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Lo duca e io per quel cammino ascoso
intrammo a ritornar nel chiaro mondo;

e sanza cura aver d’alcun riposo,
salimmo sù, el primo e io secondo,

tanto ch’i’ vidi de le cose belle
che porta ’l ciel, per un pertugio tondo.

E quindi uscimmo a riveder le stelle.

The Guide and I into that hidden road
Now entered, to return to the bright world;

And without care of having any rest
We mounted up, he first and I the second,

Till I beheld through a round aperture
Some of the beauteous things that Heaven doth bear;

Thence we came forth to rebehold the stars.

Dante Alighieri - Divina Commedia
Inferno, Canto XXXIV



Abstract

Since the Internet started developing, hosts and provided services have al-
ways been targeted with attacks trying to disrupt them. Trends show that,
throughout the years, the number of hosts, as well as the degree of depen-
dency of the whole society on the services provided through the Internet,
increased dramatically, whereas the skills and knowledge required to inter-
fere with normal network operation, and eventually to abruptly interrupt it,
decreased accordingly.

This considerations urge the requirement for effective tools, aimed at
granting security to Internet users. The need for systems capable of detect-
ing attacks, and reacting in order to prevent them from occurring again, is
nowadays undeniable.

In this thesis we propose methods based on multiple classifier systems for
intrusion detection. We use such systems for automated data collection, also
taking privacy issues into account. Some approaches to traffic classification
are presented too, together with a proposal for the practical deployment of
multiple classifiers in a real network environment.
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Chapter 1

Network Security: Threats and
Tools

In recent years, studies on attack trends [97, 17] have shown the main evo-

lution directions for attack strategies. The degree of automation and the

speed of attack tools increases. Automated attacks typically scan for po-

tential victims, looking for vulnerable systems to compromise. Previously,

vulnerabilities were exploited after a widespread scan was complete. Now,

attack tools exploit vulnerabilities as a part of the scanning activity, which in-

creases the speed of propagation. Attacks automatically propagate, whereas

before 2000 attack tools required a person to initiate additional attack cycles.

Tools like Code Red and Nimda self-propagate to a point of global satura-

tion in less than 18 hours. All the attack strategy is much more coordinated

than it used to be in the past, giving rise to more dangerous consequences of

successful attacks. An increase in sophistication of attack tools has been no-

ticed. Modern attacks often include countermeasures against forensics, and

also have the ability to perform mutation that make them virtually unrecog-

nizable. While in the past scans for vulnerabilities where easily discovered by

means of statistical rate-based analysis, nowadays scanning strategies have

become more and more sophisticated, allowing for a faster discovery of vul-

nerabilities and a stealthier scanning. Also, attackers have changed their

motivations. While in the past they were usually very skilled profession-

als, nowadays, with a wider distribution of computers, a lower expertise is
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required to perform very dangerous attacks (figure 1.1), thus virtually in-

creasing the risk of being an attack victim. This is probably due to the

fact that, though computers and the ability to interconnect them is today

widespread, the awareness about the threats related to poor security poli-

cies are not well known. Many home or office computer users, for example,

lack any notion in security. Their machines, usually containing unpatched

buggy software, are virtually time bombs, waiting to be activated by a mali-

cious attacker. Tools are available, which are eassy to use, and can virtually

disrupt the whole network infrastructure of a big company or a government

agency. Furthermore, nowadays attackers are often operating like real crim-

inals, since lots of money can be earned in the network disruption business.

Competitors, for example may pay huge amounts of money to someone able

to spy on, or damage, an industry leader.

Figure 1.1: Attack Sophistication vs. Attackers’ Competences

Consideration like those made so far, show the need for more and more

sophisticated techniques to cope with the problem of network security. The

serious aspects of network protection, require careful control of any activity



Defining Computer and Network Security 3

on the network. Axelsson [6] showed how serious the impact of detection er-

rors can be, be it due to false alarm, or to missed detection of an ongoing

attack. The motivation behind this thesis is, therefore, searching for efficient

and effective solutions to the problem of detecting attacks by monitoring net-

work traffic. More precisely, we address the problem of network security by

means of pattern recognition techniques. In order to increase the reliability

of such techniques, and decrease the number of errors, we propose the em-

ployment of multiple classifier systems, able to distinguish between normal

and malicious activity by analyzing network traffic. Prior to introducing our

contribution, and going into further details about the specific context and

the proposed solutions, it’s worth providing some background information

about the application context.

1.1 Defining Computer and Network Secu-

rity

In [74], information security is defined as

the concepts, techniques, technical measures, and administrative

measures used to protect information assets from deliberate or

inadvertent unauthorized acquisition, damage, disclosure, manip-

ulation, modification, loss, or use.

Information security is hence the practice of defining and preserving some

properties of information which are supposed to be kept unchanged, in or-

der to delivery the originally supposed content to its legitimate users. It is

guaranteed by trying to prevent unauthorized access, its disclosure or ma-

nipulation. The requirement for information security has evolved through

the years, due to the everchanging nature of the environment and of the pur-

pose computers have been used for. Nowadays, it is usually referred to by

citing three particular properties of information, namely its confidentiality,

integrity and availability [65].
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In the early years of informatics, computers were mainly used to perform

complicated mathematical operations. Due to the computational limitations

characterizing computers in that period, they were merely used as giant, very

powerful, yet very complicated to operate and complex calculators. During

that period, there were not many computers in the world, and the num-

ber of people who could access them was very limited [3]. When computers

started being used to store and manipulate important and confidential infor-

mation, the main concern was to keep the confidentiality level of every bit

of information, and to prevent the disclosure of information to people lack-

ing the proper clearance. Hence, at that time information security was all

about information confidentiality ; it was still possible to physically prevent

unauthorized users from accessing sensible information.

When the concept of internetworking of computers was introduced [83],

keeping information safe became a harder task. Granting remote access to

resources improved the chances of leaking sensible information. Also, the

number of computers and their users had grown fast, thus making the com-

puting community wider, more spread, and less controllable. Furthermore,

computers interconnection capability allowed more sophisticated threats to

information security. In fact, it became possible to highjack information

flows, or to modify the information payload itself, delivering the wrong con-

tent to end users. Therefore, information integrity was also considered as a

fundamental requirement for security.

Recently, computers have gained increasing importance in everyday life.

Nowadays, many important services rely on the information storage, manage-

ment, processing and transmission capabilities of computers and networks.

Since crucial information often needs to be retrieved in real time, the depend-

ability of computing and communication infrastructures is considered as an

undeniable property. Modern life relies on the availability of computational

resources, information and communication infrastructures to such an extent,

that such a requirement is often considered as one of the most important, and

also is one of the most frequently addressed by attackers. Availability is en-
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sured by making a system operational and functional at any given moment,

usually through redundancy or accurate resource planning and protection;

loss of availability is often referred to as denial of service.

Indeed, in this thesis we will address the problem of computer and network

security, rather than the more general field of information security. According

to Cheswick and Bellovin [20]:

computer security is not a goal, it is a means toward a goal: in-

formation security.

A definition of security only taking the three aforementioned properties

into account, though, is nowadays considered quite outdated. Other prop-

erties, in fact, need to be preserved in order for a system to be secure [80].

Access control has to be preserved, by ensuring that users access only those

resources and services that they are entitled to access and that qualified users

are not denied access to services that they legitimately expect to receive. The

originators of messages or action on the file system must not be able to re-

pudiate their actions. Also, privacy must be taken into account, by ensuring

that individuals maintain the right to control what information is collected

about them, how it is used, who has used it, who maintains it, and what

purpose it is used for.

Besides the previous definition, also a functional definition of computer

security can be given. It can be broken into five distinct functional areas [80]:

Risk avoidance A security fundamental that starts with questions like:

Does my organization or business engage in activities that are too

risky? Do we really need an unrestricted Internet connection? Do

we really need to computerize that secure business process? Should we

really standardize on a desktop operating system with no access control

intrinsics?

Deterrence Reduces the threat to information assets through fear. Can

consist of communication strategies designed to impress potential at-

tackers of the likelihood of getting caught.
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Prevention The traditional core of computer security. Consists of imple-

menting safeguards. Absolute prevention is theoretical, since there’s

a vanishing point where additional preventive measures are no longer

cost-effective.

Detection Works best in conjunction with preventive measures. When pre-

vention fails, detection should kick in, preferably while there’s still time

to prevent damage. Includes log-keeping and auditing activities.

Recovery When all else fails, be prepared to pull out backup media and

restore from scratch, or cut to backup servers and net connections, or

fall back on a disaster recovery facility. Arguably, this function should

be attended to before the others.

As stated earlier, and as to the previous points, we are mainly interested in

the detection aspect of security.

Also, a definition of security can be based on the type of resource which

is controlled [93]:

Physical security Controlling the comings and goings of people and mate-

rials; protection against the elements and natural disasters

Operational/procedural security Covering everything from managerial

policy decisions to reporting hierarchies

Personnel security Hiring employees, background screening, training, se-

curity briefings, monitoring, and handling departures

System security User access and authentication controls, assignment of

privilege, maintaining file and filesystem integrity, backups, monitoring

processes, log-keeping, and auditing

Network security Protecting network and telecommunications equipment,

protecting network servers and transmissions, combatting eavesdrop-

ping, controlling access from untrusted networks, firewalls, and detect-

ing intrusions
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We will address the problem of network security in the following.

Computer or network security are only a means for preventing improper use

of some information. Once again, Cheswick and Bellovin [20] define computer

security to be

keeping anyone from doing things you do not want them to do to,

with, on, or from your computers or any peripheral devices.

Computers and peripherals are regarded as both attack targets, and instru-

ments that can be used to perform malicious actions. Indeed, such a def-

inition remains very general, since also the three properties of the security

paradigm illustrated so far lack a very precise definition. Also, it is difficult

to use this definition as is for practical security enforcement.

A more operational definition is presented by Garfinkel and Spafford in

their book on Unix and Internet security [94]:

A computer is secure if you can depend on it and its software to

behave as you expect . . .This concept is often called trust: you

trust the system to preserve and protect your data.

The authors intend for this definition to include natural disasters and buggy

software as security concerns, but to exclude software development and test-

ing issues. Actually, as it’s claimed by the members of the free software

foundation (FSF12), many software producers and vendors violate this re-

quirement. In the definition of the fundamental freedoms of the software

user [114], they claim that what nowadays is called trusted computing [90],

is by them indeed considered as treacherous computing [104], since it doesn’t

respect the fundamental freedoms of the computer user. Hence, according

to the definition of security given in [94], none of the equipment or software

conforming to the trusted computing requisite is actually secure.

1http://www.fsf.org
2http://www.gnu.org

http://www.fsf.org
http://www.gnu.org
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1.2 Attack Taxonomies

In [48] the author builds an attack taxonomy starting from two very simple,

yet fundamental questions. Such questions regard the potential attack target

we are trying to defend, and what type of threat are we defending it from.

Usually, attacks try to compromise one of the requisite of information defined

in the previous section. Attacks can hence, in general, be classified according

to the targeted requisite, and to the means used to violate it. Attackers

can exploit many means for pursuing their malicious purposes. These can

include the exploitation of flaws in systems project or implementation, faulty

hardware, poor access control policies, or bugs in the implementation of the

used softwares. In [48] it is stated that, regardless of the cause of a protection

failure, there are three and only three sorts of things that can result from a

successful attack. First of all, otherwise defect-free information can become

corrupt. Second, services that should be available can be denied, and last

but not least, information can get to places it should not go [21]. According

to Cohen, each of the named events, can be considered as a disruption of

information. He explicitly calls those events corruption, denial, and leakage

of information. The requisites we discussed so far completely fullfill this

definition, which leads to considering information properties such as integrity,

availability, and confidentiality for defining the concept of security. Many

taxonomies have been proposed in the past, focussing on different aspects of

the problem of attack categorization. Some are aimed at giving lists which

define all the possible attacks [21] or a list of possible categories. In [20], for

example, attacks are classified in the following seven categories:

Stealing passwords methods used to obtain other users’ passwords;

Social engineering talking your way into information that you should not

have;

Bugs and backdoors taking advantage of systems that do not meet their

specifications, or replacing software with compromised versions;
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Authentication failures defeating of mechanisms used for authentication;

Protocol failures protocols themselves are improperly designed or imple-

mented;

Information leakage using systems such as finger or the DNS to obtain in-

formation that is necessary to administrators and the proper operation

of the network, but could also be used by attackers;

Denial-of-service efforts to prevent users from being able to use their sys-

tems.

By observing this taxonomy, it is clear that it can possibly include almost

every type of known attack. Indeed, it is often confusing, since categories

represent either the target of the attack, its final purpose, or the strategy

used to obtain the desired effect. Also, large lists of items are rarely fully

comprehensive, since it’s difficult to keep up with the pace at which different

types of novel attacks are introduced.

In an effort to overcome taxonomies based on mere listings, Stallings

proposed an attack categorization based on modification to the information

flow [103] resulting from the attacker’s actions. Given the model of normal

information exchange between two entities, as represented in figure 1.2, he

individuates four possible modification of such flow. In Stalling’s taxonomy,

Figure 1.2: Normal Information Flow

a distinction is made between active and passive attacks. Passive attacks are

those which don’t interfere with the normal information flow. What they do

is just collect the information, without any effect on its normal transmission.
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Interception (figure 1.3(b)) is viewed as a passive attack, since it only inter-

cepts the information flow, directing it towards a collecting node. The natural

information flow is preserved unmodified. On the other hand, interruption

(figure 1.3(a)), modification (figure 1.3(c)) and fabrication (figure 1.3(d)) are

viewed as active attacks. This taxonomy is particularly interesting since it

expresses the properties of attacks as processes, individuating their algorith-

mic nature, focussing on the general problem of information exchange, and

trying to find common properties in their life cycle.

(a) (b)

(c) (d)

Figure 1.3: Four ways to describe attacks as information flow modification: (a) Information
Flow Interruption; (b) Information Flow Interception; (c) Information Flow Modification;
(d) Information Flow Fabrication.

Howard instead gives a more operational view of attacks [48]. He groups

attacks according to the type of attacker, the implemented access strategy,

the tools used and the expected results.

In [47] a taxonomy of threats to computer and network security is presented.

According to previous well known taxonomies, Hansman and Hunt introduce

a number of properties which a good taxonomy should have, such as:

Accepted [3, 48] The taxonomy should be structured so that it can be
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become generally approved.

Comprehensible [66] A comprehensible taxonomy will be able to be un-

derstood by those who are in the security field, as well as those who

only have an interest in it.

Completeness [3]/Exhaustive [48, 66] For a taxonomy to be complete/exhaustive,

it should account for all possible attacks and provide categories for

them. While it is hard to prove a taxonomy is complete or exhaustive,

they can be justified through the successful categorization of actual

attacks.

Determinism [53] The procedure of classifying must be clearly defined.

Mutually exclusive [48, 66] A mutually exclusive taxonomy will categorise

each attack into, at most, one category.

Repeatable [48, 53] Classifications should be repeatable.

Terminology complying with established security terminology [66]

Existing terminology should be used in the taxonomy so as to avoid

confusion and to build on previous knowledge.

Terms well defined [15] There should be no confusion as to what a term

means.

Unambiguous[48, 66] Each category of the taxonomy must be clearly de-

fined so that there is no ambiguity as to where an attack should be

classified.

Useful[48, 66] A useful taxonomy will be able to be used in the security

industry. For example, the taxonomy should be able to be used by

incident response teams.

These properties are the result of an accurate study of previous models, and

try to respect all the good accomplishments of earlier research in the field of

attack categorization.
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Hansman and Hunt propose to use a somewhat geometrical framework

in order to identify attack types. They propose a structure using four di-

mensions. The first dimension (table 1.1), also referred to as base dimension,

categorises attacks according to the attack vector. The second dimension (ta-

Viruses
File Infectors
System/Boot Record Infector
Macro

Worms
Mass Mailing
Network Aware

Trojans Logic Bombs

Buffer Overflows
Stack
Heap

Denial of Service Attacks
Host Based

Resource Hogs
Crashers

Network Based
TCP Flooding
UDP Flooding
ICMP Flooding

Distributed

Network Attacks

Spoofing
Session Hijacking
Wireless Attacks WEP Cracking

Web Application Attacks

Cross Site Scripting
Parameter Tampering
Cookie Poisoning
Database Attacks
Hidden Field Manipulation

Physical Attacks
Basic

Energy Weapon
HERF
LERF
EMP

Van Eck

Password Attacks Guessing
Brute Force
Dictionary Attack

Exploiting Implementation

Information Gathering Attacks
Sniffing Packet Sniffing
Mapping
Security Scanning

Table 1.1: Attack Taxonomy [47] – First Dimension

ble 1.2 on the following page) covers the attack target. Classification can ei-

ther be very fine-grained, down to the program version number affected by a

specific vulnerability, or cover a class of targets, such as entire operating sys-

tems’ processes. The third dimension covers the vulnerabilities and exploits,

if they exist, that the attack uses. There is no structured classification for

vulnerabilities and exploits due to their possible infinite number. The fourth

dimension takes into account the possibility for a side effect for a specific

attack. Some attacks, like trojan horses for example, carry the burden of

what’s hidden in the horse, which is usually the most dangerous part of it.

In the following, we will mainly deal with network security issues. The ap-

proach we propose aims at detecting anomalous activities within a network

by analyzing network traffic. Such traffic characteristics are tightly related

to activities on single hosts, and can reflect the presence of ongoing mali-
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Hardware
Computer

Hard-disks
. . .

Network Equipment
Hub
Cabling
. . .

Peripheral Devices
Monitor
Keyboard
. . .

Software
Operating System

Windows Family
Windows XP
Windows 2003 Server
. . .

UNIX Family Linux
2.2
2.4
. . .

FreeBSD
4.8
5.1
. . .

. . .

MacOS Family
MacOS X

10.1
10.2
. . .

. . .

Application
Server

Database
Email

Web
IIS

4.0
5.0
. . .

. . .
. . .

User Word Processor MS Word
2000
XP
. . .

. . .
Email Client . . .
. . .

Network
Protocols

Network Layer
IP
. . .

Transport Layer
TCP
UDP
. . .

. . .

Table 1.2: Attack Taxonomy [47] – Second Dimension

cious activities. As a matter of fact, the network nowadays is probably the

most commonly used means of spreading malicious code and computer in-

fections, and perpetrating attacks. Referring to the last cited taxonomy, we

will mainly deal with Worms, Network attacks and both distributed and net-

work based denial of service attacks. We will mainly focus on the effects

these types of attacks have on networks and on network traffic properties,

and what are the observed symptoms as to network protocol analysis.

1.3 Tools for Network Security

As to the previous section, we are going to address mainly the problem of

network based attacks, by analyzing properties of network traffic. There are

many security tools which can address each of the specific types of attacks

presented in every attack taxonomy. The most popular for example are an-
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tiviruses, malware detectors, unpackers, antispyware and personal firewalls.

All those tools are meant to monitor and protect a single host.

In the framework of this thesis, we are interested in studying the prob-

lem of network based detection of attacks targeting both the components of

the network and the protocols which allow them to interoperate. In the fol-

lowing there will be a description of the main approaches to such a problem.

We distinguish three main phases in network protection [41]. Many prop-

erties and requisites can be defined for each phase [77]. Intrusion detection

aims at defining techniques which allow to detect attacks while they are be-

ing performed. Intrusion prevention aims at defining strategies and policies

which can prevent intrusion from happening or succeeding, or at least reduce

the probability of such events. Intrusion reaction instead is about methods

and techniques which allow, as suggested by the name, a proper reaction to

an attack. It involves forensic analysis, and attack traceback, aimed at lo-

cating the attacker and preventing him from causing further damage. It also

involves restoration techniques to recover from the damages resulting from a

successful attack.

In [102] Specht et al. introduce a comprehensive approach to attack

detection and reaction, by focussing on the case of Distributed Denial of

Service Attacks. First of all, it’s necessary to prevent the attack from being

performed, by avoiding the creation of the necessary preconditions. Once an

attack is successfully performed, if it’s detected, it’s necessary to do anything

possible to prevent the same attack from succeeding again. By controlling the

protected network, it’s necessary to eliminate all the possible attack handles.

Also, a clever activity logging strategy can help for forensics, and future

attack avoidance.

1.3.1 Intrusion Detection

An Intrusion Detection System (IDS) analyzes a data source and, after pre-

processing the input, lets a detection engine decide, based on a set of classifi-

cation criteria, whether the analyzed input instance is normal or anomalous,
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given a suitable behavior model.

According to Fuchseberger [41] intrusion detection systems can be of four

types:

Behavior based statistical techniques are used to detect penetrations and

attacks; these begin by establishing base-line statistical behavior, and

then measuring the deviation from the base-line.

Knowledge based look for attack signature either in network traffic or

system logs; also known as misuse based intrusion detection.

Host based derive from mere log file analyzers, and are designed as host

based applications running in the background of presumed critical, sen-

sitive hosts; detect attack patterns that can only or easier to be found

on a host level basis.

Network based monitor network traffic at packet level; can be either cen-

tralized, or made of multiple distributed monitoring stations.

Yet, this model is somewhat ambiguous. In fact, the four types of IDS are

not defined according to a single property. The first two types, in fact,

are identified by the type of approach to detection, whereas the latter are

identified in terms of the analyzed data source.

Debar et al. [45] (figure 1.4 on the next page) also consider the usage

frequency of the intrusion detection process. It can be either continuous,

or periodic. Continuous analysis allows to collect information about every-

thing happening on the monitored source of information. Yet, in particular

scenarios, such as high speed network monitoring, a controlled sampling of

analyzed information can result in better performance, by performing con-

trolled, rather than aleatory, packet and information loss [101].

