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Chapter 1

Introduction

The semiconductor optoelectronic devices in the last years are capturing an
increasing relevant role in the communication and computational scenery
thanks to their high performance in terms of speed and processing efficiency
(computing), transmission, and reception of information. Parallely it is in-
creasing the necessity to have efficient tools to model and to simulate their
behaviors in order to allow the best design.

An optoelectronic device, as the name suggests, is a device in which the
electronic features of the materials are coupled with the optics ones to allow
the driving of optical signals by means of electric signals. An integrated
optoelectronic device is a device built on the same substrate of the electrical
circuitry.

Nowadays a large number of optical modulators, filters and other func-
tions which are considerable for telecommunication networks have been pro-
posed [1, 2, 3, 4, 5, 6, 7] as integrated or embedded in dielectric rib/ridge
waveguides. Many of them share the common feature of being based on the
propagation of the light beam inside a waveguide, designed to sustain only
its fundamental mode of propagation to allow lower insertion losses when
coupled to optical fibers.

Nevertheless at begin of my work as integrated optoelectronic designer,
I came against a problem which could seems simple and a solved question.
It concerns the definition of the single-mode condition of this widely used
basic element of the integrated optoelectronic devices: the rib waveguide.
In fact, as observed in [8], most of authors in the past assumed a priori
that a single-mode rib waveguide must have the same transverse dimensions
as a single-mode slab waveguide, since a rib waveguide is a slab waveguide

1



CHAPTER 1. Introduction

Figure 1.1: Rib waveguide.

with a ribbed region at the center. They attributed their supposition to
the Effective Index Method (EIM), which is the common and more general
method to study the 2D waveguide. From this supposition they deduce
that the rib width would be smaller then the wavelength of the propagating
light. Actually, rib waveguides with large cross section (that is, with lateral
dimension and height much greater than the optical wavelength) were usually
already employed, obtaining an excellent matching with the single mode
optical fibers. Consequently the issue of establishing a single mode condition
for this waveguide arose.

Since 1976, several studies have been presented in literature, but only in
1991 Richard A. Soref, Joachim Schmidtchen and Petermann himself [9] on
the basis of the previous Effective Index/Mode Matching analysis performed
by Petermann [10], gave a formula to establish a single mode condition.
They tested the formula performing an Beam Propagation Analysis and, in
the same year, realizing and observing a large cross section rib waveguide
[11], designed by means of their formula.

This formula was considered the right and unequivocal condition for the
designer for several years. Nevertheless Pogossian, Vescan and Vosonovici
[8], based on the Rickman’s experimental data [12] (it is worth to note that
the available experimental data are very few), modified the Soref’s formula
with an corrective factor.

In the subsequent years the interest about the question is considerable
increased. I have found in literature several papers [13, 14, 15, 16] (to cite
only someone), which with different methods, semi-analytic, like EIM, Mode
Matching or numerical, like Beam Propagation based method, confute or
agree either with Soref or with Pogossian or propose correction and new
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formulas. So that, at the begin of my work, it seemed that there was not
an univocal and unambiguous manner to establish if a large cross-section
rib waveguide can operate on single mode, but that the condition had a
strong dependence on the geometry and the structure. This lead me to
deduce that the first question to solve, to design optoelectronic devices, was
to understand which criterion has to be followed to establish the single mode
condition for a large cross-section rib waveguide, or rather to found a robust
an unambiguously criterion.

During my subsequent study I found a new, robust criterion, based on
an Finite Element analysis [17], by comparison between the numerical so-
lutions found with Neumann boundary conditions and Dirichlet boundaries
conditions applied when solving the eigenvalues problem.

Once assured an unambiguous criterion to establish the single mode con-
dition of the rib waveguide, I followed the increasing request to develop an
efficient and comprehensive simulation capability for optical devices.

In fact the optoelectronic devices demand the development of accurate
and computationally efficient microscopic models of the physical processes
that play important roles in determining optoelectronic device performance.
These processes involve carrier-carrier and carrier-phonon scattering, plasma
heating, carrier capture by and escape from quantum wells, and other many-
body interaction processes.

The usual, old procedure was to simulate the electronic and thermal pro-
cesses solving the Poisson’s equation, both carrier continuity and carrier en-
ergy balance equation, the lattice heat flux equation coupled and decoupled
by means of multi-dimensional general-purpose device simulators. Then to
solve the scalar wave equations for the waveguides (that are the most popular
basic elements of the optoelectronic integrated devices) and use numerical
or semi-numerical methods to study the light propagation inside the device
to predict the optical response.

In this way the source of errors due to the need of interpolating the results
obtained from the electronic simulator to the second one, can be critical to
predict the very small change of the physical quantity that take place in the
optical processes, like the change in the refractive index.

Today different semiconductor materials based devices simulators are
available for electronic modelling from both academic institutions and com-
mercial vendors. The most popular for the electronic devices are DESSIS
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CHAPTER 1. Introduction

[18], Taurus-Medici [19], ATLAS [20] and Minimos-NT [21], based on the
Finite Elements methods (FE). These simulators contain a comprehensive
and state of the art set of physical models that can be applied to all relevant
semiconductor devices and operation conditions. They are capable to per-
form transient and AC-small signal analysis, and mixed-mode simulations
that incorporate physical devices and compact models in a circuit. They
are well consolidate and with a tested reliability, and, even if some of them,
in the last years offered specific module for optical simulation, especially for
active device simulation, like Vertical Cavity Lasers [22], generally they must
be coupled with general purpose simulators to simulate the optical behavior.

So that in the last years it is increasing the interest to develop an effi-
cient and comprehensive simulation capability for optical devices (both ac-
tive and passive) including optical, electronic, and thermal processes in a
self-consistent fashion, i.e. to integrate an optical package with electronics
package to form a self-consistent tool for the optoelectronic integrated cir-
cuits. To this purpose, in the last decade excellent optical simulators have
been developed (for example the Crosslight products, LASTIP, to simulate
the operation of semiconductor laser, and PICS3D, a state of the art 3D sim-
ulator for laser diodes and related photonic devices [23]), which thus provide
the electric analysis too.

On this wake, taking the advantage of the available resources, I resort
to and improve an in-house code [3], based on a suitable simulation strategy
which integrates the capabilities of two of the most popular and consolidate
Finite Element simulators, one of electronic devices, as Silvaco/ATLAS, the
other a general purpose FE solver, as Comsol Multiphysics, by means of
the maybe most powerful and interactive environment in the computational
scenery, MATLAB®. The code allows to avoid the interpolation errors,
since, based on Finite Element simulators, it uses the same grid to solve
both the electrical and the optical equations and to study the propagation
conditions.

1.1 Thesis organization

This thesis is, therefore, in the following manner structured:

• In the chapter 2, starting from a brief review on the guided propagation
of the light, I remind the single mode condition for the planar waveg-
uide (known as slab waveguide too) and the main and more general
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1.1 Thesis organization

method to study the 2D waveguides, and thus the rib waveguide too,
the Effective Index Method.

• In the chapter 3 the basic physics effects, on which is based the main
passive function of the integrated devices, the intensity and phase mod-
ulation, are exposed, since in my work I designed in particular an in-
tensity modulator.

• In the chapter 4 I present and discuss the new criterion for the single-
mode condition of the rib waveguides

• In the chapter 5 I show a device designed by means of the new, de-
scribed simulation strategy. The device is an totally Induced Bragg
Reflector(IBR) in a InP/InGaAsP p-i-n , based on the widely used
field-effect in the InP derived material. Its innovative peculiarity is
the anode electrode comb-structure. In fact it allows to induce the
device in an unperturbed waveguide, by means of the applied electric
field. What is interesting is into the induction of the device in the
unperturbed waveguide or net of waveguides is the possibility ’to pro-
gram’, conformity with the necessity, several functions, like wavelength
filtering, intensity modulation or, in a fan-configuration demultiplex-
ing, or simply to chose the signal path. Moreover, I show that the IBR
can work as intensity modulator for ultra-fast application, since it can
potentially reach a transient response greater than 40 GHz, which is
perfectly respondent to the actual request of the integrated modula-
tors.
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Chapter 2

Principles of Guided Light
Waves

Nowadays the idea that the light can be confined in channels and in this
manner transported where we want, and more that it can transport several
information, is a concept that everyone has. The common people, which
every day uses internet, whiteout any notion about the physics of the guided
propagation of the light, knows that it is more convenient to diffuse the infor-
mation and the data by means of the of optical fibers, since they are faster;
have a greater capacity to carry a lot of data; are immune to electromagnetic
perturbations and can be used along kilometers without have a significant
signal reduction.

In this chapter we would like to give the basic concepts about the theory
of the guided light in the dielectric medium.

After an intuitive exposition of the light confinement, we start recalling
the Maxwell’s equations in dielectric medium, to proceed then with their
solutions in the simpler guiding structure, the planar waveguide, constituted
by three layer of different dielectric material laid one on the top of the other.
Of this structure we will analyze the propagation modes, or, in other worlds,
we will see that assigned the thickness of the central layer, the refractive
index profile and the propagating light wavelength, there exist only some
defined propagation constant that can be supported by the waveguide. We
finish with the illustration of a semi-analytical method to solve the Maxwell’s
equation in more complex structures, the two-dimensional waveguide.
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CHAPTER 2. Principles of Guided Light Waves

2.1 Light Confinement

To have an intuitive picture of how it is possible to guide the light through
a channel, we can recall in our mind the simple phenomenon which everyone
has assisted in his life staying on the seashore or on a shore of a lake. We
can see under the surface inside a range near us, but we cannot see anything
if we look far: we see only the sky reflected on the water surface.

This happens because when a ray of light impinges an interface between
to medium with different refractive index (that means with different density),
coming from the medium with refractive index greater, like the water-air
interface, a critical angle exist, such that for all the angle greater, the ray
does not emerge in the other medium, but is totally reflected inside the origin
medium: it is trapped inside this medium. In this manner the image of the
object far from us is trapped in the water, since the rays coming from them
to us have an incidence angle greater than the critical one.

This phenomenon is named total internal reflection (TIR) and was ob-
served the first time in the far 1841 in a totally accidental way, how often
happens in the physics history. A Swiss physicist, Daniel Colladon, during
a hydraulic conference in a dark hall of the Geneva University, with the aim
to illuminate the set-up of an experiment about the downflow and dispersion
of the water by a little hole in the bottom of a basin, was using a metallic
funnel to convey the sun light. Fortuitously, the sun light illuminated the
hole with a suitable incidence angle and in the dark the water flow, going
out, became bright: the light was trapped by the water thanks to subse-
quential reflections. In the same year an other physicist, the French Jacques
Babinet, observed the same phenomenon illuminating the bottom of a bottle
by means of a candle while he poured the liquid contained out. At that time
the phenomenon appeared nice and spectacular but whiteout useful appli-
cation, excepted the scenographic one (Colladon was invited by the ’Opera
de Paris’ to collaborate to the Gounoud’s Faust scenography). Nevertheless
Babinet suggested an interesting medical application: use glass barrets to
illuminate the oral cavity, which was used at the end of the 18th century
by two Viennese doctors, Roth and Reuss, and one American, David Smith,
to patent some odontological instruments, which did not had a lot of suc-
cess. Only in the second half of the twentieth century (when the name was
coined), there was a revived interest about the guided light and its applica-
tions, which increased with the laser discovery, so that simultaneously there
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2.1 Light Confinement

Figure 2.1: Reflection of the light rays at the interface between two medium with
different density (corresponding to different refractive index). The rays, coming from
the more dense medium (1) with an incidence angle θ1, is partially reflected in the
same medium with the same angle, and partially refracted in the second one through
the interface with an refraction angle θ2 greater than θ1. As the incidence angle
increases, the refraction angle approach to π/2, so that the refracted ray vanish.
The correspondent incident angle is called critical angle and for all the angles of
incidence greater than this one, the ray is only reflected inside the origin medium.
This phenomenon is named Total Internal Reflection and is the basic phenomenon
of the guiding light theory.

was an exponentially rate of progress.

After this historical divagation, we can conclude that to trap the light
in a channel, the refractive index of the channel must be bigger than the
refractive index of the surrounding medium, like in the case of water or glass
channel in air.

The critical angle can be easily derived from the Descartes formulation
of the Snell’s Law, illustrated by the figure 2.1,

n1 sin θ1 = n2 sin θ2. (2.1)

Since n1 > n2 implies θ1 < θ2, as the θ1 angle increases, the angle θ2

will approach to 90◦, which means that there is not refracted ray, but only
reflected. This corresponds to put in the (2.1) the condition θ2 = π, so that
the critical angle is determined:

θc = arcsin
n1

n2
. (2.2)

9



CHAPTER 2. Principles of Guided Light Waves

The previous relation seems suggest that the light can propagate in a waveg-
uide with all the angle greater than the critical angle. It is not true. The
light in a waveguide can propagate only with some determined angles, de-
pending on its wavelength and on waveguide geometry. It is possible show
this by means of a simple ray optics approach, but to fully show the basic
property of the guided light, we resort to the Maxwell’s equation.

2.2 Maxwell’s equations in homogeneous dielectric
medium

In the more general case of a propagation of the electromagnetic field in
a medium, in addition to the electric filed E and the magnetic field H,
the Maxwell’s equations, involve others two fields, the electric displacement
vector, D, and the the magnetic flux density vector, B(r, t), which contain
the effects of the external electromagnetic field on the medium, i.e. the
matter polarization and magnetization

∇ ·D(r, t) = ρ (2.3a)

∇ ·H(r, t) = 0 (2.3b)

∇×E(r, t) = −∂B(r, t)
∂t

(2.3c)

∇×H(r, t) = J +
∂D(r, t)
∂t

, (2.3d)

where ρ is the density charges outside the medium and J is the current
density.

To unambiguously determine the field vectors given by a distribution of
currents and charges, we need to relate the vectors D and J to the field E
and the field B to H. These relations depend on the material and are usually
called constitutive relations or material relations. In the case of a linear and
isotropic medium, i.e., if the intensities of the fields are not so strong and
if the medium physical properties do not depend on the field direction, the
constitutive relations are:

D = εE (2.4a)

B = µH (2.4b)

J = σE, (2.4c)
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2.2 Maxwell’s equations in homogeneous dielectric medium

where ε is the electric permittivity, or (dielectric constant for linear materi-
als), µ the magnetic permeability and σ the conductivity, characteristics of
the materials.

Most of the materials used in optoelectronics to realize waveguides and
others devices with their substrate are perfect insulant (dielectric), so that
their conductivity is σ ≈ 0. For these materials, considering no others
charges and currents in the space, (J = 0 and ρ = 0),using the (2.4), the
equations Maxwell’s equations (2.3) become:

∇E(r, t) = 0 (2.5a)

∇H(r, t) = 0 (2.5b)

∇×E(r, t) = −∂µB(r, t)
∂t

(2.5c)

∇×H(r, t) =
∂εE(r, t)

∂t
(2.5d)

and after some mathematical manipulations, they are reduced to a system
of only two equations for the electric and magnetic fields:

∇2E− µε∂
2E
∂t2

+ (∇ lnµ)× (∇×E) +∇(E ·∇ ln ε) = 0 (2.6a)

∇2H− µε∂
2H
∂t2

+ (∇ ln ε)× (∇×H) +∇(H ·∇ lnµ) = 0. (2.6b)

For homogeneous materials, which have the electric permittivity and the
magnetic permeability independent on position, so that ∇ ln ε = ∇ lnµ = 0,
the previous system assumes the simple form of a system of two uncoupled
differential equations in partial derivatives for the fields E and H

∇2E = µε
∂2E
∂t2

(2.7a)

∇2H = µε
∂2H
∂t2

(2.7b)

which correspond to a set of six scalar equations, with the well known
mathematical form of the waves equations, for each cartesian component,
Aj = Ej , Hj , with j = x, y, z, of the fields E and H

∇2Aj = µε
∂2Aj
∂t2

(2.8)

.
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CHAPTER 2. Principles of Guided Light Waves

Figure 2.2: Three layers planar waveguide.

