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• Che il Prof. Russo impari al più presto come si esegue correttamente uno stop

al calciotto;

xi



xii

• Che i pensieri che annebbiano la testa di Domenico svaniscano al più presto, al
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Introduction

Off-The-Shelf (OTS) items are technology or computer products, ready-made and

available for sale or license to the general public. Software OTS items (such as li-

braries, virtual machines or application servers) are nowadays starting to be widely

employed also in business, mission and safety critical scenarios: industries are look-

ing at them as an attractive way to reduce software development costs and time-to-

market. As a real-world example of this trend, it is possible to consider the roadmap

outlined by EuroControl for the European’s Air Traffic Management (ATM) and Air

Traffic Control (ATC) evolution. Unfortunately, whilst notably reducing develop-

ment efforts, the employment of OTS item poses several dependability-related issues.

Indeed:

1. OTS items often lack a proper evaluation of their dependability attributes;

2. Interactions between different items may have unpredictable effects which are

not easy to foresee.

Therefore, the impact of software defects on system dependability becomes even more

critical when OTS items are employed in system design. The use of such items intro-

duces additional problems. They may come with known development faults and may

contain unknown faults as well. Moreover, their specification may be incomplete or

event incorrect.

1
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Beyond “traditional” errors like exceptions and wrong computations, some devel-

opment faults affecting software can cause Software aging [2]. Software aging is a

phenomenon in which progressively accrued error conditions lead to either perfor-

mance degradation or transient failures or both. Examples are memory bloating and

leaking, unterminated threads, unreleased file-locks, data corruption, storage space

fragmentation, and accumulation of round-off errors.

Several recent studies showed that a large number of software systems, employed also

in business-critical or safety-critical scenarios [3, 4, 5, 6, 7], are affected by Software

Aging. The Patriot missile defense system employed during the First Gulf War, re-

sponsible for the Scud incident in Dhahran [8], is perhaps the most representative

example of critical system affected by software aging.

Although several approaches have already been proposed to study the development

of software aging phenomena [9, 10, 11, 12], there are still some open issues, espe-

cially in the field of OTS-based software systems. All measurement-based software

aging analyses consider aging introduced by long-running applications, such as web

servers and DBMS servers, as measured at the operating system level, neglecting the

contribution of intermediate layers, such as middleware, virtual machines, and, more

in general, third-party OTS items. These layers might worse resource exhaustion dy-

namics or become an additional source of aging. In order to develop a methodology

to analyze Software Aging in OTS-based systems two challenging issues arise:

1. New methods are needed to isolate the contribution of each inter-

mediate layer to aging trends, i.e., the one introduced by the presence of a

virtual machine from the one due to the application running on top of it.
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2. Since there is a strict relationship between workloads and aging

trends, it is crucial to investigate how these are affected by changes

in the applied workload. Although several work addressed the relationships

between workload and aging trends, the selection of workload parameters and

the assessment of their effect on aging trends have been partially addressed only

recently in [12] and [13].

In this dissertation we focus on Software Aging phenomena in OTS-based

system exploring the possibility of assessing a measurement-based method-

ology capable of characterize thoroughly the dependability of OTS items

from a Software Aging perspective.

By exploiting statistical techniques such as cluster analysis, principal component

analysis and multiple regression, the proposed methodology addresses the above men-

tioned issues, thus allowing to pinpoint software layers in which aging phenomena are

introduced, identify which workload parameters are more relevant to the development

of aging trends, and evaluate the relationships between workload parameters and ag-

ing trends.

This methodology has been adopted to characterize the development of aging phe-

nomena inside the Java Virtual Machine, which is a relevant example of the items

which may be employed in OTS-based system. Indeed: i) it provides a complete

virtualization of the underlying execution environment, ii) it is currently widely em-

ployed in a wide range of applications, including critical ones, and iii) there is a lack

of research about the characterization of the dependability of the JVM.

In this thesis we discuss the results of two experimental campaigns aimed at charac-

terize the dependability of the JVM from a software aging perspective. The former,
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extends results previously published in [14], addresses aging phenomena which develop

inside the JVM; on the other hand the latter takes into account aging phenomena

which develop in the interface between the JVM and the underlying OS; results ob-

tained from both the Windows and the Linux OS are compared.

The dissertation is organized as follows:

Chapter 1 provides the needed background on software faults and dependability

evaluation, focusing particularly on techniques and methodologies aimed at estimat-

ing software aging phenomena.

Previous relevant work dealing with the assessment of the dependability of OTS

items are discussed in chapter 2. In particular, as far as software aging analysis is

concerned, this chapter deeply discusses open research issues about software aging

analysis in OTS-based system and summarizes the contributions of this dissertation.

Chapter 3 presents a preliminary characterization of JVM failure behavior per-

formed analyzing failure reports extracted from publicly available Bug Databases.

Results discussed in this chapter extend the ones previously published in [15].

The proposed approach to evaluate Software Aging in OTS-based system is pre-

sented in Chapter 4. Moreover, in this chapter we discuss the result of a massive

experimental campaign performed on the Java Virtual Machine. Field data have

been collected using an ad-hoc developed monitoring tool, described in section 4.5.1,
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and more extensively in [16].

Chapter 5 describes the results of an experimental campaign aimed at estimating

Software Aging phenomena at the Operating Systems. In this chapter we compare

experimental results for both the Windows and the Linux Operating System.

The dissertation concludes with final remarks and the indication of the lesson

learned. In particular, as regards the JVM, we provide several hints to augment its

resilience to software aging phenomena.



“Chi se mette pe’ mare

adda sape’ primma nata’ ”

Who is going to sail

has to know how to swim first

Neapolitan Proverb

Chapter 1

Dependability Assessment
Techniques

People have become aware, often by bitter experience, that not only they must know
how much service a computer system can deliver, but also how often it actually de-
livers that intended level of service. Similar to other products, a computer system
becomes far less attractive if it frequently deviates from its nominal performance or
becomes totally unavailable.
Therefore there is a definite need to assess how long the system is capable to offer
the desired level of service, but also to assess how long the system, after an outage,
takes to recover back to its level of service. The above two concepts fit together into a
measure, the dependability, which describes the effect of outages on system efficiency.
This chapter first describes the concept of dependability toghether with its attributes,
then discusses development software faults, also know as software defects or simply
“bugs”. In particular they are classified according to their semantic and reproducibil-
ity.
In the latter part of the chapter, focus is on software dependability evaluation. Several
techniques for analyzing the dependability of software systems are discussed and com-
pared according to parameters such as cost of analysis, and level of detail of collected
data.

1.1 Basic Notions of Dependability

The first attempt to give a formal definition to the notion of dependability may be

traced back to 1960, when it was defined by as “the probability that a system will

6



1.1. Basic Notions of Dependability (Dependability Assessment Techniques)

operate when needed” [17]. The notion of reliance is totally absent in this definition:

in order to offer a correct service, a system has only to operate. A substantial effort

toward the definition of the basic concepts and terminology for computer systems

dependability dates back to 1979, when, during the IFIP 1 Working Conference on

Reliable Computing and Fault Tolerance, the concept of a technical committee on

Dependable Computing and Fault Tolerance was first formulated.

This technical committee, namely the IFIP 10.4 Working Group, was established in

1980 and held its first meeting on June 22,1981. A principal theme since the first

meeting has been the understanding and exposition of the fundamental concepts of

dependable computing. A synthesis of this work was presented at the 15th sym-

posium on fault-tolerant computing (FTCS) in 1985 [18], where computer system

dependability was defined as “the quality of the delivered service such that reliance

can justifiably be placed on this service”, thus introducing the concept of reliance in

the definition of dependability. This notion, together with its attributes and their def-

inition has changed over time. Continued intensive discussions led in 1992 to a book

[19], in which security was added as an attribute of dependability. More recently,

in a paper appeared on the IEEE transactions on dependable and secure computing

(TDSC) in 2004 [1], the notion of dependability was formulated as follows: “the abil-

ity to avoid service failures that are more frequent and more sever than acceptable”,

thus putting focus on the definition of service failure rather than on the justification

1International Federation for Information Processing
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of trust. Moreover, security has no more been characterized as a single attribute of

dependability.

Although in this thesis we will adhere to the notion of dependability given in [1],

several different definitions were given for the notion of dependability. ISO2, in 1992,

gave the following availability-oriented definition: “The collective term used to de-

scribe the availability performance and its influencing factors: reliability performance

and maintenance support performance”. This definition recalls the one given in 1984

by the international organization for telephony, the CCITT3, since availability is the

main concern for telephone systems. Another definition, closer to the one adopted

in this thesis has been given by the International Electrotechnical committee (IEC):

“The extent to which the system can be relied upon to perform exclusively and correctly

the system task(s) under operational and environmental conditions over a defined pe-

riod of time, or at a given instant of time”. The latter definition, like the one given

in 1985, puts emphasis on the concept of reliance.

The dependability concept is used in all stages of the life cycle of a computer system,

from the requirement stage, where it provides a customer orientation in developing

systems requirements, to the operational stage, in which dependability aids in se-

lecting effective measures for operator response to failure-related incidents. These

2ISO: International Standards Organization
3CCITT: Comité consultatif international téléphonique et télégraphique (International Telephone

and Telegraph Consultative Committee)
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measures allow to quantitatvely evaluate several aspects of system dependability; in-

deed rather then being a monolithic concept, dependability may be regarded as an

integrating concept that includes the following attributes:

• Availability: readiness for correct service;

• Reliability: continuity of correct service;

• Safety: absence of catastrophic consequences on the user(s) and the environ-

ment;

• Integrity: absence of improper system alterations;

• Maintainability: ability to undergo modifications and repairs.

1.1.1 Measures

Several measures have been defined in order to assess the dependability level of a

system. Some of these measures are enough general to be applied to every system,

and are based on few parameters which are widely used in order to characterize a

system from a dependability perspective. These parameters are:

• Mean Time To Failure MTTF: Mean interval of time between a system recovery

(or system start) and the occurrence of a failure.

• Mean Time To Repair MTTR: Mean time required to perform a repair. It
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time

Proper Service No Service or Inadequate Service

TTR TTF

TBF

Failure FailureRecovery

Figure 1.1: Relationships between Time-To-Failure, Time-To-Repair and Time-Between-
Failures

can be regarded also as the mean time between a failure and its consequent

recovery.

• Mean Time Between Failures MTBF: Mean interval of time between two

consequent failures. It can be described as the sum of MTTF and MTTR.

• Failure Rate: Describes the rate at which failures occurs. It is usually the

expected value of a random variable.

• Coverage: A value describing which percentage of system failures are covered

by fault tolerance mechanisms built into the system.

Figure 1.1 depicts the relationships between time to failure, time to recovery and time

between failures. As regards maintainability and safety attributes, MTTR is usually

used as an indicator to measure this attribute, whereas measures to quantify the

safety of a system are usually regulated by domain-specific standard.

Another interesting kind of measures used to quantify system dependability are Task

Completion metrics introduced by Trivedi in [20]. These metrics show the likelihood
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that a user will receive a correct service or, equivalently, the proportion of users who

receive adequate service.

Availability Measures

A system is said to be available at a the time t if it is able to provide a correct service

at that instant of time. System availability can therefore be expressed as the the

following A(t) function:

A(t) =

{

1 if proper service at t
0 otherwise

(1.1.1)

The measuring of the availability became important with the advent of time-sharing

systems. These systems brought with it an issue for the continuity of computer service

and thus minimizing system down time became a priority. Availability is a function

not only of how rarely a system fails but also of how soon it can be repaired upon

failure.

The Instantaneous Availability is the probability that a system is up at a give instant t,

and it therefore represent a single point of the A(t) function. The expected value of the

A(t) function is refereed as Steady State Availability and it may also be computed as

the total probability that the system is in an “up” state. Finally, Interval Availability

is defined as the fraction of time, elapsed from system start until t, in which the system

is up. If A(t) is a decreasing function of time, Interval Availability is higher than the

Instantaneous Availability since it is averaged over time. Moreover, both Interval

and Instantaneous Availability converge to the value of Steady-state Availability.
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Table 1.1: Availability classes and Annual Downtime

Class # Availability Annual Downtime
1 90% 36,5 days/year
2 99% 3,65 days/year
3 99,9% 8,76 hours/year
4 99,99% 52 minutes/year
5 99,999% 5 minutes/year
6 99,9999% 31 seconds/year
7 99,99999% 3 seconds/year

Given the value of MTTF and MTTR parameters, it is possible to compute the steady-

state availability as the ratio of these two parameters:

Ass =
MTTF

MTTF + MTTR
=

MTTF

MTBF
(1.1.2)

Downtime per year is a more intuitive way of understanding the availability. Table

1.1 depicts several availability classes and the corresponding downtime. Availability

classes are named after the number of nines in the annual system uptime percentage.

Reliability Measures

System reliability emphasizes the occurrence of undesirable events in the system.

Reliability is an essential feature in systems where no down time can be tolerated.

Although the MTTF and the Failure Rate are useful reliability indicators, the best

way to measure system availability is to use the Reliability Function. This function

represents the probability that an incident has not yet occurred since the beginning
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of current system operation. It is usually denoted as R(t):

R(t) = P (no failures in [0, t[ | correct service at t = 0) (1.1.3)

System unreliability, the cumulative distribution of the failure time is expressed as

F(t) = 1 - R(t).

Reliability was the only measure of interest to early designers of dependable computer

systems. Since reliability is a function of the mission duration T, mean time to failure

(MTTF) is often used as a single numeric indicator of system reliability. Another

widely adopted measure of reliability is the failure rate, that is, the frequency with

which a system fails. Failure rates can be expressed using any measure of time, but

hours is the most common unit in practice. The Failures In Time (FIT) rate of a

device is the number of failures that can be expected in one billion (109) hours of

operation. This term is used particularly by the semiconductor industry. Usually,

the failure rate of a system is not constant during all the system life-time, but it

follows the so-called bath-tube form, i.e., a system experiences a decreasing failure

rate when it is firstly deployed, due to infant-mortality failures, then it follows a

rather constant failure rate during the operational life, and, finally, it experiences an

increasing failure rate at the end of its life, due to wear-out failures.
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Task Completion Measures

Task completion measures indicate the likelihood that a task (or job or customer)

will be successfully completed. Since the task is the fundamental unit by which work

is carried out on a system, the likelihood of successful completion of a task gives

a precise assessment of user’s perception of system dependability. These measures

are very effective in situations where system usage can indeed be broken down into

individual tasks, such as a transaction processing system.

Unlike availability and reliability measures, which only take into account the systems

itself, task completion measures also include the nature of the task and their interac-

tion with the system. Therefore, these measures take not only into account incidents

with their occurrence rates and repair time, but also the effects of such incidents on

tasks. The effects are functions of aspects such as the incident profile, the length of

time of the task or the sensitivity of the task to interruptions.

Due to their task-dependent nature, it is not possible to express these measures with

a general form like availability and reliability measures. For each system different

task completion measures have to be defined.

1.1.2 Threats

There are several causes which may lead a system to deliver an incorrect service,

i.e., a service deviating from its function. Hardware faults and design errors are

just an example of the possible sources of failure. These causes, along with the
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manifestation of incorrect service, are recognized in the literature as dependability

threats, and are commonly categorized as failures, errors, and faults [1]. A failure

is an event that occurs when the delivered service deviates from correct service. A

service fails either because it does not comply with the functional specification, or

because this specification did not adequately describe the system function. A service

failure is a transition from correct service to incorrect service. The period of delivery

of incorrect service is a service outage. The transition from incorrect service to correct

service is a service recovery or repair. The deviation from correct service may assume

different forms that are called service failure modes and are ranked according to failure

severities. Examples of criteria for determining the classes of failure severities are:

1. for availability, the outage duration;

2. for safety, the possibility of human lives being endangered;

3. for integrity, the extent of the corruption of data and the ability to recover from

these corruptions.

As far as software systems are concerned, the CRASH scale 4 [21] represents an

example of user-centric failure severity classification for software systems. CRASH

is an acronym where each letter is representative of a different failure severity level.

Catastrophic failures (the failure is not contained within a single task, but other

4CRASH is the acronym for Catastrophic, Restart, Abort, Silent, Hindering. Each letter in the
acronym represent a different level for a software failure severity.
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tasks or the whole system crashed or hung) are the more severe, whereas Hindering

failures (the correct diagnosis of a trivial problem is made difficult or impossible by

an incorrect error code returned by the system) are the less severe.

An error can be regarded as the part of a system’s total state that may lead to a

failure. In other words, a failure occurs when the error causes the delivered service

to deviate from correct service. The adjudged or hypothesized cause of an error is

called a fault. Faults can be either internal or external of a system. Depending on

their nature, faults can be classified as:

• Development faults : include all the internal faults which originate during the

development phase of a system’s hardware and software.

• Physical faults : include all the internal faults due to physical hardware damages

or misbehaviors.

• Interaction faults: include all the external faults deriving from the interaction

of a system with the external environment.

[1] provides an exhaustive taxonomy of faults. All faults that may affect a system

during its life are classified according to eight basic viewpoints, leading to 31 elemen-

tary faults classes.

Dimension is one of the above mentioned viewpoints: faults can be divided into

Hardware Faults, which originate in hardware and Software Faults which affect
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External Fault

Internal 
Dormant Fault

Internal Fault

S
ervice

Interface

FailureActivation
Propagation

Error
Causation

Figure 1.2: Chain of threats

programs or data. Focus in this thesis is on software faults, which are deeply dis-

cussed in the following section.

Failures, errors, and faults are related each other in the form of a chain of threats

[1], as sketched in figure 1.2. A fault is active when it produces an error; otherwise, it

is dormant. An active fault is either i) an internal fault that was previously dormant

and that has been activated, or ii) an external fault. A failure occurs when an error

is propagated to the service interface and causes the service delivered by the system

to deviate from correct service. An error which does not lead the system to failure is

said to be a latent error. A failure of a system component causes an internal fault of

the system that contains such a component, or causes an external fault for the other

system(s) that receive service from the given system. The ability to identify the ac-

tivation pattern of a fault that has caused on or more errors is the fault activation

reproducibility.
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1.1.3 Means

Over the course of the past 50 years many means have been developed to attain the

various attributes of dependability. These means can be grouped into four major

categories [1]:

• Fault Prevention, to prevent the occurrence or introduction of faults. Fault

prevention is enforced during the design phase of a system, both for software

(e.g., information hiding, modularization, use of strongly-typed programming

languages) and hardware (e.g., design rules).

• Fault Tolerance, to avoid service failures in the presence of faults. It takes

place during the operational life of the system. A widely used method of achiev-

ing fault tolerance is redundancy, either temporal or spatial. Temporal redun-

dancy aims to re-establish proper operation by bringing the system in a error-

free state and by repeating the operation which caused the failure, while spatial

redundancy exploits the computation performed by multiple system’s replicas.

The former is adequate for transient faults, whereas the latter can be effective

only under the assumption that the replicas are not affected by the same per-

manent faults. Both temporal and spatial redundancy requires error detection

and recovery techniques to be in place: upon error detection (i.e., the ability to

identify that an error occurred in the system), a recovery action is performed.

Such a recovery can assume the form of rollback (the system is brought back to
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a saved state that existed prior the occurrence of the error; system state must be

periodically saved, via checkpointing techniques [22]), rollforward (the system

is brought to a new, error-free state), and compensation (a deep knowledge of

the erroneous state is available to enable error to be masked). Fault masking,

or simply masking, results from the systematic usage of compensation. The

measure of effectiveness of any given fault tolerance technique is called its cov-

erage, i.e, the percentage of the total number of failures that are successfully

recovered by the fault tolerance mean.

