5) and (4.6) it follows that W ′(λ) ≥ 0 implies

(4.7) Wλ(s) ≥ W (λ), ∀ s > λ.

Inequality (4.7) is immediate for k(λ) = 0, while for k(λ) > 0 we have to observe that, in

view of (4.5), Wλ(s) is increasing with respect to s.

For any fixed λ > 0, we consider the truncated problem:

(4.8) − div(aλ(x, uλ, Duλ)) = Hλ(x, uλ, Duλ) + f, uλ ∈ W 1,p
0 (Ω) ∩ L∞(Ω),

where aλ(x, η, ξ) and Hλ(x, η, ξ) are defined in the following way:

aλ(x, s, ξ) =


a(x, s, ξ) if |s| ≤ λ,

a(x, λ, ξ) if s > λ,

a(x,−λ, ξ) if s < −λ.

and

Hλ(x, s, ξ) =


H(x, s, ξ) if |s| ≤ λ,

H(x, λ, ξ) if s > λ,

H(x,−λ, ξ) if s < −λ.
The functions aλ(x, s, ξ) and Hλ(x, s, ξ) verify the assumptions (1.2)−(1.5) with bλ and

kλ instead of b and k. So by Theorem 3.1 it follows that if uλ is a solution of (4.8), then

(4.9) Wλ(u
∗
λ(0)) ≤ C0V (0),

where Wλ is the function defined in (4.3), V (0) is given by (2.5) and C0 is the constant

of the Theorem 3.1.

Remark 4.1. We observe that if there exists λ > 0 such that

u∗λ(0) ≤ λ,

then uλ also solves the problem (1.1).

Now we obtain an uniform estimate for the solutions of the approximate problems

(4.8):

Proposition 4.1. Under assumptions (1.2)− (1.6), if

(4.10) C0V (0) < sup
s>0

W (s),
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where C0 = C0(p, q, n, |Ω|) is given in Theorem 3.1, then there exists λ > 0 such that if

uλ is a solution of (4.8), it results

(4.11) u∗λ(0) ≤ λ.

Proof. We define

(4.12) τ = sup{s ∈ [0,+∞[: W (σ) ≤ C0V (0), ∀σ ∈ [0, s]};

because of assumption (4.10), we have 0 ≤ τ < +∞, and obviously W (τ) = C0V (0);

moreover, there exists λ > τ such that W (τ) < W (λ) and W ′(λ) ≥ 0. By (4.7), we get

C0V (0) = W (τ) < W (λ) ≤ Wλ(s), ∀ s > λ.

On the other hand, if uλ is a solution of the approximate equation (4.8) at the truncation

value λ, by (4.9) we have Wλ(u
∗
λ(0)) ≤ C0V (0), so it follows that

u∗λ(0) ≤ λ.

�

Remark 4.2. As a matter of fact, we can choose λ in order to get a better estimate

of the solutions. The following two facts can happen:

a) there exists λ̄ > τ such that W (s) > W (τ) for any s ∈]τ, λ̄[; then if uλ̄ is a

solution of (4.8) at the truncation value λ̄, by Proposition 4.1 we get u∗
λ̄
(0) ≤ λ̄.

On the other hand, Wλ̄(s) = W (s) for any s ≤ λ̄, so being Wλ̄(u
∗
λ̄
(0)) ≤ C0V (0)

we obtain

u∗λ̄(0) ≤ τ ;

b) such value λ̄ does not exist; in this case, for any ε > 0 small, we can choose λ

in the proof of Proposition 4.1 such that τ < λ < τ + ε and W (λ) > W (τ),

obtaining (4.11).

Remark 4.3. We observe that in the proof of Proposition 4.1 only the functions W

and Wλ are involved. Thus we deduce that if the condition (4.10) is satisfied, there exists

λ > 0 such that every solution v of problem like (1.1) satisfying, for a.e. x ∈ Ω, for every

(η, ξ) ∈ R× Rn, instead of (1.3) and (1.5) the assumptions:

a(x, s, ξ)ξ ≥ bλ(|s|)|ξ|p

|H(x, s, ξ)| ≤ kλ(|s|)|ξ|q

verifies

v∗(0) ≤ λ.

It is clear that in order to prove Theorem 2.1, we need only to prove existence for the

problem (4.8), and then use Remark 4.1.
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Proof of the Theorem 2.1. Given λ > 0 and ε > 0, we consider the approximate

problem

(4.13) − div(aλ(x, uλ,ε, Duλ,ε)) = Hλ,ε(x, uλ,ε, Duλ,ε) + f, uλ,ε ∈ W 1,p
0 (Ω) ∩ L∞(Ω),

where

Hλ,ε(x, s, ξ) =
Hλ(x, s, ξ)

1 + ε|Hλ(x, s, ξ)|
.

We have

|Hλ,ε(x, s, ξ)| ≤ |Hλ(x, s, ξ)|

and

|Hλ,ε(x, s, ξ)| ≤
1

ε
.

It is well known (see [76]) that problem (4.13) admit a solution uλ,ε for every ε > 0. Let

us observe that

aλ(x, s, ξ)ξ ≥ bλ(|s|)|ξ|p,

|Hλ,ε(x, s, ξ)| ≤ kλ(|s|)|ξ|q.

