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5.2 Poincaré map derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2.1 Derivation of P1,T/2 and P2,T/2 . . . . . . . . . . . . . . . . . . . . 59

5.2.2 Derivation of PD . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2.3 Constructing the stroboscopic map . . . . . . . . . . . . . . . . . . 61

5.3 A locally piecewise-linear continuous map . . . . . . . . . . . . . . . . . . 62

5.3.1 Numerical validation . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.4 Classification of the discontinuity induced bifurcation scenario . . . . . . . 66

6 Corner Impact Bifurcation in Generic Impacting Systems 69

6.1 Impacting systems with a corner . . . . . . . . . . . . . . . . . . . . . . . 70

6.2 Analysis of a degree 2 corner impact bifurcation . . . . . . . . . . . . . . . 72

6.2.1 Stroboscopic mapping . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.3 Derivation of the map D . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.3.1 Local approximation of D using asymptotics . . . . . . . . . . . . 75

6.3.2 Local approximation of D using implicit differentiation . . . . . . . 76

6.4 Derivation of the corner map Dc . . . . . . . . . . . . . . . . . . . . . . . 77

6.4.1 Local approximation of Dc using asymptotics . . . . . . . . . . . . 78

6.4.2 Local approximation of Dc using implicit differentiation . . . . . . 79

6.4.3 Sensitivity of D and Dc under parameter variation . . . . . . . . . 79
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Chapter 1

Introduction

Contents

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . 3

1.1 Motivation

In the last decades interest on the study of piecewise smooth (PWS) dynamical systems
has increased given the amount of real applications that naturally fits in this framework
[19]. Nonsmooth mechanical systems, electronic circuits with switches and hybrid con-
trollers are typical examples of PWS systems in applications. In the scientific literature
much research effort has been spent to gain a better understanding of the complex dy-
namics that this class of systems can exhibit. An interesting example is presented in
[70], where a simplified model for a high-speed milling cutter has been studied, showing
a rich dynamical behavior described qualitatively through the analysis of smooth and
nonsmooth bifurcations involving sudden transitions to chaos

This thesis was born in the context of the European projet SICONOS [63][62],
(Simulation and Control of Nonsmooth Dynamical Systems), whose purpose is to de-
velop algorithms and software for the simulation and feedback–control of nonsmooth
dynamical systems. Nonsmoothness is usually introduced into the system either by
some nonsmooth control action or by the presence of nonsmooth events at a macro-
scopic level (such as impacts or switchings). This project saw contributions of scientists
from various communities like Mechanics, Applied Mathematics, Systems and Control,
and Numerical Analysis. It started in 2002 and finished in 2006.

Part of the work presented here was developed within the MIUR–PRIN project
MACSI on Advanced Methodologies for Control of Hybrid Systems, where we were also
interested in the analysis of nonsmooth bifurcating phenomena in a generic class of
piecewise smooth dynamical systems employing the topological approach widely use in
the theory of Dynamical systems.

For the study of nonsmooth systems there are different analytical, numerical and
experimental tools developed from different perspectives. Fig. 1.1 is a synoptic repre-
sentation of different issues that we have aimed at studying this thesis1. We divide our

1We use an underline mark for main contributions of this thesis.



2 1 Introduction

Figure 1.1: Synopsis of the contents of this thesis in the context of the qualitative theory
of Dynamical Systems.

analysis in four main fields, specifically: Modelling, Numerics, Analysis and Synthesis.
Regarding modelling, we analyzed three different approaches to model nonsmooth

systems: Piecewise Smooth Dynamical Systems (PWSDS), Complementarity Systems
(CS) and Hybrid Systems (HS); while regarding numerics we focused on both event
driven and time stepping simulation schemes. The most important contribution of this
thesis is the complete analysis of a novel class of discontinuity–induced bifurcation of
periodic orbits in a class of impacting systems. Finally, in relation to the synthesis we
have proposed the study of models inspired from mechanics. Namely, we use the cam–
follower system (so called in the context of mechanics), and an hybrid controller for an
Anti–lock Braking System (ABS) as two relevant representative examples.

The cam–follower system is in many aspects similar to the driven impact oscillator
since it represents also an example of a mechanical system with impacts, where the cam
can be modelled as an external forcing while the follower can be modelled as an harmonic
oscillator. Smooth and nonsmooth phenomena have been widely studied in driven impact
oscillator focusing mainly on the grazing bifurcation [67][51], while other nonsmooth
phenomena like chattering, corner impacts and complex invariant sets have not been
studied deeply, and very few references can be found on these aspects [9][11][61][56].
We use the cam–follower as a more generic example than the driven impact oscillator,
where complexity and nonsmooth phenomena are associated to the geometry of the cam.
In addition the cam–follower system is a widely used mechanical device in applications
and therefore it is possible to perform experiments that allows the comparison with the
theory and numerics.

On the other hand, the hybrid controller for an ABS is studied to tackle one of
the open problems in the field of nonsmooth systems related to the stability analysis
of hybrid controllers using the topological approach proper of the theory of Piecewise
Smooth Dynamical Systems.
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1.2 Outline of the thesis

In Chapter 2 we present an overview of the qualitative theory of smooth and piecewise
smooth dynamical systems. Rather than covering all the issues, the purpose is to present
the fundamental concepts and definitions, that according to us, are needed in the study
of impacting systems. After a brief presentation on smooth dynamical systems, we intro-
duce nonsmooth dynamical systems, namely we present some definitions, invariant sets,
stability analysis and numerical analysis emphasizing particularly the major differences
with the classical theory of smooth systems.

In Chapter 3, we present an overview of the main strategies used in this thesis
for the analysis of impacting systems. Rather than presenting a generalized theory
for impacting systems, we have chosen a simplified representative example (that is the
cam–follower system), where we study relevant issues on the modelling, simulation and
stability analysis. The idea is to characterize systematically the properties inherent to
impacting systems as well as the complexity associated to nonsmooth phenomena.

Chapter 4 is then devoted to the study of a representative cam-follower system, intro-
duced in Chapter 3. Our main interest is to present the complex behavior unique to the
nonsmooth nature of the cam profile; namely the qualitative effects under perturbations,
for solutions with impacts near to discontinuity points.

In Chapter 5 we have performed a complete analysis of the corner impact bifurcation
for a periodic orbit in the cam–follower system. This particular bifurcation scenario,
exemplifies the use of Discontinuity Maps and the theory of border collision bifurcations
in PWS Maps, to qualitatively characterize the interaction of impacting orbits with a
discontinuity boundary.

In Chapter 6, we present the local and global analysis of impacting orbits near discon-
tinuity points of the impacting manifold, using a corner map to model the interaction.
This discontinuity map has been already used for the global analysis of impacting sys-
tems with smooth differentiable boundaries at hard and soft (grazing) impacts. Here,
the analysis based on an appropriate corner map is intended to fill a gap in the exist-
ing literature, by performing the analysis of impacting orbits where the boundaries in
the admissible space are not continuously differentiable (i.e. configuration space with
corners).

In Chapter 7, we study an hybrid controller for an Anti–lock Braking System (ABS) as
a Piecewise Smooth Dynamical System. To the best of our knowledge, this type of ABS
has never been fully analyzed. Our interest is to characterize the performance (stability
and robustness), rather than focusing on the design of new ABS control algorithms. We
believe that our approach can give useful synthesis tools as it shows how a simple hybrid
controller with a low number of both discrete states and parameters can be designed
to guarantee stability and robustness. Finally, in Chapter 8 we summarize the main
contributions of the thesis.
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Piecewise Smooth Dynamical
Systems
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The aim of this chapter is to present an overview of the qualitative theory of smooth
and piecewise smooth dynamical systems. Rather than covering all the issues, the pur-
pose is to present some of the fundamental concepts and definitions that, according to
us, are needed to study impacting systems. After a brief presentation of smooth dynam-
ical systems, we introduce nonsmooth dynamical systems, namely we give definitions
of invariant sets, stability analysis and numerical analysis emphasizing particularly the
differences with the classical theory of smooth systems. Most of the material presented
in this chapter is inspired from [19] [43] and references therein.
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2.1 Qualitative theory of dynamical systems

Qualitative theory of dynamical systems (also known as dynamical systems theory, non-
linear dynamics, chaos theory) [30] [76] [43] [69] [19], comprises methods for analyzing
differential equations and iterated mappings. Specifically, nonlinear dynamics is con-
cerned with the study of the stability of fixed points and periodic orbits, stable and
unstable manifolds (first introduced by Poincaré in 1890) and the study of structural
stability (first introduced by Andronov and Pontryagin in 1937) (see [34] for references).
Next, we present the basic theoretical concepts that will be used in the rest of this thesis.

2.2 Smooth dynamical systems

A smooth dynamical systems or simply a dynamical system is a rule for the time evolution
of a set of possible states. The time t takes values in an index set T which we usually
consider to be either discrete (the set of integers Z), or continuous (the set of real
numbers R). The possible states belonging to state space X , is a discrete or continuous
collection of coordinates that gives a complete description of the system. Given the
current state of the system x0 ∈ X , the evolution rule or flow ϕ, predicts the state or
vector x(t) as:

ϕ : X × T → X (2.1)

where x(t) := ϕ(x0, t), with x(0) = x0.

We say that (2.1) together with X and T (i.e. {X , T , ϕ(x, t)}), defines a dynamical
system if following conditions are satisfied

ϕ(x, 0) = x, for all x ∈ X , (Identity) (2.2a)

ϕ(x, t+ s) = ϕ(ϕ(x, t), s), for all x ∈ X , and t, s ∈ T . (Group) (2.2b)

The identity condition in (2.2a) basically implies that the state does not change spon-
taneously, and the group property in (2.2b) means that the evolution operator of the
system does not change in time (i.e. The system is autonomous).

Next, we will focus on basic definitions for discrete maps and continuous flows, which
are the most common classes of dynamical systems used all through this thesis.

2.2.1 Discrete maps and iterated maps

A discrete map or simply a map, is an evolution rule defined in discrete time, and in
a continuous state space. A map π : R

n × Z → R
n defines a dynamical system where

t ∈ Z

The time evolution can be defined in an iterative form as

P : R
n → R

n, where x 7→ P (x), (2.3)

with x ∈ R
n. The iterative operator in (2.3) is often written as xn+1 = P (xn) with

n ∈ Z. Notice that given an initial condition x(0) = x0, a generic element at time t = n
can be obtained from

x(n) = P (n)(x0). (2.4)

where P (n) := P ◦ P ◦ · · · ◦ P , n–times.
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Example: The logistic map is an instance of how a very simple nonlinear system can
present very complicated behavior. It is a discrete model used to describe demographic
evolution, and mathematically is written

xn+1 = µxn(1 − xn), µ ∈ [0, 1]. (2.5)

where µ is the growth constant of the population (For further details see [49]).

2.2.2 Continuous flows and ODEs

A dynamical system can also be defined by an initial value problem, through a ordinary
differential equation of the type

ẋ :=
dx

dt
= F (x). (2.6)

In (2.1) X ≡ R
n, T ≡ R and the flow is defined by ϕ ≡ φ. The state of the system will

be given by

x(t) = φ(x0, t), (2.7)

where φ : R
n × R → R

n and x(0) = x0. The evolution rule φ satisfies (2.6) in the sense
that

d

dt
(φ(x, t))

∣

∣

∣

∣

t=τ

= F (φ(x, τ)). (2.8)

Example: A periodically forced, damped harmonic oscillator satisfies the second
order differential equation

q̈ + 2ζq̇ + κq = a cosωt, (2.9)

where ζ and κ are damping and spring constants respectively, and ω is the angular
velocity of the periodic forcing. We can define the state variables x1 := q, x2 := q̇ and
x3 := ωt such that (2.9) can be written as a set of ordinary differential equations:

ẋ1 = x2,

ẋ2 = κx1 − 2ζx2 + a cosx3,

ẋ3 = ωt.

2.3 Qualitative dynamics and phase portraits

Given a generic dynamical system of the form (2.1), the set of all points ϕ(x, t) for t ∈ T ,
is called the trajectory or orbit through the point x. The phase portrait of a dynamical
system is a partitioning of the state space into orbits.

An invariant set of a dynamical system is a subset Λ ⊂ X such that x0 ∈ Λ implies
ϕ(x0, t) ∈ Λ for all t ∈ T . An invariant set that is closed and bounded is called an
attractor if:

• for any sufficiently small neighborhood U ⊂ X of Λ, there exists a neighborhood
V of Λ such that φ(x, t) ∈ U for all x ∈ V and all t > 0, and

• for all x ∈ U , φ(x, t) → Λ as t→ ∞.
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A dynamical system may have many competing attractors, with their relative im-
portance being indicated by the set of initial conditions that they attract, that is, their
domain of attraction. The domain of attraction (also known as the basin of attraction)
of an invariant set Λ, is the maximal set of initial conditions x for which ϕ(x, t) → Λ as
t→ ∞.

The qualitative description of a dynamical system is given by the description of the
invariant sets that compose its phase portrait. Next, we briefly describe the main types
of invariant sets.

Equilibria. The simplest form of invariant set is an equilibrium solution (or fixed
points) x∗ which satisfies ϕ(x∗, t) = x∗ for all t. These are also sometimes called
stationary points.

Periodic orbits. The next most complex kind of invariant set is a periodic orbit;
which comprises an initial condition xp and a period T which is the smallest time
T > 0 for which ϕ(xp, T ) = xp. Periodic orbits form closed curves in phase space
(topologically they are circular). A periodic orbit that is isolated (i.e. such that
it does not have any other periodic orbits in its neighborhood) is termed a limit
cycle.

Homoclinic and heteroclinic orbits. Another important class of invariant sets are
connecting orbits which tend to other invariant sets as time goes asymptotically
to +∞ and to −∞. Consider for example orbits which connect equilibria. A
homoclinic orbit is a trajectory x(t) that connects an equilibrium x∗ to itself;
x(t) → x∗ as t → ±∞. A heteroclinic orbit connects two different equilibria x∗1
and x∗2 ; x(t) → x∗1 as t → −∞ and x(t) → x∗2 as t → +∞. Homoclinic and
heteroclinic orbits play an important role in separating the basins of attraction of
other invariant sets.

Other invariant sets. It is quite possible for dynamical systems to contain certain
simple geometric subsets of phase space where trajectories must remain for all
time once they enter. The dynamics on this invariant sets could contain equi-
libria, periodic orbits and other attractors. Similarly, flows can contain invariant
tori, invariant spheres, cylinders etc. Invariant sets that are everywhere locally
smoothly described by an m-dimensional set of coordinates are called invariant
manifolds.

Chaos. It might be defined in a number of different ways. Here we say that invariant
sets are chaotic if initial conditions diverge from each other locally, and if there is
at least one trajectory in the invariant set such that not only eventually comes back
arbitrarily close to itself, but to every point of the invariant set. This property
ensures that we are talking of an attractor composed of a single piece, not two
separate ones. This property is also known as topological transitivity.

2.4 Asymptotic and structural stability on smooth
systems

The stability of an orbit of a dynamical system characterizes whether nearby (i.e., per-
turbed) orbits will remain in a neighborhood of that orbit or be repelled away from it.
Asymptotic stability additionally characterizes attraction of nearby orbits to this orbit
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in the long-time limit. The distinct concept of structural stability concerns qualitative
changes in the family of all solutions due to perturbations to the functions defining the
dynamical system.

2.4.1 Stability

An important notion of stability in autonomous dynamical systems in that of either
Lyapunov or asymptotic stability of an invariant set. In general, the former means
stability in the weak sense that trajectories starting nearby to the invariant set remain
close to it for all time, whereas the latter is more restrictive. Both refer to stability
of invariant sets with respect to perturbations of initial conditions, at fixed parameter
values.

Stability of invariant sets. An invariant set Λ is called stable if

1. for any sufficiently small neighborhood U ⊃ Λ there exists a neighborhood V ⊃ Λ
such that ϕ(x, t) ∈ U for all x ∈ V and all t > 0;

2. there exists a neighborhood U ′ ⊃ Λ such that ϕ(x, t) → Λ for all x ∈ U ′ as t→ +∞

If Λ is an equilibrium or a cycle, this definition turns into the standard definition
of stable equilibria or cycles. Property (1) is called Lyapunov stability. If a set Λ is
Lyapunov stable, nearby orbits do not leave its neighborhood. Property (2) is sometimes
called asymptotic stability. There are invariant sets that are Lyapunov stable but not
asymptotically stable.

Limit cycles and Poincaré maps One of the main building blocks of the dynamics
in a set of ODEs is the topology analysis of its periodic solutions (or limit cycles). Limit
cycles provide a natural way to transform between flows and maps. Consider a limit
cycle solution x(t) = p(t) of period T > 0, that is p(t+T ) = p(t). To study the dynamics
near such a cycle, we can choose a Poincaré section, which is an (n − 1)-dimensional
surface Π that contains a point xp = p(tp) on the limit cycle and which is transverse
to the flow at xp. We can use the flow ϕ to define a map P from Π to Π, called the
Poincaré map, which is defined for x sufficiently close to xp as

P(x) = φ(x, τ(x)), (2.10)

where τ(x) is defined implicitly as the time closest to T for which φ(x, τ(x)) ∈ Π.
Note that we can then define the Poincaré map as a smooth projection S of the fixed

time-T map φ(x, T ) for x ∈ Π such that

P(x) = S(φ(x, T ), x), (2.11)

where S(y, x) := φ(y, τ(x)). We can study the stability of the periodic solution by study-
ing the spectrum of the Jacobian matrix of the Poincaré map at xp (i.e. eig{Px(xp)}).

In general, a consequence of using Poincaré maps rather than flows in the stability
analysis of invariant sets is that they reduce their dimension of the sets we need to
consider. Thus, limit cycles of flows correspond to isolated fixed points of Poincaré
maps; invariant tori correspond to closed curves of the map; and a chaotic invariant sets
decrease their fractal dimension by one.
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2.5 Structural stability

Dynamical systems theory aims to classify dynamics qualitatively. Structurally stable
systems are ones for which all nearby systems have qualitatively equivalent dynamics.
Thus we need a precise notion of nearby and also of equivalence. Nearby refers to any
possible perturbation of the system itself (the function F (x) for ODE), including for
example variation of the systems parameters. We call two systems equivalent if their
phase spaces have the same dimension, the same number and type of invariant sets, in
the same general position with respect to each other. To achieve such a definition, we
use mathematical topology.

Topological equivalence. We say that two phase portraits are topologically equiv-
alent if there is a smooth transformation that stretches, twists, rotates, but not folds
one phase portrait into the other. Such transformations are called homeomorphisms,
which are continuous functions defined over the entire phase space whose inverses are
also continuous.

Two dynamical systems defined by operators ϕ,ψ : X × T → X are topologically
equivalent if there is a homeomorphism h that maps the orbits of the first system onto
orbits of the second one, preserving the direction of time.

One of the key applications of topological equivalence is to show that under hyper-
bolicity condition, linearization of the dynamical systems about the neighborhood of an
invariant set are locally topologically equivalent.

It can be proved that the flow local to any two hyperbolic equilibria of n-dimensional
systems which have the same number of eigenvalues with negative real part are topo-
logically equivalent to each other. Now, we define hyperbolicity for flows and maps
as:

Hyperbolicity in Flows. Consider an equilibrium x∗ of a flow ϕ defined by a system
of ODEs ẋ = F (x). We refer to the eigenvalues of an equilibrium x∗, to mean the
eigenvalues of the associated Jacobian matrix Fx(x∗). An equilibrium is said to
be hyperbolic if none of its eigenvalues lie on the imaginary axis.

Hyperbolicity in Maps. Similarly, consider a fixed point x∗ of a map π defined by
the iterated equation xn+1 = P (xn). We refer to the multipliers µi of a fixed point
x∗, to mean the eigenvalues of the associated Jacobian matrix Px(x∗). A fixed
point is said to be hyperbolic if none of the multipliers lie on the unit circle.

2.5.1 Bifurcations

We are now interested in the parameter dependance of a dynamical system. So for ODEs
or maps we write

ẋ = F (x, µ), or xn+1 = P (xn, µ),

where µ ∈ R
m is a vector of parameters.

Take some value µ = µ0 and consider a maximal connected parameter set containing
µ0 and composed by those points for which the system has a phase portrait that is
topologically equivalent to that at µ0. Taking all such sets in the parameter space R

m,
we obtain the parametric portrait of the system. The parametric portrait together with
its characteristic phase portraits constitute a bifurcation diagram.
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Figure 2.1: Main codimention-1 local bifurcations on smooth dynamical systems.

Local Bifurcations. A local bifurcation arises due to the loss of hyperbolicity of
an invariant set upon varying a parameter. All other bifurcations are called global
bifurcations. The codimension is the number of independent conditions determining the
bifurcation; this is the codimension of a certain bifurcation is the same in all generic
systems depending on a sufficient number of parameters.

Main codimension-one local bifurcations. Many kinds of local bifurcations of
smooth systems have been studied and classified, see for example [43].

Figure 2.1 summarizes the main types of codimension-one local bifurcations of smooth
vector fields and an associated representative bifurcation diagram. In each case, under
appropriate defining and non-degeneracy conditions, one can calculate an appropriate
normal form that can be obtained by smooth coordinate transformations from any sys-
tem that undergoes the bifurcation in question.

Note that bifurcations of equilibria in flows have a direct analogy to limit cycle bifur-
cations; this is, limit cycles can present fold (or saddle-node), pitchfork or transcritical
bifurcations. The study of codimension–one bifurcations of limit cycle can be studied
through the bifurcations of fixed points in the associated Poincaré map introduced in
(2.10) or equivalently (2.11) as

xn+1 = P(xn, µ). (2.12)

The defining condition is that for a fixed point in a flow there is an eigenvalue at
zero and for the map that there is a multiplier at 1. The case of the Hopf bifurcation is
more subtle, this is for maps occurs a complex pair of eigenvalues cross the unit circle.
For torus or Neimark-Sacker bifurcation there is a birth of invariant circles of the map.
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Figure 2.2: Main codimention-1 global bifurcations on smooth dynamical systems.

Global bifurcations. In contrast, global bifurcations typically occur because of a
change in the topology of stable and unstable manifolds of invariant sets. A typical
example is a homoclinic bifurcation when the stable and unstable manifold of the same
invariant set form an intersection or tangency at a fixed parameter value.