More in general, intrusion detection systems can be grouped according

to several properties. As to the analyzed data source, they can be grouped

into two main categories: Network-based Intrusion Detection Systems (N-

IDS) [110], and Host-based Intrusion Detection Systems (H-IDS) [4, 109]
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Figure 1.4: A taxonomy of intrusion detection systems [45]

This classification depends on the information sources analyzed to detect an

intrusive activity. N-IDS analyze packets captured directly from the net-

work. By setting network cards in promiscuous mode, an N-IDS can monitor

traffic in order to protect all of the hosts connected to a specified network

segment. On the other hand, H-IDS focus on a single host’s activity: the

system protects such a host by directly analyzing the audit trails or system

logs produced by the host’s operating system. Intrusion Detection Systems

can be roughly classified (Figure 1.5 on page 19) as belonging to two main

groups, also depending on the employed detection technique: anomaly de-

tection and misuse detection[8]. Both such techniques rely on the existence

of a reliable characterization either of what is normal and what is not, in a

particular networking scenario.

Anomaly Detection

More precisely, anomaly detection techniques base their evaluations on a

model of what is normal, and classify as anomalous all the events that fall
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outside such a model [63]. Indeed, if an anomalous behavior is recognized,

this does not necessarily imply that an attack activity has occurred: only few

anomalies can be actually classified as attempts to compromise the security

of the system. Thus, a relatively serious problem exists with anomaly detec-

tion techniques which generate a great amount of false alarms. On the other

side, the primary advantage of anomaly detection is its intrinsic capability

to discover novel attack types. Numerous approaches exist which determine

the variation of an observed behavior from a normal one. A first approach is

based on statistical techniques. The detector observes the activity of a sub-

ject (e.g. number of open files or TCP state transitions), and creates a profile

representing its behavior. Every such profile is a set of “anomaly measures”.

Statistical techniques can then be used to extract a scalar measure represent-

ing the overall anomaly level of the current behavior. The profile measure

is thus compared with a threshold value to determine whether the examined

behavior is anomalous or not. A second approach, named predictive pattern

generation, is based on the assumption that an attack is characterized by

a specific sequence, i.e. a pattern, of events. Hence, if a set of time-based

rules describing the temporal evolution of the user’s normal activity exists,

an anomalous behavior is detected in case the observed sequence of events

significantly differs from a normal pattern.

Misuse Detection

Misuse detection is performed by accurately describing all the possible un-

wanted behaviors that need to be detected [85, 54, 76]. Hence, all the traffic

patterns conforming to such a behavior description are classified as attacks.

A special case of misuse detection is represented by the so called signature

detection [13, 107] technique. Such a technique is based on the assumption

that an intrusive activity is characterized by a precise and often well rec-

ognizable signature, i.e. a well-known pattern. Such signatures are usually

represented by specific configurations of packet header fields, of specific pay-

load contents.
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Similarly to anomaly detection, misuse detection can use either statistical

techniques or even a neural network approach to predict intrusions. Indeed,

the rule-based approach is the most used to detect an attack (SNORT3[13]

and Bro4[82]). Possible intrusive behaviors are coded by means of a set of

rules [111]: as soon as the examined event matches one of the rules, an

attack is detected. A drawback of this approach is that only well-known un-

wanted activities can be detected, so that the system is vulnerable to novel

aggressions; sometimes, few variations in an attack pattern may generate an

intrusion that the IDS is not able to detect.

The main problem related to both anomaly and misuse detection tech-

niques resides in the encoded models, which define normal or malicious be-

haviors. Although some recent open source IDS, such as SNORT or Bro,

provide mechanisms to write new rules that extend the detection ability of

the system, such rules are usually hand-coded by a security administrator,

representing a weakness in the definition of new normal or malicious behav-

iors. Recently, many research groups have focused their attention on the

definition of systems able to automatically build a set of models. Pattern

recognition techniques are frequently applied to audit data in order to com-

pute specific behavior models (MADAM ID [64], ADAM [9]).

Axelsson [7, 6] also proposes to use the time of detection, the granularity

of data-processing, response to detected intrusions (distinguished between

active and passive), the locus of data-processing and collection, the intrinsic

security and the degree of interoperability to categorize intrusion detection

systems.

1.3.2 Intrusion Prevention

Intrusion prevention systems were introduced in order to solve the typical

problems of both passive monitoring security systems and firewalls [113].

According to [116] intrusion prevention systems map traffic classification and

3http://www.snort.org
4http://www.bro-ids.org

http://www.snort.org
http://www.bro-ids.org
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Figure 1.5: Approaches to Intrusion Detection

event detection to responses. It monitors network on the fly. An intrusion

detection module classifies the traffic, and two modules called the policy

moderator and enforcer apply the selected policy according to the detected

event.

The policy moderator receives as input flow specifications, state, and context

from the traffic classifier, firewall policies such as PASS, BLOCK, PROXY,

MONITOR, and events detected by the detection engine. It outputs the

intrusion alerts or a more general indication of the intrusion type, obtained

by an aggregate of intrusion alerts. The policy enforcer is entitled to the

actual enforcing of the policy. It performs an alert to response mapping, and

executes traffic enforcement actions, such as:

Interface Actions random packet drop, rate limiting, and interface block-

ing

Network Actions packet or connection blocking, IP or URL blocking

Service Actions TCP or UDP Service (Telnet, FTP, HTTP , SNMP) fil-

tering, NAT and port forwarding.
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File Actions email attachment stripping, http or FTP file blocking

Content Actions protocol command blocking, HTTP content filtering, etc.

All the traffic enforcement actions are triggered by an activation condition,

and stopped by a deactivating condition. An attack response matrix is de-

fined, which efficiently describes the correspondence between detected attack

and associated action. In [41] intrusion prevention systems are distinguished

between rate-based and content-based. Rate based systems take action on

traffic based on the network load, measured in terms of either packet, byte

or in general activity rate. The main disadvantage of this type of systems is

the exact definition of what type of load should actually trigger a reaction,

without risking unwanted traffic-blocking actions. Content based systems,

instead, take action against traffic by searching for signatures inside packets.

The drawbacks of such systems are the same as any other signature based

system.

1.3.3 Intrusion Reaction

In [79] the authors propose an interesting survey on intrusion response tech-

niques (figure 1.6 on the next page). They classify such systems according

to both the type of action at the occurrence of a detection, and the de-

gree of automation. Response systems can be either active and passive when

responding to a detected attack. The former can modify some network con-

figuration parameters which affect traffic characteristics, whereas the latter

may only report the detection and don’t take any active action on network

traffic. As to the degree of automation in response, the analyzed systems

can either notify the detected anomalous event, or react to it. The reaction

can either be manual, by the system operator itself, or automated. Auto-

mated response systems can be characterized according to their ability to

adjust both the detection parameters and the reaction intensity according to

the context. They can be programmed to respond in a timely manner, or

to delay the response, in order to collect further information about the un-
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Figure 1.6: A Taxonomy of Intrusion Response Systems

suspecting attacker, and eventually react more effectively. The cooperation

ability is also taken into account. Since networks are complex distributed

entities, a good degree of cooperation between the security components can

be useful to have a better reaction to a critical situation. A proper reac-

tion to attacks can also involve the restoration of the last working condition

of the system, or the traceback to the attack source. By accurately logging

malicious activities, both these tasks can be accomplished [96, 106, 84].

1.4 Thesis Outline

After briefly introducing the operational context of this thesis, in this section

we will give a synthetic outline of the rest of the work. In chapter 2 on

page 23, we will introduce some notions on classification theory, and multiple



Thesis Outline 22

classifier systems. We will point out a meeting point between the problem

of network security, and the general problem of classification. Hence, we’ll

present a reference model, which allows us to employ classifiers for network

traffic classification.

Since some of the classifiers commonly used for network security need a

properly labeled dataset for training, the need for commonly acknowledged

and up-to-date datasets is always urging. In chapter 3 on page 53, we will

tackle the problem of data collection for training supervised classification

systems. Once the problem of user privacy is introduced, we will propose a

solution for sensible data anonymization, and then show how to automate

the process of packet labelling by means of a multiple classifier system. We

will define an algorithm for iterative incremental creation of labelled traf-

fic datasets, and show how supervised classification systems perform on a

dataset built this way.

In chapter 4 on page 95, we will present an architecture for the actual

deployment and management of multiple classifiers within a real network

scenario. This is a necessary preliminary step for the exploitation of multiple

classifier systems for intrusion detection. Hence, we will present some system

which, by using several strategies for information combination, are able to

improve the performance of several base classifiers, joined together in multiple

classifier systems.

In chapter 5 on page 119 some conclusions are drawn. Our contribution is

pointed out, referring to the previously described work, and some directions

and proposals for future works are proposed.



Chapter 2

Classifiers for Network security

Among the possible countermeasures to computer and network attacks, we

are interested in studying network based Intrusion Detection Systems [7].

In this work we want to study the problem of monitoring the network and

its users’ behavior in order to detect and report suspicious events. To some

extent, the problem of intrusion detection can be regarded as intermediate

among the prevention and reaction phase. In fact, it proves necessary in case

the prevention policies fail, and constitutes a preliminary step to reaction.

By monitoring network segments, and observing some significant traffic prop-

erties, we aim at being able to infer whether any anomalous activity is going

on. Hence, there are several aspects of the problem to deal with. First of

all, we need to find a model which is appropriate to synthesize traffic proper-

ties which allow to distinguish between acceptable and anomalous behaviors.

There’s a wide choice of approaches to traffic analysis, which often borrow

techniques from several research fields, such as pattern matching, statistics

and artificial intelligence. We propose solutions based on techniques coming

from the field of pattern recognition and artificial intelligence.

Once a way to describe traffic properties is chosen, we need to define how to

practically transform “network traffic” in the selected representation. Since

we’re dealing with network security, the necessary steps involve traffic sniff-

ing. Starting from raw packets, the value of parameters describing interesting

traffic properties must be calculated. Due to the inherent complexity of net-
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work activity, and to its distributed nature, we need to define a strategy

to effectively sniff the traffic. We’ll present our proposal for traffic sniffing,

and also its evolution toward a distributed network monitoring architecture,

which takes the problem of multiple, spread monitoring sensors, into account.

We’ll describe the process of calculating some specified models, starting from

raw network traffic. Then, we’ll how how, among other techniques, classi-

fiers can be practically used for network security.

2.1 Classification theory

As the name itself suggests, classification theory is about solving the prob-

lem of assigning real life entities to one out of a set of categories. Such a

general definition indicates how flexible the theory of classification is, and

inherently suggests its numerous application fields. Some authors [86] date

the first examples of classification theory and pattern recognition back to an-

cient Greece [16, 5], when scientists and philosophers were wondering about

the inherent properties of natural phenomena, in order to give explanations

for them. Without going so far away in time, we can find a number of ap-

plications for classification theory in nowadays world. Classifiers are used

every time an automatic system has to decide whether an entity it is ob-

serving belongs to one out of the categories it knows. Significant applica-

tions today include, but are not limited to, video surveillance [24], optical

character recognition [39], handwriting recognition [40] and video segmenta-

tion [95]. Classification theory is also often used as a support for diagnosis in

medicine [58] and in general in shape recognition problems [27]. Though the

core of classification is very general and usually independent of the applica-

tion context, there’s a huge work around it to be done. In fact, though such

techniques can often be reused, with satisfactory results, in several different

fields, there’s a considerable amount of work and study in finding a repre-

sentation of each problem, which is suitable with the application of such a

flexible instrument. Real life problems are inherently complex, and usually
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don’t have simple representations. Despite the enormous amount of com-

putation resources available nowadays, at some point problems have to be

reduced in terms of discrete representations in order to be manipulated by

calculators.

2.1.1 Feature extraction and selection

As stated before, in order to actually use a classifier for solving real problems,

the problem itself needs a suitable representation. Such a representation re-

quires the definition of the possible categories which have to be recognized,

and also the description of the entities to classify in terms of a certain num-

ber of parameters. Such parameters are usually referred to as features [51].

Features are usually represented in arrays, and can be distinguished accord-

ing to the type of value they can assume. They are usually grouped into two

sets, as depicted in figure 2.1: quantitative features and qualitative features.

The former can have both discrete and continuous values, whereas the latter

can be of ordinal or nominal type. Both types of features can be combined

Figure 2.1: Types of features

in the description of a particular phenomenon. Several methods have been

proposed for the discretization of continuous features, such as the ones de-

scribed in [30]; in [71] the impact of such a discretization process has been
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estimated. Feature definition can be deemed as the most critical phase in the

project of a classification system. In fact, the performance of a classifier is

heavily influenced by the features chosen for entity representation. Usually,

the choice of representative features is performed by an expert of the problem

under exam. Since features are usually represented as arrays of parameters,

we can imagine that features represent points in a vector space. In order to

allow this type of representation, a conversion from qualitative to quantita-

tive features is required. Indeed, such a process is usually heuristic and very

subjective. By bearing this in mind, features must be chosen in order to al-

low a good separability of points belonging to different categories. Therefore,

when designing features for a new problem, a number of properties has to

be selected, which make the job of the classifier as easy as possible. Some

overlap between sets representing different categories may occur, thus gen-

erating unrecoverable classification errors. The job of the classifier consists

in defining functions describing the boundaries which separate regions of the

feature space containing points of different categories. The most simple case,

for example, is the case of linear separability. Such a property occurs when

points of the vector space belonging to different categories can be separated

by means of hyperplanes.

Even though a large number of features might be deemed useful for some

particular classification problem, it doesn’t mean that, for every instance of

the problem, all of those features will be of real use. In some cases, for exam-

ple, the value of a particular feature might be subject to high noise, or might

be unmeasurable due to environmental constraints. Therefore, a feature se-

lection process is usually employed [81, 67]. The purpose of feature selection

is to select the features granting the highest discriminating power among

classes on a given training set (this term will be clarified in section 2.1.2 on

the next page). On the other hand, the process of feature extraction [89, 108]

aims at calculating a kernel for a subset of the original feature space. The

new subspace will span a smaller dimension, and the base vectors will be dif-

ferent, since they are obtained by elaborating the original features. Since we
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want to preserve the original meaning of assigned features, we will mainly

deal with feature selection rather than extraction.

Several tools performing both operations are publicly available1.

Other forms of representation for classification are also proposed in [31].

The authors propose to represent object in terms of relations to other ob-

jects, instead of using numerical models such as features. This work aims

at bridging the gap between statistical and syntactic pattern recognition, by

completely overcoming the representation differences which oppose the two

approaches.

Normalization

The process of normalization enables to disregard environmental influence

on features value. Due to different observation condition, the value of a

feature could change, even though such a change doesn’t reflect a different

property. As an example, when building a system recognizing geometrical

shapes, the orientation of one of the pieces to classify may influence some

observed properties, such as angles, straight and curved lines. With the nor-

malization process, it is possible to compensate the effect of such predictable

environmental factors influencing feature measurements.

2.1.2 Supervised vs. Unsupervised systems

Once the most discriminating features have been selected, it’s time to deal

with the choice of the best suited classification technique. A method to dis-

criminate among different classifiers, relies on the type of training strategy

they exploit. According to such criterion, classifiers can be roughly classified

in supervised and unsupervised [62, 59].

Supervised Systems Supervised systems rely on the existence of a teacher

helping the system in building its own knowledge about the problem. Usually,

1Tooldiag – http://www.inf.ufes.br/∼thomas/home/tooldiag.html

 http://www.inf.ufes.br/~thomas/home/tooldiag.html 
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such a teacher provides the classifier with a previously labelled training set.

By analyzing labelled instances of training data, the classifier is able to define

the decision boundaries which will be later used during the operating phase.

Unsupervised Systems Unsupervised systems, instead, perform a sort

of clustering operation. Due to the absent of an explicit teaching phase,

unsupervised systems try to group together entities which share common

properties in the feature space. As an example, such techniques might group

together densely populated regions of the feature space, assuming that all

the entities represented by points lying in such regions share common prop-

erties in the real world. Obviously, different clustering techniques might lead

to different results. Often the user is given the chance to set the a-priori es-

timated number of possible different clusters, to impose a sort of constraint

on the system.

Some classification techniques, such as Support Vector Machines (SVM),

can be used in both supervised and unsupervised fashion [18, 50]. Recently,

this distinction between two types of classification techniques has become

more loose; in fact, intermediate levels of supervision have been introduced

between total supervision and the total absence of it. Semi-supervised tech-

niques, for example, make use of both labelled and unlabeled data for train-

ing. It has been proved that the combined use of both types of data can

significantly improve detection performance [120].

2.1.3 Error evaluation and decision cost

An important role in classification theory is played by error evaluation. Given

a labelled dataset, the most straightforward strategy for evaluating the per-

formance of a classification system is just counting the number of committed

errors. Often, the relative amount of errors is given, with respect to the to-

tal number of analyzed samples. Yet, it’s worth going into further details

in understanding the nature of each error. In fact, it’s often important to
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understand how many times a sample from a category, or a class, has been

mistaken as belonging to a different class. The reason why this is helpful, is

that not all errors are equally serious. Depending on the nature of the real

problem, some errors might lead to worst consequences than others. In or-

der to express the percentage of errors in terms of confusion among classes,

the confusion matrix is used. Confusion matrices represent, for each given

real class, the number of times it’s been mistaken for any other class. An

example for the general n classes case is depicted in table 2.1.

Assigned Class
True Class ω̂1 ω̂2 . . . ω̂n

ω1 c11 c12 . . . c1n

ω2 c21 c22 . . . c2n

...
...

...
. . .

...
ωn cn1 cn2 . . . cnn

Table 2.1: Confusion matrix for n classes classification

In the case of one class classification, the problem of classification is simply

reduced to recognize whether a specific sample belongs to the considered

class. If this is not the case, the sample is simply not assigned to the class of

interest. The problem can be formally represented by naming two possible

classification outcomes, namely Positive and Negative, representing the only

two possible options taken into account. In fact, in such a case, the occurrence

of a particular class is searched for. Anything outside such a class is tagged

as Negative. The corresponding confusion matrix is represented by table 2.2.

Assigned Class

True Class P̂ N̂

P TP FN
N FP TN

Table 2.2: Confusion matrix for one class classification

In such a case, the elements of the confusion matrix are named, respec-
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tively, True Positives (TP ), False Negatives (FN), False Positives (FP ) and

True Negative (TN). Such quantities can also be expressed as relative to the

total amount of patterns or samples belonging to either the class of interest,

or not belonging to it.

2.2 Multiple Classifier Systems

When using classification techniques, a critical point is reached, where not

many improvements can be obtained in classifiers performance. The em-

ployment of multiple classifiers, therefore, is justified in order to push such

critical point further, and improve saturated performance of a set of base

classifiers. Assuming we have a number of base classifiers, characterized by

a certain degree of training and accuracy in classification, each of them will

have a specified generalization power. By using an ensemble of multiple clas-

sifiers, the expectation is to obtain a better overall generalization error. In

fact, it may be possible to compensate the generalization error of a classifier

by means, eventually, of good generalization properties of other classifiers on

the same sample. In [29] three reasons are suggested why a multiple classifier

system may perform better than a single classifier. First of all, the aforemen-

tioned generalization issue is an advantage for multiple classifiers. Given the

probability of a single classifier committing a generalization error, the chances

of an ensemble of classifiers all committing the same error at once are much

lower. Furthermore, since many classification techniques use, for computa-

tional reasons, some suboptimal optimization strategies, their results might

be suboptimal as well. By using multiple classifiers, such effects can be com-

pensated by randomly exploring several suboptimal training patterns, and

hence the resulting multiple classifier might perform better. Multiple clas-

sifiers can also overcome the representational issue of single classifiers. For

example, let’s assume linear classifiers are used. The representational power

of decision boundaries by these classifiers is inherently limited. Indeed, by

combining a number of linear functions, it’s possible to describe decision

boundaries as complicated as necessary, to best fit the problem at hand.
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2.2.1 Strategies for Combining Multiple Classifiers

When using multiple classifiers, it’s possible to manipulate several compo-

nents of the system, in order to pursue the desired performance level. In [56]

four approaches are individuated, as depicted in figure 2.2 on the following

page. First of all, it’s obviously possible to choose among several combina-

tion techniques. Such a choice can be made, for example, between supervised

or unsupervised combinator, according to problem requirements. Also, com-

bination rules might change with respect to the data to combine, that is to

say to different types of output by the base classifiers.

The choice of base classifiers may also affect the performance of the multi-

ple classifier system. It’s possible to choose base classifiers according to their

expected performance, or to the problem domain. Actually, there is little

evidence which justify the choice of a uniform ensemble of classifier rather

than an etherogeneous one. This choice is tightly related to the features

used to model the problem under exam. Each classifier can receive as input

a different subset of features, thus making the choice of similar techniques

to implement base classifiers reasonable. In such a case, in fact, by working

on different features, all the classifiers will be different, though implement-

ing the same technique. Also, each classifier may use a different portion of

the dataset under exam. All these degrees of freedom reflect the will to com-

bine the classification outcomes of different classifiers, having several different

points of view about the analyzed problem. The intuition is that, by com-

bining experiences built on different backgrounds, be it due to differences in

data and/or implemented learning algorithms, a better understanding of the

studied phenomenon can be built overall.

