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Abstract

A variety of plants with high parametric uncertainties are usually controlled
with signals that may assume only a finite number of values, in order to simplify
actuator’s construction and minimize the operation cost. This is, for instance,
the case of the industrial plants’ control where a power control signal is needed
and then it is suitable to use simple and reliable actuators with a relatively low
cost and high performance operation modes. The design of multi-valued control
laws which provide a control signal that is discontinuous in time and quantized
in magnitude is then of particular interest in many practical applications.

In this thesis we face the problem of designing new control laws for the
multi-valued control, and their implementation by means of microcontrollers.
In developing the synthesis technique, we make use of the concept of practical
tracking, which allows imposing realistic constraints on the tracking of the ref-
erence signal with a reliable error tolerance over all the controlled time interval.
The digital realization of the new multi-valued control law is addressed and the
key issues associated with its microprocessor implementation are discussed. The
efficiency of the design method and of the technology utilized for the realization
are shown through a very interesting application: a temperature control system
of a ceramic kiln.



Chapter 1

Introduction

In many practical applications the plants are controlled with signals that may
assume only a finite number of values, the main reason being the choice of
utilizing simple and reliable actuators with a relatively low cost and highly per-
forming operation modes. This aspect originates the demand for developing new
techniques in order to analyze, design and implement multi-valued controllers,
i.e. systems which provide a control signal that is discontinuous in time and
quantized in magnitude.

There are a lot of advantages and attractive features of deliberately intro-
ducing discontinuous controls [89], which have been applied for a long time in,
for instance, relay systems. One interesting aspect of such control strategy is
the motion of the trajectories in the set of discontinuities. In fact such motion
is not inherent in any of the structures, but the trajectories describe a new type
of motion called sliding motion, and the mode of behavior when sliding motions
occur is called a sliding mode [46] [88] [89]. Systems with sliding modes can
under certain circumstances be made insensitive to variations in the process
dynamics and less sensitive to disturbances [89] [88] [90]. Furthermore, since
the trajectories in the sliding mode are constrained to surfaces of lower dimen-
sion than that of the whole state space, the order of the differential equation
describing the sliding mode is reduced. However, one disadvantage of variable
structure systems may be that the control in the real process will change rapidly
from one value to another on the discontinuous surface, which may wear out
the physical actuators involved. The phenomenon of rapid switchings is called
chattering. Chattering may be avoided by introducing hysteresis around the sur-
faces of discontinuity in the case of discrete actuators possibly combined with an
equivalent continuous control (if sliding modes deliberately are introduced) such
that the trajectory stays in the sliding mode. It is important to note, however,
that the chattering effects the control even once the steady state is reached. It
results then it is of particular interest the design of control laws that take the
advantages of the above described robust controllers but avoid introducing the
deleterious effects of the chattering.

Regarding the use of quantized control signals, various authors have studied
problems concerning their definition and the properties of the derived control
systems. In [17] the authors deal with feedback stabilization problems for LTI
control systems with saturating quantized measurements. Problem relating to
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the structure of the reachable set for systems whose input sets are quantized
are focused in [15]. In [43] the authors propose some stabilization methods for
scalar linear systems by means of static quantized feedback controls, depending
on the amount of information flow they require in the feedback loop. In [44] the
authors analyze the stabilization problem for discrete time linear systems with
multidimensional state and one-dimensional input using quantized feedbacks
with a memory structure.

Most of the above mentioned control laws lack of practical implementations
because they require strong computational effort and/or are based on theoret-
ical assumptions that may be difficulty satisfied in practical applications. It
follows that the plants commanded with quantized control signals are usually
controlled with classical relay controllers or simple sliding mode controllers.
Thanks to the increasing development of microprocessors, however, it is now
possible to implement controllers through algorithms which describe both con-
tinuous, discrete and logical laws. Considering this new degree of freedom given
by the development of microcontrollers, in this thesis we face the problem of
designing new control algorithms, realized by means of microcontrollers, which
implement multi-valued control laws. We make use of the concept of practical
tracking by allowing imposing realistic constraints on the tracking of the refer-
ence signal with a reliable error tolerance over all the controlled time interval,
without requiring a theoretical perfect tracking. It then becomes possible to
design a logical robust control law that allows avoiding chattering and is able to
solve the general practical tracking problem for stable and unstable plants, only
imposing constraints on the minimum and maximum values of the control sig-
nal, which depend both from the plant and from the amplitude and variability
of the reference trajectory.

Based on the developed control law synthesis technique, a prototypal em-
bedded control system was developed and realized for the control of the tem-
perature in a ceramic kiln. Electrical kilns, like many other power industrial
plants, are commanded by means of relays which activate resistors (heating el-
ements) and ventilation systems (cooling elements) in a discrete way [49]. Both
PID controllers (whose output defines the duty cycle of a relay control signal,
accordingly to a Pulse-Width Modulation technique) and relay controllers are
usually adapted for the kiln control. Such controllers however do not provide
good performance because they have not expressly been designed to be used for
finite valued control and with complex plants respectively. The discussed con-
trol law instead allows tracking strict reference trajectories described in terms
of temperature profile (reference trajectory and its first and second derivatives).
The prototyped control system was applied to a classical ceramic kiln provided
with a row of resistors, separately actuated. The reported experimental results
have demonstrated that the proposed control law performs well in this applica-
tion, also compared with the currently adopted controllers.

1.1 Summary of contents

This thesis deals with all the theoretical and technical aspect behind the design
and implementation of multi-valued control laws. The following sections briefly
present the main contents of the chapters of the thesis.
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1.1.1 Analysis of stability

In many practical applications the main concern is the behavior of the system
over a fixed finite time interval. It results that it could be of interest to define
as stable a system whose state, given some initial conditions, remains within
pre- scribed bounds in a prefixed time interval, and as unstable a system which
does not. These bounds can be expressed as certain regions of the state space,
e.g. boxes, and, depending on the constraints on the initial conditions, generate
two classes of problems: finite-time stability and practical stability.

The finite-time stability (FTS) problem is presented in Section 2.2. Two
approaches are presented for the analysis of FTS of a linear continuous system.
The first approach deals with quadratic functions [6]. The second approach [4]
instead deals with polyhedral functions. Indeed polytopic domains naturally
arise in many practical problems, and it is shown with several examples that
the polyhedral functions perform better because they allow to take directly into
account polytopic domains.

The practical stability problem is presented in Section 2.3 [34] and is used
to derive the synthesis theorem of the robust controller in Chapter 3.

The rest of the chapter deals with the analysis of discontinuous control sys-
tems [88] [89], and in particular the problem arising in the definition of solutions
to discontinuous right hand side differential equations [46]. Theorems to verify
the existence and uniqueness of the solution to differential inclusions are then
stated.

1.1.2 Control law design

A novel method for the design of controllers that allow the state of a continuous
system, to be stabilized within a certain region of the state space is presented
in Chapter 3 [21]. The proposed controller is robust with respect to the plant’s
uncertain parameters and disturbances, and guarantees to follow the reference
trajectory with prefixed values of the tracking error and of its derivatives until
n−1, where n is the order of the plant, and in particular with preassigned values
of the error and of its first derivative. Moreover, the control law guarantees the
convergence of the error in a prefixed time.

Section 3.5 discusses the characteristics of the control algorithm, the problem
of existence and uniqueness of the solution and the choice of the control signal’s
range.

Considering the case when the control input can assume only a finite number
of values, the control law is analyzed (see Section 3.6) and several examples are
discussed.

1.1.3 Optimal filters for the delayed estimation

The problem of defining the optimal structure of a filter is presented in the Chap-
ter 4, where it is supposed that a certain delay in the estimation is tolerable [20].
The main contribution is the formulation of an optimal filter design problem,
taking into account the possibility that a delay in the signal’s estimation can be
tolerated. Various application of the proposed approach for the filtering design
are described in this chapter, considering the wide class of Butterworth filters
(see Section 4.3).
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The proposed theory is then applied to design the optimal differentiation
system which provides the derivatives of the reference trajectory for the imple-
mentation of the multi-valued control law of Section 3.6.

The theory presented in this chapter is also investigated to design optimal
control systems for tracking reference signals, known with a certain advance,
providing that an appropriate pre-processing system can be applied to the ref-
erence trajectory [19].

Finally, the application of the optimal filters to the estimation of the tra-
jectory of mobile phone users is presented in Section 4.6. A collaboration was
established to this end with Telecom Italia Lab and the Massachusetts Institute
of Technology SENSEable City Laboratory [26], and a test bed was set up in
the City of Rome during a three month exhibition in 2006 [25][76] to evaluate
the accuracy of the developed mobile phones monitoring system.

1.1.4 Multi-valued controller implementation and experi-
ments

The Chapter 5 deals with the digital realization of the new multi-valued control
law synthesized in Section 3.6 and the key issues associated with its microproces-
sor implementation. The efficiency of the design method and of the technology
utilized for the realization are shown through a very interesting application: a
temperature control system of a ceramic kiln [23].

Using the implemented embedded control system, and, with reference to the
test case of the ceramic kiln control, the Section 5.6 presents the performance of
the proposed controller compared to the currently adopted controllers and the
theoretical expectations.

4



Chapter 2

Analysis of stability

In this chapter the concept of stability within a certain region of the state
space is provided, and the practical tracking control problem is stated. The rest
of the chapter deals with the analysis of discontinuous control systems, and in
particular the problem arising in the definition of solutions to discontinuous right
hand side differential equations. This class of discontinuous control systems
includes the class of feedback control systems characterized by a continuous
plant and a controller whose output can assume only a finite number of levels,
which is analyzed in this thesis.

2.1 Stability within a certain region of the state
space

Since many practical applications deal with the analysis of the behavior of the
system over a fixed finite time interval, it could be appropriate to introduce a
new definition of stability, for which, we define as stable a system whose state,
given some initial conditions, remains within prescribed bounds (trajectory do-
main) in a prefixed time interval, and as unstable a system which does not.
These bounds can be expressed as certain regions of the state space, e.g. boxes,
and, depending on the constraints on the initial conditions, generate two classes
of problems:

1. finite-time stability, if the initial condition of the system is constrained by
a domain of the state space contained in the trajectory domain. This case
is analyzed in Section 2.2;

2. practical stability, if the initial condition of the system is constrained by a
domain of the state space containing the trajectory domain. In this case,
it is required that the state reaches the final domain by a certain time
called convergence time. This case is analyzed in Section 2.3.

2.2 Finite time stability

Many are the practical problems in which this kind of stability, called finite-
time stability (FTS) (see [40] and [91]) plays an important role: for instance
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the problem of controlling the trajectory of a space vehicle from an initial point
to a final point in a prescribed time interval, or the problem of controlling a
system when some saturation elements are present in the feedback loop. This
section presents the definition of finite-time stability and describes the currently
available methods to analyze the FTS of a continuous time system.

2.2.1 Problem statement

Let us consider the following linear system

ẋ(t) = Ax(t) , t ∈ [0, T ] , (2.1)

where A ∈ Rn×n. Roughly speaking, system (2.1) is said to be finite-time stable
if, given a certain initial domain, its state remains, over a finite-time interval,
within a prescribed trajectory domain.

Definition 1 (Finite-time stability) The linear system (2.1) is said to be
FTS with respect to (T0, Tρ, T ), where T is a positive scalar, T0 is a domain
containing the origin of Rn, T0 ⊂ Tρ, if

x(0) ∈ T0 ⇒ x(t) ∈ Tρ ∀t ∈ [0, T ]. (2.2)

♦

Remark 1 It is important to recall that FTS and Lyapunov Asymptotic Sta-
bility (LAS) are independent concepts; indeed a system can be FTS but not
LAS, and vice versa. While LAS deals with the behavior of a system within
a sufficiently long (in principle infinite) time interval, FTS is a more practical
concept, useful to study the behavior of the system within a finite (possibly short)
interval. Therefore FTS finds application whenever it is desired that the state
variables do not exit a given domain (for example to avoid saturations or the
excitation of nonlinear dynamics) during the transients.

2.2.2 Stability analysis using quadratic functions

Stability analysis was first studied in [6] considering the case when T0 and Tρ are
ellipsoidal domains. The main result provided was a sufficient condition for FTS
analysis and robust finite-time stabilization via state feedback. This condition
was then reduced to a feasibility problem involving linear matrix inequalities
(LMIs).

The definition of FTS considered in [6] is the following.

Definition 2 (Finite-time stability) The linear system (2.1) is said to be
FTS with respect to (R, c1, c2, T ), where R ∈ Rn×n is a positive definite matrix,
c1, c2 and T are positive scalars, if

xT (0)Rx(0) ≤ c1 ⇒ xT (t)Rx(t) < c2 ∀t ∈ [0, T ]. (2.3)

♦

Observe that the standard weighted quadratic norm is used to define both
the initial state domain (initial domain) and the domain where the trajectory
is requested to be confined over a prescribed time interval (trajectory domain),

The following Theorem states a sufficient condition for FTS.
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Theorem 1 (Sufficient condition for FTS) [6] System (2.1) is finite-time
stable with respect to (R, c1, c2, T ) if there exist a positive scalar α and a sym-
metric positive definite matrix Q ∈ Rn×n such that

AQ̃+ Q̃AT − αQ̃ ≤ 0 (2.4)

c1
c2
eαT I < Q < I (2.5)

where Q̃ = R−(1/2)QR−(1/2).

2.2.3 Stability analysis using polyhedral functions

In this section we consider the finite-time stability problem, but, differently
from Section 2.2.2, propose to perform the analysis with the aid of polyhedral
Lyapunov functions rather than the classical quadratic Lyapunov functions [4].
In this way we are able to manage more realistic constraints on the state vari-
ables; indeed, in a way which is naturally compatible with polyhedral functions,
we assume that the sets to which the state variables must belong to satisfy the
finite-time stability requirement are boxes (or more in general polytopes) rather
than ellipsoids.

The main result, derived using polyhedral Lyapunov functions, is a sufficient
condition for FTS of linear systems, which can also be used in the controller
design context. Detailed analysis and design examples are presented to illustrate
the advantages of the proposed methodology over existing methods.

Polytopic versus ellipsoidal domains

The definition given in Section 2.2.2 exploits the standard weighted quadratic
norm to define both the initial state domain (initial domain) and the domain
where the trajectory is requested to be confined over a prescribed time interval
(trajectory domain); therefore such domains turn out to be ellipsoidal. The defi-
nition of the above domains is consistent with the fact that quadratic Lyapunov
functions are used to derive the main results of [5] and [6].

In this section we propose a new definition for the initial and trajectory
domains that makes use of polytopes rather than ellipsoidal domains. Poly-
topic domains naturally arise in many practical problems when, for instance,
we consider constraints on the state variables in the form ai ≤ xi ≤ bi.

If the domains are defined by means of polytopes, the FTS analysis based on
the ellipsoidal domains introduces conservatism since it is needed to approximate
the polytopic initial domain by an appropriate ellipsoidal domain containing it,
and the polytopic trajectory domain by another ellipsoidal domain contained in
it. For example let us consider the mass-spring-friction system

Mÿ +Kf ẏ +Ksy = 0 , (2.6)

where y [m] is the position of the mass, M = 1 Kg, Kf = 0.25 Ns/m, Ks =
1 N/m and assume that the following constrains on the state variables are
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Figure 2.1: Initial domain and trajectory domain for system (2.6).

imposed

−0.8 ≤ y(0) ≤ 0.8 (2.7a)
−2.5 ≤ ẏ(0) ≤ 2.5 (2.7b)
−2.4 ≤ y(t) ≤ 2.4, t ∈ [0, T ] (2.7c)
−7.5 ≤ ẏ(t) ≤ 7.5, t ∈ [0, T ] , (2.7d)

where T = 0.8 s.
If we analyze this FTS problem by the approach proposed in [6], we need

to approximate the initial domain and the trajectory domain by ellipsoidal do-
mains, as done in Fig. 2.1; it is therefore evident that the approximation of the
domains introduces conservatism in the FTS analysis.

Moreover, as we will see in the next sections, in some cases the technique
proposed in [6] cannot be applied; this happens when the ellipsoid approximating
the trajectory domain does not contain the ellipsoid approximating the initial
domain.

To avoid this problem, in this section we provide a technique based on poly-
hedral Lyapunov functions [16] which allows us to take directly into account
polytopic domains in the FTS analysis; the main result is a sufficient condition
for FTS of linear time-invariant systems, which can also be used to design a
state feedback finite-time stabilizing controller. Then we present some numeri-
cal examples to show the advantages of the proposed approach over the existing
techniques.

Notation

We denote by qi, i = 1, ...,m the i − th column of a matrix Q ∈ Rn×m. If
Q ∈ Rn×m is a full row rank matrix, we indicate with ℘(Q) the polytope defined

8



as (see [78], p. 6)

P = ℘(Q) = {x ∈ Rn : ‖QTx‖∞ ≤ 1} , (2.8)

where, given a vector v ∈ Rm, ‖v‖∞ := max{|v1|, . . . , |vm|} denotes the infinity
norm of v. By ∂℘(Q) we indicate the boundary of the polytope ℘(Q). Finally,
Nn indicates the set {1, . . . , n}.

Problem statement

Definition 3 (Finite-time stability) The linear system (2.1) is said to be
FTS with respect to (P0, P, T ), where T is a positive scalar, P0 ∈ Rn×m0 and
P ∈ Rn×m are two full-row rank matrices with ℘(P0) ⊂ ℘(P ), if

x(0) ∈ ℘(P0)⇒ x(t) ∈ ℘(P ) ∀t ∈ [0, T ]. (2.9)

♦

Remark 2 Note that, given a full row rank matrix P , the set ℘(P ) is a polytope
symmetric with respect to the origin (see (2.8)). It follows that, by Definition 3,
we are restricting our attention to the class of initial and trajectory domains
that are symmetric polytopes. ♦

Remark 3 A sufficient condition for system (2.1) to be FTS with respect to
(P0, P, T ) can be derived by using the approach proposed in [6]. The main result
of [6] states that system (2.1) is FTS with respect to (P0, P, T ) if there exist
three positive scalars α, c1, c2, with c2 > c1 and two positive definite matrices
R,Q ∈ Rn×n such that

℘(P0) ⊆ E1 = {x ∈ Rn : xTRx ≤ c1} (2.10a)

℘(P ) ⊇ E2 = {x ∈ Rn : xTRx < c2} (2.10b)

AQ̃+ Q̃AT − αQ̃ < 0 (2.10c)
c1
c2
eαT I < Q < I , (2.10d)

where Q̃ = R−1/2QR−1/2. First note that this way of proceeding unavoidably
introduces conservatism in the FTS analysis. Even worse, there are some cases
where it is not possible to find a matrix R and two scalars c1 and c2, c2 >
c1, such that conditions (2.10a) and (2.10b) are satisfied. In these cases, the
procedure derived in [6] cannot be applied. For example assume that the initial
and trajectory domains are

℘(P0) = {x ∈ R2 : |x1| ≤ 1, |x2| ≤ 1}
℘(P ) = {x ∈ R2 : |x1| ≤ 1 + ε, |x2| ≤ 2, ε > 0} .