2.6 Piecewise smooth dynamical systems

A piecewise smooth (PWS) dynamical system is a set of smooth dynamical systems (i.e.
with elements of the form Di = {Xi, Ti, ϕi(x, t)}

1); plus a set of rules for concatenation
in time for some dynamical system Di to another Dj , such that identity and group
conditions are satisfied. In general the set of rules for concatenation can be expressed
through zero level sets of scalar functions, say σij : R

n → R
2, to commute at time τ

from Di to Dj ; such that the final state xσ := x(τ) = ϕi(x0, τ) becomes an initial state
as x(τ) ≡ ϕj(xσ, 0). This is equivalent to say that the state x at commutation time τ
can be expressed as function of both evolution operators.

In [19] an extensive study of PWS dynamical system can be found. Here, we present
some representative examples that illustrates fundamental properties.

2.6.1 Piecewise smooth maps

A piecewise-smooth map is described by a finite set of smooth maps

x 7→ Pi(x, µ), for x ∈ Si,

1see definition of Smooth Dynamical System in Sec.2.2
2In addition to the transversality condition.
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where ∪iSi = D ⊂ R
n and each Si has a non-empty interior. The intersection Σij

between the closure (set plus its boundary) of the sets Si and Sj (that is, Σij := S̄i∩ S̄j)
is either an R

(n−1)-dimensional manifold included in the boundaries ∂Sj and ∂Si, or is
the empty set. Each function Pi is smooth in both the state x and parameter µ for any
open subset U of Si.

2.6.2 Piecewise smooth flows (ODEs)

A piecewise-smooth flow is given by a finite set of ODEs

ẋ = Fi(x, µ), for x ∈ Si,

where ∪iSi = D ⊂ R
n and each Si has a non-empty interior. The intersection Σij := S̄i∩

S̄j is either an R
(n−1) dimensional manifold included in the boundaries ∂Sj and ∂Si, or

is the empty set. Each vector field Fi is smooth in both the state x and parameter µ
and defines a smooth flow φi(x, t) within any open set U ∈ Si. In particular, each flow
φi is well-defined on both sides of the boundary Sj .

Example: The bilinear oscillator, can be written as the first-order system by setting
x1 = q, x2 = q̇ and x3 = t so that

ẋ1 = x2, (2.13a)

ẋ2 = −2ζx2 − κix1 + a cos(x3), (2.13b)

ẋ3 = 1, (2.13c)

where the value of κi depends on region Si, with S1 = {x1 < 0}, S2 = {x1 > 0}.

2.6.3 Filippov systems

Consider a general piecewise-smooth continuous system with a single boundary Σ , such
that

ẋ =

{

F1(x), if H(x) > 0,

F2(x), if H(x) < 0,
(2.14)

where Σ is defined by the zero set of a smooth function H and F1(x) 6= F2(x) if H(x) =
0. This class of systems must be treated with great care since we have to allow the
possibility of sliding motion. In order to define sliding, it is useful to think of system
(2.14) local to the discontinuity boundary between two regions defined by the zero set
of the smooth function H(x) = 0.

The sliding region of the discontinuity set of a system of the form (2.14) is given by
that portion of the boundary of H(x) for which (HxF1) · (HxF2) < 0. That is, HxF1

(the component of F1 normal to H) has the opposite sign to HxF2. Thus the boundary
is simultaneously attracting (or repelling) from both sides.

Two approaches exist in the literature for formulating the equations for flows that
slide when written in the general form. These are Utkin equivalent control method [75]
and Filippov convex method [25]. In Utkin method one supposes that the system flows
according to the sliding vector field F12 which is the average of the two vector fields F1

(in region S1) and F2 (in region S2) plus a control β(x) ∈ [−1, 1] in the direction of the
difference between the vector fields:

F12 =
F1 + F2

2
+
F2 − F1

2
β(x).
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Specifically the equivalent control is

β(x) = −
HxF1 +HxF2

HxF2 −HxF1
.

Filippov’s method, by contrast, takes a simple convex combination of the two vector
fields

F12 = (1 − α)F1 + αF2.

with 0 ≤ α ≤ 1, where

α(x) =
HxF1

Hx(F1 − F2)
.

Sometimes, where there is no ambiguity we write Fij := Fs to represent the sliding flow.

2.6.4 Impacting systems

An impacting system comprises a smooth dynamical system whose flow may be defined
by

ẋ = F (x), if x ∈ int{Ω} or x ∈ ∂Ω+, (2.15)

plus an impact map

x 7→ ρ(x), if x ∈ ∂Ω−. (2.16)

Here Ω is called the admissible space and ∂Ω− is part of the boundary set ∂Ω (impacting
surface), that in general has lower dimension.

Notice that the impacting system in (2.15) (2.16) may implicitly define several dy-
namical modes associated to the constrained dynamics.

Impacting system with a single impact surface

Let us define a unique impacting surface by the zero level set of a smooth function H(x)
with negative relative velocity and the admissible space Ω is defined by H(x) ≥ 0.

We can define an impacting system with a single impact surface as

{

ẋ = F (x), if H(x) > 0, or H(x) = 0, v(x) ≥ 0,

x+ = R(x−), if H(x−) = 0, v(x−) > 0.
(2.17)

x+ = R(x−) = x− −W (x−)v(x−),

To describe the possible constrained motion, we use the equivalent sliding vector field

Fs(x) = F (x) + λ(x)W (x),

when H(x) = 0, v(x) = 0 and a(x) < 0, where

λ(x) = −
a(x)

(vxW )(x)
.
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Example. A classical example is the driven impact oscillator with a Newton–like resti-
tution law for elastic impacts. We can write the impacting system in the form

[

ẋ1

ẋ2

]

=

[

0 1
−1 −2ζ

] [

x1

x2

]

+

[

0
cos(ωt)

]

, (2.18a)

[

x1(τ
+)

x2(τ
+)

]

=

[

1 0
0 −r

] [

x1(τ
−)

x2(τ
−)

]

. (2.18b)

Here we have the free body dynamics together with the impact rule which applies at
impact time τ , and the state vector x = (x1, x2, x3)

T , is defined as

x1 = H(x), (Relative position)
x2 = HxF (x), (Relative velocity)
x3 = t.

(2.19)

Zeno phenomenon Typically, unlike sliding motion in Filippov systems, impacting
systems do not enter a sticking region directly, but via a chattering sequence (also known
in control theory as a Zeno phenomenon). Such a sequence begins if an impact occurs
within Σ−, close to the set Σ0 with v(x+) � 1 and a(x+) < 0. There follows an infinite
sequence of impacts, of successively reduced velocity, which converges in finite time, onto
a point in the sticking set. After the accumulation of such a sequence, the motion will
evolve in the sticking set in the manner described above. We shall return to an analysis
of chattering in Chapter 4. Chattering sequences are a commonly observed feature of
hybrid systems, and require special care when computing the flow numerically.

2.7 Asymptotic and structural stability of PWS

It is a particularly cumbersome task to provide necessary and sufficient conditions that
guarantee the asymptotic stability of a desired invariant set of a piecewise-smooth system
(see [47]). Even the problem of assessing the asymptotic stability of an equilibrium that
rests on a discontinuity boundary is an open problem in general.

Thus, all the bifurcations discussed in Sec.2.5.1 can also occur in piecewise smooth
systems. However, there are also other bifurcations that are unique to piecewise-smooth
systems. These typically involve non-generic interactions of an invariant set with a
discontinuity boundary.

Here we shall introduce the broader concept of a discontinuity-induced bifurcation
[18] [14]. By this term we will identify qualitative changes to the topology of invariant
sets with respect to the discontinuity boundaries. Specifically, we wish to single out
parameter values at which the invariant set changes its event sequence, that is the order
and sense of interaction with the discontinuity boundaries. Such changes are typically
brought about (or induced) through non-transversal interaction with a discontinuity
boundary.

2.7.1 Discontinuity induced bifurcations (DIB)

The analysis of discontinuity-induced bifurcation in maps is relatively straightforward;
one merely has to consider the fate of iterates that land either side of the discontinuity.
DIBs in piecewise-smooth flows are far harder to analyze, because one must establish
the fate of topologically distinct trajectories close to the structurally unstable event that
determines the bifurcation. A key analytical tool for the study of DIBs involving limit
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cycles and more complex invariant sets, is the discontinuity map (DM), a term first
introduced by Nordmark [51]. This is a local map that is defined locally near the point
at which a trajectory interacts with a discontinuity boundary. When composed with a
global Poincaré map (for example around the limit cycle), the DM takes into account
the correction to be made because of the interaction with the discontinuity boundary.

It is natural to ask what form P takes when ‖ x− xp ‖ is small. The answer to this
question takes three forms, and depends crucially upon the nature of the orbit p(t). If
p(t) lies wholly inside Si then nearby orbits will also lie inside Si. In this case the fixed
time-T map starting from x will be the smooth flow map P(x) = φi(x, t), which has a
well-defined Taylor series,

P (x) = N(x− xp) +O(‖ x− xp ‖2),

where N = φi, x(xp, T ) is the Jacobian derivative with respect to x of the flow φi

around the periodic orbit, evaluated at x = xp. More interesting things happen if
the periodic orbit p(t) intersects discontinuity surfaces Σij . Consider next the case
where p(t) has two transverse intersections with a discontinuity set Σ. In this case
it is tempting to assume that the linearization of the Poincaré map takes the form
P (x) = N1N2N3(x−xp), where N1, N2 and N3 are linearizations of the flows φ1(xp, T1),
φ2(x

′
p, T2) and φ1(x

′′
p , T3) respectively for the appropriate time T1 on the trajectory

starting at xp ∈ Π to respectively reach Σ for the first time, T2 to pass between the first
and second intersections of Σ, and T3 to pass from Σ back to Π. However, this is not
the case because, each time Σ is crossed transversally one must apply a correction to the
Poincaré map. This correction is necessary because the time taken for trajectories at
points x close to xp to reach the discontinuity boundary Σ will in general vary, and so a
small error will be made in assuming that the linearization required is T1 for a constant
time. The correction to this error is the discontinuity map in this case. The effect of the
DM on the matrix N1 is to multiply it by a so-called saltation matrix [2] [51] [50] [46]. A
similar correction must be applied to the matrix N2. Not introducing these corrections
will in general result in wrong conclusions being made about the Floquet multipliers of
the periodic orbit p(t). Note in this case that, provided the form of the jump in the
vector fields upon crossing Σ is described by a smooth function, then the discontinuity
mapping, and the associated global Poincaré map around p(t) will be smooth. Similar
considerations apply to impacting hybrid systems where a periodic orbit p(t) has a single
impact with a discontinuity surface.

Now consider for a moment the special case where the velocity normal to Σ is zero,
so that the periodic orbit grazes the discontinuity surface. Note that the trajectories
from some initial conditions x ∈ Π near xp do not intersect Σ at all, whereas others
intersect Σ with a low normal velocity. The discontinuity mapping in this case is the
identity for orbits that do not cross Σ, but is defined as the local correction which must
be applied to initial conditions that do cross Σ so that a Poincaré map can be applied as
if Σ were not there. The effect of applying the DM to the map in this case is to introduce
additional terms proportional to fractional powers of ‖ x − xp ‖, such as ‖ x − xp ‖1/2

or ‖ x− xp ‖3/2.

2.7.2 Types of discontinuity-induced bifurcations

Let us list some of the most commonly occurring types of codimension one DIBs (see
Fig. 2.3):
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Border collisions of maps. These are conceptually the simplest kind of non-smooth
transition and occur when, at a critical parameter value, a fixed point of a non-
smooth map lies precisely on a discontinuity boundary Σ. For maps locally
piecewise-linear continuous there is now a mature theory for describing the bi-
furcation, that may result upon varying a parameter through such an event. Re-
markably, the unfolding may be quite complex. Even in one dimension, it can be
verified that a period-1 attractor jump to a period-n attractor for any arbitrary n,
or to robust chaos without any periodic windows. In general n-dimensional maps
only information on the simplest fixed points is known. There are some result
in the study border collision bifurcations in maps with other degrees of singular-
ity, including the discontinuous and square-root cases but there are more open
questions than in the PWLC case.

Boundary equilibrium bifurcations. The simplest kind of DIB for flows occurs
when an equilibrium point lies precisely on a discontinuity boundary Σ (see [24]).
In Filippov systems and hybrid systems with sticking regions there is also the
possibility of pseudo-equilibria which are equilibria of the sliding or sticking flow
but are not equilibria of any of the vector fields of the original system. There are
thus possibilities where the equilibrium lies precisely on the boundary between a
sliding or sticking region and a pseudo-equilibrium turns into a regular equilibrium
(either under direct parameter variation or in a fold-like transition where both
exist for the same sign of the perturbing parameter). There is also the possibility
that a limit-cycle may be spawned under parameter perturbation of the boundary
equilibrium, in a Hopf-like transition.

Grazing bifurcations of limit cycles. One of the most studied DIBs in applica-
tions is caused by a limit cycle of a flow becoming tangent to (i.e. grazing) with
a discontinuity boundary. One might naively think that this can be completely
understood (upon taking an appropriate Poincaré section that contains the graz-
ing point) as a border collision. However, for piecewise-smooth ODE this is not
necessarily the case. Instead one has to analyze carefully what happens to the flow
in the neighborhood of the grazing point. In fact, one can derive an associated
discontinuity map. But, the link between the singularity of the map and the degree
of discontinuity of the flow is a subtle one which also depends on whether the flow
is uniformly discontinuous or not at the grazing point. This analysis explains what
is observed at the grazing bifurcations in the impact and bi-linear oscillators.

Sliding and sticking bifurcations. There are several ways that an invariant set
such as a limit cycle can do something structurally unstable with respect to the
boundary of a sliding region in a Filippov system. The Poincaré maps so derived
have the property of typically being non-invertible in at least one region of phase
space that is due to the loss of information backward in time inherent in sliding
motion. This analysis helps to explain the dynamics observed in the relay control
and dry friction examples. In addition, in impacting systems sliding regions can
be approached by infinite chattering sequences of impacts.

Boundary intersection crossing/corner collision. Another possibility for a
codimension-one event in a flow is where an invariant set (e.g. a limit cycle)
passes through the (n − 2)-dimensional set formed by the intersection of two dif-
ferent discontinuity manifolds Σ1 and Σ2. There is also an special case where
the jumps in vector field across Σ1 and Σ2 are such that their intersection can
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be considered as a corner in a single discontinuity surface. This can explain the
dynamics observed in the DC-DC converter.

Some possible global bifurcations. One example, that we shall mention in Chapter
5, involves a connection between the stable and unstable manifolds of pseudo-
equilibria which are equilibria of a sliding flow but not of the individual flows either
side of a discontinuity boundary. Topics include parameter and noise sensitivity;
bifurcations that involve invariant tori grazing with a discontinuity surface; the
similarity between grazing in piecewise-smooth flows and hybrid systems in the
limit of large discontinuities; and codimension-two bifurcations.

2.8 Numerical methods

In general we referred to numerical analysis tools for differential equations. For smooth
flows, there are broadly speaking two classes of numerical methods for investigating
the possible dynamics for a range of parameter values namely; direct numerical simu-
lation, and numerical continuation (also known as path-following). This classification
also applies to piecewise-smooth systems, The rigorous numerical analysis of nonsmooth
dynamical systems remains a theory that is far from complete.

2.8.1 Direct numerical simulation

When computing solutions to piecewise-smooth systems it is usually not possible to use
general purpose software directly, as they typically use numerical integration routines
that assume a high degree of smoothness of the solution. All numerical computations
must make special allowance for the nonsmooth events which occur when a discontinuity
boundary is reached. Simulation methods for nonsmooth systems fall broadly into two
categories; time-stepping and event-driven. The former is most often used in many-
particle rigid body dynamics written in complementarity form for which there can be
a big number of constraints. For such problems, to accurately solve for events when
one of the every one of the constraint functions becomes zero within each time-step
and to subsequently re-initiate the dynamics would be prohibitively computationally
expensive. In contrast, the basic idea of time-stepping is to only check constraints
at fixed times. There are adaptations to standard methods for integrating ODE for
complementarity systems, some of which are based on linear complementarity problem
solvers that have been developed in optimization theory and that can be directly used on
simulation of piecewise smooth dynamical systems. Clearly there are errors introduced
by not accurately detecting the transition times, and therefore time-stepping schemes
are often of low-order accuracy and can completely miss grazing events associated with
low-velocity collisions. Several commercially available implementations of time-stepping
algorithms, especially applied to rigid body mechanics, are available. In this thesis
we are concerned with low-dimensional systems with a small number of discontinuity
boundaries (no more than a couple). In this context, explicit event driven schemes
are feasible, fast and accurate. In these methods, trajectories far from boundaries are
solved using standard numerical integration algorithms for smooth dynamical systems
(e.g. Runge- Kutta, BDF, etc.), then times at which a discontinuity boundary is hit are
accurately solved. Here it is necessary to consider the capability of simulating sliding
flow by defining a sliding vector fields. A key requirement of using an event-driven
method is the ability to define each discontinuity boundary Σi as the zero set of a
smooth function Hi = 0. Also we have to carefully define a set of transition rules at
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each boundary if necessary, a reset rule Ri. Thus the time-integration of a trajectory of
the dynamical system is reduced to the finding of a set of event times τk and boundary

events H
(k)
i such that H

(k)
i (x(τk)) = 0. To achieve this we set up a series of monitor

functions the values of which are computed during each step of the time-integration. If
one of these functions changes sign during a time step, then one needs to use a root
finding method to accurately find where Hi = 0. In this thesis, we have implemented an
algorithm for time simulation of impacting systems with a single constraint, while more
general algorithms for piecewise smooth dynamical systems has been implemented by
Piiroinen and Kuznetsov [61].

Brute force bifurcation analysis

A powerful tool for the analysis of dynamical system is the capability of compute the
bifurcation diagram for the set of attracting solutions using directly simulation. In
this process, for a fixed parameter value, a set of initial points is chosen and the flow
from each point is simulated a sufficiently long time for transients to decay, and for the
ensuing dynamics to be deemed to have converged onto an attractor. This dynamics is
then recorded, perhaps in a suitable Poincaré section. The parameter is then changed
slightly and the same process repeated. Of course, one has to build up experience about
the system in order to determine how long is a s̈ufficiently long timë. However, an even
more crucial question is to determine what set of initial conditions to take in order to
converge to the various possible attractors. One approach here, which may minimize
transient times, is to choose an initial condition for the new parameter value to be a
point on the attractor at the previous parameter value. However, such an approach will
necessarily miss the possibility of competing attractors present in the system. Thus,
in general one should start from a range of different points within a suitably defined
subset of the phase space from which one has a priori knowledge that the attractors
of the system must lie. But how to choose such points within this set? The number
of points should of course be chosen to be as large as possible for the computational
time available. One could start with a regular grid of points, but there are advantages
in choosing the initial points at random. That is, at each fixed parameter value, use
a random number generator to choose initial conditions in uniformly. This way, the
situation where attractors with small basins of attraction are missed consistently at each
parameter value are likely to be avoided. We will refer to this method for computing
bifurcation diagrams as a Monte Carlo method. The direct simulation method has many
advantages in giving a quick and realistic picture of the bifurcation diagram of a system
without assuming any a-priori structure about the number or form of the attractors.

2.8.2 Numerical continuation

Whilst having the merits described above, direct simulation suffers from the two disad-
vantages that it does not accurately pinpoint bifurcation points, and it only computes
stable invariant sets (attractors). In order to accurately locate bifurcations it is some-
times necessary to compute unstable invariant sets. For example the collision of a limit
cycle with an unstable equilibrium can cause the sudden disappearance of that limit
cycle or one might want to detect the presence of an unstable limit cycle which at some
subsequent parameter value may re-stabilize at a fold. Hence there is a complimen-
tary need for direct methods for computing specific invariant sets of dynamical systems.
These typically comprise methods for numerical path-following of these solutions as a
parameter varies. These bifurcations might be regular bifurcations that can also occur
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in smooth systems, or they might be DIBs associated with the changing of the event
sequence of the orbit. For smooth systems, there is a large literature on such methods,
see e.g. [43] for general explanations.
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Figure 2.3: Main codimention-1 local bifurcations on nonsmooth dynamical systems.
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In this chapter we present an overview of the main strategies used in this thesis for
the analysis of impacting systems in the context of the qualitative Theory of Dynamical
Systems introduced in Chapter 2.

Rather than presenting a generalized theory for impacting systems (for which you can
see [7]), we have chosen a simplified representative system, where we study many relevant
issues on the modelling, simulation and stability analysis. The idea is to characterize
systematically the properties inherent to impacting systems as well as the complexity
associated to nonsmooth phenomena.
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3.1 Impacting systems as a class of PWS dynamical
system

Impacting systems are a class of piecewise smooth dynamical system often used to model
mechanical systems with unilateral constraints on the position. In Sec. 2.6.4 we have
given a general definition of such system as the composition of a smooth dynamical
system plus an impact map of the form:

{

x(t) = ϕ(x0, t), if x ∈ int{Ω} or x ∈ ∂Ω+,

x 7→ ρ(x), if x ∈ ∂Ω− (Impact condition).

(3.1a)

(3.1b)

The evolution operator ϕ in (3.1a) determines the free body dynamics, and is associ-
ated to the vector field ẋ = F (x). Here Ω is the admissible space with a boundary noted
by ∂Ω.

The unilateral constraint ∂Ω can be defined as the zero level set of a scalar function
H(x) : R

n → R such that

∂Ω = {x : x ∈ R
n,H(x) = 0},

with Hx = ∂H
∂x pointing towards the admissible space Ω. Notice that Ω is implicitly

defined as the epigraph of H [7]. This is

epi(H) := {(x, α) : x ∈ R
n, α ∈ R,H(x) ≤ α} ⊆ R

n+1,

and then
Ω := {x : ∃(x, α) ∈ epi(H)}.

We define as singularities all nondifferentiable points on the boundary set, this is
∂Ωc ⊂ ∂Ω. For example, all xc ∈ ∂Ω are singularities, if the normal direction to ∂Ω is not
uniquely defined. In this latter case, it is necessary to take into account additional local
properties for the definition of a suitable impact map for corner points (see [28] [29] [7]).
In chapter 6, we introduce the concept of corner in a boundary allowing different degrees
of discontinuity on terms of the scalar function H and its derivatives.

The impact dynamics in (3.1b) is defined by ρ : ∂Ω → ∂Ω which is a reset map (or
impact map) where the subset of the state variables that determines the position remain
unchanged at impact, while the velocity variables jump as the relative components of
velocity with the impacting surface change direction.

Contact dynamics.