This suggest that the electromagnetic field in the dielectric materials
propagates as a wave with velocity

v =
1
√
εµ
. (2.9)

Usually is preferred to refer this velocity to the electromagnetic waves
speed in the vacuum, defined as c = 1/

√
ε0µ0 (ε0 is the vacuum permittivity

and µ0 the vacuum magnetic permeability), defining

v ≡ c

n
. (2.10)

The previous relation defines the refractive index, n, of the materials
as a quantity which expresses how fast is the electromagnetic wave in the
material: greater is the refractive index and slower is the propagation, or, in
other words, greater is the delay cumulated by a monochromatic component
of the field in the material.

2.3 Wave Equations in dielectric PlanarWaveguides

To better understand how it is possible to confine the light waves in a guide
and their main features, we can solve the wave equation in the simpler struc-
ture possible, the planar waveguide, shown in figure 2.2.

The structure consists of a non magnetic dielectric film (magnetic perme-
ability µ = 0, and conductivity σ = 0), with refractive index nf , sandwiched
between to non magnetic dielectric media, the substrate and the cover, with
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2.3 Wave Equations in dielectric Planar Waveguides

different refractive index, ns and nc respectively. We suppose, further, these
refractive indices slightly changing along the direction orthogonal to the
sandwich axis (x axis in figure) only, so that in each region is

∇ ln ε = ∇ lnµ ≈ 0. (2.11)

We will see that the confinement is possible inside the film, i.e. along the
direction normal to the film plane. The case of confinement in two direction
(channel waveguide) is easily derived from this one, while the other more
complicated geometry and the case of inhomogeneous media, present only
mathematical complication, which adds nothing to the comprehension of the
basic physic of the waveguides.

Although the whole structure is inhomogeneous along one direction (x
in the figure), we can resort to the wave equations (2.7) in each quasi-
homogeneous region (subsisting the condition (2.11)), limiting our obser-
vation only to monochromatic waves with angular frequency ω and phase
front orthogonal to the structure axis (z), we can suppose the fields intensity
dependent only on x coordinate

A(x, t) = A(x)ei(ωt−βz) (2.12)

Given the refractive index distribution n(x), which defines the waveguide
geometry, this reduce the problem to solve the system of 6×3 equations, one
for each cartesian component of the fields, Al(x) (A = E,H and l = x, y, z),
in each of the three regions:[

∂2

∂x2
+ (k2n2

j − β2)
]
Ajl(x) = 0 (2.13)

(where j = s, f, c in the substrate, in the film and in the cover respectively)
imposing the continuity to the fields tangential components at the dielectrics
interface. In the latter equation k = 2πλ is the wave number, being λ =
2πc/ω the wavelength and, we used the (2.9) and (2.10).

Obviously the solutions of each equations of the previous system are not
independent since they are related each to others from the Maxwell’s equa-
tions. This is a lot advantageous if we image to have an incident wave with
one between the two fields, for example the electric (magnetic), polarized
along the direction parallel to the film plane (y axis), so that the other field,
the magnetic (electric), has only the others two orthogonal components x and
z (we remember that are considering plane waves defined by the (2.12). In
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CHAPTER 2. Principles of Guided Light Waves

this case, in fact, the previous system is reduced at only three equations, but
we can solve only that involving Ey (Hy), and derive the others component
of the electro-magnetic field directly from the Maxwell’s equations.

To be explicit, if we have a wave such that is E(x) = (0, Ey(x), 0), and
H(x) = (Hz(x), 0, Hz(x)) the system to solve is:

[
d2

dx2
+ (k2n2

j − β2)
]
Eyj(x) = 0 (2.14a)

Hxj = −(β/ωµ0)Eyj (2.14b)

Hzj = (i/ωµ0)∂Eyj/∂x (2.14c)

with continuity conditions for the fields and their first derivatives at dielectric
interface (x = 0,x = −d). From figure we see that is

j =


c ∀x ≥ 0

f ∀ − d < x < 0

s ∀x < −d

(2.15)

In the complementary case we have an electro-magnetic field H(x) =
(0, Hy(x), 0)
E(x) = (Ez(x), 0, Ez(x)) , so that the system to solve is[

d2

dx2
+ (k2n2

j − β2)
]
Hyj(x) = 0 (2.16a)

Ex = −(β/ωε0n2
j )Hy (2.16b)

Ez = (1/iωε0n2
j )∂Hy/∂x (2.16c)

Waves like the (2.14), which have only the transversal component of the
electric field, are known as transverse electric modes of the planar waveguide
(TE modes) (’transversal’ is referred to the incident plane of the wave which
is along the y axis in the case we are considering, illustrated in figure 2.3),
while waves like the (2.16), which have only the component transversal of
the magnetic field (see on the left of figure 2.3), are known as transverse
magnetic modes (TM modes). They constitute a base of the solutions space
of the the system (2.13).

At this point we note that a general solution of the (2.13) is

Aj(x) = Ajeiγjx + Bje−γjx (2.17)
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2.3 Wave Equations in dielectric Planar Waveguides

Figure 2.3: TM polarization (left) and TE polarization (right) of the electromag-
netic field in a planar waveguide.

being
γj =

√
k2

0n
2
j − β2 (2.18)

Defining the effective refractive index, N, as a quantity such that

β = k0N (2.19)

we can establish the guided conditions in terms of refractive index. Indeed,
assuming that

ns < nc < nf (2.20)

we have:

1. not physically solution if

nc < N (2.21)

since this corresponds to exponential solutions in each of the three
layers (γj imaginary ∀j = c, f, s), therefore to waves that carry an
infinite energy at infinity.

2. guided modes (i.e., confined modes) in the film if is:

ns < N < nf , (2.22)
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CHAPTER 2. Principles of Guided Light Waves

corresponding to sinusoidal solutions of the wave equations in the film
with exponentially decadent tails in the cover and substrate (to have
physically solutions in the sense previous specified, we have to put
Ac = 0 and Bs = 0;

3. substrate modes if
nc < N < ns < nf (2.23)

corresponding to sinusoidal solutions in the film and substrate with
evanescent tails in the cover;

4. radiation modes, corresponding to sinusoidal waves in each layer, if

N < nc. (2.24)

2.3.1 TE guided modes

In the next we will give an explicit form to the TE modes.
Fulfilled the condition of the case 2 and imposed the continuity of the

fields and their first derivative at dielectric interfaces x = 0 and x = −d

Eyc(0) = Eyf (0) (2.25a)

Eyf (−d) = Eys(−d) (2.25b)

E′yc(0) = E′yf (0) (2.25c)

E′yf (−d) = E′ys(−d), (2.25d)

with similar for Hz(x), putting the (2.25) in the (2.17), we have a system of
four equation with five unknown parameters Bc, Af , Bf , As and β. Leaving
the first one as free parameter (which could be settled by the energy), we
arrive to the following dispersion relation for asymmetric step-index planar
waveguide:

tan γfd =

γc + γs

γf

1−
γcγs

γ2
f

(2.26)

The latter transcendental equation defines the propagation constant β as
implicit function of the waveguide parameters (the refractive indices, nf , nc,
ns, and the guide thickness, d), and of the working wavelength, λ. It imposes
a β quantization, since the left member, being a tangent function, fulfils

tan γfd = tan γfd+mπ m ∈ Z (2.27)
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2.3 Wave Equations in dielectric Planar Waveguides

So that exist several βm for each solution of the (2.26). In others words, as-
signed the refractive index profile and the working wavelength, a waveguide
can support several modes (multi-mode waveguides) individuated by the in-
teger m, called mode order. Generally the number of the supported modes
is finite. In a particular case that the waveguide supports only the mode
m = 0, we speak of mono-mode waveguide. In some others cases, for par-
ticulary values of the wavelength, the waveguide cannot support any modes,
and we say that the waveguide is in cut-off. We will discuss in details in the
next, the single mode and cut-off conditions.

To design a waveguide is more comfortable define some dimensionless
parameters, known as normalized parameters

b =
(
N2 − n2

s

)
/
(
n2
f − n2

s

)
Normalized mode index (2.28)

V = k0d
√
n2
f − n2

s Normalized film thickness (2.29)

a =
(
n2
s − n2

c

)
/
(
n2
f − n2

s

)
Asymmetry measure (2.30)

For a guided mode, since subsist the (2.22), is 0 < b < 1; the normalized
thickness gives, instead, the physic thickness of the film as function of the
guided wavelength, assigned the refractive index step between the film and
the substrate; obviously the asymmetry measure is zero for nc = ns and
increase with the difference between these two indices.

The (2.26) in terms of the previous parameters becomes:

tan
[
V
√

1− b
]

=

√
b+
√
b+ a

√
1− b

1−
√
b(b+ a)
1− b

(2.31)

The determination of the propagation constant β from the (2.26) (or of
the normalized mode index b from the (2.31)) allows to make explicit the
electric field in the three regions:

Ey(x) =



Bceγcx x ≥ 0

Bc

(
cos γfx−

γc

γf
sin γfx

)
−d < x < 0

Bc

(
cosκfd+

γc

γf
sin γfx

)
eγs(x+d) x ≤ −d

(2.32)

17



CHAPTER 2. Principles of Guided Light Waves

The previous explicit expression of the field shows as it decreases exponen-
tially in the cover and substrate with penetration depth | γ−1

c | and | γ−1
s |

respectively. We note from (2.18) and (2.20) that the penetration is lower
in the cover than in the substrate since there the refractive index is lower,
and it increases with the mode order due to the decrease of the propaga-
tion constant. This means that higher is the mode order and higher are the
penetration in the lateral region of the guide, while in the guided region the
number of the field amplitude distribution nodes increases, so that we have
an increasing number of intensity spot in the cross section of the guide.

2.3.2 TM guided modes

As in the case of TE modes, applying the right condition at dielectric inter-
face we arrive at the dispersion relation for TM modes

tan
[
V
√

1− b
]

=

1
γ1

√
b

1− b
+

1
γ2

√
b+ a

1− b

1−
1

γ1γ2

√
b(b+ a)
(1− b)

(2.33)

where we have defined γ1 ≡ (ns/nf )2 and γ2 ≡ (nc/nf )2 = γ1 − a(1− γ1).
The explicit solution for the magnetic field is

Hy(x) =



Bce−γcx x ≥ 0

Bc

(
cos γfx−

n2
fγc

n2
cγf

sinγfx

)
−d < x < 0

Bc

(
cosγfd+

n2
fγc

n2
cγf

sinγfd

)
eγs(x+d) x ≤ −d

(2.34)

The behavior is similar to the case of TE modes except the discontinuity
at dielectric interface (x = 0 and x = −d) due to the step change of the
refractive index, so that for the guided mode the energy is confined in the
film with evanescent tails in the lateral regions that increase with the increase
of the mode order.

2.3.3 Guided Modes Cut Off

For each mode, given the wavelength of the propagating light, there exists
a minimum value of the film thickness starting from which the mode can be
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2.4 2D waveguides

supported. This happens when N −→ ns, since from the (2.28) we see that

b =
(
N2 − n2

s

)
/
(
n2
f − n2

s

) N−→ns−−−−−→ 0 (2.35)

The corresponding normalized film thickness for the m-th TE and TM mode
are

V CO
mTE = arctan

√
a+mπ (2.36)

V CO
mTM = arctan(

√
a/γ2) +mπ (2.37)

The condition (2.20) leads to

V CO
mTM > V CO

mTE (2.38)

which means that if the m-th TE mode is in cut-off, the correspondent TM
mode is in cut-off too, but is not true the opposite.

For symmetric planar waveguide (a = 0) is

V CO
mTM = V CO

mTE = mπ, (2.39)

which means that at least the fundamental modes can propagate.

2.4 2D waveguides

It easy to image that the planar waveguide cannot be used in the real case.
Infinite structures are not realizable and even if a waveguide with planar
dimension greater an greater than the film width can be mathematically
considered as infinite (and thus it can be approximate to an ideal planar
waveguide) a similar structure first of all does not marriage the request of
high integrability of the devices. The main consideration, nevertheless, is
that the energy (equivalently, the information) must be confined in the space
to be carried, so that the waveguides really used in the devices are channel
waveguides, or more often, rib waveguides. The main types are shown in
figure 2.4.

The first one, from left to right, is a channel waveguide, where upon a
substrate is deposited the guiding film whit refractive index greater, and
then totally etched to build the channel. The second one is a buried channel
waveguide, which the substrate is etched to receive the guiding medium
deposited and buried under the cover layer. The last one is a rib waveguide,
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CHAPTER 2. Principles of Guided Light Waves

Figure 2.4: Main types of 2D waveguides: a) channel waveguide b) buried channel
waveguide; c) rib waveguide. Assured the confinement condition, nc ≤ ns < nf , the
light propagation is confined in the channel (a and b), below the ribbed region (c).

as the name suggests, which is made by etching the guiding film deposited
upon the substrate and leaving only a rib on the guiding layer.

In these waveguides the refractive index changes along both the directions
orthogonal to the propagation axis z, so that the confinement, assured the
condition (2.20), happens inside the channel, which is constituted by the
region below the rib, in the case of the rib waveguide. As consequence
the waveguides modes have not a well defined polarization like the TE and
TM modes of the planar waveguides. Fortunately these modes are strongly
polarized along the x and y axes. They are called transversal electromagnetic
modes (TEM) and between them, the modes mainly polarized along the
x axis are called quasi-TM modes, since they are very similar to the TM
modes of the planar waveguides. Usually they are simple called Exqp modes,
whit obvious meaning of the x apex, while the subscripts p and q indicate
the number of nodes of the electric field Ex along the x and y direction,
respectively. The others modes polarized mainly along the y direction, being
similar to the TE modes of the planar waveguides, are called quasi-TE modes
or simply Eyqp.

Taking into account with we have just said, to find the 2D-waveguides
modes we can search general solutions of the Maxwell’s equations with am-
plitude depending only on x and y

E(x, y, z, t) = E(x, y)ei(ωt−βz) (2.40)

H(x, y, z, t) = H(x, y)ei(ωt−βz) (2.41)

and, advancing as in the case of planar waveguides, we can express the trans-
verse components of the fields as functions of their longitudinal components
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2.4 2D waveguides

Ex = −(i/K2
j )[β(∂Ez/∂x) + ωµ0(∂Hz/∂y)] (2.42a)

Ey = −(i/K2
j )[β(∂Ez/∂y)− ωµ0(∂Hz/∂x)] (2.42b)

Hx = −(i/K2
j )[β(∂Hz/∂x)− ωn2

jε0(∂Ez/∂y)] (2.43a)

Hy = −(i/K2
j )[β(∂Hz/∂y) + ωn2

jε0(∂Ez/∂x)] (2.43b)

where the parameter Kj is defined by:

K2
j = n2

jk
2
0 − β2 (2.44)

with k0 = ωε0µ0, being ω the angular frequency of the light.
The longitudinal components of the fields Ez and Hz must be derived

from the following wave equations

[
∂2

∂x2
+

∂2

∂y2
−
[
β2 − k2

0n
2(x, y)

]]
Ez = 0[

∂2

∂x2
+

∂2

∂y2
−
[
β2 − k2

0n
2(x, y)

]]
Hz = 0 (2.45)

taking into account the appropriate boundary conditions at dielectric inter-
faces.

Unfortunately the previous problem has not an analytic solution. We
must resort to numerical methods. The commonly used are the Marcatili’s
method [24] and the Effective Refractive Index method (EIM) [25]. The
second one is the more general, since it could be used even in the case of non
uniform refractive index of the waveguide core (the guiding region). In the
next we will explain it in the simple case of a channel waveguide.

