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Facoltà di Scienze Matematiche Fisiche e Naturali
Dipartimento di Matematica e Applicazioni “R.Caccioppoli”

Dottorato di Ricerca in Scienze Matematiche

Daniele Puglisi

Geometry in tensor products

TESI DI DOTTORATO
XIX CICLO 2003-2007

Tutors: Prof. Paolo De Lucia
Prof. Joseph DiestelCoordinatore: Prof. Salvatore Rionero



ii



Acknowledgements

First of all I would like to thank Prof. Joseph Diestel, from Kent State Uni-
versity, for his precious suggestions and many many helps. To sit near Joe
when he is talking about math in his office, in some bar or also inside some
airport, is an experience every young mathematicians should have. I really
want to thank him to invited me and for giving me a comfortable permanence
in Kent (I have no words to thank you!).
Then I thank my advisor Prof. Paolo De Lucia for accepting me as his stu-
dent and for giving me the opportunity to visit the Kent State University.
Thanks to Prof. Richard Aron for his excellent mathematical support, for
helping me in many situation, and for any time that he took me to hear the
Cleveland Orchestra.
I also want to dedicate part of my dissertation to Roberto Lo Re, Giovanni
Cutolo, and Chansung Choi, they influenced strongly my life.
Thanks to Prof. Artem Zvavitch for his support, and thanks to Giuseppe
Saluzzo, Assunta Tataranni for the many helps.
I want to give thanks the secretary support to the Department of Mathemat-
ical Sciences at at Kent State University and at Napoli. Specially, I wish to
thank Virginia Wright, Misty Tackett, Luciana Colmayer and Luisa Falanga.
I would like to thank my family in Kent: my ”hermano” Paco Garcia-Pacheco,
Minie De Kock, my ”Master Miyagi” Jeff Schlaerth, Terry Hanchin, Olena
Kozhushkina, Ramiro Fontes, Greg Richards, Juan Seoane, Alejandro Mirar-
lles, and everybody in the Math Department at Kent State University.
I want to thank my family in Napoli: Emma D’Aniello, Francesco Della
Pietra, Rosaria Di Nardo, Susanna Di Termini, Adamaria Perrotta, Assunta
Tataranni, Bruno Volzone (I would like to thank Bruno specially for his hos-
pitality).

Daniele Puglisi
Kent, Ohio, USA

September 18 2007

iii



iv



To Alexander Grothendieck.

v



vi



Introduction

... o δε ανεξεταστoς
βιoς oν βιωoς
ανθρωπω ...

(Plato, Apology- 38.a)

The notion of tensor product was first given by R. Schatten [93], [94], but
A. Grothendieck was the first one which studied deeply this object. Indeed
he introduced the notion of ”reasonable” crossnorm, and defined the greatest
and the least reasonable crossnorm: the projective and the injective tensor
norm. He also introduced the notion of integral operator between Banach
spaces, that is still very useful in the theory of Banach spaces. The strongest
impact of the tensor products in the geometry of Banach space, it was due
for the following facts:

L(X, Y ∗) = (X
∧
⊗π Y )∗ , I(X, Y ∗) = (X

∧
⊗ε Y )∗

where L(X, Y ∗) (resp. I(X, Y ∗)) denoted the Banach space of bounded (resp.
integral) linear operators from X to Y ∗.
In the begining the Grothendieck’s work was not very well understood; only
after a period of sixteen years , Joram Lindenstrauss and Alexander Pelczyn-
ski reviewed the tensor product theory, extending many Grothendieck results
(especially Grothendieck’s Fundamental Inequality). Lindenstrauss and Pel-
czynski commented: ” The paper of Grothendieck is quite hard to read and
its results are not generally known even to experts in Banach space theory ”.
After them, many other people attacked the tensor product theory, under-
standing the power of this object, establishing how the subject come in aid
to many problems of more classical aspects of mathematics, like harmonic
analysis, probability, complex analysis, geometry of convex bodies, real anal-
ysis and operator theory.
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The first chapter of this dissertations is an outline of the theory of tensor
products, introducing the notion of reasonable tensor norm, the greatest and
the least reasonable tensor norms, how the projective tensor norm can be
injective and how the injective tensor norm can be projective (presenting for
that a deep result of Heinrich-Manckiewicz and Radrianantoanina). We close
the chapter with some applications of the approximation property (another
notion introduced by A. Grothendieck) in duality between the injective and
projective tensor product. After the injective and projective tensor norms,
other useful crossnorm were introduced, i.e. the Chevet-Saphar (see [11],
[92]) tensor norm was crucial to study the theory of p-summing operator,
but equally important was the Fremlin tensor norm. Indeed in the chapter 2,
after giving an outline of the theory of Banach lattices and semi-embeddings
notions, we introduce the Fremlin tensor product. In 1974 D. Fremlin intro-
duced a new tensor norm between two Banach lattices, and his norm was
useful specially for the fact that, if X and Y are two Banach lattices then

Lr(X, Y ∗) = (X
∧
⊗F Y )∗

where Lr(X, Y ∗) denote the the Banach lattice of the regular operators from
X to Y ∗. In the last section we solve an old question raised by Diestel and
Uhl (see [26]): given a tensor norm , is there stability of the Radon-Nikodym
property in the tensor product equipped with a such norm? indeed we close
the question relative to the Fremlin tensor norm, with the following

Theorem[83]
If X and Y are two Banach lattices, one of them atomic, then the Fremlin

tensor product X
∧
⊗F Y of X and Y has the Radon-Nikodym property if both

posses this property.

Moreover we noted that the hypothesis of atomicity is crucial for the the-

orem; indeed it was proved that L2[0, 1]
∧
⊗F L2[0, 1] cannot have the Radon-

Nikodym theorem, even though L2[0, 1] a Hilbert space.
In the chapter 3 we come back to the projective and injective tensor norms,
studying two special geometry properties: the l.u.st. property and the Gor-
don Lewis (or GL) property. First of all, we recall meant when a property is
local, introducing a very special class of Banach spaces, for which locally are
the same like the `p space: so called Lp spaces. In some sense (see 3.1.6 for a
more precise definition) a Banach space is said to be an Lp space if any finite
dimensional subspace can be contained in some `np space, for some n. Then
how the reader can note the meaning of the local property come out from the
behavior of its finite dimensional subspaces. In the local geometry of Banach
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space l.u.st. and GL properties are really important; l.u.st. was first intro-
duced in a paper by E. Dubinsky, A. Pe lczyński and H.P. Rosenthal ([27])
in a pretty difficult way that is equivalent to the more natural condition: X
has l.u.st. iff there exists a constant λ > 1 such that, for each E ∈ FX , there
is an F ∈ FX with E ⊆ F and ub(F ) < λ (where FX denoted the family of
all finite dimensional subspaces of X and ub(F ) denoted the unconditional
basis constant; see the section 3.2 for that notations). Our definition is due
to Y. Gordon and D.R. Lewis ([40]).

The GL-property was for first isolated in 1979 by S. Reisner ([88]) in a dif-
ferent way from us: for him a Banach space has (GL) if Π1(X, Y ) ⊆ Γ1(X, Y )
for every Banach space Y and it’s not known if the two definitions are equiv-
alent (where Π1(X, Y ) and Γ1(X, Y ) denoted the absolutely summing and
1-factorable respectively operators space from X to Y ; see section 3.2 for
the definition). Actually Gordon and Lewis [40] gave an elegant proof that
every Banach space having the l.u.st. property has the GL property (hence
the name of the property). To have an example of a GL-space failing l.u.st.
we had to wait for the 1980’s paper by W.B. Johnson, J. Lindenstrauss and
G. Schechtman ([49]). The following year T. Ketonen ([52]) did even better:
he found a subspace of an L1(µ)-space without l.u.st.. But examples of Ba-
nach spaces space failing (GL) is due to Gordon and Lewis (1974): the space
L(`2, `2) of all linear bounded operators from `2 to `2.
There is a vast literature on the subject, mainly paper of Junge, Gordon,
Lewis, Maurey, N.J. Nielsen, Pisier, Tomczak-Jaegermann, who have pub-
lished intensively on the gl and l.u.st constants and somming operators (see
[40], [39], [38], [80], [10], [55], to get other references there). Especially, a very
related to GL-property in injective tensor product result is the following:

Theorem([38])

Let X and Y be Banach spaces. Then gl(Xk

∨
⊗ Yk)

k→∞−→ ∞ for every in-
creasing sequence {Xk}∞k=1 and {Yk}∞k=1 of finite-dimensional subspaces of X
and Y respectively, if, and only if, X and Y not contain subspaces uniformly
isomorphic to `n∞ ’s (i.e. X and Y have finite cotype).

After that, Y.Gordon gave a more general definition of GL property: the
GL(p, q) property (see [39]), giving many interesting application in Banach
space theory.
In the chapter 3 we prove the following
Theorem[86]
Let X and Y be Banach spaces. We have

1. If X is a L∞-space, then
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X
∧
⊗ε Y has l.u.st. (or GL) property if Y does;

2. If X is a L1-space, then

X
∧
⊗π Y has l.u.st. (or GL) property if Y does.

In some sense the result above complete the work of Gordon and Lewis;
they proved that if E and F are Lp-spaces (1 < p < ∞), then none of

E
∧
⊗ε F , E

∧
⊗π F , (E

∧
⊗ε F )∗, (E

∧
⊗π F )∗, (E

∧
⊗ε F )∗∗, (E

∧
⊗π F )∗∗, etc... has

l.u.st.
In the chapter 4 we continue a job started by A. Grothendieck about the
compactness in the projective tensor product. Indeed he was able to show
that if X and Y are Banach spaces then substantially the compact set in

X
∧
⊗π Y have the following lovely form: co(KX ⊗KY ), where KX is a com-

pact subset of X and KY is a compact subset of Y . That was very useful in
the real life; i.e. using that in [1] the authors proved that

Theorem
Let X and Y be Banach spaces. For every relatively compact subset H of
K(X∗, Y ), there exist an universal Banach space Z, an operator u ∈ K(X∗, Z),
a relatively compact subset {BT : T ∈ H} of K(Z) and an operator
v ∈ K(Z, Y ) such that T = v ◦BT ◦ u for all T ∈ H.

Then in projective tensor product the compact subsets have a nice form,
but what about the weakly compact subsets? Actually in projective tensor
products weakly compact subsets look like very different that the compact
subsets; indeed if WX and WY are two weakly compact subsets of X and Y

respectively, then in general WX⊗WY is not weakly compact in X
∧
⊗π Y (i.e.

B`2 ⊗B`2 is not weakly compact in `2

∧
⊗π `2). Then we cannot have any rep-

resentation of weakly compact in projective tensor product as co(WX⊗WY ),
where WX and WY are weakly compact subsets of X and Y . But not every
thing is lost. The following theorem explain why.

Theorem[24]

Let X and Y be two Banach spaces. Every weakly compact subset in X
∧
⊗π

Y can be written as the intersection of a finite union of sets of the form
co(U ⊗ V ), where U and V are weakly compacts subsets of X and Y respec-
tively.

In case either X or Y has the Dunford-Pettis property, then this condition
is also sufficient for the weak compactness of a subset of the projective tensor
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product. In the same chapter, it is noted that if one of the space has the
Dunford-Pettis property, then we get even better.

Proposition[24]
Let X , Y be Banach spaces, with X having the Dunford-Pettis property. If
WX ⊆ X and WY ⊆ Y are weakly compact subsets then WX ⊗WY is weakly

compact subset of X
∧
⊗π Y .

Corollary
Let X, Y be Banach spaces, such that X has the DP property. Then every

weakly compact subset in X
∧
⊗π Y can be written as the intersection of a

finite unions of sets of the form co(U ⊗ V ), where U and V are weakly com-
pacts subsets of X and Y respectively.

In [18] the authors studied the injective tensor product of two weakly
compact operators. Indeed they proved that

Theorem
Let X1, X2, Y1, Y2 be Banach spaces. Let T1 : X1 −→ Y1 and T2 : X2 −→ Y2

be two bounded linear operators. Then

1. If T1 is compact and T2 is weakly compact, then the injective tensor

product T1

∧
⊗ε T2 : X1

∧
⊗ε X2 −→ Y1

∧
⊗ε Y2 of T1 and T2 is weakly

compact.

2. Suppose X1 be a Banach space whose dual space possesses the approx-
imation property and the Dunford-Pettis property. If T1 and T2 are
both weakly compact operators, then then the injective tensor product

T1

∧
⊗ε T2 : X1

∧
⊗ε X2 −→ Y1

∧
⊗ε Y2, of T1 and T2, is weakly compact.

As an easily consequence of the results above we have
Corollary

Let X1, X2, Y1, Y2 be Banach spaces. Let T1 : X1 −→ Y1 and T2 : X2 −→ Y2

be two weakly compact operators. Suppose either Y1 or Y2 has the Dunford-

Pettis property, then the projective tensor product T1

∧
⊗π T2 : X1

∧
⊗π X2 −→

Y1

∧
⊗π Y2, of T1 and T2, is weakly compact.

Daniele Puglisi
September 2007
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Notations and Basic Facts

We will use standard notations about Banach spaces (see [72], [16], [62], [63]),
measure theory (see [46] , [13], [26]), tensor products theory (see [19], [89],
[14]), operator theory (see [22]), descriptive set theory (see [52]), and topol-
ogy (see [58], [30]); anyway some clarification is in order.
In the sequel K will denote the field of scalars R or C unless explicitly men-
tioned to the contrary. If X is a Banach space, then X∗ denotes the dual
or conjugate space of X. If Y is a closed linear subspace of X then Y ⊥, the
annihilator of Y , is defined by Y ⊥ = {x∗ ∈ X∗ : x∗(y) = 0 for all y ∈ Y }.
Clearly Y ⊥ is a closed linear subspace of X∗. For us L(X, Y ) will be the vec-
tor space of all the linear maps between two vector spaces X and Y , instead
L(X, Y ) will be the Banach space of all the bounded linear maps between two
Banach spaces X and Y . A bounded linear operator T : X −→ Y is called
an isomorphism if it is one-one with closed range (thus an isomorphism from
X to Y need not to be a surjection). X and Y are isometrically isomorphic
if there is an isomorphism T from X onto Y with ‖T‖ = ‖T−1‖ = 1. In the
same way Bil(X, Y ;Z) will be the vector space of all the bilinear maps from
two vector spaces X and Y to a vector space Z, and B(X, Y ;Z) will be the
Banach space of all the bounded bilinear maps from two Banach spaces X
and Y to a Banach space Z. A closed linear subspace Z of X is said to be
complemented in X if there is a projection (i.e. a bounded linear projection)
from X onto Z. Note that an bounded linear operator P : X −→ X is a
projection onto Z if and only P (X) ⊆ Z and P (z) = z for all z ∈ Z.

We will indicate with F the family of all finite dimensional Banach spaces
and with FX the family of all finite dimensional Banach subspaces of a certain
Banach space X. If E ∈ FX we label the canonical inclusion as

iE : E −→ X.

The symbol CX means the collection of all closed, finite codimensional
subspaces of X and, if Z ∈ CX , the natural quotient map will be:

qZ : X −→ X�Z.

xv
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Let X be a Banach space, and {xα : α ∈ Γ} a subset of X. The closed
linear span of {xα : α ∈ Γ}, denoted by span{xα : α ∈ Γ} or span{xα}, is
the smallest closed linear subspace of X containing {xα : α ∈ Γ}.
As usual, if 1 ≤ p < ∞, `p is the Banach space of all sequence (xn)n such

that ‖(xn)n‖p = (
∑∞

n=1 |xn|p)
1
p < ∞. Instead `∞ is the Banach space of all

bounded sequences (xn)n with ‖(xn)n‖∞ = supn∈N |xn|, and c0 is the closed
linear subspace of `∞ consisting of all sequences (xn)n in `∞ converging to 0.
If 1 ≤ p < ∞, then `np is the n-dimensional Banach space having norm

‖(x1, ..., xn)‖p = (
∑n

i=1 |xi|p)
1
p if p <∞ and ‖(x1, ..., xn)‖∞ = max1≤i≤n |xi|.

Let Ω be a set. Recall that an field (or algebra) on Ω is a collection of subsets
of Ω containing ∅, Ω, and closed under complements and finite unions (so
also under finite intersections). It is a σ-field (or σ-algebra) if it is also closed
under countable unions (so also under countable intersections). A pair (Ω,Σ)
is called a measurable space, where Ω is a set and Σ is a σ-field on Ω. The
members of Σ are called measurable.
A measure in a measurable space (Ω,Σ) is a function µ : Σ −→ R ∪ {∞}
which is non negative with µ(∅) = 0 and µ(

⋃∞
n=1En) =

∑∞
n=1 µ(En), for

every pairwise disjoints sequence (En)n of measurable sets. If (Ω,Σ) is a
measurable space and µ as a measure on (Ω,Σ) then (Ω,Σ, µ) will be called
measure space. If the measure µ is so that µ(Ω) = 1 then (Ω,Σ, µ) is called
probability space.
If (Ω,Σ, µ) is a measure space and 1 ≤ p < ∞, then Lp(µ) is the Banach
space of equivalence classes of µ-measurable function on Ω whose pth power is

absolutely integrable, with ‖f‖p = (
∫

Ω
|f(t)|pdµ(t))

1
p for f ∈ Lp(µ). Instead

L∞(µ) is the Banach space of equivalence classes of µ-measurable functions
which are essentially bounded, with ‖f‖∞ = ess sup{|f(t)| : t ∈ Ω} =
inf{c ∈ R : µ({t ∈ Ω : |f(t)| > c}) = 0}. Usual we will be interested
in measure spaces (Ω,Σ, µ) such that L∞(µ) = L1(µ)∗ (actually Pelczyński
proved that for any measure space (Ω,Σ, µ) L∞(µ) is isometrically isomor-
phic to L1(ν) for some measure ν on Σ. However, for 1 < p < ∞ we have
always Lp(µ)∗ = Lq(µ), with 1

p
+ 1

q
= 1, for any measure space (Ω,Σ, µ); that

follows from a more geometrical reason: the uniformly convexity of the Lp(µ)
’s spaces ; but that is another story!).
If K is a compact Hausdorff space, then C(K) is the Banach space of con-
tinuous functions on K with ‖f‖ = sup{|f(x)| : x ∈ K} for f ∈ C(K).
Mention of ”C(K) space” always refers to such a space.
Let X be a Banach space, a function f : Ω −→ X is called µ-measurable
if there exists a sequence of simple functions (fn)n with limn ‖fn − f‖ = 0
µ-almost everywhere. A function f : Ω −→ X is called weakly µ-measurable
if for each x∗ ∈ X∗ the numerical function x∗f is µ-measurable.
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Let X be a Banach space, let (Ω,Σ, µ) be a measure space. A measurable
function f : Ω −→ X is called Bochner integrable if there exists a sequence
of simple functions (fn)n such that

lim
n

∫
Ω

‖fn − f‖dµ = 0.

