
UNIVERSITÀ DEGLI STUDI DI NAPOLI
FEDERICO II

BIOINVIEW: A SYSTEM FOR INTEGRATING HETEROGENEOUS

AND DISTRIBUTED BIOLOGICAL DATA SOURCES

PASQUALE CAPASSO

DOTTORATO DI RICERCA IN INGEGNERIA INFORMATICA ED AUTOMATICA

XX CICLO

Tutore: Coordinatore del Dottorato:
Prof. Antonio Picariello Prof. Luigi P. Cordella

DIPARTIMENTO DI INFORMATICA E SISTEMISTICA
NAPOLI, NOVEMBER 2007

To my Mother

and my Father..

in my heart forever

To my Brother..

best friend and playmate

To all the Friends and

Relatives (Cinzia Tornatore included)..

for loving me as much as i love them (at least)

To The One..

1

Contents

Introduction 8

1 Related Works 15

1.1 Knowledge Representation . 16

1.2 Semantic Web and Ontology . 22

1.2.1 Global naming scheme . 23

1.2.2 Standard Syntax - RDF . 24

1.2.3 Describing properties - RDF Schema 25

1.2.4 Describing relationships between data items - Ontology 26

1.2.5 Proof, trust and security . 33

1.3 Data Integration . 34

1.3.1 Theoretical Aspects . 35

1.3.2 Navigational Approaches . 36

1.3.3 Warehousing Approaches . 37

1.3.4 Mediator-Based Approaches 38

1.3.5 Incompleteness and Inconsistency 47

1.4 Molecular Biology and Bioinformatics 49

1.4.1 Ontologies in Biology . 52

1.4.2 Integration Tools for Molecular Biology 58

2 Modeling the System 63

2.1 System Architecture . 64

2

CONTENTS

2.2 Theoretical Background . 68

2.2.1 Mediator-Based Data Integration 68

2.3 Model Ontology . 69

2.3.1 Building the Ontology . 72

2.4 Editing and Browsing Interface . 74

2.4.1 Query Editor . 74

2.4.2 Presentation of Results . 75

2.5 Mediation Layer . 76

2.5.1 Query Parsing and Translation 76

2.5.2 Processing Intermediate Results 77

2.6 Wrapper Layer . 78

2.7 Query Optimization . 79

2.8 Query Processing Algorithm . 81

2.9 Mapping Generation Algorithm . 83

3 Implementation 89

3.1 User Interface . 90

3.2 Mediator Module . 91

3.3 Wrapper Modules . 93

3.3.1 UniProtKB/Swiss-Prot . 93

3.3.2 RCSB PDB . 94

3.4 Technological Notes . 94

4 Experimental Work and Results 97

4.1 Query Processing . 98

4.1.1 Experiment Details . 98

4.1.2 Discussion . 99

5 Conclusions and Future Works 102

3

CONTENTS

A Resource Description Framework and its Extensions 106

A.1 W3C RDF Standard . 106

A.2 RDF Extensions . 110

A.2.1 Temporal RDF (t-RDF) . 110

References 112

4

List of Figures

1 Example of UniProtKB/Swiss-Prot entry. 10

2 Example of PIR-PSD entry. 11

1.1 An example RDF triple; the sketched triple means ‘Janet Bruten has

the telnet number 312-8700 and employee number 405/549 ’. 25

1.2 A simple example ontology for animals. 28

1.3 Ontology Building Life Cycle . 32

1.4 SRS Interface . 37

1.5 Conceptual model of a mediation system 38

2.1 System Architecture . 65

2.2 BioInView global ontology - portion 73

2.3 Query Editor Interface . 75

A.1 Example of RDF graph, describing Eric Miller. 108

5

To Fabio..

I only had few months to know him,

Nevertheless he taught me how to deal with

Every challenge in life with a smile on the face..

Thanks, my friend.. I’ll never forget you!

6

“Science is like Sex: sometimes something useful

Comes out, but that’s not the reason we are doing it.”

Richard Feynman.

7

Introduction

The aim of the system presented in this thesis is to provide life scientists with

an efficient and effective tool for browsing, querying and integrating distributed bio-

logical data sources, which could be transparent to the format heterogeneity and the

distribution of the data.

To this purpose, we had to face several problems:

1. how to locate and access the required data on the distributed sources;

2. how to resolve format heterogeneity;

3. how to store and translate intermediate results;

4. how to automate the generation of the mappings of the sources onto the global

model.

The importance of such a heavy work is clearly motivated by the pressing need

for integration deriving from the exponential growth of data that has characterized the

biological research domain in the last two decades, caused in turn by the application of

new sequencing and analytical techniques that since the early 90s have been providing

biologists with many new complete genomes every year and a great deal of information

concerning the interaction between proteins in physiological processes.

8

Introduction

Being Biology a knowledge-based discipline, where prediction and analysis are

based on comparing new data to the existing knowledge, the need for systems and

tools able to help biologists in filtering and integrating this big flood of data soon

became urgent. This led to the birth of a significant number of public databases1,

certainly helping biologists in managing such a plethora of information, but very of-

ten posing new challenges, in terms of integration and information sharing. These

sources have indeed complete autonomy, continually extending their coverage, and are

poorly integrated and difficult (if not only time consuming) to use together.

In figures 1, 2, we show a sketch of the entries of two different protein sequence

databases (UniProtKB/Swiss-Prot and PIR-PSD, respectively), corresponding to the

same protein (14 kDa proline-rich protein DC2.15 precursor). You could easily see

how the format and the schema could be different, even for such strongly related

sources (the entries shown in the pictures even reference one each other).

This heterogeneity of the data sources greatly complicates the retrieval tasks biol-

ogists need to perform [46]; to accomplish these tasks, usually a biologist needs to:

1. Construct his/her own view of the meta-data in each source and the instances

covered by that source, resolving any semantic heterogeneities between the sources;

2. Construct the various parts of the request in the different formats and terms

required by the different sources;

3. Locate and communicate with the sources, and process intermediate results into

appropriate input formats for successive stages;

1Usually, these public sources are not really databases in the conventional sense of the term, in
that they do not have a separate schema containing meta-data (or if they do, it is not always publicly
accessible). Some of them are actually no more than tools, processes, or Internet flat files containing
embedded meta-data, with a limited set of services accessible through suitable interfaces

9

Introduction

4. Inter-operate between resources, planning a suitable series of requests that get

from each resource the relevant information;

5. Optimize the query process (the user has to choose among different execution

plans, with different efficiency).

Figure 1: Example of UniProtKB/Swiss-Prot entry.

10

Introduction

Figure 2: Example of PIR-PSD entry.

To automate these steps and make the heterogeneity of the data as transparent as

possible to the user, we relied on an ontology-based integration approach. The different

sources are suitably wrapped, and a mediator provides for linking mechanisms between

these sources, in other words it is responsible of maintaining the mappings of the

sources onto the model ontology; of processing, dividing, and planning the execution

of the queries presented by the user in a source-independent language; of elaborating

intermediate results and presenting the retrieved entries to the user.

11

Introduction

As Hernandez [80] underlines, the ‘ideal system’ should automate a maximum

number of tasks, at the same time reducing the number of interactions users need to

perform to find what they are looking for, and providing enough flexibility to the user

as well as displaying the provenance of data. In particular, Hernandez points out the

great importance of automating the process of describing the sources (something that

in existing systems is mostly obtained by manual analysis of domain experts) to reduce

the cost and time necessary to develop full-scale systems that can keep up with the

pace at which biological data are generated. This latter aspect is what we believed to be

deserved greater attention, being at the same time very challenging and fundamental

for a well functioning integration system.

On the other hand, since the beginning of the design phase it was clear that the

automation of the description of the sources had not to prevail on the correctness and

the completeness of the representation. This observation soon led to the conclusion

that a completely automatic mapping process was in practice unfeasible, being many

sources’ schema characterized by attributes (records) with very complex (often not

even human-understandable) names.

Another point that we considered critical was the flexibility that we should have

given to the system, namely to which extent the user should have been left free to set

the parameters of the system (sources to be queried, format of the results, or even

the query language, the minimum/maximum number of retrieved entries, . . .) and in

general to interact with the system itself.

The thesis is organized in five chapters. In chapter one an overview of the litera-

ture on the use of ontologies and data integration techniques in the field of molecular

12

Introduction

biology is presented; in chapter two we present modeling issues and the choices we

made, with respect to every part of the system; then in the third chapter implementa-

tion aspects are discussed; and finally, in chapter four and five, experimental results

are reported and discussed, followed by our conclusions and observations about future

works.

An important note: the ideas behind most of the work presented in this thesis arose

from the analysis of the literature and the consequent discussions I had with my advi-

sor, Antonio Picariello, and with Antonio Penta, a colleague and friend who deserves

my thanks here for his continuous support and the capability of being interested in

pretty much everything

13

“What’s in a name? That which we call a rose,

By any other name would smell as sweet.”

William Shakespeare.

14

Chapter 1

Related Works

In this chapter, some theoretical aspects of knowledge representation and integra-

tion are presented, with particular attention to the use of ontologies.

Furthermore, we are going to present the main results of the research in the field

of Data Integration (with particular focus on Ontology-based algorithms and tools),

and the application of these results to solving the integration challenges researchers

have to address every day in the molecular biology field.

15

1.1 Knowledge Representation

1.1 Knowledge Representation

The goal of knowledge representation is to create schemes that allow information

to be efficiently stored, modified, and reasoned with. In this section, we will consider a

number of representations and formalisms (i.e., knowledge representation languages)

that are particularly relevant to a distributed and dynamic environment.

Although knowledge representation is one of the central and, in some ways, most

familiar concepts in computer science (more precisely in the field of AI), the most

fundamental question about it - What is it? - has rarely been answered directly.

A good answer to this question, that we could call a ‘functional’ answer, is pro-

vided in [10], where Davis et al. define a knowledge representation on the basis of

five different roles the representation plays.

According to Davis, a knowledge representation is first and foremost a surrogate,

a substitute for the thing itself, that is used to enable an entity to determine conse-

quences by thinking rather than acting, that is by reasoning about the world rather

than taking action in it.

Second, it is a set of ontological commitments, i.e. an answer to the question ‘In

what terms should I think about the world?’. Third, it is a fragmentary theory of

intelligent reasoning expressed in terms of three components: (1) the representation’s

fundamental conception of intelligent reasoning, (2) the set of inferences that the

representation sanctions, and (3) the set of inferences that it recommends.

Fourth, it is a medium for efficient computation, that is, the computational en-

vironment in which thinking is accomplished. One contribution to this pragmatic

16

1.1 Knowledge Representation

efficiency is supplied by the guidance that a representation provides for organizing

information to help making the recommended inferences. Fifth, it is a medium of

human expression, i.e. a language in which we say things about the world.

Note that each role requires something slightly different from a representation;

each accordingly leads to an interesting and different set of properties that we want

a representation to have.

For example, the first property of any representation to be a surrogate of the rep-

resented information implies the need for some specification of its intended meaning

(‘semantics’ for the representation). At the same time, different degree of fidelity of

the representation (i.e., how close to its recipient in the real world is the surrogate

representing it) are possible, each representation inevitably carrying with its status

of surrogate a not well-definable error.

For an exhaustive treatment of the properties a knowledge representation may

have, see [10].

We proceed now to present some formalisms and representations that are partic-

ularly relevant [51] (see [26] for further reading) .

Semantic Networks

One of the oldest knowledge representation formalisms is semantic networks [1].

In a semantic net, each concept is represented by a node in a graph. Concepts that

are semantically related are connected by arcs, which may or may not be labeled. In

such a representation, meaning is implied by the way a concept is connected to other

17

1.1 Knowledge Representation

concepts.

It is rather common to use two arcs for representing abstractions. An is-a arc

indicates that one concept is subclass of another, while an instance-of arc indicates

that a concept is an example of another concept. These arcs have correlations in

basic set theory: is-a is like the subset relation and instance-of is like the element

of relation. The collection of is-a arcs specifies a partial order on classes; this order

is often called a taxonomy or categorization hierarchy. The taxonomy can be used

to generalize a concept to a more abstract class or to specialize a class to its more

specific concepts.

As demonstrated by the popularity of Yahoo and the Open Directory, taxonomies

are clearly useful for aiding a user in locating relevant information on the Web. How-

ever, these directory taxonomies often deviate from the strict subset semantics fol-

lowed by modern knowledge representation systems, making them less useful for au-

tomated reasoning.

Frame Systems

In the 1970’s, Minsky [2] introduced frame systems. In the terminology of such

systems, a frame is a named data object that has a set of slots, where each slot repre-

sents a property or attribute of the object. Slots can have one or more values (called

fillers), some of which may be pointers to other frames.

Since each frame has a set of slots that represent its properties, frame systems are

usually considered to be more structured than semantic networks. However, it has

18

1.1 Knowledge Representation

been shown that frame systems are isomorphic to semantic networks.

Notable examples of frame-based knowledge representation languages are KRL

[3], and KL-ONE [5].

Description Logics

Description logics focus on the definitions of terms in order to provide more pre-

cise semantics than semantic networks or earlier frame systems. Term definitions are

formed by combining concepts and roles that can provide either necessary and suffi-

cient conditions or just necessary conditions.

An important feature of description logic systems is the ability to perform auto-

matic classification, that is, automatically insertion of a given concept at the appro-

priate place in the taxonomy.

The advantages of descriptions logics are they have well-founded semantics and

the factors that affect their computational complexity are well understood, but it

is unclear whether their inferential capabilities are the right ones for that huge dis-

tributed environment called Web.

First Order Logics

First-order logic (FOL), also known as predicate calculus or predicate logic, is a

well-understood formalism for reasoning. Although the logic and knowledge repre-

sentation communities are distinct, the expressivity of FOL nevertheless makes it a

19

1.1 Knowledge Representation

powerful knowledge representation language.

From the perspective of FOL, the world consists of objects and the relations that

hold between them. A FOL language consists of logical and non-logical symbols.

The logical symbols represent quantification, implication, conjunction and disjunc-

tion; while the non-logical symbols are constants, predicates, functions, and variables.

Constant, variable and function symbols are used to build terms, which can be com-

bined with predicates to construct formulas.

The semantics of FOL are given by Tarski’s model theory, where the concepts of

‘Interpretation’ and satisfaction of formulas by a given interpretation are provided.

An introductive and a more detailed treatment of FOL can be found in [6], and

[7], respectively.

Ontology

In order for information from different sources to be integrated, there needs to be

a shared understanding of the relevant domain. Knowledge representation formalisms

provide structures for organizing this knowledge, but provide no mechanisms for shar-

ing it. Ontologies provide a common vocabulary to support the sharing and reuse of

knowledge.

More on ontologies and their use in the fields of semantic web and data integration

will be given in some of the next sections.

20

1.1 Knowledge Representation

Context Logic

One of the problems with knowledge representation is that when we try to con-

ceptualize some part of the world, we must make some simplifying assumptions about

its structure. If we then try to combine knowledge bases (or logical theories), dif-

ferences in their implicit, underlying assumptions may have unintended side-effects.

Context logic (see [9], [13], [8]) proposes to solve this problem by explicitly placing

each assertion in a context, where the context includes the assumptions necessary for

the assertion to be true.

In context logic, contexts are first-class objects that can be used in propositions.

Propositions of the form ist(c, p) are used to indicate that proposition p is true in

context c. A particular individual i can be excluded from the scope of a context c by

stating ¬presentIn(c, i).

The reification of context also makes it possible to combine information from many

contexts. For example, one may wish to reuse parts of one context in another or make

statements that are simultaneously true in a set of contexts. Statements that achieve

these effects are called lifting axioms.

Another issue raised by context logic is that different contexts may contain mu-

tually inconsistent assertions. Such situations should not lead to inconsistency of the

entire knowledge base. Instead, context logic only requires a context to be locally

consistent. This issue is of direct relevance to the Semantic Web, where knowledge is

being provided by many users who may have inconsistent assumptions.