By Proposition 4.1 and Remark 4.3 it follows that there exists λ > 0 such that

(4.14) u∗λ,ε(0) ≤ λ

for every ε > 0. Thus {uλ,ε}ε>0 is bounded in L∞(Ω). By (3.14) and (4.14) it follows that∫
Ω

|Duλ,ε|pdx ≤
λ

mλ

exp


(
|Ω|
ωn

) p−q
n

[∫ λ

0

(
kλ(y)

bλ(y)

) 1
1−p+q

dy

]1−p+q

∫ |Ω|

0

f ∗(r)dr,

where mλ = mint∈[0,λ] bλ(t). So {uλ,ε}ε>0 is bounded in W 1,p(Ω), and weakly converges to

a function uλ ∈ W 1,p(Ω). Using standard techniques (see [29, 31, 30, 32]), it is possible

to extract a subsequence which strongly converges in W 1,p(Ω) to a function uλ ∈ W 1,p(Ω)

which solves (4.8). Being u∗λ(0) ≤ λ, this is a solution of (1.1). �



CHAPTER 5

Nonlinear elliptic equations with unbounded coefficients

1. Statement of the problem and definitions of solutions

Let b : [0,m)→ (0,+∞), with m > 0, be a continuous function such that

(1.1) lim
s→m−

b(s) = +∞.

We deal with Dirichlet problem of the form

(1.2)

{
− div(a(x, u,Du)) = f in Ω,

u = 0 on ∂Ω,

where Ω is a bounded open set in Rn, n ≥ 2, 1 < p < n, and a : Ω× (−m,m)×Rn → Rn

is a Carathéodory function verifying the following assumptions:

(1.3) b(|s|)|ξ|p ≤ a(x, s, ξ) · ξ,

for a.e. x ∈ Ω, ∀ s ∈ (−m,m) and ∀ ξ ∈ Rn,

(1.4) |a(x, s, ξ)| ≤ C(h(x) + b(|s|)|ξ|p−1)

for a.e. x ∈ Ω, ∀ s ∈ (−m,m) and ∀ ξ ∈ Rn,

(1.5) (a(x, s, ξ)− a(x, s, ξ′)) · (ξ − ξ′) > 0,

for a.e. x ∈ Ω, ∀ s ∈ (−m,m) and ∀ ξ, ξ′ ∈ Rn, ξ 6= ξ′. Moreover, f is a measurable

function on whose summability we will make different assumptions.

In this context we deal with some classes of solutions.

Definition 1.1. We say that u ∈ W 1,p
0 (Ω) is a weak solution to problem (1.2) if

(1.6)

∫
Ω

a(x, u,Du) ·Dϕdx =

∫
Ω

fϕ dx, ∀ϕ ∈ W 1,p
0 (Ω).

We emphasize that, in general, our assumptions on problem (1.2) do not assure the

existence of a weak solution (see the counterexample 4.1 in Section 4). For this reason, we

need to introduce a special class of entropy solutions. In this way, we will obtain existence

results for solutions which can achieve the critical values ±m.

Definition 1.2. A measurable function u ∈ W 1,p
0 (Ω) is an entropy solution to problem

(1.2) if

(1.7) |u| ≤ m a.e. in Ω

61



62 5. ELLIPTIC EQUATIONS WITH UNBOUNDED COEFFICIENTS

and u satisfies, for all 0 < k < m,

(1.8)

∫
Ω

a(x, u,Du) ·DTk(u− ϕ) dx ≤
∫

Ω

fTk(u− ϕ)dx

for any ϕ ∈ W 1,p
0 (Ω) ∩ L∞(Ω) s.t. ‖ϕ‖L∞(Ω) < m− k.

2. A priori estimates

Let us define

B(s) =

∫ s

0

b(t)
1
p−1dt, s ∈ [0,m).

We consider, for any ε > 0 sufficiently small, the following problem:

(2.1)

{
− div(aε(x, uε, Duε)) = fε in Ω,

uε = 0 on ∂Ω,

where aε(x, s, ξ) = a(x, Tm−ε(s), ξ), with x ∈ Ω, s ∈ R and ξ ∈ Rn and fε ∈ L∞(Ω). We

observe that classical results (see, for example, [73], [76]) assure that problem 2.1 has at

least one solution uε ∈ W 1,p
0 (Ω) ∩ L∞(Ω). Moreover, we define

bε(t) = b(Tm−ε(t)), ∀t ∈ [0,+∞), and Bε(t) =

∫ t

0

bε(s)
1
p−1ds.

First of all, we prove an integral inequality for weak solutions of problem (2.1).

Proposition 2.1. Let uε be a weak solution of (2.1). Then the following inequality

holds:

(2.2) Bε(u
∗
ε(s)) ≤

(
nω1/n

n

)−p′ ∫ |Ω|
s

t−
p′
n′

(∫ t

0

f ∗ε (σ)dσ

) p′
p

dt, s ∈ [0, |Ω|].