In this case, for any E ∈ Σ∫
E

fdµ = lim
n

∫
E

fndµ,

where
∫
E
fndµ is defined in the obvious way. The space of the Bochner inte-

grable functions will be denoted by L1(µ,X). More general, for 1 ≤ p < ∞
Lp(µ,X) will denote the Banach space of equivalence classes of µ-measurable
X valued on Ω whose pth power is Bochner integrable functions, i.e. such that

‖f‖p = (

∫
Ω

‖f(t)‖pXdµ(t))
1
p <∞

for f ∈ Lp(µ,X). Instead L∞(µ,X) stand for the space of all (equivalence
classes of µ-measurable) X valued Bochner integrable functions defined on
Ω which are essentially bounded, i.e. such that

‖f‖∞ = ess sup{‖f(t)‖ : t ∈ Ω} <∞.

This also is a Banach space under the norm ‖ · ‖∞ and the countably valued
functions in L∞(µ,X) are dense in L∞(µ,X). Finally if K is a compact
Hausdorff space, then C(K,X) is the Banach space of all continuous functions
from K to X with the norm

‖f‖∞ = sup{‖f(t)‖X : t ∈ K}

for f ∈ C(K,X). Now we recall some other classical integration.

Lemma 0.0.1. (Dunford) Let X be a Banach space and (Ω,Σ, µ) be a mea-
sure space. Suppose f is weakly µ-measurable function on Ω and x∗f ∈ L1(µ)
for each x∗ ∈ X∗. Then for each E ∈ Σ there exists x∗∗E ∈ X∗∗ so that

x∗∗E (x∗) =

∫
E

x∗(f)dµ

for all x∗ ∈ X∗.
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From this lemma Dunford called a weakly µ-measurable X valued func-
tion f on Ω such that x∗f ∈ L1(µ), to be Dunford integrable, and the Dunford
integral of f over E ∈ Σ is defined by the element x∗∗E ∈ X∗∗ such that

x∗∗E (x∗) =

∫
E

x∗fdµ

for all x∗ ∈ X∗, the Dunford integral will be denoted by x∗∗E = (D)−
∫
E
fdµ.

In case (D)−
∫
E
fdµ ∈ X for each E ∈ Σ, f is called Pettis integrable. Using

the same ideas if f : Ω −→ X∗ is a function so that xf ∈ L1(µ) for all x ∈ X,
then for each set E ∈ Σ there is a vector x∗E ∈ X∗ such that

x∗E(x) =

∫
E

xfdµ

for all x ∈ X. The element x∗E ∈ X∗ is called the Gel’fand integral of f over E.

Definition 0.0.2. A topological space is completely metrizable if it admits
a complatible metric d such that (X, d) is complete. A separable completely
metrizable space is called Polish.

The following facts are easy to verify

Proposition 0.0.3. i) The completion of a separable metric space is Pol-
ish;

ii) A closed subspace of a Polish space is Polish;

iii) The product of a sequence of completely metrizable (resp. Polish) spaces
is completely metrizable (resp. Polish);

iv) A subspace of a Polish space is Polish if and only if it is a Gδ (inter-
section of countable many open sets).

Indeed, let X be a Polish space, and let Y =
⋂
n Un with Un open in X.

Let d be a complete compatible metric for X and consider Fn = X \ Un for
all n ∈ N. Define a new metric on Y

d′(x, y) = d(x, y) +
∞∑
n=0

min{ 1

2n+1
, | 1

d(x, Fn)
− 1

d(y, Fn)
|}

It is easy to see that this metric is complete compatible on Y and so Y is
complete. In particular from iv) every open set in a Polish space is Polish.
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If we consider N with the discrete topology, from iii) we can say that NN is
Polish too. This last space (called Baire space) plays an important rule in
the Polish spaces theory because of

Proposition 0.0.4. If X is a non empty Polish space then there exists a
continuous and open surjection f : NN −→ X (open means that the image of
each open is open).

Definition 0.0.5. Let (X,Θ) be a topological space. The class of Borel set
of X is the σ-algebra generated by the open sets.
Let X, Y be topological spaces. A map f : X −→ Y is Borel if the inverse
image of a Borel (equivalently open or closed) set is Borel.

Very useful in the theory of geometry of Banach spaces is the following

Definition 0.0.6. A Schauder basis (un)n∈N for a Banach space U is said
to be an unconditional basis for the space if, calling (u∗n)n∈N the biorthog-
onal sequence in U∗ of the basis, there exists a constant λ ≥ 1 so that∑∞

n=1 tn 〈u∗n, x〉un converges for every (tn)n∈N ∈ `∞, x ∈ U and∥∥∥∥∥
∞∑
n=1

tn 〈u∗n, x〉un

∥∥∥∥∥ ≤ λ

∥∥∥∥∥
∞∑
n=1

〈u∗n, x〉un

∥∥∥∥∥ ∀(tn)n∈N ∈ B`∞ .

Also we need to recall the following

Definition 0.0.7. A Banach space X has the approximation property, if for
every Banach space Y , the set of finite-rank members of L(Y,X) is dense in
space of compact operators K(Y,X).

The above definition was given by Grothendieck ([42]); indeed he deduced
some equivalence of such a property

Theorem 0.0.8. Let X be a Banach space. Then the following are equivalent

(i) The space X has the approximation property.

(ii) For every compact subset K of X and for ε > 0 there is a bounded
finite-rank linear operator TK,ε : X −→ X such that ‖TK,ε(x)− x‖ < ε
whenever x ∈ K.

Grothendieck found nice interpretations of the approximation property in
the tensor product theory, as the reader can see in the section 1.1. Every of the
classical Banach space has the approximation property, for that Grothendieck
thought that every Banach space has such property. For a period of twenty
years people tried to prove that, but only in the 1973 Per Enflo gave a
beautiful counterexample (see [29]).
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Definition 0.0.9. Let X be a Banach space. Suppose that there is a positive
constant t having the property that, for every compact subset K of X and
ε > 0, there is a bounded finite-rank linear operator TK,ε : X −→ X with
‖TK,ε‖ ≤ t and such that ‖TK,ε(x)−x‖ < ε whenever x ∈ K. Then X has the
bounded approximation property. If X satisfies the condition above with t = 1
then X is said to have the metric approximation property. It is clear that the
bounded approximation property implies the approximation property, but
they are not equivalent (see [31]).

Proposition 0.0.10. Suppose that there exists a uniformly bounded net {Tα}
of finite-rank operators on X such that Tα(x)→ x for every x ∈ X. Then X
has the bounded approximation property.

Proof. Let {Tα} be a net of finite-rank operator such that C = supα ‖Tα‖ <
∞ and Tα(x) → x for every x ∈ X. Let K be a compact subset of X
and let ε > 0. Consider {x1, ..., xn} in X so that for every x ∈ K there
exists i ∈ {1, ..., n} so that ‖x − xi‖ < δ = min ε

3
, ε

3C
. For the hypothesis of

convergence there exists α0 so that if α ≥ α0 then ‖T (xi)− xi‖ ≤ ε
3

for each
i ∈ {1, ..., n}. Let x ∈ K and choose i such that ‖x− xi‖ < δ. Then

‖x− Tα0(x)‖ ≤ ‖x− xi‖+ ‖xi − Tα0(xi)‖+ ‖Tα0(xi)− Tα0(x)‖ < ε

Of course, if every operator in the net of approximating finite-rank op-
erators has norm at most one, then the space has the metric approximation
property. For an application of the proposition above see 1.1.15.
To finish this section we recall the concept of compactifications. Let X be a
topological space. A pair (Y, c), where Y is a compact space and c : X −→ Y
is a homeomorphic embedding of the space X into Y such that c(X) = Y
is called a compactification of the space X. Of course, if a topological space
is embeddable in a compact space Y , then the pair (f(X), f) is a compact-
ification of X (where f : X −→ Y is the embedding). Usually not every
topological space admits compactification; then, for what we said above, ev-
ery space X embeddable in a compact space has a compactification. A more
general theorem holds

Theorem 0.0.11. A topological space has a compactification if and only if
it is a Tychonoff space.

Two compactifcations c1X and c2X are said to be equivalent if there
exists a homeomorphism f : c1X −→ c2X so that the following diagram is
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commutative

c1X
f−→ c2X

c1 ↑ ↑c2
X

idX−→ X

i.e. fc1(x) = c2(x) (where c1, c2 are the embeddings from X to the com-
pactifications c1X, c2X respectively). Of course, every compactification of a
compact space are equivalent, and then a compact space has a unique com-
pactification (”modulo equivalences”).
Let C(X) be denoted the family of all compactifications (up to equivalence)
of a given Tychonoff space X. Now we define a partial ordering in the fam-
ily C(X). We say that c2X ≤ c1X if and only if there exists a mapping
f : c1X −→ c2X such that f ◦ c1 = c2. It seems that two compactifications
c1X, c2X of a Tychonoff space X are equivalent if and only if c1X ≤ c2X and
c2X ≤ c1X. What is important about that partial ordering is that (C(X),≤)
is a complete semi-lattice. Indeed we have

Theorem 0.0.12. For any subfamily C0 ⊆ C(X) there exists in C(X) a least
upper bound with respect to the partial ordering ≤.

From the last theorem follows that for every Tychonoff space X, there
exists a greatest element of C(X), called the Chech-Stone compactification of
X, usually denoted by β(X). This compactification is very useful and it had
found many application in functional analysis (we will find an application in
the chapter 2). But what distinguish that compactification form the other is
the following

Theorem 0.0.13. Let X be a Tychonoff space and Z be a compact space.
Then

1. Every continuous map f : X −→ Z is extendable to a continuous map
F : βX −→ Z.

2. If every continuous map defined on X with values in a compact space
can be extended (as a continuous map) over a compactification αX of
the space X, then αX is equivalent to the Cech-Stone compactification
of X.

Very useful in functional analysis is the fact that if N is equipped of
the discrete topology then βN then `∞ = C(βN) (the space of continuous
functions form βN to the real field). One of the many questions posed form
Banach in his book (see [2]) was to see whether a smaller compact space S
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corresponds to a smaller space C(S) (the term ”smaller space” will mean
a space which is isomorphically contained in the comparized one). A coun-
terexample was found by Pelczynski (see [76]) which proved that C(βN \N)
is not isomorphic to any subspace of C(βN) (actually he proved that βN \N
does not admit a simultaneous extension on βN). Also he proved that if N1 is
an isolated set of power ℵ1, then it is topologically contained in a Tychonoff
cube Iℵc , although C(βN1) is not isomorphic to any subspace of C(Iℵc), for
C(Iℵc) is isomorphic to a strictly convex space and C(βN1) is not.
But these are other stories!



Chapter 1

Tensor Product of Banach
Spaces

1.1 Tensor products of Banach Spaces and

Tensor Norms

For the sake of completeness, We will start with a summary of the principal
notions and results in the theory of Tensor Products.

Definition 1.1.1. Let E and F be K-vector spaces. A pair (H,Ψ) of a K-
vector space H and a bilinear map Ψ : E×F −→ H is called a Tensor Product
of the pair (E,F ) if for each K-vector space G and for each Φ ∈ Bil(E,F ;G)
there is a unique T ∈ L(H,G) such that Φ = T ◦Ψ, i.e. the following diagram
is commutative:

E × F Φ−→ G
Ψ ↓ ↗T

H

Follows by the definition the easy properties:

(1) If (H,Ψ) is a tensor product of (E,F ), then span {Ψ(E × F ))} = H

(2) If (H1,Ψ1) and (H2,Ψ2) are two tensor products of (E,F ), then there
is a unique linear isomorphism S : H1 −→ H2 such that S ◦Ψ1 = Ψ2

(3) If T1 : E1 −→ F1 and T2 : E2 −→ F2 are linear isomorphisms and
(H,Ψ) is a tensor product of (F1, F2), then (H,Ψ ◦ (T1 × T2)) is a
tensor product of (E1, E2)

1
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By (2) it seems that every pair (E,F ) of vector spaces has (up to a linear
isomorphism) a unique tensor product (H,Ψ). For that reason the algebraic
tensor product of K-vector spaces E,F is denoted by H = E ⊗ F , with
bilinear form associate Ψ = ⊗.
By (1) every element z ∈ E ⊗ F has the form

z =
n∑
k=1

xk ⊗ yk;

The elements of the form x⊗y are called elementary tensors. If Φ ∈ Bil(E,F ;G),
then the linear map T ∈ L(E ⊗ F,G) such that

Φ(x, y) = T (x⊗ y)

is called the linearization of Φ.
Now, let X and Y be Banach spaces, a norm α on the algebraic tensor
product X ⊗ Y is called a reasonable crossnorm if α satisfies:

(a) α(x⊗ y) ≤ ||x|| ||y|| for x ∈ X and y ∈ Y

(b) x∗ ⊗ y∗ ∈ (X ⊗ Y, α)∗ and

||x∗ ⊗ y∗||(X⊗Y,α)∗ ≤ ||x∗|| ||y∗||

for any x∗ ∈ X∗ and y∗ ∈ Y ∗.

If X and Y are Banach space and α is a reasonable crossnorm on X ⊗Y ,

then we will denote by X
∧
⊗α Y the completion of X ⊗ Y equipped with the

norm α. Note that, by the definition of reasonable crossnorm, every element
u∗ ∈ X∗ ⊗ Y ∗ is a member of (X ⊗ Y, α)∗. This remark suggest us some
natural example o reasonable crossnorm:

Example 1.1.2. (1) Let X and Y be Banach spaces. Consider X⊗Y as a
subspace of B(X∗, Y ∗) (i.e. it easy to see that the map Φ : X × Y −→
B(X∗, Y ∗) given by Φ(x, y)(x∗, y∗) = x∗(x)y∗(y) is a bilinear map, then
using the linearization of Φ we can see, in a natural way, X ⊗ Y as a
subspace of B(X∗, Y ∗)), then a first natural norm on X ⊗ Y could be
that induced by B(X∗, Y ∗); that is, for u ∈ X ⊗ Y

‖u‖ε = sup{|u(x∗, y∗)| : x∗ ∈ X∗ , y∗ ∈ Y ∗}

It seems easy that ε is a reasonable crossnorm on X⊗Y , and it will be
denoted by Injective Tensor Norm. The completion of X⊗Y equipped
with ε-norm will be called the Injective tensor Product of the Banach

spaces X and Y , denoted by X
∧
⊗ε Y .
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(2) The projective tensor norm is the norm induced on X ⊗ Y by duality
with B(X, Y ); that is, for u ∈ X ⊗ Y

‖u‖π = sup{|v(u)| : v ∈ B(X, Y ) , ‖v‖ ≤ 1}

It seems easy that π is a reasonable crossnorm on X ⊗ Y . The com-
pletion of X ⊗ Y equipped with π-norm will be called the Projective

tensor Product of the Banach spaces X and Y , denoted by X
∧
⊗π Y .

Grothendieck (see [41]and [42]) defined for first the injective and the pro-
jective tensor norms, showing that the Injective and the Projective tensor
norms are the least and the greatest reasonable crossnorm (i.e. for every rea-
sonable crossnorm α it happens: ‖ · ‖ε ≤ α(·) ≤ ‖ · ‖π), giving a more simple
expression to the projective tensor norm. Indeed it can be seen as

‖u‖π = inf{
n∑
i=1

‖xi‖‖yi‖ : u =
n∑
i=1

xi ⊗ yi}, u ∈ X ⊗ Y

where the infimum is taken over all possible representations of u. He described
the projective tensor product of X and Y in the following way: an element

u ∈ X
∧
⊗π Y has the representation

u =
∞∑
n=1

xn ⊗ yn, with
∞∑
n=1

‖xn‖‖yn‖ <∞

and the projective tensor norm of u as

‖u‖π = inf{
∞∑
n=1

‖xn‖‖yn‖ : u =
∞∑
n=1

xn ⊗ yn}

where the infimum is taken over all possible representations of u as above.
For a good reference about the projective and injective tensor products see
[19].

Now I recall some essential property concerning the Projective and In-
jective tensor norms. To start we recall some natural, but very important,
properties for injective and projective tensor products of Banach spaces.

Proposition 1.1.3. If X and Y are Banach spaces, then X∗
∧
⊗ε Y is a closed

linear subspace of the space L(X, Y ) of all bounded linear operators from X
to Y .
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Theorem 1.1.4. (The universal mapping Theorem)[Grothendieck [41], The-
orem 2]

For any Banach spaces X, Y and Z, the space L(X
∧
⊗π Y ;Z) of all bounded

linear operators from X
∧
⊗π Y to Z is isometrically isomorphic to the space

B(X, Y ;Z) of all bounded bilinear transformations taking X × Y to Z. The
natural correspondence establishing this isometric isomorphism is given by

v ∈ L(X
∧
⊗π Y ;Z) ⇔ φ ∈ B(X, Y ;Z)

via
v(x⊗ y) = φ(x, y)

Theorem 1.1.5. If X1, X2, Y1 and Y2 are K-Banach spaces and T : X1 −→
X2 and S : Y1 −→ Y2 are bounded linear operators, then T ⊗ S : X1

∧
⊗π

Y1 −→ X2

∧
⊗π Y2 is a bounded linear operator with ‖T ⊗ S‖ ≤ ‖T‖ · ‖S‖

The names Injective and Projective come from the following two pecu-
liarities of that norms:

Proposition 1.1.6. (The injectivity of ‖·‖ε) Let X and Y be Banach spaces.