Note that Ontologies and context logic are closely related. Each context is an

21

1.2 Semantic Web and Ontology

ontology, and ontology inclusion could be one particular type of lifting axiom.

1.2 Semantic Web and Ontology

The Semantic Web is an evolving extension of the World Wide Web in which web

content can be expressed not only in natural language, but also in a format that can

be read and used by software agents, with the very purpose of permitting these agents

to find, share and integrate information more easily [59].

On the Semantic Web, computers do the browsing (and searching, and querying,

and much more) for us. The Semantic Web enables computers to seek out the knowl-

edge distributed throughout the Web, mesh it, and then take action based on it. Take

an analogy: the current web is a decentralized platform for distributed presentations,

while the Semantic Web is a decentralized platform for distributed knowledge [92].

There, of course, is knowledge on the current web, but it is off limits to comput-

ers. Consider a Wikipedia page, which might convey many information to the human

reader, but the computer displaying the page only sees presentation markup. To the

extent that computers make sense of HTML, images, Flash, etc., it is almost always

for the simple purpose of creating a presentation for the end user. The real content,

the knowledge the files are conveying to the human, is opaque to the computer.

What is meant by ‘semantic’ in Semantic Web is not that computers are going to

understand the meaning of anything, but that the logical pieces of meaning can be

mechanically manipulated by a machine to useful human ends.

22

1.2 Semantic Web

At its core, the semantic web comprises a philosophy, a set of design principles,

collaborative working groups, and a variety of enabling technologies. Some elements

of the semantic web are expressed as prospective future possibilities that have yet

to be implemented or realized. Other elements of the semantic web are expressed in

formal specifications [60].

Some of these include Resource Description Framework (RDF), a variety of data

interchange formats (e.g. RDF/XML, N3, Turtle, N-Triples), and notations such as

RDF Schema (RDFS) and the Web Ontology Language (OWL), all of which are in-

tended to provide a formal description of concepts, terms, and relationships within a

given knowledge domain.

The basis for the augmented functionality of the Semantic Web are:

• a global naming scheme (URIs);

• a standard syntax for describing data (RDF);

• a standard means of describing the properties of that data (rdf-schema);

• a standard means of describing relationships between data items (ontology);

• the means to support trust and security.

1.2.1 Global naming scheme

If any Semantic Web application is to be able to access and use data from any

other such application, every data object and every data schema/model must have a

unique and universal means of identification. These identifiers are called URIs (Uni-

versal Resource Identifiers).

23

1.2 Semantic Web

1.2.2 Standard Syntax - RDF

The computer industry has agreed to use XML (Extensible Markup Language)

to represent not only human readable documents, but data in general. The XML

standards give a syntactic structure for describing data.

Unfortunately, XML can be used in many different ways to describe the same

data. This makes it too open and arbitrary to support the type of widespread and ad

hoc data integration envisaged for the Semantic Web. The Semantic Web vision pro-

poses to represent machine processable information using RDF (Resource Description

Framework), which extends XML. RDF defines a general common data model that

adheres to web principles (see appendix B). The W3C are strong supporters of this

approach.

RDF was originally created in 1999 as a standard on top of XML for encoding

meta-data (literally, data about data). meta-data is, of course, things like ‘who au-

thored a web page’, or ‘what date a blog entry was published’, information that is in

some sense secondary to the content already on the regular web.

Since then, and perhaps especially after the updated RDF spec in 2004, the scope

of RDF has really evolved into something greater. The most exciting uses of RDF are

not in encoding information about web resources, but information about and relations

between things in the real world: people, places, concepts, etc.

From the web programmer’s point of view, RDF provides a consistent, standard-

ized way of describing and querying internet resources, from text pages and graphics

24

1.2 Semantic Web

to audio files and video clips. It gives syntactic interoperability, and provides the

base on top of which building the Semantic Web.

As for what RDF can do, it basically defines a directed graph of relationships.

These are represented by object-attribute-value triples, i.e. an object O has an at-

tribute A with value V , often written as A(O, V). For instance, telnet(janet bruten,

3128700 represents the fact that the person object Janet Bruten has the telnet num-

ber 312-8700.

Janet
Bruten

405549

3128700telnet

employee_number

Figure 1.1: An example RDF triple; the sketched triple means ‘Janet Bruten has the
telnet number 312-8700 and employee number 405/549 ’.

1.2.3 Describing properties - RDF Schema

RDF itself is a composable and extensible standard for building data models. To

support the definition of a specific vocabulary for a data model, which can itself be

published, another layer is required. RDF schema allows a designer to define and

publish the vocabulary used by an RDF data model, i.e define the data objects and

25

1.2 Semantic Web

their attributes. For instance, it might define that people have a phone attribute.

RDF Schema (or RDFS) also uses class and subclass, so that hp employee could be

defined as a sub-class of person.

Both RDF and RDFS are based on XML and XML-Schema. The existence of

standards for describing data (RDF) and data attributes (RDFS) enables the de-

velopment of a set of readily available tools to read and exploit data from multiple

sources. The degree to which different applications can share and exploit data is

sometimes termed syntactic interoperability.

The more standardised and widespread these data manipulation tools are the

higher the degree of syntactic interoperability, and the easier and more attractive it

becomes to use the Semantic Web approach as opposed to a point solution.

1.2.4 Describing relationships between data items - Ontology

If data is to be truly ‘understandable’ by multiple applications, and therefore be-

come information, semantic interoperability is required. Syntactic interoperability is

all about parsing data correctly. Semantic interoperability requires mapping between

terms, which in turn requires content analysis. This requires formal and explicit

specifications of domain models, which define the terms used and their relationships.

Such formal domain models are sometimes called ontologies.

As discussed by Guarino and Giaretta [18], the meaning of the term ontology is

often vague. It was first used to describe the philosophical study of the nature and or-

ganization of reality. In AI, the most cited definition is due to Tom Gruber [11], [12]:

26

1.2 Semantic Web

“An ontology is an explicit specification of a conceptualization”. In this definition,

along the lines of Genesereth and Nilsson [6], the conceptualization is the couching

of knowledge about the world in terms of entities (things, the relationships they hold

and the constraints between them), the specification is the concrete representation of

this conceptualization.

Guarino and Giaretta argue that Genesereth and Nilsson’s definition of conceptu-

alization should not be used in defining ontology, because it implies that a conceptu-

alization represents a single state of affairs (i.e., it is an extensional structure), while

an ontology should provide terms for representing all possible states of affairs with

respect to a given domain.

In a later paper [27], Guarino provides the following definition for an ontology:

“An ontology is a logical theory accounting for the intended meaning of a formal vocab-

ulary, i.e., its ontological commitment to a particular conceptualization of the world.

The intended models of a logical language using such a vocabulary are constrained by

its ontological commitment. An ontology indirectly reflects this commitment (and the

underlying conceptualization) by approximating these intended models”.

Ontologies generally define data models in terms of [95]:

• Individuals: the basic or ‘ground level’ objects;

• Classes: sets, collections, or types of objects;

• Attributes: properties, features, characteristics, or parameters that objects can

have and share;

• Relations: ways that objects can be related to one another;

• Events: the changing of attributes or relations;

27

1.2 Semantic Web

For instance, we might define a herbivore to be a subclass of animals that eats

plants. Figure 1.2 shows a very simple example ontology for animals.

Figure 1.2: A simple example ontology for animals.

Over the years a vast amount of research has been carried on how to represent and

reason about knowledge. In Europe funding has been heavily concentrated on the

development of OIL (Ontology Inference Layer), a language for defining ontologies.

In the US, DARPA funded a somewhat similar project called DAML (Distributed

Agent Markup Language). More recently these activities have been combined into a

project to work on a merged ontology language, DAML+OIL.

In late 2001 the W3C set up a working group called WebOnt to define an ontology

language for the Web, based on DAML+OIL. All of these ontology languages aim

to provide developers with a way to formally define a shared conceptualization of a

domain. They encompass both a means of representing the domain and a means of

28

1.2 Semantic Web

reasoning about that representation. In the case of DAML+OIL the latter is Descrip-

tion Logic.

Regardless of the language in which they are expressed, contemporary ontologies

share many structural similarities. As mentioned above, most ontologies describe in-

dividuals (instances), classes (concepts), attributes (and relations).

Individuals: Individuals (instances) are the basic, ‘ground level’ components

of an ontology. The individuals in an ontology may include concrete objects such

as people, animals, tables, automobiles, molecules, and planets, as well as abstract

individuals such as numbers and words.

Strictly speaking, an ontology need not include any individuals, but one of the

general purposes of an ontology is to provide a means of classifying individuals, even

if those individuals are not explicitly part of the ontology.

Classes: Classes (Concepts) are abstract groups, sets, or collections of objects.

They may contain individuals, other classes, or a combination of both. Some examples

of classes are:

• Person, the class of all people;

• Molecule, the class of all molecules;

• Number, the class of all numbers;

• Class, representing the class of all classes;

29

1.2 Semantic Web

Ontologies vary on whether classes can contain other classes, whether a class can

belong to itself, whether there is a universal class (that is, a class containing ev-

erything), etc. Sometimes restrictions along these lines are made in order to avoid

certain well-known logical paradoxes.

Attributes and Relations: Objects in the ontology can be described by assign-

ing attributes to them. Each attribute has at least a name and a value, and is used

to store information that is specific to the object it is attached to. For example the

‘Ford Explorer’ object has attributes such as:

• Name: Ford Explorer;

• Number-of-doors: 4

• Engine: 4.0L, 4.6L

• Transmission: 6-speed

The value of an attribute can be a complex data type; in the example above, the

value of the attribute called Engine is a list of values, not just a single value.

If you do not define attributes for the concepts you have either a taxonomy (if

hyponym relationships exist between concepts) or a controlled vocabulary. These are

useful, but are not properly true ontologies.

An important use of attributes is to describe the relationships (also known as

relations) between objects in the ontology. A relation can be seen as an attribute

whose value is another object in the ontology.

Though many existing ontologies make use of the sole ‘is-a’ and ‘part-of’ relations,

any kind of relation can be represented, to further refine the semantics they model.

30

1.2 Semantic Web

These relations are often domain-specific and are used to answer particular types of

question.

Building an Ontology

Although there is some collective experience in developing and using ontologies,

there exists no standardized methodologies for building them. The most well-known

ontology construction guidelines were developed by Gruber [12] to encourage the de-

velopment of more reusable ontologies. Some attempts to develop comprehensive

ontology building methodology were lately made [20], [22], and a survey of these

techniques can be found in [28].

In building an ontology, most distinguishes between an informal stage, where the

ontology is sketched out using either natural language descriptions or some diagram

technique, and a formal stage where the ontology is encoded in a formal knowledge

representation language, which is machine computable.

The life cycle of the overall methodology is depicted in fig.1.3. The main stages

of the process are [42]:

Identification of Purpose and Scope : A well-characterized requirements

specification is important to the design, evaluation and reuse of an ontology.

Knowledge Acquisition : Sources span the complete range of knowledge hold-

ers: specialist biologists; database meta-data; standard textbooks; research papers;

31

1.2 Semantic Web

Figure 1.3: Ontology Building Life Cycle

and other ontologies.

Conceptualization : identifying the key concepts that exist in the domain, their

properties and the relationships between them; identifying natural language terms to

refer to such concepts, relations and attributes; structuring domain knowledge into

explicit conceptual models.

32

1.2 Semantic Web

Integration of Existing Ontologies: this task is usually hindered by the in-

appropriate documentation of existing ontologies, notably their implicit assumptions.

Encoding : representing the conceptualization in some formal language, eg frames,

object models or logic.

Documentation : informal and formal complete definitions, assumptions and

examples (essential to promote the appropriate use and reuse of an ontology). Docu-

mentation is important for defining the exact meaning of terms within the ontology.

Evaluation : determining the appropriateness of an ontology for its intended

application, including determining the consistency, completeness and conciseness of

an ontology [14]. Conciseness implies an absence of redundancy in the definitions of

an ontology and an appropriate granularity. For example, an ontology that modeled

protein molecules at the atomic resolution when the amino acid level would suffice

would not be considered concise.

1.2.5 Proof, trust and security

If the Semantic Web is indeed to become a global database, and if its develop-

ment is evolutionary and distributed, then there are issues of accessibility, trust and

credibility. Not all data sources will have universal access nor they will be equally

reliable, so there needs to be a robust and extensible security model.

33

1.3 Data Integration

If instead of just returning an answer to a query, a Semantic Web application could

also attach a proof of how that answer was derived, then the querying application

could potentially do some reasoning about how ‘believable’ that fact is. At the very

least, derived facts could be attributed to a source, and over time applications could

be developed which rate sources as to their integrity, etc.

These upper layers of the stack are the least researched and present some of the

most difficult technical challenges faced by the Semantic Web venture.

1.3 Data Integration

Data integration is the problem of providing unified and transparent access to a

collection of data stored in multiple, autonomous, and heterogeneous data sources

[50], [65]. In formulating the queries, the user is freed from the knowledge on where

data are, how data are structured at the sources, and how data are to be merged and

reconciled to fit into the global schema.

The interest for data integration systems has been continuously growing in the

last decade. The recent developments of Computer and Telecommunication technol-

ogy, such as the expansion of the Internet and the World Wide Web, have provided

the users with a huge number of information sources, generally autonomous, hetero-

geneous and widely distributed.

As a consequence information integration has emerged as a crucial issue in many

application domains, e.g. distributed databases, data warehousing, data mining, data

34

1.3 Data Integration

exchange, as well as in accessing distributed data over the web.

1.3.1 Theoretical Aspects

Different approaches to data integration are possible; they lead to different archi-

tectures and are based on different principles.

In particular, the integration approaches used in the existing systems can be clas-

sified first in terms of the data model they use - text, structured data or linked

records. For systems that view sources as exporting mainly text, integration involves

supporting keyword/text search across the sources. When the sources are viewed as

exporting more structured data, there are two broad types of integration approaches,

based on whether the data from the sources are ‘warehoused’ or ‘accessed on demand’

from the sources. Finally, for systems that view sources as exporting linked sets of

browsable records, integration involves supporting effective navigation across sources.

Since the majority of systems use the (semi-)structured or linked record models

[80], in the next sections we will limit the analysis of the different integration ap-

proaches to those two. In particular, we will deserve more attention to the mediator-

based architecture, being it the core of the system described in this work.

35

1.3 Data Integration

1.3.2 Navigational Approaches

The idea behind navigational or link-based integration emerged from the fact that

an increasing number of sources on the web ask the users to manually browse through

several web pages and data sources in order to obtain the desired information [17].

In practice, queries are transformed into (several) path expressions that could each

answer the query with different levels of satisfaction [55].

Navigational integration eliminates relational modeling of the data and instead

applies a model where sources are defined as sets of pages with their interconnections

and specific entry-points, as well as additional information such as content, path con-

straints, and optional or mandatory input parameters [62], [65].

Provided that multiple physical paths may link two sources, recent studies are

trying to determine how to identify the best of several potential execution paths [72].

In fig.1.4 you can see a sketch of the SRS interface, the most representative ex-

ample of a navigational integration system in the field of bioinformatics. Note how

the SRS interface is similar to those of classical keyword-based information retrieval

systems (search engines).

36

1.3 Data Integration

Figure 1.4: SRS Interface

1.3.3 Warehousing Approaches

Warehouse integration consists in materializing the data from multiple sources

into a local warehouse and executing all queries on the data contained in the ware-

house. Warehousing emphasizes data translation, as opposed to query translation in

mediator-based integration [58].

Relying less on the network to access the data obviously helps in eliminating var-

ious problems such as network bottlenecks, low response times, and the occasional

unavailability of sources. Furthermore, using materialized warehouses allows for an

improved efficiency of query optimization as it can be performed locally [17].

37

1.3 Data Integration

This approach however has an important and costly drawback in terms of result

reliability and overall system maintenance caused by the possibility of returning out-

dated results. Warehouse integration systems must indeed regularly check throughout

the underlying sources for new or updated data and then reflect those modifications

on the local copy of the data [17].