2.2.2 Fusion vs. Selection

The combination approaches proposed so far can be roughly divided between

fusion and selection strategies. The former aim at finding the best way, given

a set of base classifiers, to combine them in order to obtain the expected

results. Approaches based on fusion can rely on average, majority voting or
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Figure 2.2: Approaches to building classifier ensembles

other techniques, and require a means of taking into account the different

relative importance of each base classifier, and eventually its reliability. Also

the cost of each decision may influence such combination strategies. When

using selection, instead, classifiers outcomes are not combined, but the best

performing classifier is selected at the occurrence of every pattern to classify.

2.2.3 Decision vs. Coverage Optimization

When using multiple classifiers, there are two approaches regarding base

classifiers. Decision optimization can be regarded as a superset of combiners

based on fusion or selection. It refers to methods which allow to choose

and optimize the combiner for a given ensemble of base classifiers. Coverage

optimization, instead, refers to methods for creating diverse base classifiers

assuming a combiner has been selected. We will mainly follow this second

approach in the following. Yet, we will select base classifiers, instead of
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creating them on purpose.

2.2.4 Trainable vs. Non-trainable Ensembles

The difference here is straightforward. Some combiners do not need training

after the classifiers in the ensemble have been trained individually. An exam-

ple is the majority vote combiner, which we will use in section 4.1 on page 95

or 3.5 on page 73. Other combiners, such as the one presented in 4.2.4 on

page 107 need additional training. Another class of combiners doesn’t need

prior training, but develop its training during the training of base classifiers,

adapting itself to their evolution.

In [115] three types of classifiers are individuated, with respect to the type

of their output. Obviously, different types of output require different adap-

tations for combination, and are characterized by both different drawbacks

and advantages.

Type 1 (The Abstract level). Each classifier produces a class label Thus,

for any object to be classified, the classifier outputs define a vector. At

the abstract level, there is no information about the certainty of the

guessed labels, nor are any alternative labels suggested. By definition,

any classifier is capable of producing a label for the object, so the

abstract level is the most universal one.

Type 2 (The Rank level). The output of each classifier is a subset of the

labels, with the alternatives ranked in order of plausibility of being the

correct label. Especially suitable for problems with a large number of

classes.

Type 3 (The Measurement level). Each classifier produces a vector. Each

of its elements represents the support for the hypothesis that such a

vector is related to a sample from the corresponding class.

This section aims at briefly introducing multiple classifier systems. Fur-

ther details will be provided, on a case by case basis, throughout the thesis.
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When necessary, the used combination techniques will be described more in

depth.

2.3 Network Security as a Classification Prob-

lem

In the previous sections of this thesis, we’ve been referring to traffic classifi-

cation and attack detection problems. It is worth pointing out the contact

point between the two fields, in order to both clarify and justify the “abuse”

of terms we’ve committed so far, and to explain how such research fields

meet [43]. It is evident that, by aiming to distinguish among several types of

user behaviors on the network, we want to be able to divide them into cate-

gories. Let’s assume we are able to identify a number of equivalence classes

of network traffic, described by a specified number of properties of interest.

By observing each user’s behavior, we want to be able to decide to assign it

to one out of all the possible categories. By doing this, we implicitly assume

the knowledge and, most important, the existence of only a predefined num-

ber of such categories. Furthermore, we assume to be able to find a reduced

set of properties, to assign each of the entity we want to classify to the ap-

propriate class.

In practice, in order to treat network traffic classification for security pur-

poses as a classification problem, several steps are required. First of all, a

model for the problem has to be defined. In the following, we’ll deal with

the classification of connections. In our specific case, we only consider TCP,

UDP and ICMP traffic. In the case of TCP traffic, the definition of connec-

tion naturally comes from protocol specification, since TCP is a connection

oriented protocol. In the case of UDP and ICMP, instead, we treat each

packet as a connection itself, since both protocols have a connectionless na-

ture. Hence, we just respect the protocol specification, without forcing any

structure over the native protocols. Such structure, in fact, would require

the definition of connection timeouts and other system parameters, which
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could affect the obtained results, and constitute an unwanted degree of free-

dom for problem analysis.

Whenever a new packet is sniffed on the networks, it is assigned to its cor-

responding connection. Each packet is considered as an uptodate to the

connection status, therefore all the traffic model parameters related to such

connection are updated.

In the following we present the reference model we used to employ classifiers

for network security. We’ll illustrate how feasible feature extraction from

live traffic is. The presented model is meant to extract the features defined

in [64]. We’ll describe some implementation details, and the performance

overhead due to feature computation in a particular network scenario.

2.3.1 The Reference Model

Figure 2.3: Reference Framework Model

In this section we present our framework for real-time intrusion detection

using classification techniques. The overall model is composed of two parts:

the former is related to the classification process, and consists in extracting



Network Security as a Classification Problem 36

behavioral models from pre-elaborated network traffic, building the knowl-

edge starting from a database of labelled connection features; the latter is

a real-time intrusion detection system which analyzes and classifies network

traffic based on the models inferred (Figure 2.3 on the preceding page). In

particular, we execute the off-line pattern recognition process on a data set in

order to extract a set of rules or classification criteria; such a set is then used

in a real-time classification process implemented by the IDS that analyzes

these pre-computed classification criteria and compares them with informa-

tions evaluated by real-time network traffic. Each connection (as defined on

page 34) can be associated to an array of features, and thefore represented

in a vectorial space: the classifiers partition this space in a normal region

and an attack region. For representation’s sake, Figure 2.4, only shows the

simple case of a two features space. It is worth pointing out that such a

representation has only been selected for presentation purpose, and is not

referred to a specific classifier type. In order to implement an efficient clas-

2nd
Feature

1st
Feature

Normal

Anomalus

Rule

Figure 2.4: Vectorial representation in feature space

sifier, it is important to define a suitable set of features to be extracted from

the network traffic contained in the database. The greater the capability of
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the set of features to discriminate among different categories, the better the

classifier.

Defining Connection Features

There are three levels at which feature sets may be defined:

• The features may be referred to the single packet captured from the

network:

although this set is easy to compute, it is not able to detect all the

potential attack types.

• A set of features related to the entire session which the packet belongs

to may be defined:

this is due to the fact that some intrusions may be realized by means

of a sequence of packets belonging to either the same connection or

different connections.

• The computed set of features may perform a statistical analysis of the

relation between the current session and the other ones:

this is needed in order to capture intrusions which affect the interrela-

tion among different sessions.

To cope with the aforementioned requirements, we have adopted a model de-

scending from the one proposed by Stolfo. We are interested in TCP, UDP

and ICMP traffic. The features defined by Stolfo et al. can be classified in

tree main groups: intrinsic features, content features, and traffic features.

Intrinsic features specify general information on the current session, like the

duration in seconds of the connection, the protocol type, the port number

(i.e. the service), the number of bytes from the source to the destination, etc.

(see Table 2.3 on the following page). The content features are related to the

semantic content of connection payload: for example, they specify the num-

ber of failed login attempts, or the number of shell prompts (Table 2.4 on

the next page). The traffic features can be divided in two groups: the same
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duration connection duration (s)

protocol type type of transport protocol
service port number on the server side
src bytes bytes from source to destination
dst bytes bytes from destination to source
flag status of the connection
land land attack
wrong fragment number of wrong fragments
urgent number of urgent packets

Table 2.3: Intrinsic Features

host and the same service features. The same host features examine all the

connections in the last two seconds to the same destination host of the cur-

rent connection, in particular the number of such connections, or the rate

of connections that have a “SYN” error. Instead, the same service features

examine all the connections in the last two seconds to the same destination

service as the current one. These two feature sets are defined time-based traf-

fic features because they analyze all the event occurred in a time interval of

two seconds (Table 2.5 on the following page); some types of attacks, instead,

such as slow probing, may occur every few minutes. Therefore these features

could not be appropriate to detect all the attack types. To this aim a new set

of traffic features, called host-based, has been defined; the same host and the

same service traffic features are also computed on a window of one hundred

hot number of hot indicators
failed logins number of failed login attempts
logged in successfully logged in
compromised num compromised conditions
root shell root shell is obtained
su su root command attempted
file creations number of file creations
shells number of shell prompts
access files number of file accesses
outbound cmds outbound commands in ftp
hot login the login belongs to the hot list
guest login the login is a guest login

Table 2.4: Content Features
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connections rather that on a time interval of two seconds. In our framework

we will adopt only the intrinsic and the traffic features. Our purpose is to re-

alize network-based intrusion detection system, whereas the content features

are more adapted in a host-based scenario. Thanks to the access to the op-

erating system’s audit trails or system logs, an H-IDS is more efficient in the

analysis of the dangerous commands execution on a single host.

As stated earlier, we used this predefined set of features, since if proved effec-

tive in detecting attacks within the dataset we used for experiments. Other

features could also be defined, and easily implemented for real time detection

with our preprocessor. Discussion about the issue of defining features will be

discussed in section 2.3.1 on the next page, with reference to the problem of

botnet detection.

Same Host
count number of connections to the same host
serror rate % of connections with SYN errors
rerror rate % of connections with REJ errors
same srv rate % of connections to the same service
diff srv rate % of connections to different services

Same Service
srv count number of connections to the same service
srv serror rate % of connections with SYN errors
srv rerror rate % of connections with REJ errors
srv diff host rate % of connections to different services

Table 2.5: Time-Based Traffic Features

The proposed real-time IDS architecture consists of three components: a

sniffer, a processor, and a classifier. The sniffer is the component at the

lowermost layer of the architecture; connected directly to the network infras-

tructure, this module captures all the packet on the wire. The sniffing is

possible by setting the network card in promiscuous mode. Usually the snif-

fer also decodes the packets, translating them in a human-readable format.

The processor component elaborates the packet captured from the sniffer in

order to extract the selected set of features. The main issue of the features

computation process is related to the need of keeping up-to-date informa-
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tion about the current connection, as well as the other active connections.

We have to keep in memory a representation of the current network status

in order to evaluate the statistical relations among the active connections.

Data in memory have to be properly organized in order to reduce the fea-

tures computation time.

Defining Features for Botnet Detection

In this section we will show how, by analyzing another application context,

it’s possible to define feature representing a different model. From the ref-

erence model’s standpoint, the problem will still remain the classification of

an entity represented by a vector of features. We’ll describe here the feature

definition problem for botnet detection.

Botnets can be considered as distributed platforms for executing malicious

actions. Though no comprehensive botnet taxonomy has been proposed yet,

several have been presented so far [25, 11, 12]. One of the properties which

easily separates botnet classes is the type of command and control chan-

nel used. Such a choice in fact, dramatically influences botnet effectiveness,

and its resiliency to the defenses deployed by network and system admin-

istrators. The problem of detecting botnet characterized by a centralized

command and control channel, such as those based on IRC or HTTP [88]

with a classification theory approach [14] will be addressed here. Such a

structure for the command and control channel grants a high degree of sim-

plicity in implementing the control function, performed by the botmaster via

the only available channel. Yet, it suffers from the drawbacks of the presence

of a single point of failure. In fact, once the command and control channel is

identified, the whole botnet is dismantled and torn down. That’s the main

reason why we address centralized botnet detection at the moment, and we

try to detect such botnets as soon as possible, during their lifecycle. In the

botnet model we decided to address, any infected host scans a defined subset

of the whole IP space looking for known vulnerabilities. Once a vulnerable
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host is found, the vulnerability is exploited, and the host gets infected. Once

infected, the new bot contacts a server where he downloads the bot binary

and then joins the botnet as a fully operating soldier at the control of the

botmaster.

DNS-Based Botnet Detection The first examples of bots used to have

the botmaster and command and control IP hardcoded, hence once either

of those was discovered, the botnet was made completely useless. For both

flexibility and resiliency matters, though, bots started using symbolic names

for contacting both the command and control channel and the botmaster.

That is why a new bot, once infected, will issue a number of DNS queries

to resolve the symbolic names associated to the entities it has to contact.

By analyzing DNS requests, hence, we can hopefully intercept and eventu-

ally stop a bot before it connects to the rest of the botnet and gets involved

in malicious actions. Furthermore, bot-issued DNS queries can allow to de-

tect and tear down the whole command and control channel, and then the

whole botnet, at once. For that reason, we propose to analyze the statistical

properties of DNS queries [91]. In order to make such analysis effective, we

have to imagine which may be the typical behavior of a bot once it’s been

recruited or, if it was sleeping, once it awakes back, and after that, when

it tries to connect to the command and control channel. Experiments show

that known bots are characterized by a propagation profile similar to that

of popular internet worms. That is because many bots inherited their own

propagation strategies from some popular worms of the past, which proved

very quick and effective [87, 105]. Under this assumption, we can assume

that the number of infected hosts, and hence of DNS requests issued, varies

according to a sigmoidal law. At the beginning, very few hosts are infected.

Few hosts, then, perform scans, and the probability of clean hosts to get in-

fected is really low. Once the number of infected hosts increases, they are

spread all across the IP space. In this phase, the propagation speed is very

high, and increases very quickly. Beyond a certain number of infected hosts,
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instead, the propagation speed decreases. This happens because the proba-

bility of finding a non infected host during scans decreases, and also due to

some administrators’ reaction. Once the vulnerability and its exploitation

are discovered, in fact, some of the bots will be sanitized and removed from

the botnet. Hence, it’s difficult to identify properties which can allow to de-

tect a botnet during the initial and the final phases of its life. By observing

DNS traffic properties during the phase associated to the steepest part of

the sigmoid, it is possible to imagine features which can allow to effectively

discriminate between legitimate and botnet-related requests. The definition

of such features, of course, depends on the application context and on the

problem we are willing to address.

Language-based Botnet Detection Once the botnet is established and

in a steady state as to its spreading, it becomes more difficult to detect its

activity from the network activity point of view. In fact, its related statistics

will look steady and hardly distinguishable from background traffic character-

istics. Hence, it might make sense to think about some detection techniques

based on packet inspection, which exploit information at the application

layer. Of course, in order to be able to do that effectively, we have to con-

sider all the well known drawbacks related to packet inspection, which has

been criticized lately. In general, application level payload decoding is not

feasible in high speed networks, since it’s very hard to keep up with network

traffic’s pace with a detailed analysis. Hence, we need to filter out the largest

portion of traffic not of any interest for our botnet hunting purpose. If we de-

cide to analyze botnets characterized by a centralized command and control

channel based on either IRC or HTTP protocol, for example, we can exclude

from our analysis any traffic flow not using either of such protocols. Of course

port based protocol identification is the most straightforward method to do

that, but it is completely ineffective when port numbers are used, other than

the standard ones. Many techniques have been proposed and implemented

to cope with blind protocol identification, and some of those are also em-
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bedded in common, production level Intrusion Detection Systems, such as

the PIA module for Bro [46]. Once the correct application level protocol is

selected and isolated from the rest of the traffic, application level payload in-

spection becomes feasible again, and it might even be effective on high speed

links. Initially, we want to study the case of IRC based botnets. In such

botnets, bots subscribe to certain IRC channels, and commands are usually

issued by the botmaster via the channel topic or some either broadcast or

private messages. IRC channels are typically used by humans to intercom-

municate. Hence, we think it might be possible, by analyzing IRC channel

logs, to discriminate between normal IRC channels, and botnet-related chan-

nels. In fact, we expect to be able, by using natural language recognition

techniques, to distinguish between humans having a conversation and bots

responding to commands issued by the botmaster. Our intuition is that a

bot, due to its limited set of commands, will have a limited dictionary, result-

ing in a limited number of used terms, and a low variability of each sentence’s

properties. Since bot commands are structured as common shell commands,

we expect to find a very structured set of sentences in a botnet channel.

To be more specific, we expect most of the sentences of a bot-related con-

versation to look like a command-arguments-values sequence. On the other

hand, a human conversation should be characterized by a higher variability

of sentence properties, a different interaction pattern among chatters, and

possibly a broader dictionary. We aim at defining some features, also bor-

rowed from natural language analysis theory, which allow us to detect bot

channels. By analyzing them by means of pattern recognition techniques,

we can implement anomaly detection easily, since “clean” IRC channels are

easily available for training.

2.4 Real-Time IDS Implementation Issues

The reference model depicted in figure 2.3 on page 35 has been discussed so

far only with respect to the classification aspect of the network security issue.

We also implemented the proposed architecture in practice, and in this sec-
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tion we’ll show how it can be employed to realize a real-time network based

intrusion detection system, by monitoring the network traffic in order to ex-

tract a set of features from it, as well as performing behavior classification

based on the extracted features. Monitoring, in particular, is the most chal-

lenging issue to face from the point of view of a real-time analysis. In our

architecture, the monitoring system can be divided into two components: the

sniffer that captures traffic from the network, and the processor that com-

putes both the intrinsic and the traffic features. While in an off-line analysis

features computation is simpler, since all the information about connections

are stored in a database, in a real time analysis statistic measures have to be

be computed and the system status updated every time a new packet is cap-

tured from network[46].

In order to extract features from the traffic, an effective processor must en-

sure two requirements:

• holding information about the state of the connection which the ana-

lyzed packet belongs to;

• holding comprehensive information about the traffic flows that already

have been seen across the network.

According to the definition proposed in the previous section, every packet

can be considered as a single unit that is inserted in a more complex struc-

ture, namely the connection, and about which the features are computed.

While neither UDP nor ICMP traffic requires a heavy load of computation,

TCP traffic requires to emulate the TCP state diagram both on the client

and the server sides and for every active connection. In particular, when a

new packet is captured, the system retrieves information about the connec-

tion such a packet belongs to, and updates the connection state of both the

client and the server based on the TCP protocol specifications.

In order to compute the statistical relations, information about the past TCP,

UDP and ICMP flows is required, including those connections which have

been closed according to protocol specifications. Traffic features, in fact, are
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computed by analyzing all the connections (either active or expired) hav-

ing similar characteristics — besides the destination IP address and/or the

destination port — to the current one. Every connection has to be kept in

memory until it is not needed anymore for other computations.

Our architecture is implemented by modifying the open-source N-IDS Snort ;

we have used this system as the base framework on top of which we have

built our components. Snort is a lightweight network IDS created by Marty

Roesch. Its architecture is made up of four main blocks: a sniffer, a preproces-

sor engine that realizes a pre-computation of captured packets, a rules-based

detection engine, and a set of user output tools. Thanks to Snort’s modu-

lar design approach, it is possible to add new functionality to the system by

means of program plugins. Moreover, Snort provides an efficient preproces-

sor plugin that reassembles TCP streams and can thus be used to recover

the TCP connections status.

2.4.1 Calculating Traffic Features

We have implemented a new preprocessor plugin which computes the con-

nection features. The main issue we tackled has been the computation of the

traffic features, which requires that a proper logical organization of the data

is put into place in order to recover information on the past network traffic.

Moreover, to assure that the real-time requirement of the system is met, a

fast access to stored data is mandatory.

As to the data structures, we have adopted a binary search tree. In the worst

case this structure guarantees a performance comparable with a linked list,

from the point of view of search time consumption; performance further im-

proves in case the tree is a static and well-balanced one. Unfortunately, our

structure is not a static tree because the connections are not known in ad-

vance; though, a self-adjusting binary tree can be adopted in this case in

order to balance a dynamic tree.

We have used a Snort library of functions to manage the so-called Splay



Real-Time IDS Implementation Issues 46

Trees. A Splay Tree is an elegant self-organizing data structure created by

Sleator and Tarjan [100]: it actually is an ordered binary tree, in which an

item is moved closer to the entry point — i. e. the tree root — whenever it

is accessed, by means of a rotation of the item with the parent node. This

makes it faster to access the most frequently used elements than the least

frequently used ones, without sacrificing the efficiency of operations such as

insert and search.

With the above mentioned tree structure, we have implemented two trees, a

Same Host Tree and a Same Service Tree to compute the same host and the

same service traffic features, respectively. Every node in the tree is identified

by the destination IP address in the first tree, or by the destination service

in the second one. In this way, we want to store in the same node informa-

tion about all the connections that share the same characteristics. In order

to compute both the time-based and the host-based traffic features, for every

node in the tree we have implemented two linked lists, one for each set. The

linked lists contain information like source IP address and/or source port for

all the connections that have been identified and that have the same des-

tination IP address and/or the same destination service (see Figure 2.5 on

the next page). The elements of the list, one for every connection, are or-

dered in time: the first element is the oldest one, the last is the most recent.

When a new packet is captured from the network, our preprocessor plugin

first analyzes the protocol of the packet in order to identify the most appro-

priate procedure to compute the intrinsic features. If the packet belongs to

either a UDP or an ICMP traffic, the information required to compute the

intrinsic features is entirely contained in the packet. In case of TCP traffic,

the procedure recovers the session which the packet belongs to in order to

determine some crucial information, like the duration of the connection or

the number of bytes sent along both directions of the stream, that cannot

be directly inferred from the packet. Then, the procedure analyzes the des-

tination IP address and the destination port to compute the traffic features.

The searches in the two trees are performed: if no node has been found, a
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Figure 2.5: Same-Host Tree Structure

new one is created, and the traffic features relative to the current connection

are set to zero. If a node is already in the tree, the procedure analyzes the

two linked lists to compute the statistics for both time-based and host-based

traffic features. Every element in the list is analyzed and the statistics are

updated. During this process the elements that do not belong neither to

a time interval of two seconds, nor to a window of the latest one hundred

connections are pruned.