If Z is a closed linear subspace of X, then Z
∧
⊗ε Y is a closed linear subspace

of X
∧
⊗ε Y

Proposition 1.1.7. (The projectivity of ‖ · ‖π) Let X and Y be Banach

spaces. If Z is a closed linear subspace of X, then X�Z
∧
⊗π Y is a quotient

of of X
∧
⊗π Y

It seems very interesting to see when the behaviour of the projective
tensor norm is ”injective” (i.e. it is closed for linear subspaces), and when
the behaviour of the injective tensor norm is ”projective” (i.e. it is closed for
quotients). A first simple example is the following

Proposition 1.1.8. If X and Y are Banach spaces, and Z is a comple-

mented subspace of X then Z
∧
⊗π Y is a complemented subspace of X

∧
⊗π Y

(in particular is a closed linear subspace).

The proof is very simple; indeed it is enough to consider P ⊗ idY : X
∧
⊗π

Y −→ X
∧
⊗π Y , where P : X −→ X is a bounded linear projection of X

onto Z and idY : Y −→ Y is the identity map, and to note that P ⊗ idY is

a bounded linear projection of X
∧
⊗π Y onto Z

∧
⊗π Y .

Another example come form Grothendieck [41]
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Theorem 1.1.9. Let X and Y be Banach spaces. Then X
∧
⊗π Y is a closed

linear subspace os X∗∗
∧
⊗π Y

The next result, concerning the injectivity of the projective tensor product
of Banach spaces, cames from two beautiful theorems:

Theorem 1.1.10. (Heinrich, Mankiewicz [47])
If Z is a separable closed linear subspace of a Banach space X, then there
is a separable closed linear subspace Z̃ of X that contains Z and a linear
operator T : Z̃∗ −→ X∗ of norm one so that Tz∗|Z̃ = z∗ for each z∗ ∈ Z̃∗

Theorem 1.1.11. (Randrianantoanina [87])
If Z is a closed linear subspace of a Banach space X and if there is a linear
operator T : Z∗ −→ X∗ of norm one such that Tz∗|Z = z∗ for each z∗ ∈ Z∗,
then Z

∧
⊗π Y is a closed subspace of Z

∧
⊗π X, regardless of the Banach space

Y

Actually the Radrianantoanina ’s theorem say us that if Z is a local dual

of X∗ then Z
∧
⊗π Y is a closed linear subspace of X

∧
⊗π Y (see [37] for the

local dual notion and [34] for a more general notion of local dual).
The following unexpected result will be very useful in the sequel:

Corollary 1.1.12. Let X and Y be Banach spaces. If Z is a separable closed
linear subspace of X, then there is a separable closed subspace Z̃ of X contains

Z so that Z̃
∧
⊗π Y is a closed subspace of X

∧
⊗π Y

Another beautiful result, about this theme, is a consequence of the spec-
tacular Maurey’s extension theorem (see [67])

Theorem 1.1.13. Let X and Y be Banach spaces. If X0 and Y0 are closed

linear subspaces of X and Y respectively having type 2 then X0

∧
⊗π Y0 is a

closed linear subspace of X
∧
⊗π Y .

After to have recalled the above result, we want to note that there are two
spacial class of Banach spaces in which the projective and injective tensor
norms behave in a very nice way.

Theorem 1.1.14. (Grothendieck [41]) Let X and Y be Banach spaces. Then

(1) X
∧
⊗π Z is a closed linear subspace of X

∧
⊗π Y , whenever Z is a closed

linear subspace of Y , if and only if X is isometrically isomorphic to
L1(µ) for some measure µ.
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(2) X
∧
⊗ε Y�Z is a quotient of X

∧
⊗ε Y , whenever Z is a closed linear

subspace of Y , if and only if X is isometrically isomorphic to C(K) for
some compact Hausdorff space K .

Another interesting problem related to the projective and injective ten-
sor product is to see when can be embed in the dual of the other. Indeed
Grothendieck was the first to understand how the approximation property
come out in help to that problem, giving the following

Theorem 1.1.15. Let X be a Banach space. Then the following are equiva-
lent

(i) X has the metric approximation property.

(ii) For every Banach space Y , the canonical mapping X
∧
⊗π Y ↪→ (X∗

∧
⊗ε

Y ∗)∗ is an isometric embedding.

(iii) The canonical map X
∧
⊗π X∗ ↪→ (X∗

∧
⊗ε X)∗ is an isometric embed-

ding.

Proof. Suppose (i) holds. Since the canonical map X
∧
⊗π Y ↪→ (X∗

∧
⊗ε Y ∗)∗

has norm one, it is enough to show that ‖u‖ε∗ ≥ ‖u‖π for every u ∈ X
∧
⊗π Y

(where ‖ · ‖ε∗ is the dual norm of ‖ · ‖ε; actually such norm is called the

integral norm (see [19])). Fix u ∈ X
∧
⊗π Y and ε > 0. Choose a representation∑∞

n=1 xn ⊗ yn of u with xn → 0 and
∑∞

n=1 ‖yn‖ < ∞. Since the dual of the

projective tensor product X
∧
⊗π Y of X and Y is just the operator space

L(X, Y ∗), there exists T ∈ L(X, Y ∗), ‖T‖ = 1, such that |〈u, T 〉| ≥ ‖u‖π− ε.
By the metric approximation property there exists a finite-rank operator
S : X −→ Y ∗, such that ‖S‖ ≤ 1 and

‖T (xn)− S(xn)‖ < ε∑∞
n=1 ‖yn‖

for every n. So |〈u, T − S〉| < ε and therefore |〈u, S〉| ≥ ‖u‖π − 2ε. Since S is

a finite-rank operator, then S belongs to X∗
∧
⊗ε Y ∗. Now, by the definition

of the injective tensor norm, it is clear that the operator norm coincides with
the injective tensor norm, and then ‖S‖ε ≤ 1. Therefore

‖u‖ε∗ ≥ |〈u, S〉| ≥ ‖u‖π − 2ε
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It is trivial that (ii) implies (iii).

Suppose that (iii) holds. Since X∗ ⊗X is dense in X∗
∧
⊗ε X then

‖u‖π = sup{|〈u, S〉| : S ∈ X∗ ⊗X, ‖S‖ε ≤ 1}

for every u ∈ X∗
∧
⊗π X. On the other hand

‖u‖π = sup{|〈u, T 〉| : T ∈ L(X,X), ‖T‖ ≤ 1}

Therefore the set F = {S ∈ L(X,X) : S has finite rank and ‖S‖ ≤ 1} is
weak∗-dense in the closed unit ball of L(X,X) (where the set are considered

in (X
∧
⊗π X∗)∗). Thus the identity operator I on X can be weak∗ approx-

imated by element of F : if x ∈ X, x∗ ∈ X∗ and ε > 0 then there exists
S ∈ F such that |〈S(x), x∗〉 − 〈x, x∗〉| < ε. It follows that for every x ∈ X,
x belongs to the weak closure of the set F (x) = {S(x) : S ∈ F}. But this
set is convex, and so its weak and norm closure coincide. Thus, x lies in the
norm closure of F (x) for every x. Now consider the strong operator topology
on L(X,X), generated by the seminorms T 7−→ ‖T (x)‖, as x ranges over
X. Since the identity is in the closure of F for this topology, there exists a
net {Sα} of finite-rank operators, each having norm at most one, such that
Sα(x)→ x for every x ∈ X. Then the Theorem follows by 0.0.10

Remark 1.1.16. As the reader can easily note, using the same proof as
above, the following are equivalent:

(i) X has the bounded approximation property.

(ii) For every Banach space Y , the canonical mapping X
∧
⊗π Y ↪→ (X∗

∧
⊗ε

Y ∗)∗ is an isomorphic embedding.

(iii) The canonical map X
∧
⊗π X∗ ↪→ (X∗

∧
⊗ε X)∗ is an isomorphic embed-

ding.

The last result will be used specially in 3.3.13.
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Chapter 2

Fremlin Tensor Product

2.1 A short introduction to Banach lattices

Throughout this section we recall some basic definition and property con-
cerning the lattice structures (for the proofs or more about that we referee
[73]).
Suppose X is a linear space and X is allowed with a partial order ≤. If
x ± z ≤ y ± z and px ≤ py for all x, y, z in X and all positive numbers p
whenever x ≤ y; then we call X an ordered linear space. If the order of the
ordered linear space X is a lattice order, that is, for any x, y ∈ X, x ∨ y =
least upper bound of x and y as well as x∧y = greatest lower bound of x and
y coexist, then X is called a vector lattice. If x is an element of the vector
lattice X, then we will use the standard notations

x+ = x ∨ 0, x− = (−x) ∨ 0, |x| = x+ ∨ x−

The positive cone X+ of X is the set

X+ = {x ∈ X : x ≥ 0}

A Banach lattice is a Banach space that is a vector lattice with ‖x‖ ≤ ‖y‖
whenever 0 ≤ x ≤ y; alternatively, if |x| ≤ |y|, then ‖x‖ ≤ ‖y‖. Naturally
‖x‖ = ‖ |x| ‖.
If X and Y are Banach lattices and T : X −→ Y is a linear mapping we say
T is positive if T (x) ≥ 0 whenever x ≥ 0. Now, we recall some basic property
about Banach lattices

Theorem 2.1.1. (1) The lattice operations are continuous;

9
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(2) X+ is closed;

(3) If (xn)n is an increasing convergent sequence, then supn xn exists and
is = limn xn;

(4) Positive linear mappings between Banach lattices are continuous;

Definition 2.1.2. A vector lattice X is said to be Dedekind complete when,
for every increasing net (xα)α∈I (i.e. xα ≤ xβ if α, β ∈ I, and α ≤ β) with
xα ≤ x for each α ∈ I, there exists x0 ∈ X such that x0 = supα∈I xα.
Instead it is said to be σ-Dedekind complete when, for every increasing se-
quence (xn)n∈N with xn ≤ x for all n ∈ N, there exists x0 ∈ X such that
x0 = supn∈N xn.
A norm of a Banach lattice X is called order continuous whenever (xα)α is
a decreasing net with xα ≥ 0 ∀α ∈ I we have limα ||xα|| = 0.

Definition 2.1.3. Let E and F be Banach lattices. An linear bounded oper-
ator T : E −→ F is called positive if T (E+) ⊆ F+ (where, as usual, we denote
with E+, F+ the positive cone of E and F respectively). Let L+(E,F ) the
collection of the positive operators from E to F . An operator T ∈ L(E,F )
is called regular if there exist T1, T2 ∈ L+(E,F ) so that T = T1 − T2. Let
Lr(E,F ) the collection of the regular operators from E to F . It is known
that if F is Dedekind complete then Lr(E,F ) is a Banach lattice with the
positive cone L+(E,F ) (see [73]), and norm

‖T‖r = inf{‖S‖ : S ∈ L+(E,F ), |T (x)| ≤ S(|x|), x ∈ E+}

and in such which case ‖T‖r = ‖ |T | ‖.

2.2 Radon-Nikodým Property and Semi-embeddings

Let X be a Banach space, recall that a countable additive vector measure
(or σ-additive vector measure) on a σ-field Σ of subsets of a set Ω to X is a
function F : Σ −→ X with the property: F (

⋃∞
n=1En) =

∑∞
n=1 F (En) in the

norm topology of X, for all sequences (En)n of pairwise disjoint members of
Σ.

Definition 2.2.1. Let F : Σ −→ X be a vector measure on a σ-field Σ. The
variation of F is defined:

|F |(E) = sup
π

∑
A∈π

‖F (A)‖
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where the supremum runs over all partition π of E into a pairwise disjoint
members of Σ. If |F |(Ω) < ∞, the F will be called a measure of bounded
variation.

Let (Ω,Σ, µ) be a finite measure space, and let X be a Banach space. A
countable additive vector measure F : Σ −→ X is called µ-continuous if

lim
µ(E)→0

F (E) = 0

If µ is a finite nonnegative real-valued measure on Σ the µ-continuity condi-
tion is equivalent to the fact that F vanished on set of µ-measure zero. (see
[26], Theorem I.2.1)

Definition 2.2.2. A Banach space X has the Radon-Nikodým property
whenever given a probability space (Ω,Σ, µ) and a countable additive, µ-
continuous vector measure F : Σ −→ X of bounded variation, there is a
Bochner integrable f : Ω −→ X such that for each E ∈ Σ, we have

F (E) =

∫
E

f(w)dµ(w)

By now the following theorem ought to be well known

Theorem 2.2.3. Let X be a Banach spaces. Then the following are equiva-
lents:

(1) X has the Radon-Nikodým property.

(2) Given a probability space (Ω,Σ, µ) and a vector measure G : Σ −→ X
such that ‖G(E)‖ ≤ µ(E), for each E ∈ Σ, there is a (necessarily
essentially bounded) Bochner integrable g : Ω −→ X such that for any
E ∈ Σ,

G(E) =

∫
E

g(ω)dµ(ω).

(3) Given a bounded linear operator T : L1[0, 1] −→ X, there is a (nec-
essarily essentially bounded) Bochner integrable h : [0, 1] −→ X such
that for any f ∈ L1[0, 1],

Tf =

∫
[0,1]

f(t) h(t) dt.
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(4) Any uniformly bounded martingale sequence (Xn,Σn) in L1(µ,X) is
almost surely convergent (given a monotone increasing net {Bτ}τ∈T of
sub σ-fields of a field Σ (i.e. Bτ1 ⊆ Bτ2 for τ1 ≤ τ2 in T ) a martingale
is a net {fτ}τ∈T in Lp(µ,X) (1 ≤ p < ∞) over the same directed set
T such that ∫

E

fτdµ =

∫
E

fτ1dµ for all E ∈ Bτ1

for all τ ≥ τ1).

(5) Every non void closed bounded convex subset C of X is dentable, i.e.
given such a C and any ε > 0, there is an xε ∈ C such that

xε /∈ co(C \ {y ∈ C : ‖y − x‖ < ε}).

(6) Every non void closed bounded convex subset C of X has a denting point,
i.e. given such a C, there is a point x ∈ C (called a denting point) such
that regardless ε > 0

x /∈ co(C \ {y ∈ C : ‖y − x‖ < ε}).

(7) Every non void closed bounded convex subset C of X is the closed convex
hull of its denting points.

Remark 2.2.4. It is clear that the Radon-Nikodým property is an isomor-
phic invariant; also, a space with the Radon-Nikodým property shares that
property with each of its closed linear subspaces; further, in light of (3) above,
a Banach space, each of whose separable closed subspaces has the Radon-
Nikodým property, enjoys the property, too.

It follows painlessly from the Radon-Nikodým property that all finite
dimensional Banach spaces have the Radon-Nikodým property. Concerning
infinite dimensional spaces, we feel it best to cite the following ”observation”
due to J. A. Clarkson.

Theorem 2.2.5. `1 has the Radon-Nikodým property

Proof. Let (Ω,Σ, µ) be a probability space and F0 : Σ −→ `1 be a vector
measure satisfying ‖F0(E)‖ ≤ µ(E), for E ∈ Σ.
For each n ≥ 1, define Pn : `1 −→ `1 by

Pn(
∞∑
k=1

akek) =
n∑
k=1

akek
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here, as usual, ek denotes the k-th unit coordinate vector.
Naturally, each of the measures Fn = Pn ◦F0 has the derivative fn respect to
µ; after all, the Fn’ s have the finite dimensional ranges. Denoting by |Fn|(E)
the total variation of the measure Fn on the set E, we see that∫

E

‖fn(ω)‖dµ(ω) = |Fn|(E) ≤ |F0|(E) ≤ µ(E)

for all n ∈ N and all E ∈ Σ. It follows that for each n ≥ 1

‖fn(.)‖ ≤ ‖fn+1(.)‖ ≤ ... ≤ 1

µ-almost all the time. Consequently, for the nature of `1’ s norm we have

f0(ω) = lim
n→∞

fn(ω)

exists in norm for µ-almost all ω ∈ Ω. Plainly, f0 is the sought after derivative
of F0 with the respect to µ

To take advantage of `1’s enjoyment of the Radon-Nikodým property, we
introduce the notion of a semi-embedding. With Heinrich Lotz, Tenny Peck
and Horatio Porta [64], we say that a Banach space X is semi-embedding in
a Banach space Y if there exists a bounded linear 1-1 operator σ : X −→ Y
for which σ(BX) is closed; naturally, the map σ is called a semi-embedding.
To be sure, semi-embedding need not be embedding (= linear homomor-
phisms). After all if 1 ≤ p < q ≤ ∞ then the natural inclusion map of
Lq[0, 1] into Lp[0, 1] is a semi-embedding. In fact, to highlight the disparity
between semi-embedding and embedding we make special note of the follow-
ing assertion

Theorem 2.2.6. The dual of any separable Banach space is semi-embeddable
in `1

Proof. Let X be a Banach space space and suppose that {xn}n∈N be a
countable dense subset of X consisting, say, of non-zero vectors. Define
T : c0 −→ X by

Tλ =
∑
n∈N

1

2n
λn

xn
‖xn‖

.

Since for any λ ∈ c0 we have

‖ 1

2n
λn

xn
‖xn‖

‖ ≤ ‖λ‖
2n

it is plain to see that ‖Tλ‖ ≤ ‖λ‖ and T is a bounded linear operator with a
dense range. T ∗ is therefore a weak∗-continuous linear operator, T ∗ : X∗ −→
`1, which is 1-1. Of course T ∗BX∗ is a weak∗ compact in `1 and so is norm
closed. T ∗ is a semi-embedding of X∗ into `1
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To be a connection between Theorem 2.2.5 and Theorem 2.2.6 and the
subject matter of this section we present the following elegant observation of
Jean Bourgain and Haskell Rosenthal [6]

Theorem 2.2.7. Suppose X is a separable Banach space semi-embeddable
in a Banach space Y having the Radon-Nikodým property. Then X has the
Radon-Nikodým property, too.

