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IntroductionThe study of combinatorial and structural properties of �nite and in�nite wordsis a subject of great interest, with many applications in mathematics, physics,computer science, and biology (see for instance [38, 39, 40, 1]). In this frame-work, Sturmian words play a central role. They have been widely studied fortheir theoretical importance and their applications to various �elds of science,such as crystallography, Diophantine approximation, or computer vision.By de�nition, a Sturmian sequence is an in�nite word which is not even-tually periodic and has minimal factor complexity. This can be equivalentlystated as follows: an in�nite word is Sturmian if and only if it has n+1 distinctfactors (blocks of consecutive symbols) of each length n � 0. In particular,Sturmian words are on a binary alphabet, say fa; bg. They also enjoy someremarkable characterizations of geometrical nature (cutting sequences, me-chanical words). Several general surveys on this subject are available (see forinstance [39, Chap. 2] and [1, Chap. 9{10]).In�nite Sturmian words and their factors, called �nite Sturmian words,enjoy many characteristic structural properties. Perhaps the most famous oneis the so called balance condition : the numbers of a's in two factors of the samelength can di�er at most by 1. In recent years, some works have investigatedSturmian words by looking at their palindromic factors. A palindrome is a�nite word which can be read without distinction from left to right or fromright to left; more formally, it is a �xed point of the reversal operator, whichmaps each �nite word to that obtained reversing the order of its letters.Palindromes play an essential role in the structure of Sturmian words. Infact, an important theorem of X. Droubay and G. Pirillo [28] shows that anin�nite word is Sturmian if and only if it has exactly one palindromic factor oflength n for n even, and two for n odd. Moreover, A. de Luca and F. Mignosi



6 Introduction[26] proved that the set of palindromic pre�xes of all standard Sturmian wordsis equal to the set of central words, i.e., words having two periods p and qwhich are coprime, and length p + q � 2. Central words satisfy remarkablestructural properties; for instance, a central word w is such that wab and wbacan be factorized as a product of two palindromes. The set St of factors of allSturmian words is equal to the set of factors of all central words (cf. [26]).Palindromes, and more speci�cally palindrome closure operators, are alsoinvolved in some natural generalizations of Sturmian words. The right (resp.left) palindrome closure w(+) (resp. w(�)) of a �nite word w is the shortest palin-drome having w as a pre�x (resp. suÆx). By iterating the operation of addinga letter (from fa; bg) to the right and then taking the palindrome closure,one obtains at the limit either a periodic word, or a standard Sturmian word(see [21]). As an example, taking as directive word (the in�nite sequence of let-ters used in the iterated palindrome closure) the sequence (ab)! = ababab � � � ,we get the sequence of central words a; aba; abaaba; : : :, converging to the in�-nite Fibonacci word f = abaababaabaababaababaab � � � ;which is arguably the most famous Sturmian word. The process of iteratedpalindrome closure, when extended to larger alphabets, produces standardepisturmian words, �rst introduced by X. Droubay, J. Justin, and G. Pirilloin [27]. Standard episturmian words enjoy a famous characterization, oftentaken as de�nition: an in�nite word s is standard episturmian if and only if itis closed under reversal and every left special factor of s is a pre�x of it. Werecall that a factor of a �nite or in�nite word w is said left special if it admitsat least two di�erent \extensions" in w: u is left special in w if there existdistinct letters a and b such that au and bu are factors of w.The equivalence between the above de�nitions of standard episturmianwords is not preserved if one substitutes the reversal operator by an arbitraryinvolutory antimorphism of A�, i.e., a composition of the reversal with a per-mutation of the alphabet A. Indeed, as we shall see in later chapters, suchsubstitution leads to two di�erent extensions of episturmian words, namely#-standard words and standard #-episturmian words. Both families are in-cluded in the larger class of #-standard words with seed. As in the Sturmian



Overview 7case, all these words have a \non-standard" counterpart; thus for instance, anin�nite word is #-episturmian if there exists a standard #-episturmian wordshaving the same set of factors. Most results about standard words have anatural extension to the non-standard case.
OverviewIn this thesis, we consider several topics related to Sturmian words and theirgeneralizations. In Chapter 1 we recall some basic de�nitions and results con-cerning combinatorics on words, and introduce the central notion of involutoryantimorphism of a free monoid. This allows to consider #-palindromes, natu-ral generalizations of palindromes: they are the �xed points of some involutoryantimorphism # of A�, and will have a fundamental role throughout this work.In Chapter 2, we devote our attention to Sturmian words and their factors.We �rst give some basic de�nitions and properties about standard and centralwords; then in Section 2.2 we provide two new characterizations (cf. Theorems2.2.3 and 2.2.8) of factors of Sturmian words, both related to their periodicalstructure. More speci�cally, they are based on properties of the fractionalroot of the �nite word w being considered, that is, the pre�x zw of w whoselength equals the minimal period of w. From the applicative point of view,the interest of such characterizations lies in the possibility of implementingtwo new and simple algorithms recognizing whether a �nite word is a factor ofsome Sturmian word, with linear time complexity. A simple formula enumer-ating the �nite Sturmian words which are primitive is also derived. We thenfocus, in Section 2.4, on palindromic factors of Sturmian words, or Sturmianpalindromes. Some structural and combinatorial properties of the languageof Sturmian palindromes are presented. In particular, two new characteriza-tions of central words are given, and a remarkable characterization of Sturmianpalindromes is proved.The last section of Chapter 2 deals with the enumeration of Sturmian palin-dromes. A main theorem (cf. Theorem 2.5.1) gives a simple formula whichpermits to count for any n � 0 the Sturmian palindromes of length n. As aconsequence, an interesting relation between the numbers of Sturmian palin-dromes of odd and even length is found. Moreover, it is shown that the number



8 Introductiong(n) of Sturmian palindromes of length n has, for all n � 0, a lower bound ofthe order n1+�, where � = log3 2. From this we derive that the densities of cen-tral words with respect to Sturmian palindromes, and of Sturmian palindromeswith respect to factors of Sturmian words, both vanish asymptotically.In Chapter 3 we introduce pseudopalindrome closure operators, and studythe properties of Sturmian and episturmian words in relation to palindromeclosure. In Section 3.1, we discuss some general properties of the #-palindromeclosure operators. It is shown that the right and left #-palindrome closuresof a word w have the same minimal period. The main result of the section isTheorem 3.1.6, which states that a nonempty word w has the same minimalperiod of its #-palindromic closures if and only if its fractional root zw is aproduct of two #-palindromes. In Section 3.2, we introduce the notion ofelementary #-palindrome action, which consists in appending a letter to a wordand then taking the right #-palindrome closure. Such actions can be naturallyextended from letters to a �nite or in�nite word w by an iterative compositionof the elementary #-palindrome actions corresponding to the successive lettersof w. If w is an in�nite word, then, starting from the empty word, one generatesan in�nite word called #-standard. If # is the reversal operator, one obtains astandard episturmian word.In Sections 3.3 and 3.4, we consider Sturmian and episturmian words re-spectively. In Section 3.3 we prove that both closures w(+) and w(�) of a �niteSturmian word w are Sturmian themselves, and share the same minimal periodof w since the fractional root of w is symmetric, i.e., the product of two palin-dromes. Moreover, there exists a standard Sturmian word s such that w(+) andw(�) are both factors of s. From the preceding results, a new characterizationof �nite Sturmian words can be given in terms of the minimal period and of theright special factors of its right palindrome closure (cf. Theorem 3.3.9). Someof the previous results can be extended to episturmian words. In Section 3.4,we show that if w is a factor of some episturmian word, then so are w(+) andw(�). However, in general, the minimal period of w(+) and w(�) is di�erentfrom that of w, since the fractional root of w can be non-symmetric.In Chapter 4, we analyse di�erent possible generalizations of episturmianwords, based on involutory antimorphisms. The �rst family is the one of #-standard words, constructed by iterated #-palindrome closure. The main result



Overview 9is that any #-standard word is a morphic image, by an injective morphism(depending on #), of the standard episturmian word having the same directiveword. This allows to extend the closure property to factors of #-standardwords too: if w is a factor of some #-standard word, then so are its left andright #-palindrome closures, and there exists a #-standard word having bothclosures as factors. Moreover, we prove that every left special factor of a #-standard word t, whose length is at least 3, is a pre�x of t. A generalization ofthe method for constructing #-standard words is introduced in Section 4.2, byassuming that # can vary among all involutory antimorphisms of A� at eachstep of the iterating process, which is directed by a bi-sequence of letters andoperators. In this way, one gets a wider family of in�nite words, including thewell-known Thue-Morse word on two symbols.In Section 4.3 we introduce the class of #-standard words with seed. Theyare in�nite words obtained by iterated #-palindrome closure, starting from anarbitrary word u0 (called seed) instead of the empty word. We show thatevery #-standard word with seed is a morphic image of a standard episturmianword. More precisely, if � = xx1x2 � � �xn � � � is the in�nite sequence of letterswhich directs the construction of a #-standard word t with a seed, then t =�x(s), where �x is a morphism depending on # and u0, and s is the standardepisturmian word directed by �0 = x1x2 � � �xn � � � . We also show that everysuÆciently long left special factor of a #-standard word with seed is a pre�xof it, and give an upper bound for the minimal length from which this occurs,in terms of the length of the right #-palindrome closure of u0x. This resultsuggests another generalization of episturmian words, introduced in Section 4.4:the class of in�nite words which are closed under # and have all suÆcientlylong left special factors as pre�xes. This turns out (cf. Theorem 4.4.6) to bethe same as the family of #-standard words with seed, and has the noteworthysubclass of standard #-episturmian words, i.e., in�nite words which are closedunder # and have all left special factors as pre�xes.The structure of such words is studied more in detail in Section 4.5. In par-ticular, it is proved that every standard #-episturmian word s can be uniquelyfactorized with unbordered #-palindromes; As a consequence, it is proved thats is a morphic image, under an injective morphism, of the standard epistur-mian word whose directive word is the subdirective word of s, i.e., the in�nite



10 Introductionword formed by the letters immediately following the #-palindromic pre�xesof s. Finally, the intersection of the two families of #-standard and of stan-dard #-episturmian words is fully characterized; it is a proper subclass of bothfamilies.In conclusion, we mention that several results of this thesis were alreadypublished in [25, 23, 24, 12, 11].
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Chapter 1

PreliminariesIn this chapter we review the fundamental algebraic and combinatorial toolsneeded to state and prove the main results of this thesis.
1.1 Basic algebraic conceptsAs is well known (see for instance [17]), a semigroup S is a set in which anassociative binary operation (product) is de�ned.A monoid M is a semigroup having an identity element 1M such that1Mx = x1M = x for all x 2 M . A subsemigroup N of M is a submonoid if1M 2 N .The product operation on a semigroup S can be naturally extended to thepowerset P(S): given X; Y � S, we de�neXY = fxy 2 S j x 2 X and y 2 Y g :It is also common to de�ne left and right quotients, by settingX�1Y = fw 2 S j Xw \ Y 6= ;g ;and Y X�1 = fw 2 S j wX \ Y 6= ;g :We shall often confuse singletons and their elements, when this does not leadto ambiguity. For instance, if x 2 S and Y � S, by xY we will mean the setfxgY .



12 Chapter 1. PreliminariesThe subsemigroup generated by X � S is the smallest subsemigroup of Scontaining X, and coincides withX+ = [n>0Xn :Similarly, the submonoid generated by X �M is equal toX� = [n�0Xn ;where conventionally X0 = f1Mg.Given two semigroups S; S 0, a morphism (resp. antimorphism) ' from Sto S 0 is a map ' : S �! S 0such that '(xy) = '(x)'(y) (resp. '(xy) = '(y)'(x)) for all x; y 2 S. Amonoid (anti-)morphism ' : M ! M 0 is a semigroup (anti-)morphism suchthat '(1M) = 1M 0. An isomorphism is a bijective morphism, and an auto-morphism of M is an isomorphism between M and itself. When ' :M !M 0is a morphism or antimorphism and x 2M , we shall often use the exponentialnotation x' for '(x).A semigroup S (resp. monoid M) is free over X � S (resp. X � M)if every element of X+ admits a unique factorization over X, and X+ = S(resp. X� = M). Free semigroups (monoids) over sets of the same cardinalityare isomorphic.
1.2 Finite and infinite words

The free monoid of wordsLet A be a nonempty �nite set, or alphabet, whose elements are called letters.The set of �nite sequences of letters, or words over A, can be naturally endowedwith the binary operation of concatenation. The semigroup A+ thus obtainedis free over A: a word w 2 A+ can be written uniquely as a product of lettersw = a1a2 � � �an, with ai 2 A, i = 1; : : : ; n. Therefore A+ is called the freesemigroup over A. The free monoid A� is obtained by adding an identityelement, the empty word " = 1A� , to A+: A� = A+ [ f"g.



1.2. Finite and in�nite words 13Let w = a1 � � �an 2 A+, where ai 2 A for 1 � i � n. The integer n is thelength of w, denoted by jwj. It is natural to set j"j = 0.A word u is a factor of w 2 A� if w = rus for some words r and s. Inthe special case r = " (resp. s = "), u is called a pre�x (resp. suÆx ) of w.A factor u of w is proper if u 6= w; it is median if w = rus with jrj = jsj.We denote respectively by Factw, Pref w, and Su� w the sets of all factors,pre�xes, and suÆxes of the word w.A subset of A� is often called a language over A. For Y � A�, Pref Y ,Su� Y , and FactY will denote respectively the languages of pre�xes, suÆxes,and factors of all the words of Y ; in symbols,FactY = [w2Y Factw ;and similarly for Pref Y and Su� Y .A code over A is a language Z � A� such that the monoid Z� is free overZ. Thus Z is a code if and only if whenever z1; z2; : : : ; zn; z01; : : : ; z0m 2 Z aresuch that z1 � � � zn = z01 � � � z0m ;then n = m and zi = z0i for i = 1; : : : ; n. A pre�x (resp. suÆx ) code is asubset of A+ with the property that none of its elements is a proper pre�x(resp. suÆx) of any other. Any pre�x (or suÆx) code is in fact a code. Abipre�x code is a code which is both pre�x and suÆx.
Borders and periodsA factor of w 2 A� is called a border of w if it is both a pre�x and a suÆxof w. A word is called unbordered if its only proper border is ". Since theset of proper borders of the empty word is empty, coherently with the abovede�nition we do not consider " unbordered.A positive integer p is a period of w = a1 � � �an (ai 2 A, i = 1; : : : ; n) ifwhenever 1 � i; j � jwj one has thati � j (mod p) =) ai = aj :Note that with this de�nition, any n � jwj is a period of w. As is well knownand quite evident (cf. [38]), a word w has a period p � jwj if and only if it has



14 Chapter 1. Preliminariesa border of length jwj � p. We denote by �w the minimal period of w, and set�" = 1. Thus a word w is unbordered if and only if �w = jwj. If w is nonempty,then its fractional root zw is its pre�x of length jzwj = �w. We can write anynonempty word w as w = zkw z0where zw is the fractional root of w, the integer k � 1 is sometimes called theorder of w, and z0 is a proper pre�x of zw.We recall the following fundamental result about periodicity (cf. [38]):
Theorem 1.2.1 (Fine and Wilf). If a word w has two periods p and q, andjwj � p+ q � gcd(p; q), then w has also the period gcd(p; q).
Infinite words and limitsAn in�nite word (from left to right) x over the alphabet A is just an in�nitesequence of letters, i.e., a mapping x : N+ �! A where N+ is the set of positiveintegers. One can represent x asx = x1x2 � � �xn � � � ;where for any i > 0, xi = x(i) 2 A. A (�nite) factor of x is either the emptyword or any sequence xi � � �xj with i � j, i.e., any block of consecutive lettersof x. If i = 1, then u is a pre�x of x. We denote by Factx and Pref x the setsof �nite factors and pre�xes of x respectively.The product between a �nite word w and an in�nite one x is naturallyde�ned as the in�nite word wx having w as a pre�x and xj�jwj as its j-thletter, for all j > jwj. The set of all in�nite words over A is denoted by A!.We also set A1 = A� [ A!.A metric on A! can be de�ned by setting d(x; x) = 0 for x 2 A!, andd(x; y) = 2�`for y 6= x, where ` = maxfn 2 N j Pref x\Pref y\An 6= ;g is the length of themaximal common pre�x of x and y. This metric induces the product topologyon A! = AN+ (where A is discrete), making it a compact, perfect, and totallydisconnected metric space, that is, a Cantor space (cf. [43]). The metric d can



1.2. Finite and in�nite words 15be \extended" to the whole A1 in the following way: de�ne (as above) themetric d0 on (A0)!, where A0 = A [ f$g and $ =2 A; then identify any w 2 A�with the in�nite word w$!. In this way A1 is regarded as a subspace of (A0)!.The main bene�t of topology for our purposes is the possibility of takinglimits of sequences. We recall that convergence with respect to the producttopology is pointwise, so that a sequence of words (zm)m�0 in A1 convergesto an in�nite word x = x1 � � �xn � � � if and only if for any k > 0, there existssome N � 0 such that for all n � N , the k-th letter of zn exists (i.e., zn 2 A!or jznj � k) and is equal to xk. For instance, the sequence(amb)m�0converges to the in�nite word a! = aaa � � � . A wide family of convergentsequences, which will appear frequently in the following chapters, is made ofall sequences of �nite words (zm)m�0 such that for suÆciently large n, the wordzn is a pre�x of zn+1.For any Y � A�, Y ! denotes the set of in�nite words which can be factorizedby the elements of Y . The above example shows that an in�nite word whichis the limit of a sequence of words of Y � need not be in Y ! (take Y = a�b);however, it is in Y ! if Y is �nite.
Further definitions and propertiesLet w 2 A1. An occurrence of a factor u in w is any pair (�; �) 2 A��A1 suchthat w = �u�. If a 2 A and w 2 A�, jwja denotes the number of occurrencesof a in the word w; trivially we havejwj = Xa2A jwja :For w 2 A1, alphw denotes the set of letters occurring in w, that is, alphw =fa 2 A j jwja > 0g.Let s 2 A1 and w; u 2 Fact s. We call w a �rst return to u in s if wcontains exactly two distinct occurrences of u, one as a pre�x and the other asa suÆx, i.e., w = u� = �u with �; � 2 A+ and w =2 A+uA+ :



16 Chapter 1. PreliminariesWe observe that in such a case, wu�1 = � is usually called a return word overu in s (see [29]). We call the integer j�j the shift of the �rst return. An in�niteword s is said uniformly recurrent if for any v 2 Fact s, the shifts of the �rstreturns to v in s are bounded above by a constant cv.If x 2 A and vx (resp. xv) is a factor of w 2 A1, then vx (resp. xv) is calleda right (resp. left) extension of v in w. We recall that a factor v of a (�niteor in�nite) word w is called right special if it has at least two distinct rightextensions in w, i.e., there exist at least two distinct letters a; b 2 A such thatboth va and vb are factors of w. Left special factors are de�ned analogously.A factor of w is called bispecial if it is both right and left special.We denote by Rw the smallest integer k, if it exists, such that w has noright special factor of length k (and we set Rw =1 otherwise, that is, when wis an in�nite word having arbitrarily long right special factors). The followingnoteworthy inequality (cf. [22]) relates the minimal period �w of a �nite wordw and Rw: �w � Rw + 1 : (1.1)Symmetrically, one can introduce the parameter Lw as the minimal length forwhich w has no left special factors; Lw satis�es �w � Lw + 1 too.A �nite word w is primitive if it cannot be written as a power w = ukwith k > 1. Clearly any unbordered word is primitive, but the converse isfalse: consider for instance the word aba. We denote by �(A�) the set of allprimitive words over A. As is well known (cf. [38]), for any nonempty word wthere exists a unique primitive word u such that w = uk for some k � 1. Sucha u is usually called the (primitive) root of w and denoted by pw.Two words u; v 2 A� are conjugate if there exist �; � 2 A� such that u = ��and v = ��. Conjugacy is an equivalence relation in A�; we write u � v if uand v are conjugate.Suppose that � is a total order on A. One can extend this order to thelexicographic order on A� by letting, for all v; w 2 A�,v � w () (v 2 Pref w or v = uav0; w = ubw0) ;for some u; v0; w0 2 A� and a; b 2 A such that a < b.A word is called a Lyndon (resp., anti-Lyndon) word if it is primitive andminimal (resp., maximal) in its conjugacy class, with respect to the lexico-



1.2. Finite and in�nite words 17graphic order. For instance, if a < b then w = aabab is a Lyndon word, for itsconjugates (ababa, babaa, abaab, and baaba) are all lexicographically greaterthan w.In the sequel, we shall need the two following simple lemmas; we report theproofs for the sake of completeness.
Lemma 1.2.2. A word w 2 A� has the period p � jwj if and only if all itsfactors having length p are in the same conjugacy class.Proof. The case w = " is trivial. Then suppose that p is a period of w =a1 � � �an, ai 2 A, i = 1; : : : ; n. Let u be a factor of w of length p. Bythe de�nition of period, there exists a positive integer i � p such that u =aiai+1 � � �apa1a2 � � �ai�1, so that u is a conjugate of a1a2 � � �ap.The converse is an easy consequence of the following fact: if x; y 2 A andu 2 A�, then xu � uy if and only if x = y. Therefore, if all factors of w of lengthp are conjugate, one derives that ai = ai+p for all i such that 1 � i � n�p.
Lemma 1.2.3. A word w 2 A� is primitive if and only if �wk = jwj for anyinteger k � 2.Proof. Let w be a primitive word, and suppose that wk has a period q � jwj.Since jwj is a period of wk and jwkj = kjwj > jwj + q, by Theorem 1.2.1, wk,as well as w, has also the period d = gcd(q; jwj). Thus w = ujwj=d for some u;this implies jwj=d = 1 and then q = jwj, as w is primitive.Conversely, suppose w 2 A� is not primitive. If w = ", then�wk = �" = 1 6= 0 = jwj :Let then w 2 A+ and let u be its primitive root. Clearly juj is a period of wk,and juj < jwj.We remark that also the fractional root zw of a nonempty word w is triviallyprimitive. Hence, by Lemma 1.2.3 we obtain that for any w 2 A+ and k � 2,�w = �zkw : (1.2)



18 Chapter 1. Preliminaries
1.3 Antimorphisms of a free monoid

Uniqueness and involutionsWe recall that any (anti-)morphism whose domain is the free monoid A� isuniquely determined by the images of the letters. Formally, for any monoidMand any map ' : A!M , there exists a unique morphism '̂ : A� !M (resp. aunique antimorphism �' : A� ! M) that extends ', i.e., such that '̂jA = '(resp. �'jA = '). This property characterizes free monoids, and is usually takenas the de�nition of free objects in the frame of category theory (cf. [41]).A morphism or antimorphism ' : A� ! A� is involutory if it is an involu-tion of A�, that is, if '2 = id.If w = a1 � � �an 2 A�, ai 2 A, i = 1; : : : ; n, the mirror image, or reversal,of w is the word ~w = an � � �a1 :One sets ~" = ". The map R : A� ! A� de�ned by wR = ~w for any w 2 A�,called reversal operator, is clearly an involutory antimorphism of A�.Let � be an involution of the alphabet A. Clearly, it can be regarded as amap � : A ! A�, and then extended to a unique automorphism �̂ of the freemonoidA�. The map # = �̂ÆR = RÆ�̂ is the unique involutory antimorphism ofA� extending the involution � . One has, for w = a1 � � �an, ai 2 A, i = 1; : : : ; n,w# = a�n � � �a�1 :Any involutory antimorphism ofA� can be constructed in this way; for example,the reversal R is obtained by extending the identity map of A.If A = fa; bg, then there exist only two involutory antimorphisms, namely,the reversal R and the antimorphism e = E Æ R, called exchange antimor-phism, extending the exchange map E de�ned on A as E(a) = b and E(b) = a.If the alphabet A has cardinality n, then the number of all involutoryantimorphisms of A� equals the number of the involutory permutations over nelements. As is well known, this number is given byn! bn=2cXk=0 12k(n� 2k)!k!(sequence A000085 in [46]).
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(Pseudo-)palindromesLet # be an involutory antimorphism of A�. A word w 2 A� is called #-palindrome if it is a �xpoint of #, i.e., w = w#. The set of all #-palindromesof A� is denoted by PAL#(A) or simply PAL# when there is no ambiguity.An R-palindrome is usually called palindrome and PALR is denoted byPAL. In less precise terms, a word which is a #-palindrome with respect to agiven but unspeci�ed involutory antimorphism #, is also called pseudopalin-drome.Examples 1.3.1. The English word racecar is a palindrome.Let A = fa; bg, e be the exchange antimorphism, and w = abaabb. One haswe = aabbab. The word abbaab is an e-palindrome.Let A = fa; b; cg and � be the involutory permutation de�ned as � (a) = b,� (b) = a, and � (c) = c. Setting # = �ÆR, the word abcacbcab is a #-palindrome.A word is called #-symmetric if it is the product of two #-palindromes. AnR-symmetric word is simply called symmetric. In particular, any #-palindromeis #-symmetric.Some combinatorial properties of symmetric words were studied in [20], andmore recently in [9], where the term symmetric was used. One easily veri�esthat all words on the alphabet fa; bg of length � 5 are symmetric. The wordw = abaabb is not symmetric but it is e-symmetric, because it is the productof the two words ab and aabb which are e-palindromes.In the remaining part of this section, we will assume that # is a �xedinvolutory antimorphism of A�. To simplify the notation, for any w 2 A�, weshall denote by �w the word w#, so that for all u; v 2 A� one hasj�uj = juj ; uv = �v�u ; and u = u :
Lemma 1.3.2. A word w is a conjugate of �w if and only if it is #-symmetric.Proof. If w = �� with �; � 2 PAL#, then �w = ��, so that w � �w. Conversely,suppose that w and �w are conjugate. One can write w = �� and �w = �� forsome �; � 2 A�. Thus w = ���� = ��. Since j�j = j��j, one obtains � = �� and� = ��.
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Lemma 1.3.3. A #-palindrome w 2 A+ has a period p � jwj if and only ifit has a #-palindromic pre�x (suÆx) of length jwj � p.Proof. If w has a period p � jwj, then it has a border v of length jwj � p,so that we can write w = �v = v� for some words � and �. Since w is a#-palindrome, one has w = v� = �v�� :Therefore, v = �v. Conversely, if the #-palindrome w has the #-palindromicpre�x v, one has w = v� = ��v ;so that v is a border of w and jwj � jvj is a period of w.
Lemma 1.3.4. Let w 2 A+ and zw be its fractional root. The word z �w is aconjugate of �zw.Proof. Let w be a nonempty word. Since # acts on the alphabet as a permu-tation, one derives that p is a period of w if and only if it is a period of �w.Therefore one has �w = � �w. We can write w = zkwz0 with k � 1 and z0 a properpre�x of zw, and �w = �z0�zkw = zh�w z00with h � 1 and z00 a proper pre�x of z �w. Since jwj = j �wj and j�zwj = jz �wj = � �w,one has h = k and, by Lemma 2.4.13, �zw � z �w.
Corollary 1.3.5. Let w 2 A+ be a #-palindrome having a period p � jwj.Any factor u of w of length p is #-symmetric. In particular, zw is #-symmetric.Proof. Since w = �w and juj = p, by Lemma 2.4.13 one has u � �u. Hence, byLemma 1.3.2 one obtains u 2 PAL2#. As jzwj = �w, one derives zw 2 PAL2#.