2.4.2 Testing the Approach

In this section we evaluate the overhead on the performance of the whole

system caused by the operation of the IDS, pointing out the increase in

CPU usage and memory consumption with respect to the values observed

while running Snort without our plugins. Our purpose is to show the afford-

ability of real-time intrusion detection, using techniques which are usually

employed in off-line analysis. We evaluate both CPU and memory overhead,

and packet loss ratio. Such tests are deployed in two scenarios: in the first

case, we build a testbed to emulate network traffic in a controlled environ-

ment; in the second, we sniff traffic flowing on the local network at Genova

National Research Council (CNR). In this scenario, the most important re-
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Figure 2.6: Testbed for Real Time IDS

sults are those regarding packet loss, as we want to show that the further

analysis steps needed to carry out detection using such techniques don’t affect

dramatically the percentage of lost packets, with respect to the total sniffed

traffic, thus demonstrating the affordability of intrusion detection with such

techniques. While working on the testbed, we consider the topology depicted

in Figure 2.6.

In order to work in a totally controlled environment, we have to emulate

the depicted scenario rather than working in a real network environment; for

that purpose, we use another topology which just emulates the one depicted

above, as drawn in Figure 2.7 on the next page. Furthermore, we test the

IDS using it on a real and heavily loaded network, whose topology is drawn

in Figure 2.8 on page 50. Such a test is useful to understand some of the

limits of our plugin, and to individuate some development directions. Indi-

cations help us understand the drawbacks of our implementation choices. In

table Table 2.6 on the next page we see the values of CPU overhead due to

use of Snort alone, version 2.1.0, and Snort plus our plugins. The machine

operating as IDS in the emulated traffic scenario is equipped with a 1GHz

Pentium III CPU and an amount of 256MB RAM, running Mandrake Linux

9.1 as operating system, kernel version 2.4.19. In this case we can point out a

very low, almost inexistent increase in memory consumption (Table 2.7). The
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Figure 2.7: Testbed for Traffic Emulation

doubling in CPU usage percent, when using the modified version of Snort

with respect to case of Snort alone, is not such a negative result, since over-

all CPU usage is still low and under reasonable thresholds, also considering

that we are using general purpose, not dedicated, hardware. The extensive

Snort-2.1.0 Snort + Plugins
Emulated Traffic 0.12% 0.22%
CNR Traffic 1.16% 2.42%

Table 2.6: Average CPU Overhead

test on CNR network still shows a slightly higher CPU usage for the modified

version of Snort, still within the limit of 8% overall overhead. The machine

acting as IDS is equipped with a 2GHz Pentium IV, 512MB RAM and Red-

Hat Linux 8.0, using kernel 2.4.18. Once again it is worth pointing out that

Snort-2.1.0 Snort + Plugins
Emulated Traffic 1.69% 1.70%
CNR Traffic 4.99% 9.46%

Table 2.7: Memory Overhead

the results of our measures must be looked at considering that the hardware

we use is not dedicated to intrusion detection, indeed we use general purpose

personal computers with a suitable software instrument installed and run-
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Figure 2.8: CNR Network Topology

ning.

Of course, the most interesting indication regards the packet loss ratio. To

attain the best results in intrusion detection, the main requirement is not to

lose any packets, no matter how much of the system resources we use, if af-

fordable with the available hardware. Such result is sketched in Table 2.8 on

the following page. In the test deployed using emulated traffic, we notice an

increase of less than 10% in packet loss with respect to the clean version of

Snort, though the values are lower than the ones obtained testing the system

on a real network. This may be ascribed to the hardware used in the two

cases: the setup used in the latter scenario is much better than the one used

in the former case. In both cases, anyway, we observe a very low increase in
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Figure 2.9: CPU Usage - CNR Network

packet loss ratio, showing the affordability of such a technique.

Snort-2.1.0 Snort + Plugins
Emulated Traffic 0.39% 0.42%
CNR Traffic 0.14% 0.16%

Table 2.8: Packet Loss

2.4.3 Key Findings

This section shows that it is possible to combine real-time intrusion detection

with data mining techniques, keeping the system overhead under reasonable

thresholds and containing the packet loss ratio within certain boundaries.

The system was tested on a particular definition of features. Obviously, sup-

port is provided for the easy implementation of different types of features.

This makes the system a flexible tool for calculating selected models to de-

scribe network traffic. As a matter of fact, the only input the system accepts
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is raw network traffic, and no assumption is made about it. As long as a

proper preprocessing function is implemented, virtually every type of fea-

ture can be computed about the traffic. The system has been projected with

the idea of using it with network scenarios of limited size. Obviously bigger

networks might require architecture using multiple real-time modules, such

as the one presented in 4.3. By using several monitors spread over the net-

work, it’s possible to reduce the load of each of them, by dividing the total

load over multiple monitoring systems. The issue of coordinating informa-

tion coming from multiple sources can be dealt with by using solutions such

as the ones proposed in chapter 4 on page 95. For this purpose, in fact,

the computed features and the classification results, can either be stored for

further analysis, or sent over the internet to another hosts which may run

a suitable software for collecting and interpreting such information coming

from multiple sources.



Chapter 3

Labelling Network Traffic –
Data collection and related
issues

In previous chapters we introduced the employment of pattern recognition

techniques for the problem of network security. More in details, we propose

to use such techniques for traffic classification, in order to discover malicious

activities. As described in section 2.1.2 on page 27, both the supervised

and unsupervised paradigm for classification can be useful for application

in network security. Also, we aim at using both misuse based and anomaly

based classifiers based on pattern recognition techniques, to overcome the

well known problems of signature detection techniques, which can be evaded

by means of simple attack modifications. Several examples of such classifiers

can be found in literature, for example in [43]. Some of them need to be

trained in a supervised fashion. The main advantage of a pattern recognition

approach is the ability to generalize. This property can be very useful when

aiming at detecting novel attacks without the need for a complete descrip-

tion of all the possible attack signatures. In [61, 118] some other classifiers

are used, which can be ascribed to the more general category of unsupervised

systems based on the novelty detection approach [98], i.e. the identifica-

tion of new or unknown data or signal that a system is not aware of during

training. Anyway, it is worth noting that an IDS realized by means of a pat-
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tern recognition approach based on supervised learning techniques typically

performs better than those based on unsupervised learning techniques [62].

Obviously, as suggested by the name, supervised systems need a supervisor

during their training. Usually, that role is performed with the intervention

of a human expert of the problem at hand. In practice, the supervision is

performed by feeding the system, during its training phase, with a dataset of

exactly labeled entities. In the case of network traffic classification, a dataset

is needed made of packets, each associated to a label describing the class it

belongs to. In our case, we won’t aim at detecting if the specific class of at-

tack a packet belongs to, if any attack is detected. Yet, we want to detect

whether an anomalous malicious activity is in progress. Therefore, we will

only consider two possible categories for packets, namely Normal and Attack.

Due to the previous considerations, in order to build a system which is effec-

tive at detecting intrusions in a particular network by also using supervised

classifiers, we need to have a suitable dataset of labelled packets available.

The dataset needs to be well representative of the problem at hand, it must

contain a good sample of the possible behaviors which will be found on the

real network, and for that reason it doesn’t have to be outdated. Also, it

needs to contain packets whose labelling is reliable enough, not to induce the

classifiers to commit unwanted error, due to incorrect biasing.

Unfortunately, one of the main drawbacks occurring when using PR-based

system in real environments is the difficulty in collecting a representative la-

beled set of data for training them. This is due to several factors, among

which the difficulty in correctly labelling, by hand or at least with the super-

vision of human experts, large amounts of data. Also, network traffic usually

carries huge amounts of private information. Hence, few people are actually

willing to distribute their own dataset, thus generating a big problem within

the scientific community doing research in network security. In fact, it is very

difficult to ensure the reproducibility of scientific experiments in that field,

since there is no dataset which is commonly acknowledged and widely used

within the community. This aspect is often disregarded in papers propos-
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ing pattern recognition approaches for coping with the intrusion detection

problem, where usually standard labeled databases, such as the well-known

KDD 99 [32], are used for testing [42] [68] [119]. This choice is no longer

accepted in the IDS community, since network traffic has now significantly

changed and some papers (see for example [75, 72]) highlighted many flaws in

the construction of such database. There are obviously some advantages and

disadvantages in using traffic traces created synthetically. The two possible

approach are network simulation and network emulation. By using the for-

mer approach, it is possible to simulate a network scenario created ad-hoc in

order to suit the problem at hand. The traffic can be completely controlled,

and attacks have to be injected on purpose by who runs the simulation. Both

attack and normal traffic characteristics have to be configured by the opera-

tor, who has to have a deep knowledge of both the network scenario and the

problem at hand.

A possible solution [28] could be the use of unsupervised anomaly detection

techniques, as the one proposed in [33]. Here, the authors suggest using an

unsupervised algorithm for recovering the anomalous elements from an unla-

beled set of data. After anomalies or intrusions are detected and removed, it

could then possible to train a misuse detection algorithm over the polished

data. In the above cited papers, however, the problem of verifying to what

extent such data can be used for effectively training a misuse-based approach

is not addressed at all. Also, the employment of a single technique might

produce biased results, since a single classifier might be good at detecting

specific attacks, whereas it might be bad at detecting some other.

3.1 Privacy Issues in Network Traffic Collec-

tion

As stated before, prior to discussing methods and systems capable of generat-

ing widely distributed, reliably labelled traffic traces within the research and

industrial community, it is worth considering some serious problems related
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to privacy issues in spreading the data. Due to regulations common to most of

the countries, in fact, traffic archives can’t be freely distributed not to break

privacy related laws. To such extent, it’s useful to have tools which elimi-

nate sensible information from network traffic, making traffic traces widely

available.

3.1.1 Network Traffic Anonymization

In order to cope with the problem of network traffic anonymization, we de-

veloped a tool which is flexible, easy to use, and multiplatform. Even though

several such systems are available, we developed our own with performance

in mind. We’ll describe the used technique and show that its performance

is comparable with that of well known anonymization tools. Also, by intro-

ducing additional options with respect to other well-known anonymization

tools, we will show how it is still possible to keep the resource usage under

reasonable limits. Several approaches have been proposed for network traffic

anonymization. Some propose methods aimed at avoiding the distribution

of the traces, totally preventing information leakage [78]. This can be very

useful in some particular applications, but is completely against our purpose

of collecting traffic traces with the aim of sharing them. In fact, our primary

goal is to create the traces in order to simulate and evaluate the performance

of security systems, such as Intrusion Detection Systems (IDS). In this field,

traffic traces are typically used to estimate and eventually validate models

of either normal and anomalous traffic for a particular network environment.

In such cases a different approach must hence be used. The availability of

un-anonymized traffic archives might allow a malicious user to reconstruct

the activities of each user on the network, harvest passwords, bank account

and credit card numbers, thus exposing the users to many risks. Also, some

administrators might be interested in keeping the communication patterns

among hosts on their network secret. This, for example, can be useful to

hide the internal structure of a natted network, in order to disguise the real

private IP address of a very important server, to prevent malicious user to
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target sensible machine with specific and disruptive attacks. Also, before

distributing network traces, an administrator might be interested in deleting

information about the type of hardware used, in order to make machine iden-

tification more difficult, or eventually impossible from the hardware point of

view. These consideration evidentiate the need for a layered anonymization.

According to such different requirements, anonymization has to be carefully

projected at each layer were we want information to be kept private. The

most simple and obvious of those ironically consists in barely deleting all the

sensible data, and replacing it with any random symbol. Not only this keeps

all the private information safe, but also permanently deletes any other infor-

mation which can be useful in research. What we want to do, instead, is to

keep the information about mutual relationships among hosts, thus making

the details of their communication unrecoverable. In particular, we imple-

mented the possibility of anonymizing header fields at Link State, Network

and Transport Layer. Furthermore, our tool also deletes sensible information

at the Application layer, by obfuscating the whole payload, though keeping

the packet size intact. To such purpose, we substitute the whole payload con-

tent with meaningless random bytes, and reevaluate the packet checksum in

order to obtain a traffic trace containing valid packets. What other tools usu-

ally do, in fact, is truncating the payload, thus obtaining malformed packets

which are not always analyzable by means of traffic sniffers, and also alter-

ing the distribution of amounts of data exchanged on the network.

The type of anonymization strategy adopted is tightly related to the appli-

cation at hand. In Sections 3.2 on the next page and 3.3 on page 59 we

will describe the expected application context for our tool and, after defin-

ing the requirements, we’ll introduce the techniques used to anonymize each

packet accordingly. Finally, in Section 3.3.4 on page 63 we will show the

tool’s functionalities, and we’ll compare its performance with those of two

other well-known anonymization softwares [1, 52].
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3.2 Anonymization in Practice

In this section we will introduce some of the observations that led us to our

implementation of an anonymizer. As stated before, the problem will be deal

with in a layered fashion. Due to the layered structure of network protocols,

in fact, the issues of each layer should be treated separately, in order to keep

the required crosslayer independence and transparency.

3.2.1 Header Anonymization

In order for two applications to exchange data correctly, and for the pack-

ets to be well-formed, their header fields must be correctly formatted. In

the context of privacy enforcement, we want to avoid the possibility of re-

constructing any activity performed by each of the hosts and their users.

We can choose to hide the information about the type of hardware used,

the position in the network, the subnet a host belongs to, and also about

the type of service the communication is bound to. According to each of

the aforementioned requirements, an anonymization tool has to be able to

modify respectively: the MAC address, the IP address and the ports. As

to MAC addresses anonymization, as well as port numbers, the process is

very simple: we only need to define an injective function for the transforma-

tion, which maps each value randomly into another. The only thing to care

about is, obviously, to grant that equal values will remain such, even after

anonymization. For IP addresses, instead, by using our approach, it is pos-

sible to either decide to use a random injective function with no constraints,

or some other approaches aimed at saving some information which might

be useful. We implemented both a class preserving and a prefix preserving

transformation, as it will be shown in section 3.3 on the following page. As

names suggest, the former aims at preserving the class an IP address belong

to, also in the anonymized address domain, keeping the class an address be-

long to consistend through the transformation. The latter instead aims at

keeping consistent the longest common prefix of all the anonymized IP ad-
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dresses. Thus, two addresses sharing, let’s say, the first 12 bits, will have the

same 12 bits in common also in the anonymized address space, even though

they might have a different value.

3.2.2 Payload Anonymization

While the header contains information about the sending and receiving hosts

of each packet, the payload contains data produced by the applications com-

municating through the network. Hence, that data is directly associated to

what the users are doing, and the semantics of the data they are exchang-

ing. Usually private data are exchanged, as well as unencrypted passwords

and bank account and credit card numbers. Also, private conversations deal-

ing delicate matters might occur. The simplest approach to anonymization

consists in completely deleting such information. Yet, the payload can either

be substituted by random symbols or abruptly truncated. In the latter case,

malformed packets are generated, as the size field in the header won’t cor-

respond to the actual size of the packet, whereas in the former the packet

checksum will have to be recomputed, as its value is related to the actual

content of the payload. Our tool implemented the former strategy, by using

an incremental technique for recomputing the checksum described in para-

graph 3.3.3 on page 63.

3.3 Anonymizer Implementation Details

In this paragraph we will discuss some of the implementation details, by

motivating the choices we made while developing our anonymization tool.

We will present two strategies for anonymizing IP addresses, and some issues

related to payload anonymization.

The developed software is available on Sourceforge1 for download.

1http://anonymizer.sourceforge.net/
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Class initial bits net bits host bits starts ends
A 0 7 24 1.0.0.0 127.255.255.255
B 10 14 16 128.0.0.0 191.255.255.255
C 110 21 8 192.0.0.0 223.255.255.255
D 1110 - 28 224.0.0.0 247.255.255.255
E 1111 - 28 248.0.0.0 255.255.255.255

Table 3.1: IP Address Classes

3.3.1 IP Anonymization

Before illustrating in deep details how IP anonymization is performed, let’s

recall their structure. IP addresses uniquely identify an interface connected

to a specific network. They are strings of 32 bits, usually divided into 4

groups of 8 bits (octets). For the sake of representation, IP’s are usually

written as four numbers ranging from 0 to 255 separated by dots (dotted

decimal notation). Each address has a variable length prefix, identifying the

subnet a host belongs to (network prefix), and a suffix, identifying the specific

interface within the subnet. IP addresses have fixed length, but the network

and host fields can have variable length, the only constraint being that both

lengths sum up to 32 bits, obviously. Several fixed length for both the fields

are specified, depending on the class an IP address belongs to. The original

addressing policy used to consider four different classes, and a further fifth

class reserved for future use. Such classes are usually named after the first

five capital letters of the roman alphabet, namely from A to E: It worth

pointing out that not all the reported IP addresses are available. Class D

addresses are not actual host addresses, since they are intended for use with

multicast, while class E addresses are reserved for future or experimental use.

Also, among classes A B and C some IP addresses are reserved for special

use. Some addresses are available only for local networks, and not routed on

the internet, such as:

• Class A: 10.0.0.0 - 10.255.255.255

• Class B: 172.16.0.0 - 172.31.255.255
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• Class C: 192.168.0.0 - 192.168.255.255

Several solution exist, which are limited by the trade-off between the security

of the anonymization scheme, and its effectiveness. A first solution is repre-

sented by the so called black marker [99] anonymization. According to such

a scheme, all IP addresses are substituted by a constant IP. Obviously, using

this method results in an unrecoverable loss of information. Alternatively,

it is possible to use the random permutation technique. In this case, a ran-

dom anonymized address is uniquely associated to each IP address. A third

method is based on truncation. In this case, a number of bits to preserve

is chosen, and all the remaining bites will be set to 0. In this case, as for

the black marker technique, a large number of addresses will be anonymized

in the same way. Only subnetting can be preserved. As an example, in ta-

ble 3.3.1 we report some IP addresses, and their anonymized versions. The

letter c indicates a generic constant.
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141.142.96.167 c 12.72.8.5 141.142.0.0 127.0.0.1 12.131.12.67
141.143.96.18 c 12.161.3.3 141.143.0.0 127.0.1.1 12.55.79.102
141.142.132.37 c 212.3.4.1 141.142.0.0 127.0.0.2 12.131.201.29

12.161.3.3 c 12.72.8.5 12.161.0.0 1.0.0.1 187.192.32.51
12.72.8.5 c 141.142.132.37 12.72.0.0 1.0.0.2 187.78.201.97
212.3.4.1 c 141.143.96.18 141.142.0.0 192.0.0.1 31.197.3.82

Table 3.2: IP anonymization using different techniques

Class Preserving

Class Preserving anonymization is a strategy mainly developed for IP ad-

dress anonymization. Its aim is to implement an injective transformation

between original and anonymized /8, /16 and /24 class subnets. This means
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that, for example, if two addresses belong to the same original /16 subnet,

they will still belong to an anonymized /16 subnet which is the same for

both, even after transformation. Furthermore, the class of IP addresses will

be preserved: class A, B and C IP addresses will still belong to the same

class after anonymization. Hence, the first bits of the addresses will be pre-

served unchanged in order to maintain the address class. Also, private and

public address classes will be preserved. Anonymized addresses will be cho-

sen sequentially, starting from a common seed. This still ensures the privacy

of anonymized information, since the original IP address is unrecoverable.

Prefix Preserving

This anonymization strategy allows to keep IP addresses grouped according

to the longest prefix they have in common. In other words, if two IP ad-

dresses share an M bits long common prefix, they will still share an M bits

long common prefix after anonymization. This automatically allows us to

transform IP’s belonging to the same subnet into IP’s belonging to the same

anonymized subnet. More formally, we use the following definition [1]:

two n bits long IP addresses a = a1a2 . . . an and b = b1b2 . . . bn have a

k bits common prefix, 0 ≤ k < n if and only if a1 . . . ak = b1 . . . bk and

ak+1 6= bk+1.

3.3.2 Signature Preserving Anonymization

Since we want our anonymization tool to be used as a support to research on

network security problems, we want to allow transformed traffic traces to be

used for the evaluation of signature-based IDS, too. Hence, given a database

of known signatures (as, for example, the ones used by Snort2), we enable

our software to obfuscate all the payload but the desired signature. Then, in

case a predefined string is found within the payload, it is not overwritten, but

2http://www.snort.org/
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simply rewritten in the same way and at the same position in the anonymized

payload as well.

3.3.3 Checksum Correction

As stated before, we want to allow our anonymizer to be able to keep the

packet size unchanged, by obfuscating the information contained in the pay-

load, instead of deleting it. In such a case, though, it’s necessary to recalcu-

late the checksum for each packet. In order to keep the anonymization time

for each trace as low as possible, we decided to implement a strategy for in-

cremental checksum update, described in [10, 73, 92], and generally used at

the router side when the TTL value is changed in the header field of the

packet. Let’s define

HC Old checksum

C 1’s Complement of the old header sum

HC ′ Updated checksum

C ′ 1’s Complement of the updated header sum

m Old value of each 16 bit field

m′ Updated value of each 16 bit field

For the header: C ′ = C + (−m) + m′. Then, for the whole packet checksum:

HC ′ =∼ (C + (−m) + m′) =∼ (∼ HC+ ∼ m + m′)

3.3.4 Experiments on Anonymization

In order to prove the effectiveness and usability of our tool, we compared it

with other two well-known tools, namely tcpdpriv [1] and AnonTool [52].

To such aim, a brief resume of the functionalities of these tools is presented

in table 1, while in table 2 the execution time of each anonymization tool on

different traffic traces is shown.
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tcpdpriv [1] • • • • •

AnonTool [52] • • • • • •

Anonymizer • • • • • • • • • •

Table 3.3: Functionalities of different anonymization tools

(a) Linux - prefix preserving strategy

0.5 GB 1 GB
Anonymizer 46s 1m46s
AnonTool 46s 1m43s

(b) FreeBSD - class preserving strategy

0.5 GB 1 GB
Anonymizer 26s 1m53s
tcpdpriv 26s 1m52s

Table 3.4: Anonymization time using different strategies and operating systems

By considering the data reported in both tables, it is possible to conclude

that we were actually able to develop a tool that extends the functionalities

provided by [1] and [52], by keeping execution times practically unchanged.