As in Filippov systems, impacting systems may define implicitly some constrained dy-
namics. Impacting systems in particular may evolve in 2m different modes that corre-
spond to free and constrained motion for every one of the m variables that corresponds
to the position (i.e. we assume that m = n/2). In general, the system evolving in a
constrained mode can be modelled through an equivalent vector field Fs obtained from
the interaction between the free flow and the constraint. We will refer to the constrained
dynamical mode as sticking or sliding mode.

3.1.1 Impacting systems with a single constraint

If there is a single constraint we have two dynamical modes in continuous time, namely
free-motion and sticking-motion plus the impact dynamics. The free–motion is defined
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by a smooth evolution operator plus the impact dynamics. In general we are interested
in the study of systems where the smooth dynamics can be defined through the solution
of an initial value problem of ODEs such that

d

dt
(φ(x0, t))

∣

∣

∣

∣

t=τ

= F (φ(x0, τ)), (3.2)

where x(0) = x0 is the initial state. Here the generic evolution operator in (3.1a) is
defined as ϕ := φ.

The impact dynamics is usually noted as x+ = R(x−) where the superscripts ”−”
and ”+” are used to distinguish between the pre- and post-impact state and R is some
function of the system states. This definition does not exclude models with rheonomic
constraints (i.e. with explicit dependence on time) since we assume that a time variable
can be included in the state vector x. From now on, we will assume that the impact
dynamics in (3.1b) can be expressed as a Newton–like percussion law of the form

ρ(x) := R(x) = x−Wv(x), (3.3)

where for a single constraint, W := [ 0 · · · 1 + r · · · 0 ]T , is a constant matrix with
0 ≤ r ≤ 1 to model from plastic to elastic impacts, and v is the relative velocity at
impact.

We can then write the dynamical system in (3.1a) (3.1b) as

{

ẋ = F (x), if H(x) > 0, or H(x) = 0, v(x) > 0,

x+ = R(x−), if H(x) = 0, v(x) < 0.

(3.4a)

(3.4b)

As mentioned above, it is possible for the system evolution to take place on the
constraint or sticking motion. As shown in [54], the sticking-motion is given by the
vector field

Fs(x) = F (x) +Wλ(x), (3.5)

whereH(x) = 0, v(x) = 0 and a(x) < 0, with λ(x) = − a(x)
vxW , and a(x) is the acceleration.

As mention in Sec. 2.6.4, impacting systems may enter a sticking region directly (i.e.
smoothly ), or via a chattering sequence (also known as a Zeno phenomenon). Such a
sequence begins if an impact occurs with low velocity and negative acceleration; this is
v(x+) � 1 and a(x+) < 0. There follows an infinite sequence of impacts, of successively
reduced velocity, which converges in finite time, onto a point in the sticking set. After
the accumulation of such a sequence, the motion will evolve in the sticking dynamical
mode as described above.

The study of nonsmooth dynamical systems is far from being complete and we are
interested in some of the open issues. In particular in this thesis we are interested in
the stability analysis of equilibria and limit cycles.
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3.1.2 Nonsmooth phenomena

For impacting systems we are interested in two novel types of discontinuity induced
bifurcations of equilibria and periodic orbits that occur on different processes, namely
Impact adding and Corner crossing. Let us assume there is a periodic orbit O∗ which is a
solution (that may include impact events) of the system in (3.4). Then under parameter
variations we will observe several bifurcation scenarios as follows :

Impact adding. (Grazing-corner) An impact adding of the orbit O∗ occurs, when
parameter variations imply new impacting events as: (see [67] [51])

• Soft Impact - Studied in the literature as grazing impacts (or low velocity
impacts).

• Hard Impact - This case is characteristic of impacting systems with corners.
As far as we are aware it has been not studied and we propose in Chapter 6
an analytical tools for the analysis.

Corner crossing. (Impacting singularities) A corner crossing DIB occurs when an
impact belonging to the orbit O∗ crosses a corner point yc ∈ Ωc under parameter
variation. In chapters 5 and 6 we present a complete analysis of this bifurcating
scenario for corners of degree 2.

3.1.3 Different formulations for impacting systems

Here we present two different formalisms that have been widely studied in the literature
on nonsmooth systems. Namely, we will briefly present how an impacting system can
be represented as:

• Complementarity system.

• Hybrid system.

An impacting system as a complementarity system

An impacting systems can be written as a complementarity problem for a Lagrangian
nonsmooth dynamical system [44] [8] [1]. It consist of:

• a dynamical system with boundary conditions in terms of state variables,

• a set of input/output variables and their relations with the state variables,

• a set of nonsmooth laws which rely the input/output variable.

The evolution of a Lagrangian system for a general non linear case may be stated as
follows :

M(q)q̈ +Q(q, q′) + Fint(q
′, q, t) = Fext(t) +R, (3.6)

where q is the generalized coordinates vector, M(q) is the inertia term, Q(q, q′) is the
non linear inertia term, Fint(q

′, q, t) is the internal force of the system, Fext(t) is the
given external force, R ∈ R

n is the force due the nonsmooth law.
In a general way, we denote the state of the system as

x =

[

q
q′

]

,
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which is a vector of dimension n. The equation of evolution (3.6) may be reformulated
in terms of the state vector as :

ẋ = F (x) +

[

0
I

]

R, (3.7)

which is a classical order one formulation for an ordinary differential equation.

Constrained variables. In a general way, the dynamical system is completed by a
set of nonsmooth laws which do not concern directly the state vector. The set of such
variables is denoted by y. In Lagrangian systems, the structure of these relations is very
particular and we assume that they can be written as :

y := h(q), (3.8)

ẏ := H(q)T q̇, (3.9)

R := H(q)λ. (3.10)

If we assume that these relations are non holonomic (i.e. independence with respect
to the velocity q′), we derive the relative velocity as:

ẏ =
∂h(q, t)

∂q
q′ +

∂h(q, t)

∂t
. (3.11)

Furthermore, if the constraints is scleronomic ( i.e. independence with respect to the
time t) this relation leads to

ẏ =
∂h(q)

∂q
h(q)q′. (3.12)

Indeed, the gradient ∇qh(q) := ∂h(q)
∂q corresponds to the constraint normal direction.

We assume that the nonsmooth law for impacting systems has only a normal component
which implies that the relation between λ and R is given by :

R = ∇qh(q)λ. (3.13)

Impact Law. Several kind of nonsmooth laws may be formulated for a Lagrangian
system. Here, we define just the unilateral contact law and the impact law.

The unilateral contact law may be formulated as follows :

0 ≤ y ⊥ R ≥ 0, (3.14)

and the Newton–like impact law:

if y(t) = 0, ẏ(t+) = −rẏ(t−), (3.15)

where 0 ≤ r ≤ 1 to model form plastic to elastic impacts.

An impacting system as an hybrid system

The hybrid approach can be used to model dynamical systems where continuous and
discrete variables are necessary to completely describe the dynamics of the system [38]
[78] [37]. We are interested in the model of piecewise-smooth impacting systems where
several dynamical modes may be implicitly defined on the boundaries (i.e. free and
sticking motion). An impacting system as an hybrid system is defined by a 6-tuple
{T ,X ,Q, ϕ, ρ, σ} in which
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T = R, is a time set.

X := Ω ∈ R
n, is the set of permissible states.

Q, is the set of discrete (symbolic) states: Impact, free and sticking motion.

ϕ : T × X ×Q → X , is a continuous evolution operator for each dynamical mode.

ρ : T × X ×Q → X ×Q, is a discrete evolution operator or discrete dynamics.

σ : T × X ×Q → R , is a discrete event generating function (impacting boundaries).

We have several remarks for impacting systems with a single constraint:

• There are three different dynamical modes: Impact, free and sticking motion.
This is Q = {Si, Sf , Ss}.

• We assume that the evolution for the free–motion state is given by x(t) = φ(t, x0),
where φ is the solution of the initial value problem ẋ = F (x, t) with initial condition
x(0) = x0.

• The transition from free-motion to sticking-motion can occur through a grazing or-
bit (smoothly) or through a chattering sequence product of the interaction between
the impact and free dyanmics.

• Function σ can assume any arbitrary shape (as for example corners).

3.2 Simulation of impacting system

There are two main numerical schemes for simulation of impacting systems: Event driven
and Time stepping. The event driven scheme is based on an hybrid formulation while
the time stepping scheme uses fixed step integration computing impact dynamics by
using quadratic programming to solve a complementarity problem. Next, we will briefly
present the main features of the two approaches.

3.2.1 Event driven scheme

Let us assume we are interested in the simulation of an impacting system with a single
constraint in (3.4). In this case it is possible to determine the initial dynamical mode
from the definition as:































ẋ = F (x) if H(x) > 0, or H(x) = 0, v(x) > 0,

or H(x) = 0, v(x) = 0, a(x) > 0.

x+ = R(x) if H(x) = 0, v(x) < 0,

ẋ = Fs(x) if H(x) = 0, v(x) = 0, a(x) ≤ 0,

Not valid. if H(x) < 0.

(3.16)

For simplicity, we assume that the initial conditions satisfy conditions for free–
motion. After determining the initial dynamical mode we now need to define how
the system commutes from one mode to the other. Fig. 3.1 shows the control flow of
the algorithm developed for simulation of impacting systems. There are three basic
operations: Free Dynamics, Impact Dynamics and Sticking Dynamics.
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Different from many other approaches for the simulation of impacting system that
use the hybrid systems approach we do not avoid the numerical problems that chattering
(or Zeno behaviour) possesses, but instead we are using a recently developed method (see
[55] for further details and the code attached to the thesis) to deal with this very specific
situation. The main idea with this method is to introduce a chatter map that maps the
state forward in time when the impacts are accumulating. This means that every time
there is an impact and the relative acceleration between two bodies are negative the
method checks whether the chatter map can be applied. The method also makes sure
that the map does not introduce a bigger error than some tolerance given by the user.
After the chatter map has been applied the two object that were impacting with each
other will now be in contact until the relative acceleration between the two objects
becomes positive (Release detect). Using this strategy we have computed the different
types of bifurcation diagrams presented in Chapter 4. We have chosen Matlab’s ODE
solvers (and mainly Rk45, which is a fourth order Runge-Kutta method) with the built-
in event location routines to detect the crossings of the discontinuity surfaces. Such
event location routines find the zero of the specified functions called event functions and
the direction of the zero crossing. The values of the relative and absolute tolerance that
we have considered to implement the integration method are both 10−12. We have also
used a maximum integration step whose value have been 10−3.

3.2.2 Time stepping scheme

Here we present the numerical strategy used in the SICONOS platform for the sim-
ulations of nonsmooth systems, this is the time discretization method for nonsmooth
Lagrange dynamical systems in (3.6). The equation may be reformulated equivalently
in terms of an integral over a time step [ti, ti+1] of length h such that :

∫

[ti,ti+1]

Mq′′ + Cq′ +Kq dt =

∫

[ti,ti+1]

Fext(t) dt+

∫

[ti,ti+1]

Rdν. (3.17)

Due to the non smooth character of the motion, the first term is integrated by a first
order scheme (backward Euler-like) such that :

∫

[ti,ti+1]

Mq′′ dt ≈M(q′(ti+1) − q′(ti)). (3.18)

For simplicity sake, we note the approximation of q and q′:

q′i+1 ≈ q′(ti+1), q
′
i ≈ q̇(ti). (3.19)

For the other terms, a θ-method is used :
∫

[ti,ti+1]

Cq′ +Kq dt ≈ h
[

θ(Cq′i+1 +Kqi+1) + (1 − θ)(Cq′i +Kqi)
]

, (3.20)

∫

[ti,ti+1]

Fext(t) dt ≈ h [θFext(ti+1) + (1 − θ)Fext(ti)] . (3.21)

For the term which contains the reaction force, we state a new variable such as :

Ri+1 =
1

h

∫

[ti,ti+1]

Rdν. (3.22)

The displacement is integrated through the velocity with :

qi+1 = qi + h
[

θq′i+1 + (1 − θ)q′i
]

. (3.23)
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Figure 3.1: Control flow diagram for an event driven numerical scheme.
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Finally, we obtain the time discretized equation of motion as follows :

[

M + hθC + h2θ2K
]

(q′i+1 − q′i) =

− hCq′i − hKqi − h2θKq′i + h [θFext(ti+1) + (1 − θ)Fext(ti)] + hRi+1, (3.24)

which can be written :

q′i+1 = q′free + hNRi+1, (3.25)

where

N =
[

M + hθC + h2θ2K
]−1

,

q′free =

q′i +N
[

−hCq′i − hKqi − h2θKq′i + h [θFext(ti+1) + (1 − θ)Fext(ti).]
]

. (3.26)

The free velocity q′free corresponds to the velocity of the system without any con-
straints.

Time discretization of the relations. The Time discretization of the relations is
fully implicit and may be written as :

yi+1 = HT qi+1 + b, (3.27)

ẏi+1 = HT q′i+1, (3.28)

Ri+1 = Hλi+1, (3.29)

Time discretization of the non smooth laws. A natural way of discretizing the
unilateral constraint leads to the following implicit discretization :

0 ≤ yi+1 ⊥ λi+1 ≥ 0, (3.30)

In the Moreau’s time–stepping [1], we use a reformulation of the unilateral constraints
in terms of velocity (3.30) :

If y(t) = 0, then 0 ≤ ẏ ⊥ λ ≥ 0. (3.31)

which leads to the following discretization:

If yp ≤ 0, then 0 ≤ ẏi+1 ⊥ λi+1 ≥ 0, (3.32)

where yp is a prediction of the position at time ti+1, for instance, yp = yi + h
2 ẏi.

We introduce now the Newton impact law, we consider an equivalent velocity defined
by

ẏe
i+1 = ẏi+1 + rẏi (3.33)

and we apply the constraints directly on this velocity :

If yp ≤ 0, then 0 ≤ ẏe
i+1 ⊥ λi+1 ≥ 0 (3.34)
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3.2.3 Numerical analysis

As mentioned in Chapter 2, Poincaré maps are useful for the qualitative analysis (bi-
furcations) of periodic orbits. Since we have a high quality simulator we also want to
be able to perform the bifurcation analysis of stable solutions using brute force simula-
tion. By using the event generating function in the case of the event-driven numerical
approach (or the complementarity condition in the time-stepping approach), we record
the complete state of the system whenever an impact occurs. This recorded data can be
employed to estimate a map from one impact to the next i.e. a Poincaré impact map or
simply an impact map. Another way of characterizing periodic orbits is through the def-
inition of a Poincaré stroboscopic map (or stroboscopic map) which is a fixed time map
obtained numerically by sampling the state of the system at a fixed rate conveniently
defined by the user; for example in periodically forced systems we will usually chose a
sampling period that is an integer multiple of the forcing period.

We can then use a numerical simulation to study the structural stability of stable
periodic orbits, by plotting the projections of the orbits on the Poincaré sections (im-
pact and stroboscopic) associated to the corresponding maps. Now, under parameter
variations we can graphically capture qualitative changes (bifurcations) on the periodic
solutions as follow:

1. Impact Map
For a codimension-one analysis, we have that µ is a one dimension parameter to
be varied within the model, θi is the phase at impact (in relation with a complete
period of the forcing input), vi is the velocity of the particle at impact, then we
need the plot of:

(a) µ vs. θi, Bifurcation Diagram at impact.

(b) θi vs. vi, for µ = µc (constant) Phase map at impact.

2. Stroboscopic Map
For a codimension-one analysis, we have that θs define a Poincaré section Πs, µ
is a one dimension parameter to be varied within the model, vs and ps are the
velocity and position of the particle when crosses Πs, then we need the plot of:

(a) µ vs. ps Bifurcation Diagram at Πs

(b) ps vs. vs, for µ = µc (constant) Phase Map at Πs

3.3 Cam-follower system as a representative example

We propose the use of a cam–follower system as a benchmark example for the qualita-
tive study of dynamical behavior in impacting systems, since it collects most relevant
properties described in the previous sections. The cam–follower system is inspired from
a widely used mechanical device consisting of two moving parts, namely a rotating part
called cam and a longitudinal moving part called follower [57]. See Fig. 3.2 for the
schematic diagram. It is assumed that the cam excited by an external constant force
producing a constant rotational speed, since we assume no effects on the cam dynamics
coming from the follower. We also assume the follower dynamics can be modelled as a
single degree of freedom damped oscillator. We finally assume that the geometrical con-
struction of the mechanical system is such that the cam imposes a rheonomic (i.e. time
dependant) constraint to the follower position, with interaction modelled by a Newton
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like impact law or equivalent sliding vector field whenever the cam and the follower are
detached or in contact. Note the distinction between the cam–follower system and the
driven impact oscillator since most of the research work done so far has been focused
mainly on the qualitative behavior under smoothly driven impact oscillators [67] [10]
[51] [32]. Instead in the cam–follower system it comes naturally from the cam geometry
that the driven force can be non smooth.

Figure 3.2: Cam-Follower system with different cam profiles

Figures 3.2 and 3.3 presents different shapes and characteristic position (lift), velocity
and acceleration for cam profiles from continuous lift profile,to those with up to fourth
order discontinuities.

Cam-follower as a piecewise smooth dynamical system

It is possible to completely describe the cam–follower system as a driven impact oscillator
plus an impact law. Let us note u the position of the follower and c the position of the
cam on the admissible space of the follower (lift profile) in a common inertial frame. We
define the variables q = u− c (relative position) and q′ = u′− c′ (relative velocity), then
the free–motion will be completely described by the smooth vector field defined through
a second order differential equation of the form

µq̈ + ζq′ + κq = − (µc̈+ ζc′ + κc) , if q > 0 or q = 0, q′ > 0, (3.35)

and the Newton like impact dynamics of the form

q′
+

= −rq′
−
, if q = 0, q′ < 0. (3.36)

Further we can write (3.35) and (3.36) as function of the state variables in the form
of an order one system of ODEs plus an impact map
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{

ẋ = F (x), if H(x) > 0, or H(x) = 0, v(x) > 0,

x+ = R(x−), if H(x) = 0, v(x) < 0.

(3.37a)

(3.37b)

Figure 3.3: (From top to bottom) Cam lift, velocity and acceleration for the three
different cases.

with R(x−) = x− −WHxF (x−), where

x =





x1

x2

x3



 =





q
q′

t



 ,

F (x, t) =







x2

− ζ
µx2 −

κ
µx1 + f̂(x3)

µ

1






,

R(x−) =





x−1
−rx−2
x−3



 ,

H(x) = x1,

W =





0
1 + r

0



 .

Notice that that a lift profile c(t) ∈ Ck implies F ∈ Ck−2.
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3.3.1 Simulation of a cam-follower system

We have performed the simulation of the cam–follower system for different values of the
cam rotational speed with the SICONOS software package using a time-stepping numeri-
cal scheme with step size (h = 1e−4) and an event-driven scheme with minimum step size
(hmin = 1e−12). Fig. 3.4 and 3.5 show the time simulations for different values of the
cam rotational speed and Fig. 3.6 show the chaotic attractor at rpm = 660 for impact
and stroboscopic Poincaré sections. A more extensive investigation of the dynamics of
cam–follower systems will be presented in Chapter 4.
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Figure 3.4: Time series using SICONOS platform. Time-stepping scheme (continuous
line). Event-driven scheme (dashed line) (a) rpm=358. (b) rpm=660. (c) rpm=700.
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Figure 3.5: State space comparison using SICONOS platform. (a) rpm=358. Event
Driven (b) rpm=358. Time Stepping (h = 1e−4)(c) rpm=700. Event Driven (d)
rpm=700. Time Stepping (h = 1e−4)
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Figure 3.6: Attractors comparison using SICONOS platform at rpm=660. (a) Impact
map. (Event Driven) (b) Impact Map. Time Stepping (h = 1e−4)(a) Stroboscopic map.
(Event Driven) (b) Stroboscopic Map. Time Stepping (h = 1e−4)
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3.4 Limit cycle analysis in impacting systems

As an illustrative example we propose to study the stability of piecewise smooth periodic
orbits (i.e. periodic orbits with impacts) in the cam–follower system. We denote an orbit
as O(n,m), when is a period nT orbit with m impacts per period; where T is the period
of the forcing input.

3.4.1 Existence of O(1, 1) periodic orbits

We use the concept of map to define a discrete function P associated to the system in
continuous time in such a way that

xts+T = P (xts
, T ), (3.38)

where xts
is the state of the system at an arbitrary time ts and T defines the period of the

mapping. This is nothing else but a stroboscopic sampling where is usually convenient
to choose the sampling period equal to the forcing period.

In general, it is possible to define the global map P as a composition of two kinds
of maps in which there is one that takes care of discontinuities (Pρ) and the other one
which will account for the continuous flows (Pφ). For example a O(1, 1) orbit can be
expressed as

xts+T = Pφ(Pρ(Pφ(xts
, τ), 0), T − τ), (3.39)

where τ is the impact time referred to the previous sampling ts. Figure 3.7 presents an
schematics for the map composition.

Figure 3.7: The map composition for a O(1, 1) Orbit

Notice that Pφ depends only on the free body dynamics and therefore from (3.2) can
be written as

Pφ(x, t) = φ(x, t).

Furthermore, Pρ provides an instantaneous (zero time) mapping on the relative velocity
and can be directly obtained from (3.4b) as

Pρ(x, 0) = R(x).
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Then, we can write (3.39) as

xts+T = φ(R(φ(xts
, τ)), T − τ). (3.40)

Now we have that a fixed point in (3.40) (associated to the periodic orbit of the

system in continuous time), will satisfy xts
= xts+T ≡ xref

ts
.

If we choose τ = T then, existence of a O(1, 1) will be obtained by solving for ts the
equation

R(φ(xref
ts
, T )) − xref

ts
= 0.

Finally, it is necessary to verify the validity for every solution given that is possible
to find some solutions for the equation that allows penetration of the bodies.

3.4.2 Asymptotic stability of periodic orbits with impacts

Let us assume we have a periodic orbit (Oref (1, 1)) depicted with a solid line in Fig. 3.8(a).
In the previous section we have shown that we can arbitrary choose the stroboscopic
sampling ts = 0 exactly at impact with period T and the impacting time τ ref . We also
have that x(0) = xref

0 ∈ Oref is the state of the system at t = 0 after impact. Then we
are interested in the asymptotic behavior of the perturbed orbit (O) depicted as dashed
line in Fig. 3.8(a), with initial condition x(0) = x0 /∈ Oref . In the depicted example the
perturbed orbit (dashed) approaches asymptotically the continuous one (solid).