To prove this theorem we need of the following

Remark 2.2.8. Let X be a separable Banach space and Y a Banach space.
Let σ : X −→ Y a semi-embedded, then

j = σ|BX : BX −→ σ(BX)

is a Borel isomorphism (i.e. j maps Borel sets in Borel sets).
To prove the claim above it is enough to prove that j map a closed in a Borel
set of σ(BX).
Since X is separable then, if d is the metric generated of the norm, (X, d) is a
Polish space. Let O be an open subset of BX . By the proposition 0.0.3 there
is a metric d̃ on O so that (O, d̃) is a Polish space, and the metrics d and d̃
are equivalent on O.
Let A be an closed subset of BX . Put A1 = A and A2 = BX \ A.
Claim: There exists continuous functions

f1 : NN −→ A1

f2 : NN −→ A2

so that
A1 = f1(NN), A2 = f2(NN)

see also proposition 0.0.4.
Proof of Claim: A1, A2 are Polish spaces, in particular A1 =

⋃
n1∈NC(n1)

( where with C(n1) we are denoting the balls of center in A1 and radius 1).
Since C(n1) is a Polish space (because open), for the same sake, C(n1) =⋃
n2∈NC(n1, n2), where with C(n1, n2) we are denoting the balls of center in

C(n1) and radius 1
2
. By induction we can define C(n1, ...., nk) so that

C(n1, ..., nk−1) =
⋃
nk∈N

C(n1, ..., nk), and diam(C(n1, ..., nk)) <
1

k

Then we can define f1 : NN −→ A1 by

f1(n) =
⋂
k∈N

C(n1, ..., nk)
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where we are denoting n = (n1, ..., nm, .....).
Let ε > 0 arbitrary, by construction we can suppose that the open in A1 is
C(n1, ..., nk1). Fix k = max{k1,

1
ε
}. Let n so that f1(n) ∈ C(n1, ..., nk) and

we can consider the open of n in a such way

U = {m : (m1, ...,mk) = (n1, ..., nk)}

Then we have f1(m) ∈ C(n1, ..., nk) for each m ∈ U , so

d(f1(n), f1(m)) ≤ diamC(n1, ..., nk) <
1

k
≤ ε ∀m ∈ U

That imply that f1 is continuous and by construction f1 is onto.
Then we can put gi : NN −→ j(Ai) = Bi by

gi = j ◦ fi i = 1, 2

We show that B1, B2 are separated by Borel set in j(BX), i.e. there are E1, E2

Borel sets in j(BX) so that Bi ⊆ Ei and E1∩E2 = ∅ (in particular that imply
that Bi = Ei, and then we are done).
Suppose that we cannot separated with Borel set the Bi’s. If we denoted

N (n1, ..., nk) = {m ∈ NN : (m1, ...,mk) = (n1, ..., nk)}

we have
B1 = g1(NN) = g1(

⋃
n1∈N

N (n1)) =
⋃
n1∈N

g1(N (n1))

and
B2 =

⋃
m1∈N

g2(N (m1))

choose n1,m1 so that g1(N (n1)) and g2(N (m1)) cannot be separated by Borel
sets (because if every g1(N (n1)) and g2(N (m1))can be separated by Borel
sets then the union in n1 and m1 respectively can be separated by Borel sets
too).
We write

g1(N (n1)) =
⋃
n2∈N

g1(N (n1, n2))

g2(N (m1)) =
⋃
m2∈N

g1(N (m1,m2))

and so by induction we can construction g1(N (n1, n2, ..., nk)) and g2(N (m1,m2, ...,mk))
so that they cannot be separated by Borel sets, for each k ∈ N. Let n =
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(n1, ..., nk, ...) and m = (m1, ...,mk, ...). If g1(n) 6= g2(m) than there are U, V
open (in particular Borel set) disjoint so that

n ∈ g−1
1 (U), m ∈ g−1

2 (V )

and than we can choose k ∈ N such that

N (n1, ..., nk) ∈ g−1
1 (U) and N (m1, ...,mk) ∈ g−1

2 (V )

OOPS!
That’s imply

g1(n) = g2(m)

which contradict the injectivity of j.

Proof. (of the theorem 2.2.7)
Let T : L1[0, 1] −→ X be a bounded linear operator with ‖T‖ ≤ 1, say. Let
σ : X −→ Y be a semi-embedding again with ‖σ‖ ≤ 1. We need to find a
measurable g : [0, 1] −→ X that represent T . To do so we look at the operator
S : L1[0, 1] −→ Y given by S = σ ◦ T . Since Y has the Radon-Nikodým
property, there exists a Borel measurable, essentially bounded function h :
[0, 1] −→ Y such that for any f ∈ L1[0, 1]

Sf =

∫
[0,1]

f(t) h(t) dt

For almost any t ∈ [0, 1], we have

h(t) = lim
s→0

1

2s

∫ t+s

t−s
h(u)du = lim

s→0
S(

χ[t−s,t+s]

‖χ[t−s,t+s]‖
)

Therefore, for almost all t ∈ [0, 1],

h(t) ∈ S(BL1[0,1]) = σ ◦ T (BL1[0,1] ⊆ σ(BX) = σ(BX)

by adjusting h, we can assume h(t) ∈ σ(BX) for all t. But now notice σ
takes BX in a 1-1 continuous fashion onto σ(BX) and BX is a Polish space.
By remark above follows that σ is a Borel equivalence and so g = σ−1 ◦ h is
measurable with little choose but to represent T .

Close on the heels of the Theorem 2.2.5, 2.2.6 and 2.2.7 we have to fol-
lowing classical result of Dunford and Pettis.

Theorem 2.2.9. Separable dual space have the Radon-Nikodým property.
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We want to make a few remarks about the Radon-Nikodým property,
especially as it appears in separable Banach space setting. Theorem 2.2.9
indicates the dividends points in studying a property that has mixed origin.
It precisely the hybrid character of Radon-Nikodým property that lends the
property to widespread application in analysis. No double other stability
results, similar to theorem 2.2.7, will be uncovered in efforts to use the Radon-
Nikodým property in other aspects of mathematical analysis. Indeed, almost
one such result exists and it is an extraordinary result at that. We cite it

Theorem 2.2.10. (Piotr Mankiewicz)
Suppose X and Y are separable Banach space. Suppose there is a surjective
map φ : X −→ Y satisfying

1

k
‖x− x‖ ≤ ‖φ(x)− φ(x)‖ ≤ k‖x− x‖

for same k > 0 and all x, x ∈ X. If either X or Y has the Radon-Nikodým
property, then both do and each is isomorphic to a subspace of the other

2.3 The Fremlin Tensor Product of Banach

Lattices

For two Banach lattices X and Y , D. Fremlin in [32], and [33] introduced
a new tensor product of Banach lattices, called positive projective tensor
product. Let X, Y, Z be Banach lattices, an bilinear map φ : X × Y −→ Z
is called a positive bilinear map if φ(X+, Y +) ⊆ Z+; the projective cone on
tensor product X ⊗ Y is defined as:

X+ ⊗ Y + = {
n∑
k=1

xk ⊗ yk : n ∈ N, xk ∈ X+, yk ∈ Y +}.

The positive projective tensor norm on X ⊗ Y is defined as:

‖u‖|π| = sup{|
n∑
i=1

φ(xi, yi)| : u =
n∑
i=1

xi ⊗ yi,

φ is a positive bilinear function on X × Y, ‖φ‖ ≤ 1}

Let X
∧
⊗F Y the completion of X ⊗ Y equipped with the norm ‖ · ‖|π|. Then

X
∧
⊗F Y is a Banach lattices, having as positive cone the closure in X

∧
⊗F Y
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of the cone generated by X+ ⊗ Y +. Fremlin ([33], Theorem 1E (vii)) gave a
more simple equivalent form of the positive projective norm, as

‖u‖|π| = inf{
∞∑
k=1

‖xk‖ · ‖yk‖ : xk ∈ X+, yk ∈ Y +, |u| ≤
∞∑
k=1

xk ⊗ yk}.

In the same paper Fremlin gave a very meaning property which the Fremlin
tensor product enjoys

Lemma 2.3.1. (Fremlin‘s theorem [33])
Let X and Y be Banach lattices. Then for each Banach lattice Z and for each
φ : X × Y −→ Z continuous bilinear map there exists a unique continuous
linear map T : X⊗̂FY −→ Z so that

(i) ‖T‖ = ‖φ‖

(ii) T (x⊗ y) = φ(x, y)

(iii) φ is a positive if and only if T is a positive.

Throughout this section U will denote a Banach lattice with a normalized
unconditional basis (un)n∈N with normalized biorthogonal functionals (u∗n)n∈N
(see definition 0.0.6). We recall that a Banach space U with an unconditional
basis (un)n∈N becomes a Banach lattice with the new norm

|‖u|‖ = sup{‖
∑
n∈N

tnu
∗
n(u)un‖ : (tn)n∈N ∈ `∞}

where we are denoting with ‖ · ‖ the original norm in U . Moreover

‖ · ‖ ≤ |‖ · |‖ ≤ K‖ · ‖,
where K is a constant depending only on the unconditional basis (un)n∈N.
Throughout the sequel, U is endowed with the norm |‖ · |‖.

Let X and U be Banach lattices, and, as we said above, let (un)n be a
Schauder basis of U . We define

U(X) = {(xn)n∈N ⊆ X :
∑
n∈N

‖xn‖un is convergent in U }

endow with the norm

‖(xn)‖U(X) = ‖
∑
n∈N

‖xn‖ ‖U

and the order defined defined by

(xn)n∈N ≤ (yn)n∈N ⇔ xn ≤X yn ∀n ∈ N
Then U(X) is a Banach lattice, as is easily verified.
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2.4 The Radon-Nikodým property in Fremlin

Tensor Product

We start to get some confidence with a useful tool : the semi-embeddings.

Theorem 2.4.1. Let X be a separable Banach lattice and U be a Banach
lattice with an unconditional basis. If U and X have the Radon-Nikodým
property then the Fremlin tensor product U⊗̂FX of U and X can be semi-
embedded in U(X)

Proof. To start, consider the bilinear operator

Ψ̃ : U ×X −→ U(X)

(u, x) 7−→ (u∗n(u)x)n∈N

Note that Ψ̃ is bilinear bounded and positive. If u ∈ U+ and x ∈ X+,
then Ψ̃(u, x)i = u∗i (u)x ≥ 0 for each i ∈ N; therefore, Ψ(u, x) ≥ 0 in U(X);
moreover,

‖
∑
n∈N

‖Ψ̃(u, x)‖X un ‖U = ‖
∑
n∈N

‖u∗n(u)x‖Xun ‖U

= ‖x‖X‖
∑
n∈N

|u∗n(u)|un‖U

≤ ‖x‖X‖u‖U

So Ψ̃ is bounded with ‖Ψ̃‖ ≤ 1.

By Fremlin‘s theorem there exists a unique continuous linear map Ψ :
U⊗̂FX −→ U(X) such that

(i) ‖Ψ‖ ≤ 1;

(ii) Ψ̃(u, x) = Ψ(u⊗ x) for each u ∈ U, x ∈ X;

(iii) Ψ is positive

Step 1. Ψ is injective.
First, consider Ψ on U ⊗F X. If v =

∑p
k=1 vk ⊗ xk ∈ (U ⊗F X)+ (with

vk, xk ≥ 0 for each k) so that Ψ(v) = 0, then

0 = Ψ(v) =

p∑
k=1

Ψ̃(vk, xk) = (

p∑
k=1

u∗n(vk)xk)n∈N;
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thus
p∑

k=1

u∗n(vk)xk = 0, ∀n ∈ N;

but every u∗n(vk)xk is in X+, so

u∗n(vk)xk = 0 ∀n ∈ N, k = 1, ..., p

This means: either xk = 0 or u∗n(vk) = 0 for each n ∈ N; hence, either xk = 0
or uk = 0. Either way we have v =

∑p
k=1 vk ⊗ xk = 0.

If there is a z > 0 in U⊗̂FX so that Ψ(z) = 0, then we can choose a sequence
(zn)n∈N, of positive elements of U ⊗F X such that zn ≤ z for every n ∈ N,
convergent to z (see [45]). Therefore,

0 ≤ Ψ(zn) ≤ Ψ(z) = 0 ∀n ∈ N;

so zn = 0, ∀n ∈ N, and so

z = ‖ · ‖|π| − lim
n
zn = 0

a contradiction. This means Ψ is injective on the positive cone of U⊗̂FX and
so injective on U⊗̂FX.

We want to show that Ψ is a semi-embedding, or in other words for a sequence
{zn}n∈N ⊆ BU⊗̂FX and (yi)i∈N ∈ U(X) so that limn Ψ(zn) = (yi)i in U(X)
there exists z ∈ BU⊗̂FX such that Ψ(z) = (yi)i.

Step 2. Now, fix T ∈ Lr(U,X∗) and consider the series
∑

i∈N〈yi, T (ui)〉.
First, we show that the series is absolutely convergent: We suppose that
(zn)n ⊆ BU⊗X , so we can write each zn as

zn =

p(n)∑
k=1

vk,n ⊗ xk,n

Then

(yi)i = lim
n

Ψ(zn)

= lim
n

p(n)∑
k=1

Ψ̃(vk,n, xk,n)

= lim
n

(

p(n)∑
k=1

(u∗i (vk,n)xk,n)i
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= (lim
n

p(n)∑
k=1

(u∗i (vk,n)xk,n)i.

Hence

lim
n

p(n)∑
k=1

u∗i (vk,n)xk,n = yi i ∈ N

Then for fixed m ∈ N there exists n0 ∈ N so that for i = 1, 2, ...,m we have

‖
p(n0)∑
k=1

u∗i (vk,n0)xk,n0)− yi‖X ≤
ε

m

Therefore,

m∑
i=1

|〈yi, T (ui)〉|

≤
m∑
i=1

|〈yi −
p(n0)∑
k=1

u∗i (vk,n0)xk,n0 , T (ui)〉|+
m∑
i=1

|〈
p(n0)∑
k=1

u∗i (vk,n0)xk,n0 , T (ui)〉|

≤ ε‖T‖+
m∑
i=1

|
p(n0)∑
k=1

〈u∗i (vk,n0)xk,n0 , T (ui)〉|

(which, if θi = sign

p(n0)∑
k=1

〈u∗i (vk,n0)xk,n0 , T (ui)〉)

= ε‖T‖+ |
m∑
i=1

θi

p(n0)∑
k=1

〈u∗i (vk,n0)xk,n0 , T (ui)〉|

= ε‖T‖+ |
m∑
i1

θiT (ui)⊗ u∗i (
p(n0)∑
k=1

vk,n0 ⊗ xk,n0)|

= ε‖T‖+ |
m∑
i=1

θiT (ui)⊗ u∗i (zn0)|

≤ ε‖T‖+ ‖
m∑
i=1

θiT (ui)⊗ u∗i ‖L(U,X∗)‖zn0‖

(∗) ≤ ε‖T‖+ ‖T‖,

for each m ∈ N.
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To see why is so, recall: if z ∈ (U
∧
⊗F X)+ then for each ε > 0 there exists

(xj)
n
j=1 ⊆ X+, (vj)

n
j=1 ⊆ U+ so that z ≤

∑n
j=1 vj ⊗ xj and

n∑
j=1

‖vj‖ ‖xj‖ ≤ ‖z‖U⊗FX + ε.

So

|
m∑
i=1

θiT (ui)⊗ u∗i (z)| ≤
m∑
i=1

T (ui)⊗ u∗i (z)

≤
m∑
i=1

T (ui)⊗ u∗i (
n∑
j=1

vj ⊗ xj)

=
m∑
i=1

n∑
j=1

T (ui)(xj)u
∗
i (vj)

=
n∑
j=1

T (
m∑
i=1

u∗i (vj)ui)(xj)

≤
n∑
j=1

‖T (
m∑
i=1

u∗i (vj)ui)‖X∗ ‖xj‖X

≤ ‖T‖
n∑
j=1

‖
m∑
i=1

u∗i (vj)ui‖U ‖xj‖X

≤ ‖T‖
n∑
j=1

‖vj‖U‖xj‖X

≤ ‖T‖ (‖z‖
U
∧
⊗FX

+ ε).

Now (∗) follows and with it we see that∑
i∈N

|〈yi, T (ei)〉| ≤ ‖T‖

Now it makes sense to define φ : Lr(U,X∗) −→ K by

φ(T ) :=
∑
i∈N

〈yi, T (ui)〉 for each T ∈ Lr(U,X∗)

From the note above, φ is well defined, with

(a) φ ∈ Lr(U,X∗)∗; and
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(b) ‖φ‖ ≤ 1.

Step 3. We show that there exists z ∈ BU⊗̂FX so that Ψ(z) = (yi)i
Let K = β((BU , ‖ · ‖) × (BX∗∗ , weak

∗)) where β(S) is the Ćech-Stone
compactification of S. K is a compact Hausdorff space and, because (BU , ‖·‖)
is a Polish space, (BU , ‖·‖)×(BX∗∗ , weak

∗) is universally measurable with
respect to all Radon measures on K (see [12]). Define

J : Lr(U,X∗) −→ C(K)

by

J(T )(u, x∗∗) = x∗∗(T (u))

on (BU×BX∗∗) and extend using the Ćech-Stone nature of K. J is a bounded
linear operator with ‖JT‖C(K) = ‖T‖ on the positive cone Lr(U,X∗). Now
consider

Fφ : J(Lr(U,X∗)) −→ K

defined by

Fφ(JT ) = 〈T, φ〉 ∀T ∈ Lr(U,X∗)

Note ‖Fφ‖ = ‖φ‖. So by the Hahn-Banach theorem and the Riesz represen-
tation theorem, there exists a regular Borel measure ν so that

(A) Fφ(JT ) =

∫
K

JT (ω)dν(ω) ∀T ∈ Lr(U,X∗)

and

|ν|(K) = ‖Fφ‖ = ‖φ‖.

Define h1 : (BU , ‖ · ‖) × (BX∗∗ , weak
∗) −→ BU by h1(u, x∗∗) = u; h1 is

continuous into (BU∗∗ , weak
∗) and so extends to a continuous function, still

called h1, from K to (BU∗∗ , weak
∗). BU ‘s Polish character now allows us to

look at

k1 = h1 · χBU×BX∗∗ ;

k1 is scalarly ν-measurable and U -valued; hence, strongly ν-measurable. Also,
k1 is bounded in norm by 1 so∫

K

‖k1(ω)‖d|ν| ≤ |ν|(K)

that is, k1 is Bochner ν-integrable.
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Now we know that (see [26], p.172) for every ε > 0 there exists a sequence
(vn)n∈N ⊆ U and a sequence of Borel sets (Bn)n∈N ⊆ K such that

k1(ω) =
∞∑
n=1

vnχBn(ω) |ν|-a.e.

with
∞∑
n=1

‖un‖U |ν|(Bn) ≤
∫
K

‖k1(ω)‖ d|ν|+ ε ≤ |ν|(K) + ε.

Let
h2 : K −→ X∗∗

be given by
h2(u, x∗∗) := x∗∗.

