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Introduction

The study of combinatorial and structural properties of finite and infinite words
is a subject of great interest, with many applications in mathematics, physics,
computer science, and biology (see for instance [38, 39, 40, 1]). In this frame-
work, Sturmian words play a central role. They have been widely studied for
their theoretical importance and their applications to various fields of science,
such as crystallography, Diophantine approximation, or computer vision.

By definition, a Sturmian sequence is an infinite word which is not even-
tually periodic and has minimal factor complexity. This can be equivalently
stated as follows: an infinite word is Sturmian if and only if it has n+ 1 distinct
factors (blocks of consecutive symbols) of each length » > 0. In particular,
Sturmian words are on a binary alphabet, say {a,b}. They also enjoy some
remarkable characterizations of geometrical nature (cutting sequences, me-
chanical words). Several general surveys on this subject are available (see for
instance [39, Chap. 2| and [1, Chap. 9-10]).

Infinite Sturmian words and their factors, called finite Sturmian words,
enjoy many characteristic structural properties. Perhaps the most famous one
is the so called balance condition: the numbers of a’s in two factors of the same
length can differ at most by 1. In recent years, some works have investigated
Sturmian words by looking at their palindromic factors. A palindrome is a
finite word which can be read without distinction from left to right or from
right to left; more formally, it is a fixed point of the reversal operator, which
maps each finite word to that obtained reversing the order of its letters.

Palindromes play an essential role in the structure of Sturmian words. In
fact, an important theorem of X. Droubay and G. Pirillo [28] shows that an
infinite word is Sturmian if and only if it has exactly one palindromic factor of

length n for n even, and two for n odd. Moreover, A. de Luca and F. Mignosi
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[26] proved that the set of palindromic prefixes of all standard Sturmian words
is equal to the set of central words, i.e., words having two periods p and gq
which are coprime, and length p + ¢ — 2. Central words satisfy remarkable
structural properties; for instance, a central word w is such that wab and wba
can be factorized as a product of two palindromes. The set St of factors of all
Sturmian words is equal to the set of factors of all central words (cf. [26]).
Palindromes, and more specifically palindrome closure operators, are also
involved in some natural generalizations of Sturmian words. The right (resp.
left) palindrome closure w(*) (resp. w(~)) of a finite word w is the shortest palin-
drome having w as a prefix (resp. suffix). By iterating the operation of adding
a letter (from {a,b}) to the right and then taking the palindrome closure,
one obtains at the limit either a periodic word, or a standard Sturmian word
(see [21]). As an example, taking as directive word (the infinite sequence of let-
ters used in the iterated palindrome closure) the sequence (ab)” = ababab- - -,
we get the sequence of central words a, aba, abaaba, ..., converging to the infi-

nite Fibonacct word
f = abaababaabaababaababaabd- - - ,

which is arguably the most famous Sturmian word. The process of iterated
palindrome closure, when extended to larger alphabets, produces standard
episturmian words, first introduced by X. Droubay, J. Justin, and G. Pirillo
in [27]. Standard episturmian words enjoy a famous characterization, often
taken as definition: an infinite word s is standard episturmian if and only if it
is closed under reversal and every left special factor of s is a prefix of it. We
recall that a factor of a finite or infinite word w is said left special if it admits
at least two different “extensions” in w: wu is left special in w if there exist
distinct letters a and b such that au and bu are factors of w.

The equivalence between the above definitions of standard episturmian
words is not preserved if one substitutes the reversal operator by an arbitrary
mnvolutory antimorphism of A*, i.e., a composition of the reversal with a per-
mutation of the alphabet A. Indeed, as we shall see in later chapters, such
substitution leads to two different extensions of episturmian words, namely
¥-standard words and standard v¥-episturmian words. Both families are in-

cluded in the larger class of ¥-standard words with seed. As in the Sturmian
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case, all these words have a “non-standard” counterpart; thus for instance, an
infinite word is ¥-episturmian if there exists a standard ¥-episturmian words
having the same set of factors. Most results about standard words have a

natural extension to the non-standard case.

Overview

In this thesis, we consider several topics related to Sturmian words and their
generalizations. In Chapter 1 we recall some basic definitions and results con-
cerning combinatorics on words, and introduce the central notion of involutory
antimorphism of a free monoid. This allows to consider ¥#-palindromes, natu-
ral generalizations of palindromes: they are the fixed points of some involutory

antimorphism ¥ of A*, and will have a fundamental role throughout this work.

In Chapter 2, we devote our attention to Sturmian words and their factors.
We first give some basic definitions and properties about standard and central
words; then in Section 2.2 we provide two new characterizations (cf. Theorems
2.2.3 and 2.2.8) of factors of Sturmian words, both related to their periodical
structure. More specifically, they are based on properties of the fractional
root of the finite word w being considered, that is, the prefix z,, of w whose
length equals the minimal period of w. From the applicative point of view,
the interest of such characterizations lies in the possibility of implementing
two new and simple algorithms recognizing whether a finite word is a factor of
some Sturmian word, with linear time complexity. A simple formula enumer-
ating the finite Sturmian words which are primitive is also derived. We then
focus, in Section 2.4, on palindromic factors of Sturmian words, or Sturmzan
palindromes. Some structural and combinatorial properties of the language
of Sturmian palindromes are presented. In particular, two new characteriza-
tions of central words are given, and a remarkable characterization of Sturmian
palindromes is proved.

The last section of Chapter 2 deals with the enumeration of Sturmian palin-
dromes. A main theorem (cf. Theorem 2.5.1) gives a simple formula which
permits to count for any n > 0 the Sturmian palindromes of length n. As a
consequence, an interesting relation between the numbers of Sturmian palin-

dromes of odd and even length is found. Moreover, it is shown that the number
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g(n) of Sturmian palindromes of length n has, for all n > 0, a lower bound of
the order n'**, where a = log,; 2. From this we derive that the densities of cen-
tral words with respect to Sturmian palindromes, and of Sturmian palindromes

with respect to factors of Sturmian words, both vanish asymptotically.

In Chapter 3 we introduce pseudopalindrome closure operators, and study
the properties of Sturmian and episturmian words in relation to palindrome
closure. In Section 3.1, we discuss some general properties of the 9¥-palindrome
closure operators. It is shown that the right and left ¥-palindrome closures
of a word w have the same minimal period. The main result of the section is
Theorem 3.1.6, which states that a nonempty word w has the same minimal
period of its ¥-palindromic closures if and only if its fractional root z, is a
product of two ¥-palindromes. In Section 3.2, we introduce the notion of
elementary 9-palindrome action, which consists in appending a letter to a word
and then taking the right ¥-palindrome closure. Such actions can be naturally
extended from letters to a finite or infinite word w by an iterative composition
of the elementary ¥-palindrome actions corresponding to the successive letters
of w. If w is an infinite word, then, starting from the empty word, one generates
an infinite word called ¥-standard. If 1§ is the reversal operator, one obtains a
standard episturmian word.

In Sections 3.3 and 3.4, we consider Sturmian and episturmian words re-
spectively. In Section 3.3 we prove that both closures w(*) and w(~) of a finite
Sturmian word w are Sturmian themselves, and share the same minimal period
of w since the fractional root of w is symmetric, i.e., the product of two palin-
dromes. Moreover, there exists a standard Sturmian word s such that w(*) and
w(=) are both factors of s. From the preceding results, a new characterization
of finite Sturmian words can be given in terms of the minimal period and of the
right special factors of its right palindrome closure (cf. Theorem 3.3.9). Some
of the previous results can be extended to episturmian words. In Section 3.4,
we show that if w is a factor of some episturmian word, then so are w(*) and
w(=). However, in general, the minimal period of w(*) and w(-) is different

from that of w, since the fractional root of w can be non-symmetric.

In Chapter 4, we analyse different possible generalizations of episturmian
words, based on involutory antimorphisms. The first family is the one of -

standard words, constructed by iterated 1¥-palindrome closure. The main result
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is that any ¥-standard word is a morphic image, by an injective morphism
(depending on 1), of the standard episturmian word having the same directive
word. This allows to extend the closure property to factors of ¥-standard
words too: if w is a factor of some ¥-standard word, then so are its left and
right ¥-palindrome closures, and there exists a ¥-standard word having both
closures as factors. Moreover, we prove that every left special factor of a ¥-
standard word ¢, whose length is at least 3, is a prefix of £. A generalization of
the method for constructing ¥-standard words is introduced in Section 4.2, by
assuming that ¥ can vary among all involutory antimorphisms of A* at each
step of the iterating process, which is directed by a bi-sequence of letters and
operators. In this way, one gets a wider family of infinite words, including the

well-known Thue-Morse word on two symbols.

In Section 4.3 we introduce the class of ¥-standard words with seed. They
are infinite words obtained by iterated ¥-palindrome closure, starting from an
arbitrary word wuy (called seed) instead of the empty word. We show that
every ¥-standard word with seed is a morphic image of a standard episturmian
word. More precisely, if A = zz;z5---z, --- is the infinite sequence of letters
which directs the construction of a 9-standard word ¢ with a seed, then ¢ =
¢:(s), where ¢, is a morphism depending on ¥ and u,, and s is the standard
episturmian word directed by A’ = z,z5---z,---. We also show that every
sufficiently long left special factor of a ¥-standard word with seed is a prefix
of it, and give an upper bound for the minimal length from which this occurs,
in terms of the length of the right ¥-palindrome closure of uoz. This result
suggests another generalization of episturmian words, introduced in Section 4.4:
the class of infinite words which are closed under ¥ and have all sufficiently
long left special factors as prefixes. This turns out (cf. Theorem 4.4.6) to be
the same as the family of ©¥-standard words with seed, and has the noteworthy
subclass of standard ¥-episturmian words, i.e., infinite words which are closed

under ¥ and have all left special factors as prefixes.

The structure of such words is studied more in detail in Section 4.5. In par-
ticular, it is proved that every standard ¥-episturmian word s can be uniquely
factorized with unbordered ¥-palindromes; As a consequence, it is proved that
s is a morphic image, under an injective morphism, of the standard epistur-

mian word whose directive word is the subdirective word of s, i.e., the infinite
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word formed by the letters immediately following the ¥-palindromic prefixes
of s. Finally, the intersection of the two families of ¥-standard and of stan-
dard ¥-episturmian words is fully characterized; it is a proper subclass of both

families.

In conclusion, we mention that several results of this thesis were already
published in [25, 23, 24, 12, 11].
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Chapter 1
Preliminaries

In this chapter we review the fundamental algebraic and combinatorial tools

needed to state and prove the main results of this thesis.

1.1 Basic algebraic concepts

As is well known (see for instance [17]), a semigroup S is a set in which an
associative binary operation (product) is defined.

A monoid M is a semigroup having an identity element 1,, such that
lyz = zly = x for all z € M. A subsemigroup N of M is a submonoid if
1y € N.

The product operation on a semigroup S can be naturally extended to the
powerset P(S): given X,Y C S, we define

XY ={zyeS|zecX andyeY}.
It is also common to define left and right quotients, by setting
XY ={weS|XwnY #0},

and
YX ' ={weS|wXnNnY #0}.

We shall often confuse singletons and their elements, when this does not lead
to ambiguity. For instance, if z € S and Y C S, by zY we will mean the set

{z}Y.
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The subsemigroup generated by X C S is the smallest subsemigroup of S
containing X, and coincides with

xt=|Jx".

n>0

Similarly, the submonoid generated by X C M is equal to

xX=|JXx",
n>0
where conventionally X° = {1,,}.
Given two semigroups S, S’, a morphism (resp. antimorphism) ¢ from S
to S’ is a map
p:8 — 9

such that ¢(zy) = @(z)e(y) (resp. p(zy) = @(y)p(z)) for all z,y € S. A
monoid (anti-)morphism ¢ : M — M’ is a semigroup (anti-)morphism such
that ¢(1y) = 1. An isomorphism is a bijective morphism, and an auto-
morphism of M is an isomorphism between M and itself. When ¢ : M — M’
is a morphism or antimorphism and z € M, we shall often use the exponential
notation z¥ for ¢(z).

A semigroup S (resp. monoid M) is free over X C S (resp. X C M)
if every element of X' admits a unique factorization over X, and X+ = S
(resp. X* = M). Free semigroups (monoids) over sets of the same cardinality

are isomorphic.

1.2 Finite and infinite words

The free monoid of words

Let A be a nonempty finite set, or alphabet, whose elements are called letters.
The set of finite sequences of letters, or words over A, can be naturally endowed
with the binary operation of concatenation. The semigroup A" thus obtained
is free over A: a word w € A" can be written uniquely as a product of letters
W = Q1ay---Apn, With a; € A, 1 = 1,...,n. Therefore A" is called the free
semigroup over A. The free monoid A* is obtained by adding an identity
element, the empty word € = 14+, to A*: A* = AT U{e}.
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Let w = a;---a, € AT, where a; € A for 1 < 7 < n. The integer n is the
length of w, denoted by |w|. It is natural to set |e| = 0.

A word u is a factor of w € A* if w = rus for some words r and s. In
the special case » = ¢ (resp. s = €), u is called a prefiz (resp. suffiz) of w.
A factor u of w is proper if u # w; it is median if w = rus with |r| = |s|.
We denote respectively by Fact w, Pref w, and Suff w the sets of all factors,
prefixes, and suffixes of the word w.

A subset of A* is often called a language over A. For Y C A*, PrefY,
Suff Y, and Fact Y will denote respectively the languages of prefixes, suffixes,
and factors of all the words of Y; in symbols,

FactY = | Factw,

weyY

and similarly for Pref Y and Suff Y.

A code over A is a language Z C A* such that the monoid Z* is free over
Z. Thus Z is a code if and only if whenever 2y, 25, ..., 2,,21,...,2,, € Z are
such that

!
zl...zn:zl...zm’

then n = m and z; = 2/ for : = 1,...,n. A prefiz (resp. suffiz) code is a
subset of A" with the property that none of its elements is a proper prefix
(resp. suffix) of any other. Any prefix (or suffix) code is in fact a code. A
biprefiz code is a code which is both prefix and suffix.

Borders and periods

A factor of w € A* is called a border of w if it is both a prefix and a suffix
of w. A word is called unbordered if its only proper border is €. Since the
set of proper borders of the empty word is empty, coherently with the above
definition we do not consider € unbordered.

A positive integer p is a period of w = a;---a, (a; € A, ¢ =1,...,n) if

whenever 1 < 1,7 < |w| one has that
1=7 (modp) = a;=aq;.

Note that with this definition, any n > |w| is a period of w. As is well known

and quite evident (cf. [38]), a word w has a period p < |w| if and only if it has
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a border of length |w| — p. We denote by m,, the minimal period of w, and set
7. = 1. Thus a word w is unbordered if and only if 7, = |w|. If w is nonempty,
then its fractional root z, is its prefix of length |z,| = m,. We can write any

nonempty word w as

where z,, is the fractional root of w, the integer £ > 1 is sometimes called the
order of w, and z' is a proper prefix of z,,.

We recall the following fundamental result about periodicity (cf. [38]):

Theorem 1.2.1 (Fine and Wilf). If a word w has two periods p and g, and
|lw| > p+ q— gcd(p, q), then w has also the period ged(p, q).

Infinite words and limits

An infinite word (from left to right) z over the alphabet A is just an infinite
sequence of letters, i.e., a mapping z : N, — A where N, is the set of positive

integers. One can represent z as
222122...mn... ,

where for any 7 > 0, z; = z(i) € A. A (finite) factor of z is either the empty
word or any sequence z;---z,; with ¢ < 7, i.e., any block of consecutive letters
of z. If 2 = 1, then u is a prefiz of xz. We denote by Fact z and Pref z the sets
of finite factors and prefixes of z respectively.

The product between a finite word w and an infinite one z is naturally
defined as the infinite word wz having w as a prefix and z; |, as its j-th
letter, for all 7 > |w|. The set of all infinite words over A is denoted by A“.
We also set A® = A* U A“.

A metric on A“ can be defined by setting d(z,z) = 0 for z € A¥, and

d(z,y)=2"*

for y # z, where £ = max{n € N | Pref z N Pref y N A™ # 0} is the length of the
maximal common prefix of £ and y. This metric induces the product topology
on AY = AN+ (where A is discrete), making it a compact, perfect, and totally

disconnected metric space, that is, a Cantor space (cf. [43]). The metric d can
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be “extended” to the whole A% in the following way: define (as above) the
metric d' on (A’)“, where A' = AU {8} and § ¢ A; then identify any w € A*
with the infinite word w$“. In this way A* is regarded as a subspace of (A')*.

The main benefit of topology for our purposes is the possibility of taking
limits of sequences. We recall that convergence with respect to the product
topology is pointwise, so that a sequence of words (2, )m>o in A® converges
to an infinite word £ = z,---z, --- if and only if for any & > 0, there exists
some N > 0 such that for all n > N, the k-th letter of 2, exists (i.e., 2z, € A%
or |z,| > k) and is equal to z;. For instance, the sequence

(amb)mzo

converges to the infinite word a“ = aaa---. A wide family of convergent
sequences, which will appear frequently in the following chapters, is made of
all sequences of finite words (2., )m>o such that for sufficiently large n, the word
z, is a prefix of 2, ;.

Forany Y C A*, Y“ denotes the set of infinite words which can be factorized
by the elements of Y. The above example shows that an infinite word which
is the limit of a sequence of words of Y* need not be in Y (take Y = a*b);
however, it is in Y* if Y is finite.

Further definitions and properties

Let w € A®. An occurrence of a factor u in w is any pair (), p) € A* x A* such
that w = Aup. If a € A and w € A*, |w|, denotes the number of occurrences

of a in the word w; trivially we have

wl =" [wla -

acA

For w € A%, alph w denotes the set of letters occurring in w, that is, alphw =
{a € Al |w|, > 0}.

Let s € A® and w,u € Facts. We call w a first return to u in s if w
contains exactly two distinct occurrences of u, one as a prefix and the other as

a suffix, i.e.,

w=ul=pu withA\,u€ A" and w ¢ ATuAd".
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! — 4 is usually called a return word over

We observe that in such a case, wu~
uin s (see [29]). We call the integer |u| the shift of the first return. An infinite
word s is said uniformly recurrent if for any v € Fact s, the shifts of the first
returns to v in s are bounded above by a constant c,.

If z € A and vz (resp. zv) is a factor of w € A%, then vz (resp. zv) is called
a right (resp. left) extension of v in w. We recall that a factor v of a (finite
or infinite) word w is called right spectal if it has at least two distinct right
extensions in w, i.e., there exist at least two distinct letters a,b € A such that
both va and vb are factors of w. Left special factors are defined analogously.
A factor of w is called bispecial if it is both right and left special.

We denote by R, the smallest integer k, if it exists, such that w has no
right special factor of length & (and we set R,, = oo otherwise, that is, when w
is an infinite word having arbitrarily long right special factors). The following
noteworthy inequality (cf. [22]) relates the minimal period ,, of a finite word
w and R,:

Tw > Ry + 1. (1.1)

Symmetrically, one can introduce the parameter L, as the minimal length for
which w has no left special factors; L, satisfies m, > L, + 1 too.

A finite word w is primitive if it cannot be written as a power w = u*
with k& > 1. Clearly any unbordered word is primitive, but the converse is
false: consider for instance the word aba. We denote by m(A*) the set of all
primitive words over A. As is well known (cf. [38]), for any nonempty word w
there exists a unique primitive word u such that w = u* for some & > 1. Such
a u is usually called the (primitive) root of w and denoted by /w.

Two words u, v € A* are conjugate if there exist A\, u € A* such that u = Ay
and v = pA. Conjugacy is an equivalence relation in A*; we write u ~ v if u
and v are conjugate.

Suppose that < is a total order on A. One can extend this order to the
lezicographic order on A* by letting, for all v, w € A*,

v<w<= (vePrefw or v=uav, w=ubw'),

for some u,v',w' € A* and a,b € A such that a < b.
A word is called a Lyndon (resp., anti-Lyndon) word if it is primitive and

minimal (resp., maximal) in its conjugacy class, with respect to the lexico-



1.2. Finite and infinite words 17

graphic order. For instance, if a < b then w = aabab is a Lyndon word, for its
conjugates (ababa, babaa, abaab, and baaba) are all lexicographically greater
than w.

In the sequel, we shall need the two following simple lemmas; we report the
proofs for the sake of completeness.

Lemma 1.2.2. A word w € A* has the period p < |w| if and only if all its

factors having length p are in the same conjugacy class.

Proof. The case w = € is trivial. Then suppose that p is a period of w =
ar---Qn, a; € A, 1 = 1,...,n. Let u be a factor of w of length p. By
the definition of period, there exists a positive integer + < p such that u =
aiQ;y1---Qpa1042 - - A;_1, SO that u is a conjugate of a;a. - - - a,.

The converse is an easy consequence of the following fact: if z,y € A and
u € A*, then zu ~ wy if and only if x = y. Therefore, if all factors of w of length

p are conjugate, one derives that a; = a;,, forallzsuch that 1 <1 <n—-p. 0O

Lemma 1.2.3. A word w € A* is primitive if and only if mr = |w| for any

integer k > 2.

Proof. Let w be a primitive word, and suppose that w* has a period g < |w|.
Since |w| is a period of w* and |w*| = k|w| > |w| + ¢, by Theorem 1.2.1, w*,
as well as w, has also the period d = gcd(q, |w|). Thus w = u/*/? for some u;
this implies |w|/d = 1 and then ¢ = |w/|, as w is primitive.

Conversely, suppose w € A* is not primitive. If w = ¢, then
Tyt =T =17#0=|w|.

Let then w € AT and let u be its primitive root. Clearly |u| is a period of w*,
and |u| < |w|. O

We remark that also the fractional root z,, of a nonempty word w is trivially
primitive. Hence, by Lemma 1.2.3 we obtain that for any w € A" and k& > 2,

Tw = Mk . (1.2)

Zw
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1.3 Antimorphisms of a free monoid

Uniqueness and involutions

We recall that any (anti-)morphism whose domain is the free monoid A* is
uniquely determined by the images of the letters. Formally, for any monoid M
and any map ¢ : A — M, there exists a unique morphism ¢ : A* — M (resp. a
unique antimorphism ¢ : A* — M) that extends ¢, i.e., such that @|4 = ¢
(resp. @|a = ). This property characterizes free monoids, and is usually taken
as the definition of free objects in the frame of category theory (cf. [41]).

A morphism or antimorphism ¢ : A* — A* is tnvolutory if it is an involu-
tion of A*, that is, if ¢? = id.

Ifw=a;---a, € A*, a; € A, 1 =1,...,n, the mirror tmage, or reversal,
of w is the word

W= Qn---01 .

One sets £ = ¢. The map R : A* — A* defined by w? = 1 for any w € A*,
called reversal operator, is clearly an involutory antimorphism of A*.

Let 7 be an involution of the alphabet A. Clearly, it can be regarded as a
map 7 : A — A*, and then extended to a unique automorphism 7 of the free
monoid A*. The map ¥ = ToR = Rof7 is the unique involutory antimorphism of

A* extending the involution 7. One has, forw =a;---a,,a, € A,2=1,...,n,

Any involutory antimorphism of A* can be constructed in this way; for example,
the reversal R is obtained by extending the identity map of A.

If A= {a,b}, then there exist only two involutory antimorphisms, namely,
the reversal R and the antimorphism e = E o R, called exchange antimor-
phism, extending the exchange map F defined on A as F(a) = b and E(b) = a.

If the alphabet A has cardinality n, then the number of all involutory
antimorphisms of A* equals the number of the involutory permutations over n

elements. As is well known, this number is given by
[n/2] 1
! - -
" ,;0 2%(n — 2k)!k!

(sequence A000085 in [46]).
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(Pseudo-)palindromes

Let ¥ be an involutory antimorphism of A*. A word w € A* is called ¥-
palindrome if it is a fixpoint of ¥, i.e., w = w?. The set of all ¥-palindromes
of A* is denoted by PALs(A) or simply PALs when there is no ambiguity.
An R-palindrome is usually called palindrome and PALpg is denoted by
PAL. In less precise terms, a word which is a ¥-palindrome with respect to a
given but unspecified involutory antimorphism %, is also called pseudopalin-

drome.