• Fault removal, to reduce the number and severity of faults. The removal

activity is usually performed during the verification and validation phases of

the system development, by means of testing and/or fault injection [23]. How-

ever, fault removal can also be done during the operational phase, in terms of

corrective and perfective maintenance.

• Fault forecasting, to estimate the present number, the future incidence, and

the likely consequences of faults. Fault forecasting is conducted by performing

an evaluation of the system behavior with respect to fault occurrence or ac-

tivation. Evaluation has two aspects: qualitative, or ordinal, evaluation, that

aims at identifying, classifying, and ranking the failure modes that would lead

to system failures; and quantitative, or probabilistic, evaluation, that aims to

evaluate in terms of probabilities the extent to which some of the attributes are
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satisfied; those attributes are then viewed as measures.

1.2 Software Faults

Among the 31 fault classes identified in [1], only 13 cope with software faults. A

detailed view of these software fault classes is reported in figure 1.3.

While 8 of these 13 classes deal with problems occurring at the operational stage,

Software Faults

Malicious Non-Malicious

Development Operational Development Operational

Deliberate Deliberate Deliberate DeliberateNON-Deliberate NON-Deliberate

Permanent Permanent Transient

Accident Incomp. Accident Incomp. Accident Incomp. Accident Incomp.

Transient Transient

TransientPermanent TransientPermanent

Permanent Permanent Permanent Permanent

Objective

Phase

Intent

Capability

Persistence

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13

Software DefectsIntrusions, Viruses User Mistakes

Figure 1.3: Classification of Software Faults according to Laprie and Avizienis [1]

either for user mistakes or attacks, the remaining 5 classes deal with faults introduced

in the development stage which can manifest their effect during system operation. As

remarked by figure 1.3, software defects are always permanent faults, since the fault
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lies in application’s source code.

These faults can be either malicious (logic bombs, trapdoors) or non-malicious. Usu-

ally the terms “software defect” and “bug” are used to refer to these kind of faults.

In this work, focus is on software defects. Several studies confirm that nowadays

the greatest percentage of system failures are due to these defects [24]. As stated in

[25] “Software failure is the nightmare of the Information Age”. Software defects are

more critical when Off-the-shelf (OTS) items are used in system design. The use of

such items introduces additional problems. They may come with known development

faults and may contain unknown faults as well. Moreover, their specification may be

incomplete or event incorrect. This problem is especially serious when legacy OTS

components are employed. Beyond “traditional” errors like exceptions and wrong

computations, some development faults affecting software can cause Software aging

[2]. Software aging is a phenomenon in which progressively accrued error conditions

lead to either performance degradation or transient failures or both. Examples are

memory bloating and leaking, unterminated threads, unreleased file-locks, data cor-

ruption, storage space fragmentation, and accumulation of round-off errors.

Software defects will be classified according to their semantics, following the Orthog-

onal Defect Classification (ODC), and to their reproducibility, distinguishing bugs

which exhibit a deterministic behavior from others which instead seem to be non-

deterministic.
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In the rest of this section, the term “software fault” will refer exclusively to faults

introduced in the development phase, either malicious or not malicious. Moreover we

will use either the terms “software defect” or “bug” to refer to software faults.

1.2.1 Orthogonal Defect Classification

Orthogonal Defect Classification (ODC) [26] has been presented in 1992. It brought

a scientific approach to measurement in a difficult area that, up to the early ’90s, was

based on ad hoc solutions suitable for a single product or a single line of products

or, even worse, demanded to opinion-based classifications. It may be regarded as

the first attempt to define a standardized methodology to classify software defects

and provide useful feedbacks to software developers. It represents a fundamental

milestone in the analysis of the dependability of software systems, since it provides

a method to describe each development software fault from a semantic perspective.

Software defects are grouped into orthogonal defect types thus avoiding confusion in

defect classification; defect type must also be simple, in that they should be obvious

for a programmer, and general, in that the should be applicable to every class of

software and to every stage of the software life cycle. In each case a distinction is

made between something missing and something incorrect. For instance, having a

missing function is something really different with respect to having an erroneous

function. In [26] the following defect types have been defined:

• Function - The fault affects significant capability, end-user interfaces, interface
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with hardware architecture or global data structures and should require a formal

design change. Usually these faults affect a considerable amount of code and

refer to capabilities either implemented incorrectly or not implemented at all.

• Interface - This defect type corresponds to errors in interacting with other

components, modules or device drivers, via macros, call statements, control

blocks or parameters lists.

• Assignment - The fault involves a few lines of code, such as the initialization

of control blocks or data structures. The assignment may be either missing or

wrongly implemented.

• Checking - This defect addresses program logic that has failed to properly val-

idate data and values before they are used. Examples are missing or incorrect

validation of parameters or data in conditional statements.

• Timing/Serialization - Missing or incorrect necessary serialization of shared

resources, wrong resources serialized or wrong serialization technique employed.

Examples are deadlocks or missed deadline in hard real time systems.

• Algorithm - This defect includes efficiency and correctness problems that af-

fect the task and can be fixed by (re)implementing an algorithm or local data

structure without the need for requesting a design change.
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• Build/package/merge - Describe errors that occur due to mistakes in library

systems, management of changes, or version control. Rather than being related

to the product under development, this defect type is mainly related to the

development process, since it affects tools used for software development such

as code versioning systems.

• Documentation - This defect type affects both publication and maintenance

notes. It has a significant meaning only in the early stages of software life cycle

(Specification and High Level Design)

Beyond Defect Types, Defect Triggers also have an important role in ODC. A Defect

trigger is a condition that allows a defect to be activated. Even if extensive testing

has been performed, a series of circumstances may allow a defect to surface after that

a software system has been deployed. Ideally, the defect trigger distribution exhibited

on the field should be similar to the distribution observed in the test environment:

significant discrepancies between the two identified potential problems in the system

test environment (e.g.: the test environment fails in assessing the robustness of the

components or system under test). The most used defect trigger categories are:

• Boundary Conditions - Software defects were triggered when the systems ran

in particularly critical conditions (e.g.: low memory).

• Bug Fix - The defect surfaced after another defect was corrected. This may
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happen either because the bug fixed allowed users to executed a previously

untested (and buggy) area of the system, because in the same component where

the bug was fixed there was another undiscovered bug, or because the fix was

not successfully, in that it caused another defects on the same (or on a different)

component.

• Recovery - The defect surfaced after the system recovered from a previous fail-

ure.

• Exception Handling - The defect surfaced after an unforeseen exception handling

path was executed.

• Timing - The defect emerged when particular timing conditions were met (e.g.:

the application was deployed on a system with a different thread scheduler).

• Workload - The defect surfaced only when particular workload condition were

met (e.g.: only after the number of concurrent requests to serve was higher than

a particular threshold).

Extensions to the original ODC classification

Although ODC provides an important basis to understand software faults, it relates

faults to the way they are corrected: in order to fully understand the nature of the

fault and its activation path it is necessary to extend the ODC classification taking

into account other factors, such as those related to language programming constructs
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being used.

Given that the same faults can be usually corrected in different ways, a closer look

into the exact nature of the faults is necessary for accurate fault emulation.

Madeira and Durães in [27] proposed a novel fault classification methodology extend-

ing the ODC classification. This classification used ODC as a first step; then, in a

second step, faults were grouped according to the nature of the defect, defined from

a building block programming perspective. For each ODC class, a software fault is

characterized by one programming language constructs that may be either missing,

wrong or superfluous (instead, in ODC, the cause of software defect can be an in-

correct or a missing construct); finally, in the third and last step, faults were further

refined and classified in specific types.

Since fault types provided by ODC are too broad, it may happen that several different

faults are encompassed by the same type and therefore classified in the same category,

even if the nature and the activation path of these is fault is totally different.

In order to provide a detailed classification of software faults, a set of fault types,

representative of the most common types of software faults, was identified. As an ex-

ample of such fault types it is possible to consider Missing function calls (MFC), which

is a particular kind algorithm fault in which a required function call is missing.Field

data collected in [27] reported more than 20% of faults belong to this category.
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1.2.2 Bohrbugs, Heisenbugs and Aging-related bugs

ODC classification and its extensions are very useful in order to classify a software

defects after it has been detected.

Unfortunately, detection and diagnosis of software faults often becomes a very hard

task: the main problem is the reproducibility of the software defect, that is the ability

to identify the activation pattern of fault that has caused one or more errors. Faults

whose activation is easily reproducible (e.g., through a debugger) are called solid or

hard faults; faults whose activation is not systematically reproducible are called elu-

sive or soft faults. They are intricate enough that their activation conditions depend

on complex combinations of the internal state and the external environment (i.e., the

set made by up other programs, services, libraries, virtual machines, middleware and

operating systems the applications interact with). The conditions which activate the

fault occur very rarely and can be very difficult to reproduce.

Software fault reproducibility was first discussed in [28]. In this paper, Jim Gray

claimed that the greater part of faults in the operational phase are transient just like

hardware faults: if the program state is reinitialized and the failed operation retried,

the operation will usually not fail the second time.

Industrial software products, usually, before reaching the operational phase (or being

placed on the market) undergo several steps aimed at removing each defect; among
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these steps it is possible to mention structured design, design review, quality assur-

ance, unit testing, component, integration testing, alpha and beta test. In this way,

the greatest part of “hard” software bugs, which are always activated on retry, can be

easily fixed. The residual bugs are rare cases, typically related to strange environmen-

tal conditions, limit conditions (e.g: out of storage, out of memory, buffer overflows,

etc.) or race conditions.

For these reasons the number of hard faults decreases over time (as depicted in figure
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Figure 1.4: Evolution over time and software life cycle phase of reproducible and non-
reproducible software faults

1.4, becoming negligible after a long period of production (although the release of a

new version of the same software often causes a burst in this curve). On the other

hand, the number of elusive faults increases with time: during the development phase
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this number is very low, since the system is yet under development; internal testing

phases (such as unit testing and alpha testing) are able to discover just a few elusive

faults, since the system under test runs always in the same environment; once the

system is delivered out of the production environment for beta testing, a consistent

number of elusive faults are reported, since the system runs in several different en-

vironments with workloads very different from the ones applied in the testing phase;

the number of elusive faults further increases once the system has been brought to

the operational phase, since it has to interact with even more different environments,

and, more important, the components (mainly Off-the-Shelf) which the software sys-

tem interacts with, change over time (new features, new versions, etc. etc.).

Gray named these two broad classes of faults respectively BohrBugs and Heisen-

Bugs.

Bohrbugs, which recall the Bohr atom model, are bugs that manifests reliably un-

der a well-defined set of conditions. Thus a bohrbug does not disappear or alter its

characteristics when it is activated. These include the easiest bugs to fix (where the

nature of the problem is obvious), but also bugs that are hard to find and to fix,

which remain in the software during the operational phase. A software system with

a Bohrbug is analogous to a faulty deterministic finite state machine.

Heisenbugs were named after the Heisenberg uncertainty principle, a quantum
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physics term which is commonly used to refer to the way in which observers af-

fect the measurements of the things that they are observing; they are computer bugs

that disappear or alter their characteristics when the software is debugged. A soft-

ware system with an Heisenbug is analogous to a faulty non-deterministic finite state

machine. One common example is a bug that occurs in a release-mode compile of a

program, but not when researched under debug-mode; another is a bug caused by a

race condition. One common reason for heisenbug-like behaviour is that executing a

program in debug mode often cleans memory before the program starts, and forces

variables onto stack locations, instead of keeping them in registers. Another reason

is that debuggers commonly provide watches or other user interfaces that cause code

(such as property accessors) to be executed, which can, in turn, change the state of

the program. Moreover, many heisenbugs are caused by uninitialized variables.

However, software developers and testers often encounter failures that cannot be

reproduced, since under seemingly exact conditions, the actions that a test case de-

scribes can sometimes, but not always, lead to a failure. Apparently this is a typical

heisenbug-like behavior. Instead these faults often have a different nature. There

may be a long delay between fault activation and final failure occurrence (because

several error state are traversed before the failure or because the fault progressively

accrues an abnormal condition until the system fails). Then it is difficult to iden-

tify the actions that actually caused the failure. Fault activation is just apparently
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non-deterministic: actually, there exist a particular exact condition under which the

fault is deterministically activated, but detecting this condition is so difficult that

the bug is label as non-deterministic. This usually happens with complex software

systems employing one or more Off-The-Shelf (OTS) items. Indeed, technical docu-

mentation and source code for these items is often incomplete or totally unavailable;

furthermore, interactions between an application and the employed OTS items may

lead to unpredictable effect not foreseen during development and testing of the OTS

item itself. In scientific literature these software defects are usually named Man-

delbugs(which name derives from the name of fractal innovator Benoit Mandelbrot)

[29]. Some authors use this term as a synonym for Heisenbugs, since they claim

that there is no way for a to distinguish a bug whose behavior appears chaotic and

a bug whose behavior is actually chaotic. However these two kinds of software faults

are somewhat different:

• A Heisenbug is a computer bug that disappears or alters its characteristics

when it is researched.

• A Mandelbug is a computer bug whose causes are so complex that its behavior

appears chaotic.

Summarizing, three different classes of computer bugs, depicted in figure 1.5, whose

edges are not sharply marked, were defined. Bohrbugs and Mandelbugs are de-

terministic, even if the latter are so complex that appear to be chaotic; on the other
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hand Heisenbugs are totally non-deterministic.

Often software systems running continuously for a long time tend to show a degraded

performance and an increased failure occurrence rate. This phenomenon is usually

called Software Aging [9]. Tracing back to the root cause of the failure (or of the de-

graded performance) is really hard and sometimes impossible. This happens because

these failures are caused by accrued error conditions, such as round-off errors, data

corruption or unreleased physical memory. Software defects which cause software

Bohrbugs Mandelbugs Heisenbugs

Aging-Related Bugs

Elusiveness

Figure 1.5: Categories of software faults and their elusiveness

aging phenomena are called Aging Related Bugs. A typical example of an aging

related bug is an unreleased memory region inside a program’s heap area: memory

allocated with new or malloc is never freed using delete or free. This kind of soft-

ware faults may be either environment-independent (i.e.: it occurs despite of the host

environment) or dependent on the environment (e.g.: a fault which is dependent on

the message arrival order). In the former case, the faults fall into the category of
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Mandelbugs, whereas in the latter case the faults fall into the category of Heisenbugs.

Actually, nothing prohibits aging related bugs to be also classified as Bohrbugs: for

instance, a missing delete statement is a clearly deterministic fault; however, assum-

ing that industrial software system undergo intensive testing before the production

stage, it is very unlikely that easily traceable defects are still in the product. There-

fore, deterministic aging related bugs in the operational phase should fall into the

Mandelbug category. Figure 1.5 depicts the placement of Aging Related Bugs with

regards to other bug categories.

1.2.3 Dealing with Software Development Faults

Figure 1.6 reports, for each of the above defined class of software faults, the tech-

niques which may be used to remove or tolerate the above mentioned faults. Except

Debugging, all the techniques are concerned with the operational phase. Bohrbugs are

easily reproducible and hence can be easily removed. These faults should have ideally

been removed during the debugging phase. If such faults remain in the operational

phase, then Design Diversity represents the best solution. In this way several appli-

cations providing the same functionality but using different design/implementations

are used to mask faults in individual implementations. Design diversity is also a

valuable solution in order to tolerate Mandelbugs: although they are so complex that

their behavior seem to be unpredictable, they are always deterministic and therefore

tolerated by design diversity just like bohrbugs.
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Software (OS, middleware, applications)
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Figure 1.6: Fault model for software components

Design diversity techniques [30] are redundancy techniques, where independently

developed versions of software are concurrently executed in order to augment the

reliability of the software system. N-version programming and Recovery Blocks are

representative examples of design diversity techniques. Different versions of the same

software are usually developed using different design methodologies, algorithms, com-

pilers and run-time systems. This means that reliability comes with a non-negligible

cost during. Moreover, a software driver is required to decide which version’s out-

come choose. This software is usually not replicated, thus becoming a single point

of failure for the whole systems. Furthermore, software developers, even the more

skilled, tend to make the same errors even if they are working on totally different
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algorithms (e.g.: errors in memory management). Therefore, although design diver-

sity techniques are a valuable solution to augment system reliability, they cannot be

considered as a panacea for software reliability.

Even mature software can be expected to incur in a Heisenbug, leading to intermittent

application failures. Simply retrying a failed operation, or if the application process

has crashed, restarting the process might resolve the problem. These solutions may

work not only in presence of Heisenbugs, but also in presence of Mandelbugs: given

their unpredictable behavior, retrying the same operation or restarting the whole ap-

plication the condition which triggered the failure may be removed.

Process pairs, introduced in [28], are a redundancy technique capable of tolerating

also Heisenbugs. There are several approaches to designing and implementing Process

Pairs, such as Locksteps and State, Automatic or Delta Checkpointing. Y.Y.Zhou and

others [31] implemented a checkpoint based rollback-recovery mechanisms based on

shadow processes capable of tolerating Heisenbugs by modifying the environment in

which the process executes before its recovery.

When coping with aging related bugs, debugging,design diversity and operation retry-

ing do not help. Aging related bugs are usually too difficult to discover through

debugging, where as design diversity will not avoid resource exhaustion. Moreover

retrying the operations will only accrue error conditions. Rebooting the application

or the whole system is the best way to free exhausted resources or reset accrued error
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conditions; in certain cases it is possible to restart only a single component of the

entire software system.

The estimation of the rate of resource exhaustion and consequently the expected time

of software failure has been the focus of research on Software rejuvenation techniques.

It has been shown [2] that periodically restarting a process, rebooting a node, or do-

ing a prediction-based rejuvenation based on the observed rate of resource exhaustion

may help prevent the software from crashing, and increment system availability.

1.3 Assessing the Dependability of Software Sys-

tems

In recent years, ensuring certain levels of availability and reliability has become one

of the more relevant tasks for software engineers and developers.

Answering to questions like “Is this system going to satisy all my business needs?”

or “does this software work for my organization?” is no more sufficient in order

to persuade a customer to choose a software product. People involved in software

development processes are even more forced to answer questions like “May I trust

operations computed by this software system?”, “How much time I can expect the

system to run before a failure occurs?”, or “If the system fails, how much should I

wait before it returns available?”.

Given the previous considerations about software faults, it is not possible to answer

these questions in a predictable way. On the other hand, people are not willing to
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invest their money in something they do not know how much it is reliable.

Therefore it becomes necessary to establish methods and techniques to evaluate how

much a software system, or a software component, can meet users’ requirements about

availability, safety, reliability, and security. In other words, it is necessary to establish

methods and technologies to assess and certify the dependability of software systems.

When talking about software dependability assessment, software and dependability

engineers usually have different point of views: the formers are mainly focused on

software testing and intend dependability as the likelihood the software is defect-free,

whereas the latter are mainly focused on the software system or component in the

operational phase, in order to:

• Derive an analytical model of the system, using techniques such as Markov

chains and Petri Nets, and compute the expected dependability level by solving

the model;

• Assess, through field-based measurement, the current dependability level achieved

by software system or by a particular software component;

• Measure the effectiveness of fault tolerance mechanisms, if present;

• Identify dependability bottlenecks in the system, i.e.: pathological conditions

under which the system is more failure-prone, or weak components negatively

affecting the dependability of the whole system.
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• By analyzing collected data or solving system models, encompass solutions to

improve the dependability of the system (e.g.: by rejuvenation policies, replica-

tion, checkpointing, etc.)

There are several approaches to assess the dependability of a software. Each of these

adopts a different methodology or technique to evaluate system dependability, al-

though other approaches uses more than one technique at the same time.