Chapter 2

Sturmian sequences

Sturmian words were �rst considered in the 18th century by J. Bernoulli III,in his astronomical studies. Several authors later developed the subject fromdi�erent points of view, but the �rst systematic study was given in 1940 byM. Morse and G. A. Hedlund (cf. [44]). They were also the �rst to use thename Sturmian, in honor of C. F. Sturm.By de�nition, an in�nite word is Sturmian if for each n 2 N it has n+ 1distinct factors of length n. This implies that a Sturmian word is on a two-letter alphabet, that will be A = fa; bg for the rest of this chapter (we shallkeep using a non-calligraphic A for a generic alphabet). As is well known [39],an in�nite binary word x is Sturmian if and only if for any n � 0 there is onlyone right special factor of x of length n.A famous theorem by Morse and Hedlund (cf. [43]) states that an in�niteword s has less than n+1 factors for some n � 0 if and only if it is eventuallyperiodic, that is, writable as s = uv! for some �nite words u; v. Thus Sturmianwords have the smallest possible number of factors of each length, among allin�nite words which are not eventually periodic.A �rst description of the structure of Sturmian words was given in [44],where the following well-known characterization is found: an in�nite words 2 A! is Sturmian if and only if it is not eventually periodic and it is balanced,i.e., it satis�es, for all n � 0 and u; v 2 An \ Fact s,jjuja � jvjaj � 1 : (2.1)
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2.1 Standard and central Sturmian wordsAn equivalent geometrical de�nition of Sturmian words can be given in termsof cutting sequences. In fact, a Sturmian word can be de�ned by consideringthe sequence of cuts in a squared lattice (N�N) made by a ray having a slopewhich is an irrational number �. A horizontal cut is denoted by the letter b, avertical by a, and a cut with a corner by ab or ba.A Sturmian word represented by a ray starting from the origin is usuallycalled standard or characteristic. We shall denote by c� the standard Stur-mian word associated with the irrational slope �. Standard Sturmian wordscan be equivalently de�ned as follows. For any sequence d0; d1; : : : ; dn; : : : ofintegers such that d0 � 0 and di > 0 for i > 0, one de�nes, inductively, thesequence of words (sn)n�0 wheres0 = b; s1 = a; and sn+1 = sdn�1n sn�1; for n � 1 : (2.2)The sequence (sn)n�0 converges to a limit s which is an in�nite standard Stur-mian word. More precisely, one has s = c�, where the slope � is given by thecontinued fraction � = 1d0 + 1d1 + 1.. . = [0; d0; d1; : : :]
(see for instance [39]). Any standard Sturmian word can be generated in thisway. If di = 1 for all i � 0, one obtains the famous Fibonacci wordf = abaababaabaababaababaa � � � ;whose slope is the inverse of the golden ratio.We shall denote by Stand the set of all the words sn, n � 0 of any sequence(sn)n�0 constructed by the previous rule (2.2). Any word of Stand is called�nite standard (Sturmian) word. We recall the following characterization ofStand given in [26]:Stand = A [ (PAL2 \ PALfab; bag) ; (2.3)



2.1. Standard and central Sturmian words 23i.e., a word w 2 A� is standard if and only if it is a letter or it satis�es thefollowing equation: w = �� = 
xy ;with �; �; 
 2 PAL and fx; yg = A.A �nite word w is called central if it has two periods p and q such thatgcd(p; q) = 1 and jwj = p+ q� 2. Conventionally, the empty word " is central(in this case, p = q = 1). Central words are over a two-letter alphabet. Theset of all central words over A = fa; bg is usually denoted by PER. It is wellknown (see [26, 39]) that the set PER coincides with the set of palindromicpre�xes of all standard Sturmian words. In the remaining part of this sectionwe recall some properties of standard and central words which will be usefulin the sequel.The following important characterization of central words holds (see forinstance [15]):
Proposition 2.1.1. A word w is central over A if and only if w is a powerof a letter of A or it satis�es the equationw = w1abw2 = w2baw1for some words w1 and w2. Moreover, in this latter case, w1 and w2 arecentral words over A, p = jw1j+ 2 and q = jw2j+ 2 are coprime periods ofw, and minfp; qg is the minimal period of w.Example 2.1.2. Let w = aabaabaa 2 PER. We havew = a(ab)aabaa = aabaa(ba)a ;with 3 = �w = jaj + 2 and 7 = jaabaaj + 2 being coprime periods of w, andjwj = 8 = 3 + 7� 2.From (2.3) and the preceding proposition, one easily derives (cf. [26]) thatStand = A [ PERfab; bag ; (2.4)i.e., any �nite standard Sturmian word which is not a single letter is obtainedby appending ab or ba to a central word. Conversely, any central word isobtained by deleting the last two letters of a standard word.



24 Chapter 2. Sturmian sequencesLet St be the set of �nite Sturmian words, i.e., factors of in�nite Sturmianwords over the alphabet A = fa; bg. We recall that for any in�nite Sturmianword there exists an in�nite standard Sturmian word having the same set offactors (cf. [39]). Therefore one easily derives thatSt = Fact(Stand) = Fact(PER) : (2.5)
Lemma 2.1.3 (see [15]). If a central word w has the factor xn, with x 2 Aand n > 0, then xn�1 is a pre�x (and suÆx) of w.
Proposition 2.1.4 (see [45]). A word w is central if and only if wab andwba are conjugate.Now let us suppose that the alphabet A is totally ordered by setting a < b.
Proposition 2.1.5 (see [3]). The set A [ aPERb is equal to the set of allLyndon words which are Sturmian. Similarly, A [ bPERa is the set ofanti-Lyndon Sturmian words.
Proposition 2.1.6 (see [31]). A Sturmian word is unbordered if and onlyif it is a Lyndon or anti-Lyndon word.From Propositions 2.1.4 and 2.1.5, one derives the following interestingcharacterization of words conjugate of a standard word.
Proposition 2.1.7. A primitive word z =2 A is a conjugate of a standardword if and only if the Lyndon and the anti-Lyndon words in its conjugacyclass have the same proper median factor of maximal length.Proof. Let z be a primitive word of length jzj > 1. Let s be a standard wordconjugate to z. By (2.4), s can be written as s = vxy, with v 2 PER andfx; yg = A. By Proposition 2.1.4, one derives that z is a conjugate of avb andbva. From Proposition 2.1.5, avb and bva are, respectively, a Lyndon and ananti-Lyndon word, so that the necessity is proved.Conversely, let z 2 A� and suppose that the Lyndon and the anti-Lyndonwords in the conjugacy class of z can be written respectively as atb and bta,with a; b 2 A and a < b. By Proposition 2.1.4, one has that t 2 PER, so thatby (2.4), z is a conjugate of tab 2 Stand.
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2.2 Finite Sturmian words and periodicityIn this section we give two characterizations of �nite Sturmian words, basedon properties of their fractional root. We need some preliminary propositions.The �rst one gives some characterizations of the words w such that w2 2 St(such words have been called cyclic balanced in [16]). The equivalence ofsome of the conditions in Proposition 2.2.1 has recently been proved in [16](see also [32]). We report here a more direct and simple proof for the sake ofcompleteness.
Proposition 2.2.1. Let w be a word. The following conditions are equiv-alent:1. w2 2 St,2. w� � St,3. every conjugate of w2 is Sturmian,4. every conjugate of w is Sturmian,5. the primitive root of w is a conjugate of a standard Sturmian word.Proof. 1.) 2. Let n > 2. Any two factors of wn of length k > jwj=2 overlap,thus it suÆces to verify the balance condition only for factors of wn of lengthk � jwj=2, which is satis�ed because such words are also factors of w2 2 St.2.) 3. This is trivial, since any conjugate of w2 is a factor of w3.3. ) 4. This is trivial too, because the square of a conjugate of w is justa conjugate of w2.4. ) 5. Let u be the primitive root of w. If every conjugate of w isSturmian, then so is every conjugate of u. Hence it suÆces to prove that if wis primitive, then it has a conjugate which is a standard word. Indeed, thereexists a unique conjugate of w which is a Lyndon word, say w0. Since w0 isSturmian, by Proposition 2.1.5 one has that w0 is either a letter or a word avbwith v 2 PER. In the former case, the desired standard conjugate is w0 itself;in the latter case, one can take vba.5. ) 1. Let u be the primitive root of w = uk; if v is a standard wordin its conjugacy class, from equations (2.2) and (2.5) one derives that v2 2 St.



26 Chapter 2. Sturmian sequencesSince 1.) 3. and u2 is a conjugate of v2, one has u2 2 St. As 1.) 2., thisimplies w2 = u2k 2 St.Let w; u 2 A� with w unbordered; the word wu is called a Duval extensionof w if no unbordered factor of wu is longer than w.
Proposition 2.2.2 (see [42]). Every Duval extension wu of a Sturmianunbordered word w has the period jwj.We are now in the position of giving our �rst characterization of �niteSturmian words.
Theorem 2.2.3. A nonempty word is Sturmian if and only if its fractionalroot is a conjugate of a standard word.Proof. Let w be a word. If its fractional root zw is a conjugate of a standardword, then by Proposition 2.2.1, z�w � St, so that w 2 Fact z�w � St.Conversely, let s be an unbordered factor of w 2 St of maximal length. Onehas w = usv for suitable u; v 2 A�. The word sv is a Duval extension of s, bythe maximality of s. Since ~s is unbordered too, and again by the maximalityof s, the word ~s~u = fus is a Duval extension of ~s. From Proposition 2.2.2, onegets that both sv and fus have the period jsj. This implies that also us has theperiod jsj.By Lemma 1.2.2, all factors of us and sv having length jsj are conjugatesof s. Since any factor of w of length jsj is either a factor of us or of sv, ands is a factor of both, we deduce from Lemma 1.2.2 that the whole w has theperiod jsj. Moreover, such period is minimal, becausejsj = �s � �w � jsj :By Lemma 1.2.2, zw is a conjugate of s; since s is an unbordered Sturmianword, by Proposition 2.1.6 it is a Lyndon (or anti-Lyndon) word, and therefore,by Proposition 2.1.5 it is in the set A[ aPERb [ bPERa. Hence s, as well aszw, is a conjugate of a standard word, which proves the assertion.Examples 2.2.4. Let w be the word aababaa. Its fractional root zw = aabab isa conjugate of the standard word ababa, so that w is Sturmian.Let r = baabb. In the conjugacy class of its root zr = baab there is nostandard word, so that r is not Sturmian.
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Corollary 2.2.5. Let w be a nonempty word and zw be its fractional root.Then w is a �nite Sturmian word if and only if so is z2w.Proof. This is a straightforward consequence of the preceding theorem and ofProposition 2.2.1.The following proposition improves upon a result in [22].
Proposition 2.2.6. Let w be a word. If �w = Rw + 1, then w is Sturmian.Proof. Let w 2 A�. If �w = 1, the result is trivially true. Thus we assume�w = Rw + 1 > 1, so that there exists a right special factor s of w suchthat jsj = �w � 2. Hence, there exist letters a; b 2 A such that a 6= b andsa; sb 2 Factw. The words sa and sb cannot be both suÆxes of w, so wesuppose, without loss of generality, that sa is not. Therefore one has eithersaa 2 Factw or sac 2 Factw with c 6= a. Since jsaaj = jsacj = �w, these twopossibilities imply, respectively:w 2 Fact((saa)�) (2.6)or w 2 Fact((sac)�) : (2.7)We �rst show that (2.6) cannot hold. By contradiction, assume that itdoes hold. Since sb is a factor of w, it has to be a factor of saas as well.We clearly have sb 6= sa, thus there exist u; v 2 A� and x 2 A such thatsaas = uxsbv. The words u and v are respectively a pre�x and a suÆx of s,and juj+ jvj = jsaasj � jxsbj = 2jsj+ 2� jsj � 2 = jsj. Therefore s = uv andvaau = xuvb. But this is a contradiction, because jvaauja > jxuvbja.Equation (2.7) is then satis�ed. Let u = sacsa. The word sb 2 Factwhas to be a factor of u; since sb is not a suÆx of u, one has either sba 2Factu or sbx 2 Factu, with x 6= a. By Lemma 1.2.2, the latter is impossible,because jsacj = jsbxj = �w is a period of u, and jsacja > jsbxja. Thus sba is afactor of u, and by Lemma 1.2.2 it is a conjugate of sac. Therefore c = b; byProposition 2.1.4 and equation (2.4) one derives that sab is a standard word oflength �w. By Lemma 1.2.2, zw is a conjugate of sab, so that by Theorem 2.2.3one obtains w 2 St.



28 Chapter 2. Sturmian sequencesWe recall that Lw denotes the minimal integer k for which w has no leftspecial factor of length k. By symmetrical arguments, one can easily prove aresult analogous to Proposition 2.2.6, namely, if �w = Lw + 1, then w 2 St.Examples 2.2.7. The word w = abbab has minimal period �w = 3 and Rw = 2,therefore it is Sturmian. The word v = aabba is not Sturmian, and indeed�v = 4 > 3 = Rv + 1 = Lv + 1. However, for u = aabab 2 St one has�u = 5 > 4 = maxfRu; Lug+ 1.Our second characterization of �nite Sturmian words is a modi�cation ofProposition 2.2.6:
Theorem 2.2.8. A �nite nonempty word w is Sturmian if and only if�w = Rz2w + 1 : (2.8)Proof. Assume (2.8) holds. By Lemma 1.2.3, one has �z2w = jzwj = �w =Rz2w +1, so that from Proposition 2.2.6 it follows z2w 2 St. As w 2 Fact z�w, oneobtains w 2 St by Proposition 2.2.1.Conversely, let w 2 St. The result is trivial if �w = 1, so assume jzwj > 1.By Theorem 2.2.3, zw is a conjugate of a standard word. Since all conjugatesof zw are factors of z2w, by (2.4) and Proposition 2.1.4 there exists v 2 PERsuch that vab and vba are factors of z2w, of length �w. This means that v is aright special factor of z2w of length �w � 2; thus Rz2w � �z2w � 1. By (1.1), onehas �z2w � Rz2w + 1, hence �w = �z2w = Rz2w + 1 as desired.We remark that in the case of palindromes, condition (2.8) in the precedingtheorem can be replaced by the equation �w = Rw + 1. This will be provedin Theorem 2.4.18, as a consequence of Proposition 2.2.6 and of a property ofSturmian palindromes (cf. Proposition 2.4.13).
Proposition 2.2.9. Let w be a word having minimal period �w > 1 and vbe its shortest pre�x such that �v = �w. Let ux (x 2 A) be the suÆx of vof length �w � 1. One has w 2 St if and only if there exists a letter y 6= xsuch that uy is a factor of z2w.Proof. If uy 2 Fact z2w, then u is a right special factor of z2w of length �w � 2,so that �w � Rz2w +1. By (1.1) one has �w = �z2w � Rz2w +1; thus �w = Rz2w +1and by Theorem 2.2.8 it follows w 2 St.



2.2. Finite Sturmian words and periodicity 29Conversely, as shown in the proof of Theorem 2.2.3, any word of St hasan unbordered factor of maximal length, whose value is the minimal periodof the word. Therefore, one can write v as v = tx with x 2 A and �t < �wand t cannot have unbordered factors of length �w since the maximal lengthof these factors is �t. Since v 2 St, it has an unbordered factor r of maximallength jrj = �v = �w. This factor has to be necessarily a suÆx of v. Sincer is unbordered and jrj = �w > 1, from Propositions 2.1.5 and 2.1.6 one hasr = yux with u 2 PER and fx; yg = A. By Lemma 1.2.2, zw is conjugateof yux and, by Proposition 2.1.4, of xuy. Since xuy 2 Fact z2w, the resultfollows.Examples 2.2.10. Let w = aababaa 2 St. One has �w = 5, z2w = aababaabab,and Rz2w = 4, so that �w = Rz2w + 1. The shortest pre�x v of w such that�v = �w is v = aabab. Its suÆx of length �w � 1 is ub = abab, and ua = abaais a factor of z2w.Let r = baabb =2 St. One has �r = 4, z2r = baabbaab, and Rz2r = 2, so that�r > Rz2r + 1. In this case, the shortest pre�x v such that �v = �r is v = r.The suÆx ub of v of length 3 is abb, and aba =2 Fact z2r .
Enumeration of primitive Sturmian wordsAs an application of preceding results, we give a formula which counts for anyn > 1 the �nite primitive Sturmian words of length n. We need the following:
Lemma 2.2.11. The number of words of length n > 0 which are conjugateof standard Sturmian words is 2 if n = 1 and n�(n) for n > 1, where � isEuler's totient function.Proof. For n = 1 the result is trivial since the only two words conjugate ofstandard words are a and b. Let us suppose n > 1. As is well known (seefor instance [39, Chap. 2]), the number of standard words of length n > 1 isgiven by 2�(n). If s is a standard word, by (2.4) we can write s = vxy withfx; yg = fa; bg and v 2 PER. By Proposition 2.1.4, s0 = vyx 2 Stand is aconjugate of s. In the conjugacy class of s there is no other standard word.Indeed, if t = uxy is a conjugate of s, with u 2 PER, then jtja = jsja andjtjb = jsjb, so that t and s have the same \slope"; from this it follows that u = v



30 Chapter 2. Sturmian sequences(see for instance [3, 39]). Hence, in each conjugacy class of a standard word oflength n > 1 there are exactly two standard words. Thus, the number of theseconjugacy classes is �(n). Since any standard word is primitive, in any classthere are n words. From this the assertion follows.
Proposition 2.2.12. For any n > 1, the number of primitive �nite Stur-mian words of length n is given by:nXi=1(n+ 1� i)�(i)�Xdjnd6=n d�(d) :Proof. Let w be a non-primitive Sturmian word of length n > 1. The word wcan be written uniquely as w = uk, with u 2 �(A�) and k > 1. Moreover, fromLemma 1.2.3 one has zw = u; by Theorem 2.2.3, u is a conjugate of a standardword. Since jwj = kjuj, the integer juj is a proper divisor of n. Conversely, ifu is a conjugate of a standard word, then by Proposition 2.2.1 one has thatuk 2 St for any k.The number of primitive Sturmian words of length n is then obtained bysubtracting from card(St \ An) the number of words conjugate of a standardword whose length is a proper divisor of n. It is well known (see for instance [39,Chap. 2]) that the number of all �nite Sturmian words of length n is given bythe following formula:card(St \ An) = 1 + nXi=1(n+ 1� i)�(i) :From Lemma 2.2.11 it followscard(St \ �(A�) \ An) = 1 + nXi=1(n+ 1� i)�(i)� 0@ Xdjnd6=n d�(d) + 11Awhich proves the assertion.
2.3 New algorithms for the recognition of finite

Sturmian wordsThe problem of �nding eÆcient algorithms for testing whether a �nite word isSturmian is of fundamental importance in discrete geometry for several appli-cations such as pattern recognition, image processing, and computer graphics.



2.3. New algorithms for the recognition of �nite Sturmian words 31Several linear-time algorithms have been found by di�erent authors, using var-ious concepts and techniques (cf. [6] and references therein). In particular,in [8] a linear algorithm which uses methods of elementary number theory isgiven, and in [5, 36] linear algorithms based on methods of discrete geometryare provided. In these latter works an essential role is played by a suitablerepresentation of �nite Sturmian words by triplets of integers introduced in[37].In this section, we give two new and simple linear algorithms for the recog-nition of Sturmian words, which are based on the combinatorial results onwords obtained in the previous section.A �rst algorithm to recognize whether a word w of length n is Sturmiancan be carried out, by Proposition 2.1.7 and Theorem 2.2.3, in the followingthree steps.1. Determine the fractional root zw of w.2. Compute the Lyndon word ` and the anti-Lyndon word `0 in the conju-gacy class of zw.3. Compare ` and `0 and check whether they have the same proper medianfactor of maximal length.Step 1 can be executed in linear time; in fact, there exists an algorithm todetermine the minimal period �w (as well as the minimal periods of all pre�xesof w) which runs in linear time [40]. Therefore, also the fractional root zw canbe generated in linear time. As regards to step 2, to determine the Lyndonword in the conjugacy class of zw requires O(jzwj) time (see [40]). The sameoccurs for the anti-Lyndon word. Step 3 trivially requires O(jzwj) time. Inconclusion, the preceding algorithm allows one to recognize whether a word isSturmian or not in linear time.A second algorithm can be developed as follows, by using Proposition 2.2.9.1. Determine the fractional root zw of w.2. If jzwj = 1, then w 2 St; if alph(zw) contains more than two letters, thenw =2 St.3. Find the shortest pre�x v of w such that �v = �w.