2.4.1 Effective Index Method

The Effective Index Method is an approximate method to compute the prop-
agation modes of the 2D-waveguides, or, in mathematical therm, to solve the
eigenvalues problems (2.4). It is very simple to apply since it reduces the
problem to solve sequentially several 1D problem. The logic of the method is
well expressed by the scheme of figure 2.5, where a simple case of a channel
waveguide is presented. The channel waveguide with height H and width w
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Figure 2.5: Illustration of the Effective Index Method for a channel waveguide.
The channel waveguide, with height H and width w, is decomposed in two fictitious
planar waveguides. The first one with the same height H and with the same cover and
substrate of the channel. Once the effective refractive index, NI

pl, of this waveguide is
calculated, a second fictitious planar waveguides is considered, with the same width
w of the channel, but with refractive index in the guiding film equal to NI

pl. The
surrounding material is the lateral material of the channel. In the considered case it
is the substrate. The solution of the wave equation for the second fictitious planar
waveguide, gives us a good approximation of the effective refractive index of the
planar waveguide.
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2.4 2D waveguides

Figure 2.6: Illustration of the Effective Index Method for a rib waveguide. The rib
waveguide is subdivided in three regions, one central region and two lateral regions, so
that the effective refractive indexes, NI

pl and N
II
pl , of two fictitious planar waveguides

with film height equal to the total height of the ribbed region, H, and equal to the
height of the lateral planar regions, h, respectively, are calculated. These effective
refractive indexes are than used as refractive indexes in an other fictitious planar
waveguides to determine the effective refractive index of the rib waveguide.

is decomposed in two fictitious planar waveguides. The first one with the
same height H and same surrounding materials, i.e. the same upper cover
and the same substrate, of the channel. Once the effective refractive index,
N I
pl, of this waveguide is calculated, a second fictitious planar waveguides is

considered, with the same width w of the channel, but with refractive index
in the guiding film equal to the effective refractive index of the first ficti-
tious planar waveguides. The surrounding material is the lateral material
of the channel. In the considered case of the figure 2.5 it is the substrate.
If we consider a waveguide with the channel surrounded by the cover, the
surrounding material must be the cover. The solution of the wave equation
for the second fictitious planar waveguide, gives us a good approximation of
the effective refractive index of the planar waveguide.

Obviously the case of the rib waveguides is more complicate, since the
guiding region (the region below the rib) is surrounded by non uniform re-
gions. In this case the problem is decomposed in more than two steps. The
rib waveguide is subdivided in three regions: one central and two lateral, so
that the effective refractive indexes of two fictitious planar waveguides, with
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CHAPTER 2. Principles of Guided Light Waves

film height equal to the total height of the ribbed region, H, and equal to
the height of the lateral planar regions, h, respectively (figure 2.6), are cal-
culated. These effective refractive indexes are than used as refractive index
in an other fictitious planar waveguides to determine the effective refractive
index of the rib waveguide.

Care must be taken to consider the polarization involved, since the se-
quential fictitious planar waveguides are taken with orthogonal axes. This
implies that if we are considering an electric field polarized along the x axis,
we have to solve the TM wave equation for the first three layers fictitious pla-
nar waveguide and the TE wave equation for the second fictitious three layer
planar waveguide, since the considered electric field have a TE polarization
respect to this waveguide.

Mathematical the problem is formulated in this manner: starting from the
basic assumption that the solutions of the (2.4) can be factorized as:

A(x, y) = Θ(x, y)Φ(y), (2.46)

with the approximation that the Θ(x, y) function has slowly change respect
the y coordinate. This leads to two independent wave equations for the Θ
and Φ functions [

∂2

∂x2
−
[
N(y)2 − k2

0n
2(x, y)

]]
Θ(x, y) = 0 (2.47)[

∂2

∂y2
−
[
β2 − k2

0N(y)2
]]

Φ(y) = 0, (2.48)

where it is clear that the first one is parametric in y, so that the eigenvalue
N is a function of y. The procedure to solve these equation is the same
illustrated in the section 2.3.

2.5 Anisotropic Materials

The constitutive equations (2.4) say that in the isotropic medium the polar-
ization of the field inside the material is in the same direction of the electric
field which has induced it. Otherwise in the anisotropic medium, which have
the electric permittivity dependent on the propagation direction. This means
that the displacement vector D and the electric field E are not necessarily
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parallel and thus mathematically related each to the others by means of a
tensor, so that for their cartesian components the following relation subsists:

Dk = εklEl, (2.49)

where obviously k, l = x, y, z, and the Einstein’s formalism for the summa-
tion is adopted, according to whit there is summation over repeated indices.

An electric permittivity dependent on the direction implies that the re-
fractive index experienced by the propagating field inside the material, de-
pend on the propagation direction too. Let us see the consequences.

2.5.1 Propagation inside anisotropic media

Let us consider a monochromatic plane waves, with radiant frequency ω,
propagating inside an anisotropic crystal along an arbitrary direction s

E = Eei(ωt−ω
n
c
r · s), (2.50)

where c is the light speed and n is the refractive index of the material.
The wave vector is thus k = (ωn/c)s. For this wave, supposing absence of
charges, we can write the Maxwell’s equations (2.3c) and (2.3d) as:

D = −n
c
s×H (2.51)

H =
n

µc
s×E (2.52)

(we remaind that µ is the magnetic permeability of the medium). This means
that in the crystal both D and H are orthogonal to s, and perpendicular
each others, while E is orthogonal to H but not to s and, as observed at the
begin of this section, is not parallel to D. In particularly, different from the
isotropic medium, the direction of the energy flow, given by the Poynting
vector E×H, is not collinear with the direction of the phase propagation s.

From the previous equation, resorting to the vector identity a×(b× c) =
b(a · c− c(a ·b), we obtain

D =
n2

c2µ
[E− s (s ·E)] =

n2

c2µ
Etransverse (2.53)

using then the (2.49), considering that n2/(c2µ) = ε0 and since D · s = 0 we
obtain

Ek =
n2sk (s ·E)
n2 − ε′k

, (2.54)
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where k = x, y, z and the relative dielectric constants ε′k ≡ εk/ε0 has been
defined. Multiplying by sk and summing over k we arrive easily to the
following quadratic equation in n2, named only after Fresnel,

s2
x

n2 − ε′x
+

s2
y

n2 − ε′y
+

s2
z

n2 − ε′z
=

1
n2
. (2.55)

The two admitted solutions ±n1 and ±n2 (the sign correspond to the reverse
phase velocity) are the refractive indices experienced by the two allowed
independent plane wave propagations in the crystal. To find the amplitudes
of this waves, the system (2.54) must be solved replacing on at time n1 and
n2.

2.5.2 Index Ellipsoid

To describe the propagation inside the anisotropic medium, in the practice
the (2.55) and (2.54) are not used. A merely mathematical construction,
which easily, assigned the propagation direction of the electric field inside
the crystal, gives the refractive index seen by the field along that direction,
is useful. It is derived starting from the stored electric energy density, w,
which, considering the (2.49), results to be

w =
1
2
E ·D =

1
2
EkεklEl. (2.56)

Deriving it respect to the time, we can demonstrate that the dielectric
tensor, ε, has only six independent component.

ẇ =
εkl
2

(
ĖkEl + EkĖl

)
. (2.57)

In fact, if we consider the power flow per unit volume in the medium, which
by the Maxwell’s equation we can write as

∇ · (E×H) = E · Ḋ + H · Ḃ, (2.58)

we have that the first term at right side of the previous equation must be
equal to ẇ, so that, rewriting this term using the (2.49), we obtain:

εkl
2

(
ĖkEl + EkĖl

)
= EkεklDl. (2.59)

The previous equation is satisfied only if

εkl = εlk,
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which means that the dielectric tensor is symmetric, so that the energy
density becomes

2w = εxxE
2
x + εyyE

2
y + εzzE

2
z + 2εxyExEy + 2εyzEyEz + 2εzxEzEx (2.60)

Using an suitable axis transformation, we can diagonalize the ε tensor. The
axis x, y and z, respect to which this diagonalization happens are called
principal dielectric axes of the crystal and respect them the equation (2.60)
becomes

2w = εxE
2
x + εyE

2
y + εzE

2
z . (2.61)

To reach our initial goal, we have to rewrite the previous expression in
terms of the displacement vector D, that is

2w =
D2
x

εx
+
Dyx

2

εy
+
D2
y

εy
, (2.62)

since in the new system of coordinates isDx

Dy

Dz

 =

εx 0 0
0 εy 0
0 0 εz


ExEy
Ez

 . (2.63)

The (2.62) shows that in the Dx, Dy, Dz space, the the constant energy
surfaces wl inside the medium are ellipsoids. This ellipsoid is what we need
to describe the propagation inside the anisotropic medium.

In fact if we replace D/
√

2wε0 by r and defining the refractive indices
along the principal axis by

n2
k ≡ ε′k = εk/ε0, (2.64)

from the (2.62), we obtain the equation of an ellipsoid with the principal
axis along the principal axes of the crystal, whose respective length are 2nx,
2ny and 2nz

x2

n2
x

+
y2

n2
y

+
z2

n2
z

= 1. (2.65)

This ellipsoid is known as the index ellipsoid or optical indicatrix and, as-
signed a propagation direction, s, it is useful to individuate, in a graphical
manner, the two refraction indices and the corresponding direction of D as-
sociates with the two independent plane waves that can propagate along the
s direction in the anisotropic crystal. It can be done finding the intersection
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Figure 2.7: Index Ellipsoid. The intersection between the plane orthogonal to the
propagation direction s and the index ellipsoid is an ellipse with the axes parallel
to the polarization of the two allowed independent waves that can propagate in the
crystal. The ellipse semi-axes length is equal to refractive index feels by those waves,
n1 and n2, respectively. The ellipsoid principal axes correspond to the only direction
in the crystal along which the electric field, E, is parallel to the displacement vector
D.

between the index ellipsoid and the plane orthogonal to the propagation di-
rection s, as shown in figure 2.7. This intersection is an ellipse with the axes
parallel to the polarization of the two allowed independent waves that can
propagate in the crystal. The ellipse semi-axes length is equal to refractive
index feels by those waves, n1 and n2, respectively.

Obviously to quantify the refractive index we have to solve mathemat-
ically the problem, that means, we have to find the intersection between
the ellipsoid and the surface normal to the propagation direction s. This is
equivalent to solve the equation (2.55) [26], [27].

The wave propagating along the principal axis of the index ellipsoid hold
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the electric field parallel to the displacement vector.
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Chapter 3

Basic Physical Effects in
Passive Optoelectronic Devices

In this chapter we would like to give a brief overview on the main physic
effects involved in the most common optoelectronic devices.

We start with the basic phenomenon which allows to realize one of the
widely used element, the distributed reflector, or more commonly known
as Bragg reflector. It is built by means of periodic perturbations inside the
core waveguides like periodic corrugations of the guiding film/cover interface
or periodic distribution of refractive index, both equivalent to a periodic
perturbation of the effective refractive index in the section of the waveguide.
The periodicity of the perturbation selects a specific wavelength, tuned to
the period, which, like in a multi-layer, can be repetitively reflected so that
by interference a reflected intense wave is made. It is used, thus, to filter
a wavelength; in the integrated laser to realize the feedback which allows
to select and amplify the laser wavelength; to realize intensity modulators,
temperature and strain sensor in optical fibers and other kind of devices.

The physics of the Bragg reflector is based on the coupling between two
contro-directional modes in the waveguide. To understand how it can hap-
pen, we resort to the Coupled Mode Theory (section 3.1), which is an elegant,
analytic method to explain the coupling modes in the waveguides. Never-
theless, since our work is to design the optoelectronic devices, the theory
which we present in these first chapters has only the goal to shown and bet-
ter understand the practices tools which we use and have used, we present
in the section 3.2 a power as much elegant method, let alone widely used, to
analyze and especially to numerically simulate (and thus to predict) the op-
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tical response of the distributed reflectors: the Impedance-Matching Matrix
Method [28, 29, 30, 31, 32, 33].

The chapter then continues with a short overview on the main physic
effects which induce a refractive index variation in the semiconductor ma-
terials. By means of this mechanism, in fact, a lot of functionalities in the
optoelectronic device are obtained, first between these the signal intensity
modulation, which play a relevant role in the communication systems. The
most effects are induced by an suitable electric field is applied to a semicon-
ductor. They can be differentiated in two main type of effects. The first one
is related directly to electric field (electro-optic effect), while the others are
related to the change of the free carriers concentration (carriers induced ef-
fects). At least we conclude with a brief reminding on the thermooptic effect
which is the change in the refractive index due to the change of temperature,
exploited in the temperature sensors and to test the stability of the devices
working point.

3.1 Coupling between modes: The Coupled Mode
Theory

In the section 2.3 we have seen that a waveguide can supports, in general,
several modes. Usually this mode are not coupled. In mathematic language,
since the set of the waveguide modes constitutes a wave equation solution
base, they are mutually orthogonal and independent, and each of them is
solution of the wave equation. For example, the electric field of the m − th
TE modes satisfy [

∂2

∂x2
+ ω2µε(r)

]
E(m)
y (r) = β2

mE(m)
y . (3.1)

where, we remember, ω is the light angular frequency, µ the magnetic perme-
ability, ε0 the dielectric constant, βm the propagation constant of the m-th
mode, or, in others words, the eigenvalue correspondent to the m-th modes.

Nevertheless if the waveguide structure is suitably perturbed, the cou-
pling between two different mode can occurs. Depending on the perturbation
kind it is possible to couple a TE mode to a TM mode, like in electroop-
tic or acustooptic effect [26, 34, 35], or a forward wave to a backward wave
by means of a corrugation between two dielectric interface of the waveguide
[36]. These mechanism are exploited in a lot of devices like reflectors, filters,
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modulators and so on.
To understand how it can happens, let us consider a perturbation of the

electric permittivity ε(r)

ε(r) = ε0
[
n2(r) + ∆n2(r

]
(3.2)

so that for a generic TE polarized field propagating inside the waveguide,
the wave equation can be write as[

∇2 − µε(r) ∂
2

∂t2

]
Ey(r, t) = µε0

∂2

∂t2
∆n2(r)Ey(r, t), (3.3)

where the summation is for m = ±|m|, seeing that there are a forward and
a backward term correspondent to the same amplitude Emy . Since the field
can be expressed as linear combination of the waveguide TE modes

Ey(r, t) =
1
2

∑
m

Am(z)E(m)
y (x)ei(ωt−βmz) + c.c., (3.4)

the (3.3) leads to

eiωt
∑
m

[
Am
2

(
−β2

m +
∂2

∂x2
+ ω2µε(r)

)
E(m)
y e−iβmz

]
+ eiωt

∑
m

[
1
2

(
−2iβm

dAm
dz

+
d2Am
dz2

)
E(m)
y e−iβmz

]
+ c.c.

= µ
∂2

∂t2
(
ε0∆n2(r)Ey(r, t)

)
. (3.5)

By (3.1) we deduce that the first line in the previous equation vanish;
assuming than slow variation along the propagaton axis z, so that is∣∣∣∣d2Am

dz2

∣∣∣∣� βm

∣∣∣∣dAmdz
∣∣∣∣ , (3.6)

and projecting the (3.5) on the s− th autosite, we arrive to

A+
s

dz
ei(ωt+βsz) − A−s

dz
ei(ωt−βsz) − c.c.

=
iωε0

2

∫ ∞
−∞

∆n2(x, z)Ey(x, z, t)Esy(x)dx. (3.7)

In the right side of the last equation there is the coupling term. It is like
a source that can drive the terms in the left side. In order that this happens,
it is necessary that the source have the same frequency of the waves and
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Figure 3.1: Periodic perturbation of the waveguide core.

the same phase, so that the interaction does not vanish after a long time
(compared to their period). The first condition is satisfied, since ∆n2(x, z)
does not depend on the time t. To better understand the second condition,
let we expand again the field Ey in modes superposition (3.4):

iωε0
2

∑
m>0

[
A+
m

∫ ∞
−∞

∆n2(x, z)ei(ωt−βmz)E(m)
y E(

ys)(x)dx+ c.c.

]
+
iωε0

2

∑
m>0

[
A−m

∫ ∞
−∞

∆n2(x, z)ei(ωt+βmz)E(m)
y E(

ys)(x)dx+ c.c.

]
, (3.8)

(in the summation we have made the modes traveling along the z direction
and the modes traveling along the −z direction explicit). It is now clear that
if we want excite, for example, the forward wave A(+)

s , at left there must be
at least one term with phase factor equal to exp[i(ωt− βs)]. In this manner
the equation (3.7) can be simplified keeping only these terms on the right.