Ezamples 1.3.1. The English word racecar is a palindrome.

Let A = {a, b}, e be the exchange antimorphism, and w = abaabb. One has
w® = aabbab. The word abbaab is an e-palindrome.

Let A = {a,b,c} and 7 be the involutory permutation defined as 7(a) = b,

7(b) = a, and 7(c) = c. Setting ¥ = ToR, the word abcacbcab is a ¥-palindrome.

A word is called ¥-symmetric if it is the product of two ¥-palindromes. An
R-symmetric word is simply called symmetric. In particular, any ¥-palindrome
is ¥-symmetric.

Some combinatorial properties of symmetric words were studied in [20], and
more recently in [9], where the term symmetric was used. One easily verifies
that all words on the alphabet {a, b} of length < 5 are symmetric. The word
w = abaabdb is not symmetric but it is e-symmetric, because it is the product
of the two words ab and aabb which are e-palindromes.

In the remaining part of this section, we will assume that ¢ is a fixed
involutory antimorphism of A*. To simplify the notation, for any w € A*, we

shall denote by w the word w?, so that for all u,v € A* one has

|| =|u|, wv=94, and T=u.

Lemma 1.3.2. A word w 1s a conjugate of w if and only if it 1s ¥-

symmetric.

Proof. If w = o8 with o, 8 € PALy, then w = Ba, so that w ~ w. Conversely,
suppose that w and w are conjugate. One can write w = Ay and w = pA for
some A, 4 € A*. Thus w = A = Au. Since |A\| = |A|, one obtains A = X and
Y= f. O
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Lemma 1.3.3. A ¢-palindrome w € A" has a period p < |w| if and only if
it has a ¥-palindromic prefiz (suffiz) of length |w| — p.

Proof. If w has a period p < |w|, then it has a border v of length |w| — p,
so that we can write w = Av = vu for some words A and u. Since w is a
¥-palindrome, one has

W=vu="7T\.

Therefore, v = 9. Conversely, if the ¥-palindrome w has the ¥-palindromic
prefix v, one has

W=Vl = U,
so that v is a border of w and |w| — |v]| is a period of w. O

Lemma 1.3.4. Let w € A" and z, be its fractional root. The word zg 1S a

conjugate of z,.

Proof. Let w be a nonempty word. Since ¥ acts on the alphabet as a permu-
tation, one derives that p is a period of w if and only if it is a period of w.
Therefore one has 7, = m5. We can write w = zF 2’ with £ > 1 and 2’ a proper
prefix of z,,, and

— _ =lsk _ Jh 1
wW=22,=2;2

with A > 1 and 2" a proper prefix of z;. Since |w| = |@| and |Z,| = |25| = Ta,

one has h = k and, by Lemma 2.4.13, Z,, ~ 2. 0]

Corollary 1.3.5. Let w € A" be a ¥-palindrome having a period p < |w|.
Any factor u of w of length p i1s 9-symmetric. In particular, z, s U-

symmetric.

Proof. Since w = @ and |u| = p, by Lemma 2.4.13 one has u ~ 4. Hence, by
Lemma 1.3.2 one obtains u € PAL3. As |z,| = 7, one derives z,, € PAL3. [



Chapter 2
Sturmian sequences

Sturmian words were first considered in the 18th century by J. Bernoulli III,
in his astronomical studies. Several authors later developed the subject from
different points of view, but the first systematic study was given in 1940 by
M. Morse and G. A. Hedlund (cf. [44]). They were also the first to use the

name Sturmian, in honor of C. F. Sturm.

By definition, an infinite word is Sturmian if for each n € N it has n + 1
distinct factors of length n. This implies that a Sturmian word is on a two-
letter alphabet, that will be A = {a, b} for the rest of this chapter (we shall
keep using a non-calligraphic A for a generic alphabet). As is well known [39],
an infinite binary word z is Sturmian if and only if for any n > 0 there is only

one right special factor of z of length n.

A famous theorem by Morse and Hedlund (cf. [43]) states that an infinite
word s has less than n + 1 factors for some n > 0 if and only if it is eventually
periodic, that is, writable as s = uv* for some finite words u, v. Thus Sturmian
words have the smallest possible number of factors of each length, among all
infinite words which are not eventually periodic.

A first description of the structure of Sturmian words was given in [44],
where the following well-known characterization is found: an infinite word
s € A is Sturmian if and only if it is not eventually periodic and it is balanced,
i.e., it satisfies, for all n > 0 and u,v € A" N Fact s,

lule = Jvfa] < 1. (2.1)
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2.1 Standard and central Sturmian words

An equivalent geometrical definition of Sturmian words can be given in terms
of cutting sequences. In fact, a Sturmian word can be defined by considering
the sequence of cuts in a squared lattice (N x N) made by a ray having a slope
which is an irrational number o. A horizontal cut is denoted by the letter b, a
vertical by a, and a cut with a corner by ab or ba.

A Sturmian word represented by a ray starting from the origin is usually
called standard or characteristic. We shall denote by c, the standard Stur-
mian word associated with the irrational slope a. Standard Sturmian words
can be equivalently defined as follows. For any sequence dy,d;,...,d,,... of
integers such that dy > 0 and d; > 0 for 2 > 0, one defines, inductively, the

sequence of words (s,),>o Where
So =0b,5; =a, and s, = si’”sn,l, forn>1. (2.2)

The sequence (s,),>o converges to a limit s which is an infinite standard Stur-
mian word. More precisely, one has s = c,, where the slope a is given by the

continued fraction

oa=———6+"=/[0;dy,di,...]
do + ——

1
di + —

(see for instance [39]). Any standard Sturmian word can be generated in this

way. If d; = 1 for all 2 > 0, one obtains the famous Fibonacct word
f = abaababaabaababaababaa - - -

whose slope is the inverse of the golden ratio.

We shall denote by Stand the set of all the words s,, » > 0 of any sequence
(8n)n>0 constructed by the previous rule (2.2). Any word of Stand is called
finite standard (Sturmian) word. We recall the following characterization of
Stand given in [26]:

Stand = AU (PAL?* N PAL{ab,ba}) , (2.3)
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i.e.,, a word w € A* is standard if and only if it is a letter or it satisfies the
following equation:

w=of =y ,
with a, 8,7 € PAL and {z,y} = A.

A finite word w is called central if it has two periods p and ¢ such that
gcd(p,g) =1 and |w| = p+ g — 2. Conventionally, the empty word € is central
(in this case, p = ¢ = 1). Central words are over a two-letter alphabet. The
set of all central words over A = {a, b} is usually denoted by PER. It is well
known (see [26, 39]) that the set PER coincides with the set of palindromic
prefixes of all standard Sturmian words. In the remaining part of this section
we recall some properties of standard and central words which will be useful
in the sequel.

The following important characterization of central words holds (see for

instance [15]):

Proposition 2.1.1. A word w s central over A if and only 1f w 1s a power

of a letter of A or it satisfies the equation
w = wiabwy = wybaw,

for some words w, and w,. Moreover, in this latter case, w, and wy are
central words over A, p = |wi| + 2 and q = |ws| + 2 are coprime periods of

w, and min{p, g} is the minimal period of w.

Example 2.1.2. Let w = aabaabaa € PER. We have
w = a(ab)aabaa = aabaa(ba)a ,

with 3 = m, = |a| + 2 and 7 = |aabaa| + 2 being coprime periods of w, and
w|=8=3+7—2

From (2.3) and the preceding proposition, one easily derives (cf. [26]) that
Stand = AU PER{ab,ba} , (2.4)

i.e., any finite standard Sturmian word which is not a single letter is obtained
by appending ab or ba to a central word. Conversely, any central word is
obtained by deleting the last two letters of a standard word.
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Let St be the set of finite Sturmian words, i.e., factors of infinite Sturmian
words over the alphabet A = {a,b}. We recall that for any infinite Sturmian
word there exists an infinite standard Sturmian word having the same set of

factors (cf. [39]). Therefore one easily derives that
St = Fact(Stand) = Fact(PER) . (2.5)

Lemma 2.1.3 (see [15]). If a central word w has the factor =", with z € A
and n > 0, then z" ! is a prefiz (and suffiz) of w.

Proposition 2.1.4 (see [45]). A word w is central if and only if wab and

wba are conjugate.
Now let us suppose that the alphabet A is totally ordered by setting a < b.

Proposition 2.1.5 (see [3]). The set AU aPERb s equal to the set of all
Lyndon words which are Sturmian. Simailarly, AU bPERa 1s the set of

anti-Lyndon Sturmian words.

Proposition 2.1.6 (see [31]). A Sturmian word is unbordered if and only

if 1t 1s a Lyndon or anti-Lyndon word.

From Propositions 2.1.4 and 2.1.5, one derives the following interesting

characterization of words conjugate of a standard word.

Proposition 2.1.7. A primitive word z ¢ A s a conjugate of a standard
word if and only if the Lyndon and the anti-Lyndon words in its conjugacy

class have the same proper median factor of mazximal length.

Proof. Let z be a primitive word of length |z| > 1. Let s be a standard word
conjugate to z. By (2.4), s can be written as s = vzy, with v € PER and
{z,y} = A. By Proposition 2.1.4, one derives that z is a conjugate of avb and
bva. From Proposition 2.1.5, avb and bva are, respectively, a Lyndon and an
anti-Lyndon word, so that the necessity is proved.

Conversely, let z € A* and suppose that the Lyndon and the anti-Lyndon
words in the conjugacy class of z can be written respectively as atb and bta,
with a,b € A and a < b. By Proposition 2.1.4, one has that ¢ € PER, so that
by (2.4), z is a conjugate of tab € Stand. O
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2.2 Finite Sturmian words and periodicity

In this section we give two characterizations of finite Sturmian words, based
on properties of their fractional root. We need some preliminary propositions.
The first one gives some characterizations of the words w such that w? € St
(such words have been called cyclic balanced in [16]). The equivalence of
some of the conditions in Proposition 2.2.1 has recently been proved in [16]
(see also [32]). We report here a more direct and simple proof for the sake of

completeness.

Proposition 2.2.1. Let w be a word. The following conditions are equiv-

alent:

~

. w? € St,

2. w* C St,

3. every conjugate of w? is Sturmian,
4. every conjugate of w is Sturmian,
5. the primaitive root of w 1s a conjugate of a standard Sturmian word.

Proof. 1. = 2. Let n > 2. Any two factors of w™ of length k£ > |w|/2 overlap,
thus it suffices to verify the balance condition only for factors of w™ of length
k < |w|/2, which is satisfied because such words are also factors of w? € St.

2. = 8 This is trivial, since any conjugate of w? is a factor of w?3.

3. = 4. This is trivial too, because the square of a conjugate of w is just
a conjugate of w?.

4. = 5. Let u be the primitive root of w. If every conjugate of w is
Sturmian, then so is every conjugate of u. Hence it suffices to prove that if w
is primitive, then it has a conjugate which is a standard word. Indeed, there
exists a unique conjugate of w which is a Lyndon word, say w’. Since w’ is
Sturmian, by Proposition 2.1.5 one has that w' is either a letter or a word avb
with v € PER. In the former case, the desired standard conjugate is w' itself;
in the latter case, one can take vba.

5. = 1. Let u be the primitive root of w = u*; if v is a standard word

in its conjugacy class, from equations (2.2) and (2.5) one derives that v? € St.
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Since 1. = 8. and u? is a conjugate of v?, one has u? € St. As 1. = 2., this
implies w? = u?* € St. O

Let w,u € A* with w unbordered; the word wu is called a Duval extension

of w if no unbordered factor of wu is longer than w.

Proposition 2.2.2 (see [42]). Every Duval extension wu of a Sturmian

unbordered word w has the period |w]|.

We are now in the position of giving our first characterization of finite

Sturmian words.

Theorem 2.2.3. A nonempty word 1s Sturmian if and only if its fractional

root 1s a conjugate of a standard word.

Proof. Let w be a word. If its fractional root z, is a conjugate of a standard
word, then by Proposition 2.2.1, 23 C St, so that w € Fact 2z, C St.

Conversely, let s be an unbordered factor of w € St of maximal length. One
has w = usv for suitable u,v € A*. The word sv is a Duval extension of s, by
the maximality of s. Since § is unbordered too, and again by the maximality
of s, the word 54 = ws is a Duval extension of 5. From Proposition 2.2.2, one
gets that both sv and @s have the period |s|. This implies that also us has the
period |s|.

By Lemma 1.2.2, all factors of us and sv having length |s| are conjugates
of s. Since any factor of w of length |s| is either a factor of us or of sv, and
s is a factor of both, we deduce from Lemma 1.2.2 that the whole w has the

period |s|. Moreover, such period is minimal, because
|s| =ms < my < 5] .

By Lemma 1.2.2, z,, is a conjugate of s; since s is an unbordered Sturmian
word, by Proposition 2.1.6 it is a Lyndon (or anti-Lyndon) word, and therefore,
by Proposition 2.1.5 it is in the set AU aPERbUbPERa. Hence s, as well as
Zw, 18 a conjugate of a standard word, which proves the assertion. O

Examples 2.2.4. Let w be the word aababaa. Its fractional root z,, = aabab is
a conjugate of the standard word ababa, so that w is Sturmian.
Let » = baabb. In the conjugacy class of its root z, = baab there is no

standard word, so that r is not Sturmian.
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Corollary 2.2.5. Let w be a nonempty word and z, be its fractional root.

Then w is a finite Sturmian word if and only if so is z2.

Proof. This is a straightforward consequence of the preceding theorem and of
Proposition 2.2.1. ]

The following proposition improves upon a result in [22].
Proposition 2.2.6. Let w be a word. If m, = Ry, + 1, then w 1s Sturmian.

Proof. Let w € A*. If m, = 1, the result is trivially true. Thus we assume
Ty = R, + 1 > 1, so that there exists a right special factor s of w such
that |s| = m, — 2. Hence, there exist letters a,b € A such that a # b and
sa,sb € Factw. The words sa and sb cannot be both suffixes of w, so we
suppose, without loss of generality, that sa is not. Therefore one has either
saa € Factw or sac € Factw with ¢ # a. Since |saa| = |sac| = 7, these two

possibilities imply, respectively:
w € Fact((saa)*) (2.6)

or
w € Fact((sac)*) . (2.7)

We first show that (2.6) cannot hold. By contradiction, assume that it
does hold. Since sb is a factor of w, it has to be a factor of saas as well.
We clearly have sb # sa, thus there exist u,v € A* and z € A such that
saas = uzsbv. The words u and v are respectively a prefix and a suffix of s,
and |u| + |v| = |saas| — |zsb| = 2|s| + 2 — |s| — 2 = |s|. Therefore s = uv and
vaau = zuvb. But this is a contradiction, because |vaau|, > |zuvb|,.

Equation (2.7) is then satisfied. Let u = sacsa. The word sb € Factw
has to be a factor of u; since sb is not a suffix of u, one has either sba €
Fact u or sbz € Factu, with £ # a. By Lemma 1.2.2, the latter is impossible,
because |sac| = |sbz| = T, is a period of u, and |sac|, > |sbz|,. Thus sba is a
factor of u, and by Lemma 1.2.2 it is a conjugate of sac. Therefore ¢ = b; by
Proposition 2.1.4 and equation (2.4) one derives that sab is a standard word of
length m,,. By Lemma 1.2.2, 2z, is a conjugate of sab, so that by Theorem 2.2.3
one obtains w € St. 0
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We recall that L, denotes the minimal integer k for which w has no left
special factor of length k. By symmetrical arguments, one can easily prove a
result analogous to Proposition 2.2.6, namely, if 7, = L,, + 1, then w € St.

Ezamples 2.2.7. The word w = abbab has minimal period 7, = 3 and R, = 2,
therefore it is Sturmian. The word v = aabba is not Sturmian, and indeed
mn, =4 >3=R,+1 =L, +1. However, for u = aabab € St one has
Ty =5 >4 =max{R,, L,} + 1.

Our second characterization of finite Sturmian words is a modification of

Proposition 2.2.6:

Theorem 2.2.8. A finite nonempty word w 1s Sturmian if and only if
Tw =R,z +1. (2.8)

Proof. Assume (2.8) holds. By Lemma 1.2.3, one has 7,2 = [24] = Ty =
R,> +1, so that from Proposition 2.2.6 it follows 22 € St. As w € Fact 2, one
obtains w € St by Proposition 2.2.1.

Conversely, let w € St. The result is trivial if m, = 1, so assume |2,| > 1.
By Theorem 2.2.3, z,, is a conjugate of a standard word. Since all conjugates
of 2, are factors of z2, by (2.4) and Proposition 2.1.4 there exists v € PER
such that vab and vba are factors of z2, of length m,. This means that v is a
right special factor of z2 of length m, — 2; thus R,2 > m,2 — 1. By (1.1), one
has m,2 > R,2 + 1, hence m, = 7,2 = R,2 + 1 as desired. O

We remark that in the case of palindromes, condition (2.8) in the preceding
theorem can be replaced by the equation 7, = R, + 1. This will be proved
in Theorem 2.4.18, as a consequence of Proposition 2.2.6 and of a property of

Sturmian palindromes (cf. Proposition 2.4.13).

Proposition 2.2.9. Let w be a word having minimal period m, > 1 and v
be its shortest prefir such that m, = m,. Let uz (z € A) be the suffiz of v
of length m, — 1. One has w € St if and only if there exists a letter y #

such that uy 1s a factor of z2.

Proof. If uy € Fact 22, then u is a right special factor of z2 of length 7, — 2,
so that 7, < R,2 +1. By (1.1) one has m,, = m,2 > R,> +1; thus 7, = R,2 +1
and by Theorem 2.2.8 it follows w € St.
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Conversely, as shown in the proof of Theorem 2.2.3, any word of St has
an unbordered factor of maximal length, whose value is the minimal period
of the word. Therefore, one can write v as v = tz with z € A and m < 7,
and t cannot have unbordered factors of length 7, since the maximal length
of these factors is m;. Since v € St, it has an unbordered factor r» of maximal
length |r| = 7, = m,. This factor has to be necessarily a suffix of v. Since
r is unbordered and |r| = 7, > 1, from Propositions 2.1.5 and 2.1.6 one has
r = yuz with v € PER and {z,y} = A. By Lemma 1.2.2, 2, is conjugate
of yuz and, by Proposition 2.1.4, of zuy. Since zuy € Factz2, the result
follows. ]

Ezamples 2.2.10. Let w = aababaa € St. One has 7, = 5, 22 = aababaabab,
and R,; = 4, so that m, = R,z + 1. The shortest prefix v of w such that
T, = My 18 v = aabab. Its suffix of length 7, — 1 is ub = abab, and ua = abaa
is a factor of 22.

Let 7 = baabb ¢ St. One has 7, = 4, 22 = baabbaab, and R,: = 2, so that
m, > R,z + 1. In this case, the shortest prefix v such that =, = 7, is v = r.
The suffix ub of v of length 3 is abb, and aba ¢ Fact z2.

Enumeration of primitive Sturmian words

As an application of preceding results, we give a formula which counts for any

n > 1 the finite primitive Sturmian words of length n. We need the following:

Lemma 2.2.11. The number of words of length n > 0 which are conjugate
of standard Sturmian words is 2 if n =1 and ng(n) for n > 1, where ¢ s

Euler’s totient function.

Proof. For n = 1 the result is trivial since the only two words conjugate of
standard words are a and b. Let us suppose n > 1. As is well known (see
for instance [39, Chap. 2]), the number of standard words of length n > 1 is
given by 2¢(n). If s is a standard word, by (2.4) we can write s = vzy with
{z,y} = {a,b} and v € PER. By Proposition 2.1.4, s' = vyz € Stand is a
conjugate of s. In the conjugacy class of s there is no other standard word.
Indeed, if ¢ = uzy is a conjugate of s, with u € PER, then |t|, = |s|, and
|t|s = |s]s, so that ¢ and s have the same “slope”; from this it follows that u = v
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(see for instance [3, 39]). Hence, in each conjugacy class of a standard word of
length n > 1 there are exactly two standard words. Thus, the number of these
conjugacy classes is ¢(n). Since any standard word is primitive, in any class

there are n words. From this the assertion follows. O

Proposition 2.2.12. For any n > 1, the number of primitive finite Stur-
mian words of length n 1s giwen by:
Z(n +1—1)p(2) — > do(d) .
i

Proof. Let w be a non-primitive Sturmian word of length n > 1. The word w
can be written uniquely as w = u*, with u € 7(A*) and k& > 1. Moreover, from
Lemma 1.2.3 one has z,, = u; by Theorem 2.2.3, u is a conjugate of a standard
word. Since |w| = k|u|, the integer |u| is a proper divisor of n. Conversely, if
u is a conjugate of a standard word, then by Proposition 2.2.1 one has that
u* € St for any k.

The number of primitive Sturmian words of length n is then obtained by
subtracting from card(St N .A™) the number of words conjugate of a standard
word whose length is a proper divisor of n. It is well known (see for instance [39,
Chap. 2]) that the number of all finite Sturmian words of length n is given by
the following formula:

card(StNA™) =1+ i(n +1—1)¢(z) .
=1
From Lemma 2.2.11 it follows
card(StNT(A*)NA") =1+ zn:(n +1—12)p(e) — ( > de(d >
i=1 ddﬁ
which proves the assertion. O

2.3 New algorithms for the recognition of finite

Sturmian words

The problem of finding efficient algorithms for testing whether a finite word is
Sturmian is of fundamental importance in discrete geometry for several appli-

cations such as pattern recognition, image processing, and computer graphics.
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Several linear-time algorithms have been found by different authors, using var-
ious concepts and techniques (cf. [6] and references therein). In particular,
in [8] a linear algorithm which uses methods of elementary number theory is
given, and in [5, 36] linear algorithms based on methods of discrete geometry
are provided. In these latter works an essential role is played by a suitable
representation of finite Sturmian words by triplets of integers introduced in
[37].

In this section, we give two new and simple linear algorithms for the recog-
nition of Sturmian words, which are based on the combinatorial results on
words obtained in the previous section.

A first algorithm to recognize whether a word w of length n is Sturmian
can be carried out, by Proposition 2.1.7 and Theorem 2.2.3, in the following
three steps.

1. Determine the fractional root 2z, of w.

2. Compute the Lyndon word £ and the anti-Lyndon word ¢’ in the conju-
gacy class of z,,.

3. Compare £ and ¢’ and check whether they have the same proper median

factor of maximal length.

Step 1 can be executed in linear time; in fact, there exists an algorithm to
determine the minimal period 7, (as well as the minimal periods of all prefixes
of w) which runs in linear time [40]. Therefore, also the fractional root 2, can
be generated in linear time. As regards to step 2, to determine the Lyndon
word in the conjugacy class of z, requires O(|2,|) time (see [40]). The same
occurs for the anti-Lyndon word. Step 3 trivially requires O(|z,|) time. In
conclusion, the preceding algorithm allows one to recognize whether a word is
Sturmian or not in linear time.

A second algorithm can be developed as follows, by using Proposition 2.2.9.
1. Determine the fractional root 2z, of w.

2. If |z,| = 1, then w € St; if alph(z,,) contains more than two letters, then
w ¢ St.

3. Find the shortest prefix v of w such that 7, = 7.
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4. Take the suffix uz of v of length 7, — 1, with = € alph(z,,).
5. Verify if uy (with y € alph(z,), y # z) is a factor of 22.

As we have already discussed, steps 1 and 3 can be executed in linear time.
Steps 2 and 4 trivially require O(n) time, and step 5 can be carried out by a
linear-time pattern matching procedure (see for instance [40]). In conclusion,

the proposed algorithm runs in linear time.

2.4 Sturmian palindromes: structural proper-
ties

In the remaining part of this chapter we shall be interested in the set StNPAL,
whose elements will be called Sturmian palindromes.

One has that PER C St N PAL. However, the previous inclusion is strict
since there exist non-central Sturmian palindromes, for instance abba.