Fig. 3.8(b) represents the construction of a global map P that will allow us to deter-
mine the asymptotic stability near the orbits Oref . P will map an initial state x0 to a
final state x1 after time T , in general we have that

xn+1 = P(xn).

Now, P can be defined as a composition of two different maps. The first map Φ will
be associated to the stroboscopic sampling and the free flow (i.e. without impacts). The
other map D is a zero time discontinuous mapping depending on the perturbation and
the impact, specifically:

xd = Φ(x0),

x1 = D(xd).

As sketched Fig. 3.8(b), we can directly define Φ as an stroboscopic mapping to
determine xd as function of the initial state x0 and the sampling period T :

xd = Φ(x0) = φ(x0, T ). (3.41)

We can also construct the discontinuity mapping D as a composition of the flow from
point xd in the perturbed orbit till x−τ which is the pre-impact state, i.e.

x−τ = φ(xd, ti(xd)),

then using the impact law presented at (3.4b) we can determine the post-impact state

x+
τ = R(x−τ , τ),

and finally flowing back to the stroboscopic section to determine x1, with

x1 = φ(x+
τ ,−ti(xd)).
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(a)

(b)

Figure 3.8: (a) Continuous is the (1,1) Orbit, dashed is a perturbed orbit. (b) Construc-
tion of the global map where ti = τ − T .

After the composition, we can write the zero time discontinuity mapping D as

x1 = D(xd) = φ(R(φ(xd, ti(xd))),−ti(xd)). (3.42)

At this point we can write a complete expression for the stroboscopic map P as

x1 = P(x0) = D(Φ(x0)) (3.43)

Given that (3.43) is in general a nonlinear map, the local stability characteristics
of the discrete system are governed, to the lowest order, by the linearization about the
reference fixed point xref

0 :

P(x0) = P(xref
0 ) + Px(xref

0 )(x0 − xref
0 ) + o(‖x0 − xref

0 ‖),

where
Px(xref

0 ) = DxΦx,

Dx(xref
0 , τ ref ) = Rx +

(F+ −RxF
−)Hx

HxF−
,

and Φx = φx(x0, T ) can be computed numerically from the variational equation for the
Jacobian J(t) = φx(x0, t) as

J̇ = Fx(x)J.

The complete derivation of P(x) will be presented in Chapter 5.
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This chapter is devoted to give a brief overview of the complex dynamics of a repre-
sentative cam-follower system, already introduced in Sec. 3.3 The aim is to present the
complexity exhibited by the cam–follower because of the nonsmooth nature of the cam
profile; namely the qualitative changes of the system behavior under parameter vari-
ations, for solutions with impacts near to discontinuity points. Cam-follower systems
are a particularly important class of mechanical systems with displacement constraints
widely used for the operation of various machines and mechanical devices [57]. Usu-
ally, their purpose is to actuate valves or other mechanisms through the movement of
a follower forced by a rotating cam. For example, all types of automated production
machines, including screw machines, spring winders and assembly machines, rely heavily
on this kind of systems for their operation. One of the most common application is to
the valve train of internal combustion engines (ICE) [31], where the effectiveness of the
ICE is based on the proper working of a cam-follower system. A schematic figure of a
single valve for a typical pushrod type engine is presented in Fig. 4.1. Here, the cam
rotation results in a linear motion imparted to the valve. The valve spring in the system
provides the restoring force necessary to maintain contact between the components.

To guarantee that the follower moves as required, it is important in applications to
carefully design the cam profile. Different cam geometries are used in practice ranging
from circular cams to highly complex cam profiles. In general, there is now a large variety
of alternative methods to select the cam profile. For example, by using constrained
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Figure 4.1: Valve train configuration.

optimization algorithm, it is possible to use splines to obtain the cam geometry from
the desired motion that the cam is required to impart on the follower (see for examples
[12] and [23]). This often means that while the cam has a continuous displacement
profile, it might have discontinuities in its acceleration [58].

It has been observed that, as the cam rotational speed increases, the follower can
detach from the cam. This causes the onset of undesired behavior associated to impacts
taking place between the follower and the cam. For example, in automotive engines this
phenomenon can seriously deteriorate the engine performance as the valves can close
with abnormally high velocity and even bounce off the seat (valve floating and bouncing)
[42, 72, 13]. To avoid this phenomenon, a large spring force and preload are applied to
the follower [64]. This often causes an increase in the contact force, which induces higher
stresses possibly leading to early surface failure of the parts. The resulting high friction
valve train reduces the efficiency of the engine system [74]. In general, cam-follower
systems can be thought of as impact oscillators with moving boundaries [41, 57, 22, 77].
While the dynamics of impact oscillators with continuous forcing has been the subject
of many papers in the existing literature (see [59], [14], [9][10]), the possible intricate
bifurcation behavior of impact oscillators with discontinuous forcing was discussed only
recently, as for example in [11]. As shown later in Chapter 5, it was proposed that
discontinuously forced oscillators can show a novel bifurcation phenomenon unique to
their nature which was termed as Corner-Impact Bifurcation (CIB). Namely, in [11]
the dynamics are studied of an impact oscillator forced by a discontinuous sinusoidal
forcing of the form f(t) = A| sin(ωt)|. It was shown that, under variation of the system
parameters, abrupt changes of the system qualitative behavior are observed when an
impact occurs at a point where the forcing velocity is discontinuous (a corner-impact
bifurcation point).
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The observed behavior was explained in terms of appropriate local maps. In particu-
lar, by using the technique of discontinuity-mappings recently proposed in [14] and [20], it
was suggested that a corner-impact bifurcation of the oscillator corresponds to a border-
collision of a fixed point of the associated Poincaré map. An important difference was
highlighted between corner-impact bifurcations and other types of discontinuity-induced
bifurcations [19] in impacting systems such as grazing of limit cycles [51],[73],[46],[17],
[60],[45]. While the normal form map of a grazing bifurcation is typically characterized
by a square root singularity [51], the local normal form map associated to a corner-
impact bifurcation was shown to be a piecewise linear map with a gap such as those
studied in [33]. Hence, as explained in [11], an appropriate classification method needs
to be used to investigate this novel class of bifurcations. Here, we present for the first
time an in–depth analysis of the complex behavior of cam–follower systems and explain
the role of CIBs in organizing their dynamics.

4.1 Modelling

The formulation of an appropriate model for a cam-follower system can be a challeng-
ing task for most applications. Various models with different degrees of complexity
have been proposed and extensively studied. They range from simple models with one
degree-of-freedom (DOF) such as described in [41] to complex models characterized by
many DOFs, as for example the 21 DOFs model studied in [66] where additional ef-
fects of camshaft torsion and bending, backlash, squeeze of lubricant in bearings are
included. Nevertheless, there is a general agreement in the literature, confirmed by
experiments, that a lumped parameter single degree-of-freedom model is adequate to
represent the main qualitative features of the dynamic behavior of the system of interest
[6],[41],[3],[22].

The schematic diagram of the cam-follower system under investigation is shown in
Fig. 4.2. We consider the following second order equation to model the free body dy-
namics of the follower away from the cam,

mq′′(t) + bq′(t) + kq(t) = −mg, if q(t) > c(t),

where m, b, k and g are constant positive parameters representing the follower mass, vis-
cous damping, spring stiffness and the gravitational constant respectively. At this point
and for the rest of this thesis we choose some specific values for the system parameters
The state of the follower is given by the position q(t) and the velocity q′(t). The cam
position is given by c(t) and we assume that the follower motion is constrained to the
phase-space region where q(t) > c(t).

The dynamic behavior, when impacts occurs, is modelled via a Newton restitution
law as [7],[44],[26]:

q′(t+) = (1 + r)c′(t) − rq′(t−), if q(t) = c(t), and q′(t) − c′(t) < 0 ,

where q′(t+) and q′(t−) are the post- and pre-impact velocities respectively, c′(t) is the
projection of the cam velocity vector at the contact point along the direction of the free
movement of the follower, and r ∈ [0, 1] is the coefficient of restitution used to model
from plastic to elastic impacts.



44 4 Complex Dynamics in the Cam–Follower System

Cam

Followerm

k b

c(τ) − c(0)

ωτ

(a) (b)

Figure 4.2: Cam-Follower schematics. (a) t=0. (b) t=τ .

An essential ingredient of the model is the choice of the cam profile, c(t). The cam
is assumed to be rotating at a constant angular velocity ω and can be interpreted as
the “control action” acting on the follower state as suggested in [57]. Therefore, c(t) is
carefully selected in applications as a trade off between several optimality criteria depen-
dent upon the specific device being considered and the unavoidable physical constraints
present on the system.

Typically, this is a result of a design process where the cam profile is selected by using
some interpolation technique as splines, and can contain several degrees of discontinuity.
For example, the cam for a single overhead camshaft valve train is designed by using
quadratic splines and, as a consequence, discontinuities are present in its acceleration.
In general, it is not uncommon in applications, to find cam geometries characterized by
continuous cam positions and velocities but a discontinuous second-derivative [57].

In what follows, we assume the cam profile to be characterized by a discontinuous
second derivative as shown in Fig. 4.3. A detailed observation of Fig. 4.3(b), will reveal
the nonsmooth nature of the cam profile. Points labelled as a, b, c, d, e and f, on the lift
function c(t), have continuous first derivative (velocity) c′(t) and presents jumps in the
second derivative (acceleration) c′′(t). This particular shape is a result of a geometrical
based cam design, since the profile is constructed as a concatenation of different pieces
of circumferences.

The case of a smooth cam profile with continuous first and second-order derivatives
is also of interest in applications and was studied experimentally in [4].



4.2 Simulation and numerical bifurcation analysis, {November 30, 2007} 45

c(ωτ)

ωτ = b

(a)

c(t)

c′(t)

c′′(t)

t

(b)

a b c de f a

Figure 4.3: (a) Cam profile. (b) Constraint position c(t), velocity c′(t) and acceleration
c′′(t).

4.2 Simulation and numerical bifurcation analysis

In Sec. 3.2, we have presented technical issues on the simulation of impacting systems.
Here, we are interested on the qualitative changes in the dynamics, induce by the nons-
mooth nature of the cam profile.

Using specialized routines, we are able to simulate the model represented by (3.37).
Given some specific parameter values for the system for ω < 114 rpm, the follower is
always attached to the cam due to the force provided by the preloaded spring. For higher
values of ω, the asymptotic solution will present impacts. A typical periodic evolution
with impacts is shown in Fig. 4.4(a), when ω = 183 rpm. We observe that the follower
and the cam are in contact with zero relative velocity (sticking) for part of the orbit,
and then detach giving rise to impacting behavior. As shown in Fig.4.4(b)-(c) a careful
look to the system evolution shows that a chattering sequence.

It is then possible to get a global picture of the qualitative behavior of asymptotic
solutions with the construction of a bifurcation diagram. We have found that the system
exhibit an intricate behavior including the sudden transition to chaos under variation of
the cam rotational speed, ω . In Fig. 4.5(a), we present an impact bifurcation diagram
for ω ∈ [115, 200] rpm, where the phase of every impact φi (rad), is plotted against ω.
Instead, in Fig. 4.5(b) we present a stroboscopic bifurcation diagram for ω ∈ [115, 200]
rpm. In this case we plot the relative position between the cam and the follower q(t),
sampled stroboscopically point Πs. Finally, in Fig. 4.5(c) we present the time evolution
of the follower position q(t) and cam position c(t) for ω = 175 rpm. Black dots correlate
different representations of the same state in Figs. 4.5(a), 4.5(b) and 4.5(c).
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Figure 4.4: Time simulation at ω = 183 rpm. (a) Follower position, u(t) (Light); Cam
position, c(t) (Dark). (b) Relative position, q(t). (c) Phase space, q(t) Vs. q′(t).

4.2.1 Observed dynamics

In order to have a better understanding of the dynamical behavior of the cam–follower
device, we present in Fig. 4.6, impact and stroboscopic bifurcation diagrams for a wider
range of the cam rotational speed; this is for ω ∈ [114, 850].

For each value of the cam rotational speed ω measured in rpm, a fixed initial con-
dition (zero relative position and velocity), is simulated for a sufficiently long time to
ensure that transients have died out. Then we plot data belonging to the last 60 periods.
Now we briefly summarize some of the most striking behavior.

We clearly see the onset of complicated dynamics leading to the sudden formations
of seemingly aperiodic solutions and chaos. Before 114 rpm the asymptotic dynamic
does not include impact because the cam and the follower are always in contact thanks
to the restitution force provided by the preloaded spring. After 114 rpm a set of pe-
riod one chattering sequences are generated. For higher values of cam velocity in region
ω ∈ [114, 200] rpm we can observe that the location of the accumulation point varies
as function of the cam speed as well as the derivatives of several order. These solu-
tions characterized by the presence of periodic chattering sequences undergo transitions
whenever their accumulation point hits the boundary where the cam velocity is non
differentiable. This causes transitions to periodic solutions characterized by different
impact sequences.

On the other end of the periodic chattering solutions, around 198 rpm, we also
observe the destruction of the period one orbit. The structural change in the solution
involves the crossing of the accumulation point to the next forcing period. For our
parameter values, this implies the generation of a set of period two orbits as a route to
chaos.

Further on in the parameter space, for ω ∈ [357.5, 361.5] rpm, we observe the sudden
transition from a chaotic attractor to a 3T-periodic solution with eight impacts. As we
will see later on, a stable 1T-periodic orbit with two impacts in each period coexists
in the same region. Moreover, there is a particular nonsmooth transition due to a
border-collision of one chaotic attractor with the boundary where the cam profile loses
its differentiability, implying the jump of the chaotic attractor to a larger one. Next,
we will present in detail qualitative changes in the solution induced by the non smooth
nature of the cam profile.
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Figure 4.5: (a) Impact bifurcation diagram for [115, 200] rpm. The phase of an impact
φi (rad), is plotted against ω. (b) Stroboscopic bifurcation diagram for [115, 200] rpm.
Relative position sampled at the stroboscopic point Πs, between the cam and the follower
q(t) − c(t), is plotted against omega. (c) Time evolution of the follower position q(t)
and cam position c(t) for ω = 175 rpm. Black dots correlate different representations of
the same state in (a), (b) and (c).

4.3 Chattering

In general, starting from low values of ω the system exhibits solutions characterized
by permanent contact between the cam and the follower. As ω increases the follower
is observed to detach from the cam during its evolution and then to impact with it.
Chattering can be associated with an intricate bifurcation structure. In Fig. 4.5(a), the
location of the impacts in the cam surface is depicted for each value of ω, characteriz-
ing the follower asymptotic solution. We see that following detachment at about 114
rpm, the follower immediately exhibits multi-impacting behavior and chattering (char-
acterized by the accumulation of the impact lines in the diagram onto the darker areas
corresponding to the chattering accumulation points). An interesting phenomenon is the
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appearance of resonant peaks associated to impact lines crossing the boundaries where
the cam acceleration profile is discontinuous (represented by dotted lines in the figure).

This phenomenon can be classified as due to a corner-impact bifurcation CIB, a type
of discontinuity-induced bifurcation which will be later studied in Chapter 5. Namely,
at certain values of ω, one of the impacts characterizing the follower motion occurs at
a point on the cam profile where the acceleration is discontinuous. We shall seek to
investigate analytically this phenomenon and classify the behavior following the corner-
impact event in the cam-follower system of interest.

4.3.1 First detachment

As mentioned before, in the nominal operating regime, there is a permanent contact
between the cam and the follower. Therefore a problem of relevance in application is to
assess the onset of complex dynamics due to the detachment between the cam and the
follower. It is known that this is an undesirable behavior and it is essential to understand
the nature of this phenomenon.

Let us define

H(x) := q(t) − c(t),

v(x) := q′(t) − c′(t),

a(x) := q′′(t) − c′′(t),

where x is the state vector of the follower (position, velocity and time), H(x), v(x) and
a(x) are relative position, velocity and acceleration respectively.

Notice that if the follower device is in contact with the cam they will continue in
sticking motion if the relative velocity v(x) is zero and relative acceleration a(x) is
negative. Therefore the set of detachment points is given by:

D = {x : H(x) = 0, v(x) = 0 and a(x) ≥ 0},

where conditions on H(x) and v(x) are always satisfied if sticking solution is assumed.
Instead, a(x) depends on the system parameters as follows

a(x) = −ω2
s · q(t) − c′′(t),

where ωs is a positive constant dependant on the system parameters. This implies that
the condition for the first detachment after increasing the cam rotational speed is given
by

c′′(t) ≤ −w2
s · c(t). (4.1)

In general, (4.1) can be numerically solved to get the value of ω at which detachment
occurs. For our particular example we can go even further since c(t) > 0, and ws > 0,
then the only way to achieve the detachment condition is c′′(t) < 0. From Fig. 4.3(b), it
can be observed that time instants labelled as ’b’ and ’e’ will produce the first detachment
on monotonous increasing of the cam rotational speed. After solving 4.1, we obtain
ω = 114.979 rpm. If we continue increasing the cam rotational speed the detachment
point in time instant ’e’, starts moving towards the point in time instant ’d’, till reaching
it at ω = 134.873) rpm.
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Figure 4.6: Observed dynamics for ω ∈ [114, 850]. (a) Impact bifurcation diagram. (b)
Stroboscopic bifurcation diagram.
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Figure 4.7: Zoom in of the first chattering part. (a) Impact bifurcation diagram. (b)
Numerical computation of accumulation points.

4.3.2 Bifurcations involving accumulation points

As can be seen in Fig. 4.7(a), once the detachment between the cam and the follower
occurs (i.e ω = 114.979 rpm), the asymptotic solution includes two chattering sequences.
The first qualitative change will occur when the accumulation point of the chattering
sequence (the one associated to the detachment at instant ’b’ in 4.3(b)), reaches the
discontinuity point at instant ’c’. As mentioned in Sec. 3.2.1, we can use the formula-
tion presented in [55], to numerically estimate the accumulation point of a chattering
sequence. If H(x) = 0, v(x) < 0 and small enough, and a(x) < 0, the first order
approximation is given by

tacc =
1

1 − r

( 2

a(x)
r
)

v(x). (4.2)

Therefore, we can calculate the rotation speed at which the accumulation point exactly
reaches the instant time c, at ω = 119.72 rpm. In Fig. 4.7(b) we present the numerical
estimation of the accumulation point chattering sequence. Here we can observe some
resonances or ”bubbles” in the bifurcation diagram. Such ”bubbles” occur when one of
the points belonging to the chattering sequence, impacts at instant labelled as ’c’, this
is in the point with a discontinuity in the acceleration of the cam. Then the ”bubble”
amplitude increases at a maximum value, to finish when another impact belonging to
the chattering sequence hits the discontinuity point. We have also computed parameter
values at the most significant impact crossing, this is ω = 120.7356 rpm, ω = 121.107
rpm, ω = 121.686 rpm, ω = 122.699 rpm and ω = 124.998 rpm. For ω > 124.998
rpm the first impact after detachment occurs later than time instant ’c’, where the cam
velocity and acceleration is zero. At ω = 136.38 rpm, the accumulation point of the
first chattering sequence reach time instant ’d’, producing a qualitative change in the
asymptotic solution, such that there is one chattering sequence instead of two.

Period doubling and sudden transition to chaos As we can see in Fig. 4.8, around
ω = 198 rpm, we observe the destruction of the period one chattering sequence. The
structural change in the solution is due to the crossing of the accumulation point to the
next forcing period.



4.4 Coexistence of periodic orbits, {November 30, 2007} 51

198 198.2 198.4 198.6 198.8 199 199.2 199.4 199.6 199.8 200
0.1

0.105

0.11

0.115

0.12

0.125

198.4 198.45 198.5 198.55 198.6 198.65
0.104

0.106

0.108

0.11

0.112

0.114

0.116

0.118

(a) (b)

Figure 4.8: Bifurcations involving accumulation points. (a) Stroboscopic bifurcation
diagram in range ω ∈ [198, 200] rpm. (b) Zoom of the stroboscopic bifurcation diagram.

In Figs. 4.8(a)(b), we show the time evolution of the system before and after the
crossing event. A period one orbit is shown in Fig. 4.8(a) at ω = 198.4 rpm. As
we can observe in Fig. 4.8(a) the chattering sequence accumulates before crossing the
next forcing period. Then, for higher values of ω, the accumulation point is found
at the beginning of the next forcing period. For our parameter values, this implies
the generation of a set of period two orbits as a route to chaos. In Figs. 4.8(a)(b) a
stroboscopic bifurcation diagram is presented.

4.4 Coexistence of periodic orbits

Now we move our attention to other interesting regions in the bifurcation diagram
presented in Fig. 4.6. For ω ∈ [358, 360] rpm we have found evidence of coexisting
solutions. In Fig. 4.9, we present the evolution of two different solutions in the same
range of parameter. In particular Figs. 4.9(a)(b) (impact and stroboscopic bifurcation
diagram), show a standard period doubling cascade as a route to chaos. We can also
observe that at ω = 358.5 rpm, we have a Period-3 solution, with 8 impacts per period
(i.e. P(3,8)). On the other hand, in Figs. 4.9(c)(d) (impact and stroboscopic bifurcation
diagram), we observe that at the same parameter value, ω = 358.5 rpm, there is a
Period-1 solution with 2 impacts per period ((i.e. O(1, 2))). Notice that in both cases,
decreasing the parameter values causes a sudden transition to chaos in what seems
to be a corner impact bifurcation. In the next chapter we will study this particular
phenomenon.

A detail of the time and state space evolution for the two coexisting solutions at
ω = 360 rpm is presented in Fig. 4.10. In Figs. 4.10(a)(b), we show the evolution of
a O(6, 16) orbit right after the first period doubling. At the same parameter value, we
have a coexistent O(1, 2) solution. (see Figs. 4.10(c)(d)).
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Figure 4.9: Coexistent solutions (a) Impact Bifurcation diagram for cam velocity
ω ∈ [357.5, 361.5] rpm. (b) Stroboscopic bifurcation diagram for cam velocity ω ∈
[357.5, 361.5] rpm, sampling the states at Πs = 0. (c) Impact Bifurcation diagram for
cam velocity ω ∈ [660, 760] rpm. (d) Stroboscopic bifurcation diagram for cam velocity
ω ∈ [670, 750] rpm, sampling the states at Πs = 0.
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Figure 4.10: Coexistence of periodic solutions for ω = 360 rpm.(a)(c)Time evolution.
(b)(d) State space evolution

4.4.1 Domain of attraction

The main idea is to characterize the phase portrait of a Poicaré map associated to the
system when there is coexistence of solutions. We have obtained the domain of attraction
using a cell–mapping method. This technique reduces the amount of computational
work needed to get a reasonably accurate picture of basins of attraction (see [77] for
further details on the method). Fig. 4.11 shows the different basins of attraction of
coexisting solutions for ω = 358.5 rpm. The initial conditions have been taken in the
range x ∈ [0.1, 1.6] and q′ ∈ [−60, 60] considering 106 (1000 × 1000) cells uniformly
distributed.

