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Introduction 

 

 

Giant Magnetoresistance (GMR) development, followed by work in magnetic tunnel junctions 

(MTJ), and  spin electronic devices (SPINS) show  now increasing interest for many applications in 

the information technology and magnetometry. Because of their small size, low power, and 

relatively low cost, solid state sensors that detect magnetic fields lower than Earth’s have found 

several applications in all major industries. The resulting improvements in magnetoresistance have 

been accompanied by rapid exploitation of these new magnetics structures in magnetic sensors, read 

heads and nonvolatile memory (MRAM). GMR sensors are being used to determine precise 

magnetic orientation and to detect natural and man-made geophysical anomalies, various 

physiological functions, metal defects and minute particles associated with immunoassay. New 

applications are being discovered daily as the current technology involves limitations due to size, 

weight, power consumption, and cost. As these applications develop, there is an emerging 

requirement to provide new probes of low-field magnetic sensors for magnetic field images of the 

subject material or, as in the case of bioassays, to handle multiple variables simultaneously. 

Application areas being investigated include NDE (Non Destructive Evaluation) eddy-current 

mapping for defect detection in metallic materials, geophysical anomalies, and bioassays. 

This work is mainly focused with the study of the Giant Magnetoresistive sensors (GMR) and their 

potentiality concerning the Non Destructive Evaluation applications. The experimental activity as 

been followed in the CNR-INFM Coherentia laboratories of Naples situated in the University 

Federico II faculty of Engineering. More details of the thesis include as follow:  

 

In chapter I, some major GMR applications have been illustrated. Among all quoted applications, 

the discussion is focused on computer memory and storage applications in information technology 

industry, biosensing applications and Non Destructive Evaluations (NDE) using magnetic probes. 

 

The chapter II contains a brief review of the giant magnetoresistance (GMR) effect exhibited by 

magnetic multilayers, granular alloys, and related materials. Various and much different physical 

origins can be responsible of the effect in the different systems. By starting with the 
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magnatoresistance (MR) effect characterization, we include a description of the main phenomenon 

in term of spin-dependent conduction and electronic band structure in magnetic multilayers. 

 

The chapter III includes the main theoretical models used to describe the GMR behaviour and the 

electronic transport properties of magnetic multilayers. In this study, our attention will be aimed 

above all to the semiclassical Boltzmann theory which permits to obtain macroscopic transport 

equations of magnetic multilayers for current perpendicular to the layers. These macroscopic 

equations will be used to extract, with the aid of numerical simulation, the GMR behaviour of a 

magnetic multilayer. 

 

The chapter IV will report the experimental characterization of the sensors including magnetic 

background noise analysis, conversion factor and non destructive measurements on several 

materials. The interest linked to this kind of sensors is addressed to the improvement of 

performances related to the spatial resolution and sensitivity. Thus, our study aimed to estimate the 

optimal configuration for a system of commercial GMR sensors. Our attention has been focused 

mainly to the gradiometric configuration. In fact, the use of GMR sensors in gradiometric 

configuration, together with the applied filtering technique, enables the strong reduction of the 

magnetic noise increasing the signal to noise ratio. The results coming from the measurements, 

taken on different materials, allows to understand the advantage of using an electronic gradiometer 

and the reliability of our experimental probe. 
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I Low-Field Magnetic Applications in Industry and Medicine 

 

 

 

Industry continues to reap the benefits of solid state magnetic field sensing. Every day new 

applications are found for solid state magnetic field sensors due to their small size, low power and 

relatively low cost. The new frontier for these solid state sensors is very low magnetic fields. GMR 

technology is being applied to low-field magnetic applications and the newer GMR technologies 

such as Spin Dependent Tunnelling (SDT) will make even more of these applications possible. The 

chapter illustrates some major GMR application, already available nowadays, and enforce the 

importance of this technology. 
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There are many places in industry and in medicine in which magnetic fields the size of the Earth’s 

magnetic field and smaller are of interest. The source of these fields can be magnetized objects, 

electrical currents, or the Earth’s field itself. For this purpose, magnetic field sensing is often 

utilized for control and measurement. Generally in these applications, relatively large magnetic 

fields are used to avoid confusion with background magnetic fields such as the Earth’s magnetic 

field, fields from ferromagnetic objects, and EMI. The fields detected are provided either from 

permanent magnets or from currents in coils, sometimes with soft magnetic cores. The size of these 

magnetic fields is usually tens to hundreds of Oe. 

Since magnetic field sources are inherently dipole in nature, they decrease with the inverse cube of 

distance and, sometime, the low-field aspect of these applications can be due to the distance to a 

magnetic object or the size of the magnetic object itself. Therefore, the fields from these sources are 

relatively localized. Despite the increased measurement difficulties encountered, low magnetic 

fields are gaining increasing attention in industry. It is enough to think to computer memory and 

storage technology, Non Destructive Evaluations (NDE), biosensing applications, tomography, 

aeronautical and aerospace compass applications, motor vehicles surveying, currencies and other 

negotiable documents identification or validation and so on. 

In this context, our attention is focalized to a solid state magnetic field sensors alternative 

technology. Since the discovery of giant magnetoresistance (GMR), magnetoresistive devices have 

progressed rapidly from the anisotropic magnetoresistance (AMR) structures that were the 

dominant thin film magnetoresistive material into the 1990s. GMR development, followed by work 

in magnetic tunnel junctions (MTJ), is now being amplified by the latest work in spin electronic 

devices (SPINS). These devices have an inherent advantage in size and power when compared to 

search coil, flux gate, and more complicated low-field sensing techniques such as Superconducting 

Quantum Interference Devices (SQUID) and spin resonance magnetometers. A solid-state magnetic 

sensor directly converts the magnetic field into a voltage or resistance with, at most a dc current 

supply. The sensing can be done in an extremely small, lithographically patterned area further 

reducing size and power requirements. The small size of a solid state element increases the 

resolution for fields that change over small distances and allows for packaging arrays of sensors in a 

small package. 

Among all quoted applications, here the discussion is reduced to computer memory and storage 

applications in information technology industry and its market interest, biosensing applications and 

tomography as regard medicine and geophysics, to finish with Non Destructive Evaluations (NDE) 

that is our main field of interest. 
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I.1. The development of MRAM and data storage technology 

 

Semiconductors and magnetic materials play an important role in the electronic devices. Data 

processing is carried out by carrier charge in semiconductor devices. In contrast, hard disk drives, 

which are representative of electron device using magnetic materials perform data processing using 

spin in the magnetic materials. 

These two electron devices have been studied independently and have not always been developed 

together. In the semiconductor field, Si micro-fabrication and integration have realized large 

capacity memory devices, such as DRAMs. The study of magnetism has sought development of 

new and high- quality materials rather than the micro-fabrication of magnetic materials. 

The discovery of the giant magnetoresistance (GMR) effect [Ref. I.2] in artificial superlattices and 

the giant tunnel magnetoresistance (TMR) at room temperature [Ref. I.3] triggered the formation of 

the spintronics field, where transport properties play an important role along with magnetic 

properties. 

Figure I.1 summarizes the concept of spintronics, in which magnetic and semiconducting 

technologies play an important role. Both the spin and charge of electrons may contribute to 

discovery of new functional devices that will break in limits imposed on existing devices. 

 

 

 

Figure I.1 MRAM capacities are shown for different years. DRAM and FeRAM points are also shown for comparison 

[Ref. I.1]. 
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The study of magnetic RAM began in 1948 using a ferrite core that possessed a square hysteresis 

loop. In 1955, a square hysteresis loop with a small coercive force was reported for Ni-Fe 

(permalloy) and these devices together with permalloy wire memory began to be developed in the 

1960s. Further improvements in magnetic memory density, though without performance or cost 

benefits, were demonstrated in the 1970s by yet another type of magnetic memory technology, 

bubble memory, although none competed economically with semiconductor memories. On the other 

hand, magnetoresistive random access memory, called simply MRAM, was proposed first in 1972 

[Ref. I.4]. Then several memory cells made of Fe-Ni-Co alloys were demonstrated, even if the output 

signals of these memory cells were small because of the small magnetoresistance ratio[Ref. I.5 -Ref. 

I.7]. 

In 1988, the discovery of giant magnetoresistance in magnetic multilayers and sandwiches revealed 

large magnetoresistance ratio at liquid helium temperature [Ref. I.2]. At the same time, the evolution 

of deposition techniques allowed the application of artificial tunnel barrier technique to magnetic 

tunnel junctions (MTJ). 

First, in 1991, Miyazaki and co-workers at Tohoku University reported NiFe/Al–Al2O3/Co 

junctions with TMRs of 2.7% at room temperature. This was a significantly higher percentage than 

earlier room temperature results, but far lower than expectations [Ref. I.8, Ref. I.9]. 

The invention of the spin valve device showed great promise for read-head sensors for hard disk 

drives, to propose the use of a spin-valve-based MRAM. The new magnetic device, the magnetic 

tunnel junction (MTJ), began to emerge in the mid-1990s [Ref. I.15].with the potential to enable a 

new memory that could simultaneously achieve high speed, high density, and non volatility.  

Finally, in 1994 two groups working independently, both using artificial tunnel barriers of Al2O3, 

obtained magnetoresistance values at room temperature that began to approach the magnitude 

expected. Miyazaki and Tezuka, experimenting with Fe–Al2O3–Fe structures, obtained an 18% 

effect at room temperature [Ref. I.3], while Moodera et al. at MIT, working with CoFe–Al2O3–Co, 

produced effects of up to 11.8% at room temperature [Ref. I.10]. 

The first MRAM cell with MTJ was reported by Wang and Nakamura [Ref. I.15] in 1996. They 

called this memory spin tunnelling random access memory (STram). Essential attributes of this 

MRAM technology are non-volatility and unlimited read and write endurance. In addition it can 

operate at high speeds up to several nanoseconds, but far to have competitive densities. 

These evolution shifted the interest to this type of magnetic RAM also for the military and 

aerospace market. This broader range of applicability has led to widespread research and 
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development activity aimed at demonstrating magnetic tunnel junction random access memory with 

commercial market potential. 

In 1999, IBM [Ref. I.11].and Motorola [Ref. I.12] developed 1 kbit and 512 bit MRAMs, respectively. 

Motorola developed successfully 1 Mbit, 2 Mbit and 4 Mbit MRAMs [Ref. I.13] In Japan, NEC and 

Toshiba cooperated and developed a 1 Mbit MRAM in 2003 [Ref. I.14]. Today, a big effort comes 

from IBM to demonstrate of basic capabilities of the MTJ technology. IBM researchers work on a 

16-Mb ‘‘product demonstrator’’ design in 180-nm node technology, which was targeted to be a 

realistic test bed for the MRAM technology (2006) [Ref. I.16]. 16-Mb MRAM is the largest MRAM 

yet fabricated, with the smallest cell size (1.42µm2
) among multi-megabit MRAM designs. The 

main features of the design are summarized in the Table I.1 below. 

 

Interface 16-Mb asynchronous SRAM (1 Mb x 16) 

Technology CMOS 7sf (180 nm), 1-poly, 3-Cu metal 

MRAM specific layers Three-level MRAM adder 

Chip size 7.9 mm x 10 mm 

Cell size 1.42 µm
2
 (efficiency ;30%) 

Vdd 2.3–3.3 V or 1.8 V 

Access/cycle times 
Read: 30 ns 

Write: 30 ns 

Active current (read) 25 mA @ 30 ns 

Active current (write) 80 mA @ 30 ns 

Standby current 32 µA 

Deep power-down current 5 µA, no loss of data 

 

Table I.1 Design parameters for 16-Mb MRAM. Data from Ref. I.16. 

 

Following the initial demonstration of high TMR at room temperature, it was quickly recognized 

that the magnetic tunnel junction had a number of properties that would make it very attractive for 

the read operation in a very dense memory cell (see Table I.2). 

 

High magnetoresistance (MR) 

advantage 
advantage 

High resistance  advantage 

Controllable resistance advantage 

Weak temperature dependence advantage 

Scalable to small sizes with high MR advantage 

MR falls off with increasing voltage disadvantage 

 

Table I.2 Magnetic tunnel junction properties for read operation. 
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The high magnetoresistance is important for obtaining a large signal from a memory cell, especially 

if a fast read operation is desired. Equally important the high resistance of a magnetic tunnel 

junction, compared with that of earlier magnetic devices, is compatible with high-speed sensing 

using CMOS circuitry. The high resistance is introduced in a very compact structure, basically in 

the space of an electrical via connection between two wiring layers. The resistance depends 

exponentially on the thickness of the very thin tunnel barrier, of the order of 10 to 20Å . The 

extremely small thicknesses involved might appear to make the resistance difficult to control but 

early improvements in deposition techniques demonstrated that it is possible to control the 

resistance making it tunable from 60Ω/µm2
 to 10

7Ω/µm2
. Another essential attribute of magnetic 

tunnel junctions for read operations in a memory is that their electrical properties vary only slowly 

with temperature. The important scale for temperature variations is set by the Curie temperature of 

the magnetic electrodes, which is of the order of 500°C or greater in commonly used alloys of Ni, 

Fe, and Co. Important for future scaling, the magnetic tunnel junction could be scaled to very small 

sizes while its magnetoresistance value remained unchanged.  

The only negative aspect of the properties of the magnetic tunnel junction from a read perspective is 

that the magnitude of the magnetoresistance effect falls off with increasing voltage. However, this 

range of falloff is slow enough to result in a sufficiently large signal for sensing by memory readout 

circuitry; with improvements in MTJ quality, typical half voltages currently range from 500mV to 

more than 700mV. 

 

As before, the magnetic tunnel junction device, with its large magnetoresistance signal, its CMOS-

compatible [Ref. I.17] resistance value, and its compact structure, has led to the consideration of 

several MRAM architecture possibilities. As concern, early anisotropic magnetoresistance (AMR) 

and spin-valve devices pursued for MRAMs, it is well-known that, because of the small signal 

required, the magnetic storage state of those devices could be disturbed in some manner 

(destructively or non destructively) during the read operation in order to provide a self-reference 

signal. The small signal and associated, complex referencing and sensing operations inevitably 

result in a slow read operation. The TMR device, on the other hand, could be laid out compactly 

and placed in series with a switch element (either an FET transistor or a diode) and sensed directly, 

assuming that tracking variations of the resistance value between different TMR elements are 

smaller than the magnetoresistance ratio. 
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Figure I.2 MRAM architectures. (a) Cross-point architecture with thin-film diode in the tunnel junction stack. (b) FET 

architecture. (c) Switchless cross-point architecture. 

 

Figure I.2 shows three architectures that should permit MRAM realizations because of the large 

signal of the TMR element. Figure I.2(a) shows a particularly compact ‘‘cross-point’’ arrangement 

in which each magnetic tunnel junction stack also contains a thin-film diode. The diode serves to 

block the sneak current paths in the matrix arrangement of the cells. During a read operation, a cell 

is selected by grounding one word line while all of the other word lines are biased as high as the 

sense line. Then, just one device along a bit line will be forward-biased, and the current that flows 

through it will be detected. The requirements for high-speed operation of this type of array are 1) 

that the diode carry a relatively high forward current so that the voltage drop across it when forward 

biased is less than that across the magnetic tunnel junction and 2) that the diode have a high 

rectification ratio in order to limit sneak paths in large arrays. For the compact cross-point structure, 

the diode must be formed above a wire that can carry substantial current (several milliamps). 

Unfortunately, the forward conductance of thin-film diodes that can be formed on high-conductivity 

metal wires is insufficient for high-speed cells with small areas. It has thus not been possible to 

realize this very attractive architecture.  

A second architecture, shown in Figure I.2(b), utilizes an FET switch in the substrate to eliminate 

the sneak paths during the read operation. The cell area is doubled because it is necessary to connect 

to the FET switch in the substrate through a via to the side of the MTJ stack. However, fast 
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operation is obtained, since there is then generally enough silicon area in the larger cell to 

implement a high-conductance FET switch. 

A second type of cross-point architecture with the thin-film diode is shown in Figure I.2(c) [Ref. I.18, 

Ref. I.19]. In this case, to avoid sneak paths during write operations, the resistance value must be 

large. Then, during the read operation, all lines in the entire array are carefully biased so that current 

flows preferentially through just one device. The signal is weak because of the large resistance and 

sneak current paths, so sensing is slow, but the very high density of the cross-point arrangement is 

maintained. Moreover, since the substrate is not involved in the cells, it is conceptually possible to 

stack layers of cells. 

 

 

 

Figure I.3 Coincident field selection for writing a magnetic element of an MRAM. (a) Schematic of array with colored 

dots indicating the selected (red) and half-selected (blue and green) bits. (b) Switching threshold (astroid) curve with 

appropriate field values indicated for the write operation and with magnetization orientation fields. Part (b) The 

ellipses show the direction of the shape anisotropy of the free magnetic layers of the bits; the arrows inside the ellipses 

indicate the orientations of the free-layer magnetization. 

 

In all cases, the MRAM write operation is done by a coincidence of x- and y-currents, and these are 

easiest to control if the lines supplying these are isolated, as for the architectures of Figure I.2(a) 

and 2(b). In conventional MRAM, the write operation makes use of the stability boundary curve 

shown in part (b) of Figure I.3. The boundary astroid curve illustrated is that calculated for a single-

domain model of the switching free layer, and is expressed as 

 

I.1) 3
2

3
2

3
2

iyx HHH =+  
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where Hx and Hy are respectively the x and y fields, and Hi is the anisotropy field of the assumed 

single-domain magnetic element. This functional form is that of a mathematical curve called an 

astroid, but in the MRAM field the term has generally taken on the meaning of the experimentally 

obtained switching boundary, which in the best cases only approximates a true mathematical astroid 

curve. For field excursions that remain inside the astroid curve, the element is magnetically stable, 

pointing either to the left or to the right. For field excursions that go outside the astroid curve, the 

element is written to one definite state. Many of the largest challenges of MRAM are associated 

with controlling the write operation, particularly with ensuring that none of the write operations 

cause an undesired switching event in any of the half-selected bits, see Figure I.3(a). Without a 

carefully balanced pinned layer structure the astroids can be offset to the right or left. In addition, 

the element shapes are not perfectly uniform in size, causing the astroid sizes and shapes to vary. 

Finally, it turns out that the energy barrier that separates the two stable states vanishes as the write 

field approaches the astroid boundary. Thus, there is a non-negligible probability of the 

magnetization spontaneously switching by a thermally activated process [Ref. I.20]. A more 

advanced ‘‘toggle’’ MRAM write architecture was later introduced by Motorola for a bilayer 

storage film [Ref. I.21]. 