3.4 The Dempster Shafer Theory for Classi-

fication

In this section we propose a general methodology for automatically obtain-

ing a dataset of labeled packets starting from raw tcpdump traces. Such

dataset can be then used during the training phase of supervised pattern

recognition algorithms. In particular, we present an architecture for auto-

matically building up a network traffic database made up of packets, each

labeled as either Normal or Attack. To build such architecture, we propose

to use multiple classification techniques, therefore it is necessary to employ

some information fusion strategy in order to combine them. Since we have no
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prior knowledge about traffic characteristics, what we need is an information

fusion technique which neither relies on prior knowledge about the problem,

nor on any configuration chosen according to the problem’s nature. What

we need is a rule which completely disregards the choice of the base classi-

fiers, and doesn’t change with the application domain. One such technique is

represented by the Dempster-Shafer [44] theory, which completely disregards

any prior knowledge about the data to be classified. The Dempster-Shafer

combination rule, in fact, was defined once and for all, and completely re-

moves assumptions about the base classifiers. Note that, though some works

already propose to exploit the results of such a theory for intrusion detec-

tion (see for example [19, 117]), its use for labeling raw network traffic is

novel. We will also evaluate to which extent a dataset labeled by using our

approach can effectively be used to train a supervised classifier based on pat-

tern recognition techniques. In order to do that, we’ve tested the system on a

very well known database, made up of correctly labelled packets. We trained

the chosen test-classifier by using both the real labels of the traffic and those

calculated by means of our proposed system, and compared the obtained re-

sults. Moreover, we will show how the system is capable of improving its

knowledge about analyzed traffic. By adding, in successive steps, more clas-

sifiers to the defined architecture, we show how it is possible to automatically

improve the classification results. Moreover, we show how such a classifier

can be a supervised classifier, trained by means of the previously known in-

formation. The system is able to pass its knowledge along to some supervised

classifier and, since its training is complete, it can contribute with additional

knowledge to the accuracy of the labelling process. The knowledge increase

process could continue indefinitely, in an iterative fashion. It’s not reason-

able, though, to imagine that any classification system can perform beyond

certain limits. For that purpose, in order to avoid useless overtraining, or

efforts which are not justified by the obtained results, we’ve also studied a

strategy to evaluate the relative variation in performance, in order to asses a

sort of termination condition for the labelling process. Obviously, such con-
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dition is related to the application scenario, and to the results expected by

the operators who use the system for automated packet labelling.

It is worth noting that the choice of the Dempster-Shafer theory allows us to

define a suitable index that is used for express the reliability of the packet

labeling. In this way, unreliably labeled packets can be discarded from the

database, and eventually saved for further processing. We evaluate how this

choice can affect the training and generalization performance of the consid-

ered IDS as well as the quality of the labeling itself. The final aim of this

study is to obtain a system which, in a completely automated fashion, is able

to produce a dataset of labelled traffic, starting from raw traffic traces. Due

to the iterative nature of the described process, it’s not at all meant for ei-

ther online use, or for real time attack detection. The process might in fact

converge after several iterations, which renders its real time usage unfeasi-

ble.

The theory of Dempster and Shafer (D-S theory) has been frequently ap-

plied to deal with uncertainty management and incomplete reasoning. It is

worth noting that it is different from the classical Bayesian theory, since for

Bayes the sum of P (A) and P (¬(A)) always equals one, while this is not

necessarily true according to the D-S theory. In fact, differently from the

classical Bayesian theory, D-S theory can explicitly model the absence of

information, while in case of absence of information a Bayesian approach at-

tributes the same probability to all the possible events. The above described

characteristics can be very attractive for managing the uncertainties of the

network security domain, due, for example, to the presence of the zero-day

attacks. There is also another main difference between the Bayesian theory

of probability and the Dempster Shafer theory for plausible reasoning. The

former, given a set of possible events, explicitly tries to model the probabil-

ity of occurrence of such events. A comprehensive and elegant mathematical

theory strongly supports Bayesian theory for probability and is widely used

in science. When no exact model is available, the probability of each event

is estimated, often by measuring the relative occurrence of each of those.
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The Dempster-Shafer theory, instead, aims at modeling the plausibility in

reporting the occurrence of a particular event. In simple words, by using the

Dempster-Shafer theory, it is possible to represent how likely an event has

happened, according to the fact that it has been reported by someone. What

is measured, then, is the reliability assigned to whom reports the occurrence

of an event when reporting it, instead of the probability of the event itself.

According this formulation, considering the case of classifiers used for attack

detection, we don’t evaluate the probability of occurrence of either normal

or anomalous behavior by the users. Instead, we model the reliability of a

classifier when it reports a specific event. In an environment as variable and

changing as a network, in fact, it would be really difficult to exactly and per-

manently model the probability of occurrence of hardly any event. By using

the Dempster-Shafer, then, we only have to deal with the problem of model-

ing the expected behavior of the used classifiers, and the reliability associated

to each of their outcomes. As it’s easily understood, the latter problem is far

less complicated to deal with, and more realistic to solve, than the problem

of exactly modelling the behavior of every possible type of user of a network.

3.4.1 The Frame of Discernment

Instead of dealing with a set of events, the Dempster-Shafer theory is founded

on the concept of frame of discernment. Usually, the frame of discernment θ

consists of M mutually exclusive and exhaustive hypotheses Ai, i = 1, . . . , M .

Any subset {Ai, . . . , Aj} ⊆ θ represents an hypothesis. As the number of

possible subsets of θ is 2θ, the generic hypothesis is an element of 2θ. In our

case, we only consider two hypotheses (classes), namely Normal and Attack ;

hence, the frame of discernment is

θ = {{Normal}, {Attack}}

and

2θ = {{Normal}, {Attack}, {Normal, Attack}}
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whereas in the Bayesian case only the events {{Normal}, {Attack}} would

be considered.

{Normal} and {Attack} are referred to as simple events or singletons, while

{Normal,Attack} as composite event.

3.4.2 bpa for Labeling Reliability

According to the D-S theory, a basic probability assignment (bpa) can be

associated to each base classifier, which describes the subjective degree of

confidence attributed to it. What is modeled, then, is not the analyzed

phenomenon, but the belief in what the base classifiers report about it.

When assigning a bpa, there are some requirements which have to be met.

They descend from the fact that the bpa is still a probability function, hence

has to respect the constraints for mass probability functions. Each bpa is such

that m : 2θ → [0, 1], where θ indicates the so called frame of discernment.

Furthermore, also the following properties have to hold:

m(∅) = 0
∑

A⊆2θ

m(A) = 1

The aim of assigning a bpa is to describe the reliability of a particular clas-

sifier in reporting a specific event. Such a representation is suitable for com-

bination, but as we want to deal with combined results in the same way,

we also impose the constraint that the combination of several bpa by means

of the D-S rule still has to be a bpa. The uncertainty in the final decision

will be inversely proportional to the extent to which the base classifiers agree.

3.4.3 From bpa to Class Labels

In the next subsection we will present some general criteria for assigning

bpa’s to different categories of classifiers. Now, we want to illustrate first

how it is possible to define a criterion for obtaining a crisp classification of

each packet from the overall bpa calculated after combination, by means of
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a properly defined index. bpa’s in fact, only give indication regarding the

overall degree of confidence in reporting the occurrence of each of the known

events, while we are interested in knowing whether one of such events, has

been detected or not. The function which allows us to transform the bpa in

a detection result descends from observation of the relations between Belief,

Plausibility and Uncertainty. Let A, B ∈ θ; according to definitions:

Bel(B) =
∑

A⊂B

m(A)(3.1)

P ls(B) =
∑

A∩B 6=∅

m(A)(3.2)

Unc(B) = P ls(B) − Bel(B)(3.3)

In the two-event case, we observe that

Bel({Normal}) =m({Normal})

P ls({Normal}) =m({Normal}) + m({Normal, Attack})

Bel({Attack}) =m({Attack})

P ls({Attack}) =m({Attack}) + m({Normal, Attack})

Hence,

Unc({Normal}) = Unc({Attack}) =

= m({Normal, Attack})

As stated before, we aim at defining an index which allows us to associate

a single crisp label to each packet, even though the chosen packet labeling

mechanism inherently provides soft [55] labels.

So, what we have to define is a reliability index RI which tells us how much

difference is there between the degree of belief the system has in stating

each of the possible hypotheses. Furthermore, such a reliability index should

preferably have a direct dependency on the difference between the degrees of

belief in each of the two simple hypotheses, and an inverse dependency on
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the degree of belief in the composite hypothesis, which explicitly measures

the uncertainty associated to each decision. So, we defined RI as:

RI =
Bel({Attack}) − Bel({Normal})

1 + Unc({Attack})
=(3.4)

=
Bel({Attack})

1 + Unc({Attack})
−

Bel({Normal})

1 + Unc({Normal})
=

=
m({Attack})

1 + m({Normal,Attack})
−

m({Normal})

1 + m({Normal,Attack})
(3.5)

=
m({Attack}) − m({Normal})

1 + m({Normal,Attack})

The index RI is defined in such a way that, if its value is +1, there is the

highest reliability in detecting an ongoing malicious activity; if it is −1, it is

quite sure that the observed traffic is normal; if it is 0, there’s the maximum

uncertainty, hence the packet will should be rejected.

In the first case, in fact,

m({Attack}) = 0

while

m({Normal}) = 1

and

m({Normal, Attack}) = 0

In the second case, the opposite scenario is verified, as

m({Attack}) = 0

while

m({Normal}) = 1

and

m({Normal, Attack}) = 0

In the latter case instead,

m({Normal}) = 0
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m({Attack}) = 0

and

m({Normal, Attack}) = 1

In order to reject unreliably labeled packets, the value of RI can be com-

pared with a threshold τ (see figure 3.1), which is related to the desired

classification reliability. If it falls outside the range [−τ ,τ ] described by such

threshold, then the packet can be classified, with at least the specified de-

gree of confidence; otherwise, the packet will fall inside an uncertain region

(guard region). In that case, it will be rejected and eliminated from the la-

beled database we are interested to build. Note that the higher the threshold,

the more reliable the classification of each packet, the higher the number of

rejected packets.

Figure 3.1: From RI to packet labeling or rejection as a function of τ

3.4.4 The Dempster-Shafer Combination Rule

Based on the bpa function m(A), it’s possible to calculate the overall belief

in the events represented by the set A as:

(3.6) bel(A) =
∑

B⊆A

m(B)

where B represent every possible subset of A. Obviously, for each Ai ⊆ θ,

the properties bel(Ai) = m(Ai) and bel(θ) = 1 hold. Besides a rigorous for-
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mulation to represent evidences, Dempster and Shafer propose a method for

combining several sources of information referring to the same frame of dis-

cernment θ. Let’s assume, for simplicity’s sake, we are willing to combine two

different sources of information. As stated before, each source of information

is represented in terms of the belief associated to it, when reporting specific

events. In our case, the degree of belief is expressed by the basic probabil-

ity functions m1 and m2, defined over the same domain θ. The operation of

combining evidences from multiple sources is usually represented as an or-

thogonal sum, that is to say m = m1 ⊕m2. More in general, the method for

combining evidences coming from multiple sources is named Dempster-Shafer

combination rule, and is defined as:

Figure 3.2: Orthogonal Sum

(3.7) m(A) = k−1
∑

A1∩A2=A

m1(A1)m2(A2)

where

(3.8) k =
∑

A1∩A2 6=⊘

m1(A1)m2(A2)
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Starting from 3.7 on the preceding page and 3.8 on the previous page, and

due to the associative property of the sum operation, the combination rule

can be easily extended to an arbitrary number of information sources, re-

sulting in an arbitrary number of different bpa’s. As an example, let’s con-

sider the information sources whose degree of belief is expressed by the bpa’s

m1, m2, . . . , mn. The bpa resulting from their combination will be formally

defined as:

(3.9) m =

n
⊕

i=1

mi

which translates, in formulas, in:

(3.10) m(A) = k−1
∑

T

i
Ai=A

∏

1≤i≤n

mi(Ai)

The normalization factor k in equation 3.10 is:

(3.11) k =
∑

T

i
Ai 6=⊘

∏

1≤i≤n

mi(Ai)

It is worth observing that the normalizing factor k is independent from any

specific value of A. The value k can therefore be considered a constant, once

the bpa’s are fixed.

3.5 An Architecture for Automatic Packet La-

belling

In network security, there are not too many issues in collecting large amounts

of traffic which might be used to train a supervised classifier. Unfortunately,

such traffic often lacks a reliable labeling. This gives raise to a paradox: if

we want to properly train a classifier, we need to have correctly labeled net-

work traffic; but, if we have such labeled traffic, maybe we already know how

to exactly discriminate between normal and malicious behavior. Hence, we

already know how to tell attack packets apart from normal ones, thus we

don’t need a classifier.
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In order to overcome such a paradox, we propose an architecture for automat-

ically building up a traffic database, containing packets each labeled either as

normal or as an attack. The proposed architecture (see figure 3.3) consists of

several base classifiers, called Base IDS (B-IDS in the following). According

to the definition of our framework, B-IDS must not require to be trained on

labeled data. Typical examples are signature-based IDS (such as SnortTM3)

or, more in general, any IDS based on unsupervised techniques. The bank

of B-IDS starts analyzing offline the packets contained in a dumped traffic

database. As we propose to use multiple detection techniques, it is necessary

Figure 3.3: B-IDS and the D-S combination rule

to employ some fusion strategy in order to combine their outputs. Since we

have no prior knowledge of the traffic characteristics, we use the Dempster

and Shafer [44] combination rule, which can completely disregard any prior

knowledge about the data to be classified. Unfortunately, some of the types

of B-IDS chosen for the first stage have no capacity to automatically evolve.

The signature based ones, have to receive completely new signatures in or-

der to learn how to recognize new types of attack. The unsupervised ones,

instead, need new training. Since the traffic database in use is the one whose

packets we want to associate a label to, new training on the same packets will

probably lead to poor or eventually no improvement at all. Hence, we add

a second stage which, due to its training strategy, can bring new knowledge

to the whole system, and hopefully improve its labelling capabilities. The

3http://www.snort.org
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components involved in the evolved system at the second stage are named

Supervised Intrusion Detection Systems, or Slaves ; in short, in the following

we’ll refer to them as S-IDS. The sistem, after the introduction of the new

S-IDS modules, will look like the one depicted in figure 3.4. For the sake of

Figure 3.4: D-S based architecture for packet labelling

synthesis, in figure 3.5 on the next page we sketch the whole operating cy-

cle of the packet labelling system. First, a preliminary labelling is obtained,

for variuos values of τ . Then, all the S-IDS are trained and, when training is

over, integrated with the rest of the system. After integration, the previous

step is iterated, until the packet labeling process converges. In the following

we will illustrate the details involved in all the described phases, and intro-

duce a terminating criterion for the iterative incremental labelling process.
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Figure 3.5: Evolution in time of the D-S based system

3.5.1 The First Stage – Base Intrusion Detection Sys-

tems

Assigning bpa’s to B-IDS

Usually, the D-S combination rule is referred to as a technique which requires

training at fusion level [57]. In fact, the bpa’s are usually assigned accord-

ing to the so-called confusion matrix introduced in section 2.1.3 on page 28,

which describes the performance of a specific classifier on a given training

set [115]. Hence, the confusion matrix is stricly related to both the classi-

fier’s characteristics, and the dataset it’s been trained on. In our case, we

don’t have any training data available, hence we use a different method for

assigning a bpa to each base classifier. In particular, we assign them bpa’s

which are related to the typical performance of the detection technique they

implement. Then, starting from the category a base classifier belongs to (i.e.,

anomaly vs. misuse detection, unsupervised vs. supervised, etc.), we define

some criteria for assigning a suitable bpa. In particular, we assign a higher

value to m({Attack}) if a signature-based misuse detector raises an alert.

Such systems, in fact, are built to correctly detect the malicious behaviors

described by the known signatures. On the other hand, the absence of alerts
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by a signature-based misuse detector is not necessarily related to the absence

of any anomalies. A modified attack, in fact, can easily evade such detection

technique. Thus, we assign low values to m({Normal}) when such systems

notify this kind of traffic.

More formally, if we denote with msb
A|A the value m({Attack}) attributed to

the evidence of an attack when a signature-based IDS attributes a packet

to the Attack class, and with msb
N |N the value m({Normal}) attributed to

the evidence of normal behavior when the same IDS does not declare the

presence of an attack, we have:

(3.12) msb
A|A > msb

N |N

Anomaly based signature detection systems, instead, have a dual behavior

with respect to misuse detectors. On the other hand, detectors based on Pat-

tern Recognition techniques generally attain worse performance in correctly

detecting malicious behaviors, but also prove their ability to detect modified

or novel attacks. For that reason, we assign lower belief in their classification

with respect to signature based detectors, when an attack is detected. More-

over, an higher belief is assigned when a packet is attributed to the normal

class with respect to the case in which it is attributed to the attack class.

By using the same notation of equation (3.12), with ad denoting an anomaly-

based IDS, we can write in this case:

mad
N |N > mad

A|A(3.13)

mad
A|A < msb

A|A(3.14)

Thus, each decision from a B-IDS will be supported by the bpa associated

to it, which will express the degree of belief in the classifier decision. Such

bpa’s will be combined by using the Dempster-Shafer combination rule [44],

in order to obtain a bpa for each possible class the packet can belong to. In

section 3.6 on page 88 we will show how to assign reasonable value to the

bpa of each chosen B-IDS, according to the above described criteria.
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3.5.2 Preliminary Labelling

Once a bpa is assigned to each B-IDS, it is possible to start the first oper-

ating phase of our system. As stated before, each packet in the raw traffic

trace will be analyzed by each of the B-IDS. In some cases, B-IDS are imple-

mented by means of common, popular intrusion detection software, capable

of analyzing raw traffic traces, and reporting the detection of specific events

on the network. In some other cases, B-IDS are implemented by means of

unsupervised pattern recognition techniques. In the latter case, a prepro-

cessing phase is required, which transform raw packets in a format which is

manipulated by such techniques. In our case, it is necessary to extract rep-

resentative features from network traffic, in order to process them by means

of the selected algorithms. Such features are usually calculated either at

packet or flow granularity. Usually, features are updated at each packet’s ar-

rival, in order to describe the evolution of properties specific of the traffic

flow it belongs to. In our scheme, we will consider the preprocessing phase

embedded in B-IDS operation, hence it’s not explicitly represented either in

figure 3.3 on page 74 or 3.4 on page 75. Once a threshold τ is fixed for the

specific analysis of the raw packets, the analysis is performed. All the re-

sults coming from B-IDS are then collected and combined by means of the

Dempster-Shafer block. After that, the packed such that |RI| > τ are stored,

and used for further processing. In this case, the further processing consists

in the training of the classifiers employed for the second stage of the sys-

tem. Obviously, such system will have different performance, depending on

the choice of the value of τ .

3.5.3 The Second Stage – Supervised Intrusion Detec-

tion Systems

Integrating a Supervised-IDS (S-IDS) in the Architecture

As stated earlier in this chapter, the labeling performed by means of the sys-

tem described above can be used for training supervised pattern recognition-

based IDS. Such IDS should perform better in real environment with respect
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to unsupervised IDS. As a matter of fact, they have a better generalization

power, thus allowing the detection of novel anomalous events, though keep-

ing good performance in detecting well known attacks. Anyway, once we

have obtained a trained supervised IDS (S-IDS), the question arises whether

it is possible to integrate it in the proposed architecture, by combining its

outputs with those provided by the bank of B-IDS, and which could be the

possible improvements in the detection of attacks. So, this section is devoted

to show how an S-IDS can be integrated in the described architecture. In

order to be actually able to do that, we need to find an answer to several

questions.

First of all, let us recall that an S-IDS obviously needs a training phase.

In our case, for the training we’ll use the results of the classification per-

formed by the B-IDS. In the previous section we introduced the threshold τ

on the value of RI, which determines the degree of reliability of packet label-

ing. Different threshold values give rise to sub-datasets consisting of different

fractions of the whole dataset, which can be considered reliable enough for

training according to the criterion driving the choice of the value of τ . To

this extent, we have to understand how to select the optimal value for τ ,

which allows us to obtain the best trade-off between reliability of the label-

ing and representativeness of the portion of the dataset selected for training.

In other words, we would like the best reliability level and the biggest pos-

sible fraction of the whole dataset, in order to have a well representative

database for training an S-IDS.

Secondly, we must be able to understand how good the training of the S-IDS

is at each stage, i.e how to measure the performance of an S-IDS, since we

do not know the real labels, but only the ones provided by the ensemble

of B-IDS. Furthermore, since we want to integrate an S-IDS in the whole

architecture, we need to find a way to define a degree of confidence in the

outcomes of such S-IDS, and then the corresponding bpa for it.

After answering all these questions, the integration becomes possible; we will

show that the obtained classification results can improve if we exploit the
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contributions coming from the trained S-IDS.

By using the new assigned labels, then, it is possible to re-train the S-IDS

and to combine it again with the ensemble of B-IDS, in order to further im-

prove the labeling. The problem here is to understand when to stop such

an iterative process. Furthermore, we want to understand whether it is both

useful to re-estimate the bpa of the B-IDS’s once some S-IDS’s are trained

and can help in obtaining a more precise labeling of the packets.