It is easy to see that, regardless the system under consideration and the time T ,
there exists a lower bound ε̄ to the value of ε for which the approach proposed
in [6] cannot be exploited because it is not possible to find two ellipsoidal domains
E1 and E2 which verify ℘(P0) ⊆ E1 ⊂ E2 ⊆ ℘(P ). ♦

In the following we provide some preliminary definitions and results on poly-
topes.
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Definition 4 (Affine space) An affine space over a field K is a triplet (A, V, π)
composed of a nonempty set A, a vector space V over K and an application
π : (a, b) ∈ A×A→ π(a, b) ∈ V such that

i) for all a ∈ A and v ∈ V , there exists a unique element b ∈ A such that
π(a, b) = v ;

ii) ∀a, b, c ∈ A, π(a, b) + π(b, c) = π(a, c) .

♦

For example, Rn can be interpreted both as a point set or as a vector space.
Indeed to a given point a ∈ Rn we can associate the vector va ∈ Rn going from
the origin to the point a. It is simple to verify that the triplet (Rn,Rn, π) is an
affine space once we define

π(a, b) := va − vb . (2.11)

Definition 5 (Affine subspace) Let (A, V, π) be an affine space. Let H be
a subset of A and VH the set of vectors {π(a, b) : a, b ∈ H}. Let us restrict
the domain and codomain of π to H ×H and VH , respectively, and denote the
resulting application with πH . The triplet (H,VH , πH) is an affine subspace of
(A, V, π) if a) VH is a vector subspace of V and b) (H,VH , πH) is an affine
space. The dimension of the affine subspace (H,VH , πH) is the dimension of the
vector subspace VH . ♦

Let us consider the affine space (R2,R2, π), with π defined as in (2.11), and the
line L := {x ∈ R2 : x1 + x2 = 1} ⊂ R2. Note that R2

L is the subspace of R2

given by the bisector of the second and fourth quadrant. It is simple to recognize
that the triplet (L,R2

L, πL) is an affine subspace of (R2,R2, π) of dimension one.
In the following we will consider the affine space associated to the standard

vector space Rn over the field R, and the related affine subspaces; correspond-
ingly, the operator π(a, b), with a, b ∈ Rn, will always coincide with the one
defined in (2.11). Concerning Definition 5, without loss of generality and for
the sake of simplicity, we shall refer to the “affine subspace H” rather than to
the “affine subspace (H,VH , πH)”.

Definition 6 (Convex and affine hull [97], p. 3) Given a set A ⊂ Rn the
convex hull of A is defined as the subset of Rn composed of all vectors obtained
via convex combination from the elements of A, namely

conv(A) :=

{
v ∈ Rn : v =

k∑
i=1

λiv
(i),

k∑
i=1

λi = 1,

λi ≥ 0 , v(i) ∈ A, i = 1, . . . , k , k = 1, 2, . . .
©
. (2.12)

If in (2.12) we eliminate the requirement that the numbers λi be nonnegative,
the resulting set is said to be the affine hull of A. ♦

It is worth noticing that the convex hull of a set A is the smallest convex set
containing A, while the affine hull turns out to be an affine subspace of Rn.

If we deal with a finite set K = {x(1), . . . , x(k)} ⊂ Rn the convex hull of
K turns out to be a polytope, whose dimension ([97], p. 5), is given by the
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dimension of the affine hull of K. Moreover, as stated in the next lemma, the
set of vertices of a given polytope P defined as the convex hull of K is a subset
of K.

Lemma 1 ([97]) Given a polytope defined as the convex hull of

K = {x(1), . . . , x(k)} ⊂ Rn (2.13)

the vertices of the polytope are the points x(i) ∈ K which satisfy the following
property

x(i) /∈ conv
Ä
K − {x(i)}

ä
.

♦

Remark 4 Note that, given a collection of symmetric points K = {x(1), . . . , x(2l)},
x(i) = −x(l+i), i = 1, . . . , l, if x(i) is a vertex of conv(K), then also x(l+i) =
−x(i) is a vertex of conv(K). ♦

Remark 5 Note that a given symmetric polytope P admits two different equiv-
alent descriptions: the first one as convex hull of its vertices, the other one in
the matrix form (2.8). As we will see later, a fundamental point in our approach
will be the development of an efficient algorithm to pass from one representation
to the other one. ♦

Definition 7 (Affinely independent points [97], p. 3) A set of k > 0 points
is affinely independent if its affine hull has dimension (k − 1). ♦

Lemma 2 ([97]) The convex hull of any (n+ 1) affinely independent points in
Rn is a polytope of dimension n. ♦

Finally, the next definition generalizes for our purposes, the concept of
“points in general position” given in [97].

Definition 8 (Set of points in generic position) A set of k ≥ n points in
Rn, n ≥ 2, is said to be in generic position if there is no n-tuple composed of
such points lying on a common affine plane of dimension (n− 2). If n = 1 any
set of points is in generic position. ♦

Remark 6 Note that, requiring that k points are in generic position in Rn,
implies that, i) they are distinct for n = 2; ii) there is no triplet of such points
lying on a common line for n = 3; iii) there is no quadruplet of such points lying
on a common plane for n = 4; etc. ♦

Remark 7 The minimum number of vertices that define a symmetric polytope
in Rn of dimension n is 2n. An example of symmetric polytope with minimum
number of vertices is the crosspolytope of dimension n

C := {x ∈ Rn :
∑
i

|xi| ≤ 1} = conv{e1,−e1, . . . , en,−en},

where ei are the unit vectors in Rn. Note that these points are in generic posi-
tion. ♦
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Machinery

The solution to the following Problem will be useful to derive the main result
of the section.

Problem 1 Given a polytope P defined as the convex hull of 2l symmetric
points K = {x(1)

Q , . . . , x
(2l)
Q } in generic position in Rn, x(i)

Q = −x(l+i)
Q , i =

1, . . . , l, with l ≥ n, where (n + 1) of them are affinely independent, find a
matrix Q such that (2.8) is satisfied. ♦

The following procedure solves Problem 1.

Procedure 1 (Solution to Problem 1) First of all, note that Lemma 2 guar-
antees that P has dimension n. Next, using Lemma 1, it is possible to select the
2k vertices of P, k ≤ l, from {x(1)

Q , . . . , x
(2l)
Q }. Let us reorder the points such

that {x(1)
Q , . . . , x

(k)
Q , x

(l+1)
Q , . . . , x

(l+k)
Q } are the vertices of P. Note that, given

the assumption that the set of points is in generic position, each vertex x
(i)
Q ,

i = 1, . . . , k, of P is the intersection of si half-planes qi,h ∈ Rn, h = 1, . . . , si,
si ≥ n; such half-planes are univocally determined by n vertices. These half-
planes are columns vectors satisfying, for i = 1, . . . , k, the following conditions

a)
qTi,hx

(i)
Q = 1 ; (2.14)

b) there exists a (n − 1)-tuple of indexes i1 6= i2 6= · · · 6= in−1 ∈ {1, . . . , k, l +
1, . . . , l + k} − {i} such that

qTi,hx
(it)
Q = 1 , ∀t = 1, . . . , n− 1 (2.15a)

qTi,hx
(j)
Q ≤ 1 , ∀j ∈ {1, . . . , k, l + 1, . . . , l + k}−

{i, i1, . . . , in−1} . (2.15b)

Once the half-planes qi,h have been found, we can equivalently define the
polytope P as in (2.8), where the matrix Q can be constructed as follows

Q =
(
q1,1 . . . q1,s1 . . . qk,1 . . . qk,sk

)
. (2.16)

♦

Remark 8 It is easy to see that for all i = 1, . . . , k and h = 1, . . . , si, there
exist at least (n−1) vertices x(it)

Q , t = 1, . . . n−1, such that one of its associated
half-plane is equal to qi,h, i.e. qi,h = qit,mt ,mt ∈ {1, 2, . . . , sit}. Therefore the
matrix Q presents several repeated columns that, without loss of generality, can
be cancelled in order to lighten the computational burden. ♦

In the sequel we will make use of the following definition.

Definition 9 (Candidate set of points) A collection of points

K = {x(1)
Q , . . . , x

(2l)
Q } ⊂ Rn,

with l ≥ n, is said to be a candidate set of points if

12



• the points are in generic position in Rn;

• the points are symmetric, i.e. x(i)
Q = −x(l+i)

Q , i = 1, . . . , l;

• (n+ 1) of the points are affinely independent.

Without any loss of generality, we assume that the vertices of the polytope defined
as conv(K) are the first k points, k ≤ l, of K and their symmetric. Finally,
we denote by qi,h, h = 1, . . . , si, the half-planes associated to the vertex x

(i)
Q ,

i = 1, . . . , k, of the polytope. ♦

To conclude this subsection, we present a lemma that will be used in the
proof of the main result.

Lemma 3 Let P0 ∈ Rn×m0 and P ∈ Rn×m be two full-row rank matrices. If
℘(P0) ⊆ ℘(P ) then

‖PTx‖∞ ≤ ‖PT0 x‖∞ ∀x ∈ Rn (2.17)

Proof 1 Consider a vector x ∈ Rn. There exist two points x̄ ∈ ∂℘(P ) and
x̄0 ∈ ∂℘(P0), and two positive scalars β and β0 such that

x = βx̄ = β0x̄0.

From the definition of boundary point of a polytope, we have

‖PTx‖∞ = β‖PT x̄‖∞ = β

‖PT0 x‖∞ = β0‖PT0 x̄0‖∞ = β0

Taking into account that ℘(P0) ⊆ ℘(P ), it results that

x̄ = γx̄0, γ ≤ 1

which implies β ≤ β0.
From the last statement, the proof follows.

Main result

Theorem 2 (Sufficient condition for FTS) System (2.1) is finite-time sta-
ble with respect to (P0, P, T ) if there exist a positive scalar α and a candidate
set of points as given in Definition 9 such that the following conditions hold

qTi,h (A− αI) x(i)
Q ≤ 0 (2.18)

for all i = 1, . . . , k, h = 1, . . . , si, and

max
i
‖QTx(i)

P0
‖∞ max

i
‖PTx(i)

Q ‖∞ eαT ≤ 1 (2.19)

where x(i)
P0

are the vertices of the polytope ℘(P0), and

Q =
(
q1,1 . . . q1,s1 . . . qk,1 . . . qk,sk

)
. (2.20)
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Proof 2 Consider a polytope ℘v assigned as the convex hull of the set {x(1)
Q , ..., x

(2l)
Q };

by using Procedure 1, let us determine the half-planes qi,h associated to the 2k
vertices, k ≤ l, and let us construct the Q matrix as

Q =
(
q1,1 . . . q1,s1 . . . qk,1 . . . qk,sk

)
,

such that
℘v = ℘(Q) = {x ∈ Rr : ‖QTx‖∞ ≤ 1} .

Now let us consider the function

V (x) = ‖QTx‖∞ . (2.21)

We denote by V̇ the Dini derivative of V along the solution of the system (2.1)
(see [55]). Assume that the condition

V̇ (x(t)) ≤ αV (x(t)) (2.22)

holds for all t ∈ [0, T ]. We will first demonstrate that conditions (2.19) and (2.22)
imply that system (2.1) is FTS with respect to (P0, P, T ). Then, to conclude the
proof, we will show that condition (2.22) is implied by (2.18).

Dividing both sides of (2.22) by V (x(t)), and integrating from 0 to t, with
t ∈ (0, T ], we obtain

log
V (x(t))
V (x(0))

≤ αt . (2.23)

It follows that

‖QTx(t)‖∞ ≤ ‖QTx(0)‖∞eαt ∀t ∈ [0, T ] . (2.24)

Since x(0) ∈ ℘(P0) and ‖QTx‖∞ enjoys a radial property, an upper bound
to the quantity ‖QTx(0)‖∞ is attained at one of the vertices of ℘(P0), i.e.

‖QTx(0)‖∞ ≤ max
i
‖QTx(i)

P0
‖∞ . (2.25)

Let us choose h > 0 such that ℘(Q) ⊆ ℘(hP ). Using account Lemma 3, this can
be equivalently written as

‖QTx‖∞ ≥ h‖PTx‖∞ ∀x ∈ Rn . (2.26)

Recalling the definition of vertices of a polytope, we have

max
i
h‖PTx(i)

Q ‖∞ ≤ 1 . (2.27)

Equation (2.27) gives an upper bound to the values of h that satisfy (2.26)

h ≤ hmax :=
1

maxi ‖PTx(i)
Q ‖∞

. (2.28)

From (2.26) and (2.28) we have along the system trajectories

‖QTx(t)‖∞ ≥ hmax‖PTx(t)‖∞ =
‖PTx(t)‖∞

maxi ‖PTx(i)
Q ‖∞

. (2.29)
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Putting together (2.24), (2.25) and (2.29), we obtain

‖PTx(t)‖∞ ≤ max
i
‖QTx(i)

P0
‖∞ max

i
‖PTx(i)

Q ‖∞ eαt . (2.30)

From (2.30) it readily follows that (2.19) implies, for all t ∈ [0, T ], ‖PTx(t)‖∞ ≤
1; from this last consideration our first claim follows.

Now we will prove that condition (2.18) guarantees (2.22). The derivative
of V can be expressed as

V̇ (x) = max
j∈I(x)

q̃Tj Ax , (2.31)

where Q̃ =
(
Q −Q

)
and I(x) is the set of the indexes j such that V (x) = q̃Tj x

(see [16]).
Condition (2.22) is guaranteed if

max
j∈I(x)

q̃Tj Ax ≤ αV (x) . (2.32)

Since, by definition of I(x), V (x) = q̃Tj x for all j ∈ I(x), then (2.32) can be
rewritten

max
j∈I(x)

q̃Tj (A− αI)x ≤ 0 . (2.33)

The last condition is equivalent to the fact that V (x) = ‖QTx‖∞ is a poly-
hedral Lyapunov function for the system ẋ = (A− αI)x. From Fact 1 in [7], it
follows that (2.33) is equivalent to

qTi,h (A− αI) x(i)
Q ≤ 0 (2.34)

for all i = 1, . . . , k, l + 1, . . . , l + k, h = 1, . . . , si. Eventually, condition (2.18)
follows noticing that it is sufficient to check (2.34) for all i = 1, . . . , k, h =
1, . . . , si, because of the symmetry of the polytope.

In order to find a polyhedral Lyapunov function satisfying the conditions of
Theorem 2, the following procedure can be adopted.

Procedure 2 (Implementation of Theorem 2)

1. Fix a positive α and a number l ≥ n. Let K0 = {x(i)
Q }i=1,...,2l be a can-

didate set of points, in the sense of Definition 9, whose convex hull is a
regular polytope of 2k (k ≤ l) vertices and radius 1. We assume that the
vertices of the polytope defined as conv(K0) are the first k points of K0

and their symmetric.

2. Find a candidate set of points K solving the problem

min
K

max{f(K), g(K)} (2.35)

with initial condition K0, where

f(K) = max
i=1,...,k

max
h=1,...,si

qTi,h (A− αI) x(i)
Q (2.36)

g(K) = max
i
‖QTx(i)

P0
‖∞ max

i
‖PTx(i)

Q ‖∞ eαT − 1 . (2.37)
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3. Let M = minK max{f(K), g(K)}. If M < 0 then set

Kopt = argM, (2.38)

and go to step 4, else set

K0 = K ∪
¶
x

(l+1)
Q ,−x(l+1)

Q

©
, x

(l+1)
Q ∈ Rn (2.39a)

l = l + 1 , (2.39b)

assume that the vertices of the polytope defined as conv(K0) are the first
k points of K0 and their symmetric, and go to step 2.

4. The polyhedral Lyapunov function which proves the FTS of system (2.1)
wrt (P0, P, T ) is

V (x) = ‖QTx‖∞ (2.40)

where Q is obtained from Kopt using Procedure 1.

♦

Remark 9 To solve problem (2.35), we have made use of the Matlab Optimiza-
tion Toolbox routine fminimax [1], with variables x(i)

Q , i = 1, . . . , l. ♦

Remark 10 The choice of x(l+1)
Q in step 3 is done putting such point on one

of the faces of ℘(Q). In particular, if maxi maxh qTi,h (A− αI) x(i)
Q is obtained

in correspondence of h = r ∈ {1, . . . , si}, i = t ∈ {1, . . . , k}, the point is put in
the middle of the face defined by the half-plane qt,r. In this way, since at each
step the algorithm begins from the solution found in the previous step, the value
M decreases (or, at least, does not increase) at each step. ♦

Numerical Examples

In this subsection two examples are discussed. The former considers a second
order mass-spring system and is useful to illustrate the application of Theorem 2
and to compare our approach with the approach of [6]. The second example
shows how the proposed methodology can be applied in a design context.

Comparison with the previous literature
Let us reconsider the FTS problem described earlier in this section. We

will show that Theorem 2 allows us to prove that system (2.6), under the con-
straints (2.7), is FTS while the sufficient condition proposed in [6] does not.

First of all note that system (2.6) can be rewritten in the form (2.1) where

A =
Å

0 1
−1 −0.25

ã
, x =

Å
x1

x2

ã
:=
Å
y
ẏ

ã
. (2.41)

Our goal is to check whether system (2.1), (2.41) is FTS with respect to
(P0, P, T ), where P0 and P are the 4-vertices polytopes selected accordingly to
the constraints (2.7) (see Fig. 2.1), and T = 0.8s.

We first tried to verify the FTS stability of system (2.6) by using the ap-
proach described in Remark 3. To this end, we selected R and c2 imposing
the ellipsoid E2 to be symmetric with respect to the coordinated axis and with
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maximum volume. Consequently, c1 was computed by a scaling operation (see
Fig. 2.1). The conditions (2.10c)–(2.10d) were evaluated with the aid of the
Matlab LMI Toolbox [50] and the derived problem was found unfeasible for all
α > 0.

Then, we tried to solve the problem with the application of Theorem 2.
Since r = 2, we can order the symmetric points {x(1), ..., x(2l)} counterclockwise.
Therefore, conditions (2.18) of Theorem 2 and (2.14), (2.15) of Procedure 1 can
be rewritten as follows

qTi (A− αI) x(i)
Q < 0 (2.42a)

qTi (A− αI) x(i+1)
Q < 0 (2.42b)

qTl (A− αI) x(l)
Q < 0 (2.42c)

−qTl (A− αI) x(1)
Q < 0 (2.42d)

qTi x
(i)
Q = 1 (2.42e)

qTi x
(i+1)
Q = 1 (2.42f)

qTl x
(l)
Q = 1 (2.42g)

−qTl x
(1)
Q = 1 (2.42h)

±qTi x
(j)
Q < 1, j 6= i , j 6= i+ 1 (2.42i)

±qTl x
(j)
Q < 1, j 6= 1 , j 6= l (2.42j)

for all i = 1, ..., l − 1, j = 1, ...l, where qi := qi,2 = qi+1,1.
In the case of second order systems, the problem simplifies since for each

vertex we have only two associated half-spaces. Then, by using (2.42e)–(2.42h),
we can express the row vectors qTi , i = 1, ..., l as functions of the vertices x(i)

Q , i =

1, ..., l. Therefore, the original problem is reduced to find x
(i)
Q , i = 1, ..., l so as

to satisfy the set of strict inequality constraints (2.42a)–(2.42d), (2.42i)–(2.42j).
This feasibility problem can then be solved using standard optimization routines.

We used the Matlab Optimization Toolbox routine fminimax, with variables
x

(i)
Q , i = 1, ..., l, and with the cost function derived by (2.18) and (2.19). We ver-

ified that system (2.6) is FTS with respect to (P0, P, T ), by using the polyhedral
Lyapunov function of 40 vertices shown in Fig. 2.2, with α = 0.3.