Proof. Let be t, h > 0. Using as test function ϕ = Th(uε − Tt(uε)), by hypothesis

(1.2), we get

(2.3)
1

h

∫
t<|uε|≤t+h

bε(|uε|)|Duε|p ≤
∫
|uε|>t

|fε|dx.

Applying Hardy–Littlewood inequality and letting h→ 0, we obtain

(2.4) bε(t)
d

dt

∫
|uε|≤t

|Duε|pdx ≤
∫ µuε (t)

0

f ∗ε (s)ds.

By Hölder inequality we have

bε(t)

(
d

dt

∫
|uε|≤t

|Duε|dx
)p

(−µ′uε(t))
− p
p′ ≤

∫ µuε (t)

0

f ∗ε (s)ds.

From isoperimetric inequality and Fleming–Rishel formula, it follows that

bε(t) ≤
(
nω1/n

n

)−p
(µuε(t))

− p
n′ (−µ′uε(t))

p
p′

∫ µuε (t)

0

f ∗ε (σ)dσ.
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Finally, raising to the power 1/(p − 1) and using the properties of rearrangements, we

easily get (2.2). �

Proposition 2.2. Let uε be a solution of (2.1). The following inequalities hold:

(a) if 1 < r < n/p , then

(2.5) ‖Bε(|uε|)q‖L1(Ω) ≤ c‖fε‖
q p
′
p

Lr(Ω)

where q = nr(p− 1)/(n− rp);

(b) if r = 1, then

(2.6) ‖Bε(|uε|)‖
M

n(p−1)
n−p (Ω)

≤ c‖fε‖
p′
p

L1(Ω).

Proof. Let us first observe that, being Bε monotone, by (2.2) and properties of

rearrangements, we get

‖Bε(|uε|)q‖L1(Ω) ≤
(
nω1/n

n

)−qp′ ∫ |Ω|
0

∫ |Ω|
s

t−
p′
n′

(∫ t

0

f ∗ε (σ)dσ

) p′
p

dt

q

ds;

applying the inequalities (3.7) and (3.8), we obtain

‖Bε(|uε|)q‖L1(Ω) ≤ c

∫ |Ω|
0

s
qp′
n f ∗ε (s)

qp′
p ds,

so, recalling that, in particular, fε ∈M r(Ω), we get (a).

Now let be r = 1. The inequality (2.2) implies

Bε(u
∗
ε(s)) ≤

n′‖fε‖
p′
p

L1(Ω)

(p′ − n′)(nω1/n
n )p′sp′/n′−1

.

This proves part (b). �

Now we use estimates of Proposition 2.2 to obtain some gradient estimates of the

solutions of (2.1) with respect to some Lr–norm of fε.

Proposition 2.3. Let uε be a weak solution of (2.1). The following estimates hold:

(1) if r is such that
np

np− n+ p
≤ r <

n

p
,

then

(2.7) ‖|DBε(|uε|)|‖Lp(Ω) ≤ c1,

where the constant c1 continuously depends on the norm of fε in Lr(Ω);

(2) if r is such that

max

{
1,

n

np− n+ 1

}
< r <

np

np− n+ p
,
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then

(2.8) ‖|DBε(|uε|)|‖Lβ(Ω) ≤ c2,

where β = nr(p− 1)/(n − r) and the constant c2 continuously depends on the

norm of fε in Lr(Ω);

(3) if r is such that

1 ≤ r ≤ max

{
1,

n

np− n+ 1

}
,

then

(2.9) ‖|DBε(|uε|)|‖Mβ(Ω) ≤ c3,

with β = nr(p − 1)/(n − r) where the constant c3 continuously depends on the

norm of fε in Lr(Ω).

Proof. If uε is a solution of the equation (2.1), by the definition of Bε we can use as

test function v = Th(Bε(uε)− Tt(Bε(uε))) and obtain

(2.10)
1

h

∫
t<Bε(|uε|)≤t+h

|D(Bε(|uε|)|pdx ≤
∫
Bε(|uε|)>t

|fε|dx.

Let us prove part (1). Passing to the limit in (2.10), we get

(2.11)
d

dt

∫
Bε(|uε|)≤t

|DBε(|uε|)|pdx ≤
∫ µε(t)

0

f ∗ε (s)ds,

where we have denoted with µε(t) the distribution function of Bε(|uε|). Integrating (2.11)

between 0 and +∞ and using Hölder inequality, we have

(2.12)

∫
Ω

|DBε(|uε|)|pdx ≤

≤
∫ +∞

0

dt

∫ µε(t)

0

f ∗ε (s)ds =

∫ |Ω|
0

Bε(u
∗
ε(s))f

∗
ε (s)ds ≤

≤ ‖f‖Lr(Ω) ‖Bε(|uε|)‖Lr′ (Ω) .

We observe that if r is such that np/(np−n+ p) ≤ r < n/p , by (2.5) the right hand side

of last inequality is controlled by a constant depending on the norm of fε in Lr(Ω); so by

(2.12), the inequality (2.7) follows.