In last decades a number of techniques and methodologies to evaluate software de-

pendability ,described in section 1.4, have been proposed in scientific literature.

These techniques may be classified according to the criteria reported in table 1.2. For

each criterion reported in this table, we fix three possible levels: Low,Medium, and

High. The meaning of these levels for each specific criterion is reported in the third

column of table 1.2.

1.4 Dependability Assessment techniques

This section is focused on techniques and methodologies for evaluating and assessing

the dependability of software systems. Particular emphasis will be given to Software

Aging Analysis, which is the main topic of this thesis.

After describing the main features of these methodologies and techniques and some

relevant works in the respective fields, these will be compared using the classification

criteria reported in table 1.2. This comparison aims at giving a sort of guidance in the
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Table 1.2: Criteria for the classification of dependability assessment techniques and
methodologies ��� The analysis may be performed solving analytic models or using 

simulation tools. ������ A limited number of machines is required. Time required for 
evaluation is in the order of weeks��	� Several machines are required. Time required to perform the 
analysis is in the order of months.���
Only sinthetic measures, such as MTTF and MTTR, are returned������ Indicators about system dependability, such as MTTF are enriched 
with data such as information about failures and workload��	� Full details about the dependability behavior of single components 
or functions are given ��� The evaluation covers only a part of the whole system (e.g.: a single 
layer in a network stack)������ The evaluation covers each interface exposed by the system, but 
not its internal state (or viceversa)��	� The evaluation throughly covers each function or component of the 
system ��� Nothing, or very little, can be controlled (E.g.: the evaluation is 
performed on an already operational system)������ A few parameters can be controlled (E.g.: the number and size of e-
mails in evaluating the dependability of a mail servers)��	�
A consistent number of experiment parameters may be controlled

Cost

Detail

Coverage

Management

�� ��������� �� ��������������������� ��������� ������� �� �������� �������������������
 �������� �� �������������� ��� ��������������� �� ��� �����������������
!���� �� �������� ��������������� �������
"��� ��#����� ���������������� ����������$���� ���� �� �������� ���� �������� ����������

selection of the proper technique(s) and methodologie(s) to adopt when evaluating

the dependability of a software system.

1.4.1 Field Failure Data Analysis

The Field Failure Data Analysis (FFDA) of a computer system embraces all measurement-

based techniques which are performed in the operational phase of the system’s life

cycle. This analysis aims at measuring dependability attributes of the actual and de-

ployed system, under real workload conditions. By measuring it is meant to monitor

and record natural occurring errors and failures while the normal system operation.

In other words, the failing behavior is not forced or induced in the systems. The objec-

tive of a FFDA campaign mainly concerns the detailed characterization of the actual
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Figure 1.7: The FFDA methodology

dependability behavior of the operational system. More in detail, FFDA studies main

objectives can be summarized as the following:

• identification of the classes of errors/failures as they manifest in the field, along

with their relative severity and correlation among them. In other terms, FFDA

is useful to derive the actual failure model of an operational system;

• analysis of failure and recovery times statistical distributions;

• correlation between failures and system workload;

• modeling of the failing behavior and recovery mechanisms, if any;

• identification of the root causes of outages, and indication of dependability

bottlenecks;

• provision of figures useful to validate or to populate simulated failure models;

• derivation of general results which a crucial to guide research and development

of fault avoidance, masking and tolerance means.
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Although FFDA studies are useful for evaluating real systems, they are limited to

manifested failures, such as the ones that can be traced. In addition, the particular

conditions under which the system is observed can vary from an installation to an-

other, thus casting doubts on the statistical validity of the results. FFDA studies may

require a long period of observation of the target system, especially when the system

is robust and failure events are rare. FFDA studies usually account three consecutive

steps, as shown in figure 1.7: i) data logging and collection, where data are gathered

from the actual system, ii) data filtering and manipulation, concerning the extraction

of the information which are useful for the analysis, and iii) data analysis, that is the

derivation of the intended results from the manipulated data.

Data Logging

Common techniques for data logging and collection are failure reports and event

logging.

Failure reports may be human or machine-generated. The problem with human-

generated reports is that operators are responsible for the detection of the failure,

hence some failure may remain undetected. Moreover, the information contained in

the report can vary from one operator to another, depending on his experiences and

opinions. However, as it will be shown later in this section, studies based on failure

reports allowed researchers to build trustworthy software reliability growth models or

discovers bottlenecks in the dependability of software systems.
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Unlike failure reports, event logs are always machine-generated. Hence, from these

logs, it is possible to extract useful information about system failures. A limit of

event logging is that the detection of a failure event depends on whether or not the

application/system module logs that particular event.

Data Filtering and Manipulation

Data filtering and manipulation consist in analyzing collected data for correctness,

consistency, and completeness. This concerns the filtering of invalid data and the

coalescence of redundant or equivalent data. This is especially true when event logs

are used. Logs, indeed, contain many information which are not related to failure

events. In addition, events which are close in time may be representative of one sin-

gle failure events. They thus need to be coalesced into one failure event.

Filtering is used to reduce the amount of information to be stored, and to concentrate

the attention only on a significant set of data, thus simplifying the analysis process.

Coalescence techniques can be distinguished into temporal, spatial, and content-

based. Temporal coalescence, or tupling [32], exploits the heuristic of the tuple, i.e.,

a collection of events which are close in time. The heuristic is based on the observa-

tion that often more than one failure events are reported together, due to the same

underlying fault. Indeed, as the effects of the fault propagate through a system, hard-

ware and software detectors are triggered resulting in multiple events. Moreover, the

same fault may persist or repeat often over time. Spatial coalescence is used to relate
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events which occur close in time but on different nodes of the system under study.

It allows to identify failure propagations among nodes, resulting particularly useful

when targeting distributed systems. Finally, content-based coalescence groups several

events into one event by looking at the specific content of the events into the event log.

Data Analysis

The data analysis step consists in performing statistical analysis on the manipulated

data to identify trends and to evaluate quantitative dependability measures.

Failure classification is a first analysis step, which aims at categorizing all the ob-

served failures on the basis of their nature and/or location. In addition, descriptive

statistics can be derived from the data to analyze details such as the location of

faults, errors and failures, the severity of failures, the impact of the workload on

the system behavior. These statistics are used to quantify system dependability, by

means of the general measures described in section 1.1.1, or using more detailed mea-

sures like probability distributions (in particular the “time to failure” distribution)

or system-specific measures such as error propagation time and the distribution of

failures among the components of the system.

Relevant Works

Several FFDA studies have been proposed in the literature over the past three decades,

each of them addressing different systems, collecting data from different data sources,
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and proposing different results. The importance of FFDA studies of computer sys-

tems has been recognized since many years. The first seminal contributions date back

to the 70s with studies on the Chi/OS for the Univac [33], and CRAY-1 systems. The

research has then broadened its scope over the years addressing a wide set of systems

and pursuing several objectives. The 80s and the early 90s have been characterized

by FFDA studies on mainframe and multicomputer systems, such as the IBM 370

with the MVS OS [34], the DEC VAX [35], and Tandem systems [36]. In particular,

the latter work, written Jim Gray on the availability of Tandem Systems, pointed

out that software was responsible for the largest part of system failures. Therefore

FFDA studies shifted their focus on software, mainly operating systems, especially

Windows [37] and Unix/Linux [38]. At the same time, as the Internet increased in

popularity, many studies emerged, trying to assess the dependability of the network

of networks [39]

The present decade has witnessed an even broader spectrum of research, adding con-

tributions on virtual machines, applications, embedded systems, large-scale and par-

allel systems, and mobile distributed systems. Over the years, many objectives have

been pursued, from the mere statistical classification and modeling of failure events,

to the identification of trends and correlations, and the experimental evaluation of

malicious attacks.

44



1.4. Dependability Assessment techniques (Dependability Assessment Techniques)

1.4.2 Dependability Benchmarking

The idea of benchmarking dependability features of computer systems or computer

components has caught the attention of researchers in recent years, whereas in the

last two decades the term “benchmarking” has been usually referred to performance

benchmarking. Unfortunately the seek for pure peak performance also have caused

that, in many cases, the systems and configurations used to achieve the best perfor-

mance are very far from the systems that are actually used in practice. Since many

application have strict dependability requirements, it is compulsory to shift focus

from performance to the measurement of both performance and dependability.

Dependability benchmarking is a dependability evaluation technique based on fault-

injection [23]. Here faults are injected to evaluate dependability features of a compo-

nent or sub-system of the whole system rather than evaluating the coverage and the

effectiveness of fault-tolerance mechanisms.

A dependability benchmark can be defined as the specification of a standard procedure

to assess dependability related measures of a computer system or computer component

[40] ; unlike other evaluation techniques, is a reproducible and cost-effective way of

performing such a characterization, especially for comparative purposes. The idea of

benchmarking the dependability of a software system has been first proposed by D.P.

Siewiorek in 1997 [41], and evolved over years. More recently, the DBench project,
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financed under the European Union’s 6th Frame Program, has extended and stan-

dardized the dependability benchmarking process, defining the main dimensions that

are decisive for defining dependability benchmarks and the way experimentation can

be conducted in practice.

In order to perform a dependability benchmark on a software system (called Sys-

tem Under Benchmark (SUB)) the benchmark performer has first to choose: i) the

Benchmark Target (BT), that is the component or subsystem we are interested in

evaluating, and ii) the benchmark measurements, which can be classified according

to the following criteria:

1. Performance-related : These measures allow to evaluate system performance in

faulty conditions

2. Comprehensive: These measures characterize the system at the service delivery

level, taking into account all events impacting its behavior.

3. Specific: The measures evaluate robustness and or dependability of single fea-

tures or functions of the BT.

Figure 1.8, drawn from [40], depicts a typical dependability benchmarking scenario,

and highlights the most important components of a dependability benchmark. The

Benchmark Target (BT) is the component or subsystem which is the target of the
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Figure 1.8: Dependability Benchmarking Components

benchmark with respect to its application area and operating environment. Depend-

ability measure (i.e.: the results of the dependability benchmark) are taken on the

BT (by either direct on indirect measurement). In order to obtain representative data

from a dependability benchmark, it is important that the BT is not altered. Altering

the BT (either by injecting faults or by installing an invasive monitoring system) is

very likely to produce unreliable dependability measures, since the behavior of the

BT is different from the one it should exhibit in “normal” conditions.

The System Under Benchmarking (SUB) is the wider system which includes the

above described BT. For instance the SUB may be an Operating System while the

Benchmark Target may be a particular driver.

The Workload represents a typical operational profile applied to the SUB in order

to benchmark the dependability of the BT. Workload selection is a very important
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task for dependability benchmarking as well as for performance benchmarking. The

selected workload should be representative of real workloads applied to the SUB

and also portable, in case the benchmark is performed in order to compare different

benchmark targets. Determining the “optimal” workload for a specific benchmark

is basically impossible. Therefore benchmark performers can use industry-standard

benchmark applications used also for performance benchmarking. On the other hand,

assuming that workload parameters (or a part of them) are controllable, it is possible

to excite the SUB with different operational profiles, thus obtaining dependability

measures as a function of the applied workload.

The Faultload consists of a set of faults and exceptional conditions that are intended

to emulate the real threats the system would experience. Faults are applied to one

or more components of the SUB (different from the BT) which constitute the Fault

Injection Target (FIT). The reliability of the dependability measures carried out by

a dependability benchmark is strictly related with the representativeness of the se-

lected faultload. FFDA studies, discussed in the previous section, supply a consistent

amount of data about software faults for a wide range of software systems.

Relevant Works

Many scientific works on dependability benchmarking have been published in the last

years; in particular, many of these works have been published in the framework of

the DBench project [42]. Due to its characteristics, this dependability evaluation
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technique is particularly suitable for OTS items: indeed a considerable number of de-

pendability benchmarks has been performed on systems such as Operating Systems,

Database Managements System, or Transaction Processing System.

As regards Operating Systems, their dependability has been benchmarked with re-

spect to faulty drivers [43] and with respect to faults in applications [44, 45, 46]. In

the former case software faults are injected into a particular driver, according to a

“commonly observed” distribution of these faults, whereas in the latter case faults

are injected into the interface between the Operating System and the application, by

corrupting system call parameters

Moreover, the dependability of a number of server applications (DBMS, OLTP, HTTP,

. . . ) has been benchmarked [47, 48, 49]: software faults are usually injected directly

into OS system class. OS profilers are employed to select the System Calls in which

faults should be injected. Therefore the OS plays as the FIT and the server applica-

tion as the BT.

1.4.3 Robustness Testing

Robustness testing is a technique aimed at evaluating the robustness of a system, i.e.

the degree to which a system operates correctly in the presence of exceptional inputs

or stressful environmental conditions. This technique has been designed specifically

to improve robustness of OTS items. Unlike methodologies such as FFDA, it has
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not been designed to be performed on operational systems. Robustness testing may

be useful in order to i) evaluate the robustness of one or more OTS items before

integrating them into an existing software system or ii) evaluate the robustness of a

whole software system before moving it to the operational stage.

Robustness testing is sometimes confused with dependability benchmarking. Indeed

one of the faultload chosen for OS dependability benchmarking, discussed in one of

the final deliverables of the DBench project [42], was generated using Ballista [50],

which is probably the most famous robustness testing suite.

In this thesis, when talking about robustness testing, we will refer to Interface Ro-

bustness testing, which consists of bombarding the public interface(s) of the applica-

tion/system/API with valid and exceptional inputs. The success criteria is in most

cases: ”if it does not crash or hang, then it is robust”, hence no oracle is needed for

the testing. The CRASH scale, already discussed in section 1.1.2, is usually adopted

to describe robustness testing results.

Figure 1.9 depicts a typical robustness testing scenario. Once system interfaces to

test have been chosen, both valid and invalid inputs are selected according to the

expected behavior of the system (which can be retrieved from system specification or

API reference manuals). Invalid inputs may include boundary input values, excep-

tional input values, such as NULL values, or erroneous values (e.g.: an empty string

on the file name parameter of an fopen call). The behavior of the system is then
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Figure 1.9: A Robustness Testing Scenario

observed. If a failure occurs, this failure is classified according to a failure severity

scale (usually the CRASH scale).

Relevant Works

Even if the first paper on robustness testing dates back to 1993 [51], the first pa-

pers which actually applied the above described robustness testing technique were

published in 1997 [41, 21]. While the former presents the various features that are

desirable in a benchmark of system robustness and presents a novel approach to build

robustness benchmarks, the latter defines the CRASH scale and reports the results

of a robustness test which involved 5 different Unix-Based operating systems.

The paper presented in 1998 at the Fault-Tolerant Computing Symposium [52], fur-

ther extended the work presented the previous year, formalizing the methodology and

introducing the Ballista suite. [53] discusses a comparison between the robustness of
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different families of Operating Systems, namely Windows and Linux. This paper

presents a novel approach to define benchmarks which are portable across OTS item

with deeply different interfaces. Indeed, while previous work compared the robustness

of Operating System with a similar System Call Interface (Unix-based OSes), in this

work the robustness of several version of the Windows Operating System is compared

to Linux’s robustness, by identifying common groups of system calls and then analyz-

ing the robustness for each of these groups. Finally, more recently, robustness testing

moved from Operating Systems to other OTS items, such as the implementations of

CORBA-compliant Object Request Brokers [54].

1.4.4 Fault Emulation Through Error Injection

As discusses in 1.4.2, dependability benchmarking allows to evaluate the dependabil-

ity of a system or component by injecting faults in a different component (FIT).

However, it is often really difficult to inject software faults. It usually happens be-

cause there are too many point of injections, or too many possible faults to inject.

Chillarege et al. [55] showed that it is possible to directly inject the error caused by

such faults in the system. Given some field data about observed faults (described

according to ODC classification, described in section 1.2.1), errors are classified ac-

cording to application-specific criteria. Then faults are mapped onto real system

errors.

Field data help in selecting where inject the error and which kind of error should be
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injected. This methodology ensures that injected errors are representative of software

faults rather than hardware faults. This methodology allows to perform dependability

measurements in relatively short time, whereas classical measurement-based depend-

ability analysis would require longer periods. Differences between fault injection and

error injection were deeply investigated in [56].

1.4.5 Software Aging Analysis

As already mentioned in section 1.2.2 Software Aging can be defined as a continued

and growing degradation of software internal state during its operational life. These

problems lead to progressive performance degradation, occasionally causing system

lockout or crashing. Due to its cumulative property, it occurs more intensively in con-

tinuously running processes that are executed over a long period of time. Software

aging phenomena occur due to the activation of aging related bugs; typical examples

of these bugs are memory bloating and leaking, unreleased file locks, data corruption,

storage space fragmentation and accumulation of round-off errors.

The existence of software aging has been widely reported and observed. It has been

observed in AT&T billing applications as well as in their telecommunications switch-

ing software [6]; during the first gulf war, an aging-related bug in the Patriot missiles

software system caused a 55 meters errors in target trajectory calculation after 8

hours of execution [8]; software aging phenomena were also detected in the Apache

Web Server [4], even if it had a sort of built-in rejuvenation policy; software aging
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phenomena have been documented for a consistent number of operational software

systems. Moreover from an anecdotal point of view, it is well known that a consistent

number of systems progressively slow down until they have to be rebooted.

To counteract aging, a proactive approach to environment diversity has been pro-

posed in which the operational software is occasionally stopped and then restarted in

a “clean” internal state. This technique has been called Software Rejuvenation and

first proposed in 1995 by Huang et al. [2].

The dependability evaluation methodologies analyzed so far are not suitable when

coping with aging phenomena. All these methodologies, except FFDA, are injection-

based methodologies: a fault, an error, or an “exceptional” input value, is injected,

and the behavior of the system is then observed. Even if these techniques allow to

highlight the presence of Bohrbugs and Heisenbugs they are not able to discover the

presence of aging phenomena. On the other hand, FFDA, according to system log’s

detail level, once a failure has been observed, has the potential to address software

aging as a cause of that failure. However FFDA has not been specifically designed to

address software aging phenomena. The study of software aging phenomena requires

the assessment of the current health of the system, the estimation of the expected time

to system resource exhaustion (a measure often called Time to Exhaustion (TTE)),

and the determination of the optimal rejuvenation schedule.
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The study of software aging can be broadly classified into two approaches: the Ana-

lytic Modeling approach and the Measurement Based. The first assumes failure and

repair time distributions of a system and obtains optimal rejuvenation schedule to

maximize availability, or minimize loss probability or downtime cost. The Measure-

ment based approach applies statistical analysis to data collected from systems and

applies trend analysis or other techniques to determine a window of time over which to

perform rejuvenation in order to prevent unplanned outages. The rest of this section

is concerned with the discussion of these two approaches.

Analytic Modeling Approach

Analytic modeling generally deals with determining the optimal times to perform

software rejuvenation in operational software systems. The optimal rejuvenation

schedule is determined starting from analytical models and the accuracy of the de-

termined schedule is determined by the assumptions made in the model for capturing

aging.

Analytic models were first employed in order to prove that, when dealing with sys-

tems affected by software aging, software rejuvenation allows to reduce the cost due

to system downtime [2] and minimizing program completion time [57].

As regards the kind of failures considered, several papers take into account only fail-

ures causing total unavailability of the software [57, 58, 2],whereas in [59] a gradually

decreasing service rate is considered; a of model which takes into account both kinds
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of failures is reported in [5].

Different probabilistic distributions were also chosen for time-to-failure (TTF). Some

papers, such as [58] and [2], are restricted to an hypo-exponential distribution, whereas

other papers, such as [57] employs more general distributions for TTF, like the Weibull

distribution. However these TTF models are not able to capture the effect of load on

aging, as it has been done in [5] and [60].