Figure 1.5: Conceptual model of a mediation system

1.3.4 Mediator-Based Approaches

In fig.1.5 you can see a logical integration schema, that is valid for both a ware-

housing and a mediator-based system (with the important difference that for a data

38

1.3 Data Integration

warehouse the mappings - represented as green arrows in the picture - are to be inter-

preted as data mappings, used only while loading the global relational schema, while

for a mediator-based schema the mappings are schema mappings, used during query

processing to relate the global and the sources’ schema).

Mediator-based integration concentrates on query translation. A mediator in the

information integration context is a system that is responsible for reformulating at

runtime an input query edited by a user over a global schema into a query on the

local schema of the integrated data sources.

Many different conceptual models may be used as global schema, and vary from

simple (object-)relational schema to more complicated and versatile ontologies (more

on that in the next section).

Unlike in the warehouse approach, none of the data in a mediator-based integra-

tion system is converted to a unique format according to a data translation mapping.

Instead a different mapping is required to capture the relationship between the source

schema and the global schema, thus allowing queries on the mediator to be translated

to queries on the data sources.

Specifying these mappings is a critical step in creating a mediator, as it influences

both how difficult the query reformulation is and how easily new sources can be added

to or removed from the integration system (or, more in general, updated).

Formally, a mediator-based data integration system I, is a triple 〈G,S,M〉 [65],

[81], where:

• G is the global schema, i.e., a set of global relational symbols, each one with an

associated arity (the number of its attributes), plus a set of integrity constraints

expressed over such relational symbols;

39

1.3 Data Integration

• S is the source schema, i.e., a set of relational symbols (disjoint from G), that

constitutes a relational representation of the data stored at the sources;

• M is the mapping between G and S, constituted by a set of assertions of the

form {qS, qG}, in which qS is a conjunctive query over the sources’ schema, while

qG is a conjunctive query over the global schema.

Designing such a kind of data integration system is a very complex task, and is

characterized by a number of issues (most of which are in common with the designing

process of different systems), including:

1. modeling the system, i.e. defining both the global schema and the relationships

(mappings) between the global schema and the sources;

2. dealing with incomplete data sources;

3. dealing with inconsistent data sources;

4. dealing with limitations on accessing the sources;

In particular, with respect to the mapping assertions different assumptions can

be done, that affect the notion of satisfaction of mapping. In general, if we assume

that the mapping is sound, then we have that the data provided by the sources are

a subset of the global data - the extension of qS is contained into the extension of

qG. Conversely, if the mapping is considered to be complete the data provided by the

sources are a superset of the global data - the extension of qS contains the extension

of qG. Finally we say that a mapping is exact, when it is both sound and complete. It

should be pointed out that, due to the general characteristics of the sources, that are

distributed, autonomous and independent, the sound mapping assumption is more

reasonable in a data integration environments [65].

40

1.3 Data Integration

The mapping design is one of the crucial tasks in defining a data integration system

specification. In fact different representations with different and well-known propri-

eties can be obtained. We say that a mapping assertion follows the global-as-view

(GAV) paradigm, when qG corresponds to a full query over a single global relation:

an assertion of that kind gives a straightforward specification of the global data, in

terms of the source data. Dually, the local-as-view (LAV) approach, let us define qS

as a full query over a single source relation.

Both formalisms present advantages and drawbacks [23]. GAV mappings ease

the query answering process that can be done by means of simple unfolding, but

its structure is not well suited for updating the sources: every change in the source

schema may lead to redesigning the mapping assertions. LAV mappings instead are

well suited for that, because adding or removing a source specification only involves

adding or removing a single mapping assertion. On the other hand, query answering

in LAV is hard, providing the mapping views only partial information about the ele-

ments of the global schema.

In a nutshell LAV is considered to be much more appropriate for large scale ad-hoc

integration because of the low impact changes to the information sources have on the

system maintenance, while GAV is preferred when the set of sources being integrated

is known and stable [80].

Example 1.1 Let us consider the following scenario, where we have the relational

global schema:

Global schema:

41

1.3 Data Integration

movie (Title, Year, Director),

european (Director),

review (Title, Critique),

and there are three source relations:

Source 1: s1 (Title, Year, Director), since 1960, european directors,

Source 2: s2 (Title, Critique), reviews of movies with european director,

Source 3: s3 (Director), european directors.

The GAV mappings associate to every relation of the global schema a view over the

sources’ schema:

movie (X, Y, Z) ←− s1 (X, Y, Z),

european (X) ←− s3 (X),

review (X, Y) ←− s2 (X, Y),

while the LAV mappings are given by (using conjunctive queries with arithmetic

comparisons [15]):

s1 (X, Y, Z) ←− movie (X, Y, Z), (Y ≥ 1960),

s2 (X, W) ←− movie (X, Y, Z), review (X, W), european (Z),

s3 (X) ←− european (X).

•

A recent approach (called GLAV) tries to generalize the LAV approach [32], [70].

For what concerns the problems of incomplete and potentially inconsistent (and

not fully accessible) sources, they are common to all the integration approaches we

42

1.3 Data Integration

presented, and can be considered separate hot research topics. For this reason we will

deserve particular attention to them, in one of the following sections. A good (and

more detailed) theoretical and practical treatment of these problems is provided by

Lembo [81].

Ontology-driven Data Mediation

A mediated schema is called ontology-driven (or, that is the same, ontology-based)

when its global schema is an ontology.

Many authors have proposed the use of ontologies for integrating heterogeneous

sources, although the approach presents several challenges [33], [38].

The development of a single schema or ontology is a serious and expensive task,

best tackled as a joint exercise with domain experts, by merging and adopting pre-

existing ontologies, with the intention that the result will be reusable by other appli-

cations. This task is difficult [42].

The use of a single terminology by a mediator requires that the user know what

is in the terminology, understand what the terms and concepts mean, and buy into

it. Gaining consensus is particularly difficult because one user’s or community’s vo-

cabulary might differ from that of another. The ontology will need to be tended and

updated to cater to new sources or changes in sources. It also needs to be compre-

hensive enough to cater to an appropriately adequate range of resource types.

Interpretations of concepts often depend on context, and one ontology cannot be

viewed as a repository of all possible interpretations [33], [42]. Attempts to tackle

43

1.3 Data Integration

this issue range from the adoption of de facto common vocabularies by a community

prepared to adapt to some form of common consensus (for example, the Gene On-

tology [35]), to mechanisms for defining ontological commitment, multiple definitions

for concepts in the same ontology, and ontological views.

In the past these problems have often hindered the practical exploitation of

knowledge-based information integration systems in many challenging disciplines, ba-

sically preventing researchers from developing suitable domain ontologies. As for the

biological domain, bioinformatics researchers have recognized that semantic schema

and data matching could be aided by a comprehensive thesaurus of terms or a reusable

reference ontology of biological concepts [17], [19].

Furthermore the querying capabilities deriving from the use of an ontology as

global schema are much more powerful than those provided by the adoption of simple

(object-)relational schema, and are at the same time absolutely necessary to answer

the need for data mining that is typical of this research field.

Query Processing

The problem of query processing is concerned with one of the most important

issues in a data integration system, that is the choice of the method for computing

the answer to queries posed in terms of the virtual global schema only on the basis

of the data residing at the sources [81]. The main issue is that the system should

be able to re-express such queries in terms of a suitable set of queries posed to the

sources, hand them to the sources, and assemble the results into the final answer.

44

1.3 Data Integration

It is worth underlining that, while for a GAV-based integration system, query

processing is essentially equivalent to unfolding over the sources’ schema the query

written on the global schema, with a LAV mapping approach things are much more

complicate.

In fact, in LAV the views in the mapping provide in general only a partial knowl-

edge about the data that satisfy the global schema, hence query processing is inher-

ently a form of reasoning in the presence of incomplete information [4], [24].

In other words, in GAV the mapping essentially specifies a single database for the

global schema, hence evaluating the query over this database is equivalent to evaluat-

ing its unfolding over the sources. On the contrary, since in LAV several possibilities

of populating the global schema with respect to the source extensions may exist, the

semantics of a LAV system has to be given in terms of several database instances for

the global schema, which have to be taken into account in processing the user query.

In the LAV approach query processing has been traditionally solved by means of

query rewriting, that is performed in two steps: in the first step the query is refor-

mulated in terms of the views (that are the sources’ schema), and in the second the

obtained query is evaluated on the view extensions, i.e. a database instance for the

source schema.

Example 1.2 Let us consider the same scenario of Example 1.1, and suppose the

user poses the following query:

q (X, Z) ←− movie (X, 1998, Y), review (X, Z)

asking for title and reviews of movies produced in 1998. in the GAV case, the answer

45

1.3 Data Integration

is computed by simple unfolding, resulting in the following query over the sources:

q (X, Z) ←− s1 (X, 1998, Y), s2 (X, Z)

that can be directly evaluated over the sources. In the LAV case, a rewriting of the

query q is:

qr (X, Z) ←− s1 (X, 1998, Y), s2 (X, Z)

such a rewriting can be evaluated over the sources. Its unfolding according to the

mapping assertions given in Example 1.1 produces the query over the global schema:

qr(T, R) ←− movie(T, 1998, D), movie(T, Y, D’), review(T, R), european(D’)

where we did not write the atom 1998 ≥ 1960, which is clearly true.

•

A different approach to LAV query processing, more general than query rewriting,

consists in not posing any limitations on how the query is going to be processed: all

possible information, in particular the view extensions, can be used for computing

the answers to the query. This approach is commonly called query answering. We

point out that the ultimate goal of query answering is to provide the certain answers

to a user query, that is to compute the intersection of the answer sets obtained by

evaluating the query over any database that satisfies the global schema.

46

1.3 Data Integration

1.3.5 Incompleteness and Inconsistency

Incomplete Data

As we said above, query processing in LAV could be considered a form of reason-

ing in presence of incomplete information. Hence, sources in LAV data integration

systems are generally assumed to be sound, but not necessarily complete (i.e. each

source concept is assumed to store only a subset of the data that satisfy the corre-

sponding view on the global schema). A different approach is followed for processing

queries in GAV, where the form of the mapping allows for the direct computation of

a global database instance over which the user queries can be evaluated (unfolding).

Note that sometimes also in GAV systems the sources provide only a subset of

the data that satisfy the global schema, hence views in the mapping should be con-

sidered sound rather than exact. This becomes particularly relevant when integrity

constraints are specified on the global schema [78].

Hence, in the presence of incomplete data with respect to integrity constraints

specified on the global schema, unfolding is in general not sufficient to answer a user

query in GAV, and reasoning on the constraints is needed in order to compute the

certain answers to the query (clearly the same is true in the LAV case).

Inconsistent Data

Let us consider the case of a relational integration system with a sound mapping.

Let us suppose that a key constraint is violated on the relational global schema: the

47

1.3 Data Integration

soundness assumption on the mapping does not allow us to disregard tuples with

duplicate keys, hence the data are inconsistent with respect such constraint.

This is a common situation in data integration, since integrity constraints are

not related to the underlying data sources, but rather to the semantics of the global

schema (or, that is the same, to the real world). That is why we cannot expect inde-

pendent and autonomous data sources to produce data which obey those constraints.

On the other hand, since most of the data could satisfy such constraints, it seems

unreasonable to consider the entire system inconsistent [81].

Classical assumptions on the views do not allow to properly handle data inconsis-

tency, since they generally lead to a situation in which no global database exists that

satisfy both the integrity constraints and the assumption on the mapping, and it is

not possible to provide meaningful answers to user queries.

A possible solution to this problem is to characterize the semantics of a data in-

tegration system in terms of those databases that satisfy the integrity constraints on

the global schema, and approximate ‘at best’ the satisfaction of the assumptions on

the mapping, i.e. in a way that is as close as possible to the interpretation of the

mapping.

More on this difficult and broad topic can be found in [15], [30], [48], [61], [69], [81].

48

1.4 Molecular Biology and Bioinformatics

1.4 Molecular Biology and Bioinformatics

It is undeniable that, among the sciences, life science and in particular biology

played a key role in the twentieth century. That role is likely to acquire further im-

portance in the years to come. In the wake of the work of Watson and Crick [75], and

the sequencing of the human genome, far-reaching discoveries are constantly being

made.

The enormous amount of data gathered by biologists, and the need to interpret

it, requires tools that are in the realm of computer science. This need led in the last

two decades to the birth of the interdisciplinary science called bioinformatics.

A distinctive aspect of bioinformatics is its widespread use of the Web. The im-

mense databases containing DNA sequences and 3D protein structures are available

on-line to almost any researcher. Furthermore, the community interested in bio-

informatics has developed a myriad of application programs accessible through the

Internet. Some of these programs (e.g., BLAST) have taken years of development

and have been finely tuned. The vast numbers of daily visits to some of the NIH sites

containing genomic databases are comparable to those of widely used search engines

or active software downloading sites.

In the following sections, we will present some of the main issues in the field of

bioinformatics, trying to make the reader understand or at least get a closer idea of

the amount of data bioinformaticians have to manage for their researches.

49

1.4 Molecular Biology and Bioinformatics

Genome Sequencing

Each cell of a living organism contains chromosomes composed of a sequence of

DNA base pairs. This sequence, the genome, represents a set of instructions that

controls the replication and function of each organism.

The automated DNA sequencer gave birth to genomics, the analytic and compar-

ative study of genomes, by allowing scientists to decode entire genomes. Although

genomes vary in size from millions of nucleotides in bacteria to billions of nucleotides

in humans and most animals and plants, the chemical reactions researchers use to

decode the DNA base pairs are accurate for only about 600 to 700 nucleotides at a

time.

The process of sequencing begins by physically breaking the DNA into millions

of random fragments, which are then “read” by a DNA sequencing machine. Next,

a computer program called an assembler pieces together the many overlapping reads

and reconstructs the original sequence.

These techniques have been largely improved in the last two decades [67], and

researchers have currently access to several complete new genomes every year.

Protein Structure Prediction

With the rapid growth of the number of yearly completely sequenced genomes,

the post-genomic problem of gene function identification has become more pressing

with time. Predicting the structures of proteins encoded by genes of interest is one

50

1.4 Molecular Biology and Bioinformatics

possible means to glean subtle clues as to the functions of these proteins [40].

Thus, the research field of protein structure prediction has seen in the last decade

the proposition of a plethora of different methods and algorithms addressing the is-

sue, and the birth of international committee for the evaluation of such algorithms

(CASP [91]).

Early work in the structure modeling field primarily focused on understanding

the nature of the natural folding process and on the development of physics-based

force fields to determine the relative free energy of any conformation of a polypeptide

chain.

These methods have largely been supplanted by more successful ‘knowledge-based’

approaches, which utilize the large and rapidly growing number of experimentally

determined structures and sequences in a variety of ways. As a consequence, the

accuracy of models depends on similarity to already known structures.

Again, the multitude of data to be managed and analyzed to perform these tasks

is overwhelming and impossible to be manually processed and mined.

Evolutionary Biology

Evolutionary biology is founded on the concept that organisms share a common

origin and have subsequently diverged through time. Phylogenies (typically formu-

lated as trees) represent our attempts to reconstruct evolutionary history. Phyloge-

netic analysis is used in all branches of biology with applications ranging from studies

on the origin of human populations to investigations of the transmission patterns of

51

1.4 Molecular Biology and Bioinformatics

HIV [66], and beyond, with a variety of uses in drug discovery, forensics, and security

[43].

The accurate estimation of evolutionary trees is a challenging computational prob-

lem. For a given set of organisms (or taxa), the number of possible evolutionary trees

is exponential [76]. An exhaustive search through the tree space is certainly not an

option. Thus, scientists have designed a plethora of heuristics to assist them with

phylogenetic analysis.

But even with the application of these heuristics, the quantity of data obtained

from real case-studies is overwhelming, so effective and efficient tools for data man-

agement are a ‘must’ for a profitable mining activity.