As regards part (2), applying Hölder inequality in (2.10) and reasoning as before, we

get

(2.13)

∫
Ω

|DBε(|uε|)|βdx ≤
∫ +∞

0

(∫ µε(t)

0

f ∗ε (s)ds

)β/p

(−µ′ε(t))1−β/pdt ≤
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≤
(∫ +∞

0

(1 + t)q(−µ′ε(t))dt
)1−β/p

(∫ +∞

0

(1 + t)q(1−p/β)

(∫ µε(t)

0

f ∗ε (s)ds

)
dt

)β/p

,

where q = nr(p− 1/(n− rp)). Using the properties of rearrangements, we can write the

first integral of the right hand side of (2.13) as∫ +∞

0

(1 + t)q(−µ′ε(t))dt =

∫ |Ω|
0

(1 +Bε(u
∗
ε(s)))

qds,

and by (2.5) this quantity is bounded by a constant depending on the norm of fε in Lr(Ω).

On the other hand, integrating by parts the second integral of the right hand side of (2.13)

we have∫ +∞

0

(1 + t)q(1−p/β)

(∫ µε(t)

0

f ∗ε (s)ds

)
dt ≤

≤ c

∫ |Ω|
0

f ∗ε (s)
[
(1 +Bε(u

∗
ε(s)))

(q(1−p/β)+1) − 1
]
ds ≤

≤ c‖fε‖Lr(Ω)

{∫ |Ω|
0

[(1 +Bε(u
∗
ε(s)))

q] ds

}1−1/r

.

Applying again (2.5), by (2.13) it follows the estimate (2.8).

Finally, we prove part (3). Integrating between 0 and k the inequality (2.11), we

obtain

(2.14)

∫
Bε(|uε|)≤k

|DBε(|uε|)|pdx ≤
∫ k

0

dt

∫ µε(t)

0

f ∗ε (τ)dτ.

If r = 1, from (2.14) we get∫
Bε(|uε|)≤k

|DBε(|uε|)|pdx ≤ k ‖fε‖L1(Ω) .

By (2.6) and lemma 3.2 we get the assertion.

If 1 < r ≤ max{1, n/(np − n + 1)}, then by (2.5) it follows that Bε(|uε|) ∈ M q(Ω),

with q = nr(p− 1)/(n− rp) as in Proposition 2.2; so we obtain∫
Bε(|uε|)≤k

|DBε(|uε|)|pdx ≤ c

∫ k

0

µε(t)
1
r′ dt ≤ c

∫ k

0

1

t
q
r′
dt,

where the constant c depends on the norm of fε in Lr(Ω). Applying Lemma 3.2, the

inequality (2.9) follows. �

Remark 2.1. We observe that the achieved estimates hold also replacing DBε(|uε|)
by Duε; furthermore it follows that ∫

Ω

|Duε|γdx ≤ c,
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with γ < n(p− 1)/(n− 1), c is a constant depending on the L1 norm of fε. Using (2.4),

Tk(uε) are uniformly bounded in W 1,p
0 (Ω) for any k > 0. Hence, there exists a function

u ∈ W 1,γ
0 (Ω) such that

(2.15) uε → u a.e. in Ω,

and, for any k > 0,

Tk(uε) ⇀ Tk(u) weakly in W 1,p
0 (Ω).

Now let us suppose f ∈ L1(Ω). Using T2m(|uε|) − Tm(|uε|) as test function in (2.1) and

by Poincaré’s inequality, we deduce that

b(m− ε)
∫

Ω

(T2m(|uε|)− Tm(|uε|))pdx ≤ m ‖fε‖L1(Ω) .

Letting ε→ 0, from the condition (1.1) we conclude that, for almost all x ∈ Ω,

|u(x)| ≤ m.

Moreover, choosing k ≥ m, we get

(2.16) uε ⇀ u weakly in W 1,p
0 (Ω).

3. Almost everywhere convergence of the gradients

In this section we will prove the almost everywhere convergence of the gradients.

Theorem 3.1. Let uε be a weak solution to (2.1). Suppose f ∈ L1(Ω), and let fε ∈
L∞(Ω) be such that fε → f in L1(Ω). Then

Duε → Du a.e. in {|u| < m}.

In order to prove Theorem 3.1, we need the following result (see [27]):

Lemma 3.1. Let (X,T,m) a measurable space, such that m(X) < +∞. Let γ be a

measurable function γ : X → [0,+∞) such that m({x ∈ X : γ(x) = 0}) = 0. Then for

any σ > 0 there exists δ > 0 such that:∫
A

γ dm ≤ δ ⇒ m(A) ≤ σ.

Proof of Theorem 3.1. We will follow the proof contained in [27] (see also [41]).

By Remark 2.1, we get that

uε → u in measure.

We will prove that

(3.1) Duε → Du in measure on {|u| < m}.



3. ALMOST EVERYWHERE CONVERGENCE OF THE GRADIENTS 67

In order to prove (3.1), given λ > 0 and η > 0, we set for some r < m, and M , k > 0,

E1 = {|u| < m} ∩ ({|Duε| > M} ∪ {|Du| > M} ∪ {|uε| > k} ∪ {|u| > k}) ,
E2 = {|u| < m} ∩ {|uε − u| > η},
E3 = {|u| < m} ∩ {|uε − u| ≤ η, |Duε| ≤M, |Du| ≤M, |uε| ≤ k, |u| ≤ k, |D(uε − u)| ≥ λ}.