We have seen that St = Fact(PER). We shall prove (cf. Corollary 2.4.2) a

similar property for Sturmian palindromes.

Theorem 2.4.1. Every palindromaic factor of a standard Sturmian word c,

15 a median factor of a palindromic prefix of c,.

The result is attributed to A. de Luca [21] by J.-P. Borel and C. Reuten-
auer, who gave a geometrical proof in [7]. Theorem 2.4.1 can be also obtained
as a consequence of a more general result of X. Droubay, J. Justin, and G. Pir-

illo [27]. We shall report later a direct proof for the sake of completeness.

Corollary 2.4.2. A word 1s a Sturmian palindrome if and only if it is a

median factor of some central word.

Proof. Trivially, every median factor of a palindrome is itself a palindrome.
Since St = Fact(PER), it follows that a median factor of an element of PER
is a Sturmian palindrome.

Conversely, let u be in St N PAL. By definition, there exists an infinite
(standard) Sturmian word s such that u € Facts. By Theorem 2.4.1, u is

a median factor of a palindromic prefix of s. Since palindromic prefixes of
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standard Sturmian words are exactly the elements of PER, the result follows.
O

Our proof of Theorem 2.4.1, which follows a simple argument suggested by
A. Carpi [14], is based on the following results (see [21]):

Proposition 2.4.3. If w € Factz, where = 1s an infinite Sturmian word,
then the reversal W s a factor of ¢ too. Moreover, if z 1s standard, then

w 18 a right special factor of  if and only if W s a prefix of x.

Corollary 2.4.4. A palindromic factor of an infinite standard Sturmian
word T 15 a right spectal factor of ¢ if and only if it 1s a palindromic prefic
of x.

Proof of Theorem 2.4.1. By contradiction, let ¢, = Auz, where v is a palin-
drome that is not a median factor of any palindromic prefix of ¢,, and A € A*
has minimal length for such condition. Since u cannot be a prefix of c,, we
have |[A| > 1. Thus we can assume, without loss of generality, A = A'a. Now let
z be the first letter of z, so that £ = zz’. Suppose first z = a. The palindrome
aua is not a median factor of a palindromic prefix of c,, otherwise so would
be u. But ¢, = Nauaz’ with |X'| < |A|, and this contradicts the minimality of
IA|. Therefore z = b, and then aub and bua = aub are factors of cq, in view of
Proposition 2.4.3. This means in particular that w is a right special factor of

Cy- Corollary 2.4.4 then implies that w is a prefix of c,, a contradiction. 0
We recall some basic facts (see [26, 21]):

Proposition 2.4.5. Let w be a word. The following conditions are equiv-
alent:

1. w € PER,
2. awb and bwa are Sturmian,
3. awa, awb, bwa, and bwdb are all Sturmian.

Proposition 2.4.6. If wa and wb are Sturmian words, then there exists a

letter € A such that zwa and zwb are both Sturmian.

We now prove two easy consequences (see also [21]):
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Proposition 2.4.7. Let w € A* be a palindrome. If wa and wb are Stur-

maan, then w 1s central.

Proof. From the previous proposition, there exists a letter £ € A such that
zwa and zwb are both Sturmian. Without loss of generality, we may suppose
T = a, so that awb € St. Therefore awb = bwa is Sturmian too, thus by

Proposition 2.4.5, w is central. U

Lemma 2.4.8. Let w be a Sturmian palindrome. If w is not central, then

there ezists a unique letter x € A such that zwz is Sturmian.

Proof. If awa and bwb are both Sturmian, then w € PER by Proposition 2.4.7,
a contradiction. Since by Corollary 2.4.2 the word w is a (proper) median
factor of some central word, there exists a unique letter z € A such that zwz

is Sturmian. ]

We have seen with Corollary 2.4.2 that a Sturmian palindrome is a median
factor of a central word. We will now give some further results concerning the

structure of Sturmian palindromes.

Proposition 2.4.9. A palindrome w € A* with minimal period m, > 1 can

be uniquely represented as
W = WiTYWy = WaYTW;

with z,y € A, w, the longest proper palindromic suffiz of w, and |wizy| =
Tw. The word w is mot central if and only if either w; ¢ PAL or w =

(wizz)*w, where k > 1 is the order of w.

Proof. Since m, > 1, it follows by Lemma 1.3.3 that w can be uniquely fac-
torized as w = w;zyw, where w, is the longest proper palindromic suffix of w,

z,y € A, and |w;zy| = m,. Since w is a palindrome, we can write
W = W TYWy = WrYTW; .

When m, > 1, by Proposition 2.1.1, w is central if and only if w; € PAL
and z # y. Therefore, in the case w; € PAL, w is not central if and only if

W = W1TTW, = WozTw;. The word w has the two periods

Ty = |wizz| and ¢ = |wyzz| (2.9)
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and length 7, + ¢ — 2. Thus w ¢ PER if and only if d = gcd(my,q) > 1.
Since |w| > 7, + ¢ — d, by Theorem 1.2.1 the word w has the period d = 7.
This occurs if and only if ¢ = k7, with £ > 1. From (2.9) this condition is

equivalent to the statement wyzz = (w,zz), i.e., w = (wizz)*w;. ]

Ezample 2.4.10. Let w = aaabaaaaaabaaa € St N PAL, with m, = 7. The
word w can be factorized as (aaaba)aa(aaabaaa), where aaabaaa is the longest
proper palindromic suffix of w, |aaaba| = 7, — 2 = 5. The prefix aaaba is not
a palindrome, thus w is not central.

Let v = abaababababaaba € St N PAL. We factorize v as

v = (abaabab)ab(abaaba)

where abaaba is the longest proper palindromic suffix of v. Also in this case
abaabab is not a palindrome, so that w ¢ PER.

Let u = abbabbabba € St N PAL. We factorize u as (a)bb(abbabba), where
abbabba is the longest palindromic suffix of u. In this case, the prefix a is a

palindrome, and u = (abb)3a. Hence u is not central.

Lemma 2.4.11. If w = wizyws = wWeyzW;, where w, 1s the longest proper
palindromic suffizc of w and z,y € A, then w' = ywy has the minimal

period My = Ty.

Proof. Since w is a factor of w’, one has 7, > m,. The word yw,y is a
palindromic proper suffix of w' = yw,;zyw,y, so that by Lemma 1.3.3 the
word w' has the period |yw;z|. Hence, 7, < |ywiz| = |wizy| = 7. Thus

Tw = My O

The next lemma is essentially a restatement of Lemma 2 in [19]. Note that

its first part is an obvious consequence of Lemma 2.4.11.

Lemma 2.4.12. Let w = wizyw, = weyzw; € PER, with |wy| > |w;| and
{z,y} = A. The word v = ywy has mintmal period m, = m,, whereas

v = zwz = zw;zywsz has minimal period m, = |ws| + 2 = |w| — m, + 2.

Let w € (StN PAL)\ PER. We denote by u the (unique) shortest median
extension of w in PER, and by v the longest central median factor of w. Note
that also v is unique. For instance, for the Sturmian palindrome w = baaabaaab

one has u = aawaa and v = aaabaaa.
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Theorem 2.4.13. Let w € (StNPAL)\ PER. With the preceding notation,

one has m, = m,. Moreover, either T, =T, or m, = |v| — T, + 2.

Proof. We consider first the case that m, = 1, so that v = z” with z € A and
n = |v|. In such a case w has also the median palindromic factor v; = yz"y,
where {z,y} = A (recall that v is the longest central median factor of w).
Moreover, n = |v| is at least 2, otherwise v; would be equal to yzy € PER.
One has 7, = |yz"| =n+1 = |v| — 7, + 2. Now we define, for 2 <1 < n:

v; = v = 'y ys Tt = (2 tym ) (2 lyzt ) (2.10)

The word v, = 2" *yz"yz™ ' is central, whereas by Lemma 2.1.3 we have v; ¢
PER. From Lemma 2.4.8 it follows that the words v; are the only Sturmian
extensions of v; which are median factors of v,. Since for ¢ < m one has
v; ¢ PER, one derives that w = v, for some 1 < k < n, and u = v,. As
shown in (2.10), by Lemma 2.4.11 all the v;’s have the same minimal period,
for 1 <1 < n. The result in this case follows: 7, = 7, = |v| — 7, + 2.

Now let us assume 7, > 1. One has v = w;zyw,; = woryzw,, with wy, w, €
PAL and z # y. We suppose |w;| < |wsl|, so that 7, = |w;| + 2. From the
definition of v, it follows that there exists a letter z € A such that v; = zvz is
a median factor of w which is not central. By Lemma 2.4.12, we have 7,, = T,
if z=y, or else m,, = |v| —m, +2if z = z.

Using Lemma 2.4.11, we shall now define a sequence of palindromes with
the same minimal period as v;. Let us first suppose that z = y, so that v; =
ywizywey. We set v, = zv;z = (zyw;)(zywoyz). Moreover, if wy = pi1ps - - - D
with p; € Afor 1 <j <k, we set v; = Px_;43V;_1Dk—s+3 fOr 1 > 3, so that

Vs = DrUsDk = (PETYD1 - - Di—1)(DeTYW2YZTDL) ,

Vpt2 = D1VUky1P1 = D1 PuTYWITYWLYTPg - - - P1 = W1TYW1TYW2YTW, -
Since w; = w,, the last equation can be written as
Vgr2 = (w1)zy(wizywryzw,) = (Wizyweyzw; )yz(w,)

showing, by Proposition 2.4.9, that the word v, is central, so that for any
1<m,=k+ 2one has v; € StN PAL.
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Let s < k + 2 be the minimal integer such that v, € PER. Since for 72 < s
one has v; ¢ PER, one derives from Lemma 2.4.8 that u = v, and w = v, for
some integer r < s. Hence m, = m,, = Ty, and in this case m, = m,.

The case z = z is similarly dealt with, but interchanging the roles of w;
and w,. Thus one assumes wy = ¢q1---qx, ¢; € A, 1 < 7 < k, and defines v;
as Qr_i13Vi_1qk_sy3 for © > 3, starting from v, = yv1¥ = (yzw,)(yzw,zy) and
ending with

Upio = WaYTWrYyTW1TYwW, € PER .

Therefore there exist integers 7 and s such that 1 <r < s < k+2 = |v|—7,+2,

w = v,, and u = vy, so that 7, = 7, and 7T, =W, = |v| — T, + 2. O

Ezample 2.4.14. Let w = baaabaaab € St N PAL. Following the notations of
Theorem 2.4.13, one has v = aaabaaa, v, = w, and u = vs = aabaaabaaabaa.
Thus 7, = 7, = 7, = 4.

Let w = babbbbab. In this case we have v = bbbb, w = v,, and u = vy =
bbbabbbbabbb, so that 7, =71, =5=|v|+1=|v|—m, + 2.

For any word w € A*, we denote by K, the length of the shortest unre-
peated suffix of w. Conventionally, one assumes K, = 0. There exist some
relations among the parameters R,, K,, 7, and |w|; the following lemma
synthesizes some results proved in [22, Corollary 5.3, Propositions 4.6 and 4.7]

which will be useful in the sequel.
Lemma 2.4.15. For any w € A*, one has
lw| > Ry, + Ky -
Moreover, the following holds:
o if T, = R, + 1, then |w| = Ry + Ky,

e if |lw| = Ry, + K., then for any n there exists at most one right special

factor of w of length n.

The following theorem gives a further criterion, different from Proposi-

tion 2.4.9, to discriminate whether a palindrome is central or not.

Theorem 2.4.16. Let w € A* be a palindrome with m, > 1. Then w 18
central if and only if its prefiz of length m, — 2 1s a right special factor of

w.
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Proof. From Proposition 2.4.9, we can write
W = W1TYWy = WYL, (2.11)

where z,y € A, w, is the longest proper palindromic suffix of w, |w;| = m, — 2,
and w is central if and only if w; € PAL and z # y. Therefore we have to
prove that w; is a right special factor of w if and only if w; = W, and = # y.

Indeed, assume that these two latter conditions are satisfied. Since w; = w;
and w, is the longest proper palindromic suffix (and prefix) of w, one has that
w; is a border of w,. This implies, from (2.11), that w; is a right special factor
of w.

Conversely, suppose w; is a right special factor of w. Let us first prove
that w; € PAL. By hypothesis, we have 7, — 2 = |w;| < R, — 1, that is
R, > m, — 1. By Lemma 2.4.15 one has 7, > R, + 1, so that 7, = R, + 1.
This implies |w| = R, + K,, again by Lemma 2.4.15. The suffix @, of w is
repeated, because w; is a right special factor of w, which is a palindrome. This
leads to

Tw— 2= || <K, —1

and thus to |w| = R, + K, > 21, — 2. If |w| = 27, — 2, then |w;| = |w;
so that one derives w; = wy, € PAL. If |w| > 2m, — 1, then w has the prefix
wizyw: T, so that yw,;z € Fact w. Since w; is a right special factor of w, there
exists a letter 2 # z such that w;2z € Factw. Moreover, since w;z is not a
prefix, there exists a letter y’ such that y’'w;z € Factw. One has y # 3/, for
otherwise yw; would be a right special factor of w of length 7, — 1 = R,,
which is a contradiction. As w is a palindrome, the words zw,y and zu,y’ are
factors of w too, so that 0, is a right special factor of w. By Lemma 2.4.15,
one obtains w; = w;. Therefore we get w; € PAL again.

We shall now prove that  # y. By contradiction, suppose w has the
factorization

w = (wizz)*w,, with £ > 1

as granted by Proposition 2.4.9. Since w; is a right special factor of w, one
has w;z € Fact w for a suitable letter z ## z. Thus we have either w2 = zw;
Or W12 = UpXTV12, Where v,z is a prefix of w; and v, is a suffix of w;. Since

|lwi| = |wi2| — 1, we can write w; = v;zav,, with a € A. The first case is
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impossible since w; is a palindrome and z # z. In the latter case, one obtains:
V1Z0Uy — Wy — W1 = U1 TTVs
which is absurd again, because = # z. ]

Ezample 2.4.17. The word w = baab is a Sturmian palindrome of minimal
period m, = 3. Its prefix of length 1 is not a right special factor, hence
w ¢ PER. The word v = abababbababa is a Sturmian palindrome having
minimal period 7, and its prefix ababa of length 5 is not right special. Therefore
v ¢ PER. On the contrary, the word u = aabaabaa has minimal period 3, and

its prefix of length 1 is a right special factor, so that u is central.

In Proposition 2.2.6 we have proved that any finite word w such that
Ty = Ry + 1 is Sturmian. The converse does not hold in general, as shown
in Examples 2.2.7 and 2.4.19. However, the result is true for Sturmian palin-

dromes, as the next theorem shows.

Theorem 2.4.18. A palindrome w € A* is Sturmian if and only if m, =
R, +1.

Proof. By Proposition 2.2.6, the condition is sufficient. Necessity is trivially
true if 7, = 1. By (1.1), one has 7, > R, + 1. Hence, if 7,, > 1 the condition
mw = Ry, + 1 is equivalent to the existence of a right special factor s of w of
length |s| = m, — 2.

We prove that every Sturmian palindrome w such that m, > 2 has such a
factor. If w is central, the result follows directly from Theorem 2.4.16. Thus
we suppose w ¢ PER, and as in Theorem 2.4.13 we denote by v the central
median factor of w of maximal length.

If m, = 1, then there exists a letter z € A and an integer n > 1 such that
v = z". From the maximality condition, one derives that » > 1. In this case,
by Theorem 2.4.13 one derives 7, = |v|+ 1 =n + 1 and yz™y € Fact w, where
{z,y} = A, therefore z"! is the desired right special factor of w, of length
n—1=m, — 2.

If m, > 1, by using Proposition 2.1.1 we can write v as v;2yvs = v,yxvy,
with 7, = |v;zy|. By Theorem 2.4.13, one has either 7, = 7, or m, = |v| —

7, + 2. In the first case, the result is a consequence of Theorem 2.4.16. Indeed,
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the prefix v; of the central word v, whose length is 7, — 2 = 7, — 2, is a right
special factor of v, and then of w. In the latter case, one derives that the word
TUT = TU1TYVU-T = TVUYTV T 1S a factor of w, so that v, is a right special factor
of w, of length |v| — m, = m, — 2. O

Ezample 2.4.19. The word u = ababaa is not a palindrome, but 7, = 5 =
R, + 1, thus it is Sturmian. However, the word v = aabab € St has m, =5 >
3=R,+1. Let w = abba € Stn PAL. One has 7, = 3 = R, + 1. The
palindrome s = aabbaa is not Sturmian. One has 7, =4 >3 = R, + 1.

We remark that, by symmetrical arguments, one can prove results analogous

to Proposition 2.2.6 and Theorem 2.4.18, namely, «f m, = L, +1, then w € St,

and a palindrome w € A* 1s Sturmian if and only if m, = L, + 1.

2.5 Enumeration of Sturmian palindromes

In this section we shall give an explicit formula for the enumeration function
of St N PAL, that is, the function g : N — N defined for all n > 0 as

g(n) :=card(StN PALN A™).
For any n > 0, g(n) gives the number of Sturmian palindromes of length n.

Theorem 2.5.1. For any n > 0, the number g(n) of Sturmian palindromes
of length n 1s given by

[n/2]—1
1+ > é(n—29), (2.12)
=0

where ¢ 1s Euler’s totient function. Equivalently, for any n > 0

g(2n) =1+ igb(%) and g(2n+1)=1+ i $(21+1).

i=0
Proof. Given w € St N PAL, at least one of its extensions awa and bwb is
Sturmian. Indeed, according to Lemma 2.4.8, if w ¢ PER, then exactly one
of these extensions is in St. If w € PER, then from Proposition 2.4.5, both
awa and bwb are Sturmian palindromes. Since the number of central words of
length n is ¢(n + 2) (see [26]), we get:

9(n+2) =g(n) + ¢(n +2)
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and this implies the desired formula, because g(0) = 1 and g(1) = 2. ]

We define a function f : N — N by setting for n > 0:

n(n+ 1)

fen)=1+ 5

and f2n+1)=2+4+n(n+1).

It is easy to verify that g(n) < f(n) for all n > 0. Moreover, for any n > 0 we
set

h(n) = card(PERN A") = ¢(n +2) .
In Table 1 we list the values of the functions g, f, and A for 0 < n < 17. As

an example, in Table 2 we list all 14 Sturmian palindromes of length 7. The

six central words in it are underlined.

Table 2.1: The functions g, f, and hA.

n g(n) f(n) h(n) n g(n) f(n) h(n)

0 1 1 1 9 20 22 10
1 2 2 2 10 14 16 4
2 2 2 2 11 30 32 12
3 4 4 4 12 18 22
4 4 4 2 13 42 44
5 8 8 6 14 24 29
6 6 7 4 15 50 58 16
7 14 14 6 16 32 37 6
8 10 11 4 17 66 74 18

The following proposition relates the numbers of Sturmian palindromes of
odd and even length.

Proposition 2.5.2. For any n > 0 one has
g(2n — 1) = g(4n) — 29(2n) + 2.

Proof. From Theorem 2.5.1 one has

g(4n) =1+ injqb(%) .
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Table 2.2: Sturmian palindromes of length 7 (central words are underlined).

aaaaaaa | bbbbbbb
aaabaaa | bbbabbdb
aababaa | bbababb
abaaaba | babbbab
abababa | bababab
abbabba | baabaab
abbbbba | baaaaab

As is well known (see for instance [30]), for any n > 0 one has ¢(2n) = ¢(n)

for odd n and ¢(2n) = 2¢(n) for even n. Thus we can write

g(dn) = 1+2 > ¢(1)+ > ¢(2)

1 even 7 odd
1<2n 1<2n

n n—1
= 1+2> ¢(2k)+ > #(2k + 1)
k=1 k=0

= 9(2n—1)+2(g9(2n) - 1),
which concludes the proof. O

Now we consider the problem of finding lower bounds for the number of

Sturmian palindromes of any length. We premise the following simple lemma:

Lemma 2.5.3. The totient function ¢ has the following lower bounds:
¢(n) > n* for odd n and ¢(n) > 27*n* for even n ,

where a = log; 2 = 0.6309. .. .

Proof. The case n = 1 is trivial. Let us factorize an integer n > 1 uniquely
as n = p’flpgz---p,’f’, where for 1 < ¢ < r the p; are primes, k; > 1, and
P1 < Py < -+ < py. Asis well known (cf. [30]), Euler’s function ¢ is related to
the primes p; by the following relation:

r

0 pi—1
¢(n) = 1]1 o (2.13)
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Let us first suppose that n is odd, so that p; > 3. By (2.13) one derives
2 r
d(n)>n (5) and n > 3",

so that 7 < logyn and ¢(n) > n(2/3)e™ = nles2 = no,
Now suppose n is even. We can write n = 2*m with m odd and k£ > 1.
From the multiplicative property of ¢, one has ¢(n) = ¢(2%)p(m) = 28 1¢(m).

From the preceding result, one has

oom-o(2)= ()"

so that
p(n) > 281 (%)a = k(o) lpa > grape O
Proposition 2.5.4. Let 8 = m For n > 0 one has:
g(2n+1) > (2 - B) +B(2n + 1) (2.14)
and
g(2n) > 1+ én”"‘ : (2.15)

Proof. By Lemma 2.5.3, we can write
g(2n +1) = 1+§n:¢(2z'+1) > 2+§n:(2i+1)°‘ :
=0 i=1
Approximating the sum with an integral, one has
i(zz‘ +1)* > /On(2:c +1)*dz = B(2n + 1) -3,
so that (2.14) follows.
By Lemma 2.5.3, we can write
g(2n) = 1+§¢(2¢) > 1+§;z’°‘ > 1+/0n:c°‘d:c 14 én”“ ,

so that (2.15) follows. O
As a consequence, one derives that
g(n) =Q(n'**).

From this result we can prove that the density h(n)/g(n) of central words of
length n with respect to all Sturmian palindromes of length n, vanishes when

n diverges.
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Proposition 2.5.5. The following holds:

Proof. We recall that h(n) = ¢(n +2) < n+ 1 for all n > 0. Since g(n) =
Q(n'**), ie., g(n) > dn'** for all n > 0 and some positive constant d, it

follows that for any n > 0 one has

h(n) Nt 1

g(n) — dnlte’
As the right hand side of last equation vanishes when n diverges, the assertion
follows. O

Now let us recall (cf. [39]) that for any n > 0 the number st(n) = card(Stn
A") of all finite Sturmian words of length n is given by the following formula:

st(n) =1+ i(n —14+ 1)¢(2) .

We shall prove that the density g(n)/st(n) of Sturmian palindromes of length
n with respect to all Sturmian words of length n, tends to 0 when n tends to

infinity. The proof is based on the following lemma.
Lemma 2.5.6. st(n) = Q(n?*"*).

Proof. By Lemma 2.5.3 one has ¢(n) > 27*n® for any n > 0, so that

n

st(n) > 142> (n—i+1)i*=1+2"%n+1)> 1*—27%) '+,
=1

=1 =1
Since

n ) n n 1 n+1 1
i > / z%dz and ) 't* < / ziteder
1=1 0 =1 0

one obtains

n+l ., _a(n 1) - 1+
n T 2% —~ =27 %n+1)n""%r(n
a+1 a+2 ( + ) ()

st(n) >2°¢

where

1 1 /n+1\2e

o+l a+2 ( n ) '

The function r is strictly increasing and it satisfies, for all n > 3, the inequality
1

(a+)(a+2)’

so that st(n) > 27%*(n + 1)n'™*r(3). Therefore there exists a constant d > 0

such that for all n > 0, st(n) > dn?*®, i.e., st(n) = Q(n*). O

r(n) =

0<r(n)<
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Proposition 2.5.7. The following holds:

9(n) _ 4

n—o0o0 St(n)

Proof. From the definition one has that for any n, g(n) < 1+ &(n), where

n

®(n) =>_¢(1) -
=1
As is well known (cf. [30]), #(n) = O(n?), so that by the previous lemma one

has
2

g(n) cn
st(n) — dn?t«

for all » > 0 and some constants c,d > 0. Since the right hand side in the

previous equation vanishes when n diverges, the result follows. ]

Let us observe that, by using the well known result (see for instance [30,

Theorem 327]),
o)
im

n— oo n1*5

=00 foranyéd >0,

one easily derives a sharper asymptotic lower bound for the function g, i.e.,
g(n) = Q(n*"°)

when n diverges.
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Chapter 3

Palindrome closure and

episturmian words

As shown in the previous chapter, palindromes play a decisive role in the study
of Sturmian words. In this chapter we introduce palindrome closure operators,
which are involved in a famous characterization of standard Sturmian words
(see Proposition 3.3.1), as well as in a natural generalization to larger alphabets,
namely episturmian words.