Stochastic processes are always used to analytically modeling software systems. In [59]

a Markov Decision Process (MDP) is used to build a software rejuvenation model in

telecommunication system including the occurrence of buffer overflows.In [58] Markov

semi-ReGenerative Processes (MGRP), in conjunction with Stochastic Petri Nets

(SPN), are used to build a simple but general model for estimating the optimal re-

juvenation schedule in a software system. Petri Nets, in particular Stochastic Deter-

ministic Petri Nets (SDPN) are employed in [7], in order to build a model to analyze

the performability of cluster systems under varying workload. Non-homogeneous,

continuous time Markov Chains are instead used in [5]. Semi-Markovian Processes

have also been used to model proactive fault management in [60].

A common shortcoming with analytic modeling is that the accuracy of the derived

rejuvenation schedule deeply depends on the goodness of the model (i.e.: how good

the stochastic model used to represent the system approximates the real behavior of

the system) and on the accuracy of the parameters used to solve the model (e.g.:
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failure rate distribution expected value, probability of transition from the “steady”

state to the “degraded” state). Recently, Trivedi and Vaidyanathan in [61] addressed

this problem, by building a measurement-based semi-markovian model for system

workload, defining a set of workload states through cluster analysis, estimating TTE

for each considered resource and state using reward functions, and finally building

a semi-Markov availability model, based on field data rather than on assumptions

about system behavior.

Measurement-Based Approach

The basic idea of Measurement-based approaches is to directly monitor attributes

subject to software aging, trying to assess the current “health” of the system and

obtain predictions about possible impending failures due to resource exhaustion or

performance degradation.

A measurement-based software aging analysis performed on a set of Unix workstation

is reported in [9]. In this paper, a set of 9 Unix Workstations has been monitored for

53 days using an SNMP-based monitoring tool. During the observation period, 33%

of reported outages were due to resource exhaustion, highlighting how much software

aging is a non-negligible source of failures in software systems. The aging analysis

was performed using the Mann-Kendall statistic test to reject the null hypothesis of

no trend in data, and the non-parametric Sen’s algorithm [62] to perform slope esti-

mation. Reported result showed that for all the considered workstations, free memory
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and swap space showed the highest aging trends. However, different machines showed

consistent differences in TTE for the same resources, thus highlighting the need to

take into account the applied workload when studying software aging phenomena.

An interesting workload based software aging analysis can be found in [10]. This pa-

per presents the results of an analysis conducted on the same set of Unix workstation

of the previous paper which takes into account also some workload parameters, such

as the number of CPU context switches and the number of system call invocations.

The approach adopted in this paper is slightly different from the one adopted in the

previous paper. Different workload state are first identified through statistical cluster

analysis; then a state-space model is built determining sojourn time distributions,

i.e.: the statistical distribution of the time spent in each workload state; a reward

function, based on the resource exhaustion rate for each workload state, is then de-

fined for the model. By solving the model, authors obtained resource depletion trends

and TTE for each considered resource in each workload state. Results of this analysis

confirmed that, given a particular resource, on different workstations it exhibited sim-

ilar depletion trends in the same workload state, thus confirming the validity of the

approach. The methodology presented in this paper allows to perform a workload-

driven characterization of aging phenomena, which more useful and powerful than

the workload-independent characterization presented in [9].

An interesting measurement-based approach to software rejuvenation based on a
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closed-loop design, is presented in [63]. As for many papers on software aging and

rejuvenation, free physical memory is the monitored resource. A supervisor process

monitors the real process and automatically performs rejuvenation actions whenever

free physical memory goes below fixed thresholds. Two rejuvenation levels are im-

plemented into the supervisor: system level, which implies a complete reboot of the

whole software system, and service level, which instead allows to restart only a single

service.

Although a consistent number of measurement-based analysis deal with resource ex-

haustion, only a few of them deal with performance degradation. Software aging

which manifests as a progressive loss of performance has been deeply studied for

OLTP servers [64] and for the Apache Web Server [65, 4].

In [64], Gross et al. applied pattern recognition methods to detect aging phenomena

in shared memory pool latch contention in large OLTP servers. Results of this work

showed that these methods allowed to detect significant deviations from “standard”

behavior with a 2 hours early warning.

On the other hand in [65, 4], Trivedi et al., analyzed performance degradation in

the Apache Web Server by sampling web server’s response time to predefined HTTP

requests at fixed intervals. Collected data were analyzed using the same techniques

employed in [9]. Results showed a 0.061 ms/hr degradation for response time in the

Apache Web Server, and a 8.377 Kb/hr depletion trend for physical memory. Used
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swap space, on the other hand, showed a seasonal patterns, as a direct consequence of

rejuvenation mechanisms built-in in the Apache web Server. Extending trend detec-

tion and estimation techniques used for the previous resources, authors determined a

7.714 Kb/hr depletion trend for used swap space.

Software Aging in a SOAP-based server was analyzed in [66]. A SOAP-based web

server running on top of a Java Virtual Machine, has been stressed with different

workload distribution. For each considered distribution, throughput loss and mem-

ory depletion was graphically observed, thus proving the presence of software aging,

even if it is not clearly understandable whether aging phenomena are due to the

SOAP server or to the underlying virtual machine.

An analysis addressing the impact of workload parameters on aging trends has been

presented in [12]. In this paper, the memory consumed by an Apache Web Server

was observed together with three controllable workload parameters: Page Size,Page

Type (dynamic or static), and Request Rate. Applying the Design Of Experiments

(DOE) technique, several experiments have been performed with different level of the

three workload parameters; effects of single and combined workload parameters on

the output variable (memory used) have been evaluated through Analysis of Variance

(ANOVA) methods. A closed-loop software rejuvenation agent has then been imple-

mented.

Finally, in [13], Malek et al., propose a best practice guide for building empirical
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models to forecast resource exhaustion. This best practice guide addresses the selec-

tion of both resource and workload variables, the construction of an empirical system

model, and the sensitivity analysis.

1.5 Comparison

This section is intended to provide a qualitative comparison of the dependability

evaluation techniques and methodologies discussed in this chapter. The comparison

is performed along the dimension described in section 1.3.

The main goal of such comparison is to provide a simple and intuitive framework for

the choice of the right methodologies and techniques to assess the dependability of a

software system, according to dependability requirements and other constraints such

as the cost of the analysis and the time available to perform it. In the rest of this

section, we will first classify dependability evaluation techniques and methodologies

on single dimensions; then we will classify these techniques and methodologies in the

following 2-dimensions spaces:

1) Cost vs. Detail;

2) Cost vs. Management;

3) Detail vs. Coverage.
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1.5.1 The Cost Dimension

Among the discussed evaluation techniques and methodologies, Robustness Testing

and Dependability Benchmarking require a low effort in order to be performed. In

particular, Robustness Testing appear to be cheaper than Dependability Benchmark-

ing, since it does not require to define fault injection profiles and implement tools for

fault injection. The time required to perform such evaluations depends on the num-

ber of defined injection profiles or on the number of functions exposed on component

interfaces to test, but is generally very little when compared with the time required

to perform a FFDA or a Software Aging analysis.

On the other hand, FFDA appears to be the most expensive technique, since it gen-

erally requires a long period of observations. In particular, when coping with systems

which have a relatively high time to failures, several months or years of observation

may be required to obtain enough data to characterize system’s failure behavior. Soft-

ware Aging Analysis, instead, may be performed in lower times since an observation

period ranging from 5 to 50 days allow to characterize faithfully resource depletion

and performance degradation dynamics.

Finally, Error Injection cost should be placed in the middle of our evaluation scale,

since while on the one hand it makes injection experiments easier, on the other hand

it requires a non-negligible amount of field data in order to map real faults on injected

errors.
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1.5.2 The Detail Dimension

Although the level of detail reached by a dependability evaluation is usually depen-

dent on the quality and effectiveness of the monitoring and analysis tools employed,

and therefore it has an impact also on the cost of the evaluation, in this section the

level of detail achieved with the various dependability evaluation techniques discussed

in this chapter will be compared based on the experience made with scientific litera-

ture.

Injection based techniques such as Dependability Benchmarking and Error Injection

usually achieve a Medium level of detail: once the injection campaign has been con-

ducted, results are capable of giving a complete picture of the weaknesses of the

component under test, without giving a detailed description of such weaknesses. Ro-

bustness Testing instead reaches an higher detail level, since it maps software failures

to erroneous input values supplied, thus allowing to infer some information about the

dependability behavior of the component under test, even if its internal details are

not known.

Theoretically there is no lower or upper limit on the detail level of FFDAs : it depends

on many parameters related to system monitoring, data filtering and data analysis.

For instance, an FFDA for the JVM may achieve an higher level of detail if thread

stack traces are periodically collected, whereas a very low detail level is achieved if

only crash dumps are collected, since information contained in crash dump is often
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not sufficient to assess the root cause of a failure.

Finally, the level of detailed achieved by Software Aging Analysis varies from Low to

Medium: analyses taking into account only system resources achieve a very low detail

level, whereas analyses taking into account also the impact of the workload on aging

trend may reach higher level of details. However, this kind of analysis is not usually

capable of pinpoint the root cause of the aging phenomena, i.e.: the aging related

bug.

1.5.3 The Coverage Dimension

As far coverage is concerned, dependability evaluation techniques which monitor the

system during its operational phase achieve higher levels of coverage. Therefore one

can expect FFDA and Software Aging Analysis to be the best dependability evalua-

tion techniques from a coverage perspective.

Instead, coverage levels of Dependability Benchmarks are quite lower. Indeed, De-

pendability Benchmarks are usually designed to test a single feature or component

of a software system (e.g.: benchmarking the dependability of Linux against faulty

drivers). The same consideration apply also to Error Injection: in this case the cov-

erage is worsened by the fact that there is no real fault injected, but errors which are

representative of real faults.

Further on lower levels of coverage are achieved by Robustness Testing, which is lim-

ited only to the interfaces of the system or component under test and does not take
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into account its internal state.

1.5.4 The Management Dimension

The last dimension considered in this comparison is the capability, offered by the

various techniques and methodologies described in this chapter, to be managed by

people who want to assess the dependability of a system. Clearly, techniques dealing

with pre-deployment phases, such as Robustness Testing and Dependability Bench-

marking, achieve the highest levels in terms of manageability of experiments. A good

level of manageability is achieved also by Error Injection.

On the other hand, techniques concerned with the operational phases achieve lower

level of manageability. In particular, little or nothing can be done with FFDA, expect

for imposing ad-hoc generated artificial workloads. Software Aging Analysis experi-

ments are a little more manageable, since it is possible to employ techniques such as

Design Of Experiments in order to extract useful insights about the relationships be-

tween aging trends and workload. DOE has been used in [12] and a similar approach

is proposed in the fourth chapter of this thesis.

1.5.5 Cost versus Detail

As depicted in figure 1.10, injection-based techniques show a good trade-off between

cost and detail. In particular, Robustness Testing is capable of giving the higher level

of detail with the lower cost, whereas Error Injection has slightly higher costs with a
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Figure 1.10: Comparison of cost and detail of different dependability evaluation techniques
and methodologies

lower level of detail.

As far as FFDA is concerned, its costs are generally high. However the achieved

level of detail may be very high, even if an increasing detail level is associated with an

increasing cost. Software aging analyses usually allow to achieve a Low or Medium

detail level with a Medium cost.

Summarizing, if there is no concern about Coverage and there are some restrictions

on Cost, injection-based techniques are the most suitable dependability evaluation

techniques.
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Figure 1.11: Comparison of cost and management of different dependability evaluation
techniques and methodologies

1.5.6 Cost versus Management

When considering Management against cost, FFDA becomes the worst possible choice

(as depicted in figure 1.11), since it has a very Low management capability in spite

of an high cost. On the other hand, Software Aging Analysis achieves acceptable

management capabilities. Again, injection-based techniques are the most manageable

ones.

Summarizing, when it is required to manage dependability evaluation experiments,

FFDA has to be discarded; instead it is still possible to keep an acceptable level of

manageability in software aging studies; injection-based techniques achieve the best

trade-off between cost and management.
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1.5.7 Detail versus Coverage

In this case, showed in figure 1.12 injection-based techniques do not exhibit a good

trade-off, since they achieve a very low coverage. For instance, given a component

whose dependability has to be evaluated, Robustness Testing measures only depend-

ability of a part of the interfaces exposed by such exponent, without taking into

account at all its internal state: in general it is not possible to think that the out-

come of a function exposed by an interface is independent by the internal state of the

component.

In contrast, FFDA and Software Aging Analysis showed better trade offs. In partic-

ular FFDA ranges from a low detail level with a medium coverage to a high detail

level with a high coverage. Similarly, coverage Software Aging Analysis is above the

average as well as its detail level. Its coverage is lower than FFDA’s one, since this

kind of analysis is aimed at detecting only a particular type of software pathological

behavior, whereas FFDA is aimed at determining all the failures modes of a software

system.

Summarizing, when there is concern about coverage and there are no budget or time

restrictions, it is better to avoid using injection based techniques, and switch to

deeper, longer, kinds of evaluations, such as Software Aging Analysis and FFDA.
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Figure 1.12: Comparison of coverage and detail of different dependability evaluation tech-
niques and methodologies
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Neapolitan ProverbChapter 2

Thesis Contributions

This chapter describes previous relevant work dealing with the assessment of the
dependability of OTS items (a generalization of the more common term “COTS”,
Commercial Off-The-Shelf, which refers to any code that is not developed specifically
for a new system).
OTS items are software components ready-made, and available for sale or license to
the general public,and integrable into larger software systems. These items are widely
employed in today’s software systems. Moreover, they are starting to be employed also
in business critical, mission-critical, and safety-critical software systems.
Many papers deal with the dependability of OTS items, using the techniques and
methodologies described in the previous chapter. However, scientific literature cur-
rently lacks a “standard” approach to evaluate the dependability of an OTS item.
The goal of this thesis is to propose a general approach to evaluate the dependability,
from a software aging perspective, of a software system employing one or more OTS
items. In this chapter we first discuss some examples of dependability evaluation of
OTS items, pointing out the lack in scientific literature of a general approach to eval-
uate software aging in OTS items. Then we will introduce the Java Virtual Machine,
which will be used as a case study throughout the thesis. In particular, we will de-
scribe its architecture and discuss previous relevant work dealing with its dependability
issues.
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2.1 Evaluating the dependability of OTS items

Among the various kinds of OTS items, dependability issues have been deeply studied

for Operating Systems, but also for Database Management Systems and transaction-

based server systems. More recently, the range of OTS items whose dependability

has been studied, has widely broadened, including Web Servers, File Servers, Network

Protocol Stacks, etc. etc.

Operating Systems

M. Kaâniche and C. Simache in [38] present an FFDA regarding the availability of

Unix Systems in a distributed environment. This work is focused on the identification

of machine reboots and the evaluation of statistical measures characterizing the dis-

tribution of reboots and the availability of the monitored workstations. Reboots have

been identified by implementing a pattern recognition algorithm to extract informa-

tion about system reboots (and time to recovery), from system log files, whereas the

availability for each node has been calculated by taking into account the first and last

event of the reboot sequence.

Koopman et al. in [53] performed a robustness testing analysis of six different Win32-

based operating systems, using the Ballista testing methodology [50]. For testing an

OS, this methodology involves selecting a set of functions and system calls to test,

with each module under test being exercised until a desired portion of the API is

tested. Non-robust responses are classified according to the CRASH scale described
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in the previous chapter. Using this methodology, authors were capable of find robust-

ness vulnerabilities in these Operating Systems, and compare their robustness level

with the one exhibited by the Linux operating system.

On-Line Transaction Processing Servers (OLTP)

OLTP servers, such as Database Management Systems, represent a category of OTS

items which is largely employed also in critical software systems. Madeira et al. in

[27], presented a dependability benchmark for OLTP servers, aimed at choosing the

best choice for a typical OLTP application, considering both performance and de-

pendability aspects. Results of the dependability benchmark allowed the authors to

rank different OLTP server according to criteria such as baseline performance, per-

formance with faults, and availability.

Web Servers

Several papers addressed the characterization of the dependability of this kind of OTS

item from a software aging perspective. In [4], Trivedi et al. studied aging phenomena

inside the Apache Web Server. In this paper resource data collected from a web sever

subjected to a synthetic load are analyzed, in order to provide a better understanding

of web server aging phenomena, leading to a more appropriate scheduling of rejuve-

nation actions. The development of response time and memory usage was examined

in detail, revealing the influence of settings related to both the Linux OS, as well as

the Apache Web Server itself, on the aging phenomena. However, although authors
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made a deep effort toward the modeling of seasonal patterns, the performed analysis

did not take into account the relationships between workload and aging phenomena.

These relationships were taken into account by Matias and Filho in [12]. In this paper

the Design Of Experiments (DOE) [67] technique was adopted to characterize aging

phenomena. Authors adopted this technique in order to determine the aging factors

and their degrees of influence on the web server. DOE is a structured, organized

method for determining the relationship between factors affecting a process and the

output of that process. The selection of factors and their respective levels were par-

tially based on previous work in the field ([11, 65]). Factors employed were: Page

Size, Page type, Request rate; two levels were defined for each factor, accounting for

respectively 50% and 90% of the capacity of the web server, leading to a total number

of 8 treatments. Authors analyzed memory usage for each treatment and solved a

regression model to infer both main effects and combined effects of the three factors.

Results of such treatments showed that: i) a premature aging of the web server was

always occurring regardless of the page size factor, and ii) the page size and page type

factors were responsible for over 99% of memory variation in the server process. The

problem of the selection of the most relevant workload parameters has been addressed

for the first time by Malek et al. in [13]. In this paper several variable selection tech-

niques (Forward Selection, Backward Elimination, and Probabilistic Wrappers) have

been evaluated on a data set related to Apache Web Server’s workload parameters.
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Moreover, sensitivity analysis has been employed in order to assess how sensitive are

response variables to changes in the assumptions.

2.1.1 Remarks

Due to their nature, OTS items allow to dramatically reduce software development

costs: companies are thus seeking the use of these items as an attractive way to

shorten time-to-market, hence increasing business opportunities.

Nowadays, for these reasons, OTS items are are increasingly used in application ar-

eas with high dependability requirements. Nevertheless, the adoption of OTS items

significantly hampers the dependability and safety of the whole system. Indeed they

are generally developed without taking into account the specific system operational

profile on which they will be integrated. Moreover, they often lack proper testing.

Furthermore, interactions between different OTS items may have unpredictable ef-

fects, which are not easy to foresee and may lead to the failure of the whole software

system.

Given this scenario, it becomes a priority to develop methodologies and techniques

to evaluate, from different perspectives, the dependability of OTS items and the in-

fluence that their integration into larger systems may on system dependability.

As regards Dependability Benchmarking, as well as robustness testing, significant ef-

forts have been made in recent years toward dependability assessment techniques suit-

able for several classes of OTS items. In particular, the DBench project [42], funded
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under the fifth Framework of the Information Society Technologies Programme, de-

fined standardized dependability benchmarks for general purpose Operating Systems,

OLTP environments, Real-Time Kernels, and Engine Control Applications.

On the other hand, much efforts have still to be done in order to achieve a unified

approach to evaluate OTS items’ dependability through FFDA or Software Aging

analysis. As it has been shown in the previous chapter, these techniques are of vital

importance in the assessment of the dependability of software systems; unlike other

techniques, they have the capability of revealing a larger number of insights about

the behavior of the analyzed component or system.

In particular, software aging analysis allow to highlight the presence of aging-related

bugs, and to assess, in a relatively simple way, rejuvenation techniques to treat these

faults.