3.1.1 The Coupled Mode Equations for Periodic Waveguides

Let us consider now a periodic perturbation, with period Λ, of the waveguide
guiding film, like that one shown in the figure 3.1. In this case we can expand
the perturbation ∆n2(x, z) as a Fourier Serie

∆n2(x, z) = ∆n2(x)
∞∑
−∞

aq exp iq
2π
Λ
z, (3.9)
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3.1 Coupling between modes: The Coupled Mode Theory

so that, if we want to couple the backward modes A−s to the forward mode
A+
s , the previous considerations suggest that must be

2lπ
Λ
− βs = βs (3.10)

with the result that the equation (3.7) is reduced to a set of two coupled
equations that involve only the two modes A−s and A+

s :

dA−s
dz

= κA+
s e
−i2(∆βs)z

dA+
s

dz
= κ∗A−s e

i2(∆βs)z, (3.11)

in which
∆β = βs −

lπ

Λ
≡ βs − β0 (3.12)

and the coupling coefficient

κ =
iωε0

2

∫ ∞
−∞

∆n2(x)al
[
E(s)
y (x)

]2
dx (3.13)

has been defined.
If the periodic region inside the waveguide has length equal to L, the so-

lution of the system 3.1.3 for the initial condition A−(L) = 0 (correspondent
to have not reflected wave at the output of the periodic region), putting

S =
√
κ2 −∆β2,

is

A−(z) = A+(0)
sinh [S(z − L)]

−∆β sinhSL+ iS coshSL
|κ|e−i∆β0z

A+(z) = A+(0)
∆β sinh [S(z − L)] + iS cosh [S(z − L)]

−∆β sinhSL+ iS coshSL
ei∆β0z, (3.14)

reduced to

A−(z) = A+(0)
sinh [|κ|(z − L)]

cosh |κ|L
κ

|κ|

A+(z) = A+(0)
cosh [|κ|(z − L)]

cosh |κ|L (3.15)

in the case of the phase-matching conditions, ∆β = 0.
In the figure 3.2 the trend of the power of the backward mode, |A−(z)|2

(red line), and of the forward mode, |A+(z)|2 (yellow line), along the corru-
gated waveguide in the phase-matching condition is shown. There is a power
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Figure 3.2: Trend of the power of the backward mode, |A−(z)|2 (red line), and
of the forward mode, |A+(z)|2 (yellow line), along a corrugated waveguide in phase-
matching condition. There is a power exchange between the two mode inside the
perturbed region: the forward wave lets its power to the backward wave, so that
increases the reflectance at the beginning of the corrugation.
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3.1 Coupling between modes: The Coupled Mode Theory

exchange between the two modes inside the perturbed region: the forward
wave lets its power to the backward wave, so that increases the reflectance at
the beginning of the corrugation. If the arguments of the hyperbolic cosine
and hyperbolic sine function in the (3.1.1) are large enough, this exchange
appears as an exponentially decay of the forward wave, correspondent to an
exponentially increase of the backward wave.

From the (3.1.1) we can derive the reflectance, R, and transmittance, T ,
of the the corrugated region

R ≡
∣∣∣∣A−(0)
A+(0)

∣∣∣∣ =
∣∣∣∣ κ sinh(SL)
−∆β sinhSL+ iS coshSL

∣∣∣∣2

T ≡
∣∣∣∣A+(L)
A+(0)

∣∣∣∣ =
∣∣∣∣ Sei∆β
−∆β sinhSL+ iS coshSL

∣∣∣∣2 , (3.16)

and the z-dependent part of the propagating waves

β′ = β0 ± iS =
lπ

Λ
±
√
κ2 − [β(ω)− β0]. (3.17)

We note that:

1. it is verified the energy conservation, since it is

T +R = 1; (3.18)

2. the reflectance, R, increases when ∆β vanishes, while obviously, the
transmittance, T , reaches the unity;

3. since the mode eigenvalue β depend on the light frequency, ω, the
mismatch too depend on the frequency, so that there is a frequency
interval in which β′ has an imaginary part, since ∆β(ω) < κ.

About the last observation, we have to say that the individuated range is
the so-called forbidden region, since if this happens the transmittance has an
evanescent behavior like in figure 3.2, which means that the energy imping-
ing the perturbed region of the waveguide cannot be transmitted, but only
reflected. This region is like the band-gap in the periodic potential inside
the semiconductor crystal. It is nowadays known that periodic structures
(the so-called photonic-crystal) originate transmittance band-gap and the
periodic perturbed waveguides are example of 1D-photonic-crystal. Further-
more we must stress that the band-gap exists for each value of mode-order
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Figure 3.3: Illustration of the correction to the coupling coefficient calcultion [37].
The interface between the core and the cover is taken so that the perturbation is
equitably distributed between the core and the cover, that means the area named A
must be equal to the area named B.

l = 0, 1, 2, 3, ..., and it is centered in ω0 such that β(ω0l) = lπ/Λ, called
Bragg frequency, in accordance with what previous said. Exception is for
the values for which κ = 0. Developing the perturbed propagation constant
β′ near the Bragg frequency ω0

β′ ≈ lπ

Λ
± l
√
κ2.
(neff

c

)2
(ω − ω0) (3.19)

we see that
β′

ω−→ω0−−−−−→ β0 =
lπ

Λ
. (3.20)

which mens that the Bragg frequency ω is the frequency for which the per-
turbed propagation β′ constant is equal to the unperturbed propagation
constant β.

We can conclude that a periodically perturbed waveguide acts as a re-
flector with the reflectance maximum at the Bragg frequency.

3.1.2 The Coupling Coefficient

Let us return on the expression (3.13) of the coupling coefficient, that we
rewrite

κ =
iωε0

2

∫ ∞
−∞

∆n2(x)al
[
E(s)
y (x)

]2
dx. (3.21)

How we said at the begin of this section, from the previous expression is
clear that the coupling coefficient depend on the perturbation, ∆n(x)2, and,
obviously, on the solutions E(s)

y (x) of the unperturbed structure that we are
considering. As consequence, to compute κ and then to solve the equations
(3.1.3), we must give a shape at the perturbation ∆n(x)2.
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3.1 Coupling between modes: The Coupled Mode Theory

At this point we note that since the unperturbed structure is a three-
layer waveguide, the classical perturbative approach is thus to replace in the
(3.21) the solutions (2.32). But a problem rises. In fact the first studies
[38, 39, 40] included whole the perturbation in the guiding layer . Nev-
ertheless, as observed in [41], this can lead to inaccurate excessively high
coupling coefficient. Those authors demonstrated a better agreement using
a four-layer unperturbed solutions E(s)

y (x). Fortunately, without resort to
the more complicate four-layer structure, in [37] was shown that the three-
layer unperturbed solutions can be used with good results, taking care to
choose an effective height of the guiding film, so that half of the perturbed
region is included in the guiding layer, and the other half in the adjacent
layer. To be more precise, referring to figure 3.3, taking the same system of
cartesian axes of the figure 3.1, the origin of the x axis (correspondent to the
interface between the guiding layer and the cover of the unperturbed guide)
must be translated below the top of the perturbed region so that the area
of this region above the zero, A, is equal to the area below the zero, B. As
consequence in the expression (2.32) the real thickness of the guiding layer
must be replaced with the effective thickness d′

Ey(x) =



Bceγcx
′

x ≥ 0

Bc

(
cos γfx−

γc

γf
sin γfx

)
−d′ < x < 0

Bc

(
cosκfd′ +

γc

γf
sin γfx

)
eγs(x+d′) x ≤ −d′,

(3.22)

with γc, γf and γs given by the (2.18). The constant B, as far said, can be
determined imposing the mode normalization (which physically correspond
to the energy normalization)

β

2ωµ

∫ ∞
−∞

[E(x)]2 |dx = 1. (3.23)

We remand to [37] for the details of the computations, and note only
that in the more general case if wi(x) are the function which describe the

39



CHAPTER 3. Basic Physical Effects in Passive Optoelectronic Devices

Figure 3.4: Details of the illustration of the correction to the coupling coefficient
calcultion [37]. The function wi(x) define the corrugation profile in the calculation
of the coupling coefficient (formulas 3.24 and (3.25)).

perturbation profile (see figure 3.4), the Fourier series (3.9) becomes

if x > 0

∆n2(x, z) =
(
n2
c − n2

f

) w2(x)− w1(x)
Λ

−
(
n2
c − n2

f

) [ i

2π

+∞∑
m=−∞

(
ei

2πm
Λ
w2(x) − ei

2πm
Λ
w1(x)

)
e−i

2mπ
Λ
z

]
(3.24)

in the region named A in the figure 3.3, while

if x < 0

∆n2(x, z) =
(
n2
f − n2

c

) w4(x)− w3(x)
Λ

−
(
n2
f − n2

c

) [ i

2π

+∞∑
m=−∞

(
ei

2πm
Λ
w4(x) − ei

2πm
Λ
w3(x)

)
e−i

2mπ
Λ
z

]
(3.25)

corresponding to the region named B in figure 3.3.

3.1.3 Waveguides with losses

The equation (3.7) describe the coupling between a back-propagating wave
and a forward-propagating wave across a periodically perturbed waveguide
when any losses and any gain is present in the waveguide medium. The losses
or gain in a medium can be described by means of macroscopic coefficient,
γ, such that the propagation inside the medium of a wave suffers of an
exponential decay, in the case of absorbtion, or an exponential growth in the
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3.1 Coupling between modes: The Coupled Mode Theory

case of gain. We have take into account this variation of the intensity into
the coupled mode equations (3.1.3), so that they becomes [36]

dA−s
dz

= κA+
s e
−2i(i∆βs+iγ)z

dA+
s

dz
= κ∗A−s e

2(i∆βs+iγ)z. (3.26)

The previous equations are similar to the (3.1.3) with ∆β replaced by
∆βs + iγ. Taking into account this substitution, we can rewrite the re-
flectance and the transmittance of the perturbed waveguide as

R =
∣∣∣∣ κ sinh(SL)
(γ − i∆β) sinhSL+ S coshSL

∣∣∣∣2

T =
∣∣∣∣ Seγ−i∆β

(γ − i∆βs) sinhSL+ S coshSL

∣∣∣∣2 , (3.27)

where now is

S2 = |κ|2 + (γ − i∆β)2 (3.28)

Since in this case S is complex, there is a significant difference with the
case of passive waveguide, previous examined. If γ < 0, like in the case
of losses, we have a reflectance and transmittance decrease. Otherwise, the
more interesting case, if we are in presence of gain, so that is γ > 0, the
reflectance and transmittance can be infinite if

(γ − i∆β) sinhSL+ S coshSL = 0.

This condition corresponds to a threshold condition to have an reflected wave
and a transmitted wave whiteout input field. Thus the periodic waveguide
acts as an optical oscillator. This is the basic phenomenon in the so called
Distributed Feedback Laser, where the periodically perturbation, that is the
mede Bragg Grating, constitutes the feedback cavity, which amplifies the
gain and selects the oscillation mode.
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3.2 Coupling between modes: Impedance-Matching
Matrix Method

The coupled mode method is an elegant theory to analyze and to understand
the periodic perturbation in the waveguides, provided that the perturbation
is small, which means that the depth of the etching on the waveguide must
be small compared to the guiding film thickness. Although it has been to
nonuniform grating [42, 43] and to deep grating (linear and non linear) [44],
in these cases it becomes very complicated and often too much laborious
to be applied especially to be implemented in numerical codes to design
devices. A powerful tool and as much elegant is the Impedance-Matching
Matrix Method, which is a combined Effective-Index/Impedance-Matching
matrix technique [?], proposed the first time by Wang [28] and developed
subsequently by Basu and Ballantyne [29], Bjork and Nilsson [30] and Verly
et al. [31, 32].

This method divides the corrugated waveguide into a large number of
thin sections. Each section is treated as a three-layer waveguide, and the
standard analytic method is used to compute the propagating modes that
are supported by this guide. A 2 x 2 transfer matrix for the section is then
derived by matching the tangential E and H fields, correspondent to these
modes, at the interfaces between the sections. Finally, the transfer matrix
for the complete structure is obtained by multiplying together the individual
transfer matrices.

Winick [33] given an excellent exposition of the method, together with
a comparison whit tha coupled-mode theory. In the follow, we refer to his
paper.

Consider a planar waveguide as shown in figure 3.5, where the film be-
tween the cover and substrate has a periodically spacial distribution of re-
fractive index. Let is nc the refractive index of cover layer; ns the refractive
index of substrate layer and nf that one of film layer, where is nc > ns > nf

We can consider the waveguide as a collection of slabs, numbered 0 through
2N+1, of length wk and with effective refractive index Nk, computed solving
the stationary wave equations in the three-layer guide [26].

Focusing the attention on waves propagating along the waveguide axis,
z, suppose that the periodic grating couples only two controdirectional TE
wave modes, we can write the electric field in kth slab as
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3.2 Coupling between modes: Impedance-Matching Matrix Method

Figure 3.5: In the Impedance-Matching Matrix Method the periodically perturbed
structure is subdivided in a sequence of layer, each characterized by an constant
effective index.

Ek(x, y, z) = EFk(x, y, z) + EBk(x, y, z), (3.29)

with

EFk(x, y, z) = AEyk(x, y)e−iβkz (3.30)

EBk(x, y, z) = BEyk(x, y)e−iβkz, (3.31)

being

βk =
2π
λ
Nk (3.32)

the propagation constant.
From Maxwell’s equations we derive the x-component of magnetic field

HFk(x, y, z) = − βk
ωµo

EFk(x, y, z)

HBk(x, y, z) =
βk
ωµo

EBk(x, y, z).

Named zk the position of the boundary between the (k-1)-th and k-th
slabs, we have the follow relation between the field just at left and which one
just at right of the k-th boundary

EFk−1(x, y, z−k ) + EBk−1(x, y, z−k ) = EFk(x, y, z+
k ) + EBk(x, y, z+

k )
Nk−1

Zo

[
EFk−1(x, y, z−k ) + EBk−1(x, y, z−k )

]
=
Nk

Zo

[
EFk(x, y, z+

k ) + EBk(x, y, z+
k )
]
,
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where Nk
Zo

= βk
ωµo

and Zo =
√

µo
εo

is the vacuum impedance.
Defining

Vk =
1
Zo

[
1 1
−Nk Nk

]
,

we can write in matrix form the previous equations[
EFk(x, y, z−k )
EBk(x, y, z−k )

]
= V−1

k Vk

[
EFk(x, y, z+

k )
EBk(x, y, z+

k )

]
, (3.33)

so that V−1
k Vk represent the propagation matrix across the kth boundary.

From (3.30) and (3.31), considering possible gain or absorbtion, gk, in
the medium, the propagation across the kth slab, is

[
EFk(x, y, z+

k )
EBk(x, y, z+

k )

]
= Uk

[
EFk(x, y, z−k+1)
EBk(x, y, z−k+1)

]
where,

Uk =

[
eΛk(iβk−gk) 0

0 e−Λk(iβk−gk)

]
.

Therefore the transfer matrix of k-th slab results to beMk = V−1
k VkUk,

that is, in explicit form

Mk =

 (1− ∆βk
2Nk−1

)
eΛk(iβk−gk)

(
∆βk

2Nk−1

)
e−Λk(iβk−gk)(

∆βk
2Nk−1

)
eΛk(iβk−gk)

(
1− ∆βk

2Nk−1

)
e−Λk(iβk−gk)

 (3.34)

with ∆βk = βk−1 − βk.
The transfer matrix of one period isMkMk+1, so that we have

[
EFk−1(x, y, z−k )
EBk−1(x, y, z−k )

]
=MkMk+1

[
EFk(x, y, z−k+2)
EBk(x, y, z−k+2)

]
, (3.35)

while for the whole grating, keeping in mind we want the relation between
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the field just at beginning of the grating (that is in z−1 ) and that one just at
end (that is in z+

2N ), from (3.33) and (3.35) we have

[
EF0(x, y, z−1 )
EB0(x, y, z−1k)

]
= MG

[
EF2N (x, y, z+

2N+1)
EB2N (x, y, z+

2N+1)

]
(3.36)

where the transfer matrix of grating is

MG =

(
2N∏
k=1

MkMk+1

)
V−1

2N+1V2N+1.