Now consider again the mass-spring-friction system with an external force
u [N] applied to the mass

Mÿ +Kf ẏ +Ksy = u. (2.43)

We analyzed the FTS of the third order closed-loop system consisting of the
connection of system (2.43) with an integral controller u(t) = Ki

∫
y(t)dt, with

Ki = 0.1. The dynamic matrix of the closed-loop system reads

A =

Ñ
0 1 0
0 0 1
−0.1 −1 −0.25

é
, (2.44)
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Figure 2.2: Polyhedral Lyapunov function with 40 vertices.

where x1 = u, x2 = y, x3 = ẏ. Consider the following boxes in R3

P0 = {x ∈ R3 : |x1| ≤ 0.5, |x2| ≤ 0.8, |x3| ≤ 2.5}
P = {x ∈ R3 : |x1| ≤ 2.0, |x2| ≤ 3.2, |x3| ≤ 10.0} ;

moreover let T = 0.5 s. We found that the system is FTS for α = 1.05, with
the polyhedral Lyapunov function of 12 vertices shown in Fig. 2.3.

State Feedback Design
Consider the linear system

ẋ(t) = Ax(t) +Bu(t) , (2.45)

where A ∈ Rn×n, B ∈ Rn×s, t ∈ [0, T ], and the following state feedback con-
troller

u(t) = Hx(t) , H ∈ Rs×n . (2.46)

The closed-loop connection between (2.45) and (2.46) reads

ẋ(t) = (A+BH)x(t) , t ∈ [0, T ] . (2.47)

From Theorem 2 we can easily derive the following corollary, namely a suf-
ficient condition for finite-time stabilization of the closed loop system (2.47).

Corollary 1 (State feedback design) The closed loop system (2.47) is finite-
time stabilizable with respect to (P0, P, T ) if there exist a positive scalar α, a
candidate set of points as given in Definition 9, and a matrix H ∈ Rs×n such
that the following conditions hold

qTi,h (A+BH − αI) x(i)
Q ≤ 0 (2.48)
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Figure 2.3: Polyhedral Lyapunov function with 12 vertices.

for all i = 1, . . . , k, h = 1, . . . , si, and

max
i
‖QTx(i)

P0
‖∞ max

i
‖PTx(i)

Q ‖∞ eαT ≤ 1 , (2.49)

where x
(i)
P0

are the vertices of the polytope ℘(P0), and Q has been defined in
(2.20). ♦

Now consider again system (2.43); we solved the finite-time stabilization
problem via state feedback for such system with the same constraints of Example
1 and T = 1.6s. Note that, for this value of T , the open loop system is not FTS.

We obtained that the closed-loop system is FTS for H = (−1.895 − 1.806),
by using the polyhedral Lyapunov function of 40 vertices shown in Fig. 2.4 and
α = 0.2.

Discussion

From the above results we can conclude that the method proposed in this section
improves the existing literature when, as often it happens in practical engineer-
ing problems, the initial and trajectory domains, to which the state variables
are constrained to belong, are boxes or, more in general, polytopes in the state
space.

Indeed, in this case, the problem data may be such that the method proposed
in [6] cannot be applied for the FTS analysis of the system under consideration
(see Remark 3).

On the other hand the proposed approach suffers from the fact that the
feasibility problem with constraints given by (2.18) and (2.19) is, in general, not
convex, and therefore the convergence to the optimal solution is not guaranteed.
Conversely, the approach of [6] is based on LMIs conditions which leads to a
convex optimization problem. However, even in this case, when the initial and
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Figure 2.4: Polyhedral Lyapunov function for the state feedback case.

trajectory domains are polytopes, the technique proposed in [6] may introduce a
so high level of conservatism that, as shown in Section 2.2.3, it is more convenient
to apply Theorem 2 for FTS analysis.

Another concern with the proposed approach is related to the computational
burden which increases with the order r of the system. Indeed condition (2.18)
introduces

∑k
i=1 si constraints, where si ≥ r is related to the number of half-

planes associated to the i-th vertex of the polytope and k is related to the
number of polytope vertices (k ≤ l).

Therefore as the system order increases, the numbers si increase and, in
order to keep low the computational burden, we have to limit the number of
polytope vertices.

2.3 Practical stability and stabilization

This kind of stability is often considered in practical problems where the state
is required to converge to a certain region surrounding the origin in a given time
called convergence time. The stability is not to be intended as in the classical
way, since here we do not require the state trajectory to perfectly converge to
the origin. The rigorous definition is the following.

2.3.1 Problem statement

Let us consider a continuous-time plant of the form

ẋ(t) = f(x(t), u(t), p(t)) (2.50a)
y(t) = g(x(t), u(t), p(t)) (2.50b)
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where x(t) ∈ Rn is the state, u(t) ∈ R is the input, p(t) is a vector of uncertain
parameters p ∈ ℘p, y(t) ∈ R is the output. Consider, moreover the controller

u(t) = k(y(t), ŷ(t)), (2.51)

where ŷ(t) is the reference trajectory.

Definition 10 (Practical stability) Given a region T0 (containing the origin
of Rn), a region Tρ ⊂ T0, t0 ∈ ℘t and tc > 0, we say that system (2.50) is practi-
cal stable with respect to (t0, tc, T0, Tρ) if and only if, for all functions p : ℘t → ℘p
and ∀x0 ∈ T0 the solution of the system (2.50), denoted by x

(
t, t0, x0, u[t0,t], p

)
,

is bounded and ∀t > t0 + tc satisfies the condition x
(
t, t0, x0, u[t0,t], p

)
∈ Tρ.

From a control design point of view, the practical tracking control problem
can be stated as follows.

Problem 1 (Practical tracking problem) Given the plant (2.50), a refer-
ence trajectory ŷ, a region T0 (containing the origin of Rn) of admissible initial
errors ε0 at time t0 and a region Tρ ⊂ T0 of tolerable errors after the time tc (see,
for instance, Fig. 2.5), design a control law (2.51) that guarantees the practical
stability with respect to (t0, tc, T0, Tρ) of the associate error system characterized
by the state vector

ε =
(
ε1 ε2 . . . εn

)T
, ε1 = ŷ − y, εi = ε

(i−1)
1 , i = 2, . . . , n. (2.52)

Imposing the practical stability of the error system implies that we are aim-
ing at bound both the tracking error ŷ− y and its derivatives up to the order of
the plant minus one. This constraint is often required in practical applications
where not only the error needs to be bounded, but also a slow variation of the
state trajectory around the reference trajectory is necessary.

The Chapter 3 will provide the theoretical framework to tackle this problem
and some new results in order to synthesize controllers.

2.4 Analysis of discontinuous control systems

In this section, we analyze the discontinuous control systems [88] [89], and in
particular the problem arising in the definition of solutions to discontinuous
right hand side differential equations [46]. Theorems to verify the existence and
uniqueness of the solution to differential inclusions are then stated.
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2.4.1 Discontinuous control

Let us consider the simplest example of discontinuous control system. Let s :
Rn → R be a function for which s(x) = 0 describes a hypersurface S in Rn and
let

ẋ = f(x, u) (2.53)

be a continuous vector field with respect to x and u. By defining the control
such that

u =
ß
u+(x), if s(x) > 0,
u+(x), if s(x) < 0, (2.54)

where u+ and u− are continuous functions designed in such a way that the
trajectory reaches the hypersurface s(x) = 0, the result is a differential equation
(2.53) with discontinuous right-hand side at the states satisfying s(x) = 0. This
motivates the need for a generalization of the concept of solution at the set
of discontinuities of the vector field. The motion of the trajectories in the set
of discontinuities is not inherent in any of the structures, but the trajectories
describe a new type of motion called sliding motion, and the mode of behavior
when sliding motions occur is called a sliding mode [46] [88] [89]. For system
(2.53) the surface s(x) = 0 is the set of points where the sliding motion occurs.
Systems that change their structure by switching between different continuous
control functions are commonly called variable structure systems [89] [90] and
sliding motion is the major mode of operation in such systems.

There are a lot of advantages and attractive features of deliberately intro-
ducing discontinuous controls and sliding motions on certain surfaces [89], which
have been applied for a long time in, for instance, relay systems. For example,
systems with sliding modes can under certain circumstances be made insensitive
to variations in the process dynamics and less sensitive to disturbances [89] [88]
[90]. Furthermore, since the trajectories in the sliding mode are constrained
to surfaces of lower dimension than that of the whole state space, the order of
the differential equation describing the sliding mode is reduced. However, one
disadvantage of variable structure systems may be that the control in the real
process will change rapidly from one value to another on the discontinuous sur-
face, which may wear out the physical actuators involved. The phenomenon of
rapid switchings is called chattering. Chattering may be avoided by introducing
hysteresis around the surfaces of discontinuity in the case of discrete actuators
possibly combined with an equivalent continuous control (if sliding modes de-
liberately are introduced) such that the trajectory stays in the sliding mode.
It should be mentioned that chattering is not always a disadvantage. In some
cases, the performance can be improved by building electric inertialess actua-
tors which may operate in switching mode only. Therefore, even in the case
of continuous-control algorithms, the control is shaped as a high-frequency dis-
continuous signal whose mean value is equal to the desired continuous control.
Such actuators are well suited when using discontinuous controls.

Remark 11 (Discontinuous control systems as hybrid systems) Systems
described by differential equations with discontinuous right-hand sides are in-
cluded in the class of hybrid systems. In fact, it is possible that the right-hand
side of the differential equation which describes the continuous-time motion of
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an hybrid system is discontinuous at certain continuous states x. Furthermore,
vector field switchings may also imply that the resulting system behaves as a
system with discontinuous right-hand sides.

Differential equations with discontinuous right-hand sides

Differential equations with discontinuous right-hand sides arise naturally for a
large class of systems [46] [89]. Different structures of the physical plant may in-
troduce different structures of the continuous dynamics describing the behavior.
Discrete actuators may also introduce discontinuities in the continuous dynam-
ics. It is also possible to design discontinuous continuous time control-laws
resulting in differential equations with discontinuous righthand sides. Switch-
ing phenomena were first studied from a dynamical systems point of view by
Filippov [46], and from a control theory perspective by Utkin [88]. Switch-
ing controllers are widely used in the control literature. In fact, the history
of switching controllers began in the 1960s when Utkin established the sliding
mode control scheme.

The discontinuous right hand side presents a number of theoretical and prac-
tical problems when dealing with such systems:

1. The ambiguity in the meaning of solution of such differential equations. In
fact the classical Caratheodory solutions (C-solutions) defined for ordinary
differential equations some times are not valid. So we have to define the
solution in some other sense. For example Filippov solutions (F-solutions)
arise from considering an appropriate differential inclusion.

2. Proving the uniqueness and boundedness of solutions to this system is not
straightforward, indeed, the solutions may not be unique.

3. Theoretically, a controlled system can operate by switching infinitely fast
between two control signals on the switching surface. However, in the
real world sensors and actuators cannot operate instantaneously. There-
fore system trajectories travel back and forth within a neighborhood of
the switching surface at high frequency, leading to the undesirable phe-
nomenon known as chattering. Chattering is often harmful as it may
excite un-modeled high-frequency dynamics of the system [84].

4. Simulating such a system is difficult due to the stiff differential equations
which are difficult to investigate numerically. Runge-Kutta is commonly
used for integrating discontinuous systems as it is less sensitive to dis-
continuities in the r.h.s. of differential equations [84] than multi-step or
extrapolation methods. However, switching at an infinite rate in sliding
motion forces the fixed step-size Runge- Kutta integrator to limit its step-
size resulting in consuming considerable time to simulate the behavior of
the system at the discontinuity surface and the high frequency chatter-
ing close to the switching surface which do not provide any significant
information from the design point of view.

2.4.2 Definition of solutions

The unknown dynamic behavior in the sliding motion gives freedom in choos-
ing an adequate mathematical model description. However, some requirements
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must necessarily be met if the model is going to be of any use [46]. Of major
interest are the definitions where the dynamics accurately describes a fairly wide
class of processes in real physical systems. Most of the known definitions of a
solution to a differential equation with discontinuous right-hand side may be
presented as follows [46]. At each point in the continuous domain, a set F (x)
consisting of n-dimensional vectors is specified. If the vector field f is continuous
at a point x then the set F (x) consists of f(x). If x is a point of discontinuity of
f , the set F (x) is given in some other way. A solution to (2.53) over an interval
[t0, t1] is a solution to the differential inclusion

ẋ ∈ F (x) (2.55)

which is a continuous function x : [t0, t1]→ Rn for which ẋ(t) ∈ F (x(t)) almost
everywhere on [t0, t1]. The meaning of almost everywhere is that the set of times
where the solution does not satisfy (2.3) has measure zero [38] (for instance a
countable number of times). This definition of a solution coincides with the usual
definition of a solution as a continuous function satisfying (2.53) at every point
of continuity of the vector field in (2.53). When the vector field is discontinuous
but the vector field on both sides of a discontinuity has the same direction, the
solution is continuous and passes through the discontinuity. In this case, the
solution satisfies (2.53) almost everywhere except at the intersection points at
which the solution does not have a derivative. Finally, in the case of sliding
motions, uncertainty of the behavior of discontinuous systems gives freedom
in choosing an appropriate definition of the dynamics, and the value of the
vector field at the set of discontinuity, whether defined or not, is described by a
differential inclusion.

Filippov [46] discusses several possible definitions of the set F (x) and the
dynamics of the sliding motion at the set of discontinuities of the vector field f .
In some cases, the definitions will not accurately describe the motion in sliding
mode in certain real physical systems. The dynamics should then be defined
using some (further) information about the system at the points of discontinuity
[46] [89].

Convex definition

In the convex definition, the dynamics at the points of discontinuity is deter-
mined from the dynamics at the points of continuity. The dynamics in the
sliding motion is the net effect obtained when switching rapidly between the
vector fields around the discontinuity.

More formally, the set F (x) is given by the smallest convex closed set con-
taining all the limit values of the function f

lim
x∗→x,x∗ /∈S,x∈S

f(x∗)

where S is a set with zero measure containing the points of discontinuities
of the vector field f , which usually is given by a number of hyperplanes or
hypersurfaces. At points of continuity, the set F (x) consists of one point as
mentioned above; but in the case of discontinuities, the set F (x) contains several
elements forming for instance segments, polygons or polyhedrons.

The dynamics of the sliding motion satisfies

ẋ = f0(x), (2.56)
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where f0(x) is a vector in F (x) pointing in the direction of the discontinuity of
S. A continuous function f(x) that satisfies (2.53) at the points of continuity
of f under some time interval and (2.56) when in sliding motion during the rest
of the time is a solution of (2.53) in the sense of a differential inclusion.

Let us illustrate the method in the case when S is a surface separating the
vector field f into two domains Ω− and Ω+. Let x∗ be a point approaching the
value x ∈ S from the domains Ω− and Ω+ and define

f−(x) = lim
x∗→x,x∗∈Ω−

f(x∗), f+(x) = lim
x∗→x,x∗∈Ω+

f(x∗).

The set F (x) then becomes the linear segment joining the endpoints of the
vectors f−(x) and f+(x). Let P be the plane tangent to the surface S at the
point x. The intersection point of the segment and the plane P determines the
vector field f0 describing the sliding motion (2.56) along the surface S. The
vector field f0 is given by

f0 = αf+ + (1− α)f−, α =
f−N

f−N − f
+
N

, 0 ≤ α ≤ 1,

where f−N and f+
N are the projections of the vectors f− and f+ onto the normal

of the surface S at the point x. In the case when the surface S is given by an
equation φ(x) = 0 and ∇φ(x) = ∂φ

∂x 6= 0, then

f−N =
∇φf−

|∇φ|
, f+

N =
∇φf+

|∇φ|
, α =

∇φf−

∇φ(f− − f+)
.

Equivalent control

Another way to define a solution at the points of discontinuity is by the equiva-
lent control method [46] [89]. The equivalent control method implies a replace-
ment of the undefined discontinuous dynamics on the discontinuous boundary
with continuous dynamics which directs the vector field along the discontinuity
surface intersection. The name equivalent control originally refers to systems
with continuous control inputs which are defined, for instance, as in (2.54) re-
sulting in a discontinuous vector field (2.53). Even though the name equivalent
control method is somewhat misleading when applied to systems without in-
puts, the name is still used for historical reasons. However, the symbol z is used
instead of u to stress that it is not necessarily equal to the continuous control
input. To explain the method more formally, consider a system

ẋ = f(x, z(x))

where f is continuous in the set of arguments, and the components zi(x) of z(x)
are scalar functions that are discontinuous on the smooth surfaces Si given by
φi(x) = 0. Let Zi(x) denote the (closed convex) set of points which is possible
for zi at x. At the points of continuity of zi the set Zi(x) contains one point
zi(x), but at the points of discontinuity, the set Zi(x) contains all points in the
closed interval [z−i (x), z+

i (x)], where z−i (x) and z+
i (x) are the limit points of the

function zi on both sides of the surface Si. The set F (x) is obtained by the
function f(x, z(x)), where z1(x) ∈ Z1(x), . . . , zr(x) ∈ Zr(x) vary independently
of each other. The dynamics of the sliding motion satisfies

ẋ = f(x, zeq(x)) (2.57)
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where zeq1 (x) ∈ Z1(x), . . . , zeqr (x) ∈ Zr(x) are defined so that the vector f in
(2.57) is tangent to the surfaces of discontinuity. The functions zeqi (x) are
determined from

∇φi(x)f(x, zeq(x)) = 0. (2.58)

The vector fields f−, f+ and feq are shorthand for f(x, z−(x)), f(x, z+(x)) and
f(x, zeq(x)) respectively. The set F (x) becomes the arc segment obtained when
z varies from z− to z+. The intersection point of the arc segment and the plane
P determines the vector field f(x, zeq(x)) describing the sliding motion (2.57)
along the surface S.

General definition

Another way to define F (x) is to let it be the smallest convex closed set con-
taining the set obtained in the equivalent control method. If the function f is
nonlinear in z1, . . . , zr, then the intersection of F (x) and the plane P consists
in general of more than one point, implying that the dynamics in sliding mode
along S is not uniquely determined.

2.4.3 Existence and uniqueness of solution

The different definitions of a solution in sliding mode differ in general. A solution
defined by the convex combination and equivalent control method is also a
solution using the general definition. The solutions according to the equivalent
and general definitions coincide if the function f is affine in z:

ẋ = f0(x) +B(x)z(x). (2.59)

If, besides, all Si are different, and at the points of their intersection the normal
vectors are linearly independent, then the sets F (x) in the different methods
coincide, implying that the definitions of the vector field in all three methods
are the same [46]. This also implies that the vector field describing the dynamics
in the sliding mode is uniquely determined. To see this, let G(x) be equal to a
matrix where the ith row is equal to ∇φi(x). Then, according to (2.58),

G(x)(f0(x) +B(x)zeq(x)) = 0.

Hence, if detGB 6= 0, then

zeq(x) = −(G(x)B(x))−1G(x)f0(x).

If each component of zeq satisfies z−i (x) ≤ zeqi ≤ z+
i (x) (otherwise there is no

motion along S), then substituting zeq into (2.59) results in the dynamics [89]

ẋ = f0(x)−B(x)(G(x)B(x))−1G(x)f0(x).

The case when detGB = 0 is treated in [89].