2.2 Contributions

In this dissertation we focus on the study of Software Aging phenomena and explore

the possibility of assessing a measurement-based methodology capable of characterize

thoroughly the dependability of OTS items from a Software Aging perspective.

Although many work, described in the previous chapter, already coped with software

aging and rejuvenation, there are still some open issues, especially in the field of OTS-

based software systems. All measurement-based work consider aging introduced by

long-running applications, such as web servers and DBMS servers, as measured at
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the operating system level, neglecting the contribution of intermediate layers, such as

middleware, virtual machines, and, more in general, third-party OTS items. These

layers might worse resource exhaustion dynamics or become an additional source of

aging. In order to develop a methodology to analyze Software Aging in OTS items

two challenging issues, addressed in this dissertation, arise:

First, new methods are needed to isolate the contribution of each interme-

diate layer to aging trends, i.e., the one introduced by the presence of a virtual

machine from the one which is due to the application running on top of it.

Second, since there is a strict relationship between workloads and aging

trends, it is crucial to investigate how these are affected by changes in

the applied workload. Although several work addressed the relationships between

workload and aging trends, the selection of workload parameters and the assessment

of their effect on aging trends have been partially addressed only recently in [12] and

[13]. The former work addressed the evaluation of the effects of workload parame-

ters on the response variable, whereas the latter addressed the selection of the most

relevant workload parameters. However [12] encompasses only controllable workload

factors, whereas workload parameters to be monitored in OTS-based systems are of-

ten uncontrollable. Furthermore, variable selection techniques presented in [13] does

not take into account influence of workload parameters on aging trends.

76



2.3. The JVM as a case study (Thesis Contributions)

2.3 The JVM as a case study

Operating Systems such as Windows or Linux, Database Management Systems such

as Oracle or Microsoft SQL Server, Middleware platforms such as CORBA or DCOM,

or Application Servers such as Bea Weblogic or Red Hat JBoss, are only some ex-

amples of OTS items. Among the extremely wide range of available OTS items, we

chose Virtual Machines, and in particular the Java Virtual Machine (JVM), as the

case study to employ throughout the dissertation.

The JVM has been choosen for the following reasons:

1. Virtual Machines represent a relevant example of the above mentioned inter-

mediate layers, since they provide a virtualization of a complete execution en-

vironment;

2. The JVM is currently widely employed in a wide range of applications, including

critical ones. For instance, Java has been used to develop the ROver Sequence

Editor (ROSE), a component of the Rover Sequencing on Visualization Program

(RSVP), used to control the Spirit Robot in the exploration of Mars [68];

3. There is a growing interest in the scientific and industrial community toward

the employment of Java in safety and mission critical scenarios, as proved by

a recent issue of a Java Specification Request (JSR-302 [69]), which aims at

defining those capabilities needed to use Java technologies in safety critical
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applications;

4. There is a lack of research about the characterization of the dependability of the

JVM; moreover, as regards Software Aging, a recent paper [66], discussed in the

previous chapter, highlighted the presence of aging phenomena in a Java-based

SOAP server.

2.3.1 Research on JVM dependability

During the last decade, research on the JVM has been progressed along two directions:

performance related issues and, more recently, dependability issues. Performance as-

pects of the Java Virtual Machine have been extensively explored in [70, 71, 72]. Even

though these studies did not address dependability issues specifically, they represent

fundamental milestones for the pursuit of a deep analysis of JVM runtime behavior,

in terms of the definition of workload profiles and instrumentation strategies, which

have to be taken into account.

As shown in figure 2.1, only a small percentage of the research work on the JVM

(about 6%) coped with its dependabilty and fault tolerance issues.

Memory errors effects in the JVM have been studied in [73, 74]. Authors investigated

trade-offs between performance of the detection module (in terms of errors detected),

heap space occupancy, and impact on the overall application’s performance. However,

these studies focused on issues related to memory errors, such as bit-flip or stuck-at
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Figure 2.1: Classification by topic of the scientific literature dealing with the Java Virtual
Machine

errors, which are typical examples of hardware faults. Protection against such kind

of faults may be implemented in hardware in several ways (e.g.: by using ECC mem-

ories), and implementing checksum-based protection schemes inside the JVM makes

sense only when it is deployed on resource-constrained devices.

In [75], Alvisi et al. conducted an interesting study on how to apply state machine

replication to the Java Virtual Machine. The work focused on Sun Hotspot VM 1.2,

applying restrictions to the execution environment in order to remove sources of non-

determinism, and then implemented a primary-backup replication schema. In [76] a

similar approach has been used and it has been applied to the Jikes Research virtual
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machine.

Both these approaches are based on Hypervisor-based fault tolerance [77], a layer of

software that implements a Virtual Machine having the same instruction-set archi-

tecture as the machine on which it executes. Therefore, although it is possible to

find some important attempts aimed at augment fault tolerance in the JVM, there

is still a lack of research about its dependability issues. In order to use the JVM in

scenarios with stringent dependability requirements, it is crucial to identify depend-

ability bottlenecks in order to implement effective strategies to improve the overall

dependability of this virtual machine.

2.3.2 The Architecture of the JVM

The specification for the Java Virtual Machine [78] has been implemented in different

ways by many vendors. JVM implementations differ from one another not only with

regard to the interface to the operating system but also in the implementation of its

various components. In this thesis, focus is on the Sun Hotspot 1.5 Virtual Machine.

In order to understand the internal behavior of the Sun Hotspot VM, its source code

has been analyzed. The resulting schema is depicted in figure 2.2. This analysis has

become a necessity due the lack of appropriate technical documentation concerning

the implementation of VM components. As depicted in figure 2.2, the analyzed JVM

is composed by four main components: i) The Execution Unit, which includes the core

components of the JVM needed for executing java programs, for instance the bytecode
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Figure 2.2: Architectural Model of the Java Virtual Machine

interpreter and the Java Native Interface (JNI); ii) The Memory Management Unit,

which is in charge of managing memory operations (e.g.: object allocation, object

reference handling, garbage collection); iii) The system services unit which offers

Java Applications “higher level” services, such as thread synchronization management

and class loading; and iv) The OS abstraction layer, which provides a platform-

independent abstraction of the host system’s ABI. By looking inside each of the

above mentioned components it’s possible to isolate several subcomponents. In the

following we give a brief description of these subcomponents.
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The Execution Unit

It dispatches and executes operations, acting like a CPU. An operation could be a

bytecode instruction, a JIT-Compiled method or a native instruction. The Interpreter

translates single bytecode instructions into native machine code whereas the Just-In-

Time(JIT) compiler optimizes the execution of whole methods translating them into

native code. Methods to JIT-compile are automatically selected by the JVM by ex-

ploiting the code locality principle. The JVM is capable of identify “hotspots” in the

application, i.e. the pieces of code which are executed more frequently. Finally, native

instructions need no translation: they are dynamically loaded, linked and executed

by the Java Native Interface (JNI). Furthermore, the Exception Handler handles ex-

ceptions thrown by both Java Applications and the Virtual Machine. In particular,

exceptions thrown by the VM are called unchecked and are related to errors origi-

nated inside the virtual machine.

The Memory Management Unit

It handles the JVM heap area, managing object allocation, reference handling, object

finalization and garbage collection. The heap area is organized into three generations,

as depicted in figure 2.3. Even if the maximum size of these generations is fixed at

JVM startup, their actual dimension depend upon the memory requirements of the

application, since the JVM has the capability of dynamically grow or shrink the size
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of each generation.

The young and the tenured generation are used to store Java objects and are therefore

subject to garbage collection; the permanent generation, instead, is mainly used to

store java classes loaded into the JVM: objects in this area are not subject to garbage

collection. Whenever a new object is allocated, it is stored in the eden space. Objects

which survive to garbage collection are first promoted to the survivor space and then

to the tenured generation. Due to the high “infant mortality” of java objects, only

a few of them manage to reach the tenured generation. In this way the performance

of the JVM is consistently improved, since the frequency of full garbage collection

cycles, which involve both the young an the tenured generation, is reduced.

The Sun Hotspot JVM provide several garbage collectors. By default, the JVM
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employs a serial, stop-the-world garbage collector; this collector uses a copying al-

gorithm on the young generation and a compact, mark and sweep algorithm on the

tenured generation. Moreover, it is possible to use multi-threaded garbage collectors

to improve either program completion time or application throughput. Furthermore,

Fast Allocation Mechanism are provided to allocate memory areas for internal VM

operations.

The System Services Unit

Components included in this unit offer services to Java Applications. The Thread

Management component handles Java threads as specified by the Java Virtual Ma-

chine Specification and the Java Language Specification (JLS) [79]. The Class Loader

is in charge of dynamically loading, verifying and initializing Java Classes. Finally,

the Management and Debugging component includes functionalities for debugging

Java applications and for the management of the JVM.

The OS abstraction layer

These component provides a platform-independent abstraction of the host system’s

Application Binary Interface. It represents a common gateway for all JVM compo-

nents to access host system’s resources.
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2.4 Thesis Structure

So far, we discussed previous relevant work regarding the dependability evaluation of

OTS items, and outlined some research open issues which will be addressed by the

studies presented in this dissertation. The rest of the thesis is organized as follows:

The next chapter discusses results of an analysis of JVM failure reports extracted

from publicly available Bug Databases; from this analysis it arises that there are ac-

tual clues of aging phenomena in the JVM as a consistent number of failures occurred

when relevant workloads were applied with a daily or weekly frequency Characteri-

zation.

Chapter 4 describes a methodology to study software aging phenomena in an OTS

item and their relationships with workload parameters, and discusses the result of a

massive experimental campaign performed on the JVM.

Chapter 5 further explores aging phenomena into the JVM taking into account also

resources as measured at the operating systems level.

Finally, chapter 5.6 concludes the thesis and explores solutions to make the JVM

resilient to aging-related bugs.
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“Chi fraveca e sfraveca

nun perde mai tiempo.”

Who does and undoes never
loses time.

Neapolitan Proverb

Chapter 3

Failure Behavior Characterization
through Failure Reports Analysis

Bug databases are a precious source of information related to reliability and robustness
of software systems. Despite of their qualitative nature, they represent a convenient
way to perform a preliminary characterization of the dependability behavior of a soft-
ware system. Such characterization may then be used in order to i) extract measures
about its failure behavior and ii) identify the main dependability bottlenecks thus nar-
rowing directions for more detailed analyses.
The work described in this chapter reports the results of a preliminary analysis of
the dependability of the JVM, gathering information from failure reports provided in
bug databases. Results of this analysis clearly indicate that much more efforts have
still to be done in order to improve the dependability of the JVM. In particular, the
conducted analysis revealed that aging-related bugs may be addressed as the root cause
of a non-negligible percentage of failures showing a non-deterministic behavior.

3.1 The Importance of Failure Reports

As already discussed in the first chapter, field failure data analysis represents the most

suitable technique when dealing with the characterization of the failure behavior of

a system. Unfortunately, the cost of FFDA is usually very high. Data have to be

collected for a long period of time and often from a consistent number of workstation
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in order to obtain a significant number of failures to analyze.

Bug reports, instead, may be regarded as a ready-to-use source of failure data avail-

able to extract useful insights about the failure modes of a system. Despite of their

prominently qualitative nature, these reports should be considered well-founded, since

they are submitted and then evaluated by skilled people, which usually are expert

users or even developer of the system itself.

Previous works such as [55] and [80] showed that user-submitted data can represent

a valuable starting point in order to study the dependability of a system. In partic-

ular, Strigini et al. in [80], were able to prove how design diversity with OTS items

may improve system reliability, by analyzing 181 bug reports for two commercial

database servers (Oracle and Microsoft SQL Server) and two open-source database

servers (PostgreSQL and Interbase); the found that only 4 out the 181 bugs caused

identical failures in different server.

A typical flaw of bug reports is that they are often elusive or incomplete, thus not

allowing to completely characterize the failure they describe. For this reason, even if

bug databases contain thousands of reports only a small percentage of them can be

actually considered for the analysis. A careful filtering of such information is therefore

required in order to extract meaningful information about dependability features.

3.2 Data selection and classification approach
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3.2.1 Data Selection and Filtering

Before starting a failure analysis based on bug reports, it is important to select proper

data sources and define criteria to filter out those reports which are not suitable for

the analysis. Reports contained in the selected data sources will be filtered according

to the following criteria:

• The bug has been marked as Fixed. These reports are not useful and misleading,

since they are related to faulty conditions already fixed.

• The reported failure is related to a version of the software still under devel-

opment or testing. Since our research is aimed to discover information about

failures of operational systems, these must be dropped.

• The report is elusive or it does not contain enough information to characterize

the failure.

• The failure report is related to a fault or error originated in a component differ-

ent from the observed one. This means that the root cause of the failure (i.e.:

the fault) is located outside the observed component, whereas the goal of this

study is to analyze failures which are due to faults originated in the component

itself.
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3.2.2 Data Classification

Data contained in bug reports allow to classify failures according to several dimension,

since they usually contain (completely or not) information such as the configuration

of the system and its environment when the failure occurred, the time elapsed from

system startup (or even the frequency of the failure), a detailed description of the

failure (including crash dumps and stack traces), and sometimes directions to repro-

duce the failure.

In our approach, we will employ the following failure classification criteria:

• Failure Manifestation - Failures are classified according to their manifesta-

tions (i.e: the message printed on the console). Four failure manifestation types

were defined:

- Error Message - The failure was reported to the user through a message gener-

ate either from the observed component or from another component interacting

with it;

- Hang/Deadlock - The component did not crash, but it stopped executing.

- Silent Crash - The component crashed silently, without printing any error

message.

- Computation Error - Results obtained were different from the expected ones.

• Failure Source - By analyzing information attached to failure reports it is

possible to pinpoint the subcomponent(s) where the failure source is located.
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• Severity - A failure is defined Catastrophic if it leads to the crash of the

whole system or non-Catastrophic if the system is still capable of executing its

functions (or a part of them) despite of the failure.

• Environment - Failure reports were classified according to the reliance by the

environment in which the observed component is integrated. Four categories

(described in table 3.1) were defined. In order to collect such information, the

bug report must contain data about several failures on different environments.

• Workload - Failure reports were classified according to the workload imposed

on the component when the failure was reported. Table 3.2 shows the qualitative
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Table 3.3: Failure Timing categories������� ��� 	
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workload levels defined.

• Failure Frequency - Failure reports were classified according to the frequency

of failure occurrences. This information may be directly derived when the TTF

or the failure frequency is specified in the report, or indirectly from the descrip-

tion of the failure included in the bug report. Table 3.3 describes the categories

defined.

3.3 JVM Failure Reports Analysis

Java Virtual Machine failure reports, extracted from publicly available bug database,

have been classified according to the approach outlined in the previous section.

This study aims at performing a preliminary analysis of the dependability of the Java

Virtual Machine, and it is the first work in scientific literature addressing this topic.

Failures are analyzed with respect to their manifestation, the host system environ-

ment, JVM components, their frequency and the kind of workload imposed.

The analysis of extracted failure reports allowed us to give useful insights into i) the
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nature of the failure of the JVM, ii) the sources of the error, and iii) the characteri-

zation of the failures with regards to workload and frequency.

3.3.1 Data Set

Bug databases are a precious source of information related to reliability and robust-

ness of software systems: development software faults always occur when buggy code

is executed. Some kinds of bugs, namely Heisenbugs, Mandelbugs, are particularly

likely to elude all testing phases, since they usually disappear or alter their charac-

teristics when they are inspected. Failure data analyzed in this study are extracted

by Sun1 and Jikes2. Other JVM implementations, such as Kaffe, J9, and JRockit

had no public bug databases or very poor ones. Data were collected from these Bug

Databases between June 2005 and June 2006. Among thousands of submissions re-

lated to the whole Java Platform, 698 bug submissions related to JVM failures were

selected and analyzed. This set was further refined by excluding submissions which

met the criteria described in section 3.2.1.

Among the initially selected bug reports, 147 (29 from Jikes Database, 118 from Sun)

were selected; 191 distinct failures were described in these reports.

Each submission reports the environment on which the JVM was running,the config-

uration of the virtual machine (i.e.: heap configuration,JIT compiler used) and stack

traces. Many failure reports also contained a detailed description of the source of the

1Sun Hotspot Bug Database: http://bugs.sun.com
2Jikes RVM bug database: http://jikesrvm.org
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Table 3.4: Structure of a bug report taken from the Sun Hotspot Bug Database������� ����	�
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failure (given by specialists in the evaluation section of the report itself) and infor-

mation related to the frequency of the failure and its reproducibility. The structure

of a bug report (taken from the Sun Hotspot Bug Database) is shown in table 3.4.

Failure sources where classified, according to the architectural view described in

section 2.3.2, in the following way:

• Execution Unit - This category is further divided into Shared Runtime, JIT

Compilers, Interpreter and JNI subcategories.
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• OS Virtualization Layer.

• Memory Management Unit - This category is further divided into Garbage Col-

lector and Reference Handling subcategories.

• System Services Unit - This category is further divided into Thread Manage-

ment, Class Loader and Monitoring subcategories

It this worth noting that more than 20% of failures contained in selected reports were

due to faulty conditions in more than one component, thus highlighting the presence

of error propagation phenomena inside the JVM.

3.3.2 Results

This section discusses results obtained from the analysis of selected failure reports.

The first part analyzes the distribution of failure manifestations and their relationship

with the environment on which the JVM runs. The second part highlights the role

of internal JVM components in reported failures, whereas the third part shades some

light on the relationships between internal JVM components, failure frequency and

workloads imposed on the JVM itself. To this aim, starting from the 147 selected

bug reports (accounting for 191 failures), 108 failure reports (56.54%) were selected

for frequency analysis, 114 failure reports (59.69%) for workload analysis and 101

submissions (68.71%) for environment dependency analysis.
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Figure 3.1: (a) Failure manifestations distribution (b) detailed view of VM-level fail-
ure manifestations. Computation errors were captured comparing the “Expected
Output” against the “Actual Output” in the failure report.

Failure Manifestation Analysis

Figure 3.1-a depicts a bar chart of failure manifestations and severity. The most

recurrent manifestation is an OS-level message (45.03%), followed by VM-level mes-

sages (32.46%), hangs or deadlocks (11.52%), computation errors (5.76%) and silent

crashes (5.24%). Almost all failures lead to VM crash (86.06%). Only computation

errors are usually non catastrophic. A quarter of hang/deadlocks are non catas-

trophic (not all threads of the virtual machine are blocked), whereas just a little

part of VM-level manifestations (13.09%) does not lead to VM crash. Almost an

half of the failures manifested as OS-level messages (i.e: SIGBUS, SIGSEGV or ACCESS

VIOLATION). Therefore built-in error detection mechanisms are not able to
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pinpoint a considerable percentage of faulty conditions inside the virtual

machine. When one of such OS signals is raised, the JVM just dispatches the signal

to a special Signal Handler Thread, which produces the failure report, and then

exits.

VM-level manifestations appear when built-in error detection mechanisms pinpoint

faulty conditions. In this cases an unchecked exception can be thrown from the

virtual machine, thus giving a chance to handle the faulty condition in application

code. With respect to VM-level manifestation, figure 3.1-b depicts a bar chart of

the various error messages reported and their severity. Among VM-level manifesta-

tions, the most recurrent is OutOfMemoryError (44.07%). InternalError (15.25%),

RuntimeException and AssertionFailure (11.86%), StackOverflow (6.78%) and

others exceptions (10.17%) (e.g.: NullPointerException) are less frequently thrown

from the JVM. Even if applications could handle these conditions through Java ex-

ception handling mechanism, we found that in the greater part of cases (with the

exception of RuntimeException manifestations) the consequences were catastrophic.