The main steps of the procedure for adding an S-IDS to the proposed archi-

tecture, aimed at obtaining a more reliable labeling, can be summarized as

follows:

• Train the S-IDS using a the labeled dataset obtain for a certain value

for the reliability threshold τ

• Evaluate the performance of the trained S-IDS (see Section 3.5.4 on

the following page)

• Calculate the bpa for the trained S-IDS (see Section 3.5.5 on page 84)

• Combine both B-IDS and S-IDS and evaluate their performance (defi-

nition of Estimated Error Rate) (see Section 3.5.6 on page 86)

In the following we sketch the algorithm that can be used for integrating an
S-IDS and for evaluating the performance of the whole architecture, having
chosen a specific value for the threshold τ .

Insertion S -IDS(B-IDS List ,S -IDS , T raffic, level, τ)

1 if level = 0

� level is 0 if this is the first time the S -IDS is trained
2 then Labels← D-S Fusion(B-IDS List , T raffic)
3 else Labels← D-S Fusion(B-IDS List ,S -IDS , T raffic)

4 ReliableLabels← EXTRACT L(Labels, τ)
5 ReliableTraffic ← EXTRACT T(Traffic, τ)
6 S -IDS ← TRAIN(S -IDS , ReliableLabels, ReliableTraffic)
7 NewLabels← CLASSIFY(S -IDS , T raffic)
8 bpa[S -IDS ]← EVAL S-IDS PERF(NewLabels, Labels)
9 NewLabels← D-S Fusion(B-IDS List ,S -IDS , T raffic)

10 EER← EVAL PERF(NewLabels, Labels)
� EER is the Estimated Error Rate provided
� by the combination of B-IDS’s and S-IDS

11 return EER
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This algorithm should be executed for each possible threshold value, in order

to select the one which allows to obtain the best performance. Moreover,

the insertion process of an S-IDS in the architecture can be re-iterated by

using the newly computed labels. In this case, nothing ensures that the

threshold value selected at the previous iteration (level) will lead to the best

possible system performance. In practice, we have to perform a Breadth-

First Search in a tree, by searching the node which gives rise to the best

system configuration in terms of EER.

An exhaustive search of the optimal solution would be NP-hard, hence we

decided to pursue a suboptimal, though computationally affordable, search

strategy, as described in Section 3.5.6 on page 86. At each level, we only

consider the node with the best EER and those nodes exhibiting an EER

whose value is within an order of magnitude with respect to the lowest. In

Section 3.6 on page 88 we will show the results obtained by using this strategy.

In the following paragraphs we will detail how it is possible to perform the

steps described in the above reported algorithm. Finally, note that since the

proposed architecture will provide a soft label for each packet, it should be

useful to define a measure for giving a quantitative evaluation of the quality

of a performed labeling. Such a definition will be given in Section 3.5.7 on

page 87.

3.5.4 Evaluating S-IDS Performance

The problem of assigning a bpa to each S-IDS is strictly related to defining

the extent to which we rely on the outcomes of such classifiers, whenever

they are reporting a specific event. In our case, due to the presence of the

reliability index RI, we don’t have crisp outputs by the classifiers. Usually,

in presence of binary classifiers the confusion matrix [37], introduced in 2.1.3

on page 28, is a good means of evaluating how good a classifier performs

on a given dataset. In our case the output of each classifier is a soft label,

hence we have to redefine the confusion matrix for classifiers with soft out-

puts. Moreover, we do not know the true class of a packet, but we have only
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the guessed class provided by the combination of the outputs of a set of IDSs.

Each instance I of the data to be classified can be associated to an element

of the set {Positive, Negative}, or {P, N} for the sake of brevity. The clas-

sifier associates to each instance I its prediction regarding the class such an

instance belongs to. In order to distinguish between the actual class labels

and those assigned by the classifier, we’ll use a twofold notation, adding a

hat above the latter. Hence, the actual labels will be indicated as P and N ,

while those assigned by the classifier will be indicated as P̂ and N̂ . Given

this notation, we have four possible combination of actual and assigned la-

bels, which are sketched in table 3.5. In our case we have a set of packets,

Assigned Class

True Class P̂ N̂

P TP FN
N FP TN

Table 3.5: Confusion matrix for one class classification

labeled using the B-IDS part of our proposed architecture; we know that

each packet has an associated reliability index, which we denote with RI.

The closer to 1 RI is, the more confident we are in assigning the packet to

the Attack class. On the other hand, the closer the index is to −1, the more

we are confident in saying that the packet can be assigned to the Normal

class. Furthermore, for values of RI close to 0, there is a high uncertainty in

assigning the packet to either of the two classes. First of all, for each packet,

let us assume that it belongs to the P class if RI > 0 and to the N class oth-

erwise. The same packet will be attributed to P̂ if the considered ensemble

of IDS recognizes it as an Attack, or to N̂ otherwise.

Then, let us recall that our aim is to evaluate the S-IDS performance, in or-

der to assign a bpa to it. We want to have classifiers able to correctly classify

all the packets characterized by a value of RI close to either −1 or 1. The

focus is not really on packets whose value of RI is close to 0, since those

are inherently characterized by a high degree of uncertainty. If the system is

not able to correctly classify such packets, it is acceptable that they are ex-
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plicitly rejected. What we want to do is to weight differently the outcome of

each classifiers, according to the value of RI. That’s why we introduce the

concept of a Weighted Confusion Matrix.

Let RI = (RI1, RI2, . . . , RIm) be the vector of all the different reliability val-

ues associated to the packets. Starting from the confusion matrix reported

in table 3.5 on the preceding page, which is drawn again for the sake of clar-

ity, we can define the true positive rate (tp), the false positive rate (fp), the

true negative rate (tn) and the false negative rate (fn) as follows:

tp =
TP

P
fp =

FP

N
(3.15)

tn =
TN

N
fn =

FN

P

Now we will show how it is possible, for example, to derive a weighted true

positive rate, say tpRI, which is function of the vector RI. The same con-

siderations can be easily extended to the other quantities reported in equa-

tions 3.15. Let’s first consider how we can rewrite tp:

tp =
TP

P
=

TPRI1 + TPRI2 + ... + TPRIm

P
=

=

TPRI1

P1
P1 +

TPRI2

P2
P2 + ... +

TPRIm

Pm
Pm

P
=

=
(tpRI1)P1 + (tpRI2)P2 + ... + (tpRIm

)Pm

P

where TPRIi
represents the true positive having a reliability index equal to

RIi and Pi is the number of the packets whose reliability is RIi.

Now, by substituting tpRIi
with tpi = w(RIi) · tpRIi

we obtain a true positive

rate weighted by a function of the reliability index, namely w(RIi). So, we

finally arrive at the definition of tpRI:

tpRI =
(w(RI1))(tpRI1)P1 + ... + (w(RIm))(tpRIm

)Pm

P

=
TPRI

P

The choice of the weight function can either slow down or speed up the

convergence of the training algorithm for an S-IDS. Next step in the process of
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defining the D-S based architecture is the definition of the weighting function

we’ve been discussing so far. As stated before In order to choose a suitable

function, let us first consider that the weight is supposed to increase together

with the value of the reliability index. Hence, by recalling that 0 ≤ RIi ≤ 1,

it must be:

RIi = 0 ⇒ w(RIi) = 0

RIi = 1 ⇒ w(RIi) = 1

Since for a reliably labeled packet i it is RIi = 1, such a piece of information

is worth the maximum relative weight possible. On the other hand, for

packets labeled with very low reliability we know that RIi ≈ 0, hence such a

contribution is supposed not to influence the final decision.

It is reasonable, given these considerations, to choose the identity function

for our purposes:

w(RIi) = RIi

. Obviously, it might be possible to choose several different functions, thus

changing the distribution of weights according to the value of the reliability

index and affecting the convergence time for S-IDS training. This will be

matter of future investigations.

3.5.5 From Weighted Confusion Matrix to bpa

The method we adopt to evaluate the bpa starting from the modified version

of the confusion matrix relies on three parameters: the Recognition Rate (r),

the Substitution Rate (s) and the Rejection Rate with respect to the possible

classes (in our application, just Normal and Attack). Such parameters can

be obtained from the confusion matrix of a classifier. In particular, as shown

in [115], given a generic class C, the corresponding bpa, and the confusion
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matrix, will be:

m(C) = r

m(¬C) = s

m(Θ) = 1 − r − s

With respect to a given class C, r is the percentage of samples assigned to

class C by the classifier, and actually belonging to such a class; s is the

percentage of samples belonging to class C but assigned by the classifier to

some other class; by rejection rate, finally, we mean the percentage of samples

which were rejected, and hence not assigned to any class [36]. The S-IDS

we are using at the moment don’t implement rejection explicitly. Yet, by

observing the values of the weighted confusion matrix, we can see that, due

to the weighting operation:

tpRI + fnRI ≤ 1

tnRI + fpRI ≤ 1

That stated, the bpa assigned to the S-IDS after its training will be:

• when the S-IDS attributes a packet to the Attack class:

m({Attack}) = tpRI

m({Normal}) = fnRI

m(({Normal,Attack})) = 1 − tpRI − fnRI

• when the S-IDS attributes a packet to the Normal class:

m({Attack}) = fpRI

m({Normal}) = tnRI

m(({Normal,Attack})) = 1 − tnRI − fpRI

The values of the weighted confusion matrix are those obtained after training

the S-IDS with the labeled packets computed by the ensemble of B-IDS.
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3.5.6 Terminating the S-IDS Training Process

After the first training iteration, we obtain new labels for the packets. By

combining the outcome of each S-IDS with the outcome the B-IDS ensemble,

we obtain a modified and hopefully more accurate labeling for the dataset.

After the first step, we evaluate the bpa for each of the S-IDS again, in an it-

erative fashion.

In order to define a termination criterion, we introduce the concept of Esti-

mated Error Rate (EER):

EER =
FPRI + FNRI

N + P

where N + P is the total number of packets and FPRI = fpRI · N , while

FNRI = fnRI · P . In order to iterate the training phase, we can decide to

use, for each S-IDS, the configuration associated to the lowest EER (say

EERbest). Yet, this approach might lead to suboptimal results during itera-

tions since we are using estimated quantities. For this reason we also consider

some S-IDS training configurations which lead to higher EER, since during

the following iterations they might lead to better overall results. In partic-

ular, we keep all the training configurations associated to a value for EER

such that:
EERbest

EER
≥ 0.95

At each iteration we use an exhaustive procedure, by training each S-IDS

with all the possible datasets, i.e. all the dataset obtained by rejecting all

the packets characterized by reliability values below a given threshold τ .

Since the process is iterative, we need a termination criterion in order to

understand when to stop it. To such purpose, we measure the value of

EERbest at each iteration. In general, it should be decreasing along the

iterations, finally leading to an asymptotically low value. The condition we

evaluate, then, is:

EERbest
k ≤ δ

where:
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EERbest
k is the estimated error rate for each S-IDS, with respect to the k−th

iteration. More precisely, it is the minimum error rate among all the

chosen configurations for each training iteration.

δ is a threshold value, chosen according to the specific application and the

required reliability level.

3.5.7 Evaluating the Labeling Process

In this section we will define a method for evaluating how much the labels

computed via the proposed system differ from the actual traffic characteriza-

tion. We want to compare the real traffic labels with those obtained through

the labeling process described so far. As stated earlier, the proposed sys-

tem associates a reliability index, RI, ranging from −1 to 1, to the class

label attached to each packet. For coherence’s sake, we assigned the values 1

and −1 respectively to packets whose real label is either Attack or Normal ;

performance is numerically evaluated via the following quality index:

QI =
1

n
·

n
∑

i=1

|RIi − Ci|

where:

n is the total number of packets of the database

RIi is the value of the reliability index associated to the i − th packet

Ci is the actual class of the i − th packet; i.e. it is equal to

1 for packets belonging to the Attack class

−1 for packets belonging to the Normal class

As QI approaches 0, the dataset labeled by means of the proposed system

tends to the dataset with the actual crisp labels.
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3.6 Experimental Results for Automated Traf-

fic Labelling

In order to test the proposed approach, we used one day of the DARPA 99

traces (more than 1e6 packets; among them about 1, 000 are attacks). Even

if the collection of these traffic traces has been criticized, they still represent

the most widely used public dataset, and then can be considered a significant

benchmark for testing our architecture. To extract representative features

from the raw traffic traces, as required by PR-based systems, we used the

preprocessor plug-in for SnortTM described in chapter 2, and freely available

on SourceForge 4. It allows us to extract 26 features from network traffic.

Such features derive from the intrinsic and traffic features defined by Lee

and Stolfo in [64]. More details about the feature extraction process can be

found in [34].

As B-IDS, we chose a signature-based IDS, namely SnortTM, and two PR-

based anomaly detectors, respectively a Rival Penalized Competitive Learn-

ing (RPCL) network and an one-class Support Vector Machine (SVM) [18].

The RPCL has only two neurons; after the unsupervised learning phase, we

associate to the Normal class the neuron which has been selected as the most

representative for the packet under exam the most times; by doing this, we

implicitly assume that normal packets are in a much higher number than

attack packets. It is worth observing that, since SnortTM works at packet

level, we need to use it as a classifier for unprocessed raw tcpdump traffic.

Moreover, since we used the version 2.2.4, we enabled its multiple detection

feature. SnortTMcan then raise more than one alert for each packet. In this

case, each alert is considered as an evidence supporting the event {Attack}

for the current packet. The performance of SnortTMand of the neural based

classifiers on the chosen dataset are reported in table 3.6 on the following

page.

Now, we are required to model the degree of belief associated to each base

4http://s-predator.sourceforge.net
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FA Rate MD Rate Err Rate
SnortTM 0.129% 21.789% 0.164%
RPCL 1.477% 21.997% 1.510%
SVM 0.924% 74.571% 1.044%

Table 3.6: Performance obtained by the chosen B-IDS

classifier reporting each of the observed events. As stated before, we do it

by using the basic probability assignment. First of all, let’s start by assign-

ing a bpa to SnortTM. As shown in table 3.7, we assume that SnortTMis very

reliable when reporting malicious activities. The probability that an attack

actually occurs when SnortTMreports it, is very high, due to its signature-

based nature. According to that, we assigned the value 0.9 to m({Attack})

when SnortTM raises an alert. Conversely, aware of SnortTM’s low probabil-

m({N}) m({A}) m({N,A})
A 0 0.9 0.1
N 0.6 0 0.4

Table 3.7: bpa’s assigned to SnortTM

ity of detecting either a novel or modified attack, we don’t really trust it too

much when reporting normal activity.

Similarly to the case of SnortTM, we considered the typical behavior of the

neural-based classifiers we chose, in order to decide when and how much to

trust each of them. Such classifiers, due to their unsupervised nature, are

not supposed to perform extremely well on any class of traffic, since they’re

not meant to be too specialized. Yet, on the other hand, they may also be

able to detect novel attacks, thus compensating the lack of such ability for

SnortTMand similar signature based B-IDS. In table 3.8 on the following page

we observe the bpa’s assigned to it.

By using such bpa’s, and combining the results for the three considered

B-IDS, we are able to obtain a preliminary labeling of the raw traffic. To

this regard, we verified that there are no differences in such a labeling if the
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m({N}) m({A}) m({N,A})
A 0 0.5 0.5
N 0.6 0 0.4

Table 3.8: bpa’s assigned to RPCL and SVM

τ FA Rate MD Rate Err Rate Rej Rate
0.0 0.278% 21.789% 0.313% 0%
0.3 0.027% 21.945% 0.063% 0.251%
0.6 0.015% 74.623% 0.051% 2.404%
0.9 0.015% 74.623% 0.015% 99.943%

Table 3.9: Performance obtained by combining the chosen B-IDS as a function of the
threshold τ

above reported bpa’s vary within a 5% range and the constraints of equa-

tions (3.12)-(3.13) still hold.

By varying the value of the reliability threshold and comparing it to the in-

dicator defined in eq. (3.4), we finally obtain the error rates described in

table 3.9. Here, False Alarm Rate and Rejection Rate are meant in the

canonical way. When computing the Missed Detection Rate, we consider all

the attack packets which were either misclassified as normal, or rejected. In

other words, if an attack packet is rejected, we consider it as missed. When

evaluating the Error Rate, instead, we consider all the packets which are mis-

classified, regardless the number of rejections.

It can be noted in table 3.9 that if we consider only packets with an RI in-

dex greater than 0.3, we are able to obtain a better performance with respect

the one shown by the best B-IDS. In this case, anyway, about 3,000 packets

are not classified.

3.6.1 Training and Integrating an S-IDS

In this section we will describe the evolution of an S-IDS. Here we recall that

such classifiers always need a training phase performed on pre-classified traf-

fic. In this case, we will first use the traffic labeled by the ensemble of B-IDS
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for training, by using certain reliability thresholds.

In the following, we will show an example of S-IDS integration with the

rest of the system. As S-IDS, we have chosen SLIPPER [23], a rule-based

learning system that creates a rule set by iteratively boosting a greedy rule-

builder. To such extent, we’ll describe how the whole procedure applies to

the case of SLIPPER. We will follow the steps described by the pseudocode

in section 3.5.3 on page 78. In figure 3.6 on page 93 we show how different

configurations for the threshold are chosen, according to the value of EER,

until the termination condition is met. In particular, we considered a δ value

equal to 1e − 5, which is reached at the third training iteration. In the fig-

ure are also depicted the actual error rate ER and the estimated error rate

EER. The former is evaluated on the reference dataset, by using the refer-

ence labels. In such a way we are able to evaluate the estimation errors and

to justify the optimization strategies we employ.

Note that in the proposed example, during the first iteration we don’t choose

a single value for the threshold, since there are two possible values associated

to low and very similar values for EER. In particular, their ratio is over the

0.95 threshold fixed in Section 3.5.6 on page 86. It is also interesting to note

that the results provided by the proposed optimization procedure will actu-

ally lead to the best possible performance (i.e. the one obtained if the whole

tree would be searched).

In order to have a deeper insight on the above described process, in table 3.10

on the following page we report an example of how the bpa’s can be evalu-

ated starting form the weighted confusion matrix described in Section 3.5.5.

In particular, values in table 3.10 refers to the first training iteration of

SLIPPER and to the evaluation of the weighted confusion matrix in case of

SLIPPER being trained with the dataset labeled by the ensemble of B-IDS

and by considering a threshold τ = 0 (i.e., we consider the whole dataset).

By considering the results obtained by combining SLIPPER and the ensem-

ble of B-IDS, we are also able to obtain a much better labeling that the one

obtained by considering only the B-IDS’s alone. In order to better evaluate
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(a) Weighted confusion matrix ob-
tained for SLIPPER

tnRI=0.872 fpRI=0.000
fnRI=0.068 tpRI=0.400

(b) bpa’s evaluated starting from the values re-
ported in (a)

m({N}) m({A}) m({N,A})
A 0.068 0.400 0.532
N 0.872 0.000 0.128

Table 3.10: bpa’s assigned to SLIPPER. First training iteration, by using the whole
database (τ = 0).

such aspect, let us consider the results reported in table 3.11, where the value

0 for the parameter QI, ideally represents the correctly labeled dataset. In

such a table, we show also how the quality of the labeling increases along

the various S-IDS training iterations. At this point, we want to show how,

IDS Combination QI
Best B-IDS (SnortTM) 0.568

B-IDS only 0.130
B-IDS and SLIPPER (1st training iteration) 0.019
B-IDS and SLIPPER (2nd training iteration) 0.004
B-IDS and SLIPPER (3rd training iteration) 0.001

Table 3.11: Performance obtained by combining the chosen B-IDS with Slipper through
the iterative process

through the proposed labeling scheme, it is possible to obtain better train-

ing results than the ones obtained by the combination of the B-IDS alone.

This would both justify the increased complexity of the architecture result-

ing in increased requested computational power, coming from the insertion

of further classification modules, and the need for multiple iterations over the

same data, in order to improve the knowledge of the whole system about the

problem at hand. In order to do that, we refer to table 3.12 on the next page,

where we show the performance obtained by SLIPPER when it’s trained by

using the labels provided by the ensemble of B-IDS and the proposed archi-
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Figure 3.6: Results obtained by the proposed architecture at different training iterations.
The procedure described in Section 3.5.3 on page 78 is used for searching the configuration
leading to the lowest EER

tecture (first two rows). For the sake of comparison, also the results obtained

by training SLIPPER with different fractions of the dataset with the real la-

bels are reported (rows 3–6). In this case, the difference with respect to the

FA Rate MD Rate Err Rate

labels provided

by the bank τ = 0 0.141% 21.997% 0.176%
of B-IDS

labels provided

by the proposed τ = 0 0.035% 21.945% 0.070%
architecture

10% 0.045% 88.820% 0.190%
actual 20% 0.025% 79.407% 0.154%
labels 30% 0.004% 19.345% 0.036%

100% 0.013% 12.117% 0.032%

Table 3.12: SLIPPER performance as a function of the dataset used for training

ideal training set (i.e., the whole database with actual labels) in terms of er-

ror rate turned out surely acceptable (only 0.03% with a recognition rate of

99.9%), thus confirming our claims. Moreover, it has to be pointed out that

labels provided by our approach allow us to train a classifier that performs

better than the one trained with the 20% of the whole database with actual

labels, which anyhow exhibits an unacceptable missed detection rate.

We have also conducted a statistical significance analysis with the t-test, as

suggested in [55]. Within a significance threshold of 1%, the difference be-

tween results obtained by our approach and those obtained by considering
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the 20% of the whole database with actual labels resulted significant. This

is a very good result, since such a dataset is composed by over 230, 000 sam-

ples that have been labeled by hand, with a significant waste of time with

respect to an automatic labeling.