We remark that

{|u| < m} ∩ {|D(uε − u)| ≥ λ} ⊂ E1 ∩ E2 ∩ E3.

Since uε and Duε are bounded in L1(Ω), for any σ > 0 we can fix M and k < m such that

|E1| <
σ

3

independently of ε.

As regards the measure of E3, the monotonicity assumption (1.5) assures that there

exists a real–valued function γ(x) such that

|{x ∈ Ω : γ(x) = 0}| = 0

and

(a(x, s, ξ)− a(x, s, ξ′)) · (ξ − ξ′) ≥ γ(x),

for any s ∈ (−m,m), ξ, ξ′ ∈ Rn, |s| ≤ k, |ξ|, |ξ′| ≤ M , and |ξ − ξ′| ≥ λ. Then, denoting

with χη the characteristic function of [0, η], we get∫
E3

γ(x)dx ≤
∫
E3

[aε(x, uε, Duε)− aε(x, uε, Du)] ·D(uε − u)dx ≤

≤
∫
{|uε|≤k, |u|≤k}

[aε(x, uε, Duε)− aε(x, uε, DTk(u))] ·D(uε − Tk(u))χη(|uε − Tk(u)|)dx ≤

≤
∫

Ω

[aε(x, uε, Duε)− aε(x, uε, DTk(u))] ·D(uε − Tk(u))χη(|uε − Tk(u)|)dx ≤

≤
∫

Ω

aε(x, uε, Duε)·DTη(uε−Tk(u))dx−
∫

Ω

aε(x, uε, DTk(u))·DTη(uε−Tk(u))dx = I1−I2.

As regards I1, using as test function Tη(uε − Tk(u)), we have that

|I1| =
∣∣∣∣∫

Ω

fεTη(uε − Tk(u))dx

∣∣∣∣ ≤ η ‖f‖L1(Ω) .

In order to evaluate the term I2, we observe that

{x : |uε − Tk(u)| ≤ η} ⊂ {x : |uε| ≤ k + η};

therefore choosing η > 0 such that k + η < m, there exists ε0 > 0 such that for all ε < ε0

aε(x, uε, DTk(u)) = a(x, uε, DTk(u)) in {x : |uε − Tk(u)| ≤ η};
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hence

I2 =

∫
Ω

a(x, uε, DTk(u)) ·DTη(uε − Tk(u))dx =

=

∫
Ω

a(x, Tk+η(uε), DTk(u)) ·D(Tk+η(uε)− Tk(u))χη(|uε − Tk(u)|) dx.

By Remark 2.1 it follows that

Tk+η(uε) ⇀ Tk+η(u) weakly in W 1,p
0 (Ω);

moreover, being

|a(x, Tk+η(uε), DTk(u))| ≤ b(|Tk+η(uε)|)|DTk(u)|p−1,

by Vitali’s theorem we have that

a(x, Tk+η(uε), DTk(u))→ a(x, Tk+η(u), DTk(u)) strongly in Lp
′
(Ω).

Passing to the limit in I2, we get

lim
ε→0

∫
Ω

a(x, uε, DTk(u)) ·DTη(uε − Tk(u))dx =

=

∫
Ω

a(x, Tk+η(u), DTk(u)) ·D(Tk+η(u)− Tk(u))χη(|u− Tk(u)|) dx,

and

lim
η→0

∫
Ω

a(x, Tk+η(u), DTk(u)) ·D(Tk+η(u)− Tk(u))χη(|u− Tk(u)|) dx = 0.

Choosing η such that

η ‖f‖L1(Ω) <
δ

2
where δ is given from Lemma 3.1, we have∫

E3

γ(x)dx ≤ δ,

and we can deduce that |E3| < σ independently of ε.

Finally, we fix η and thanks to the fact that uε → u in measure, we can choose ε1 such

that

|E2| ≤ η, for ε ≤ ε1.

This implies that Duε → Du in measure in {|u| < m}, consequently

Duε → Du a.e. in {|u| < m}.

�
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4. Existence results

Now we can apply the results of the previous sections in order to obtain existence

results, which depend on the behaviour of b near m. First of all, we emphasize that a

prevalent role is played by the set

{x ∈ Ω: |u(x)| = m}

where u is the limit function of the solutions uε of approximated problems (2.1). In this

direction, we observe that, being uε → u a.e. in Ω (see Remark 2.1),

(4.1) {x ∈ Ω: |u(x)| = m} =

{
x ∈ Ω: lim

ε→0

∫ |uε(x)|

0

bε(t)dt ≥
∫ m

0

b(t)dt

}
.

4.1. The case b1/(p−1) 6∈ L1(0,m).

Theorem 4.1. Let f be a function in Lr(Ω), with r > n
p
. Assume that (1.2) − (1.5)

hold, with b1/(p−1) 6∈ L1(0,m). Then there exists a weak solution u ∈ W 1,p
0 (Ω) of problem

(1.1) such that

(4.2) ‖u‖L∞(Ω) < m.