This indicates that either the state of the virtual machine gets corrupted

and no recovery action can be achieved anymore, or no recovery action

was taken in Java applications, since developers did not expect that these error

conditions would be occurred.

To gain an understanding of the relationship between failures and the underlying
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PLATFORM Dep. OS&PLATFORM Dep.

Figure 3.2: Relationships between failures and environment. In the bar reported
on the right the value without parentheses represents the absolute percentage of
environment-dependent (or independent) failures, whereas the value in parentheses
represents the relative percentage of failures which have been classified as OS depen-
dent.

environment, we analyzed the dependency of the reported failures on the Operating

System and the Hardware Platform, as depicted in figure 3.2. In some cases it was not

possible to distinguish whether the failures was environment-dependent or not. As

far as the remaining cases (more than 70%) are concerned, we observed that 53.97%

of the failures occurred regardless of the specific environment (OS and Hardware) on

which the JVM was running. Thus these failures are not due the interactions between

the JVM and the underlying platform, but they are common-mode failures which are

likely to occur independently from the underlying Operating System or Hardware

architecture.
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Table 3.5: Detailed view of OS-dependent failures
OS OS-DEP % OS-IND % UNKNOWN %
Windows 27,03% 38,71% 32,43%

Linux 40,00% 52,46% 12,00%

Solaris 19,35% 43,86% 40,32%

Even if only a little percentage of failures (4.76%) depended exclusively on the hard-

ware platform, a more considerable percentage were dependent on the Operating

System (32.54%) or both OS and Hardware (8.73%). These results indicate that

there is a substantial dependency on the Operating System. Therefore, it is not

possible to claim that Java applications keep the same levels of depend-

ability across different operating systems.

To gain a more detailed view of the relationship between failures and operating

systems, we further analyzed OS-dependent failures reported in Windows, Linux and

Solaris. The results are described in table 3.5. Reported percentages are determined

with respect to the total number of failures observed for each Operating System, thus

avoiding bias in results. Even if the percentage of environment-independent failures

has different values among different operating system, its absolute number (68) is

the same on all considered OSes. These results indicate that the dependency on the

underlying operating system seems to be more critical in Linux than in Windows and

Solaris. However the fourth column of table 3.5 highlights that there is still a large

margin of uncertainty (especially in Solaris), since in many cases it was not possible

to distinguish whether the failure is OS-dependent or OS-independent.
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Figure 3.3: Distribution of failures with respect to JVM components

Failure Sources Analysis

By analyzing stack traces and core dumps attached to bug submissions it is possible to

provide useful insights into failure sources, nailing JVM components in which errors

were located. Often the source of a failure is located in more than one component.

Among the reported failures, 22.47% of them were due to errors in more than one

component.

The percentage of failures for each component of the JVM is depicted in figure 3.3.

The greatest part of failures is due to the Execution unit. Moreover, looking at the

details about the failures of the subcomponents, reported in table 3.6 it is straight-

forward that:

• The greatest part of failures in the memory management unit (72.73%) is due

to the Garbage Collector.
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Table 3.6: Detailed view of failure sources
Execution 19,33%
Optimizing JIT 15,13%
JNI 3,78%
Base JIT 4,20%
Interpeter 2,10%
GC 16,81%
Ref Handler 5,04%
Other Memory-Related 1,26%
Thread Management 10,92%
Class Loader 2,52%
Monitoring 0,84%

18,07%OS Virtualization Layer

Memory Management Unit

System Services

Execution Unit

• Runtime support operations and optimized just-in-time compilation tasks cover

the 77.36% of Execution unit failures.

• The greatest part of failures in the System Services Unit (76.41%) is due to the

Thread Management sub-component.

By analyzing these results it is possible to argue that:

• Runtime support operations, such as method invocation, stack frame allocation

and deallocation or exception handling, seem to be the most critical depend-

ability bottleneck in the JVM.

• The optimizing JIT compiler, even if improves prominently the performance of

Java applications, is one of the major sources of failures in the JVM; there-

fore Java developers have to cope with a trade-off between performance and

reliability.
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• The Garbage Collector still remains one of most error-prone components in the

JVM. In particular low-pause or high-throughput garbage collectors seem to

be critical for JVM reliability; therefore there is another trade-off between the

performance of the collector and its reliability.

• Also the OS Virtualization layer has a deep impact on the dependability of the

JVM. In particular this component is responsible for 15.91% of Solaris failures,

14.29% of Windows Failures and 24.21% of Linux Failures.

These information show that the JVM is a complex system characterized

by several dependability bottlenecks. In particular, performance-enabling

components of the JVM represent a serious threat for JVM failure-free

execution. Another way to gain useful insights into dependability features of the

JVM is to analyze the relationship between failure sources and failure manifestations.

Table 3.7 reports the percentage of failures with respect to JVM components for each

failure manifestation kind. Looking at this table it is possible to deduce that:

• The memory management unit is accountable only for less than half of the

OutOfMemory errors. These errors are often caused also by the execution unit

Failure Manifestations 
vs. Failure Sources OS-Level

Out Of 
Memory

Stack 
Overflow

Runtime 
Exception

Assertion 
Failure

Internal 
Error

Others 
Exc.

Silent 
Crash

Hang/ 
Deadlock

Comp. 
error

OS Virtualization Layer 24.10% 15.15% 0.00% 0.00% 20.00% 18.18% 0.00% 10.00% 3.70% 9.09%
Execution 42.17% 36.36% 80.00% 75.00% 50.00% 18.18% 0.00% 70.00% 37.04% 81.82%
Memory Management 22.89% 42.42% 20.00% 12.50% 20.00% 9.09% 0.00% 20.00% 33.33% 0.00%
System Services 10.84% 6.06% 0.00% 12.50% 10.00% 54.55% 100.00% 0.00% 25.93% 9.09%

Table 3.7: Distribution of failure sources for each type of failure manifestation
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(mainly by JIT compilers);

• The source for the greatest part of Runtime Exception and Computation errors

is the Execution Unit;

• The System Services unit is the main reason of Virtual Machine Internal Errors

and Deadlocks;

• Just a few VM-level failure manifestations are attributable to the OS virtual-

ization layer, whereas the greater part of error in this component manifested

as OS-level messages. This confirms that built-in detection mechanism are not

able to monitor the lower layers of the JVM.

Relationships between Frequency and Workload

We finally classify failure according to their frequency and to the workload applied

when the failure itself occurred. Figure 3.4-a reports the percentage of errors with

respect to JVM components for each frequency category.

Regular Failures are most recurrent ones (39.81%). Since regular failures always occur

at the same point in program execution, Java developers can avoid them by adopting

proper workarounds. Regular failures are mainly attributable to the Execution Unit

(22.21%) and to the Memory Management Unit (12.96%).

Startup (11.11%) and Hourly (10.19%) failures occur at the first stages of Java Pro-

gram Execution. The OS Virtualization Layer and the Execution Unit are the main
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Figure 3.4: Frequency and workload classification of failures with respect to JVM
components

causes of hourly failures (6.48%, 2.78%), whereas each component plays an equivalent

role in startup failures. Many non-regular failures shows a daily or weekly frequency

(19.44%).

It is worth noting that Execution Unit and System Services Unit failures

increase when frequency decreases, whereas Memory Management Unit

and OS Virtualization Layer Unit failures decrease when frequency de-

creases. This suggests the presence of software aging phenomena in this

components (especially in JIT compilers, Shared Runtime Support and

Thread Management sub-components). Figure 3.4-b reports the percentage of

error with respect to JVM components for each workload level defined. The greatest

percentage of failures occurred under CPU Bound Workloads (32.00%), followed by
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I/O Bound Workloads (26.40%). Less failures occured under Memory Bound Work-

loads (21.60%) or “Common” Workloads (20.00%).

The greatest part of failures (80%) occur when significant workloads are imposed

on the JVM, moreover CPU Bound and I/O Bound applications seem to be more

critical for the JVM than Memory Bound applications. These results indicate that

CPU Bound and I/O Bound applications, such as Web Servers, stress mainly the

Execution unit (50.98% CPU Bound; 38.46% I/O Bound) and the OS Virtualization

Layer (25.49% CPU Bound; 32.69% I/O Bound). On the other hand, the most rele-

vant percentage of failures with non-significant workloads are attributable to errors in

the Memory Management Unit (33.03%) and in the System Services Unit (37.04%).

Therefore, since the JVM suffers mainly CPU Bound and I/O Bound ap-

plications, it is possible to argue that the development of strategies and

mechanisms aimed to improve the reliability of the virtual machine should

first address these kinds of applications.

The analysis of the relationships between failure frequency and workload (reported in

table 3.8) also suggests the presence of aging phenomena. Regular and Startup fail-

ures usually occur when non significant workloads are applied, where as non regular

failures usually occur when significant workloads are applied. For instance, 80% of

weekly failures occur when CPU Bound or I/O Bound workloads are applied.
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Table 3.8: Relationships between failure frequencies and workload levels
CPU BOUND I/O BOUND MEM BOUND COMMON

STARTUP 20,00% 30,00% 10,00% 40,00%

HOURLY 50,00% 40,00% 10,00% 0,00%

DAILY 20,00% 55,00% 20,00% 5,00%

WEEKLY 40,00% 40,00% 5,00% 15,00%

REGULAR 15,15% 15,15% 27,27% 42,42%

3.3.3 Clues about software aging in the JVM

In order to perform an effective study of the development of aging phenomena, it is

compulsory to analyze the development of the state of the system under observation.

Therefore it is very difficult to extract such information analyzing only failure reports.

Anyway, in order to extract at least some clues about the presence of aging phenomena

in the JVM, we first selected only failure reports reporting an exact indication of the

time to failure. This information was available only for 23 reports. Unfortunately this

number is too small to perform a meaningful analysis. Therefore we had to consider

also reports with a qualitative indication of the TTF.

The procedure adopted to perform an aging-oriented analysis of failure reports is the

following:

1. Exclude failures marked as “Always Reproducible”: failures which are due to

aging phenomena are usually strictly dependent on the workload applied on

the JVM, and are therefore not easily reproducible in a different environment.

Obviously, remaining failures (64% of the total number of failures) exhibit a
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non-deterministic behavior.

2. Among these failures, exclude those which occurred when a non relevant work-

load was applied: without a relevant workload it is generally impossible to

observe the development of aging phenomena. Only a 2% of failures occurred

with a negligible workload, although workload estimation was not possible, due

to lack of data in the reports, for a 30% of occurred failures.

3. Analyze the distribution of the remaining failures (32% of the total number of

failures) with regards to the estimation of the time to failure.

The pie chart in figure 3.5 reports the distribution of non-deterministic failures oc-

curring with relevant workload according to the time to failure.Unfortunately, there

is an high level of uncertainty, since data (even qualitative) about TTF was missing

in a consistent number of reports. Only 2% of these failures occur during the startup

phase, whereas 45% of these failures occur after a significant time (16% daily, 29%

weekly). This means that in about half of the considered failures we have significant

clues of software aging phenomena.

Summarizing, it is possible to state that:

• About 40% of failures are absolutely NOT due to aging phenomena;

• There is an high probability that 15% of failures are due to aging phenomena;

• It is not possible to state anything for the remaining 45%;
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Figure 3.5: Distribution on non-deterministic failures by time-to-failure

Therefore, even if software aging is not the main cause of failures in the JVM, it is a

phenomenon which is responsible for a non negligible percentage of failures: therefore

it will be worth performing an extensive experimental campaign aimed at exploring

the development of these phenomena.

3.4 Final Remarks

This chapter reports the results of a bug reports based classification of the failures

behavior of the Java Virtual Machine. Previous work showed this kind of analysis to

be very effective when performing preliminary dependability evaluations, especially

for OTS items.

The approach adopted for this analysis is very simple and can be resumed in the

following steps:
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1. Collection of a consistent number of bug reports from bug database and extrac-

tion of the failure reports contained inside;

2. Careful filtering of failure reports in order to drop those ones which result to be

inaccurate or even misleading;

3. Classification of failure reports according to their manifestation, the source of

the failure and the relationships between failure frequency and workload.

Since the adopted approach is not dependent on specific features of the JVM it can

be applied to perform a preliminary dependability evaluation for a wide range of OTS

items.

The analysis of JVM failure reports showed that there is a non-negligible dependency

of JVM reliability on the underlying Operating System, and that the Execution Unit

is responsible for the greatest part of reported failures. The analysis also showed that

failures are often due to hardly reproducible bugs (Mandelbugs and Heisenbugs):

these failures can be classified into environment dependent and environment indepen-

dent. Approaches based on active replication ([75, 76]) make the JVM robust only

with respect to hardware faults and software faults in the OS. If there is a component

in the primary VM, the same fault would be activated also on the backup.

Finally, the analysis showed a strict relationship between failures and the workload

applied on the JVM, showing that there are several clues that software aging phe-

nomena may develop inside the JVM. An experimental campaign is mandatory in
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order to detect and estimate this phenomena. Aging phenomena inside the JVM are

extensively explored in the following chapter, whereas aging caused by the JVM at

the Operating System level is studied in chapter 5.
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me some time, and I will pierce

you.

Neapolitan ProverbChapter 4

Aging Phenomena
Characterization

This chapter presents a measurement-based methodology to study software aging phe-
nomena as a function of the workload. This methodology, specifically designed for
OTS-based systems, addresses the issues outlined in section 2.2, by providing a solu-
tion to isolate the contribution to aging trend of a particular layer, selecting workload
parameters which are more relevant to aging trends, and assessing the influence of
such paramters on detected aging trends.
This methodology has been adopted to characterize the development of aging phenom-
ena inside the Java Virtual Machine, which is a relevant example of the items which
may be employed in OTS-based system since it provides a complete virtualization of
the underlying execution environment. Therefore this chapter, after introducing the
above mentioned methodology, discusses the results of an analysis performed on data
collected through a massive carried out on the JVM.

4.1 Rationale and Approach

Several recent studies showed that a large number of software systems, employed also

in business-critical or safety-critical scenarios, are affected by Software Aging. The

Patriot missile defense system employed during the First Gulf War, responsible for

the Scud incident in Dhahran, is perhaps the most representative example of critical

system affected by software aging.
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To project a target’s trajectory, the weapon control computer required two floating

point input values: its velocity and the time. However, the time was stored into

the system as an integer, counting tenths of seconds and storing them in a 24-bit

register. The necessary conversion into a real value caused a round-off error in the

calculation of target’s expected position. For a given velocity of the target, these

errors were proportional to the length of time the system had been running. As a

consequence, the risk of failing a target increased with the time the system operated

without rebooting. Users of the system were warned that “very long runtime” could

negatively affect system’s targeting capabilities. Unfortunately, they were not given

a quantitative evaluation of such “very long runtime”, i.e.: a rejuvenation frequency,

thus leading to the famous incident in which 28 people were killed.

OTS items, which are starting to be employed also in critical contexts, cannot be

thought as not being affected by Software Aging phenomena. On the contrary, since

they often lack proper testing (as already mentioned in section 2.1.1), they are more

subject to these phenomena. In order to employ such components in critical scenarios,

it is therefore very important to characterize first their behavior from a software aging

perspective.

Studying Software Aging dynamics in OTS-based software systems becomes more

difficult due to the interconnection of application-specific logic and several off-the-

shelf components. OTS-based systems may be regarded as being made of a sequence

111



4.1. Rationale and Approach (Aging Phenomena Characterization)

Application

Layer 1

Layer 2

Layer 3OS (e.g.: Linux)DBMS (e.g.: Oracle)

VM (e.g.: Sun 
Hotspot JVM)

Web Server ����������	� 
�����
App (e.g.: stock 
trading system)

OTS 
Items

Middleware������ ������

Figure 4.1: Stratification in layers of an OTS-based software system

of software layers, each of them using services from the lower layer and offering services

to the upper one. Components offering basic services such as operating system are at

the lowest layer, whereas application-specific business is located at the highest layer.

A typical example of such situation is depicted in figure 4.1.

In this figure, the application, a Stock Trading System, uses services offered by two

OTS Items: a Web Server and a Middleware platform; these OTS items run upon

a Java Virtual Machine, another OTS item. Finally, the virtual machine interacts

with the underlying operating system, and a Database Management System. The

stratified organization of the software system can be characterized by the following

layers:

• Application - The application-specific business logic;

• Layer 1 - The Web Server and the Middleware platform
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• Layer 2 - The Java Virtual Machine;

• Layer 3 - The DBMS and the Operating System.

All previous measurement-based works concerning Software Aging analysis consider

aging trends as measured at the Operating System level. In this way, given the sce-

nario depicted in figure 4.1, it is impossible to distinguish in which component the

source of the aging phenomenon is located. In particular, when OTS items providing

a complete virtualization of the execution environment, like the JVM, are employed,

it may happen that aging trends are not detected at all, since they develop at the

JVM level, and are not visible at the OS level. Indeed, since the JVM preallocates

system memory required for its heap area, there is no chance at the OS level to dis-

tinguish how much of such heap area is actually used by Java objects.

Moreover, when dealing with the relationships between aging trends and workload,

OS-level workload parameters are always chosen, either randomly or according to

previous experience. In order to perform an effective assessment of Software Aging

dynamics in OTS-based systems, it is compulsory to take into account component-

specific workload parameters. Indeed, once the component has been chosen, the

analysis of the relationships between aging and workload cannot be performed with-

out considering the workload parameters describing the specific operations performed.

Given the complexity of industrial software systems the number of such parameters

can easily reach an order of magnitude, which makes it difficult, if not impossible, to
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evaluate the influence of each parameter on the measured aging trends.

Therefore, when targeting Software Aging analysis for OTS-based systems, two chal-

lenging questions arise:

• Is it possible to isolate the contribution of each of these intermediate layer to

the overall aging trends?

• Is there a way to select only those workload parameters which are relevant to

the development of aging phenomena?

As regards the first question, it has been previously argued that monitoring system

resources only at the OS layer does not allow to gain insights about the behavior of

each component. Therefore an approach where these resources are monitored at each

layer is preferable. In this way, given a particular resource (e.g.: used memory), it

will be possible to compare the usage of such resource at the different layers, and

locate the layer(s) in which aging phenomena are introduced.

As for the second question, it is compulsory to address the selection of the smallest set

of workload parameters which has the greatest influence of aging phenomena. This

problem, also known as the dimension reduction or the feature selection problem,

is one of the most prevalent topics in the machine learning and pattern recognition

community. In our approach, we will employ Principal Component Analysis in order

to reduce the number of workload parameters, and then statistical Null Hypothesis

testing in order to select only those workload parameters which have a real influence
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on aging phenomena. Finally, Partial Linear Regression will be employed in order

to estimate the relationships between workload and aging trends. Several works in

scientific literature [9, 10] have shown that linear models are capable of describing in

a reliable way such relationships.

Our approach to evaluate software aging will be therefore divided into three phases:

1. Design and Realization of Experiments, in which several long-running

experiments are executed with different workload levels thus allowing to col-

lect data about system resource usage (at different layers) and workload (for a

particular OTS component).

2. Workload Characterization: it is well known that workload impact on aging

trends represents a key point in software aging studies. In this step workload

data are analyzed in order to characterize the behavior of the observed compo-

nent as a function of the workload level imposed during the experiments.

3. Software Aging Analysis, in which we evaluate i) the aging trends exhibited

at the different layers, ii) the influence of workload parameters on such trends,

iii) the relationships between relevant workload parameters and aging trends.

4.2 Design of Experiments

The Design of Experiments (DOE), described in [81] and [67], is a systematic ap-

proach to investigation of a system or process. A series of structured measurement
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experiments are designed, in which planned changes are made to one or more input

factors of a process or system. The effects of these changes on one or more response

variables are then assessed.