Consider, moreover, the case of differential inclusions with smooth disconti-
nuity surfaces, which covers the case of systems

ẋ = f(x, t) =
ß
f+(x, t), x ∈ Ω+;
f−(x, t), x ∈ Ω−, (2.60)
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where the regions Ω+ and Ω− are separated by the smooth surface S = {x :
s(x) = 0}.

Theorems 4,5 in [46] state that the solution to the differential inclusion exists
if f+(x), f−(x) are locally Lipschitz in x away from S (i.e. in Ω− and Ω+).
Moreover, (see Lemma 2 and Theorem 2 in [46]) the solution is unique if it is
disallowed the case when trajectories point away from S along both f+ and f−

(i.e. f−N < 0, f+
N > 0).

Explicating the theorems, we can say that, if f+ and f− are locally Lipschitz
in x in the regions Ω− and Ω+, the existence and uniqueness of the differential
equation (2.60) is guaranteed if at least one of the inequalities

f−N (x, t) > 0 or f+
N (x, t) < 0. (2.61)

hold for each point (x, t) ∈ S.
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Chapter 3

Control law design

This chapter presents a new technique for robust control design in order to force
a SISO linear plant, subject to disturbances and parametric uncertainties, to
track a given sufficiently regular reference trajectory.

The used approach is based on Lyapunov method and allows designing a
control law which guarantees to follow the reference trajectory with prefixed
values of the tracking error and of its derivatives until n − 1, where n is the
order of the plant, and in particular with preassigned values of the error and of
its first derivative. Moreover, the control law is quite robust and guarantees the
convergence of the error in a prefixed time.

The technique is then applied to design controllers characterized by control
signals that may assume only a finite number of values. In this case, the control
law can be seen as a generalization of the traditional relay control laws and
of the sliding mode ones, with a relatively low switching frequency. Finally,
a simple example shows the advantages of the control law obtained with the
proposed design methodology with respect to the ones obtained using sliding
mode and classical relay approaches.

3.1 Introduction

Plants with high parametric uncertainties are usually controlled with signals
that may assume only a finite number of values, in order to simplify actuator’s
construction and minimize the operation cost. This is, for instance, the case of
the industrial plants control where there is a power control signal and it is suit-
able to use simple and reliable actuators with a relatively low cost and highly
performing operation modes. Such plants are usually controlled with classical
relay controllers that, as it is well-known, perform well only if the plant is ap-
proximated with a first order system. In the other cases the performance of the
whole system mainly depends on the plant to control, reducing the possibility
of imposing severe constraints on the reference trajectory and on the tracking
error and, for this reason, the performance is often unacceptable. Moreover,
since the relay controller only uses two control levels, the switching frequency of
the control signal can become excessive and this is not always realizable and/or
convenient from a practical point of view.

This chapter presents a new method for controllers synthesis, characterized
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by a control signal that may assume only a finite number of values. This method
allows a controller to force a SISO linear plant, belonging to a class of sufficiently
general plants and subject to disturbances and parametric uncertainties, to
follow a given sufficiently regular reference trajectory.

In [69] and [70] controllers with control signals without amplitude con-
straints, but constant in assigned time intervals, are presented. In [60], [88],
[89] and [96] sliding mode control laws with two or an infinite number of levels
and with an infinite switching frequency are proposed. Various authors have
studied problems concerning quantized control (see, for example, [39], [17], [41]
[73], [15], [43], [44]). In [17] the authors deal with feedback stabilization prob-
lems for LTI control systems with saturating quantized measurements. The use
of logarithmic quantizers in order to stabilize a discrete system is described in
[41]. On the other hand, a uniformly quantized control set is used in [73]. Prob-
lem relating to the structure of the reachable set for systems whose input sets
are quantized are focused in [15]. In [43] the authors propose some stabilization
methods for scalar linear systems by means of static quantized feedback con-
trols, depending on the amount of information flow they require in the feedback
loop. In [44] the authors analyze the stabilization problem for discrete time
linear systems with multidimensional state and one-dimensional input using
quantized feedbacks with a memory structure. The proposed control law solves
a more general tracking problem for stable and unstable plants, only imposing
constraints on the minimum and maximum values of the control signal, which
depend both from the plant and from the amplitude and variability of the refer-
ence trajectory. In [31] a similar problem is treated but the method proposed in
their work is not very robust and does not allow satisfying specification about
the error derivatives because of a severe limitation in the Lyapunov function
used in the control law design.

The proposed control law [21] allows using intermediate levels, which allow
reducing the amplitude of the control signal and the average switching frequency.
The theory of the practical stability is used, with reference not only to the
output error but also to its derivatives; this approach often allows satisfying
process vital specifications; in thermal processes, for example, small but fast
temperature variations with respect to the reference can generate defects in the
manufactured objects (see [77], [66] and [42]).

3.2 Problem statement

Consider the continuous-time SISO linear plant

y(n) =
n∑
i=1

ai(p(t), t)y(n−1) + b(p(t), t)u+ d(p(t), t) (3.1)

where: t ∈ ℘t ⊆ R is the time; u ∈ ℘u ⊂ R is the control input; y ∈ R is the
output to be controlled; d ∈ ℘d ⊂ R is the effect of some disturbances acting on
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the plant; p(t) ∈ ℘p ⊂ Rγ , t ∈ ℘t is a vector of uncertain parameters;

a1(p, t) a2(p, t) . . . an(p, t) ∈ ℘a ⊂ Rn, (3.2a)

b(p, t) · sgn(b(p, t)) ∈ ℘p ⊂ R+, (3.2b)
d(p, t) ∈ ℘d,∀t ∈ ℘t, ∀p ∈ ℘p, (3.2c)

℘a, ℘b, ℘d compact sets. (3.2d)

Let ŷ(t) be the trajectory that the plant (3.1) must track, with bounded
n-th derivative. The equation of the tracking error vector

ε =
(
ε1 ε2 . . . εn

)T
, ε1 = ŷ − y, εi = ε

(i−1)
1 , i = 2, . . . , n, (3.3)

can be rewritten as

ε̇ = Eε−Bw (3.4)

where:

E =

à
0 1 0 . . . 0
0 0 1 . . . 0
· · · . . . ·
0 0 0 . . . 1
−k1 −k2 −k3 . . . −kn

í
, B =

à
0
0
·
0
1

í
, (3.5)

ki ∈ R, i = 1, . . . , n, (3.6)

w = b(p, t)u−
n∑
i=1

(ai(p, t) + ki)εi + d(p, t) +

[
n∑
i=1

ai(p, t)ŷ(i−1) − ŷ(n)

]
. (3.7)

Particularizing the concept of practical stability given in Section 2.3, we
introduce the following definition.

Definition 11 (Practical stability) Given a reference trajectory ŷ(·), a re-
gion T0 (containing the origin of Rn), a region Tρ ⊂ T0, t0 ∈ ℘t and tc > 0, we
say that system (3.4)-(3.7) is practical stabilizable with respect to (t0, tc, T0, Tρ)
if and only if, for all functions p : ℘t → ℘p and ∀ε0 ∈ T0, there exists a control
law u(t, ε) : ℘t × T0 → ℘u such that the solution of the system (3.4)-(3.7), de-
noted by ε

(
t, t0, ε0, u[t0,t], p

)
, is bounded and ∀t > t0 + tc satisfies the condition

ε
(
t, t0, ε0, u[t0,t], p

)
∈ Tρ.

The general tracking problem is stated as follows.

Problem 2 (Practical tracking problem) Given the plant (3.1), a refer-
ence trajectory ŷ, a region T0 (containing the origin of Rn) of admissible initial
errors ε0 at time t0 and a region Tρ ⊂ T0 of tolerable errors after the time tc,
design a control law with values in ℘u that guarantees the practical stability with
respect to (t0, tc, T0, Tρ) of the associate error system (3.4)-(3.7).

3.3 Preliminary results

For the solution of Problem 2 we introduce the following lemmas.
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Lemma 4 Let Sρ = {ε ∈ Rn : ‖ε‖P ≤ ρ, ρ > 0}, where ‖ε‖P =
√
εTPε and P ∈

Rn×n is a symmetric and positive definite (p.d.) matrix, be an hyper-ellipsoid
of Rn and Tρ be the most little hyper-rectangle that includes Sρ and with it faces
orthogonal to the coordinated axis (see Fig. 3.1). Then the semi-length of the
edges of Tρ parallel to the i-th axes is

ε̄i = ρ
»
pinvii , i = 1, . . . , n, (3.8)

where pinvii denotes the (i, i)-element of the matrix P−1.

Proof 3 Let ε̄ be the tangency point of the hyper-ellipsoid Sρ with the hyper-
plain normal to positive semi-axis i. Since the gradient of εTPε in ε̄ is parallel
to axis i, that is

2P ε̄ = µ
(

0 . . . 0 1 0 . . . 0
)T
, µ ∈ R, (3.9)

it is

ε̄ = 1/2
(

? . . . ? pinvii ? . . . ?
)T
µ =

(
? . . . ? ε̄i ? . . . ?

)T
,

(3.10)

where the ? denote elements which do not need to be specified for the purpose of
the proof.

From (3.10) it follows that

µ =
2ε̄i
pinvii

(3.11)

and

ε̄ = P−1
(

0 . . . 0 1 0 . . . 0
)T ε̄i

pinvii
. (3.12)

Since ε̄ is on the boundary of Sρ, it must be that ε̄TP ε̄ = ρ2, that is

ρ2 = pinvii
ε̄2

(pinvii )2
=

ε̄2

pinvii
(3.13)

which proves the (3.8).

Lemma 5 Let E ∈ Rn×n be a matrix with v distinct and real eigenvalues λi, i =
1, . . . , n, and 2l = n − v distinct and complex conjugate eigenvalues λi± =
αi ± jωi, i = 1, . . . , l. Moreover, let ui, i = 1, . . . , n and ui± = uai ± jubi, i =
1, . . . , l be the corresponding eigenvectors. Then, denoting with Z∗ the complex
conjugate transposed matrix of Z ∈ Cn×n, the matrices:

P = (ZZ∗)−1 =

[
v∑
i=1

uiu
T
i + 2

l∑
i=1

(uaiuTai + ubiu
T
bi)

]−1

(3.14)

Q = −(Z∗)−1(Λ + Λ∗)Z−1 = −

[
1
2

v∑
i=1

1
λi
uiu

T
i +

l∑
i=1

1
αi

(uaiuTai + ubiu
T
bi)

]−1

(3.15)
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with

Z =
(
u1 . . . uv ua1 + jub1 ua1 − jub1 . . . ual + jubl ual − jubl

)
(3.16)

Λ = diag
(
λ1 . . . λv λ1+ λ1− . . . λl+ λl−

)
(3.17)

satisfy the Lyapunov equation

ETP + PE = −Q. (3.18)

Moreover, if the eigenvalues of E have negative real part then the matrices
P and Q are both p.d. and

λmax(Q−1P ) = − 1
2 maxi=1,...,n<(λi)

=
1
2
τmax(E), (3.19)

where λmax(Q−1P ) denotes the maximum eigenvalue of the matrix Q−1P and
τmax(E) denotes the maximum time constant of the modes of the system ε̇ = Eε.

Proof 4 Since Z−1EZ = Λ, it results

ETP + PE = E∗P + PE (3.20)

= (Z∗)−1Λ∗Z∗(Z∗)−1Z−1 + (Z∗)−1Z−1ZΛZ−1 (3.21)

= (Z∗)−1 (Λ + Λ∗)Z−1, (3.22)

and then (3.18). From (3.15), ∀x ∈ Rn − {0} it is

xTQx = x∗Qx = −Z∗ (Λ + Λ∗) z (3.23)

= −2
v∑
i=1

λiziz
∗
i − 2

l∑
i=1

αi
(
zv+2i−1z

∗
v+2i−1 + zv+2iz

∗
v+2i

)
, (3.24)
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where

z = Z−1x =
(
z1 z2 . . . zn

)T 6= 0. (3.25)

If λi < 0, i = 1, . . . , v and αi < 0, i = 1, . . . , l, from (3.23), it results

xTQx > 0 ∀x ∈ Rn − {0}, (3.26)

and then Q is p.d. .
It is simple to prove that P is p.d. in a similar way or remembering that

P is the solution of the Lyapunov equation (3.18) where Q is p.d. and all the
eigenvalues of E have negative real part.

In order to prove (3.19), it can be noted that

P−1Q = −ZZ∗(Z∗)−1 (Λ + Λ∗)Z−1 = −Z (Λ + Λ∗)Z−1, (3.27)

and then the eigenvalues of P−1Q are

− (λi + λ∗i ) = −2<(λi), i = 1, . . . , n, (3.28)

and the eigenvalues of Q−1P are

− 1
2<(λi)

, i = 1, . . . , n. (3.29)

Lemma 6 Consider the system (3.4) with ε0 ∈ T0, where all the eigenvalues of
E ∈ Rn×n are distinct and with negative real part, B ∈ Rn×1 and P is given
by (3.14). Let us define the linear function of the tracking error and of its
derivatives v = BTPε and two subsets Sσ and Sρ of Rn such that

Sσ = {ε ∈ Rn : ‖ε‖P ≤ σ, σ > 0} ⊇ T0, (3.30)
Sρ = {ε ∈ Rn : ‖ε‖P ≤ ρ, 0 < ρ < σ} ⊆ Tρ. (3.31)

If

v · w ≥ 0 ∀ε /∈ S̊ρ, (3.32)

where S̊ρ denotes the interior of Sρ, then the system (3.4) is finite-time practi-
cally stable with respect to (t0, tc, T0, Tρ) for every t ∈ ℘t and

tc ≥ τmax(E) ln
σ

ρ
. (3.33)

Proof 5 The Lyapunov function V (ε) = εTPε for the system (3.4) is chosen.
Taking into account (3.18), it results −V̇ (ε) = εTQε + 2vw. Using (3.32) it
follows that

V̇ (ε)
V (ε)

≤ − inf
ε

εTQε

εTPε
∀ε /∈ S̊ρ. (3.34)

Since

εTQε

εTPε
≥ 1
λmax(Q−1P )

∀ε 6= 0, (3.35)
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for any symmetric and p.d. matrices P and Q (see, for example [51]), and by
Lemma 5 it results

V̇ (ε)
V (ε)

≤ − 1
τmax(E)

∀ε /∈ S̊ρ, (3.36)

and then

‖ε(t)‖P ≤ ‖ε(t0)‖P exp (−(t− t0)/τmax(E)). (3.37)

From last inequality it follows that ε converges into the hyper-ellipsoid Sρ in a
time not greater than

tc0 = τmax(E) ln
‖ε(t0)‖P

ρ
. (3.38)

Since ε0 ∈ Sσ, the proof easily follows.

Remark 12 It is important to note that the matrix P given by (3.14) is opti-
mal with respect to the estimation of the convergence velocity, according to the
Lyapunov approach, of the system ε̇ = Eε. This is due to the fact that the time
constant of ‖ε(t)‖P coincides with the maximum time constant of E.

3.4 Control law synthesis

It is now possible to state the following main result.

Theorem 3 Given the plant (3.1), a reference trajectory ŷ with bounded n-th
derivative, a region T0 (containing the origin of Rn) of admissible initial errors
ε0 at time t0 and a region Tρ ⊂ T0 of tolerable errors after a prefixed time tc.

Then it is possible to solve the practical tracking problem with respect to
(t0, tc, T0, Tρ) choosing:

• σ, ρ and the values ki, i = 1, . . . , n such that:

– the eigenvalues of E are distinct and with negative real part and such
that tc in (3.33) is less or equal to the prefixed one;

– the region Sσ contains T0;
– the region Sρ is contained in Tρ;

• the control law (see Fig. 3.2) u(t, ε) : ℘t × T0 → ℘u:

– if ε /∈ S̊ρ, equals to:

u =
ß
dUe, if v · b(p, t) ≥ 0
bUc, if v · b(p, t) < 0 (3.39)

where:

v = BTPε, P is defined in (3.14) (3.40)

U =

[
ŷ(n) −

∑n
i=1 ai(p, t)ŷ

(i−1)
]
− d(p, t) +

∑n
i=1 (ai(p, t) + ki)εi

b(p, t)
(3.41)

bUc = max{u ∈ ℘u : u < U ∀p ∈ ℘p} (3.42)
dUe = min{u ∈ ℘u : u ≥ U ∀p ∈ ℘p} (3.43)
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– if ε ∈ S̊ρ, equals to the last value assumed on the Sρ boundary.

(3.44)

Proof 6 The proof easily follows from Lemma 6 observing that, for the hypoth-
esis (3.2) the control u computed with (5.19) provides a signal w, given by (3.7),
satisfying condition (3.32).

The scheme of the closed loop system is shown in Fig. 3.3, where f denotes[
f ḟ . . . f (n−1)

]T
.

As regards the tracking error and the convergence velocity, we state and
prove the following theorems.

Theorem 4 If the values ki, i = 1, . . . , n in the control law of Theorem 3 are
chosen such that the eigenvalues λi, i = 1, . . . , n of E are distinct, with negative
real part and satisfy

n∑
j=1

λi−1
j λ̄i−1

j ≤
Å
ε̄i
ρ

ã2

ε̄i ∈ R ∀i = 1, . . . , n, (3.45)

then the tracking error ε converges into the region

Tρ =
{
ε ∈ Rn : |εi| ≤ ε̄i ∈ R+ ∀i = 1, . . . , n

}
. (3.46)
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Proof 7 Since the matrix E is in reachability canonical form, the matrix of its
eigenvectors is

Z =

Ü
1 1 . . . 1
λ1 λ2 . . . λn
· · . . . ·

λn−1
1 λn−1

2 . . . λn−1
n

ê
(3.47)

From (3.8) and (3.14) it follows that the semi-length ε̄i of the edges of the hyper-
rectangle Tρ, for Lemma 4, are

ρ

Ã
n∑
j=1

λi−1
j λ̄i−1

j ∀i = 1, . . . , n, (3.48)

and then the proof.

Theorem 5 If the eigenvalues of E are distinct, with negative real part and
with magnitude ‖λi‖ = M,∀i = 1, . . . , n, and it is desired to assign only ε̄1 and
ε̄2, a non-conservative choice of ρ and M is

ρ =
ε̄1√
n

M =
ε̄2
ε̄1
. (3.49)

Furthermore, if the eigenvalues of E have magnitude M and relative phase shift
of π/n (Butterworth eigenvalues) then ε converges into Tρ in a time not greater
than

tc = ln
σ

ρ

Å
M cos

π(n− 1)
2n

ã−1

(3.50)

Proof 8 The proof directly follows from Theorem 4 noting that

n∑
j=1

λi−1
j λ̄i−1

j = nM2(i−1) ∀i = 1, . . . , n, (3.51)

and the eigenvalue with the greatest real part is

−M exp
Å
j
π(n− 1)

2n

ã
. (3.52)

Remark 13 Under the same hypotheses of Theorem 5, it results

ε̄i = ρ
√
nM i−1 ∀i = 1, . . . , n. (3.53)

3.5 Discussion

3.5.1 Characteristics of the control law

The control algorithm has the following characteristics
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• It guarantees the plant out to practically track a given sufficiently regular
reference trajectory with prefixed maximum values of the tracking error
and its derivatives.

• It is robust with respect to disturbances and uncertain parameters, and
then the knowledge of the plant and of the disturbance does not need to
be accurate.