From the (3.36), if we set
(
EF2N (x, y, z+

2N+1), EB2N (x, y, z+
2N+1)

)
= (1, 0),

we can compute the grating reflection coefficient

r(λ) =
EF0(x, y, z−1 )
EB0(x, y, z−1k)

,

and therefore the grating reflectivity.

3.2.1 Reflectivity and Transmittivity and Characteristic Ma-
trix eigenvalues

In the [33] an explicit expression of the total period matrixMk =M‖M‖+∞
is given and the reflectance and the transmittance in the case of small per-
turbation near the Bragg condition is computed to show that the method
agrees to the coupled-mode theory.

Without report here those computation we report instead an general
analysis of the transfer matrixMG , which can help to easily understand the
grating behavior (we remaind that we are considering periodic perturbation).

First of all we rewrite the grating matrix (we remaind that we are con-
sidering periodic perturbation) MG as a general ABCD matrix,

MT =

[
AN BN

CN DN

]
. (3.37)

so that, after some calculation [45], we can derive a general expression for
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the reflectance and the transmittance

R =

∣∣∣∣∣∣
(
AN + no

Z0
BN

)
− Z0

ni

(
CN + no

Z0
DN

)
(
AN + no

Z0
BN

)
+ Z0

ni

(
CN + no

Z0
DN

)
∣∣∣∣∣∣
2

(3.38)

T =
no
ni

∣∣∣∣∣∣ 2(
AN + no

Z0
BN

)
+ Z0

ni

(
CN + no

Z0
DN

)
∣∣∣∣∣∣
2

(3.39)

being no and ni the refractive index at the input and at the output of the
perturbation.

To describe the perturbation behavior, we observe that the period trans-
fer matrix Mk = MkMk+1, as all the matrix which represent an optical
system, is an 2x2 unitary matrix, so that we can diagonalize it. Named u1

and u2 the eigenvectors and η1 and η2 the eigenvalues, we can write

Mk =

[
A B

C D

]
[u1 u2]

[
η1 0
0 η2

]
[u1 u2]−1

and, since must be η1 · η2 = 1,

η1 = eγz+i(2m−1)π (3.40)

η2 = e−γz+i(2m−1)π (3.41)

with m integer correspondent to the order of the propagating mode. The
(3.2.1) suggests that from the matrix trace derives the following relation

A+B

2
= cosh γz (3.42)

so that the following cases are possible:

1. if −1 < A+B
2 < 1, then γ is real so that both the modes are in cut-off,

since they have a decay along the z axis.

2. if A+B
2 , then γ is imaginary and the correspondent mode can propagate.

We conclude that there exist a frequency range in which the propagation
of both the forward and backward mode is allowed, while outside is forbidden.
It is possible to show that the center of this interval is the Bragg frequency.
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3.2.2 Transfert Matrix of the Perfectly Periodic Grating

If the perturbation is perfectly periodic (that means Λk = Λk+2n, with n =
(1, 2, ..., N) , is Mk = Mk+n, and the transfer matrix of the whole grating
becomes

MG = MN
T =

[
A B

C D

]
= [u1 u2]

[
ηN1 0
0 ηN2

]
[u1 u2]−1 . (3.43)

The previous expression of the transfer matrix is particularly useful in the
numeric iterative code, since it allow to reduce the computational time.

3.2.3 TM mode

We conclude this section on the combined effective index/impedance match-
ing method observing that it does not account for the boundary conditions
at grating-cover interface. Thus, though in the case of TE mode this is not
a problem, since the E and H fields are continuous across this interface, in
the case of the TM mode, to consider the conditions at this interface [32],
we must modify the matrixMk, reducing the term ∆Nk

2Nk−1
by the factor [33]:

Nav/nf −Nav/nc+ 1
Nav/nf +Nav/nc− 1

,

where

Nav =
λ

2π
(βk + βk+1) k = 1, 2, ....

3.3 The Electrooptic Effect

We have seen in the section 2.5 that in the anisotropic medium the refractive
index depend on direction of propagation of the light. The crystal symme-
tries allow to determine same main direction (principal axes) along which
the refractive index is determined, and from which we can easily know the
value of the refractive index along other arbitrary direction by mean of the
so called index ellipsoid [26]. The effect of an suitable electric field in non
linear medium is to change this principal axes, in particularly we can observe
a direction-dependent effect at first order, known as linear electrooptic effect
or Pockels effect, which rotates and changes the length of these axes, and
a quadratic effect depending on the square of the applied external electric
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field, known as Kerr effect, which induces only a change of the length of the
principal axis.

3.3.1 The linear electro-optic effect

To explain the electro-optic effect, we will make use of the index ellipsoid,
which, as said, fully describes the propagation inside a crystal. Therefore it
is advantageous to express the effects of an electric field on the propagation
in terms of the change of the index ellipsoid coefficients.

Following [26], we write the equation of the index ellipsoid in the presence
of an electric field as

α1x
2 + α2y

2 + α3z
2 + 2α4yz + 2α5xz + 2α6xy = 1, (3.44)

so that, if we chose the x, y and z axes parallel to the principal axes of the
crystal and named n1, n2 and n3 respectively the refractive indices along
these axes, when the applied field is zero, in order to have the (2.65), must
be

αi =


1
n2
i

for i = 1, 2, 3

0 for i = 4, 5, 6.
(3.45)

When an electric field E = (Ex, Ey, Ez) with an arbitrary "low-frequency",
is present, at first order, the change of the index coefficients can be written
as



∆α1

∆α2

∆α3

∆α4

∆α5

∆α6


=



r11 r12 r13

r21 r22 r23

r21 r32 r33

r41 r42 r43

r51 r52 r53

r61 r62 r63


ExEy
Ez

 , (3.46)

where the r tensor is called electro-optic tensor of the material. From the
crystal symmetries we can deduce which of the 18 rij coefficients are zero,
but not their magnitude, for example, the centrosymmetric crystals show
rij = 0 ∀i, j, while the cubic crystals with a 4̄3 symmetries, like GaAs, InP,
InGaAsP, have all the element zero except r41, r52 and r63, which are equal.

In the following we will illustrate a particular case of a cubic crystals
with a 4̄3 symmetries,
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3.3 The Electrooptic Effect

Figure 3.6: Rib waveguide grown on on (100) substrate of a cubic crystals with a
4̄3 symmetries, and an electric field along the [100] direction, coincident with the x
axis.

Pockels effect for cubic crystals with a 4̄3 symmetries

Let us consider an optoelectronic device built on a wafer grown on (100)
substrate of a cubic crystals with a 4̄3 symmetries, and an electric field
along the [100] direction (the x axis in the figure 3.6), keeping in mind the
material isotropy in absence of applied field, we have from equations (3.44)
and (3.46),

x2

n2
o

+
y2

n2
o

+
z2

n2
o

+ 2r41Exyz = 1 (3.47)

This equation says that in the absence of electric field we have the princi-
pal axis along the Cartesian directions chosen, while, in the presence of an
electric field we have a change of crystal principal axes. To find the new
refractive indices, we must find the directions of new crystal principal axes,
or, in others words, we must diagonalize the (3.47). It is easy to show that
this happens if we choose the new axes so that [26]

x = x′

y = y′ cos
π

4
− z′ sin π

4
z = y′ sin

π

4
+ z′ cos

π

4
.

In fact, replacing the previous relations in the equation (3.47), we have

x′2

n2
o

+
(

1
n2
o

+ r41Ex

)
y
′2 +

(
1
n2
o

− r41Ex

)
z
′2 = 1. (3.48)

Therefore, if n2
or41Ex << 1, the refractive indices along the new axes

(x′, y′, z′) are respectively
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Figure 3.7: Index ellipsoid of a cubic crystal with a 4̄3 symmetries. a) In absence
of an electric field the index ellipsoid is a sphere with a ray no. b) When an external
electric field is applied along the [100] crystal axis (the x axis of the reference frame),
the ellipsoid z axis is stretched by a quantity ∆n = 1

2
n2
or41Ex, the ellipsoid y axis is

squeezed by a same quantity ∆n and the whole ellipsoid rotates by π
4
around the x

axis.

nx′ = no (3.49)

ny′ =
no√

1− n2
or41Ex

' no(1 +
1
2
n2
or41Ex)

nz′ =
no√

1 + n2
or41Ex

' no(1−
1
2
n2
or41Ex).

In the case of a cubic crystal with a 4̄3 symmetries, we can conclude that
the electric field (Ex, 0, 0) stretches the ellipsoid index z axis by a quantity
∆n = 1

2n
2
or41Ex , squeezes its y axis by a same quantity ∆n and rotates it

by π
4 around the x axis, as shown in figure 3.7.
The refractive index variation for a wave polarized along a direction form-

ing a θ angle respect the y′ axis can found by a simple rotation

∆n (θ) =
1
2
n3
or41Ex cos 2θ. (3.50)

In conclusion, if we consider, like in the device which we will shown in the
chapter (??), a wave propagating along z direction, when an electric field E
is applied along the x axis (crystal direction [100]) the TE polarization (the
polarization along [010] , or, with respect to new axes [11̄0]′ ) experiences a
refractive index

n
(
−π

4
, E
)

= no −
1
2
n3
or41E,
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3.4 Carrier induced effect

while the TM polarization feels the same index felt in absence of the E field,
that is no. The device is, therefore, birefringent.

3.3.2 The quadratic electro-optic effect or Kerr effect

The quadratic electro-optic effect, known as Kerr effect, in terms of ellipsoid
index coefficients variation is expressed by

∆αi =
∑

l,m=x,y,z

silmElEm.

The 6×6 tensor s for material with a 4̄3 symmetries has the form represented
in the next expression

∆2α1

∆2α2

∆2α3

∆2α4

∆2α5

∆2α6


=



s11 s12 s12 0 0 0
s12 s11 s12 0 0 0
s12 s12 s11 0 0 0
0 0 0 s11 − s12 0 0
0 0 0 0 s11 − s12 0
0 0 0 0 0 s11 − s12





ExEx

EyEy

EzEz

ExEy

ExEz

EyEz


,

so that, if we consider again the case of the previous section, with an applied
electric field along the x axes, the non vanish components are only ∆

(
1
n2

)
1

and ∆
(

1
n2

)
2
and the refraction index variations for TE and TM polarizations

of a wave propagating along the z axis, following the same arguments of
previous section, are respectively

∆nTEKerr =
1
2
n3
os11Ex (3.51)

∆nTMKerr =
1
2
n3
os12Ex. (3.52)

3.4 Carrier induced effect

There are three main carrier induced effects on semiconductors refractive
index due to electron-electron or hole-hole interactions [46, 47, 48, 49]:

Band-filling effect The number of state in conduction band for an n-type
semiconductor is sufficiently low, so that some electrons can fill the band for
an appreciable depth. This implies that to optically excite the electrons
from the valence band to conduction band, it is required energies greater
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than nominal bandgap. As consequence there is an absorption coefficient
reduction at energies above the bandgap

∆α (E,Nd) = α (E, 0)− α (E,Nd)

and therefore a refractive index change [?], that could be calculated by using
Kramers-Kronig transformation :

∆nband−filling = ∆n (E,Nd) =
hc

2π2

∫ ∞
0

∆α (E′, Nd)
E′2 − E2

dE′. (3.53)

The same situation subsists for the holes in the p-type semiconductors, but
being larger their effective masses, and therefore the density of the states, is
smaller the band filling effects.

The injection of electron-hole plasma into semiconductors by electrical
or optical means is equivalent to doping effect, since the band filling is the
result of free carriers change [49]. The only difference is that the effect is
due to both the electrons and the holes. In the case of depletion the sign of
∆nband−filling is opposite to that injection.

Plasma effect The absorption coefficient can change by intraband tran-
sition too. In other words, absorbing a photon the electron can move to
an higher state within the same band. This phenomena is called plasma-
dispersion effect and in the Drude model is modelled as being directly pro-
portional to electrons and hole concentrations and to the square of the photon
wavelength [49]

∆nplasma =
(

e2λ2

8π2c2εono

)(
N

me
+ P

m
1/2
hh +m

1/2
lh

m
3/2
hh +m

3/2
lh

)
, (3.54)

being e the electron charge, λ the wavelength of incident photon, c the free
space light speed, εo the vacuum permittivity, no the unperturbed material
refractive index, me the effective electron mass, mhh and mlh the heavy and
light holes effective masses, N and P the electron and hole concentrations.
The sign of ∆nplasma is always negative and its absolute value increases as the
photon energy decreases below the bandgap because of the λ2 dependence.

Experimentally, the relations (3.53) and (3.54) are expressed by means
of proportionality constants between the variation of refractive index and the
doping level Nd [50] (or free carriers concentrations in the case of injection
or depletion):
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3.4 Carrier induced effect

∆nbf = αbfNd (3.55)

∆nplasma = αplasmaNd (3.56)

where obviously αbf and αplasma depend on carriers effective masses and
photon wavelength. The band filling effect is usually greater than plasma
effect, but the latter could be important, depending on carriers type and
carriers concentration.

Bandgap Shrinkage When the electrons concentration is large enough,
the electron wave functions can overlap, forming a gas of interacting particles.
The electrons will repel one another by Coulomb forces and in addition the
Pauli principle avoid them to occupy the same state. The net result is a
screening of electrons and a decrease in their energy, lowering the energy of
conduction band below the bandgap. A similarly effect for the holes increases
the maximum of the valence band. The sum of this effects is the bandgap
shrinkage [49].
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Chapter 4

Single Mode Condition for Rib
Waveguide: A New Criterion

Nowadays an increasing number of optical modulators, filters and other func-
tions relevant for telecommunication networks have been proposed [1] [2] [3]
[4] [5] [6] [7] as integrated or embedded in dielectric rib/ridge waveguides.
Many of them share the common feature of being based on the propagation of
the light beam inside a waveguide which has been designed to sustain only its
fundamental mode of propagation to allow lower insertion losses when cou-
pled to optical fibers. As observed in [8] most of authors in the past assumed
a priori that a single-mode rib waveguide must have the same transverse di-
mensions as a single-mode slab waveguide by attributing it to the Effective
Index Method (EIM), so that the rib width would be smaller then the wave-
length of the propagating light. But really to this purpose waveguides with
large cross section (that is, with lateral dimension and height much greater
than the optical wavelength) was usually already employed. Consequently
the issue to establish a single mode condition for this waveguide risen and
the question is now still open.

To have the first formal studies on the properties of the large cross-
section rib waveguide, we have to go back in 1976 with a paper of Klaus
Petermann [10], and then in the 1985 in [51]. But only in 1991 Richard
A. Soref, Joachim Schmidtchen and Petermann himself [9], performed an
Beam Propagation Analysis and given a formula to establish a single mode
condition. They tested the formula in the same year [11], using an infra-
red vidicon camera system to observe a large cross section rib waveguide,
realized in Silicon-On-Insulator by means of etching. They observed only
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Figure 4.1: Rib waveguide section. H is the rib height; w the rib width; h the slab
region height and r the etching complement, i.e. r=h/H.

one vertical mode as predicted by their theoretical analysis.
This formula was considered the right and unequivocal condition for the

designer for several years. Nevertheless Pogossian, Vescan and Vosonovici
[8], based on the Rickman’s experimental data [12] (and concerning this, I
have to say that the experimental data available are very few), modified the
Soref’s formula with an corrective factor.

In the subsequent years the interest about the question is considerable
increased. I have found in literature several papers [13, 14, 15, 16] (to cite
only someone), which with different methods, semi-analytic, like EIM, Mode
Matching or numerical, like Beam Propagation based method, confute or
agree either with Soref or with Pogossian or propose correction and new
formulas. In these papers other geometry, different from the square, like
the trapezoidal (which is the most near to the real case of the etched rib
waveguide) are been analyzed too.

After this excursus it seems that there is not an univocal and unambigu-
ous manner to establish if a large cross-section rib waveguide can operate
on single mode, so that from this study of the literature, at the begin of
my work, I deduced that the first question to solve, to design optoelectronic
devices, was to understand which criterion to follow to establish the single
mode condition for a large cross-section rib waveguide, or, in others worlds,
to found a robust an unambiguously criterion.