32 Chapter 2. Sturmian sequences4. Take the suÆx ux of v of length �w � 1, with x 2 alph(zw).5. Verify if uy (with y 2 alph(zw); y 6= x) is a factor of z2w.As we have already discussed, steps 1 and 3 can be executed in linear time.Steps 2 and 4 trivially require O(n) time, and step 5 can be carried out by alinear-time pattern matching procedure (see for instance [40]). In conclusion,the proposed algorithm runs in linear time.
2.4 Sturmian palindromes: structural proper-

tiesIn the remaining part of this chapter we shall be interested in the set St\PAL,whose elements will be called Sturmian palindromes.One has that PER � St \ PAL. However, the previous inclusion is strictsince there exist non-central Sturmian palindromes, for instance abba.We have seen that St = Fact(PER). We shall prove (cf. Corollary 2.4.2) asimilar property for Sturmian palindromes.
Theorem 2.4.1. Every palindromic factor of a standard Sturmian word c�is a median factor of a palindromic pre�x of c�.The result is attributed to A. de Luca [21] by J.-P. Borel and C. Reuten-auer, who gave a geometrical proof in [7]. Theorem 2.4.1 can be also obtainedas a consequence of a more general result of X. Droubay, J. Justin, and G. Pir-illo [27]. We shall report later a direct proof for the sake of completeness.
Corollary 2.4.2. A word is a Sturmian palindrome if and only if it is amedian factor of some central word.Proof. Trivially, every median factor of a palindrome is itself a palindrome.Since St = Fact(PER), it follows that a median factor of an element of PERis a Sturmian palindrome.Conversely, let u be in St \ PAL. By de�nition, there exists an in�nite(standard) Sturmian word s such that u 2 Fact s. By Theorem 2.4.1, u isa median factor of a palindromic pre�x of s. Since palindromic pre�xes of



2.4. Sturmian palindromes: structural properties 33standard Sturmian words are exactly the elements of PER, the result follows.Our proof of Theorem 2.4.1, which follows a simple argument suggested byA. Carpi [14], is based on the following results (see [21]):
Proposition 2.4.3. If w 2 Factx, where x is an in�nite Sturmian word,then the reversal ~w is a factor of x too. Moreover, if x is standard, thenw is a right special factor of x if and only if ~w is a pre�x of x.
Corollary 2.4.4. A palindromic factor of an in�nite standard Sturmianword x is a right special factor of x if and only if it is a palindromic pre�xof x.Proof of Theorem 2.4.1. By contradiction, let c� = �ux, where u is a palin-drome that is not a median factor of any palindromic pre�x of c�, and � 2 A�has minimal length for such condition. Since u cannot be a pre�x of c�, wehave j�j � 1. Thus we can assume, without loss of generality, � = �0a. Now letz be the �rst letter of x, so that x = zx0. Suppose �rst z = a. The palindromeaua is not a median factor of a palindromic pre�x of c�, otherwise so wouldbe u. But c� = �0auax0 with j�0j < j�j, and this contradicts the minimality ofj�j. Therefore z = b, and then aub and bua = gaub are factors of c�, in view ofProposition 2.4.3. This means in particular that u is a right special factor ofc�. Corollary 2.4.4 then implies that u is a pre�x of c�, a contradiction.We recall some basic facts (see [26, 21]):
Proposition 2.4.5. Let w be a word. The following conditions are equiv-alent:1. w 2 PER,2. awb and bwa are Sturmian,3. awa, awb, bwa, and bwb are all Sturmian.
Proposition 2.4.6. If wa and wb are Sturmian words, then there exists aletter x 2 A such that xwa and xwb are both Sturmian.We now prove two easy consequences (see also [21]):
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Proposition 2.4.7. Let w 2 A� be a palindrome. If wa and wb are Stur-mian, then w is central.Proof. From the previous proposition, there exists a letter x 2 A such thatxwa and xwb are both Sturmian. Without loss of generality, we may supposex = a, so that awb 2 St. Therefore gawb = bwa is Sturmian too, thus byProposition 2.4.5, w is central.
Lemma 2.4.8. Let w be a Sturmian palindrome. If w is not central, thenthere exists a unique letter x 2 A such that xwx is Sturmian.Proof. If awa and bwb are both Sturmian, then w 2 PER by Proposition 2.4.7,a contradiction. Since by Corollary 2.4.2 the word w is a (proper) medianfactor of some central word, there exists a unique letter x 2 A such that xwxis Sturmian.We have seen with Corollary 2.4.2 that a Sturmian palindrome is a medianfactor of a central word. We will now give some further results concerning thestructure of Sturmian palindromes.
Proposition 2.4.9. A palindrome w 2 A� with minimal period �w > 1 canbe uniquely represented asw = w1xyw2 = w2yx ~w1with x; y 2 A, w2 the longest proper palindromic suÆx of w, and jw1xyj =�w. The word w is not central if and only if either w1 =2 PAL or w =(w1xx)kw1 where k � 1 is the order of w.Proof. Since �w > 1, it follows by Lemma 1.3.3 that w can be uniquely fac-torized as w = w1xyw2 where w2 is the longest proper palindromic suÆx of w,x; y 2 A, and jw1xyj = �w. Since w is a palindrome, we can writew = w1xyw2 = w2yx ~w1 :When �w > 1, by Proposition 2.1.1, w is central if and only if w1 2 PALand x 6= y. Therefore, in the case w1 2 PAL, w is not central if and only ifw = w1xxw2 = w2xxw1. The word w has the two periods�w = jw1xxj and q = jw2xxj (2.9)



2.4. Sturmian palindromes: structural properties 35and length �w + q � 2. Thus w =2 PER if and only if d = gcd(�w; q) > 1.Since jwj � �w + q � d, by Theorem 1.2.1 the word w has the period d = �w.This occurs if and only if q = k�w with k � 1. From (2.9) this condition isequivalent to the statement w2xx = (w1xx)k, i.e., w = (w1xx)kw1.Example 2.4.10. Let w = aaabaaaaaabaaa 2 St \ PAL, with �w = 7. Theword w can be factorized as (aaaba)aa(aaabaaa), where aaabaaa is the longestproper palindromic suÆx of w, jaaabaj = �w � 2 = 5. The pre�x aaaba is nota palindrome, thus w is not central.Let v = abaababababaaba 2 St \ PAL. We factorize v asv = (abaabab)ab(abaaba)where abaaba is the longest proper palindromic suÆx of v. Also in this caseabaabab is not a palindrome, so that w =2 PER.Let u = abbabbabba 2 St \ PAL. We factorize u as (a)bb(abbabba), whereabbabba is the longest palindromic suÆx of u. In this case, the pre�x a is apalindrome, and u = (abb)3a. Hence u is not central.
Lemma 2.4.11. If w = w1xyw2 = w2yx ~w1, where w2 is the longest properpalindromic suÆx of w and x; y 2 A, then w0 = ywy has the minimalperiod �w0 = �w.Proof. Since w is a factor of w0, one has �w0 � �w. The word yw2y is apalindromic proper suÆx of w0 = yw1xyw2y, so that by Lemma 1.3.3 theword w0 has the period jyw1xj. Hence, �w0 � jyw1xj = jw1xyj = �w. Thus�w = �w0.The next lemma is essentially a restatement of Lemma 2 in [19]. Note thatits �rst part is an obvious consequence of Lemma 2.4.11.
Lemma 2.4.12. Let w = w1xyw2 = w2yxw1 2 PER, with jw2j > jw1j andfx; yg = A. The word v = ywy has minimal period �v = �w, whereasv0 = xwx = xw1xyw2x has minimal period �v0 = jw2j+ 2 = jwj � �w + 2.Let w 2 (St\PAL) nPER. We denote by u the (unique) shortest medianextension of w in PER, and by v the longest central median factor of w. Notethat also v is unique. For instance, for the Sturmian palindromew = baaabaaabone has u = aawaa and v = aaabaaa.
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Theorem 2.4.13. Let w 2 (St\PAL) nPER. With the preceding notation,one has �u = �w. Moreover, either �w = �v or �w = jvj � �v + 2.Proof. We consider �rst the case that �v = 1, so that v = xn with x 2 A andn = jvj. In such a case w has also the median palindromic factor v1 = yxny,where fx; yg = A (recall that v is the longest central median factor of w).Moreover, n = jvj is at least 2, otherwise v1 would be equal to yxy 2 PER.One has �v1 = jyxnj = n+ 1 = jvj � �v + 2. Now we de�ne, for 2 � i � n:vi = xvi�1x = xi�1yxnyxi�1 = (xi�1yxn�i+1)(xi�1yxi�1) : (2.10)The word vn = xn�1yxnyxn�1 is central, whereas by Lemma 2.1.3 we have vi =2PER. From Lemma 2.4.8 it follows that the words vi are the only Sturmianextensions of v1 which are median factors of vn. Since for i < n one hasvi =2 PER, one derives that w = vk for some 1 � k < n, and u = vn. Asshown in (2.10), by Lemma 2.4.11 all the vi's have the same minimal period,for 1 � i � n. The result in this case follows: �w = �u = jvj � �v + 2.Now let us assume �v > 1. One has v = w1xyw2 = w2yxw1, with w1; w2 2PAL and x 6= y. We suppose jw1j < jw2j, so that �v = jw1j + 2. From thede�nition of v, it follows that there exists a letter z 2 A such that v1 = zvz isa median factor of w which is not central. By Lemma 2.4.12, we have �v1 = �vif z = y, or else �v1 = jvj � �v + 2 if z = x.Using Lemma 2.4.11, we shall now de�ne a sequence of palindromes withthe same minimal period as v1. Let us �rst suppose that z = y, so that v1 =yw1xyw2y. We set v2 = xv1x = (xyw1)(xyw2yx). Moreover, if w1 = p1p2 � � �pkwith pj 2 A for 1 � j � k, we set vi = pk�i+3vi�1pk�i+3 for i � 3, so thatv3 = pkv2pk = (pkxyp1 � � �pk�1)(pkxyw2yxpk) ;...vk+2 = p1vk+1p1 = p1 � � �pkxyw1xyw2yxpk � � �p1 = w1xyw1xyw2yx ~w1 :Since w1 = ~w1, the last equation can be written asvk+2 = (w1)xy(w1xyw2yxw1) = (w1xyw2yxw1)yx(w1)showing, by Proposition 2.4.9, that the word vk+2 is central, so that for anyi � �v = k + 2 one has vi 2 St \ PAL.



2.4. Sturmian palindromes: structural properties 37Let s � k + 2 be the minimal integer such that vs 2 PER. Since for i < sone has vi =2 PER, one derives from Lemma 2.4.8 that u = vs and w = vr forsome integer r < s. Hence �w = �vs = �u, and in this case �w = �v.The case z = x is similarly dealt with, but interchanging the roles of w1and w2. Thus one assumes w2 = q1 � � � qk, qj 2 A, 1 � j � k, and de�nes vias qk�i+3vi�1qk�i+3 for i � 3, starting from v2 = yv1y = (yxw2)(yxw1xy) andending with vk+2 = w2yxw2yxw1xyw2 2 PER :Therefore there exist integers r and s such that 1 � r < s � k+2 = jvj��v+2,w = vr, and u = vs, so that �w = �u and �w = �v1 = jvj � �v + 2.Example 2.4.14. Let w = baaabaaab 2 St \ PAL. Following the notations ofTheorem 2.4.13, one has v = aaabaaa, v1 = w, and u = v3 = aabaaabaaabaa.Thus �w = �u = �v = 4.Let w = babbbbab. In this case we have v = bbbb, w = v2, and u = v4 =bbbabbbbabbb, so that �w = �u = 5 = jvj+ 1 = jvj � �v + 2.For any word w 2 A�, we denote by Kw the length of the shortest unre-peated suÆx of w. Conventionally, one assumes K" = 0. There exist somerelations among the parameters Rw, Kw, �w, and jwj; the following lemmasynthesizes some results proved in [22, Corollary 5.3, Propositions 4.6 and 4.7]which will be useful in the sequel.
Lemma 2.4.15. For any w 2 A�, one hasjwj � Rw +Kw :Moreover, the following holds:� if �w = Rw + 1, then jwj = Rw +Kw,� if jwj = Rw+Kw, then for any n there exists at most one right specialfactor of w of length n.The following theorem gives a further criterion, di�erent from Proposi-tion 2.4.9, to discriminate whether a palindrome is central or not.
Theorem 2.4.16. Let w 2 A� be a palindrome with �w > 1. Then w iscentral if and only if its pre�x of length �w � 2 is a right special factor ofw.



38 Chapter 2. Sturmian sequencesProof. From Proposition 2.4.9, we can writew = w1xyw2 = w2yx ~w1 (2.11)where x; y 2 A, w2 is the longest proper palindromic suÆx of w, jw1j = �w�2,and w is central if and only if w1 2 PAL and x 6= y. Therefore we have toprove that w1 is a right special factor of w if and only if w1 = ~w1 and x 6= y.Indeed, assume that these two latter conditions are satis�ed. Since ~w1 = w1and w2 is the longest proper palindromic suÆx (and pre�x) of w, one has thatw1 is a border of w2. This implies, from (2.11), that w1 is a right special factorof w.Conversely, suppose w1 is a right special factor of w. Let us �rst provethat w1 2 PAL. By hypothesis, we have �w � 2 = jw1j � Rw � 1, that isRw � �w � 1. By Lemma 2.4.15 one has �w � Rw + 1, so that �w = Rw + 1.This implies jwj = Rw + Kw, again by Lemma 2.4.15. The suÆx ~w1 of w isrepeated, because w1 is a right special factor of w, which is a palindrome. Thisleads to �w � 2 = j ~w1j � Kw � 1and thus to jwj = Rw + Kw � 2�w � 2. If jwj = 2�w � 2, then jw1j = jw2jso that one derives w1 = w2 2 PAL. If jwj � 2�w � 1, then w has the pre�xw1xyw1x, so that yw1x 2 Factw. Since w1 is a right special factor of w, thereexists a letter z 6= x such that w1z 2 Factw. Moreover, since w1z is not apre�x, there exists a letter y0 such that y0w1z 2 Factw. One has y 6= y0, forotherwise yw1 would be a right special factor of w of length �w � 1 = Rw,which is a contradiction. As w is a palindrome, the words x ~w1y and z ~w1y0 arefactors of w too, so that ~w1 is a right special factor of w. By Lemma 2.4.15,one obtains w1 = ~w1. Therefore we get w1 2 PAL again.We shall now prove that x 6= y. By contradiction, suppose w has thefactorization w = (w1xx)kw1 , with k � 1as granted by Proposition 2.4.9. Since w1 is a right special factor of w, onehas w1z 2 Factw for a suitable letter z 6= x. Thus we have either w1z = xw1or w1z = v2xxv1z, where v1z is a pre�x of w1 and v2 is a suÆx of w1. Sincejw1j = jw1zj � 1, we can write w1 = v1z�v2, with � 2 A. The �rst case is



2.4. Sturmian palindromes: structural properties 39impossible since w1 is a palindrome and x 6= z. In the latter case, one obtains:v1z�v2 = w1 = ~w1 = ~v1xx~v2which is absurd again, because x 6= z.Example 2.4.17. The word w = baab is a Sturmian palindrome of minimalperiod �w = 3. Its pre�x of length 1 is not a right special factor, hencew =2 PER. The word v = abababbababa is a Sturmian palindrome havingminimal period 7, and its pre�x ababa of length 5 is not right special. Thereforev =2 PER. On the contrary, the word u = aabaabaa has minimal period 3, andits pre�x of length 1 is a right special factor, so that u is central.In Proposition 2.2.6 we have proved that any �nite word w such that�w = Rw + 1 is Sturmian. The converse does not hold in general, as shownin Examples 2.2.7 and 2.4.19. However, the result is true for Sturmian palin-dromes, as the next theorem shows.
Theorem 2.4.18. A palindrome w 2 A� is Sturmian if and only if �w =Rw + 1.Proof. By Proposition 2.2.6, the condition is suÆcient. Necessity is triviallytrue if �w = 1. By (1.1), one has �w � Rw + 1. Hence, if �w > 1 the condition�w = Rw + 1 is equivalent to the existence of a right special factor s of w oflength jsj = �w � 2.We prove that every Sturmian palindrome w such that �w � 2 has such afactor. If w is central, the result follows directly from Theorem 2.4.16. Thuswe suppose w =2 PER, and as in Theorem 2.4.13 we denote by v the centralmedian factor of w of maximal length.If �v = 1, then there exists a letter x 2 A and an integer n � 1 such thatv = xn. From the maximality condition, one derives that n > 1. In this case,by Theorem 2.4.13 one derives �w = jvj+ 1 = n+1 and yxny 2 Factw, wherefx; yg = A; therefore xn�1 is the desired right special factor of w, of lengthn� 1 = �w � 2.If �v > 1, by using Proposition 2.1.1 we can write v as v1xyv2 = v2yxv1,with �v = jv1xyj. By Theorem 2.4.13, one has either �w = �v or �w = jvj ��v+2. In the �rst case, the result is a consequence of Theorem 2.4.16. Indeed,



40 Chapter 2. Sturmian sequencesthe pre�x v1 of the central word v, whose length is �v � 2 = �w � 2, is a rightspecial factor of v, and then of w. In the latter case, one derives that the wordxvx = xv1xyv2x = xv2yxv1x is a factor of w, so that v2 is a right special factorof w, of length jvj � �v = �w � 2.Example 2.4.19. The word u = ababaa is not a palindrome, but �u = 5 =Ru + 1, thus it is Sturmian. However, the word v = aabab 2 St has �v = 5 >3 = Rv + 1. Let w = abba 2 St \ PAL. One has �w = 3 = Rw + 1. Thepalindrome s = aabbaa is not Sturmian. One has �s = 4 > 3 = Rs + 1.We remark that, by symmetrical arguments, one can prove results analogousto Proposition 2.2.6 and Theorem 2.4.18, namely, if �w = Lw+1, then w 2 St,and a palindrome w 2 A� is Sturmian if and only if �w = Lw + 1.
2.5 Enumeration of Sturmian palindromesIn this section we shall give an explicit formula for the enumeration functionof St \ PAL, that is, the function g : N ! N de�ned for all n � 0 asg(n) := card(St \ PAL \ An) :For any n � 0, g(n) gives the number of Sturmian palindromes of length n.
Theorem 2.5.1. For any n � 0, the number g(n) of Sturmian palindromesof length n is given by 1 + dn=2e�1Xi=0 �(n� 2i) ; (2.12)where � is Euler's totient function. Equivalently, for any n � 0g(2n) = 1 + nXi=1 �(2i) and g(2n+ 1) = 1 + nXi=0 �(2i+ 1) :Proof. Given w 2 St \ PAL, at least one of its extensions awa and bwb isSturmian. Indeed, according to Lemma 2.4.8, if w =2 PER, then exactly oneof these extensions is in St. If w 2 PER, then from Proposition 2.4.5, bothawa and bwb are Sturmian palindromes. Since the number of central words oflength n is �(n+ 2) (see [26]), we get:g(n+ 2) = g(n) + �(n+ 2)



2.5. Enumeration of Sturmian palindromes 41and this implies the desired formula, because g(0) = 1 and g(1) = 2.We de�ne a function f : N ! N by setting for n � 0:f(2n) = 1 + n(n+ 1)2 and f(2n+ 1) = 2 + n(n+ 1) :It is easy to verify that g(n) � f(n) for all n � 0. Moreover, for any n � 0 weset h(n) = card(PER \ An) = �(n+ 2) :In Table 1 we list the values of the functions g, f , and h for 0 � n � 17. Asan example, in Table 2 we list all 14 Sturmian palindromes of length 7. Thesix central words in it are underlined.Table 2.1: The functions g, f , and h.n g(n) f(n) h(n) n g(n) f(n) h(n)0 1 1 1 9 20 22 101 2 2 2 10 14 16 42 2 2 2 11 30 32 123 4 4 4 12 18 22 64 4 4 2 13 42 44 85 8 8 6 14 24 29 86 6 7 4 15 50 58 167 14 14 6 16 32 37 68 10 11 4 17 66 74 18The following proposition relates the numbers of Sturmian palindromes ofodd and even length.
Proposition 2.5.2. For any n > 0 one hasg(2n� 1) = g(4n)� 2g(2n) + 2 :Proof. From Theorem 2.5.1 one hasg(4n) = 1 + 2nXi=1 �(2i) :



42 Chapter 2. Sturmian sequencesTable 2.2: Sturmian palindromes of length 7 (central words are underlined).aaaaaaa bbbbbbbaaabaaa bbbabbbaababaa bbababbabaaaba babbbababababa bababababbabba baabaababbbbba baaaaabAs is well known (see for instance [30]), for any n > 0 one has �(2n) = �(n)for odd n and �(2n) = 2�(n) for even n. Thus we can writeg(4n) = 1 + 2 Xi eveni�2n �(i) + Xi oddi<2n �(i)= 1 + 2 nXk=1�(2k) + n�1Xk=0 �(2k + 1)= g(2n� 1) + 2(g(2n)� 1) ;which concludes the proof.Now we consider the problem of �nding lower bounds for the number ofSturmian palindromes of any length. We premise the following simple lemma:
Lemma 2.5.3. The totient function � has the following lower bounds:�(n) � n� for odd n and �(n) � 2��n� for even n ;where � = log3 2 = 0:6309 : : : .Proof. The case n = 1 is trivial. Let us factorize an integer n > 1 uniquelyas n = pk11 pk22 � � �pkrr , where for 1 � i � r the pi are primes, ki � 1, andp1 < p2 < � � � < pr. As is well known (cf. [30]), Euler's function � is related tothe primes pi by the following relation:�(n) = n rYi=1 pi � 1pi : (2.13)



2.5. Enumeration of Sturmian palindromes 43Let us �rst suppose that n is odd, so that p1 � 3. By (2.13) one derives�(n) � n�23�r and n � 3r ;so that r � log3 n and �(n) � n(2=3)log3 n = nlog3 2 = n�.Now suppose n is even. We can write n = 2km with m odd and k � 1.From the multiplicative property of �, one has �(n) = �(2k)�(m) = 2k�1�(m).From the preceding result, one has�(m) = �� n2k� � � n2k�� ;so that �(n) � 2k�1 � n2k�� = 2k(1��)�1n� � 2��n� :
Proposition 2.5.4. Let � = 12(1+�) . For n � 0 one has:g(2n+ 1) � (2� �) + �(2n+ 1)1+� (2.14)and g(2n) � 1 + 1�n1+� : (2.15)Proof. By Lemma 2.5.3, we can writeg(2n+ 1) = 1 + nXi=0 �(2i+ 1) � 2 + nXi=1(2i+ 1)� :Approximating the sum with an integral, one hasnXi=1(2i+ 1)� � Z n0 (2x+ 1)�dx = �(2n+ 1)1+� � � ;so that (2.14) follows.By Lemma 2.5.3, we can writeg(2n) = 1 + nXi=1 �(2i) � 1 + nXi=1 i� � 1 + Z n0 x�dx = 1 + 1�n1+� ;so that (2.15) follows.As a consequence, one derives thatg(n) = 
(n1+�) :From this result we can prove that the density h(n)=g(n) of central words oflength n with respect to all Sturmian palindromes of length n, vanishes whenn diverges.
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Proposition 2.5.5. The following holds:limn!1 h(n)g(n) = 0 :Proof. We recall that h(n) = �(n + 2) � n + 1 for all n � 0. Since g(n) =
(n1+�), i.e., g(n) � dn1+� for all n � 0 and some positive constant d, itfollows that for any n > 0 one hash(n)g(n) � n+ 1dn1+� :As the right hand side of last equation vanishes when n diverges, the assertionfollows.Now let us recall (cf. [39]) that for any n � 0 the number st(n) = card(St\An) of all �nite Sturmian words of length n is given by the following formula:st(n) = 1 + nXi=1(n� i+ 1)�(i) :We shall prove that the density g(n)=st(n) of Sturmian palindromes of lengthn with respect to all Sturmian words of length n, tends to 0 when n tends toin�nity. The proof is based on the following lemma.
Lemma 2.5.6. st(n) = 
(n2+�).Proof. By Lemma 2.5.3 one has �(n) � 2��n� for any n > 0, so thatst(n) � 1 + 2�� nXi=1(n� i+ 1)i� = 1 + 2��(n+ 1) nXi=1 i� � 2�� nXi=1 i1+� :Since nXi=1 i� � Z n0 x�dx and nXi=1 i1+� � Z n+10 x1+�dx ;one obtainsst(n) � 2��n+ 1�+ 1n1+� � 2�� (n+ 1)2+��+ 2 = 2��(n+ 1)n1+�r(n)where r(n) = 1�+ 1 � 1�+ 2 �n+ 1n �2+� :The function r is strictly increasing and it satis�es, for all n � 3, the inequality0 < r(n) < 1(�+ 1)(�+ 2) ;so that st(n) � 2��(n + 1)n1+� r(3). Therefore there exists a constant d > 0such that for all n � 0, st(n) � dn2+�, i.e., st(n) = 
(n2+�).
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Proposition 2.5.7. The following holds:limn!1 g(n)st(n) = 0 :Proof. From the de�nition one has that for any n, g(n) � 1 + �(n), where�(n) = nXi=1 �(i) :As is well known (cf. [30]), �(n) = O(n2), so that by the previous lemma onehas g(n)st(n) � cn2dn2+�for all n > 0 and some constants c; d > 0. Since the right hand side in theprevious equation vanishes when n diverges, the result follows.Let us observe that, by using the well known result (see for instance [30,Theorem 327]), limn!1 �(n)n1�Æ =1 for any Æ > 0 ;one easily derives a sharper asymptotic lower bound for the function g, i.e.,g(n) = 
(n2�Æ)when n diverges.
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Chapter 3