 

A generic view on MRAM characteristics concludes our discussion. Table I.3 compares embedded 

SRAM, DRAM, and Flash (NOR Flash) with estimated embedded MRAM for cost, performance, 

power, and write endurance. 

 

 

 

Table I.3 Typical or estimated parameter values for a variety of embedded memory technologies at the 180-nm 

technology node. Entries in color indicate areas in which embedded MRAM is expected to have a significant advantage. 

Data from Ref. I.16. 
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In summary, among the best attributes of MRAM are zero data-retention power, very low standby 

power, unlimited write endurance, and relatively high speed. Low standby power can be achieved 

because MRAM has no array leakages (all voltages are zero in an MRAM array in standby), few 

reference currents, and no pumped supplies that must be maintained. Read-active power is good and 

is comparable to that for embedded DRAM. Write-active power is high compared to that for 

embedded SRAM and DRAM, but much lower than for embedded Flash. Read performance is 

comparable to that of embedded Flash and DRAM, but slower than for embedded SRAM. And 

finally, write-cycle time is comparable to that of embedded DRAM and slower than that of 

embedded SRAM, but much faster than that of embedded Flash. 

 

The choice of which embedded memory technology to use depends on the intended application. In 

some cases the application attributes dictate clear choices. An application would select embedded 

MRAM if it most valued nonvolatility and low standby power; otherwise, embedded SRAM and 

DRAM could be used. If embedded MRAM were at a comparable state of maturity, it would 

present a choice that could offer the tradeoff of a larger write power vs. lower power for data 

retention and standby operation. Depending on the application, this could be an attractive tradeoff. 

The issue for MRAM is that it is not yet at a comparable state of maturity that allows these 

comparisons to be real options. 
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I.2. A Lab-On-A-Chip application: the detection of magnetic microbeads in biosensors 

 

Although magnetic sensing has been applied to biological diagnostics in the past, the sensors used 

have limited the deployment of such systems due to their size and power constraints. Now solid 

state magnetic sensors promise to change this picture by facilitation miniaturized magnetic sensor 

based systems. The applications include detection of the small magnetic fields created by nerve 

impulses for monitoring the activity of the heart and brain. The previously insurmountable barrier to 

the use of solid state magnetic sensors, sensitivity, is being overcome by sensors utilizing GMR 

materials and MTJ. 

Magnetic particles have been used for many years in biological assays. These particles range in size 

from few nanometers up to a few microns, and in composition from pure ferrite to small 

percentages of ferrite encapsulated in plastic or ceramic spheres. The beads are coated with a 

chemical or biological species such as DNA or antibodies that selectively binds to the target. 

The selectivity of sample and target can be used as a rapid sensitive detection strategy with the 

integration of a magnetic detector. This integration is facilitated by the development of solid-state 

GMR sensors. These sensors have the advantage of being compatible with silicon integrated circuit 

fabrication technology resulting in a single detector, or even multiple detectors, that can be made on 

a single chip along with any of the required electrical circuitry. Results from theoretical modeling, 

as well as laboratory results, show that GMR detectors can resolve single micrometer-sized 

magnetic beads. 

 

 

 

Figure I.4 Antigens are detected by flowing them over a sensor coated with antibodies to which they bind. The magnetic 

particle-labelled antibodies then bind to the antigens providing a magnetic indication of the presence of those antigens. 

 

Small magnetic beads, coated with a material that binds to the biological molecules to be analyzed 

are allowed to settle on a substrate that is selectively coated in different areas with substances that 
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bond to specific molecules of interest. After removing the beads that are not bonded to the substrate 

via a molecule of interest, the presence of the remaining magnetic microbeads is detected by 

magnetic sensors in the array [Ref. I.22]. Figure I.4 schematically shows the bonding of the beads to 

the sites via the molecules to be detected. Several bioassays can be simultaneously accomplished 

using an array of magnetic sensors, each with a substance that bonds to a different biological 

molecule. This application requires extremely small, low-power, lowfield magnetic sensors. 

Efforts in this direction have been made by Rife et al. [Ref. I.23] They are developing a biosensor 

system, the Bead Array Counter (BARC), based on the capture and detection of micron-sized, 

paramagnetic beads on a chip containing an array of GMR sensors [Ref. I.22 - Ref. I.28], see Figure 

I.5. 

 

 

 

Figure I.5 Optical micrographs of a BARC-III sensor chip. (a) The 68 pin-out chip, including a central sensing area 

with 64 sensors and two reference sensors, and a number of test structures. (b) Closer view of the central sensing area. 

(c) Close-up of one serpentine GMR sensor trace encompassing a 200 _m-diameter sensing zone. [Ref. I.23]. 

 

They designed and characterized micromagnetic performance of a larger chip with 64 sensor zones 

(BARC-III). BARC-III chip includes 64 individually addressable GMR sensors and two reference 

sensors with 68 pin-outs. Each sensor is a serpentine resistor trace 1.6µm wide on a 4.0µm pitch, 

with a total length of 8mm within a 200µm -diameter circular zone, increasing the active area per 

biomolecular spot by quite 10 times. The BARC-III sensors are composed of a multilayer GMR 

material [Ref. I.30] with a larger saturation field and GMR effect, ~30mT and ~15%, respectively. 

The overall structure of each sensor is illustrated in cross-section in Figure I.6. 
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Figure I.6 Cross-sectional, scale illustration of (a) the bead/sensor chip geometry; (b) the multilayer chip design; and 

(c) the films comprising the GMR stack.[Ref. I.23]. 

 

The basic GMR film structure includes four ferromagnetic layers interspersed with three non-

ferromagnetic layers. Antiferromagnetic exchange coupling generates the alternating, opposing 

magnetizations required for the GMR effect. The ferromagnetic layers have three sub-layers, 

composed of an internal layer of NiFeCo (chosen for its good linearity and low hysteresis with 

relatively high magnetic polarization), sandwiched between two thin films of CoFe (to maximize 

the magnetoresistance of the overall structure). 

BARC-III chips is covered with a silicon nitride passivation layer in order to protect the circuitry 

from the corrosive and conductive biochemical reagents. However, the presence of this layer is 

detrimental to sensor performance because of the strong dependence of the GMR signal on the 

distance of the bead from the sensor (as will be reviewed below). For this reason the passivation 

layer has been reduced to 250nm thick. As beads, commercial paramagnetic particles Dynal M-280 

[Ref. I.22] beads are used. These 2.8µm-diameter beads are composed of magnetic γ-Fe2O3 and Fe3O4 

nanoparticles (<20 nm in diameter) dispersed in a polymer matrix [Ref. I.31, Ref. I.32]. The 

nanoparticles within these beads are often described as superparamagnetic; that is, they are small 

enough that the ambient thermal energy is greater than the magnetic alignment energy, so they 

spontaneously demagnetize at room temperature. 

Although Dynal M-280 microbeads have excellent biocompatible surface properties, their magnetic 

properties are not optimal, having a relatively low saturation magnetization, the magnetic content 
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among beads varies widely (with a standard deviation of 72%), and some beads are non-magnetic 

[Ref. I.22]. Rife team have focused on NiFe (Ni30Fe70) beads produced by an industrial carbonyl 

process because of their superior magnetic moment [Ref. I.26, Ref. I.33]. Because of this property, 

smaller solid ferromagnetic beads could effectively be used as biomagnetic labels, which would 

increase the dynamic range of biosensor assays. 

 

 

 

Figure I.7 Illustration of the micromagnetics of a paramagnetic bead under an applied field (in the direction of M). A 

cross-section of a bead of radius a on top of a sensor separated by an overlayer of thickness t. The dashed lines and 

arrows indicate the induced magnetic field. 

 

The electronic detection of magnetic microbeads on BARC GMR sensors [Ref. I.22, Ref. I.26] can be 

summarized as follows. An external ac magnetic field, Hz , is applied normal to the chip (the z-

direction). As illustrated in Figure I.7, an individual bead, magnetized by the external field and 

resting on the surface above the GMR resistor trace, generates an ac local dipole field, B, with 

planar components sufficient to cause a magnetoresistance change. The ac change in resistance, 

∆R/R, generates an ac voltage change across a dc-biased Wheatstone bridge. The bridge voltage 

signal is filtered to remove the dc component, amplified 1000 times or more, and detected by a 

lock-in amplifier synchronized with the applied ac magnetic field. The overall GMR signal for a 

sensor, ∆R/R, is determined by sensor geometry and the cumulative local magnetoresistance 

changes associated with individual microbeads. For the weak fields expected from the microbeads, 

the local magnetoresistance change depends primarily on the strength of the field oriented along the 

trace or sensing axis, Bx. It is only this component of the planar field that is of interest. For a bead 

of magnetization M and radius a separated from the GMR trace by an overlayer of thickness t, the 

field Bx at a distance d along the trace and relative to the center of the bead is given by 
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that occurs at a distance d = (a + t)/2 along the trace. The rms ac bridge voltage expected for a 

single bead centered over a sensor trace can be approximated as 
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The Wheatstone bridge signal results in the range of 19÷22nV for Dynal M-280 microbeads and 

0.72÷1.2µV for Ni30Fe70 beads of 2.8µm diameter, demonstrating the enhanced sensitivity of the 

system by the use of ferromagnetic beads. 

Although other approaches may generate larger S/N for smaller particles, BARC-III sensors 

combined with NiFe microbeads have the largest potential sensitivity assuming passive delivery of 

target molecules to the sensor. Small, highly sensitive microsensors will ultimately have the 

advantage if high density arrays can be integrated and multiplexed on a chip. Moreover, the overall 

sensitivity of any of these schemes would be enhanced if target biomolecules can be actively 

directed to the sensing zones; for example, by magnetic, fluidic, or electrochemical forces. 

The recent progress in the area of microfluidics and Lab-On-A-Chip-type devices make possible the 

developing of more gentle protocols and affordable instruments for specific blood analysis tasks. 

The use of physical fields for the separation of cells takes advantage of the heterogeneity of 

physical properties of the blood cells. After exposure to fields of different nature, differences in 

size, density, electrical permittivity, dielectric characteristics, or adhesiveness among cells can be 

revealed in the form of forces differentially acting on cells of a particular type. Populations of cells 

that share similar behaviour upon field exposure can then be differentially manipulated and 

eventually partitioned from the whole sample. 

Small-scale implementation greatly favours on-chip field separation. Very strong fields can be 

created over small distances and small displacements on the scale of cell size can be used for 

effective separation. Even more important for cell separation, regardless of the nature of these 
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fields, is microscale control, which allows for the manipulation of single cells and particles in 

suspension, with the potential for extreme purity or efficiency of the separation. Since the principles 

of separation of particles from solutions by using fields were outlined by Giddings in 1991 [Ref. 

I.34], a variety of fields have been employed in small-scale applications. Previously, we fully 

discussed about microfabricated devices for cell separation using magnetic interactions by coupling 

magnetic beads. As further examples, we note microfabricated devices using mechanical forces or 

mechanical restriction of cell (dense array of posts [Ref. I.35], weir-type structure, array of narrow 

channels [Ref. I.36]), dielectrophoresis (DEP) that uses the electrical polarization of cells in non 

uniform electric fields to induce translational motion or reorientation of cells, affecting their 

dynamic behaviour [Ref. I.37, Ref. I.38, Ref. I.39], optical interaction and trapping based on microfluidic 

systems using a diode laser bar that permit a separation of cells based on their size [Ref. I.40] and 

biochemical interaction based on differences among cells that can be effectively used to selectively 

destroy some cell subpopulations after uniform exposure of the whole sample to a selectively toxic 

environment [Ref. I.41]. 

Lastly, as Lab-On-A-Chip devices become enabling tools for separation and analysis of small and 

homogenous subpopulations of cells precisely and without altering their state, new possibilities 

open for diagnostic applications and treatment. 
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I.3. Magnetoresistive sensors for Non Destructive Evaluation 

 

Increased research activity on nondestructive testing has been motivated by the need for precise 

evaluation of cracks and flaws for the assessment of the expected life of mechanical components. 

Along with a variety of methods that include dye penetrants, X-ray, and ultrasonic testing, eddy-

current testing (ECT) is also commonly used for detecting defects such as fatigue cracks, inclusions, 

etc., in conductive materials. Eddy currents are induced in a specimen as a result of the application 

of an alternating magnetic field. In the presence of defects, which act as a high resistance barrier, 

the eddy-current flow is perturbed. As a result of this defect, a “leakage” magnetic field is 

produced. Such field perturbations are usually detected as an impedance change in the exciting coil 

[Ref. I.42].  

In recent years, electromagnetic methods for eddy-current inspection have attracted increasing 

attention. Electromagnetic sensors, based on either Hall effect, anisotropic magnetoresistance 

(AMR) [Ref. I.43, Ref. I.44], giant magnetoresistance (GMR) effect [Ref. I.45, Ref. I.46], or SQUID have 

been successfully used for crack detection. In the last fifteen years, the high-TC SQUID represented 

an alternative eddy current sensor. Thanks its high magnetic field sensitivity and its ability to 

function down to zero frequency it can detect much deeper defect than traditional eddy-current 

sensors. Moreover, the wide dynamic range enables the SQUID to maintain its high sensitivity in 

the presence of strong dc or noise fields so that it is possible to monitor also the very low magnetic 

field variations induced in last generation materials, as Carbon Fibre Reinforced Polymer (CFRP) 

and Fiber/Metal Laminates (FMLs) [Ref. I.47-Ref. I.53]. There are few disadvantage in using SQUIDs, 

in fact, since the SQUID is a superconductive device it is necessary to manipulate cryogenic liquid, 

generally LN2, therefore skilled personnel is needed, and its very expensive costs. 

Among the magnetoresistive sensors, GMR and AMR sensors, offer a good tradeoff in terms of 

performance versus cost. They have small dimensions, high sensitivity over a broad range of 

frequency (from hertz to megahertz domains), low noise, operate at room temperature, and are 

inexpensive. Although their sensitivities are comparable, GMR sensors have better directional 

property than AMR sensors. Both types of sensors detect the component of the magnetic field 

vector along their sensitive axis. In the case of GMR sensors, fields applied perpendicularly to the 

sensitive axis have negligible effect on their output. In contrast, the sensitivity of AMR-based 

probes is lowered by a field perpendicular to the sensitive axis, which, at high values, can even 

“flip” the sensor response [Ref. I.43]. This property is particularly important in the coil–crack 
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interaction problems, where the electromagnetic field has a complex three-dimensional (3-D) 

geometry. The directional property of GMR sensor can be used in a difficult problem encountered 

in NDE, detection of edge cracks [Ref. I.46]. It is shown that, by properly orienting the sensitive axis, 

the probe will be insensitive to the edge. Additionally, the presence of the edge enhances the 

sensitivity and resolution of the GMR probe to cracks initiating perpendicular to this edge. 

 

 

 

Figure I.8 Schematic diagram indicating probe assembly and coordinate system. (a) Cross section of the probe 

assembly utilizing a cylindrical coil surrounding the sensor. (b) Cross section of the probe assembly with flat coil 

placed on the sensor package. 

 

The main components of the eddy-current probes comprise either a relatively large cylindrical coil 

or a flat spiral “pancake- type” coil with the GMR sensor located on the coil axis. Probe geometry is 

shown in Figure I.8(a) and (b), while dimensions of the coils generally used are about 6mm till 

3mm. The GMR sensor consists of four thin-film resistors in a Wheatstone bridge configuration 

with two of them being magnetically shielded and acting as dummy resistors. The sensing axis of 

the GMR probe is coplanar with the surface of the specimen. The excitation field on the coil axis, 

being perpendicular to the sensing axis of the GMR films, has no effect on the sensor. In a defect-

free specimen, because of the circular symmetry of the induced eddy currents, these will produce no 

effect on the sensor output. In the presence of a defect, output signal from the sensor is produced 

only by the perturbation of the eddy-current flow path. A sinusoidal current source provides a 

current through the coil of controlled amplitude (till 3 A) and frequency (between 1 and 100 kHz). 
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Figure I.9 Block diagram of experimental setup for scanning of specimens containing geometric flaws. [Ref. I.54]. 

 

A schematic diagram of the experimental setup is shown in Figure I.9. The system was developed 

[Ref. I.54] to assess the feasibility of the GMR eddy-current probe as an effective flaw detector. 

Various calibrated defects were machined into the surface of an aluminum plate by using end-

milling cutters. As example demonstrating the possibilities of GMR based non destructive 

technique, the results on aluminium plate having cracks of fixed length (15 mm) and width (0.5 

mm) but varying depths are reported. The map obtained, Figure I.10, shows two symmetrical peaks 

that are located on each side of the crack. In this figure it is noticed that, besides the central maxima 

at either side of the crack, each peak has two shoulders. Locating these shoulders at the points that 

correspond to the minimum magnitude of the output slope, it is observed, for this particular case, 

that the distance between these coincides with the length of the crack.  

 

 

Figure I.10 Output from eddy-current sensor scanning a crack of length 15 mm and depth 2 mm with sensing axis 

perpendicular to crack orientation. Map showing magnitude and contours of sensor output. [Ref. I.54]. 
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The showed results are restricted to aluminium plate sample.  

Notwithstanding, when eddy current technique is applied to a composite, it shows a reduction of 

sensitivity to detect deep flaws because of the low electrical conductivity of such materials and high 

sensitivity of the coil to lift off variation. In the following chapters, the discussion will be focalized 

on theory, models and simulations that can be used to improve the GMR sensitivity and the 

measurement technique in an unshielded environment to make it a possible measurement technique 

for materials characterized by a very low electrical conductivity. 
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II Giant Magnetoresistance effect: basics of theory 

 

 

This chapter contains a brief review of the giant magnetoresistance (GMR) effect exhibited by magnetic 

multilayers, granular alloys, and related materials. Various and much different physical origins can be 

responsible of the effect in the different systems. By starting with the MR effect characterization, we covered 

a description of the phenomenon in terms of spin-dependent conduction and electronic band structure in 

magnetic multilayers. 
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Magnetoresistance (MR) is the change of electrical resistivity (ρ) due to an external magnetic field 

(H) [Ref. II.1, Ref. II.2]. Positive or negative MR refers to the increase or the decrease of resistivity 

with the magnetic field. In the Drude model of metals there is no MR. However, MR exists in all 

real metals, and the magnitude and behaviour of MR are different for various types of metals. 

Furthermore, the measured MR depends not only on the strength of the magnetic field, but also the 

direction of the magnetic field with respect to the current. For a wire sample with a current density 

(J), there are two possible orientations of H: longitudinal H║J and transverse H┴J. Hence, there are 

two kinds of MR: ( ) ( )0ρρρ ∆−=∆ H  and ( ) ( )0TTT H ρρρ −=∆ . For thin film specimens, 

where the current is usually in the film plane, MR can be measured with the field in three different 

directions: ρ∆  (longitudinal, H║J), Tρ∆  (transverse, H┴J) with an in-plane magnetic field and 

⊥∆ρ  (perpendicular, H┴J) with H perpendicular to the film plane [Ref. II.3]. In the next hints, the 

characteristics of MR in various materials at low temperatures have been summarized. 