3.6.2 Key Findings on Data Collection

In this section we deal with the problem of collecting labeled packets, in order

to usefully train intrusion detection systems. We describe an architecture

based on the Dempster-Shafer theory which, by analyzing raw packets, is

able to assign labels to them. It is also able to point out how reliable each of

the labels is, thus allowing to choose only the packets which satisfy a certain

level of confidence. By training a supervised algorithm with data labeled in

this way, we show that it is possible to obtain results which are similar to

those obtained by using the actual class of all the packets. Different training

set sizes can be indeed obtained by setting a suitable threshold on the index

that represents an estimate of the accuracy of the packet labels provided

by the proposed method. So, we were also able to observe an interesting

tradeoff between the attainable performance and the size of the training set

used. The definition of suitable criteria for choosing the best threshold value

will be subject of future investigation.

As future developments, we deem it might be possible to extend the D-S

based architecture by including also semi-supervised classifiers; moreover,

we want to test the whole architecture on other traffic traces. Furthermore,

we think it’d be an interesting development to study the impact of the choice

of different weighting functions such as the ones described in section 3.5.4

on page 81. Of course, such function might impact both the accuracy of

the labeling and the computational resource demand involved in the whole

process.



Chapter 4

Multiple Classifier Systems for
Network Security

4.1 Combining Genetic-based Misuse and

Anomaly Detection

In this section we present a system exploiting genetic algorithms for deploy-

ing both a misuse-based and an anomaly-based classifier. Hence, by suitably

combining the results obtained by means of such techniques, we aim at at-

taining a highly reliable classification system, still with a significant degree of

new attack prediction ability. In order to improve classification reliability, we

introduce the concept of rejection: instead of emitting an unreliable verdict,

an ambiguous packet can be logged for further analysis. Tests of the pro-

posed system on a standard database for benchmarking intrusion detection

systems are also reported. In general, one of the main drawbacks occurring

when using pattern recognition techniques in real environments is the high

false alarm rate they often produce [43]. This is a very critical point in a real

environment, as pointed out in [6]. In order to realize an IDS that is capable

of detecting intrusion by keeping the number of false alarms as low as pos-

sible, here we propose a genetic-based system that tries to combine some of

the peculiarities of the misuse and of the anomaly detection approaches. In

particular, starting from the features proposed in [64], a genetic algorithm is

used to generate two distinct sets of rules. The first set is devoted to individ-
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uate normal traffic connections (as in an anomaly detection approach), while

the second one is suited for detecting specific attacks (following the misuse

detection paradigm). A packet is then classified as belonging to an attack if

it matches almost one of the rules of the second set and no one of the first

set. On the other hand, a packet is labeled as normal if it matches almost

one of the rules devoted to detecting normal traffic and no one of those gen-

erated for characterizing attacks. In all the other cases, the packet is rejected

by the system, since it cannot be correctly classified with an high reliability.

This permits to reduce the number of false alarms. Note that reject, in this

case, means that the data about a rejected packet are only logged for fur-

ther processing, without raising an alert for the system manager. It is worth

pointing out that other rule-based classifiers have been employed in an in-

trusion detection system (for example RIPPER [22], used by Lee and Stolfo

in [64]). However, they only follow either the misuse or anomaly detection

approach, thus giving rise to a false alarm rate that cannot be acceptable in

a typical real environment.

4.1.1 A Genetic Approach to Classification Rules Gen-

eration

As stated before, the proposed system is rule-based. Two sets of rules are

generated, each one devoted to individuate a specific class of traffic, which

in our case can be namely either attack or normal. In order to classify a new

packet, the results of the two rule-based classifiers are suitably combined by

means of a decision engine. In particular, if the feature vector describing a

packet and the connection it belongs to matches one of the rules related to

the normal traffic and does not match any of the rules related to the attack

class, it is attributed to the normal traffic class. Vice versa, if it matches at

least one rule describing attacks and no one of the rules describing normal

traffic, an alert is raised. In all the other cases, data about the connections

are just logged for further processing (see figure 4.1 on the next page). Each

set of rules is generated by means of a genetic algorithm based on a particular
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Figure 4.1: Genetic based Misuse and Anomaly detection

structure of the chromosomes. Such a structure was developed for suitably

representing the boundaries of the region of the n-dimensional space contain-

ing the feature vectors representing the network connection belonging to the

class the chromosome refers to. Each chromosome consists of n genes. Each

gene is associated to an element of the feature vector to be classified and is

composed by a pair of values, xiMIN
and xiMAX

. Such values represent, re-

spectively, the lower and the upper limit of an interval. If the values of all

the elements of the feature vector fall within the limits specified by the cor-

responding genes of a chromosome, this feature vector is attributed to the

class the chromosome refers to. The minimum value that xiMIN
can assume

is −∞, while the maximum value that xiMAX
can assume is +∞. The con-

version from a rule to a chromosome and vice versa is immediate since they

are simply two different ways to represent decision regions (see figure 4.2).

Thus, each chromosome represents a hyper-region in the n-dimensional fea-

ture space. The aim of the proposed algorithm is to identify the region which

the feature vectors belonging to a given class (normal or attack) lie into, that

is, to select the corresponding chromosomes. The first step consists in the

generation of an initial population of chromosomes, by assigning to each gene

pairs of pseudo-random values. The assigned values are randomly selected
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Figure 4.2: Structure of a Chromosome and Associated Rule

from the set of all the values assumed within the whole training set by the

corresponding elements, with the addition of the −∞ and +∞ values. The

constraint to be observed is that, for each gene, the value of xiMIN
cannot

be greater than the value of xiMAX
. After the computation of the fitness

value for each generated chromosome, the reproduction process starts. A hy-

brid method was designed for the selection of the parents. This method can

be considered as a binary selection double tournament with steady-state re-

placement. The algorithm randomly selects two pairs of chromosomes and,

within each pair, compares the fitness values. The fittest chromosomes of

each selected pair are selected for reproduction and their two children take

the place of the losing chromosomes. This technique promotes elitism. In

fact, the best chromosomes in each binary tournament are always winning

and never substituted. After each step of the reproduction only the new in-

dividuals’ fitness is recomputed and thereafter they are immediately ready

for the reproduction. By using such a mating strategy, it is possible to use a

promising individual for mating just as soon as it is created. The used fitness

function is:

(4.1) Fitness =
k1 ·

[(

elem
k3

)

+ neg + 1
]

k2 · pos + 1

where k1, k2 and k3 are three parameters whose optimal values were fixed

by an experimental investigation, pos and neg are respectively the number

of feature vectors belonging to the training set which are correctly classi-

fied by the rule associated to the chromosome, and the number of feature

vectors belonging to the same set which are misclassified, elem is the num-
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ber of elements of a feature vector which are not generalized to the value

ANY . We assume that an element is generalized to the value ANY when

the corresponding gene covers the whole set of real numbers, that is, when

xiMIN = −∞ and xiMAX = +∞. Lower fitness values correspond to bet-

ter chromosomes; therefore, in the comparison between two chromosomes,

the one with the lower fitness is chosen. We insert the number of elements

whose corresponding gene is not generalized to the value ANY in the fitness

function in order to favor less complicated rules. Having fixed the value of

all the other parameters, in fact, a rule with a simpler structure is associated

to a chromosome characterized by a smaller value of the elem parameter.

To obtain a behavior as independent as possible from the used training set,

we have adopted an uniform crossover strategy, described in figure 4.3. At

Figure 4.3: The Crossover Mechanism

each reproduction step, a mask made by a pair of values for each gene of the

chromosome is randomly generated. Each element of the mask contains the

value 1 or 0. When a mask element is 1, the corresponding gene in the first

chromosome is selected, and copied in place of the same gene of the first de-

scendant. If it is 0, the gene from the second chromosome is selected. The

second crossover is carried out using a mask obtained by complementing the

previous one. In other words, the second descendant will have all the re-

maining genes. It must be guaranteed that the condition xiMIN
≤ xiMAX

still

remains valid after the crossover phase. At the end of the crossover, the new
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chromosomes undergo the mutation process. A mutation mechanism with in-

cremental probability was proposed, in order to fully exploit the peculiarity

of both crossover and mutation. We initialize the mutation probability to a

very low value, then we progressively increase it during the genetic analysis.

This technique offers the advantage of fully exploiting the mutation capacity

of moving a suboptimal far from local maxima. Working as a perturbation,

mutation avoids the problems of a slow convergence and, even though in

a smaller measure, of a premature convergence. Once the convergence has

been reached, the obtained chromosomes are chosen and translated into a

rule. If the rule associated to such chromosomes is able to correctly classify

all the training set data, the process ends, otherwise it restarts and tries to

identify a new chromosome able to classify the feature vectors not covered

by the previously selected chromosome. At the end of the process, the set

of rules that describes the whole decision region is composed by all the rules

corresponding to the selected chromosomes.

4.1.2 Experimental Results

The proposed system has been tested on a subset of the database created

by DARPA in the framework of the 1998 Intrusion Detection Evaluation

Program. It is made up of a large number of network connections related

to normal and malicious traffic. This database was pre-processed at the

Columbia University giving rise to a feature vector of 41 elements for each

connection, according to the set of features defined in [64] and tailored for

the intrusion detection problem. Each connection in the database is labelled

as belonging to normal traffic or to an attack. It is worth noticing that the

attack class is made up of different variants, each one exploiting different

vulnerabilities of a computer network. The 1999 KDD intrusion detection

contest used a particular version of this dataset. Lincoln Labs set up an

environment to acquire nine weeks of raw TCP dump data for a local area

network (LAN) simulating a typical U.S. Air Force LAN. They operated the

LAN as if it was a true Air Force environment, and also injected multiple
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attacks in it. Even if this database has been collected in 1998, and some

criticisms have been expressed on it [75], it is still widely used for testing

the performance of an IDS [42, 68]. The results obtained by means of the

proposed system are reported in terms of

i) the overall error rate on the classified packets

ii) the false alarm rate and the missed detection rate on the classified

packets

iii) the reject rate

In the following we present the results obtained by our classification method

applied to two different network services (SMTP and HTTP) among those

present in the DARPA database. The choice of designing a different classi-

fier system for each service follows the so-called modular approach presented

in [43], where the authors experimentally demonstrate the advantage, in

terms of recognition performance, of an IDS that develops a different classifi-

cation module for each one of the network services to be protected. For each

service, a separate feature selection [81] process was performed in order to

reduce the data dimensionality. In particular, we have adopted a Sequential

Forward Selection strategy, with the Minimum Estimated Probability classi-

fication criterion. Moreover, different values of the parameters k1, k2 and k3

(see equation 4.1 on page 98) have been tested. The selected value has been

chosen in order to optimize the results on the training set.

SMTP Service

In this case the training data was made up of 9723 patterns related to dif-

ferent attack variants and to the normal class. The Test Set (TS) for this

service is made up of 3261 patterns with 3207 normal packets and 54 attack

packets. After the feature selection process, each packet was described by

a 6-dimensional feature vector. In particular, duration, flag, src bytes,

hot, count and dst src host same src features were selected (see [64] for
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Overall error False Alarm rate Missed Detection rate Reject rate
0.00% 0.00% 0.00% 9.12%

Table 4.1: Results obtained by the proposed system on the TS for the SMTP service

Overall error False Alarm rate Missed Detection rate Reject rate
0.08% 0.08% 0.06% 9.67%

Table 4.2: Results obtained by the proposed system on the TS for the HTTP service

details concerning their meanings). Table 4.1 shows the results achieved by

the proposed system on the raining set. These results have been obtained by

averaging ten different trials of the genetic algorithm for generating the two

sets of rules. As it is evident, we reach an ideal performance in terms of both

missed detections and false alarms on the connections classified by the sys-

tem. This excellent result is paid with about a 9% of reject rate. Moreover, it

is interesting to note that among the classified packets the proposed system

is able to correctly detect over the 96% of the attacks to the SMTP service.

This descends from the fact that an attack is usually spread over several pack-

ets, hence missing or rejecting an attack packet doens’t necessarily mean to

miss the whole attack it belongs to.

HTTP Service

The training data for this service in the DARPA database is made up of 64292

patterns. However, in [42] it has been demonstrated that a dataset of about

15% of the whole HTTP data is sufficient for training classifiers. Therefore,

only 8866 samples have been considered as training data. The test set for

this service is made up of 40442 patterns with 1195 attack packets and 39247

normal connections. After the feature selection process each connection was

described by a 6-dimensional feature vector, as stated in the previous section.

The selected features were the same of the SMTP service. Table 4.2 shows

the results achieved by the proposed system on the training set. Also in this

case, the results reported here have been averaged on ten different trials of the

genetic algorithm for generating the two sets of rules. In this case the system



A Behavior Knowledge Space for Network Traffic Classification 103

exhibits a quite negligible percentage of false alarms and missed detections.

On the other hand, it must be noted that among the classified packets, about

the 44% of attacks was detected. In order to make a comparison with other

systems, it can be noted that the multi-stage classification system proposed

in [2] achieved on the HTTP traffic a slightly higher false alarm rate (as much

as 0.09%), while the multiple classifier system proposed in [43] exhibited a

false alarm plus missed detection rate of 0.54%. This confirms that our

system is able to keep the number of false alarms low.

Key Findings

In this thesis we proposed a genetic-based system for intrusion detection. A

genetic algorithm is used for building two rule-based classifiers, a misuse-

based one and an anomaly-based one. By suitably combining their opinions

about each analyzed network connection, a decision engine improved the

ability of the system in avoiding detection errors. The proposed system

showed a very encouraging behavior from the detection capability point of

view. In particular, in case of the smtp service, we observe an error rate which

is equal to 0%. On the other hand, we have a not negligible number of rejected

packets. Therefore, as a future development of the proposed architecture,

we will work on the analysis of the rejected packets with slower but more

accurate algorithms, in order to further improve the detection capability of

the system.

4.2 A Behavior Knowledge Space for Net-

work Traffic Classification

Once a suitable labelled training database is available, we can apply super-

vised classification techniques to detect malicious activities in real network

traffic. In the following, we will present a multiple classifier system, which

is used to evaluate how effective the training is by means of the automati-

cally labelled database, obtained with the techniques described in chapter 3.



A Behavior Knowledge Space for Network Traffic Classification 104

Beside that, the system is also presented as a technique for improving classi-

fication reliability and reducing the overall number of errors. Conversely to

many multiple classifier systems, in [49] the authors proposed a combining

rule that does not require the independence of the base classifiers. The in-

dependence assumption, in fact, while on one side assures the best detection

improvement, is on the other side rarely verified [60]. Hence, it is often a lim-

iting factor in the practical applicability of the techniques which rely on it.

The BKS rule aims, obviously, at combining the decisions coming from mul-

tiple different classifiers. The information needed to combine them comes

from a knowledge space, previously built on the basis of a suitable training

set, containing patterns whose class is known a priori. Such a space records

the behavior of all the classifiers on the patterns contained in such a set,

hence it is called a Behavior Knowledge Space (BKS), and the combining

rule it uses is called the Behavior Knowledge Space rule. More in details, if

K base classifiers are used, the corresponding Behavior Knowledge Space is

a K-dimensional space where each dimension corresponds to the decision of

one out of the K base classifiers. Given a pattern x to be assigned to one out

of M possible classes, the group of classifiers can in theory provide up to MK

different decisions. By denoting with Dj(x) the decision of the j − th classi-

fier on the input pattern x, the array of decisions (D1(x), D2(x), . . . , DK(x))

constitutes one unit of the BKS, which is an element of the resulting vector

space. Each BKS unit U has a set of M associated counters, ei, i = 1 . . . , M ,

which work as accumulators. our case M is equal to 2, so the number of units

is 2K. The BKS combining rule operates in two phases: a learning phase

useful for knowledge modeling, and an operating phase for decision-making.

4.2.1 BKS Training

During the learning phase the BKS look-up table is built-up. During this

phase, the i − th accumulator tracks the number of occurrences of an in-

put pattern (D1(x), . . . , DK(x)) which are associated to the i-th class in the

training set. Each element xtr of the training set is classified by all the classi-
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fiers and the unit (called focal unit) selected by the the K t-uple of decisions

(D1(xtr), D2(xtr), . . . , DK(xtr)) of the base classifiers is activated. Let us de-

note this unit with FU(xtr). Let’s assume that the actual class C(xtr) for the

input pattern xtr is j; by adding one to the value of ej, FU(xtr) records that

one more input pattern belonging to the training set, and associated with

class j, has selected it as a focal unit. At the end of this phase, it is possible

to calculate the best representative class associated to each unit, say C(U).

To define what best means in this context, some criteria are available; we

chose to define the best representative class for each focal unit as the class

that exhibits the highest value of ei, according to [49], i.e.:

(4.2) C(U) = j where j = argmaxi ei

In other words, the class assigned to each focal unit corresponds to the one

which was most frequently assigned to it according to the patterns of the

training set.

4.2.2 BKS Operating Phase

In the operating mode, for each pattern xtest to be classified, the decisions

(D1(xtest), D2(xtest), . . . , DK(xtest)) of the classifiers are collected and the

corresponding focal unit FU(xtest) is selected. Then the class attributed to

xtest is the best representative class associated to such focal unit, according

to the criterion defined above, i.e.:

(4.3) C(xtest) = C(U) where U = FU(xtest)

Therefore:

(4.4) C(xtest) = C(FU(xtest))

A value can be calculated for the reliability of each response from the BKS;

in the following we will call such a value R(U). According to [49], where the

BKS was presented:

(4.5) R(U) =







ej

ek

if ej > 0

0 if ej = 0
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where k = argmaxi6=j ei. In other words, R(U) is the ratio between the

values associated to the first and the second most representative class of this

unit. If the value associated to the most representative class of a unit is

zero (i.e., the considered unit was never activated by the patterns belonging

to the training set), the reliability of this unit is set to zero. The value

of R(U) can be profitably used for choosing to reject a pattern instead of

running the risk of misclassifying it. It is worth noting, however, that other

methods [112] for evaluating the reliability of decisions coming from a BKS

have been proposed, based on the use of the confidence intervals (CI) [55].

Confidence intervals, when used in classification problems dealing with more

than one class, might help in deciding whether a class is more representative

than another class for a sample under exam, and how suitable the most

representative class is for representing the sample under exam with respect to

other classes. Generally speaking, CIs give an estimate of how many samples

of a distribution are likely to fall in an interval surrounding a particular

value of a parameter. In our case, in order to obtain a reliable classification,

confidence intervals related to the two most likely classes might not overlap.

Therefore, we introduce a parameter which takes into account the distance

between the boundaries of the confidence intervals related to the two most

likely classes, once a given focal unit U is activated. Such a distance is

indicated with ∆U and is evaluated by the formula (see also [55] for further

details):

(4.6) ∆U = Pj −



Pk + 1.96





√

Pj(1 − Pj)

NU

+

√

Pk(1 − Pk)

NU









where Pi is a measure of the probability that the actual class is i, and is

evaluated as:

Pi =
ei

∑M

l=1 el

and NU is the total number of patterns associated to a specific BKS unit U ,

i.e.

NU =

M
∑

l=1

el.
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The value 1.96 is related to the 95% CI, and is an easy and reasonable

approximation when N > 100 [55]. Note that the value of ∆U can be also

negative. Hence, the expression for the reliability function we use in the

following is:

(4.7) R(U) =

{

∆U if ∆U ≥ 0

0 otherwise

4.2.3 From BKS to t-BKS

Since in the analyzed domain the temporal sequence of the patterns to be

classified assumes a particular significance, the BKS can be improved by

the introduction of a temporal dimension. In such a case, the number of

units becomes MK·t, where t is the size of the considered temporal window.

Each unit, in fact, has to record a sequence of t outcomes for each of the

K classifiers. Hence, the units in the new behavior knowledge space will be

represented by arrays of size K · t. In operating mode, t successive decisions

for each classifier (relative to a sequence of t consecutive patterns) need to

be collected. Then, such K · t values will select a corresponding focal unit

in the BKS, whose best representative class will be associated to the pattern

under exam. The next pattern will be classified by shifting the temporal

window one sample forward, thus individuating a (possibly) different focal

unit. It is well known that a BKS based approach might suffer from the

curse of dimensionality of each unit, as the dimension of the BKS itself grows

exponentially with the unit size. Indeed, in our case, we observed that small

values of t are enough to improve the detection performance.

4.2.4 Algorithms for Improving Classification

By observing the proposed approach based on temporal information, it is

evident that the temporal window of size t does not only contain informa-

tion about the last t events occurred on the network, but also about all the

temporal windows of size t− 1, t− 2, . . . , 1, the value 1 corresponding to the
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original BKS proposal. Obviously, if t = 1, only decisions regarding the cur-

rent packet are taken into account. The choice for the value of the parameter

t is carried out according to the results obtained by analyzing the patterns

in the training set. In order to choose the optimal value of the temporal win-

dow, we use a training-test set different from the one used for building the

BKS lookup table. By running several tests, we choose the value of t which

allows the system to perform better on such a set according to a minimum

error criterion (min-err). According to the such a criterion, t is chosen as the

width of the temporal window generating the minimum number of errors on

the packets contained in the training-test set. The system proposed in [26],

which only uses the basic t-BKS idea, presents quite a high rejection rate,

though usually outperforming the best base classifier. Hence, we concentrate

on developing some algorithms aimed at exploiting temporal information at

its best and trying to reduce the number of rejections. Furthermore, by only

considering past base classifiers decisions, in case an attack packet is misclas-

sified, it is completely lost and the error is unrecoverable. A causal system

does not help in solving this problem; yet, anticausal analysis might work:

even in case of an attack packet misclassification, by observing the future

decisions of the base classifiers, it might be possible to correct the mistake

and detect the attack packets correctly. Thus, we decided to implement also

an anticausal algorithm, which not only takes past packets into account, but

also future packets.