Palindrome closure and

episturmian wordsAs shown in the previous chapter, palindromes play a decisive role in the studyof Sturmian words. In this chapter we introduce palindrome closure operators,which are involved in a famous characterization of standard Sturmian words(see Proposition 3.3.1), as well as in a natural generalization to larger alphabets,namely episturmian words.We begin by de�ning the operators and prove some preliminary results, allin a slightly generalized setting that will be useful from the point of view ofChapter 4. Then we move to the main goal of this chapter, which is to provethat the classes of �nite Sturmian and �nite episturmian words are both closedunder palindrome closure operators.
3.1 Pseudopalindrome closure operatorsLet # be an involutory antimorphism of A�. We de�ne in A� two closureoperators associating to each word w respectively the shortest #-palindromehaving w as a pre�x, and the shortest #-palindrome having w as a suÆx. Weprove that the minimal periods of these two #-palindrome closures of w areequal, and moreover, if w is nonempty, their fractional roots are conjugate.The main result of the section is that the minimal period of the #-palindromeclosures of a nonempty word w is equal to the minimal period of w if and onlyif the fractional root of w is #-symmetric.
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Lemma 3.1.1. For any word w 2 A�, there exists a unique shortest #-palindrome having w as a pre�x (resp. suÆx).Proof. Let us observe that certainly there exists a #-palindrome having was a pre�x, namely w �w. Now suppose that w�1 and w�2 (�1; �2 2 A�) aretwo #-palindromes having w as a pre�x, both of length k � 2jwj. One has0 � j�1j = j�2j = k� jwj � jwj. Hence, if u is the pre�x of w of length k� jwj,one derives that �1 = �2 = �u.In a similar way, one proves that there exists a unique shortest #-palindromehaving w as a suÆx.For any word w 2 A�, we denote by w�# (resp. w	#) the shortest #-palindrome in A� having w as a pre�x (resp. suÆx). We call w�# (resp. w	#)the right (resp. left) #-palindrome closure of w. To simplify the notation, weshall write w� and w	 for w�# and w	# respectively, when no confusion arises.When # is the reversal operator R, w� and w	 are respectively the shortestpalindrome having w as a pre�x and the shortest palindrome having w as asuÆx. As usual, they will be denoted by w(+) and w(�) (cf. [21]).For any word w, we denote by P#(w) (resp.Q#(w)) the longest #-palindrom-ic pre�x (resp. #-palindromic suÆx) of w. When there is no ambiguity, we shallsimply write P and Q instead of P#(w) and Q#(w), respectively.
Proposition 3.1.2. With the above notation, if w is a word and w = sQ =Pt, then w� = sQ�s and w	 = �tP t.Proof. Let w = sQ and w� = sQ� with � 2 A�. Since w� is a #-palindrome,one has w� = sQ� = ��Q�s :If jsj � j�j, then s = ��Æ, Æ 2 A�. Since w� = ��ÆQ�, it follows that ÆQ is a#-palindrome. One can write w = sQ = ��ÆQ, so that Æ = " by the de�nitionof Q. Hence � = �s. In a similar way, one proves that w	 = �tP t.As a consequence of the de�nition, one derives that( �w)� = w	 : (3.1)



3.1. Pseudopalindrome closure operators 49Example 3.1.3. Let w = abaabb. One has PR(w) = aba, QR(w) = bb, w(+) =abaabbaaba, and w(�) = bbaabaabb. If # is the exchange antimorphism e = E ÆR, one has Pe(w) = ab, Qe(w) = aabb, w� = abaabbab, and w	 = aabbabaabb.
Proposition 3.1.4. Let w 2 A+ and w = sQ = Pt. One has that zw� � zw	so that �w� = �w	. If w =2 PAL#, thenzw� = s�t and zw	 = �ts :Proof. If w is a #-palindrome, then the result is trivial. Let us then supposew = sQ = Pt =2 PAL#, so that s; t 2 A+. By Proposition 3.1.2, one has:w� = sQ�s = Pt�s = s�tP ; (3.2)w	 = �tP t = �tsQ = Q�st : (3.3)Since P and Q are proper #-palindromic pre�xes and suÆxes of w� and w	respectively, by Lemma 1.3.3 one has that p = js�tj = jt�sj > 0 is a period of w�and of w	.Let us now prove that P is the longest proper #-palindromic pre�x (suÆx)of w�. By contradiction, suppose that T is a #-palindromic pre�x of w� oflength greater than jP j. If jT j � jPtj, then T would be a #-palindromic pre�xof w longer than P , which is absurd. If jPtj < jT j < jw�j, then one wouldcontradict the fact that w� is the shortest #-palindrome having w as a pre�x.Therefore, by Lemma 1.3.3, p = �w�. Since by (3.2), s�t is a pre�x of w� andjs�tj = �w�, one has zw� = s�t. In a similar way, one shows that Q is the longestproper #-palindromic pre�x (suÆx) of w	, so that p = �w	 and zw	 = �ts.From this it follows zw� � zw	.Example 3.1.5. Let w = zw = abaabb (see Example 3.1.3). If # = R, thens = abaa, t = abb, zw(+) = abaabba = s~t, and zw(�) = bbaabaa = ~ts, so thatzw(+) � zw(�).If # = e = E ÆR, one has s = ab = �s, t = aabb = �t, zw� = abaabb = s�t, andzw	 = aabbab = �ts, so that zw� � zw	.
Theorem 3.1.6. Let w 2 A+. One has �w = �w� if and only if zw is#-symmetric.



50 Chapter 3. Palindrome closure and episturmian wordsProof. We �rst prove the \if" part. Suppose zw = �� with �; � 2 PAL#, sothat w = (��)nz0where n � 1 and z0 2 Pref(��). Moreover, let w = Pt = sQ as before, so thatby Proposition 3.1.4 one has zw� = s�t. Since �w� � �w, it suÆces to show thatjs�tj � �w. We distinguish two cases, depending on the length of z0.The �rst possibility is z0 2 Pref �. Let u 2 A� be such that � = z0u = �u�z0.Then the word �z0�(��)n�1z0 is a #-palindromic suÆx of w, and therefore asuÆx of Q. This implies jsj � juj, because w = sQ = �u �z0�(��)n�1z0. In asimilar way, since (��)n�1� is a #-palindromic pre�x of w (and then of P ),one has jtj � j�z0j because w = Pt = (��)n�1��z0. In conclusion, one getsjs�tj � juj+ j�z0j = j��j = �w, as desired.The second case occurs when z0 is not a pre�x of �, so that z0 = �z00 withz00 2 Pref �. Let v be the word such that � = z00v = �v�z00. Then �z00(��)n�1�z00is a #-palindromic suÆx of w, so that one derives jsj � j�vj following the abovearguments. Moreover, since (��)n� 2 PAL# \ Pref w, one obtains jtj � jz00j,which implies js�tj � j�vj+ jz00j = j��j = �w.Let us now prove the \only if" part. If �w = �w�, then zw = zw�. Moreover,since w� is a #-palindrome beginning with zw, it has the suÆx �zw. As jzwj =j�zwj = �w, one has by Lemma 2.4.13 that zw � �zw. By Lemma 1.3.2 it followszw 2 PAL2#.
Corollary 3.1.7. Let L# = fw 2 A� j zw 2 PAL2#g. If w 2 L#, then w�; w	 2L# and �w� = �w	 = �w.Proof. Let w 2 L#. By Corollary 1.3.5, zw�; zw	 2 PAL2# so that w�; w	 2 L#.By Theorem 3.1.6 and Proposition 3.1.4, �w = �w� = �w	.
Corollary 3.1.8. Let w 2 A+. If zw is #-symmetric, then z2wA�\w�A� 6= ;.Proof. Since zw 2 PAL2#, by the previous theorem one has �w = �w� so thatzw = zw�. One can write w� = zkw� z0 = zkw z0 ;with k � 1 and z0 2 Pref zw. If k > 1, one has that z2w is a pre�x of w�. Ifk = 1, then w� = zwz0, so that w� 2 Pref z2w.



3.1. Pseudopalindrome closure operators 51Let us remark that the converse of the statement of the preceding corollarydoes not hold in general, as shown in the last example reported below.Examples 3.1.9. Let w = abaabb (see Examples 3.1.3 and 3.1.5). One hasthat w = zw =2 PAL2, so that �w(+) = �w(�) = 7 6= 6 = �w. For # = e, sincezw 2 PAL2e, one has �w� = �w	 = �w = 6.Let w = aabaa. One has that zw = aab =2 PAL2e. One has w� = aabaabbabband �w� = 10 6= 3 = �w.Let w = abccbab. One has zw = abccb 2 PAL2 and �w = 5. Thus w(+) =abccbabccba and w(�) = babccbab. Moreover, zw = zw(+) � zw(�) = babcc. Inthis case z2w is a pre�x of w(+).Let w = babaab. One has zw = babaa 2 PAL2, w(+) = babaabab, w(�) =baababaab, so that �w(+) = �w(�) = �w = 5. In this case w(+) is a pre�x of z2w.Let w = (aba2b2)2a, whose fractional root is zw = aba2b2 =2 PAL2. One hasthat z2w is a pre�x of w, and then of w(+).We conclude this section with three lemmas that will be useful in the sequel.
Lemma 3.1.10. If a word u 2 A� and a letter x 2 A are #-palindromes,then the fractional root of ux is #-symmetric.Proof. If ux is unbordered, then zux = ux 2 PAL2#, so that zux is #-symmetric.If jzuxj < juxj, then zux is a pre�x of u and �ux = jzuxj � juj is a period ofu. By Corollary 1.3.5, it follows that zux is #-symmetric.We remark that the preceding result does not hold in general when theletter x is not a #-palindrome. For instance, let A = fa; bg and # = e. Theword w = aabb is an e-palindrome, but the word wb = aabbb = zwb is note-symmetric.
Lemma 3.1.11. Let u 2 A� and w = (ux)�, where x 2 A. If p is any pre�xof w of length jpj > juj, then p� = w.Proof. The word w is a #-palindrome having p as a pre�x, so that jp�j � jwj.Moreover, p has the pre�x ux, so that���(ux)���� � ���p���� � jwj :Therefore, jp�j = jwj. Since w is a #-palindrome of minimal length having pas a pre�x, it follows by Lemma 3.1.1 that w = p�.
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Lemma 3.1.12. For any u 2 PAL# n f"g and a 2 A, (ua)� is a �rst returnto u, i.e., if (ua)� = �u� with �; � 2 A�, then either � = " or � = ".Proof. By contradiction, let �; � 2 A+ be such that(ua)� = �u� : (3.4)Clearly j�j+ juj+ j�j = j(ua)�j � 2juj+ 2, which implies j�j � juj+ 2� j�j �juj + 1. Let us show that actually one has j�j � juj. Indeed, if � = ua thenfrom (3.4) one derives j(ua)�j = 2juj + 2; this implies that a =2 PAL# and(ua)� = ua�au = uau�, so that u� = �au. It follows that for some k > 0,u = �ak =2 PAL#, a contradiction.Let then v; w 2 A� be such that u = �v and (ua)� = uw = �wu, whence�u� = uw = �vw. Thus u� = vw, so that v is also a pre�x of u and thereforea border of u. Since u is a #-palindrome, v is a #-palindrome too, so thatu = �v = v��. Therefore (ua)� = �u� = �v��� :Thus �v�� is a #-palindrome beginning with ua and strictly shorter than (ua)�,which is a contradiction.
3.2 Iterated pseudopalindrome closuresLet # be a �xed involutory antimorphism of A� and � the right #-palindromeclosure operator. For any letter a 2 A we denote by D#a , or simply Da, themap Da : A� ! PAL# de�ned as: for all v 2 A�Da(v) = (va)� :We call the operatorsDa, a 2 A, the elementary #-palindrome (right) actionsof the letters of A on A�. One can extend inductively the de�nition of theoperators Da from the letters of the alphabet A to the words of A� by settingD"= id and for any a 2 A and w 2 A�,Dwa = Da ÆDw :



3.2. Iterated pseudopalindrome closures 53Hence, if w = a1a2 � � �an, ai 2 A, i = 1; : : : ; n, one has:Dw = Dan ÆDan�1 Æ � � � ÆDa1 :Thus the action of the operatorDw on the words of A� is obtained by successiveelementary #-palindrome actions with an iterated process which is directed bythe word w. Since for any w; u 2 A� and a 2 A the word Dw(u) is a pre�xof Dwa(u), we can de�ne for an in�nite word x an operator Dx : A� ! A! bysetting, for any u 2 A�: Dx(u) = limn!1Dwn(u) ; (3.5)where fwng = Pref x \ An for n � 0.The words u and x are called, respectively, the seed and the directive wordof Dx(w). Until Section 4.3, we shall consider mainly the case when the seedu is equal to the empty word. Therefore, we set for any w 2 A1 #(w) = Dw(") : (3.6)From this de�nition one has  #(") = " and, for any w 2 A� and a 2 A, #(wa) = ( #(w)a)� :For any w; v 2 A�, one has: #(wv) 2  #(w)A� \ A� #(w) :If x = x1x2 � � �xn � � � 2 A!, from (3.5) and (3.6) it follows #(x) = limn!1 #(x1 � � �xn) :The in�nite word  #(x) will be called the #-standard (in�nite) word directedby x. The directive word of a #-standard word t will be also denoted by �(t).A #-standard word will be called, without specifying the antimorphism #, apseudostandard word.Examples 3.2.1. Let A = fa; bg and x = (ab)!. If # = R, one obtains R(a) = a ;  R(ab) = aba ;  R(aba) = abaaba ; : : :In this case,  R ((ab)!) = abaababaabaab � � � is the Fibonacci word f .



54 Chapter 3. Palindrome closure and episturmian wordsIf # = e, one has e(a) = ab ;  e(ab) = abbaab ;  e(aba) = abbaababbaab ; : : :In this case,  e ((ab)!) = �(f), where � is the Thue-Morse morphism (cf. [38])de�ned as �(a) = ab, �(b) = ba.
Proposition 3.2.2. Let s =  #(x) be a #-standard word. The followinghold:1. w is a pre�x of s if and only if w� is a pre�x of s,2. the set of all #-palindromic pre�xes of s is given by  #(Pref x),3. s is closed under #, i.e., if w 2 Fact s, then �w 2 Fact s.Proof. If w� is a pre�x of s, then triviallyw is a pre�x of s. Conversely, supposethat w is a pre�x of s and that �(s) = x = x1x2 � � �xn � � � with xi 2 A, i > 0.Let us set u1 = " and for n > 1, un+1 =  #(x1 � � �xn), so that un+1 = (unxn)�.If w = ", then trivially w� = " 2 Pref s. If w 6= ", we consider the least n suchthat junj < jwj � jun+1j. By Lemma 3.1.11 one has w� = un+1 2 Pref s. Thisproves point 1.By de�nition of #-standard words, all the words in the set  #(Pref x) are#-palindromic pre�xes of s. Conversely, if w is a #-palindromic pre�x of s, thenby following the same argument used for point 1, one has that there exists aninteger n such that w = w� = un 2  #(Pref x). This proves point 2.Let w be a factor of s. Since there are in�nitely many #-palindromic pre�xesof s, there exists a #-palindromic pre�x u having w as a factor. Therefore, also�w is a factor of u and of s. This concludes the proof.
Proposition 3.2.3. Let t be a #-standard word. If w is a factor of t, theneither w� or w	 are factors of t.Proof. We suppose that w =2 PAL#, otherwise the result is trivial. By Propo-sition 3.2.2, Fact t is closed under #, so that also �w is a factor of t. Let p bea pre�x of t such that p = �u, where u is either w or �w and � is of minimallength. If � = ", then u is a pre�x of t, so that by the preceding proposition,u� is a factor of t. Suppose � 6= " and let Q be the longest #-palindromic



3.3. Palindrome closure in Sturmian words 55suÆx of p. One can write p = �u = sQ with s 2 A�. We now show thatQ is the longest #-palindromic suÆx of u. Indeed, otherwise one would haveQ = �u = �u�� with � 2 A+, so thatp = �u = s�u = s�u�� :Since � = s� and j�j > 0, one has jsj < j�j and this contradicts the minimalityof j�j. Hence we can write p = �u = �s0Q, where u = s0Q and Q is thelongest #-palindromic suÆx of u. Thus p� = �s0Q�s0�� = �u���. Since p� is a #-palindromic pre�x of t by the preceding proposition, it follows that u� 2 Fact t.We have proved that in all cases, u� is a factor of t. Therefore, if u = w,one has w� 2 Fact t; if u = �w, by (3.1) one has w	 2 Fact t.A stronger version of the preceding Proposition will be given with Theo-rem 4.1.15.R-standard words were introduced in [27] as standard episturmian words.In the next two sections, we consider Sturmian and episturmian words, andgive some combinatorial results which are mainly concerned with palindromeclosures of their factors. In the next chapter we will consider again generalpseudostandard words, as well as di�erent generalizations of standard epistur-mian words.
3.3 Palindrome closure in Sturmian wordsThe link between palindrome closure and Sturmian words is expressed by thefollowing well known proposition (see for instance [21]):
Proposition 3.3.1. An in�nite word w over A = fa; bg is standard Stur-mian if and only if it is R-standard and its directive word contains in-�nitely many occurrences of both a and b. Moreover, the directive word ofthe Sturmian word c�, with � = [0; d0; d1; : : :], is �(w) = ad0bd1ad2bd3 � � � .We now consider factors of Sturmian words in relation with palindromeclosure. We need some preliminary results; the �rst one is a simple lemma onstandard words.
Lemma 3.3.2. If s 2 Stand, then s � ~s.



56 Chapter 3. Palindrome closure and episturmian wordsProof. The result is trivial if s 2 A. If s is not a letter, then by (2.4), s 2 PAL2and the result follows from Lemma 1.3.2.
Corollary 3.3.3. If a word w is a conjugate of a standard word, thenw � ~w.Proof. Let s be a standard word such that w � s. One has ~w � ~s. Since bythe preceding lemma s � ~s, the result follows.We are now in the position of stating the �rst main result of this section.
Theorem 3.3.4. If w 2 St, then w(+); w(�) 2 St and �w = �w(+) = �w(�).Proof. Let w be a �nite Sturmian word. The result is trivial when w ="; let us then suppose w 2 A+. By Theorem 2.2.3, zw � s for some s 2Stand. By Corollary 3.3.3, zw � ~zw and by Lemma 1.3.2, zw 2 PAL2. ByTheorem 3.1.6 and Proposition 3.1.4, one has �w(+) = �w(�) = �w. This impliesthat zw(+) = zw � s, so that by Theorem 2.2.3 it follows w(+) 2 St. Since byProposition 3.1.4, zw(�) � zw(+) = zw � s, by applying again Theorem 2.2.3,one obtains w(�) 2 St.From the previous results and from Corollary 3.1.8 one derives the following:
Corollary 3.3.5. Let w be a nonempty Sturmian word. One hasz2wA� \ w(+)A� 6= ; :The following proposition shows that the left and right palindromic closuresof a �nite Sturmian word are factors of a suitable in�nite standard Sturmianword.
Proposition 3.3.6. Let w 2 St. There exists an in�nite standard Sturmianword s such that w(+); w(�) 2 Fact s.Proof. If w 2 St, then by (1.2) one has that for any k > 1, the fractional rootof zkw is zw. By Theorem 2.2.3, zw is a conjugate of a standard word; therefore,by using again Theorem 2.2.3, one has zkw 2 St. By Proposition 3.1.4 andTheorem 3.3.4, one has zw = zw(+) � zw(�). This implies zw(�) 2 Fact z2w.Therefore, there exists an integer m > 1 such that w(+); w(�) 2 Fact zmw . Sincezmw 2 St, there exists an in�nite standard Sturmian word s such that zmw 2Fact s. Hence, w(+); w(�) 2 Fact s.



3.3. Palindrome closure in Sturmian words 57Let us observe that in general, if s is an in�nite Sturmian word, thenw(+) 2 Fact s does not imply w(�) 2 Fact s. For instance, in the case ofthe Fibonacci word f , one has that (abab)(+) = ababa is a factor of f , whereas(abab)(�) = babab cannot be a factor of f . Indeed otherwise, since aabaa 2Fact f , the \balance" condition for Sturmian words (cf. [39, Chap. 2]) wouldnot be satis�ed.
Proposition 3.3.7. Let w be a nonempty word. The following conditionsare equivalent:1. w is a pre�x of a standard Sturmian word,2. w(+) is central,3. the fractional root zw is a standard word.Proof. 1. , 2. This is a consequence of Proposition 3.2.2. Indeed, w is apre�x of a standard Sturmian word if and only if w(+) is a pre�x of a standardSturmian word, and this occurs if and only if w(+) is a central word.2. ) 3. Trivial if �w = �w(+) = 1. Then assume by Proposition 2.1.1 thatw(+) = w1xyw2, with fx; yg = fa; bg and jw1j < jw2j, so that by (2.4) one haszw(+) = w1xy 2 Stand. Since zw = zw(+), the result follows.3. ) 2. Since zw 2 PAL2, by Theorem 3.1.6 one has zw(+) = zw. Theword zw is standard, so that, as a consequence of the construction via directivesequences, one derives that for any k � 1, zkw 2 Pref s, where s is an in�nitestandard Sturmian word. Noww(+) = zkw(+)z0 = zkwz0 2 Pref(zk+1w )for some z0 2 Pref zw. Hence w(+) is a palindromic pre�x of a standard word,so that w(+) 2 PER.From Theorem 3.3.4 a new characterization of �nite Sturmian words canbe given. We need the following lemma that summarizes some results provedin [23]:
Lemma 3.3.8. Let w 2 A�. If �w = Rw+1, then w is Sturmian. Conversely,if w is a Sturmian palindrome, then �w = Rw + 1.
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Theorem 3.3.9. A word w is Sturmian if and only if�w(+) = Rw(+) + 1 :Proof. By Theorem 3.3.4, w is Sturmian if and only if w(+) is Sturmian. Bythe previous lemma, the result follows.In a perfectly symmetric way, one derives that a word w is Sturmian if andonly if �w(�) = Rw(�) + 1.We observe that if w 2 St, then from the preceding proposition and The-orem 3.3.4 one derives �w = Rw(+) + 1. However, this condition does notassure in general that w is Sturmian, as shown by the following example: letw = abaabb =2 St; one has �w = 6, �w(+) = 7, and Rw(+) = 5.A characterization of �nite Sturmian words similar to Theorem 3.3.9 isgiven by Theorem 2.2.8, of which we will now give a di�erent proof, based onTheorem 3.3.9 and on the following lemma.
Lemma 3.3.10. If w 2 A+ and �w = Rw + 1, then Rw = Rz2w .Proof. By (1.2) and (1.1) one has that for any k > 1jzwj = �w = �zkw � Rzkw + 1 :Since Fact z2w � Fact zkw and �w = Rw + 1, one has that for all k > 1jzwj � 1 � Rw � Rzkw � Rz2w :As any factor of zkw of length at most jzwj � 1 is also a factor of z2w, it followsthat Rzkw = Rz2w for any k > 1. By the de�nition of fractional root, there existsan integer h � 1 such that w 2 Fact zhw, so that Rw � Rzhw = Rz2w . From thisRw = Rz2w .Proof of Theorem 2.2.8. Let w be a nonempty Sturmian word. By Theo-rem 3.3.9, �w(+) = Rw(+) + 1. From Theorem 3.3.4, �w(+) = �w and zw(+) = zw.By the preceding lemma, one derives Rw(+) = Rz2w and �w = Rz2w + 1.Conversely, if �w = Rz2w + 1, then �z2w = Rz2w + 1, so that by Lemma 3.3.8we have z2w 2 St. By Corollary 2.2.5, the result follows.