In this chapter, after a brief summary about the main and widely used
results available in literature, the Soref’s formula and the Pogossian’s confu-
tation, I expose the new criterion that I find and the comparison with the
cited works.
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4.1 Main Results on Large Cross-Section
Rib Waveguide

The common assumption of all the works about the single-mode condition of
the large cross-section rib waveguide is that the height of the ribbed region
must be large enough to allow to a slab waveguide with the same height of
the guiding film, to support more then the fundamental mode.

Named H the height of the guiding film, being λ the wavelength if the
propagating light and, as usually, nf , nc and ns the refractive index if the
guiding film, of the cover and substrate, respectively, from the cut off con-
dition (2.36) for the slab waveguide, derives that the waveguide is in multi-
mode regime if

V ≡ 2π
λ
H
√
n2
f − n2

s ≥ arctan

√
n2
s − n2

c

n2
f − n2

s

+mπ. (4.1)

From which, since the (2.39) implies, for m = 1,

V ≥ π. (4.2)

Rewriting the previous expression in terms of the height normalized to the
wavelength, 2b = H/λ (see figure 4.1):

2b
√
n2
f − n2

s ≥ 1, (4.3)

we arrives to the starting condition usually used by the authors when
studying the single-mode condition for the large cross-section rib waveguide.

4.1.1 The Soref’s Condition

Soref and colleagues work is based on the previous Effective Index/Mode
Matching analysis performed by Petermann [10], in which some character-
istic normalized parameters, related to the geometry structure of the rib
waveguide are defined. These parameters are related to the height of the
guiding film below the rib, labelled with the index "i" ; with the height of
the guiding film outside the rib, labelled with the index "o"; and with the
refractive indices nc, nf and ns,
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wi =
4πb

q + 4πb
(4.4)

wo =
4πrb

q + 4πrb
(4.5)

q =
γc√

n2
f − n2

c

+
γs√

n2
f − n2

s

, (4.6)

with γc,s = 1 for the HE modes and γc,s = (nc,s/nf )2 for the EH modes.
Defined an effective rib parameters

V =
π

2
a

b
wi
√
δ (4.7)

where is

δ =
(
wo
rwi

)2

− 1, (4.8)

which, like the V-number of the slab waveguide, defines the modes cut-off,
Petermann found that for each set of rib parameters, there exists a critical
value, Vs, such that for

V ≤ Vs, (4.9)

if the complement to the etching, r, satisfies the relation

0.5 ≤ r ≤ 1, (4.10)

then the EH01, HE01 modes and the higher-order EH0m, HE0m modes cease
to propagate.

By plotting Vs as function of δ, Soref and colleagues, derive a boundary
between the multi-mode region and the mono-mode region. The boundary
is found to be:

Vs =
π

2

(
1 + 0.3

√
δ
)
. (4.11)

Replacing the (4.4), (4.5) and (4.8) in the (4.9), they derives the condition
on the aspect ratio a/b (i.e the ratio between the rib normalized width, a,
and the rib normalized height, b - see figure 4.1), to have the single-mode
regime

a

b
≤ 0.3 +

r√
1− r2

, (4.12)

which, we remind, subsists with the conditions (4.2) and (4.10).
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The condition (4.10) is kept in order to assure the vertical cut off of the
higher modes. In fact the higher-order mode in the central region will be
coupled to the fundamental mode of the lateral slab section, which becomes
leaky for r ≥ 0.5. This happens because for these etching range the effective
index of the fundamental slab mode becomes higher than the effective index
of any higher-order vertical mode in the central rib region.

To support their thesis, the authors performed an BPM calculation, sim-
ulating a propagation of an launched high-order mode by off-axis excitation
in a SIO rib waveguide, designed accordantly to the conditions (4.12), (4.10)
and (4.3). The analysis results, reported in figure 4.2, shown that in agree-
ment with their prediction, the field intensity is close to the fundamental
mode of the rib waveguide. As observed by Reed and Knights, ’Whilst it
is not a proof of the concept, it is clearly a demonstration that in this case
the hypothesis is reasonable. and that the particularly higher-order modes
presented here have leaked away after travelling 2 mm’.

4.1.2 Pogossian’s Analysis

Pogossian, Vescan and Vonsovici obseved that, before of the Soref studies,
the EIM yields to a simple relation between the transversal sizes of the rib
waveguides for the single-mode propagation

a

b
<

r√
1− r2

, (4.13)

with the same conditions

2b
√
n2
f − n2

s ≥ 1. (4.14)

0.5 ≤ r ≤ 1 (4.15)

They observed that this formula differs from the Soref’formula by a non
negligible factor 0.3. In fact for a fixed value of H and r, the difference in
percent is

wEIM − wS
wEIM

≥ 0.173,

with obvious meaning of the subscript index.
Starting from this observation, they compared the two formulas with

the only experimental results available, useful to the aim, the Rickman’s
data [12]. They plotted the aspect ratio w/H versus the complement to the
etching r = h/H extracted from the data. As it is visible in the reported
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Figure 4.2: Figure extracted by: Soref et al, ’Large single mode RIB waveguides in
GeSi-Si and Si-on-SiO2’, Journal of Quantum Electronics, 27, pp 1971Ű1974, 1991.
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figure 4.3, the experimental data can be divided into two regions filled either
crosses or circles. The zone filled by crosses shows the experimentally ver-
ified single-mode propagation region[12]. In the other zone filled by circles
the multi-mode guiding condition is satisfied. By fitting the data with the
function

c+
r√

1− r2
, (4.16)

they found the value c = −0.05, much closer to the value c = 0 obtained by
EIM than to the Soref’s formula. As further experimental evidence of the
EIM accuracy, they cited a paper in which a single-mode large cross-section
rib waveguide was fabricated using the EIM criterion.

They concluded, therefore, that the EIM offers a stronger and more re-
strictive condition (compared to the fit results) with an easier physical in-
terpretation.

4.2 Single mode condition: FEM analysis

The problem to establish the single mode condition of a rib waveguide is a
eigenvalue problem. Although it is a 2D problem,we have seen in the chapter
2 that it can be reduced to a 2D problem, so that assigned the geometry of
the the waveguide section and the refractive index distribution, we have to
solve the wave equation for the electric and magnetic field, to determine the
supported modes.

Nowadays there are powerful and undiscussed cad tools which allow to
solve eigenvalue problem by means of finite elements method. They are
consolidated and widely used in a lot of field, the optoelectronics included.

Why we cannot use them?
The answer seems that it cannot possible if we want a general and un-

ambiguous criterion, useful during the devices design, and not a heuristic
way to follow every time. We wish to extrapolate a general criterion which,
assigned for example the rib height and the height of the lateral region, give
us a condition on the aspect ratio w/H in order to have only the propagation
of the fundamental mode in the waveguide.

But another issue quiet not negligible becomes visible when solving the
Helmholtz equation with numerical techniques: the numerical solver may
find solutions that are neither physical nor related to the geometries of the
problem, but "inspired" by the boundary conditions. Such solutions are
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Figure 4.3: Comparison of the single mode condition established by Soref [9] and
Pogossian [8] with the experimental data [12]. Figure extracted by Pogossian and
al. ’The Single-Mode Condition for Semiconductor Rib Waveguides with Large Cross
Section’, Journal of Light Technol.,16,pp 1851-1853, 1998..
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usually caused by the unavoidable need to limit the inspection domain to
save computational resources.

To be more precise, we note that in the papers before summarized and
cited, the lateral dimensions of the waveguide are not considered, but only
the width of the rib. This is because the semi-analytical method, like the
EIM or the MM, consider the lateral region as ideal slab waveguides, for
which the eigenvalues are determined in analytic form. The cross-section of
an ideal planar waveguide, as seen in the section 2.3, is extended from infinity
to infinity, so that consequently, as derivation the single mode conditions on
a rib waveguide are derived for an ideal guide with an infinite cross-section.

Obviously when we work with numerical simulator, we cannot consider
real infinite structures. An infinite structure must be simulated by means
of suitable boundary conditions. Referring to the figure 4.4, to solve the
eigenvalues problem with a FE simulator, we have to impose the following
boundary conditions for TE modes:

1. Dielectric Interfaces Like in the analytic problem, on the interfaces
between the different material 9-14, the boundary conditions must be
the continuity condition for the tangent components of the electric
field, E, and for the magnetic field, H, and the relative right connection
conditions for the normal component (where obviously ’tangent’ and
’normal’ are referred to the interfaces).

2. Structures Boundaries On the boundaries 1-8, to simulate an in-
finite structure, we have to impose the continuity conditions for the
field, expressed in mathematical terms by the Neumann conditions:

n̂ ·∇u = 0, (4.17)

where n̂ is the outward unit normal vector on the boundary and u is
the considered field.

.
Thus, since the solutions result well confined in the vertical direction

due to the change of materials above and bottom the guiding film, problems
can rise from the lateral boundaries, i.e from the boundaries 1 − 3 and 5 −
7, in particularly from the boundaries 2 and 6. The imposed boundaries
conditions can ’force’ the solver to find solutions, when solving the Helmholtz
equation, that, as said, are not physical.
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Figure 4.4: Boundaries of a cross-section of a rib waveguide.

Sometimes it can be difficult to distinguish between the physical solution
and these ’spurious’ solutions. Therefore, if we want to investigate the single-
mode condition in rib waveguides, we have to choose a robust criterium to
understand whether a numerical solution is either a guided mode or it is
leaking away from our guiding structure.

Nevertheless we can draw advantages by this problem.
In fact, the new idea that I have investigated and tested is the following.

I suppose the rib waveguide guides modes to be well confined nearby the
rib region and thus insensible of the lateral boundaries (referring to the
figure 4.4, the boundary 1-3, 5-7); vice-versa I suppose that the non physical
solutions have the larger spatial extension and, for this reason, they are
more sensible to the lateral boundary conditions. Therefore, by changing
the geometrical dimensions of the rib section, I expect an higher difference
between the eigenvalue of the first mode solution found with the Dirichlet
boundaries conditions (that is vanish field, i.e. u = 0) and the one found with
the Neumann boundaries conditions (4.17), when these solutions become
without physical meaning (i.e. the mode is no longer guided).

4.2.1 New Criterion

Along this line of argument, I have developed [17] a numerical code based on
a general purpose FEM solver, Comsol FEMLAB [] and MATLAB, which,
keeping fixed the rib height H, studies the difference

∣∣ND
10 −NN

10

∣∣ between
the effective refractive index of the first higher-order mode found with the
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Figure 4.5: Meshgrid generated by the FE simulator (Whiteout refine).

Dirichlet boundaries conditions (ND
10) and the effective refractive index of

the first higher order mode found with the Neumann boundaries conditions
(NN

10), by changing etching value (i.e. changing the etching complement r,
see 4.1) for each width-height ratio value, w/H.

It must be noted that in order to give a meaning to the study, the compar-
ison must be made on the same FE structure, that is on the same geometry
and on the same meshgrid. So that I can summarize the first part of the
code in this manner:

2b
√
n2
f − n2

s ≥ 1. (4.18)

1. Creation of the FE structure. This means creation of the waveg-
uide section geometry and meshgrid, assigned the materials, that is, the
refractive index distribution. This structure is parametric respect to
the rib width w, or, better, respect to the normalized width 2a = w/λ

and respect to the rib complement to etching r = h/H, while the rib
height H = 2bλ is kept such that it satisfies the (4.3), that I remind
here

2. Equation Setting up and Boundaries Conditions. On the FE
structure previous made, the Helmholtz equation is set up and the
boundaries conditions are imposed: parallely, Dirichlet boundaries con-
ditions and Neumann boundaries conditions are imposed on the lateral
boundaries 1− 3 and 5− 7.
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3. For each assigned value of the rib width, w = 2a/λ, the previous
problems are solved for the first higher-order mode and the solutions
are compared, changing the etching complement vale. In this manner
the quantity ∆NDN (r) ≡

∣∣ND
10(r)−NN

10(r)
∣∣ is estimated.

The typical outcome of this analysis is the plot reported in the figure 4.7,
where the quantity ∆NDN (r) ≡

∣∣ND
10(r)−NN

10(r)
∣∣ is shown. We observe a

threshold r*, such that ∆NDN (r) is essentially negligible for r<r*, while it
increases for r>r*, as expected. The r* value is what we expect to be the
boundary between a single mode waveguide and a multi-mode one.

In figure 4.7 the comparison between my results, Soref [9] and Pogossian
[8] results is shown (to compare the results the analysis was been performed
for w chosen between 0.5 and 1.75). As we see, with the chosen threshold,
the FEM analysis predicts that the Soref’s formula

a

b
≥ c+

r√
1− r2

, (4.19)

with c = 0.3 (I remind that a and b are the rib half width and the half rib
height normalized to the wavelength, respectively, and r is the complement
to the etching) is more accurate at lower values of the r parameter, while the
Pogossian’s approach, which is similar to Soref’s formula with c=0, becomes
a better approximation when the value of this parameter increases. We must
note that Pogossian’s results are more conservative because the boundary is
always within the single-mode region.

4.3 Discussion

At this point same observations are necessary.
First of all it must be remarked that obviously the hypothesis, accord-

ing to which the lateral boundaries conditions cannot influence the guided
modes, is reasonable if the width L of the numerical domain (see figure 4.4)
is chosen large enough. Since, as said, the guided modes are well confined be-
low the rib, the previous condition is satisfied plentifully jet if is L/2 ≥ 10w.
As confirmation of the reasonability of my hypothesis, in the figure 4.8 and
4.9 are shown the results of the FEM analysis for the distribution of the
field intensity for the first higher mode, in both the case of Dirichelet and
Neumann boundaries conditions for a/b = 1 and for several value of r near
the threshold, which is estimated to be about 0.54. In particularly the plots
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Figure 4.6: Difference between the eigenvalue ND
10 of the first mode found with

the Dirichlet boundary conditions and the eigenvalue NN
10 of the first mode found

with the Neumann boundary conditions versus etching rib waveguide complement, r
(see figure 4.1). We can observe a threshold, r∗ , such that for r < r∗ the quantity∣∣ND

10 −NN
10

∣∣ is essentially negligible, while it increases for r > r∗, as expected. The
r∗ value is what we expect to be the boundary between a singl-mode waveguide and
a multi-mode one.
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Figure 4.7: Comparison between my FEM analysis results (circle), Soref’s formula
[9] and Pogossian et al. results [8]. Above the curves is defined the multi-mode
region, while below the single mode-region. I have determined the single mode re-
gions by determination of the threshold r* such that the quantity

∣∣ND
10 −NN

10

∣∣ (that
is the difference between the eigenvalue ND

10 of the first mode found with the Dirich-
let boundary conditions and the eigenvalue NN

10 of the first mode found with the
Neumann boundary conditions in the FEM analysis) becomes relevant.
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in figure 4.8 are for r<r*, so that, according with my hypothesis, the modes
are real guided and well confined near the ribbed region. The plots in figure
4.9 are referred to r>r* and the modes are ’spread’ inside the slab region.
Obviously from those plots the difference between the two cases are hardly
visible, since is ∆N ≈ 10−4. It becomes well visible when r increases, as in
the second two plots of figure 4.9), where the case r = 0.9 is shown even for
the fundamental mode with both the boundaries conditions (the two plots
in the bottom). As supposed, since the fundamental mode is guided, the
FEM analysis solutions are equal with both the boundaries condition and
the mode is well confined below the rib. Otherwise for the 10 mode: the
solutions in the two cases are different and it is clear the effect of the bound-
aries conditions, which ’force’ the simulator to found solutions that are not
physically.

The second observation is about the choice of the threshold r*.
Since the behavior shown in figure 4.6 is repetitive, I have chosen the

threshold where a significant change of the slope occurs. Moreover, below
that value the quantity ∆N can change enough near the simulator accuracy,
while the upper limits seems is unchanged for all the simulations. Therefore
this choice it seemed me reasonable.