Then h2 is weak∗-continuous and hence weak∗-measurable. Moreover, for each
x∗ ∈ X∗,∫

K

|〈x∗, h2(ω)〉d|ν|(ω) ≤ ‖x∗‖
∫
K

|h2(ω)|d|ν|(ω) ≤ ‖x∗‖|ν|(K) <∞.

So h2 is Gelfand integrable (see the section: Notations and Basic facts).

Now, if we consider, for each i ∈ N and x∗ ∈ (X∗)+, Ti = u∗i⊗x∗ ∈ L+(U,X∗)
by (A) we have

〈yi, x∗〉 = 〈Ti, φ〉

=

∫
K

〈Tiu, x∗∗〉dν(u, x∗∗)

=

∫
K

〈x∗, h2(u, x∗∗)〉〈k1(u, x∗∗), u∗i 〉dν(u, x∗∗)

=

∫
K

〈x∗, h2(u, x∗∗)〉〈
∞∑
n=1

vnχBn(u, x∗∗), u∗i 〉dν(u, x∗∗)

=
∞∑
n=1

u∗i (vn)

∫
Bn

〈x∗, h2(u, x∗∗)〉dν(u, x∗∗)

=
∞∑
n=1

u∗i (vn)〈x∗, a∗∗n 〉

where

a∗∗n = Gelfand−
∫
Bn

h2(u, x∗∗)dν(u, x∗∗)
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therefore

(B) 〈yi, x∗〉 =
∞∑
n=1

u∗i (vn)〈x∗, a∗∗n 〉.

For every x∗ ∈ (X∗)+ and n ∈ N

|〈x∗, a∗∗n 〉| = |
∫
Bn

〈x∗, h2(u, x∗∗)dν(u, x∗∗)|

≤
∫
Bn

|〈x∗, h2(u, x∗∗)〉|dν(u, x∗∗)

≤ ‖x∗‖|ν|(Bn).

Hence,
‖a∗∗n ‖ ≤ |ν|(Bn).

Moreover

(C)
∑
n∈N

‖u∗i (vn)a∗∗n ‖ =
∑
n∈N

|u∗i (vn)|‖a∗∗n ‖

≤
∑
n∈N

‖vn‖|ν|(Bn)

≤ |ν|(K) + ε

That means the series
∑

n∈N u
∗
i (vn)a∗∗n is absolutely convergent in X∗∗.

Note, now, that since X is a Banach lattice with the Radon-Nikodým prop-
erty, X is norm-one complemented in X∗∗. Therefore there exists a norm one
linear projection P : X∗∗ −→ X∗∗, so that P (X∗∗) = X. Let an = P (a∗∗n )
and z =

∑
n∈N vn ⊗ an. We have

‖z‖
U
∧
⊗FX

≤
∑
n∈N

‖un‖‖an‖ ≤

≤ ‖P‖
∑
n∈N

‖un‖‖a∗∗n ‖ ≤

≤
∑
n∈N

‖un‖|ν|(Bn) ≤

≤ (|ν|(K) + ε) =

= (‖φ‖+ ε)

so that ‖z‖
U
∧
⊗FX

≤ ‖φ‖ ≤ 1. In particular z ∈ BU⊗̂FX . Here is the catch:

from (B), (C) and from the definition of Ψ we have, for each i ∈ N

yi = P (yi)



26 Chapter 2. Radon-Nikodým Property in the Fremlin Tensor Product

= P (
∑
n∈N

u∗i (vn)a∗∗n ) =

=
∑
n∈N

u∗i (vn)P (a∗∗n ) =

=
∑
n∈N

u∗i (vn)an =

=
∑
n∈N

(Ψ(un ⊗ an))i =

= (
∑
n∈N

Ψ(un ⊗ an) )i =

= Ψ(
∑
n∈N

un ⊗ zn )i = Ψ(z)i.

Hence
Ψ(z) = (yi)i.

We are done.

Corollary 2.4.2. Let X be a separable Banach lattice and U be a Banach
space with an unconditional basis. If U and X have the Radon-Nikodým prop-
erty then the Fremlin tensor product U⊗̂FX of U and X has the Radon-
Nikodým property

Proof. It is enough to note that from our hypothesis follow that U(X) has the
Radon-Nikodým property ( a more general form was shown by Bu, Diestel,
Dowling, Oja [9]). Now the result is a direct consequence of a theorem of
Bourgain and Rosenthal 2.2.7 (see [6])

Now,using Heinrich-Mankiewicz [47] and N. Randrianantoanina [89] (see
Corollary 1.1.12) and for the Remark 2.2.4 we have the following

Corollary 2.4.3. If U and X are two Banach lattices, one of them atomic ,
then the Fremlin tensor product of U and X, U⊗̂FX, has the Radon-Nikodým
property if both U and X possess this property.

Remark 2.4.4. In [21] the authors proved that:

Theorem. Let U be a Banach lattice, and X be a Banach space. Then

U
∧
⊗π X has the Radon-Nikodým theorem iff U and X do too.

Then , in the same visual, one could asks if that happens in the Fremlin
tensor product, i.e. if U,X are Banach lattices with the Radon-Nikodým
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property then U⊗̂FX has the Radon-Nikodym property. Unfortunately in
the Fremlin tensor product situation that doesn’t happens. Indeed, as the
same Fremlin proved (see [33]), L2[0, 1]⊗̂FL2[0, 1] is not Dedekind complete
and so it cannot have the Radon-Nikodým property (see [73] for the last
assertion).
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Chapter 3

Local Unconditional Structure
and Gordon-Lewis Property in
Tensor Products

3.1 The Class of Lindenstrauss-Pelczyński: the

Lp’s spaces

Definition 3.1.1. A Banach space X is called a P1 space (a Pλ space) if
for all Banach space Y and Z with Z ⊆ Y and all bounded linear operator
T : Z −→ X, there exists an operator T̃ : Y −→ X such that T̃ |Z = T and

‖T̃‖ = ‖T‖ (‖T̃‖ ≤ λ ‖T‖).

It is clear that a Banach space X is a P1 space (a Pλ space) if and only if
whenever W is a Banach space containing X, then there exists a projection
from W onto X of norm 1 (of norm less or equal to λ). A classical example
of P1 space is the following

Lemma 3.1.2. Let Γ be a set and `∞(Γ) the Banach space of bounded scalar
valued functions on Γ, with ‖f‖∞ =

∑
γ∈Γ |f(γ)|. Then `∞(Γ) is a P1 space

Actually Nachbin [75], Kelley [53]and Goodner [36] proved that every P1

space is isometrically isomorphic to a C(K) space, where K is an extremely
disconnected compact Hausdorff space (a topological space is called extremely
disconnected or Stonian if the closure of every open set is open). Until now,
no characterization of Pλ spaces is known for λ > 1. In particular, it is not
known if every Pλ space is isomorphic to a P1 space. For some partial result
in this area see [91]

29
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Definition 3.1.3. A Banach space X is said to be injective if for all Banach
spaces Z and Y with Z ⊆ Y and all bounded linear operators T : Z −→ X
there exists a bounded linear operator T̃ : Y −→ X such that T̃ |Z = T .

By the definition it is clear that

Remark 3.1.4. (a) An injective space is a Pλ space, for some λ ≥ 1.

(b) If X is isomorphic to a complemented subspace of `∞(Γ) for some set
Γ, then X is injective.

(c) A complemented subspace of an injective space is injective.

An Lp space is a Banach space which has essentially the same finite di-
mensional structure as an Lp(µ) and C(K) spaces. Lp spaces were introduced
by Lindenstrauss and Pelczyński in [59] and were examined further by Lin-
denstrauss and Rosenthal in [60] (see also [4] and [5])

Definition 3.1.5. Let X and Y be isomorphic Banach spaces. The number
d(X, Y ) = inf{‖T‖ ‖T−1‖ : T : X −→ Y is a surjective isomorphism} is
called the distance coefficient (usually called the Banach-Mazur distance) of
X and Y .

Definition 3.1.6. Let 1 ≤ p ≤ ∞ and λ ≥ 1. A Banach space X is called
an Lp,λ space if whenever F is a finite dimensional subspace of X, then
there exists a finite dimensional subspace G of X such that F ⊆ G and
d(G, `np ) ≤ λ, whose n = dimG.
A Banach space is called an Lp space if it is an Lp,λ space for some λ ≥ 1.

There are two important classes of Banach space which are Lp spaces.

Theorem 3.1.7. Let (Ω,Σ, µ) be a measure space. For 1 ≤ p <∞, Lp(µ) is
an Lp,1+ε space for all ε > 0. For a compact Hausdorff space K, C(K) is an
L∞,1+ε space for all ε > 0

Remark 3.1.8. Actually Lindenstrauss and Pelczyński have proved a partial
converse to the previous theorem. Namely, they showed that if 1 ≤ p < ∞
and X is an Lp,1+ε space for all ε > 0, then X is isometrically isomorphic to
an Lp(µ) space.

The Lp(µ) spaces and C(K) space are not the unique examples of Lp
spaces. Indeed we have

Proposition 3.1.9. Let X be an infinite dimensional Banach space.

(i) If X∗∗ is injective space, then X is an L∞ space;



the Lp ’s spaces 31

(ii) Assume that X∗∗ is isomorphic to a complemented subspace of an L1(µ)
space. Then there exists a K < ∞ such that whenever F is a finite
dimensional subspace of X, there exists a finite dimensional subspace
G of X containing F such that d(G, `dimG1 ) < K, and a projection form
X onto G of norm at most K.

Here we recall the deeper result about the relationship between a Banach
space and its bidual, proved by Lindenstrauss and Rosenthal [60] in an early
version and upgraded by Johnson, Rosenthal and Zippin [50], a tool very
useful in the modern function analysis theory. For a simpler proof see [95]
and [66]

Theorem 3.1.10. (The Local Reflexivity Principle)
Let X be a Banach space, and let E and F be finite dimensional linear sub-
spaces of X∗∗ and X∗ respectively. Then, for each ε > 0 there exists a one-one
bounded linear operator T : E −→ X such that

(i) T (x) = x for all x ∈ E ∩X;

(ii) ‖T‖ ‖T−1‖ ≤ 1 + ε;

(iii) 〈T (x∗∗, x∗〉 = 〈x∗∗, x∗〉 for all x∗∗ ∈ E and x∗ ∈ F .

It follows immediately from the Local Reflexivity Principle that

Proposition 3.1.11. If X∗∗ is an Lp space, then so is X.

Now, recall some meaning result to know the Lp spaces more close.

Lemma 3.1.12. Let X be an infinite dimensional L1 space. Let F be a finite
dimensional quotient space of some Banach space Y and φ : Y −→ F the
natural map. Then there exists a K < ∞ (depending only on X) such that

given an operator T : X −→ F , there exists an operator T̃ : X −→ Y such
that φ ◦ T̃ = T . (T̃ is said to be a lifting of T ).

Proof. We first show that there exists a finite dimensional subspace Y0 of
Y such that BF ⊆ φ((2 BY0) (BY0 is the closed unit ball of Y0). To prove
this, let δ > 0 be such that 1+δ

1−δ < 2. Let b1, ..., bm be elements in F such
that ‖bi‖ = 1 for 1 ≤ i ≤ m and if b ∈ F , ‖b‖ = 1, then ‖b − bi‖ < δ
for some i. Then it follows that BF ⊆ {

∑m
i=1 aibi :

∑m
i=1 |ai| ≤

1
1−δ}

(indeed if {
∑m

i=1 aibi :
∑m

i=1 |ai| ≤
1

1−δ} does not contains the closed unit
ball of F , then there exists an f ∈ X∗ and u0 ∈ F , ‖u0‖ = 1 such that
f(u0) > sup |f(y)| for all y ∈ {

∑m
i=1 aibi :

∑m
i=1 |ai| ≤

1
1−δ}. In particular,

‖f‖ ≥ f(u0) > sup1≤i≤m
1

1−δ |f(bi)| or, equivalently sup1≤i≤m |f(bi)| < (1 −
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δ)‖f‖. But if y ∈ F , ‖y‖ = 1 and we choose j such that ‖y − bj‖ < δ,
then |f(y)| ≤ |f(y − bj)| + |f(bj)| ≤ δ‖f‖ + sup1≤i≤m |f(bi)|. Therefore,
‖f‖ ≤ δ‖f‖+ sup1≤i≤m |f(bi)| < ‖f‖, a contradiction).
Now for every i there exists a yi ∈ Y such that ‖yi‖ < 1 + δ and φ(yi) = bi.
Put Y0 = span{yi : 1 ≤ i ≤ m}. If b ∈ F , ‖b‖ ≤ 1, then b =

∑m
i=1 aibi

for some scalars a1, ..., am with
∑m

i=1 |ai| ≤
1

1−δ . But then φ(
∑m

i=1 aiyi) = b,

‖
∑m

i=1 aiyi‖ ≤ sup1≤i≤m ‖yi‖
∑m

i=1 |ai| ≤
1+δ
1−δ < 2 and

∑m
i=1 aiyi ∈ Y0. Hence

BF ⊆ φ(2 BY0).
Let G be a finite dimensional subspace of X such that T (X) = T (G). Since
X is an L1,k0 space for some k0 < ∞, there exists a family F of finite
dimensional subspaces W of X (directed by inclusion) such that G ⊆ W and

d(W, `n1 ) ≤ k0. For each W ∈ F , we construct an operator T̃W : W −→ Y

such that T̃W (BW ) ⊆ 2 k0 ‖T‖ BY0 and φT̃W = T |W .
Fix W ∈ F and let w1, ..., wn be a basis for W such that ‖wi‖ = 1 for all
i and such that, given any scalars a1, ..., an ‖

∑n
i=1 aiwi‖ ≥

1
k0

∑n
i=1 |ai|. By

the first part of this proof, there exists for each i a zi ∈ 2 ‖T‖BY0 such that

φ(zi) = T (wi). Defining T̃W by

T̃W (
n∑
i=1

aiwi) =
n∑
i=1

aizi,

it follows that ‖T̃W (
∑n

i=1 aiwi)‖ ≤ sup1≤i≤n ‖zi‖
∑n

i=1 |ai| ≤ 2 ‖T‖ k0 ‖
∑n

i=1 aiwi‖,
and hence that ‖T̃W‖ ≤ 2 k0 ‖T‖ (note that by a composing a projection onto

W with T̃W , we may conclude that every T : X −→ F has a continuous lifting
T̃ : X −→ Y . However, we have no control over the norm of a projection onto
an arbitrary W ∈ F and must present further argument to gain this control).
Since the space 2 k0 ‖T‖BY0 is compact, the space Π =

∏
x∈X 2 k0 ‖T‖ ‖x‖BY0

is a compact space. We extend T̃W to a (non-linear) function fromX into Y by

putting T̃W (x) = 0 if x ∈ X \W . Then in any case ‖T̃W (x)‖ ≤ 2 k0 ‖T‖ ‖x‖,
so T̃W ∈ Π, thus {T̃W : W ∈ F} is a net in Π. Let T̃ be a cluster point of

this net. Then T̃ is linear, T̃ lifts T , and ‖T̃‖ ≤ 2 k0 ‖T‖. We prove this in
detail.
Let F ′ be a directed subfamily of F such that the net {T̃W : W ∈ F ′}
converges to T . First, let x1, x2 ∈ X and let a1, a2 be scalars. Pick W0 ∈ F ′
containing x1 and x2. Then if W ∈ F ′ contains W0, T̃W (a1x1 + a2x2) =

a1T̃W (x1) + a2T̃W (x2), and so T̃ (a1x1 + a2x2) = a1T̃ (x1) + a2T̃ (x2). If x ∈ X,

and x ∈ W0 for some W0 ∈ F ′, then for W ∈ F ′, W0 ⊆ W , φ◦ T̃W (x) = T (x),

so φ◦T̃ (x) = T (x). Finally if x ∈ X, ‖T̃W (x)‖ ≤ 2 k0 ‖T‖ ‖x‖ for all W ∈ F ′,
so ‖T̃‖ ≤ 2 k0 ‖T‖.
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Remark 3.1.13. Using essentially the same proof as above, Lindenstrauss
and Rosenthal [60] proved the following generalization:
Let X be an L1 space. Then, whenever F is a quotient space of Y , and
T : X −→ F is a compact operator, there exists a compact lifting T̃ : X −→ Y
of T .

Theorem 3.1.14. (i) If X is an infinite dimensional L1 space, then X∗

is a P1 space;

(ii) If X is an infinite dimensional L∞ space, then X∗∗ is injective.

Proof. (i) Suppose X is an L1 space. Let Y ∗ be a conjugate P1 space contain-
ing X∗. By virtue of Remark3.1.4(c) it suffices to show that X∗ is comple-
mented in Y ∗. Let F be a finite dimensional subspace ofX∗, T : X −→ F ∗ the
natural quotient map from X onto F ∗. By the previous lemma, there exists a
lifting T̃F : X −→ Y of T with ‖T̃F‖ ≤ K (where K depends only on X). But

then, T̃ ∗F : Y ∗ −→ X∗ has the property that T̃ ∗F (f) = f for every f ∈ F = F ∗∗

(T̃ ∗F will not in general be a projection). Let U be the unit ball of X∗ in its

weak∗ topology. Then {T̃ ∗F : F is a finite dimensional subspace of X∗} is
a net (direct by inclusion) in the compact space

∏
y∗∈Y ∗ ‖y∗‖ K U (via Ty-

chonoff ’s theorem). A cluster point P of this net is easily verified to be a
bounded linear projection from Y ∗ onto X∗.
(ii) Suppose that X is an L∞ space. Let Y be a P1 space containing X∗∗. We
will show that X∗∗ is complemented in Y . Since X is an L∞ space, there ex-
ists a K <∞ and a family F of finite dimensional subspaces of X,0 directed
by inclusion, such that

(1) X =
⋃
F∈F F ;

(2) d(F, `dimF∞ ) ≤ K for all F ∈ F ;

(3) For each F ∈ F there exists a projection PF : Y −→ F onto F with
‖PF‖ ≤ K.