3.4. Episturmian words 59
3.4 Episturmian wordsEpisturmian words are a natural generalization of in�nite Sturmian words inthe case of alphabets with more than two letters. They have been intro-duced in [27] and their theory has been developed in several papers (see forinstance [33, 35]).As stated above, an in�nite word t 2 A! is a standard episturmian word ifit is an R-standard word over A. In the following, we shall denote the operator R simply by  .The following proposition was proved in [27]:
Proposition 3.4.1. Let s 2 A!. The following statements are equivalent:1. s is a standard episturmian word.2. s is closed under reversal, and every left special factor of it is a pre�xof s.As we shall see in the next chapter, the two above conditions are no longerequivalent when R is substituted by an arbitrary involutory antimorphism #.The �rst condition gives rise to #-standard words, as we have already seen; thesecond one leads to what we call standard #-episturmian words instead (seeSection 4.5). The class of standard #-episturmian words is neither a superclassnor a subclass of that of #-standard words.An in�nite word s 2 A! is called episturmian if there exists a standardepisturmian word t 2 A! such that Fact s = Fact t. Hence, an in�nite word s isepisturmian if and only if it has at most one right special factor of each lengthand Fact s is closed under reversal.We will use the symbols Epi and SEpi respectively for the sets of epis-turmian and standard episturmian words over A. By de�nition, we haveFact(Epi) = Fact(SEpi). Of course, any (standard) Sturmian word is a (stan-dard) episturmian word over a two-letter alphabet.
Proposition 3.4.2. Let w be a nonempty pre�x of a standard episturmianword. The fractional root zw is symmetric, so that �w = �w(+).Proof. Let u be the longest palindromic pre�x of s whose length is less thanjwj. We can write w = ux� with � 2 A�, so that by Lemma 3.1.11 one obtains



60 Chapter 3. Palindrome closure and episturmian wordsw(+) = (ux)(+). One has �ux � �w � �w(+) = �(ux)(+) : (3.7)Since u is a palindrome, by Lemma 3.1.10 one has that zux is symmetric, sothat by Theorem 3.1.6, �ux = �(ux)(+). By (3.7), �w = �w(+), that is equivalentto zw 2 PAL2 by Theorem 3.1.6.Example 3.4.3. Let t be the standard episturmian word, called Tribonacciword, t =  ((abc)!), t = abacabaabacababac � � � :The fractional roots of the nonempty pre�xes of t are the symmetric wordsa; ab; abac; abacaba; abacabaabacab; : : :Let us observe that in the case of a #-standard word s, the fractional rootof a pre�x of s is not in general #-symmetric. For instance, consider in thecase of A = fa; bg and # = e, any e-standard word s having a directive wordbeginning with a2b. The word s has the pre�x ababbaabab = (ababb)�. Letw = ababb. One has zw = w =2 PAL2e. In fact, one has �w = 5 and �w� = 6.The �nite factors of (standard) episturmian words are also called �niteepisturmian words. Di�erently from the Sturmian case, the fractional rootof a �nite episturmian word can be non-symmetric, as shown in the followingexample.Example 3.4.4. The word v = aabaacaabaacaaba is a pre�x of a standardepisturmian word. The word w = zw = baac is a non-symmetric factor of v.However, w(+) = baacaab and w(�) = caabaac are factors of v.Let us observe that Corollary 2.2.5 cannot be extended to the case of epis-turmian �nite words, since there exist �nite episturmian words w such that z2wis not a �nite episturmian word, as shown by the following:Example 3.4.5. The word w = bac = zw is a �nite episturmian word. However,z2w = (bac)2 is not factor of any episturmian word. Indeed, as shown in [27], thenumber of all palindromic factors in a �nite episturmian word u has to be equalto juj+ 1. The number of palindromic factors of (bac)2 is 4, and jz2wj+ 1 = 7.



3.4. Episturmian words 61A standard episturmian word s over the alphabet A is called a (standard)Arnoux-Rauzy word if every symbol of A occurs in�nitely often in the asso-ciated directive word �(s). We will denote by AR(A), or simply AR, the setof Arnoux-Rauzy words over A. By Proposition 3.3.1, the families of standardSturmian words and of binary AR-words coincide.Example 3.4.6. Let A = fa; bg and x = (ab)!. One has thatf =  (x) = abaababaabaababa � � �is the Fibonacci word, a standard Sturmian word. On an alphabet with threeletters A = fa; b; cg, if we take x = (abc)! as a directive word, then� =  (x) = abacabaabacababacabaabac � � �is a standard Arnoux-Rauzy word, often calledTribonacci word. The word s =cabaabacababacabaab � � � such that abas = � is an example of an episturmianword which is not standard, as a is a left special factor of s but not a pre�x ofit. The periodic word s = (abac)! is standard episturmian, but not Arnoux-Rauzy. Its directive word is �(s) = abc!.The following proposition can be easily proved using well-known results onepisturmian words (see [27]).
Proposition 3.4.7. Let s be a standard episturmian word. Any bispecialfactor of s is a palindromic pre�x of s. If s is not periodic, the converseholds too.
Proposition 3.4.8. Fact(Epi) = Fact(AR).Proof. Let u 2 Fact(Epi) = Fact(SEpi). Hence there exists s 2 SEpi suchthat u 2 Fact s. Now let be s =  (�) where � = t1t2 � � � tn � � � , with ti 2 A fori � 1. Therefore there exists a palindromic pre�x p of s such that u 2 Fact p.Now p =  (t1 � � � ti) for some i. We can consider �0 = t1 � � � tit with t 2 A!such that any letter of A occurs in�nitely many times in t. Hence s0 =  (�0) 2AR and contains p as a factor, so that u 2 Fact s0. Therefore, Fact(Epi) �Fact(AR). Since the inverse inclusion is trivial, the result follows.



62 Chapter 3. Palindrome closure and episturmian wordsThe following proposition collects two properties of standard episturmianwords (cf. Lemmas 1 and 4 in [27]) which will be useful in the sequel.
Proposition 3.4.9 (cf. [27]). Let s be a standard episturmian word. Thefollowing hold:1. Any pre�x p of s has a palindromic suÆx which has a unique occur-rence in p.2. The �rst letter of s occurs in every factor of s having length 2.Clearly, if p is a pre�x of a standard episturmian word, then the palindromicsuÆx of p which has a unique occurrence in p is the longest palindromic suÆxof p. We want to show that if w 2 Fact(Epi), then also its right and leftpalindrome closures belong to Fact(Epi); since episturmian words are closedunder reversal, and w(�) = ~w(+), it suÆces to prove only the right palindromeclosure case. We have the following
Proposition 3.4.10. Let u be a non-palindromic �nite episturmian word;let Q be the longest palindromic suÆx of u and write u = saQ where a 2 Aand s 2 A� (s possibly empty). Then ua = saQa is a �nite episturmianword.Before proving the proposition we need some lemmas. The �rst lemma wasproved in [2, Theorem 1.1]. We report here a di�erent and simpler proof.
Lemma 3.4.11. Let w be an episturmian word and P 2 PAL \ Factw.Then every �rst return to P in w is a palindrome.Proof. We may suppose that w is a standard episturmian word. Let u 2 Factwbe a �rst return to the palindrome P , i.e., u = P� = �P , �; � 2 A�, and theonly two occurrences of P in u are as a pre�x and as a suÆx of u. If jP j > j�j,then the pre�x P of u overlaps with the suÆx P in u and this implies, as iseasily to verify, that u is a palindrome. Then let us suppose that u = PvPwith v 2 A�.Now we consider the �rst occurrence of u or of ~u in w. Without loss ofgenerality, we may suppose that w = �uw0 and that ~u does not occur in thepre�x of w having length j�uj � 1. Let Q be the palindromic suÆx of �u of



3.4. Episturmian words 63maximal length. If jQj > juj, then we have that ~u occurs in �u before u, whichis absurd. Then suppose jQj � juj. If juj > jQj > jP j, then one contradicts thehypothesis that u is a �rst return to P . If jQj = jP j, then Q = P has morethan one occurrence in �u, which is absurd in view of Proposition 3.4.9. Theonly remaining possibility is Q = u, i.e., u is a palindrome.The following lemma is well known. We report here a proof for the sake ofcompleteness.
Lemma 3.4.12. Let w 2 AR and s be the unique right special factor oflength n. If B1; : : : ; Bm; : : : are the bispecial factors of w ordered by in-creasing length, then s is a suÆx of any Bm such that jsj � jBmj and, forany x 2 A, sx 2 Factw.Proof. Since w is not periodic, by Proposition 3.4.7 the bispecial factors Bi,i > 0, are its palindromic pre�xes. Moreover, if t = t1t2 � � � tn � � � 2 A! is thedirective word of w, then Bi+1 = (Biti)(+) for any i > 0. Since s is a rightspecial factor of w, ~s is left special and thus a pre�x of w. Therefore, s is asuÆx of any palidromic pre�x Bm of w such that jsj � jBmj. As w 2 AR,any letter x 2 A occurs in�nitely often in t; hence there exists k � m suchthat x = tk, so that Bkx is a factor of w. Since Bm is a suÆx of Bk, it followssx 2 Factw.
Lemma 3.4.13. Let w and w0 be Arnoux-Rauzy words on the alphabet A.If w and w0 have the same right special factor of length n, then they sharethe same factors up to length n+ 1.Proof. Trivial if n = 0. By induction, suppose we have proved the assertionfor the integer n� 1 � 0. Let Q be the common right special factor of w andw0 of length n. If we write Q = aQ0, with a 2 A, then Q0 is the only rightspecial factor of length n�1 of both w and w0. Hence w and w0 have the samefactors up to length n.By symmetry, it suÆces to prove that any factor v of w, of length jvj = n+1,is also a factor of w0. Let v = v0b, b 2 A. Suppose �rst that v0 = Q. ByLemma 3.4.12, each right extension Qx, with x 2 A, is a factor of both w andw0; in particular, v is a factor of w0.



64 Chapter 3. Palindrome closure and episturmian wordsNow assume that v0 6= Q. Let v0 = cv00 with c 2 A, and suppose thatv00 = Q0. One has then c 6= a. In this case, since v = cv00b and Qb = av00b aredi�erent factors of w, one has that v00b is left special in w. Since jv00bj = n,one derives that v00b = ~Q is a left special factor of w0 too, so that v = cv00b is afactor of w0 as a consequence of Lemma 3.4.12.If v00 6= Q0, then v00b is the unique right extension of v00 in w. As jv00bj = n,it is also a factor of w0, and no other letter x is such that v00x 2 Factw0. Hencev = cv00b is the only right extension in w0 of the factor cv00 6= Q.We can now proceed to prove Proposition 3.4.10.Proof of Proposition 3.4.10. We �rst observe that u contains a single occur-rence ofQ. Indeed, if u contained other occurrences ofQ, then by Lemma 3.4.11the suÆx of u beginning with the penultimate occurrence would be a palin-dromic suÆx of u strictly longer than Q, contradicting the hypothesis of max-imality of the length of Q.By Proposition 3.4.8 there exists an Arnoux-Rauzy word w such that u 2Factw. We can assume that ua =2 Factw (otherwise ua is in Fact(AR) asrequired); so there exist b 2 A such that b 6= a and ub 2 Factw. ThusaQb 2 Factw; since Q is a palindrome and w 2 AR, also bQa 2 Factw andQ is a bispecial factor of w. Then it follows that every left special factor ofw longer that Q must contain Q as a pre�x, and since there is only a singleoccurrence of Q in u, Q itself is the longest suÆx of u which is left special in w.Thus every occurrence of aQ in w must be \preceded" by s, i.e., if w = �aQ�,then w = �0saQ�, with � = �0s. In particular aQa is not a factor of w, forotherwise ua would be in Factw, contradicting our assumption.Set �(w) = t1t2 � � � . Let B1 = "; B2; : : : be the sequence of all bispecialfactors of w, ordered by increasing length, i.e., jBij < jBi+1j for all i > 0. ByProposition 3.4.7, they are the palindromic pre�xes of w as w is not periodic.Moreover, for each i > 0 we have Bi+1 = (Biti)(+), so that Biti is left specialand tiBi is right special.Since Q is a bispecial factor of w, one has Q = Bm for some m > 1. LetjQj = n � 1 for n � 2. We then have that tmQ is right special in w and,from Lemma 3.4.12, tmQx 2 Factw for all x 2 A. It is clear that tm 6= asince aQa =2 Factw and tmQa 2 Factw, then we have that aQb and tmQb are



3.4. Episturmian words 65distinct factors of w, thus Qb is left special and bQ is the unique right specialfactor of w of length n. So tm = b.Let w0 be any Arnoux-Rauzy sequence over A whose directive word �(w0) =t01t02 � � � satis�es t0i = ti for 0 < i � m � 1 and t0m = a. Since Q is the uniqueright special factor of w and w0 of length n� 1, from Lemma 3.4.13, we obtainthat w and w0 have the same factors of length k for each k � n. However, theydi�er on some factors of length n+1. Indeed, from the de�nition of w0, we havethat aQ is its unique right special factor of length n, so that by Lemma 3.4.12,for all x 2 A we have that aQx 2 Factw0. Therefore aQa 2 Factw0 n Factw.Now let us prove that, as in w, each occurrence of aQ in w0 is precededby s. Let p 2 A� be such that jpj = jsj and paQ 2 Factw0. Let then S bethe largest common suÆx of paQ and saQ and Q0 its pre�x of length n � 1.Clearly Q 6= Q0 since there is only one occurrence of Q in saQ. If we assumethat S 6= paQ, then there exist x; y 2 A such that x 6= y, xS 2 Su�(saQ) andyS 2 Su�(paQ); then xQ0 and yQ0 are both factors of w and w0 since theselatter words have the same factors of length n. Thus Q0 is a left special factorof w and w0, and that is a contradiction, since the only left special factor oflength n � 1 in w and in w0 is Q. Thus p = s and so every occurrence of aQin w0 is preceded by s.Since aQa is a factor of w0, it follows that saQa = ua is a factor of w0.Hence ua is in Fact(AR) as required.From the preceding proposition we get the announced result:
Theorem 3.4.14. If w is a �nite episturmian word, then so is each of w(+)and w(�).Proof. Trivial if w 2 PAL. Let then w = a1 � � �anQ, where ai 2 A fori = 1; : : : ; n andQ is the longest palindromic suÆx of w. By Proposition 3.4.10,wan = a1 � � �anQan is a �nite episturmian word; since its longest palindromicsuÆx is anQan, also wanan�1 is episturmian. In this way, by applying Propo-sition 3.4.10 exactly n times, one eventually obtains thata1a2 � � �anQan � � �a2a1 = w(+)is episturmian. Since w(�) = ~w(+), the assertion follows.



66 Chapter 3. Palindrome closure and episturmian words
Corollary 3.4.15. Let a 2 A and u 2 A�. If au is a �nite episturmianword, then so is au(+).Proof. If au is not a palindrome, then by Theorem 3.4.14, (au)(+) = au(+)a isan episturmian word and therefore so is au(+). Let us then suppose that au isa palindrome.By Theorem 3.4.14 one has u(+) 2 Fact s for a suitable s 2 AR. Since s isrecurrent there exist letters x; y 2 A such thatxu(+)y 2 Fact s :If x 6= y, then, since s is closed under reversal, one has also yu(+)x 2 Fact s:Hence u(+) is bispecial, so that it follows au(+) 2 Fact s. Let us now considerthe case x = y. If x = a, then the assertion is trivially veri�ed.Suppose then x 6= a. As au is a palindrome, we can write u = u0a withu0 2 PAL. Hence, x(u0a)(+)x 2 Fact s :Since (u0a)(+) begins with u0a and ends with au0, one has that xu0a and au0xare factors of s, so that u0 is bispecial and then a palindromic pre�x of s byProposition 3.4.7.Let �(s) = t1t2 � � � tn � � � be the directive word of s. There exists an integerk such that u0 =  (t1t2 � � � tk). We consider any AR word s0 whose directiveword �(s0) has the pre�x t1t2 � � � tka. Thus u0a = u is a pre�x of s0. Thisimplies, by Propositions 3.2.2 and 3.4.7, that u(+) is a bispecial pre�x of s0.From this one derives au(+) 2 Fact s0.



Chapter 4

Extensions via involutory

antimorphismsIn this chapter we shall analyse several di�erent generalizations of episturmianwords, all based on the replacement of the reversal operator by a generic in-volutory antimorphism. The �rst generalization was already introduced in thepreceding chapter.
4.1 Pseudostandard wordsLet # be an involutory antimorphism of A�. We recall (cf. Section 3.2) thatthe map  # de�ned by (3.6) satis�es, for any x 2 A!, #(x) = limn!1 #(wn) ;where fwng = An \ Pref x for any n � 0. The word  #(x) is #-standard, #(A!) is the set of all #-standard in�nite words, and  #(A�) is the set of their#-palindromic pre�xes.As we have seen in Section 1.3, the reversal operator R is the basic involu-tory antimorphism of A�, because any other is obtained by composing R withan involutory permutation. Therefore, it is natural to ask whether any pseu-dostandard word can be obtained, by a suitable morphism, from a standardepisturmian word. As we shall see later, the answer to this problem is positive(cf. Theorem 4.1.2). To this end, we introduce the endomorphism �# of A� by



68 Chapter 4. Extensions via involutory antimorphismssetting �#(a) = a� for each a 2 A. Thus for every letter a one has:�#(a) = 8<: a if a = �aa�a if a 6= �a :We observe that �# is injective, since �#(A) is a pre�x code.Example 4.1.1. If # = R, then �R = id. If # = e is the \exchange" antimor-phism of fa; bg�, then �e(a) = ab and �e(b) = ba, i.e., �e is the Thue-Morsemorphism.The main result of this section is the following:
Theorem 4.1.2. For any w 2 A1, one has #(w) = �#( (w)) : (4.1)By this theorem, any #-standard word is a morphic image (by �#) of thestandard episturmian word having the same directive word. Moreover, the setof palindromic pre�xes of #-standard words over A is a morphic image of thepalindromic pre�xes of standard episturmian words. In particular, the Thue-Morse morphism sends standard Sturmian words to words constructible viaiterated e-palindromic closure: �#( (x)) =  e(x). For instance,  e ((ab)!) =�#(f) where f is the Fibonacci word.To prove Theorem 4.1.2, we need some lemmas and propositions concerningthe morphism �# and the antimorphism #.It is easy to verify that for any a 2 A, one hasa� = a� and (�a)� = fa� : (4.2)
Lemma 4.1.3. For all w 2 A�, �#( ~w) = �#(w).Proof. Let w = a1 � � �an, with ai 2 A, i = 1; : : : ; n. By (4.2),�#( ~w) = a�n � � �a�1 = a�n � � �a�1 = a�1 � � �a�n = �#(w) :
Corollary 4.1.4. The morphism �# sends palindromes into #-palindromesand vice-versa. Formally, for any w 2 A�,w 2 PAL () �#(w) 2 PAL# ; (4.3)w 2 PAL# () �#(w) 2 PAL : (4.4)



4.1. Pseudostandard words 69Proof. From the previous lemma, since �# is injective one immediately obtainsw = ~w () �#(w) = �#( ~w) = �#(w) ;proving (4.3).Let w = a1 � � �an, ai 2 A, i = 1; : : : ; n. By (4.2), w = �w is equivalent to:�#(w) = �#( �w) = �#(�an � � � �a1) = (�an)� � � � (�a1)� = fa�n � � � fa�1 = �̃#(w)as desired.Let k k# : A� ! Z2 be the morphism of A� in the additive group Z2 of theintegers mod 2, de�ned by the rule: for all a 2 A,kak# = 8<: 0 if a = �a1 if a 6= �a :In other terms, for any w 2 A�, kwk# counts, modulo 2, the occurrencesof letters in w which are not #-palindromes. Note that one has obviouslykwk# = k �wk# for any word w. Let us observe that if # = R, then kwk = 0for all w 2 A�; if # = e, then kwke = (jwj mod 2) for all w 2 fa; bg�. In thefollowing, we shall denote k k# simply by k k when there is no ambiguity.
Lemma 4.1.5. If w 2 �#(A�) [ PAL#, then kwk = 0.Proof. It is clear from the de�nition that k�#(u)k = 0 for all u 2 A�. Indeed,any letter which is not a #-palindrome is sent by �# in two non-#-palindromicletters. Let w = a1a2 � � �an 2 PAL#, ai 2 A, i = 1; : : : ; n. Since ai = �an+1�ifor 1 � i � n, it follows that:� if n = jwj is even, then w = v�v,� if n is odd, then w = vc�v,where v = a1 � � �abn=2c and c 2 A \ PAL#. In both cases,kwk = kvk+ k�vk = 2kvk = 0 :
Proposition 4.1.6. Let w 2 A�. Then PAL#\Su� �#(w) = �#(PAL\Su� w).



70 Chapter 4. Extensions via involutory antimorphismsProof. The \�" inclusion is a consequence of (4.3). Now we prove the inverseinclusion. Let s be a suÆx of �#(w) which is not in �#(Su� w). If w = a1 � � �an,with ai 2 A for 1 � i � n, then �#(w) = a�1 � � �a�n , so that s has to be of theform s = �ai�#(u) for some i 2 f1; : : : ; ng (such that ai 6= �ai) and u 2 Su� w.Hence, by Lemma 4.1.5, ksk = kaik + k�#(u)k = 1, and therefore s =2 PAL#,again by Lemma 4.1.5.
Theorem 4.1.7. For all w 2 A�, one has(�#(w))� = � �w(+)� ; (4.5)(�#(w))	 = � �w(�)� : (4.6)Proof. Let w = sQ with Q = QR(w). Then by Proposition 3.1.2, w(+) = sQ~s,so that by Lemma 4.1.3,� �w(+)� = �#(s)�(Q)�#(~s) = �(s)�#(Q)�#(s) :By Corollary 4.1.4, �#(Q) is a #-palindromic suÆx of �#(w). Let us provethat it is the longest one. Indeed, suppose by contradiction that � is a #-palindromic suÆx of �#(w), with j�j > j�#(Q)j. By Proposition 4.1.6, � =�#(v) for some v 2 PAL \ Su� w. This is a contradiction, because jvj > jQj.Thus (4.5) is proved.By (3.1), w(�) = ~w(+) so that by (4.5) one has� �w(�)� = � � ~w(+)� = (�#( ~w))� :By Lemma 4.1.3, �#( ~w) = �#(w). Therefore, since by (3.1)��#(w)�� = (�#(w))	 ;equation (4.6) is proved.
Corollary 4.1.8. Let w 2 A� and a 2 A. The following holds:(�#(w)a)� = � �(wa)(+)� :Proof. From the preceding theorem, one has (�#(wa))� = � �(wa)(+)�. There-fore, it suÆces to prove that(�#(w)a)� = (�#(wa))� = (�(w)�#(a))� : (4.7)



4.1. Pseudostandard words 71If a 2 PAL#, then a = �#(a) and (4.7) follows. Then assume a =2 PAL#, sothat (4.7) can be rewritten as(�#(w)a)� = (�#(w)a�a)� :In view of Lemma 3.1.11, it suÆces to show that �#(w)a�a is a pre�x of(�#(w)a)�.Suppose �rst that �aPAL# \ Su� �#(w) = ;. Then Q#(�#(w)a) = ", so thatby Proposition 3.1.2, (�#(w)a)� = �#(w)a�a�#(w)and we are done.If �aPAL#\Su� �#(w) is nonempty, then let �a� be its longest element. It iseasy to see that �a�a is the longest #-palindromic suÆx of �#(w)a. Moreover,by Proposition 4.1.6 there exists v 2 PAL \ Su� w such that � = �#(v). Ifw = uv, since �a�#(v) is a suÆx of �#(w) = �(u)�#(v), one derives that u = u0afor some word u0. Hence(�#(w)a)� = �#(u0)a�a�#(v)a�a�#(u0) = �#(w)a�a�#(u0) ;which concludes the proof.We are in the position of proving the main theorem.Proof of Theorem 4.1.2. Equation (4.1) is trivially satis�ed for w = ". Byinduction, let us assume (4.1) holds for some w 2 A�, and prove it for wa witha 2 A. Indeed, #(wa) = ( #(w)a)� = (�#( (w))a)� = � �( (w)a)(+)� = �#( (wa)) ;where the third equality is a consequence of Corollary 4.1.8.The case w 2 A! is easily dealt with.For any letter a 2 A, we de�ne the morphism �a : A� ! A� by �a(a) = aand �a(b) = ab, for any b 6= a. Moreover, we set �" = id and, for any w =a1a2 � � �an 2 A+, �w = �a1 Æ �a2 Æ � � � Æ �an :



72 Chapter 4. Extensions via involutory antimorphismsAs a consequence of Theorem 4.1.2 and of a result of Justin [34], we derive thefollowing proposition which allows one to compute ( #(w)a)� for any w 2 A�and a 2 A, starting from its pre�x (suÆx)  #(w), by using the morphisms �#and �w.
Proposition 4.1.9. For any w 2 A� and a 2 A, #(wa) = (� Æ �w)(a) #(w) :Proof. We use the result of Justin [34] stating that for any v; w 2 A�, (wv) = �w( (v)) (w) :Therefore, for v = a 2 A one gets  (wa) = �w(a) (w). By Theorem 4.1.2, #(wa) = �#( (wa))= �#(�w(a))�#( (w))= (� Æ �w)(a) #(w)as desired.Example 4.1.10. Let A = fa; bg, # = e, and w = aba. One has  #(aba) =abbaababbaab and �w(a) = aba. Hence, �(�w(a)) = abbaab and #(abaa) = (abbaab)(abbaababbaab) :We have seen that #-standard words are morphic images (under �#) ofstandard episturmian words. This allows to extend many properties of standardepisturmian words to general #-standard words.
Proposition 4.1.11. If s is a #-standard word over A and two letters of Aoccur in�nitely often in �(s), then any pre�x of s is a left special factorof s.Proof. A pre�x p of s is also a pre�x of any #-palindromic pre�x B of s suchthat jpj � jBj. Since B is a suÆx of any #-palindromic pre�x of s whoselength is at least jBj, and there exist two distinct letters (say a and b) whichoccur in�nitely often in �(s), by Proposition 3.2.2 one derives Ba;Bb 2 Fact s.Therefore, as �p 2 Su� B, we have �pa; �pb 2 Fact s, i.e., �p is right special. Sinceby Proposition 3.2.2 s is closed under #, one has �ap;�bp 2 Fact s; as �a 6= �b, p isleft special.