Proof. Obviously, the estimate (2.2) holds for fε ≡ f for any ε > 0. Since aε is

bounded from above, by classical results (see [73], [76]) there exists a solution uε ∈
W 1,p

0 (Ω) of the approximated problem (2.1). Estimate (2.2) implies

(4.3) Bε(‖uε‖L∞(Ω)) ≤ C(f) =
(
nω1/n

n

)−p′ ∫ |Ω|
0

t−
p′
n′

(∫ t

0

f ∗(σ)dσ

) p′
p

dt.

Being B(s) unbounded in [0,m), we can take A = B−1(C(f)) and then we choose ε0 > 0

such that b(s) ≤ b(m− ε0) for any s ∈ [0, A]. By definition of bε and Bε we have, for any

ε < ε0,

Bε(s) = B(s), s ∈ [0, A].

Moreover, being Bε increasing, it follows that, for any ε < ε0,

Bε(s) ≤ C(f) ⇐⇒ s ∈ [0, A],

so by (4.3) we get

(4.4) ‖uε‖L∞(Ω) ≤ A < m.

Then there exists ε1 < ε0 such that for any ε < ε1

aε(x, uε1(x), Duε1(x)) = a(x, uε1(x), Duε1(x))

for a.e. x ∈ Ω; this implies that uε1 is a solution of (1.1), which obviously verifies (4.2). �

Remark 4.1. We want to emphasize that in the case b1/(p−1) 6∈ L1(0,m) we can obtain

directly the same result of Remark 2.1. Indeed, if we consider f ∈ L1(Ω) and fε ∈ L∞(Ω)
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such that fε → f in L1(Ω), by Theorem 4.1, there exists a weak solution uε of the problem

(4.5) − div(a(x, uε, Duε)) = fε, u ∈ W 1,p
0 (Ω),

such that |uε| ≤ c(ε) < m; consequently we can integrate between 0 and m the inequality

b(0)
d

dt

∫
|uε|≤t

|Duε|pdx ≤
∫ µuε (t)

0

f ∗ε (s)ds

in order to obtain that

(4.6)

∫
Ω

|Duε|pdx ≤ C.

Last estimate gives that

(4.7) uε → u a.e. in Ω, |u| ≤ m a.e. in Ω, uε ⇀ u weakly in W 1,p
0 (Ω),

as in Remark 2.1.

Theorem 4.2. Let f ∈ Lr(Ω), with np/(np−n+p) ≤ r < n/p. Under the hypotheses

(1.2)− (1.5), with b1/(p−1) 6∈ L1(0,m), there exists a weak solution u ∈ W 1,p
0 (Ω) of problem

(1.1), such that

|{|u| = m}| = 0.

Proof. Let uε ∈ W 1,p
0 (Ω) be a weak solution to the approximated problem (2.1).

Recalling Remark 2.1, uε → u a.e. in Ω; being B(m) = +∞, (4.1) allows to obtain

that

(4.8) Bε(|uε|)→ B(|u|) a.e. in Ω.

By estimate (2.7) and (4.8), it follows that

(4.9) Bε(|uε|) ⇀ B(|u|) weakly in W 1,p
0 (Ω),

hence B(|u|) is bounded in L1(Ω) and

(4.10) |{|u| = m}| = 0.

Combining (4.10) with Theorem 3.1 we get

aε(x, uε, Duε)→ a(x, u,Du) a.e. in Ω.

Moreover, by (2.7) we get that

|aε(x, uε, Duε)| is bounded in Lp
′
(Ω);

these conditions allow to pass to the limit in the weak formulation of approximated

problems, ∫
Ω

aε(x, uε, Duε) ·Dϕ =

∫
Ω

fεϕdx, ϕ ∈ W 1,p
0 (Ω),

obtaining that u is a weak solution of (1.1). �



4. EXISTENCE RESULTS 71

Theorem 4.3. Let f ∈ Lr(Ω), with 1 ≤ r < np/(np − n + p). Under the hypotheses

(1.2)− (1.5), with b1/(p−1) 6∈ L1(0,m), there exists a solution u ∈ W 1,p
0 (Ω), in the sense of

Definition 1.2, of problem (1.1), and

|{|u| = m}| = 0.

Proof. As before, we consider a weak solution uε to the approximated problem (2.1).

By Remark 2.1, the limit function u satisfies (1.7). The argument used in the proof of

Theorem 4.2 allows to claim that u < m a.e. in Ω.

If we choose Tk(uε − ϕ), ϕ ∈ W 1,p
0 (Ω) ∩ L∞(Ω), as test function, we get

(4.11)

∫
|uε−ϕ|≤k

a(x, Tm−ε(uε), Duε) ·Duε dx−
∫
|uε−ϕ|≤k

a(x, Tm−ε(uε), Duε) ·Dϕdx =

=

∫
Ω

fεTk(uε − ϕ) dx.

First of all, being fε strongly convergent in L1 to f , we can pass to the limit in the

right–hand side of the above equality.

We observe that {|uε−ϕ| ≤ k} ⊆ {|uε| ≤ k+‖ϕ‖L∞(Ω) = M}, hence taking 0 < k < m

and ‖ϕ‖L∞(Ω) < m − k, we get M < m and then |a(x, TM(uε), DTM(uε)| is bounded in

Lp
′
(Ω). As before, we can pass to the limit in the second integral of (4.11).