We begin by defining the operators and prove some preliminary results, all
in a slightly generalized setting that will be useful from the point of view of
Chapter 4. Then we move to the main goal of this chapter, which is to prove
that the classes of finite Sturmian and finite episturmian words are both closed

under palindrome closure operators.

3.1 Pseudopalindrome closure operators

Let ¥ be an involutory antimorphism of A*. We define in A* two closure
operators associating to each word w respectively the shortest ¥-palindrome
having w as a prefix, and the shortest ¥-palindrome having w as a suffix. We
prove that the minimal periods of these two }-palindrome closures of w are
equal, and moreover, if w is nonempty, their fractional roots are conjugate.
The main result of the section is that the minimal period of the ¥-palindrome
closures of a nonempty word w is equal to the minimal period of w if and only

if the fractional root of w is ¥-symmetric.



48 Chapter 3. Palindrome closure and episturmian words

Lemma 3.1.1. For any word w € A*, there exists a unique shortest ¥-

palindrome having w as a prefiz (resp. suffiz).

Proof. Let us observe that certainly there exists a ¥-palindrome having w
as a prefix, namely ww@w. Now suppose that wA; and wA, (A, Ay € A*) are
two ¥-palindromes having w as a prefix, both of length & < 2|w|. One has
0 < |A1] = [A2] = k — |w| < |w|. Hence, if u is the prefix of w of length k — |w|,
one derives that A\; = Ay = 4.

In a similar way, one proves that there exists a unique shortest ¥-palindrome

having w as a suffix. O

For any word w € A*, we denote by w®® (resp. w®?) the shortest -
palindrome in A* having w as a prefix (resp. suffix). We call w®® (resp. w®?)
the right (resp. left) ¥-palindrome closure of w. To simplify the notation, we
shall write w® and w® for w®® and w®? respectively, when no confusion arises.

When 4 is the reversal operator R, w® and w® are respectively the shortest
palindrome having w as a prefix and the shortest palindrome having w as a
suffix. As usual, they will be denoted by w(*) and w(™) (cf. [21]).

For any word w, we denote by Py(w) (resp. Qs(w)) the longest 9¥-palindrom-
ic prefix (resp. ¥-palindromic suffix) of w. When there is no ambiguity, we shall

simply write P and Q instead of Py(w) and Qs(w), respectively.

Proposition 3.1.2. With the above notation, if w 1s a word and w = sQ =
Pt, then w® = sQ35 and w® = tPt.

Proof. Let w = sQ and w® = sQA\ with A € A*. Since w® is a ¥-palindrome,
one has

w® = sQX = Q5.

If [s| > ||, then s = A§, § € A*. Since w® = AJQ), it follows that §Q is a
9-palindrome. One can write w = sQ = AJQ, so that § = € by the definition

of Q. Hence A = 3. In a similar way, one proves that w® = tPt. O

As a consequence of the definition, one derives that

(0)® = w® . (3.1)
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Example 3.1.3. Let w = abaabb. One has Pr(w) = aba, Qr(w) = bb, w'*) =
abaabbaaba, and w'~) = bbaabaabb. If ¥ is the exchange antimorphism e = Eo
R, one has P,(w) = ab, Q.(w) = aabb, w® = abaabbadb, and w® = aabbabaabd.

Proposition 3.1.4. Let w € A" and w = sQ = Pt. One has that zye ~ Zye
so that mye = mye. If w ¢ PALy, then

2y = st and z,e = ts .

Proof. If w is a ¥-palindrome, then the result is trivial. Let us then suppose
w = sQ = Pt ¢ PALy, so that s,t € AT. By Proposition 3.1.2, one has:

w® = sQ5= Pts=stP, (3.2)
w® = tPt=1tsQ = Qst . (3.3)

Since P and @ are proper ¥-palindromic prefixes and suffixes of w® and w®
respectively, by Lemma 1.3.3 one has that p = |st| = |t5| > 0 is a period of w®
and of w®.

Let us now prove that P is the longest proper ¥-palindromic prefix (suffix)
of w®. By contradiction, suppose that T is a ¥-palindromic prefix of w® of
length greater than |P|. If |T'| < |Pt|, then T would be a ¥-palindromic prefix
of w longer than P, which is absurd. If |Pt| < |T| < |w®|, then one would
contradict the fact that w® is the shortest ¥-palindrome having w as a prefix.
Therefore, by Lemma 1.3.3, p = m,e. Since by (3.2), st is a prefix of w® and
|st| = mye, one has z,e = st. In a similar way, one shows that @ is the longest
proper ¢-palindromic prefix (suffix) of w®, so that p = m,e and z,e = is.

From this it follows z,e ~ 2y06. ]

Ezample 3.1.5. Let w = 2z, = abaabb (see Example 3.1.3). If ¥ = R, then
s = abaa, t = abb, z,+) = abaabba = sf, and 2, = bbaabaa = fs, so that
Zoy(+) ™ Zyy()-

If9=e=FEoR,onehas s =ab=35,t=aabb=t, zye = abaabb = st, and

Zye = aabbab = ts, so that z,e ~ zye.

Theorem 3.1.6. Let w € AT. One has 7, = mye if and only if z, is

¥-symmetric.
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Proof. We first prove the “if” part. Suppose 2, = of with a,3 € PALs, so
that

w = (af)"2’
where n > 1 and 2’ € Pref(af). Moreover, let w = Pt = sQ as before, so that
by Proposition 3.1.4 one has z,e = st. Since T,e > T, it suffices to show that
|st| < m,. We distinguish two cases, depending on the length of 2'.

The first possibility is 2’ € Pref a. Let u € A* be such that a = z'u = uZ'.
Then the word z'8(aB)" 'z’ is a ¥-palindromic suffix of w, and therefore a
suffix of Q. This implies |s| < |u|, because w = sQ = 4@ Z'8(aB)" 2. In a
similar way, since (a8)" 'a is a ¥-palindromic prefix of w (and then of P),
one has [t| < |B2'| because w = Pt = (af)" 'aBz'. In conclusion, one gets
|st| < |u| + |B2'| = |aB| = T, as desired.

The second case occurs when 2’ is not a prefix of «, so that 2’ = az” with
2" € Pref 8. Let v be the word such that 8 = 2"v = 9z". Then z"(aB8)" 'az”
is a ¥9-palindromic suffix of w, so that one derives |s| < |av| following the above
arguments. Moreover, since (af)"a € PALy N Pref w, one obtains |t| < |2,
which implies |st| < |av| + |2"] = |aB] = Ty.

Let us now prove the “only if” part. If 7, = mye, then 2, = 2,0. Moreover,
since w® is a ¥-palindrome beginning with z,, it has the suffix z,,. As |z,| =
|Z| = Ty, one has by Lemma 2.4.13 that 2, ~ 2,,. By Lemma 1.3.2 it follows
2, € PAL, O

Corollary 3.1.7. Let Ly = {w € A* | 2z, € PAL}}. Ifw € Ly, then w®, w® ¢

Ly and Tye = Tye = Ty.

Proof. Let w € Ly. By Corollary 1.3.5, 2ye, 2ye € PALf, so that w®, w® € Ly.
By Theorem 3.1.6 and Proposition 3.1.4, 1, = Ty,e = Tye. O

Corollary 3.1.8. Let w € AT. If 2z, is ¥-symmetric, then z2 A*Nw®A* # (.

Proof. Since z, € PALf‘,, by the previous theorem one has 7, = m,e so that

2w = Zyo. One can write

® _ Jk 1 k1
WY =202 = 2,2 ,

with kK > 1 and 2’ € Prefz,. If & > 1, one has that 22 is a prefix of w®. If
k =1, then w® = 2,2/, so that w® € Pref 22. O
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Let us remark that the converse of the statement of the preceding corollary

does not hold in general, as shown in the last example reported below.

Ezamples 3.1.9. Let w = abaabb (see Examples 3.1.3 and 3.1.5). One has
that w = z, ¢ PAL?, so that m ) = mu) = 7 # 6 = m,. For ¥ = e, since
2w € PAL?, one has Tye = Tye = T, = 6.

Let w = aabaa. One has that z,, = aab ¢ PAL?. One has w® = aabaabbabb
and mye = 10 # 3 = 7.

Let w = abecbab. One has 2z, = abech € PAL? and 7, = 5. Thus w(t) =
abecbabeeba and w(™) = babecbab. Moreover, 2z, = 2z,+) ~ 24,) = babcc. In
this case 22 is a prefix of w(*),

Let w = babaab. One has z, = babaa € PAL?, wt) = babaabab, w(~) =
baababaab, so that 7, = T, = 7, = 5. In this case w(™) is a prefix of 22.

Let w = (abab?)%a, whose fractional root is z,, = aba®b®> ¢ PAL*. One has

that z2 is a prefix of w, and then of w(*).

We conclude this section with three lemmas that will be useful in the sequel.

Lemma 3.1.10. If a word u € A* and a letter x € A are ¥-palindromes,

then the fractional root of uz s ¥-symmetric.

Proof. If uz is unbordered, then z,, = uz € PALf,, so that z,, is ¥-symmetric.
If |2yz| < |uzl|, then z,, is a prefix of u and 7., = |24;| < |u] is a period of
u. By Corollary 1.3.5, it follows that z,, is ¥-symmetric. ]

We remark that the preceding result does not hold in general when the
letter z is not a ¥-palindrome. For instance, let A = {a,b} and ¥ = e. The
word w = aabb is an e-palindrome, but the word wb = aabbb = z,; is not

e-symmetric.

Lemma 3.1.11. Let u € A* and w = (uz)®, where z € A. If p is any prefic
of w of length |p| > |u|, then p® = w.

Proof. The word w is a ¥-palindrome having p as a prefix, so that [p®| < |w].

Moreover, p has the prefix uz, so that
(uz)®| < [p®] < Ju] .

Therefore, |p®| = |w|. Since w is a ¥-palindrome of minimal length having p

as a prefix, it follows by Lemma 3.1.1 that w = p®. O
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Lemma 3.1.12. For any u € PALs \ {e} and a € A, (ua)® is a first return
to u, i.e., if (ua)® = Aup with A, p € A*, then either A=¢€ or p=c¢.

Proof. By contradiction, let A, p € A" be such that
(ua)® = Aup . (3.4)

Clearly |A| + |u| + |p| = |(ua)®| < 2|u| + 2, which implies |A| < |u| +2 — |p]| <
|lu| + 1. Let us show that actually one has |A| < |u|. Indeed, if A = ua then
from (3.4) one derives |(ua)®| = 2|u| 4+ 2; this implies that a ¢ PALs and
(ua)® = wadu = uaup, so that up = au. It follows that for some k& > O,
u = a* ¢ PALy, a contradiction.

Let then v,w € A* be such that u = Av and (ua)® = uw = wu, whence
Aup = uw = Avw. Thus up = vw, so that v is also a prefix of u and therefore
a border of u. Since u is a ¥-palindrome, v is a ¥-palindrome too, so that

u = \v = v\. Therefore
(ua)® = Aup = Avdp.

Thus A\v is a ¥-palindrome beginning with ua and strictly shorter than (ua)®,

which is a contradiction. O

3.2 Iterated pseudopalindrome closures

Let ¥ be a fixed involutory antimorphism of A* and ® the right ¥-palindrome

b4
a)

closure operator. For any letter a € A we denote by D;, or simply D,, the

map D, : A* — PAL, defined as: for all v € A*
D,(v) = (va)® .

We call the operators D,, a € A, the elementary 9-palindrome (right) actions
of the letters of A on A*. One can extend inductively the definition of the
operators D, from the letters of the alphabet A to the words of A* by setting
D.= id and for any a € A and w € A*,

Dy,=D,oD, .
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Hence, if w = a1a5---a,,a; € A,2=1,...,n, one has:
D,=D, oD, ,0---0D,, .

Thus the action of the operator D,, on the words of A* is obtained by successive
elementary ¥-palindrome actions with an iterated process which is directed by
the word w. Since for any w,u € A* and a € A the word D, (u) is a prefix
of D,,(u), we can define for an infinite word z an operator D, : A* — A by

setting, for any u € A*:
D.(w) = lim Dy, (u), (3.5)

where {w,} = Prefz N A™ for n > 0.
The words u and z are called, respectively, the seed and the directive word
of D,(w). Until Section 4.3, we shall consider mainly the case when the seed

4 is equal to the empty word. Therefore, we set for any w € A*®
Yo(w) = Dy(€) . (3.6)
From this definition one has 9s(¢) = € and, for any w € A* and a € A,
ps(wa) = (Ps(w)a)® .
For any w, v € A*, one has:
Ys(wv) € Ys(w)A* N A% Ys(w) .

Ifz=z2z,- -2, -- € A, from (3.5) and (3.6) it follows

Yo(z) = lim Ys(zy---z,) .

n—oo

The infinite word 1 (z) will be called the 9¥-standard (infinite) word directed
by z. The directive word of a ¥-standard word ¢ will be also denoted by A(¢).
A ¥-standard word will be called, without specifying the antimorphism %, a

pseudostandard word.

Ezamples 3.2.1. Let A= {a,b} and z = (ab)*. If 3 = R, one obtains
Yr(a) =a, Ygr(ab)=aba, Ygr(aba)= abaaba,...

In this case, ¥r ((ab)*) = abaababaabaab- - - is the Fibonacci word f.
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If ¥ = e, one has
Ye(a) = ab, Y.(ab) = abbaab, Y.(aba) = abbaababbaab, ...

In this case, ¥, ((ab)*) = u(f), where u is the Thue-Morse morphism (cf. [38])
defined as u(a) = ab, u(b) = ba.

Proposition 3.2.2. Let s = ¢s(z) be a ¥-standard word. The following
hold:

1. w is a prefix of s if and only if w® is a prefix of s,
2. the set of all ¥9-palindromic prefizes of s is given by s(Prefz),
3. s 1s closed under ¥, 1.e., if w € Fact s, then w € Fact s.

Proof. If w® is a prefix of s, then trivially w is a prefix of s. Conversely, suppose
that w is a prefix of s and that A(s) =z =z125---z,--- withz; € A, ¢ > 0.
Let us set u; = ¢ and for n > 1, up. 1 = Ys(1 - - T,), S0 that u, 1 = (upz,)®.
If w = ¢, then trivially w® — ¢ € Pref s. If w # ¢, we consider the least n such
that |u,| < |w| < |tny1]|- By Lemma 3.1.11 one has w® = u,; € Prefs. This
proves point 1.

By definition of ¥-standard words, all the words in the set (Pref z) are
¥-palindromic prefixes of s. Conversely, if w is a ¥-palindromic prefix of s, then
by following the same argument used for point 1, one has that there exists an
integer n such that w = w® = u,, € ¥s(Pref z). This proves point 2.

Let w be a factor of s. Since there are infinitely many 1¥-palindromic prefixes
of s, there exists a ¥-palindromic prefix u having w as a factor. Therefore, also

w is a factor of u and of s. This concludes the proof. O

Proposition 3.2.3. Let t be a ¥-standard word. If w 1s a factor of t, then

either w® or w® are factors of t.

Proof. We suppose that w ¢ PALy, otherwise the result is trivial. By Propo-
sition 3.2.2, Factt is closed under ¥, so that also w is a factor of . Let p be
a prefix of ¢ such that p = Au, where u is either w or w and A is of minimal
length. If A = ¢, then u is a prefix of ¢, so that by the preceding proposition,
u® is a factor of t. Suppose A # ¢ and let Q be the longest ¥-palindromic
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suffix of p. One can write p = Au = sQ with s € A*. We now show that
@ is the longest ¥-palindromic suffix of u. Indeed, otherwise one would have
Q — pu — 4 with g € A*, so that

D= AU = SuU = SUL .

Since A = su and || > 0, one has |s| < |A| and this contradicts the minimality
of |A|. Hence we can write p = Au = As'Q, where u = §'Q and Q is the
longest 9-palindromic suffix of u. Thus p® = As'Qs'A = Au®). Since p® is a ¥-
palindromic prefix of ¢ by the preceding proposition, it follows that u® € Fact¢.

We have proved that in all cases, u® is a factor of ¢t. Therefore, if u = w,
one has w® € Factt; if u = w, by (3.1) one has w® € Factt. O

A stronger version of the preceding Proposition will be given with Theo-
rem 4.1.15.

R-standard words were introduced in [27] as standard episturmian words.
In the next two sections, we consider Sturmian and episturmian words, and
give some combinatorial results which are mainly concerned with palindrome
closures of their factors. In the next chapter we will consider again general
pseudostandard words, as well as different generalizations of standard epistur-

mian words.

3.3 Palindrome closure in Sturmian words

The link between palindrome closure and Sturmian words is expressed by the

following well known proposition (see for instance [21]):

Proposition 3.3.1. An infinite word w over A = {a,b} ts standard Stur-
mian if and only if it 1s R-standard and its directive word contains in-
finitely many occurrences of both a and b. Moreover, the directive word of

the Sturmian word c,, with a = [0;dy, dy, .. .|, 18 A(w) = a%bda®pd ...

We now consider factors of Sturmian words in relation with palindrome
closure. We need some preliminary results; the first one is a simple lemma on

standard words.

Lemma 3.3.2. If s € Stand, then s ~ 3.
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Proof. The result is trivial if s € A. If s is not a letter, then by (2.4), s € PAL?
and the result follows from Lemma 1.3.2. O

Corollary 3.3.3. If a word w 15 a conjugate of a standard word, then

w~ W.

Proof. Let s be a standard word such that w ~ s. One has w ~ 5. Since by

the preceding lemma s ~ §, the result follows. O
We are now in the position of stating the first main result of this section.
Theorem 3.3.4. If w € St, then w'"), w) € St and T, = Ty = Tyo).

Proof. Let w be a finite Sturmian word. The result is trivial when w =
g; let us then suppose w € A". By Theorem 2.2.3, 2z, ~ s for some s €
Stand. By Corollary 3.3.3, z, ~ %, and by Lemma 1.3.2, z, € PAL?. By
Theorem 3.1.6 and Proposition 3.1.4, one has 7, ) = m,-) = Ty. This implies
that z,+) = 2, ~ s, so that by Theorem 2.2.3 it follows w(t) € St. Since by
Proposition 3.1.4, z,) ~ 2,+) = 2, ~ S, by applying again Theorem 2.2.3,
one obtains w(~) € St. O

From the previous results and from Corollary 3.1.8 one derives the following:

Corollary 3.3.5. Let w be a nonempty Sturmian word. One has
2 A Nw A £D.

The following proposition shows that the left and right palindromic closures
of a finite Sturmian word are factors of a suitable infinite standard Sturmian

word.

Proposition 3.3.6. Let w € St. There exists an infinite standard Sturmian

word s such that wH), w(-) € Fact s.

Proof. If w € St, then by (1.2) one has that for any k£ > 1, the fractional root
of z* is z,,. By Theorem 2.2.3, z,, is a conjugate of a standard word; therefore,
by using again Theorem 2.2.3, one has z* € St. By Proposition 3.1.4 and
Theorem 3.3.4, one has 2z, = 2,4) ~ 2,-. This implies z,-) € Fact zfu.
Therefore, there exists an integer m > 1 such that w(*), w(~) € Fact 2. Since
z € St, there exists an infinite standard Sturmian word s such that 2] €
Fact s. Hence, w(*), w(~) € Fact s. O
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Let us observe that in general, if s is an infinite Sturmian word, then
w(t) € Facts does not imply w(-) € Facts. For instance, in the case of
the Fibonacci word f, one has that (abab)(*) = ababa is a factor of f, whereas
(abab)(") = babab cannot be a factor of f. Indeed otherwise, since aabaa €
Fact f, the “balance” condition for Sturmian words (cf. [39, Chap. 2]) would
not be satisfied.

Proposition 3.3.7. Let w be a nonempty word. The following conditions

are equivalent:
1. w s a prefix of a standard Sturmian word,
2. wt) is central,
3. the fractional root z, s a standard word.

Proof. 1. & 2. This is a consequence of Proposition 3.2.2. Indeed, w is a
prefix of a standard Sturmian word if and only if w(*) is a prefix of a standard
Sturmian word, and this occurs if and only if w(*) is a central word.

2. = 3. Trivial if my, = m,+) = 1. Then assume by Proposition 2.1.1 that
w) = wzyw,, with {z,y} = {a,b} and |w;| < |w,|, so that by (2.4) one has
Z, = wizy € Stand. Since z,, = 2,1, the result follows.

3. = 2. Since 2z, € PALQ, by Theorem 3.1.6 one has z,u) = 2,. The
word z,, is standard, so that, as a consequence of the construction via directive
sequences, one derives that for any & > 1, z* € Pref s, where s is an infinite

standard Sturmian word. Now
wt) =28 2" = 2F 2’ € Pref(zFt)

for some 2’ € Pref z,,. Hence w(*) is a palindromic prefix of a standard word,
so that w(t) € PER. O

From Theorem 3.3.4 a new characterization of finite Sturmian words can
be given. We need the following lemma that summarizes some results proved
in [23]:

Lemma 3.3.8. Letw € A*. Ifm, = R,+1, then w s Sturmian. Conversely,

if w s a Sturmian palindrome, then m, = R, + 1.



58 Chapter 3. Palindrome closure and episturmian words

Theorem 3.3.9. A word w 1s Sturmian if and only if
Tu+ = Ry + 1.

Proof. By Theorem 3.3.4, w is Sturmian if and only if w(*) is Sturmian. By

the previous lemma, the result follows. O

In a perfectly symmetric way, one derives that a word w is Sturmian if and
only if m,-) = R, + 1.

We observe that if w € St, then from the preceding proposition and The-
orem 3.3.4 one derives m, = R,+) + 1. However, this condition does not
assure in general that w is Sturmian, as shown by the following example: let
w = abaabb ¢ St; one has 7, =6, T, =7, and R, = 5.

A characterization of finite Sturmian words similar to Theorem 3.3.9 is
given by Theorem 2.2.8, of which we will now give a different proof, based on

Theorem 3.3.9 and on the following lemma.
Lemma 3.3.10. If w € A* and 7, = R, + 1, then R, = R,>.
Proof. By (1.2) and (1.1) one has that for any & > 1
|Zw| =Ty =T > Re + 1.
Since Fact 22 C Fact z® and 7, = R, + 1, one has that for all £ > 1
2] =1> Ry > R, > Rz .

As any factor of z® of length at most |z,| — 1 is also a factor of 22, it follows
that R,x = R,z for any k > 1. By the definition of fractional root, there exists
an integer A > 1 such that w € Fact 2", so that R, < R,» = R,2. From this
R, =R,. O

Proof of Theorem 2.2.8. Let w be a nonempty Sturmian word. By Theo-
rem 3.3.9, m,+) = R, + 1. From Theorem 3.3.4, ) = Ty and 2, = Zy-
By the preceding lemma, one derives R,+) = R,z and m, = R,z + 1.
Conversely, if m, = R,z + 1, then 7,2 = R,2 + 1, so that by Lemma 3.3.8
we have z2 € St. By Corollary 2.2.5, the result follows. 0]
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3.4 Episturmian words

Episturmian words are a natural generalization of infinite Sturmian words in
the case of alphabets with more than two letters. They have been intro-
duced in [27] and their theory has been developed in several papers (see for
instance [33, 35]).

As stated above, an infinite word ¢t € A“ is a standard episturmian word if
it is an R-standard word over A. In the following, we shall denote the operator
Yr simply by 9.