 

Ordinary magnetoresistance (OMR) arises from the effect of the Lorentz force on the electron 

trajectories due to the applied magnetic field (Figure II.1). 

 

II.1) [ ]BveEF ×+= e  

 

where e denotes the carrier charge (for electrons e = −q, and for holes e = q and q = 1.6×10
−19

 C), E 

denotes the electric field, v the carrier velocity and B the magnetic induction. The first term on the 

right-hand side of eq.II.1 represents a Coulomb force and the second term is the Lorentz force law. 

For non degenerate semiconductors exposed to transverse electrical and magnetic fields (i.e. E·B= 

0), the current transport equation for one type of carrier becomes: 

 

II.2) [ ]BJJJ 0H0 ×+= µ  

 

where J denotes the total current density and the term J0 =σE − eD∆n is the current density due to 

the electric field and carrier-concentration gradient ∆n only. The transport coefficients µH (the Hall 

mobility which has the sign of the corresponding charge-carrier), σ (the conductivity), and D (the 

diffusion coefficient) are determined by the carrier scattering processes and generally depend on the 

electric and magnetic fields. 
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Figure II.1 Effect of the Lorentz force on the electrons trajectory when a magnetic field B is applied along the direction 

z perpendicular to the electric field E direction x. 

 

A macroscopic and tangible consequence of the Hall field is the appearance of a measurable 

transverse voltage that is proportional to the magnetic field. This voltage is known as the Hall 

voltage, VH, and can be calculated as: 

 

II.3) wBExΗΗ = µ - V  

 

where w denotes the strip width. By relating the Hall mobility in eq.II.3 to the current density, it is 

possible to express the Hall voltage as: 

 

II.4) BwxJR - V ΗΗ =  

 

where RH = - µH/σ = r/en denotes the Hall coefficient, r the Hall scattering factor of carriers and n is 

the carrier density. This indicates that low carrier-concentration produces a large Hall coefficient 

RH, and explains why semiconductors are more useful here than metals are. The presence of the 

Hall field also results in inclination of the total electric field in the sample, with respect to the 

external field, by the Hall angle θH with tan θH = Ez/Ex = −µHB. 

Consider now the assumption of zero Hall electric field, Ez = 0. This condition is approximately 

realised by considering a short strip with wide cross-section. If an electric field Eex = (Ex, 0, 0) is 

applied, as before, the current density given by eq.II.2 leads to another lateral component Jz, which 

produces a rotation of the current lines described by the ratio:  

 

II.5) LHB
J

J

x

z θµ tan==  
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where θL is referred to as the carrier or Lorentz deflection angle. The longer carrier drift path 

brought by this deflection leads to the transversal geometric magnetoresistance 

effect: 

 

II.6) ( )2

0

0B  - 
BHµ

ρ
ρρ

=  

 

where ρ0 denotes the electrical resistivity at B = 0, and ρB the resistivity enhanced by the magnetic 

field. eq.II.6 shows that the relative change in resistivity increases with the square of the mobility-

induction product. Hence this effect is very small for silicon. Sensors based on this effect require 

high-mobility III–V compounds such as InSb or InAs. Due to their low electron mobility, the 

geometrical magnetoresistivity in ordinary non-magnetic metals, such as Au, is quite small and has 

no practical importance (less than 1% in fields of the order of 1 Tesla). Nevertheless, both ρ∆  and 

Tρ∆  are positive with >∆ Tρ ρ∆  and increase approximately as H
2
 without saturation [Ref. II.1, Ref. 

II.2]. 

 

The anisotropic magnetoresistance (AMR) is a larger physical effect occurring in ferromagnetic 

transition metals and alloys [Ref. II.4, Ref. II.5]. In these materials the magnetisation vector determines 

the direction along which the current normally flows. The application of an external magnetic field 

rotates the magnetisation vector in the sample, and thus the current path, by an angle θ. The specific 

resistivity of the sample as a function of θ, ρ(θ), is given by: 

 

II.7) ( ) ( ) θρρθρρρθρ 22 coscos - ∆+=+= TTT  

 

where ρ|| is the resistivity of the sample when θ = 0, Tρ  the resistivity of the sample when θ = 90◦, 

θ being the angle between the internal magnetisation and the direction of the current, and the 

quotient Tρρ∆  is called the magnetoresistive effect.  

In ferromagnetic metals (e.g., Fe, Co) and alloys (e.g., permalloy), substantial MR is observed. It is 

almost always the case that ρ∆  is positive and Tρ∆  is negative, as shown in Figure II.2(a), and 

ρ > Tρ , which is opposite to that of OMR. AMR originates from the spin-orbit interaction and 

causes the resistance to depend on the relative orientations of the magnetization and the electric 

current. The magnetic field range in which the AMR effect occurs is governed by the field needed 
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to change the direction of the magnetic moment. As result, both ρ  and Tρ  are saturated under a 

modest field. For example, permalloy (Ni80Fe20) films, which are presently employed in sensor 

applications, exhibit the AMR effect of 1-2%, the resistance change taking place in a field range of 

a few Gauss [Ref. II.6]. 

 

Giant magnetoresistance (GMR) is one of the most fascinating discoveries in thin-film magnetism, 

which combines both technological potential and deep fundamental physics. In 1988, Baibich et al. 

discovered giant negative magnetoresistance in (001)Fe/(001)Cr multilayers in which the interlayer 

exchange interaction (J) causes antiferromagnetic alignment of adjacent Fe layers [Ref. II.7]. Like 

other magnetoresistive effects, GMR is the change in electrical resistance in response to an applied 

magnetic field. Baibich’s group discovered that the application of a magnetic field to a Fe/Cr 

multilayer resulted in a significant reduction of the electrical resistance of the multilayer, in fact, the 

resistivity changed by as much as a factor of two. This effect was found to be much larger than 

either ordinary or anisotropic magnetoresistance and was, therefore, called “giant 

magnetoresistance” or GMR. Subsequently, such large effects and the intricate oscillations in MR, 

as caused by the oscillatory J, have been observed in a large variety of multilayers [Ref. II.7, Ref. II.8]. 

A similar, though diminished effect was discovered in Fe/Cr/Fe trilayers [Ref. II.9- Ref. II.11]. High 

magnetoresistance values can also be obtained in other magnetic multilayers, such as Co/Cu [Ref. 

II.12- Ref. II.15]. However, what distinguishes GMR from OMR and AMR is not just its magnitude, 

but also its being negative in all field directions: longitudinal, transverse and perpendicular. As 

shown in Figure II.2(b), ρ Tρ≈ , and the difference in ⊥ρ  is due to the demagnetizing factor 

associated with thin films. It should be mentioned that AMR is also present in systems exhibiting 

GMR. This is of particular concern in systems where the so-called GMRs are quite small (e.g., 5% 

at 5 K). In such cases, the value of the GMR is not known reliably unless measurements have been 

extended to more than one field orientations (especially ρ ) and that the AMR has been determined 

[Ref. II.16]. These negative GMRs have been observed only in the magnetic multilayer geometry, 

upon which many theoretical models are based [Ref. II.17, Ref. II.18]. Extensive results, both 

experimental [Ref. II.19] and theoretical [Ref. II.20], show that the oscillation periods of the MR 

depend on the specific crystalline orientation of the multilayers. These results seem to suggest that 

the intriguing GMR effects are intimately connected with the multilayer geometry. 
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Figure II.2 Schematic representations of (a) anisotropic magnetoresistance in ferromagnetic alloys, and giant negative 

magnetoresistance in (b) multilayers, and (c) granular solids.[Ref. II.3]. 

 

Among the last spreading researches, there is GMR effect in granular Co-Cu alloys [Ref. II.21, Ref. 

II.22], and subsequently, in a number of other granular systems. Xiao et al. [Ref. II.22, Ref. II.23]further 

show that in granular systems, Tρρρ =≈⊥ , as schematically shown in Figure II.2(c). In these 

materials, ferromagnetic precipitates are embedded in a non-magnetic host metal film. The 

randomly-oriented magnetic moments of the precipitates can be aligned by the applied magnetic 

field which results in a resistance drop. 
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II.1. Origin of GMR 

 

GMR can be qualitatively understood using the Mott model, which was introduced as early as 1936 

to explain the sudden increase in resistivity of ferromagnetic metals as they are heated above the 

Curie temperature. There are two main points proposed by Mott. First, the electrical conductivity in 

metals can be described in terms of two largely independent conducting channels, corresponding to 

the up-spin and down-spin electrons, which are distinguished according to the projection of their 

spins along the quantization axis. The probability of spin-flip scattering processes in metals is 

normally small as compared to the probability of the scattering processes in which the spin is 

conserved. This means that the up-spin and down-spin electrons do not mix over long distances and, 

therefore, the electrical conduction occurs in parallel for the two spin channels. Second, in 

ferromagnetic metals the scattering rates of the up-spin and down-spin electrons are quite different, 

whatever the nature of the scattering centers is. According to Mott, the electric current is primarily 

carried by electrons from the valence sp bands due to their low effective mass and high mobility. 

The d bands play an important role in providing final states for the scattering of the sp electrons. In 

ferromagnets the d bands are exchange-split, so that the density of states is not the same for the up-

spin and down-spin electrons at the Fermi energy. The probability of scattering into these states is 

proportional to their density, so that the scattering rates are spin-dependent, i.e. are different for the 

two conduction channels. Although, as we will see below, this picture is too simplified in a view of 

the strong hybridization between the sp and d states, it forms a useful basis for a qualitative 

understanding of the spin-dependent conduction in transition metals. 

 

 

 

Figure II.3 Schematic illustration of electron transport in a multilayer for parallel and antiparallel magnetizations of 

the successive ferromagnetic layers. The magnetization directions are indicated by the arrows. The solid lines are 

individual electron trajectories within the two spin channels. 
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Figure II.3 shows the two collinear magnetic configurations assuming that the scattering is strong 

for electrons with spin antiparallel to the magnetization direction, and is weak for electrons with 

spin parallel to the magnetization direction. For the parallel aligned magnetic layers, the up-spin 

electrons pass through the structure almost without scattering, because their spin is parallel to the 

magnetization of the layers. On the contrary, the down-spin electrons are scattered strongly within 

both ferromagnetic layers, because their spin is antiparallel to the magnetization of the layers. Since 

conduction occurs in parallel for the two spin channels, the total resistivity of the multilayer is 

determined mainly by the highly-conductive up-spin electrons and appears to be low. For the 

antiparallel-aligned multilayer, both the up-spin and down-spin electrons are scattered strongly 

within one of the ferromagnetic layers, because within one of the layers the spin is antiparallel to 

the magnetization direction. Therefore, in this case the total resistivity of the multilayer is high. As 

it was originally suggested by Baibich et al., [Ref. II.7] spin-dependent scattering is the primary 

origin of GMR. 
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II.2. Spin–dependent conduction 

 

According to Mott’s first argument, the conductivity of a metal is the sum of the independent 

conductivities for the up-spin and down-spin electrons: 

 

II.8) ↓↑ += σσσ  

 

Within each conduction channel the conductivity is determined by various factors. In order to 

illustrate their role we use the Drude formula which can be expressed as follows: 

 

II.9) λ
ππ

σ
6

22

h

F
Drude

ke
=  

 

Here σDrude is the Drude conductivity per spin, hπ2e  ≈0.387·10
-4

 Ω-1
 is the spin conductance 

quantum, kF is the Fermi momentum, and λ is the mean free path, which is the product of the 

relaxation time τ and the Fermi velocity vF, i.e. 

 

II.10) τλ Fv=  

 

Although the Drude formula is valid only for free electrons, it is useful to understand qualitatively 

the factors affecting the spin-dependent conductivity. The conductivity is determined by the 

electrons which have the Fermi energy. Due to the Pauli exclusion principle the electrons which lie 

below the Fermi level can not gain energy responding to the small applied electric field, because all 

the states at higher energies are occupied. As a consequence, only electrons at the Fermi level can 

contribute to the electric current. As can be seen from eq.II.9, the conductivity is proportional to the 

cross sectional area of the Fermi surface 2

Fk≈ , which characterizes the number of electrons 

contributing to the conduction. The mean free path depends on the Fermi velocity and relaxation 

time, the latter can be estimated from the Fermi rule 

 

II.11) Fscatt EnV 21 2

h

π
τ =−  
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where 2

scattV  is an average value of the scattering potential and FEn  is the density of electronic 

states at the Fermi energy EF for the appropriate spin. 

Although all the quantities which enter expressions (II.8)-(II.11) are in general spin-dependent, the 

origin of the spin dependence is different. The Fermi momentum kF and the Fermi velocity vF are 

intrinsic properties of the metal and entirely determined by the electronic band structure of the 

metal. In ferromagnetic metals these quantities are different for the up- and down-spin electrons. 

The density of states at the Fermi energy FEn  is also determined by the spin-polarized band 

structure. On the contrary, the scattering potential which enters eq.II.11 is not an intrinsic property 

of the metal. It is generated by the scatterers such as defects, impurities, or lattice vibrations. The 

scattering potential can be either spin-dependent or spin-independent, which is determined by the 

particular mechanism of scattering. Spin-dependent scattering potentials might also contribute to 

GMR at the interfaces between ferromagnetic and non-magnetic layers. In real magnetic multilayers 

these interfaces are not ideal. Interfacial roughness and/or substitutional disorder (i.e. mixing of the 

adjacent metal atoms at the interface) are always present in experiments. Randomness of the atomic 

potentials at the interface results in enhanced interfacial scattering.  

The relative importance of spin-dependent scattering potentials can, however, be diminished in real 

GMR structures which are far from being perfect. Various types of defects such as grain 

boundaries, stacking faults and misfit dislocations are always present in the multilayers. Because 

the relaxation time in eq.II.11 is determined by the configurationally-averaged value of the 

scattering potential squared, various types of scattering centers can make this average value spin-

independent. In these circumstances the spin-polarized band structure of the multilayer becomes 

decisive and usually gives the dominant contribution to the spin dependence of the mean free path 

and the conductivity. 



Giant Magnetoresistance effect: basics of theory  
 

 

 36 

 

II.3. Role of band structure 

 

The electronic band structure of the multilayer is probably the most important property which 

determines the spin-dependent conduction and consequently is responsible for the GMR. In most 

experiments on GMR the ferromagnetic 3d transition metals Co, Fe and Ni, and their alloys, such as 

permalloy Ni80Fe20, are used in combination with non-magnetic spacer layers, such as Cr or the 

noble metals Cu, Ag and Au. 

 

 

 

Figure II.4 Electronic band structures (left panel) and the density of states (right panel) of Cu. The band structure of 

non-magnetic Cu is same for the up-spin and down-spin electrons. It is characterized by the fully occupied d bands and 

the presence of a dispersive sp band at the Fermi energy, which result in high conductivity of Cu. 

 

Due to the spin-orbit coupling of the 3d transition metals being very weak the electronic structure 

for the up-spin and down-spin electrons can be considered independently. The 3d elements are 

characterized by the presence of the 4s, 4p and 3d valence states, which are distinguished by their 

orbital momentum. The 4s and 4p states create a dispersive sp band which is similar to a free-

electron band. The sp electrons have a high velocity, a low density of states and consequently a long 

mean free path, i.e. they may be thought to be mainly responsible for the conductivity in 3d metals. 

On the  contrary, the d band is localized in a relatively narrow energy window and is characterized 

by a high density of states and a low velocity of electrons. In the interval of energy where the sp and 

d bands cross, they can not be considered as independent because of the strong sp-d hybridization, 

which modifies substantially the band structure. It changes dramatically the properties of the sp 
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electrons, which is reflected in the band bending and results in a reduced velocity associated with 

the sp band. 

These features are evident from Figure II.4, in which the electronic band structure of Cu is shown. 

In ferromagnetic 3d metals the d band is exchange-split. Due to the localized nature of the d 

electrons, two d electrons experience a strong Coulomb repulsion provided that they have 

antiparallel spins and occupy the same orbital. To reduce the energy it is advantageous for the d 

electrons to have parallel-oriented spins, because the Pauli exclusion principle does not permit two 

electrons with the same spin to approach each other closely (i.e. occupy the same orbital) and hence 

the Coulomb interaction is reduced. Therefore, the Coulomb repulsion in conjunction with the Pauli 

principle leads to the ferromagnetic exchange interaction and favors the formation of a spontaneous 

magnetic moment. However, putting all the electrons into states with the same spin direction 

increases the total kinetic energy, the increase being larger the wider the d band or lower the d-band 

density of states. There are, therefore, two competing tendencies, which have to be balanced in 

order to find whether ferromagnetic ordering is favored. The condition which has to be satisfied for 

the appearance of ferromagnetism is the famous Stoner criterion Jn(EF)>1, where J is the exchange 

constant (which takes the value of about 1eV for 3d transition metals) and n(EF) is the density of 

states for a given spin at the Fermi energy [Ref. II.24]. The Stoner criterion is satisfied for bcc Fe, fcc 

Co and fcc Ni. Due to the exchange splitting of the d bands, the number of occupied states is 

different for the up-spin and down spin electrons, giving rise to the non-zero magnetic moments of 

2.2µB, 1.7 µB and 0.6 µB for Fe, Co and Ni respectively.  

In order to distinguish between the high and low-occupied spin states, the terms ‘majority-spin 

electrons’ and ‘minority-spin electrons’ are usually used. The band structure of Co as a 

representative of the ferromagnetic 3d metals is shown in Figure II.5. The conductivity is 

determined by the position of the Fermi energy with respect to the d bands. In the case of Cu, the d 

bands are fully occupied and the Fermi level lies within the sp band (Figure II.4). Due to the high 

velocity of the electrons within the sp band and the low density of states with resultant low 

probability of scattering, the mean free path is long and Cu is a very good conductor. This is also 

the case for the other noble metals Ag and Au. On the other hand, in the case of a ferromagnetic 

metal like Co, as a result of the exchange splitting, the majority d band is fully occupied, whereas 

the d minority band is only partly occupied (Figure II.5). 
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Figure II.5 Electronic band structures (down diagram) and the density of states (up diagram) of fcc Co for the majority-

spin and minority-spin electrons. The electronic structure of ferromagnetic Co is different from Cu for the two spin 

orientations and is characterized by the exchange-split d bands. The Fermi level lies within the sp band for the 

majority-spin electrons, which leads to high conductivity of majority-spin channel. The Fermi level lies, however, within 

the d band for the minority-spin electrons resulting in low conductivity of the minority-spin channel. The sp electrons 

are strongly hybridized with the d electrons, which diminishes their contribution to conduction. 