1.4.1 Ontologies in Biology

As we previously said (sec. 1.2.4), Ontologies are used for communication between

people and organizations by providing a common terminology over a domain. They

provide the basis for interoperability between systems. They can be used for making

the content in information sources explicit and serve as an index to a repository of

information. Furthermore they can be used as a basis for integration of information

sources and as a query model for information sources. They are being used nowadays

in many areas, including bioinformatics.

Biologists need knowledge to perform their work, often using a pre-existing item

of knowledge to make inferences about the item under investigation. This is why it

is sometimes said that biology is a ‘knowledge-based’, rather than an ‘axiom-based’

52

1.4 Molecular Biology and Bioinformatics

discipline [25].

Modern biologists also need knowledge for communication. Biology is a data-rich

discipline, which is available as a fund of knowledge by which biologists generate fur-

ther knowledge. This knowledge is stored in thousands of databases, many of which

need to be used in concert during an investigation. Knowledge is vital in two re-

spects during this process. First, when using more than one data store or analysis

tool, a biologist needs to be sure that knowledge within one resource can be reliably

compared with another, i.e. knowledge is necessary to integrate information from

different sources (see [38]).

The second need for knowledge is to define and constrain data within a resource.

Biological data can be very complex; not only in the type of data stored, but in

the richness and constraints working upon relationships between those data. When

designing a database it is useful to be able to describe what values can be specified

for which attributes under which conditions. This is the encapsulation of biological

knowledge within database schema.

It is impossible for one biologist to deal with all the knowledge within even one

sub-domain of their discipline. The continuous arrival of whole genomes and the

knowledge they contain only exacerbates the situation.

The need for systems that can apply the domain experts’ knowledge to biological

data, or at least can help experts apply it, poses numerous questions, in particular

regarding how knowledge can be captured to make it available and useful within com-

puter applications.

53

1.4 Molecular Biology and Bioinformatics

Well, Knowledge can be captured and made available to both machines and hu-

mans by an ontology. A common ideal for an ontology is that it should be re-usable

[12]. This ambition distinguishes an ontology from a database schema, even though

both are conceptualizations. In fact, a database schema is intended to satisfy only

one application, while an ontology could be reused in many applications. However an

ontology is only reusable when it is to be used for the same purpose for which it was

developed. Not all ontologies have the same intended purpose and may have parts

that are reusable and other parts that are not. They will also vary in their coverage

and level of detail.

We can divide ontology use into three broad categories:

• Domain-oriented, which are either domain specific (e.g., Escherichia Coli) or

domain generalizations (e.g., gene function or ribosomes).

• Task-oriented, which are either task specific (e.g., annotation analysis) or task

generalizations (e.g., problem solving).

• Generic, which capture common high-level concepts, such as Physical, Abstract,

Structure and Substance. This can be especially useful when trying to reuse an

ontology, as it allows concepts to be correctly or more reliably placed. It can

also be important when generating or analyzing natural language expressions

using an ontology. Generic ontologies are also known as ‘upper ontologies’, ‘core

ontologies’ or ‘reference ontologies’.

Most bio-ontologies have a mixture of all three types of ontology. A well-formed

ontology will be built in a modular way using a mixture of generic domain, generic

task and application ontologies. Its parts will be clearly defined so that they can be

reused. A less well-formed ontology will have blurred distinctions, making reuse and

modification harder [42].

54

1.4 Molecular Biology and Bioinformatics

Other measures for the quality of an ontology include its clarity, consistency,

completeness and conciseness [12].

In the remaining part of the section a representative small sample of existing

bio-ontologies will be shortly reviewed (see [42] for a more extensive and exhaustive

survey):

• The RiboWeb Ontology.

• The Gene Ontology (GO).

• The TAMBIS Ontology (TaO).

The RiboWeb Ontology

RiboWeb [29] primarily aims to facilitate the construction of 3D models of ri-

bosomal components and to compare the results to existing studies. The knowledge

RiboWeb uses to perform these tasks is captured in four ontologies: the physical-thing

ontology; the data ontology; the publication ontology and the methods ontology.

The physical-thing ontology describes ribosomal components and associated ‘phys-

ical things’. The data ontology captures knowledge about experimental detail as well

as data on the structure of physical-things. The methods ontology contains informa-

tion about techniques for analyzing data. It holds knowledge of which techniques can

be applied to which data, as well as the inputs and outputs of each method.

The constraints described within RiboWeb can highlight conflicts with current

knowledge to the biologist.

55

1.4 Molecular Biology and Bioinformatics

The Gene Ontology (GO)

The Gene Ontology Consortium [39] is a joint project. The project’s goal is to

produce a structured, precisely defined, common and dynamic controlled vocabulary

that describes the roles of genes and proteins in all organisms (Gene Ontology Con-

sortium, 2000).

Currently, there are three independent ontologies publicly available over the In-

ternet: biological process, molecular function and cellular component. The biological

process ontology deals with biological objectives to which the gene or gene product

contribute. A process is accomplished via one or more ordered assemblies of molecu-

lar functions. The molecular function ontology deals with the biochemical activities

of a gene product. It only describes what is done without specifying where or when

the event takes place. The cellular component ontology describes the places where a

gene product can be active. The GO ontologies are becoming a de facto standard and

many different bio-databases are today annotated with GO terms [73]. The ontolo-

gies grow continuously. The terms in GO are arranged as nodes in a directed acyclic

graph, where multiple inheritance is allowed. The two most important relations that

are modeled are the is-a relation and the part-of relation.

56

1.4 Molecular Biology and Bioinformatics

The TAMBIS Ontology (TaO)

The TAMBIS Ontology (TaO) [47], [31] describes a wide range of bioinformatics

tasks and resources, and has a central role within the TAMBIS data integration sys-

tem.

An interesting difference between the TaO and the greatest part of the other on-

tologies is that the TaO does not contain any instances. The TaO only contains

knowledge about bioinformatics and molecular biology concepts and their relation-

ships, the instances they represent still reside in the external databases. As concepts

represent collections of instances, a concept can act as a question.

The concept Receptor Protein, for example, represents the instances of proteins

with a receptor function and gathering these instances is answering that question.

The TaO is a dynamic ontology, - it can grow without the need for either con-

ceptualizing or encoding new knowledge. In contrast, the other ontologies described,

are static - developers must intervene and encode new conceptualization to form new

concepts.

The TaO is available in two forms, a small model that concentrates on proteins

and a larger-scale model that includes nucleic acids. The small TaO, with 250 con-

cepts and 60 relationships, describes proteins and enzymes, as well as their motifs,

secondary and tertiary structure, functions and processes.

The larger model, with 1,500 concepts, broadens these parts to include concepts

pertinent to nucleic acid, its children and genes.

57

1.4 Molecular Biology and Bioinformatics

1.4.2 Integration Tools for Molecular Biology

The integration of biological data is just one phase of the entire molecular biology

research and genomic hypothesis discovery process. However the use of non-manual

techniques (i.e., computers) in the knowledge integration process has never been felt

as an actual need by biologists, even when the task resulted to be extremely time

consuming.

Now that relevant data are widely distributed over the Internet and made avail-

able in different formats, manual integration has become practically infeasible. The

amount of data stored in biological databases has indeed grown exponentially over

the past decade [94], while simultaneously the number of available biomolecular and

genomic sources on the web has increased to more than 500 [56], [68].

Furthermore, the need for effective integration of bioinformatic sources is also

justified by the characteristics of these sources [80]:

• the highly diverse nature of the data stored;

• the representational heterogeneity of the data;

• the autonomous and web-based character of the sources and the way the data

is published and made available to the public;

• the various interfaces and querying capabilities offered by the different sources.

In addition to the traditional issues characterizing general data integration prob-

lems, the particular nature of the data and the particular attention you need to pay

in such a delicate research field add some other complications and challenges to be

resolved:

58

1.4 Molecular Biology and Bioinformatics

• Variety of Data: the data exported by the available sources cover several

biological and genomic research fields. Furthermore, bioinformatic data can be

characterized by many relationships between objects and concepts, which are

difficult to identify formally. Finally, not only can the quantity of data available

in a source be quite large, but also the size of each datum or record can itself

be extremely large.

• Autonomous and Web-based Sources: most of these sources operate au-

tonomously, which means that they are free to modify their design and/or

schema, remove some data without any prior “public” notification, or occasion-

ally block access to the source for maintenance or other purposes. Furthermore,

new discoveries or experiments will continually modify the source content to

reflect the new hypotheses or findings. In fact the only way for an integration

system to be certain that it will return the latest data is to actually access the

sources at query time [80].

• Access Limitation: the sources often allow for only certain types of queries to

be asked, thereby protecting and preventing direct access to their data. These

intentional access restrictions force end-users and external systems to adapt and

limit their queries to a certain form [58].

In the remaining part of the chapter, we will present some relevant data integra-

tion systems for the molecular biology research.

SRS

The Sequence Retrieval System (SRS) is closer to a keyword-based retrieval sys-

tem than an integration system. Its approach to bioinformatic integration is to parse

flat files or databanks that contain structured text with field names. It then creates

and stores an index for each field and uses these local indexes at query-time to retrieve

59

1.4 Molecular Biology and Bioinformatics

relevant entries [52], [56].

Although extensive indexed entries are kept locally to be used by the query pro-

cessor at query time, SRS is not actually a warehouse system as the actual data is

neither modified nor stored locally. The other main feature of SRS is that it keeps

track of the cross-references between sources.

The results of a query in this system are essentially composed of a set of tuples

or entries directly retrieved from initially selected sources, and a set of paths across

other sources which lead to information that is related to the query. Thus, a user

can browse through a set of sources in a point-and-click type of navigation [17] even

after having submitted a very simple query, and find more relevant or complementary

results in the suggested links.

BioKleisli

BioKleisli is primarily a loosely-coupled federated database system. The mediator

on top of the underlying sources relies mainly on a high-level query language that

is more expressive than SQL and that provides the ability to query across several

sources: the Collection Programming Language, or CPL [16], [45].

The data model used in BioKleisli is an object-oriented type system that is more

expressive than the relational model since it includes bags, lists, variants, nested sets

and nested records. BioKleisli does not use any global molecular biology schema

or ontology that the user could use to formulate queries. This approach therefore

requires of the users not only a strong competency in CPL [45] but also a perfect

60

1.4 Molecular Biology and Bioinformatics

knowledge of the schema and structure of the bioinformatic sources being integrated.

The BioKleisli project is mainly aimed at performing a horizontal integration.

Furthermore, no optimization based on source characteristics or source content is

performed.

TAMBIS

TAMBIS (Transparent Access to Multiple Bioinformatics Information Sources) is

a mediator-based and ontology-driven integration system [25], [34], [46].

Queries in TAMBIS are formulated through a graphical interface where a user

needs to browse through concepts defined in a global schema and select the ones that

are of interest for the particular query. Because TAMBIS needs external wrappers,

it uses wrappers from the BioKleisli system to access the underlying sources. The

planning and optimization subsystem in TAMBIS only performs reordering of query

components; it does not store source statistics or analyze source capabilities.

It is important to note that the ontology defined by TAMBIS is not primarily

used for schema mapping between the underlying bioinformatic sources; instead the

ontology is a dictionary and classification of biological concepts representing subsump-

tion relationships between concepts. The mapping of ontology concepts to source-

dependent CPL functions is done by another subsystem called the Source Model

which simply captures which CPL function is related to which ontology concept.

Hence the TAMBIS domain ontology mainly serves the purpose of easing the user’s

task of formulating the query.

61

“Good ideas are not adopted automatically. They

Must be driven into practice with courageous patience.”

Hyman Rickover.

62

Chapter 2

Modeling the System

In this chapter, we will present in details the architectural and the modeling choices

that characterized the design of the integration system. In particular, we will first

present the theoretical background at the basis of our choices, then we will focus on

the mediation module, that represents the core of the integration architecture.

Additionally, at the end of the chapter an explanation of the algorithms of query

processing and of the schema mappings generation process is presented.

63

2.1 System Architecture

2.1 System Architecture

The continuous update of the sources being integrated (and the birth of brand

new ones), the periodical changes of the format of the data stored, and the conse-

quent need for a quick extension of the system to support novel functionalities and

query capabilities (and to integrate new data banks) led to the design of a modular

architecture.

In particular, we adopt a mediator based architecture, that we think to be the

more suitable to future updates when compared to a warehousing approach; and that

is better suited to analyzing and mining data than a navigational system, which is

usually very close to a keyword-based search engine (see sec. 1.3.1).

We exploit a LAV approach to map the sources, i.e. every source schema can be

seen as contained in the results of a query over the global schema (in other words:

the sources are views, and we have to answer queries on the basis of available data in

the views).

To the aim of representing the knowledge of the domain and mediate through

the different data sources, we developed a model ontology in RDF. The choice of

using RDF instead of OWL or other ontology representation languages, not lacking

a reasoning engine, is motivated by the fact that we do not really want to make any

reasoning on the information stored in the ontology, but only to provide the user with

simple query capabilities (i.e., the same provided by the integrated data sources), and

a flexible and readable representation (and RDF is probably the best choice for that),

while focusing the data mining and all the analytical processes on the data retrieved

64

2.1 System Architecture

from the data sources.

Also note that our ontology is lacking the extensional part, the data that represent

all our possible instances residing at the source level. Our ontology is meant only to

represent the concepts and resolve the semantic heterogeneities for the user, and it is

only exploited for editing queries (from the user’s perspective), and for dividing the

queries in source-dependent queries (from the system’s perspective).

A detailed sketch of the system architecture is depicted in fig.2.1.

�������� ��	��
WRAPPERn

WRAPPER2

PDB

WRAPPER1

SWISSPROT/
UNIPROT

Q
ue

ry
 P

la
nn

er

QUERY

DECOMPOSITION

AND REWRITING

V
IS

U
AL

 G
U

ID
ED

 IN
TE

R
FA

C
E

–
IN

PU
T

A
N

D
 P

R
E

SE
N

TA
TI

O
N

��
���������
Result Database

Source-dependent
Queries

����
Source-

independent
Queries

�������
Figure 2.1: System Architecture

The user communicates with the system through a visual interface, which provides

a guided input mechanism and a result-browsing tool. The (source-independent)

query provided by the user is analyzed by the mediator, which opportunely compiles

it into a set of (source-dependent) queries to be submitted by wrappers to the inte-

grated sources at execution time.

65

2.1 System Architecture

Generated queries are then passed to a query planner, which is responsible of es-

tablishing the query execution order and providing the wrappers with intermediate

results, where needed.

Finally, wrappers query the remote sources to get the requested information, and

return them to the mediator for further analysis and presentation.

As an example, consider the case in which the user submits a query like: Q =

“Find the sequence S of all the proteins P with a given structural motif M”. The

mediator module knows from the stored mappings that information concerning pro-

tein sequences are to be retrieved from a certain set of sources, S1; while information

concerning protein structural motifs are contained in another set of sources, S2 (note

that the two sets may be overlapping). Hence the mediator finds which attributes

(concepts in the ontology) are common to the sources in S1 and S2 (or, even better,

if there is a cross-reference between the sources); let us consider the worst case of

non-referencing sources, and let us say the sources share a single attribute (for sake

of simplicity), which is called ‘name’.

Note that some common attributes (ID, Date, etc.) are excluded a priori from

this process, because the instances representing the same object may have different

values for it1.

Then the mediator divides the query into two elementary (in the sense they involve

only a selected attribute - e.g. name - and a constrained one - e.g. motif) sub-queries

of the kind: SQ1 = “Find the name N of all proteins with structural motif M”, and

1Actually we even put in discussion whether the representation of these attributes/concepts was
needed at all; we resolved to represent them so not to limit the querying capabilities of the system,
even if our choice complicated a bit the query processing, introducing the problem of data consistency
(see sec. 1.3.5).

66

2.1 System Architecture

SQ2 = “Find the sequence S of all protein with name N”.

Finally the mediator plans the execution (recognizing the second sub-query needs

as input the results of the first sub-query), translates SQ1 in a list of conditions on

the source attributes, for each of the sources in S2, and calls the suitable wrappers.