At least I observe that the criterion is not subject to restriction on r,
as the Soref’s formula and the Pogossian’s one. This means that it can
be used for 0 ≤ r < 0.5 too. Moreover even if the presented results are
for a rectangular rib waveguide, really there are not restriction on the rib
geometry: it can be used with any shape of the ribbed region. Therefore the
criterion can be considered a robust criterion.

4.4 Conclusions

In this chapter after an excursus on the literature about the single-mode con-
dition of the rib waveguide and an exposition of the main and widely used
results [9] [8], I have shown how Finite Elements Analysis can be used to
design single mode optical waveguides. Moreover, after the observation that
the necessity to limit the inspection domain, and, therefore, to impose on the
lateral boundaries of the waveguide section suitable boundaries conditions,
’forces’ the simulator to find solution whiteout physical meaning, but ’in-
spired’ by these boundaries conditions, I have exposed a new criterion based
on the discrimination of these ’spurious’ solutions of the simulator, supposed
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Figure 4.8: Electric field intensity distribution by FEM analysis for the 10 mode
of a rib waveguide with w = H = 4λ (being λ the field wavelength) and several
value of the r<r* in both the case of Dirichelet boundaries conditions and Neumann
boundaries conditions. The mode appears well confined near the ribbed region. N.B.:
The axes unit are µm and total length of the domain is about 20w (the same of figure
4.9). The figure is a particular.
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Figure 4.9: Electric field intensity distribution by FEM analysis for a rib with
w = H = 4λ (being λ the field wavelength) in both the case of Dirichelet boundaries
conditions and Neumann boundaries conditions. From top, solutions for the 10 mode
with r=0.6; for the mode 10 with r=0.9 and for the fundamental mode with r=0.9.
Being r>r* the solutions for the 10 mode appear spread inside the slab region and
more sensible to the lateral boundaries, while for the 00 mode the boundaries con-
ditions seem irrelevant, so that seems reasonable the hypothesis that the solutions
for the higher mode is ’inspired’ by the boundaries conditions and are not physical.
N.B.: As in figure 4.8 the axes unit are µm and the total length of the domain is
about 20w.
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with a bigger spatial extension inside the slab region, from the physical so-
lution, supposed, beside, well confined near the ribbed region. The criterion
establish that, keeping fixed the rib height, there exist a threshold, r*, of
the complement to the etching, such that for each value of the rib width,
w, the quantity

∣∣ND
10 −NN

10

∣∣ is essentially negligible for r<r* and thus the
corespondent mode really is a physical solution since insensible to the lateral
boundaries conditions, while it increases for r>r* and thus the correspon-
dent mode is a spurious solution of the simulator, since it feels the effects of
the lateral boundaries conditions. Therefore r* is what we expect to be the
boundary between the single-mode regime and the multi-mode one for a rib
waveguide.

The criterion is independent from the rib geometry and is not subject to
restriction on the etching value. So that it is a robust criterion.
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Chapter 5

Totally electrically Induced
Bragg Modulator designed by
means of new simulation
strategy

As said in the introduction of this thesis, due to their high performance
in terms of speed and efficiency processing (computing), transmission, and
reception of information, the success of the optoelectronic devices in the
communication and computational scenery it is increasing, so that parallely,
with a view to best design them, it is increasing the necessity to have efficient
tools to model and to simulate their behaviors.

This necessity has led in the last year to increase and to promote the
development of efficient and comprehensive simulation capabilities for optical
devices (both active and passive) including optical, electronic, and thermal
processes in a self-consistent fashion, i.e. to integrate an optical package
with electronics package to form a self-consistent tool for the optoelectronic
integrated circuits.

In fact the old, usual way, to simulate the optoelectronic devices, was
to use a multi-dimensional general-purpose electronic devices simulators to
obtain the Poisson’s equation solution (both carrier continuity and carrier
energy balance equation) to have all the electrical and thermal quantity of
interest, like potential, carriers distribution, electric field distribution, tem-
perature distribution and so on. Then to solve the scalar wave equations
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for the waveguides (that are the most popular basic elements of the opto-
electronic integrated devices) by means of a preferred method, that could be
numerical or semi-analytic and use numerical or semi-numerical methods to
study the light propagation inside the device to predict the optical response.

This method, leaving out of the considerations the designing time, leads
to an intrinsic inaccuracy, due to the interpolation of the results when passing
from one simulators to an other, or from one method to the others. This
source of errors can be critically to predict the very small change of the
physical quantity that take place in the optical processes, like the change in
the refractive index.

Therefore the first observation is that in the develop of the new tools, it is
advisable to use the same method to solve both the Partial Differential Equa-
tion (PDE) involved in the electronic/thermal and optical process; and, as
second, if the Finite Element (FE) are preferred, the same meshgrid must be
used to avoid or minimize the interpolation errors from one grid to the other.

5.1 New Adopted Simulation Strategy

On this new wake, I resort to and improve an in-house code [3], based on a
suitable simulation strategy which integrates the capabilities of two of the
most popular and consolidate Finite Element simulators, one of electronic
devices, as Silvaco/ATLAS, the other a general purpose FE solver, as Comsol
Multiphysics, by means of the maybe most powerful and interactive environ-
ment in the computational scenery. It is, in fact, a MATLAB® code, which
imports the device geometry, the mesh grid and the computed electronic
quantity of the interest on this grid (like carriers concentration together the
electric field) from ATLAS; defines on the same grid the optical parameters
of the material together with their eventually change lows respect the elec-
tric parameters (for example, defines the variation of the refractive index due
to the application of the external electric field on the grid points); inserts
the absorbtion or gain model for a particular structure; furnishes to Comsol
Multiphysics the geometry, the grid and all the other said quantities to solve
the scalar wave equations in the device and, at least, predicts the optical re-
sponse (transmittance/reflectance), using the Impedance Matching Matrix
Method (see section 3.2).

The code results to be a lot flexible and allows not only, as said, to avoid
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the interpolation errors, but to reduce the computational time too.

The better way to explain how the code works is to present a practical
example of intensity modulators.

The intensity modulation is reach by means of an modulated phase shift
in interferential structures. In the integrated optoelectronics these structures
can be the Mach-Zehnder modulator or a multilayer integrated in rib or
channel waveguides, and more, as seen, a periodical perturbed waveguides.
The phase-shift can be obtained by means of the refractive index change
induced by the application of an suitable electric field inside the waveguide,
due to the several effects described in the sections 3.3, 3.4. Electrodes on
the top of the waveguide and at sides are thus necessary, so that usually
the devices section appears as vertical p-i-n junction, inversely polarized to
avoid unwanted carriers recombination effects [3] [52] [53] [50] [54].

To predict the response of this kind of devices, assigned the device ge-
ometry and known the material parameters (included the Pockels and Kerr
tensors, the carrier induced effects coefficients and the refractive index of
the materials at the thermal equilibrium) and assigned the device geometry,
we have to follow the steps:

1. Determination of the Electrical Parameters.
Determine the carriers concentration and the electric field distribution
inside the structure solving the drift diffusion equation and then the
Poisson equation, respectively, for each value of the applied reverse
bias, i.e. the anode voltage, for the AC analysis and for each value of
the time for the Transient analysis.

2. Determination of the Refractive index change as function of
the applied voltage (time)

• from the carrier concentration previous determined by means of
the empirical formulas 3.55 and 3.56 the refractive index change
due to the carriers effects as function of the applied anode voltage
(time) must be computed;

• from the determined electric field distribution inside the device
section, the contribution of the electrooptic effect must be com-
puted by means of the formulas like the 3.50 and 3.51. These
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contributions summed to the carrier induced effects contributions
give us the refractive index distribution as function of the applied
bias (or time in transient analysis).

3. Optical characterization Solve the scalar wave equations for the
waveguide to determine the eigenmodes and eigenvalues, that means:
determination of the effective refractive index of the supported mode
and the field intensity distribution.

4. Optical Response Use numerical or semi-numerical methods to study
the light propagation inside the device to predict the optical response,
that is the device transmittance.

The code fulfils each of the previous steps as follow:

1. Using ATLAS the geometry structure and the meshgrid (Finite Ele-
ment Method structure), assigned the electrical materials parameters,
are made, so that on this meshgrid the carriers distribution and the
electric field distribution are determined for each value of the chosen
anode voltage applied, V k

an), performing an AC analysis and an tran-
sient analysis (responce to an applied anode pulse). So that the out-put
are N(i, j;Vanode) and E(i, j;V k

an), where (i, j) individuates a meshgrid
point.

2. The meshing is exported from ATLAS and the refractive index of the
materials together with the contributions of the several mentioned ef-
fects (EO and CI) are defined on the grid points. So that we have for
example, in the case of the band-filling effect and AC analysis:

∆nbf (i, j;V k
an) = αbfNd(i, j;V k

an),

while for the transient analysis:

∆nbf (i, j; tk) = αbfNd(i, j; tl),

(k is the label which individuates each of the value in the chosen range
of the applied anode voltage; while ’l’ individuates each of the temporal
instants in which we have subdivided the applied voltage impulse)

3. The FEM-structure (geometry and meshgrid) whit the others quan-
tities previous computed on it, are imported in Comsol Multiphysics
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Figure 5.1: From left to right: details of the section structure; corresponding Atlas
grid and propagating fundamental TE mode as computed by Comsol Multyphysics
FEM simulator

to solve the wave equation. The new out-put is the vector of effective
refractive index neff (V k

an) (neff (tl))

4. At the end the transmittance (equivalently, the reflectance) of the
device are computed by means of the Impedance Matching Matrix
Method, as described in the section 3.2.

In the next sections we present a device designed by means of the code:
an totally electrically induced Bragg Reflector Modulator. We will see how
really the very small change of the quantities involved (see figure 5.4) cannot
allow errors due to the interpolation on different grid during the design. The
crucial point of the adopted simulation strategy, is well visible in the figure
5.1, where, from left to right, are reported the details of the device cross-
section (the device is schematically described in the figures 5.2 and 5.3);
the corresponding Atlas grid; and the intensity distribution of the propa-
gating fundamental TE mode computed by the Comsol Multyphysics FEM
simulator on the same mesh grid.

5.2 Totally electrically induced Bragg Reflector

Using the simulation strategy described in the previous section, we have
designed and proposed [] a totally electrically induced Bragg Reflector in
InP/InGaAsP materials.

The interest in the possibility to induce a device in an unperturbed waveg-
uide is that it can represent a flexible solution to ’program’ on a net of
waveguide with same suitable electrodes on the top, same different functions
(like intensity modulation, filtering, demultiplexing), or, simply, to choose
the light path, driving the applied voltage. In dynamic application, we will
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Figure 5.2: Scheme of the proposed induced Bragg Reflector. The section is a ver-
tical InP/InGaAsP p-i-n diode where the InGaAsP region, that is the one with the
lower doping, defines the optical channel; while the anode electrode presents a pecu-
liar comb-structure which allows to induce the refractive index periodic perturbation
inside the waveguide.

shown as it is possible to realize an intensity modulator, which can reach a
theoretical ultra-40 GHz switching speed with a length of 2.5 mm.

5.2.1 Induced Bragg Reflector: description

The main component of the proposed induced devices is shown in the figure
5.2.

We have seen in the sections 3.3 and 3.4 that when a suitable electric field
is applied to a semiconductor, different type of effects can induce a refrac-
tive index variation depending by field intensity and/or direction. In III-V
and particularly in the InP based materials, these effects are all considerable
enough to induce a Distributed Bragg Reflector [?] in an unperturbed rib-
waveguide. Moreover, the attractiveness of the III-V direct-bandgap semi-
conductor materials, in the optical communication application based on InP,
is the possibility to have monolithically integrating optical functionalities
with electronic circuitry [?] and, in addition, the quaternary (III-V) alloy
InGaAsP lattice, matched to InP, offers the possibility to tune the bandgap
for different wavelength windows by adjusting its composition.

The device cross-section is a vertical InP/InGaAsP p-i-n diode (see fig-
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Figure 5.3: Cross-section and top-view if the proposed device. The section is a
vertical InP/InGaAsP p-i-n diode where the InGaAsP region, that is the one with the
lower doping, defines the optical channel; while the innovative solution is represented
by the a peculiar comb-structure of the anode electrode, which allows to induce the
refractive index periodic perturbation inside the waveguide.

ure 5.3). We have adopted this cross-section structure from which presented
by [3][?] similar to the structure presented in [52]. The n+-doped substrate
serves as possible back contact with other devices on the same substrate;
the n-doped InP buffer layer has the function to avoid the attenuation in
the substrate and to start in the growing process with a smooth and clean
surface. The guiding region is constituted by the InGaAsP layer, which has
the refractive index higher then the InP alloy and is a more suitable mate-
rial for the induced carrier and electrooptic effect [46] [47] [55] [56][49][57].
The thin layer of non-intentionally-doped InP between the upper p-InP layer
and the guiding layer is used to reduce the very high absorption of p-doped
material, thus to have low optical losses [58][59][60][61] [62]. Consequently
really the structure appears as an p-i-n-n junctions [50][52]. At least a very
thin p+-InP top layer is present in order to obtain good ohmic contacts with
the Au electrode.

The very innovative solutionis is represented by the periodically spaced
anode on the top of the waveguide, since, how we will see in the next section,
it allows to induce the device in the unperturbed waveguide.
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5.2.2 Induced Bragg Reflector: principle of operation

As said, in the InP-based materials the several electric-field based optical
effects, which we have described in the chapter 3, take place and none of
them can be considered as the dominant one (it is well visible in the graphic
of figure 5.4, which shown the contribution of each effect to the refractive
index change). Therefore, without biasing the diode the waveguide below
the anode electrode is unperturbed and the Bragg reflector is not induced.
As consequence the light can travel in the waveguide modulator without be-
ing affected by any relevant loss; while, when a negative voltage is applied
between anode and cathode, due to the periodic refraction index variation
induced in the intrinsic region by the periodically spaced anode, the Bragg
mirror is formed along the waveguide.

5.3 An application of the IBR: the induced Bragg
Modulator

An application of the Induced Bragg Reflector (IBR) is the modulation of the
signal intensity by means of voltage pulses on the anode. We will see that,
optimizing the Bragg parameters (which in our case are the anode electrode
period, his length and the maximum applied reverse voltage) in order to have
an as short possible device with an as small possible applied anode voltage,
we obtain a 2.5 mm long device, which predicted switching speed is higher
than 40 GHz.

5.3.1 Device parameter optimization

In order to optimize the induced Bragg parameters, once determined the
the effective refractive index of the fundamental mode (the rib waveguide is
designed to work on single-mode) as function of the applied voltage, using the
literature value for the electrooptic coefficients and for the carrier induced
coefficients reported in the appendix A, the reflectivity spectrum for different
electrode period and length was simulated. In figure 5.4 the contribution of
each of the effects to the effective refractive index as function of the applied
anode voltage and their sum is reported. While in figure 5.5 the reflectivity
spectrum for a 2.5 mm long device, optimized to work at 1.55 µm is shown.
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Figure 5.4: Contribution to effective refractive index variation of the several effects
induced by the applied anode voltage in the rib waveguide on the top of figure 5.4.

About the period and thus the operating wavelength, we have to note
that, since the refractive index of the unperturbed waveguide increase with
the voltage, the spectrum shift toward the greater wavelength, as it is possible
to see in the figure 5.5. This mens that the period cannot be assigned simply
by the Bragg condition, which, from the 3.12 results to be

Λ =
λ

2Neff
(5.1)

(where, obviously, Neff is the effective refractive index of the unperturbed
waveguide mode), but it must be appropriately chosen.

About the length and the voltage optimization, we must note that there
is a twofold approach in the choice of the maximum bias to be applied to the
device. It is clear that higher voltages increase the electric field and therefore
the phase-shift per unit length. On the other hand as we increase the negative
bias we get closer to avalanche breakdown of the junction and consequent
injection of free carriers within the optical channel. The other choice is to
make the device longer and reduce consequently the applied voltage; in this
case we have to tolerate higher propagation losses. By trading off these two
constraints we choose a length of 2.5 millim and a maximum bias of −10 V
to be applied on the anode.
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Figure 5.5: Induced Bragg mirror Reflectivity spectrum changing the reverse bias
applied between 0 and already. At the chosen operation wavelength of 1.55 µm it
changes from 0 to about 1, so that a completely on/off commutation of the light
intensity is obtained.