 

The Fermi level lies, therefore, within the sp band for the majority spins but within the d band for 

the minority spins. The exchange splitting of the spin bands leads to a crucial difference in the 

conductivity between the majority- and minority-spin electrons. For the majority spins the situation 

is similar to that in Cu: the conductivity is governed by the sp electrons and is high. On the 

contrary, the conductivity of the minority-spin electrons is not entirely determined by the sp 

electrons. Due to the strong sp-d hybridization which mixes the sp and d states the contributions of 

both the sp and d electrons become important. The minority bands represent hybridized spd bands 

which are not dispersive and have a high density of states. This makes the mean free path associated 

with these bands relatively short and the minority-spin conductivity low, despite a sizeable factor 

proportional to the area of the multiband Fermi surface. These arguments, which are based on the 

spin-polarized band structure, explain the strong spin asymmetry in the conductivity of bulk Co. 
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The presence of the interfaces in a magnetic multilayer adds a new important feature to our 

discussion above of spin-dependent transport in bulk elemental ferromagnets. The two adjacent 

metals creating the interface have different band structures, which lead to a potential step at the 

interface and results in the transmission probability across the interface being less than 1. If the 

interface separates ferromagnetic and non-magnetic metals the transmission will be spin-dependent 

due to the spin dependence of the band structure of the ferromagnetic layer. This can be illustrated 

by considering the band structures of Co and Cu, which are shown in Figure II.4 and Figure II.5. As 

is seen by comparing the figures, the band structure of Cu is similar to the band structure of the 

majority spins in Co. This good band matching implies a high transmission for the majority-spin 

electrons across the Co/Cu interface. On the contrary, there is a relatively large band mismatch 

between Cu and the minority spins in Co and consequently the transmission of the minority-spin 

electrons across the Co/Cu interface is expected to be poor. Therefore, the interfaces of the Co/Cu 

multilayer act as spin-filters. When the filters are aligned, the majority spin-electrons can pass 

through relatively easily. When the filters are antialigned, the electrons in both spin channels are 

reflected at one of the interfaces. This spin-dependent transmission is an important ingredient of the 

electronic transport in GMR structures. 

Band matching also plays an important role in the spin-dependent interface scattering due to the 

intermixing of atoms near the interfaces. If we ignore the change in the chemical state of the atoms, 

i.e. assume that their atomic energy levels and magnetic moments are identical to those in the bulk 

of the adjacent layers, then the intermixing at the interface produces a random potential which is 

strongly spin-dependent. This spin dependence is a direct consequence of the good band matching 

for the majority spins in Co/Cu, which implies a small scattering potential, and the poor band 

matching for the minority spins in Co/Cu, which implies a large scattering potential. A similar 

behaviour takes place in Fe/Cr multilayers, where a very small scattering potential (good band 

matching) is expected for the minority-spin electrons, but a large scattering potential (bad band 

matching) is expected for the majority-spin electrons. Thus, the matching or mismatching of the 

bands between the ferromagnetic and nonmagnetic metals results in spin-dependent scattering 

potentials at disordered interfaces, which can contribute to GMR. 
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III Theoretical and experimental results 

 

 

By starting with the main theoretical models which describe the GMR behaviour, the transport properties of  

magnetic multilayers will be estimated. The interlayer exchange coupling permits to reorient the magnetic 

moments of the ferromagnetic layers relative to one another. Thus, the relative magnetic moments oscillate 

between ferromagnetic and antiferromagnetic as a function of the thickness of the nonmagnetic layer. By 

choosing an appropriate thickness of the non-magnetic layer it is, therefore, possible to create an 

antiparallel configuration of the ferromagnetic layers and then align the moments by an applied magnetic 

field. In the meanwhile, the magnetic layer thickness dependence and the dependence by the number of 

bilayers are studied. In this study, our attention will be aimed above all to the semiclassical Boltzmann 

theory which permits to obtain macroscopic transport equations of magnetic multilayers for current 

perpendicular to the layers. These macroscopic equations will be used to extract, with the aid of numerical 

simulation, the GMR behaviour of a magnetic multilayer. 
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Physical insight into the origin of the current-in-the-plane (CIP) GMR can be obtained using the 

simple resistor model [Ref. III.1,Ref. III.2]. The series-resistor model can be generalized to include 

spin-dependent interface resistances, by adding additional resistors in the network. However, this 

model is a better approximation for the description of GMR within the current-perpendicular-to-the-

plane (CPP) geometry [Ref. III.3 -Ref. III.5], infact, it is not able to provide a quantitative description of 

the CIP GMR even if it is useful as a starting point for understanding this phenomenon. For this 

reason it has often been used to obtain values of the spin-dependent bulk and interface resistances 

from CPP experimental data. However, the resistors model provides a simplistic and sufficient 

effect GMR. For an explanation of the physics involved is necessary to present some of the main 

theoretical models. 

 

 

 

Figure III.1 Geometry for the CIP (up) and CPP (down) GMR. The arrow external to the multilayer indicate the current 

flow direction. 

 

A large number of various theoretical models have been developed to describe GMR. These models 

differ mainly in the way that they treat the electronic structure and the electronic transport. The 

electronic structure can be described either within a simple free-electron approximation or within an 

accurate multiband approach. The main advantage of the free-electron theories is that they are 

physically more transparent and, though simple, can still capture some important physics of GMR. 

This is also the case for simple tight-binding models, which approximate the electronic structure by 

a single tight-binding band. Multiband models are, however, essential for a quantitative description 

of GMR. The electronic transport can be considered either within semiclassical Boltzmann theory 
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or within quantum-mechanical theory. The Boltzmann theory of transport is a versatile formalism, 

which has been widely used for treating GMR. It has been chosen as formalism for magnetic 

multilayers of practical interest because the subband energy splitting is comparable with the life-

time broadening due to scattering. In these cases quantum-mechanical theory within a multiband 

treatment of the electronic structure is the best way to describe GMR. 

Our attention will be aimed above all to the semiclassical Boltzmann theory which permits to obtain 

macroscopic transport equations of magnetic multilayers for current perpendicular to the layers 

(CPP). These macroscopic equations will be used to extract the GMR behaviour of an hypothetical 

magnetic multilayer. 
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III.1. Resistor model 

 

According to the resistor model each metallic layer and each interface is treated as an independent 

resistor. Within each spin conduction channel the resistors are added in parallel or in series 

depending on the relationship between the mean free path and the layer thickness. If the mean free 

path is short compared to the layer thickness, d<<λ , then each layer conducts the electric current 

independently and the resistors should be added in parallel. Under this circumstance the resistance 

of the parallel and antiparallel configurations are the same and consequently the GMR effect is zero. 

The above observation indicates that for obtaining non-zero GMR effect, the mean free path should 

be sufficiently long. This is consistent with the qualitative picture of GMR (the top panels of Figure 

III.2), which is based on the possibility for the electrons to propagate across the spacer layer freely, 

sensing the magnetizations of the two consecutive ferromagnetic layers. In the limit of mean free 

path being long compared to the layer thickness, d>>λ , the probability of scattering within the 

multilayer is the sum of scattering probabilities within each layer and each interface. Therefore, 

within a given spin channel the total resistance is the sum of resistances of each layer and each 

interface, i.e. the resistors are connected in series. In order to build up the resistor network for the 

multilayer, we consider a unit cell consisting of four layers, two ferromagnetic and two non-

magnetic, as is shown in the top panels of Figure III.2 a and b. 

Usually, the global spin-quantization axis has been chosen collinear to the magnetization directions. 

Within each ferromagnetic layer the electron spin can be either parallel or antiparallel to the 

magnetization direction. In the former case the electron is locally a majority-spin electron and in the 

latter case a minority-spin electron. The majority- and minority-spin resistivities of the 

ferromagnetic layer are different and are equal to ↑ρ  and ↓ρ  respectively. The resistance of the 

bilayer, which consists of the ferromagnetic layer (FM is for ferromagnetic metal) and the spacer 

layer (NM is for normal metal), for either of the two spin channels is equal to 

 

III.1 )  FMNMNM ddR ↓↑↓↑ +=
,,

ρρ   

 

where NMρ and NMd  denote the resistivity and the thickness of the non-magnetic spacer layer and 

NMd  is the thickness of the ferromagnetic layer. For simplicity the interface resistance between the 

ferromagnetic and spacer layers has been omitted. 
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Figure III.2 Schematic illustration of electron transport in a multilayer for parallel (a) and antiparallel (b) 

magnetizations of the successive ferromagnetic layers. The magnetization directions are indicated by the arrows. The 

solid lines are individual electron trajectories within the two spin channels. It is assumed that the mean free path is 

much longer than the layer thicknesses and the net electric current flows in the plane of the layers. Bottom panels show 

the resistor network within the two-current series resistor model. For the parallel-aligned multilayer (a), the up-spin 

electrons pass through the structure almost without scattering, whereas the down-spin electrons are scattered strongly 

within both ferromagnetic layers. Since conduction occurs in parallel for the two spin channels, the total resistivity of 

the multilayer is low. For the antiparallel-aligned multilayer (b), both the up-spin and downspin electrons are scattered 

strongly within one of the ferromagnetic layers, and the total resistivity of the multilayer is high. 

 

Using the resistances which are defined by eq.III.1 the equivalent network of resistors for the 

parallel and antiparallel magnetizations are shown in the bottom panels of Figure III.2 a and b. The 

total resistance of the parallel-aligned multilayer is then given by 
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where N is the number of the four-layer unit cells within the multilayer. The total resistance of the 

antiparallel-aligned multilayer equals to 
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Thus, the magnetoresistance ratio is determined by the simple expression 
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Note that within this definition, in which GMR effect is normalized to the low resistance RP, the 

effect can be larger than 100%. Bruno and co workers [Ref. III.6] collected in his study the various 

conventions adopted in scientific articles, the previous definition as an optimistic estimation effect. 

Their study shows that the effect GMR may also be assessed by normalising to the highest 

resistance RAP for which 
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having thus a worst estimation of GMR effect. On the contrary, normalising to the sum the 

resistance of both the multilayer, it would lead to the evaluation referred to as "reasonable" effect  
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How is predictable and how it will be later reported graphically through simulations, the definitions 

lead to widely different estimations. Nevertheless, the definition yield by eq.III.4 is used in most 

papers devoted to GMR [Ref. III.7 - Ref. III.10]. 

Using eq.III.1 and eq.III.4 it is easy to identify the main factors which determine GMR. In the limit 

that the resistance of the spacer layer is small as compared to the resistance of the ferromagnetic 

layers, the expression for GMR is 
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where the spin asymmetry parameter is defined by ↑↓= ρρα . As it is obvious from eq.III.7, the 

magnitude of GMR is strongly dependent on the asymmetry in the resistivity between the two spin 

conduction channels in ferromagnetic layers. Large asymmetry, i.e. α>>1 or α<<1, is an important 

requirement for obtaining high values of GMR. If there is no spin asymmetry in the resistivity of 

the two spin channels, i.e. α=1, then the GMR will be zero. 
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The above model is too simplified as GMR depends on many other factors such as the properties of 

the FM/NM interface which were ignored in this estimate. The finite resistance of the spacer layer 

may also be taken into account [Ref. III.11], which leads to 

 

III.8 ) 
( )

( )( )FMNMFMNM dpddpdR

R

++
−

=
∆

14

1
2

α
α

 

 

where ↑= ρρ NMp . Hence, for a given value of α, the GMR will increase with decreasing 

FMNM dpd . Therefore, in order to obtain higher GMR, it is important to have a low resistivity of 

the non-magnetic spacer layer. As a function of the spacer thickness dNM, the GMR decreases 

monotonically and at large spacer thickness it falls off as 21
NM

d . Although the drop in GMR with 

increasing spacer thickness is also found in experiments, the experimental behaviour on dNM is 

different compared to this simplified model. As discussed later, the CIP GMR is found to decrease 

exponentially with dNM for large spacer thicknesses. The reason for this disagreement is that the 

series-resistor model is not applicable for dNM large compared to the mean free path. In the latter 

case, more sophisticated models have to be applied. 
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III.2. Semiclassical Boltzmann theory within free-electron model 

 

The resistor model, which has been introduced in the previous paragraph, is too simple to describe 

correctly CIP GMR in magnetic multilayers and spin valves. This model is based on the assumption 

that the mean free path is long for both spin channels as compared to layer thicknesses ( d>>λ ). 

This approximation is not justified for real layered systems because the mean free path within one 

of the spin channels is comparable to or even less than the layer thickness. In addition, the resistor 

model is unable to predict the asymptotic behavior of GMR for large layer thicknesses. A more 

sophisticated quantitative insight into spin-dependent transport can be obtained using the 

semiclassical Boltzmann theory of transport [Ref. III.12,Ref. III.13]. This theory considers electron 

transport using classical dynamics. Nevertheless, the semiclassical theory includes many aspects of 

quantum mechanics. For example, within this approach quantum-mechanical statistics is used and 

scattering can be calculated quantum-mechanically assuming a realistic band structure. Boltzmann 

theory is based on a semiclassical description of the electrons in metals in the presence of external 

fields using a statistical distribution function. The distribution function f(r,k,t) is defined as the 

number of electrons with given position r and wave-vector k at time t. We assume that the two spin 

states of the electrons are uncoupled and, therefore, the distribution function can be considered 

independently for the up- and down-spin channels. The Boltzmann transport equation is obtained by 

balancing the change in the distribution function caused by the applied electric field and the 

scattering processes that act to bring it back towards equilibrium. The equation is described as 

follow 
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The first term in this equation describes the electron drift due to their velocity, the second term 

reflects the acceleration of the electrons due to the applied field and the scattering term describes 

scattering of the electrons by imperfections in the lattice, such as defects or impurities. It can be 

written in terms of the probability Pkk′ for an electron to scatter between momentum k and k′: 
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where the right-hand term describes “scattering-out” processes, in which an electron from an 

occupied state of momentum k scatters into unoccupied states k′ , and the left-hand term describes 

scattering processes, in which electrons from occupied states of momentum k′ scatter into an 

unoccupied state k. We are interested in a steady state solution, when the distribution function is no 

longer changing so that df/dt=0 in eq.III.9. In this case, taking into account the principle of 

microscopic reversibility, i.e. Pkk′ = Pk′k , and assuming a uniform applied electric field E, we obtain 
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where e is the absolute value of the electron charge and v is the electron velocity. Aiming at a linear 

response theory, it is convenient to represent the distribution function as )()()( 0 kr,kkr, g ff += , 

where g(r,k) is the deviation of the distribution function f(r,k) from the equilibrium Fermi-Dirac 

distribution ( )[ ]{ } 1

0 )(exp1)(
−−+= kTEE f Fkk due to the applied electric field. Substituting this 

form into eq.III.11 and retaining only the lowest order contribution with respect to E we obtain 
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This is a general representation of the linearized Boltzmann kinetic equation for the description of 

the electric current, the density of which is given by 
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where V is the volume of the system. However, the evaluation of eq.III.12 is not easy to perform 

because of the scattering term ( )∑ ′⋅
k' kk' kr,gP , which links the values of the distribution function 

at various momenta. The Boltzmann equation can be simplified using the relaxation time 

approximation. Within this approximation the scattering-in term is neglected and results in 
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where τ(k) is the relaxation time for an electron to scatter out of momentum state k, which is 

defined by 
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In general, neglecting the scattering-in term is not a trivial approximation and has to be justified 

(Ref. III.12). For a bulk homogeneous system it is coherent within the relaxation time approximation 

to derive the expression for the conductivity tensor σµν which is defined by 
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where the indices µ and ν denote the Cartesian components. In this case ( ) 0=∇ kr,r g  and it 

follows from eq.III.14 that 
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Taking the zero-temperature limit, i.e. [ ]Fnn EE Ef −−=∂∂ )()()(0 kkk δ  and substituting eq.III.17 

into eq.III.13, we obtain the well-known expression for the conductivity for single spin channel 

within the relaxation time approximation [Ref. III.12] 
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Films and multilayers are assumed to be homogeneous in the xy plane of the layers but 

inhomogeneous in the z direction perpendicular to the planes, due to the presence of the interfaces 

and boundaries, therefore, the distribution function g(z,v) is dependent on z, but independent of x 

and y. In this case the solution of the Boltzmann equation (eq.III.14) takes the form 
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Here signs ± refer to whether the z-component of the electron velocity is positive or negative. The 

coefficients A±
 are determined from matching the boundary conditions at the interfaces and outer 

boundaries in terms of reflection and transmission probabilities. The current density can be obtained 

from eq.III.13.  

Within a free-electron model the band structure of a magnetic multilayer or a thin film is described 

using a single parabolic band which is independent of the spin direction. The complicated electronic 

structure of the transition metals is therefore significantly simplified by neglecting contribution 

from the d bands and their strong hybridization with the sp bands. Within the free-electron 

approximation the expression for the conductivity per spin, which can be found from eq.III.13 by 

integrating over the film thickness, is simplified [Ref. III.15]: 
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Here we have assumed for simplicity that the relaxation time is independent of k and introduced the 

layer-dependent mean free paths Fii vτλ = . In eq.III.20 µ refers to the cosine of the momentum 

perpendicular to the interfaces, d is the total thickness of the multilayer, di and ρi are the thickness 

and the resistivity of the metal layer i, omitting spin indices. The first term in this expression gives 

the conductivity if the various layers were carrying the electric current in parallel. The second term 

is responsible for finite size effects. The coefficients A±
 can be found using the boundary 

conditions. 

We note that the solution of the Boltzmann equation takes the form of equation III.19 only for the 

CIP geometry. In this case the current and applied field can be assumed to be uniform within the 

plane of the multilayer. For the CPP geometry the electric field is position and spin dependent 

because magnetic multilayers are inhomogeneous in the direction of the electric current [Ref. III.14] 

therefore, equation III.19 does not hold. This point will be further discussed in the next paragraph. 
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III.3. From Boltzmann equation model to macroscopic transport equations 

 

For the CIP geometry, there are several classical and quantum models, both based on the existence 

of spin-dependent scattering. Their common physical content is that the electrons average the 

properties of multilayers in the perpendicular direction on the length scale of the electron mean free 

path (MFP) λ. This implies that GMR vanishes when the period of the multilayer becomes larger 

than MFP [Ref. III.16-Ref. III.18]. 