In the following we will describe all the proposed algorithms.

Fixed Window Algorithm

When using the fixed window algorithm sketched in Figure 4.4 on the next

page, the value of t is chosen during the training phase in order to minimize

the number of errors on the training-test set. The size of the temporal window

remains fixed throughout the operating phase. The sample to be classified

corresponds to the newest packet in the sequence. Let K be the number

of base classifiers; each unit of the BKS will be an array of K · t elements.
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Only exact matches between the units found in the training set and those

associated to each sequence of packets in the test set allow the system to

classify such packets. In case no matching unit is found among the ones

derived from the training set, the packet is rejected, and eventually logged

for further analysis.

Figure 4.4: Fixed Window Algorithm

Biggest Matching Window Algorithm

Such an algorithm tries to exploit the whole information contained in a

temporal window of size t. Once the optimal value for t is chosen during

the training-test phase, according to the min-err strategy discussed in sec-

tion 4.2.4 on page 107, a further effort is made with respect to the Fixed Win-

dow algorithm, in order to find a matching unit in the BKS (see Fig. 4.5).

Assuming that we want to classify the most recent of the last t packets, t dif-

ferent logical BKS are built, each related to a size of the temporal window

belonging to the set 1, . . . , t. This is attained by deleting, at each step, the

oldest sample of the sequence. If no match is found within the t-BKS during

the operating phase, a new unit of length (t− 1) · K is computed, and com-

pared to the units present in the (t−1)-BKS. This procedure is iterated until

a match is found or until the size of the temporal window reaches the lower

bound of 2 without finding any matching unit. In such a case, the packet is

rejected.
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Figure 4.5: Biggest Matching Window Algorithm

Anti-Causal Algorithm

The Fixed Window algorithm is used for trying to classify a packet based

on the past events occurred. In case no matches were found, the packet is

not immediately rejected; instead, the Biggest Matching Window algorithm

is applied to a window of future events, thus making the analysis anti-causal

and introducing a delay in the delivery of the results. Indeed, in case of

non strict-real time analysis, if a suitably small size for the future window is

chosen, the drawbacks associated with the delay introduced by non-causality

would be tolerable with respect to the benefits obtained, in terms of less

rejected packets. The optimal values for the width of the past and future

window are once again chosen by analyzing the patterns in the training-test

set.
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Associate U to 
packet

Initialize R(U) to 
0

Evaluate Rt(U)

t > 1 ? R(U) > 0 ? Classify the 
packet

Reject the packet

Rt(U)
 > R(U) ?

Update R(U)

Decrease t

Figure 4.6: Exhaustive Search Algorithm

Exhaustive Search Algorithm

This algorithm aims not only at finding a suitable size t for the temporal

window, but also at finding the best value for t related to each sample, ac-

cording to a specified optimality criterion. In this section we will describe

the details of this algorithms, referring to the Confidence Interval (CI) eval-

uation method described by equation 4.7 on page 107 in order to evaluate

the reliability of each classification. The maximum value for t is fixed before

the operating phase of the algorithm. Once a unit is associated to the cur-

rent packet, it is checked against the whole set of i−BKS, i ∈ {1, 2, . . . , t}.

At each step we evaluate the CI associated to the first and the second most

representative class in the i − BKS for the examined unit, and assume it is

a measure of the reliability of the classification. Hence, we evaluate R(U)

(see eq. 4.7 on page 107) and associate such a value to the reliability of the

classification. In fact, the more the intervals associated to the first and the

second most representative class for a particular pattern are far apart, the

more the classification is reliable. When using this algorithm, we need more
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information with respect to the previous cases. Before the operating phase,

in fact, all the i − BKS, i ∈ {1, 2, . . . , t} must be always available. When

the analysis of each pattern begins, the value of the reliability function is ini-

tialized to zero; if it is still zero after all the sizes of the time window have

been considered, this reflects the absence of a suitable training pattern for

classification. In such a case, the packet is rejected (see Fig. 4.6). The re-

liability value is only updated in case of positive R(U). Such an algorithms

takes into account both the presence of suitable training patterns for classi-

fying each test pattern, and the classification reliability for choosing whether

to classify or to reject.

4.2.5 BKS and t-BKS Experimental Results

At the moment, we are running the initial tests aimed at proving the effec-

tiveness of the proposed system in detecting intrusions and rejecting as few

packets as possible. Our experimental setup consists of two base classifiers,

namely Slipper [23], a rule based classifier based on boosting, and a Learn-

ing Vector Quantization classifier.

The tests were performed on a dataset provided by the laboratories of the

Italian National Research Council (CNR1) [34]. We split the whole dataset,

which consists of approximatively 106 packets, into three parts, named Set0, Set1,

and Set2, respectively corresponding to 30%, 30% and 40% of the whole data

set. The training and training-test set are chosen among Set0 and Set1,

while Set2 will be always used as test set. In the following, for the sake of

brevity, we will just present the results attained with two values of t, selected

according the optimization criteria discussed in section 4.2.4: : we choose,

respectively, the value which minimizes the errors, and the value which mini-

mizes the number of rejected packets on the training set. In general, t ranges

from 2 to 7, in order to take into account the curse of BKS dimensionality.

The presented results were obtained by averaging the performance evalua-

tion attained on the same test set Set2, related to two different choices of

1CNR — Consiglio Nazionale delle Ricerche
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the training set to use:

• Test 1: Training set ≡ Set0; Training-Test set ≡ Set1

• Test 2: Training set ≡ Set1; Training-Test set ≡ Set0

The value of t is fixed during the training phase, by analyzing the patterns

contained in the training-test set, according to minimum error criterion. In

Table 4.3: Base Classifiers – Results obtained on the test set

Classifier Error Rate
Slipper 0.2017%
LVQ 0.6406%

Table 4.3 we present the error rate attained by each of the base classifiers.

By comparing such results with first row of Table 4.4 on the following page,

we observe that the BKS performs at least as well as the best of the base

classifiers.

Then, with respect to the results presented in Table 4.4 on the next page,

we show how such results change when using the t-BKS. Here, FW stands

for Fixed Window, AC stands for Anti Causal, BMW for Biggest Matching

Window and ES for Exhaustive Search. The numbers in the first column rep-

resent the values selected for t on the training-test set for each considered

algorithm.

Throughout Table 4.4 on the following page, the error rate always decreases

when using any of the proposed algorithms. When analyzing the column re-

porting the rejection rate, it is noteworthy that in the case of standard BKS

we have no rejected packets. This is due to the fact that, in our example,

t = 1, M = 2 and K = 2. Hence, there are only four possible units. In

such a case, a matching unit is always found during the test phase, but erro-

neous detection results might be generated. When introducing the temporal

dimension, we reduce the a-posteriori probability of error, by making occa-

sional matches with wrong units less likely to happen. Indeed, when using

the rejection option as defined in Section 4.2.4 on page 107, some of the er-

rors committed before fall into the number of rejected packets. It means
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that, when the system isn’t confident enough with its detection, it rejects

the packet instead of classifying it incorrectly. This is particularly true when

the FW algorithm is considered; by rejecting unreliable patterns this algo-

rithm attained the lowest error rate. On the other hand, the AC algorithm

is able to reduce the rejection rate with respect to the FW algorithm, almost

without affecting the error rate. Finally, it is worth noting that both BMW

and ES algorithms make further efforts for classifying packets, hence reduc-

ing the rejection rate to 0%. The latter algorithm is the one that attained

the best overall performance.

Table 4.4: Multiple Classifier Systems - Results obtained on the test set

Algorithm Error Rate Rejection Rate
BKS 0.2017% 0%

7-BKS/FW 0.1916% 0.2351%
7-BKS/BMW 0.1929% 0%
4-BKS/AC 0.1926% 0.1996%
6-BKS/ES 0.1926% 0%

4.3 An Overlay Network for Cooperative In-

trusion Detection

Network services and applications mandatorily impose to adapt the network

to new users’ needs through the development of innovative techniques for

traffic and resource engineering. Given the strict correlation between users’

behavior and network resources management, it becomes of paramount im-

portance to obtain users’ information in order to optimize network operation.

To assure this requirement, we propose a comprehensive approach, named

Behavioral Network Engineering, which aims at exploiting data about users’

behavior in order to effectively manage, secure and dimension the network.

Behavioral Network Engineering exploits information about both the user’s

behavior and the current network status in order to define the proper actions

to be performed onto the network. “Context” information and users’ pro-
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files together contribute to the extraction of the behavioral knowledge needed

to successfully build an autonomic security system. As stated in chapter 1,

network security systems, and in particular Intrusion Detection Systems,

represent the main networking application exploiting users’ behavioral infor-

mation in order to detect malicious activities ongoing in the network. The

architecture presented here, can be used to deploy multiple classifiers, whose

outcomes will be combined in the fashion described so far in this chapter.

An IDS needs to know what all users are doing, in order to effectively face

the threats carried out by the malicious ones. Moreover, this information

must also take into account the relationships among the sets of users sharing

common features, resources and purposes. Unfortunately, current real-time

intrusion detection systems do not adopt any user characterization includ-

ing such “inter-users” information. A Distributed Denial of Service attack,

for example, is generally realized through coordinating activities involving

actors which are widely distributed throughout the network. According to

this property, we claim that the detection of such attacks also requires the

knowledge of information regarding the “cooperation” among different net-

work entities. Such entities share the same “purpose” (i.e. the compromission

of either a service or a single host) and make use of the same resources (e.g.

those belonging to the network infrastructure) in order to fulfill their task.

For this reason, the set of hosts involved in a DDoS attack can be considered

as a “community”, whose members all strive for the same result. Thus, the

information about this community as a whole can also contribute to realize

a deeper knowledge, i.e. the behavioral information, needed to improve the

detection process. According to these considerations, for the proposed IDS

we have adopted a user behavior model which includes both single user and

community information. We propose to look at the network as a self-aware

and a self-healing environment. In such an environment, a distributed frame-

work for network protection, still complying with the inherently monolithic

IDS structure described in section 2.3.1 on page 35, and capable of provid-

ing a previously agreed upon protection level, is well suited. A distributed
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Figure 4.7: Behavioral Network Engineering for Intrusion Detection

system (figure 4.8) allows the separation of concerns among a well-defined

set of entities, each suited to deal with a particular aspect of the problem.

This on one hand simplifies the task of each involved entity, and on the other

Figure 4.8: Distributed network monitoring for intrusion detection

hand allows a deeper specialization of each module (which can thus be mod-

ified without necessarily affecting performance of the overall system). If we

assume that the network be aware of itself, security assurance might be re-

garded as a service inherently provided by network infrastructures. In such
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a scenario, a framework capable to deploy, both proactively and reactively,

on-demand security services is well suited. The IDS structure described so

far in this section relies on single entities, each performing just one of the pre-

scribed tasks. A distributed IDS, instead, would naturally adapt itself to a

much more context-aware deployment of the available resources, thus allow-

ing a more effective placement of the modules. We propose a system which,

by means of a grid-based infrastructure, dynamically deploys the entities in

charge of providing network security, based on the knowledge of the security

status of the network and its components (figure 4.9). In order to accomplish

Figure 4.9: Autonomic Intrusion Detection System

its task, the IDS might need several probes sniffing traffic in crucial points

of the network, and several classification nodes, each exploiting the best fit-

ting detection technique according to the system status and node location.

A broker entity is also needed, capable to instruct all the network nodes to

execute a specific application server together with the appropriate grid ser-

vices. Such a dynamically distributed system might, for instance, adapt itself

at the occurrence of a DOS attack, by appropriately placing intrusion detec-
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tion engines in the most critical nodes (i.e. the nodes along the attackers’

path) and by coordinating such nodes through a flexible signalling protocol

(e.g. a protocol for tracing back the attack). As far as intrusion detection is

concerned in this thesis, there exist four possible outcomes for a system at-

tempting to classify users’ behaviors. Indeed, besides the correct detection of

normal behavior or of an attack pattern, a classifier might mistake an attack

for normal behavior, thus resulting in a missed detection, or some normal op-

erations for an attack, thus generating a false alarm. The correctness of such

outcomes of a classifier is the main criterion for evaluating the effectiveness

of such instruments. Though mistaking the occurrence of an event for any

other event might seem equally harmful, regardless which class of events is

mistaken for which other class, not all errors are equally severe. In the con-

text of intrusion detection, missed detections have different importance than

false alarms, and tougher endeavors are needed for coping with the minimiza-

tion of the one out of such two parameters which is deemed to be the most

important. Unfortunately, there exists a well known trade off between false

alarms and missed detections, which can’t thus be minimized together. By

exploiting the natural capability of the aforesaid distributed framework, we

can try to decrease the number of classification errors by exploiting the de-

tection capabilities of several classifiers of different types, also using artificial

intelligence algorithms. While a single classifier can’t be too specialized in

solving each of the problems it faces, several smaller classifiers may be cho-

sen in order for each one of them to cope with a subset of the problem. This

allows us to reach a higher specialization degree, and to perform a better de-

tection on the few attack classes that a single classifier can discover within

the network traffic. Multiple classifier systems are widely used in intrusion

detection problems, and they usually perform better than systems based on

a single classifier, thus encouraging in the exploitation of such a technique.



Chapter 5

Conclusions

Classification theory, and multiple classifier systems, provide a good means

for tackling the network security problem. In this chapter we will provide

a brief summary of the work behind this thesis, and will draw some general

conclusions, by illustrating the key findings. Also, some open issues will be

pointed out, leading to directions for future works.

5.1 Our Contribution

The contribution of this thesis are of several types. We’ve projected sys-

tems for the purpose of intrusion detection, by starting from the definition

of general architectures. When it was necessary, we extended well known

theoretical frameworks, in order to improve and adapt them to the specific

application context. Algorithms have been defined and implemented, in or-

der to improve the performance of previously introduced techniques. We

developed a comprehensive framework, dealing with most of the aspects re-

lated to traffic classification and intrusion detection using supervised and

unsupervised classifiers, starting from data collection for the purpose of clas-

sifiers’ training, and ending with the definition of multiple classifier systems

virtually able to operate, by means of proper deployment and organization

strategies, in a real network scenario.

First of all, we defined a general reference model which allows us to use

classifiers for intrusion detection. The model has been implemented in an
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architecture, meant to operate in real time, whose performance were tested

against variable traffic rates [34]. Such an architecture can be used to extract

models, represented as feature vectors, from raw network traffic captured live

from the network.

The issue of data collection is challenging from both a scientific and a le-

gal perspective. Several limitations are imposed, by local governments, on

the access, the usage and distribution of network traffic traces. However,

sharing traffic traces within the research community can help in circulating

interesting results, benchmarking novel detection technique, and comparing

them against previously proposed traffic classification methods. The privacy

issue imposes several limitations on these otherwise useful aspects of com-

mon datasets sharing. That’s the main reason why we proposed a tool for

anonymizing network traffic traces, by carefully removing any sensible infor-

mation [69]. Raw traffic traces alone, though, are not always of great use for

the purpose of classification. When using supervised techniques, or for the

aim of benchmarking, all the data contained in the traces has to be correctly

labeled, in order to establish the ideal target performance for each classifier.

Unfortunately, the operation of labelling is usually long, and requires strong

human intervention. We proposed a system based on the Dempster-Shafer

combination rule, exploiting multiple different classification techniques, in or-

der to obtained a reliably labeled dataset, in an automated fashion, starting

from raw traffic traces, and with virtually very limited human intervention D-

S [35]. Due to the inherent uncertainty in labelling raw and unknown traffic

traces, we had to extend the formalism of the Dempster-Shafer theory in or-

der to define tools for evaluating the performance, in terms of both accuracy

and reliability, of the automated labelling process. The concept of confusion

matrix and the metrics used to evaluate error rates had to be redefined, and

techniques to evaluate the convergence or the termination of the automated

labelling process had to be introduced.

We’ve also discussed the opportunity to use multiple classifier systems for

intrusion detection in real network environments. A simple system based on
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majority voting has been introduced, combining genetic based classifiers [38].

We gave a definition of the security problem compatible with genetic algo-

rithms, defining chromosomes and mating techniques. We also introduced

the rejection option in order to reduce the number of errors. Furthermore,

a more complex system based on Behavior Knowledge Spaces has been pre-

sented. Such technique suffers from very well know drawbacks, regarding its

dimension and its difficulty in training. By suitable choice of the configura-

tion parameters, though, we were able to obtain satisfactory results. Also,

we extended the concept of BKS, adapting it to the context of network secu-

rity. Due to considerations about the high self-correlation in the time domain

of attack patterns, we introduced time as a further dimension in the space

defined by a BKS, thus defining what we called t-BKS [70]. By analyzing

time series of events, we were able to improve the classification performance

of the system, though this affected the number of rejected packets, due to

increased difficulty in matching long sequences of events. That’s why sev-

eral algorithms were presented and evaluated, which allowed us to reduce the

number of rejected packets, without affecting the number of errors. An archi-

tecture was presented, which can guide the deployment of multiple classifiers

in a network. Such architecture defines, based on certain deployment strate-

gies, a method for collecting information coming from multiple classifiers,

and combining such information about users’ behavior, in order to obtain a

better understanding of the security status of the monitored network.

5.2 Key Findings

The core of this thesis consists in the definition and employment of systems

based on multiple classifiers for intrusion detection. As to data collection,

the problem definition made labelling of traffic really blind. We assumed

to have no prior knowledge about the analyzed traffic trace, and aimed at

reliably associating labels to each packet. Furthermore, we also aimed at

reducing human intervention to the least possible degree. The possibility

to use multiple classifiers was somewhat suggested by the process of human
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learning. When collecting partially complete and partially reliable informa-

tion from multiple sources, or teachers, it is possible, by suitably combining

and elaborating it, to build a knowledge whose quality has improved with

respect to the one provided by the sources. We had to choose a combination

rule which didn’t require training, and had no relationships with the data.

Also, we had to cope with the limited knowledge about the distribution of

classes over the dataset. That’s why we needed a technique which allowed

us to characterize the base classifiers, rather than the properties of the data.

The reliability evaluation mechanism we introduced, proved us that not in

every case very reliably labelled, small training sets are better than large

but less reliably labelled ones, for supervised classifiers training. Very re-

liable labels only characterize small portion of the original raw trace, since

they are harder to obtain than less reliable labels. Hence, there is an in-

verse proportionality between reliability and percentage of raw packets that

can be labelled reliably enough. Under certain circumstances, the supervised

classifiers tested with the automatically labeled datasets performed better

when trained on large unreliable datasets, rather than small very reliable

ones. This can be summarized by saying that in some cases quantity is better

than quality. Multiple classifiers worked well also on real traffic classification.

Due to different constraints, we were allowed to use combination techniques

which require a training phase, such as BKS. In this case, the lack of the

independence requirement for the base classifiers really made the task of se-

lecting base classifiers easier. By considering temporal sequences of events

for attack detection, we showed how it’s possible to improve the detection

performance of a common BKS, which respectively performs at least as well

as the best of the base classifiers. Though the rejection rate is affected by the

higher complexity of time series analysis, by introducing suitable algorithms

which explore the time series of events in depth, we were able to compen-

sate such effect, obtaining overall satisfactory results and improvements in

performance.
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5.3 Open Issues and Future Works

The main objective we had in mind when developing the D-S based system

for traffic labeling, was to find a way to automatically do the tedious and

difficult job of reliably labelling a huge number of packets. Obviously, our

efforts for the future will aim at making the process even more effective, and

more reliable. That’s why we want to introduce, besides totally supervised

and totally unsupervised classifiers, some self-supervised classifiers. So far,

we have defined a method for automatically assigning the bpa of a supervised

classifier. Such a method relies on the definition of a cost function in the eval-

uation of the estimated number of errors. A thorough analysis of the effect of

different choices for such a function is still missing, and is needed in order to

be able to foresee the expected results, given a choice of base classifiers, and

of such a function. Also, a more extensive exploration of the available clas-

sifiers has to be performed. This could allow us to make choices, based on

well defined properties of the base classifiers and on the requirements of the

problem at hand. For the problem of multiple classifiers for attack detection

in a real network, we proposed some solutions. For them, once again, a the-

oretical framework for the wise choice of base classifiers is partially missing.

In the case of the t-BKS, we will work on the development of a theoretical

proof of the properties we evaluated by experiments. The algorithms for re-

ducing the number of rejections showed some interesting properties, which

deserve a formal explanation. We will also perform further experiments on

the anticausal version of the t-BKS, which could help in recovering from past

detection errors. Even more complex algorithms can be implemented, based

on refined time series analysis techniques. For example, algorithms such as

Viterbi’s for Trellis Coded Modulation could be used. Also, the D-S theory

used for offline traffic labelling, can be conveniently used for the purpose of

traffic classification. It can be interesting to use in case of problem charac-

terized by incomplete specification in terms of probability, which frequently

happens in attack detection. Last, but not least, all the presented propos-

als for solutions have been used in the field of network security. Actually, we
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proposed them with this specific application field in mind, but they could

be adapted to any other field, given a proper problem representation. The

definition of features for botnet detection was just an example, but it could

be challenging to define and test models for problems typical of completely

different areas in classification theory.
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