The following proposition was proved in [27]:

Proposition 3.4.1. Let s € AY. The following statements are equivalent:
1. s 1s a standard episturmian word.

2. s 15 closed under reversal, and every left special factor of it is a prefiz

of s.

As we shall see in the next chapter, the two above conditions are no longer
equivalent when R is substituted by an arbitrary involutory antimorphism 4.
The first condition gives rise to ¥-standard words, as we have already seen; the
second one leads to what we call standard ¥-episturmian words instead (see
Section 4.5). The class of standard -episturmian words is neither a superclass
nor a subclass of that of ¥-standard words.

An infinite word s € A“ is called episturmian if there exists a standard
episturmian word ¢ € A such that Fact s = Fact{. Hence, an infinite word s is
episturmian if and only if it has at most one right special factor of each length
and Fact s is closed under reversal.

We will use the symbols Ep: and SEp: respectively for the sets of epis-
turmian and standard episturmian words over A. By definition, we have
Fact(Ept) = Fact(SEpz). Of course, any (standard) Sturmian word is a (stan-

dard) episturmian word over a two-letter alphabet.

Proposition 3.4.2. Let w be a nonempty prefiz of a standard episturmian

word. The fractional root z, 1s symmetric, so that m, = T, .

Proof. Let u be the longest palindromic prefix of s whose length is less than
|lw|. We can write w = uz with £ € A*, so that by Lemma 3.1.11 one obtains
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wt) = (uz)(*). One has
Tuz S Tw S T+ = W(um)("‘) . (37)

Since u is a palindrome, by Lemma 3.1.10 one has that z,, is symmetric, so
that by Theorem 3.1.6, Tuz = T(ys)+)- BY (3.7), Ty = ), that is equivalent
to 2, € PAL? by Theorem 3.1.6. O

Ezample 3.4.3. Let t be the standard episturmian word, called Tribonacc:
word, t = ¢ ((abc)?),

t = abacabaabacababac- - - .
The fractional roots of the nonempty prefixes of £ are the symmetric words

a, ab, abac, abacaba, abacabaabacab, . ..

Let us observe that in the case of a 9¥-standard word s, the fractional root
of a prefix of s is not in general ¥-symmetric. For instance, consider in the
case of A = {a,b} and ¥ = e, any e-standard word s having a directive word
beginning with a?b. The word s has the prefix ababbaabab = (ababb)®. Let
w = ababb. One has z,, = w ¢ PAL?. In fact, one has m, = 5 and 7,6 = 6.

The finite factors of (standard) episturmian words are also called finite
episturmian words. Differently from the Sturmian case, the fractional root
of a finite episturmian word can be non-symmetric, as shown in the following

example.

Example 3.4.4. The word v = aabaacaabaacaaba is a prefix of a standard
episturmian word. The word w = 2, = baac is a non-symmetric factor of v.

However, w(*) = baacaab and w(~) = caabaac are factors of v.

Let us observe that Corollary 2.2.5 cannot be extended to the case of epis-
turmian finite words, since there exist finite episturmian words w such that z2
is not a finite episturmian word, as shown by the following:

Example 3.4.5. The word w = bac = z,, is a finite episturmian word. However,

2
=

z2 = (bac)? is not factor of any episturmian word. Indeed, as shown in [27], the
number of all palindromic factors in a finite episturmian word u has to be equal

to |u| + 1. The number of palindromic factors of (bac)? is 4, and [22]| + 1 =T7.
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A standard episturmian word s over the alphabet A is called a (standard)
Arnouz-Rauzy word if every symbol of A occurs infinitely often in the asso-
ciated directive word A(s). We will denote by AR(A), or simply AR, the set
of Arnoux-Rauzy words over A. By Proposition 3.3.1, the families of standard

Sturmian words and of binary AR-words coincide.

Ezample 3.4.6. Let A = {a,b} and z = (ab)”. One has that
f = ¥(z) = abaababaabaababa - - -

is the Fibonacci word, a standard Sturmian word. On an alphabet with three

letters A = {a, b, c}, if we take z = (abc)® as a directive word, then
T = ¢(z) = abacabaabacababacabaabac - - -

is a standard Arnoux-Rauzy word, often called Tribonacci word. The word s =
cabaabacababacabaab - - - such that abas = 7 is an example of an episturmian
word which is not standard, as a is a left special factor of s but not a prefix of
it.

The periodic word s = (abac)” is standard episturmian, but not Arnoux-

Rauzy. Its directive word is A(s) = abc”.

The following proposition can be easily proved using well-known results on

episturmian words (see [27]).

Proposition 3.4.7. Let s be a standard episturmian word. Any bispecial
factor of s 1s a palindromic prefix of s. If s 1s not periodic, the converse
holds too.

Proposition 3.4.8. Fact(Epi) = Fact(AR).

Proof. Let u € Fact(Epi) = Fact(SEpt). Hence there exists s € SEpt such
that u € Facts. Now let be s = ¢(A) where A = t1t5---t,---, with ¢; € A for
1 > 1. Therefore there exists a palindromic prefix p of s such that u € Fact p.
Now p = 9(¢;---t;) for some :. We can consider A’ = ¢;---t;t with t € A¥
such that any letter of A occurs infinitely many times in ¢. Hence s’ = ¢(A') €
AR and contains p as a factor, so that u € Facts’. Therefore, Fact(Epi) C
Fact(AR). Since the inverse inclusion is trivial, the result follows. O
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The following proposition collects two properties of standard episturmian

words (cf. Lemmas 1 and 4 in [27]) which will be useful in the sequel.

Proposition 3.4.9 (cf. [27]). Let s be a standard episturmian word. The
following hold:

1. Any prefix p of s has a palindromic suffizx which has a unique occur-

rence in p.
2. The first letter of s occurs in every factor of s having length 2.

Clearly, if p is a prefix of a standard episturmian word, then the palindromic
suffix of p which has a unique occurrence in p is the longest palindromic suffix
of p. We want to show that if w € Fact(Epz), then also its right and left
palindrome closures belong to Fact(Ept); since episturmian words are closed
under reversal, and w(~) = @w(*), it suffices to prove only the right palindrome
closure case. We have the following

Proposition 3.4.10. Let u be a non-palindromic finite episturmian word,
let Q) be the longest palindromic suffiz of u and write u = saQ) wherea € A
and s € A* (s possibly empty). Then ua = saQa ts a finite episturmian

word.

Before proving the proposition we need some lemmas. The first lemma was

proved in [2, Theorem 1.1]. We report here a different and simpler proof.

Lemma 3.4.11. Let w be an episturmian word and P € PAL N Factw.

Then every first return to P in w 1s a palindrome.

Proof. We may suppose that w is a standard episturmian word. Let u € Fact w
be a first return to the palindrome P, i.e., u = P = pP, A, p € A%, and the
only two occurrences of P in u are as a prefix and as a suffix of u. If |P| > |p|,
then the prefix P of u overlaps with the suffix P in w and this implies, as is
easily to verify, that u is a palindrome. Then let us suppose that u = PvP
with v € A*.

Now we consider the first occurrence of v or of 4 in w. Without loss of
generality, we may suppose that w = auw’ and that 4 does not occur in the

prefix of w having length |ou| — 1. Let @ be the palindromic suffix of au of
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maximal length. If |Q| > |ul|, then we have that @ occurs in au before u, which
is absurd. Then suppose |Q| < |ul|. If |u| > |Q| > |P|, then one contradicts the
hypothesis that u is a first return to P. If |Q| = |P|, then @ = P has more
than one occurrence in ou, which is absurd in view of Proposition 3.4.9. The

only remaining possibility is @ = u, i.e., u is a palindrome. L

The following lemma is well known. We report here a proof for the sake of

completeness.

Lemma 3.4.12. Let w € AR and s be the unique right special factor of
length n. If By,...,Bn,... are the bispecial factors of w ordered by in-
creasing length, then s is a suffiz of any B,, such that |s| < |B,,| and, for
any z € A, sz € Factw.

Proof. Since w is not periodic, by Proposition 3.4.7 the bispecial factors B;,
1 > 0, are its palindromic prefixes. Moreover, if t = t1ty---t,--- € A“ is the
directive word of w, then B, ; = (Biti)(” for any 2 > 0. Since s is a right
special factor of w, § is left special and thus a prefix of w. Therefore, s is a
suffix of any palidromic prefix B,, of w such that |s| < |B,|. As w € AR,
any letter £ € A occurs infinitely often in ¢; hence there exists & > m such
that x = t;, so that B,z is a factor of w. Since B,, is a suffix of By, it follows
sz € Fact w. ]

Lemma 3.4.13. Let w and w' be Arnouz-Rauzy words on the alphabet A.
If w and w' have the same right special factor of length n, then they share

the same factors up to length n + 1.

Proof. Trivial if n = 0. By induction, suppose we have proved the assertion
for the integer n — 1 > 0. Let @ be the common right special factor of w and
w' of length n. If we write Q@ = a@Q’, with a € A, then Q' is the only right
special factor of length n — 1 of both w and w’. Hence w and w’ have the same
factors up to length n.

By symmetry, it suffices to prove that any factor v of w, of length |v| = n+1,
is also a factor of w'. Let v = v'b, b € A. Suppose first that v' = Q. By
Lemma 3.4.12, each right extension Qz, with z € A, is a factor of both w and

w'; in particular, v is a factor of w'.
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Now assume that v # Q. Let v' = cv” with ¢ € A, and suppose that
v" = @'. One has then c # a. In this case, since v = cv”b and Qb = av"b are
different factors of w, one has that v"b is left special in w. Since |[v"b| = n,
one derives that v"b = @ is a left special factor of w' too, so that v = cv”b is a
factor of w' as a consequence of Lemma 3.4.12.

If v" # @', then v"b is the unique right extension of v” in w. As |[v"b| = n,
it is also a factor of w’, and no other letter z is such that v"z € Fact w’. Hence

v = cv"b is the only right extension in w' of the factor cv” # Q. O
We can now proceed to prove Proposition 3.4.10.

Proof of Proposition 3.4.10. We first observe that u contains a single occur-
rence of @. Indeed, if u contained other occurrences of @, then by Lemma 3.4.11
the suffix of u beginning with the penultimate occurrence would be a palin-
dromic suffix of u strictly longer than @, contradicting the hypothesis of max-
imality of the length of Q.

By Proposition 3.4.8 there exists an Arnoux-Rauzy word w such that u €
Factw. We can assume that ua ¢ Factw (otherwise ua is in Fact(AR) as
required); so there exist b € A such that b # a and ub € Factw. Thus
a@b € Fact w; since @ is a palindrome and w € AR, also bQa € Fact w and
Q@ is a bispecial factor of w. Then it follows that every left special factor of
w longer that @ must contain @ as a prefix, and since there is only a single
occurrence of @ in u, @ itself is the longest suffix of u which is left special in w.
Thus every occurrence of a@ in w must be “preceded” by s, i.e., if w = AaQu,
then w = ANsaQu, with A = X's. In particular aQa is not a factor of w, for
otherwise ua would be in Fact w, contradicting our assumption.

Set A(w) = t1ty---. Let By = €, B,,... be the sequence of all bispecial
factors of w, ordered by increasing length, i.e., |B;| < |B;y1| for all ¢ > 0. By
Proposition 3.4.7, they are the palindromic prefixes of w as w is not periodic.
Moreover, for each ¢ > 0 we have B;,; = (B;t;)(*), so that Bt; is left special
and t;B; is right special.

Since @ is a bispecial factor of w, one has @ = B,, for some m > 1. Let
Q| = n —1for n > 2. We then have that ¢,,Q is right special in w and,
from Lemma 3.4.12, t,,Qz € Factw for all ¢ € A. It is clear that ¢, # a
since aQa ¢ Fact w and t,,Qa € Fact w, then we have that aQb and ¢,,Qb are
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distinct factors of w, thus @b is left special and bQ) is the unique right special
factor of w of length n. So t,, = b.

Let w' be any Arnoux-Rauzy sequence over A whose directive word A(w') =
tit, - - satisfles ¢, = ¢, for 0 < ¢ < m — 1 and ¢, = a. Since Q is the unique
right special factor of w and w’ of length n — 1, from Lemma 3.4.13, we obtain
that w and w’ have the same factors of length k for each k < n. However, they
differ on some factors of length n+1. Indeed, from the definition of w’, we have
that a@ is its unique right special factor of length n, so that by Lemma 3.4.12,
for all z € A we have that aQz € Fact w’. Therefore aQa € Fact w’ \ Fact w.

Now let us prove that, as in w, each occurrence of a@ in w' is preceded
by s. Let p € A* be such that |p| = |s| and pa@ € Factw’. Let then S be
the largest common suffix of pa@ and sa@ and Q' its prefix of length n — 1.
Clearly @ # Q' since there is only one occurrence of @ in sa@. If we assume
that S # paQ, then there exist z,y € A such that z # y, S € Suff(sa@Q) and
yS € Suff(pa@); then z@Q' and y@Q' are both factors of w and w’ since these
latter words have the same factors of length n. Thus Q' is a left special factor
of w and w’, and that is a contradiction, since the only left special factor of
length n» — 1 in w and in w' is @. Thus p = s and so every occurrence of a@Q
in w' is preceded by s.

Since aQa is a factor of w’', it follows that saQa = wua is a factor of w'.

Hence ua is in Fact(AR) as required. O
From the preceding proposition we get the announced result:

Theorem 3.4.14. If w is a finite episturmian word, then so is each of w(*)

and w).

Proof. Trivial if w € PAL. Let then w = a;---a,Q, where a; € A for
1=1,...,nand Q is the longest palindromic suffix of w. By Proposition 3.4.10,
wa, = a; -+ - a,Qa, is a finite episturmian word; since its longest palindromic
suffix is a,Qa,, also wa,a, ; is episturmian. In this way, by applying Propo-

sition 3.4.10 exactly n times, one eventually obtains that
aiQs - -+ anQan cee Qo = 'I.U(+)

is episturmian. Since w(~) = @w(+), the assertion follows. O
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Corollary 3.4.15. Let a € A and u € A*. If au 15 a finite episturmian

word, then so is au(t).

Proof. If au is not a palindrome, then by Theorem 3.4.14, (au)*) = au(Ha is
an episturmian word and therefore so is au(*). Let us then suppose that au is
a palindrome.

By Theorem 3.4.14 one has u(*) € Fact s for a suitable s € AR. Since s is
recurrent there exist letters =,y € A such that

zuPy € Facts .

If £ # y, then, since s is closed under reversal, one has also yu(t)z € Fact s.
Hence u(1) is bispecial, so that it follows au(*) € Facts. Let us now consider
the case £ = y. If £ = a, then the assertion is trivially verified.

Suppose then z # a. As au is a palindrome, we can write © = u'a with
u' € PAL. Hence,

z(u'a) Pz € Fact s .

Since (u'a){*) begins with u'a and ends with au’, one has that zu'a and au'z
are factors of s, so that u' is bispecial and then a palindromic prefix of s by
Proposition 3.4.7.

Let A(s) =tity---t,--- be the directive word of s. There exists an integer
k such that u' = ¥(tits---tx). We consider any AR word s’ whose directive
word A(s') has the prefix ¢;t;---tra. Thus w'a = u is a prefix of s’. This
implies, by Propositions 3.2.2 and 3.4.7, that (*) is a bispecial prefix of s'.

From this one derives au") € Fact s'. O



Chapter 4

Extensions via involutory

antimorphisms

In this chapter we shall analyse several different generalizations of episturmian
words, all based on the replacement of the reversal operator by a generic in-
volutory antimorphism. The first generalization was already introduced in the
preceding chapter.

4.1 Pseudostandard words

Let ¥ be an involutory antimorphism of A*. We recall (cf. Section 3.2) that
the map v defined by (3.6) satisfies, for any z € A¥,

Yo(z) = lim Pg(wy) ,

where {w,} = A" N Prefz for any n > 0. The word ¥s(z) is ¥-standard,
Ps(AY) is the set of all ¥-standard infinite words, and 5(A*) is the set of their
¥-palindromic prefixes.

As we have seen in Section 1.3, the reversal operator R is the basic involu-
tory antimorphism of A*, because any other is obtained by composing R with
an involutory permutation. Therefore, it is natural to ask whether any pseu-
dostandard word can be obtained, by a suitable morphism, from a standard
episturmian word. As we shall see later, the answer to this problem is positive

(cf. Theorem 4.1.2). To this end, we introduce the endomorphism us of A* by
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setting us(a) = a® for each a € A. Thus for every letter a one has:

(a) = a ifa=a
HAY =z ifaa

We observe that us is injective, since ps(A) is a prefix code.

Ezample 4.1.1. If ¥ = R, then ur = id. If 9 = e is the “exchange” antimor-
phism of {a,b}*, then u.(a) = ab and p.(b) = ba, i.e., u. is the Thue-Morse

morphism.

The main result of this section is the following:

Theorem 4.1.2. For any w € A*®, one has

Yo (w) = po(P(w)) - (4.1)

By this theorem, any ¥-standard word is a morphic image (by us) of the
standard episturmian word having the same directive word. Moreover, the set
of palindromic prefixes of ¥-standard words over A is a morphic image of the
palindromic prefixes of standard episturmian words. In particular, the Thue-
Morse morphism sends standard Sturmian words to words constructible via
iterated e-palindromic closure: ws(¢(z)) = ¥.(z). For instance, 9. ((ab)¥) =
ws(f) where f is the Fibonacci word.

To prove Theorem 4.1.2, we need some lemmas and propositions concerning
the morphism us and the antimorphism 4.

It is easy to verify that for any a € A, one has

0® =0® and (a)®=a®. (4.2)

Lemma 4.1.3. For all w € A*, pus(0) = pus(w).

Proof. Let w=a;---a,, witha; € 4,1=1,...,n. By (4.2),

O _ 9...,92 _ 9 —
v =af---af =a7 - -af = ps(w) . O

Mﬂ(w):a’s’?...a’

Corollary 4.1.4. The morphism uy sends palindromes into ¥-palindromes

and vice-versa. Formally, for any w € A*,

w € PAL < pus(w)€ PALy, (4.3)
we€ PALy < pus(w) € PAL. (4.4)
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Proof. From the previous lemma, since ;s is injective one immediately obtains
W= po(w) = po(W) = ps(w),

proving (4.3).

Let w=a;- -an,a; € A 1=1,...,n. By (4.2), w = @ is equivalent to:

ps(w) = po(W) = pho(Bn -~ 81) = (8)® -+ (31)® = a® - - - af = pg(w)
as desired. O

Let || ||s : A* — Z, be the morphism of A* in the additive group Z, of the
integers mod 2, defined by the rule: for all a € A,

0 ifa=a
lalls = . _
1 ifa#a

In other terms, for any w € A*, ||w||s counts, modulo 2, the occurrences
of letters in w which are not ¥-palindromes. Note that one has obviously
|lw||s = ||w||s for any word w. Let us observe that if ¥ = R, then ||w|| = 0
for all w € A*; if ¥ = e, then ||w||l. = (Jw| mod 2) for all w € {a,b}*. In the

following, we shall denote || ||s simply by || || when there is no ambiguity.
Lemma 4.1.5. If w € pus(A*) U PALy, then ||w|| = 0.

Proof. 1t is clear from the definition that ||us(u)|| = 0 for all u € A*. Indeed,
any letter which is not a ¥-palindrome is sent by uy in two non-¥-palindromic
letters. Let w = aja5---a, € PALy, a;, € A, 1 =1,...,n. Since a; = Qpny1_;
for 1 <1 < n, it follows that:

e if n = |w| is even, then w = v7,
e if n is odd, then w = vcv,
where v = a1 -+ a|n/2) and c € AN PALy. In both cases,
lwll = llvl[ +[[7]] = 2[]v|| = 0. 0

Proposition 4.1.6. Let w € A*. Then PALsNSuff ps(w) = pus(PALNSuff w).
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Proof. The “D” inclusion is a consequence of (4.3). Now we prove the inverse
inclusion. Let s be a suffix of uy(w) which is not in ps(Suff w). f w = a; - - - ay,,
with a; € A for 1 <1 < n, then us(w) = a?---a®, so that s has to be of the
form s = @,us(u) for some 7 € {1,...,n} (such that a; # a;) and u € Suff w.
Hence, by Lemma 4.1.5, ||s|| = ||a;|| + ||u#s(u)|| = 1, and therefore s ¢ PALsy,
again by Lemma 4.1.5. O

Theorem 4.1.7. For all w € A*, one has
(ws(w))® = p(w®), (4.5)
(Bo(w))® = 1 (w?) . (46)

Proof. Let w = sQ with Q = Qr(w). Then by Proposition 3.1.2, w(*) = sQ3,
so that by Lemma 4.1.3,

p (W) = po(s)n(@Q) o (3) = p(s) (@) o (s) -

By Corollary 4.1.4, us(Q) is a ¥-palindromic suffix of us(w). Let us prove
that it is the longest one. Indeed, suppose by contradiction that A is a ¥-
palindromic suffix of us(w), with |A| > |us(Q)|. By Proposition 4.1.6, A =
ws(v) for some v € PALN Suff w. This is a contradiction, because |v| > |Q|.
Thus (4.5) is proved.

By (3.1), w(~) = %+ so that by (4.5) one has

m (w(’)) —u (12'1(+)> = (ps(w))® .
By Lemma 4.1.3, ug(W) = ps(w). Therefore, since by (3.1)
(1s(@))” = (ks (w))®,,
equation (4.6) is proved. O
Corollary 4.1.8. Let w € A* and a € A. The following holds:
(o(w)a)® = 1 ((wa) ) .

Proof. From the preceding theorem, one has (us(wa))® = u ((wa)(+)>. There-
fore, it suffices to prove that

(o (w)a)® = (us(wa))® = (w(w)rs(a))® . (4.7)
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If a € PALy, then a = us(a) and (4.7) follows. Then assume a ¢ PALs, so
that (4.7) can be rewritten as

(1o (w)a)® = (us(w)aa)® .

In view of Lemma 3.1.11, it suffices to show that us(w)ad is a prefix of
(uo(w)a)®.

Suppose first that aPALy N Suff pus(w) = 0. Then Qs(us(w)a) = ¢, so that
by Proposition 3.1.2,

(ko (w)a)® = ps(w)adps(w)

and we are done.

If a PA Ly N Suff pus(w) is nonempty, then let @\ be its longest element. It is
easy to see that ala is the longest ¥-palindromic suffix of us(w)a. Moreover,
by Proposition 4.1.6 there exists v € PAL N Suff w such that A = us(v). If
w = uv, since aus(v) is a suffix of pus(w) = pu(u)ws(v), one derives that u = v'a

for some word u'. Hence

(ks (w)a)® = ps(w)adus(v)aaus(w) = ps(w)aaus(u')
which concludes the proof. ]
We are in the position of proving the main theorem.

Proof of Theorem 4.1.2. Equation (4.1) is trivially satisfied for w = €. By
induction, let us assume (4.1) holds for some w € A*, and prove it for wa with
a € A. Indeed,

Yo(wa) = (Yo(w)a)® = (us(P(w))a)® = u ((Y(w)a) ) = po(P(wa)),

where the third equality is a consequence of Corollary 4.1.8.
The case w € AY is easily dealt with. O

For any letter a € A, we define the morphism u, : A* — A* by u.(a) = a
and p,(b) = ab, for any b # a. Moreover, we set p. = id and, for any w =
a0y --a, € AT,

Mw = Hay O fhay O -0 Hq, -
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As a consequence of Theorem 4.1.2 and of a result of Justin [34], we derive the
following proposition which allows one to compute (¢s(w)a)® for any w € A*
and a € A, starting from its prefix (suffix) ¥,(w), by using the morphisms u;
and fhy.

Proposition 4.1.9. For any w € A* and a € A,

Po(wa) = (ko pw)(a) Ys(w) .