For CPP geometry, the experimental results [Ref. III.19] bring to a two current scheme with volume 

and interface resistances in series for each spin direction [Ref. III.20]. Alternatively, it has been 

proposed to explain the CPP-MR of multilayers by using the concept of “spin coupled interface 

resistance”. This concept was introduced [Ref. III.21-Ref. III.23] to describe the electron transport 

through an interface between ferromagnetic and nonmagnetic metals. Briefly, in the ferromagnet, if 

the current is spin polarized, there will be spin accumulation around the interface with the 

nonmagnetic metal. This spin accumulation gives rise to an extra potential drop IV∆ , proportional 

to the current density J, SII JrV =∆  where SIr  is the “spin coupled interface resistance”. This effect 

does not appear in the CIP geometry because there is no net charge or spin transport through the 

interfaces and therefore no spin accumulation. The extension of this theory to multilayer [Ref. III.21] 

assumes that spin coupled interface resistances of successive interfaces are additive[Ref. III.22, Ref. 

III.23]. Really, in the limit appropriate for the experiments, i.e. with thicknesses much shorter than 

the spin diffusion length (SDL) lsf, the assumption of additive interfaces resistance is incorrect [Ref. 

III.24]. The spin accumulation induced by successive interfaces interfere and partly balance each 

other. This gives a behaviour of CPP-MR different from that asserted before. The second point is 

that the macroscopic equations used in Ref. III.21- Ref. III.23 are not valid if the layer thickness become 

of the order of the MFP. 

According to Ref. III.24, the Boltzmann equation model reduces to macroscopic transport equations 

when the SDL is much longer than the MFP, λ>>sfl , valid whatever the ratio between the layer 

thicknesses and the SDL. The model considers a structure where single domain ferromagnetic (F) 

metal layers alternate with non ferromagnetic (N) metal layer. In all the layers, it is assumed a 

simplified single parabolic conduction band, with the same effective mass m and Fermi velocity vF. 

A given current density J flows along the z axis perpendicular to the plane of the layers and only 

configuration where the magnetization of a given F layer is “up” or “down” along the x axis, taken 

as spin quantization axis, has been considered. Because the magnetizations are all collinear, the 
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local velocity distribution function of the conduction electrons for the spin direction s, ( )v,zf s  is 

introduced. Looking for a solution of the linearized Boltzmann equation, i.e. eq.III.14, the model in 

Ref. III.24 considers the local electric field ( ) ( ) zzVzE ∂∂−=  and, in order to account for spin 

accumulation, the chemical potential for spin s, ( )zsµ  jointly with ( ) ( ) )(zeVzz ss −= µµ  the 

electrochemical potential for spin s. These statements lead to a new set of equations resulting from 

the Boltzmann equation:  
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where ),()2( zzGs  is the Green function, ( ) 1
11

−+= sfsFs v ττλ  and ( )[ ] ( ) 2121
31 sfssfsFs Dvl ττλ ==  

are respectively the local electron mean free path and spin diffusion length for spin s, Ds is the 

diffusion constant. 

Equation III.22 shows explicitly that the Boltzmann model beyond the macroscopic transport 

equation breaks the locality of the linear response relation between the elettrochemical potential 

gradient and the current. zs ∂∂µ  at a given point no longer depends only on the current at the same 

point but also on the current divergence integrated over a domain centered at this point and upon a 

length of the order of the MFP. The appearance of a current divergence for spin s occurs because of 

the spin relaxation mechanisms which take place on the length scale of the SDL, λ>>sl . This 

mean that quite generally [Ref. III.23] 
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Proving the whole Boltzmann correction of eq.III.22 is proportional to sfs lλ . Thus regardless of 

the layer thicknesses the macroscopic transport equations eq.III.21 and 
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Are recovered in the limit 1<<sfs lλ . eq.III.23 is just the Ohm’s law, and eq.III.21 expresses that, 

in steady state, the spin accumulation, that is related to the spin current divergences, is balanced by 

the spin- flip processes. The previous equations should be transformed in a more directly usable 

way. Thus, the spin-dependent electrochemical potential is written as µµµ ∆±=±  where µ∆  is 

the term related to the spin accumulation. In free-electron model, µ∆  is also related to the out-of-

equilibrium magnetization M∆  by ( )BnM µµµ 32 0 ∆=∆  where n is the electron density and Bµ  

the Bohr magneton. The gradient of spin-dependent part of ±µ  divided by e is equivalent to an 

electric field, zezF ∂∂= µ1)( . Thus eq.III.21and eq.III.23 transform into  
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This leads to a spin-diffusion type equation for µ∆  
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in an homogeneous medium, hold the following general solution: 
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At this stage, it is possible to introduce a bulk spin asymmetry coefficient β in the F layers, 
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III.28 ) [ ]βρσρ )(121
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and write in the N layers ∗
↓↑ = Nρρ 2

)(
, obtaining the general expressions of )(z±µ , F(z) and )(zJ ±  

reported in the Appendix C of Ref. III.24. Obviously, they still depend on various integration constant 

which have to be determined in each layer by taking into account the proper boundary conditions at 

each interface. As example, an interface located at z=z0 leads to the continuity of the current, 

( ) ( ) 000 ==−= −+ zzJzzJ ss . In presence of interface scattering, i.e. significant scattering localized 

in an interfacial zone that is supposed to be infinitely thin, the potential conditions are 

( ) ( ) ( )[ ]ezzJrzzzz ssss 000 ===−= −+ µµ  where sr  is the spin-dependent boundary resistance for 

a unit surface of the F/N interfaces. In the same way as in the bulk, it is possible to introduce an 

interfacial spin asymmetry coefficient γ according to 
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Using the general solutions [Ref. III.24] and taking into account the previous boundary conditions at 

each interfaces, all the parameters of interest in any multilayer structure can be calculated. 

The general case of a multilayer with both interface and bulk spin-dependent scattering can be 

summarized into a resistor scheme of Figure III.3(a) for the AP configuration and of Figure III.3(b) 

for the P configuration. These schemes, in the limit 
)()(

,
N

sfN
F

sfF ltlt <<<< , allow the calculation of 

the resistance of a multilayer according to the following expressions 
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This gives the type of expression already used [Ref. III.20] for the interpretation of experimental 

results on Ag/Co and Cu/Co multilayers formed by M bilayers: 
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which leads to 
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where ( )NF ttML +=  is the total thickness of the multilayer, ( )( )Lttt NFFF +*ρ  is the total 

resistance of the magnetic layers and Mrb
*2  the total resistance of the interfaces. 

 

 

 

Figure III.3 Equivalent resistance array giving the potential drop coming from the pseudoelectric field F in the limit 

sfFN ltt <<),( , for the general case with both bulk and interface spin dependent scattering. (a) is for an anti-

ferromagnetic arrangement and (b) is for a ferromagnetic one. ↑ρ and ↓ρ  are the resistivities induced by spin-

dependent bulk scattering. ↑r and ↓r  are the resistivities induced by spin-dependent interface scattering. The letters (A) 

and (C) are denoted the ferromagnetic layers while (B) is to denote the normal layers. 
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From the literature, in particular Ref. III.20 and Ref. III.24, it is possible to retrieve the physically 

significant parameters, concerning Ag/Co and Cu/Co multilayers, showed in the following table: 

 

 bulk spin asymmetry  interfacial spin asymmetry 
 

*
Nρ [ ]mnΩ  *

Fρ [ ]mnΩ  β  ↑↓= ρρα F  *
br [ ]2mΩ  γ  ↑↓= rrbα  

Co/Ag 110 ±  10107 ±  05.048.0 ±  9.2≈  ( ) 15
1003.056.0

−±  03.085.0 ±  12≈  

Co/Cu 27 ±  5.487 ±  1.05.0 ±  3≈  ( ) 151002.05.0 −±  05.076.0 ±  3.7≈  

 
Table III.1 Physically significant parameters for Co/Ag and Co/Cu multilayers. Generally, in Co layers, even if the 

mean free path is somewhat shorter than in Ag or Cu (i.e. 
o

A210≈λ ), spin-diffusion lengths 
o

Alsf
310≈  are expected. 

Thus, mean free path
oo

AlA sf
32 1010 =<<=λ spin diffusion length. Data from Ref. III.24. 

 

By adopting these data into eq.III.32 and eq.III.34, it is possible to obtain the GMR behaviour of a 

magnetic multilayer as function of the number of Co/Cu bilayers: 
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Figure III.4 GMR behaviour as a function of the number of bilayers, tCu varying (fixed the total thickness L=7200
o

A , 

the spin diffusion length lsf=2000
o

A  and tCo= 60
o

A  CoCu tMLt −=→ , -7-11 107105 ⋅÷⋅=Cut ). Following the 

different GMR definitions, we denote with (a) the optimistic, (b) the pessimistic and (c) the reasonable characterizations 

of the GMR effect. Data from Ref. III.25. 
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Figure III.5 GMR behaviour as a function of the number of bilayers, tCo varying (fixed the total thickness L=7200
o

A , 

the spin diffusion length lsf=2000
o

A  and tCu= 30
o

A  CoCu tMLt −=→ , -7-10 107106 ⋅÷⋅=Cut ). Following the 

different GMR definitions, we denote with (a) the optimistic, (b) the pessimistic and (c) the reasonable characterizations 

of the GMR effect. Data from Ref. III.25. 

 

As shown in the previous figures, with increasing number of FM/NM bilayers within a multilayer 

the value of GMR monotonically increases until it reaches saturation. One of the factors, which may 

play a role in increasing GMR with the number of bilayers, is an improvement in the structural 

quality for the thicker multilayers. However, the major factor, which is responsible for the behavior 

of GMR versus M, shown in Figure III.4, is the presence of centre of scattering at the outer 

boundaries of the multilayer. The calculated linear variations shown that finite lsf  are similar to 

those published in Ref. III.21. 

Our attention is principally based on Co/Cu multilayers because of the high values of GMR, 

published by literature, that are even 120% in Co/Cu multilayers [Ref. III.26]. Sizeable values of 

GMR were also obtained in the multilayers: Co/Ag, 22% at room temperature, but the higher values 

for Co/Cu multilayers lead to pay more attention to this composition. In fact, it was found that the 

magnitude of GMR varies considerably depending on the chemical constituents of the multilayer. 

There are two factors, which are crucial for obtaining high values of GMR. These are the band 

matching and the lattice matching between the ferromagnetic and nonmagnetic metals. The noble 

metals Ag and Au can serve as good spacer materials in Co-, Ni- and Ni80Fe20–based multilayers 

and spin valves. These metals have electronic and atomic structure similar to Cu, although not as 

good band and lattice matching with the 3d ferromagnets. For example, Ni80Fe20/Ag, and 

Ni80Fe20/Au permalloy-based multilayers show GMR values of about 20% at room temperature and 
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reveal a high sensitivity of the resistance to the applied field, 0.2%/Gauss, and low interlayer 

coupling [Ref. III.27, Ref. III.28]. This combination makes them attractive for applications. 

Unfortunately, the growth of these multilayers represents a real problem. For example the 

Ni80Fe20/Ag multilayer has to be deposited at liquid-nitrogen temperatures in order to obtain the 

required integrity of the layers. 
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III.4. Nonmagnetic layer thickness dependence 

 

When considering the dependence of GMR on the non-magnetic layer thickness in magnetic 

multilayers and spin valves one should compare the resistances of the perfectly parallel and 

antiparallel magnetic configurations. The presence of the interlayer exchange coupling leads to 

oscillations in GMR, similar to those displayed in Figure III.6. This oscillatory contribution to 

GMR reflects the extent of antiparallel alignment, which is achieved at zero magnetic field, rather 

than an intrinsic variation in GMR. Spin valves are in this sense better for studying the spacer 

thickness dependence of GMR than magnetic multilayers. This is due to the pinned ferromagnetic 

layer, which keeps the direction of its magnetization and helps to maintain an antiparallel alignment 

of the magnetizations in a certain field interval, provided that the ferromagnetic interlayer coupling 

is not stronger than the exchange-bias field. However, at small spacer thicknesses the magnetic 

layers may become strongly  coupled ferromagnetically due to the presence of pinholes in the 

nonmagnetic film, leading to a decreased GMR ratio. 

 

 

 

Figure III.6 Saturation magnetoresistance at 4.2K versus Cr thickness for Si(111)/Cr(10nm)/[Fe(2nm)/Cr(t)]NCr(5nm) 

multilayers deposited at various temperatures: triangles and squares - 40°C (N=30); circles - 125°C (N=20). Data 

from  Parkin et al. [Ref. III.29] 

 

The dependence of GMR on the non-magnetic layer thickness in spin valves was studied by Dieny 

and co-workers [Ref. III.30]. Figure III.7 shows the variation of GMR as a function of the thickness 

of the non-magnetic layer (NM) in spin valve structures with composition: 



Theoretical and experimental results 
 

 

 61 

Si/Co(7nm)/NM(dNM)/Ni80Fe20(5nm)/ Fe50Mn50Mn(8nm) with NM=Cu and Au. As seen from 

the following figure, the value of GMR decreases monotonically with increasing non-magnetic 

layer thickness.  

 

 

 

Figure III.7 Magnetoresistance at room temperature versus thickness of the noble-metal layer in spin valves 

Si/Co(70nm)/NM(dNM)/Ni80Fe20(5nm)/Fe50Mn50(8nm)/NM(1.5nm) with NM = Cu and Au. The solid lines represent 

fits according to eq.III.1. Data from Dieny et al. [Ref. III.30] 

 

This decrease can be qualitatively ascribed to two factors. (i) With increasing spacer thickness the 

probability of scattering increases as the conduction electrons traverse the spacer layer, which 

reduces the flow of electrons between the ferromagnetic layers and consequently reduces GMR. (ii) 

The increasing thickness of the nonmagnetic layer enhances the shunting current within the spacer, 

which also reduces GMR. These two contributions to GMR can be described by the following 

expression: 

 

III.35 ) 
( )0

)(

0 1 dd

e

R

R

R

R

NM

ld NMNM

+







 ∆
=

∆ −

 

 

The exponential factor represents the probability that an electron is not scattered within the NM 

layer. The factor in the denominator describes the shunting effect due to the NM layer. The 

parameter lNM is related to the mean free path of the conduction electrons in the spacer layer. One 

expects that lNM will be less than the mean free path in the spacer layer λNM, due to the fact that 

electrons which most effectively contribute to GMR have out-of-plane velocities. Dieny et al. [Ref. 

III.32] proposed that for systems of practical interest lNM is approximately equal to half of the mean 
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free path λNM. The parameter d0 is an effective thickness, which depends on the conductance of the 

system in the absence of the NM layer, (∆R/R)0 is a normalization coefficient. 

It was found that the Cu and Au thickness dependence of GMR, illustrated in Figure III.7, can be 

well fitted by using the experimental parameters in the following table: 

 

 [ ]nmlNM  [ ]nmNMλ  [ ]mNM Ωµρ  

Cu 6 11.5 5 

Au 5 8.5 7 

 

Table III.2 Significant parameters of the noble-metal layer. Data from Ref. III.32. 

 

These decay lengths are determined by scattering in the spacer, due to phonons, grain boundaries, 

and other defects, and are correlated with the mean free path λNM. The smaller value found for Au is 

consistent with the higher resistivity of Au. 

Our aim is to confirm the GMR trend previously described using the eq.III.32 and eq.III.34, and the 

physical parameters of the Table III.1.  
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Figure III.8 GMR responses as function of the nonmagnetic layer thickness, tCu varying (fixed the total thickness 

L=7200
o

A , the spin diffusion length lsf=2000
o

A  and tCo= 60
o

A ). In the label, (a) indicates the GMR effect according 

the formula PRPRAPR − , (b) is APRPRAPR − and (c) is PRAPRPRAPR +− respectively. 

 

GMR in magnetic multilayers versus thickness of the non-magnetic spacer layer, see Figure III.8, 

behaves in a similar way as in spin valves (Figure III.7). Figure III.8 displays values of GMR in 
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Co/Cu multilayers measured at relatively large Cu thicknesses, so that the interlayer exchange 

coupling is small [Ref. III.33].Note that the interlayer exchange coupling decreases with increasing 

Cu thickness much faster than GMR, such that the exchange coupling fields become much weaker 

than the saturation fields.  

To have a complete overview of the trend on changing the nonmagnetic layer, we paid attention to 

alternative materials within the framework of semiconductor materials. In fact, intense research 

efforts are now devoted to extending these spin-dependent effects to semiconductor materials. 

There have been noteworthy advances in spin injection and detection using inorganic 

semiconductors [Ref. III.34-Ref. III.36], actually spin-valve devices with semiconducting spacers have 

not yet been demonstrated. Organic π-conjugated semiconductors may offer a promising alternative 

approach to semiconductor spintronics. Organic π-conjugated semiconductors (OSEs) are a 

relatively new class of electronic materials that are revolutionizing important technological 

applications including information display and large-area electronics [Ref. III.37,Ref. III.38], owing to 

their ability to be economically processed in large areas, their compatibility with low-temperature 

processing, the tunability of their electronic properties, and the simplicity of thin-film device 

fabrication. For the device in object [Ref. III.39], Alq3 has been chosen, most commonly used in 

organic light-emitting diodes (OLEDs), to serve as an OSE spacer in organic spin-valves, because it 

can easily be deposited as thin films and integrated with a variety of metallic electrodes. As shown 

in Fig. 1a, the vertical organic spin-valves consist of three layers: two ferromagnetic electrode films 

(FM1 and FM2, respectively) and the OSE spacer. The two FM electrodes have different coercive 

fields (Hc1 and Hc2, respectively). 

 

 
 

Figure III.9 Schematic representation of a typical device that consists of two FM electrodes (FM1 and FM2) and an 

OSE spacer. Spin-polarized electrical current I flows from FM1 (LSMO), through the OSE spacer (Alq3), to FM2 (Co) 

when a positive bias V is applied. An in-plane magnetic field, H, is swept to switch the magnetization directions of the 

two FM electrodes separately. 
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Devices with d<100 nm, have an ‘ill-defined’ layer of up to 100nm that may contain pinholes and 

Co inclusions. These findings suggest that the OSE spacers in the spin-valve devices fabricated with 

d>100 nm may be composed of two sublayers: one sublayer with a thickness d0 of the order of 

100nm immediately below the Co electrode that contains Co inclusions owing to the interdiffusion; 

and a second sublayer of neatly deposited Alq3 between this defected sublayer and the LSMO film, 

having a thickness d-d0, in which carrier transport is dominated by carrier drift. 