Each wrapper accesses the sub-query/list it has to process and executes it, re-

trieving the results (i.e. the desired protein name) at the source level and storing

them in a local result repository.

The mediator accesses the results, and use them to perform the translation process

on SQ2, this time calling on the wrappers for the sources in S1. Finally, the mediator

analyzes the whole results to find possible inconsistencies (in that case, the mediator

presents all the possible results to the user, specifying for each of them the provenance

of the data, and a grade of reliability - based on the principle: ‘the more frequent,

the more reliable’), then present the list of results, indicating for each of them the

provenance (source) and the date of the last modification (where this information is

readable at the source level), together with hyperlinks to the corresponding entries

in the remote sources.

In the following section we theoretically motivate the design choices we made, then

we present a detailed description of every component, underlying its functionality and

the challenges we had to face to develop it.

67

2.2 Theoretical Background

2.2 Theoretical Background

2.2.1 Mediator-Based Data Integration

As previously stated we rely on a mediator-based architecture, the approach that

we consider better suited to be applied to the biological domain.

In fact, the frequent updates of the data contained in the remote sources (and the

possible introduction of brand new data banks or the removal of older ones) and the

possible unavailability of the source schema make a warehousing approach in practice

unfeasible.

On the other hand, the potential for mining and analyzing data, with the pos-

sibility of making (even simple) local inference on a unique global schema, and the

annotation capability you get with warehousing and mediated approaches (something

that is important and desirable in Bioinformatics) are totally absent in navigational

systems, that are more similar to keyword based retrieval systems (see the SRS sys-

tem [52] for example).

As we said above (see sec. 1.3), different assumptions can be done with respect

to the mapping assertions, that affect the notion of satisfaction of mapping.

As a design choice, we don’t actually implement neither a sound nor a complete

mapping (as described in the previous chapter). In fact, we don’t necessarily need to

represent all the attributes constituting the schema of the sources being integrated,

and on the other hand we may need information that are not present in the sources’

68

2.3 Model Ontology

schema. Hence, in our case source and global schema are in general simply overlap-

ping. We may say that our mapping assertions are ‘at most’ sound, in the sense

that sources may be supposed to be full represented in the global schema (but that

is not true at any given moment, provided that the sources may change their schema

without any alert, and at the same time the user may modify the global schema), but

some sources can be at some time points simply intersecting the global schema (until

the global schema is extended to cover the missing attributes/relations).

For what concerns the mapping formalism we decided to adopt a LAV approach,

that is a natural choice once observed that in the biological domain the sources can

be subject to particularly frequent changes/updates.

In fact, exploiting a LAV paradigm, every time a (new) source is updated (added),

we don’t need to reassert the totality of the mappings (something that is in general

true with a GAV approach), but simply to modify the (to add a) mapping for that

source (see sec. 1.3.4).

2.3 Model Ontology

Given the choice of adopting a mediator-wrapper architecture, the first and more

urgent issue we have to face is the generation of an internal representation of the

information we are about to integrate, which could be easily updated (and accessed

for browsing purposes) and mapped onto distributed (not always structured) reposi-

tories.

69

2.3 Model Ontology

As we said above (see sec. 1.4.1) information integration requires a consistent

shared understanding of the meaning of that information. The biologists’ knowledge

of molecular biology and bioinformatics, and their interpretation of the resources with

respect to this knowledge, is essential to the task of combining resources to answer

queries. A shared understanding requires three things: metadata, terminologies and

ontologies.

In particular, ontologies provide a shared and common understanding of a domain

that can be communicated across people and applications, and play a major role in

supporting information exchange and discovery [38]. The resources may overlap in

their content, but they certainly vary considerably on the view that is taken of that

content, for example ‘what is meant by gene?’. A comprehensive thesaurus of terms

or a reusable reference ontology of biological concepts is a prerequisite for information

integration [19].

The choice of using a domain ontology as global schema only move the problem

of the information representation forward to the choice of an opportune representa-

tion language for the ontology, with all deriving consequences of this choice (as the

capability of making inference and the computability of logic assertions).

The analysis of the possible solutions quickly reduced our alternatives to RDF

and OWL (actually the lighter versions of the language, -lite and -DL, provided that

the -Full version is equivalent to RDF). As previously stated (sec. 2.1), we eventually

adopted an RDF representation on the basis of the important consideration that we

do not need complex reasoning on our data, so there is no purpose in self-limiting the

expressivity of the language.

70

2.3 Model Ontology

After choosing the representational language, the most difficult aspects of the on-

tology generation process are choosing which concepts to represent, and collecting

coherent and consistent descriptions of these concepts (and of the relationships be-

tween them).

While the former problem has been easily overcome via an accurate analysis of

the sources, the latter required much more attention and efforts, and led us to the

conclusion that only after a period of training and updates, on the basis of the user’s

view of the domain (that is to say the user’s personalization of the system), the de-

scription of the concepts in the ontology could be considered accurate, precise and at

the same time flexible enough for the system to properly satisfy user needs.

In fact, provided that the system should solve the representational and interpreta-

tional heterogeneities of data for the user, it is our belief that only the user can provide

her/his intended meaning for them. The global ontology has thus to be viewed as

an ever changing model, subject to refinement and enrichment during its entire life

cycle. To this purpose, we are now working to provide the user interface with a tool

to edit the model ontology, even if at the same we recognize it could be dangerous

for the correctness of the global model to set the unexperienced user free to modify

the global schema.

Note that although ontologies might seem to be abstract entities, it is possible to

illustrate them as graphs in which vertexes (nodes, leaves) and edges (lines connecting

the nodes) represent the terms and the rules of the ontology. For bio-ontologies, this

graph is usually no more than a hierarchy [77]: this will be simple if each term has

a single parent (such as in a taxonomy) and more complicated if a term has two or

71

2.3 Model Ontology

more parents or relationships (panel b). An example of the latter would be the Gene

Ontology (GO) [39].

Our global ontology is not a hierarchy like the GO, but more properly a directed

acyclic graph (with each node being a subject/object of an RDF triple - see Appendix

A -, and each arc a relation between two nodes), i.e. where every relationship is di-

rected, and it is not possible to make closed loops.

In the next sections, we might as well refer to the generated global ontology with

the term global graph, to the represented entities with the term node, and to the re-

lations with the term arc.

2.3.1 Building the Ontology

Given the extent of the molecular biology domain, the whole ontology on which

the system should base its functioning is far from being completed, and probably the

creation process would still take a couple of years of collaborative work with domain

experts.

To the aim of testing the system we limited the generation process to only a small

portion of the global ontology, developing it mainly around the concept of ‘Protein’.

It is worth pointing out that the entities and relations represented in the ontology

are not necessarily represented in any data source related to the protein domain. In

fact we decided to approach the creation of our ontology in such a way that we could

represent all the available knowledge for the domain, independently from its actual

use in the sources being integrated, so to possibly make future updates easier (if some

72

2.3 Model Ontology

data sources, on the basis of evidences from future experiments and studies, would

decide to represent previously neglected characteristics of the information stored, we

will maybe find ourselves a step ahead in the integration process, if those aspects

were already considered in the model ontology).

To build the ontology we followed the general steps we outlined in sec. 1.2.4. A

sketch of a portion of the global ontology is depicted in fig.2.2.

Figure 2.2: BioInView global ontology - portion

Note that, as it is clear for the concepts ‘Protein’ and ‘Gene’, each concept in

the ontology with a correspondent in one or more data sources has a reference to the

data source/s.

73

2.4 Editing and Browsing Interface

These references are generated during the mapping process, and are used to ease

the query decomposition task.

2.4 Editing and Browsing Interface

The most important modules of the user graphic interface are the query editor

and the result browsing modules. The former is still under development and it is

going to be basically a wizard guiding the user in writing correct queries (with no

need of correctness checking mechanisms); the latter is a bit more complex than

the result page of traditional search engines, where summaries of the results of the

query are listed and links to the extended version of the retrieved entries are provided.

2.4.1 Query Editor

The query editor module is a sort of wizard tool, capable of suggesting/listing

the possible values to fill a suitable query form, on the basis of the relations and the

concepts described in the global ontology.

Note that even if guiding the user in writing correct queries complicates the editing

process, on the other side it improves the overall performances, actually making

redundant the implementation of a run-time correctness checking mechanism.

A sketch of this ’form’ is depicted in fig.2.3.

It should be pointed out that the user is left free to set many parameters and to

74

2.4 Editing and Browsing Interface

Figure 2.3: Query Editor Interface

select/exclude sources from the research.

2.4.2 Presentation of Results

Once submitted a query, the user is presented the set of results as a (ranked) list

of links, with indication of the name and local identifiers of the correspondent entries

in the sources, and may either select one or all the entries to be entirely visualized.

The user may also save the results of the query (so to quicken future searches)

and add annotations and comments to the single entry and even to single records

(attributes) of the entries.

75

2.5 Mediation Layer

We are now working on an extension of the presentation interface, which will sug-

gest possibly relevant queries to the user on the basis of the presented (intermediate)

results.

2.5 Mediation Layer

The mediator is the core module of the system, and is responsible of parsing

and decomposing (and translating) the query submitted by the user in a (ordered)

sequence of source-dependent queries, then of passing these queries to the proper

wrappers for execution.

2.5.1 Query Parsing and Translation

Being the needed correctness checking mechanism implicitly implemented at the

query editor level, during the parsing phase the mediator has the sole task of indi-

viduating the different ‘main’ concepts involved in the query (those like ‘Protein’,

or ‘Gene’, which are represented by whole entries of one or more of the integrated

sources).

This task is easily performed by ‘reading ’ the global ontology (each concept in

the ontology is manually annotated with a ‘main’ mark when appropriate), and has

the purpose of separating the query into a set of sub-queries (one for each of these

concepts, i.e. one for each relevant source).

76

2.5 Mediation Layer

The mediator then individuate the execution order, in such a way to first query the

sources whose entries are needed as input for subsequent sub-queries, while making

the execution parallel for those sub-queries that don’t need to process intermediate

results.

Sub-queries are stored as simple textual files in a predefined folder, and the file

names are then passed in the established order to the wrappers for execution.

2.5.2 Processing Intermediate Results

The processing of intermediate results consists in the mediator receiving and elab-

orating the results of the sub-queries the wrappers performed on the remote sources,

in order to use these results as input for successive sub-queries.

More precisely, the mediator captures from the entries retrieved for a sub-query

the attribute values that are needed as input parameters of other sub-queries, and

write them in the files representative of the sub-queries calling for these parameters.

For example, let S be a query of the kind: “select all the proteins coded by the hu-

man genes containing the sub-sequence SS”, where SS is a valid string of nucleotides;

let S1, S2 be the sub-queries “select all the genes containing the sub-sequence SS

that belongs to the human species” and “select all the proteins coded by the genes

in R(S1)” (where R(S1) is the result set of S1), respectively; note that S2 requires as

input parameters the results of S1).

The mediator will submit to the appropriate wrapper/s the query S1, then will

generate a sub-query file Si
2 for each result entry Ri in R(S1) (simply using the gene

77

2.6 Wrapper Layer

name attribute in Ri), and will pass it to the proper wrapper/s.

2.6 Wrapper Layer

Wrappers are the simplest modules of the system, and are only responsible of

knowing the actual querying mechanisms of the correspondent sources, so to exploit

them to execute the (sub-)queries assigned by the mediator.

Each wrapper is passed by the mediator the path where the (sub-)query/ies is/are

stored as simple textual file/s, accedes the file/s and submits the query/ies to the in-

put modules of the correspondent source.

When the result set is returned, the wrapper generates a list of links to the re-

trieved entries and save it as a textual file (or generates a separate file for each entry, if

they are required by the mediator as intermediate results), that can be then accessed

by the mediator for presentation or further querying.

When applicable, the wrappers will exploit the indexes maintained at the source

level (i.e. updated) to perform their tasks.

As an example, consider the case of the source PDB (Protein Data Bank); the

source describes the structures of proteins (and other biological molecules - nucleic

acids, protein-nucleic acid complexes, etc.) and their relationships to sequence, func-

tion, disease. PDB maintains indexes of the data (called summaries on the website)

based on authors, resolution and components, insertion date, etc.

78

2.7 Query Optimization

Exploiting these information greatly simplifies querying, when the indexed at-

tributes are involved in the query. In fact, the wrapper can initially check for those

entries that satisfy the conditions on the indexed attributes, by simply acceding the

suitable indexes (publicly available on the RCSB-PDB web site [37], [36]), thus reduc-

ing the set of entries to parse. Then it can refine the research locally, by parsing only

the relevant entries, looking for the satisfaction of the conditions on the remaining

attributes.

2.7 Query Optimization

Being most of the queries performed by means of the tools provided by the sources

themselves, while only parts of them are executed locally, talking of ‘query optimiza-

tion’ is not completely exact.

More often than not, optimizing a query in our system means no more than es-

tablishing the execution order of the sub-queries the query is divided into.

Nevertheless, in some cases, the bigger parts of the query has to be performed

locally; this is the case of the source PDB, for example, that does not provide a

proprietary querying tool, but simply a bunch of indexes, that allow the user to sim-

plify the retrieval of entries with particular values for one or more specific attributes.

Then the search has to be refined locally, verifying the select conditions on the other

attributes involved in the query.

79

2.7 Query Optimization

In these cases, optimization actually implies finding the most efficient way to an-

swer the query (more precisely, the refining part of it). To this aim, some heuristics

are used, that are inferred automatically during each query answering process. In

practice, the system tries to measure the intrinsic ‘discriminative power’ of every

attributes that are characteristic of each source, in terms of the number of entries

retrieved when a condition on each attribute is required, normalized on the total

number of entries in the starting set.

For example, the attribute ID is certainly the most discriminative attribute pos-

sible. In fact, when asking for a particular id, only one entry will be retrieved,

independently from the size of the searching space (the starting set of entries we were

talking above).

Thanks to this measure of discriminative power, the system is able to decide the

optimal execution order, first satisfying the conditions on the ‘most discriminative’

attributes, so to greatly reduce the set of entries to analyze, then looking for the

satisfaction of other, less restrictive, select conditions.

We are now working on some improvements of the query optimization, which could

take into account source statistics (as average time latency, attribute’s discriminative

power, etc., even for sources that are completely remotely queried). These statistics

are clearly going to be collected through the wrappers, being strongly related to the

specific sources, and that needs a much more complicate design of these modules.

80

2.8 Query Processing Algorithm

2.8 Query Processing Algorithm

In this section, we will present the formal query processing algorithm we designed.

For a simple example of application, you may refer to sec. 2.1, while for a simple

example of query answering in LAV, you may refer to sec. 1.3.4.

Note that the designed algorithm follow the general LAV approach of query rewrit-

ing, but under the hypothesis of inconsistent sources we chose to get the user the

totality of the results, indicating for each of them the provenance, and an estimation

of reliability (see sec. 2.1).

Algorithm Query Processing

INPUTs:
Q is the user query

OUTPUTs:
RES is the list of results, each of them being a record like: (file name, results, hyperlink), where file name is the
name that identifies the entry containing the result data, results represents the set of data that answer the user query Q,
hyperlink is a link to the specific source, from which the result data are retrieved

VARs:
SList is the list of relevant sources (either the ones chosen by the user, either those chosen by the mediator)
Si is the i-th source in SList

SQ is the array of sub-queries Q is divided into
SQi is the i-th sub-query in AS (each sub-query specifies the source it is specifically written for)

FUNCTIONs and PROCEDUREs:
Parse Query finds out which sources are relevant to answer Q (based on SList - here an input/output parameter - and
the mapping assertions for the queried concepts/relations)
Divide Query gets Q and SList as input and returns an array of sub-queries (stored in SQ)
Order SQueries orders the array SQ (based on an analysis of the existing dependencies between the sub-queries)
Pop SQuery gets the first element of SQ, and remove it from the array
Call Wrapper calls for the execution of a specific wrapper (the name of the corresponding source Si is an input parameter,
together with the appropriate sub-query SQi)
Collect Results accedes to the result entries provided by the wrappers and creates the list of results stored in RES

Get Inconsistencies parses the results provided by the different wrappers, and highlights the possible inconsistencies
adding an annotation to the incriminated entries in RES

begin

SList := Parse Query(Q, SList)

SQ := Divide Query(Q, SList)

81

2.8 Query Processing Algorithm

if SQ is not null

Order SQueries(SQ)

while SQ is not null do

Call Wrapper(Pop SQuery(SQ))

end while

RES := Collect Results() if RES is not null

RES := Gets Inconsistencies(RES)

else write ‘noresultsfound′

end if

end if

end

In practice, the mediator accedes to the query submitted by the user and to the list

of sources the user has explicitly chosen, then it individuates the integrated sources

that are relevant to answer the query (when not directly specified by the user, the

task is performed via the analysis of the stored mapping assertions).