As can be observed there are three coexisting solutions, two stables and one unstable.
One of the stable solutions is period 3 while the other one is period 1. The light region
corresponds to all initial conditions in the domain of attraction of the period 3 solutions;
while the dark region is the basin of the other stable solution. The basins of attraction
are separated by the stable manifold of the saddle-node solution.
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Figure 4.11: Domain of attraction ω = 358.5 rpm.

4.4.2 Smooth and nonsmooth bifurcations of a O(1, 1) Orbit

Now we are interested in the study, of the periodic orbit O(1, 1) in Fig. 4.12(a). This is
the bifurcation diagram for ω ∈ [660, 760] rpm, where a stable O(1; 1) bifurcates into a
O(2; 2) (i.e. a period doubling) when the parameter is increased at about ω ≈ 739 rpm
(see Fig. 4.12(b) for a zoom in). It is also observed that the O(1, 1) orbit vanishes at
about ω ≈ 680 rpm, due to a corner impact bifurcation as we will show in Chapter 5.
The same phenomenon occurs to the O(2, 2) orbit for ω ≈ 739.378 rpm, where one of the
impacts belonging to the orbit hits a corner in the cam lift. Further on in the parameter
space at ω ≈ 740.2 rpm a chaotic attractor collide again with a discontinuities.

Computing the First Period-doubling of a O(1; 1) Orbit

Flip and saddle-node bifurcations in Fig. 4.12, can be analytically predicted studying
the spectrum the Jacobian matrix of the associated Poincaré map (see Sec. 3.4.2 for
details). In Fig. 4.13 we show the evolution of the characteristic multipliers of the map
Px(1; 1) associated to the orbit O(1; 1), for ω ∈ [672, 756] rpm. We observe that the
characteristic multipliers of Px are complex conjugates that move on a circle of radius
r ≈ 0.8, and so the orbit is asymptotically stable. Near rpm ≈ 736, both characteristic
multipliers become real, and one of the characteristic multipliers has norm greater than
1, which implies that the periodic orbit becomes unstable.

We move now to the detailed analysis of the bifurcation scenario depicted in Fig. Fig. 4.12.
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Figure 4.12: Smooth and nonsmooth bifurcations in periodic orbits.
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In this chapter we will present a new kind of DIB for impacting systems, that we call
Corner Impact Bifurcation. We perform a complete analysis for a periodic orbit with
impacts in the cam–follower system. This particular bifurcation scenario, exemplifies
the use of Discontinuity Maps and the theory of border collision bifurcations in PWS
Maps, to qualitatively characterize the interaction of impacting orbits with a discontinu-
ity boundary. The first reference we are aware of reporting numerical evidence of DIBs
in a mechanical system with impacts was published by Shaw and Holmes [67], where
authors show a complex sequence of transitions due to discontinuities in an driven im-
pact oscillator. Later on, Nordmark et al. [51] [52] [26] [53], have presented an extensive
work on the analysis of grazing bifurcation, which explains a wide range of non-smooth
bifurcation phenomena that appears in impacting systems. For the sake of simplicity,
we focus on region the of the system bifurcation diagram depicted in Fig. 5.1(a). Here,
as mentioned in the previous chapter, a one-periodic solution characterized by one im-
pact per period exhibits sudden transitions to chaos as ω is decreased below 673.234445
rpm. A close look at the impact bifurcation diagram in Fig. 5.1(a) and in the stro-
boscopic bifurcation diagram Fig. 5.1(b) shows that such transitions occur precisely
when the impact characterizing the solution crosses the cam discontinuity boundaries
(the dotted lines in Fig. 5.1(a)). Specifically, the sudden transition to chaos is due to
the corner-impact bifurcation of the periodic solution depicted in Fig. 5.1(c). Past the
corner-impact bifurcation point the system exhibits chaotic behavior (see for example
the trajectory reported in Fig. 5.1(d) for ω ≈ 670 rpm).
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Figure 5.1: (a) Impact Bifurcation diagram for ω = [660, 750]rpm.(b) Stroboscopic
Bifurcation diagram for ω = [660, 750]rpm. (c) Bifurcating orbit at the corner impact
point at ω = 700rpm. (d) Chaotic evolution for ω = 670rpm. Dotted lines in (a),
represent phases where the cam profile is discontinuous. Vertical curves in panels (a),(c)
shows the cam position velocity and acceleration as function of the phase.

5.1 Corner impact bifurcation analysis

The numerical observations reported above indicate that a corner-impact bifurcation is
causing the transition to chaos observed in the cam-follower system. Specifically, we
are interested in analyzing the occurrence of the corner impact bifurcation depicted in
Fig. 5.1(a) when ω ≈ 673.234445 rpm. Numerically, we detected that the bifurcating
orbit, shown in Fig. 5.1(c) is a one-periodic orbit characterized by one impact per period.
As the rotational speed of the cam is decreased, at the bifurcation point, the impact
is observed to cross the point on the cam surface where the cam acceleration is dis-
continuous. To investigate this novel type of discontinuity-induced bifurcation, we will
construct analytically the Poincaré map of the system close to the bifurcation point.
We will then study the bifurcations of the fixed point corresponding to the periodic
solution of interest. A crucial point of the analysis is to assess whether the resulting
map is piecewise linear continuous or not. Indeed, only if this is the case, the theory of
border-collision bifurcations (see [5, 21]) can be used to classify the possible solutions
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branching from the corner-impact bifurcation point [16].
We use the concept of discontinuity mapping (or normal form map) recently intro-

duced in [14], [20], and described in Chapter 3; to construct analytically the Poincaré
map associated to the bifurcating orbit of interest. We use the cam-follower system
described in Sec 4.1 as a representative example to carry out the analytical derivations.

5.2 Poincaré map derivation

We are interested in the analysis of the period one orbit at the corner-impact bifurcation
point. Such orbit is sketched in Fig. 5.2. Then, close to such periodic orbit we define the
stroboscopic map P as the mapping from the follower state x1 ∈ Π1 at a stroboscopic
time instant t1 to the next stroboscopic point x2 ∈ Π2. Without loss of generality, we
assume that tn = −T

2 + (n − 1)T for n = 1, 2, 3, . . ., where T is the period of the cam
forcing cycle (note that T = 2π/ω). Namely, we have:

x2 = P (x1). (5.1)

To construct P we would need to flow forward using the system evolution from x1 to x2

for time T taking into account the possible occurrence of impacts and therefore applying
Newton’s restitution law as required. Alternatively, as shown in [14], it is possible
to construct P as the composition of three submappings: (i) an affine transformation
P1,T/2 from the stroboscopic plane Π1 at t1 = −T

2 to the plane ΠD going through the
corner impact point at t = 0; (ii) an appropriate zero-time discontinuity mapping(ZDM)
PD on ΠD accounting for the presence of the discontinuity; and again (iii) an affine
transformation P2,T/2 from the plane ΠD at t = 0 back to the stroboscopic plane Π2 at

t2 = T
2 . Specifically, while P1,T/2 and P2,T/2 are fixed time maps that accounts for the

follower evolution away from the cam as if no impact had occurred, the ZDM represents
the correction that needs to be made to the system trajectories because of the presence
of impacts. Fig. 5.2 represents the global map composition. This means that we can
write

P = P2,T/2 ◦ PD ◦ P1,T/2, (5.2)

where P1,T/2 : Π1 7→ ΠD, will map the state from the initial condition x1 on the

stroboscopic plane Π1 to a point x−d on the discontinuity plane ΠD as if no impacts had
occurred. PD : ΠD 7→ ΠD will then map x−d to the point x+

d appropriately correcting
the evolution for the presence of impacts (see Fig. 5.3). Finally P2,T/2 : ΠD 7→ Π2,

will map x+
d to a point x2 back onto the stroboscopic plane Π2. In so doing, as discussed

in [14], [20], the effect of the system discontinuities due to impacts are all taken into
account by the ZDM, PD, which is therefore often termed as the local normal form map
in the context of the theory of discontinuity-induced bifurcations [17].

5.2.1 Derivation of P1,T/2 and P2,T/2

As explained above, the maps P1,T/2 and P2,T/2 are defined only in terms of the free
body dynamics of the follower and the cam rotating period T (depending upon the
cam rotational speed ω). Therefore we can solve equations (4.1) to get an analytical
expression of the flows generating the mappings of interest.

Specifically, we define

xt =

[

q(t) + g
ω2

0

q′(t)

]

, yt =

[

c(t)
c′(t)

]

.
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Figure 5.2: Global map composition.

as the state vector for the follower and the cam respectively.
Then, the generalized solution of (4.1) is:

xt = e−ζt (I cos(ωst) +A sin(ωst))x0 (5.3)

= φtx0,

where ζ = b
2m , ω0 =

√

k
m , ωs =

√

ω2
0 − ζ2, I is the identity matrix, φtx0 represents the

system flow for time t starting from the initial condition x0 and

A =

[

ζ
ωs

1
ωs

−ω2
0

ωs
− ζ

ωs

]

.

Note that, in general, the system flow operator can be expressed as:

φt =
e−ζt

ωs

[

ωs cos(ωst) + ζ sin(ωst) sin(ωst)
−ω2

0 sin(ωst) ωs cos(ωst) − ζ sin(ωst)

]

. (5.4)

The submapping Pi,T/2 can then be easily obtained using (5.3) as:

Pi,T/2(x) = e−ζT/2 (I cos(ωsT/2) +A sin(ωsT/2))x

:= φT
2
x. (5.5)

5.2.2 Derivation of PD

As explained in [20], the ZDM can be obtained by an appropriate composition of back-
ward and forward flows so that the overall time spent following backward and forward
is zero. As explained earlier, the ZDM is the correction that maps the point x−d ∈ ΠD

onto the point x+
d ∈ ΠD taking into account the presence of impacts in the trajectory of

interest. In what follows we assume that only one impact occurs over one cycle of the
periodic orbit of interest as we suppose to be sufficiently close to the bifurcating orbit x∗t
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shown in Fig. 5.2. Fig. 5.3 shows a schematic diagram that describes the construction of
the ZDM, close to the corner-impact bifurcations. Without loss of generality we assume
that the origin is placed at the Poincaré section ΠD. To derive analytically the mapping
x+

d = PD(x−d ) we need to perform the following steps:

1. Starting from x−d , we find the time ti at which the impact occurs. Namely, ti is
obtained by looking at the difference, (q(t) − c(t)), between the follower position
and the cam position close to t = 0. Given a vector z, we indicate by [z]1 its first
component. Then q(t) = [xt]1 −

g
ω2

0

and therefore, close to x−d , ti can be obtained

as the nearest solution of the equation:

H(x−−ti
, ti) :=

[

x−−ti
− y−ti

]

1
= h ·

[

φ−ti
x−d − y−ti

]

= 0, (5.6)

where h = [ 1 0 ].

Hence, ti is implicitly defined by the equation H(x−−ti
, ti) = 0. Once, ti is found,

the pre-impact state of the system, x−−ti
, can also be obtained as

x−−ti
= φ−ti

x−d . (5.7)

Note that ti can be either negative or positive according to whether the impact
occurs to the left or to the right of t = 0.

2. Using the restitution law (4.1), we can then write the post-impact state of the
follower x+

−ti
as

x+
−ti

= x−−ti
+R(x−−ti

− y−ti
) = ρ(x−−ti

, y−ti
), (5.8)

where

R =

[

0 0
0 −(1 + r)

]

.

3. Finally, to obtain x+
d , we flow forward for time ti starting from the post-impact

state x+
−ti

found at the previous step. In so doing, the state of the follower x+
d ∈ ΠD

can be computed as:

x+
d = φti

x+
−ti
. (5.9)

Using equations (5.7),(5.8) and (5.9) we can then write explicitly the ZDM as:

x+
d = PD(x−d ) = (I + φti

Rφ−ti
)x−d − φti

Ry−ti
, (5.10)

with ti defined implicitly by the equation (5.6).

5.2.3 Constructing the stroboscopic map

Composing the submappings P1,T/2, P2,T/2 and PD given by (5.5) and (5.10), we can
then construct the stroboscopic Poincaré map, P , of the system close to the corner-
impact bifurcation point from a generic xn ∈ Πn to xn+1 ∈ Πn+1 as:

xn+1 = P (xn, T ) = P2,T/2(PD(P1,T/2(xn)))

= φT
2

(

(I + φti
Rφ−ti

)φT
2
xn − φti

Ry−ti

)

, (5.11)
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Figure 5.3: ZDM construction.

where ti is implicitly defined by the equation H(xn, ti) = h ·
(

φT
2
−ti
xn − y−ti

)

= 0.

Note that the fixed point (x∗ associated to the periodic solution existing for a fixed
value of the cam period T = T ∗), can be obtained by solving equation (5.11) for xn+1 =
xn = x∗ i.e.,

x∗ = −
[

I − φT∗ + φT∗

2

RφT∗

2

]−1

φT
2
Ry0, (5.12)

with t∗i = 0.

In what follows we are interested in studying such mapping locally to the corner-
impact bifurcation point detected when ω = ω∗ = 673.234445 rpm, corresponding to
a period T ∗ = 0.08912199969159 s. The fixed point associated to the bifurcating orbit
is x∗ =

[

5.09700788184250 0
]′
. These values were detected firstly numerically and

then obtained analytically by solving (5.12) through an algebraic manipulation software
(For the sake of brevity we leave out the computer algebra here).

5.3 A locally piecewise-linear continuous map

Let δxn and δT be sufficiently small variations of the state and parameter from the
bifurcation point x∗, T ∗. We can then linearize the map xn+1 = P (xn, T ) in (5.11)
about this point as:

δxn+1 =
∂P (x∗, T ∗)

∂xn
δxn +

∂P (x∗, T ∗)

∂T
δT. (5.13)

For the computation of ∂P
∂xn

it is essential to take into account the implicit dependance
of ti on xn and T . Hence, using implicit differentiation, we have

∂P (xn, T )

∂xn
=

∂P (xn)

∂xn
+
∂P (ti)

∂ti

∂ti(xn)

∂xn
. (5.14)
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Using (5.11), we can then write

∂P (xn)

∂xn
= φT

2
(I + φ−ti

Rφti
)φT

2
(5.15)

∂P (ti)

∂ti
= φT

2

(

φ′ti
Rφ−ti

−
(

φti
Rφ′−ti

)

φT
2
xn − φ′ti

Ry−ti
+ φti

Ry′−ti

)

. (5.16)

Moreover, using implicit differentiation theorem, from (5.6) we have:

∂H(xn, ti(xn))

∂xn
=
∂H(xn)

∂xn
+
∂H(ti)

∂ti

∂ti(xn)

∂xn
= 0.

The above expression can be used to compute the remaining term in (5.14) as:

∂ti(xn)

∂xn
= −

(

∂H(ti)

∂ti

)−1
∂H(xn)

∂xn
, (5.17)

where

∂H(ti)

∂ti
= −h ·

(

φ′T
2
−ti
xn − y′−ti

)

,

∂H(xn)

∂xn
= h · φT

2
−ti
,

and h =
[

1 0
]

.
After substituting (5.15),(5.16) and (5.17) in (5.14) we obtain

∂P (xn, T )

∂xn

∣

∣

∣

∣

xn=x∗

T=T∗

=

φT
2

∗



(I +R) +
(

(Rφ′0 − φ′0R)φT
2

∗x∗ + φ′0Ry0 −Ry′0

) h

h ·
(

φ′T
2

∗x∗ − y′0

)



φT
2

∗ .

(5.18)

In an analogous way, for the computation of ∂P
∂T , it is essential to take into account

the implicit dependance of ti on xn and T . Hence, by using implicit differentiation, we
have

∂P (xn, T )

∂T
=

∂P (T )

∂T
+
∂P (ti)

∂ti

∂ti(T )

∂T
. (5.19)

Using (5.11), we can then write

∂P (T )

∂T
=

(

φ′T +
1

2
φ′T

2
+ti
RφT

2
−ti

+
1

2
φT

2
+ti
Rφ′T

2
−ti

)

xn −
1

2
φ′T

2
+ti
Ry−ti

− φT
2

+ti
R
∂y−ti,T

∂T
.

(5.20)

Again, from (5.6) we have:

∂H(xn, ti(xn))

∂T
=
∂H(T )

∂T
+
∂H(ti)

∂ti

∂ti(T )

∂T
= 0,
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that can be used to compute the remaining term in (5.19). Namely, we obtain:

∂ti(T )

∂T
= −

(

∂H(ti)

∂ti

)−1
∂H(T )

∂T
, (5.21)

where

∂H(ti)

∂ti
= −h ·

(

φ′T
2
−ti
xn − y′−ti

)

∂H(T )

∂T
= h ·

(

1

2
φ′T

2
−ti
xn −

∂y−ti,T

∂T

)

and
∂yt,T

∂T
=

[

− t
T c

′(t)
− 1

T c
′(t) − t

T c
′′(t)

]

.

Finally, substituting (5.16), (5.20) and (5.21) into (5.19), yields

∂P (xn, T )

∂T

∣

∣

∣

∣

xn=x∗

T=T∗

=

(

φ′T∗ +
1

2
φ′T

2

∗RφT
2

∗ +
1

2
φT

2

∗Rφ′T
2

∗

)

x∗ −
1

2
φ′T

2

∗Ry0 − φT∗

2

R
∂y0,T∗

∂T

+ φT
2

∗

(

(Rφ′0 − φ′0R)φT
2

∗x∗ + φ′0Ry0 −Ry′0

)

·
h ·

(

1
2φ

′
T
2

∗x∗ −
∂y0,T∗

∂T

)

h ·
(

φ′T
2

∗x∗ − y′0

) . (5.22)

We can then compute explicitly these quantities for the cam-follower system of in-
terest. In particular, after some algebraic manipulation, we have:

A :=
∂P

∂xn
(x∗, T ∗) = φT

2

∗

[

−r 0

− (1+r)(2ζc′0+c′′0 +ω2
0q∗

d)

q,∗

d
−c′

0

−r

]

φT
2

∗ (5.23)

and

B :=
∂P

∂T
(x∗, T ∗) =

1

2
φT

2

∗

[

q∗d
−rq,∗

d + (1 + r)c′0

]

+
1

2
φ′T

2

∗

[

q,∗
d

−rq,,∗
d − 2(1+r)

T∗
c′0

]

+
1

2
φT

2

∗

(1 + r)q,∗
d

q,∗
d − c′0

[

q,∗
d − c′0

2ζc′0 + c′′0 + ω2
0q

∗
d

]

. (5.24)

Note that both the matrices A and B as defined by (5.23)-(5.24) depend on the
value of the second derivative of the cam acceleration c′′0 at the impact point. There-
fore the map is actually piecewise-linear locally to the bifurcation point where the cam
acceleration is discontinuous, i.e.

c′′−0 := lim
t→0−

c′′(t) 6= lim
t→0−

c′′(t) := c′′+0 .

Then, the local map can be expressed as:

δxn+1 =







A−δxn +B−δT, If C · δxn +D · δT < 0,

A+δxn +B+δT, If C · δxn +D · δT > 0,
(5.25)
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where

A± =
∂P±

∂x
, B± =

∂P±

∂T
,

with the index ± indicating whether the matrices are evaluated with c′′0 = c′′−0 or c′′0 =
c′′+0 .

We have established that close to the corner-impact bifurcation point, the dynamics
of the follower can be studied by means of the local mapping (5.25).

Now, from (5.11), the global Poincaré map is known to be a continuous function of
the cam position and velocity through the term y−ti

. Moreover, the map is independent
from the cam acceleration. It follows, that the map is continuous at the bifurcation
point, i.e. we must have that

A−δxn +B−δT = A+δxn +B+δT,

when

Cδxn +DδT = 0.

Therefore we have

C = h · (A+ −A−), and D = h · (B+ −B−).

Substituting the numerical values of the map parameters for the cam–follower system
of interest, we obtain the following analytical estimates of the map matrices:

A− =

[

0.82093496821478 0.01346530915655
2.52012201452530 0.82093496821478

]

, B− =

[

−51.62757990297
−5455.79455977621

]

,

A+ =

[

0.68571072072040 −0.07351052377964
2.30988433707948 0.68571072072040

]

, B+ =

[

208.11740649865
−5051.96030903248

]

and

C = [−0.13522424749438 − 0.08697583293619] , D = 259.7449864016200.

5.3.1 Numerical validation

We will now validate our numerical findings by comparing the map (5.25), which was
derived analytically, with the numerical estimates of the mapping obtained by means of
simulation and an optimized fitting algorithm close to the bifurcation point.

To derive such an estimate, we use an accurate event-driven numerical algorithm to
simulate the cam dynamics over one period starting from a set of M different initial con-
ditions and parameter values. Namely, say δx̄n the vector of M possible perturbations
of x∗ and δT̄ the vector of M possible perturbations of T . We then simulate the cam
dynamics from each of the perturbed initial conditions and parameter values to obtain
the vector δx̄n+1 = x∗ − xn+1 after one period. We repeat the set of simulation twice,
once with the cam acceleration set to c′′+0 and once with the acceleration set to c′′−0 . In
so doing, we obtain numerically the vectors

δx̄±n+1 =
[

δx̄1
n+1 . . . δx̄m

n+1 . . . δx̄M
n+1

]

.
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We then use a least-squares fitting algorithm to estimate the matrices Â± and B̂±

that minimize the error

e =

∥

∥

∥

∥

δx̄±n+1 −
[

Â± | B̂±
]

[

δx̄n

δT̄

]∥

∥

∥

∥

2

.

The estimated map matrices found using this numerical strategy are

Â− =

[

0.82093497830369 0.01346530945739
2.52012201542191 0.82093496286678

]

, B̂− =

[

−51.62757113994
−5455.79411324739

]

,

Â+ =

[

0.68571065978423 −0.07351053029558
2.30988432418263 0.68571073479454

]

, B̂+ =

[

208.11731732063
−5051.95951604729

]

.

We notice that these numerical estimates are almost identical (up to at least 5 decimal
places) to those obtained analytically earlier in the paper. This validates our analysis
and shows the reliability of the analytical derivation used to get a leading order estimate
of the Poincaré map close to the bifurcation point under investigation.