As regard the first integral, being the integrand non–negative (by the ellipticity con-

dition) and almost everywhere convergent, we can apply Fatou’s lemma. Putting all the

terms together, we obtain

(4.12)

∫
Ω

a(x, u,Du) ·DTk(u− ϕ) dx ≤
∫

Ω

fTk(u− ϕ)dx,

and the Theorem is proved. �

4.2. The case b1/(p−1) ∈ L1(0,m). The case B bounded is completely different from

the previous one. In order to obtain existence of weak solutions, it is necessary to require

a smallness assumption on the datum.

Theorem 4.4. Let f be a function in Lr(Ω), with r > n/p. Assume that (1.2)− (1.5)

hold, with b1/(p−1) ∈ L1(0,m). If

(4.13)
(
nω1/n

n

)−p′ ∫ |Ω|
0

t−
p′
n′

(∫ t

0

f ∗(σ)dσ

) p′
p

dt < B(m),

then there exists a weak solution u ∈ W 1,p
0 (Ω) of problem (1.1) such that

‖u‖L∞(Ω) < m.

Proof. We can proceed as in the proof of Theorem 4.1. By the estimate

Bε(‖uε‖L∞(Ω)) ≤
(
nω1/n

n

)−p′ ∫ |Ω|
0

t−
p′
n′

(∫ t

0

f ∗(σ)dσ

) p′
p

dt
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and using the smallness assumption (4.13), we get a solution u ∈ W 1,p
0 (Ω) such that

|u| ≤ c < m.

�

Remark 4.2. We emphasize that the condition (4.13) is a smallness assumption on

the norm of f in the Lorentz space L(n/p, p′/p)(Ω). Indeed (4.13) can be rewritten in the

form

n−p
′
ω−p

′/n
n ‖f‖L(n/p, p′/p)(Ω) < B(m);

it is well–known that L(n/p, p′/p)(Ω) contains Lr(Ω), for any r > n/p .

Remark 4.3. We observe that the (4.13) means also that

V (0) < B(m),

where

(4.14) V (x) =
(
nω1/n

n

)−p′ ∫ |Ω|
ωn|x|n

t−(1− 1
n)p′

(∫ t

0

f ∗(r)dr

) p′
p

dt

is the solution of the Dirichlet problem

(4.15)

{
−∆pV = f# in Ω#

V = 0 on ∂Ω#.

Theorem 4.5. Let f ∈ Lr(Ω), with 1 ≤ r < n/p. Under the hypotheses (1.2)− (1.5),

with b1/(p−1) ∈ L1(0,m), there exists a solution u ∈ W 1,p
0 (Ω), in the sense of Definition

1.2, of problem (1.1).

Proof. The proof follows using similar arguments contained in the proof of Theorem

4.3, with the only difference that the limit function u can be equal to ±m on a set of

positive measure, and then aε(x, uε, Duε) converges to a(x, u,Du) in {|u| < m}. �

In the following result we analyse the limit case in condition (4.13).

Theorem 4.6. Let f be a function in Lr(Ω), with r > n/p. Assume that (1.2)− (1.5)

hold, with b1/(p−1) ∈ L1(0,m). If

(4.16)
(
nω1/n

n

)−p′ ∫ |Ω|
0

t−
p′
n′

(∫ t

0

f ∗(σ)dσ

) p′
p

dt = B(m),

then there exists a weak solution u ∈ W 1,p
0 (Ω) of problem (1.1) such that

(4.17) |{|u| = m}| = 0.

Proof. Let uε ∈ W 1,p
0 (Ω) be a weak solution to the approximated problem (2.1).

Reasoning as in the proof of Theorem 4.5, we obtain that u satisfies the conditions of

Definition 1.2.
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If we show that (4.17) holds, the summability hypothesis on f allows to get that

Bε(|uε|)→ B(|u|) a.e. in Ω

and

Bε(|uε|) ⇀ B(|u|) weakly in W 1,p
0 (Ω);

so we can proceed analogously to the proof of Theorem 4.2 and get that u is a weak

solution of (1.1).

In order to prove (4.17), let h be such that 0 < h < m; we can use as test function

ϕ = Tt(u) in (1.1), with 0 < t < m− h, obtaining

(4.18)

∫
Ω

a(x, u,Du) ·DTh(u− Tt(u))dx ≤
∫

Ω

fTh(u− Tt(u))dx.