Proof. We use the result of Justin [34] stating that for any v, w € A*,

Y(wv) = pu(P())d(w) -
Therefore, for v = a € A one gets ¥ (wa) = py(a)y¥(w). By Theorem 4.1.2,

Ys(wa) = ws(¢(wa))
= ps(pw(a)) ps(y(w))
= (ko pw)(@)ps(w)

as desired. 0

Ezample 4.1.10. Let A = {a,b}, ¥ = e, and w = aba. One has ¥s(aba) =
abbaababbaab and u.,(a) = aba. Hence, pu(u,(a)) = abbaab and

Ys(abaa) = (abbaab)(abbaababbaab) .

We have seen that ¥-standard words are morphic images (under us) of
standard episturmian words. This allows to extend many properties of standard

episturmian words to general J-standard words.

Proposition 4.1.11. If s is a ¥-standard word over A and two letters of A
occur infinitely often in A(s), then any prefiz of s is a left special factor

of s.

Proof. A prefix p of s is also a prefix of any ¥-palindromic prefix B of s such
that |p| < |B|. Since B is a suffix of any ¢-palindromic prefix of s whose
length is at least |B|, and there exist two distinct letters (say a and b) which
occur infinitely often in A(s), by Proposition 3.2.2 one derives Ba, Bb € Fact s.
Therefore, as p € Suftf B, we have pa, pb € Fact s, i.e., p is right special. Since
by Proposition 3.2.2 s is closed under ¥, one has ap, bp € Facts; as a # b, p is
left special. O
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For the converse of the previous proposition, we observe that a 1¥-standard
word s can have left special factors which are not prefixes of s. For instance,
consider the e-standard word s in Example 3.2.1. As one easily verifies, b and
ba are two left special factors of s, which are not prefixes.

However, we will show that if a left special factor w of a ¥-standard word
s is not a prefix of s, then |w| < 2. For a proof of this we need a couple of
lemmas. We denote by A’ = A\ PALy the set of letters of A that are not

1¥-palindromic.

Lemma 4.1.12. The following holds:
A'ps(AT) N ps(AT) = po(AT)A N e (A7) =0 .

Proof. 1t is sufficient to observe that any word in ps(A*) has an even number

of occurrences of letters in A'. O

Lemma 4.1.13. Let b,c € A', and let f = bus(u) and g = us(v)c be factors
of a ¥-standard word t = pus(s), with s € SEpi. Then:

1. If bu,vc € Facts and |f| > 1, then f #g.
2. If u € Facts and |f| > 3, then bu € Fact s.

Proof. (1). Since |f| > 1, one has u # e. By contradiction, if f = g, one has
also v # €, so that, from the definition of u., bb is a prefix of us(v). Then bb is a
prefix of us(u), and so on; therefore, f = b(bb)* = (bb)*b for k = |u| = |v| > 1.
Hence c = b, u = b*, and v = b*. As k > 1, by Proposition 3.4.9, bu = b**! and
ve = b¥*1 cannot be both factors of the episturmian word s, a contradiction.
(2). Since |f| > 3, one derives |u| > 1. By contradiction, suppose bu ¢
Fact s. By the preceding lemma and by Theorem 4.1.2, one derives f = pus(v')c’
for some suitable v' € A* and ¢’ € A’ such that v'c’ € Facts. As done before,
one then obtains f = (bb)*b so that b*,b* € Fact s, which is absurd by Propo-
sition 3.4.9, as k£ > 2. O

Theorem 4.1.14. Let w be a left special factor of a ¥-standard word t =
ws(s), with s € SEpi. If |lw| > 3, then w is a prefiz of t.

Proof. By Theorem 4.1.2, w can be written in one of the following ways:
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1. w = py(u), with u € Fact s,

2. w = bug(u), with bu € Facts and b € 4/,

3. w = us(u)c, with uc € Fact s and c € A/,

4. w = bug(u)c, with buc € Fact s and b,c € A'.

In case 1, let zw,yw € Factt with z # y letters of A. If z is ¥-palindromic,
then clearly one must have zu € Facts. If z € A’, then by the preceding lemma
one has Zu € Fact s, as |zw| > 3. Since the same holds for y, u is a left special
factor of the episturmian word s, and therefore a prefix of it. Thus w = us(u)
is a prefix of £.

Cases 2 and 4 are absurd; indeed, by the preceding lemma one derives that
every occurrence of w is preceded by b.

Finally, in case 3, by the preceding lemma one derives that every occurrence
of w is followed by ¢. Hence us(uc) is a left special factor of ¢ and one can

apply the same argument as in case 1 to show that it is a prefix of ¢. O

An infinite word ¢ is a ¥-word if there exists a ¥-standard word s such that
Factt = Fact s. An R-word is an episturmian word.

Proposition 3.4.10 and Theorem 3.2.3 can be extended to the class of -
words, showing that if w is a factor of a ¥-word, then w® and w® are also factors
of ¥-words. A proof can be obtained as a consequence of Theorems 3.2.3 and
4.1.2 and of Corollary 3.4.15.

Theorem 4.1.15. Let w be a factor of a ¥-standard word. Then each of

w® and w® s a factor of a ¥-standard word.

Proof. We shall suppose w ¢ PALy, otherwise the result is trivial. Since
w® = w®, it suffices to prove the result for w®. Let A' = A\ PALy as above.
From Theorem 4.1.2, one derives that w can be written in one of the following

ways:
1. w= ps(u)z, with z € AU {e} and uz € Fact(Ep1),
2. w=aus(u)b, with a,b € A" and aub € Fact(Epz),

3. w=aps(u), with a € A" and au € Fact(Epz).
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In the first case, by Theorem 3.2.3 there exists a standard episturmian word
s = 9(A) such that (uz)*) € Facts. Thus, by (4.5), Corollary 4.1.8 and
Theorem 4.1.2, w® = ps ((ux)(+)> is a factor of the ¥-standard word 9s(A) =
s (8).

In the second case, by using Corollary 4.1.8, one has:

w® = a (us(w)b)®a = auy ((ub)(+)) a € Fact (/,419 (a(ub)(+)a>) :

Moreover, aub is not a palindrome, since otherwise one would derive, for in-
stance using Corollary 4.1.4, that w = aus(u)b is a ¥-palindrome, which con-
tradicts our assumption. Thus (aub)*) = a(ub)(*)a and the result is a conse-
quence of Theorem 4.1.2.

In the third case, since w is not a 1¥-palindrome, by (4.5) one obtains
w® = aug(u)®a € Fact (uﬂ(au(“a)) :

If u = o for some k > 0, then au(™a = a**? € Fact(Epi); otherwise au(*)
is not a palindrome and au(*)a = (au(*))(*), so that au(*)a is episturmian by
Corollary 3.4.15 and Theorem 3.2.3. Once again, the assertion follows from
Theorem 4.1.2. ]

Corollary 4.1.16. Let w be a factor of a ¥-standard word. Then there

ezists a ¥-standard word having both w® and w® as factors.

Proof. Trivial if w € PALy. Let then w = Pbt = saQ, where P (resp. Q) is
the longest 9¥-palindromic prefix (resp. suffix) of w, and a,b € A. Thus wa and
bw, being respectively factors of w® = saQas and w® = tbPbt, are factors of
¥-standard words by Theorem 4.1.15.

Suppose wa ¢ PALs. Then (wa)® = aw®a, so that w®a is a factor of some
¥-standard word, by Theorem 4.1.15. Consider the word

(w®a)® = (tbPbta)® = (thsaQa)®
and call Q' the longest ¥-palindromic suffix of w®a; then Q' = aQa. Indeed,
since a@Qa is a ¥-palindrome, one has |Q’'| > |aQal; but |aQad| < |Q'| < |saQa|
is absurd, for @ would not be the longest ¥-palindromic suffix of w, and |Q’| >

|sa@Qa| cannot happen, for otherwise there would exist a ¢#-palindromic proper

suffix of w® having w as a suffix, contradicting the definition of w®. Thus

(w®a)® = thsaQasbt — tbPbtasbt
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is a factor of some ¥-standard word, again by Theorem 4.1.15, and it contains
both w® and w® as factors.

If wa € PALs but bw ¢ PALy, one can prove by a symmetric argument
that (bw®)® is a factor of some ¥-standard word having both w® and w® as
factors. Let then wa,bw € PALg, so that

w® = wa = aw and w® = bw = Wb . (4.8)

If w is a single letter, one derives w = a = b, so that w® = aa@ and w® = aa.
Therefore w® and w® are factors of any ¥-standard word whose directive word
begins with a®. Let us then suppose |w| > 1. From (4.8) it follows w = aRb
for some R € A* such that aR = Ra = P and Rb = bR = Q. Moreover,

w = aRb = abR = Rab, (4.9)

showing that R is a border of w. Therefore one has either w = (ab)* or
w = (ab)*a, for some k > 0. In the first case, from (4.9) one derives a = @ and
b = b, so that any ¥-standard word whose directive word begins with ab*t?
contains both w® = (ab)*a and w® = b(ab)* as factors. In the latter case,
by (4.9) one obtains a = b, so that any ¥-standard word whose directive word

k+1

begins with a**! contains both w® = (aa@)* and w® = (@a)* as factors. O

Remark. For a finite episturmian word w, the proof of the preceding result can
be simplified by using Theorem 3.2.3 and Corollary 3.4.15. Indeed, if w is not
a palindrome, we can write w = Pbt = sa(@), where P and @ are respectively
the longest palindromic prefix and suffix of w, and a,b € A. By Theorem 3.2.3,
wt) and w() are finite episturmian words; moreover bw is a factor of w(~), so
that by Corollary 3.4.15, bw(*) is a finite episturmian word. By Theorem 3.2.3,
(bw(Jr )>H is a finite episturmian word, which has also w(~) as a factor, as one

can prove similarly as in the proof of Corollary 4.1.16.

Ezample 4.1.17. Let 7 be the Tribonacci word
T = ¢ ((abc)*) = abacabaabacababacabaabacabac- - - .

If w = bac € FactT, one has that w(*) = bacab and w(~) = cabac are fac-
tors of 7. However, in the case of the factor v = abacabab, one has v(*) =

abacababacaba € Fact T, whereas v(~) = babacabab is not a factor of 7, since
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otherwise v would be a left special factor of 7, which is a contradiction as
v ¢ Pref 7. Nevertheless, both v(+) and v(~) are factors of any episturmian word
whose directive word begins with abcbb. Indeed, v = Pb where P = abacaba is

the longest palindromic prefix of v, and

(bv(“)(i) = abacababacababacaba = 1 (abcbb) .

4.2 More antimorphisms simultaneously

Let Z be the set of all involutory antimorphisms of A*, and Z* be the set of
infinite sequences over Z.

Let © = %195 ---9,--- € I% and let ® be the 9¥;-palindromic closure oper-
ator, for all + > 1. We define inductively an operator ¥ by setting 9¥g(c) = ¢,
and

Yo(T1Z2 - Tni1) = (Yo(T1 - '51171)573n+1)@n+1
whenever z; € A for ¢+ > 1. With this notation, s. is just the operator
considered in the preceding section.
Ifz=z2y- -2, €AY, 2, € Afor i > 1, then ¢g(z,---2;) is a prefix of
Yeo(zy---z;41) for any i, so that the infinite word

z,b@(a:) = lim ’l,b@(.’.U]_ .. 'ZIJn)

n— oo

is well defined. We call 9o(z) a generalized pseudostandard word. The
pair (z,©) which determines 9g(z) can be called the directive bi-sequence
of Ye(z). With a suitable choice of the ©-sequences one can construct all
standard episturmian words (© = R¥), as well as all ¥-standard words (© =
¥). Theorem 4.2.1 below shows a less trivial example.

In the following, we shall assume A = {a,b}, ® = ®, and u = u., where e

is the exchange antimorphism of A*.
Theorem 4.2.1. The following holds:
Perye (ab”) = p*(a),
1.e., the Thue-Morse word can be obtained via a Ye operator.

We need two lemmas.
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Lemma 4.2.2. PALNbu(A*) = b(ab)*.

Proof. The “O” inclusion is trivial. Let us prove the inverse inclusion. Since
PALNbu(A°) = {b} C b(ab)*, we assume by induction that

PAL N bu(A*) C b(ab)* (4.10)

for all k£ less than some n > 0, and prove (4.10) for k£ = n.

Let w € PALNbu(A"). Since n > 0, w has to end with b and therefore
with ab. Thus w = bw'b with w' € PALNu(A™ Ha. If n = 1, then w' = a and
so w = bab € b(ab)*. If n > 1, w' has to begin with ab, so that w’' = aw"a with
w" € PALNbu(A™2) C b(ab)*. Hence w = baw"ab € b(ab)*. O

Lemma 4.2.3. For any n > 0,
PALN Suff (u?"(a)) = {e} U {u* () [0< k< n} .
Proof. Since PAL N Suff u(a) = {e, b}, it suffices to show that for any n > 0,
PAL N Suff (4?*(a)) = {b} U u* (PAL N Suff (4*""'(a))) . (4.11)

Since p?™*1(a) ends with aab for all n > 0, the preceding lemma shows that
all palindromic suffixes of u?"*!(a) different from b have even length. Indeed,
suppose that ¢ is a palindromic suffix of 4?"*!(a) of odd length. Since ¢ has to
begin with b, one can write ¢ = bu(u) with u € Suff u**(a). From the preceding
lemma, q € b(ab)* so that if ¢ # b, ¢ and u**™'(a) end with bab, which is a
contradiction. Therefore, all palindromic suffixes of u>"!(a) different from b
are in p (Suff (¢**(a))).

If w is a word with odd length, then y(w) cannot be a palindrome, because

its minimal (nonempty) median factor is ab or ba. This implies
u (Suff (u”"(a))) N PAL = ? (Suff (4*""(a))) N PAL .
By Corollary 4.1.4, w € PAL < p?(w) € PAL, so that
2 (Suff (;ﬂ”*l(a))) N PAL = p? (Suff (le(a) N PAL)) .

This proves (4.11). O
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Proof of Theorem 4.2.1. 1t suffices to show that, for any n > 0,

(e) = (i iap) (4.12)
Ka) = (W(ap)” (413)

Let us first prove that (4.12) is equivalent to the statement
Qr (4" (a)b) = bb. (4.14)

Indeed, suppose that (4.12) is satisfied. Since |u®"*2(a)| = 2|u*"*(a)|, one
derives that (4.14) holds. Conversely, suppose that (4.14) is satisfied. Since
u?"*1(a) ends with b, one can write u?"!(a) = ub with u € A*, so that

(#2n+1(a)b>(+) = ubbti = M2n+1(a)//‘27+\1(/a) .

As is well known (cf. [38]), for all n > 0 one has u?*t1(a) = u?>"*1(b). Therefore,

>(+)

(41 (a)b) " = pH(a)u () = w"(a) -

Equation (4.14) can be equivalently restated saying that any nonempty
palindromic suffix of u?"!(a) is preceded by a. By Lemma 4.2.3, the set of
nonempty palindromic suffixes of u***1(a) is {u?*(b) | 0 < k < n}. Since

W (a) = w (@) (b) = w2 (a)u’ T () (o)

by iterating this formula one has that for any k < n the suffix u?*(b) is preceded
by the word u*(a), which ends with a. This proves (4.12).
By Corollary 4.1.8 and equation (4.12), one has

(u*(a)p)” = ((MQ”‘I(a)b) (+)> = u(#"(a)) = ¥ (a)

which proves (4.13). ]

4.3 Words generated by nonempty seeds

We now consider a generalization of the construction of ¥-standard words. We

recall that the operator 9y was defined in Section 3.2 by setting ¥.s(w) = D, (¢)
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for any w € A*. We now consider a fixed arbitrary seed ug € A* instead of ¢

and therefore set
Po(w) = Dy (ug) .

Equivalently, the map 9 : A* — A* can be defined by setting 9s(¢) = uo, and

zﬁg(ua) = (zﬁg(u)a>$

for u € A* and a € A. As usual, we can extend this definition to infinite words
t € AY by:

Ps(t) = lim Ps(wn)
where {w,} = Preft N A™ for all n > 0. The word ¢t is called the directive
word of ’Lﬁg(t), and denoted by A(zﬁﬁ(t)). When the seed u, is empty, one has
'(,519 = 1y so that one obtains ¥-standard words. If ug # €, then any word zﬁ@(t)
is called ¥-standard with seed.

Ezample 4.3.1. Let A = {a,b,c}, ¥ be the involutory antimorphism exchang-

ing a and b and fixing ¢, uo = acbbc, and w = abc. Then

Vs(w) = (1ﬁ19(ctb)c>EB = ((@,9(601))GB c>EB = (((acbbca)&ab>GB c>GB

= ((acbbcaacbb)e"c>EB = acbbcaacbbcaacbcacbbcaacbbcaach .

Proposition 4.3.2. Let s = 13(A) be a ¥-standard word with a seed ug of
length k. The following hold:

1. A word w with |lw| > k ts a prefizx of s if and only if w® is a prefiz of

S,

2. the set of all ¥-palindromic prefizes of s 1s given by

~

Ys(Pref A\ {e}) U (PALs N Prefu,), (4.15)

3. s 1s closed under 9.

Proof. If w® is a prefix of s, then trivially w is a prefix of s. Conversely,
suppose that w is a prefix of s with |w| > k, and let A = zt;ty---¢,--- with
z € Aand t; € A, 1 > 0. Let us set u; = (uoz)® = 9¥3(z) and for n > 1,
Upi1 = z,%(xtl -+ +t,), 80 that u, 1 = (u,t,)®. We consider the least n such
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that |u,| < |w| < |tny1]|- By Lemma 3.1.11 one has w® = u,; € Prefs. This
proves point 1.

By the definition of ¥-standard words with seed, all the words in the set
(4.15) are ¥-palindromic prefixes of s. Conversely, let w be a ¥-palindromic
prefix of s. If jw| < k, then trivially w € PALs N Prefu,. If |lw| > k, then
by following the same argument used for point 1, one has that there exists an
integer n > 0 such that w = w® = u, € 9s(Pref A). This proves point 2.

Let w be a factor of s. Since there are infinitely many 9-palindromic prefixes
of s, there exists a ¥-palindromic prefix © having w as a factor. Therefore, also

w is a factor of w and of s. This concludes the proof. 0

By a generalization of an argument used in [27] for episturmian words, one

can prove the following:

Proposition 4.3.3. Any ¥-standard word s with seed 1s uniformly recur-

rent.

Proof. Let A(s) = zt;---t,--- be the directive word of s = lim,_, u,, where
u; = (uoz)® and u, 1 = (unt,)® for n > 0. The word s is trivially recurrent.
We shall prove that the shifts of the first returns to any factor v of s are
bounded by a constant. Let m be the smallest integer such that v € Fact(u,,).
Let us set p = u,, and let p, be the maximal shift of all first returns to p in
Un, for all m > m. Since u, 1 = (unt,)®, one has |u,, 1| < 2|u,| + 2, where
such upper bound is reached if and only if %, ;1 = Unt,t,U,. This implies that
Pmi1 < |p| + 2. Moreover, for all n > m we have p,,; < max{p,,|p| + 2}.
Indeed, let w be a first return to p in u,; of maximal length, so that its shift
is pny1. If w € Fact(u,), then p,.; = p,. Let us suppose that w is not a
factor of u,. We set u, = A\p = pA and u,,; = awfB with a, 3, X € A*. Then
|| > |A| and |B| > ||, otherwise w would be a factor of u,. Therefore, as

[Unt1| < 2|un| + 2, we obtain
[w| < |unia] = 2[A] = [Unia| = 2fun| + 2[p| < 2p[+ 2,

so that p,.1 < |p| + 2. Thus in any case p,.1 < max{p,,|p| + 2}. As pmi1 <
Ip| + 2, it follows that p, < |p|+ 2 for all n > m.

Since v is a factor of u,,, the shifts of all first returns of v in s are upper
limited by |p| + 2 = |un| + 2. O



82 Chapter 4. Extensions via involutory antimorphisms

The following result generalizes Proposition 4.1.11, and can be proved anal-

ogously.

Proposition 4.3.4. If s 1s a ¥-standard word with seed and two letters of
A occur infinitely often in A(s), then any prefiz of s is a left special factor

of s.

An infinite word s € AY is called a ¥-word with seed if there exists a
¥-standard word t with seed such that Fact s = Fact t.
Define the endomorphism ¢, of A* by setting

do(a) = Ps(za)Ps(z) ™

for any letter a € A. From the definition, one has that ¢, depends on % and
up; moreover, ¢,(a) ends with @ for all a € A, so that any word of the set
X = ¢,(A) is uniquely determined by its last letter. Thus X is a suffix code,

and ¢, is an injective morphism.

Ezample 4.3.5. Let A, 9, and uq be defined as in Example 4.3.1, and let z = a.
Then

¢a(a) = Izﬁ(aa)iﬁﬁ(a)_l = acbbcaach ,
$.(b) = vPs(ab)hs(a)”! = acbbea , (4.16)
ba(c) = vs(ac)Ps(a)™t = acbbcaache .

To simplify the notation, in the following we shall often omit in the proofs

the subscript =z from ¢,, when no confusion arises.

Theorem 4.3.6. Fizz € A and uy € A*. Let '(,519 and ¢, be defined as above.
Then for any w € A*, the following holds:

Yo (zw) = ¢a(¥(w))s(z) -

Proof. In the following we shall often use the property that if v is an endo-
morphism of A* and v is a suffix of u € A*, then y(uv™") = y(u)y(v)™ .

We will prove the theorem by induction on |w|. It is trivial that for w = ¢
the claim is true since ¥(¢) = € = ¢(g). Suppose that for all the words shorter

than w, the statement holds. For |w| > 0, we set w = vy with y € A.
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First we consider the case |v|y # 0. We can then write v = v;yv, with

vz, = 0, so that

Ps(zv) = Po(TV1y02) = Po(zv1)yA = Aghe(zv1) |

for a suitable A € A*. Note that 9)s(zv;) is the largest ¥-palindromic prefix
(resp. suffix) followed (resp. preceded) by y (resp. %) in 9s(zv). Therefore,

Po(zvy) = AGs(zv1)y\ = Yo (zv)Ps(zvy) s (zv) . (4.17)

By a similar argument one has:

P(vy) = Y)Y (v1) Y (v) . (4.18)

By induction we have:

bo(zv) = d(Y(v))ds(z) ,  Po(avr) = G(P(v1))ds(2) -
Replacing in (4.17), and by (4.18), we obtain
Yo(zvy) = B($()(¥(v1))  $(¥(v))Ps(z)

= (W)Y (v1) Y(v))Ps(z)
= ¢(¥(vy))Ps(z),

which was our aim.

Now suppose that |v|, = 0 and PALs N Pref(uoz)y™' # 0. Let o, be the
longest word in PALs N Pref(uoz)y~?, that is the longest ¥-palindromic prefix
of ugz which is followed by y. Since |v|, = 0, one derives that the longest

¥-palindromic suffix of 94(zv)y is Ja,y, whence
Po(2vy) = (da(zv)y)” = dho(av)oy Po(zv) . (4.19)
By induction, this implies
Ps(zvy) = (% (v))Ps(z)ar, ' d((v))hs(z) - (4.20)
By using (4.19) for v = ¢, one has ¥5(zy) = ¥s(z)a, *9s(z), and

B(y) = Po(zy) (Vo(2)) = Pole)a, -
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Moreover, since 9 (v) has no palindromic prefix (resp. suffix) followed (resp.

preceded) by y one has
Y(vy) = Y(v)yy(v) .
Thus from (4.20) we obtain

bs(zvy) = S(W(v)Y)(%(v))Ps(z)
= $(Y(v)yY(v))ds(z)
= o(Y(vy))Ps(z) -

(4.21)

Finally we consider |v|, = 0 and PALy N Pref(upz)y~" = 0. In this case,

since 93(zv) has no ¥-palindromic suffix preceded by 7 (has no 9¥-palindromic

prefix followed by y), we have
Ps(zvy) = Ps(z0)y®s(zv) .
By induction we then obtain
Po(zvy) = Po(z0)y®Po(zv)
= ¢(Y(v))Pa(2)y®P(Y(v))Ps(2) -

In particular, if v = ¢,

Po(zy) = ¥s(z)y®Ps(z)

S0
Yo (zy)Ps(2) ™ = Po(2)y® = $(y) -
Then from (4.23) and (4.21) one derives

Po(zvy) = d(W(v)PY)d(¥(v))ds(z)
= ¢ (v)yy(v))Ps(z)
= ¢(¥(vy))Ps(z) ,

which completes the proof.