The first step in planning such measurement experiments (also called factorial ex-

periments) is to formulate a clear statement of the objectives of the experimental

campaign; the second step is concerned with the choice of response variables; the

third step is to identify the set of all factors that can potentially affect the value of

the response variable; a particular value of a factor is usually called level. A factor is

said to be controllable if its level can be set by the experimenter, whereas the levels

of an uncontrollable or observable factor cannot be set but only observed. Given

m controllable factors, a m-tuple of assignments of a level to each of those factors

is called a treatment. The number of treatments required to estimate the effects

of factors on the response variables is determined by the number of controllable fac-

tors and the number of levels assigned to each factor. Given k factors and l levels,

the number of treatments n required is n = lk. A response variable y can then be

written, using the regression model representation of the factorial experiment, as a

linear combination of the factors x1,. . . ,xk and their products. For instance, for a

two-factor factorial experiment, the response variable can be written as:

y = β0 + β1x1 + β2x2 + β12x1x2 + ε (4.2.1)

where:
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• The parameter β0 is called the intercept parameter and does not describe the

effect of any factor onto the response variable;

• The parameters βi are the main effect parameters and describe the effect of

each factor on the response variable;

• The parameter β12 is the interaction parameter and describes the effect of the

combination of the two factor on the response variable;

• The ε term is a random variable that captures the effect of all uncontrollable

parameters.

Figure 4.2 depicts our approach to employ the DOE technique for Software Aging

Analysis. Among the several layers in which an OTS-based software system may be

divided, we choose a particular layer (lt) as the target of our analysis. The goal of our

experiments is to analyze the effects of changes in workload parameters of the target

layer on Software aging trends. The latters, measured in terms of memory depletion

on performance degradation will be our response variable.

As shown in figure 4.2, application-level workload parameters can be controlled by the

experimenter, in order to stress the whole system with synthetic workloads, whereas

component-level workload parameters may only be observed. In our study, we will

conduct a series of experiments using W c
1
, . . . , W c

n parameters in order to ensure that

each one will be executed with a different workload level; the number of experiments
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Figure 4.2: Design of Experiments for Software Aging Analysis in OTS-based systems

to perform, nexp, is generally application-specific: for instance it may be chosen tak-

ing into account the maximum workload sustainable by the benchmark application.

For each experiment we will collect i) resource usage information for layers l1, . . . , lr, in

order to estimate aging trends, and ii) observable workload parameters W obs
1

, . . . , W obs
n

related to the target layer lt.

The greatest part of the factors that will be employed in our analysis are uncontrol-

lable. We are therefore more interested in the ε component of the expression 4.2.1

rather than in the effects of controllable parameters. Standard statistical analysis

techniques, such as Analysis of Variance (ANOVA), which take into account only the

effect of controllable factors on response variables, cannot be employed. Given this
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scenario, we chose to reduce the number of controllable factors to only 1 factor, thus

avoiding factorial design and keeping the number of treatments low, and to increment

the number of level for this controllable factor, thus obtaining more information to

evaluate the contribution of uncontrollable factors on aging trends.

The experiments will be then performed in the following way:

1. Choose a controllable factor to drive the synthetic workload applied on the

system for each experiments;

2. Select the target layer and its workload parameters which have to be monitored,

grouped by the particular component or sub-system they belong to;

3. Define the number of levels n to assign to the above mentioned controllable

factors;

4. Choose an interval to sample resource usage and workload information during

each experiments;

5. Perform the nexp experiments, collecting resource usage information for each

layer and workload information for the target layer.

4.3 Workload Characterization

Once data have been collected, the next step of our methodology is concerned with

the characterization of the workload. This step has the following goals:
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Figure 4.3: Workload characterization phases

• Perform a statistical characterization of the behavior of the target layer for each

experiment and identify variations among experiments by relating synthetic

data extracted from each experiment in order to draw an overall figure of the

evolution of workload parameters.

• Reduce the complexity of the analysis by reducing the number of variables to

consider when assessing the relationships with aging trends.

The workload characterization process may divided into three phases, depicted in the

conceptual diagram reported in figure 4.3, and described in the following subsections.

120



4.3. Workload Characterization (Aging Phenomena Characterization)

4.3.1 Intra-Experiment Characterization

The first step of our analysis deals with the detection of clusters in data, in order

to identify the different workload states traversed by the observed layer during the

experiment. The workload parameters W obs
1

, . . . , W obs
n are grouped according to the

component they belong to; for each of these groups a cluster analysis is performed

using the Hartigan’s k-means clustering algorithm 1.

If the variables for clustering are not expressed in homogeneous units, a normalization

must be performed. In our methodology, we use the following normalization method:

x′

i =
xi − mini{xi}

maxi{xi} − mini{xi}
(4.3.1)

where x′

i is the normalized value of xi. Through this transformation all the time

series W obs
i (t) are transformed into normalized time series W obs′

i (t) whose values range

between 0 and 1. In order to augment the effectiveness of the cluster analysis, we

eliminated the outliers in data by removing samples whose distance from the mean

value of the time series was higher than 2 times its standard deviation.

The clustering algorithm starts by assigning an initial value to each centroid (the

centroid of a cluster is the average point in the multidimensional space defined by

the dimensions. In a sense, it is the center of gravity for the respective cluster). The

clustering algorithm iteratively updates centroids and assigns points in normalized

data series to the closest centroid until centroids no longer move. The choice of

1The Hartigan’s algorithm is a well-known iterative algorithm for cluster analysis published in
“Clustering Algorithms, John Wiley and Sons, 1975”
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the number of clusters is a vital point in the characterization of the workload for a

given component C, since it defines the number of states traversed by the component

during the experiment. In our analysis, we used an approach based on frequency count.

Given a component C in the target layer lt, whose related workload parameters are

W obs
C1

, . . . , W obs
Cm

, we consider the range of values [wobs
Cimin

; wobs
Cimax

] for each parameter

W obs
Ci

, and then divide this range into 100 equally sized intervals; for each interval we

count the number of wobs
Ci

samples falling into that interval; in this way the number

of sample occurrences is described as a function of the interval. In order to infer

the number of clusters, we first calculate the number NMCi
of relative peaks in the

frequency count function for each workload parameter and then determine the number

of cluster as:

NC = max{NMC1
, NMC2

, . . . , NMCm
} (4.3.2)

Clusters whose centroids are close each other can be merged, thus reducing the total

number of clusters and the complexity of the subsequent analysis. Another viable

approach to select the number of clusters is proposed in [61] and it is based on the

evaluation of ratio of the within-cluster sum of squares obtained with i and i + 1

clusters: the number of clusters is iteratively incremented until the ratio goes below

a predefined threshold.

Once the cluster analysis has been performed, the intra-experiment characterization

is completed by calculating the expected values for each workload parameter and
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for each cluster, and by estimating potential linear trends in time series for each

workload parameter and for each cluster. Since the cluster analysis splits the original

time series into several non contiguous intervals, each one representing a different visit

in a particular workload state, in order to perform the trend estimation we adopted

an approach which is similar to the one adopted for the estimation of trends in time

series with seasonal patterns. In particular, we estimate the trend for each interval,

and then calculate a weighted average of the trend estimated for each interval.

Assuming that the cluster analysis revealed the presence of j clusters for the com-

ponent C, the intra-experiment characterization will therefore calculate, for each

workload parameter W obs
Ci

, the expected value in the following way:

E[W obs
Ci

]j =
1

n

n
∑

k=1

wobs
Cik

with k ∈ jth Cluster (4.3.3)

As regards the linear trend, given a set of r non contiguous intervals, and called

m1, . . . , mr the number of data samples in each one of these interval, the linear trend

in data may be expressed as:

T [W obs
Ci

]j =
1

n

r
∑

k=1

mk TREND(W obs
Ci

)k (4.3.4)

where TREND is the autoregressive function employed to calculate the trend in a single

interval. This value is 0 in the case that the null hypothesis of no trend in data cannot

be rejected, as it often happens when dealing with intervals with a low number of

data sample, i.e. intervals related to short visits in a particular workload state.
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Figure 4.4: The Intra-Experiment Characterization Process

The sequence of operations needed to perform the intra-experiment characterization

is reported in figure 4.4: once workload parameters are grouped according to the

layer’s components, a cluster analysis is performed on each of these groups; after

that, the expected values and the linear trend in data are calculated for each cluster

found in the previous phase.
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4.3.2 Inter-Experiment Characterization

This phase helps us to analyze the impact of workload parameters on aging trends,

building new data series from the synthetic data obtained in the previous phase.

In this way it will be possible to observe the evolution of the workload parameters

W obs
1

, . . . , W obs
n as a function of the controllable workload parameter W c which regu-

lates the synthetic workload imposed on the overall system.

For instance, let us consider an OTS-based system like the one depicted in figure 4.1;

let us suppose our target layer to be the java Virtual Machine layer. A typical work-

load parameter to be monitored is the Object Allocation Frequency, i.e. the number of

objects inserted into the Java Heap in a given unit of time. Assuming that no clusters

are detected, the intra-experiment analysis returns, for each experiment, the average

object allocation frequency and its trend. The inter-experiment characterization, in

turn, builds two new data series describing the average object allocation rate and

its trend as a function of the synthetic workload imposed on the application, thus

allowing to gain some insights about the JVM’s heap behavior.

Assuming m observable parameters and k clusters, the number of data series con-

structed in this phase is m ∗ k ∗ 2. Indeed, it is necessary to build a data serie not

only for each observable workload parameter, but also for each workload state visited

by such parameter.
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Since cluster analysis is performed for each experiment, it may happen that two differ-

ent experiments reveal a different number of clusters. Thi situation simply indicates

that one or more workload states have not been visited during some experiments.

In other words, it may happen that data series built during the inter-experiment

phases have some missing points. Moreover, if one or more workload states are vis-

ited only in a few experiments, they may be treated as outliers and excluded from

the subsequent analysis.

4.3.3 Principal Component Analysis

It is not possible to assume that data series returned by the inter-experiment char-

acterization are uncorrelated. Correlation among data may distort the analysis of

the effects of workload parameters on aging trend: indeed an higher weight would be

given to correlated variables, thus actually amplifying the effects of such variables on

aging trends.

In order to remove correlation among data, we apply Principal Component Analysis

(PCA) which transforms original data into uncorrelated data. As for cluster analysis,

data have to be normalized first, since non normalized data give an higher weight to

data series with an higher variance. Through normalization all data series have the

same weight.

126



4.3. Workload Characterization (Aging Phenomena Characterization)

PCA computes new variables, called Principal Components, which are linear com-

bination of the original variables, such that all principal components are uncor-

related. PCA transform m variables X1, X2, . . . , Xn into m principal components

PC1, PC2, . . . , PCn with PCi =
∑m

j=1
aijXj. The values of the aij coefficients are in

the range [−1; 1]. This transformation has the following properties:

1. V ar[Z1] > V ar[Z2] > . . . > V ar[Zm] which means that Z1 contains the most

information and Zm the least;

2. Cov(Zi, Zj) = 0 ∀i 6= j which means that there is no information overlap

between the principal components. Note that the total variance in the data

remains the same before and after the transformation, i.e.
∑m

i=1
V ar[Xi] =

∑m

i=1
V ar[Zi].

Principal components are decreasingly ordered according to their variance. Is is there-

fore possible to remove the last components, which have the lowest variance, thus

reducing the number of variables to take into account for assessing the relationships

between workload and aging trends. Removing the last components guarantees that

only a small and negligible percentage of the information contained in original data

is thrown away. Typically a very small percentage of original variables (e.g.: 10%)

are able to explain 85% to 90% of the original variance.

Therefore, in our methodology, for each component in the observed layer, we select

a subset q of the calculated m principal components, having q � m. Each of these
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components is expressed as:

PCi =
m

∑

j=1

aijXj with 1 ≤ i ≤ q (4.3.5)

Therefore each principal component has a meaningful interpretation in terms of the

workload data series calculated in the inter-experiment phase, since the aij coefficient

express the weight that each workload parameter has in the principal component(s)

where it appears. A weight close to 1 (or -1) means that the workload parameter has

a very high impact on the principal component, whereas a weight close to 0 means

that the workload parameter has a negligible impact on the principal component The

Software Aging Analysis will select the principal components which have the greatest

influence on measured aging trends; after that, analyzing the composition of each

principal component, it will be possible to identify workload parameters which are

more relevant to aging trends.

4.4 Software Aging Analysis

The last step of our methodology deals with the detection and estimation of aging

trends in resource usage data, and with the analysis of the relationship between the

workload, characterized in the previous step, and the aging trends themselves.

The process employed to perform this step is depicted in figure 4.5. The first phase

deals with the detection and the estimation of aging trends in resource data collected
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Figure 4.5: Software Aging Analysis process

during the experimental campaign. To this aim, we will apply i) Hypothesis test-

ing, to assess the presence of a trend in data, and ii) Linear regression, to estimate

such trend if present.

Null hypothesis testing is a common statistical procedure in which a first hypothesis,

called the Null Hypothesis is tested against an alternate hypothesis. The null hypoth-

esis usally refers to a condition in which a particular treatment does not have any

effect on the output variable. In our methodology we test the null hypothesis of no

trend in data against the alternate hypothesis stating the presence of a linear trend

in data, using the student’s t statistic. The null hypothesis cannot be rejected if the

calculated value for the statistic falls into the tails of the t distribution; the border

between the center and the tail of the distribution is set up according to the chosen

significance level,which is comprised between 0 and 1: the lower is the confidence
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level, the higher is the probability of being in the tail of the distribution.

Linear regression is a method that models the relationship between a dependent vari-

able Y , independent variables Xi, i = 1, . . . , n, and a random term ε. The model can

be written as Y = β0 +β1X1 +β2X2 + . . . βnXn, where β0 is the intercept (“constant”

term), the βi are the respective parameters of independent variables, and n is the

number of parameters to be estimated in the linear regression. The ε term represents

the unpredicted or unexplained variation in the response variable; it is conventionally

called the “error” whether it is really a measurement error or not, and is assumed to

be independent of the Xi.

As far as resource usage data are concerned, we have to take into account only the time

as an independent variable, thus the regression model can reduced to y = a + bx + ε.

In our analysis we will employ least squares analysis in order to perform parameter

estimation. Aging trends must be estimated for each monitored resource, for each

layer in the OTS-based system, and for each cluster detected in the intra-experiment

analysis. It is very important to repeat parameter estimation for each cluster since,

given that each cluster corresponds to a different workload state, there is a high prob-

ability that Software Aging phenomena develop in a different way too.

After calculating aging trends, linear regression, in particular multiple regression

will be employed in order to assess the relationships between aging trends and the

principal workload components built in the workload characterization step.
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The parameters of the regression model, determined with the least square analysis,

will be validated again using the student’s t test. Partial regression parameters, whose

t-values falls into the tails of the distribution will be discarded: indeed, if the null

hypothesis cannot be rejected, there is no effect of the workload principal component

on the aging trend. After discarding invalid parameters, the regression model has to

be solved again with the remaining parameters, until all parameters show a t-value

falling in the center of the t distribution.

Finally, once the influence of principal workload components on aging trends has been

evaluated, the impact of original workload components may be evaluated by analyz-

ing the structure of each principal component. Since each principal component has

the form PCi =
∑m

j=1
aijXj , our goal is to express Xjs as a function of PCis. In

general, this is not possible, since the number of principal components q is usually

far less than the number of original workload parameters n. In order to perform a

meaningful estimation of the relationships between the original workload parameters

and the aging trends, given n workload parameters and q principal components, it is

possible to proceed in the following ways:

1. Delete, if possible, n−q variables having a little influence on the principal com-

ponents, i.e. variables whose coefficient is relatively close to 0 for each principal

component. In this way it will be possible to express workload parameters as a

function of principal components.
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2. For each principal component consider only the workload parameters with the

highest coefficient. Even if it will not possible to accurately express the rela-

tionships between workload and aging trends, it will be possible to obtain an

overestimation of such relationships. Overestimating the effects of workload on

aging trends will lead to predict a lower time for resource exhaustion, which is

always better than predict a time higher than the actual TTE.

Summarizing, the presented methodology allow to completely characterize software

aging dynamics into an OTS item (or a group of OTS items). This characterization,

which includes the contribution of the target layer to the overall aging trends and

the estimation of the influence of the workload imposed on the target layer on aging

trends, may be very useful in several scenarios:

• During the development of an OTS-based system, the OTS selection and acqui-

sition process may be improved by information related to OTS items’ software

aging behavior;

• During the testing phase of an OTS-based system, the detection of aging-related

bugs may be improved by locating the particular sub-component(s) where such

bugs are located;

• During the operational phase of an OTS-based system, the development of

proper rejuvenation strategies may be improved by the knowledge about the
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relationships between workload and aging trends.

4.5 Characterization of Aging Phenomena in the

JVM

In this section we discuss the results of a significant experimental campaign aimed

to estimate aging trends introduced by the JVM, and to investigate the relationships

between workload parameters and aging trends.

Aging trends have been estimated by evaluating two well-known software aging indi-

cators, throughput loss and memory depletion. Workload information, as well

as resource usage data, have been collected using an ad-hoc implemented monitoring

infrastructure for the Java Virtual Machine, presented in the next sub-section.

4.5.1 Java Virtual Machine Monitoring

A monitoring infrastructure is a key component in each dependability evaluation

campaign: this component should collect enough information about the behavior of

the monitored system when proper workloads are applied or faults are injected.

In order to perform an experimental campaign aimed at studying Software Aging

Phenomena in the JVM, we developed an infrastructure, named JVMMon, to monitor

its behavior. Unlike other systems conceived to collect failure data, JVMMon has

been designed to intercept each event related to changes in the state of the JVM thus

collecting the evolution of JVM state together with errors and failures.
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Table 4.1: VM-related events intercepted to collect data about JVM evolution.
Event Raised when Additional Information Supplied

Class Load/Prepare
Generated w hen the class is f irst loaded (Load) or w hen 
the class is ready to be instanced in applications (Prepare)

Thread loading the class, java.lang.Class instance associated w ith the 
class

Compiled Method 

Load/Unload
Generated w hen a method is JIT-Compiled and loaded (or 
moved *) into memory or unloaded from memory

Method being compiled and loaded (or unloaded), compiled code size and 
absolute address w here code is loaded in memory

Exception
Generated w hen an exception is detected by a java or 
native method

Thread throw ing the Exception, location w here the exception w as 
detected, java.lang.Throw able instance describing the Exception

Exception Catch Generated w henever a throw n exception is caught
Thread catching the Exception, location w here the exception w as caught, 
java.lang.Throw able instance describing the Exception

Monitor Contended 

Enter/Entered
Generated w hen a thread is attempting to enter (enters) a 
Java monitor acquired by another thread

Thread attempting to enter (or entering) the monitor, instance of the 
monitor

Monitor Wait/Waited Generated w hen a thread is entering (leaving) Object.w ait()
Thread entering (leaving) Object.w ait(), instance of  Object, w aiting 
timeout (if applicable)

Object Free Generated w hen the Garbage Collector frees an object Tag** of the freed object

Thread Start/End
Generated immediately before the run method is entered 
(exited) for a Java Thread Thread starting (terminating)

VMStart
Generated w hen the JNI subsystem of the JVM is started. 
At this point the VM is not yet fully functional.

VMInit Generated w hen JVM inizialization has completed. Thread executing the public static void main method.

VMDeath
Generated w hen the VM is terminated. No more events w ill 
be generated.