From (4.18), it follows that

1

h

∫
t<|u|≤t+h

b(|u|)|Du|p ≤
∫
|u|>t
|f |dx,

for t < m − h, similarly to (2.3). Therefore, arguing as in the proof of Proposition 2.1,

we get that

(4.19) B(u∗(s)) ≤ V (s) =
(
nω1/n

n

)−p′ ∫ |Ω|
s

t−
p′
n′

(∫ t

0

f ∗(σ)dσ

) p′
p

dt,

for any s ≥ 0 such that u∗(s) < m. We observe that being u∗(0) ≤ m, we can suppose

u∗(0) = m, otherwise (4.17) is trivially satisfied. Now take s0 = inf{s ≥ 0: u∗(s) < m}.
If we show that s0 = 0, by equimeasurability of u and u∗ we can conclude that (4.17)

holds. To this aim, let s0 be positive. By (4.19) and the monotonicity of V (s) we have

B(m) = B(u∗(s0)) ≤ V (s0) < V (0);

but this contradicts the hypothesis (4.16). �

Remark 4.4. We emphasize that if b1/(p−1) ∈ L1(0,m) and f does not verify the

smallness hypotheses (4.13) or (4.16), we cannot have existence of weak solutions. This is

due to the fact that the limit function u can be equal to ±m on a set of positive measure,

and then aε(x, uε, Duε) does not converge to a(x, u,Du) in Ω, as shown by the following

example (see [83] in the case p = 2).

Example 4.1. Let us consider the following problem:

(4.20)


− div

(
|Du|p−2Du

(1− |u|)(p−1)/2

)
= λ in Ω,

u = 0 on ∂Ω,
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where Ω = {x ∈ Rn : |x| < 1}, λ is a positive constant and 1 < p < +∞. We can

approximate problem (4.20) with

(4.21)

 − div (bεk(|uεk |)|Duεk |p−2Duεk) = λ in Ω,

uεk = 0 on ∂Ω,

where εk = k−2/(p−1) and

bεk(s) =

 (1− |s|)− p−1
2 if |s| ≤ 1− εk,

k if |s| > 1− εk.

Hence,

Bεk(s) =

 2(1− (1− |s|)1/2) sign s if |s| ≤ 1− εk,(
2 + sk1/(p−1) − k1/(p−1) − k−1/(p−1)

)
sign s if |s| > 1− εk.

Performing the change of variable v = Bεk(uεk), we get that (4.21) is equivalent to the

problem {
−∆pv = λ in Ω,

v = 0 on ∂Ω,

solved by the function

v(x) =
λ
p′
p

p′np′−1
(1− |x|p′).

If we choose λ > n(2p′)p/p
′
, then

(4.22) |{x ∈ Ω: v(x) > 2}| > 0.

Being uεk = B−1
εk

(v), it follows that

uεk(x) =

 v(x)− v2(x)

4
if 0 ≤ v(x) ≤ 2(1− ε1/2

k ),

ε
1/2
k (v(x)− 2 + ε

1/2
k + ε

−1/2
k ) if v(x) > 2(1− ε1/2

k ),

and for k → +∞, uεk converges to the function

u(x) =

 v(x)− v2(x)

4
if 0 ≤ v(x) ≤ 2,

1 if v(x) > 2.

By (4.22), the function u is equal to the critical value 1 on a set of positive Lebesgue

measure. This means that u cannot be a weak solution of problem (4.20). Nevertheless,

u is an entropy solution in the sense of Definition 1.2.

Observe that in the case λ < n(2p′)p/p
′
then u = v−v2/4 is the weak solution of (4.20)

and ess sup |u| < 1.

Finally, in the limit case λ = n(2p′)p/p
′
, the function u = v − v2/4 is such that

|{u = 1}| = 0, and by Theorem 4.6, u is a weak solution of (4.20).
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linéaires, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 4 (2001), 483–519.
[15] Bandle C., Isoperimetric inequalities and applications, Monographs and Studies in Math., Pitman,

London, 1980.
[16] Barles G., Blanc A.-P., Georgelin C., Kobylanski M., Remarks on the maximum principle for

nonlinear elliptic PDEs with quadratic growth conditions, Ann. Scuola Norm. Sup. Pisa (4) 28 n.3
(1999), 381–404.

[17] Barles G., Murat F., Uniqueness and the maximum principle for quasilinear elliptic equations with
quadratic growth conditions, Arch. Rational Mech. Anal. 133 (1995), 77–101.

[18] Belloni M., Kawohl B., A direct uniqueness proof for equations involving the p–Laplace operator,
Manuscripta Math. 109 (2002), 229–231.

75



76 BIBLIOGRAPHY
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singulière et second membre dans L1, C. R. Acad. Sci. Paris Sér. I Math. 332 n. 2 (2001), 145–150.

[59] Garćıa Vázquez C., Ortegón Gallego F., An elliptic equation with blowing–up diffusion and data in
L1: Existence and uniqueness, Math. Models Methods Appl. Sci. 13 n. 9 (2003), 1351–1377.

[60] Gilbarg D., Trudinger N.S., Elliptic Partial Differential Equations of Second Order, Second edition,
Springer–Verlag, 1983.

[61] Giusti E., Metodi diretti nel calcolo delle variazioni, Unione Mat. Ital., Bologna, 1994.



78 BIBLIOGRAPHY

[62] Grenon-Isselkou N., Mossino, J., Existence de solutions bornées pour certaines équations elliptiques
quasilinéaires, C. R. Acad. Sci. Paris Sér. I Math. 321 n. 1 (1995), 51–56.

[63] Grenon N., Murat F., Porretta A., Existence and a priori estimate for elliptic problems with sub-
quadratic gradient dependent terms, C.R. Acad. Sci. Paris 342n.1 (2006), 23–28.
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