(4.22)

(4.23)

O

Ezample 4.3.7. Let us refer to Example 4.3.1. We have w = abc, uy = acbbc,

and ¢ defined by @ = b, ¢ = c. By the preceding theorem, one has

Po(abc) = o ((bc))Ps(a) -
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Since ¥(bc) = beb, Po(beh) = Go(b)da(c)da(b), and 9 (a) = (uoa)® = acbbcaach,
by using (4.16) we obtain

~

Ys(abc) = acbbcaacbbcaacbcacbbcaacbbecaach ,
as already shown in Example 4.3.1.

From Theorem 4.3.6, in the case that w is an infinite word, we obtain:

Theorem 4.3.8. Let w € AY and z € A. Then

~

Yo (zw) = ¢u(¥(w)) ,

1.e., any ¥-standard word s with seed is the image, by an injective mor-
phism, of the standard episturmian word whose directive word is obtained

by deleting the first letter of the directive word of s.

Proof. Let w € A¥,t = ¢¥(w), and w, = PrefwN A" for all n > 0. From Theo-
rem 4.3.6, for all n > 0, Pg(zw,) = (¥ (w,))Ps(z). Since Y(Wny1) = Y(Wn)én

with En € A+; one has ¢(¢(wn+1)) = ¢(¢(wn))¢(§n) Hence; ’Q&g(an+1) has
the same prefix of 9s(zw,) of length |¢((w,))|, which diverges with n. Since

dim ¢(y(wn)) = ¢ (¥(w)) ,
the result follows. O

In the case of an empty seed, from Theorem 4.3.6 one has

Po(zw) = o (P(w))¢Ps(z) = G (9(w))z® . (4.24)

Moreover, one easily derives that

$=(z) =2, ¢u(y) =2%® fory#z.

When uy = € and ¥ = R, the morphism ¢, reduces to u, defined as
pz(y) = zy for y # z and u,(z) = z. Since z® = z, from (4.24) one obtains

the following formula due to Justin [34]:

P(zw) = pa(Y(w))z . (4.25)

It is noteworthy that Theorem 4.3.6 provides an alternate proof of Theo-
rem 4.1.2:
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Proof of Theorem 4.1.2. 1t is sufficient to observe that, in the case of an
empty seed, z® = us(z) and ¢, = wy o u,, so that by (4.24) and (4.25) one

derives:

Yo(zw) = (s © ko) (Y(w)) 1o () = po(ba(Y(w))z) = s (P(zw))
as desired. 0

Our next goal is to prove a result analogous to Theorem 4.1.14 for words
generated by nonempty seeds. However, because of the presence of an ar-
bitrary seed, one cannot hope to prove exactly the same assertion; thus in
Theorem 4.3.12 we shall prove that any sufficiently long left special factor of
a ¥-standard word with seed is a prefix of it, and give an upper bound for the
minimal length from which this occurs, in terms of the length of (uoz)®.

In the following, we shall set
ur = P9 () = (uo2)?,

so that ¢,(a) = (u1a)®u; " and |¢.(a)| < |uy| + 2 for any a € A.

For any letter a, u, will denote (if it exists) the longest ¥-palindromic suffix
(resp. prefix) of u; preceded (resp. followed) by @ (resp. by a). One has then
u; = ¢.(a)u, for any a such that u, is defined, and ¢,(a) = u,a® otherwise.

Lemma 4.3.9. Let X = ¢,(A). If w € X*, then u; € Pref(wu,).

Proof. Trivial if w = €. We shall prove by induction that for all n > 1, if
w € X", then u; € Pref(wu,). Let w € X. Then there exists a € A such that
w = ¢(a) = (u1a)®u;’. Thus wu; = (u;a)®, so that the statement holds for
n = 1.

Let us suppose the statement is true for n, we will prove it for n + 1. If
w € X" there exist a € A and v € X™ such that w = ¢(a)v. By induction,
vu, can be written as u;v’' for some v’ € A*. Then one has wu; = ¢(a)u,v’

and, as shown above, u; is a prefix of ¢(a)u;, which concludes the proof. [

Recall (cf. [4]) that a pair (p, q) € A* x A* is synchronizing for the code X
over the alphabet A if for all A, p € A%,

Apgp € X* — Ap,gp € X*.



4.3. Words generated by nonempty seeds 87

Proposition 4.3.10. The pair (¢,u;) is synchronizing for X = ¢,(4A).
Proof. Since X is a suffix code, it suffices to show that for any A, p € A,
Apup € X —= upe X*.

This is trivial if A = €. Let us factorize Au;p by the elements of X. Then we
can write A = X'p and u;p = sp/, where X, p' € X*, and ps = ¢(a) € X for
some letter a (see Figure 4.1). If p = ¢, then trivially u;p € X*. Suppose then
p # €, so that s ¢ X.

Since ps € X, it follows |s| < |u;| + 1. Let us prove that |s| < |u;|. By
contradiction, suppose |s| = |ui| + 1. Then ¢(a) = ps = wiaa@ and s = u,a.
Therefore ps = u;ad = pu,a, so that u;a = pu;. This implies a = p and u; =
a* for a suitable k > 0. Since a is not a 9¥-palindrome, it follows u; ¢ PALy, a
contradiction.

Thus one has u; = sw for some w € Pref p’. By Lemma 4.3.9, u; is a prefix
of p'uy; clearly, w is a prefix of p'u; too. Therefore w is a prefix of u;, as

|lw| = |uq| — |s|. Thus u; = ws, and
(u10)® = ¢(a)uy = psu, = psws = pu,5 .
Since p # ¢, by Lemma 3.1.12 one obtains 5 = €. Hence u;p = p' € X*. O

U1

Uy

Figure 4.1: Proposition 4.3.10

In the following, if Z is a finite subset of A*, we shall denote by Z“ the
set of all infinite words which can be factorized by the elements of Z. As is
well known (cf. [4]) a word ¢ € Z“ has a unique factorization by means of the
elements of Z if and only if Z is a code having finite deciphering delay. By
Lemma 4.3.9, the code X = ¢,(A) has the property that there exists an integer
n > 0 such that u; € Prefv for all v € X™; from Proposition 4.3.10 it follows
that all pairs of X™ x X™ are synchronizing for X, so that X has a bounded
synchronization delay and therefore a finite deciphering delay.
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Lemma 4.3.11. Let X = ¢,(A) and w = ru;azs € X*, with a,z € A and
r,s € A*. If we set v' = ¢,(a) ‘uiaz, then (r,v's) is in X* x X* and it is

an occurrence of ¢.(a) in w.

U1

o(y) F v

U1

Figure 4.2: Lemma 4.3.11

Proof. Let w € X* be such that w = ru;azs, with 2z € A. From Proposi-
tion 4.3.10 we have that » and u;azs are in X*. Let y € A be a letter such
that v = @(y) ‘usazs is in X* and set v' = @(y) ‘usaz. It is clear from
the definition of ¢ that either v' = ¢, v = 2 or v' = uyaz, where u, is the
longest ¥-palindromic suffix of u; preceded by y. In the first two cases, it must
be ¢(y) = u1a®, so that a = y; let then v = uyaz (see Figure 4.2). Since
v =7v's € X*, from Lemma 4.3.9 it follows that u, is a prefix of v'suy, so uya,
whose length is less than |u;|, is a prefix of u;. By definition, u, is a prefix of
u; followed by y, hence u,y = uy,a and a = y. Thus (r,v's) € X* x X* is an

occurrence of ¢(a) in w. O

Theorem 4.3.12. Let t = Py(zA) be a ¥-standard word with seed. Then
there exists an integer N > 0 such that any left special factor of t of length

greater than or equal to N 1s a prefiz of t.

Proof. Set z = Y(A) = z125--2,---, where 2; € A for all 7+ > 1. From

Theorem 4.3.6 we have that ¢ = ¢(z), so that ¢ can be factorized uniquely as

t=¢(21)p(22) - b(2n)--- € XV,

where X = ¢,(A). We shall prove that each left special factor w of ¢ longer than
2 |u;| + 2 is also a prefix of ¢. Since w is left special, there exist two different
occurrences of w in t preceded by distinct letters, say a and b. Moreover, since

|lw| > 2|u;| + 2, we can write

W = DpP(Zit1 - Zith)S = pl¢(zj+1 e 'zj+k:)5'l ) (4.26)
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where ¢(2z;) = rap, ¢(2;) = r'bp’, ¢(2zitn+1) = sA, and @(2j4x41) = s'N, with
A\ A € A' and 1, 7, h, k positive integers. Thus one can rewrite ¢ as

t= (21 zi1)rawWAG(Ziphio- ) = G212 1)V bWN B(2Zj4pq2- -+ ).

Without loss of generality, we can suppose |p| < |p|. From (4.26) and from the
preceding equation, we have

rap' ¢(zji1 - 2j15)S AP (Zignaa -+ ) € XY,

Since |w| > 2 |u1| + 2 and p' < |ug| + 1, one has |¢(241 - 2j1)S'| > || + 1,
so that from Lemma 4.3.9, u; is a prefix of ¢(z;;1---2j1%)s'A'u; and then of
G(2j41 - Zj1k)s".

By Proposition 4.3.10, (9, ¢(2;+1 - - 2j1%)s’) is a synchronizing pair for X,
so that rap’ is in X*. If p’ # ¢, then r'bp’ is the only word of the code X having
P’ as a suffix (recall that any codeword of X is determined by its last letter);
hence it should be a suffix of rap’, which is clearly a contradiction as a # b.

Then p’ = ¢, that implies also p = €. Thus, we can write

t=¢(z1 - 2)wAP(zirhiz ) = P21 2 )WNP(Zj 10127 ),

and z; # z;, as w is left special. Since

W= @(2ziy1- - 2iyn)s = (211 Zj4x)$

is longer than 2|u;| + 2, and |[s|,|s'| < |ui| + 1, there exists a letter ¢ €
A such that u;c is a prefix of both ¢(z;41---2iyn) and @¢(2j41---2j1k). By
Lemma 4.3.11 one has ¢(z;y1---2in) = @d(c)p and ¢(2j41-- - 2j06) = ¢(c)p’
with p, p' € X*, so that z;;1 = 2,11 = ¢ since X is a code.

Let [ be the greatest integer such that z;,, = 2,4, for all m < I. Then
both 2,241 ---2;4; and 2,241 - 2j41 = 2j2i41 - - 24 are factors of z. Since
2; # zj, Zit1++ 24 18 a left special factor of the episturmian word 2, thus a
prefix of 2, i.e., 2,41 -2, = 21 --- 2. Hence ¢(2;41---2;4;) is a prefix of ¢.

Now let us suppose that w' = @(zi1141 - 2Zisn)s = (254141 2j1x)8 18
strictly longer than u;. By Lemma 4.3.9, there exists a letter d such that u;d
is a prefix of w’', so, by applying Lemma 4.3.11 to w'A € X* and to w'\’' € X*
one derives ¢(2;1111) = ¢(2j41+1) = ¢(d), contradicting the fact that 7 + [ was
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the largest of such indexes. Then |w'| < |u;|. By Lemma 4.3.9, u; is a prefix
of w'Au;. Thus w' is a prefix of u; and w = ¢(2;41 -~ 2;4)w' is a prefix of
P(ziv1 - Ziy)ur = @21 -+~ 21)us.

Let m be an integer such that |u;| < |@(21411 " 214m )| By Lemma 4.3.9, u,
is a prefix of ¢(z;y1 -+ 211m) and @(2; - - - 2;)uy is a prefix of ¢(2; - - - 2;1m) Which

is a prefix of t. In conclusion, we obtain that w is a prefix of ¢. O

We observe that the proof of the preceding theorem shows that for a -
standard word s with seed wu,, all left special factors of length greater than or
equal to N = 2|u;| + 3 are prefixes of s. However, this bound is not tight. In
fact, for instance, if ug = € then N = 5, whereas from Theorem 4.1.14 one has
that all left special factors of a ¥-standard word s, having length at least 3, are

prefixes of s.

4.4 The class SWy and ¥-episturmian words

Another extension of episturmian words can be obtained by introducing in-
finite words w (called standard 9-episturmian) satisfying the two following

requirements:
1. w is closed under ¥,
2. any left special factor of w is a prefix of w.

A word is called ¥-episturmian if there exists a standard ¥-episturmian word
having the same set of factors.

In the following we shall denote by Ept, the class of ¥-episturmian words
over A, and by SEpi, the set of standard ¥-episturmian words. When 9 = R,
Epug is just the class of episturmian words.

More generally, it will be useful to introduce for any N > 0 the family
SWs(N) of all infinite words w which are closed under ¥ and such that every
left special factor of w whose length is at least N is a prefix of w. Moreover, by
Ws(N) we denote the class of all infinite words having the same set of factors
as some word in SWy(N). Thus SWy(0) = SEpi, and Ws(0) = Epig. By
Theorem 4.1.14, the class of ¥-standard words is included in SWy(3).
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Proposition 4.4.1. An infinite word s is in Wy(N) if and only if s is closed
under ¥ and it has at most one left special factor of any length greater

than or equal to N.

Proof. The “only if” part follows immediately from the fact that Facts =
Factt for some t € SWy(N). Let us prove the “if” part. Let us first suppose
that s has infinitely many left special factors. Hence s has exactly one left
special factor for each length n > N, say v,. Then for any n > N, v, is a
prefix of v, 1, so that

t= lim v,

n=300
is a well-defined infinite word. Trivially Fact{ C Facts; thus to prove that
Factt = Fact s it suffices to show that any given factor w of s with |w| > N is
a factor of some v,, n > N. Since s is closed under ¥, w is a factor of s. Let p
be a prefix of s ending in w. Since s is recurrent, we can consider a prefix of
s of the kind pup for some u € A*. Then there exists v € A* such that pv is a
right special factor of s, for otherwise one would have s = (pu)“, contradicting
the fact that s has infinitely many left special factors. Hence wv is a right
special factor of s, so that ¥w is a left special factor of s. Since |w| > N, we
have |Jw| > N and therefore 7w € Pref ¢; thus Fact ¢ = Fact s as desired. This
implies that any left special factor of ¢ is also left special in s. It follows that
t € SWs(N).

Now suppose that s has only finitely many left special factors. As is well
known, this implies that s is eventually periodic, and hence periodic since it is
recurrent. Let then w be the longest left special factor of s, and let s = Aws’
for some A € A* and s’ € AY. Then t = ws' has the same set of factors as s.
This implies that ¢ is a word of SWy(N). O

As an immediate consequence, one obtains:

Corollary 4.4.2. An wnfinite word 1s ¥-episturmian if and only if it is

closed under ¥ and it has at most one left special factor of each length.

Remark. In the case of a binary alphabet A = {a, b}, by definition any word
s € Epiy has a subword complexity A; such that A;(n) < n+ 1 for all n > 0.
It follows that any word in Epi, is either Sturmian or periodic. In particular,

if 9 = E o R, then the word s cannot be Sturmian, since any Sturmian word
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has either aa or bb as a factor, but not both, whereas s, being closed under ¥,
does not satisfy this requirement. Thus Epi, contains only the two periodic
words (ab)” and (ba)“, whereas Eptip contains all Sturmian words.

Trivially, we have SWs(N) C SWys(N +1). Let us denote by SW; the class
of words which are in SWy(N) for some N > 0, i.e.,

SWys = U SWs(N) .
N>0

One of the main results is the proof that SW; coincides with the class of -
standard words with seed (cf. Theorem 4.4.6). As a corollary, we will derive
that any standard 9-episturmian word is a ¥-standard word with seed.

For the sake of clarity, we report in Table 4.1 the definitions and the nota-
tions of the different classes of words introduced so far. We consider only the
standard case, since the “non-standard” words of a given class are defined by

the property of having the same set of factors as a standard one.

Table 4.1: Summary of the generalizations of standard episturmian words

Name Symbol Definition
¥-standard with seed SWy ¢ Generated by iterated ¥-palin-
drome closure, starting from any
seed
¥-standard Generated by iterated ¥-palin-

drome closure, starting from ¢
Standard ¥-episturmian SEpiy = SWy(0) Closed under ¢, and all left spe-
cial factors are prefixes

SWs(N) Closed under ¥, and all left spe-
cial factors of length at least N

are prefixes

2After Theorem 4.4.6

In order to prove the main theorem, we need some preliminary results.
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Lemma 4.4.3. Let w € SWy(N) and u be a ¥-palindromic factor of w such
that |u| > N. Then the leftmost occurrence of u in w is a median factor

of a ¥-palindromic prefiz of w.

Proof. By contradiction, suppose that w = Azvuvgw’, for some letters z,y € A
with ¢ # y, and words A,v € A*, w' € A“. Since w is closed under ¥, both
zvuv and yvuv are factors of w, so that vuv is a left special factor of w of
length |vu®| > N, and hence a prefix of it. This leads to a contradiction,

because we have found an occurrence of u in w before the leftmost one. O

Proposition 4.4.4. Any word in SWy has infinitely many ¥-palindromic

prefizes.

Proof. Let w € SWy(N) for a suitable N > 0, and u be a prefix of w, with
|lu| > N. We shall prove that w has a ¥-palindromic prefix whose length is at
least |u|, from which the assertion will follow.

Let at (a € A*) be the prefix of w ending with the first occurrence of 4.
Since u is a prefix of w, one has a@ = uf for a suitable § € A*. If 8 = ¢, then
o = ¢ and u = 4, so that ot = u is the desired ¥-palindromic prefix.

Then suppose 8 = 2125+ 2, with z; € Afor 2 =1,...,n. As |a| = |B|,
onehasa =1vy,...y; forsomey, € A,2=1,...,n. Since o # ¢, one has u # 4,
so that % is not left special in w. Hence y;% is the only left extension of % in w.
As w is closed under 9, uy; is the only right extension of u in w. This implies
Y1 = Z1.

Since atl = y, - - - Y>Z,4 ends with the first occurrence of @ (and hence with
the first occurrence of Z;%), one can apply the same argument as above to the
prefix uz,, in order to show that y, = Z,. Continuing this way, one eventually
obtains y; = Z; for all4 = 1,...,n, so that o = B and a4 is again the desired

¥-palindromic prefix of w. O

For a (fixed but arbitrary) word w € SWy we denote by (B,),>1 the se-
quence of all ¥-palindromic prefixes of w, ordered by increasing length. More-
over, for any ¢ > 0 let z; be the unique letter such that B;z; is a prefix of w.
The infinite word £ = 2,2, - - - T, - - - will be called the subdirective word of w.
The proof of Proposition 4.4.4 shows that for any z > 0, B,,; coincides with
the prefix of w ending with the first occurrence of z;B;.
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The next lemma shows that, under suitable circumstances, a stronger rela-
tion holds.

Lemma 4.4.5. Let w € SWy3(N). With the above notation, let n > 1 be
such that z,, = i, for some k < n with |By| > N—2. Then B,,; = (B,z,)®.

Proof. Let k be the greatest integer satisfying the hypotheses of the lemma.
Let us first prove that Q = Z, Bz, does not occur in B,,. By contradiction,
consider the rightmost occurrence of @ in B,, i.e., let Qp be a suffix of B, such
that @ does not occur in any shorter suffix. If |p| < |By|, then one can easily
show that the suffix Qpz, of B,z, is a ¥-palindrome, which is absurd because
its length is |Qpz,| > |Q].

Suppose then Qp = Z,Byz,vZ,B; for some v € A*. Since Qp is a suffix
of B,, one has that pQ = Bz,vQ is a prefix of B, (see Figure 4.3). Now
there is no proper suffix u of ¥ such that u@ is left special in w. Indeed,
if such u existed, then u@ would be a prefix of B,,, and so Qu would be
a suffix of B,, contradicting (as |u| < |p|) the fact that Qp begins with the
rightmost occurrence of @ in B,,. Hence every occurrence of @ in w is preceded
by v. Since pz, = vZ,Byz, is a factor of w, one obtains v = %, so that
Qpz, = Z,Brz,vT,BrT, is a ¥-palindromic suffix of B,z, longer than @, a
contradiction.

Thus @ does not occur in B,. Since @ is the longest ¥-palindromic suffix
of B,z,, we can write

w = Bpz,w' = sQu’,

where (s,w’) is the leftmost occurrence of Q in w. By Lemma 4.4.3, sQ3 =

(Bnz,)® is a prefix of w. From this one derives B, ; = (B,z,)®. O
p @ @ p
By Tn v Tn By Tn T, By Tn, v T, By :
Bn

Figure 4.3: Lemma 4.4.5

Theorem 4.4.6. Let s € AY. The following conditions are equivalent:
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1. se SW,g,

2. s has infinitely many ¥-palindromic prefizes, and if (By)no 1S the se-
quence of all its ¥-palindromic prefizes ordered by increasing length,

there exists an integer h such that
Bn+1 - (Bnmn)@ )
for all n > h, for a suitable letter z,,

3. s 15 a ¥-standard word with seed.

Proof. 1.=2. Let s € SWy(N), 125 -z, --- be its subdirective word, and
(B;)i>o the sequence of all ¥-palindromic prefixes of s. We consider the minimal
integer p such that |B,| > N — 2. We set z,) = ,2p41-- T € A, and
take the minimal m such that alph(z,- - -2,») = alphzy). Let A =p+m+ 1.
Then for all n > h, there exists £ with p < k£ < p+m such that z;, = z,,. Since
k > p one has |By| > N — 2, so that by Lemma 4.4.5, B, 1 = (B,z,)®.

2.= 3. Let 94(A) be the 9-standard word with seed uo = Bj, and directive
word A = ZpTp 1 Ty --. One has then '(,%(A) = s.

3.= 1. This follows from Theorem 4.3.12. ]

Let us set
Wy = U Ws(N) .

N>0
The following corollary is a straightforward consequence of the preceding the-

orem.
Corollary 4.4.7. Wy coincides with the set of all $-words with seed.

Let s € SWs(N). We call critical integer h of s the minimal integer p
with the property that for all n > p there exists £ < n such that |By| > N — 2
and z, = z,. We observe that the proof of Theorem 4.4.6 shows that for
any given s € SWy(N) having critical integer h, one has that for all n > h,
B,i1 = (Bnz,)®.

Corollary 4.4.8. Any standard ¥-episturmian word 1s a ¥-standard word
with seed. Moreover, if s € SEpiy and T = T1Ts- - T, - -- 1S 1ts subdirective
word, then the critical integer h of s 1s equal to the minimal integer p such
that alphz = alph(z;-- -z, 1).
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Proof. 1t is sufficient to observe that a standard -episturmian word s is in
SWy(0) because all its left special factors are prefixes of s. Therefore by The-
orem 4.4.6, s is a ¥-standard word with seed B;. Since for all » > 0 one has
|B,| > N — 2, it follows trivially that h = p. O

Proposition 4.4.9. Let s be a ¥-standard word with seed and h be 1its
critical integer. Any prefiz p of s of length > |By| has a ¥-palindromic

suffix with a unique occurrence in p.

Proof. Since |p| > |By| there exists n > h such that
|Bny| < |p| < [Bns|,

with B, 1 = (Bnz,)® by the definition of A.

We can write B,z, = vQ, where @ is the longest ¥-palindromic suffix of
B,z,, which is nonempty, and, as shown in the proof of Lemma 4.4.5, has a
unique occurrence in B,z,. Since B, .; = vQ¥, we can write p = vQ7v,, where
v = v,v, for some vy, v, € A* and |vy| < |v|. Now v,Q7, is a ¥-palindromic
suffix of p which has a unique occurrence in p, for otherwise ¢ would be

repeated in B,z,. This concludes the proof. O

Let us observe that in the case of a standard episturmian word s, a stronger

result holds: any prefix p of s has a palindromic suffix which is unrepeated in
p (cf. [27]).