Then the mediator divides the query into an ordered set of sub-queries (one for

each relevant source), basically constituted by lists of pair (AttributeName,Condition),

where each attribute name is specified in the source-specific language, and the condi-

tion is in turn a pair of the kind (Operator, V alue) (for example, a condition on the

insertion date of a given protein sequence could be (before, 01-Oct-07)).

Finally, the mediator calls the appropriate wrappers, and recollect the answers in

a single list, that is eventually parsed to find the possible inconsistencies.

Note that from the analysis of the result data, the mediator is capable of inferring

an estimation of the degree of reliability of every single result, by simply counting the

number of identical results, and supposing the frequency of wrong results is always

82

2.9 Mapping Generation Algorithm

inferior to the frequency of the correct ones.

2.9 Mapping Generation Algorithm

As previously stated, the generation of the mappings between the global and the

source schema is one of the most important tasks to be performed for a mediator-

based integration system, being all the querying capabilities of such a system strongly

dependent on how well these mappings represent the existing relationships between

the attributes (concepts, in our case) in the global schema and the attributes in the

source schema.

It should be noted indeed that the mappings are the basis to build suitable wrap-

pers for the sources, and they also represent the knowledge base needed for the me-

diator to correctly perform its query translation task.

At the same time this task is surely the most boring and time-consuming one, it

you have to perform it manually, requiring you to browse the sources, to learn how

they are structured, how data are represented, and most importantly to understand

the meaning of the often not even human-readable attribute names.

One of the most challenging research issues in the domain of data integration is

the complete automatization of such a heavy task (something that is clearly high

desirable), and works in the literature try to approach it by applying techniques from

the natural language processing domain.

Almost always the existing approaches rely only on the information derivable from

83

2.9 Mapping Generation

the schema (i.e. they don’t exploit the information provided by the instances), and

limit the application of the algorithms to relational and XML schema [41], [44], [54],

[64]. For a good and complete classification of schema matching techniques and a

comparison of some relevant methodologies, see [57] and [63].

Note that the difficulty of automating the generation of mappings is strongly de-

pendent on how the sources are structured and on how close are the vocabularies used

in the global and the source schema.

Even if we recognize the importance of automatizing this task, it is our belief

that for life sciences, like molecular biology, where data being searched are involved

in delicate researches (from drug discovery to the study of human genetic illnesses),

precision and correctness are to be considered the real ‘goal’, compared to which per-

formance considerations are probably to be deserved little attention.

With this in mind, we tried to automate as much as possible the generation of the

mapping assertions, and we ended up with a (semi-)automatic procedure, where the

user is asked to guide the system and validate the assertions produced.

Here is the generation algorithm [93]:

Algorithm Schema Mapping Generation

INPUTs:
MOnto is the model ontology
MS is the stored set of sources that have been already mapped

OUTPUTs:
MAP is a list of arrays, each of them being the (bi-dimensional) array of mappings for a specific source

VARs:
AS is the source under analysis
ASi is an instance (single entry) of AS

AttList is the list of all the attributes (meta-data) describing the AS schema
XRef is the set of cross-references in an entry of AS

IRef is the set of sources in XRef that have been already integrated
IS indicates an already integrated source
ISj is an instance of IS

84

2.9 Mapping Generation

FUNCTIONs and PROCEDUREs:
Get Next Source gets the next source from a given set of sources
Get Next Entry gets the next entry from a given source (based on the id attribute)
Parse Entry gets the set of all the attributes (meta-data) in the source schema, given an entry from that source
Get References gets the set of all the references in the entry being analyzed
Get Referenced Sources gets the set of all those sources that have been already mapped, and are listed in XRef

Get Ref Entry gets from a referenced source the entry being referenced
Get Common MD gets the meta-data (attributes) that are in common between ISj and ASi, and maps those of ASi

to concepts of MOnto

Gen Map tries to find suitable mappings between AS and the concepts in MOnto by applying lexical and semantic simi-
larity functions, with the help of the user

begin

if MAP is not empty

int counter := 0;

do

counter + +;

XRef := NULL

ASi := Get Next Entry(AS)

if ASi is not null

AttList := Parse Entry(ASi)

XRef := Get References(ASi)

end if

if XRef is not empty

IRef := Get Referenced Sources(XRef)

while (IS := Get Next Source(IRef)) is not null do

ISj := Get Ref Entry(IS))

MAP.add(Get Common MD(ASi, ISj))

end while

end if

while XRef is empty and ASi is not null and counter <= 20

MAP.add(Gen Map(AS))

else MAP.add(Gen Map(AS))

end if end

85

2.9 Mapping Generation

In words, the algorithm basically analyzes some instances of the source being

mapped, and compares their attribute values with the attribute values of entries they

reference, that in turn belong to already mapped sources.

In this way, the system is able to ‘recycle’ the mappings obtained for other sources,

thus saving the time that is needed to apply similarity-based matching algorithms,

and minimizing the user intervention.

Note that in absence of already mapped sources or cross-references in the source

under analysis, the application of this kind of algorithms is the only possible way

of automatizing the generation process. Unfortunately, similarity-based algorithms

are not always applicable with success, in particular when attribute names are not

easy interpretable, and a strong user intervention is often needed to guarantee the

correctness of the results.

Even if the final system should already be provided with the mappings for several

sources, situations in which no source is mapped could always arise, being the user

left totally free to choose which sources have to be removed/added.

If this the case, it is up to the user to select the order in which new sources are

to be mapped, so to minimize the interactive steps during the whole process. Clearly

it is desirable that sources with understandable attribute names and/or with a great

number of external references (so to ease the mapping of subsequent sources) are the

first to be mapped, so to increase the chances of simplifying future applications of

the algorithm.

It should be pointed out that the generation of mapping assertions is not to be

confused with the creation of wrappers for the sources, something that at this point

86

2.9 Mapping Generation

in the work is still a task to be manually accomplished by a software engineer.

Anyway, it is possible to generate the mapping assertions before the creation of a

suitable wrapper, so that the software engineer could simplify her/his work (in par-

ticular, the understanding of the source schema) with the help of the already stored

mappings.

The automatic generation of wrappers is a hot research topic in the data integra-

tion field, and we plan to apply to our system the techniques and results presented

in the literature in the next future.

87

“While working on a problem,

I never think about beauty.

I think only how to solve the problem.

But when I have finished,

If the solution is not beautiful,

I know it is wrong.”

R. Buckminster Fuller.

88

Chapter 3

Implementation

In this chapter, we present the actual state of implementation of the system, de-

tailing the description of what already is and what still needs to be done.

Finally, some technological notes are provided, e.g. the kind of computer used to

perform the work, and the actual speed of the network connection toward the Internet.

89

3.1 User Interface

3.1 User Interface

As we said in the previous chapter (sec. 2.4), the user interface is constituted of

two modules: the query editor, and the result browsing modules.

The first query editor we developed was nothing more than a blank window by

means of which the user could write and save any sort of query. To the aim of quick-

ening the execution phase, queries were not checked for correctness, and this could

sometimes generate problems to the less experienced user.

To solve this problem, we worked on a new version that basically consists of a form

to be compiled, each of the possible fields being checked onto the model ontology to

ensure the correctness of the resulting query.

At the present state of implementation the query editor is a sort of wizard tool

(see fig.2.3). The user browses the global ontology to identify the main concepts

she/he wishes to query (i.e. the set of relevant sources), then the system cuts the

relations and concepts that are not related to the chosen concepts and presents the

user a limited portion of the ontology (the portion around the main concepts chosen)

for further selection of concepts/relations, thus in practice forcing the user to submit

only meaningful queries.

Once the query is written, the system asks the user if she/he prefers to exclude

any of the possibly relevant sources, and if she/he wants to specify which sources

have to be given high reliability in case of inconsistencies.

The current work on the user interface mainly involves the result browsing mod-

ule. The interface now simply presents to the user a list of (ranked) results, with

90

3.2 Mediator Module

indication of the correspondent sources. The ultimate version will give the chance of

further querying the set of results presented, and to rearrange the presentation of the

results on the basis of different parameters (source alphabetical order, last modifica-

tion date of the entry, etc.)

3.2 Mediator Module

The implementation of the mediator module has been the core of the whole im-

plementation work, and proceeded in parallel with the implementation of the two

wrapper modules currently part of the system.

At the present state of the work, the mediator consists of several software mod-

ules, written in Java, each of which performs one of the task the mediator has to

accomplish. Note that these modules are characterized by a large number of classes

and methods, and in turn use objects from other suitably defined classes to perform

their tasks.

Furthermore most of the mediation tasks are not performed by single software

modules, but require the instantiation of objects from different classes, so talking of

‘module performing a task’ is not always strictly correct. Broadly speaking (in the

sense that some of them are rather collection of classes), we can identify the following

central ‘modules’ :

• Translator - responsible of parsing submitted queries, rewriting them in a set of

source-dependent sub-queries, and calling the suitable wrappers for execution;

the main classes that constitute the Translator are:

91

3.2 Implementation: Mediator

– queryParser, which accedes the user query (stored after editing as a list

of conditions on concepts of the global schema), tokenizes it and stores it

in a suitable array (each element of the array being a record of the kind

(concept, condition));

– queryRewriter, which is passed the array representing the query, and per-

forms the tasks of rearranging the records into a set of arrays (each cor-

responding to a different source needed to answer the conditions), and of

rewriting the records in a shape like (attribute, condition), where now the

conditions are expressed on source’s attributes, rather than on concepts of

the global ontology.

• Optimizer - at the time of writing its sole purpose is to suitably arrange the

execution order of the sub-queries, so to timely retrieve intermediate results,

before calling the wrappers that needs them for their task.

• Checker - responsible of checking for inconsistencies among the retrieved results;

it basically looks at the results and highlights those that are more probably

erroneous (on the basis of statistical reasoning and of the indications provided

by the user at query editing time - see sec. 3.1).

Most of the current implementation work involves the Optimizer and the Checker

modules, to the aim of: enriching the former with the capability of inferring source

statistics (toward an effective query optimization) and measuring the discriminative

power of the most queried ontology concepts; providing the latter with more powerful

means to measure the reliability of a given source (something that actually concerns

design more than implementation).

92

3.3 Wrapper Modules

3.3 Wrapper Modules

The system now has two wrappers implemented, corresponding to two important

sources of protein data (as we said in sec. 2.3.1, we limited the development of the

model ontology to a contour of the Protein concept), UniProtKB/Swiss-Prot [?] for

sequences, and RCSB PDB (Protein Data bank) [37] for structures (actually more

than this [36]).

3.3.1 UniProtKB/Swiss-Prot

For the development of the wrapper Swiss-Prot, we largely relied on the func-

tionality offered by the SRS wrapping system. In practice SRS (Sequence retrieval

System) [52] maintains some updated indexes on most of the Swiss-Prot schema at-

tributes, and provide for a world wide web interface, by means of a program called

WGETZ (it is basically a CGI-script) [53], that allows to accede to the indexed entries

by simply opening HTML links.

On the basis of these information, the Swiss-Prot wrapper performs its task in

three main steps, as described below.

In the first step, the wrapper divides the sub-query the mediator assigned to it in

two distinct parts: one involving attributes that are indexed by SRS (i.e. retrievable

through WGETZ), the other involving attributes that are not indexed, and need the

actual parsing of the single entries to be answered.

In the second step, the wrapper creates an HTML link to WGETZ which would

93

3.4 Technological Notes

answer the first part of the sub-query, open it and stores the results as textual files

in a established path.

In the third and last step, the wrapper parses the retrieved entries and look for the

satisfaction of the conditions expressed in the second part of the sub-query, deleting

the entries that do not satisfy them, and keeping the others.

3.3.2 RCSB PDB

The wrapper for the PDB works in a very similar way to that described above, in

that it exploits the indexing facilities provided by the PDB on many of the attributes

describing the entries.

The case here is complicated by the absence of a remote access tool like WGETZ.

Hence, the wrapper (after dividing the sub-query in the same way as the Swiss-Prot

wrapper does) must accede to the indexes via FTP and browse them locally, then

it must directly retrieve all the relevant entries, and save them locally for the final

parsing.

3.4 Technological Notes

The computer used during development and experiments is characterized by the

following configuration: CPU Intel P4 2.99 GHz; DDR RAM PC3200 2048 MB; OS

MS Windows XP Professional Edition SP2.

94

3.4 Technology

The network adapter installed on the machine is a Broadcom NetXtreme Giga-

bit Ethernet; the real (i.e. tested) average upload/download network speeds to/from

Internet are approximately 12/14 (with peaks of 13/15) Mbit/sec, so we can confi-

dently say that the experiments we performed were barely influenced by our network

performances, while certainly were more dependent from the sources’ response times.

95

“Experience is a hard teacher because she

Gives the test first, the lesson afterwards.”

Vernon Sanders Law.

96

Chapter 4

Experimental Work and Results

In this chapter we will discuss the results of the experiments we performed in order

to prove the effectiveness of our approach to the problem of biological data integration,

in particular to the problem of querying overlapping sources.

As a side note, while experimenting the system most of the automatic OS tool

services (print spooling, automatic configuration services, firewall, etc.) and most

of the utilities normally running on the PC (e.g. anti-virus software, performances

monitor, etc.) were disabled.

97

4.1 Query Processing

4.1 Query Processing

As for query processing, we tested the effectiveness of the system in retrieving the

results from the two wrapped sources, when the submitted user query requires data

from both them.

Note that testing the performances of the system would have resulted in a mean-

ingless set of temporal values, given that to the best of our knowledge in the literature

no such results are provided, so we would have lacked the reference benchmark.

As a side note, we observed anyway that the absolute delay in retrieving the re-

sults to the submitted queries were acceptable, but greatly dependent on the network

performances (the same set of queries, performed on different days - but close in time,

so that was presumably not dependent on variation of the sources’ content -, required

different - sometimes conspicuously - amounts of time).

4.1.1 Experiment Details

Since in the literature there exists no benchmark to compare the experimental

results with, for testing the effectiveness of the system we needed to create a kind of

benchmark on our own.

Given that the system has the sole purpose of facilitating the research tasks biolo-

gists need to perform on the Web, we decided to compare the results of the execution

of ten different queries with those obtained by hand by a group of computer engineers

98

4.1 Query Processing

with proved practice of web surfing.

Note that we did not enroll a group of experienced biologists for two important

reasons: first, we wanted to see if the system was able to retrieve more (correct) re-

sults than a person with a poor knowledge of the representational formats of the two

integrated sources, and enrolling domain experts would have probably meant they

already knew Swiss-Prot and PDB; furthermore, we wanted to have some hints about

the capability of the system of simplifying the retrieval process, and to this purpose

we needed the opinion of people with a good experience in information retrieval.

4.1.2 Discussion

The results of the experiments showed that the system succeded in retrieving the

totality of data which correctly answered the user queries. Feedback from the users

involved in the experiments confirmed that the use of the system proved effective

both for simplifying the whole retrieval process, and for the interpretation of the

results obtained (this is certainly dependent from their poor knowledge of the rep-

resentational formats of the sources - in particular of the barely readable Swiss-Prot

two-letter attribute codes).