4.1. Pseudostandard words 73For the converse of the previous proposition, we observe that a #-standardword s can have left special factors which are not pre�xes of s. For instance,consider the e-standard word s in Example 3.2.1. As one easily veri�es, b andba are two left special factors of s, which are not pre�xes.However, we will show that if a left special factor w of a #-standard words is not a pre�x of s, then jwj � 2. For a proof of this we need a couple oflemmas. We denote by A0 = A n PAL# the set of letters of A that are not#-palindromic.
Lemma 4.1.12. The following holds:A0�#(A�) \ �#(A�) = �#(A�)A0 \ �#(A�) = ; :Proof. It is suÆcient to observe that any word in �#(A�) has an even numberof occurrences of letters in A0.
Lemma 4.1.13. Let b; c 2 A0, and let f = �b�#(u) and g = �#(v)c be factorsof a #-standard word t = �#(s), with s 2 SEpi. Then:1. If bu; vc 2 Fact s and jf j > 1, then f 6= g.2. If u 2 Fact s and jf j > 3, then bu 2 Fact s.Proof. (1). Since jf j > 1, one has u 6= ". By contradiction, if f = g, one hasalso v 6= ", so that, from the de�nition of �#, �bb is a pre�x of �#(v). Then b�b is apre�x of �#(u), and so on; therefore, f = �b(b�b)k = (�bb)k�b for k = juj = jvj � 1.Hence c = �b, u = bk, and v = �bk. As k � 1, by Proposition 3.4.9, bu = bk+1 andvc = �bk+1 cannot be both factors of the episturmian word s, a contradiction.(2). Since jf j > 3, one derives juj > 1. By contradiction, suppose bu =2Fact s. By the preceding lemma and by Theorem 4.1.2, one derives f = �#(v0)c0for some suitable v0 2 A� and c0 2 A0 such that v0c0 2 Fact s. As done before,one then obtains f = (�bb)k�b so that bk;�bk 2 Fact s, which is absurd by Propo-sition 3.4.9, as k � 2.
Theorem 4.1.14. Let w be a left special factor of a #-standard word t =�#(s), with s 2 SEpi. If jwj � 3, then w is a pre�x of t.Proof. By Theorem 4.1.2, w can be written in one of the following ways:



74 Chapter 4. Extensions via involutory antimorphisms1. w = �#(u), with u 2 Fact s,2. w = �b�#(u), with bu 2 Fact s and b 2 A0,3. w = �#(u)c, with uc 2 Fact s and c 2 A0,4. w = �b�#(u)c, with buc 2 Fact s and b; c 2 A0.In case 1, let xw; yw 2 Fact t with x 6= y letters of A. If x is #-palindromic,then clearly one must have xu 2 Fact s. If x 2 A0, then by the preceding lemmaone has �xu 2 Fact s, as jxwj > 3. Since the same holds for y, u is a left specialfactor of the episturmian word s, and therefore a pre�x of it. Thus w = �#(u)is a pre�x of t.Cases 2 and 4 are absurd; indeed, by the preceding lemma one derives thatevery occurrence of w is preceded by b.Finally, in case 3, by the preceding lemma one derives that every occurrenceof w is followed by �c. Hence �#(uc) is a left special factor of t and one canapply the same argument as in case 1 to show that it is a pre�x of t.An in�nite word t is a #-word if there exists a #-standard word s such thatFact t = Fact s. An R-word is an episturmian word.Proposition 3.4.10 and Theorem 3.2.3 can be extended to the class of #-words, showing that if w is a factor of a #-word, then w� and w	 are also factorsof #-words. A proof can be obtained as a consequence of Theorems 3.2.3 and4.1.2 and of Corollary 3.4.15.
Theorem 4.1.15. Let w be a factor of a #-standard word. Then each ofw� and w	 is a factor of a #-standard word.Proof. We shall suppose w =2 PAL#, otherwise the result is trivial. Sincew	 = �w�, it suÆces to prove the result for w�. Let A0 = A n PAL# as above.From Theorem 4.1.2, one derives that w can be written in one of the followingways:1. w = �#(u)x, with x 2 A [ f"g and ux 2 Fact(Epi),2. w = �a�#(u)b, with a; b 2 A0 and aub 2 Fact(Epi),3. w = �a�#(u), with a 2 A0 and au 2 Fact(Epi).



4.1. Pseudostandard words 75In the �rst case, by Theorem 3.2.3 there exists a standard episturmian words =  (�) such that (ux)(+) 2 Fact s. Thus, by (4.5), Corollary 4.1.8 andTheorem 4.1.2, w� = �# �(ux)(+)� is a factor of the #-standard word  #(�) =�#(s).In the second case, by using Corollary 4.1.8, one has:w� = �a (�#(u)b)� a = �a�# �(ub)(+)�a 2 Fact ��# �a(ub)(+)a�� :Moreover, aub is not a palindrome, since otherwise one would derive, for in-stance using Corollary 4.1.4, that w = �a�#(u)b is a #-palindrome, which con-tradicts our assumption. Thus (aub)(+) = a(ub)(+)a and the result is a conse-quence of Theorem 4.1.2.In the third case, since w is not a #-palindrome, by (4.5) one obtainsw� = �a�#(u)�a 2 Fact ��#(au(+)a)� :If u = ak for some k � 0, then au(+)a = ak+2 2 Fact(Epi); otherwise au(+)is not a palindrome and au(+)a = (au(+))(+), so that au(+)a is episturmian byCorollary 3.4.15 and Theorem 3.2.3. Once again, the assertion follows fromTheorem 4.1.2.
Corollary 4.1.16. Let w be a factor of a #-standard word. Then thereexists a #-standard word having both w� and w	 as factors.Proof. Trivial if w 2 PAL#. Let then w = Pbt = saQ, where P (resp. Q) isthe longest #-palindromic pre�x (resp. suÆx) of w, and a; b 2 A. Thus w�a and�bw, being respectively factors of w� = saQ�a�s and w	 = �t�bPbt, are factors of#-standard words by Theorem 4.1.15.Suppose w�a =2 PAL#. Then (w�a)	 = aw	�a, so that w	�a is a factor of some#-standard word, by Theorem 4.1.15. Consider the word(w	�a)� = (�t�bPbt�a)� = (�t�bsaQ�a)� ;and call Q0 the longest #-palindromic suÆx of w	�a; then Q0 = aQ�a. Indeed,since aQ�a is a #-palindrome, one has jQ0j � jaQ�aj; but jaQ�aj < jQ0j � jsaQ�ajis absurd, for Q would not be the longest #-palindromic suÆx of w, and jQ0j >jsaQ�aj cannot happen, for otherwise there would exist a #-palindromic propersuÆx of w	 having w as a suÆx, contradicting the de�nition of w	. Thus(w	�a)� = �t�bsaQ�a�sbt = �t�bPbt�a�sbt



76 Chapter 4. Extensions via involutory antimorphismsis a factor of some #-standard word, again by Theorem 4.1.15, and it containsboth w� and w	 as factors.If w�a 2 PAL# but �bw =2 PAL#, one can prove by a symmetric argumentthat (�bw�)	 is a factor of some #-standard word having both w� and w	 asfactors. Let then w�a;�bw 2 PAL#, so thatw� = w�a = a �w and w	 = �bw = �wb : (4.8)If w is a single letter, one derives w = a = b, so that w� = a�a and w	 = �aa.Therefore w� and w	 are factors of any #-standard word whose directive wordbegins with a2. Let us then suppose jwj > 1. From (4.8) it follows w = aRbfor some R 2 A� such that aR = �R�a = P and Rb = �b �R = Q. Moreover,w = aRb = a�b �R = �R�ab ; (4.9)showing that �R is a border of w. Therefore one has either w = (a�b)k orw = (a�b)ka, for some k > 0. In the �rst case, from (4.9) one derives a = �a andb = �b, so that any #-standard word whose directive word begins with abk+1contains both w� = (ab)ka and w	 = b(ab)k as factors. In the latter case,by (4.9) one obtains a = b, so that any #-standard word whose directive wordbegins with ak+1 contains both w� = (a�a)k and w	 = (�aa)k as factors.
Remark. For a �nite episturmian word w, the proof of the preceding result canbe simpli�ed by using Theorem 3.2.3 and Corollary 3.4.15. Indeed, if w is nota palindrome, we can write w = Pbt = saQ, where P and Q are respectivelythe longest palindromic pre�x and suÆx of w, and a; b 2 A. By Theorem 3.2.3,w(+) and w(�) are �nite episturmian words; moreover bw is a factor of w(�), sothat by Corollary 3.4.15, bw(+) is a �nite episturmian word. By Theorem 3.2.3,�bw(+)�(�) is a �nite episturmian word, which has also w(�) as a factor, as onecan prove similarly as in the proof of Corollary 4.1.16.Example 4.1.17. Let � be the Tribonacci word� =  ((abc)!) = abacabaabacababacabaabacabac � � � :If w = bac 2 Fact � , one has that w(+) = bacab and w(�) = cabac are fac-tors of � . However, in the case of the factor v = abacabab, one has v(+) =abacababacaba 2 Fact � , whereas v(�) = babacabab is not a factor of � , since



4.2. More antimorphisms simultaneously 77otherwise v would be a left special factor of � , which is a contradiction asv =2 Pref � . Nevertheless, both v(+) and v(�) are factors of any episturmian wordwhose directive word begins with abcbb. Indeed, v = Pb where P = abacaba isthe longest palindromic pre�x of v, and�bv(+)�(�) = abacababacababacaba =  (abcbb) :
4.2 More antimorphisms simultaneouslyLet I be the set of all involutory antimorphisms of A�, and I! be the set ofin�nite sequences over I.Let � = #1#2 � � �#n � � � 2 I! and let �i be the #i-palindromic closure oper-ator, for all i � 1. We de�ne inductively an operator  � by setting  �(") = ",and  �(x1x2 � � �xn+1) = ( �(x1 � � �xn)xn+1)�n+1whenever xi 2 A for i � 1. With this notation,  #! is just the operator  #considered in the preceding section.If x = x1x2 � � �xn � � � 2 A!, xi 2 A for i � 1, then  �(x1 � � �xi) is a pre�x of �(x1 � � �xi+1) for any i, so that the in�nite word �(x) = limn!1 �(x1 � � �xn)is well de�ned. We call  �(x) a generalized pseudostandard word. Thepair (x;�) which determines  �(x) can be called the directive bi-sequenceof  �(x). With a suitable choice of the �-sequences one can construct allstandard episturmian words (� = R!), as well as all #-standard words (� =#!). Theorem 4.2.1 below shows a less trivial example.In the following, we shall assume A = fa; bg, � = �e, and � = �e, where eis the exchange antimorphism of A�.
Theorem 4.2.1. The following holds: (eR)!(ab!) = �!(a) ;i.e., the Thue-Morse word can be obtained via a  � operator.We need two lemmas.



78 Chapter 4. Extensions via involutory antimorphisms
Lemma 4.2.2. PAL \ b�(A�) = b(ab)�.Proof. The \�" inclusion is trivial. Let us prove the inverse inclusion. SincePAL \ b�(A0) = fbg � b(ab)�, we assume by induction thatPAL \ b�(Ak) � b(ab)� (4.10)for all k less than some n > 0, and prove (4.10) for k = n.Let w 2 PAL \ b�(An). Since n > 0, w has to end with b and thereforewith ab. Thus w = bw0b with w0 2 PAL\�(An�1)a. If n = 1, then w0 = a andso w = bab 2 b(ab)�. If n > 1, w0 has to begin with ab, so that w0 = aw00a withw00 2 PAL \ b�(An�2) � b(ab)�. Hence w = baw00ab 2 b(ab)�.
Lemma 4.2.3. For any n � 0,PAL \ Su� ��2n+1(a)� = f"g [ n�2k(b) j 0 � k � no :Proof. Since PAL \ Su� �(a) = f"; bg, it suÆces to show that for any n > 0,PAL \ Su� ��2n+1(a)� = fbg [ �2 �PAL \ Su� ��2n�1(a)�� : (4.11)Since �2n+1(a) ends with aab for all n > 0, the preceding lemma shows thatall palindromic suÆxes of �2n+1(a) di�erent from b have even length. Indeed,suppose that q is a palindromic suÆx of �2n+1(a) of odd length. Since q has tobegin with b, one can write q = b�(u) with u 2 Su� �2n(a). From the precedinglemma, q 2 b(ab)� so that if q 6= b, q and �2n+1(a) end with bab, which is acontradiction. Therefore, all palindromic suÆxes of �2n+1(a) di�erent from bare in � (Su� (�2n(a))).If w is a word with odd length, then �(w) cannot be a palindrome, becauseits minimal (nonempty) median factor is ab or ba. This implies� �Su� ��2n(a)�� \ PAL = �2 �Su� ��2n�1(a)�� \ PAL :By Corollary 4.1.4, w 2 PAL() �2(w) 2 PAL, so that�2 �Su� ��2n�1(a)�� \ PAL = �2 �Su� ��2n�1(a) \ PAL�� :This proves (4.11).



4.3. Words generated by nonempty seeds 79Proof of Theorem 4.2.1. It suÆces to show that, for any n � 0,�2n+2(a) = ��2n+1(a)b�(+) ; (4.12)�2n+1(a) = ��2n(a)b�� : (4.13)Let us �rst prove that (4.12) is equivalent to the statementQR ��2n+1(a)b� = bb : (4.14)Indeed, suppose that (4.12) is satis�ed. Since j�2n+2(a)j = 2j�2n+1(a)j, onederives that (4.14) holds. Conversely, suppose that (4.14) is satis�ed. Since�2n+1(a) ends with b, one can write �2n+1(a) = ub with u 2 A�, so that��2n+1(a)b�(+) = ubb~u = �2n+1(a) ˜�2n+1(a) :As is well known (cf. [38]), for all n � 0 one has ˜�2n+1(a) = �2n+1(b). Therefore,��2n+1(a)b�(+) = �2n+1(a)�2n+1(b) = �2n+2(a) :Equation (4.14) can be equivalently restated saying that any nonemptypalindromic suÆx of �2n+1(a) is preceded by a. By Lemma 4.2.3, the set ofnonempty palindromic suÆxes of �2n+1(a) is f�2k(b) j 0 � k � ng. Since�2n+1(a) = �2n(a)�2n(b) = �2n(a)�2n�1(b)�2n�1(a) ;by iterating this formula one has that for any k � n the suÆx �2k(b) is precededby the word �2k(a), which ends with a. This proves (4.12).By Corollary 4.1.8 and equation (4.12), one has��2n(a)b�� = ����2n�1(a)b�(+)� = � ��2n(a)� = �2n+1(a)which proves (4.13).
4.3 Words generated by nonempty seedsWe now consider a generalization of the construction of #-standard words. Werecall that the operator  # was de�ned in Section 3.2 by setting  #(w) = Dw(")



80 Chapter 4. Extensions via involutory antimorphismsfor any w 2 A�. We now consider a �xed arbitrary seed u0 2 A� instead of "and therefore set  ̂#(w) = Dw(u0) :Equivalently, the map  ̂# : A� ! A� can be de�ned by setting  ̂#(") = u0, and ̂#(ua) = � ̂#(u)a��for u 2 A� and a 2 A. As usual, we can extend this de�nition to in�nite wordst 2 A! by:  ̂#(t) = limn!1  ̂#(wn) ;where fwng = Pref t \ An for all n � 0. The word t is called the directiveword of  ̂#(t), and denoted by �( ̂#(t)). When the seed u0 is empty, one has ̂# =  # so that one obtains #-standard words. If u0 6= ", then any word  ̂#(t)is called #-standard with seed.Example 4.3.1. Let A = fa; b; cg, # be the involutory antimorphism exchang-ing a and b and �xing c, u0 = acbbc, and w = abc. Then ̂#(w) = � ̂#(ab)c�� = �� ̂#(a)b�� c�� = ��(acbbca)�b�� c��= �(acbbcaacbb)�c�� = acbbcaacbbcaacbcacbbcaacbbcaacb :
Proposition 4.3.2. Let s =  ̂#(�) be a #-standard word with a seed u0 oflength k. The following hold:1. A word w with jwj > k is a pre�x of s if and only if w� is a pre�x ofs,2. the set of all #-palindromic pre�xes of s is given by ̂#(Pref � n f"g) [ (PAL# \ Pref u0) ; (4.15)3. s is closed under #.Proof. If w� is a pre�x of s, then trivially w is a pre�x of s. Conversely,suppose that w is a pre�x of s with jwj > k, and let � = xt1t2 � � � tn � � � withx 2 A and ti 2 A, i > 0. Let us set u1 = (u0x)� =  ̂#(x) and for n > 1,un+1 =  ̂#(xt1 � � � tn), so that un+1 = (untn)�. We consider the least n such



4.3. Words generated by nonempty seeds 81that junj < jwj � jun+1j. By Lemma 3.1.11 one has w� = un+1 2 Pref s. Thisproves point 1.By the de�nition of #-standard words with seed, all the words in the set(4.15) are #-palindromic pre�xes of s. Conversely, let w be a #-palindromicpre�x of s. If jwj � k, then trivially w 2 PAL# \ Pref u0. If jwj > k, thenby following the same argument used for point 1, one has that there exists aninteger n > 0 such that w = w� = un 2  ̂#(Pref �). This proves point 2.Let w be a factor of s. Since there are in�nitely many #-palindromic pre�xesof s, there exists a #-palindromic pre�x u having w as a factor. Therefore, also�w is a factor of u and of s. This concludes the proof.By a generalization of an argument used in [27] for episturmian words, onecan prove the following:
Proposition 4.3.3. Any #-standard word s with seed is uniformly recur-rent.Proof. Let �(s) = xt1 � � � tn � � � be the directive word of s = limn!1 un, whereu1 = (u0x)� and un+1 = (untn)� for n > 0. The word s is trivially recurrent.We shall prove that the shifts of the �rst returns to any factor v of s arebounded by a constant. Let m be the smallest integer such that v 2 Fact(um).Let us set p = um and let �n be the maximal shift of all �rst returns to p inun, for all n > m. Since un+1 = (untn)�, one has jun+1j � 2junj + 2, wheresuch upper bound is reached if and only if un+1 = untn�tnun. This implies that�m+1 � jpj + 2. Moreover, for all n > m we have �n+1 � maxf�n; jpj + 2g.Indeed, let w be a �rst return to p in un+1 of maximal length, so that its shiftis �n+1. If w 2 Fact(un), then �n+1 = �n. Let us suppose that w is not afactor of un. We set un = �p = p�� and un+1 = �w� with �; �; � 2 A�. Thenj�j � j�j and j�j � j�j, otherwise w would be a factor of un. Therefore, asjun+1j � 2junj+ 2, we obtainjwj � jun+1j � 2j�j = jun+1j � 2junj+ 2jpj � 2jpj+ 2 ;so that �n+1 � jpj + 2. Thus in any case �n+1 � maxf�n; jpj+ 2g. As �m+1 �jpj+ 2, it follows that �n � jpj+ 2 for all n > m.Since v is a factor of um, the shifts of all �rst returns of v in s are upperlimited by jpj+ 2 = jumj+ 2.



82 Chapter 4. Extensions via involutory antimorphismsThe following result generalizes Proposition 4.1.11, and can be proved anal-ogously.
Proposition 4.3.4. If s is a #-standard word with seed and two letters ofA occur in�nitely often in �(s), then any pre�x of s is a left special factorof s.An in�nite word s 2 A! is called a #-word with seed if there exists a#-standard word t with seed such that Fact s = Fact t.De�ne the endomorphism �x of A� by setting�x(a) =  ̂#(xa) ̂#(x)�1for any letter a 2 A. From the de�nition, one has that �x depends on # andu0; moreover, �x(a) ends with �a for all a 2 A, so that any word of the setX = �x(A) is uniquely determined by its last letter. Thus X is a suÆx code,and �x is an injective morphism.Example 4.3.5. Let A, #, and u0 be de�ned as in Example 4.3.1, and let x = a.Then �a(a) =  ̂#(aa) ̂#(a)�1 = acbbcaacb ;�a(b) =  ̂#(ab) ̂#(a)�1 = acbbca ; (4.16)�a(c) =  ̂#(ac) ̂#(a)�1 = acbbcaacbc :To simplify the notation, in the following we shall often omit in the proofsthe subscript x from �x, when no confusion arises.
Theorem 4.3.6. Fix x 2 A and u0 2 A�. Let  ̂# and �x be de�ned as above.Then for any w 2 A�, the following holds: ̂#(xw) = �x( (w)) ̂#(x) :Proof. In the following we shall often use the property that if 
 is an endo-morphism of A� and v is a suÆx of u 2 A�, then 
(uv�1) = 
(u)
(v)�1.We will prove the theorem by induction on jwj. It is trivial that for w = "the claim is true since  (") = " = �("). Suppose that for all the words shorterthan w, the statement holds. For jwj > 0, we set w = vy with y 2 A.