Let U be the unit ball of X∗∗ in its weak∗ topology. Then PF (y) ∈ ‖y‖ K U
for all y ∈ Y . In particular {PF : F ∈ F} is a net in the compact space∏

y∈Y ‖y‖ K U (via the Tychonoff’s theorem). Let P the cluster point of this
net. Then P maps Y onto X∗∗, P is linear, ‖P‖ ≤ K, and moreover if x ∈ X
then P (x) = x (to see this last assertion, choose F0 ∈ F such that x ∈ F0.
Then PF0(x) = x. But PF (x)→ P (x) weak∗. Hence P (x) = x).
Now consider the operator P ∗∗ : Y ∗∗ −→ (X∗∗)∗∗. If x∗∗inX∗∗, then P ∗∗(x∗∗) =
x∗∗ (this follows from the facts that P ∗∗|Y = P , that P ∗∗ is weak∗ continu-
ous, and that X is weak∗ dense in X∗∗). Also, regarding X∗∗ ⊆ (X∗∗)∗∗, there
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exists a projection Q : (X∗∗)∗∗ −→ X∗∗ of norm one (simply let Q be the
restriction of a linear functional on X∗∗∗ to X∗). Then the operator QP ∗∗|Y
is a projection from Y onto X∗∗, and consequently X∗∗ is injective.

Theorem 3.1.15. Let X an infinite dimensional Banach space.

(i) Let 1 < p < ∞. Then X is an Lp space or an L2 space if and only if
X is isomorphic to a complemented linear subspace of an Lp(µ) space.

(ii) Let p = 1 or p = ∞. Then X is an Lp space if and only if X∗∗ is
isomorphic to a complemented linear subspace of an Lp(µ) space.

Proof. We will give only the proof of (ii). Indeed, assume first that X is an
L1 space. By the previous theorem X∗ is injective and hence is isomorphic to
a complemented of C(K) space, for some compact Hausdorff space K. There-
fore X∗∗ is isomorphic to a complemented subspace of M(K) (the Banach
space of countable additive regular Borel measure on K, with ‖µ‖ = |µ|(K)).
It is not so hard to see that there exists a measure space with measure µ such
that M(K) is isometrically isomorphic to L1(µ). Then X∗∗ is isometrically
isomorphic to a L1(µ) space.
If X∗∗ is complemented in an L1(µ) space, then Proposition 3.1.9 (ii) asserts
that X is an L1 space.
Assume now that X is an L∞ space. By the previous theorem, X∗∗ is injec-
tive. But then X∗∗ is isometric to a complemented subspace of `∞(Γ), where
Γ is the unit ball of X∗∗∗.
Now assume that X∗∗ is isomorphic to a complemented subspace of an L∞(µ)
space. Since any L∞(µ) space is a P1 space (by Nachbin, Kelley and Good-
ner ’s theorem and for the fact that L∞(µ) is isometrically isomorphic to a
C(K) space, for some extremely disconnected compact Hausdorff space K
(see [28])). Then X∗∗ is injective, and so X is an L∞ space by Proposition
3.1.9 (i).

Now it is simple to see the following

Theorem 3.1.16. Let X be an infinite dimensional Banach space. Then

(i) X is an L1 space if and only if X∗ is an L∞ space;

(ii) X is an L∞ space if and only if X∗ is an L1 space.

We finish this section with the following

Theorem 3.1.17. Let X be an infinite dimensional Banach space



p-Summing and p-Factorable Operators 35

(i) Let 1 ≤ p ≤ ∞ and 1
p

+ 1
q

= 1. Then X is an Lp space if and only if
X∗ is an Lq space.

(ii) A complemented subspace of an Lp space is an Lp space or an L2 space.

(iii) If X is an Lp space, then there exists a K < ∞ such that whenever
F is a finite dimensional subspace of X, there exists a finite dimen-
sional subspace G of X such that F ⊆ G and d(G, `dimGp ) ≤ K, and a
projection from X onto G of norm at most K.

3.2 p-Summing and p- Factorable Operators

The class of p-summing operators were introduced formally by A. Pietsch [77]
and [78], but before for p = 1, 2 were introduced and studied by A.Grothendieck
[41].

Definition 3.2.1. If 1 ≤ p < ∞ and T : X −→ Y , then T is said to be
p-summing if there is a constant c ≥ 0 such that, for any m ∈ N and for any
choice of x1, x2, ..., xm in X, it happens(

m∑
i=1

||T (xi)||p
) 1

p

≤ c sup


(

m∑
i=1

|〈x∗, xi〉|p
) 1

p

: x∗ ∈ BX∗

 .

The smallest of such c’s is denoted by πp(T ) and the set of all p-summing
operators from X to Y will be called Πp(X, Y ).

It is simple to see that Πp(X, Y ) is a linear subspace of L(X, Y ), and πp
defines a norm on Πp(X, Y ) with

‖T‖ ≤ πp(T ) for all T ∈ Πp(X, Y )

Actually for any Banach spaces X, Y the space Πp(X, Y ) with the norm πp
is a Banach space. Some properties are in order:

Proposition 3.2.2. (Ideal Property of p-Summing Operators)
If v ∈ L(X, Y ) is p-summing (1 ≤ p < ∞), X0 and Y0 are Banach spaces
and u ∈ L(Y, Y0), w ∈ L(X0, X), then the composition operator u ◦ v ◦ w :
X0 −→ Y0 is p-summing with πp(u ◦ v ◦ w) ≤ ‖u‖ πp(v) ‖w‖.

Proposition 3.2.3. Let 1 ≤ p < ∞. If u : X −→ Y is a bounded linear
operator between two Banach spaces, then u is p-summing if and only if its
second adjoint u∗∗ : X∗∗ −→ Y ∗∗ is. In this case it is πp(u

∗∗) = πp(u).
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The charming side of the p-summing operators is the finite dimensional
character which they look like (see [85] for a nice application of this)

Proposition 3.2.4. Let X, Y be Banach spaces, and u : X −→ Y a bounded
linear operator. Then there exists a constant C so that u ∈ Πp(X, Y ) and
πp(u) ≤ C if and only if for each finite subspace X0 of X the restriction
u|X0 ∈ Π1(X0, Y ) and πp(u|X0) ≤ C.

Proposition 3.2.5. (Injectivity of Πp) If i : Y ↪→ Y0 is an isometry, then
v ∈ Πp(X, Y ) if and only if i ◦ v ∈ Πp(X, Y0). In this case we even have
πp(i ◦ v) = πp(v).

Proposition 3.2.6. (Inclusion Theorem) If 1 ≤ p < q < ∞, then
Πp(X, Y ) ⊆ Πq(X, Y ). Moreover, for u ∈ Πp(X, Y ) we have πq(u) ≤ πp(u).

Proposition 3.2.7. (Composition Theorem) Let u ∈ Πp(Y, Z) and v ∈
Πq(X, Y ) with 1 ≤ p, q <∞. Define 1 ≤ r <∞ by 1

r
= min{1, 1

p
+ 1

q
}. Then

u ◦ v is r-summing, and πr(u ◦ v) ≤ πp(u) · πq(v).

Who got seriously to study the p-summing operators was A. Pietsch, in
particular he get the important following (see [22] 2.12 for a proof)

Theorem 3.2.8. (Pietsch Domination Theorem)
Suppose that 1 ≤ p < ∞, that T : X −→ Y is a bounded linear operator
between the Banach spaces X, Y , and that K is a weak∗ compact norming
subset of BX∗. Then T is p-summing if and only if there exist a constant C
and a regular probability Borel measure µ on K such that for each x ∈ X

‖T (x)‖ ≤ C · (
∫
K

|〈x∗, x〉|pdµ(x∗) )
1
p

In such a case π(T ) is the least of all the constants C for which such a
measure exists.

Actually the Pietsch Domination theorem in terms of operators means:
T : X −→ Y is p-summing if and only if there is a regular Borel measure µ
on K, a closed linear subspace Xp of Lp(µ) and an operator T̃ : Xp −→ Y
such that the following diagram commuted:

X
T−→ Y

iX ↓ ↑ T̃

iX(X)
jXp−→ Xp

↓ ↓
C(K) Lp(µ)
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where iX : X −→ C(K) is the natural isometry (actually iX : X −→ `∞(K)
is the natural map iX(x)(x∗) = 〈x∗, x〉; remember that K is norming subset
of BX∗), and jXp is the restriction of the natural embeds jp : C(K) ↪→ Lp(µ)
(which is p-summing) on the closed linear subspace iX(X) of C(K). Now we
know that every Banach space Y embeds naturally in `∞(BY ∗) which is an
injective space. Then using the the peculiarity of the injective spaces we get

Theorem 3.2.9. (Pietsch Factorization Theorem)
Let 1 ≤ p < ∞, let X and Y be Banach spaces , let K be a weak∗ compact
norming subset of BX∗. Then a bounded linear operator T : X −→ Y is
p-summing if and only if there exist a regular Borel probability measure µ on
K and bounded linear operators u : X −→ C(K), v : Lp(µ) −→ `∞(BY ∗)
such that the following diagram commutes:

X
T−→ Y

iY
↪→ `∞(BY ∗)

u ↓ ↗ v

C(K)
jp
↪→ Lp(µ)

In addition, we may choose µ u, v such that ‖v‖ = 1 and ‖u‖ = π(T )

Actually the Pietsch Factorization Theorem say us that a p-summing
operator factorize ”almost” for a Lp(µ) space. In particular when Y is an
injective Banach space a p-summing operator T : X −→ Y factorize through
an Lp(µ) space. The argument above suggest to Kwapień [56] the following

Definition 3.2.10. If 1 ≤ p ≤ ∞, an operator T : X −→ Y between Banach
spaces is called p-factorable if there exists a measure space (Ω,Σ, µ) and two
operators a : Lp(µ)→ Y ∗∗ and b : X → Lp(µ) such that the following diagram
commutes

X
T−→ Y

kY
↪→ Y ∗∗

b ↘ ↗ a

Lp(µ)

where kY is the natural embeds from Y into Y ∗∗.
We will denote with γp(u) the smallest of all products ‖a‖ · ‖b‖ where a and
b run over all the possible factorizations of kY u we have indicated. Instead
Γp(X, Y ) will be the set of all p-factorable operators from X to Y .

It is simple to see that Γp(X, Y ) is a linear subspace of L(X, Y ), and γp
defines a norm on Γp(X, Y ) with

‖T‖ ≤ γp(T ) for all T ∈ Γp(X, Y )

Actually for any Banach spaces X, Y the space Γp(X, Y ) with the norm γp
is a Banach space. Some properties are in order:
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Proposition 3.2.11. (Ideal Property of p-Factorable Operators) If
v ∈ Γp(X, Y ) (1 ≤ p <∞), X0 and Y0 are Banach spaces and u ∈ L(Y, Y0),
w ∈ L(X0, X), then the composition operator u ◦ v ◦ w ∈ Γp(X, Y ) with
γp(u ◦ v ◦ w) ≤ ‖u‖ γp(v) ‖w‖.

Proposition 3.2.12. Let 1 ≤ p < ∞ and p∗ := p
p−1

. If u : X −→ Y is
abounded linear operator between two Banach spaces, then the following are
equivalent

(i) u : X −→ Y is p-factorable

(ii) u∗ : Y ∗ −→ X∗ is p∗-factorable

(iii) u∗∗ : X∗∗ −→ Y ∗∗ is p-factorable

In this case it is γp(u
∗∗) = γp∗(u

∗) = γp(u).

Analogously to the p- summing operators, the p- factorable operators
have a finite dimensional character as the following show

Proposition 3.2.13. Let 1 ≤ p ≤ ∞. An operator u ∈ L(X, Y ) is p-
factorable if and only if

c := sup{γp(qF ◦ u ◦ iE) : E ∈ FX , F ∈ CY } <∞,

where recall that FX is denoted the class of finite dimensional subspaces of
X with the natural embeds iE (E ∈ FX), and CY is denoted the class of finite
codimensional subspaces of Y with qF the natural quotient (F ∈ CY ).
In this case, γp(u) = c.

It was one of Grothendieck’s Résumé question [41] the following: does
every absolutely summing (or 1-summing) operator factor through an L1(µ)
space ? form this question Reisner [88] introduced the following notion:

Definition 3.2.14. A Banach space X has the Gordon Lewis property (or
that X is a GL-space) if every 1-summing operator from X to `2 is 1-
factorable. Obviously this is equivalent to require the existence of a constant
c such that

γ1(u) ≤ c π1(u)

for every u ∈ Π1(X, `2). In this cases we will call gl(X) the smallest of all
these constants.
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Actually Reisner required that Π1(X, Y ) ⊆ Γ1(X, Y ) for every Banach
space Y (the above definition came from Gordon and Lewis’s paper [40]). It
is unknown if the Reisner definition is more restrictive than the above defi-
nition.
Before to continue we need to recall some concept between the Banach lat-
tices structure and the GL property.
A Schauder basis (xn)n is unconditional basis if for each x ∈ X the series∑

n∈N〈x∗n, x〉xn converges unconditionally to x (where (x∗n)n denoted the cor-
responding biorthogonal sequence in X∗). It seems that the unconditionally
condition is equivalent to requiring the convergence of

∑
n tn〈x∗n, x〉xn for

every t = (tn)n ∈ `∞, and there is a constant λ ≥ 1 such that

‖
∑
n

tn〈x∗n, x〉xn‖ ≤ λ‖
∑
n

〈x∗n, x〉xn‖

for every t ∈ B`∞ . We write λ(xn)n for the smallest such λ. The unconditional
basis constant of X is

ub(X) = inf{λ(xn)n : (xn)n is an unconditional basis}

Note that if X is a Banach space with an unconditional basis (xn)n with
‖xn‖ = 1 for each n, we can build a natural lattices structure on X by
defining x ≤ y if and only if 〈x∗n, x〉 ≤ 〈x∗n, y〉 for all n. By setting

‖|x|‖ = sup
(tn)∈`∞

‖
∑
n

tn〈x∗n, x〉xn‖,

we get an equivalent norm on X with respect to which it is a Banach lattice.
The condition that a Banach space has an unconditional basis is pretty
strong, for example the familiar space L1[0, 1] doesn’t have any unconditional
basis. We can anyway consider a weaker property:

Definition 3.2.15. We say that a Banach space X has local unconditional
structure (l.u.st.) if there exists a constant Λ ≥ 1 such that, for every
E ∈ FX , the canonical embedding E ↪→ X factors through a Banach
space Y with unconditional basis via two operators E

v→ Y
u→ X satis-

fying ||u|| ||v||ub(Y ) ≤ Λ. The smallest of these constants is called the l.u.st.
constant of X and is denoted by Λ(X).

It is clear that Banach spaces X with unconditional basis have obviously
l.u.st. and Λ(X) ≤ ub(X). Even if L1[0, 1] doesn’t have any unconditional
basis. But we have more

Theorem 3.2.16. Every Banach lattice has local unconditional structure,
and the l.u.st. constant equal to one.
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For what we have seen above every Banach space with unconditional basis
is isomorphic to a Banach lattice, and the last one has local unconditional
structure. To close the chain of implications we have the following (from that
derive the name of such a property; see [40])

Theorem 3.2.17. (Gordon-Lewis Inequality) Let X and Y be Banach
spaces and suppose that X has local unconditional structure. Then every 1-
summing operator u : X −→ Y is 1-factorable, with

γ1(u) ≤ Λ(X) π1(u)

That means every Banach space with local unconditional structure has
the GL property and gl(X) ≤ Λ(X).

It is interesting to observe that, if a real Banach space X has an uncon-
ditional basis (x̃n)n, then we can normalize it obtaining a new unconditional
basis (xn)n with biorthogonal sequence (x∗n)n; at this point we create a lattice
structure on X defining the order relation:

x ≤ y :⇔ 〈x∗n, x〉 ≤ 〈x∗n, y〉 ∀n ∈ N.

The space X with this order relation is a Riesz space and we can renorm our
space setting

|||x||| := sup

{∥∥∥∥∥
∞∑
n=1

tn〈x∗n, x〉xn

∥∥∥∥∥ : (tn)n ∈ B`∞

}
;

what we get is a norm on X equivalent to the original norm that makes the
space a Banach lattice. Because it is possible to do this even for complex
Banach spaces, it follows that every Banach space X with an unconditional
basis is isomorphic to a Banach lattice.

L.u.st. is clearly a property invariant by isomorphism so all we have just
said leads us to this chain of implications:

X has an unconditional basis ⇒ X is isomorphic to a Banach lattice ⇒

⇒ X has local unconditional structure ⇒ X is a GL-space .

It seems that the chain of implications is not closed, actually one can
think that a Banach space with GL-property is so far to be isomorphic to
a Banach lattice. The next spectacular theorem (see [10]) shows that is not
true

Theorem 3.2.18. Let X be a Banach space. The following two statements
are equivalent
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(i) X has GL-property;

(ii) there is a Banach lattice L ⊇ X so that every T ∈ Π1(X, `2) admits an

extension T̃ ∈ Π1(L, `2).

3.3 L.U.ST. and GL property in Tensor Prod-

ucts

The idea of extending l.u.st. from two Banach spaces to their injective and
projective tensor product is already in the fundamental paper of Y. Gordon
and D.R. Lewis [40]; in particular one of the results they get is the following:

if E and F are Lp-spaces (1 < p < ∞), then none of E
∧
⊗ε F , E

∧
⊗π F ,

(E
∧
⊗ε F )∗, (E

∧
⊗π F )∗, (E

∧
⊗π F )∗∗, (E

∧
⊗π F )∗∗, etc... has l.u.st. In this

section we study the case p = 1 and p = ∞. In fact we show that if X is

a L1-space (resp. L∞-space) and Y a Banach space, then X
∧
⊗π Y (resp.

X
∧
⊗ε Y ) has lust property (or GL-property) if Y does. In the same paper of

Gordon-Lewis ([40]) it is possible to find the proof that other tensor products

fail to have l.u.st.: `∞
∧
⊗π `p for 1 < p ≤ ∞ and `1

∧
⊗ε `p for 1 ≤ p <∞ don’t

have l.u.st. so it is impossible to prove the theorem even for L∞
∧
⊗π X and

L1

∧
⊗ε X.
Now we recall the following well known lemma, which we are including

the proof for sake of completeness.

Lemma 3.3.1. If E ∈ F then ub(E) = ub(E∗).