This is obtained choosing a control signal depending on three quantities:

1. the value V of a suitable Lyapunov function, in order to decide the switch-
ing time;

2. the value v of a linear function of the tracking error and of its derivatives,
in order to decide if the level must be the nearest admissible level to the
nominal control for excess or defect;

3. the value w of deviation from the ideal error model, in order to decide the
level of the control signal.

Remark 14 If the coefficients ai(p, t), b(p, t) and the disturbance d(p, t) depen-
dence on the parameter p is multi-linear and ℘p is an hyper-rectangle, then bUc
and dUe in (5.19) will be always in correspondence of vertices of ℘p (see [30]).

3.5.2 Existence and uniqueness of the solution

Consider the differential equation (3.4) which describes the closed loop system
composed by the linear plant and the controller

ε̇ = f(ε) = Eε−Bw. (3.54)

In this section we examine the proprieties of existence and uniqueness of the
solutions of such equation, in different scenarios:

• the error trajectory stays inside the region Sρ;

• the error trajectory stays outside Sρ.

Analysis inside Sρ

The differential equation (3.54) is piecewise continuous in t and locally Lipschitz
in ε on Sρ. On the Sρ-boundary all the trajectories enter Sρ because V̇ (ε) < 0.
It results from (5.24) that ε either is always contained in S̊ρ and the control
signal will definitely be constant or it continually passes in a finite time from
a boundary point to another distinct one, with control signal switching every
time a boundary point will be reached. In any case, the differential equation
(3.54) admits a unique Caratheodory solution for every ε0 ∈ Sρ.

37



Analysis outside Sρ

Consider the switching surface S = {ε : v = BTPε = 0} an the regions Ω− =
{ε : v < 0}, Ω+ = {ε : v > 0}. If ε0 ∈ Ω+ ∪ Ω− and the solution does not
cross the switching surface S, the equation (3.54) admits a unique Caratheodory
solution.

Conversely, let us consider the behavior of the system on the switching sur-
face. Let us indicate with w+ and w− the values of w (3.7) respectively in case
v > 0 and v < 0. Based on the Theorem 3, it results w+ > 0 and w− < 0.

Since f in (3.54) is a locally bounded, measurable vector-valued function,
the differential equation (3.54) can be replaced by the differential inclusion

ε̇ ∈ F (ε) =

 f−(ε) = Eε−Bw−, ε ∈ Ω−;
f+(ε) = Eε−Bw+, ε ∈ Ω+;
Eε−Bw,w ∈ [w−, w+], ε ∈ S.

(3.55)

It is easy to recognize that f+ and f− are locally Lipschitz in x in the regions
Ω− and Ω+. It results (see Section 2.4.3) that the solution of the differential
equation (3.54) exists and is unique if

∀ε ∈ S ⇒ f−N (ε) > 0 or f+
N (ε) < 0. (3.56)

In the following the proof of the existence and uniqueness of the solution is
drawn for the case n = 2. A similar approach can be applied to the case n > 2.
Consider the expression of fN (ε)

fN (ε) = P21ε2 − P22(k1ε1 + k2ε2 + w), (3.57)

where Pi,j indicates the (i, j)-element of the matrix P . In particular, ∀ε ∈ S we
have

fN (ε) = ε2(P21 − P22k2 + k1P
2
22/P21)− P22w. (3.58)

It results that

f+
N (ε) < 0⇔ ε2 < Hw+ (3.59)

f−N (ε) > 0⇔ ε2 > Hw− ε ∈ S (3.60)

where H = P22/(P21−P22k2 +k1P
2
22/P21). Observe that H = α

ω2 , where α and
ω are the real part and the natural frequency of the eigenvalues of P . Since P
is an hurwitz matrix, it follows that H > 0 and that Hw− < Hw+. From that
we have proved that the solution exists and is unique since (3.56) is satisfied.
In Fig. 3.4 we show the segments of S where chattering exists (note that the
upper and lover extremes of the segments vary as well as w (w− and w+) varies
with u, ε and ŷ).

Consider now the case when ε enters Sρ. It is easy to recognize that the
solution is always unique except the case when the trajectory of ε slides over S
before entering Sρ. In fact, the value of the control u assumed once ε touches Sρ
can be arbitrarily chosen between the ones assumed during the sliding motion.
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Discussion

As a summary of the analysis presented in the previous paragraphs, we state
the following

• the solution to (3.54) exists everywhere in Rn, and for every initial condi-
tion;

• there can be sliding motion over S, but it will stop as soon as ε touches
Sρ. This event will happen in a finite time since the derivative of the
Lyapunov function V is negative along S;

• the solution is unique except in the case when the trajectory enters Sρ
sliding on S.

Remark 15 In the hypothesis of possible sliding on S, if the initial part of the
reference trajectory is chosen such that ε(0) ∈ Sρ then the evolution of ε will be
always contained in Sρ and therefore the control signal will never chatter. If,
for example, the plant has the following initial conditions

y(0) = y0, y
(i)(0) = 0 ∀i = 1, . . . , n− 1, (3.61)

in order to avoid the chattering it is sufficient that the initial part of the reference
signal satisfies the condition

|ŷ(0)− y0| <
ρ
√
p11

, ŷ(i)(0) = 0 ∀i = 1, . . . , n− 1, (3.62)

where p11 is the (1, 1)-element of P .

3.5.3 Choice of the control signal

This section describes how to choose the control signal range. The minimum
u− and maximum u+ levels of u needed to satisfy Theorem 3 depend on the
nominal model of the plant, on the uncertain parameters p, on the reference
trajectory ”variability” (amplitude of ŷ and its n derivatives), on the regions T0

(initial errors), Tρ (tolerable final errors).
Consider first the case when ε(t0) ∈ Sρ. It is easy to verify that the maximum

and minimum values of the control signal u to satisfy the Theorem 3 must
respect the following inequalities

u+ ≥ Û+ + Uε,+ = max
t>t0, p∈℘p

Û + max
t>t0, p∈℘p, ε∈Sρ

Uε (3.63a)

u− ≤ Û− + Uε,− = min
t>t0, p∈℘p

Û + min
t>t0, p∈℘p, ε∈Sρ

Uε (3.63b)

where

Û =

[
ŷ(n) −

∑n
i=1 ai(p, t)ŷ

(i−1)
]
− d(p, t)

b(p, t)
Uε =

∑n
i=1 (ai(p, t) + ki)εi

b(p, t)
(3.64)

The design rule (3.63) is similar to the one used for the relay controller,
but it also utilizes information about the plant model (and not only the gain).
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This is due to the fact that the control algorithm is designed to imposed strict
specifications about the closed loop dynamics.

The terms Uε,+ and Uε,− are calculated tacking into account the error spec-
ifications and ℘p. Moreover, if the hypotheses of Remark 14 are satisfied, since
Uε is a linear function with respect to εi, i = 1, . . . , n, then the maximum Uε,+
and minimum Uε,− will correspond to two points on the boundary of ℘p × Sρ.

The terms Û+ and Û− instead depend on the reference trajectory ŷ. If
such values have a too high magnitude, it could be useful to scale the reference
trajectory velocity, for example in a linear manner (see [57]), realizing a new
reference signal

ỹ(t) = ŷ(t/c), c > 1. (3.65)

Choosing the value of c in a suitable manner it is possible to respect (3.63)
without increasing the extreme values of ℘u. In fact, in this case Û becomes:

Û =

[
c−nŷ(n) −

∑n
i=1 ai(p, t)c

−i+1ŷ(i−1)
]
− d(p, t)

b(p, t)
(3.66)

Observe that if ε(t0) /∈ Sρ then the control law of Theorem 3 requires to
apply a signal u able to impose the error ε to have an initial transient (which
carries ε to enter Sρ) characterized by the dynamic matrix E. Clearly, if the
dynamics the controller imposes is very different from the one of the plant (3.1),
then the control signal to apply during the transient must assume values that
have high magnitude. Thereby the chosen extreme levels, obtained satisfying
only (3.63) could not be enough. In order to solve this inconvenient it can be
useful to modify the reference trajectory with and initial joint trajectory so that,
with the available levels ℘u, there would be an acceptable ”driven transient”.
To this end, and also to provide a way to calculate ˙̂y and¨̂y, the following method
can be used.

Joint trajectory

If the reference signal ŷ is characterized by a bounded band, the output of the
Butterworth filter with accessible state and with an appropriate value of the
cutting frequency ωd ∈ R+ practically provides ŷ(i), i = 0, . . . , n.

Moreover, if the initial condition of the filter is chosen such that ε(t0) ∈ Sρ
then the controller will impose that the error will never escape from the ellipse
Sρ. In fact only two cases can happen:

• ε is always contained in Sρ and the control signal u is definitely constant
(see Fig. 3.5a);

• ε continually passes in a finite time from a boundary point of Sρ to another
distinct one, with switching of the control signal u every time a boundary
point is reached (see Fig. 3.5b).

Therefore, choosing in a suitable manner the filter band ωd and the scaling
factor c it is possible to create a reference trajectory which is acceptable for
the available extreme levels and with a transient that is practically known in
advance. The scheme of the whole control system will be the one in Fig. 3.6.
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3.6 Multi-valued control

The Theorem 3 is valid even if the control signal may assume only a finite
number l of levels

u− = u1 < u2 < · · · < ul = u+ (3.67)

and, in particular, two levels (the classical levels of the relay controller). As
regards the steady-state tracking error and the convergence velocity, it is possible
to use levels ”greater” than the ones provided by (5.19), e.g. only the extreme
levels. The intermediate levels are useful to reduce the amplitude of the control
signal (and often the power peaks) and the average switching frequency. This
is due to the fact that using the levels provided by (5.19), the escape velocity
from Sρ diminishes.

Moreover, note that the control signal’s amplitude and switching frequency
increase as the parameters uncertainties increase (see (5.19)). Such inconvenient
can be reduced identifying the plant parameters.

Remark 16 It is easy to prove that, if the plant has order one and ℘u =
{U−, U+}, the controller of Theorem 3 becomes a classical relay control with
hysteresis ρ.

3.6.1 Numerical examples

Consider the nominal linear plant

ÿ + ẏ + y = u (3.68)

with a control input that may assume only values in

℘u =
{
−1.2 −0.6 0.0 +0.6 +1.2

}
. (3.69)

42



0 1 2 3 4 5 6 7

0.6

0.8

1

O
u

tp
u

t

0 1 2 3 4 5 6 7

0.6

0.8

1

1.2

time (s)

C
o

n
tr

o
l 

In
p

u
t

Figure 3.7: Output and control signals. Case A.

We want to impose a steady-state tracking error

|ε1| ≤ ε̄1 = 0.05, |ε2| ≤ ε̄2 = 0.05. (3.70)

We designed a controller with Butterworth eigenvalues with M = 1 and ρ =
0.05/

√
2 (see Theorem 5). With this controller we consider three cases illustrat-

ing the presented theory.

Reference signal ŷ(t) = 1 and initial conditions y(0) = 0.5, ẏ(0) = 0

In Figs. 3.7 and 3.8 the output y, the control u and the error ε are shown. It
can be noted that there is an infinitely fast switching of the control signal in the
transient because ε slides on v(ε) = 0. However, when ε enters Sρ the control
signal switches only whenever ε reaches a boundary point.

Consequently, the proposed control law performs better than the classical
sliding mode control, since the phenomenon of chattering is disallowed after the
convergence time tc, which can be defined a priori.

Observe, moreover, that the tc value given by (3.50) results 3.75s and it
results a good estimation of the real value 3.44s.

Reference signal ŷ(t) = 1 and initial conditions y(0) = 1, ẏ(0) = 0.2

The error ε converges into Sρ without sliding motion (see Figs. 3.9 and 3.10).

Reference signal ŷ(t) = cos(0.5t) and initial conditions y(0) = 0.97, ẏ(0) =
0

Figs. 3.11 and 3.12 show that there is not infinitely fast switching of the control
signal because ε is always contained in Sρ. This is in accordance with Remark
15.
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Figure 3.9: Output and control signals. Case B.
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Moreover, it is important to note that, considering only the extreme values
of the control

℘u = { −1.2 +1.2 }, (3.71)

the output is practically identical to that shown in Fig. 3.11 while there is a
consistent increase in the average switching frequency of the control signal (see
Fig. 3.13).

3.7 Conclusion

In this chapter a new methodology for the design of control laws with finite
valued control signals has been presented. This methodology allows designing
controllers which guarantee the practical tracking of sufficiently regular refer-
ence trajectories for SISO linear plants subject to disturbances and parametric
uncertainties.

The formulated theorems allow imposing prescribed maximum limits at the
convergence time, the tracking error and its derivatives, limiting or deleting the
sliding mode.

A simple example has been presented to put on evidence the advantages ob-
tained using the proposed method, compared to either sliding mode and classical
relay control approaches. Such advantages can be also obtained in controlling
plants with order greater than two.
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Chapter 4

Optimal filters for the
delayed estimation

This chapter presents a new method for the optimal design of filters and control
systems. This method is applicable when a certain amount of delay or latency
in the estimation of a signal affected by noise can be tolerated or in the case
the desired output of the plant to be controlled is known with a certain antic-
ipation. The method is based on the minimization of an appropriate quality
index with respect to two design parameters of the filter or the control system,
which in part have already been designed with one of the numerous literature
methods. As exemplification, considering the class of Butterworth systems the
proposed method is used to determine some design formulas and to show the
consistent improvements obtained. The proposed method is illustrated through
two significant examples, one of noise filtering and another regarding tracking
control of a reference trajectory characterized by an assigned band. The pro-
posed theory is then applied to design the optimal differentiation system which
provides the derivatives of the reference trajectory for the implementation of the
multi-valued control law of Section 3.6. Finally, the application of the optimal
filters to the estimation of the trajectory of mobile phone users is presented.

4.1 Introduction

The noise which alters the output signal of a system can either come from the
system itself (endogenous or internal noise) or from other systems (exogenous
or external noise). In ideal conditions, the output signal ŷ is produced by an
ideal system subjected to an ideal input signal û.

In real conditions, the output signal ym is produced by a real system, with
parametric and/or structural uncertainties, also subjected to other exogenous
and endogenous signals, said disturbances, acting in input, output and in inner
points (see Fig. 4.1). The interactions between disturbances and input, output
and inner signals can be of several types: additive, multiplicative, etc. The
parametric and structural uncertainties can be bounded, time-invariant, etc.
If the system with its uncertainties, the signal û and the disturbances are so
that ym = ŷ + r, with R(ω) external to the band of Ŷ (ω) - R(ω) and Ŷ (ω)
respectively denote the spectrums of the signals r(t) and ŷ(t) - then the noise r
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can be reduced and in some cases removed, without altering ŷ, through the use
of an appropriately designed linear filter (see Fig. 4.2).

Literature proposes various methods for the design of filters which allow
imposing constraints on the magnitude and/or on the phase of the frequency
response (see, for example, [92] and [72]). The Butterworth filters have maxi-
mally flat magnitude at ω = 0 (see [18] and [81]). In [11] [3] [62] methods to
assign an arbitrary magnitude of the filter frequency response are presented.
The Bessel filters have maximally flat group delay at ω = 0 (see [75]). In order
to impose a maximally flat group delay along the whole pass-band it is possible
to use symmetric FIR filters [33], nearly symmetric FIR filters (with reduced
delay) [81], or linear phase IIR filters [74]. Allpass filters consent to obtain pre-
scribed group delay characteristics (see, for example, [13]). In [52] a method for
imposing group delay and magnitude constraints is presented. Since in many
cases a delay in the estimation of a signal, whose measure is affected by noise,
can be tolerated (e.g. for the estimation of the location of a cellphone or a
vehicle [26], in many signal processing and communication systems [35]), it can
be interesting, in order to obtain better performance, to design a filter such that
the filter output y(t) is considered to be an estimation of ŷ(t− T )/G instead of
ŷ(t), where G and T are constant gain and delay.

An analogue argument can be made for the design of a feedback control
system in which it is desired that the plant output y becomes equal or propor-
tional to the desired signal ŷ (see Fig. 4.3). Noting that in many cases the
desired output ŷ of the plant to be controlled is known with a certain anticipa-
tion (thinking about manufacturing processes [22], automobile driving, missile
trajectory control, vehicle suspension system) [86] [85] [45] [79], the feedback
control system can be more appropriately commanded not with the signal ŷ(t)
but with Gŷ(t+T ), where G is a constant gain and T is a constant anticipation.

From the above considerations, it follows that the performance of a filter or a
feedback control system can be improved if a gain G and a delay or anticipation
T of the input signal are introduced as further design parameters.

The preview control was first proposed in [86], in which the information
about the reference signal was formulated in deterministic/stochastic terms.
The problem was then solved in LQ and H∞ terms, both for discrete and
continuous systems. In the discrete case, the problem of control with anticipated
reference and filtering for the delayed estimation was studied by various authors
(see e.g. [53] and [54]). However, the results presented in these works allow
designing controllers or filters that are generally difficult to implement and with
performance which are difficult to predict if the anticipation or the delay vary.
In the continuous case, some work was developed using the LQ (see e.g. [9] and
[64]) and H∞ formulation (see [68] [63] [84] [61] [67]). The performance of a H∞

preview controller was also evaluated using the game theory [82]. However, the
proposed controllers are very complex and have implementation problem due to
the need of real time calculus of integrals involving exponentials of time-varying
matrices . Literature proposes methods for the solution of the minimum mean
square error problem for linear continuous time-varying systems with current
and time-delay measurements (see e.g. [95]). However, the proposed results
are based on the Kalman approach and are valid only in the hypothesis of
uncorrelated Gaussian noises.

In this chapter a new method for the optimal design of filters and control
systems is presented [20]. Such method is applicable when a certain amount of
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Figure 4.1: Scheme of the systems which generate ym and ŷ.

delay or latency in the estimation of a signal affected by noise can be tolerated
or in the hypothesis the desired output of the plant to be controlled is known
with a certain anticipation. The method proposed in this chapter is based on a
frequency approach, suggested by the following considerations.

• The class of desired signals which a plant must track, especially when it
is low powered, cannot always be considered polynomial. As it is well-
known, a generic signal is almost always better approximated with a trun-
cated Fourier series (of the repeated signal) than with a truncated Taylor
series or a Lagrange polynomial interpolation (see e.g. example in Sec-
tion 4.4.2 and [22]). Therefore it is more realistic to hypothesize that the
desired output of a feedback control system belongs to a class of signals
characterized by an assigned band, as done in the filtering theory.

• It is a common conviction that, if a signal is contained in the band of the
feedback control system or the filter, the error e(t) = ŷ(t)−y(t) is tolerable.
This is generally not true. For example, for a 4-th order Butterworth low-
pass filter, the output related to a sinusoidal input in the 3dB-band of
the filter can have a phase delay close to -180 degrees (for the frequencies
close to the cut-off frequency). Consequently, the error is not lower than
29% (as one might believe) but can also be close to 170%.