5.4 Classification of the discontinuity induced bifur-
cation scenario

We can now use the locally derived map (analytical or numerical) to classify and explain
the bifurcation scenario due to the corner-impact bifurcation detected in the cam-follower
system of interest. In particular, the map derived above is a piecewise linear continuous
map. As the cam rotational speed is increased, the period T of the forcing provided
by the cam varies. Correspondingly, at the corner-impact bifurcation point (δT = 0),
the map fixed point undergoes a border collision. Feigin strategy for border-collision
bifurcations can then be used to classify the corner-impact bifurcation scenario [21].

The idea is to start by recasting the map (5.25) into a canonical form following the
procedure presented in [19]. Specifically,

1. We eliminate the term depending on δT by considering an appropriate change of
coordinates. In particular if we say c1 and c2 the coefficients of C, we choose:

δx̃1
n = δx1

n +D
µ

c1
,

δx̃2
n = δx2

n,

so that the map becomes

δx̃n+1 =







A−δx̃n + B̃δT, If C · δx̃n < 0,

A+δx̃n + B̃δT, If C · δx̃n > 0,

where

B̃ =

[

b−1 −
a−

11

c1
d

b−2 −
a−

21

c1
d

]

=

[

b+1 −
a+

11

c1
d

b+2 −
a+

21

c1
d

]

=

[

1525.26226128059
−615.02768162765

]

,

with a±ij being the coefficients of A±.
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2. Then, using the strategy presented in [19, 15], we consider the change of coordi-
nates x = W−1x̃ where the matrix W is obtained as W = T−O− with

O− =

[

C
CA−

]

, T− =

[

1 0
d−1 1

]

,

where d−1 is the linear coefficient of the characteristic polynomial of A− given by
p−(λ) = λ2 + d−1 λ + d−2 . Applying such a similarity transformation, the map
matrices become:

Ā− =

[

1.64186993642956 1
−0.64 0

]

, Ā+ =

[

1.37142144144080 1
−0.64 0

]

,

and

B̄ =

[

152.75990
207, 79599

]

, C̄ =
[

1 0
]

.

As explained in [21, 19], we can now classify the type of bifurcation scenario observed
at the bifurcation point under investigation by computing the map eigenvalues on both
sides of the boundary. For the case under investigation, we have that: (i) the eigenvalues
of A− are λ−1 = 1.0052 and λ−2 = 0.6367; (ii) the eigenvalues of A+ are λ+

1,2 = 0.6857 ±
j0.4120. Hence, according to Feigin’s classification strategy, since the total number of
real eigenvalues greater than unity on both sides of the boundary is odd, the bifurcating
fixed point will undergo a nonsmooth saddle node bifurcation and ceases to exist [21].
This is in perfect agreement with what observed numerically as shown in Fig. 5.4, where
the local bifurcation scenario observed in the map is shown.

Therefore, we can explain the sudden transition to chaos observed in the cam-follower
system under investigation as due to the occurrence of a corner-impact bifurcation.
Namely, the corner-impact is associated to a nonsmooth-fold scenario causing the dis-
appearance of the stable impacting solution undergoing the bifurcation. This causes
trajectories to leave the local neighborhood where they are confined before the bifurca-
tion and converge towards the stable coexisting chaotic attractor when ω is decreased
below the corner-impact bifurcation point.

Hence, we can conclude that corner-impact bifurcations in cam–follower systems can
indeed lead to dramatic changes of the system qualitative behavior including sudden
transitions from periodic solutions to chaos.
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Figure 5.4: Numerical bifurcation diagram of the local map (5.25) with the analytically
estimated matrices. The border collision when δT = 0 corresponds to the corner-impact
bifurcation point at ω ≈ 673.2 rpm. Note that as predicted a nonsmooth fold scenario
is observed with no fixed point existing for δT < 0 and two coexisting fixed points, one
stable, the other unstable for δT > 0.
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In this chapter, we present the local and global analysis of impacting orbits near
discontinuity points of the impacting manifold, using the concept of discrete maps and
the theory of border collision bifurcations presented in Chapter 2. The global map, or
Global Poincaré Map, can be also derived for impacting systems through the composition
of fixed time maps and discontinuity maps. Fixed time maps will describe the system
evolution between impacts, while the discontinuity mappings will take care of the impact
dynamics. This analytical tool has been already used for the global analysis of impacting
systems with smooth differentiable boundaries at hard and soft (grazing) impacts. Here,
the analysis is intended to fill a gap, by performing the analysis of impacting orbits
where the boundaries in the admissible space are not continuously differentiable (i.e.
configuration space with corners. See section 6.1 for definition). Finally, we analyze the
case of a representative cam–follower system.
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6.1 Impacting systems with a corner

We define an impacting system over some admissible region Ω ∈ R
n (see Fig. 6.1) as

{

ẋ(t) = F (x(t), µ)
x+ = Ri(x

−, y−i ) If impact
(6.1)

where x(t) ∈ R
n is the state vector, µ ∈ R

p is a parameter vector, F : R
n → R

n is a
smooth vector field.

The zero level sets of the smooth functions H1(x(t), y1(t)) and H2(x(t), y2(t)) define
the boundary set ∂Ω. In particular we choose:

Hi(x(t), yi(t)) := CT (x(t) − yi(t)), and Σi := {x : Hi(x(t), yi(t)) = 0}, (6.2)

with CT :=
[

1 0 · · · 0
]

defined such that Hi gives the relative position of the
system with the moving constraint Σi for i = {1, 2}. The impact time τ is implicitly
defined by the contact condition Hi(x(τ), yi(τ)) = 0. The relative velocity is obtained
from (6.2) as Hi,t(x(τ), yi(τ)) < 0.

An impact occurs when the contact condition holds. We also define y−i := yi(τ
−) =

limt→τ− yi(t), from the state vector (position, velocity and parameterized time) of the
moving constraint at impact. In (6.1), the impact does not affects the state of the moving
constraint which implies y+

i := yi(τ
+) = yi(τ

−) , with negative relative velocity. We
assume the relative velocity at impact to be strictly negative, since we are not interested
in the analysis of soft (grazing) impacts.

The impact map Ri(·, ·) : ∂Ω 7−→ ∂Ω describes the correction to the system state
x(t) at impact with Σi, and is given by

Ri(x
−, y−i ) := x− −Wvi(x

−, y−i ), (6.3)

where W :=
[

0 (1 + r) · · · 0
]T

, is defined such that the impact mapping affects
only the velocity component with 0 ≤ r ≤ 1, as restitution coefficient; and vi is the
relative velocity of the system referred to the moving constraint Σi. We can then write
the impact map Ri as

Ri(x
−, y−i ) = x− −WH1,t(x

−, y−i ),

= x− −W (H1,xF (x−) +H1,yGi(y
−
i )),

= x− −WCT (F (x−) −Gi(y
−
i )), (6.4)

= x− −WCT (F (φ(x0, τi)) −G(γ(y0, τi))). (6.5)

We label φ(x, t) the system flow generated by F such that

dφ(x, t)

dt
= F (φ(x, t)), φ(x, 0) = x. (6.6)

Let us assume there is an impact at time τ ∈ R, belonging to a zero measure set T
containing all the impact times of an orbit. We denote the state before impact at
time τ as x− := x(τ−) = limt→τ− x(t), and the state after impact as x+ := x(τ+) =
limt→τ+ x(t).

We focus our analysis on the assumption that, the moving constraint changes con-
figuration at some time instant tc, between the smooth functions y1(t) and y2(t) i.e.

y(t) =

{

y1(t) If t ≤ tc,

y2(t) If t > tc.
(6.7)
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Moreover, without loss of generality, we suppose that yi(t) is given by the differential
equation

ẏi(t) = Gi(yi(t), t),

and we define γi(y, t) as the system flow generated by Gi such that

dγi(y, t)

dt
= Gi(γi(y, t)), γi(y, 0) = y. (6.8)

We also define y−i := yi(τ
−) = limt→τ− yi(t), as the state vector of the moving

constraint at impact. Note that, the impact does not affect the state of the moving
constraint which implies y+

i := yi(τ
+) = y−i .

We assume the impact map to be invertible such that

(R−1
i ◦Ri)(x

−, y−i ) = R−1
i (Ri(x

−, y−i ), y−i ) = x−,

and

(Ri ◦R
−1
i )(x+, y+

i ) = Ri(R
−1
i (x+, y+

i ), y+
i ) = x+,

with the inverse given by

R−1
i (x+, y+

i ) := x+ −
1

r
WCT (F (x+) −Gi(y

+
i )). (6.9)

An impacting trajectory can be described by appropriately composing the system
flow with the impact rule. For example, assume that a trajectory starting from x(0) =
x0, impacts with Σi at time τi. Then the dynamics for t > τi will be given by

x(t) = φ(Ri(φ(x0, τi), yi(τi))), t− τi)

Definition 1: yc ∈ ∂Ω is a corner of degree k, if yc ∈ Σ1 ∩ Σ2, and ∂kH1

∂yk 6= ∂kH2

∂yk .

According to the definition of the admissible space given in (6.7), where we assume
non-smooth dynamics of the moving constraint; we will find a corner at every point that
is not continuously differentiable. At corners of degree 1, the normal and tangential
directions of ∂Ω are not well-defined. Besides constraints (as for example kinetic energy
loss, or post impact velocities into feasible motion domain), it is necessary to impose
impact rules to render the problem solvable (i.e. find a unique set of postimpact ve-
locities). For references on the modelling of the impact dynamics with generic corners
(singularities) see [7]. In order to model the system studied in this chapter, it is enough
to establish that for corners of degree 2 or higher, the normal and tangential directions
of ∂Ω are well-defined everywhere, and the impact map can be solved by associating
some restitution coefficients where needed.

For the stability analysis instead, using the classification strategy presented firstly
by Feigin [24], we will show the analysis of discontinuity-induced bifurcations at least
for corners of degree 2.

Definition 2: Given the impacting system in (6.1), we say that a trajectory x(t)
undergoes a corner impact bifurcation of degree k, for µ = µc; if ∃ τc < +∞ such that
[x(τc)]1 = [yc]1 and yc ∈ ∂Ω is a corner of degree k.

Fig. 6.1 presents several examples of configuration spaces with a corner set. In
all cases the position is plotted versus parameterized time, for the moving constraint,
defined by two smooth manifolds Σ1 and Σ2.
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Figure 6.1: Four examples of configuration spaces. Position versus parameterized time.
(a),(b) Convex and non convex configuration space with a corner of degree 1. (c),(d)
Two instances of non convex configuration space with a corner of degree 2.

6.2 Analysis of a degree 2 corner impact bifurcation

Given the system in (6.1), let us assume that an impacting trajectory x(t) characterized
by one impact per period at some time instant τ ∈ I =] − ta, tb[ undergoes a corner
impact bifurcation for µ = µc at the point (x−c , τc). Moreover, assume that when µ < µc,
the trajectory x(t) has an impact with Σ1 at time t = τ1 < τc. We wish to investigate
the effects on x(t) of increasing µ past µc, i.e. the possible scenarios occurring at a
corner impact bifurcation. (see Fig. 6.2(a)).

We assume H1(x
−
c , yc) = H2(x

−
c , yc), H1,t(x

−
c , yc) = H2,t(x

−
c , yc) and H1,tt(x

−
c , yc) 6=

H2,tt(x
−
c , yc) The former conditions are equivalent to say that, the point (x−c , yc) is a

corner of degree 2. We detail next, the construction of a Poincaré map to investigate
the scenario described above.
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Figure 6.2: (a) Corner Impact Bifurcation. (b) Corner Impact Orbit.

6.2.1 Stroboscopic mapping

Let Πa at t = −ta and Πb at t = tb be two Stroboscopic Poincaré sections (see
Fig. 6.2(b)). The corner impact trajectory is associated to the initial condition xc ∈ Πa,
such that x−c = φ(xc, ta), x+

c = R1(x
−
c , yc) = R2(x

−
c , yc) and P (xc, µc) = φ(x+

c , tb),
where µ = µc and (yc, τc) define a corner. We wish to construct the mapping P : A → B
from A ⊂ Πa to B ⊂ Πb, where A ⊂ Πa is a sufficiently small neighborhood of
xc, such that all trajectories rooted in A have one and only one impact occurring at
τ ∈ I =] − ta, tb] and B is the corresponding images on Πb.

Now, for µ ≤ µc the point xc ∈ A is mapped to the point P (xc, µ) ∈ B given by

P (xc, µ) = φ(R1(φ(xc, ta + τ1), y1(τ1)), tb − τ1), if µ ≤ µc,

or equivalently, using an appropriate discontinuity mapping D, we can write:

P (xc, µ) = (Φb ◦D ◦ Φa)(xc, µ), If µ ≤ µc, (6.10)

where Φa : Πa → Πd and Φb : Πd → Πb are fixed time maps defined as

Φa(x) = φ(x, ta), Φb(x) = φ(x, tb), (6.11)

and D : Πd → Πd is a discontinuity map acting on some section Πd, that can be obtained
from the composition of local flows and impacting dynamics near the point (x−c , τc); see
Fig. 6.3.

Note that for µ ≤ µc the impact point lies on Σ1. If we then vary µ past the
bifurcation point the mapping changes as the impact point moves from Σ1 to Σ2. It
has been observed in Chapter 5, that such phenomenon causes a non smooth transition,
captured by introducing an extra discontinuity mapping Dc that allow us to write the
global map as

P (xc, µ) = (Φb ◦Dc ◦D ◦ Φa)(xc, µ), if µ > µc, (6.12)

where the map Dc : Πd → Πd is locally obtained from the composition of local flows
and impacting dynamics near the point (x+

c , τc); see Fig. 6.4. Next, we will show how
to construct such maps D and Dc, and obtain the global Poincaré map using (6.12).
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x̃ = x−c + δ

x̄ = x+
c + ε

x−1 x+
1

0τ1 t

Πd

Πa Πb

Σ1

µ ≤ µc

Σ2

Figure 6.3: Construction of the Corner Impact Map Dc

6.3 Derivation of the map D

We first present the construction of the map D, that will model the interaction with
Σ1 as if the corner were not there; for small perturbations near the corner-impact orbit.
We choose to construct the mapping on the section Πd transversal to the flow at the
corner. We consider a perturbed initial condition x̃ ∈ Πd, near the point x−c at time τc,
defined as x̃ := x−c + δ with small δ, (i.e. δ ≈ 0); we want to obtain in zero time, the
correction ε to the perturbed post-impact state that we define as x̄ := x+

c + ε, near the
point (x+

c , τc), such that for δ = 0 we have ε = 0, which means no perturbation implies
no correction. Notice that D will then take into account perturbations of the impact
dynamics. Fig. 6.3, presents the schematics for the construction of the mapping D,
where we assume small perturbations on the parameter µ, nevertheless the local analysis
performed in this section is generic for any perturbation on the initial condition x̃. This
allows us the use of the discontinuity mapping D for the asymptotic and structural
analysis. We can obtain D as a function of the local flows and impact dynamics by
considering the following 3 steps (see Fig. 6.3):

1. Flow from x̃ ∈ Πd for time t = τ1 using φ(·, ·) generated by the vector field F in
(6.1), to reach x−1 ∈ Σ1 i.e.

x−1 := φ(x̃, τ1) (6.13)

where τ1 is such that H1(φ(x̃, τ1), y1(τ1)) = 0.

2. Using the pre-impact state x−1 ∈ Σ1 and the impact rule R1(·, ·) to compute the
post-impact state x+

1 ∈ Σ1 as

x+
1 := R1(x

−
1 , y1(τ1)) (6.14)

where the impact rule R1 is given by (6.5).
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3. Flow backward from x+
1 ∈ Σ1 for time t = −τ1 till reach x̄ ∈ Πd

x̄ := φ(x+
1 ,−τ1) (6.15)

we can finally write D as function of x̃, after composing (6.13), (6.14) and (6.15) as,

x̄ = D(x̃) = φ(R1(φ(x̃, τ1), y1(τ1)),−τ1). (6.16)

Note that the total time spent flowing backward and forward is zero. We present no two
alternative derivations to obtain an analytical approximation of the map D: one based
on asymptotics the other on implicit differentiation.

6.3.1 Local approximation of D using asymptotics

To obtain an analytical expression of D(x), we can use the local Taylor expansion of
φ(x, t) and F (x) on perturbation of the initial conditions and time near the corner point
(x(τc), τc) = (x−c , 0) and y1(τc) = yc. We have:

x(t) = φ(x, t)| x≈x
0

t≈0

= x+ F (x0)t+ O(2) (6.17)

F (φ(x, t))| x≈x
0

t≈0

= F (x0) + Fx(x0)(x− x0) + Fx(x0)F (x0)t+ O(2) (6.18)

yi(t) = γi(yc, t)|t≈0 = yc +Gi(yc)t+ O(2) (6.19)

Gi(γi(yc, t))|t≈0 = Gi(yc) +Gi,yi
(yc)Gi(yc)t+ O(2) (6.20)

τ1(x)|x≈x0
= −

CT δ

CT (F 0 −Gc
1)

+ O(2) = −
1

v0
1

Hx · x+ O(2) (6.21)

where we use the superscript ”-” or ”+” to distinguish the approximation near x−c (i.e.
x0 = x−c ), from the one near x+

c . In the former case, we consider some perturbed initial
condition x̃ near the corner impact at x−c , such that for δ ≈ 0 we have that x̃ ≈ x−c . We
also use the superindex ”c” to denote the state of the moving constraint at the corner
as Gc

1 := G1(yc). The leading order approximation of D(x̃)|x̃≈x−

c
in (6.16) can then be

obtained as follows:

1. From (6.13) and (6.17) with x̃ ≈ x−c and τ−1 ≈ 0, we obtain

x−1 = φ(x̃, τ−1 )

= x̃+ F−τ−1 + O(2). (6.22)

2. From (6.5),(6.14),(6.18) with x− ≈ x−c and τ−1 ≈ 0, we have that

x+
1 = R1(x

−
1 , y1(τ

−
1 ))

= x−1 −WCT (F (x−) −G1(y1(τ
−
1 )))

= x−1 −WCT (F− + F−
x (x−1 − x−c ) −Gc

1 −Gc
1,y1

Gc
1τ

−
1 ) + O(2) (6.23)

= R−
1 +R−

1,xδ +R−
1,tτ

−
1 .

3. From (6.15) and (6.17) with x+
1 ≈ x+

c and τ−1 ≈ 0, we get

x̄ = φ(x+
1 ,−τ

−
1 )

= x+
1 − F+τ−1 + O(2). (6.24)
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After composing (6.22), (6.24) and (6.24), we can write (6.16) as:

x̄ = x−c + δ + F−τ−1 −WCT (F− + F−
x δ + F−

x F
−τ−1 −Gc

1 −Gc
1,y1

Gc
1τ

−
1 )

−F+τ−1 + O(2),

= x−c −WCT (F− −Gc
1) + (I −WCTF−

x )δ

+(F− −WCT (F−
x F

− −Gc
1,y1

Gc
1) − F+)τ−1 + O(2)

= R−
1 +R−

1,xδ + (R−
1,t − F+)τ−1 + O(2) (6.25)

with
R−

1 := x−c −WCT (F− −Gc
1) = x+

c ,

R−
1,x := I −WCTF−

x =

[

1 0
0 −r

]

,

R−
1,y1

:= WCTGc
1,y =

[

0 0
0 1 + r

]

,

R−
1,t := R−

1,xF
− +Rc

1,yG
c,

where I is the identity matrix.
The approximation of τ−1 can be obtained from (6.21) as:

τ−1,x := −
CT

CT (F− −Gc
1)

= −
1

v−1
Hx.

Notice that τ−1 is function of δ, such that for δ = 0 then τ−1 = 0.
We can then rewrite (6.25) as

x̄ := D(x̃)|x̃=x−

c +δ = R−
1 + (R−

1,x + (R−
1,t − F+)τ−1,x)δ + O(2). (6.26)

For a perturbed initial condition x̃ = x−c + δ, we can compute the post-impact state
x̄ = x+

c + ε, decoupling the effect from the unperturbed orbit as

ε := (R−
1,x + (R−

1,t − F+)τ−1,x)δ + O(2). (6.27)

6.3.2 Local approximation of D using implicit differentiation

Alternatively, from (6.16) we can compute the jacobian Dx(x̃)|x̃=xc
− as

Dx(x̃) = φx(x+
1 ,−τ1) · (R1,x(x−1 , y1(τ1)) · (φx(x̃, τ1) + φt(x̃, τ1)τ1,x(x̃))

+R1,y(x−1 , y1(τ1))γ1,t(y1(τ1), τ1)τ1,x(x̃)) − φt(x
+
1 ,−τ1)τ1,x(x̃) (6.28)

As we are interested on the analysis at x̃ = x−c , we have that time τ1 = 0, and
the jacobian φx(x−c , 0) = I, moreover φt(x

−
c , 0) = F (x−c ) and γ1,t(y, 0) = G1(y) we can

rewrite (6.28) as:

Dx(x̃)|x=xc
− = R1,x(xc

−) + (R1,x(xc
−, yc) · F (xc

−)

+R1,y(xc
−, yc)G1(yc) − F (xc

+))τ1,x(xc
−)

= R−
1,x + (R−

1,x · F− +Rc
1,y ·Gc

1 − F+)τ−1,x (6.29)

which lead us to the same expression as in (6.26).
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6.4 Derivation of the corner map Dc

If we now vary µ past the bifurcation point the mapping changes as the impact point
moves from Σ1 to Σ2. In particular we write the local map as

P (x, µ) = (Φb ◦Dc ◦D ◦ Φa)(x, µ), If µ > µc. (6.30)

where Dc represents the additional correction to the mapping due to the fact that for
µ > µc, the impact now occurs with Σ2 rather than Σ1.

For the construction of the mapping Dc, we assume a perturbed initial condition
x̄ ∈ Πd defined as x̄ := x+

c + ε, with small ε (i.e. ε ≈ 0); after impacting Σ1 near the
point (x+

c , τc). We want to obtain the zero time correction ξ to the perturbed postimpact
state defined as x̂ := x+

c + ξ, after impacting Σ2 near the point (x+
c , τc)); such that for

ε = 0 we have ξ = 0.

Fig. 6.4, presents the schematics for the construction of the mapping Dc. We can
then obtain Dc as function of local flows and impacting dynamics as follows:

1. Flow from x̄ ∈ Πd for time t = τ1 using φ(·, ·) generated by the vector field F in
(6.1), to reach x+

1 ∈ Σ1 i.e.

x+
1 := φ(x̄, τ1), (6.31)

where τ1 is such that H1(φ(x̄, τ1), y1(τ1)) = 0.