Proposition 4.4.10. Let s be a ¥-standard word with seed, and h be 1its
critical integer. For any ¥-palindromic factor P of length |P| > |Byl,

every first return to P in s 1s a ¥-palindrome.

Proof. Let P be a ¥-palindromic factor of s, with |P| > |By|. Let u € Fact s be
a first return to P, i.e., u = PA = pP, A, p € A*, and the only two occurrences
of P in u are as a prefix and as a suffix of u. If |P| > |p|, then the prefix P of
u overlaps with the suffix P in w and this implies, as is easily to verify, that u
is a Y¥-palindrome. Then let us suppose that u = PvP with v € A*.

Now we consider the first occurrence of u or of @ in s. Without loss of
generality, we may suppose that s = aus’, and @ does not occur in the prefix of
s having length |au| — 1. Let @ be the ¥-palindromic suffix of au of maximal

length. If |@Q| > |u|, then we have that @ occurs in au before u, which is
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absurd. Then suppose |Q| < |u|. If |u| > |Q| > |P|, then one contradicts the
hypothesis that u is a first return to P. If |Q| = |P|, then @ = P has more
than one occurrence in au. Since |au| > |By|, one reaches a contradiction by
Proposition 4.4.9. Thus the only remaining possibility is @Q = u, i.e., u is a

¥-palindrome. O

In the case of episturmian words, one has the stronger result that every first
return to a palindrome is a palindrome. This was proven in [2] (see also [12]).
However this cannot be extended to ¥-episturmian words. For instance, let s
be the standard ¥-episturmian word (abaca)”, where ¥(a) = a and 9(b) = c.

Then aba is a first return to a in s, but it is not a ¥-palindrome.

4.5 Structure of Y¥-episturmian words

In this section we shall analyse in detail the class of ¥-episturmian words, also
by showing some relations with the other classes introduced so far.

From Corollary 4.4.8 and Theorem 4.3.6, one derives the following

Proposition 4.5.1. Let s be a standard 9-episturmian word, h be its critical
integer, and T = 1Z5--T,--- be the subdirective word of s. Then s is
the 1mage, by an injective morphism, of the standard episturmian word t

whose directive word 1S Tp 1Thio - Ty~ - -

However, this can be improved. In fact, the next results will show (cf. Theo-
rem 4.5.5) that every s € SEpt, is a morphic image, by an injective morphism,
of the standard episturmian word whose directive word is precisely z, the sub-
directive word of s.

In the following we shall denote by Py, or simply P, the set of unbordered
¥-palindromes. We remark that P is a biprefiz code, i.e., none of its elements

is a proper prefix or suffix of other elements of P.
Proposition 4.5.2. PAL; = P*.

Proof. Since P C PALy, one has P* C PALj. Thus it suffices to show
that every nonempty ¥-palindrome admits a factorization in unbordered -
palindromes, i.e., is in P*. Note that such a factorization is necessarily unique,

as P is a code.
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Let w € PALy. If lw| = 1, then clearly w is unbordered, so that w € P.
Let then |w| > 1 and suppose, by induction, that every ¥-palindrome which is
shorter than w can be factorized in elements of P. If w is unbordered, then
we are done. Let then u be the longest proper border of w. Since w is a
¥-palindrome, so is u.

If |lw| > 2|u|, then w = uvu for some v € PALy, so that both u,v € P* by
induction. This implies the assertion in this case.

If |w| < 2|ul, then there exists a border 8 of w such that w = u;84,, where
u = u8 = Pu;. By induction, both B and u = u;[6 are in P*; since P is a
biprefix code, this implies that u; = 48! is in P* too. Hence w = u,u € P*

as requested. O

Ezample 4.5.3. Let A = {a,b,c,d,e} and ¢ be the antimorphism defined by
a=a,b=c, and d = e. The word acbdaaecba.abaca € PAL3 can be uniquely

factorized in unbordered ¥-palindromes as:
a.cb.daae.cb.a.a.bac.a .

We remark that from the preceding proposition one derives that any stan-
dard ¥-episturmian word s admits a (unique) infinite factorization in elements

of P, i.e., one can write
S =TMy-Mp--+, withm ePforallsz>0. (4.27)

Lemma 4.5.4. Let s € SEpiy, with s = myma -7, -+ as above. Let u be
a nonempty and proper prefix of m,, for some n > 0. Then u s not right

spectal in s.

Proof. By contradiction, assume that u is a right special factor of s. Then
it is not left special; indeed, otherwise it would be a ¥-palindrome since s is
¥-episturmian, and this is clearly absurd as m, € P.

Consider now the smallest integer A such that u is a prefix of 7. If h = 1,
then u would be a ¥-palindrome, which is again a contradiction. Let then
h > 1. Since u is not left special, a,_;u is its unique left extension in s. One
can keep extending to the left in a unique way, until one gets a left special
factor, or reaches the beginning of the word. In either case, the factor ¢ of

s that one obtains is a prefix of s. Moreover it is right special in s, as every
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occurrence of the right special factor u extends to the left to g. Hence 7 is a
left special factor of s, and then a prefix of s. Thus ¢ is a ¥-palindrome, and
therefore it begins with @. One has |g| > 2|u|, for otherwise there would be
a nonempty word in Pref u N Suff 4, that is, a nonempty ¥-palindromic prefix
of u, which contradicts the hypothesis that u is a proper prefix of m,. Thus
g = uq'u for some q' € PALj.

We have 7 ---7,_; € P* and, by Proposition 4.5.2, ¢’ € P*. Since P is a
biprefix code, this implies 7 - - -7, _1(¢') " € P*, i.e., ¢ = mp - - - 7y for some
h' < h (if ' = h, then ¢’ = €). Then 7, ---my_; has @ as a suffix. As 4 has
no nonempty ¥-palindromic suffixes, it is a proper suffix of m,_;, which then

begins in u, contradicting the minimality of A. ]

Theorem 4.5.5. Let s € AY be a standard ¥-episturmian word, A be its
subdirective word, and B = alph A. There exists an injective morphism
u: B* — A* such that s = u(y(4)) and u(B) C P.

Proof. We can assume that s can be factorized as in (4.27). For any n > 0,
let a, be the first letter of m,. We shall prove that if n, m > 0 are such that
Qn = Qpm, then m, = m,,.

Let u be the longest common prefix of 7, and m,,, which is nonempty as
G, = Q.. By contradiction, suppose m, # m,,. Then, as P is a biprefix code,
u must be a proper prefix of both m, and m,,, so that there exist two distinct
letters b,, b,, such that ub, is a prefix of 7, and ub,, is a prefix of m,,. Hence
u is a right special factor of s, but this contradicts the previous lemma.

We have shown that for any n > 0, 7, is determined by its first letter a,,.
Thus, letting

C={a,|n>0}CA,

it makes sense to define an injective morphism y : C* — A* by setting u(a,) =
7, for all n > 0. The word

t=u(s)=a1a3---0an -+ €CY

has infinitely many palindrome prefixes, each being the inverse image of a -
palindromic prefix of s. Indeed, if 7y - - - 7, is a ¥-palindromic prefix of s, by the

uniqueness of the factorization over P one obtains m; = 1,1 ; fore=1,...,n;
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conversely, if w € PAL, then trivially u(w) € PALs. Hence t is closed under
reversal.

Let w be a left special factor of ¢, and let ¢, be such that a; # a; and
a,w,a;w € Factt. Then a;u(w),a;u(w) € Fact s, so that u(w) is a left special
factor of s, and hence a prefix of it. Again by the uniqueness of the factorization
of s over the prefix code P, one derives w € Preft. Therefore ¢ is a standard
episturmian word over C.

Let A =zyz5---2,---, and let B, = u(a;)--- u(a,,) be the n-th ¥-palin-
dromic prefix of s for any n > 1. Then, as shown above, a; - - - a,_ is exactly the
n-th palindromic prefix of ¢. Since the only word occurring in the factoriza-
tion (4.27) and beginning with z,, is u(z,), we have B,u(z,) € Pref s, so that
T, = a,_ 11 for all n > 1. This proves that the directive word of ¢ is exactly A,
and hence C = B. O

Corollary 4.5.6. A standard ¥-episturmian word s 1s ¥-standard if and

only if s = ps(t) for somet € A¥.

Proof. If s is ¥-standard, then by Theorem 4.1.2 there exists a standard epis-
turmian word ¢ such that s = us(¢t). Conversely, if ¢ € A¥ and s = us(t),
then, since us(a) € P for any a € A, by the uniqueness of the factorization
over P one has that us is the morphism u considered in the preceding theo-
rem. Thus ¢t = uy'(s) is a standard episturmian word and s is ¥-standard by
Theorem 4.1.2. O

Proposition 4.5.7. Let u: B* — A* be an injective morphism such that
1. u(z) € PALy for all z € B,
2. alphu(z)Nnalphu(y) =0 ifz,y € B and ¢ # vy,
3. |u(z)|la <1 forallz e B anda € A.

Then, for any standard episturmian word t € B¥, s = u(t) s a standard

¥-episturmian word.

Proof. From the first condition one obtains that x sends palindromes into
¥-palindromes, so that s has infinitely many ¥-palindromic prefixes, and is

therefore closed under 9.
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Let w be a nonempty left special factor of s. Suppose first that w is a
proper factor of u(z) for some z € B, and is not a prefix of u(z). Let a be
the first letter of w. By the second condition, u(z) is the only word in u(B)
containing the letter a; by condition 3, a occurs exactly once in u(z). Since a
is not a prefix of u(z), it is always preceded in s by the letter which precedes
a in u(z). Hence a is not left special, a contradiction.

Thus we can write w as w;u(u)w,, where w; is a proper suffix of u(z;)
and w, is a proper prefix of u(z,), for some suitable z;,z, € B such that
T1uTy € Factt. One can prove that w; = € by showing, as done above, that
otherwise its first letter, which would not be a prefix of u(z;), could not be
left special in s.

Therefore w = u(u)w,. Reasoning as above, one can prove that if wy # e,
then w is not right special, and more precisely that each occurrence of w can
be extended on the right to an occurrence of u(uz,). Since w is left special in
s, 80 is p(uz,).

Without loss of generality, we can then suppose w = p(u). Since y is
injective, u is uniquely determined. As w is left special in s, there exist two
letters a,b € A, a # b, such that aw,bw € Facts. Hence there exist two
(distinct) letters z,, z, € B such that z,u, z,u € Factt. Then u is a left special

factor of ¢ and hence a prefix of ¢, so that w = u(u) is a prefix of s. ]

Ezample 4.5.8. Consider the standard Sturmian word
t = aabaaabaaabaab - - -

having the directive word (aab)“. Let A = {a, b, ¢, d, e}, and 9 be the involutory
antimorphism defined by @ = b, ¢ = ¢, d = e. If u is the morphism y : {a, b}* —
A* defined by u(a) = acb and u(b) = de, then the word

s = u(t) = acbacbdeacbacbacbde - - -
is a standard -episturmian word. We observe that s is not 9-standard, since

it does not begin with ab = a®.

Remark. Any morphism satisfying the three conditions in the statement of
Proposition 4.5.7 is such that u(z) € P for any letter z. However there ex-
ist standard ¥-episturmian words for which the morphism p given by The-
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orem 4.5.5 does not satisfy such conditions. For instance, the standard -
episturmian word s = (abaca)”, with @ = a and b = c, is given by s = u(t),
where ¢ = ¥(aba®), u(a) = a, and p(b) = bac.

We say that a subset B of the alphabet A is ¥-skew if BN ¥(B) C PALjy,
that is, if
t€EB, s #T=—1I¢B. (4.28)

Proposition 4.5.9. Let s be a standard ¥-episturmian word and A be its

subdirective word. Then B = alph A 1s ¥-skew.

Proof. We can factorize s as in (4.27). By Theorem 4.5.5, it suffices to show
that if T,, = zwZ for some n > 0 and w € A*, then 7, does not begin with Z, for
any k > 0. By contradiction, let k£ be the smallest integer such that £ € Pref .
Without loss of generality, we can assume n < k. By Lemma 4.5.4, no suffix of
wZ is a left special factor of s. Hence every occurrence of Z in s is preceded by
zw (or by a proper suffix of it, if the beginning of the word is reached). First
suppose that 7 is preceded in s by zw. Then, since w € PALy; C P* and P is
a biprefix code, one has w = my - - - m,_; for some k' < k. Thus 7, ends in z
and therefore begins with Z, contradicting the minimality of k.

Ifmr---mp_, € Suff w, from n < k it follows that m, = zwZ is a proper
factor of itself, which is trivially absurd. 0J

A Y¥-standard word s can have left special factors which are not prefixes
of s. Such factors have length at most 2, by Theorem 4.1.14. For instance,
consider the ¥-standard word s with # = E o R and A(s) = (ab)“. One has
s = abbaababbaabbaab---. As one easily verifies, b and ba are two left special
factors which are not prefixes. Hence in general, a ¥-standard word is not
standard ¥-episturmian.

The next proposition gives a characterization of J-standard words which

are standard -episturmian.

Proposition 4.5.10. A ¥-standard word s is standard ¥-episturmian if and
only if B = alph(A(s)) is ¥-skew.

Proof. Let s be a ¥-standard word such that B is ¥-skew. By Theorem 4.1.2,
one has s = uy(t), where t = ¥(A(s)) is a standard episturmian word. The



4.5. Structure of ¥-episturmian words 103

morphism u satisfies condition 1 in Proposition 4.5.7 by definition. By (4.28),
one easily derives that the restriction of uy to alpht = B satisfies also the
second statement of Proposition 4.5.7, so that s = us(t) is a standard ¥-
episturmian word.

The converse is a consequence of Proposition 4.5.9, as the subdirective word
of a ¥-standard word s is A(s). ]

Ezample 4.5.11. Let A = {a,b,c,d,e}, A = (acd)”, and ¥ be defined by a = b,
¢ =c, and d = e. The ¥-standard word 13(A) = abcabdeabcaba - - - is standard

¥-episturmian.

Let us observe that in general a standard ¥-episturmian word is not a ¥-
standard word. A simple example is given by the word s = (abaca)”, where ¢
is the antimorphism which exchanges b with ¢ and fixes a. One easily verifies
that € and a are the only left special factors of s, so that s is standard -
episturmian. However (cf. Proposition 3.2.2) s is not ¥-standard, since ab is a
prefix of s, but (ab)® = abca is not. Another example is the word s considered
in Example 4.5.8: s is standard ¥-episturmian, but it is not ©¥-standard because
its first nonempty ¥-palindromic prefix is acb and not ab = a®.

Although neither of the two classes (¢¥-standard and standard 9¥-episturmian

words) is included in the other one, the following relation holds.

Proposition 4.5.12. Every 9-standard word s a morphic image, under a
literal morphism, of a standard B-episturmian word, where ¥ is an exten-

ston of ¥ to a larger alphabet.

Proof. Let s = 19s(A) be a ¥-standard word, B C A be the set of letters
occurring in A, and A’ = A\ PALs. Moreover, let us set

C={ceBnA|3re(B\{cc}) :rcePref A},

i.e., let C be the set of letters c occurring in A and such that ¢ occurs before
the first occurrence of c. If C = (), then by the previous proposition s is a
standard ¥-episturmian word, so that the assertion is trivially verified. Let us
explicitly note that if c € C, then ¢ ¢ C.

Suppose then C nonempty, and let ¢/ = {¢' |c € C}and C = {¢|c e C}
be two sets having the same cardinality as C, both disjoint from A. One can
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then naturally define the bijective map ¢ : B — (B\C)UC" such that p(a) = a
ifa ¢ C, and ¢(a) = a' otherwise. Set A = AUC'UC, and define an involutory
antimorphism ¢ over A by setting 19‘,4 = ¢ and 1§(c') =¢forany ¢ € C'.

Extending ¢ to a morphism from B* to A*, it makes sense to consider the
infinite word A = @(A) over A. Thus we can define as well the d-standard
word § directed by A. Since alph A is J-skew, by the previous proposition 3§
is also J-episturmian.

By Theorem 4.1.2, one has s = us(%(A)) and § = pz(w(A)). Since ¢ is
injective on B, it follows 1(A) = p(¥(A)), so that

§ = us(e(¥(4))) . (4.29)
Let g : A* — A* be the literal morphism defined as follows:
g =9, ge=0%0¢ 'od, andgs=id,

ie, let gla) =aif a € A, and for all ¢ € C, let g(¢') = c and ¢(¢) = ¢. We
want to show that g(5) = s = ps(¢¥(A)). In view of (4.29), it suffices to prove
that g o ug o ¢ = ps over B. Indeed, by the definitions, if ¢ € C then

9(rs(p(c))) = 9(c'é) = ct = pno(c) ,
whereas if a € B\ C, then

9(ks(p(a))) = 9(a®) = a® = ps(a) . m
Ezample 4.5.13. Let A = {a,b}, ¥ = EoR (i.e.,, a = b), and s be the -
standard word having the directive sequence A = (ab)¥, so that

s = abbaababbaabbaab - - - .

In this case A' = A= B, C = {b}, C' = {b'}, and C = {b}. We set ¢ = ¥’ and
d = b, so that A = {a,b,c,d}, 1§(a) = b, and 19(0) = d. The morphism ¢ in
this case is defined by (a) = a and (b) = c. Hence A = p(A) = (ac)”. The
d-standard (and standard d-episturmian) word § directed by A is

§ = abcdababcdabcdabab - - - .

The literal morphism g is defined by g(a) = g(d) = a, and g(b) = g(c) = b.
One has g(8) = s.
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Conclusions

5.1 Summary

This work is about Sturmian words and their generalizations, an important
topic in combinatorics on words.

Among other well known notions, we have defined the fractional root z,, of
a word w, that is, the prefix of w whose length is the minimal period 7, of w.
Another new fundamental notion is that of 1¥-palindromes, i.e., fixed points of
an involutory antimorphism % of the free monoid of words A*.

We have given an analysis of the periodical structure of factors of Sturmian
words, which has led to two new characterizations, showing that the property
of being Sturmian (or not) for a finite word is completely determined by its

fractional root:
1. w € A" is Sturmian if and only if 2,, is standard (Theorem 2.2.3).
2. w € AT is Sturmian if and only if |z,| = R,> + 1 (Theorem 2.2.8).

Both characterizations naturally produce linear-time algorithms for the recog-
nition of finite Sturmian words (Section 2.3), which is an important problem
also for matters of discrete geometry and computer vision.

As a byproduct, the following formula counting the number p(n) of primi-
tive Sturmian words of any length n > 2 is found (Proposition 2.2.12):

p(n) = Z(n +1-1)¢(i) — > dg(d

=1 dln
d#n
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We have then focused on the set St PAL of Sturmian palindromes, show-
ing that a Sturmian palindrome is necessarily a median factor of a central word
(Corollary 2.4.2) having the same minimal period (Theorem 2.4.13). Among
other noteworthy structural results, we have proved that a palindrome w is
Sturmian if and only if 7, = R, + 1 (Theorem 2.4.18), after a similar charac-
terization for central words (Theorem 2.4.16).

A formula for the enumeration function g(n) of Sturmian palindromes has

been found for all n > 0:

In/2]—1
g(n) =1+ Z d(n — 21)
=0

(see Theorem 2.5.1). This has allowed to prove that the asymptotic density
of central words in St N PAL vanishes (Proposition 2.5.5), and so does the
asymptotic density of Sturmian palindromes in St. (Proposition 2.5.7).

Next, we have introduced the important pseudopalindrome closure oper-
ators. We have proved several properties linking ¥-palindrome closure and
periodical structure. For instance, given any w € A*, the minimal periods of
the right closure w® and of the left closure w® coincide (Proposition 3.1.4),
and are the same if and only if z,, is the product of two ¥-palindromes (Theo-
rem 3.1.6).

The iteration of palindrome closure operators produces standard Sturmian
words, and more generally standard episturmian words. The properties of the
factors of such words, in relation to palindrome closure, have been analysed.
Slightly stronger results have been found in the Sturmian case; anyway the
main result is that both closures w(*) and w(~) of a finite episturmian word
are episturmian themselves (Theorems 3.3.4 and 3.4.14), and even factors of a
common episturmian word (Proposition 3.3.6 and Corollary 4.1.16).

In the last chapter we have introduced some extensions of episturmian words
obtained by replacing the reversal operator R by an arbitrary involutory anti-
morphism 9. More precisely, these words are defined by natural generalizations
of some conditions, each of which characterizes standard episturmian words;
these are no longer equivalent in the case of an arbitrary . In this way we
have obtained the class of ¥-standard words, which are generated by iteration

of the ¥-palindrome closure operator, and the class of standard ¥-episturmian
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words, which are infinite words closed under ¥ and whose left special factors
are prefixes.

We have studied several structural properties of these words. In the ¥-
standard case, this has been done mainly in relation with ¥-palindrome closure,
whereas for standard ¥-episturmian words, the main tool is the factorization
(4.27) of such words with unbordered ¥-palindromes.

Neither of these two classes of words is included in the other. A character-
ization of the words belonging to the intersection of the two classes has been
given (see Corollary 4.5.6 and Proposition 4.5.10). Moreover, the two preced-
ing classes are strictly included in the class of ¥-standard words with seed (see
Fig. 5.1).

standard ¥-episturmian

¥-standard with seed

Figure 5.1: Generalized episturmian words

A basic theorem (see Theorem 4.4.6) shows that this larger class coincides
with the set of infinite words which are closed under ¥ and whose sufficiently
long left special factors are prefixes. This deep result proves that these two fur-
ther natural generalizations (i.e., iterated ¥-palindrome closure starting from
any seed, and closure under ¥ with the requirement that all sufficiently long
left special factors are prefixes) of the above mentioned conditions are once
again equivalent.

The link existing between episturmian words and all these generalizations
has been given by some theorems (see Theorems 4.3.6, 4.1.2, and 4.5.5) show-
ing that the words of such families are suitable morphic images of standard

episturmian words.
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5.2 Further research and open problems

Sturmian and episturmian words are the subject of much ongoing research
within the scientific community. Here we list some possible developments which

are related to our work, as presented in the preceding chapters.

e Very recently, J. Currie and K. Saari [18] have improved upon Theo-
rem 2.2.3, by characterizing the finite standard words which are conju-
gate to the fractional roots of the factors of a given Sturmian word. This
could possibly lead to the development of algorithms testing whether a
word is a factor of a Sturmian word of given slope (up to the first partial

quotients in its continued fraction expansion).

e It could be interesting to give a deeper analysis of the structure of gen-

eralized pseudostandard words, as defined in Section 4.2.

e The introduction of involutory antimorphisms in our work was motivated
for example by biology (a common example of involution is the Watson-
Crick one, for the DNA “alphabet” of four bases). Recently (cf. [13]),
the following result was proved, showing the occurrence of involutory

antimorphisms from purely combinatorial conditions:
Theorem. Let w be an infinite word over A satisfying the following
three conditions:

1. every left special factor of w s a prefiz of it,

2. w has at most one right special factor of each length,

3. for some constant k and all n > 1 one has

card(Fact w N A™**) — card(Factw N A™) =k . (5.1)

Then there exists an involutory antimorphism ¥ of A* such that w

1s standard ¥-episturmaan.

We remark that by requiring that (5.1) holds also for n = 0, a well-known
characterization of Arnoux-Rauzy words is obtained.

The above theorem is not a characterization of infinite words which are
standard ¥-episturmian for some #; this could be achieved by substituting

(5.1) with a suitable weaker condition.
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e Finally, we mention two interesting open problems. A first task is to

study the morphisms ¢ : X* — A* such that the image under ¢ of
any standard episturmian word over an alphabet X is a standard -
episturmian word on A. Proposition 4.5.7 gives a sufficient condition,
which is not necessary. It would be interesting to find a characterization
of such morphisms. In the case ¥ = R and X = A the injective morphisms
of this family are the standard episturmian morphisms introduced in [27,
35].
A second problem is to determine whether morphisms ¢ : X* — A*
of the previous class are able to generate, when applied to all standard
episturmian words over X, all standard ¥-episturmian words over A. We
observe that both these questions are already settled in the case of ¥-
standard words (see Theorem 4.1.2). Both questions are being addressed
in [10].
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