The GMR effect and its dependence on d can be analysed using a simple injection and diffusion 

model. In conventional magnetic tunnel junction devices with a very thin insulating tunnel barrier, 

the Julliere model [Ref. III.40] has often been used to analyse the tunnelling magnetoresistance. In the 

present organic spin-valves, the neatly deposited OSE sublayer with thickness d–d0 is so thick 

( nm30> ) that simple quantum mechanical tunnelling through it is not a viable possibility. It is 

assumed that there exists a potential barrier for spin injection at the Co/OSE interface, which may 

be self-adjusted. Once carriers are injected through this interface they easily reach the neat sublayer, 

where they drift under the influence of the electric field towards the other interface, from which 

they can be extracted. As the injected carriers reach the end of the ill-defined sublayer, the spin 

polarization is 1p ; it further decays in the remaining neatly deposited sublayer with a surviving 

probability [ ])(exp 0 Sldd −− , where z is the drift/diffusion distance along the normal direction to 

the interface, and Sl is the spin diffusion length in the neatly deposited OSE sublayer. The spin 

polarization p is defined as ( ) ( )↓↑↓↑ +−= NNNNp  where ( )↓↑ NN  is the carrier density in the 

majority (minority) spin state. The thickness dependence of the GMR magnitude is expressed 

according to the following equation: 
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The experimental values used as references are shown in the following table: 

 

 [ ]nmd  [ ]nmd0  [ ]nmlNM  
1p 2p  [ ]%RR∆  

LSMO/Alq3/Co 130÷250 87 45 -0.32 40÷2 

 

Table III.3 Experimental parameters for the LSMO (100 nm)/Alq3 (130 nm)/Co (3.5 nm) spin-valve device. In the first 

cell is expressed the range of the values used for the simulation. 
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Figure III.10 The GMR value of a series of LSMO/Alq3/Co devices with different d. The line fit through the data points 

was obtained using the spin diffusion model, equation III.36, with three adjustable parameters shown in Table III.3 

 

By adopting a simple injection and diffusion model, the previous figure is a confirmation that the 

evolution of the magnetoresistance is descending according an exponential law with the thickness 

of not magnetic layer. 
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III.5. Magnetic layer thickness dependence 

 

Similarly to the previous study, the dependence of GMR on the magnetic layer thickness in spin 

valves - M1(t
o

A )/Cu(22
o

A )/Ni80Fe20(50
o

A )/Fe50Mn50(80
o

A )/Cu(15
o

A ) - was studied by Dieny and 

co-workers [Ref. III.30]. They describe the variation of MR in the spin valve structure in terms of the 

thickness of the nominally “free” magnetic layer M(1)=Co, NiFe or Ni, at different temperatures, as 

shown in the following figure 

 

 
 

Figure III.11 Variation of the magnetoresistance versus the thickness of the “free” ferromagnetic layer M(1), with 

M(1)=Co, NiFe or Ni, at room temperature. Data from Ref. III.30. 

 

The observed variations have a very similar shape characterized by a broad maximum between 60 

and 110
o

A . This shape is different from that previously observed in Fe/Cr multilayer for which 

RR∆  decreases monotonically for Fe thickness above 10
o

A , which was interpreted as 

demonstrating the dominant role of interfacial scattering in Fe/Cr [Ref. III.41-Ref. III.43]. The broad 

maximum shows that in the observed structure the MR arises within an “active” part of the 

ferromagnetic layer, about 90
o

A  thick, located next to the Cu/M interface. The decrease of MR at 

larger thickness can be attributed to increased shunting with M(1) layer thickness. 

Following the schematic representation of a spin valve structure in Figure III.12, the ferromagnetic 

layer, whose thickness is varied, is divided into an “active” and an “inactive” regions. “Active” 

region means the part of the ferromagnetic layer which gives the main contribution to the MR. At 

0K the thickness of this active part, t0, is linearly related to the longer of the two spin-dependent 
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mean free path, +λ  and −λ , corresponding to electrons with their spin parallel and antiparallel to 

the magnetization of the ferromagnetic layer. There is the assumption that +λ is the longer of the 

two mean free paths. Thus, the inactive part of M(1) is described as a resistance (R1) which is 

independent of the orientation of the magnetization, connected in parallel to the resistance (R0) of 

the active part of the spin valve structure. 

 

 
 

Figure III.12 Schematic representation of the spin valve structure. The two species of electrons (spin ↑ and spin ↓ ) 

have different mean free paths due to the spin- dependent character of the scattering in ferromagnetic transition metal. 

 

Neglecting the contribution of the other terms including the structure - Cu/Ni80Fe20/Fe50Mn50//Cu – 

the measured MR is given by 
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Introducing the sheet conductance Grest of the rest of the structure Cu/Ni80Fe20/Fe50Mn50//Cu, we 

note that it is varying almost linearly with the thickness of the M(1) layer, )1()1( MMrest tGG ρ+≅ . 

This behaviour is pull out from experimental observations from Ref. III.30, as displayed in the 

following figure 
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Figure III.13 Variation of the sheet conductance versus M(1) layer thickness for a structure 

M1(t
o

A )/Cu(22
o

A )/Ni80Fe20(50
o

A )/Fe50Mn50(80
o

A )/Cu(15
o

A ), with M(1)=Co, NiFe and Ni. 

 

In the relevant data, other physical parameters have been extracted as reported in the table below 

 

 NiFe Ni Co Au Cu 

[ ]cmΩµρ  29.89 15.89 45 8.42 6.31 

 

Table III.4 Resistivity at room temperature for the materials used in the spin valve 
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Thus, introducing the sheet conductance Grest in the eq.III.40 
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For 0)1( ttM > , a hyperbolic decrease of the MR is expected due to the shunting of the current in the 

inactive part of M(1).Below the characteristic thickness t0 the decrease of MR is due to two effects. 

The ferromagnetic layer is now so thin that the incoming electrons with the longer mean free path 

+λ  have a reasonable probability of scattering not within this layer but rather on the substrate or in 

the FeMn layer. Thus, the scattering loses some of its spin-dependent character leading to a 

reduction of R∆ . On the other side, some of the outgoing electrons with the longer mean free path 

which would have been available from a thick M(1) layer are no longer present. Both phenomena 

can be described quantitatively, assuming that a continuous flow of electrons goes in or out of M(1). 

For −+ >> λλ , most of this flow consists of spin ↑ electrons, so that the contribution of spin ↓  can 

be neglected. A lot of electrons of this flow has a scattering event within a thin layer t(M1) and the 

probability for a spin ↑ electron to be scattered is ( )[ ]
0)1(exp1 ttM−− . Putting together these two 

contributions, one from shunting effect, the other from the bulk scattering of spin ↑ electron, it is 

possible to extract a more comprensive expression  
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With two adjustable parameter namely: A and t0  The quantity A is characteristic of the materials 

involved in the essential part of the spin-valve, M(1), N, and M(2). 

 

Ferromagnet (%)A  )(
0

o

At  )()1(

o

AG Mrest ρ  

Co 14.5 72 65 

Ni80Fe20 9.6 72 85 

Ni 5.1 85 65 

 

Table III.5 Characteristic MR parameter A and “active” layer thickness for the M(1)=Co, NiFe and Ni. 
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Our aim is to simulate the eq.III.32 and eq.III.34, following the various definitions collected by 

Bruno and co-workers, to play the same behaviour for a multilayer Co/Cu by referencing to the data 

in the Table III.1. This results could be useful to design and fabricate a new sensors starting from 

the fundamental magnetic properties of the materials. 
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Figure III.14 GMR behaviour as function of the magnetic layer thickness, tCo varying (fixed the total thickness 

L=7200
o

A , the spin diffusion length lsf=2000
o

A  and tCo= 30
o

A . In the label, (a) indicates the GMR effect according the 

formula PRPRAPR − , (b) is APRPRAPR − and (c) is PRAPRPRAPR +− respectively 

 

As reported in Figure III.14, this shape is different from that previously observed because of the 

hyperbolic decrease of GMR which can be interpreted as a proof of the dominant role of interfacial 

scattering in Co/Cu multilayers.  
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IV Characterization of GMR sensors 

 

 

The interest in the GMR technologies is due to their possible application in the field of Non Destructive 

Evaluation (NDE). GMR sensors can be used to test metallic structures of various type and composites of 

aeronautical interest, e.g. single layer metals, multilayers, or laminates, for the identification of processing 

or impact defects. In particular, this kind of sensors can potentially improve the performances of NDE 

systems in terms of spatial resolution and sensitivity for defects of hundreds of µm at depths exceeding 

10mm. This chapter will report the experimental characterization of commercially available GMR sensors, 

including magnetic background noise analysis, conversion factor and non destructive measurements on 

several materials. Our study aimed to estimate the optimal configuration for a system of commercial GMR 

sensors. The use of GMR sensors in a gradiometric configuration, together with the applied filtering 

technique, enables the strong reduction of the magnetic noise increasing the signal to noise ratio. The results 

coming from the measurements, taken on different materials, allows to understand the advantage of using an 

electronic gradiometer and the reliability of our experimental probe. 
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The use of giant magnetoresistive sensors for electromagnetic non destructive evaluation has grown 

considerably in the last years [Ref. IV.1-Ref. IV.3]. Technological advances in the research and 

development of giant magnetoresistive materials has led to commercially available sensors. Low 

cost magnetometers based on GMR are now available. The main characteristics of this new device 

include: high magnetic field sensing, the capability to operate in the industrial magnetic 

environment, small power consumption, and operation at room temperature [Ref. IV.4]. Incorporation 

of these sensors into NDE probes has widened the range of their application field. In particular, the 

low frequency sensitivity of these devices provides a practical means to perform electromagnetic 

inspections on conducting structures. From the requirement to optimize the signal to noise ratio at 

low frequencies, the idea was born to develop an NDE measurement apparatus based on GMR 

sensors. Other distinguishing characteristics for GMR magnetometers are the potential sensitivity 

and the innovation component tied to the use of such technology. They offer the opportunity to 

develop a measurement system that ties the simple control electronics with the measurement 

reliability in a not electromagnetically shielded laboratory. A limiting factor in this work appeared 

to be the increased magnetic background noise level with decreasing frequency. Moreover the 

incorporation of a commercially available GMR sensor into a gradiometer system could be 

performed to greatly enhance the low frequency capabilities of the device. In order to improve the 

signal to noise ratio of the GMR based gradiometer, the system has been low-pass filtered that is 

shown to greatly reduce the magnetic background noise levels. This permits a good imaging on 

conducting materials. 
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IV.1 GMR magnetometers and the gradiometer measurement system 

 

Thin-film GMR materials deposited on silicon substrates can be configured as resistors, resistor 

pairs or half bridges, and Wheatstone bridges. A sensitive bridge can be fabricated from four 

photolithographically patterned GMR resistors, two of which are active elements. The sheet 

resistance of the thin films is between 10Ω and 15Ω per square. Resistors of 10kΩ can be formed as 

2µm serpentine traces covering less than a 100µm square. The following Figure IV.1 shows a view 

of a magnetometer developed by Non Volatile Electronics (NVE): 

 

          

 

Figure IV.1 Physical layout and electrical scheme of a GMR magnetometer (Non Volatile Electronics, Inc.). 

 

The circuit size is about 350µmx1400µm. Small magnetic shields of permalloy plated over two of 

the four equal resistors in a Wheatstone bridge protect the resistors from the applied field and let 

them act as reference resistors. These resistors are connected to the power and to the ground 

respectively. Because they are made of the same material, the reference resistors have the same 

temperature coefficient as the active resistors. The two remaining GMR resistors are exposed to the 

external field. The bridge output is therefore twice the output you would expect of a bridge with 

only one active resistor. The bridge output for a 10% change in these resistors is ~5% of the voltage 

applied to the bridge. Additional permalloy structures plated onto the substrate can act as flux 

concentrators to increase sensitivity. The active resistors are placed in the gap between two flux 

concentrators. These resistors experience a field larger than the applied field by approximately the 
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ratio of the gap between the flux concentrators to the length of one of the flux concentrators 

according the expression  

BGMR ≅ 0.6 · BAPP · (lFC/dFC) 

where BGMR is the field at sensor elements, BAPP is the external applied field at sensor elements, lFC 

is the length of the flux concentrators and dFC the gap between them. Therefore, the sensitivity of a 

GMR bridge sensor can be adjusted in design by changing the lengths of the flux concentrators and 

the gap between them. In this way, a GMR material, which saturates at ~300Oe, can be used to 

build different sensors, which saturate at 15Oe, 50Oe, and 100Oe. To produce sensors with more 

sensitivity, external coils and feedback can be used to produce sensors with resolution in the 

100mA/m or mOe range. An example of the output from a low-field GMR bridge sensor is shown in 

Figure IV.2. 

 

Figure IV.2 The output from a low magnetic field GMR Wheatstone bridge sensor under bipolar excitation shows its 

omnipolar, or pole-indifferent, response. The hysteresis near the origin is greatest if the sensor is traversed from large 

positive magnetic fields to large negative fields and back to large positive fields. 

The curve traces out a full bipolar excitation of the sensor. The bipolar hysteresis shown is only 

observed when the sensor crosses from a large negative excursion to a positive excursion or vice-

versa. The unipolar hysteresis is shown by the two lines on each side, which almost coincide. This 

sensor has a bridge resistance of 5kΩ and a slope sensitivity of 3.2mV/V/Oe. The flux concentrators 

on this sensor provide a gain of ~16. The following Table IV.1 summarizes the principal sensor 

characteristics 
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Table IV.1 Magnetic characteristics of NVE GMR sensors. 

 

The unipolar output characteristic doesn’t enable to use a single GMR sensor as magnetometer 

since it cannot restrict the sign of the observed magnetic field. It is necessary, therefore, the 

linearization of the output characteristic. To discuss the issue of linearization, we consider the spin 

valve sensor configuration [Ref. IV.5 - Ref. IV.7] shown schematically in Figure IV.3. It consists of a 

ferromagnetic free layer and a ferromagnetic reference layer separated from each other by a thin 

spacer layer.  

 

 

 

Figure IV.3 Schematic illustration of a spin valve sensor: a ferromagnetic free layer characterized by a magnetic 

moment 1M  and a ferromagnetic reference layer characterized by a magnetic moment 2M  separated by a thin spacer 

layer. The magnetic moment of the free layer is allowed to rotate in response to signal fields. 

 

The magnetic moment 2M  of the reference layer is pinned along the transverse direction, typically 

by exchange coupling with an antiferromagnetic layer (e.g., FeMn), while the magnetic moment 

1M  of the free layer is allowed to rotate in response to signal fields. The resultant spin-valve 

response is given by 

 

Part 

Number 

Saturation 

Field (Oe) 

Linear 

Range 

(|Oe1|) 

Sensitivity 

(mV/V-Oe1) 

Maximum 

Nonlinearity 

(% Uni) 

Maximum 

Hysteresis 

(% Uni) 

Maximum 

Operating 

Temp (°C) 

Typical 

Resistance 

(Ohms) 

AA005-02 100 10.0-70 0.45-0.65 2 4 125 5K 

AA003-02 2.0 14 2-3.2 2 4 125 5K 
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IV.1 ) ( ) 121 sincos θθθ∆R ∝−∝  

 

where 1θ  and ( )22 π=θ  represent the directions of free and pinned-layer magnetic moments, 

respectively (Figure IV.3). If the uniaxial anisotropy hard axis of the free layer is oriented along the 

transverse signal field direction, the magnetic signal response is linear Hθ ∝1sin , yielding in turn a 

linear spin-valve sensor response through Equation IV.1. This linear spin-valve sensor response is 

in contrast to the parabolic signal response of conventional GMR or AMR sensors [Ref. IV.7 - Ref. 

IV.8]. However, the linearity of the spin-valve response depends first on the precise transverse 

magnetic orientation of the reference layer and second on the linearity of the magnetic behaviour of 

the free layer in the transverse direction. If the pinning field of the reference layer is not high 

enough compared to the transverse demagnetization field, the reference layer will become non 

uniformly demagnetized from the transverse direction near the upper and lower edges of the sensor. 

Also, if the exchange-bias pinning field is misaligned from the transverse direction, the 

magnetization of the reference layer will be canted as a whole from the transverse direction. In both 

cases, the 2θ  term in Equation IV.1 will not be 2π , resulting in a nonlinear spin valve response. In 

addition, if the uniaxial anisotropy easy axis of the free layer were canted from the longitudinal 

direction or if the free layer were under the influence of a strong longitudinal bias direction, the 

magnetic response 1sinθ  of the free layer would no longer be linear with the external magnetic 

field, resulting also in nonlinearities in the spin-valve response. Finally, the spin-valve sensor 

typically incorporates free layers that also exhibit AMR responses, although the net AMR response 

might be rather weak because of the thinness of the free layer and the shunting of the other layers. If 

the AMR response is not completely negligible compared with the spin-valve response, the resultant 

sensor response is modified from the simple linear spin-valve response by the presence of a 

parabolic nonlinearity from residual AMR response. The linear operation of the spin-valve sensor 

terminates when the free-layer magnetic moment becomes saturated along either the up or the down 

transverse direction This magnetic arrangement constitutes optimal biasing for the spin-valve 

sensor, which is very different from optimal biasing for an AMR sensor, where the magnetic 

moment of the AMR layer would be canted at o45≈  from the longitudinal direction. 

A typical magnetoresistive resistor is constituted by thin film stripes. The resistivity R of a 

magnetoresistive stripe depends on the angle between the directions of electric current (I) and 

magnetisation (M) according to the following eq.IV.2 

 

IV.2 ) θ2
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where 0R∆  describes the strength of the magnetoresistive effect. The relationship between an 

external field Hy and angle α is determined by the geometrical dimensions of the stripe and the 

magnetic anisotropy of MR metal. This is taken into account by introducing a field H0 that 

represents the demagnetising and anisotropic field leading to 
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The characteristic of a magnetoresistive stripe as a field sensor is: 
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A linear characteristic of the magnetoresistive sensor is required to measure a small magnetic field. 

The linear behaviour of the magnetoresistive sensor is achieved by using a “Barber pole” geometry. 

The stripes are covered with aluminium bars having an inclination of 45° to the stripe axis. 

Aluminum has a low resistivity compared to MR metal.  

 

 

 

Figure IV.4 Covering the magnetoresistive stripe with “Barber poles” consisting of aluminium changes the direction of 

the current. This does not influence the direction of magnetisation. 