Proof. Consider a basis (xi)
n
i=1 of E and the corresponding biorthogonal basis

(x∗i )
n
i=1 in E∗; then we have

x =
n∑
i=1

〈x∗i , x〉xi ∀x ∈ E

and

x∗ =
n∑
i=1

〈x∗, xi〉x∗i ∀x∗ ∈ E∗

It follows:

λ(xi)ni=1
= sup

{∥∥∥∥∥
n∑
i=1

tix
∗
i (x)xi

∥∥∥∥∥
E

: (ti) ∈ B`n∞ , x ∈ BE

}
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= sup

{∣∣∣∣∣x∗
(

n∑
i=1

tix
∗
i (x)xi

)∣∣∣∣∣ : (ti) ∈ B`n∞ , x ∈ BE, x
∗ ∈ BE∗

}

= sup

{∣∣∣∣∣
n∑
i=1

tix
∗
i (x)x∗(xi)

∣∣∣∣∣ : (ti) ∈ B`n∞ , x ∈ BE, x
∗ ∈ BE∗

}

= sup

{∣∣∣∣∣
(

n∑
i=1

tix
∗(xi)x

∗
i

)
(x)

∣∣∣∣∣ : (ti) ∈ B`n∞ , x ∈ BE, x
∗ ∈ BE∗

}

= sup

{∥∥∥∥∥
n∑
i=1

tix
∗(xi)x

∗
i

∥∥∥∥∥
E∗

: (ti) ∈ B`n∞ , x
∗ ∈ BE∗

}
= λ(x∗i )ni=1

.

Thanks to this we can say that the bijective correspondence between the
basis of E and the basis of E∗ that sends each basis in the corresponding
biorthogonal basis preserves the unconditional constant of the basis, so the
thesis follows.

Lemma 3.3.2. If F ∈ F then ub(`n∞
∧
⊗ε F ) ≤ ub(F ).

Proof. Let m = dimF . If (ti,j) ∈ B`nm∞ , αi,j ∈ R, i = 1, 2, ..., n, j = 1, 2, ...,m,
and (yj)

m
j=1 is a basis of F , then∥∥∥∥∥

n∑
i=1

m∑
j=1

ti,j αi,j ei ⊗ yj

∥∥∥∥∥
ε

=

= sup
1≤i≤n

∥∥∥∥∥
m∑
j=1

ti,j αi,j yj

∥∥∥∥∥
F

≤ sup
1≤i≤n

ub(F )

∥∥∥∥∥
(

m∑
j=1

αi,j yj

)∥∥∥∥∥
F

= ub(F )

∥∥∥∥∥
n∑
i=1

m∑
j=1

αi,j ei ⊗ yj

∥∥∥∥∥
ε

.

An easy consequence of the previous lemmas is the following:

Corollary 3.3.3. If F ∈ F then ub(`n1
∧
⊗π F ) ≤ ub(F ).

Lemma 3.3.4. Let X be a normed space and X̃ its completion . If X has
l.u.st. then X̃ has l.u.st.
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Proof. For the lemma‘s proof we need of the following result ([22] Lemma
17.3):
Let {x1, ..., xn} be a basis for the finite dimensional normed space E. Given
0 < ε < 1 there is a δ > 0 such that if X is a Banach space containing E
and if x̃1, ..., x̃n ∈ X satisfy ‖x̃k − xk‖ ≤ δ (1 ≤ k ≤ n), then there exists an
operator u ∈ L(X,X) such that
(a) u(x̃k) = xk (1 ≤ k ≤ n);
(b) (1− ε)‖x‖ ≤ ‖u(x)‖ ≤ (1 + ε)‖x‖.
Finally, from (b) u is invertible with ‖u‖ ≤ 1 + ε and ‖u−1‖ ≤ (1− ε)−1.

Let G̃ a finite dimensional subspace of X̃. Suppose that G̃ = span{ũ1, ..., ũn}.
Now, fix 0 < ε < 1 and we consider δ as above. Since X is dense in X̃, we
choose uk ∈ X so that ‖uk − ũk‖ < δ.
Let G = span{u1, ..., un}. Then G is a finite dimensional subspace of X.
Therefore there exists an Banach space F with unconditional basis, a ∈
L(G,F ) and b ∈ L(F,X) so that

i = b ◦ a , ‖a‖ ‖b‖ ub(F ) ≤ Λ(X)

where we are denoting with i the natural map from G to X.
Let u ∈ L(X̃, X̃) so that
(a) u(uk) = ũk (1 ≤ k ≤ n);
(b) ‖u‖ ≤ 1 + ε and ‖u−1‖ ≤ (1− ε)−1.

Then u|X ◦ b ◦ a ◦ u−1|G̃ is just the natural map from G̃ to X̃ with ‖a ◦
u−1|G̃‖ ‖u|X ◦ b‖ ub(F ) ≤ Λ(X)

The two previous computations in the case of finite dimension lead us to
the two following theorems.

Theorem 3.3.5. Let X a Banach space and K a compact Hausdorff space.
Then C(K,X) has l.u.st. if X does and Λ(C(K,X)) ≤ Λ(X).

Proof. By previous lemma it is enough to show that C(K) ⊗ X has l.u.st
when equipped with the injective norm ‖ ‖ε.
C(K) is a L∞,-space, so if ε > 0 is given and E ∈ FC(K), there is an Ẽ ∈
FC(K), E ⊆ Ẽ, and an isomorphism u : Ẽ → `dimẼ∞ with ||u|| ||u−1|| < 1 + ε.

X has l.u.st. so, given F ∈ FX , there is an F̃ ∈ FX , F ⊆ F̃ , and v : F → F̃ ,
w : F̃ → X with w◦v = iF such that ||v|| ||w||ub(F̃ ) ≤ Λ(X). If G ∈ FC(K)⊗X
we can find an E ∈ FC(K) and F ∈ FX such that G ⊆ E ⊗ F ⊆ C(K)⊗X,
where the two inclusions are isometries when each of the two tensor products
is equipped with the injective norm, because the injective norm is injective.
Let’s name our isometries:

I : G ↪→ E ⊗ F, i : E ↪→ Ẽ, j : Ẽ ↪→ C(K);
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now put them together:

G
I−→ E ⊗ F i⊗idF−→ Ẽ ⊗ F u⊗v−→ `dimẼ∞ ⊗ F̃ u−1⊗w−→ Ẽ ⊗X j⊗idX−→ C(K)⊗X

and call U = (u⊗ v) ◦ (i⊗ iF ) ◦ I and V = (j ⊗ idX) ◦ (u−1⊗w); notice that
V ◦ U is the natural inclusion of G into C(K) ⊗ X and, taking in account
previous lemma 4,

||U || ||V ||ub(`dimẼ∞ ⊗ F̃ )

≤ ||u|| ||v|| ||i|| ||iF || ||I|| ||j|| ||idX || ||u−1|| ||w||ub(F̃ )

= ||u|| ||u−1|| ||v|| ||w||ub(F̃ ) ≤ (1 + ε)Λ(X).

Because ε > 0 is arbitrary, we get: C(K,X) has l.u.st. and Λ(C(K,X)) ≤
Λ(X).

Theorem 3.3.6. If (Ω,Σ, µ) is a measure space and X is a Banach space
with l.u.st., then L1(µ,X) has l.u.st.

Proof. Again in this proof we will take lemma 3.3.4 into account.
Take G ∈ FL1(µ)⊗X : we can find E ∈ FL1(µ), E

′ ∈ FX , such that G ⊆ E⊗E ′.
We know ([61], Proposition II.5.9) there is a constant ρ ≥ 0 so that, for
every E ∈ FL1(µ), there exists a finite dimensional subspace E ′′ of L1(µ)
containing E and a projection P from L1(µ) onto E ′′ of norm ≤ ρ. Since we
are working with L-space, we have L1(µ) ⊗ E ′ is a subspace of L1(µ) ⊗ X,
where each is equipped with projective norm ‖ ‖π, then there is an isometry
I : G→ L1(µ)⊗ E ′.
Moreover, following the demonstration of the previous theorem, we can find
an n ∈ N, an F ∈ FX and two operators U : E ′′⊗E ′ → `n1 ⊗F , V : `n1 ⊗F →
L1(µ)⊗X, such that V ◦U is the natural inclusion of E ′′⊗E ′ in L1(µ)⊗X
and ||U || ||V ||ub(`n1 ⊗ F ) ≤ (1 + ε)Λ(X). Now the composition

G
I−→ L1(µ)⊗ E ′ P⊗idE′−→ E ′′ ⊗ E ′ U−→ `n1 ⊗ F

V−→ L1(µ)⊗X

is the natural inclusion of G in L1(µ)
∧
⊗ X and

||V || ||U ◦ (P ⊗ idE′) ◦ I||ub(`n1 ⊗ F ) ≤ ||V || ||U || ||P || ||idE′ || ||I||ub(`n1 ⊗ F )

≤ ρ(1 + ε)Λ(X)

and so (again by the lemma above) L1(µ,X) = L1(µ)
∧
⊗π X has l.u.st. and

Λ(L1(µ,X)) ≤ ρ Λ(X).
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Now it is time for GL property.

Lemma 3.3.7. If X is a Banach space with the GL-property and n ∈ N,
then `n∞(X) is a GL-space and gl(`n∞(X)) ≤ gl(X).

Proof. Recall that `n∞(X) can be viewed as a C(K,X) space in the obvious
way (where K is a finite set of points {k1, k2, ..., kn} considered with the
discrete topology). From this, using a result of Pietsch (III.19.5 of [77]), we
see that every operator u : `n∞(X)→ Y is representable in the form

u(f) =

∫
K

f(k)dm(k) ∀f ∈ `n∞(X)

where m is a vector measure of bounded semivariation from the collection of
all subsets of K to L(X, Y ∗∗); then we can write u in this way:

u(x1, x2, ..., xn) = u
(
f(x1,x2,...,xn)

)
=

∫
K

f(x1,x2,...,xn)(k)dm(k)

=
n∑
i=1

∫
{ki}

f(x1,x2,...,xn)(k)dm(k)

=
n∑
i=1

m({ki})
(
f(x1,x2,...,xn)(ki)

)
=

n∑
i=1

m({ki})(xi).

Now we can recall two theorems of Swartz: if u ∈ Π1 (`n∞(X), Y ), then m’s
values are all in the space Π1 (X, Y ) (Theorem 7 of [96]) and m has finite
variation with respect to the π1-norm with

(π1 − var)(m) ≤ π1(u)

(Theorem 8 of [96]) and so

n∑
i=1

π1(m({ki})) ≤ π1(u).

By hypothesis every m({ki}) is 1-factorable, so, if we call Pi the norm 1
projection from `n∞(X) onto X defined by

Pi((x1, x2, ..., xn)) = xi ,
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we have

u =
n∑
i=1

m({ki}) ◦ Pi

so u is 1-factorable with

γ1(u) ≤
n∑
i=1

γ1 (m({ki}) ◦ Pi)

≤
n∑
i=1

γ1 (m({ki}))

≤ gl(X)
n∑
i=1

π1 (m({ki}))

≤ gl(X)π1(u).

Corollary 3.3.8. `n1 (X) has the GL-property if X does and gl(`n1 (X)) ≤
gl(X).

Proof. Since X has G-L property iff X∗ has G-L property with gl(X) =
gl(X∗) (see, for instance, [22] 17.9 Proposition), and the last lemma:
(`n1 (X))∗ = `n∞(X∗) has the GL-property, that implies `n1 (X) has the GL-
property and

gl(`n1 (X)) = gl((`n1 (X))∗) = gl(`n∞(X∗)) ≤ gl(X∗) = gl(X).

Remark 3.3.9. As lemma 6 above we can have: Let X is a normed space
and X̃ its completion. If X is an G-L space then X̃ is an G-L space.
This is clear since, if u ∈ Π1(X̃, `2) then u|X ∈ Π1(X, `2) = Γ1(X, `2). That

means u ∈ Γ1(X̃, `2)

Theorem 3.3.10. C(K,X) has the GL-property if X does and gl(C(K,X)) ≤
gl(X).

Proof. Fix ε > 0. For any E ∈ FC(K)⊗X we can find F ∈ FC(K), G ∈ FX and
an isomorphism v : F → `dimF∞ with ||v|| ||v−1|| ≤ 1 + ε such that E ⊆ F ⊗G.
Let ω ∈ Π1(C(K) ⊗ X, Y ) and consider the canonical inclusions I : E →
F ⊗G, j : G→ X and i : F → C(K); look at the diagram

E
I−→ F ⊗G v⊗j−→ `dimF∞ ⊗X v−1⊗idX−→ F ⊗X i⊗idX−→ C(K)⊗X ω−→ Y
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then

γ1(ω|E) = γ1(ω ◦ (i⊗ idX) ◦ (v−1 ⊗ idX) ◦ (v ⊗ j) ◦ I)

≤ γ1(ω ◦ (i⊗ idX) ◦ (v−1 ⊗ idX)) ||(v ⊗ j) ◦ I||
≤ gl(X)π1(ω ◦ (i⊗ idX) ◦ (v−1 ⊗ idX)) ||v||
≤ gl(X)π1(ω) ||v−1|| ||v||
≤ gl(X)π1(ω)(1 + ε).

Because ε > 0 and E ∈ FC(K)⊗X are arbitrary and since 1-factorable has
finite dimensional nature we get: ω is 1-factorable and γ1(ω) ≤ gl(X)π(ω),
so the thesis follows.

Theorem 3.3.11. L1(µ,X) has the GL-property if X does.

Proof. Again in this proof we will take in account the remark above.
Let ε > 0. Using Proposition II.5.9 of [61] we get a constant ρ ≥ 0 such that,
for any E ∈ FL1(µ)⊗X , we can find F ∈ FL1(µ), G ∈ FX , an isomorphism
v : F → `dimF1 with ||v|| ||v−1|| ≤ 1 + ε and a projection P from L1(µ) onto
F of norm less or equal to ρ, such that E ⊆ F ⊗G.
Let ω ∈ Π1(L1(µ)⊗X, Y ). Because we are working with L-space, L1(µ)⊗G
is a subspace of L1(µ) ⊗ X, and then E is a subspace of L1(µ)⊗̂πG, so we
can consider the canonical inclusions I : E → L1(µ) ⊗ G, j : G → X and
i : F → L1(µ) and their composition:

E
I−→ L1(µ)⊗G P⊗idG−→ F⊗G v⊗j−→ `dimF1 ⊗X v−1⊗idX−→ F⊗X i⊗idX−→ L1(µ)⊗X ω−→ Y.

Then we get

γ1(ω|E) = γ1(ω ◦ (i⊗ idX) ◦ (v−1 ⊗ idX) ◦ (v ⊗ j) ◦ (P ⊗ idG) ◦ I)

≤ γ1(ω ◦ (i⊗ idX) ◦ (v−1 ⊗ idX)) ||(v ⊗ j) ◦ (P ⊗ idG) ◦ I||
≤ gl(X)π1(ω ◦ (i⊗ idX) ◦ (v−1 ⊗ idX)) ||P || ||v||
≤ gl(X)π1(ω) ||v−1|| ||v|| ||P ||
≤ gl(X)π1(ω)ρ(1 + ε).

This implies that ω is 1-factorable and γ1(ω) ≤ gl(X)ρ π(ω), so L1
X(µ) has

the GL-property and gl(L1
X(µ)) ≤ ρ gl(X).

To extend the above results on L1 and L∞-spaces we need the following
lemmas :

Lemma 3.3.12. X∗∗
∧
⊗ε Y is a closed subspace of (X

∧
⊗ε Y )∗∗
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Proof. Let x∗∗ ⊗ y ∈ X∗∗
∧
⊗ε Y and φ ∈ (X

∧
⊗ε Y )∗ = Bπ(X, Y ) subspace of

Bπ(X∗∗, Y ), then we have |φ(x∗∗⊗ y)| ≤ ‖φ‖π‖x∗∗⊗ y‖ε. So x∗∗⊗ y ∈ (X
∧
⊗ε

Y )∗∗. For this, it’ s easy see that X∗∗
∧
⊗ε Y ⊆ (X

∧
⊗ε Y )∗∗.

Now, we have to show that ‖
∑p

i=1 x
∗∗
i ⊗ yi‖ε = ‖

∑p
i=1 x

∗∗
i ⊗ yi‖(X

∧
⊗εY )∗∗

. The

inequality ‖
∑p

i=1 x
∗∗
i ⊗yi‖ε ≤ ‖

∑p
i=1 x

∗∗
i ⊗yi‖(X

∧
⊗εY )∗∗

follows easily from the

definition of ‖ · ‖ε norm and Goldstine ’s theorem. For the converse

‖
p∑
i=1

x∗∗i ⊗yi‖(X
∧
⊗εY )∗∗

= sup{|(
p∑
i=1

x∗∗i ⊗yi)(φ)| : φ ∈ Bπ(X, Y ), ‖φ‖π ≤ 1} ≤

≤ sup{|(
p∑
i=1

x∗∗i ⊗ yi)(φ)| : φ ∈ Bπ(X∗∗, Y ), ‖φ‖∧ ≤ 1} = ‖
p∑
i=1

x∗∗i ⊗ yi‖ε

Because the elements of the type
∑p

i=1 xi⊗ yi are dense in X∗∗
∧
⊗ε Y , we are

done.

Lemma 3.3.13. Let X and Y be Banach spaces such that X∗∗ or Y has the

Bounded Approximation Property. Then X∗∗
∧
⊗π Y is isomorphic to a closed

subspace of (X
∧
⊗π Y )∗∗

Proof. The trace duality Φ : X∗∗
∧
⊗π Y → (X

∧
⊗π Y )∗∗ = (L(X, Y ∗))∗ by

Φ(z)(φ) =< φ, z >

has norm 1. The canonical map I : X∗∗
∧
⊗π Y → (X∗

∧
⊗ε Y ∗)∗ = (K(X, Y ∗))∗

is a isomorphic embedding (because X∗∗ or Y ∗ has B.A.P., see 1.1.16 ). If
α : (L(X, Y ∗))∗ → (K(X, Y ∗))∗ is the restriction map, we have αΦ = I. Then
Φ is a isomorphic embedding as well.

Theorem 3.3.14. Let X and Y be Banach spaces. We have

1. If X is a L∞-space, then

X
∧
⊗ε Y has l.u.st. property if Y does;

2. If X is a L1-space, then

X
∧
⊗π Y has l.u.st. property if Y does.