4.3. Words generated by nonempty seeds 83First we consider the case jvjy 6= 0. We can then write v = v1yv2 withjv2jy = 0, so that ̂#(xv) =  ̂#(xv1yv2) =  ̂#(xv1)y� = ���y ̂#(xv1) ;for a suitable � 2 A�. Note that  ̂#(xv1) is the largest #-palindromic pre�x(resp. suÆx) followed (resp. preceded) by y (resp. �y) in  ̂#(xv). Therefore, ̂#(xvy) = ���y ̂#(xv1)y� =  ̂#(xv) ̂#(xv1)�1 ̂#(xv) : (4.17)By a similar argument one has: (vy) =  (v) (v1)�1 (v) : (4.18)By induction we have: ̂#(xv) = �( (v)) ̂#(x) ;  ̂#(xv1) = �( (v1)) ̂#(x) :Replacing in (4.17), and by (4.18), we obtain ̂#(xvy) = �( (v))�( (v1))�1�( (v)) ̂#(x)= �( (v) (v1)�1 (v)) ̂#(x)= �( (vy)) ̂#(x) ;which was our aim.Now suppose that jvjy = 0 and PAL# \ Pref(u0x)y�1 6= ;. Let �y be thelongest word in PAL# \Pref(u0x)y�1, that is the longest #-palindromic pre�xof u0x which is followed by y. Since jvjy = 0, one derives that the longest#-palindromic suÆx of  ̂#(xv)y is �y�yy, whence ̂#(xvy) = � ̂#(xv)y�� =  ̂#(xv)��1y  ̂#(xv) : (4.19)By induction, this implies ̂#(xvy) = �( (v)) ̂#(x)��1y �( (v)) ̂#(x) : (4.20)By using (4.19) for v = ", one has  ̂#(xy) =  ̂#(x)��1y  ̂#(x), and�(y) =  ̂#(xy) � ̂#(x)��1 =  ̂#(x)��1y :



84 Chapter 4. Extensions via involutory antimorphismsMoreover, since  (v) has no palindromic pre�x (resp. suÆx) followed (resp.preceded) by y one has  (vy) =  (v)y (v) : (4.21)Thus from (4.20) we obtain ̂#(xvy) = �( (v))�(y)�( (v)) ̂#(x)= �( (v)y (v)) ̂#(x)= �( (vy)) ̂#(x) :Finally we consider jvjy = 0 and PAL# \ Pref(u0x)y�1 = ;. In this case,since  ̂#(xv) has no #-palindromic suÆx preceded by �y (has no #-palindromicpre�x followed by y), we have ̂#(xvy) =  ̂#(xv)y� ̂#(xv) : (4.22)By induction we then obtain ̂#(xvy) =  ̂#(xv)y� ̂#(xv) (4.23)= �( (v)) ̂#(x)y��( (v)) ̂#(x) :In particular, if v = ",  ̂#(xy) =  ̂#(x)y� ̂#(x) ;so  ̂#(xy) ̂#(x)�1 =  ̂#(x)y� = �(y) :Then from (4.23) and (4.21) one derives ̂#(xvy) = �( (v))�(y)�( (v)) ̂#(x)= �( (v)y (v)) ̂#(x)= �( (vy)) ̂#(x) ;which completes the proof.Example 4.3.7. Let us refer to Example 4.3.1. We have w = abc, u0 = acbbc,and # de�ned by �a = b, �c = c. By the preceding theorem, one has ̂#(abc) = �a( (bc)) ̂#(a) :



4.3. Words generated by nonempty seeds 85Since  (bc) = bcb, �a(bcb) = �a(b)�a(c)�a(b), and  ̂#(a) = (u0a)� = acbbcaacb,by using (4.16) we obtain ̂#(abc) = acbbcaacbbcaacbcacbbcaacbbcaacb ;as already shown in Example 4.3.1.From Theorem 4.3.6, in the case that w is an in�nite word, we obtain:
Theorem 4.3.8. Let w 2 A! and x 2 A. Then ̂#(xw) = �x( (w)) ;i.e., any #-standard word s with seed is the image, by an injective mor-phism, of the standard episturmian word whose directive word is obtainedby deleting the �rst letter of the directive word of s.Proof. Let w 2 A!, t =  (w), and wn = Pref w\An for all n � 0. From Theo-rem 4.3.6, for all n � 0,  ̂#(xwn) = �( (wn)) ̂#(x). Since  (wn+1) =  (wn)�nwith �n 2 A+, one has �( (wn+1)) = �( (wn))�(�n). Hence,  ̂#(xwn+1) hasthe same pre�x of  ̂#(xwn) of length j�( (wn))j, which diverges with n. Sincelimn!1�( (wn)) = � ( (w)) ;the result follows.In the case of an empty seed, from Theorem 4.3.6 one has #(xw) = �x( (w)) #(x) = �x( (w))x� : (4.24)Moreover, one easily derives that�x(x) = x�; �x(y) = x�y� for y 6= x :When u0 = " and # = R, the morphism �x reduces to �x de�ned as�x(y) = xy for y 6= x and �x(x) = x. Since x� = x, from (4.24) one obtainsthe following formula due to Justin [34]: (xw) = �x( (w))x : (4.25)It is noteworthy that Theorem 4.3.6 provides an alternate proof of Theo-rem 4.1.2:



86 Chapter 4. Extensions via involutory antimorphismsProof of Theorem 4.1.2. It is suÆcient to observe that, in the case of anempty seed, x� = �#(x) and �x = �# Æ �x, so that by (4.24) and (4.25) onederives: #(xw) = (�# Æ �x)( (w))�#(x) = �#(�x( (w))x) = �#( (xw)) ;as desired.Our next goal is to prove a result analogous to Theorem 4.1.14 for wordsgenerated by nonempty seeds. However, because of the presence of an ar-bitrary seed, one cannot hope to prove exactly the same assertion; thus inTheorem 4.3.12 we shall prove that any suÆciently long left special factor ofa #-standard word with seed is a pre�x of it, and give an upper bound for theminimal length from which this occurs, in terms of the length of (u0x)�.In the following, we shall setu1 =  ̂#(x) = (u0x)� ;so that �x(a) = (u1a)�u�11 and j�x(a)j � ju1j+ 2 for any a 2 A.For any letter a, ua will denote (if it exists) the longest #-palindromic suÆx(resp. pre�x) of u1 preceded (resp. followed) by �a (resp. by a). One has thenu1 = �x(a)ua for any a such that ua is de�ned, and �x(a) = u1a� otherwise.
Lemma 4.3.9. Let X = �x(A). If w 2 X�, then u1 2 Pref(wu1).Proof. Trivial if w = ". We shall prove by induction that for all n � 1, ifw 2 Xn, then u1 2 Pref(wu1). Let w 2 X. Then there exists a 2 A such thatw = �(a) = (u1a)�u�11 . Thus wu1 = (u1a)�, so that the statement holds forn = 1.Let us suppose the statement is true for n, we will prove it for n + 1. Ifw 2 Xn+1, there exist a 2 A and v 2 Xn such that w = �(a)v. By induction,vu1 can be written as u1v0 for some v0 2 A�. Then one has wu1 = �(a)u1v0and, as shown above, u1 is a pre�x of �(a)u1, which concludes the proof.Recall (cf. [4]) that a pair (p; q) 2 A��A� is synchronizing for the code Xover the alphabet A if for all �; � 2 A�,�pq� 2 X� =) �p; q� 2 X� :
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Proposition 4.3.10. The pair ("; u1) is synchronizing for X = �x(A).Proof. Since X is a suÆx code, it suÆces to show that for any �; � 2 A�,�u1� 2 X� =) u1� 2 X� :This is trivial if � = ". Let us factorize �u1� by the elements of X. Then wecan write � = �0p and u1� = s�0, where �0; �0 2 X�, and ps = �(a) 2 X forsome letter a (see Figure 4.1). If p = ", then trivially u1� 2 X�. Suppose thenp 6= ", so that s =2 X.Since ps 2 X, it follows jsj � ju1j + 1. Let us prove that jsj � ju1j. Bycontradiction, suppose jsj = ju1j + 1. Then �(a) = ps = u1a�a and s = u1�a.Therefore ps = u1a�a = pu1�a, so that u1a = pu1. This implies a = p and u1 =ak for a suitable k > 0. Since a is not a #-palindrome, it follows u1 =2 PAL#, acontradiction.Thus one has u1 = sw for some w 2 Pref �0. By Lemma 4.3.9, u1 is a pre�xof �0u1; clearly, w is a pre�x of �0u1 too. Therefore w is a pre�x of u1, asjwj = ju1j � jsj. Thus u1 = w�s, and(u1a)� = �(a)u1 = psu1 = psw�s = pu1�s :Since p 6= ", by Lemma 3.1.12 one obtains �s = ". Hence u1� = �0 2 X�.
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λ′ ρ′p s

s̄φ(a) wFigure 4.1: Proposition 4.3.10In the following, if Z is a �nite subset of A�, we shall denote by Z! theset of all in�nite words which can be factorized by the elements of Z. As iswell known (cf. [4]) a word t 2 Z! has a unique factorization by means of theelements of Z if and only if Z is a code having �nite deciphering delay. ByLemma 4.3.9, the code X = �x(A) has the property that there exists an integern > 0 such that u1 2 Pref v for all v 2 Xn; from Proposition 4.3.10 it followsthat all pairs of Xn � Xn are synchronizing for X, so that X has a boundedsynchronization delay and therefore a �nite deciphering delay.
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Lemma 4.3.11. Let X = �x(A) and w = ru1azs 2 X�, with a; z 2 A andr; s 2 A�. If we set v0 = �x(a)�1u1az, then (r; v0s) is in X� � X� and it isan occurrence of �x(a) in w.
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a z
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r s
uy

v′φ(y)Figure 4.2: Lemma 4.3.11Proof. Let w 2 X� be such that w = ru1azs, with z 2 A. From Proposi-tion 4.3.10 we have that r and u1azs are in X�. Let y 2 A be a letter suchthat v = �(y)�1u1azs is in X� and set v0 = �(y)�1u1az. It is clear fromthe de�nition of � that either v0 = ", v0 = z or v0 = uyaz, where uy is thelongest #-palindromic suÆx of u1 preceded by �y. In the �rst two cases, it mustbe �(y) = u1a�, so that a = y; let then v0 = uyaz (see Figure 4.2). Sincev = v0s 2 X�, from Lemma 4.3.9 it follows that u1 is a pre�x of v0su1, so uya,whose length is less than ju1j, is a pre�x of u1. By de�nition, uy is a pre�x ofu1 followed by y, hence uyy = uya and a = y. Thus (r; v0s) 2 X� � X� is anoccurrence of �(a) in w.
Theorem 4.3.12. Let t =  ̂#(x�) be a #-standard word with seed. Thenthere exists an integer N � 0 such that any left special factor of t of lengthgreater than or equal to N is a pre�x of t.Proof. Set z =  (�) = z1z2 � � � zn � � � , where zi 2 A for all i � 1. FromTheorem 4.3.6 we have that t = �(z), so that t can be factorized uniquely ast = �(z1)�(z2) � � ��(zn) � � � 2 X! ;whereX = �x(A). We shall prove that each left special factor w of t longer than2 ju1j + 2 is also a pre�x of t. Since w is left special, there exist two di�erentoccurrences of w in t preceded by distinct letters, say a and b. Moreover, sincejwj > 2ju1j+ 2, we can writew = p�(zi+1 � � �zi+h)s = p0�(zj+1 � � � zj+k)s0 ; (4.26)



4.3. Words generated by nonempty seeds 89where �(zi) = rap, �(zj) = r0bp0, �(zi+h+1) = s�, and �(zj+k+1) = s0�0, with�; �0 2 A+ and i; j; h; k positive integers. Thus one can rewrite t ast = �(z1 � � � zi�1)raw��(zi+h+2 � � � ) = �(z1 � � � zj�1)r0bw�0�(zj+k+2 � � � ).Without loss of generality, we can suppose jpj � jp0j. From (4.26) and from thepreceding equation, we haverap0�(zj+1 � � � zj+k)s0��(zi+h+2 � � � ) 2 X!.Since jwj > 2 ju1j+ 2 and p0 � ju1j+ 1, one has j�(zj+1 � � � zj+k)s0j > ju1j+ 1,so that from Lemma 4.3.9, u1 is a pre�x of �(zj+1 � � �zj+k)s0�0u1 and then of�(zj+1 � � � zj+k)s0.By Proposition 4.3.10, (p0; �(zj+1 � � � zj+k)s0) is a synchronizing pair for X,so that rap0 is in X�. If p0 6= ", then r0bp0 is the only word of the code X havingp0 as a suÆx (recall that any codeword of X is determined by its last letter);hence it should be a suÆx of rap0, which is clearly a contradiction as a 6= b.Then p0 = ", that implies also p = ". Thus, we can writet = �(z1 � � � zi)w��(zi+h+2 � � � ) = �(z1 � � � zj)w�0�(zj+k+2 � � � ),and zi 6= zj , as w is left special. Sincew = �(zi+1 � � � zi+h)s = �(zj+1 � � � zj+k)s0is longer than 2 ju1j + 2, and jsj; js0j � ju1j + 1, there exists a letter c 2A such that u1c is a pre�x of both �(zi+1 � � �zi+h) and �(zj+1 � � � zj+k). ByLemma 4.3.11 one has �(zi+1 � � � zi+h) = �(c)� and �(zj+1 � � � zj+k) = �(c)�0with �; �0 2 X�, so that zi+1 = zj+1 = c since X is a code.Let l be the greatest integer such that zi+m = zj+m for all m � l. Thenboth zizi+1 � � � zi+l and zjzj+1 � � � zj+l = zjzi+1 � � � zi+l are factors of z. Sincezi 6= zj, zi+1 � � �zi+l is a left special factor of the episturmian word z, thus apre�x of z, i.e., zi+1 � � � zi+l = z1 � � � zl. Hence �(zi+1 � � � zi+l) is a pre�x of t.Now let us suppose that w0 = �(zi+l+1 � � � zi+h)s = �(zj+l+1 � � � zj+k)s0 isstrictly longer than u1. By Lemma 4.3.9, there exists a letter d such that u1dis a pre�x of w0, so, by applying Lemma 4.3.11 to w0� 2 X� and to w0�0 2 X�one derives �(zi+l+1) = �(zj+l+1) = �(d), contradicting the fact that i+ l was



90 Chapter 4. Extensions via involutory antimorphismsthe largest of such indexes. Then jw0j � ju1j. By Lemma 4.3.9, u1 is a pre�xof w0�u1. Thus w0 is a pre�x of u1 and w = �(zi+1 � � � zi+l)w0 is a pre�x of�(zi+1 � � � zi+l)u1 = �(z1 � � � zl)u1.Let m be an integer such that ju1j � j�(zl+1 � � � zl+m)j. By Lemma 4.3.9, u1is a pre�x of �(zl+1 � � � zl+m) and �(z1 � � �zl)u1 is a pre�x of �(z1 � � � zl+m) whichis a pre�x of t. In conclusion, we obtain that w is a pre�x of t.We observe that the proof of the preceding theorem shows that for a #-standard word s with seed u0, all left special factors of length greater than orequal to N = 2ju1j+ 3 are pre�xes of s. However, this bound is not tight. Infact, for instance, if u0 = " then N = 5, whereas from Theorem 4.1.14 one hasthat all left special factors of a #-standard word s, having length at least 3, arepre�xes of s.
4.4 The class SW# and #-episturmian wordsAnother extension of episturmian words can be obtained by introducing in-�nite words w (called standard #-episturmian) satisfying the two followingrequirements:1. w is closed under #,2. any left special factor of w is a pre�x of w.A word is called #-episturmian if there exists a standard #-episturmian wordhaving the same set of factors.In the following we shall denote by Epi# the class of #-episturmian wordsover A, and by SEpi# the set of standard #-episturmian words. When # = R,EpiR is just the class of episturmian words.More generally, it will be useful to introduce for any N � 0 the familySW#(N) of all in�nite words w which are closed under # and such that everyleft special factor of w whose length is at least N is a pre�x of w. Moreover, byW#(N) we denote the class of all in�nite words having the same set of factorsas some word in SW#(N). Thus SW#(0) = SEpi# and W#(0) = Epi#. ByTheorem 4.1.14, the class of #-standard words is included in SW#(3).
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Proposition 4.4.1. An in�nite word s is in W#(N) if and only if s is closedunder # and it has at most one left special factor of any length greaterthan or equal to N .Proof. The \only if" part follows immediately from the fact that Fact s =Fact t for some t 2 SW#(N). Let us prove the \if" part. Let us �rst supposethat s has in�nitely many left special factors. Hence s has exactly one leftspecial factor for each length n � N , say vn. Then for any n � N , vn is apre�x of vn+1, so that t = limn!1 vnis a well-de�ned in�nite word. Trivially Fact t � Fact s; thus to prove thatFact t = Fact s it suÆces to show that any given factor w of s with jwj � N isa factor of some vn, n � N . Since s is closed under #, �w is a factor of s. Let pbe a pre�x of s ending in �w. Since s is recurrent, we can consider a pre�x ofs of the kind pup for some u 2 A�. Then there exists v 2 A� such that pv is aright special factor of s, for otherwise one would have s = (pu)!, contradictingthe fact that s has in�nitely many left special factors. Hence �wv is a rightspecial factor of s, so that �vw is a left special factor of s. Since jwj � N , wehave j�vwj � N and therefore �vw 2 Pref t; thus Fact t = Fact s as desired. Thisimplies that any left special factor of t is also left special in s. It follows thatt 2 SW#(N).Now suppose that s has only �nitely many left special factors. As is wellknown, this implies that s is eventually periodic, and hence periodic since it isrecurrent. Let then w be the longest left special factor of s, and let s = �ws0for some � 2 A� and s0 2 A!. Then t = ws0 has the same set of factors as s.This implies that t is a word of SW#(N).As an immediate consequence, one obtains:
Corollary 4.4.2. An in�nite word is #-episturmian if and only if it isclosed under # and it has at most one left special factor of each length.
Remark. In the case of a binary alphabet A = fa; bg, by de�nition any words 2 Epi# has a subword complexity �s such that �s(n) � n+ 1 for all n � 0.It follows that any word in Epi# is either Sturmian or periodic. In particular,if # = E Æ R, then the word s cannot be Sturmian, since any Sturmian word



92 Chapter 4. Extensions via involutory antimorphismshas either aa or bb as a factor, but not both, whereas s, being closed under #,does not satisfy this requirement. Thus Epi# contains only the two periodicwords (ab)! and (ba)!, whereas EpiR contains all Sturmian words.Trivially, we have SW#(N) � SW#(N +1). Let us denote by SW# the classof words which are in SW#(N) for some N � 0, i.e.,SW# = [N�0SW#(N) :One of the main results is the proof that SW# coincides with the class of #-standard words with seed (cf. Theorem 4.4.6). As a corollary, we will derivethat any standard #-episturmian word is a #-standard word with seed.For the sake of clarity, we report in Table 4.1 the de�nitions and the nota-tions of the di�erent classes of words introduced so far. We consider only thestandard case, since the \non-standard" words of a given class are de�ned bythe property of having the same set of factors as a standard one.Table 4.1: Summary of the generalizations of standard episturmian words
Name Symbol Definition#-standard with seed SW# a Generated by iterated #-palin-drome closure, starting from anyseed#-standard Generated by iterated #-palin-drome closure, starting from "Standard #-episturmian SEpi# = SW#(0) Closed under #, and all left spe-cial factors are pre�xesSW#(N) Closed under #, and all left spe-cial factors of length at least Nare pre�xesaAfter Theorem 4.4.6In order to prove the main theorem, we need some preliminary results.
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Lemma 4.4.3. Let w 2 SW#(N) and u be a #-palindromic factor of w suchthat juj � N . Then the leftmost occurrence of u in w is a median factorof a #-palindromic pre�x of w.Proof. By contradiction, suppose that w = �xvu�v�yw0, for some letters x; y 2 Awith x 6= y, and words �; v 2 A�, w0 2 A!. Since w is closed under #, bothxvu�v and yvu�v are factors of w, so that vu�v is a left special factor of w oflength jvu�vj � N , and hence a pre�x of it. This leads to a contradiction,because we have found an occurrence of u in w before the leftmost one.
Proposition 4.4.4. Any word in SW# has in�nitely many #-palindromicpre�xes.Proof. Let w 2 SW#(N) for a suitable N � 0, and u be a pre�x of w, withjuj � N . We shall prove that w has a #-palindromic pre�x whose length is atleast juj, from which the assertion will follow.Let ��u (� 2 A�) be the pre�x of w ending with the �rst occurrence of �u.Since u is a pre�x of w, one has ��u = u� for a suitable � 2 A�. If � = ", then� = " and u = �u, so that ��u = u is the desired #-palindromic pre�x.Then suppose � = x1x2 � � �xn with xi 2 A for i = 1; : : : ; n. As j�j = j�j,one has � = yn : : : y1 for some yi 2 A, i = 1; : : : ; n. Since � 6= ", one has u 6= �u,so that �u is not left special in w. Hence y1�u is the only left extension of �u in w.As w is closed under #, u�y1 is the only right extension of u in w. This impliesy1 = �x1.Since ��u = yn � � �y2�x1�u ends with the �rst occurrence of �u (and hence withthe �rst occurrence of �x1�u), one can apply the same argument as above to thepre�x ux1, in order to show that y2 = �x2. Continuing this way, one eventuallyobtains yi = �xi for all i = 1; : : : ; n, so that � = �� and ��u is again the desired#-palindromic pre�x of w.For a (�xed but arbitrary) word w 2 SW# we denote by (Bn)n�1 the se-quence of all #-palindromic pre�xes of w, ordered by increasing length. More-over, for any i > 0 let xi be the unique letter such that Bixi is a pre�x of w.The in�nite word x = x1x2 � � �xn � � � will be called the subdirective word of w.The proof of Proposition 4.4.4 shows that for any i > 0, Bi+1 coincides withthe pre�x of w ending with the �rst occurrence of �xiBi.



94 Chapter 4. Extensions via involutory antimorphismsThe next lemma shows that, under suitable circumstances, a stronger rela-tion holds.
Lemma 4.4.5. Let w 2 SW#(N). With the above notation, let n > 1 besuch that xn = xk for some k < n with jBkj � N�2. Then Bn+1 = (Bnxn)�.Proof. Let k be the greatest integer satisfying the hypotheses of the lemma.Let us �rst prove that Q = �xnBkxn does not occur in Bn. By contradiction,consider the rightmost occurrence of Q in Bn, i.e., let Q� be a suÆx of Bn suchthat Q does not occur in any shorter suÆx. If j�j � jBkj, then one can easilyshow that the suÆx Q�xn of Bnxn is a #-palindrome, which is absurd becauseits length is jQ�xnj > jQj.Suppose then Q� = �xnBkxnv�xnBk for some v 2 A�. Since Q� is a suÆxof Bn, one has that ��Q = Bkxn�vQ is a pre�x of Bn (see Figure 4.3). Nowthere is no proper suÆx u of �v such that uQ is left special in w. Indeed,if such u existed, then uQ would be a pre�x of Bn, and so Q�u would bea suÆx of Bn, contradicting (as juj < j�j) the fact that Q� begins with therightmost occurrence of Q in Bn. Hence every occurrence of Q in w is precededby �v. Since �xn = v�xnBkxn is a factor of w, one obtains v = �v, so thatQ�xn = �xnBkxnv�xnBkxn is a #-palindromic suÆx of Bnxn longer than Q, acontradiction.Thus Q does not occur in Bn. Since Q is the longest #-palindromic suÆxof Bnxn, we can write w = Bnxnw0 = sQw0 ;where (s; w0) is the leftmost occurrence of Q in w. By Lemma 4.4.3, sQ�s =(Bnxn)� is a pre�x of w. From this one derives Bn+1 = (Bnxn)�.
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Figure 4.3: Lemma 4.4.5
Theorem 4.4.6. Let s 2 A!. The following conditions are equivalent:



4.4. The class SW# and #-episturmian words 951. s 2 SW#,2. s has in�nitely many #-palindromic pre�xes, and if (Bn)n>0 is the se-quence of all its #-palindromic pre�xes ordered by increasing length,there exists an integer h such thatBn+1 = (Bnxn)� ;for all n � h, for a suitable letter xn,3. s is a #-standard word with seed.Proof. 1.)2. Let s 2 SW#(N), x1x2 � � �xn � � � be its subdirective word, and(Bi)i�0 the sequence of all #-palindromic pre�xes of s. We consider the minimalinteger p such that jBpj � N � 2. We set x[p] = xpxp+1 � � �xn � � � 2 A!, andtake the minimalm such that alph(xp � � �xp+m) = alphx[p]. Let h = p+m+1.Then for all n � h, there exists k with p � k � p+m such that xk = xn. Sincek � p one has jBkj � N � 2, so that by Lemma 4.4.5, Bn+1 = (Bnxn)�.2.)3. Let  ̂#(�) be the #-standard word with seed u0 = Bh and directiveword � = xhxh+1 � � �xn � � � . One has then  ̂#(�) = s.3.)1. This follows from Theorem 4.3.12.Let us set W# = [N�0W#(N) :The following corollary is a straightforward consequence of the preceding the-orem.
Corollary 4.4.7. W# coincides with the set of all #-words with seed.Let s 2 SW#(N). We call critical integer h of s the minimal integer pwith the property that for all n � p there exists k < n such that jBkj � N � 2and xn = xk. We observe that the proof of Theorem 4.4.6 shows that forany given s 2 SW#(N) having critical integer h, one has that for all n � h,Bn+1 = (Bnxn)�.
Corollary 4.4.8. Any standard #-episturmian word is a #-standard wordwith seed. Moreover, if s 2 SEpi# and x = x1x2 � � �xn � � � is its subdirectiveword, then the critical integer h of s is equal to the minimal integer p suchthat alphx = alph(x1 � � �xp�1).