Starting from filters and feedback control systems designed with the numer-
ous literature results (see, for example, [92] [72] [83] [10]), various methods for
determining the values of the new design parameters gain G and delay (or an-
ticipation) T , through the minimization of the norm of the system frequency
error in a Lp(]0,+∞[, µ) space, are presented in the chapter. As exemplification,
limiting the structure of the filters and of the feedback control systems to the
Butterworth systems, some formulas in order to determine the optimal gains
and delays will be provided. In this way the obtained consistent improvements
will be shown. Such results will also be used to design an efficient feedback
control system for tracking a trajectory characterized by an assigned band in-
stead of polynomial and to immediately evaluate the performance of the derived
system.
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4.2 Problem statement and main results

Consider the continuous-time, SISO (Single Input Single Output), asymptoti-
cally stable feedback control system of order n ∈ N, defined by the following
transfer function

W (s) =
∑n
j=0 bjs

j

sn +
∑n−1
i=0 ais

i
(4.1)

where

a =
(
a0 a1 . . . an−1

)
∈ Rn, b =

(
b0 b1 . . . bn

)
∈ Rn+1. (4.2)

Suppose, for simplicity, that the system has unit gain and 3dB-band Bsy =
[0, ωsy]. Moreover, suppose that the desired output ŷ has bounded band Bsi =
[0, ωsi] and is known with a sufficient anticipation.

Since the magnitudeM(ω) = |W (jω)| and the delayD(ω) = −arg(W (jω))/ω,
ω ∈ Bsi, are variable in Bsi, we can think to pre-process the reference signal
through a system with constant gain G ∈ R and anticipation T ∈ R. If the
values of G and T are chosen in order to minimize the square errors∫ ωsi

0

(G−1 −M(ω))2dω, G ∈ R, (4.3a)∫ ωsi

0

(T −D(ω))2dω, T ∈ R, (4.3b)

it is possible to use the following theorem.

Theorem 6 The values Ĝ and T̂ which minimize the square errors (4.3) result
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Ĝ =
1
M̄
, M̄ =

1
ωsi

∫ ωsi

0

M(ω)dω, (4.4a)

T̂ = D̄ =
1
ωsi

∫ ωsi

0

D(ω)dω (4.4b)

Proof 9 The first result in (4.4) easily follows taking into account that

d

dG

∫ ωsi

0

(G−1 −M(ω))2dω = −2G−3 + 2G−2

∫ ωsi

0

M(ω)dω. (4.5)

The last result in (4.4) follows in analogue manner.

Remark 17 If T̂ ≤ 0, it is easy to realize the pre-processing system of ŷ. If T̂ >
0, the pre-processing can be realized using the scheme of Fig. 4.4 if the desired
output is known with at least an anticipation of T̂ . The advanced knowledge of
ŷ is guaranteed in many control systems of manufacturing processes, automobile
driving, etc.

Remark 18 In the hypothesis that system (4.1) is a filter and a delay in the
estimation of ŷ(t) from ym(t) = ŷ(t)+r(t) - r(t) is a measurement noise and/or
an external signal - is tolerable, then it can be appropriate to consider he filter
output, with input ym(t), as an estimation of ŷ(t− T̂ )/Ĝ instead of ŷ(t).

In order to evaluate the performance improvement obtained using the pro-
posed pre-processing system (see Remark 17) and in order to provide a general
method to obtain the optimal values Ĝ and T̂ , it is necessary to introduce a
measure of the error between desired and effective output. For such reasons,
consider the normed vectorial space Lp(]0, ωsi[, µ) where p ∈ [1,+∞] and µ is
the easure of density θ ∈ LLOC(]0, ωsi[), θ ≥ 0 - LLOC(]0, ωsi[) is the space of
locally summable functions θ :]0, ωsi[→ R - and consider the error measurement

ε(G,T ) = ‖1−GM(ω)ejω(T−D(ω))‖Lp(]0,ωsi[,µ) (4.6)

=
Å∫ ωsi

0

‖1−GM(ω)ejω(T−D(ω))‖pθ(ω)dω
ã1/p

(4.7)

The following general optimization problem can be formulated.

Problem 3 Assigned: system (4.1), desired output band Bsi = [0, ωsi], p ∈
[1,+∞], θ ∈ LLOC(]0, ωsi[), θ ≥ 0, determine the values Ĝ and T̂ which mini-
mize the error (4.6).
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As exemplification, we suppose p = 2. In this hypothesis the following result
can be stated.

Theorem 7 The solution to Problem 3 is obtained choosing T̂ so that the fol-
lowing function

S(T ) =
Å∫ ωsi

0

M(ω) cosω(T −D(ω))θ(ω)dω
ã2

, T ∈ R (4.8)

is maximized and Ĝ equals to

Ĝ =

∫ ωsi
0

M(ω) cosω(T̂ −D(ω))θ(ω)dω∫ ωsi
0

M(ω)2θ(ω)dω
. (4.9)

Moreover, the optimal value of the error results

ε(Ĝ, T̂ ) =

√∫ ωsi

0

θ(ω)dω − S(T̂ )∫ ωsi
0

M(ω)2θ(ω)dω
. (4.10)

Proof 10 It is easy to prove that

ε(G,T ) =
∫ ωsi

0

(1−GM(ω)ejω(T−D(ω)))(1−GM(ω)e−jω(T−D(ω)))θ(ω)dω

(4.11)

=
∫ ωsi

0

θ(ω)dω +G2

∫ ωsi

0

M(ω)2θ(ω)dω − 2G
∫ ωsi

0

M(ω) cosω(T −D(ω))θ(ω)dω.

(4.12)

Imposing the condition of minimum with respect to G, it follows that

G =

∫ ωsi
0

M(ω) cosω(T −D(ω))θ(ω)dω∫ ωsi
0

M(ω)2θ(ω)dω
. (4.13)

Substituting this value in (4.11) and minimizing with respect to T , the proof
easily follows.

Remark 19 Through the Theorem 7, Problem 3 is reduced to the one of finding
the maximum of the function S(T ) in (4.8) with respect to only one variable:
the delay T . Note that the delay T̂ which maximizes the function (4.8) provides
the angular coefficient of the line φ = −T̂ ω which ”better” interpolates the phase
diagram argW (jω) in the interval Bsi = [0, ωsi].

Remark 20 The above method is still valid in case the density function θ has
some impulses, in order to give more weight to particular frequencies in Bsi.

Remark 21 If the feedback control system or the filter (4.1) has some degrees
of freedom, then the optimum of the error measurement (4.6) can be done in
contemporary with respect to those degrees of freedom too. Clearly, the possi-
ble improvements can be obtained at the expense of more complex and onerous
optimization algorithms (taking also into account that it is anyway needed to
guarantee certain specifications about robustness, disturbance insensitivity, etc).
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4.3 Optimal design of Butterworth systems

Generally, Problem 3 can only be numerically solved. In this section we then
consider only a class of systems of particular interest, the low-pass systems with
Butterworth structure

W (s) =
ωnsy∏n−1

i=0

Ä
s− ωsyej

π
2 (1+ 1+2i

n )
ä . (4.14)

Moreover, we suppose that the desired output ŷ has a band equals to the one
of the system (Bsi = Bsy), θ(ω) = 1 , ω ∈ Bsi and p = 2. In these hypotheses,
the following theorem can be formulated.

Theorem 8 Let Ĝ1,n and T̂1,n be the gain and the delay which resolve Problem
3 for system (4.14), Bsi = [0, ωsi], ωsi = 1, and for a given n ∈ N. Then the
values Ĝn and T̂n which solve the same problem for Bsi = [0, ωsi], ωsi 6= 1 are

Ĝn = Ĝ1,n T̂n =
T̂1,n

ωsi
. (4.15)

Proof 11 From (4.6), with the change of variables ω = wωsi and or the hy-
pothesis that θ(ω) = 1 , ω ∈ Bsi, ir results

ε(G,T )2 = ωsi

∫ 1

0

‖1−GM(wωsi)ejwωsi(T−D(wωsi))‖2dw (4.16)

= ωsi

∫ 1

0

‖1−GM1,n(w)ejw(T1,n−D1(w))‖2dw (4.17)

= ωsiε1,n(G,T1,n)2, (4.18)

where

W1,n(s) =
1∏n−1

i=0

Ä
s− ej π2 (1+ 1+2i

n )
ä , (4.19)

M1,n(ω) = |W1,n(jω)|, (4.20)
D1,n(ω) = − argW1,n(jω)/ω, (4.21)

T1,n = Tωsi. (4.22)

Thus, the proof easily follows.

The above theorem allows to facilitate the resolution of Problem 3. In fact,
in regard to the optimal values Ĝ1,n and T̂1,n, the following result can be stated.

The optimal values Ĝ1,n and T̂1,n, n = 1, . . . , 10, and the related errors
ε1,n = ε1,n(Ĝ1,n, T̂1,n), determined using Theorem 7 and the Matlab Optimiza-
tion Toolbox [1], are reported in Table 4.1.

Remark 22 In Table 4.1 we also report the values of the errors ε01,n = ε1,n(1, 0)
obtained without considering the designed pre-processing system. Confronting
ε1,n and ε01,n the consistent improvement obtained using the proposed modifica-
tion to the feedback control system can be observed.
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n 1 2 3 4 5 6 7 8 9 10
T̂1,n 0.86 1.55 2.24 2.92 3.60 4.29 4.98 5.67 6.36 7.06
Ĝ1,n 1.122 1.069 1.047 1.033 1.024 1.016 1.009 1.002 0.996 0.990
ε1,n 0.109 0.096 0.100 0.113 0.131 0.150 0.169 0.189 0.209 0.228
ε01,n 0.463 0.788 1.069 1.282 1.416 1.473 1.470 1.431 1.387 1.361

Table 4.1: Optimal values of the parameters T and G.
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Figure 4.5: S(T ), T ∈ [0, 10]s, for n = 1, . . . , 4.

Remark 23 It is important to note that the filtering systems which distorts the
least the frequency components inside the band Bsi has order 2 (see the values
of ε1,n in Table 4.1).

Remark 24 It is interesting to analyze the trend of the function S(T ) (4.8)
(see Fig. 4.5 for n = 1, . . . , 4). These diagrams point out the problems in the
analytical determination of the optimal delay T̂ because of many local maximus.
Moreover, these diagrams allow to easily obtain, given a sub-optimal value of T
different from T̂ , the optimal value Ĝ and the related error ε.

Fig. 4.6 shows the errors

|1− Ĝ1,nM1(ω)ejω(T̂1,n−D1(ω))|2 (4.23)

|1−M1(ω)e−jωD1(ω)|2 , ω ∈ [0, 1] , n = 1, . . . , 4, (4.24)

using and not using the proposed pre-processing system. From them it is pos-
sible to understand how big the errors are, also for optimized systems like the
Butterworth ones, for certain frequencies in the band (even not only the ones
close to the cut-off frequency) and how it is possible to reduce them using the
proposed simple pre-processing system.
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Figure 4.6: Errors of the normalized Butterworth systems of order 1 (a), 2 (b),
3(c), 4(d) considering (solid line) and not considering the pre-processing system
(dashed line).
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n 1 2 3 4 5 6 7 8 9 10
T̂1,n 0.92 1.51 2.14 2.78 3.44 4.10 4.76 5.42 6.09 6.75
Ĝ1,n 1.135 1.079 1.056 1.043 1.035 1.030 1.026 1.023 1.020 1.018
ε1,n 0.113 0.100 0.114 0.136 0.161 0.186 0.211 0.236 0.260 0.285

Table 4.2: Optimal values of the parameters T and G calculated through The-
orem 6.

yr
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Plant
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Figure 4.7: Control scheme with state feedback and integral action.

Remark 25 As regards the same Butterworth systems used to obtain Table 4.1,
the values Ĝ and T̂ , determined applying Theorem 6, and the related errors ε are
reported in Table 4.2. Such errors are not too different from the ones calculated
using Theorem 7. For non-Butterworth systems, especially for systems with non-
minimum phase or with low damping poles, the improvement obtained applying
Theorem 7 is more consistent. Consider, for example, a feedback control system
with W (s) = 1

s2+0.8s+1 . For such a system, applying the pre-processing system
derived by Theorem 6, for ωsi = 1, we obtain ε = 0.216. If the pre-processing
system is instead designed using Theorem 7, we obtain ε = 0.167.

Remark 26 If the plant to be controller (of order np) is controllable, charac-
terized by a transfer function without zeros and its state vector is available, it
is easy to prove (see for example [28] and [29]) that through the control scheme
with state feedback and integral action of Fig. 4.7, the reference-output system,
with an opportune choice of h ∈ R and k ∈ Rnp , can become a Butterworth
system (4.14) of order n = np + 1. Therefore its performance can be greatly
improved if the reference r(t) is not imposed to be equal to ŷ(t), as it commonly
happens, but equal to the output of the pre-processing system of Fig. 4 with
input ŷ(t), where Ĝ and T̂ are easily calculable using Table 4.1 and Theorem 8.

4.4 Explanatory examples

4.4.1 Noise filtering

Consider a signal ŷ with spectrum [0, 0.25]rad/s corrupted by an additive noise
r with spectrum in [0, 100]rad/s (see Figs. 4.8, 4.9 and 4.10). Consider the
Butterworth filtering systems of order n = 1, . . . , 10, with ωsy = 0.25rad/s,
where the optimal delays T̂n and gains Ĝn are obtained applying Theorem 8
and Table 4.1.
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Figure 4.9: Signal y = ŷ + r.
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Figure 4.10: Spectrums of signal ŷ (solid line) and noise r (dotted line), limitedly
to the interval [0, 3.5]rad/s.

As example, Fig. 4.11 shows the percentage errors made by the third order
filter with and without considering the delay T̂3 and the gain Ĝ3. From the figure
the improvement obtained with the proposed method can be clearly observed.
In Fig. 4.12 signal-to-noise ratios of the input signal and the filters’ output
signals

SNRIN =
RMS(ŷ)
RMS(r)

SNROUT =
RMS(ŷ)

RMS(ŷ − y)
, (4.25)

with and without considering the delays T̂n and the gains Ĝn are reported.
From the figure, it results that

• without considering the delays T̂n and the gains Ĝn, the filter that dam-
ages the least has order 1;

• for a sufficiently high value of n, the filter without considering the delay
and the gain may even worsen the signal-to noise ratio.

4.4.2 Control system

We want to design a controller for a planar laser scanner which uses two gal-
vanometers (see Fig. 4.13) [19]. Clearly for such a system the reference tra-
jectories can be much better characterized in frequency rather then polynomial
terms.

We start defining a dynamical model of deflection of a galvanometer’s mirror.
Let θ[rad] be the angular position of the mirror, i[A] be the absorbed current and
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Figure 4.11: Errors made by the third order filter with (solid line) and without
considering the delay T̂3 and the gain Ĝ3 (dotted line).
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60



Figure 4.13: Laser beam deflected by the two galvanometers.

u[V] be the voltage applied to the galvanometer. Imposing x =
(
θ θ̇ i

)T
,

a possible model of the galvanometer results

ẋ =

Ñ
0 1 0

−Kt/J −Ka/J Ki/J
0 −Kv/L R/L

é
x+

Ñ
0
0

1/L

é
u, (4.26)

y =
(

1 0 0
)
x, (4.27)

where realistic values of the parameters are

R = 1.4Ω (4.28)
L = 55µH (4.29)

Kv = 0.036V s (4.30)

J = 3.3 · 10−7Kgm2 (4.31)
Ki = 0.036Nm/A (4.32)

Ka = 2.8 · 10−4Nms (4.33)
Kt = 0.20Nm. (4.34)

We want to design a control system of the mirror’s angular position, when the
desired trajectory is characterized by the band [0, 2π150]rad/s. Based on the
considerations proposed in Remark 26, such problem can be resolver through
the control scheme of Fig. 4.7, with

h = 398 k =
(

0.613 −3.55 · 10−2 −1.31
)

(4.35)

so that the feedback system has a dynamic characterized by a 4-th order But-
terworth system with unit gain and ωsy = 2π150rad/s, and the pre-processing
system of Fig. 4.4, with delay T̂ = 3.10ms and gain Ĝ = 1.033, determined
applying Theorem 8 and Table 4.1.
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Figure 4.14: Writing to be realized.

It is important to note that the in-band error ε, considering the pre-processing
system, results about 11 times smaller with respect to the error without pre-
processing (see Table 4.1 for n = 4). Consequently the consistent improvement
in performance is evident.

The designed controller has been applied to both the galvanometers of the
planar laser scanner. In Fig. 4.14 an example of writing to be realized, with
scanning speed 2m/s is shown. Fig. 4.15 shows the desired trajectories for the
feedback control systems of the two galvanometers, obtained from the writing
to be realized with appropriate joint trajectories, covered with disabled laser
beam.

Figs. 4.16 and 4.17 show the writings obtained with the designed feed-
back control system, considering and not considering the pre-processing system.
These graphs are a further confirmation of the consistent improvement obtained
using the proposed simple pre-processing system.

4.5 Application to the multi-valued control

The proposed theory of optimal filter for the delayed estimation can be suitably
applied to the generation of the reference trajectory’s derivatives, needed for the
implementation of the control law of the Theorem 3 presented in the Chapter 3.
In fact, it can be observed that the reference trajectory ŷ is usually characterized
by a bounded band. Then, the output of the Butterworth derivative filter

W (s) =
ωnsys

n∏n−1
i=0

Ä
s− ωsyej

π
2 (1+ 1+2i

n )
ä . (4.36)
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Figure 4.15: Galvanometer and laser activation reference trajectories.
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Figure 4.16: Writing obtained without pre-processing the reference signals of
the galvanometers.
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Figure 4.17: Writing obtained pre-processing the reference signals of the gal-
vanometers.

with an appropriate value of ωsy ∈ R+ can be used to practically provide the
n-th derivative of the reference ŷ.

Since the reference trajectory is usually known with a certain advance, it
becomes important to take into account the delay introduced by the filters
(4.36) (at the varying of n) so that the signal ŷ and its ”calculated” derivatives
are phased in time. The structure of the differentiation block becomes the one
in Fig.4.18. The choice of the delays for the n − 1 anticipators can be done
according to the minimization of the errors

ε(G,T ) = ‖(jω)n −GM(ω)ejω(T−D(ω))‖Lp(]0,ωsi[,µ) (4.37)

=
Å∫ ωsi

0

‖(jω)n −GM(ω)ejω(T−D(ω))‖pθ(ω)dω
ã1/p

. (4.38)
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4.6 Application to the tracking of mobile phones

In this section we describe how the proposed results on the design of optimal
filters have been utilized for significantly improving the performance in the
estimation of the cellphone location. Moreover we present the application of
the locationing systems for realizing dynamic maps of urban mobility for the
”Real Time Rome” project, developed by the MIT SENSEable City Laboratory.