2. Given the post-impact state x+
1 ∈ Σ1, obtain the preimpact state x−1 ∈ Σ1 using

the inverse function of the impact rule R−1
1 (·, ·) as

x−1 := R−1
1 (x+

1 , y1(τ1)), (6.32)

where R−1
1 is defined by (6.9).

3. Flow from x−1 ∈ Σ1 for time t = τ2 − τ1 till reaching x−2 ∈ Σ2 as

x−2 := φ(x−1 , τ2 − τ1), (6.33)

where τ2 is such that H2(φ(x−1 , τ2 − τ1), y2(τ2)) = 0.

4. Using the pre-impact state x−2 ∈ Σ2 and the impact rule R(·, ·) compute the post-
impact state x+

2 ∈ Σ2 as

x+
2 := R2(x

−
2 , y2(τ2)) (6.34)

5. Flow backward in time from x+
2 ∈ Σ2 for time t = −τ2 untill x̂ ∈ Πd given by

x̂ := φ(x+
2 ,−τ2) (6.35)

composing (6.31), (6.32), (6.33), (6.34) and (6.35), we obtain:

x̂ = Dc(x̄) = φ(R2(φ(R−1
1 (φ(x̄, τ1), y1(τ1)), τ2 − τ1), y2(τ2)),−τ2). (6.36)
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0 τ1 τ2−ta tb t

Πd

x̄ = x+
c + ε

x̃

x̂ = x+
c + ξ

x−1

x+
1

x−2
x+

2

Σ1

µ > µc

Σ2

Figure 6.4: Construction of the Corner Impact Map Dc

6.4.1 Local approximation of Dc using asymptotics

Now we use (6.17), (6.18), to write a first order approximation of Dc(x̄)|x̄≈x+
c

in (6.36)
as follows:

1. From (6.31) and (6.17) with x̄ ≈ x+
c and τ+

1 ≈ 0

x+
1 = φ(x̄, τ+

1 )

= x̄+ F+τ+
1 + O(2). (6.37)

2. From (6.5),(6.32),(6.18) and (6.20) with x+
1 ≈ x+

c and τ1 ≈ 0, we have that

x−1 = R−
1 (x+

1 , y1(τ
+
1 ))

= x+
1 −

1

r
WCT (F (x+

1 ) −G1(y1(τ
+
1 )))

= x+
1 −

1

r
WCT (F+ + F+

x (x+
1 − x+

c ) −Gc
1 −Gc

1,y1
Gc

1τ
+
1 ) + O(2).(6.38)

3. From (6.33) and (6.17) with x−1 ≈ x−c , τ+
1 ≈ 0 and τ+

2 ≈ 0, we have:

x−2 = φ(x−1 , τ
+
2 − τ+

1 )

= x−1 + F−(τ+
2 − τ+

1 ) + O(2). (6.39)

4. From (6.5),(6.20),(6.18) and (6.34),with x−2 ≈ x−c and τ+
2 ≈ 0, we get:

x+
2 = R2(x

−
2 , y2(τ

+
2 ))

= x−2 −WCT (F (x−2 ) −G1(y2(τ
+
2 )))

= x−2 −WCT (F− + F−
x (x−2 − x−c ) −Gc

2 −Gc
2,y2

Gc
2τ

+
2 ) + O(2).(6.40)
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5. (6.35) and (6.17) with x+
2 ≈ x+

c and τ2 ≈ 0, yield

x̂ = φ(x+
2 ,−τ2)

= x+
2 − F+τ+

2 + O(2) (6.41)

After composing (6.37), (6.38), (6.39), (6.40) and (6.41) we can then write

x̂ = Dc(x̄)|x̄≈x+
c

= x+
c + ε− (R−

1,t − F+)τ+
1,xε+ (R−

2,t − F+)τ+
2,xε+ O(2) (6.42)

Notice that, τ+
1 and τ+

2 are functions of ε and the approximation can be obtained
from (6.21) as

τ+
1,x = −

CT

CT (F+ −Gc
1)

= −
1

v+
1

Hx, and τ+
2,x = −

CT

CT (F+ −G0
2)

= −
1

v+
2

Hx.

From (6.42), we can decouple the effect of the perturbation ε as

ξ = (I − (R−
1,t − F+)τ+

1,x + (R−
2,t − F+)τ+

2,x)ε+ O(2). (6.43)

6.4.2 Local approximation of Dc using implicit differentiation

From (6.36) we can compute the jacobian Dc,x(x̄)|x̄=x+
c

as

Dc,x(x̄) = φx(x+
2 ,−τ2) · (R2,x(x−2 , y2(τ2)) · (φx(x−1 , τ2 − τ1)

·(R−1
1,x(x+

1 , y1(τ1)) · (φx(x+
2 ,−τ1) + φt(x

+
1 , τ1)τ1,x(x̄))

+R−1
1,y(x+

1 , y1(τ1))γ1,t(y1(τ1), τ1)τ1,x(x̄)) + φt(x
−
1 , τ1)(τ2,x(x̄) − τ1,x(x̄))

+R2,y(x−2 , y2(τ2))γ2,t(y2(τ2), τ2)τ2,x(x̄)) − φt(x
+
2 , τ2)τ2,x(x̄)) (6.44)

because at x̄ = x−c , we have that time τ1 = 0, τ2 = 0 and the jacobian φx(x, 0) = I, as
well as φt(x, 0) = F (x) and γi,t(y, 0) = Gi(y). Now, from (6.45) we have

Dc,x(x̄)|x̄=x+
c

= I − (R−
1,t − F+)τ+

1,xε+ (R−
2,t − F+)τ+

2,x (6.45)

which lead us to the compact form in (6.43).

6.4.3 Sensitivity of D and Dc under parameter variation

We consider now the effects of variation of the parameter µ, on the maps D and Dc

defined in Sec. 6.3 and 6.4. Namely, we note that any small variation on the parameters
of the system, say µ = µc + ∆µ, with ∆µ � 1; may produce a deviation from the
post-impact state associated to the corner impacting orbit Now, if we define εµ as the
correction to the post-impact state caused by variation of the parameter vector µ, we
can repeat the local analysis. In particular, we obtain εµ = Dµ∆µ, for impacts occurring
before the corner point at τ ≤ τc, where

Dµ(µ) = R1,µ + (R−
1,t − F+)τ−1,µ, (6.46)

and for the case of impacts occurring at τ > τc, we will need to consider the additional
correction Dc,µ given by

Dc,µ(µ) = I − (R−
1,t − F+)τ+

1,µ + (R−
2,t − F+)τ+

2,µ. (6.47)

In section ??, we include examples of analysis for a representative cam-follower system.
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6.5 Derivation of the global Poincaré map

We can now use the analytical approximation of D and Dc to obtain the global Poincaré
map defined in (6.10) and (6.12). Say Aµ ⊂ [Πa ×R1] a sufficiently small neighborhood
of the point(xc, µc), such that all trajectories rooted in Aµ have one and only one impact
occurring at τ ∈ I =]− ta, tb]. Now, for τ(x, µ) ≤ τc the point x ∈ Aµ is mapped to the
point P (x, µ) ∈ B ⊂ Πb given by

P (x, µ) =

{

(Φb ◦D ◦ Φa)(x, µ), If τ(x, µ) ≤ τc

(Φb ◦Dc ◦D ◦ Φa)(x, µ), If τ(x, µ) > τc
(6.48)

where Φa(x) and Φb(x) are given by (6.11) and D(x) and Dc(x) are given by (6.16) and
(6.36).

As mentioned before, the corner impact trajectory is associated to an initial condition
xc ∈ Πa with µ = µc, such that x−c = φ(xc, ta) when µ = µc. (see Fig. 6.2(b)).

Let ∆x and ∆µ be sufficiently small variation of the state and parameter near xc

and µc, such that the point (xc + ∆x, µc + ∆µ) ⊂ Aµ. Then, we can write a linear
approximation of (6.48) near a corner of degree 2 as

∆P (x, µ)| x≈xc
µ≈µc

= Px(xc, µc)∆x+ Pµ(xc, µc)∆µ+ O(||∆x||2, ||∆µ||2)

where

Px(xc, µc) :=

{

φx(x+
c , tb) ·Dx(x−c ) · φx(xc, ta) If τ(x, µ) ≤ τc

φx(x+
c , tb) ·Dc,x(x+

c ) ·Dx(x−c ) · φx(xc, ta) If τ(x, µ) > τc
(6.49)

and

Pµ(xc, µc) :=

{

φµ(x+
c , tb) ·Dµ(x−c ) · φµ(xc, ta) If τ(x, µ) ≤ τc

φµ(x+
c , tb) ·Dc,µ(x+

c ) ·Dµ(x−c ) · φµ(xc, ta) If τ(x, µ) > τc
(6.50)

where Dc, Dc,x, Dµ and Dc,µ are defined by (6.28), (6.45), (6.46) and (6.47) respectively.

6.6 Stability of periodic orbits near a corner of de-
gree 2

Probably the most straightforward use of the methodology presented above, is the anal-
ysis of periodic orbits with impacts near to a corner. As an example, Fig. 6.5 shows
position versus time, of the simplest orbit undergoing a corner impact bifurcation. It is
assumed the existence of an isolated periodic (1,1) orbit (noted as P(1, 1)) impacting a
corner of degree 2 of the type depicted in Fig. 6.1(c). In order to study the asymptotic
and structural stability of such an orbit, we proceed with the construction of a proper
Poincaré mapping. In this case it is convenient to define the stroboscopic Poincaré sec-
tion Πi every period, that allows the definition of the map P : Πi → Πi+1. In this
particular case we assume the map is invertible near the fixed point associated to the
periodic orbit, which means that there are not grazing bifurcations or sliding solutions
belonging to orbit. It is also worth mentioning that the map P will take care of the
free flow evolution of the systems, as well as of the impact dynamics. Fig. 6.6 shows the
same P(1, 1) orbit in the state space (i.e. position, velocity and time).
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τi τi+1 = τi + T

P(1, 1)

x+
i x−i+1 x+

i+1

Figure 6.5: Position on time for a (1,1) impacting orbit

Using the methodology described above we can write the Poincarḿap of this orbit
as:

P (x, µ) =

{

(D ◦ Φ1)(x, µ), If τ(x, µ) ≤ τc

(Dc ◦D ◦ Φ1)(x, µ), If τ(x, µ) ≤ τc.
(6.51)

Now if, xc is the fixed point of this mapping corresponding to the orbit of interest
we can write:

∆P (x, µ)| x≈xc
µ≈µc

= Px(xc, µc)∆x+ Pµ(xc, µc)∆µ+ O(||∆x||2, ||∆µ||2)

and study the asymptotic stability using:

Px(xc, µc) =

{

Dx(x−c ) · φx(x0, T ) If τ(x, µ) ≤ T

Dc,x(x+
c ) ·Dx(x−c ) · φx(x0, T ) If τ(x, µ) > T

(6.52)

while the structural stability using:

Pµ(xc, µc) =

{

Dµ(x−c ) · φµ(x+
c , ta) If τ(x, µ) ≤ T

Dc,µ(x+
c ) ·Dµ(x−c ) · φµ(x+

c , ta) If τ(x, µ) > T
(6.53)
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Figure 6.6: Simplest orbit undergoing a corner impact bifurcation

6.7 Corner impact bifurcation in the cam–follower
system

We now illustrate the derivation of corner impact map Dc presented in this chapter, for
the complete analysis of a corner impact bifurcation in the cam–follower system.

6.7.1 Definition of the impacting system

The dynamics of the mass-spring-damper system is described by the second order dif-
ferential equation

mq′′ + bq′ + kq = −mg, (6.54)

if we define q0 and q′0 as the initial position and velocity of the follower. The state of
the system can be defined as

x(t) =

[

q(t),
q̇(t)

]

+
mg

k

[

1
0

]

the differential form

ẋ = F (x),

= Ax,

where F (x) is a linear vector field generator the flow φ(x0, t) such that

x(t) = φ(x0, t),

= e−ζt (I cos(ωst) +D sin(ωst))x0,

= Φ(t)x0,
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where A =

[

0 1
−ω2

0 −2ζ

]

, D = 1
ωs

[

ζ 1
−ω2

0 −ζ

]

, ζ = b
2m , ω0 =

√

k
m ,

ωs =
√

ω2
0 − ζ2

Definition of constraints Σ1 and Σ2. The geometrical construction of the cam allow
us define the constraints Σ1 and Σ2 by the zero level set of smooth scalar functions H1

and H2 as

Hi(x(t), yi(t)) = CT (x(t) − yi(t)) and Σi = {x : Hi(x, y) = 0} ,

for i ∈ {1, 2} and CT = [ 1 0 ].

yi(t) =





(−1)iκi sin(ωt+ θ + θi) + (ρ2
i − κ2

i cos(ωt+ θ + θi)
2)

1
2

(−1)iκi cos(ωt+ θ + θi) +
κ2

i sin(ωt+θ+θi) cos(ωt+θ+θi)

(ρ2
i
−κ2

i
cos(ωt+θ+θi)2)

1
2



 (6.55)

where ω, θ, κi, ρi and θi are constant parameters . It can be shown that y1(0) = y2(0)
as well as

H1(t)|t=0 = H2(t)|t=0 ,
∂H1(t)

∂t

∣

∣

∣

∣

t=0

=
∂H2(t)

∂t

∣

∣

∣

∣

t=0

and
∂2H1(t)

∂t2

∣

∣

∣

∣

t=0

6=
∂2H2(t)

∂t2

∣

∣

∣

∣

t=0

.

Impact dynamics. The dynamics at impact is defined as

x+ = Ri(x
−, yi(τi)) = x− −W (x−)vi(x

−, y−i ),

= x− −W (x−)CT
[

F (x−) −Gi(τi)
]

, (6.56)

where W (x−) = [ 0 (1 + r) ]T and Gi(yi(t)) = yi,t(t).

6.7.2 Local analysis for the cam-follower system

Using the analytical tools presented in section 6.2 we can obtained the local approxima-
tions for the map in (6.48) as

Px(xc, µc) =

{

φx(x+
c , tb) ·Dx(x−c ) · φx(x0, ta), If µ ≤ µc,

φx(x+
c , tb) ·Dc,x(x+

c ) ·Dx(x−c ) · φx(x0, ta) If µ > µc,
(6.57)

where for the cam-follower system we have:

Φa = Φ(ta) = φx(x0, ta) = e−ζta (I cos(ωsta) +D sin(ωsta)) ,

Φb = Φ(tb) = φx(x+
c , tb) = e−ζtb (I cos(ωstb) +D sin(ωstb)) ,

Dx(x) = Rx +
(

Rx(F (x−c ) −G1(yc)) − (F (x+
c ) −G1(yc))

)

τ1,x ,

or

Dx(x) = Rx +
(

RxF (x−c ) +RyG1(yc) − F (x+
c )

)

τ1,x ,

with

τ1,x = −
CT

CT ·
(

F (x−c ) −G1(yc)
) ,
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Rx = I −W (x−)CTFx(x−) = I +R =

[

1 0
0 −r

]

,

Ry = W (x−)CTGy(y−) = −R =

[

0 0
0 1 + r

]

,

and R = −W (x−)CTFx(x−) =

[

0 0
0 −(1 + r)

]

.

Moreover, we obtain:

F (x−c ) = Ax−c = φ′(0)x−c ,

G1(yc) = G1(y1(0)) = y′1(0),

∆F−
1 = F (x−c ) −G1(yc) = φ′(0)x−c − y′1(0),

∆F+
1 = F (x+

c ) −G1(yc) = φ′(0)x+
c − y′1(0),

x+
c = x−c −W (x−)CT (F (x−c ) −G1(yc)),

= x−c +R(x−c − y1(0)).

These analytical mappings can be used to study the dynamics of any cam–follower
system of interest.

For the sake of brevity we omit here the analysis of the cam–follower system of
interest which yields the same results presented in Chapter 5.
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In this chapter we study an hybrid controller for an Anti–lock Braking System (ABS)
in the context of the Qualitative theory of Piecewise Smooth Dynamical Systems. To
the best of our knowledge, this type of ABS has never been fully analyzed. Our interest
is to characterize the performance ( stability and robustness), rather than focusing on
the design of new ABS control algorithms. We believe that our approach can give useful
synthesis tools as it shows how a simple hybrid controller with a low number of both
discrete states and parameters can be designed to guarantee stability and robustness.

The work presented in this chapter was carried out in collaboration with Mara Tanelli
and Sergio M. Savaresi from the ”Dipartmento di Electtronica e Informazione, Politec-
nico di Milano”, and Alessandro Astolfi from the Department of Electrical and Electronic
Engineering, Imperial College, London.

7.1 Description of the ABS hybrid controller

Electronic Anti-lock Braking Systems (ABS) have recently become a standard for all
modern cars. In fact, ABS can greatly improve the safety of a vehicle in extreme
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circumstances, as it maximizes the longitudinal tire-road friction while keeping large
lateral forces which guarantee vehicle steerability. The use of automatic braking control
systems has recently been extended also to Electronic Stability Control (ESC) systems
[27], [39].

This advanced control techniques, although very powerful, do rely on a new genera-
tion of braking system which are not an industrial reality yet. This is mainly due to the
fact that both electro-hydraulic and electro-mechanical braking systems do not yet have
been proved to comply with the safety standards required for this highly safety-critical
application (see e.g., [68], [27]). We now present an hybrid controller for an anti–lock
breaking system with a threevalued hydraulic actuator, modelled as a piecewise smooth
dynamical system.

7.1.1 Braking model

For the preliminary design and testing of braking control algorithms, a simple but ef-
fective quarter-car model (see e.g., [36]) is typically used. The model is given by the
following set of equations (see also Figure 7.1)

Jω̇ = rFx − Tb, (7.1a)

mv̇ = −Fx, (7.1b)

where

• ω [rad/s] is the angular speed of the wheel;

• v [m/s] is the longitudinal speed of the vehicle body;

• Tb [Nm] is the braking torque (which plays the role of control/input variable);

• Fx [N ] is the longitudinal tire-road contact force;

• J [Kgm2], m [Kg] and r [m] are the moment of inertia of the wheel, the quarter-
car mass, and the wheel radius, respectively. In the following simulations and
Figures, unless otherwise stated, the values J = 1 [Kgm2], m = 400 [Kg] and
r = 0.3 [m] will be used.

Figure 7.1: Quarter car vehicle model.

The dynamic nonlinear behavior of the system is hidden in the expression of Fx, which
depends on the state variables v and ω. The most general expression of Fx is quite
involved, since it depends on a large number of features of the road, tire, and suspension.
However, it can be well-approximated as follows

Fx = Fzµ(λ, βt; θr), (7.2)
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where

• Fz is the vertical force at the tire-road contact point;

• λ is the longitudinal slip, defined as λ = v−ωr
max{ωr,v} . Notice that, by definition,

λ ∈ [−1, 1]; during braking, though, as ωr ≤ v, the wheel slip is defined as

λ =
v − ωr

v
,

and λ ∈ [0, 1];

• βt is the wheel side-slip angle (see e.g., [39]);

• ϑr is a set of parameters which characterize the shape of the static function
µ(λ, βt;ϑr).

For simplicity, we assume that the braking maneuver is performed along a straight line,
(i.e. βt = 0).This assumption is not crucial in the design, since βt acts as a scaling factor
on the friction curves µ(λ), which resembles the effect due to a change in the vertical
load.
Accordingly, as we will discuss how changes in the vertical load can be managed in the
proposed control approach, in the same way we can handle non-zero values of βt.
Many empirical analytical expressions for µ(·;ϑr) have been proposed; a simple and
widely-used model is (see [39], [48])

µ(λ;ϑr) = ϑr1(1 − e−λϑr2) − λϑr3. (7.3)

Notice that ϑr ∈ R
3 is a parameter vector to model different tire-road friction conditions.

In Figure 7.2 the shapes of µ(λ;ϑr) in four different road conditions are displayed.
We will analyze the case of dry asphalt and wet asphalt, where ϑr are θrDry =

[1.11 23.99 0.52] and θrWet = [0.687 33.822 0.347], (see [39]). After these assumptions
we can model (7.2) as

Fx = Fzµ(λ), (7.4)

with λ = v−ωr
v .

Substituting (7.4) into (7.1) we obtain a quarter–car model as

Jω̇ = rFzµ(
v − ωr

v
) − Tb, (7.5a)

mv̇ = −Fzµ(
v − ωr

v
). (7.5b)

Nonetheless, as λ, v and ω are linked by an algebraic relationship, it is possible to
replace the state variable ω with the state variable λ. This can be simply obtained by
substituting the following two relationships

λ̇ = −
r

v
ω̇ +

rω

v2
v̇

and
ω =

v

r
(1 − λ)

into the first Equation of (7.5), thereby obtaining

λ̇ = −
1

v

(

(1 − λ)

m
+
r2

J

)

Fzµ (λ) +
r

vJ
Tb, (7.6a)

mv̇ = −Fzµ (λ) . (7.6b)
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Figure 7.2: Behavior of the function µ(λ) in different road conditions.

Since the longitudinal dynamics of the vehicle (i.e. state variable v) are much slower
than the rotational dynamics of the wheel (i.e. the state variable λ or ω) due to large
differences in inertia (7.1b) is neglected, and we reduce to a first order model given by

λ̇ = −
1 − λ

Jω
(Ψ(λ) − Tb) , (7.7)

with ω ≥ 0 and

Ψ(λ) =

(

r +
J

rm
(1 − λ)

)

Fzµ(λ). (7.8)

7.1.2 Actuator dynamics and closed loop trajectories

The considered actuator is the Hydraulic Actuated Brake (HAB) depicted in Fig. 7.3.
For this HAB the pressure exerted by the driver on the pedal is transmitted to the hy-
draulic system via a Build Valve (valve 1), which communicates with the brake cylinder.
Moreover, the hydraulic system has a second valve, the Dump Valve (valve 2), which
can discharge the pressure and which is connected to a low pressure accumulator. A
pump completes the overall system.

According to its physical characteristics, the HAB actuator is only capable of pro-
viding three different control actions, namely

• Increase the brake pressure. In this case the Build valve is open and the Dump
one closed;

• Hold the brake pressure. In this case both valves are closed;

• Decrease the brake pressure. In this case the Build valve is closed and the Dump
one open.
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Figure 7.3: Qualitative scheme of the considered braking system.