 

Therefore the Barber poles cause a change of the current direction. The angle between current and 

magnetisation is shifted by 45° as shown in Figure IV.4. The relationship between resistance and 

magnetic field is now 
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A linear characteristic of the sensor is given around 0
2

0

2 =HH y . The sign in this equation is 

determined by the inclination of the “Barber poles” (±45°) to the stripe axis. The characteristic of a 

sensor with and without Barber poles is presented in Figure IV.5. 
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Figure IV.5 Characteristics of magnetoresistive sensors. The Barber pole structure enables a linear behaviour of the 

sensor for a small magnetic field. Data from Table III.1 applying eq.IV.5 

 

Our aim is to reproduce the behaviour of a magnetoresistive sensor constituted by 40 Co/Cu bilayer 

with a "Barber poles" structure. The output characteristic has been derived from the experimental 

data of the Co/Cu bilayer shown in Table III.1 [data extracted from Ref. III.24]. The resistance values 

consider PRR =0 , i.e. in the absence of external applied field, the mutual layer direction is parallel 

and the overall resistance is minimal, while in the presence of field the mutual layer direction is 

antiferromagnetic and the overall resistance excursion, PAP RRR −=∆ 0 , is the difference between 

the maximum value that it assumes during antiparallel configuration and the minimum one. The 

values of APR  and PR  resistances were calculated using eq.III.32 and eq.III.34. The applied field 

0H  is varying in the range mkA30 ÷ , the choice of the values is due to the linearity and 

application field of commercial sensors. 
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The magnetometer sensitivity to the magnetic field is several orders of magnitude less than the 

Earth magnetic field and other electromagnetic interferences. Usually in NDE applications in 

shielded environment, the low intensity of the field associated to the defect (few pT) makes 

magnetometers not usable for this purpose. A possible approach in order to realize such 

measurements is to recombine electronically signals coming from two or more magnetometers 

(GMR). The more common technique requires to subtract the signal coming from two 

magnetometers in order to form a first order gradiometer electronic, like shown in Figure IV.6 

 

 

 

Figure IV.6 First order gradiometer from single magnetometers GMR. 

 

The electronic gradiometer requires a third sensor GMR as reference in order to measure the level 

of the magnetic background interference. The reference device is situated between the other two 

sensors and enable the feedback on every measured magnetic field to the two sensors that form the 

gradiometer. In this way the gradiometer does not suffer from the magnetic background noise. The 

optimal configuration of measure is that shown in Figure IV.7. 

A quantitative analysis of the signal received from the first order planar gradiometer can be 

obtained starting from the distribution of the field B generated from the magnetic dipole m within 

the test sample: 
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where m (Am2
) is the dipolar magnetic moment and r is the distance from the dipole and the 

measurement point. 
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Figure IV.7 Gradiometric configuration using three individual magnetometers/chip GMR. 

 

The second order gradiometer output (∂2
Bx/∂

2
x) is given as two gradiometers differential with the 

mutual distance b (baseline). The sensing axis of the GMR probe is coplanar with the surface of the 

specimen. Thus, field components that are perpendicular to the sensitive axis have negligible effect 

on their output. We consider that the magnetic moment of dipole lies in the x-y plane and calculate 

the magnetic field gradient along the scan direction, e.i. in the following equation, both the scan 

direction and the magnetic moment are chosen parallel to the x-axis. The magnetic field B in 

Cartesian coordinates is given by  
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In accordance with the above equation the magnetic gradient field can be described as  
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Whereas the only useful component of the field B is the one that lies in the plan of the sensor in the 

scan direction, generated by magnetic dipole m, thus the field of gradiometer is obtained according 

the law 
321 2 BBBG +−=  with all three sensors oriented in one direction (for the measures z=2mm, 

baseline=11mm).  
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The measurement system is composed of a GMR gradiometer consisting of three GMR 

magnetometers AA005-02 (NVE), a voltage generator Keithley 2400, two operational amplifiers 

(unitary gain), a Low-Noise Preamplifier (EG&G Model 5113), a B Series Multifunctional DAQ 

(National Instruments) and is supported by LabVIEW software. The gradiometric system is 

powered with 8V DC voltage by the DC voltage generator keithley 2400. The output of each device 

is taken, using a coaxial cable. The output signals are themselves as input of the two operational 

amplifiers in order to achieve 
21 BB −  and 32 BB − . During measurements, the outputs of the 

amplifiers are filtered by a second-order low-pass filter with a cutoff frequency of 30Hz using a 

EG&G Model 5113 low-noise preamplifier that allows to obtain 

3213221 2)()( BBBBBBBG +−=−−−= . A Labview data acquisition program collects data from 

the output of the filter via a National Instruments 16 bit analog-to-digital converter. For each 

scanning cycle, samples of filtered signal were collected at a sampling rate specified by the user. 

Time domain is converted into space domain taking into account the relation between number of 

samples, sampling rate, scanning velocity, and scanning length. Finally, for visualization of these 

results, 2-D maps representing the output voltage of the sensor as a function of displacements are 

plotted. 

 

 

 

Figure IV.8 The gradiometer configuration and the data acquisition system consisting of a GMR gradiometer made of 

three GMR magnetometers AA005-02 (NVE), two operational amplifiers (unitary gain), a Low-Noise Preamplifier 

(EG&G Model 5113), a B Series Multifunctional DAQ (National Instruments) and supported by LabVIEW software. 

 

The system is devoted to operate in a typical laboratory magnetic noise environment This means the 

power line interference with its 50Hz peak due to current flowing in and to electronic appliances has 



Characterization of GMR sensors  
 

 

82 

to be taken into account in the measurement. Thus, the largest bond of a so diversified system is the 

environmental noise and the 1/f of the whole electronics involved. The risk is to have a system 

which results theoretically and electronically valid but with a  noise (heat, intrinsic, cables) higher 

than its sensitivity. In fact, the ultimate low-field limit on any magnetic sensing system is noise. If 

the signal to noise ratio is less than one, it is difficult to have a meaningful measurement. 

Fortunately, there are several methods of improving the signal to noise ratio if one understands the 

sources of the noise [Ref. IV.9]. Noise can divided into two categories, inherent and transmitted. The 

sensor produces inherent noise while transmitted noise is due to the coupling between the sensing 

system and the outside world. Inherent noise can include such things as sensor and amplifier offset, 

thermal noise, and 1/f noise. Transmitted noise includes magnetic fields from unwanted sources and 

electrical noise from external sources picked up by the sensing system. 

Therefore, the assessment that must precede any measurement is the noise of the system. As 

comparison, first we analyze the noise for a single GMR magnetometer then assess the one of the 

whole system. 
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IV.2 Sampling and numerical processing of the GMR magnetometer output  

 

The Noise Power Spectrum Density (NPSD) analysis is carried out using a spectrum analyzer HP 

35670A and the result is reported in the following figure 
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Figure IV.9 Single GMR magnetometer NPSD retrieved from a single window in frequency (1600 lines and frequency 

span ∼15mHz ÷ 52kHz). 

 

The above figure shows the full spectrum (frequency span about 15mHz ÷ 52kHz). One can note, 

the value of the background increases for frequencies higher than 10kHz varying from ∼2⋅10
-7

 to 

∼4⋅10
-7

. In the table below, we reported the main observed frequencies 

 

Main Frequencies [Hz] Peak Amplitude [Vrms/√√√√Hz] Peak Amplitude [%] 

50.141 3.685⋅10
-4

 100 

8480 2⋅10-6 0,54 

12730 2.167⋅10
-5

 5,88 

16946 3.309⋅10-5 8,98 

25188 1.064⋅10
-5

 2,89 

36630 2.659⋅10
-5

 7,21 

40108 3.772⋅10-5 10,23 

21516 6.062⋅10
-6

 1,645047 

29248 3.237⋅10
-6

 0,878426 

33430 3.885⋅10-6 1,054274 

42044 3.174⋅10
-6

 0,86133 

46274 5.097⋅10-6 1,383175 

50474 5.102⋅10
-6

 1,384532 

 

Table IV.2 Main noise peaks in single GMR magnetometer NPSD (frequency range ∼15mHz ÷ 52kHz). The amplitude 

data do not take account of the different values of the background. 
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The next goal is to confirm of what is seen in the results of the spectrum analyzer and to check if 

there are significant noise components which make necessary filtering procedure, i.e. high-

frequency noise with high dB level spurious down to low-frequency. Therefore, the GMR output 

measurement has been repeated by sampling the signal from the DAQ and processing the numerical 

data obtained for each sampling frequency by the signal processing tool provided by Matlab. This 

analysis has been completed taking into account several factors: signal characteristics as peak 

frequency of interest, DAQ technical characteristics, FFT algorithm and signal windows.  

 

The Shannon (or Nyquist) theorem provides the necessary condition to return an analog signal after 

sampling, through a D/A converter. This means sc ff 2≥  where fs is the signal highest frequency 

and fc  is the sampling frequency. If sampling does not satisfy that requirement, the high frequency 

components are under sampling and they can be found again as low frequency components of the 

sampled signal (aliasing). The signal power density spectrum discloses the high amplitude peaks 

and their sampling frequencies 

 

Main Frequencies [Hz] Peak Amplitude [Vrms/√√√√Hz] Min Sampling Frequencies [Hz] 

50.141 3.685⋅10-4 100.282 

8480 2⋅10
-6

 16960 

12730 2.167⋅10-5 25460 

16946 3.309⋅10
-5

 33892 

25188 1.064⋅10
-5

 50376 

36630 2.659⋅10
-5

 73260 

40108 3.772⋅10
-5

 80216 

 

Table IV.3 Main noise peaks in single GMR magnetometer NPSD and the respective sampling frequencies. 

 

As reported in the Table IV.4 below, the maximum sampling frequency of the data acquisition card 

is not limiting the signal noise analysis. The difference between two adjacent levels (Resolution) is 

  6,104e  /220 -416 VV = , a level which may be considered acceptable for the purposes of the measure. 

After the analog to digital conversion by A/D converter (DAQ), the sequence of values obtained 

from the signal may be processed as an array of integers uniformly distributed on the times axis. 
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Sampling Frequencies 200 kS/s 

Resolution 16 bits 

Analogic Input - Max Range -10..10 V  

 

Table IV.4 DAQ main technical characteristics 

 

The signal spectrum represented in this way may be calculated using the FFT providing the number 

N of the samples to be analyzed. In our treatment using the Matlab Signal Processing tool, N is set 

to maximum ( 1024210 =  samples). The FFT representation gives the same importance to both low 

and high frequencies. To avoid the samples spectral dispersion, it is necessary to apply a digital 

filter to the sampled signal before its FFT algorithm processing. The filter multiplies the signal by a 

weight function so that is zero to the extreme of each window. The most common used windowing 

is the Hanning window. Unlike the other (Gauss, triangular and so on), this one ensures the 

equivalence between the primary signal energy and the weighted one. To avoid the analysis 

distortion, it is necessary to translate all the successive windows in order to overlap them. This 

solution gives the right weight for those underestimated samples in previous windowing. For the 

Hanning window, the chosen overlap is 99%, that is nearly a window repetition each samples.  

 

Therefore, since our intention is the GMR device background noise sampling, the sampling 

frequencies are numerous, starting from a sampling frequency kHzfC 1=  up to kHz100  with kHz5  

range. This is because the background white noise contains the spectral components for all 

frequencies. Below, there are only the results for maximum sampling frequency, it must be 

sc ff 2≥  assuming sc fHzkHzf 280216100 =>=  with fs =40108Hz, noise peaks maximum 

frequency, and fc=100kHz < 200kHz, DAQ maximum sampling frequency. The following figures 

report the Matlab Signal Processing results.  

 



Characterization of GMR sensors  
 

 

86 

 

 

Figure IV.10 Numerical sample from an fc= 100KHz sampling procedure. 

 

The FFT algorithm and the windowing processing highlight the presence of secondary peaks 

(amplitude 5.1855504⋅e-9
, frequency 20214.844Hz). 

 

 

 

Figure IV.11 Linear representation in the [-fs/2, +fs/2] frequency range  
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Figure IV.12 dB representation in the [0,+fs/2] frequency range 

 

 Main Peaks [Hz] Main Peaks [dB] Background [dB] 

fc = 100kHz 40039.063 -70.2501 -95 a -113 

 20214.844 -82.8521  

 47753.906 -92.424251  

 

Table IV.5 Summary of Hanning windowing processing of the single GMR magnetometer noise spectrum. 

 

As first analysis result, it should be noted that those components, which seemed to be external 

"high" frequency noise sources ("high" when compared to the acquired DC signal) after the digital 

signal processing are reduced to a background noise characterized by minimum amplitude level 

peaks dB9370 −÷− . The noise final graph allows to compare the results, reported to the same 

background level (Figure IV.13): 
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Figure IV.13 Linear representation in the [0, +fs/2] frequency range. 

 

From Figure IV.13 and as shown in the Table IV.6 below, no irregularities from spurious 

components were found, and no noise components due to some external source, thus, the GMR 

noise assumes a typical 1/f behaviour, in which the highest components are at low frequencies. 

 

Main Peaks [Hz] Main Peaks [dB] 

80.078125 -50.325485 

239.25781 -62.87291 

265.625 -72.86566 

398.4375 -73.359661 

 

Table IV.6 Main peaks for [0,+fs/2] frequency range. 

 

By changing the graph view using a double logarithmic scale, it is possible to analyze the results in 

a more appropriate frequency range (DC and low frequencies up to 10khz). The Figure IV.14 graph 

shows this passage. 
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Figure IV.14 NPSD detail in the ∼15mHz ÷10kHz range. 

 

Main Frequencies [Hz] Noise Amplitude [Vrms/√√√√Hz] 

DC ÷ 140⋅10
-3

 5.1⋅10
-7

 

50.141 3.685⋅10
-4

 

 

Table IV.7 Main peaks for NPSD  in the ∼15mHz ÷10kHz frequency range. 

 

Measured magnetic noise spectra of our laboratory showed two acceptable frequency ranges: 20 to 

40Hz and 60 to 110Hz. In Figure IV.14 all 50Hz multiple frequencies up to 1kHz are evident and the 

main noise source is the 1/f noise. 1/f noise is an important source of inherent noise in all 

conductors. This noise is due to point to point fluctuations of the current in the conductor [Ref. 

IV.11]. It is proportional to the inverse of the frequency and often dominates below 100 Hz. At the 

lowest frequencies it is difficult to distinguish it from drift. While thermal noise is independent of 

current and exists even without current, 1/f noise is proportional to the current and increases with 

increasing current. Bandwidth limitation, especially on the low frequency end will decrease 1/f 

noise. As with any random noise source, averaging a repetitive signal will increase the signal to 

noise ratio by the square root of the number of singles averaged 

Therefore, the noise main component is due essentially to the network that is indispensable unless 

supply batteries are used. We try to limit the 50Hz effect using a low pass filter from a pre-amplifier 

(EG&G Model 5113 Low-Noise Preamplifier). Thus, during the results evaluation, the pre-
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amplifier characteristics have to be taken into account. Observing the pre-amplifier data sheets 

reported in Figure IV.15, we know how to proceed to reduce the noise from the network. 

 

 

Figure IV.15 Pre-amplifier functional scheme. 

 

The input voltage noise is roughly a resistor of 1000Ω, about 4nV/√Hz. For sources/inputs 

impedance less than 1000Ω, the output noise will be less than the input voltage noise. For the GMR 

magnetometer, the input impedance is about 5kΩ while the GMR gradiometer, as three 

magnetometer connected in parallel, has an input impedance of 1667Ω, therefore, both outputs will 

not be affected by the amplifier presence. The Figure IV.16 shows a typical behaviour for the 

amplifier input voltage noise. 

 

 

 

Figure IV.16 Pre-amplifier voltage noise in input. 

 

It should be noted that the voltage noise increases at low frequencies, 1/f noise behaviour. For this 

reason, the passage of the signal processing could be compromised from amplifier influence just in 
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the band of interest, DC and low frequencies up to 10kHz. The PAR insertion is validated by the 

measurements later displayed. The preamplifier includes two identical first order RC filters with 

configurable cut-off frequency and filter typology, High Pass filter HPF or low pass filter LPF, the 

filter maximum bandwidth is 1MHz. Since our purposes is the devices noise reduction, this is 

possible introducing a LPF whose slope profile (roll-off) is reproduced in Figure IV.17. 

 

 

 

Figure IV.17 Low-Pass filter Amplitude vs. Normalized Frequency response. 

 

It is important to note that the gain displayed from the PAR is considered without any active filter. 

Of course, the gain with the filters is a function of the frequency and of the output filter, i.e. the gain 

for each filter section is x0.707 (- 3dB) of the displayed gain. The results coming from PAR 

insertion with several filter applications are the following noise spectrum graphs. 
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Figure IV.18 NPSD detail in the range ∼15mHz ÷1kHz. It shows the noise of the system (in black) without power supply 

while (in red and blue) the powered system with a low pass filter 0÷1kHz in output. The frequency range 0÷1kHz is 

completely passing for the signal of interest 

 

Despite the 0÷1kHz LPF is completely passing for the noise in the range of interest, it is possible to 

see a real improvement due to the progressive flattening of background noise and the lost of 50Hz 

multiple components. The best result is obtained with attenuation of 12dB/octave, as shown in the 

Table IV.8. 

 

LPF 0-1kHz 12dB/oct DC Level [Vrms/√√√√Hz] Background [Vrms/√√√√Hz] 50Hz [Vrms/√√√√Hz] 

Gain x1 0.00136 1.48⋅10
-7

 ÷ 4⋅10
-8

 6.079⋅10
-6

 

 

Table IV.8 Main peak for NPSD in the ∼15mHz ÷1kHz frequency range with a 0÷1kHz 12dB/oct. LPF. 
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Figure IV.19 NPSD detail in the range ∼15mHz÷1kHz with a DC÷30Hz 12dB/octave LPF. 

 

Keeping 12dB/octave attenuation, the 0÷30Hz LPF filter, i.e. with a narrow frequency range, 

reveals a higher noise level compared to the previous one 

 
LPF 0-30Hz 12dB/oct DC Level [Vrms/√√√√Hz] Background [Vrms/√√√√Hz] 50Hz [Vrms/√√√√Hz] 

Gain x1 0.0109 5.11⋅10
-7

 ÷ 1.5⋅10
-7

 4.23⋅10
-5

 

 

Table IV.9 Main peak for NPSD in the ∼15mHz ÷1kHz frequency range with a DC÷30Hz 12dB/oct LPF. 

 

Obviously, the noise level further increases with the amplification level (see blue curve). Indeed, 

the noise level should fall using a narrow frequency range filter. To have a further confirmation the 

filter bandwidth has been decreased up to 3Hz. 

 
LPF 0-3Hz 12dB/oct DC Level [Vrms/√√√√Hz] Background [Vrms/√√√√Hz] 50Hz [Vrms/√√√√Hz] 

Gain x1 0.00192 9.4⋅10
-8

 ÷ 6.4⋅10
-8

 8.03⋅10
-7

 

 

Table IV.10 Main peak for NPSD in the ∼15mHz ÷1kHz frequency range with a DC÷3Hz 12dB/oct LPF. 

 

The Figure IV.18 and Table IV.8 summarize the comparison of the various filters. 
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Figure IV.20 LPF final comparison. 