4.6.1 LocHNESs platform

LocHNESs (Localizing and Handling Network Event Systems) is a software
platform developed in collaboration with Telecom Italia for the evaluation of
statistics, such as real time road traffic estimation, based on the anonymous
monitoring of the ME movements. The functional elements that constitute the
LocHNESs are presented in Fig. 4.19 and will be described in more detail in
the following paragraphs. The LocHNESs platform is based on the localization
of events that occur on the mobile network (call in progress, SMS sending, han-
dover, etc.) thanks to the use of external probes. These probes are installed
on the Abis interfaces, i.e. the interfaces that link the BTS to the Base Sta-
tion Controller (BSC). These probes analyze all the signalling messages and
send a notification of the detected events. The key data detected by LocHNESs
through the Abis interface are MEASurement RESult [2] messages, which are
used to report the results of radio channel measurements made by the BTS
(uplink measurements) and the measurement reports received by the BTS from
the ME (downlink measurements) to the BSC. The MEASurement RESult mes-
sage contains GSM parameters such as the average signal quality (RXQUAL)
as measured by both ME and BTS, the received signal strength (RXLEV) as
measured by the BTS (uplink measurement), the received signal strength on the
serving BTS and on the neighbouring BTSs as measured by the ME (downlink
measurement) and the actual Timing Advance (TA). The MEASurement RE-
Sult message related to each active connection (ME in the state ”connected”) is
sent to the BSC every 480 ms, allowing LocHNESs to determine the complete
trajectory of the call with the same time resolution. In order to reduce the
computational load of the platform, however, the number of events notified to
LocHNESs for each call is reduced by the probes according to a fixed sampling
ratio (for example 1:10, i.e. with a time resolution of 4.8 s). Using the above
data, the LocHNESs platform produces aggregated traffic maps in raster form:
the area under analysis is split into a number of contiguous square pixels of
varying size (typically 250x250 m in urban areas and 500x500 m in extra-urban
areas ). For each pixel the platform estimates a number of parameters, such as
the average speed in the four quadrants (North West, North East, South East
and South West) of a Cartesian reference system centred in the centre of the
pixel, the total average speed, the number of moving users, etc. In order to
have real time applications for vehicular traffic these traffic maps are constantly
updated with a given periodicity (for instance, every 5 minutes). It is important
to note that the LocHNESs platform complies with the 2002 Directive by the
European Parliament and Council on privacy . At no time could individual
users be identified based on the collected and analyzed data. In this sense, we
hope that this project might stimulate a dialogue on the responsible access to
locational data and on how it could provide value-added services, such as traffic
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Figure 4.19: Functional structure of the LocHNESs platform.

monitoring, to local and regional communities.

Localization engine

The Localization engine estimates the instantaneous position of each ME in-
volved in a call using the data extracted from the MEASurement RESult mes-
sages, received from the probes. Location is calculated using an Enhanced Cell
Id with Timing Advance algorithm (E-CI+TA) [65], named DFL (Data Fit
Location); its principal components are the following:

• Network database - it is a database that contains all the parameters com-
ing from the planning and dimensioning process of the entire mobile net-
work (Cell identifiers, i.e. CGI, BSIC and number of BCCH carrier, BTSs
latitude, longitude and height, BTS antennas azimuth and tilt, BTS trans-
mission power and losses, etc.);

• Antennas database - it is a database that contains the complete radiation
patterns (both in the H and V plane) of all the antennas mounted on the
BTSs;

• Propagation model - it allows to calculate the mean received power as a
function of different parameters such as the operating frequency, the ME-
BTS distance, the ME and BTS heights above the ground, the building
density and typology, etc.. The Localization engine, in particular, uses the
COST-Hata propagation model, described in [37], which does not require
the knowledge of the area morphology and of the building typology with
obvious advantages for computational speed.

For each call, the Localization engine, through the probes, receives the signal
strength level (RXLEV) measured by the ME on the serving BTS and on a
maximum of six adjacent BTSs, the cell identifiers (LAC and CI) of the received
BTSs and the actual TA. The DFL algorithm works as follows:

1. through the identifiers received and using the Network database, it obtains
the geographic position of the BTSs involved in the measurement;

2. starting from these positions and using the antenna beam widths extracted
from the Antennas database, it defines an area in which the ME is sup-
posed to be located with high probability based on simple geometric con-
siderations;

3. it further bounds the search area using the intersection with the TA ring;

4. it identifies a grid in this new search area ;
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5. for each point p of the grid, it calculates the mean power received by
the ME from every BTS involved in the measurement (Pci(p)) using the
proper parameters of the Network database, the radiation patterns con-
tained in the Antennas database and the propagation model;

6. for each point p of the grid and considering the i-th BTS, it calculates the
error function ei(p) = Pmi − Pci(p), where Pmi is the power measured
by the ME on the i-th BTS;

7. it estimates the ME position p∗, finding the point p that minimizes the
mean square error

‖e(p)‖2 =
∑
i

(Pmi − Pci(p))2.

Tracking filter

The Tracking filter estimates the complete trajectory of the MEs, and the related
speed, starting from a sequence of punctual localizations received, with the
associated time-stamps, from the Localization engine. It consists of the following
blocks:

• Sampler - it receives the sequence of ME position estimates, then removes
the incorrect localizations (according to an associated numeric code set by
the DFL algorithm) and finally resamples the remaining ones with a fixed
step;

• Latitude and Longitude Estimators - they are two ad-hoc designed pro-
cessing systems able to estimate the covered position (and speed) trajec-
tories along the two directions, attenuating the measurement noises. Since
the filtering system can work off-line, it is possible to use the approach
proposed in Section 4.2 to improve the attenuation of the noise.

Regarding the position estimation, the processing algorithm used is a com-
bination of two low-pass Butterworth filters. One filter works from the
first to the last sample of the locations sequence, and gives a time-delayed
estimation of the position trajectory, in order to take into account the de-
lays occurring in the data acquisition, processing and filtering. The other
filter works in an analogue way but in the opposite direction (from the
last to the first sample of the sequence). The delays of the two filters
have been selected according to Table 4.1, and the values of the cut-off
bandwidths have been optimally tuned based on training data (with both
ME-estimated and GPS locations available, see for instance Fig 4.20). A
combination algorithms is used to correctly merge the filtered sequences
in order to obtain an estimation of the position trajectory which is ho-
mogenous along the whole observation window.

Regarding speed estimation, a similar processing algorithm is used, but it
utilizes a filter composed by an ideal-differentiator and a second-order law-
pass filter. This filter allows to both attenuate the noise and differentiate
the locations sequence in order to extract the speed trajectory.

• Combiner - it merges the two components to give an estimation on the
complete trajectory. As regards the speed trajectory estimation, the result

68



-500 0 500 1000 1500 2000 2500 3000 3500
-14000

-12000

-10000

-8000

-6000

-4000

-2000

0

 X (m)

 Y
 (m

)

Figure 4.20: Example of trajectory to be estimated (black line). Punctual
localizations (red lines) and estimated path (blue line).

is also combined with the output of a first-order low-pass filter which gives
another speed estimation, starting from the instantaneous displacements
between subsequent samples of the estimated position trajectory.

Mobility state estimator

The Mobility state estimator separates the set of calls made by ”moving ME”
from the set of calls made by ”not moving ME” . The adopted algorithm
calculates the average ME speed vav in the time interval Tw (said evaluation
window) and compares this speed with a reference threshold vt: the ME is
evaluated as ”moving” if vav > vt. The evaluation window Tw and the threshold
speed vt have been obtained through an empirical analysis with the following
considerations:

1. Tw has been obtained minimizing P (N |M), that is the probability of con-
sidering as ”not moving” a ME who is ”moving”, whatever is the threshold
speed vt;

2. given Tw, vt is obtained minimizing a linear combination of P (N |M) and
P (M |N), this last being the probability of estimating as ”moving ME” a
ME who is ”not moving ME”, i.e. minimizing the function wP (N |M) +
(1− w)P (M |N), w ∈ [0, 1].

The minimization of this combination is needed due to the trade-off between
these two probabilities, i.e. as vt increases, P (N |M) increases consequently
whereas P (M |N) decreases and vice versa.

Finally, calls lasting less than Tw are discarded, whereas calls lasting more
than nTw (with n ≥ 2) are considered as they are n different calls making it
possible to correctly estimate the mobility state even if it changes during the
same call.
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Traffic map calculator

The Traffic map calculator produces the traffic maps for the entire area moni-
tored by the platform. This is accomplished using the set of calls considered by
the Mobility state estimator as made by ”moving ME” in the time interval ∆T
that ends when these maps are produced; the value for this interval determines
the confidence of the calculated statistics and consequently has to be accurately
chosen. Practically it depends on the number of calls it includes and finally on
all the parameters linked to the telephone traffic density such as the area type,
the time of the day, etc. As previously said, these traffic maps are periodically
updated in order to have real time estimations.

As an example, we describe the algorithm used by this module to produce
the traffic maps for the average speed:

1. it splits the trajectory of the calls made in the time interval ∆T among
the different pixels where the trajectory is located;

2. it calculates the average ME speed for each share of the trajectory, i.e.

vij =
1

cardIij

∑
m∈Iij

vijm, (4.39)

where i identifies the i-th pixel, j identifies the j-th ME and Iij represents
the set of different MEj speed estimations in the i-th pixel;

3. it calculates the total average speed value for the i-th pixel, i.e.

vi =
1

cardIi

∑
j∈Ii

vij , (4.40)

where the set Ii represents the indexes of the MEj located in the i-th
pixel.

Similarly, the Traffic map calculator obtains the maps of the average speed in
each of the four quadrants (North West, North East, South East and South
West) of a Cartesian reference system centered in the center of the pixel and
the analogous maps of the maximum speeds.

4.6.2 Real Time Rome

The Real Time Rome project [25] was developed by the MIT SENSEable City
Laboratory for the 10th International Architecture Exhibition of the Venice
Biennale in collaboration with the Italian cellphone carrier Telecom Italia. The
project aimed at creating an integrated approach to urban monitoring [26], by
developing a mobile equipment (ME) location-based monitoring for a whole city
- in this case Rome, Italy. The key features of the system are the following:

• it uses high resolution and high definition data over extensive urban areas,
whose collection has been made possible by Telecom Italia’s innovative
LocHNESs (Localizing and Handling Network Event Systems) software
platform;

• it monitors a very large portion of the city of Rome over a very complex
street network;
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Figure 4.21: Location system.

• it integrates the cellphone data with other type of real time information,
such as the position of taxis and buses.

The initial aim of the project was to make a proof of concept for the Venice
Biennale and as such focussed more on artistic visualization than on the use of
this information in real time in the city. However, this integrated approach seems
to open a new way to monitor urban traffic in real time and, more generally, to
develop a real-time control system for cities [24].

LocHNESs data in Rome

Telecom Italia installed the platform LocHNESs and the related probes on a
group of BSC located in Rome, covering an area of approximately 100Km2 in
the north-east of the city. The area was divided into a grid of 250 x 250 m
squares and the traffic maps were produced every 5 minutes, as described in
section 4.6.1.

Moreover, some ad-hoc algorithms were added to obtain maps related to the
number of pedestrians and the number of foreigners. The former was calculated
summing the number of MEs estimated to be in each pixel of the grid and
considered ”not moving MEs” by the Mobility state estimator; the latter was
calculated considering the trajectories of those MEs whose IMSI (International
Mobile Subscriber Identity) numbers were related to foreigners Mobile Network
Operators (see location system Fig. 4.21).

Voice and data traffic in Rome

A further Telecom Italia server provided the voice and data traffic (expressed in
Erlang) served by each of the BTSs located in the urban area of Rome (about
450 directional antennas covering about 47Km2). This data was localized and
collected with a sampling period of 15 minutes [76].

System architecture

In this section a description of the system architecture, the data collection,
transfer and processing is presented (see Fig. 4.22). Three servers were set up
by Telecom Italia , Atac and Samarcanda to provide locational data, both using
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SFTP transfer and UDP datagrams transfer. A database was designed and ran
on MySQL in the SENSEable City Lab server at MIT, both with some Java
applications which collected the data from the externals servers, pre-processed
them providing the results to an internal SFTP server.

A description of a more general real time processing platform is given in [27].
Six computers at the Venice Biennale exhibit continuously accessed the

SENSEable City Lab FTP server and ran Java software (developed using Pro-
cessing, and OpenGL) to visualize the different dynamic maps of the city in
real-time, using Google maps as background. Furthermore, three computers
connected to three audio streaming sources (coming from the three audio sen-
sors installed in Rome) played locational traffic noise in time-synchronization
with the visual software.

Among the different visualizations developed for the project, here it is pre-
sented the dynamic map of the vehicular traffic, obtained by means of the mobile
phone data, processed using the LocHNESs platform. The software in Fig. 4.23
visualizes the locational data of mobile phone callers travelling in vehicles. It
focuses on the area around the Stazione Termini and the Grande Raccordo An-
ulare (Rome’s ring road). The software crates a layer on the top of the map,
showing 250 x 250 m pixels whose colours are related to vehicle speeds. Red
indicated areas where traffic is moving slowly, green shows areas where vehicles
is moving quickly. The software also shows an arrow in the centre of the pixel
whose direction is the dominant direction of travel and magnitude is propor-
tional to the related speed.

Another interesting visualization developed for the project is the one de-
picted in Fig. 4.24. This software shows the changing positions of Atac buses
and Samarcanda taxis indicated by yellow points, and the relative densities of
mobile phone users, represented by the red areas. An algorithm is used to ac-
quire and update the location of buses and taxis in real time. It also estimates
buses and taxis paths based on the previous locations, drawing a yellow tail on
the map. The algorithm acquires the pedestrian locational data every 5 min-
utes, showing a red layer on the top of the map (areas colored by a deeper red
have a higher density of pedestrians).

4.7 Conclusion

In this chapter a new method for the optimal design of filters and control systems
and for the evaluation of their performance has been presented. This method
is applicable when a delay in the estimation of a signal affected by noise can be
tolerated or in case the desired output of the plant to be controlled is known
with a certain anticipation.

The new method is based on the minimization of an appropriate quality
index, with respect to two design parameters of the filter of the feedback control
system, which in part have already need designed with the numerous literature
results. As exemplification, considering the class of Butterworth systems, the
proposed method has been used to determine some design formulas and to show
the obtained consistent improvements.

Different examples of noise filtering and of control for tracking a reference
trajectory characterized by a given band have illustrated the advantages of the
proposed approach.
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Figure 4.23: Real Time Rome dynamic map: Where is traffic moving?
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Figure 4.24: Real Time Rome dynamic map: Connectivity: Is public trans-
portation where the people are?
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Chapter 5

Multi-valued controller
implementation and
experiments

The chapter deals with the digital realization of the multi-valued control law and
the key issues associated with its microprocessor implementation. It presents the
realization of a prototypal embedded system, realized through a microprocessor,
which implements the control law characterized by a fixed and quantized control
set (see Section 3.6). The efficiency of the design method and of the technology
utilized for the realization are shown through a very interesting application: a
temperature control system of a ceramic kiln.

5.1 Introduction

Before the widespread deployment of microprocessor systems, the control laws
which were usually utilized for controlling plants were chosen depending on the
characteristics of the simple analogical and/or digital circuits which could be
used to realize them, limiting the number of design specifications. In the last
years, the increasing use of microprocessors in the industrial field has enabled
the addiction of further functionalities to the control systems: check control,
monitoring and remote communication of the most important process infor-
mation, improvement of the user interface, chance of setting many operation
modes, etc (see [80]; [12] [48]).

In spite of the microprocessors potentialities, the classical PID and relay
control laws are still widely used. On the one hand, the wide use of such tra-
ditional control laws and the scepticism still now observed with respect to their
replacement are mainly due to the well proofed characteristics of simplicity in
design (see [98], [94], [71] for some PID tuning techniques, see [87], [47], [32]
for some relay controllers synthesis techniques) and to their good efficiency re-
garding robustness and accuracy. On the other hand, for all the applications
characterized by traditional control specifications, the cost-reliability combina-
tion offered by these controllers is still valid, so the only notable innovation is
their digital implementation.
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With the realization of more complex plants and conducing an effort in
managing in a more integrated manner: production, security, environmental
preservation, etc, it is therefore necessary to introduce new methodologies in
the control system design, which make use of more complex, non linear and
partially logical control laws. Such methodologies, which consent to obtain
improvements in performance and efficiency of the controlled plants, generally
require more accurate models of the plants (which require specific knowledge
about the process and/or modeling and identification methodologies) and new
theoretical results. However, many literature theoretical results are often hardly
applicable to solve concrete problems because they refer to unusual plants or be-
cause they consider analogical implementations (which are not always realizable
at affordable costs).

It follows that in some cases it is important to evaluate if a controller, pro-
vided by a promising theory, can be implemented using standard (or standard-
izable with low cost) hardware/software technologies, without reducing the ex-
pected theoretical improvements (see e.g. [8], [93], [56], [36]).

This chapter describes the implementation of the control law proposed in
Chapter 3 using an embedded control system, and, with reference to the test case
of the ceramic kiln control, presents the performance of the proposed controller
compared to other controllers and to the theoretical expectations.

5.2 Ceramic kiln control

The ceramic manufacturing process is composed of several steps, among them
the ceramic firing, which significantly determines the final characteristics of a
ceramic object. Changes in the physical state and the progressive and contin-
uous chemical reactions that fix the final properties of the ceramics take place
during the firing process. Consequently, the ceramic firing requires specific tem-
perature trajectories, which depend on the type and thickness of the ware, kiln
cross section, kind of coat, paint, etc [14].

A temperature kiln controller is in charge of providing the control signal
needed to impose the kiln temperature to track the reference one, respecting
some specifications about the tracking error. Such specifications can regard
bounds on the error and also its derivatives; the latter thing allows satisfying
process vital specifications; in fact, small but fast temperature variations with
respect to the reference can generate stress and shock in the fired ceramic objects
(see [77]; [66]; [42]). The ability of imposing such constraints characterizes the
kiln performance and then the kind of firing processes it is able to handle.

Electrical kilns, like many other power industrial plants, both for construc-
tive simplicity and in order to minimize the operation cost, are commanded
by means of relays which activate resistors (heat-ing elements) and ventilation
systems (cooling elements) in a discrete way [49]. Two control techniques are
usually adopted in such cases. One technique is based on the PID controller
whose output defines the duty cycle of a relay control signal, accordingly to a
Pulse-Width Modulation (PWM) technique. This controller guarantees a steady
state tracking (if it is well designed starting from the plant model knowledge)
but needs the control signal to switch every sampling period. Moreover, the
available design rules for such controller do not allow to impose constraints
both on the tracking error and its derivative, because the reference trajectory

76



generally cannot be approximate with a polynomial. The other adopted solution
is based on the classical relay controller, which allows the practical regulation
of the plant output to a specific set-point, with switching of the control signal
every time the absolute value of the error becomes greater than an acceptable
value. This kind of controllers provides good performance only if the plant to
be controlled is approximable with a first order system and if the reference is
constant [87]. In the kiln case, however, the performance of the whole sys-
tem mainly depends on the plant, reducing the possibility of imposing strict
constraints on the reference trajectory and on the tracking error [32].

Based on the fact that it is quite easy to separately command the available
on-off actuators by means of different relays, we can think to use a different
type of control law that is able to utilize such further control levels to improve
the overall performance. This section presents a new kiln digital controller
developed at the Embedded Industrial Microcontrollers Laboratory of the Uni-
versity of Naples Federico II, Italy. The controller is based on an algorithmic
law characterized by a control signal which may assume more that two levels
(see Chapter 3.7). Such controller allows the practical tracking of the reference
trajectory, guaranteeing prefixed maximum limits to the temperature tracking
error and its derivative. Like the PID controller, the proposed controller makes
use of the plant model knowledge (even if some uncertainties in the knowledge of
the parameters is allowed) but it consents to strongly reduce the control signal
amplitude and switching frequency because it makes use of more levels and the
control signal only switches when the error becomes not tolerable. This thing
allows guaranteeing a long life to the actuators and inducting less stress and
shock in the manufactured ceramic objects. Moreover, the proposed controller
is robust with respect to external disturbances and plant uncertain parameters.

The rest of the chapter is structured as follows. Section 5.3 describes the
model of the electric kiln used for the experimentations and the control specifi-
cations. The practical tracking problem is then presented. Section 5.4 describes
the proposed solution to the control problem. Section 5.5 deals with the de-
velopment of an embedded controller, based on the proposed solution, to be
applied to the electric kiln. The differences between the experimental results
obtained using the standard (pre-existent) controller and the new controller are
shown in Section 5.6. The reported results clearly prove the advantage in using
the new controller, even if only two control levels are used.