A comparative test with domain experts will probably be useful when the number

of integrated sources will increase to values greater than a dozen, whereas even do-

main experts will probably find it difficult to understand every source’s format and

to resolve every semantic eterogeneity (especially when the sources will not be cross

referencing one each other).

99

4.1 Query Processing

As an important note, it should be pointed out that the system averagely took

less time to answer the queries than the students took working by hand, in particular

when the queries involved non-indexed attributes - i.e. requiring the students to man-

ually parse the result set (obtained by querying the sources on indexed attributes) to

check for the satisfaction of the query conditions on these attributes.

100

“How to make God laugh:

Tell him your future plans.”

Woody Allen.

101

Chapter 5

Conclusions and Future Works

In this thesis we presented an ontology-based integration system for biological data

sources. We analyzed the issue and the possible methodologies for tackling it, presented

the state-of-the-art and finally showed how our system is capable of answering the

integration needs of molecular biology researchers.

The system is still under implementation, much work is still needed in different

directions, and is going to be object of future developments:

• The Global Ontology needs to be completed and validated with common efforts

of software engineers and domain experts.

• The User Interface can be improved with respect to the presentation of the query

results.

• The Mediator can be enriched with suitable means for collecting sources’ statis-

tics, so to improve the query optimization task, and for automatically validating

the data retrieved from the sources, so to avoid the presentation of inconsistent

(and incorrect) results.

• Many other sources still are to be integrated to provide a satisfiable level of

effectiveness in answering user queries, and suitable wrappers and mappings

need to be provided for them.

102

Conclusions

Much experimental work also needs to be performed, in order to completely validate

the approach we followed. In particular, work is still to be dedicated to a formal mea-

surement of the global performances of the system, a task that we plan to accomplish

when the number of integrated source will increase to big numbers, and that we hope

will prove useful to the community as initial benchmarking attempt in the literature.

It should be also pointed out that the greater the number of integrated sources the

higher the time needed for rewriting user queries and reconciling data after retrieval.

Hence, a study of the scalability of the approach needs to be performed, something

that also is missing in the literature, where the (mediator-based) integration system

presented limit their coverage to a very small number of sources (usually inferior to

ten).

Furthermore, future work may still be devoted to the development of a means for

automatically producing wrappers, and the results of such a research may lead to the

partial redesign of important parts of the mediator (e.g., the way queries are rewritten,

the way schema mappings are generated, etc.).

Finally, some work should be dedicated to make the system work in multithreading,

parallelizing as much as possible the execution of the sub-queries at the source level.

Something that became more and more clear while working on the system design

and development is that the common efforts of several (and possibly different, from

a cultural background point of view) minds work always better than a single-minded

researcher can, for it is impossible for a single person to manage all the possible

aspects of a complicate multidisciplinary problem, and more often than not the help

of somebody looking from a different perspective is useful to recognize the limits and

103

Conclusions

defects of the particular, hence to improve/correct the whole.

104

“Whenever people agree with me I always feel I must be wrong.”

Oscar Wilde.

105

Appendix A

Resource Description Framework
and its Extensions

This Appendix is designed to provide the reader with the basic knowledge required

to effectively use RDF. It introduces the basic concepts of RDF and describes its XML

syntax. Furthermore, it provides an analysis of some of the most relevant standard

extensions presented in the literature. Most of introductory section references [82].

A.1 W3C RDF Standard

The Resource Description Framework (RDF) is a language for representing in-

formation about resources in the World Wide Web. It is particularly intended for

representing metadata about Web resources, such as the title, author, and modifica-

tion date of a Web page, copyright and licensing information about a Web document,

or the availability schedule for some shared resource.

However, by generalizing the concept of a Web resource, RDF can also be used

106

A.1 RDF Standard

to represent information about things that can be identified on the Web, even when

they cannot be directly retrieved on the Web. Examples include information about

items available from on-line shopping facilities (e.g., information about specifications,

prices, and availability), or the description of a Web user’s preferences for information

delivery.

RDF is intended for situations in which this information needs to be processed by

applications, rather than being only displayed to people. RDF provides a common

framework for expressing this information so it can be exchanged between applica-

tions without loss of meaning.

Since it is a common framework, application designers can leverage the availability

of common RDF parsers and processing tools. The ability to exchange information

between different applications means that the information may be made available to

applications other than those for which it was originally created.

RDF is based on the idea of identifying things using Web identifiers (called

Uniform Resource Identifiers, or URIs), and describing resources in terms of sim-

ple properties and property values. This enables RDF to represent simple state-

ments about resources as a graph of nodes and arcs representing the resources, and

their properties and values. To make this discussion somewhat more concrete as

soon as possible, the group of statements “there is a Person identified by http :

//www.w3.org/People/EM/contact#me, whose name is Eric Miller, whose email

address is em@w3.org, and whose title is Dr.” could be represented as the RDF

graph in figure A.1.

107

A.1 RDF Standard

Figure A.1: Example of RDF graph, describing Eric Miller.

The figure illustrates that RDF uses URIs to identify:

• individuals, e.g. Eric Miller, identified by

http : //www.w3.org/People/EM/contact#me

• kinds of things, e.g. Person, identified by

http : //www.w3.org/2000/10/swap/pim/contact#Person

• properties of those things, e.g. mailbox, identified by

http : //www.w3.org/2000/10/swap/pim/contact#mailbox

• values of those properties, e.g. mailto : em@w3.org as the value of the mailbox

property (RDF also uses character strings such as ‘Eric Miller’, and values from

other datatypes such as integers and dates, as the values of properties)

108

A.1 RDF Standard

RDF also provides an XML-based syntax (called RDF/XML) for recording and

exchanging these graphs. Here is a small chunk of RDF in RDF/XML corresponding

to the graph in the figure above:

<? xml version= “1.0′′? >

<rdf:RDF xmlns:rdf= “http : //www.w3.org/1999/02/22− rdf − syntax− ns#′′

xmlns:contact= “http : //www.w3.org/2000/10/swap/pim/contact#′′ >

<contact:Person rdf:about= “http : //www.w3.org/People/EM/contact#me′′ >

<contact:fullName>Eric Miller< /contact:fullName>

<contact:mailbox rdf:resource= “mailto : em@w3.org′′/ >

<contact:personalTitle>Dr.< /contact:personalTitle>

< /contact:Person>

< /rdf:RDF>

Like HTML, this RDF/XML is machine processable and, using URIs, can link

pieces of information across the Web. However, unlike conventional hypertext, RDF

URIs can refer to any identifiable thing, including things that may not be directly

retrievable on the Web (such as the person Eric Miller).

As stated above, the result is that in addition to describing such things as Web

pages, RDF can also describe cars, businesses, people, news events, etc. (i.e. real

things). In addition, RDF properties themselves have URIs, to precisely identify the

relationships that exist between the linked items.

For a detailed specification of the RDF/XML Syntax, RDF Semantics, and RDF

109

A.2 RDF Extensions

Vocabulary Description Language (RDF Schema), refers to [83], [84], and [85], re-

spectively.

A.2 RDF Extensions

A plethora of extensions to the RDF standard have been proposed since the W3C

specifications came out in the late 2004, that try to solve the representational issues

that is not possible to tackle with the simple standard syntax or vocabulary.

The most relevant extensions, with respect to the practical use of RDF in repre-

senting web resources, are certainly those that try to address the problem of repre-

senting the temporal dimension.

A.2.1 Temporal RDF (t-RDF)

In the RDF model, the universe to be modeled is a set of resources, essentially

anything that can have a universal resource identifier, URI. The language to describe

them is a set of properties, technically binary predicates. Descriptions are statements

very much in the subject-predicate-object structure.

Although some studies exist about addressing changes in an ontology, or the need

for temporal annotations on Web documents, little attention has deserved the prob-

lem of representing, updating and querying temporal information in RDF.

110

A.2 RDF Extensions

But, as pointed out by Abiteboul [21], the modeling of time is one of the key prim-

itives needed in a query language for Web and semistructured data. On this basis,

the application of temporal database concepts to RDF to allow metadata navigation

across time led to the development of several extensions of the standard, fundamen-

tally based on time labeling or versioning approaches - the former consists in labeling

the elements subject to changes (i.e. triples), the latter is based on maintaining a

snapshot of each state of the graph.

Note that there are at least two temporal dimensions to consider when dealing

with temporal databases: valid and transaction times. Valid time is the time when

data is valid in the modeled world; transaction time is the time when data is actually

stored in the database. The versioning approach captures transaction time, while

labeling is mostly used when representing valid time.

A good example of such an extension is provided by Gutierrez [88], whose ap-

proach supports both time dimensions.

111

Bibliography

[1] M. R. Quillian: ‘Word concepts: A theory and simulation of some basic

semantic capabilities’, Behavioral Science, vol. 12, pp. 410-430, 1967.

[2] M. Minsky: ‘A framework for representing knowledge’, The Psychology

of Computer Vision, McGraw-Hill, New York, 1975.

[3] D. Bobrow, and T. Winograd: ‘An overview of KRL, a knowledge rep-

resentation language’, Cognitive Science, vol. 1, is. 1, 1977.

[4] M. R. Garey, and D. S. Johnson: ‘Computers and Intractability: A

Guide to the Theory of NP-Completeness’, W.H. Freeman and Co., San

Francisco, CA, 1979.

[5] R. Brachman, and J. Schmolze: ‘An overview of the KL-ONE knowledge

representation system’, Cognitive Science, vol. 9, is. 2, 1985.

[6] M. Genesereth, and N. Nilsson: ‘Logical Foundations of Artificial Intel-

ligence’, Morgan Kaufmann, San Mateo, CA, 1987.

[7] J. W. Lloyd: ‘Foundations of Logic Programming’, Springer-Verlag,

Berlin, 1987.

[8] D. Lenat, R. V. Guha, K. Pittman, D. Pratt, and M. Shepherd: ‘Cyc:

Toward programs with common sense’, Communications of the ACM,

vol. 33, no. 8, pp. 30-49, 1990.

112

BIBLIOGRAPHY

[9] R. V. Guha: ‘Contexts: A Formalization and Some Applications’, Ph.D.

Thesis Dissertation, Department of Computer Science, Stanford Univer-

sity, 1991.

[10] R. Davis, H. Shrobe, and P. Szolovits: ‘What Is a Knowledge Represen-

tation?’, AI Magazine, pp. 17-33, AAAI, 1993.

[11] T. R. Gruber: ‘A translation approach to portable ontology specifica-

tions’, Knowledge Acquisition, vol. 5, no. 2, pp. 199-220, 1993.

[12] T. R. Gruber: ‘Towards principles for the design of ontologies used

for knowledge sharing’, Proceedings of the International Workshop

on Formal Ontology, Padova, Italy, 1993. Available as technical re-

port KSL-93-04, Knowledge Systems Laboratory, Stanford University.

ftp.ksl.ftanford.edu/pub/KSLReports/KSL− 983− 04.ps.

[13] J. McCarthy: ‘Notes on formalizing context’, Proceedings of the 13th

International Conference on Artificial Intelligence (IJCAI-93), pp. 555-

560, Los Altos, Morgan Kaufmann, 1993.

[14] A. Gomez-Perez: ‘Some ideas and examples to evaluate ontologies’,

Technical Report KLS-94-65, Knowledge Systems Laboratory, Stanford,

1994.

[15] S. Abiteboul, R. Hull, and V. Vianu: ‘Foundations of Databases’, Addi-

son Wesley, Publ. Co., Reading, Massachussetts, 1995.

[16] P. Buneman, S. Davidson, K. Hart, C. Overton, and L. Wong: ‘A Data

Transformation System for Biological Data Sources’, Proceedings of the

21st International Conference on Very Large Data Bases (VLDB1995),

1995.

113

BIBLIOGRAPHY

[17] S. Davidson, C. Overton and P. Buneman: ‘Challenges in Integrating

Biological Data Sources’, Journal of Computational Biology, vol. 2, no.

4, 1995.

[18] N. Guarino, and P. Giaretta: ‘Ontologies and knowledge bases: Towards

a terminological clarification’, Towards Very Large Knowledge Bases:

Knowledge Building and Knowledge Sharing, pp. 25-32, IOS Press, Am-

sterdam, 1995.

[19] P. Karp: ‘A Strategy for Database Interoperation’, Journal of Computa-

tional Biology, vol. 2, no. 4, pp. 573-586, 1995.

[20] M. Uschold, and M. Gruninger: ‘Ontologies: principles, methods and

applications’, Knowledge Engineering Review, vol. 11, no. 2, pp. 93-136,

1996.

[21] S. Abiteboul: ‘Querying Semi-Structured Data’, Proceedings of the

6th International Conference on Database Theory (ICDT’97), Delphi,

Greece, 1997.

[22] M. Fernandez, A. Gomez-Perez, and N. Juristo: ‘METHONTOLOGY:

from Ontological Art towards Ontological Engineering’, Proceedings of

the AAAI97 Spring Symposium Series on Ontological Engineering, pp.

33-40, Stanford, US, Mar 1997.

[23] J. D. Ullman: ‘Information integration using logical views’, Proceedings

of the 6th Int. Conf. on Database Theory (ICDT’97), Lecture Notes in

Computer Science, vol. 1186, pp. 19-40, Springer-Verlag, 1997.

[24] S. Abiteboul, and O. Duschka: ‘Complexity of answering queries using

materialized views’, In Proceedings of the 17th ACM SIGACT SIGMOD

114

BIBLIOGRAPHY

SIGART Symposium on Principles of Database Systems (PODS’98), pp.

254-265, 1998.

[25] P. Baker, A. Brass, S. Bechhofer, C. Goble, N. Paton, and R. Stevens:

‘TAMBIS: Transparent Access to Multiple Bioinformatics Information

Sources’, Proceedings of the 6th International Conference on Intelligent

Systems for Molecular Biology (ISMB98), 1998.

[26] D. A. Duce, and G. A. Ringland: ‘Approaches to Knowledge Represen-

tation: An Introduction’, John Wiley, Chichester, 1988.

[27] N. Guarino: ‘Formal ontology and information systems’, Proceedings

of Formal Ontology and Information Systems, Trento, Italy, IOS Press,

Jun 1998.

[28] D. M. Jones, T. J. M. Bench-Capon, and P. R. S. Visser: ‘Methodologies

For Ontology Development’, Proceedings of the IT&KNOWS Confer-

ence, XV IFIP World Computer Congress, Budapest, Aug 1998.

[29] R. B. Altman, M. Bada, X.-J. Chai, M. W. Carillo, R. Chen, and N.

F. Abernethy: ‘RiboWeb: An Ontology-Based System for Collaborative

Molecular Biology’, IEEE Intelligent Systems and Their Applications,

vol. 14, no. 5, pp. 68-76, 1999.

[30] M. Arenas, L. E. Bertossi, and J. Chomicki: ‘Consistent query an-

swers in inconsistent databases’, Proceedings of the 18th ACM SIGACT

SIGMOD SIGART Symposium on Principles of Database Systems

(PODS’99), pp. 68-79, 1999.

[31] P. G. Baker, C. A. Goble, S. Bechhofer, N. P. Paton, R. Stevens, and

A. Brass: ‘An ontology for bioinformatics applications’, Bioinformatics,

vol. 15, no. 6, pp. 510-520, 1999.

115

BIBLIOGRAPHY

[32] M. Friedman, A. Levy, and T. Millstein: ‘Navigational plans for data

integration’, Proceedings of the 16th National Conference on Artificial

Intelligence (AAAI’99), AAAI Press/The MIT Press, pp. 67-73, 1999.

[33] A. Ouksel and I. Ahmed: ‘Ontologies Are Not the Panacea in Data

Integration’, Journal of Distributed and Parallel Databases, vol. 7, pp.

1-29, 1999.

[34] N. Paton, R. Stevens, P. Baker, C. Goble, S. Bechhofer, and A. Brass:

‘Query Processing in the TAMBIS Bioinformatics Source Integration

System’, Proceedings of the 11th International Conference on Scientific

and Statistical Database Management (SSDBM1999), Cleveland, Ohio,

USA, pp. 138-147, IEEE, Jul 1999.