96 Chapter 4. Extensions via involutory antimorphismsProof. It is suÆcient to observe that a standard #-episturmian word s is inSW#(0) because all its left special factors are pre�xes of s. Therefore by The-orem 4.4.6, s is a #-standard word with seed Bh. Since for all n > 0 one hasjBnj � N � 2, it follows trivially that h = p.
Proposition 4.4.9. Let s be a #-standard word with seed and h be itscritical integer. Any pre�x p of s of length > jBhj has a #-palindromicsuÆx with a unique occurrence in p.Proof. Since jpj > jBhj there exists n � h such thatjBnxnj � jpj < jBn+1j ;with Bn+1 = (Bnxn)� by the de�nition of h.We can write Bnxn = vQ, where Q is the longest #-palindromic suÆx ofBnxn, which is nonempty, and, as shown in the proof of Lemma 4.4.5, has aunique occurrence in Bnxn. Since Bn+1 = vQ�v, we can write p = vQ�v2, wherev = v1v2 for some v1; v2 2 A� and jv2j < jvj. Now v2Q�v2 is a #-palindromicsuÆx of p which has a unique occurrence in p, for otherwise Q would berepeated in Bnxn. This concludes the proof.Let us observe that in the case of a standard episturmian word s, a strongerresult holds: any pre�x p of s has a palindromic suÆx which is unrepeated inp (cf. [27]).
Proposition 4.4.10. Let s be a #-standard word with seed, and h be itscritical integer. For any #-palindromic factor P of length jP j > jBhj,every �rst return to P in s is a #-palindrome.Proof. Let P be a #-palindromic factor of s, with jP j > jBhj. Let u 2 Fact s bea �rst return to P , i.e., u = P� = �P , �; � 2 A�, and the only two occurrencesof P in u are as a pre�x and as a suÆx of u. If jP j > j�j, then the pre�x P ofu overlaps with the suÆx P in u and this implies, as is easily to verify, that uis a #-palindrome. Then let us suppose that u = PvP with v 2 A�.Now we consider the �rst occurrence of u or of �u in s. Without loss ofgenerality, we may suppose that s = �us0, and �u does not occur in the pre�x ofs having length j�uj � 1. Let Q be the #-palindromic suÆx of �u of maximallength. If jQj > juj, then we have that �u occurs in �u before u, which is



4.5. Structure of #-episturmian words 97absurd. Then suppose jQj � juj. If juj > jQj > jP j, then one contradicts thehypothesis that u is a �rst return to P . If jQj = jP j, then Q = P has morethan one occurrence in �u. Since j�uj > jBhj, one reaches a contradiction byProposition 4.4.9. Thus the only remaining possibility is Q = u, i.e., u is a#-palindrome.In the case of episturmian words, one has the stronger result that every �rstreturn to a palindrome is a palindrome. This was proven in [2] (see also [12]).However this cannot be extended to #-episturmian words. For instance, let sbe the standard #-episturmian word (abaca)!, where #(a) = a and #(b) = c.Then aba is a �rst return to a in s, but it is not a #-palindrome.
4.5 Structure of #-episturmian wordsIn this section we shall analyse in detail the class of #-episturmian words, alsoby showing some relations with the other classes introduced so far.From Corollary 4.4.8 and Theorem 4.3.6, one derives the following
Proposition 4.5.1. Let s be a standard #-episturmian word, h be its criticalinteger, and x = x1x2 � � �xn � � � be the subdirective word of s. Then s isthe image, by an injective morphism, of the standard episturmian word twhose directive word is xh+1xh+2 � � �xn � � � .However, this can be improved. In fact, the next results will show (cf. Theo-rem 4.5.5) that every s 2 SEpi# is a morphic image, by an injective morphism,of the standard episturmian word whose directive word is precisely x, the sub-directive word of s.In the following we shall denote by P#, or simply P, the set of unbordered#-palindromes. We remark that P is a bipre�x code, i.e., none of its elementsis a proper pre�x or suÆx of other elements of P.
Proposition 4.5.2. PAL�# = P�.Proof. Since P � PAL#, one has P� � PAL�#. Thus it suÆces to showthat every nonempty #-palindrome admits a factorization in unbordered #-palindromes, i.e., is in P�. Note that such a factorization is necessarily unique,as P is a code.



98 Chapter 4. Extensions via involutory antimorphismsLet w 2 PAL#. If jwj = 1, then clearly w is unbordered, so that w 2 P.Let then jwj > 1 and suppose, by induction, that every #-palindrome which isshorter than w can be factorized in elements of P. If w is unbordered, thenwe are done. Let then u be the longest proper border of w. Since w is a#-palindrome, so is u.If jwj � 2juj, then w = uvu for some v 2 PAL#, so that both u; v 2 P� byinduction. This implies the assertion in this case.If jwj < 2juj, then there exists a border � of u such that w = u1��u1, whereu = u1� = ��u1. By induction, both � and u = u1� are in P�; since P is abipre�x code, this implies that u1 = u��1 is in P� too. Hence w = u1u 2 P�as requested.Example 4.5.3. Let A = fa; b; c; d; eg and # be the antimorphism de�ned by�a = a, �b = c, and �d = e. The word acbdaaecba:abaca 2 PAL2# can be uniquelyfactorized in unbordered #-palindromes as:a:cb:daae:cb:a:a:bac:a :We remark that from the preceding proposition one derives that any stan-dard #-episturmian word s admits a (unique) in�nite factorization in elementsof P, i.e., one can writes = �1�2 � � ��n � � � ; with �i 2 P for all i > 0 : (4.27)
Lemma 4.5.4. Let s 2 SEpi#, with s = �1�2 � � ��n � � � as above. Let u bea nonempty and proper pre�x of �n, for some n > 0. Then u is not rightspecial in s.Proof. By contradiction, assume that u is a right special factor of s. Thenit is not left special; indeed, otherwise it would be a #-palindrome since s is#-episturmian, and this is clearly absurd as �n 2 P.Consider now the smallest integer h such that u is a pre�x of �h. If h = 1,then u would be a #-palindrome, which is again a contradiction. Let thenh > 1. Since u is not left special, �ah�1u is its unique left extension in s. Onecan keep extending to the left in a unique way, until one gets a left specialfactor, or reaches the beginning of the word. In either case, the factor q ofs that one obtains is a pre�x of s. Moreover it is right special in s, as every



4.5. Structure of #-episturmian words 99occurrence of the right special factor u extends to the left to q. Hence �q is aleft special factor of s, and then a pre�x of s. Thus q is a #-palindrome, andtherefore it begins with �u. One has jqj � 2juj, for otherwise there would bea nonempty word in Pref u \ Su� �u, that is, a nonempty #-palindromic pre�xof u, which contradicts the hypothesis that u is a proper pre�x of �h. Thusq = �uq0u for some q0 2 PAL#.We have �1 � � ��h�1 2 P� and, by Proposition 4.5.2, q0 2 P�. Since P is abipre�x code, this implies �1 � � ��h�1(q0)�1 2 P�, i.e., q0 = �h0 � � ��h�1 for someh0 � h (if h0 = h, then q0 = "). Then �1 � � ��h0�1 has �u as a suÆx. As �u hasno nonempty #-palindromic suÆxes, it is a proper suÆx of �h0�1, which thenbegins in u, contradicting the minimality of h.
Theorem 4.5.5. Let s 2 A! be a standard #-episturmian word, � be itssubdirective word, and B = alph�. There exists an injective morphism� : B� ! A� such that s = �( (�)) and �(B) � P.Proof. We can assume that s can be factorized as in (4.27). For any n � 0,let an be the �rst letter of �n. We shall prove that if n;m � 0 are such thatan = am, then �n = �m.Let u be the longest common pre�x of �n and �m, which is nonempty asan = am. By contradiction, suppose �n 6= �m. Then, as P is a bipre�x code,u must be a proper pre�x of both �n and �m, so that there exist two distinctletters bn; bm such that ubn is a pre�x of �n and ubm is a pre�x of �m. Henceu is a right special factor of s, but this contradicts the previous lemma.We have shown that for any n > 0, �n is determined by its �rst letter an.Thus, letting C = fan j n > 0g � A ;it makes sense to de�ne an injective morphism � : C� ! A� by setting �(an) =�n for all n > 0. The wordt = ��1(s) = a1a2 � � �an � � � 2 C!has in�nitely many palindrome pre�xes, each being the inverse image of a #-palindromic pre�x of s. Indeed, if �1 � � ��n is a #-palindromic pre�x of s, by theuniqueness of the factorization over P one obtains �i = �n+1�i for i = 1; : : : ; n;



100 Chapter 4. Extensions via involutory antimorphismsconversely, if w 2 PAL, then trivially �(w) 2 PAL#. Hence t is closed underreversal.Let w be a left special factor of t, and let i; j be such that ai 6= aj andaiw; ajw 2 Fact t. Then �ai�(w); �aj�(w) 2 Fact s, so that �(w) is a left specialfactor of s, and hence a pre�x of it. Again by the uniqueness of the factorizationof s over the pre�x code P, one derives w 2 Pref t. Therefore t is a standardepisturmian word over C.Let � = x1x2 � � �xn � � � , and let Bn = �(a1) � � ��(arn) be the n-th #-palin-dromic pre�x of s for any n > 1. Then, as shown above, a1 � � �arn is exactly then-th palindromic pre�x of t. Since the only word occurring in the factoriza-tion (4.27) and beginning with xn is �(xn), we have Bn�(xn) 2 Pref s, so thatxn = arn+1 for all n > 1. This proves that the directive word of t is exactly �,and hence C = B.
Corollary 4.5.6. A standard #-episturmian word s is #-standard if andonly if s = �#(t) for some t 2 A!.Proof. If s is #-standard, then by Theorem 4.1.2 there exists a standard epis-turmian word t such that s = �#(t). Conversely, if t 2 A! and s = �#(t),then, since �#(a) 2 P for any a 2 A, by the uniqueness of the factorizationover P one has that �# is the morphism � considered in the preceding theo-rem. Thus t = ��1# (s) is a standard episturmian word and s is #-standard byTheorem 4.1.2.
Proposition 4.5.7. Let � : B� ! A� be an injective morphism such that1. �(x) 2 PAL# for all x 2 B,2. alph�(x) \ alph�(y) = ; if x; y 2 B and x 6= y,3. j�(x)ja � 1 for all x 2 B and a 2 A.Then, for any standard episturmian word t 2 B!, s = �(t) is a standard#-episturmian word.Proof. From the �rst condition one obtains that � sends palindromes into#-palindromes, so that s has in�nitely many #-palindromic pre�xes, and istherefore closed under #.



4.5. Structure of #-episturmian words 101Let w be a nonempty left special factor of s. Suppose �rst that w is aproper factor of �(x) for some x 2 B, and is not a pre�x of �(x). Let a bethe �rst letter of w. By the second condition, �(x) is the only word in �(B)containing the letter a; by condition 3, a occurs exactly once in �(x). Since ais not a pre�x of �(x), it is always preceded in s by the letter which precedesa in �(x). Hence a is not left special, a contradiction.Thus we can write w as w1�(u)w2, where w1 is a proper suÆx of �(x1)and w2 is a proper pre�x of �(x2), for some suitable x1; x2 2 B such thatx1ux2 2 Fact t. One can prove that w1 = " by showing, as done above, thatotherwise its �rst letter, which would not be a pre�x of �(x1), could not beleft special in s.Therefore w = �(u)w2. Reasoning as above, one can prove that if w2 6= ",then w is not right special, and more precisely that each occurrence of w canbe extended on the right to an occurrence of �(ux2). Since w is left special ins, so is �(ux2).Without loss of generality, we can then suppose w = �(u). Since � isinjective, u is uniquely determined. As w is left special in s, there exist twoletters a; b 2 A, a 6= b, such that aw; bw 2 Fact s. Hence there exist two(distinct) letters xa; xb 2 B such that xau; xbu 2 Fact t. Then u is a left specialfactor of t and hence a pre�x of t, so that w = �(u) is a pre�x of s.Example 4.5.8. Consider the standard Sturmian wordt = aabaaabaaabaab � � �having the directive word (aab)!. LetA = fa; b; c; d; eg, and # be the involutoryantimorphism de�ned by �a = b, �c = c, �d = e. If � is the morphism � : fa; bg� !A� de�ned by �(a) = acb and �(b) = de, then the words = �(t) = acbacbdeacbacbacbde � � �is a standard #-episturmian word. We observe that s is not #-standard, sinceit does not begin with ab = a�.
Remark. Any morphism satisfying the three conditions in the statement ofProposition 4.5.7 is such that �(x) 2 P for any letter x. However there ex-ist standard #-episturmian words for which the morphism � given by The-



102 Chapter 4. Extensions via involutory antimorphismsorem 4.5.5 does not satisfy such conditions. For instance, the standard #-episturmian word s = (abaca)!, with �a = a and �b = c, is given by s = �(t),where t =  (aba!), �(a) = a, and �(b) = bac.We say that a subset B of the alphabet A is #-skew if B \ #(B) � PAL#,that is, if x 2 B; x 6= �x =) �x =2 B : (4.28)
Proposition 4.5.9. Let s be a standard #-episturmian word and � be itssubdirective word. Then B = alph� is #-skew.Proof. We can factorize s as in (4.27). By Theorem 4.5.5, it suÆces to showthat if �n = xw�x for some n > 0 and w 2 A�, then �k does not begin with �x, forany k > 0. By contradiction, let k be the smallest integer such that �x 2 Pref �k.Without loss of generality, we can assume n < k. By Lemma 4.5.4, no suÆx ofw�x is a left special factor of s. Hence every occurrence of �x in s is preceded byxw (or by a proper suÆx of it, if the beginning of the word is reached). Firstsuppose that �k is preceded in s by xw. Then, since w 2 PAL# � P� and P isa bipre�x code, one has w = �k0 � � ��k�1 for some k0 � k. Thus �k0�1 ends in xand therefore begins with �x, contradicting the minimality of k.If �1 � � ��k�1 2 Su� w, from n < k it follows that �n = xw�x is a properfactor of itself, which is trivially absurd.A #-standard word s can have left special factors which are not pre�xesof s. Such factors have length at most 2, by Theorem 4.1.14. For instance,consider the #-standard word s with # = E Æ R and �(s) = (ab)!. One hass = abbaababbaabbaab � � � . As one easily veri�es, b and ba are two left specialfactors which are not pre�xes. Hence in general, a #-standard word is notstandard #-episturmian.The next proposition gives a characterization of #-standard words whichare standard #-episturmian.
Proposition 4.5.10. A #-standard word s is standard #-episturmian if andonly if B = alph(�(s)) is #-skew.Proof. Let s be a #-standard word such that B is #-skew. By Theorem 4.1.2,one has s = �#(t), where t =  (�(s)) is a standard episturmian word. The



4.5. Structure of #-episturmian words 103morphism �# satis�es condition 1 in Proposition 4.5.7 by de�nition. By (4.28),one easily derives that the restriction of �# to alph t = B satis�es also thesecond statement of Proposition 4.5.7, so that s = �#(t) is a standard #-episturmian word.The converse is a consequence of Proposition 4.5.9, as the subdirective wordof a #-standard word s is �(s).Example 4.5.11. Let A = fa; b; c; d; eg, � = (acd)!, and # be de�ned by �a = b,�c = c, and �d = e. The #-standard word  #(�) = abcabdeabcaba � � � is standard#-episturmian.Let us observe that in general a standard #-episturmian word is not a #-standard word. A simple example is given by the word s = (abaca)!, where #is the antimorphism which exchanges b with c and �xes a. One easily veri�esthat " and a are the only left special factors of s, so that s is standard #-episturmian. However (cf. Proposition 3.2.2) s is not #-standard, since ab is apre�x of s, but (ab)� = abca is not. Another example is the word s consideredin Example 4.5.8: s is standard #-episturmian, but it is not #-standard becauseits �rst nonempty #-palindromic pre�x is acb and not ab = a�.Although neither of the two classes (#-standard and standard #-episturmianwords) is included in the other one, the following relation holds.
Proposition 4.5.12. Every #-standard word is a morphic image, under aliteral morphism, of a standard #̂-episturmian word, where #̂ is an exten-sion of # to a larger alphabet.Proof. Let s =  #(�) be a #-standard word, B � A be the set of lettersoccurring in �, and A0 = A n PAL#. Moreover, let us setC = fc 2 B \ A0 j 9r 2 (B n fc; �cg)� : r�c 2 Pref �g ;i.e., let C be the set of letters c occurring in � and such that �c occurs beforethe �rst occurrence of c. If C = ;, then by the previous proposition s is astandard #-episturmian word, so that the assertion is trivially veri�ed. Let usexplicitly note that if c 2 C, then �c =2 C.Suppose then C nonempty, and let C 0 = fc0 j c 2 Cg and Ĉ = fĉ j c 2 Cgbe two sets having the same cardinality as C, both disjoint from A. One can



104 Chapter 4. Extensions via involutory antimorphismsthen naturally de�ne the bijective map ' : B ! (BnC)[C 0 such that '(a) = aif a =2 C, and '(a) = a0 otherwise. Set Â = A[C 0[Ĉ, and de�ne an involutoryantimorphism #̂ over Â by setting #̂jA = # and #̂(c0) = ĉ for any c0 2 C 0.Extending ' to a morphism from B� to Â�, it makes sense to consider thein�nite word �̂ = '(�) over Â. Thus we can de�ne as well the #̂-standardword ŝ directed by �̂. Since alph �̂ is #̂-skew, by the previous proposition ŝis also #̂-episturmian.By Theorem 4.1.2, one has s = �#( (�)) and ŝ = �#̂( (�̂)). Since ' isinjective on B, it follows  (�̂) = '( (�)), so thatŝ = �#̂('( (�))) : (4.29)Let g : Â� ! A� be the literal morphism de�ned as follows:gjC0 = '�1; gjĈ = # Æ '�1 Æ #̂; and gjA = id ;i.e., let g(a) = a if a 2 A, and for all c 2 C, let g(c0) = c and g(ĉ) = �c. Wewant to show that g(ŝ) = s = �#( (�)). In view of (4.29), it suÆces to provethat g Æ �#̂ Æ ' = �# over B. Indeed, by the de�nitions, if c 2 C theng(�#̂('(c))) = g(c0ĉ) = c�c = �#(c) ;whereas if a 2 B n C, theng(�#̂('(a))) = g(a�) = a� = �#(a) :Example 4.5.13. Let A = fa; bg, # = E Æ R (i.e., �a = b), and s be the #-standard word having the directive sequence � = (ab)!, so thats = abbaababbaabbaab � � � :In this case A0 = A = B, C = fbg, C 0 = fb0g, and Ĉ = fb̂g. We set c = b0 andd = b̂, so that Â = fa; b; c; dg, #̂(a) = b, and #̂(c) = d. The morphism ' inthis case is de�ned by '(a) = a and '(b) = c. Hence �̂ = '(�) = (ac)!. The#̂-standard (and standard #̂-episturmian) word ŝ directed by �̂ isŝ = abcdababcdabcdabab � � � :The literal morphism g is de�ned by g(a) = g(d) = a, and g(b) = g(c) = b.One has g(ŝ) = s.



Chapter 5

Conclusions

5.1 SummaryThis work is about Sturmian words and their generalizations, an importanttopic in combinatorics on words.Among other well known notions, we have de�ned the fractional root zw ofa word w, that is, the pre�x of w whose length is the minimal period �w of w.Another new fundamental notion is that of #-palindromes, i.e., �xed points ofan involutory antimorphism # of the free monoid of words A�.We have given an analysis of the periodical structure of factors of Sturmianwords, which has led to two new characterizations, showing that the propertyof being Sturmian (or not) for a �nite word is completely determined by itsfractional root:1. w 2 A+ is Sturmian if and only if zw is standard (Theorem 2.2.3).2. w 2 A+ is Sturmian if and only if jzwj = Rz2w + 1 (Theorem 2.2.8).Both characterizations naturally produce linear-time algorithms for the recog-nition of �nite Sturmian words (Section 2.3), which is an important problemalso for matters of discrete geometry and computer vision.As a byproduct, the following formula counting the number p(n) of primi-tive Sturmian words of any length n � 2 is found (Proposition 2.2.12):p(n) = nXi=1(n+ 1� i)�(i)�Xdjnd6=n d�(d) :



106 Chapter 5. ConclusionsWe have then focused on the set St\PAL of Sturmian palindromes, show-ing that a Sturmian palindrome is necessarily a median factor of a central word(Corollary 2.4.2) having the same minimal period (Theorem 2.4.13). Amongother noteworthy structural results, we have proved that a palindrome w isSturmian if and only if �w = Rw + 1 (Theorem 2.4.18), after a similar charac-terization for central words (Theorem 2.4.16).A formula for the enumeration function g(n) of Sturmian palindromes hasbeen found for all n � 0: g(n) = 1 + dn=2e�1Xi=0 �(n� 2i)(see Theorem 2.5.1). This has allowed to prove that the asymptotic densityof central words in St \ PAL vanishes (Proposition 2.5.5), and so does theasymptotic density of Sturmian palindromes in St. (Proposition 2.5.7).Next, we have introduced the important pseudopalindrome closure oper-ators. We have proved several properties linking #-palindrome closure andperiodical structure. For instance, given any w 2 A�, the minimal periods ofthe right closure w� and of the left closure w	 coincide (Proposition 3.1.4),and are the same if and only if zw is the product of two #-palindromes (Theo-rem 3.1.6).The iteration of palindrome closure operators produces standard Sturmianwords, and more generally standard episturmian words. The properties of thefactors of such words, in relation to palindrome closure, have been analysed.Slightly stronger results have been found in the Sturmian case; anyway themain result is that both closures w(+) and w(�) of a �nite episturmian wordare episturmian themselves (Theorems 3.3.4 and 3.4.14), and even factors of acommon episturmian word (Proposition 3.3.6 and Corollary 4.1.16).In the last chapter we have introduced some extensions of episturmian wordsobtained by replacing the reversal operator R by an arbitrary involutory anti-morphism #. More precisely, these words are de�ned by natural generalizationsof some conditions, each of which characterizes standard episturmian words;these are no longer equivalent in the case of an arbitrary #. In this way wehave obtained the class of #-standard words, which are generated by iterationof the #-palindrome closure operator, and the class of standard #-episturmian



5.1. Summary 107words, which are in�nite words closed under # and whose left special factorsare pre�xes.We have studied several structural properties of these words. In the #-standard case, this has been done mainly in relation with #-palindrome closure,whereas for standard #-episturmian words, the main tool is the factorization(4.27) of such words with unbordered #-palindromes.Neither of these two classes of words is included in the other. A character-ization of the words belonging to the intersection of the two classes has beengiven (see Corollary 4.5.6 and Proposition 4.5.10). Moreover, the two preced-ing classes are strictly included in the class of #-standard words with seed (seeFig. 5.1).
ϑ-standard with seed

ϑ-standard standard ϑ-episturmian

Figure 5.1: Generalized episturmian wordsA basic theorem (see Theorem 4.4.6) shows that this larger class coincideswith the set of in�nite words which are closed under # and whose suÆcientlylong left special factors are pre�xes. This deep result proves that these two fur-ther natural generalizations (i.e., iterated #-palindrome closure starting fromany seed, and closure under # with the requirement that all suÆciently longleft special factors are pre�xes) of the above mentioned conditions are onceagain equivalent.The link existing between episturmian words and all these generalizationshas been given by some theorems (see Theorems 4.3.6, 4.1.2, and 4.5.5) show-ing that the words of such families are suitable morphic images of standardepisturmian words.
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5.2 Further research and open problemsSturmian and episturmian words are the subject of much ongoing researchwithin the scienti�c community. Here we list some possible developments whichare related to our work, as presented in the preceding chapters.� Very recently, J. Currie and K. Saari [18] have improved upon Theo-rem 2.2.3, by characterizing the �nite standard words which are conju-gate to the fractional roots of the factors of a given Sturmian word. Thiscould possibly lead to the development of algorithms testing whether aword is a factor of a Sturmian word of given slope (up to the �rst partialquotients in its continued fraction expansion).� It could be interesting to give a deeper analysis of the structure of gen-eralized pseudostandard words, as de�ned in Section 4.2.� The introduction of involutory antimorphisms in our work was motivatedfor example by biology (a common example of involution is the Watson-Crick one, for the DNA \alphabet" of four bases). Recently (cf. [13]),the following result was proved, showing the occurrence of involutoryantimorphisms from purely combinatorial conditions:

Theorem. Let w be an in�nite word over A satisfying the followingthree conditions:1. every left special factor of w is a pre�x of it,2. w has at most one right special factor of each length,3. for some constant k and all n � 1 one hascard(Factw \ An+1)� card(Factw \ An) = k : (5.1)Then there exists an involutory antimorphism # of A� such that wis standard #-episturmian.We remark that by requiring that (5.1) holds also for n = 0, a well-knowncharacterization of Arnoux-Rauzy words is obtained.The above theorem is not a characterization of in�nite words which arestandard #-episturmian for some #; this could be achieved by substituting(5.1) with a suitable weaker condition.



5.2. Further research and open problems 109� Finally, we mention two interesting open problems. A �rst task is tostudy the morphisms � : X� ! A� such that the image under � ofany standard episturmian word over an alphabet X is a standard #-episturmian word on A. Proposition 4.5.7 gives a suÆcient condition,which is not necessary. It would be interesting to �nd a characterizationof such morphisms. In the case # = R andX = A the injective morphismsof this family are the standard episturmian morphisms introduced in [27,35].A second problem is to determine whether morphisms ' : X� ! A�of the previous class are able to generate, when applied to all standardepisturmian words over X, all standard #-episturmian words over A. Weobserve that both these questions are already settled in the case of #-standard words (see Theorem 4.1.2). Both questions are being addressedin [10].
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