Proof. Let S a subspace finite-dimensional of X
∧
⊗ε Y . Since X is a L∞-space

then X∗∗ is complemented in a C(K) space, for some compact Hausdorff
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space K. Therefore X∗∗
∧
⊗ε Y is complemented in C(K,Y ) (see [4]) by a

projection P . We have

S
i→ X

∧
⊗ε Y

iX⊗idY→ X∗∗
∧
⊗ε Y

Ψ→ C(K,Y )

where i is the canonical embedding, and Ψ the natural inclusion. Then Ψ ◦
iX ⊗ idY ◦ i is the canonical embedding from S into C(K,Y ). Since C(K,Y )
has l.u.st., there is a Banach space Z finite-dimensional with unconditional
bases such that

S
v→ Z

u→ C(K,Y )

Ψ ◦ iX ⊗ idY ◦ i = u ◦ v

Moreover P ◦ u(Z) is a subspace finite dimensional of X∗∗
∧
⊗ε Y hence, for

lemma 16, P ◦ u(Z) is a finite dimensional subspace of (X
∧
⊗ε Y )∗∗.

By the Principle of local reflexivity there exists a injective operator s : P ◦
u(Z) −→ X

∨
⊗ Y such that

s(e) = e ∀e ∈ (P ◦ u(Z)) ∩ (X
∨
⊗ Y )

Then ũ = s ◦ P ◦ u is such that

ũ : Z −→ X
∨
⊗ Y

and

v ◦ ũ = i

and

‖v‖‖ũ‖ub(Z) ≤ ‖P‖Λ(C(K,Y ))

.
(2) it’s the same as (1), where we considered L1(µ, Y )-space instead of C(K,Y ),
and lemma 3.3.13 instead of lemma 3.3.12.

Theorem 3.3.15. Let X and Y be Banach spaces. We have

1. If X is a L∞-space, then

X
∧
⊗ε Y has GL property if Y does;

2. If X is a L1-space, then

X
∧
⊗π Y has GL property if Y does.
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Proof. Let

u : X
∧
⊗ε Y → `2

an 1-summing operator, then u∗∗ ∈ Π1((X
∧
⊗ε Y )∗∗, `2). Now consider ũ =

u∗∗|
X∗∗

∧
⊗εY

(we note that for lemma 16 X∗∗
∧
⊗ε Y is a closed subspace of

(X
∧
⊗ε Y )∗∗ so ũ ∈ Π1(X∗∗

∧
⊗ε Y, `2)). As in the proof above X∗∗

∧
⊗ε Y is

complemented in C(K,Y ). Since C(K,Y ) has GL property, we have

ũ ◦ P ∈ Γ1(C(K,Y ), `2)

Then u = ũ ◦ P |
X
∧
⊗εY

is in Γ1(X
∧
⊗ε Y, `2), with

γ1(u) ≤ ‖P‖gl(C(K,Y ))π1(u)

(2) it is the same as (1), where using Lemma 3.3.13 instead of Lemma 3.3.12.
We are done

We end this section with two natural questions:

Questiones 3.3.16.

(1) If X is a Banach space so that X
∧
⊗π Y has l.u.st. (GL-property) when-

ever Y does, is X a L1-space?

(2) If X is a Banach space so that X
∧
⊗ε Y has l.u.st. (GL-property) when-

ever Y does, is X a L∞-space?



Chapter 4

Weakly Compact Subsets in
Projective Tensor Products

4.1 Some Preliminaries Facts

The problem to understand the compactness in any Banach space it is related
to many classical problems in many areas of analysis. In projective tensor
products the first signal of norm-compactness came from a classical result of
Grothendieck (see [41]). He showed that

Proposition 4.1.1. Let X and Y be Banach spaces. A subset K of the

projective tensor product X
∧
⊗π Y of X and Y is compact if and only if

there exist KX and KY compacts subsets of X and Y respectively such that
K ⊆ co(KX ⊗KY ), where with KX ⊗KY is denoted the set {x ⊗ y : x ∈
KX , y ∈ KY }.

Using this fact Grothendieck (see [41], p.51) deduced

Proposition 4.1.2. Let K ⊆ X
∧
⊗π Y be a compact subset of the projective

tensor product of X and Y . Then there exist two norm null sequences {xn}n
and {yn}n in X and Y respectively, and a compact subset K

`1
of `1 so that

every element of u ∈ K can be written as u =
∑∞

i=1 λ
u
i xi ⊗ yi where λu =

{λun}n ∈ K
`1

.

This was the main topic to understand the norm-compact subsets of
K(X, Y ) andW(X, Y ) (the space of compact and weakly compact operators
from X to Y respectively, see [1], [65] and [74]). Essentially Grothendieck
used only the following facts:

if K is a compact subset of X
∧
⊗π Y , from the proposition above, there

51
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exist two compact subsets KX , KY of X and Y respectively so that K ⊆
co(KX ⊗ KY ). Now, for a beautiful Grothendieck ’s result (i.e. see [72] for
example) we know that there exist norm-null sequences (xn)n ⊆ X and
(yn)n ⊆ Y so that

KX ⊆ co{xn ; n ∈ N} and KY ⊆ co{yn : n ∈ N}

Now it is clear who are {xn}n∈N, {yn}n∈N and K
`1

.
In the study of weakly compact subsets of the projective tensor product the
singular result of Ü lger [100] practically settled the problem in case one was
an L1(µ)-space. Ü lger’s result was polished into final form in [25].
Previous to Ü lger’s work, Michel Talagrand [97] offered a profound analysis

of conditionally weakly compact subsets of X
∧
⊗ Y when X is an L1(µ)-space.

Talagrand’s work influenced Ü lger and so all that’s came since. Here is the
end result of Ü lger, Diestel-Ruess-Schachermayer.

Theorem 4.1.3. (Ü lger, Diestel, Ruess, Schachermayer) Let (Ω,Σ, µ)
be a finite measure space, and let X be a Banach space. Let A be a bounded
subset of L1(µ,X). Then the following are equivalent:

(i) A is relatively weakly compact;

(ii) A is uniformly integrable, and, given any sequence (fn)n ⊆ A there
exists a sequence (gn)n with gn ∈ co{fk, k ≥ n} such that (gn(ω))n is
norm convergent in X for a.e. ω ∈ Ω;

(iii) A is uniformly integrable, and, given any sequence (fn)n ⊆ A there is
a sequence (gn)n with gn ∈ co{fk, k ≥ n} such that (gn(ω))n is weakly
convergent in X for a.e. ω ∈ Ω;

For the weak-compactness in projective tensor product almost nothing
is known. First of all a big difference with the norm-compact in projective
tensor norm is that, if KX and KY are norm-compact subsets of the Banach
spaces X and Y respectively, then KX ⊗ KY is a norm-compact subset of

X
∧
⊗π Y . For the weak-compact subsets in projective tensor products the

story changes completely. Indeed if X and Y are reflexive Banach spaces
then BX , BY are two weak-compacts subsets of X and Y respectively. But

since B
X
∧
⊗πY

= co(BX⊗BY ), if BX⊗BY was weak-compact in X
∧
⊗π Y then

by the Krein-Smulian’s theorem (i.e. see [72], 2.8.14) B
X
∧
⊗πY

should be weak-

compact; in particular we should fin that X
∧
⊗π Y reflexive, a fact very rare

in projective tensor product (that happens only when L(X, Y ∗) = K(X, Y ∗),
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see [15], I.6; indeed `2

∧
⊗π `2 is not reflexive). What we can say is just a little

bit, but first we need to recall some definition.

Definition 4.1.4. (A. Grothendieck, [44]) Let X and Y be Banach
spaces. A bounded linear operator T : X −→ Y is called completely con-
tinuous if maps weakly convergent sequences to norm convergent sequence.
A Banach space X has the Dunford-Pettis property (DPP) if, for every Ba-
nach space Y , every weakly compact operator from X to Y is completely
continuous (see [17] for a good source).
It is know this condition to be equivalents to:

(i) Every weakly compact linear operator from X into c0 is completely
continuous;

(ii) For every sequence (xn)n in X converging weakly to some x and ev-
ery sequence (x∗n)n in X∗ converging weakly to some x∗, the sequence
{x∗n(xn)}n converges to x∗(x);

(iii) For every sequence (xn)n in X converging weakly to 0 and every se-
quence (x∗n)n in X∗ converging weakly to 0, the sequence {x∗n(xn)}n
converges to 0.

Proposition 4.1.5. Let X , Y be Banach spaces, with X having the Dunford-
Pettis property. If WX ⊆ X and WY ⊆ Y are weakly compact subsets then

WX ⊗WY is a weakly compact of X
∧
⊗ Y

Proof. By the Eberleiň-Smuliàn theorem it is suffices to show that WX⊗WY

is weakly sequentially compact. Let (un = xn ⊗ yn)n be a sequence in WX ⊗
WY . Let (nk)k be a strictly increasing sequence of positive integers such that
for some x ∈ WX and y ∈ WY

x = weak − lim
k→∞

xnk , and y = weak − lim
k→∞

ynk

We need to test (unk)k vis-a-vis members of (X
∧
⊗ Y )∗. Since (X

∧
⊗ Y )∗ =

B(X, Y ), the space of bilinear continuous functionals on X × Y , take a con-
tinuous bilinear functional F on X × Y . If x∗k = F (·, ynk), then x∗k ∈ X∗ and
x∗ = F (·, y) ∈ X∗. Define TF : Y −→ X∗ by

TF (y)(x) = F (x, y)

TF is a bounded linear operator and TF (ynk) = x∗nk as well as TF (y) = x∗.
Since TF is also weak-to-weak continuous, the fact that (ynk)k converges
weakly to y soon reveals that (x∗nk)k converges weakly to x∗. Now we are in
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business: x = weak−limk→∞ xnk and x∗ = weak−limk→∞ x
∗
nk

. Hence, thanks
to X’s enjoyment of the Dunford-Pettis property, F (x, y) = TF (y)(x) =
x∗(x) = limk x

∗
nk

(xnk) = TF (ynk)(xnk) = F (xnk , ynk), which is as it should
be.

By the previous proposition we easily have

Corollary 4.1.6. Let X1, X2, Y1, Y2 be Banach spaces. Let T1 : X1 −→ Y1

and T2 : X2 −→ Y2 be two weakly compact operators. Suppose either Y1

or Y2 has the Dunford-Pettis property, then the projective tensor product

T1

∧
⊗ T2 : X1

∧
⊗ X2 −→ Y1

∧
⊗ Y2, of T1 and T2, is weakly compact.

In the next section we will give a representation theorem of weakly com-
pact subsets in the projective tensor products ([24]).

4.2 Weakly Compact Subsets in Projective

Tensor Products

In order to study this question let us introduce a topology in X
∧
⊗π Y , which

we will call in the sequel the τ -topology. A base of neighborhoods for the
τ -topology has the form:

A = X
∧
⊗π Y \ ∪ni=1co(Ui ⊗ Vi)

where Ui and Vi are weakly compact subsets of X and Y respectively, for
i = 1, ..., n. As the reader can note τ is the coarsest topology so that the sets
co(U ⊗ V ) (with U and V weakly compact subsets of X and Y respectively)
are τ -closed. Since such subsets are weakly closed (because every convex norm
closed set in a Banach space is weakly closed) then the weakly topology is

finer than the τ -topology on X
∧
⊗π Y (recall that if θ1, θ2 are two topologies in

X then θ2 is finer than θ1 if θ1 ⊆ θ2). At first glance the τ -topology doesn’t
look very beautiful (because she is not Hausdorff in general), but the key

idea is to study the restriction of τ to certain bounded subsets of X
∧
⊗ Y

(especially the weak compact subsets) to get a ”reasonable” topology (in
particular we are interested to see when such a restriction τ is Hausdorff).

We will not study the τ -topology on X
∧
⊗π Y in detail, but we will use it

only to derive the result. Note that for the topology τ we have:

1. For fixed v ∈ X
∧
⊗ Y the map u 7−→ u+ v is τ -continuous.
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2. For fixed λ > 0 the map u 7−→ λu is τ continuous.

3. The map u 7−→ −u is τ -continuous.

A topology which satisfies (1) and (2) is called a prelinear topology( see [35]).
So τ is a prelinear topology.

Theorem 4.2.1. Let X and Y be two Banach spaces. Every weakly compact

subset in X
∧
⊗π Y can be written as the intersection of a finite union of sets

of the form co(U ⊗ V ), where U and V are weakly compact subsets of X and
Y respectively.

Proof. Let W be a weakly compact subset of X
∧
⊗π Y . Since the weak topol-

ogy is finer than the topology τ , our theorem will be proved once it is shown
that the restriction of τ to W is a Hausdorff topology; that means that W is
closed for the topology τ , and so W will be as wished.

Let u, v ∈ W so that u 6= v. Without lost of generality we can assume
u = 0 (otherwise consider {u−w : w ∈ W} which is still weakly compact in

X
∧
⊗π Y , and by (1) and (3) above, the translation is a τ -homeomorphism).

Moreover using (2) we can assume ‖v‖∧ = 1.

We need to distinguish two cases:

Case 1. v =
∑n

k=1 λkxk ⊗ yk with
∑n

k=1 λk = 1 and ‖xk‖, ‖yk‖ = 1 for all
1 ≤ k ≤ n; i.e. v is a simple vector of X ⊗ Y . Now using the Hahn-Banach
theorem there exist x∗ ∈ X∗ and y∗ ∈ Y ∗ so that

x∗ ⊗ y∗(0) = 0 < δ2 < x∗ ⊗ y∗(v).

Since X and Y are norm one complemented in X
∧
⊗ Y , let PX , PY be the

projections from X
∧
⊗ Y to X and Y respectively. Define

Ku
1 = [x∗ ≥ δ] ∩ PX(W )

Ku
2 = [y∗ ≥ δ] ∩ PY (W )

Kv
1 = [x∗ ≤ δ] ∩ PX(W )

Kv
2 = [y∗ ≤ δ] ∩ PY (W )

where if α ∈ R we are denoting by [x∗ ≤ α] = {x ∈ X : x∗(x) ≤ α} and
[y∗ ≥ α] = {y ∈ Y : y∗(y) ≥ α}. Then Ku

1 , K
v
1 are weakly compact subsets of
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X, and Ku
2 , K

v
2 are weakly compact subsets of Y . By construction and by the

definition of the topology τ , we get that W \co(Ku
1 ⊗Ku

2 ) is a τ -neighborhood
of 0 and W \ co(Kv

1 ⊗Kv
2 ) is a τ -neighborhood of v. Since

W ⊆ co(Ku
1 ⊗Ku

2 ) ∪ co(Kv
1 ⊗Kv

2 )

we get
[W \ co(Ku

1 ⊗Ku
2 )] ∩ [W \ co(Kv

1 ⊗Kv
2 )] = ∅

hence when v is a simple tensor we can always separate 0 and v by two dis-
joint τ -neighborhoods in W .

Case 2. Suppose that 0 6= v =
∑∞

k=1 λkxk ⊗ yk; we can assume that for
all n ≥ N ,

∑n
k=1 λkxk ⊗ yk 6= 0, as well.

Suppose v and 0 cannot be separated by disjoint τ -open sets; this means
that for any τ -open sets U, V with 0 ∈ U and v ∈ V we have

(∗) U ∩ V 6= ∅.

By case 1 we know that for each n ≥ N there are τ -open sets Un, Vn con-
taining 0 so that

(Un) ∩ (
n∑
k=1

λkxk ⊗ yk + Vn) = ∅.

But Un and Vn, being τ -open, are norm open so there is a n0 > N so

v −
n0∑
k=1

λkxk ⊗ yk ∈ Un0 ∩ Vn0

or

(∗∗) v ∈

(
n0∑
k=1

λkxk ⊗ yk + (Un0 ∩ Vn0)

)
In tandem (∗) and (∗∗) tell us that

∅ 6= {Un0 ∩ Vn0}
⋂(

n0∑
k=1

λkxk ⊗ yk + (Un0 ∩ Vn0)

)
(after all, Un0∩Vn0 is τ -open and contains 0 while

∑n0

k=1 λkxk⊗yk+(Un0∩Vn0)
is τ -open and contains v, so (∗) is in effect)

⊆ Un0 ∪

(
(

n0∑
k=1

λkxk ⊗ yk) + Vn0

)
= ∅

OOPS!
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Using Proposition 4.1.4 we get

Corollary 4.2.2. Let X, Y be Banach spaces, such that X has the DP

property. Then every weakly compact subset in X
∧
⊗π Y can be written as the

intersection of a finite unions of sets of the form co(U ⊗ V ), where U and V
are weakly compacts subsets of X and Y respectively.
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[27] E. Dubinsky, A. Pe lczyński, H.P. Rosenthal; On Banach spaces X for
which Π2(L∞, X) = B(L∞, X), Studia Math. 44, (1972), 617-648.

[28] N. Dunford, J.T. Schwartz; Linear Operators Part I: General Theory,
Interscience Publishers, Inc., New York (1958).

[29] P. Enflo; A counterexample to the approximation problem in Banach
spaces. Acta Math. 130 (1973), 309–317.

[30] Ryszard Engelking; General topology. Sigma Series in Pure Mathemat-
ics, 6. Heldermann Verlag, Berlin, 1989

[31] T. Figiel, W.B. Johnson; The approximation property does not imply
the bounded approximation property. Proc. Amer. Math. Soc. 41 (1973),
197–200.

[32] D. H. Fremlin; Tensor products of Archimedean vector lattices. Amer.
J. Math. 94 (1972), 777–798.

[33] D. H. Fremlin; Tensor products of Banach lattices. Math. Ann. 211
(1974), 87–106.

[34] G. Godefroy, N. Kalton, P. Saphar; Unconditional ideals in Banach
spaces, Studia Math., 104 (1993), no. 1, 13-59

[35] G. Godefroy, N. J. Kalton; The ball topology and its applications. Ba-
nach space theory (Iowa City, IA, 1987), Contemp. Math., 85, Amer.
Math. Soc., Providence, RI, 1989, 195–237.

[36] D.B. Goodner; Projections in normed linear spaces, Trans. Amer. Math.
Soc. 69, (1950), 89–108

[37] Manuel Gonzlez, Antonio Mart́ınez-Abejón; Local dual spaces of a Ba-
nach space, Studia Math. 147, (2001), 155-168

[38] Yehoram Gordon; A note on the gl constant of E⊗̌F . Israel J. Math.
39 (1981), no. 1-2, 141–144.

[39] Y. Gordon, M. Junge, N.J. Nielsen; The relations between volume ratios
and new concepts of GL constants. Positivity 1 (1997), no. 4, 359–379.

[40] Y. Gordon, D.R. Lewis, Absolutely summing operators and local uncon-
ditional structures, Acta Math. 133 (1974), 27-48.



62 Bibliography
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