[35] Ashburner et al.: ‘Gene Ontology: Tool for the Unification of Biology’,

Nature Genetics, vol. 25, pp. 25-29, 2000.

[36] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H.

Weissig, I. N. Shindyalov, and P. E. Bourne: ‘The Protein Data Bank’,

Nucleic Acids Research, vol. 28, pp. 235-242, 2000.

[37] ‘RCSB Protein Data Bank’, http://www.rcsb.org/pdb/home/home.do,

last accessed on Nov 2007.

[38] C. A. Goble: ‘Supporting Web-based Biology with Ontologies’, Proceed-

ings of the 3rd IEEE International Conference on Information Technol-

ogy Applications in Biomedicine (ITAB’00), Arlington, VA, November

2000, pp. 384-390.

[39] ‘The Gene Ontology Consortium’, http://www.geneontology.org/, last

accessed on Nov 2007.

116

BIBLIOGRAPHY

[40] D. T. Jones: ‘Protein structure prediction in the postgenomic era’, Cur-

rent Opinion in Structural Biology, vol. 10, pp. 371-379, Elsevier, 2000.

[41] D. Beneventano, et al.: ‘Information Integration: the MOMIS Project

Demonstration’, Proceedings of the 26th International Conference on

Very Large Data Bases (VLDB2000), pp. 611-614, Cairo, Egypt, 2000.

[42] R. Stevens, C. A. Goble, and S. Bechhofer: ‘Ontology-based Knowledge

Representation for Bioinformatics’, Briefings in Bioinformatics, vol. 1,

no. 4, pp. 398-414, 2000.

[43] D. Bader, B. M. Moret, and L. Vawter: ‘Industrial applications of

high-performance computing for phylogeny reconstruction’, Proceedings

of SPIE Commercial Applications for High-Performance Computing, vol.

4528, pp. 159-168, Denver, CO, Aug 2001.

[44] R. J. Miller, et al.: ‘The Clio project: managing heterogeneity’, ACM

SIGMOD Record, vol. 30, is. 1, pp. 78-83, Mar 2001.

[45] S. Davidson, J. Crabtree, B. Brunk, J. Schug, V. Tannen, C. Overton and

C. Stoeckert: ‘K2/Kleisli and GUS: Experiments in Integrated Access to

Genomic Data Sources’, IBM Systems Journal, vol. 40, no. 2, pp. 512-

531, 2001.

[46] C. A. Goble, R. Stevens, G. Ng, S. Bechhofer, N. W. Paton, P. G. Baker,

M. Peim, and A. Brass: ‘Transparent Access to Multiple Bioinformatics

Information Sources’, IBM Systems Journal, vol. 40, no. 2, pp. 532-551,

2001.

[47] ‘The TAMBIS Project, Tutorial and Demos’,

http://www.cs.man.ac.uk/ stevensr/tambis/text/details.html

117

BIBLIOGRAPHY

[48] G. Greco, S. Greco, and E. Zumpano: ‘A logic programming approach to

the integration, repairing and querying of inconsistent databases’, Pro-

ceedings of the 17th International Conference on Logic Programming

(ICLP’01), Lecture Notes in Artificial Intelligence, Springer, vol. 2237 ,

pp. 348-364, 2001.

[49] L. Haas, P. Schwarz, P. Kodali, E. Kotlar, J. Rice and W. Swope:

‘DiscoveryLink: A System for Integrated Access to Life Sciences Data

Sources’, IBM Systems Journal, vol. 40, no. 2, pp. 489-511, 2001.

[50] A. Y. Halevy: ‘Answering queries using views: A survey’, The VLDB

Journal, vol. 10, no. 4, pp. 270-294, 2001.

[51] J. D. Heflin: ‘Towards the Semantic Web: Knowledge Representation in

a Dynamic, Distributed Environment’, Ph.D. Thesis Dissertation, De-

partment of Computer Science, University of Maryland, College Park,

2001.

[52] R. Lopez: ‘SRS - Sequence Retrieval System’, Presentation,

http://www.pdg.cnb.uam.es/cursos/BioInfo2001/pages/SRS/index.html,

Universidad Autonoma de Madrid, last accessed on Oct 2007.

[53] ‘Icarus Documentation’, http://www.expasy.org/srs5/man/srsman.html,

last accessed on Nov 2007.

[54] J. Madhavan, P. A. Bernstein, and E. Rahm: ‘Generic Schema Matching

with Cupid’, Proceedings of the 27th International Conference on Very

Large Data Bases (VLDB2001), pp. 49-58, Roma, Italy, 2001.

[55] P. Mork, A. Y. Halevy, and P. Tarczy-Hornoch: ‘A Model for Data

Integration Systems of Biomedical Data Applied to Online Genetic

118

BIBLIOGRAPHY

Databases’, Proceedings of the Symposium of the American Medical In-

formatics Association, 2001.

[56] N. Paton, and C. Goble: ‘Information Management for Genome Level

Bioinformatics’, VLDB 2001 Tutorial, 2001.

[57] E. Rahm, and P. A. Bernstein: ‘A survey of approaches to automatic

schema matching’, The VLDB Journal, vol. 10, no. 4, pp. 334-350, Dec

2001.

[58] W. Sujansky: ‘Heterogeneous Database Integration in Biomedecine’,

Methodological Review, Journal of Biomedical Informatics, vol. 34, pp.

285-298, 2001.

[59] ‘W3C Semantic Web FAQs’, http://www.w3.org/2001/sw/SW-

FAQ#What1, last accessed on Nov 2007.

[60] ‘W3C Semantic Web Activity’, http://www.w3.org/2001/sw/#spec, last

accessed on Nov 2007.

[61] L. Bertossi, J. Chomicki, A. Cortes, and C. Gutierrez: ‘Consistent an-

swers from integrated data sources’, Proceedings of the 6th International

Conference on Flexible Query Answering Systems (FQAS 2002), pp. 71-

85, 2002.

[62] A. Cali, D. Calvanese, G. De Giacomo, and M. Lenzerini: ‘On the Ex-

pressive Power of Data Integration Systems’, Proceedings of the 21st

International Conference on Conceptual Modeling (ER 2002), 2002.

[63] H.-H. Do, S. Melnik, and E. Rahm: ‘Comparison of Schema Matching

Evaluations’, Proceedings of the 2nd International Workshop on Web

Databases (German Informatics Society), 2002.

119

BIBLIOGRAPHY

[64] K. Jagannathan: ‘An Approach to Schema Mapping Generation for Data

Warehousing’, Master Thesis Dissertation, Department of Computer Sci-

ence and Engineering, University of Texas, Arlington, Dec 2002.

[65] M. Lenzerini: ‘Data integration: A theoretical perspective’, Proceedings

of the 21st ACM SIGACT SIGMOD SIGART Symposium on Principles

of Database Systems (PODS 2002), pp. 233-246, 2002.

[66] M. L. Metzker, D. P. Mindell, X.-M. Liu, R. G. Ptak, R. A. Gibbs, and

D. M. Hillis: ‘Molecular evidence of HIV-1 transmission in a criminal

case’, PNAS, vol. 99, no. 2, pp. 14292-14297, 2002.

[67] M. Pop, S. L. Salzberg, and M. Shumway: ‘Genome Sequence Assembly:

Algorithms and Issues’, Computer, vol. 35, is. 7, pp. 47-54, IEEE, Jul

2002.

[68] A. D. Baxevanis: ‘TheMolecular Biology Database Collection: 2003 Up-

date’, Nucleic Acids Research, vol. 31, no. 1, pp. 1-12, 2003.

[69] L. Bravo, and L. Bertossi: ‘Logic programming for consistently querying

data integration systems’, Proceedings of the 18th International Joint

Conference on Artificial Intelligence (IJCAI 2003), pp. 10-15, 2003.

[70] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa: ‘Data exchange:

Semantics and query answering’, Proceedings of the 9th International

Conference on Database Theory (ICDT 2003), pp. 207-224, 2003.

[71] M. A. Harris, and H. Parkinson: ‘Standards and ontologies for functional

genomics: towards unified ontologies for biology and biomedicine’, con-

ference report, Comparative and Functional Genomics, vol. 4, pp. 116-

120, John Wiley & Sons, Ltd., 2003.

120

BIBLIOGRAPHY

[72] Z. Lacroix, F. Naumann, L. Raschid, and M. E. Vidal, ‘Exploring Life

Sciences Data Sources’, Proceedings of IJCAI-03 Workshop on Informa-

tion Integration on the Web, 2003.

[73] P. Lambrix, M. Habbouche, and M. Pérez: ‘Evaluation of Ontology De-

velopment Tools for Bioinformatics’, Bioinformatics, vol. 19, no. 12, pp.

1564-1571, 2003.

[74] Z. Ben Miled, N. Li, M. Baumgartner and Y. Liu: ‘A Decentralized

Approach to the Integration of Life Science Web Databases’, Informatica,

vol. 27, no. 1, 2003.

[75] J. D. Watson, and A. Berry: ‘DNA: The Secret of Life’, Knopf, 2003.

[76] T. L. Wiliams, and B. M. E. Moret: ‘An Investigation of Phylogenetic

Likelihood Methods’, Proceedings of the 3rd IEEE Symposium on Bioin-

formatics and Bioengineering (BIBE’03), pp. 79-86, Mar 2003.

[77] J. B. L. Bard, and S. Y. Rhee: ‘Ontologies in Biology: Design, Ap-

plications and Future Challenges’, Nature Reviews/Genetics, vol.5, pp.

213-222, Mar 2004.

[78] A. Cal̀ı, D. Calvanese, G. De Giacomo, and M. Lenzerini: ‘Data integra-

tion under integrity constraints’, Proceedings of the 14th Conference on

Advanced Information Systems Engineering (CAiSE 2002), Information

Systems, vol. 29, no. 2, pp. 147-163, Elsevier, Apr 2004.

[79] J. Cohen: ‘Bioinformatics - An Introduction for Computer Scientists’,

ACM Computer Surveys, vol. 36, no. 2, pp. 122-158, Jun 2004.

[80] T. Hernandez, and S. Kambhampati: ‘Integration of Biological Sources:

Current Systems and Challenges Ahead’, ACM SIGMOD Record, vol.

33, is. 3, pp. 51-60, Sep 2004.

121

BIBLIOGRAPHY

[81] D. Lembo: ‘Dealing with Inconsistencies and Incompleteness in Data In-

tegration’, Ph.D. Thesis Dissertation, Department of Computer Science,

Università degli Studi di Roma ‘La Sapienza’, 2004.

[82] ‘W3C Resource Description Framework Primer’,

http://www.w3.org/TR/rdf-primer/, Feb 10th 2004, last accessed

on Nov 2007.

[83] ‘W3C RDF/XML Syntax Specification’, http://www.w3.org/TR/rdf-

syntax-grammar/, Feb 10th 2004, last accessed on Nov 2007.

[84] ‘W3C RDF Semantics’, http://www.w3.org/TR/2004/REC-rdf-mt-

20040210/, Feb 10th 2004, last accessed on Nov 2007.

[85] ‘W3C RDF Vocabulary Description Language 1.0: RDF Schema’,

http://www.w3.org/TR/2004/REC-rdf-schema-20040210/, Feb 10th

2004, last accessed on Nov 2007.

[86] D. Caragea, J. Bao, J. Pathak, A. Silvescu, C. Andorf, D. Dobbs, and

V. Honavar: ‘Information Integration from Semantically Heterogeneous

Biological Data Sources’, Proceedings of the 16th International workshop

on Database and Expert Systems Applications (DEXA’05), pp. 580-584,

Aug 2005.

[87] ‘The GUS Platform for Functional Genomics’, http://www.gusdb.org,

last accessed on Oct 2007.

[88] C. Gutierrez, C. Hurtado, and A. Vaisman: ‘Temporal RDF’, Proceed-

ings of the 2nd European Semantic Web Conference (ESWC2005), Lec-

ture Notes in Computer Science, vol. 3532, pp. 93-107, Springer Berlin,

2005.

122

BIBLIOGRAPHY

[89] V. Jakoniene, and P. Lambrix: ‘Ontology-based integration for bioinfor-

matics’, Proceeding of the 31st International Conference on Very Large

Data Bases (VLDB2005), Trondheim, Norway, 2005.

[90] Z. Kedad, and X. Xue: ‘Mapping generation for XML data sources:

a general framework’, Proceedings of the 2005 International Workshop

on Challenges in Web Information Retrieval and Integration (WIRI’05),

IEEE, 2005.

[91] J. Moult: ‘A decade of CASP: progress, bottlenecks and prognosis in

protein structure prediction’, Current Opinion in Structural Biology, vol.

15, pp. 285-289, Elsevier, 2005.

[92] J. Tauberer: ‘What Is RDF’, on O’Reilly’s xml.com,

http://www.xml.com/pub/a/2001/01/24/rdf.html?page=1, Jul 26th

2006, last accessed on Nov 2007.

[93] P. Capasso, and A. Picariello: ‘BioInView: Integration and Querying of

Heterogeneous Biological Data Sources’, Proceedings of the 2007 Inter-

national Conference on Bioinformatics & Computational Biology (BIO-

COMP’07), in press, Las Vegas, Nevada, US, Jun 2007.

[94] ‘EMBL Nucleotide Sequence Database Statistics’,

http://www3.ebi.ac.uk/Services/DBStats, last accessed on Nov 2007.

[95] ‘Ontology in Computer Science’,

http://en.wikipedia.org/wiki/Ontology (computer science), last accessed

on Nov 2007.

123

Special Thanks

To proff. Antonio Picariello, Angelo Chianese, Lucio Sansone.. for continuously

stimulating my mind and instilling doubts and ideas that helped me to grow as a

man and as a scholar; for being inspiration and example; for helping me to face any

challenges with no discouragement.

To prof. Luigi Pietro Cordella.. for being always patient and ready to answer any

question and solve any problem for me and my colleagues.

To prof. VS Subrahmanian.. for giving me the opportunity of working in a wonderful

place, with wonderful people.

To Francesca.. simply for being there.. always.

To Rosi, Sasà, Cristina.. for patiently and fearlessly listening to my complaints on

pretty much everything; for having shared with me all the lunch breaks with a harm

smile ready; for the wonderful nights at the cinema; for our dinners at the ‘Babette’.

To Antonio Maria, Antonio, Vinni, Carmine, and the newbies Andrea, Francesco,

Luigi, and Sergio (great colleagues and friends).. for teaching me what the term ‘hard

worker’ means; for the football matches; for the good time spent together.

To Amy, Maria Esther, Diego, Octavian.. for their help and their sincere encourage-

ment during those great days.

124

Special Thanks

To Ciccio and Dodò.. my closest friends.. for helping me understand the distance is

not a matter.

To Lorenzo, Vincenzo, Luca and Olga, Fabreeze, il Morbido Giallone, il Campadrino,

Ben Grimm, il Testone, Peppone ’e Nola, Nespà, o’Cinese, and all the other magic/poker

guys i’m forgetting now (be pleasant, you know i’m burned).. for making me always

enjoy the time with you; i hope it is the same for you.

To my youngest brother Brandon, and to his family.. for being so close, even if so

far.. with you i felt like i was at home.

To Dharma, Stacy and the little Lana.. my family in US.

To Alex.. the funniest and coolest prick i’ve ever met in my life.. love you, bro!

To Lucia, Daniele and Davide, Alisa and Cori, and to Giovanna.. it’s not a long

time i’ve been knowing you, but long enough to say you will always be good friends

for me.

To all my relatives.. for having supported me in every difficult moment; for having

helped me in taking good decisions where that was not so easy.

To Luisa (last in the list, but first in my heart).. you’re the light breaking in my

darkness, my shelter from the storm.. God ain’t got me enough words for you.

To myself.. for doing it.. and more, much more than this: for doing it my way!!

never forget you’re a nobody without all these guys! never forget you still have a lot

to learn! never forget who you are!

To You.. if you’re reading this, and you’re not named before, for sure you deserve

my thanks, and i’m a dick-head for having forgotten you!! love you much.

125