 

Gain x10 DC Level [Vrms/√√√√Hz] Background [Vrms/√√√√Hz] 50Hz [Vrms/√√√√Hz] 

LPF 0-1kHz 12dB 0.0136 1.48⋅10-6 ÷ 4.33⋅10-7 6.08⋅10-5 

LPF 0-30Hz 12dB 0.0341 5.82⋅10
-6

 ÷ 5.67⋅10
-7

 5.79⋅10
-4

 

LPF 0-3Hz 12dB 0.0134 5.88⋅10
-7

 ÷ 3.38⋅10
-7

 5.63⋅10
-6

 

 

Table IV.11 Main peaks for NPSD in the ∼15mHz ÷1kHz frequency range for all LPF tested configuration. 

 

In presence of pre-amplifier, the noise power density spectrum of the gradiometric configuration 

realized by three GMR AA005-02 with a mutual distance of 13mm has been compared with the 

NPSD of the single magnetometers,  
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Figure IV.21 NPSD detail for the gradiometric configuration in the range  ∼15mH÷1.6kHz with DC÷30Hz 12dB/octave 

LPF. 

It should be noted that we preferred the use of a DC÷30Hz 12dB/octave (100x gain) LPF instead of 

DC÷3Hz 12dB/octave LPF that ensures lower background and DC noise level (see table above) to 

allow greater dynamic measurements. The values from the graph are: 

 

Gain x100 DC Level [Vrms/√√√√Hz] Background [Vrms/√√√√Hz] 50Hz [Vrms/√√√√Hz] 

LPF 0-30Hz 12dB 1.1618 2.74⋅10
-5

 ÷ 7.02⋅10
-6

 8.93⋅10
-4

 

 

Table IV.12 Main peak for NPSD in the ∼15mHz ÷1kHz frequency range with a DC÷30Hz 12dB/oct LPF. 

 

The following graph compares the results of the gradiometric configurations with the noise 

spectrum of the individual sensors: 
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Figure IV.22 NPSD comparison between the single magnetometer and the gradiometric configurations in the frequency 

range ∼15mHz ÷1.6kHz . 

 

Comparing, with the same operating conditions, the spectrum of the single magnetometer (D2x100 

in the label of Figure IV.22) with the one shown by the GMR gradiometer, it is possible to note how 

the adopted configuration allows to: 

− decrease the background noise level for 10Hz frequency component (from 1.8⋅10
-5

 to
 
7.02⋅10

-6
 

amplitude level); 

− remove the 50Hz peak level and its components (from 0.0042 to 8.93⋅10
-4

 amplitude level); 

− maintain the DC noise level (1.1618Vrms/√Hz with a 100x gain). 

 

We must consider that transmitted noise sources include any voltages picked up by the circuit as 

well as any magnetic signals picked up by the sensor which are not part of the desired magnetic 

signal. Any time varying magnetic field will not only produce a signal in a magnetic sensor, it will 

also induce a voltage in any circuit loop proportional to the circuit loop area and the time rate of 

change of the magnetic field. To minimize this inductive pick up, good circuit practices must be 

followed including minimizing any potential circuit loops and placing amplification as close to the 

sensor as possible. Electrical currents generate magnetic fields. Therefore, there are usually stray 

50Hz magnetic fields in any industrial location. The increasing use of computers and other 

equipment with rectifiers-fed capacitor-input power supplies results in non-sinusoidal currents that 

produce harmonics of 50Hz. Any moving or rotation magnetic material in equipment will produce a 

time varying magnetic field at frequencies characteristic of their period. The Earth’s magnetic field 

itself, and its slow random variation is a source of noise if extremely low frequency magnetic fields 

are of interest. Transmitted magnetic noise sources are usually best minimized by filtering and if 
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practical, using magnetic shielding. Anyhow, our aim is to develop a measurement system 

characterized by simple control electronics with the measurement reliability in a not 

electromagnetically shielded laboratory. When measuring fields from a dipole source close to the 

sensor, a second sensor can be located at a distance at least twice as far from the dipole. The 

difference between the two signals, when adjusted for differences in sensitivity will be at least 7/8 

the signal while cancelling out the signals from remote sources. When designing a magnetic sensor 

for searching for magnetic dipoles such as a permanent magnet or a buried surveying stake, it is 

difficult to differentiate the DC signal from the object sought from the DC signal from the Earth’s 

magnetic field. The method described above of using two sensors in a differential mode can be used 

for our purpose. In fact, the use of GMR sensors in gradiometric configuration, together with the 

filtering technique, is mainly targeted to the elimination of the magnetic noise and to the increase of 

the signal to noise ratio.  
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Figure IV.23 2nd order gradiometer response on a steel Fe360 sample characterized by an electro-erosion cut. 

 

The Figure IV.23 confirms, as said before, the net improvement in the signal to noise ratio that is 

accomplished with the use of the gradiometric configuration.  
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IV.3 Tuning of the gradiometric system  

 

Taking into account the NPSD measurements and the procedures used to reduce the environment 

noise, it was possible to trace the intrinsic magnetic field sensitivity for the single GMR 

magnetometers. This is defined as the ratio between the output voltage and the field intensity. This 

conversion factor has been obtained starting from known conversion factor of a flux gate probe 

(C.F. 143000V/T) using it as calibration sensor. The measure has been carried out setting the 

magnetometer and the flux gate sensor at the solenoid centre and varying the current. The Table 

IV.13 shows the values recorded during the measurement 

 

Current (A) Flux Gate Output (V) B Flux Gate (T) GMR Output (V) 

0.005 0.72 5.03497e-6 0.00147 

0.008 1.68 1.17483e-5 0.00155 

0.009 1.96 1.37063e-5 0.0016 

0.01 2.24 1.56643e-5 0.00164 

0.02 5.2 3.63636e-5 0.00211 

0.025 6.6 4.61538e-5 0.00241 

0.03 8 5.59441e-5 0.00265 

 

Table IV.13 Experimental comparison between flux gate sensor output and GMR sensor output vs magnetic field. 

 

A linear data fit gives the conversion factor of GMR magnetometer as 23.91608V/T: 
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Figure IV.24 Linear data fit to calculate the GMR conversion factor. 
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However, the obtained value is much lower than expected. Therefore, the measurement has been 

repeated using the DC÷3Hz 12dB/octave LPF (250x gain). By applying the linear fit on the new 

data, it is possible to obtain a second value for the intrinsic magnetic field sensitivity of the GMR 

magnetometers, C.F. 5699.92V/T. 
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Figure IV.25 GMR intrinsic magnetic field sensitivity. Calculating the factor for conversion of GMR. Output is filtered 

by the pre-amplifier DC÷3Hz 12dB/octave LPF (250x gain). 

 

This value, obtained using a filtering technique, shows a considerable increase of the signal to noise 

ratio. Furthermore, the GMR conversion factor, although lower than the one of the flux gate probe, 

demonstrates that this kind of sensor can have a promising sensitivity, that will be certainly 

increased in a gradiometric configuration. 

 

In the following, we show data coming from measurements carried out using the configuration 

shown in Figure IV.8. These results allow to highlight the advantage of using an electronic 

gradiometer to improve the overall sensitivity of the system based on the GMR technology.  

The sensitivity of a 1
st
 order electronic gradiometer has been tested performing several scans on 

steel Fe360 samples, thickness 6mm, characterized by crossing cuts with different dimensions. The 

experimental scan system is realized using a step by step motor qualified to move the probe or the 

specimens. This is a low noise system, not affected by self magnetization, that allows scanning up 

to 5kg sample with a position accuracy of 0.1mm. The gradiometer baseline is 11mm. The distance 

between the core axis of the reference magnetic sensor, oriented in parallel with the surface of the 
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specimen, is about 3mm. In this configuration, the gradiometer measures the variations of the field 

in-plane components in the scan direction, the parallel component and the orthogonal one to the 

scanning direction. The probe motion and the data acquisition is completely automated. The control 

software works in LabVIEW environment. With this technique, it is possible to build the maps of 

the components ∂Bx/∂x and ∂Bx/∂y of the field B along the scanning direction, starting from an 

experimental data matrix 20399× . Figure IV.26 and Figure IV.27 show results obtained using the 

GMR system on a Fe360 sample characterized by a cut of dimensions 3mmx27mm. The sensor 

output is the dc component of the signal, from which the amplitude of the field created by the flaw 

is immediately extracted. In the presence of a defect, the output signal from the sensor is produced 

by the perturbation of the magnetic field path only. 
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Figure IV.26 Different scans along x on Fe360 sample (cut dimensions 3mmx27mm). The scans show a typical GMR 

unipolar output where the sample is integer, while the output on the defect present maximum values.  
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Figure IV.27 (Left) schematic design of the magnetized Fe360 sample showing the cut dimensions (3mmx24mm); 

(Right) map of the field distribution on the sample surface around the cut obtained from the GMR output signal. 

 

A similar sample with a smaller cut (0.1mmx24mm) has been tested and results are shown in Figure 

IV.28 and Figure IV.29. The GMR gradiometer clearly revealed the cut, whereas a flux gate probe 

employed on the same sample was unable to detect the presence of the defect.  

 

 

 

Figure IV.28 Scans along y on Fe360 sample (cut dimensions 0.1mmx24mm) for different x positions. In this case, 

scans show minimum values around the cut. The peaks are due to the field discontinuity on the sample borders. 

 

The Figure IV.28 shows different single scans performed on the Fe360 sample. The output voltage 

behaviour is completely different in the presence of the defect where it presents a minimum. A full 



Characterization of GMR sensors  
 

 

102 

bi-dimensional scan of the sample allows a surface map (Figure IV.29) that clearly shows the 

presence of the cut. 

 

Figure IV.29 (Left) schematic design of the magnetized Fe360 sample showing the cut dimensions (0.1mmx24mm); 

(Right) map of the field distribution on the sample surface around the cut obtained from the GMR output signal. 

 

Therefore, the combination of the gradiometric configuration of the sensor and a synchronous 

filtering of the output signal have definitely improved the stability and the resolution of the 

measurement system in a typical laboratory environment. 

 

 

 

Figure IV.30 GMR 2nd order electronic gradiometer. It detects the in plane magnetic field component reducing the 

environmental noise. 
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Another interesting application of the GMR sensor in a gradiometric configuration is in the field of 

material characterization and magnetic microscopy.  

Permanent magnet films based on highly anisotropic rare earth–transition metal phases like SmCo5 

are promising materials for structured micro-electromagnetic devices, when strong magnetic fields 

and high coercivities are needed. They may also find application in magnetic recording, as future 

miniaturization requires higher anisotropies to avoid a superparamagnetic switching of a magnetic 

bit. Via magnetron sputtering, highly coercive SmCo films can be prepared with a distinct in-plane 

texture and therefore almost square-shaped in-plane hysteresis loops [Ref. IV.11]. We show here a 

SmCo5 sample obtained by pulsed laser deposition [Ref. IV.18]. Starting by SmCo target, thin film 

has been fabricated on steel substrate using pulsed laser deposition system at deposition 

temperatures below Curie temperature (TC = 700:900 °C), on plastic substrate. The film have been 

realized without the fabrication of a seed layer [Ref. IV.17]. The typical thickness of the deposited 

film is 800 nm. A SmCo5 is used to test the validity of our gradiometer system, shown in Figure 

IV.30, as imaging system on ferromagnetic material. The Figure IV.31 shows clearly the sample 

under test and the results carried out using the GMR 2
nd

 order electronic gradiometer. 

 

 

 
Figure IV.31 (Left) SmCo sample obtained by pulsed laser deposition; (Right) GMR 2nd order electronic gradiometer: 

2D imaging of the ferromagnetic sample.[Ref. IV.18] 

 

The measured magnetic moment of the film, after removing the spurious contributions of the 

substrate and the sample holder [Ref. IV.18], was  Wb·m·.M -1210062=  which corresponds to a 
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magnetization 2660  Wb/m. m = . The 2
nd

 order GMR gradiomentric analysis shown in Figure IV.33 

concerns the 2D magnetic image of the SmCo film sample. In the picture the magnetization is not 

uniform, more than one signal dipole is visible. The magnetic field gradient intensity, measured on 

the film surface versus the scan length, is up 0.3nT/cm. The substrate’s edge gives a magnetic 

intensity contribute of 0.15nT/cm. 

 

We, then, focalize the discussion on the use of GMR sensor as Eddy Current probe. In the Eddy 

Current Technique (ECT), an electromagnetic field is excited to variable frequency to induce a field 

of current in the material. In the presence of discontinuity in the material, which tears of fatigue, 

cuts, porosity etc, the induced currents in the material present distortions in their distribution. The 

variations in the distribution of the field of current produce flux variations that, in the case of 

induction coils, are measured through a measure of change of impedance according to the equation 

Z.i(t) = N.dΦ/dt and the expression that ties the material property to the penetration depth of the 

electromagnetic field is fσµπδ 1= . By using the Eddy Current Technique, it is possible to detect 

the geometry and the depth of the defect in conductive materials for processing or impact defects of 

the order of δ  (hundreds of µm). 

Most research using magnetoresistive sensors has been focused in the direction of deep flaw 

detection, a critical problem in the inspection of aircraft structures, such as riveted multilayers. 

Others approaches a different problem, that of detecting small defects, such as short cracks at the 

surface or near the surface of a conductive specimen. This can be of particular importance in 

different applications, such as detecting fatigue cracks in early stages of development [Ref. IV.12 - Ref. 

I.53]. It is envisaged that these two problems are optimally addressed using different probe designs. 

In general, in order to obtain a high penetration depth of the field and eddy currents into the 

material, large coils producing low-frequency excitation fields are required [Ref. IV.16].  

At the same time the resolution of the probe is limited by the coil diameter, and the only way to 

enhance the resolution is to reduce the coil dimensions. Therefore, in the case of deep flaw 

detection, only relatively large defects are reliably detected. Currently, inductive probes based on 

small pickup coils are used for surface crack detection with high resolution. However, the reduction 

of the coil diameter leads to the decrease in sensitivity of the these probes. This is because the 

induced voltage depends linearly on the magnetic flux intercepted by the pickup coil, which in turn 

is proportional to its cross-section area [Ref. IV.17]. 
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Figure IV.32 The GMR sensor assembly utilizing a cylindrical coil surrounding the sensor. 
 
The main components of the eddy-current probes comprise either a relatively large cylindrical coil 

or a flat spiral coil with the GMR sensor located on the coil axis. The sensing axis of the GMR 

probe is coplanar with the surface of the specimen.  

 

 

Figure IV.33 GMR Imaging of AlTi (Ti6) specimen characterized by a 6mm hole. The measurement has been done with 

a 30mm diameter coil (supply current 30 mA and 6kHz frequency). The output of the GMR based eddy current probe 

reveals exactly the hole dimensions. 
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The excitation field on the coil axis, being perpendicular to the sensing axis of the GMR films, has 

no effect on the sensor. In a defect-free specimen, of the induced eddy currents because their 

circular symmetry will produce no effect on the sensor output. In the presence of a defect, output 

signal from the sensor is produced only by the perturbation of the eddy-current flow path. 

Figure IV.33 shows the result of a single GMR based eddy current probe. The 30mm diameter 

excitation coil is supplied by 30mA current at 6kHz frequency. The sample is an AlTi (Ti6) table 

characterized by a 6mm hole. The test is used to establish the possibility of achieving a GMR based 

eddy current probe in which the spatial resolution depends on the sensor and not on the excitation 

coil. Despite the coil has a diameter of 30mm, the configuration shown in Figure IV.32 is 

characterized by a spatial resolution of the order of 0.1mm. The high resolution is confirmed by the 

distance between the two peaks that is 6mm, just as the hole diameter previously measured. 
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Conclusions 

 

 

In this thesis the physical and technological characteristics of the GMR sensors are reported. The 

details on the physical properties of the sensors and the potentiality of this device as magnetic field 

detectors has been discussed. 

A large introduction, on the magnetoresistive sensors GMR and AMR, shows how this sensors offer 

a good trade-off in terms of performance versus cost. Moreover they have small dimensions, high 

sensitivity over a broad range of frequency (from hertz to megahertz domains), low noise, and they 

can operate at room temperature.  

In this work a lot of effort has been focused to discuss the experimental results concerning the GMR 

as magnetic probe for NDE testing on metallic materials using eddy currents. The experimental 

material has been collected during my permanence as Phd student at NDE laboratories of the CNR-

INFM in Naples. The main results collected in the work can be resumed as follow. 

 

With the aim of introduce the basic concept usefull to describe the physics of such magnetic 

materials, a brief review of the giant magnetoresistance (GMR) effect exhibited by magnetic 

multilayers, granular alloys, and related materials has been done in the first and second chapters of 

this thesis. Then, starting with the magnetoresistive (MR) effect characterization, we covered a 

description of the phenomenon in term of spin-dependent conduction and electronic band structure 

in magnetic multilayers. In the follow of cap III, using the  Boltzmann theory, the macroscopic 

transport equations of magnetic multilayers in the case of current polarization perpendicular to the 

layers has been described. With the aid of numerical simulations, the GMR behaviour of a magnetic 

multilayer changing the main properties of the magnetic multilayer has been reported. In other 

terms, the GMR has been studied changing the non magnetic layer thickness dependence, the 

magnetic layer thickness dependence and the dependence of the magnetoresiste effect by the 

number of layers. This results could be useful to design and fabricate a new sensors starting from 

the fundamental magnetic properties of the materials.  

Finally in the chapter IV, we reported the characterization of the single sensors in terms of magnetic 

environmental noise analysis and the its magnetic calibration. Moreover in the Cap. IV the 
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prototype of an electronic gradiometer realized using single magnetometer has been realized and 

characterized. In fact, we proved that this configuration, together with the applied filtering 

technique, is able to reduce the magnetic noise and raising the signal to noise ratio. To shown the 

advantage joint to the use of electronic gradiometer and the goodness of our experimental set-up, 

several results have been reported. 

Moreover a 2
nd

 order GMR gradiometer realized in the CNR-INFM NDE laboratory, has been 

showed. It has been realized with the aim to measure the magnetic characteristic of a material on the 

micrometric scale. The 2D magnetic imaging measured on a SmCo sample has been discussed. This 

results shows the possibility to execute scanning microscopic analysis with high sensitivity and 

spatial resolution at room temperature.  

Finally further measurement has been made by using a GMR eddy current probe. Several metallic 

structures and composite material of aeronautical interest, i.e. single layer metals, multilayers and 

FML laminates has been measured. The test has been performed to establish the possibility of 

achieving a GMR based eddy current probe to detect millimetric defect in metallic alloy with a 

good sensitivity and high spatial resolution comparable with the conventional search coil.  

 