5.3 Preliminaries

5.3.1 Model of the kiln used for the experimentations

Let u [W] be the heating power and θ0, θk, θe [oC] be the temperature of the
object internal to the kiln, the kiln and the external environment. A second
order firing model is the following

ẋ =

Ç
−Ko+Kk

Ck
Ko
Ck

Ko
Co

−KoCo

å
x+

Ç
1
Ck

Kk
Ck

0 0

åÅ
u
θe

ã
(5.1)

where

• x =
(
θk θo

)T is the state vector;
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• Ck is the kiln thermal capacity;

• Kk is the thermal conductance between kiln and external environment;

• Co is the object thermal capacity;

• Ko is the thermal conductance between object and kiln.

Results of experimentations on the available electric kiln provided the following
values of the plant parameters:

Ck = 3000J/oC (5.2a)
Kk = 2.3W/oC (5.2b)

Co ∈ [50, 200]J/oC (5.2c)
Ko ∈ [0.5, 2.0]W/oC. (5.2d)

The uncertain parameters are due to different thermal capacities and conduc-
tances of the objects which can be inserted into the kiln. There is also a distur-
bance due to the external environment temperature

θe ∈ [10, 30]oC. (5.3)

5.3.2 Desired trajectory

It this section we characterize the family of possible desired temperature trajec-
tories θ̂. The firing process of a tile involves several steps. The first important
step is the heating up, characterized by a rate which depends on the thermal
conductivity, moisture and gas evolution during drying and material decom-
position, quartz transformation, low viscosity liquid phase formation and solid
state reactions. The soaking time at maximum temperature depends on the
rate of dissolution of crystalline components while controlled cooling is essen-
tial to prevent thermal stress being included in the ceramic object [14]. Fig.
5.1 shows an example of firing trajectory. At the beginning there is a growing
trend, with 200oC/h thermal gradient, up to 500C. Then there is a reduction of
the gradient to 100oC/h between 500 and 600oC in order to allow the compete
combustion of a certain quantity of organic substances and the evacuation of
all gases, preventing the enamel to start fusing. After this stage, there is a
new growing trend, with 160oC/h average thermal gradient, up to 1050oC. The
temperature is then held constant for approximately an hour. It follows a quick
cooling stage up to 500oC with -220oC/h thermal gradient and a further slower
cooling stage, in order to avoid the creation of tensions in the ceramic objects
because of the quartz transformation.

5.3.3 Control specifications

In order to specify the control requirements, we make use of the concept of
tracking error vector:

ε =
(
ε1 ε2

)T
, ε1 = θ̂ − θ, ε2 = ε̇1. (5.4)
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Figure 5.1: Reference trajectory.

Consequently, the tolerable error in tracking the reference trajectory can be
specified by two upper bounds

ε̄1 = max
t
|θ̂ − θ|, ε̄2 = max

t
| ˙̂θ − θ̇|. (5.5)

Observe that the specification about the maximum value of the temperature
velocity error ε2 plays a main role in this application. In fact small but fast
temperature variations around ]θ̂ − ε̄1, θ̂ + ε̄1[, especially in the critic stages of
the firing process, could create alterations in the ceramic objects, e.g. black
core, black bubble, preheating breaks, carbonate decomposition, etc (see [77];
[66]; [42]). In our experimentations we considered the following bounds

ε̄1 = 50oC, ε̄2 = 50oC/h = 0.014oC/s. (5.6)

5.3.4 Practical tracking control problem statement

Problem 4 Given the plant (5.1), a reference trajectory θ̂(t) , t > t0, and a
region

Tρ =
{
ε ∈ R2 : |ε1| ≤ ε̄1, |ε2| ≤ ε̄2

}
(5.7)

of tolerable errors, design a controller, characterized by an actuation signal u ∈
℘u that may assume a finite number of levels u− = u1 < u2 < · · · < ul = u+,
which guarantees that

ε ∈ Tρ, ∀t > t0, ∀ε(t0) ∈ Tρ, (5.8)

robustly with respect to the plant uncertain parameters (5.2) and disturbance
(5.3).
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5.4 Control problem solution

To solve the problem, we rewrite the plant model as follows

θ̈

ω2
n(p(t))

+
2ζ(p(t))
ωn(p(t))

θ̇ + θ = Gu+ d(p(t), t), (5.9)

where

ζ =
CkKo + Co(Ko +Kk)

2
√
CkCoKkKo

(5.10)

ωn =

 
KkKo

CkCo
(5.11)

G =
1
Kk

(5.12)

p =
(
Co Ko

)T (5.13)
p ∈ ℘p = [50, 200]× [0.5, 2.0] (5.14)

d = θe, d ∈ ℘d = [10, 30] (5.15)

Then, the problem is solved using the following theorem

Theorem 9 It is possible to solve the Problem 4

• choosing

ρ = ε̄1
√

2/2 M = ε̄2/ε̄1 (5.16)

k1 = M2 k2 =
√

2M (5.17)

P =

Ç
1

√
2

2M√
2

2M
1
M2

å
(5.18)

• with the following control law

– if V = εTPε ≥ ρ2, u(t) is equal to:

u =
ß
dUe, if v ≥ 0
bUc, if v < 0 (5.19)

where:

v = BTPε, (5.20)

U =
¨̂
θ + 2ζωn

˙̂
θ + ω2

n(θ̂ − d) + (k1 − ω2
n)ε1 + (k2 − 2ζωn)ε2

Gω2
n

(5.21)

bUc = max{u ∈ ℘u : u < U ∀p ∈ ℘p} (5.22)
dUe = min{u ∈ ℘u : u ≥ U ∀p ∈ ℘p} (5.23)

– if V < ρ2, u(t) is equal to the last value assumed on the boundary of
Sρ = {x ∈ R2 : V ≤ ρ2}.

(5.24)

Proof 12 The proof easily derives from Theorem 3.
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Figure 5.2: Realized feedback control system.

5.5 Embedded control system

Based on the proposed solution to the control problem, a feedback control sys-
tem was developed at the Embedded Industrial Microcontrollers Laboratory of
the University of Naples Federico II, Italy. Fig. 5.2 shows a schematics of the
implemented control scheme. The key issues involved in the design and imple-
mentation of the embedded controller are described in the following subsections.

Choice of the embedded system

A 8-bit microprocessor Microchip PIC with 20MHz clock, 8K flash program
memory (14-bit words), 256B EEPROM data memory, 368B data memory (see
[59]) was selected for the development of the embedded system. Such micro-
controller is equipped with 10-bit AD converter [58], used for the acquisition of
the transduced object temperature. The realized embedded system is shown in
Fig. 5.3.

Choice of the sensors and actuators

The used temperature sensor was a K-type thermocouple, connected to the
microcontroller by means of a signal stabilizing and conditioning circuit realized
through operational amplifiers.

The actuation part of the control was realized by means of Kanthal resistors,
activated by 15A 250V AC relays. The value of the resistors depends on the
control requirements and was designed taking into account the rule described
in Section 3.5.3.

Based on the chosen reference trajectory and control requirements, we cal-
culated the functions maxp∈℘p Û + Uε,+ and minp∈℘p Û + Uε,− (see Fig. 5.4)

From the figure it results that the needed maximum and mini-mum levels of
the control signal can be chosen as u+ = 3.0 KW and u− = 0.0 KW.

81



Figure 5.3: Realized embedded system.

We decided to use three heating elements (Kanthal resistors) of powers:

0.5KW , 1.0KW , 1.5KW (5.25)

Such actuators, activated according to suitable combinations, allow obtaining
the following seven equal-spaced control levels:

℘u =
{

0.0 0.5 1.0 1.5 2.0 2.5 3.0
}

KW. (5.26)

Remark 27 Note that Fig. 5.4 also shows that, for almost all the time, it is
more appropriate to use control levels lower than the extreme ones.

Implementation of the Control algorithm

A scheme of the control algorithm is presented in Algorithm 1. All the algebraic
operations have been implemented using 16 bits, in order to reduce rounding
problems. Using the selected hardware, the control algorithm is able to run at
a sampling rate up to 1KHz. In the following subsections some technical issues
about the algorithm implementation are presented.

Choice of the sampling period

In order to correctly select the most appropriate sampling period, the following
was taken into account.

• If the sampling period of the control algorithm is too big with respect
to the dominant time constant of the plant, the delay within which the
control switches could cause the temporary escape of ε from Sρ.

• The sampling period must not be chosen too small to avoid unneeded
tests, which do not pro-duce switching.
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Algorithm 1 Control algorithm
Require: ℘u {Vector of the control input values}
Require: ε̄1, ε̄2 {Tracking error vector specifications}
Require: ζ,ωn,G,℘p,℘d {Plant parameters and their uncertainties}

calculusControllerParameters(ε̄1,ε̄2, ρ, M , P , k1, k2, Tc)
iu = 1 {Index in the vector of the input values ℘u}
loop
{Execution of the task every Tc seconds}
readReference(θ̂, ˙̂

θ, ¨̂
θ) {Read reference trajectory and its derivatives}

θ=readOutput() {Read the actual value of the output variable}
θ̇=calculusDerivative(θ, θprec) {Calculus of the derivative of the output}
ε=calculusEps(θ,θ̇,θ̂, ˙̂

θ) {Calculus of the tracking error}
V=calculusV(P ,ε) {Value of the Lyapunov function}
if (V − ρ2) < 0 then

continue {Tracking error internal to the ellipse Sρ}
else
{Tracking error external to the ellipse Sρ}
v=calculusv(B,P ,ε) {Value of the switching function}
calculusU(ζ,ωn,G,℘p,℘d ,k1, k2,ε,θ̂, ˙̂

θ, ¨̂
θ, Umin, Umax) {Calculus of the

two extremes Umax and Umin of the nominal control, based on the un-
certainties}
if (v >= 0) then
{Choice of the admissible control level above Umax}
while (iu < length(℘u) and ℘u(iu) < Umax) do
iu = iu+ 1

end while
else
{Choice of the admissible control level below Umin}
while (iu > 0 and ℘u(iu) > Umin) do
iu = iu− 1

end while
end if
u=℘u(iu) {Chosen control level}

end if
θprec=savePrevious(θ) {Save the previous values of the output (for the
calculus of the derivative)}

end loop
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Figure 5.4: Diagram of maxp∈℘p Û + Uε,+ and minp∈℘p Û + Uε,−, used for the
control levels design.

• There is a strong correlation between the amplitude of the region T , the
accuracy of the used sensors and the sampling period. Therefore, if small
errors are required, it will be necessary to use more accurate sensors and
a smaller sampling period.

Based on the above considerations, the control specifications and the kiln’s
model parameters, an appropriate sampling period was selected to be Tc = 30
s.

Calculus of the reference trajectory’s derivatives

As regards the calculus of the derivatives of the reference trajectory, it can be
observed that θ̂ is usually characterized by a bounded band. Then, the output
of the Butterworth filter with accessible state and with an appropriate value of
ωd ∈ R+:

ẋ =

Ñ
0 1 0
0 0 1
−ω3

d −2ω2
d −2ωd

é
x+

Ñ
0
0
ω3
d

é
θ̂ (5.27)

θd =

Ñ
1 0 0
0 1 0
0 0 1

é
x (5.28)

can be used to practically provide θ̂, ˙̂θ and ¨̂θ. In the case of the trajectory of
Fig. 5.1, a good choice of ωd is 0.004rad/s.
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Calculus of θ̇

The control algorithm requires the knowledge of θ̇. Because a sensor able to
measure θ̇ was unavailable, its value is calculated through a numeric derivative
algorithm, with 10 s sample step, which appropriately uses the three previous
samples and the current one.

User interface

A RS232 serial interface was added to the microcontroller in order to upload
the plant parameters, control specifications and reference trajectory into the
microprocessor. The interface allows to connect the embedded system to a PC
where such information can be edited. Moreover, the microcontroller is also
used for monitoring and storing the firing process information.

5.6 Experimental results

This section describes the results of some experimental tests performed applying
the prototypal controller to the available electric kiln.

Test 1

The reference trajectory of Fig. 5.1 was applied. Figs. 5.5 and 5.6 show the mea-
sured object temperature and the errors ε1 and ε2 obtained using the designed
controller. Moreover, Fig. 5.7 shows the control signal. The depicted exper-
imental results show that the performance of the prototyped controller meet
pretty well the theoretical expectations in terms of accuracy and robustness.

Test 2

In case of firing of a large number of similar objects, it would be appropriate to
plan a preliminary identification procedure of the plant uncertain parameters.
In such a case it is possible to obtain a reduction of the amplitude and the
switching frequency of the control signal (see (5.19)). To illustrate this fact,
Fig. 5.8 shows the control signal in case:

℘p = [70, 120]× [0.6, 1] (5.29)

The use of more control levels and a reduction of the total switching number
from 83 to 50 can be clearly observed.

Test 3

It the following a comparison between the results obtained utilizing the proposed
and the relay controller (with hysteresis ε̄1 = 50C), if only the extreme levels

℘u =
{

0.0 3.0
}

KW (5.30)

are available, is reported. As it can be noted (see Figs. 5.9, 5.10 and 5.11)
the performance of the relay controller are worsen and the error is hardly ever
inside the admissible region T . This is due to the fact that, as it is well known,
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Figure 5.5: Reference trajectory (dashed line) and effective temperature ob-
tained using the proposed controller (solid line), considering the control levels
(5.26).
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Figure 5.6: Obtained tracking error and its derivative (solid lines) and their
maximum tolerable values (dash-dotted lines), considering the control levels
(5.26).
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Figure 5.7: Applied multi-valued control signal in case of uncertainties (5.2),
considering the control levels (5.26).
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Figure 5.8: Applied multi-valued control signal in case of uncertainties (5.29),
considering the control levels (5.26).
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Figure 5.9: Reference trajectory (dash-dotted line) and effective temperatures
utilizing the relay controller (dashed line) and the proposed controller (solid
line), considering the control levels (5.30).

the relay controller guarantees good performance only if the plant can be ap-
proximated with a first order system. On the contrary, the proposed controller
allows respecting the control specifications (5.6) also using only two control
levels (5.30).

5.7 Conclusion

In this chapter the design of an embedded system which implements a new multi-
valued controller for ceramic kilns has been presented. The key issues regarding
the digital realization, in particular, the choice of actuators, sensors and the
control algorithm implementation have been discussed. Numerous experimen-
tal results on an available electric kiln have shown the substantive advantage of
the proposed solution with respect to the relay controller. Besides, important re-
ductions in the switching number can be obtained using the proposed controller
and many control levels. The proposed controller can easily be generalized to
be used in different applications where a decisional control is required.
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Figure 5.10: Tracking error and its derivative utilizing the relay controller
(dashed line) and the proposed controller (solid lines), considering the control
levels (5.30). Maximum tolerable values (dash-dotted lines) .
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Figure 5.11: Applied control signals utilizing the relay controller (dashed line)
and the proposed controller (solid line), considering the control levels (5.30).
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Chapter 6

Conclusions and Discussion

Multi-valued control systems have been considered in this thesis and topics
concerning analysis, design and implementation issues have been studied. It only
remains to summerize, and give some concluding remarks from a retrospective
viewpoint together with topics for future research.

Summary

A variety of plants with high parametric uncertainties are usually controlled
with signals that may assume only a finite number of values, in order to simplify
actuator’s construction and minimize the operation cost. This thesis has dealt
with the problems concerning the multi-valued control laws, ranging from the
analysis, to the design and implementation issues.

New design technique have been developed, based on the concept of practical
stability, which refers to the behavior of the system over a finite time interval
and which requires the state of such system, given some initial conditions, to
remain within prescribed bounds in that time interval. The thesis has analyzed
the two classes of problems arising in this framework: finite-time stability and
practical stability. The finite-time stability (FTS) problem has been presented
in Section 2.2, and two approaches have been discussed for the analysis of FTS of
a linear continuous system, respectivelly based on quadratic Lyapunov functions
and polyhedral Lyapunov functions. The practical stability problem has instead
been presented in Section 2.3.

The second chapter has also analyzed the discontinuous control systems, and
in particular the problem arising in the definition of solutions to discontinuous
right hand side differential equations.

Chapter 3 has proposed a novel method for the design of controllers that
allow to solve the practical stability problem. The proposed controller is robust
with respect to the plant’s uncertain parameters and disturbances, and guaran-
tees to follow the reference trajectory with prefixed values of the tracking error
and of its derivatives until n− 1, where n is the order of the plant.

The case when the control input set is quantized has been treated in Section
3.6 and several examples have been discussed.

Chapter 4 has dealt with the problem of defining the optimal structure of
a filter, when it is supposed that a certain delay in the estimation is tolerable.
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The main contribution has been the formulation of an optimal filter design
problem, and its application to the class of Butterworth filters. The proposed
theory has then been applied to design the optimal differentiation system which
provides the derivatives of the reference trajectory for the implementation of
the multi-valued control law of Section 3.6.

The theory presented in the forth chapter has also been investigated to
design optimal control systems for tracking reference signals, known with a
certain advance, providing that an appropriate pre-processing system can be
applied to the reference trajectory.

Finally, the application of the optimal filters to the estimation of the tra-
jectory of mobile phone users has been presented in Section 4.6, with reference
to the collaboration with Telecom Italia Lab and the Massachusetts Institute of
Technology SENSEable City Laboratory and the test bed deployed in the city
of Rome.

The digital realization of the new multi-valued control law has been ad-
dressed in Chapter 5 and all the key issues associated with its microprocessor
implementation have been discussed. The efficiency of the design method and of
the technology utilized for the realization have been shown through the applica-
tion of the developed embedded control system at the problem of temperature
control in a ceramic kiln.

Remarks and future research

There are many interesting problems and open questions about multi-valued
control systems beyond the scope of this thesis. Some remarks together with
subjects for future research closely related to the topics in this thesis will briefly
be given in the following.

The Theorem 5 in Chapter 3 allows tuning the control parameters in case it
is required to bound the error and its derivative. It is interesting to note that
the convergence time also depends on the location of the eigenvalues of E in
the complex plane, and can almost independently be chosen. Conversely, if the
convergence time is not important for the application, the degree of freedom left
in the definition of location of the eigenvalues on E in the complex plane can be
used to impose a bound on the second derivative of the tracking error, in case
the plant has order greater than three.

The theory proposed in Chapter 3 can potentially be extended to a wider
class of systems. In order to generalize the synthesis technique proposed in
Chapter 3 to the case of multivariable systems, the effect of the different input
signals on the outputs must be accurately taken into account, because of the
coupling effects. Considering, instead, discrete-time systems (digitalized plants),
it must be taken into account that the sampling period plays a crucial role. In
fact it constraints the dimension of the domain of admissible errors, since, if it
is not well defined, could cause the tracking error escaping the domain during
a sampling period and not allowing the control signal to avoid it.

Since an identification of the plant is needed in order to tune the control
parameters (even if some uncertainties are tolerated), it would be interesting
to evaluate the possibility to implement an on-line identification procedure and
analyze how the pair controller-identificator behaves in terms of stability and
performance of the closed loop system. In general, having an accurate knowledge
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of the plant helps the control algorithm in the choice of the control signal, that,
as pointed out in Section 3.6, allows reducing the average switching frequency
and the power peaks.

I look forward to tackle the above problems in the future.
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