We assume a static brake-pads friction model, i.e., the braking torque Tb is computed
from the measured brake pressure pb as

Tb = rd ν Apb,

where rd is the brake disk radius; ν is the (constant) brake pads friction coefficient;
A is the brake piston area and pb is the measured brake pressure. This simplification
does not affect the analysis; in fact, in Sec. 7.4 we will show how the controller can take
care of uncertainties in the braking torque and how to tune the controller parameters
according to the available actuator performance.

Note that the increase and decrease pressure actions are physically limited by the
actuator rate limit, i.e.,

dTb

dt
= k,

where the rate limit k ∈ R
+ is a known parameter. Its nominal value in the following

simulations will be set to 10 kN/s.
To analyze the closed loop behavior of the hybrid system made of the connection

between the wheel dynamics (7.7) and the hydraulic actuator, we will work on the second
order system dynamics

λ̇ = −
1 − λ

Jω
(Ψ(λ) − Tb) , (7.9a)

Ṫb = u, (7.9b)

where we define three dynamical modes that corresponds to u = {−k, 0, k}. In Figs. 7.4(a),
7.4(b) and 7.4(c) we present the phase portrait for each dynamical mode using a vertical
load Fz = mg, for v = 30m/s on a dry asphalt road. The dashed line in these figures is
the isocline given by (7.8).
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(a)

(b)

(c)

Figure 7.4: Phase portrait for the close-loop braking system with a threevalued u. (a)
u = −k. (b) u = 0. (c) u = k.
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Notice that for u = 0 depending on the value of Tb we can have different scenarios
(invariant sets) in the phase portrait. In Fig. 7.5 we present a manifold Σss obtained
from (7.9a) with Tb = 1300 Nm. In this case the phase portrait presents two stable
equilibria, namely wheel locking equilibrium at λss

1 = 1 and the equilibria on the isocline
λss

2 ; and an unstable equilibrium λis
3 at another intersection point with the isocline.

Figure 7.5: Graph of λ̇ as a function of λ.

7.1.3 Hybrid controller

After analyzing the phase portrait for each of the three different dynamical modes defined
by the actuator, we can devise a switching logic which induces a limit cycle on the wheel
slip. We select the box depicted in Figure 7.6. The idea is to use the boundaries of the
box as switching functions and to select the control actions according to the finite state
machine shown in Fig. 7.7

We define the switching manifolds as follows (see also Figure 7.6)

Σ0 = {(λ, Tb) : H0(λ, Tb) := Tb − TbMax = 0}, (7.10)

Σ1 = {(λ, Tb) : H1(λ, Tb) := λ− λMax = 0}, (7.11)

Σ2 = {(λ, Tb) : H2(λ, Tb) := Tb − TbMin = 0}, (7.12)

Σ3 = {(λ, Tb) : H3(λ, Tb) := λ− λMin = 0}, (7.13)

Σis = {(λ, Tb) : Tb = Ψ(λ)}. (7.14)

where Σis defines the isocline.
From the application viewpoint, the controller needs a measure of the longitudinal

wheel slip λ. As it is well known, to have a measure of the wheel slip, the knowledge of
the vehicle speed v is necessary. As a matter of fact, the vehicle speed v can be directly
measured (by means of laser beams) only for testing and for prototyping purposes. In
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commercial cars it must be estimated by indirect measurements e.g., by using longitudi-
nal accelerometers or some filtering and identification tools - see e.g., [40], [35], [65], [71]
and the references cited therein. Hence, the measure of the wheel slip is always affected
by some estimation error. This will not compromise the proposed control methodol-
ogy. Even if only a very rough wheel slip estimate is available to the controller, e.g.,
an estimate derived only from wheel speed measurements, we will show which are the
maximum allowable measurements error which guarantee the limit cycle stability and
how to design the controller based on the confidence on the quality of the wheel slip
measure.

Figure 7.6: Switching Logic shown in the phase plane (λ, Tb).

By analyzing Fig. 7.7, where Finite State Machine (FMS) of the hybrid controller
is depicted, one can see that we use the braking torque Tb and the wheel slip λ as
switching variables and that the switching manifolds change according to the current
discrete controller state q = {0, 1, 2, 3}. Moreover note that, according to the specific
application, we can assume that (in normal operating conditions) the controller - upper
activation - enters the state q = 0 associated with the Increase control action. This is due
to the fact that, when the braking maneuver begins, the controller is usually activated
when the wheel slip λ reaches a predefined threshold value λinit, such that λinit < λmin.
From now on we assume λinit = 0. It is worth noticing that when the closed-loop
system evolves in the discrete states q = 1 and q = 3 the control action is u = 0. Hence,
the system dynamics given in (7.9) reduces to a first order system. Accordingly, the
closed-loop trajectories in these discrete states evolve on sliding surfaces. This will be
employed in the Poincaré map construction for the proof of the limit cycle asymptotic
stability.

The main features of the limit cycle presented in Figs. 7.8 and 7.9, with threshold
values TbMax = 1600Nm, TbMin = 1000Nm, λMax = 0.35 and λMin = 0.08. In
particular, Fig. 7.8 shows the phase portrait in the three dimensional hybrid state space,
where also the discrete control action is regarded as a system state variable increasing
the dimension, while Fig. 7.9 shows the time evolutions of state variables λ (wheel slip)
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and Tb (braking torque).

Simulation results assess that the proposed controller can indeed induce a periodic
behavior in the wheel slip and in the braking torque. Nonetheless, we still have to
determine conditions for the existence of the limit cycle and which are the other possible
invariant sets.

Figure 7.7: Finite State Machine of the Switching Control Logic.

7.1.4 The ABS hybrid controller as a PWSDS

Note that the ABS Hybrid Controller described in Sec. 7.1 can be recast as a Piecewise
Smooth Dynamical System of the form

D(x0, q0)

{

x(t) = ϕq(x0, t), if x ∈ Ωq,

q 7→ ρ(q), if σ(x, q) ≤ 0.

(7.15a)

(7.15b)

where ρ(q) model the state transition in Fig. 7.7, σ(x, q) models the condition for
transition to the next state as a zero level set of a scalar function Hq(x) with initial
value x(0) = x0 and q(0) = q0
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Figure 7.8: Schematic view of the switching manifolds associated to each discrete state
of the hybrid controller.

7.2 Existence of limit cycles

We now investigate the existence of the limit cycle induced by the ABS hybrid controller
in (7.15). Let us note O∗ the limit cycle generated by (7.15). We can then partition the
limit set O∗ in four different segments as part{O∗} = {O0,O1,O2,O3}, that corresponds
with the long term (asymptotic) itinerary of the discrete variable q as (see Fig. 7.10):

1. When the braking maneuver begins (i.e. x(0) = 0, u = k), the finite state machine
is in the state q = 0 and consequently the state of the system evolves with the
dynamics given by ϕ0, i.e. u = k as:

x(t) = ϕ0(0, t).

The first switching will occur when the system reaches Σ0 at the point labelled as
x̄, at time t0 as

{

x̄ = ϕ0(0, t0),

q+ = ρ(0), H0(x̄) = 0.

Notice that x̄ and t0 are generic tags to characterize an orbit evolving on Ω0 such
that t0 is the time required to reach x̄ ∈ Σ0 for an arbitrary initial initial condition.

2. Analogously, at state q = 1 (i.e. u = 0), the state evolution is given by ϕ1 with
initial condition x̄, until reaching Σ1 at the point xMax as

{

xMax = ϕ1(x̄, t1),

q+ = ρ(1), H1(xMax) = 0.
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Figure 7.9: Simulated closed loop trajectory of system (7.9) with the given control logic
in the hybrid state space (a) and of the wheel slip λ (top) and of the braking torque Tb

(bottom) in the time domain (b).

3. Now, at state q = 2 (i.e. u = −k), the state evolution is given by ϕ2 with initial
condition xMax, until reaching Σ2 at the point ¯̄x as

{

¯̄x = ϕ2(xMax, t2),

q+ = ρ(2), H2(¯̄x) = 0.

4. At state q = 3 (i.e. u = 0), the state evolution is given by ϕ3 with initial condition
¯̄x, until reaching Σ3 at the point xMin as

{

xMin = ϕ3(¯̄x, t3),

q+ = ρ(3), H3(xMin) = 0.

5. Finally, at state q = 0 (i.e. u = k), the state evolution is given by ϕ0 with initial
condition xMin, until reaching Σ3 at the point xMin as

{

x̄ = ϕ0(xMin, t0),

q+ = ρ(0), H0(x̄) = 0.

Since we assume the asymptotic behavior reaches the limit set O∗, then we can define
intervals Ti = [0, ti] as the evolution time corresponding to the discrete state q = i, for
i = 0, . . . , 3.

In Fig. 7.10 we show an schematics for each of the segments Oi that forms the
periodic orbit. We can formally define them as

O0 = {x : x(t) = ϕ0(xMin, t), ∀ t ∈ T0}, (7.16)

O1 = {x : x(t) = ϕ1(x̄, t), ∀ t ∈ T1}, (7.17)

O2 = {x : x(t) = ϕ2(xMax, t), ∀ t ∈ T2}, (7.18)

O3 = {x : x(t) = ϕ3(¯̄x, t), ∀ t ∈ T3}, (7.19)
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Figure 7.10: Limit cycle in terms of itinerary and initial conditions.

Note that both x̄ and ¯̄x are functions of the system parameter k, which gives the
curvature of the vector field when the system is in the states q = 0 and q = 2.

Thus, if the limit cycle O∗ exists, the following conditions must be satisfied.

1. No intersection must exist between the switching manifold Σ0 and the isocline
manifold Σis (see Figure 7.6), i.e.,

Σ0 ∩ Σis = ∅. (7.20)

2. The switching manifold Σ2 must intersect the isocline manifold Σis, i.e.,

Σ2 ∩ Σis 6= ∅.

3. If TbMin ≥ Ψ(λ = 1), i.e., two points of intersections exist between Σ2 and Σis,
that is

Σ2 ∩ Σis = {(TbMin, λ1), (TbMin, λ
+
0 )}

such that λ1 < λ+
0 ¡ then the intersection between the systems forward orbit

Φ(t, [λMax, TbMax; q = 2]) and Σ2 must occur at a point (TbMin,
¯̄λ) such that

¯̄λ < λ+
0 , i.e.,

O2 ∩ Σ2 = (TbMin,
¯̄λ),

such that ¯̄λ < λ+
0 .

Setting the threshold values TbMax = 1600Nm, TbMin = 1000Nm, λMax = 0.35,
λMin = 0.08, and other system parameters, we can compute numerical solutions of
(7.15) for the unknowns λ̄ = 0.147, ¯̄λ = 0.419, t0 = 0.06, t1 = 0.068, t2 = 0.06 and
t3 = 0.329, as depicted in Fig. 7.11. It is straightforward to compute the period T of O
as

T =

3
∑

i=0

ti = 0.517 S.
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We can also compute the amplitude referred to each of the state variables as ATb

(Tb–Amplitude) and Aλ (λ–Amplitude). The Tb–Amplitude is fixed a-priori from the
choice of the thresholds as

ATb
= TbMax − TbMin = 600 Nm,

while λ–Amplitude needs to be computed numerically, using the fact that at λmin as
well as at λmax it is hold the condition λ̇ = 0 occurs. In fact, the cycle λ-amplitude is

Aλ = λmax − λmin = 0.346.

Figure 7.11: Phase portrait of the limit cycle obtained as solution of (7.15).

7.3 Asymptotic stability of limit cycles

To prove asymptotic stability of the limit cycle exhibited by system (7.15) and depicted
in Fig. 7.11, we construct an appropriate Poincaré map. we choose the plane Π :=
{(λ, Tb) : λ = 0.2}, as a suitable Poincaré section transversal to the limit cycle flow (see
Fig. 7.12). As the system evolves, its trajectory intersects Π transversally. Let xn be the
n-th intersection of the system flow with the section Π. Also, let x∗ = [λ∗, T ∗

b ]T/2 ∈ Π
be the point at which the limit cycle crosses the Poincaré section. Then, it is possible
to construct a local mapping P : Π → Π in a neighborhood of x∗ from one intersection
xn to the next xn+1. Specifically, we have

xn+1 = P (xn), xn ∈ Bε(x
∗),

where Bε(x
∗) is a ball of center x∗ and radius ε.
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In Fig. 7.12, we present the composition of P for two particular values x−0 , x
+
0 ∈

B(x∗). Trajectories starting at any of these two initial conditions evolve until reaching
the switching manifold λ = λMax ∈ Σ1. Then, when the second switching with manifold
Σ2 occurs, both trajectories evolve again reaching the limit cycle O which annihilates
the initial perturbation. We can then write

P (xn) = x∗∀xn ∈ B(x∗).

we deduce that the only multiplier of P is null (i.e. µ = 0). This guarantees that the
limit cycle is not only asymptotically stable, but it is also characterized by dead beat
convergence (see [76]).

Figure 7.12: Poincaré map for the initial conditions x−0 and x+
0 in a neighborhood of

the fixed point x∗.

7.4 Structural stability of limit cycles

To characterize the structural stability of the limit cycle, we first define the concept of
basin of attraction for the hybrid controller of the form (7.15), as it provides quantitative
information on the controller robustness against measurements uncertainties. Further,
we focus on changes in both the road condition and in the actuator rate limit k.

7.4.1 Basins of attraction

We are interested in characterizing a limit cycle under perturbations in the initial con-
ditions. For the case of an hybrid controller of the form (7.15), we define the set

BO(q0) = {x0 : x0 ∈ R
n,∃t such that x(t) = D(x0, q0) ∈ O}
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as the basin of attraction of PWSC1 Limit Cycle O associated to the initial state q0 ∈ Z.
In other words BO(q0) is the set of all initial conditions x0 ∈ R

n which yield trajectories
converging to O using the hybrid dynamical system D(x0, q0) where x(0) = x0 and
q(0) = q0.

The phase portrait of the hybrid system consist of four different solutions (or invari-
ant sets):

• The limit cycle (see Sec. 7.2)

• Two stable equilibria, namely wheel locking equilibrium λss
1 = 1 and the equilibria

on the isocline λss
2 (see Fig. 7.5).

• An unstable equilibrium λss
3 (see Fig. 7.5).

In Fig. 7.13(a) we present the set BO(0) which is the white region , the light gray
region indicates the set of initial conditions which lead to wheel locking (i.e., to λss

1 = 1),
while the rest of the plane is the basin of attraction BO(0). The basin of attraction
BO(1) is presented in Fig. 7.13(b), where the dark gray region indicates the set of initial
conditions which converge to an equilibrium on the isocline λss

2 . Finally, Figs. 7.14(a)
and 7.14(b) show BO(2) and BO(3) respectively.

From the application view point, the only undesirable behavior both in terms of safety
and braking performance, is wheel locking. It is worth noticing that if we consider the
intersection (over the four discrete states Figs. 7.13(a), 7.13(b), 7.14(a) and 7.14(b)) of
the basins of attraction, regarding as acceptable both the initial conditions converging to
the limit cycle and those converging to a point on the isocline (i.e. white area plus dark
gray area are desired), we can see that the safe region of the state space is indeed very
large. This highlights the good robustness properties of the proposed control algorithm.

Robustness to measure uncertainties

Basins of attraction are extremely useful as they can also be interpreted from the syn-
thesis point of view. Since in real applications the wheel slip λ and the braking torque
Tb, cannot be directly measured; it is crucial to take into account measurements er-
rors in the control design of active braking control systems. With our approach, the
measurements of λ and Tb are needed in order to detect the switching manifolds which
enable the state transitions. The analysis carried out to compute the basins of attraction
does also provide quantitative information about the maximum allowable perturbation
in the state measure which guarantees closed-loop stability. Consider again Fig. 7.13(a),
where the dashed arrow represents the distance between the steady-state periodic or-
bit in the discrete state q = 0 and the boundary of the locking region (so forth for
Figs. 7.13(b), 7.14(a) and 7.14(b)).

By computing these quantities for all discrete states, we can find the maximum
allowable perturbation of the state measurements Γ, that clearly depends (for fixed
vehicle and actuator parameters) on the threshold values that one has chosen for TbMax,
TbMin, λMax and λMin. These, nonetheless, are the tuning parameters of the proposed
controller and hence can be adjusted according to the known uncertainty in the state
measurements. For example, if the available wheel slip measures are known to have an
error e = ±10%, then one may very easily compute Γ for different choices of the threshold
values, so that the limit cycle stability can be guaranteed for measure uncertainties
within the pre-defined error bounds.

1Piecewise Smooth Continuous.
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7.4.2 Bifurcation diagram

Bifurcation analysis allow us to study the structural stability of the limit cycle as function
of the threshold values. To this end, Fig. 7.15 shows a bifurcation diagram of the limit
cycle as function of the threshold value TbMax. For values of TbMax which satisfy (7.20)
the limit cycle exists (with different amplitude and period according to the specific
numerical value of TbMax). Then, when the critical value T cr

bMax = maxλΨ(λ) is reached,
the limit cycle disappears and the equilibrium is given by the intersection between Σ0

and Σis (i.e. λss
2 ). This type of bifurcation is typical of nonsmooth dynamical systems,

is referred as a nonsmooth semi-global Hopf bifurcation; where the term semi-global
refers to the fact that the first limit cycle which appears after the critical value of the
parameter is reached, has finite amplitude (see [43]).
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(a)

(b)

Figure 7.13: Basin of attraction of the limit cycle associated to the discrete controller
state q = 0 (a) and q = 1 (b) in the phase plane (λ, Tb).
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(a)

(b)

Figure 7.14: Basin of attraction of the limit cycle associated to the discrete controller
state q = 2 (a) and q = 3 (b) in the phase plane (λ, Tb).
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Figure 7.15: Plot of the non-smooth semi-global Hopf bifurcation in the system equilibria
which is induced by the variation of the threshold value TbMax.
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Conclusions
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8.1 Main Contributions

The contributions of this thesis have been concerned with several aspects and open
problems that are currently matter of research in the community studying nonsmooth
dynamical systems. Namely, they have been focused on the development of numerical
algorithms for the simulation of impacting systems and their unique phenomena such as
sticking and chattering (i.e. Zeno behavior). A systematic study of structural stability
of piecewise smooth periodic orbits has also been carried out in the context of the
qualitative theory of dynamical systems. A summarizing list of the main contributions
presented in this thesis is given bellow:

1. Development of numerical routines for:

• Simulation - Chattering, sliding (sticking).

• Discontinuity Induced Bifurcations detection and continuation.

• Numerical Polynomial Approximation of Vector fields.

2. Analytical investigation of:

• Dynamics of mechanical impacting systems.

• Cam–follower devices as a subclass of Impacting Systems.

• Bifurcation detection and continuation.

• Corner-Impact Bifurcation in impacting systems with singularities in the
boundaries.

3. Existence, Stability and Robustness Analysis of Limit Cycles in Hybrid ABS
Switched Controller.
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More precisely, we can say that in this thesis we have introduced a set of novel
numerical and analytical tools for the study of impacting systems in the context of the
qualitative theory of dynamical systems.

Specifically, in Chapters 1, 2 and 3, after presenting some background we outlined in
a systematic way a new bifurcation phenomenon in impacting systems we have termed
as corner-impact bifurcation. We used numerical and analytical tools already introduced
in the context of qualitative analysis for smooth and nonsmooth dynamical systems.

In chapter 4, we discussed the complex dynamics exhibited by a cam-follower system
under variation of the cam rotational speed. It was shown that as the bifurcation pa-
rameter is varied; the follower undergoes several bifurcations involving transitions from
periodic solutions to chaos. Chattering behavior seemed to be the key to understand
the phenomena reported together with the nonsmooth nature of the cam profile which
forces the follower dynamics. In particular, sudden transitions were observed whenever
the follower evolution hit one of the boundaries where the cam velocity signal becomes
non-differentiable.

In Chapter 5, we studied a novel type of discontinuity-induced bifurcation in a class
of mechanical devices widely used in applications and particularly cam-follower systems.
Using a representative second order model of the follower, we showed that its dynam-
ics can undergo several bifurcations including sudden transitions to chaos as the cam
rotational speed is varied. We analyzed in detail the corner-impact bifurcation of a one-
periodic solution characterized by one impact per period. In particular, we observed that
the systems behavior undergoes dramatic changes when the impact occurs at a point
where the cam profile is discontinuous. Using the concept of discontinuity mappings,
we derived analytically the Poincaré map associated to the bifurcating orbit in the case
where the cam profile has a discontinuous acceleration. Then, using the classification
strategy for border-collision bifurcations, we proved that the corner-impact causes the
fixed point associated to the bifurcating orbit to undergo a nonsmooth saddle node bi-
furcation. Namely, the fixed point ceases to exist, with the trajectories being attracted
toward a chaotic invariant set. The analysis presented in Chapter 5, applies with minor
changes to the case of impact oscillators forced by signals with discontinuous second
derivative. This leads to maps which are locally piecewise-linear continuous close to a
corner-impact bifurcation point. We conjectured that the properties of the local map-
ping depend on the degree of discontinuity of the forcing signal. This is the subject of
ongoing work.

Discontinuity-induced bifurcations in flows are usually associated to maps which are
not piecewise-linear. Grazing bifurcations of limit cycles are known to be associated
to maps with square-root singularities in impacting systems and Filippov systems or
maps with higher order nonlinear terms in the case of piecewise-smooth continuous
(PWSC) flows. The only cases in the literature where the map was indeed found to be
piecewise-linear continuous were corner-collisions in PWSC systems and grazing sliding
bifurcations in Filippov systems. So far, no evidence was given of a bifurcation event in
impacting systems associated to locally piecewise-linear continuous maps. The corner-
impact bifurcation scenario presented in this thesis fills this gap in the literature. We
showed that cam-follower systems are a particularly useful set-up to show generically
the behavior of impacting systems with discontinuous forcing.

The results presented in Chapters 5 and 6 can pave the way to future work toward
a better understanding of the complex dynamics of cam-follower systems. This can
lead to less conservative solutions to detachment avoidance, hopefully without resorting
to highly stiff closing springs, and maybe active control strategies. In Chapter 6, we
proposed a new technique for the analysis of Corner-Impact Bifurcations introducing
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the concept of corner-impact map.
Finally, in Chapter 7, the existence, asymptotic stability and robustness of a limit

cycle induced by a hybrid controller for Anti-lock Braking Systems with on/off actuator
dynamics was investigated. We gave necessary conditions for the limit cycle existence
and proved it by showing that a related boundary value problem admits a solution.
Further, we assessed its asymptotic stability properties via Poincaré map analysis and
provided a structural stability analysis with respect to the actuator rate limit.
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