The reflectivity spectrum of figure 5.5, shows as in this case of a 2.5 mm
long device, with an electrode period equal to 0.236 µm, increasing the re-
verse voltage, the light at 1.55 µm is totally reflected by the mirror and an
on/off commutation of the light intensity is already obtained between 0 and
−10 V.

5.3.2 DC Characteristic

To clarify the DC behavior of this modulator the optoelectronic transfer
curve, that is the relationship between reflectivity and applied voltage, for
both the TE and the TM polarizations are reported in figure 5.6.

To verify the device stability respect to the temperature, the thermooptic
effect has been considered. A temperature change of ±1 ◦C has been consid-
ered, that is enough for an integrated device. The analysis results are shown
in the figure 5.7. We can see that in spite of a little shift of the characteristic,
the device behavior it is not compromised.
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Figure 5.6: Reflectivity at 1.55 µm of the modulator against reverse bias applied
for TE and TM polarization.

Figure 5.7: Effect of temperature on DC characteristics. On/off modulation is
assured between 0 and −10 V.
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Figure 5.8: Transient behavior of the proposed modulator when driven by a 8 ps

long -10 volt square pulse. Rise times estimated of about 2 ps

5.3.3 Transient Analysis

To verify the theoretical switching capability of this device, a negative square
voltage pulse has been applied to the anode and reflectivity has been evalu-
ated. The result of this simulation is reported in figure 5.8. We can observe
the very fast rise and fall transient (which are of the order of 2 ps and 9 ps
respectively) which predict the possible use of this device for ultra 40 Giga-
bit/s modulation rate. This switching speed is obviously a theoretical upper
limit because of the driving amplifiers that have to be impedance matched
to the modulator.

5.3.4 Comparison with Mach-Zehnder architecture and other
applications

Al least we have compared the transient response of described Induced Bragg
Reflector modulator (IBR) to which one of the most popular Mach-Zehnder
(MZ) configuration with the same devices section and the same active region
length (2.5 mm). The comparison results are shown in figure 5.9. Though
the voltage applied for a complete reflectivity on/off switch is lower (3.1 V)
for the MZ modulator, the transient response to an 8 ps long pulse is slightly
slower. We observe a totally time rise of about 4 ps against 2 ps of Bragg
configuration. So, it seems faster the Bragg Modulator, since, moreover, we
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Figure 5.9: Transient response to an 8 ps long −3.1 V pulse of a Mach-Zehnder
modulator with the same section and active region length (2.5 mm) of the proposed
Bragg modulator. We can observe a rise time longer (about 4 ps)

have to note that to the same length, in the case of the IBR modulator,
correspond an half electrode length, i.e. an half capacitance an thus a faster
real response. This is true in push-pull configuration of the MZ modulator
too, even if in this case the length of the device is half respect the IBM. It is
superfluous to note that the area on the chip of a push-pull MZ modulator
and of a IBR modulator with the same active region is about the same, since
the former is shorter, but double.

Comparing the response of both configuration, shown in the figures 5.8
and 5.10 an other interesting difference appears: while the IBR modulator
does not show birefringence, the MZ seems to be birefringent.

To reduce the side-lobes of the Reflectivity Spectra of the grating, apodiza-
tion [63] could be make, in order to prevent a modulator response increase
at low Bias, due to an undesirable shift of the spectra (for example by means
of temperature change) or to reduce the device reflection band, if we want a
more selective response, for example to have an filter instead of a modulator.
In this kind of device obviously the apodization could not be a modulation
of the refractive index, but must be realized by mens of modulation or of the
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Figure 5.10: Comparison of the transient response to an 8 ps long −3.1 V pulse
of a Mach-Zehnder modulator and of the proposed Bragg modulator with the same
section and active region length (2.5 mm).

grating period (a good method could be the Randomly Sampled Apodiza-
tion, RASA, [64]), or by means of the electrode periodicity duty-cycle. The
results are the same that in the case of refractive index modulation since
what is important is the modulation of the phase shift accumulated in each
layer of the grating. Besides both the cited method can be easily realized in
the technology process by means of a Focused Ion Beam Deposition, which
is a tool usually present during the electronic devices building process [65]
as inspection tools, but that could be used to this purpose.

About the technology process, it must be noted that this kind of device
do not need etching, implantation or other photolithography steps to write
the Bragg reflector, only the metallization step to realize the electrode.

5.4 Conclusion

In this chapter, after the illustration of the adopted simulation strategy for
the design of the integrated optoelectronic devices, an integrated modulator
in InP/InGaAsP p-i-n diode it has been presented. The device is based on
the widely used field-effect in the InP derived material, but the peculiarity of
our device is the anode electrode comb-structure. It, in fact, allows to induce
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the device in an unperturbed waveguide, by means of the applied electric
field. The interesting to induce the device in the unperturbed waveguide
or net of waveguides is the possibility ’to program’, conformity with the
necessity, several functions, like wavelength filtering, intensity modulation
or, in a fun-configuration demultiplexing, or simply to chose the signal path.
In particular we show has an Induced Bragg Modulator can potentially reach
a transient response greater than 40 GHz, which is perfectly respondent to
the actual request of the integrated modulators.

The adopted simulation strategy resorts to the available resources to built
a self-consistent tool to design optoelectronic devices. It allows to avoid the
inevitable errors of the old strategy due to the use of different tools and
methods to predict the device electrical behavior and the optical one, which
needed to interpolate the electrical device parameters when imported, for
example, from the electric simulator to the optical.
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Chapter 6

Conclusions

The main issue which I have faced in this work are the single-mode condi-
tion for large cross-section rib waveguide (that is, with lateral dimension and
height much greater than the optical wavelength) and the problematic about
the simulation strategy of the optoelectronic devices.

The first one could seems a simple and solved question, but although
the condition, given by Richard A. Soref, Joachim Schmidtchen, and Klaus
Petermann [9], based on previous studies performed by Petermann [10] was
widely used, it has been subsequently confuted by several authors, as shown
in the chapter 4. The interest on the single-mode condition of the large
cross-section rib waveguide lies in the increasing number of devices which
have been built as integrated in these waveguide, having a better coupling
with the single-mode optical fibers. From the literature it seemed that there
was not a unambiguous criterion, but that the condition depend on the device
structure and geometry, so that I was induced to face the issue.

I found a new criterion, based on an Finite Element analysis [17], by
comparison between the numerical solutions found with Neumann bound-
ary conditions and Dirichlet boundaries conditions applied when solving the
eigenvalues problem. The criterion is based on the observation that the
necessity to limit the inspection domain, and, therefore, to impose on the
lateral boundaries of the waveguide section suitable boundaries conditions,
’forces’ the simulator to find solutions without physical meaning, but ’in-
spired’ by these boundaries conditions. These ’spurious’ solutions of the
simulator are supposed with a bigger spatial extension inside the slab region
than the physical solution, which, beside, are supposed well confined near
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the ribbed region, so that the first are supposed more sensible to the lateral
boundaries conditions than the latest. The criterion establish that, keeping
fixed the rib height, there exist a threshold, r*, of the complement to the
etching, such that for each value of the rib width, w, the difference between
the effective refractive index found for the first higher mode with the Dirich-
let boundaries conditions and the effective refractive index found for the
first higher mode with the Neumann boundaries conditions,

∣∣ND
10 −NN

10

∣∣, is
essentially negligible for r<r*, so that the corespondent mode is a real phys-
ical solution, (since insensible to the lateral boundaries conditions); the said
difference increases for r>r*, so that the correspondent mode is a spurious
solution of the simulator (since it feels the effects of the lateral boundaries
conditions). Therefore r* is what we expect to be the boundary between the
single-mode regime and the multi-mode one for a rib waveguide.

The comparison with the Soref’s formula shows that the criterion predicts
that the Soref’s formula is more accurate at lower values of the r parameter,
while the Pogossian’s analysis (based on the effective Index Methid, [8] and
which is similar to Soref’s formula except a corrective factor) becomes a
better approximation when the value of this parameter increases.

The criterion does not depend on the geometry structure and has not
restriction (the Soref’s formula and the Pogossian’s formula subsist for 0 ≤
r < 0.5). It is thus a robust criteron. Nevertheless it must experimentally
confirmed, since the only experimental data which present a sistemtic study
on several rib waveguide samples with different etching and width, are not
enough dence near the predicted boundary between the single-mode condi-
tion and the multi-mode one.

The second issue I faced respond to the request of the last year to develop
an efficient and comprehensive simulation capability for optical devices (both
active and passive) including optical, electronic, and thermal processes in a
self-consistent fashion, i.e. to integrate an optical package with electron-
ics package to form a self-consistent tool for the optoelectronic integrated
circuits.

To this purpose, I resort to and improve an in-house code [3], based on
a suitable simulation strategy which integrates the capabilities of two of the
most popular and consolidate Finite Element simulators, one of electronic
devices, as Silvaco/ATLAS, the other a general purpose FE solver, as Comsol
Multiphysics, by means of the maybe most powerful and interactive environ-
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ment in the computational scenery. It allows to avoid the inevitable errors
of the old strategy due to the use of different tools and methods to predict
the device electrical behavior and the optical one, which needed to interpo-
late the electrical device parameters when imported, for example, from the
electric simulator to the optical. In fact, since it is based on Finite Element
simulators, it uses the same grid to solve both the electrical and the optical
equations and to study the propagation conditions.

Tanks to this code I designed an integrated modulator in InP/InGaAsP
p-i-n diode. The device is based on the widely used field-effect in the InP
derived material, but the peculiarity of the device is the anode electrode
comb-structure. In fact,it allows to induce the device in an unperturbed
waveguide, by means of the applied electric field. What is interesting to
induce the device in the unperturbed waveguide or net of waveguides is the
possibility ’to program’, conformity with the necessity, several functions, like
wavelength filtering, intensity modulation or, in a fan-configuration demul-
tiplexing, or simply to chose the signal path. In particular I show has an
Induced Bragg Modulator can potentially reach a transient response greater
than 40 GHz, which is perfectly respondent to the actual request of the in-
tegrated modulators.

As future work I hope to realize the device and to test his performance.
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Appendix A

InP Optical Properties

The InP belongs to the family of the III-V semiconductors, since it is an alloy
between to the Indium (In), belonging to the III-group of the elements table,
and the Phosphite (P), belonging to the V-group. As all the others semicon-
ductor, the InP and the quaternary alloys InGaAsP have an energy bandgap,
so that they are opaque for light of which the photon energy is higher than
the bandgap energy, and transparent for light of which the photon energy is
below the bandgap energy.

Their main characteristic and esteem respect to the silicon, which belong
to the IV-group of the periodic table, is the direct bandgap against the
indirect bandgap, which allows more efficient photon absorbtion and emission
processes, since they does not need of the phonon assistance. Moreover as
the photon energy is close to their energy bandgap, they show relatively
great values of the electrooptic coefficients. All these characteristic allow
them to be faster then the Silicon and the Silicon based material, when used
as modulators, photo-detectors as well as optical amplifiers.

The InP is a good material for the fabrication of Photonic Integrated
Circuits, in which active optical components such as lasers, amplifiers, and
optical switches are combined with passive elements such as (de)multiplexers,
splitters and couplers on a single chip and moreover, it is suitable for inte-
gration of the electrical drive circuitry too, providing very powerful and cost
effective solutions for implementing high-speed optical systems.

The possibility to epitaxially grown and to lattice match the ternary
and quaternary alloys, InGaAs and InGaAsP, on InP substrate, enlarge the
materials potentiality. In fact, by changing the composition of the quaternary
alloys, the bandgap wavelength can be tuned anywhere between 0.92 and
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1.65 µm, so that tunable active devices like (absorber, laser or amplifiers)
and passive function can available in the the telecommunication range, that
is the range of lowest losses and lowest dispersion for the optical fibers

A.0.1 InGaAsP on InP: lattice matching condition

The lattice matching condition between the InP substrate and the alloys,
depend on latest stechiometry. The used notation for the quaternary alloy
composition is In1−xGaxAsyP1−y, where is clear that x is the Gallium molar
fraction, while y is the Arsenium molar fraction. The lattice condition is
given by the following relation between x and y [46][66]

x =
0.1896

04176− 0.0125y
. (A.1)

A.0.2 Energy bandgap

As said, depending on the alloy composition the optical properties change.
From the analysis of several alloy champions with different compositon, Na-
hory et al. [66] deduced the following energy bandagap dependence on the
composition

Eg = 1.35− 0.72y + 0.32y2, (A.2)

widley used and confirmed in the years [46][49][50][67]. Usually the quater-
nary alloys are identified by the short noation: Q(λg), where Q stands for
’quaternary’ and λg is the absorbtion wavelength, i.e λg = hc/Eg, being h
the Planck constant and c the light speed.

A.0.3 Electrooptic and Carrier Induced Effects coefficients

Unfortunately experimentally values for all the effects are not available and
often the literature values do not agree. There is a dependence by structure
and crystal growth. In the follow we report some of literature values.

• Adachi reports the following values, extracted from his model [46]. For
the electro-optics coefficients [68]

rInP41 = 1.41× 10−12 m/V

rInGaAsP41 = 1.55× 10−12 m/V;

for the quadratic electrooptic coefficients [69]:

sInGaAsP11 = sInGaAsP12 = 4.16× 10−20 m/V2;
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while for the plasma effect

αInPplasma = −4.3× 10−21

αInGaAsPplasma = −5.7× 10−21.

• Vichant et al. [50] use the empirical values reported in [55] and [57]
for electrooptic effect

rInP41 = 1.4× 10−12 m/V

rInGaAsP41 = 1.55× 10−12 m/V ;

while for the Kerr coefficients:

s11 = s12 = 1.5× exp (−8.85∆E) cm2/V 2;

where ∆E is the difference (absolute value), in eV, between the pho-
ton energy of guided light and the quaternary material fundamental
gap energy. For an photon energy Eph = 0.8 eV (corresponding to
λg = 1.55 µm and a material energy bandgap EInPg = 1.35 eV and
EInGaAsPg = 0.85 eV(corresponding to a As molar fraction y = 0.61)

sInP = 1.15× 10−17 cm2/V2

sInGaAsP = 3.79× 10−17 cm2/V2.

From their experimental graphic, we deduce the proportionality con-
stant, for photon wavelength of 1.55 µm (Eg=0.8 eV):

αInPbf ≈ −5× 10−21

αInGaAsPbf ≈ −30× 10−21

• In his PhD dissertation, Maat from the available model develop same
theoretical curves which give the refractive index change as function
of the photon wavelength and parameterized respect to the quaternary
alloy composition.

He models the linear electrooptic effect with the Adachi model and then
uses the modified single-oscillator model of Fiedler and Schlachetzki
[48] for the calculation of the composition dependent refractive index
change of InP/InGaAsP. Successively, experimentally he determines an
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increment factor for the Pockels coefficient of 1.07, so that his value
for Pockels coefficients are:

rInP41 = 1.35× 10−12 m/V

rInGaAsP41 = 1.65× 10−12 m/V.

For the quadratic electrooptic effect, he uses the Faist [54] theoretical
values, experimentally confirmed by Krähenbühl [70], then the Fiedler
and Schlachetzki model to derive again the composition dependence:

sInP11 ∼ 1.5× 10−20 m2/V2

sInP12 ∼ 1× 10−20 cm2/V2,

sInGaAsP11 = 1.19× 10−19 cm2/V2

sInGaAsP12 = 2.15× 10−19 cm2/V2,

He uses the Bennet model [49] to model the refractive index change
due to the band filling effect as function of the doping level; then he
uses the modified single-oscillator model [48] for the calculation of the
composition dependent refractive index change of InP/InGaAsP. From
his graphics, we deduce, considering a Q() InGaAsP:

αInPbf ≈ −3× 10−21

αInGaAsPbf ≈ −20× 10−21

while for the plasma effect his calculation are in agreement with Adachi.
In fact results:

αInPplasma ∼ −4× 10−21

αInGaAsPplasma ∼ −5× 10−21.
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