* When a JIT-compiled method is moved a Compiled Method Unload Event is generated, followed by a Compiled Method Load event
** Object Free events are generated only for tagged object. A tag is a 64-bit integer variable connectable to each object in JVM Heap

The proposed monitoring infrastructure allow on-line analysis of JVM state evolution

through a three-step process: i) a monitoring agent, developed using the JVM Tool

Interface (JVMTI) (which stems from the Java Platform Profiling Architecture [82])

and Bytecode Instrumentation (BCI), intercepts events generated inside the JVM and

collects data about its state; ii) a monitoring daemon processes these information and

updates the state of the virtual machine; iii) a data collector stores collected data

in a database, allowing on-line and off-line analysis. Since JVMMon is built upon

JVMTI, it may be employed with all JSR-163 compliant Virtual Machines.

Field Data Sources

Field data are collected using the following information sources:

134



4.5. Characterization of Aging Phenomena in the JVM (Aging Phenomena
Characterization)

Table 4.2: Functions Employed to retrieve data about Java Virtual Machine state
Function Retrieved Information
GetThreadState Bitmask describing the state of a Java Thread

GetThreadInfo Thread priority and context class loader

GetOwnedMonitorInfo Monitor ow ned by a thread

GetStackTrace Thread's stack trace

IterateOverHeap
Information about organization of object in Heap 
Area (through an Heap Iteration callback 
function)

GetClassStatus Status of a Class

GetClassModifiers Access f las for a Class Instance

GetObjectSize Object size in byte

GetObjectHashcode Unique identif ier associated w ith the object

• JVMTI events - Several events raised from the JVM are intercepted imple-

menting JVMTI callbacks. Events intercepted by JVMMon are reported in

Table 4.1.

• JVMTI functions - JVMTI callbacks use these functions in order to update

the state of the component of the JVM which the raised event is related to. The

functions used to determine the state of the Java Virtual Machine are reported

in Table 4.2.

• Java Objects (through BCI) - Java Methods are instrumented in order to

obtain further information about the virtual machine.

Monitoring the state of the JVM

The state of the JVM may be defined as the union of the state of its components.

Some of these components, namely the JIT compilers, the Interpreter and the OS

Abstraction Layer, can be regarded as being stateless, whereas the state of the Class
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Loader, the Thread Management Unit, and the Memory Management Unit is defined

as follows:

• Class Loader - Its state is defined by the list of the classes loaded in the

permanent generation of the JVM. A Java Class could be loaded, prepared (the

code is available in method area), initialized, unloaded or in an erroneous

state, if there was an error during preparation or initialization.

• Thread Management Unit - The state of this component is characterized

by the state of each Java thread. Internal VM threads are not managed by

this component. In order to characterize the state of each Java Thread we keep

track of the following information:

- State: Current state of the thread (i.e.: Runnable, Waiting, Blocked, Sus-

pended, etc.)

- Stack trace: Stack trace of the thread.

- Owned monitors: A list of monitors owned by a thread. According to the JLS

only a thread at a time may own a monitor.

- Contended monitor and Waiting monitor : The monitor on which the thread

is currently blocked. - Scheduling timestamps : A timestamp is taken each time

a thread is scheduled on an available processor and each time the same thread

yields the processor to another thread. This allows us to collect scheduling

information also in multiprocessor systems.
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• Memory Management Unit - Since we aim at monitor the integrity of data

structures on which the reference handler and the garbage collector operate, we

define the heap of the JVM is defined as the set of objects allocated in Java

Heap since VM has been started. JVMMon has been implemented in order to

distinguish the amount of memory committed to the application from the space

actually allocated into the heap of the JVM, thus allowing to obtain resource

usage information either at the application and the JVM layer, in order to

isolate the layer in which prospective aging trends are introduced.

Monitoring JVM workload
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Capturing the state of the JVM allows to assess its current health: by the analysis

of system logs it is indeed possible to understand whether anomalous conditions are

verified inside the JVM. Since it is impossible to understand how aging phenomena

evolve inside the JVM without characterizing its workload, JVMMon is also capable

of monitoring JVM workload parameters. This task has been accomplished by using

i) JVMTI functions, ii) Bytecode Injection and iii) Using performance counters ac-

cessible through the jstat 2 interface.

A number 30 workload parameters (reported in table 4.3) were monitored. These

parameters are related to the components of the JVM described in section 2.3.2.

JVMMon Architecture

Figure 4.6 shows the main components of JVMMon and their interconnections. The

JVMTI agent on the Monitored JVM retrieves data about JVM state handling events

raised from the JVM itself. This information is then sent to the Local Monitor

Daemon which computes the state of the monitored JVM. These two components are

deployed on the same host and communicate each other through a shared memory.

Each event raised by the Monitored JVM is also logged on a file on the local file

system. Moreover, the JVMTI agent sends an heartbeat message at a fixed rate in

order to make the Local Monitor Daemon aware of JVM failures.

The Local Monitor Daemon notifies the Data Collector about failures and relevant

2The jstat tool displays performance statistics for an instrumented HotSpot JVM
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Figure 4.6: JVMMon Architecture

changes in the state of the monitored virtual machine. This events are then written

in the Event Database. Each time the Data Collector is notified, a snapshot of

JVM state is retrieved and stored in the State Snapshots Database.

JVMTI Agent

This component is a shared library loaded at JVM startup. It is in charge of:

1) Handling events generated by the JVM implementing JVMTI callback functions.

2) Retrieve data about JVM state through both JVMTI API and BCI.

3) Send retrieved data to the Local Monitor Daemon.

4) Store data about events in the Local Event Log.

5) Store resource usage data in the Resource Usage Log.
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6) Store workload information in the Workload parameters Log.

As regards BCI, Java classes are instrumented in order to:

i) Detect context switches: each time a method is entered the current thread is

checked.

ii) Detect object finalization: finalize() methods are instrumented thus detecting

when the JVM releases resources held by an object.

iii) List system resources such as file descriptors and sockets, instrumenting JDK core

classes. Moreover, in order to keep overhead and intrusiveness in the instrumented

JVM as little as possible, not all loaded classes are instrumented. A pattern-based

rule is used to define which classes are to be instrumented.

Local Monitor Daemon

This component runs on a separate, non-instrumented, JVM. It communicates with

the monitored JVM through a shared memory and sends notifications related to

failures or relevant state changes to the Data Collector. The VM state calculator

sub-component copes with the first task, where as the State Change Notify MBeans

sub-component copes with the second one.

The VM Failure Detector sub-component is in charge of detecting Monitored JVM

failures. The detection is performed at three different layers: i) Process Layer : JVM

crashes (i.e.: a SIGSEGV failure) are detected checking for its PID; ii) Local log

Layer : Hang failures (i.e.: a deadlock between Java or VM threads) are detected
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checking whether events are being written on the local log or not; iii) Communication

Layer : The failure detector listens on a socket for heartbeat messages and checks if

the Monitored VM is still able to communicate.

Data Collector

This component collects data from multiple instrumented Virtual Machines. A con-

nection is established with each Local Monitor Daemon. Event listeners handle

state change notifications whereas the Snapshot retriever performs state snapshot

retrieval. Data is then stored in Event Database and State Snapshot Database.

4.5.2 Experimental Setup

JVMMon has been employed to collect resource usage and system activity data from

a workstation running JAMES mail server on a Sun Hotspot JVM v.1.5.0 09. The

workstation was a dual-Xeon server equipped with 5GB RAM and running Linux OS

(kernel v.2.6.16). The JVM was started with the typical server configuration 3 and a

maximum heap size of 512 Megabytes; it was configured to run serial, stop-the-world

collectors both on the young and the tenured generation. No other application is

competing for system resources with the JVM: the server workstation is started with

just minimal system services.

3The Java Hotspot Server VM has been specially tuned to maximize peak operating speed. It is
intended for running long-running server applications, for which having the fastest possible operating
speed is generally more important than having the fastest possible start-up time
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Figure 4.7: Experimental setup for data collection

We chose a mail server as the benchmark application for our analysis since it rep-

resents an important class of long running server applications usually stressed by

significant workloads.

The server workstation is stressed using a load generator, which acted as an email-

client, sending a receiving mails at a constant pace for the whole experiment. The

load generator employed allows to control the imposed workload by specifying the

number of mails per minute and the size of such mails. In our experimental cam-

paign, the number of mails per minute has been chosen as the controllable workload

parameter, whereas the size of the e-mails will be kept constant among all experiments

Figure 4.7 depicts a single experiment scenario. JVMMon collects the greatest part
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of the information required for the analysis. Only data about server’s throughput

are extrapolated from logs generated by the load generator. Moreover JVMMon has

been extensively tested in order to guarantee that it is aging-bug free, thus ensuring

that the monitoring agent does not introduce any aging phenomenon or overdraws

existing ones.

4.5.3 Experimental Campaign

In order to choose a proper range for the controllable workload parameter, the capac-

ity of the mail server has been determined first, identifying the highest workload (in

terms of email per minute) it is capable of sustaining without refusing any connection.

We estimated this limit to be about 1550 mails per minute (i.e., the SMTP server

is capable to deliver up to 1550 mails per minute without any error). We therefore

performed 29 experiments, with the number of mail per minute ranging from 330

mail/min to 1530 mail/min., increasing by 40 mail/min per experiment.

Table 4.4 reports a summary of these experiments, including the throughput achieved

(for both SMTP and POP3 protocols) in the first 4 hours of execution: this value

can be assumed as the throughput achieved by the mail server in “Normal operation”

mode, when the throughput loss due to software aging is not yet appreciable. Each

experiment runs from 6000 minutes, and a sample is collected each minute. Fixing

the sample collection interval to 1 minute allows us to capture dynamics in resource

usage and workload parameters which have a relatively small duration; on the other
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Table 4.4: Experiment Summary���� � ����	
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hand, the chosen interval is enough large to avoid noise due to transitory phenomena

like garbage collections, which indeed occur several times per minute.

In order to shorten the time required to run all the experiments (3200 hours), 10

identical workstations, with the same configuration, were employed. All the ma-

chines used in this analysis (clients and servers) were on a private LAN, in order to

avoid any perturbation due to other applications consuming network bandwidth.

4.5.4 Workload Characterization

This section discusses the characterization of the workload applied to the JVM in

terms of its workload parameters. A separate characterization is performed for each

JVM component.
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Class Loader

Class loader activity is mainly is focused in the startup phase of the Java Virtual

Machine, in which the greatest part of classes required by the application is loaded.

Since the workload applied for each experiment is constant and rather static, it is

possible to expect just a little activity in this component. This is confirmed by

the inter-experiment characterization of classloader-related workload parameters. On

average, during 100 hours of execution, less than 1 millisecond is spent in class-

loading activity. In particular, no class loader activity was observed for 17 out of

29 experiments (58,62%). For the remaining 12 experiments, data always assumed

an exponential distribution, and the null hypothesis of no trend in data cannot be

rejected at a significance level of α=0.014 and α=0.05. Given this scenario, it is

possible to argue that the Class Loader has a negligible impact on aging trends:

therefore classloader-related workload parameters will be excluded from the analysis

of relationships between workload and aging phenomena.

Just-In-Time Compiler

During our experiments, although the JVM is requested to do the same actions for

the whole duration of the experiment (and therefore it is possible to expect that once

critical hot spots are identified JIT-compiler activity progressively decreases), a con-

sistent JIT compilation activity has been noticed throughout the entire experiment.

4Given a certain α, the percentage of the confidence interval for the estimation is given by 1− α
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Figure 4.8: A - Average number of JIT compilation events per minute for each experi-
ments; B - Average time per minute spent during JIT compilation for each experiment

For each experiment all JIT-related workload parameters are exponentially distributed,

thus excluding the presence of clusters. Moreover, none of the JIT-related workload

parameters exhibited trends, except for the ones concerning on-stack replacement

compilation (CI OSR COMPILES and CI OSR TIME), which experienced a trend at the

α = 0.01 significance level.

Figure 4.8-a shows the average number of JIT-compilation events occurring each

minute for each experiment. The high degree of correlation between the counter of

JIT-compiler events (CI THR0 EVENTS) and the number of compilations performed

(CI STD COMPILES) parameter is evident, whereas the number of native compilations

is very small compared with the number of standard and on-stack-replacement (OSR)

compilations. Moreover, while the average number of standard JIT-compilations
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Table 4.5: Principal components for JIT-compiler Workload Parameters������� ������� ������� ��������	
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tends to decrease with higher workloads, the number of OSR-JIT-compilation in-

creases with higher workloads.

Figure 4.8-b shows the average time spent during JIT-compilation. While the time

spent in OSR compilation (CI OSR TIME) clearly shows an increasing trend thus show-

ing a strong correlation with the the number of OSR compilations (CI OSR COMPILES),

it is not possible to detect a trend for the time spent during standard JIT compilations

(CI STD TIME). This is mainly attributable to the behavior of the parameter describ-

ing the time spent for each JIT-compilation (CI TIME PER COMP), which increases as

the applied workload increases, thus showing a dependence between applied workload

and the time required to perform a single JIT compilation. It is therefore possible to

expect a certain impact of JIT compilation workload parameters on aging dynamics

inside the JVM. After applying PCA to these workload parameters, we obtained 4

principal components, reported in Table 4.5. These 4 principal components account

for 80.05% of variance in the originall sample set.

147



4.5. Characterization of Aging Phenomena in the JVM (Aging Phenomena
Characterization)

Execution Unit and Thread Management Unit

Figure 4.9-a highlights a direct relationship between the number of mails per minute

and workload parameters such as method invocation rate (MET INV), object allocation

rate (OBJ ALL), and array allocation rate (ARR ALL). Also the average number of

threading events follows the same pattern, indicating a direct relationship between

method execution and synchronization events. All these parameters are normally

distributed around their expected value, and they show a negative trend for each

experiment, which decreases when the applied workload increases, as shown in figure

4.9-b. This indicates of a loss of throughput during experiment execution, which is

(A) (B)
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Figure 4.9: A - Average number of execution related events per minute for each
experiment; B - Trends detected for execution related parameters for each experiment;
normalized data are reported due to significant differences in data order of magnitude.

proportional to the workload applied to the mail server. Synthetic parameters about

threads waiting on monitors and condition variables (WM,WV,NWM,NWV parameters) are
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instead negligible, and will be excluded from the analysis of the impact of workload

on aging trends. Figure 4.9 also shows an high degree of correlation among these

parameters: only 2 principal components, reported in Table 4.6 account for 93.82%

of variance in data (82.64% for the first component). The high degree of correlation

of these workload parameters is proved by the small differences in the coefficients for

the first principal component (EXEC PC1).

Table 4.6: Principal components for Execution Unit and Threading Workload Parameters��������� �����������	
�� 	������������� ����� ����������������� !���"# !���$"%&'��((���� ����$ �����%&'��((����� !���"$ ��""������((���� ����# ����"�����((����� !���") ���"������� ����� ������������ !���)� ��$�)
Memory Management Unit

These parameters deal with the activity of Garbage Collectors. Unlike previously

discussed parameters, memory-related parameters exhibited the presence of clusters.

Cluster analysis revealed that garbage collector activity can be divided into two main

clusters, defining two well-distinct workload states: the Normal Collection state and

the Low Collection state. 25 experiments out of 29 visited both states, whereas only

4 experiments exhibited only the normal collection state.

Table 4.7 reports average values for each memory-related parameter in both clusters.
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Table 4.7: Garbage Collection Workload Parameters

AVG ST.DEV MIN MAX AVG ST.DEV MIN MAX

COLLECTOR0_INV 83,686 18,928 42,333 104,549 10,286 3,449 4,701 18,062

COLLECTOR1_INV 0,650 0,185 0,272 0,860 0,028 0,015 0,008 0,062

COLLECTOR0_TIME 226,309 58,259 109,188 290,785 91,812 31,363 40,238 167,666

COLLECTOR1_TIME 83,492 26,900 31,892 116,330 3,657 2,037 0,917 9,334

SAFEPOINTS 92,187 20,854 46,612 115,180 11,787 3,833 5,530 20,157

COLLECTOR0_TIME_PER_INV 2,732 0,147 2,491 3,043 11,118 0,494 9,823 12,452
COLLECTOR1_TIME_PER_INV 128,058 6,769 114,564 139,000 127,627 7,910 117,182 147,661

NORMAL COLLECTION LOW COLLECTION

The Low collection state is marked by low garbage collector invocation rates (espe-

cially for the tenured generation collector) and longer young generation collection

times, whereas the Normal collection state is marked by high collection invocation

rates and low young generation collection times. Safepoints reached by the JVM

are strongly correlated with young generation collections. Instead, no appreciable

variation has been observed for the time spent for each tenured generation collection

(COLLECTOR1 TIME PER INV) between normal and low collection periods. Since in Low

collection state we did not observed significant variation in object and array allocation

rates, this state represents a potential source of memory depletion of the JVM: objects

are allocated with the same frequency, but collections occur less frequently. Further-

more, although the time spent to reclaim unreachable objects during normal collection

periods is about 3 times higher than the time spent during low collection periods, we

did not observe any throughput increase during visits into the low collection state.

Figure 4.10 shows the trend exhibited by the parameters describing the time spent

during young and tenured collections (COLLECTOR0 TIME and COLLECTOR1 TIME); the

remaining parameters show similar trends, except the ones related to the duration
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Figure 4.10: Trends for time spent during garbage collection during normal collection
periods (A), and during low collection periods (B)

of each collection (COLLECTOR0 TIME PER INV and COLLECTOR1 TIME PER INV), which

did not show any trend in each experiment. During normal collection periods, there

are impressive trends for both collectors when the applied workload is small; the

trend then decreases, becoming negligible for experiment with high workloads. In-

stead, during low collection periods, there are no appreciable trends for the tenured

generation collector (the null hypothesis cannot be rejected), whereas the young gen-

eration collector trend increases as the applied workload increases. This behavior can

be explained taking into account the duration of visits in the two workload states (not

shown due to lack of space). Visits in the Normal Collection state are shorter when

the applied workload is small, whereas visits in the Low Collection state are shorter

when in applied workload is bigger: therefore transitions from low to normal collec-

tion state determine the higher trend in low-workload experiments, and transitions
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Table 4.8: Principal Components for Garbage Collection Parameters���������������������������	 ��
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from normal to low collection periods determine the higher trend in high-workload

experiments.

Summarizing, the analysis of these workload parameters tells us that i) trend for

memory depletion should be determined for both normal and low collection workload

states, ii) SM and SV parameters can be excluded from software aging analysis, as well

as trends for single collection times, and iii) there is an high degree of correlation

among the remaining parameters. Therefore we performed a principal component

analysis on these parameters in both normal and low collection states, whose result

are shown in Table 4.8. Due to the high degree of correlation, only 2 principal com-

ponents are able to explain 91.71% of the original variance in the Normal Collection

state, whereas 3 principal components explain 90.79% of the original variance in the

Low Collection state.

152



4.5. Characterization of Aging Phenomena in the JVM (Aging Phenomena
Characterization)

���������� ��		


����
���
���
����
����
������ ��� ��� ��� ���� ��� ���� ������������ ���������� !"#$%&'()
POP3 Server

SMTP Server

Figure 4.11: Throughput loss trends for SMTP and POP3 servers among different
experiments

4.5.5 Throughput Loss analysis

Performed experiments report an evident loss of throughput, which is not affected

by periods of Normal and Low Collection. For instance, experiments #10, #20 and

#30 experienced a throughput loss trend for the SMTP server of 0.76 KB/min, 1.56

KB/min, and 1.96 KB/min respectively. Results reported in figure 4.11 highlight the

presence of a linear relationship between the throughput loss and the JVM workload.

Table 4.9 reports the results of a linear regression analysis applied to throughput

loss trends (shown in Figure 4.11). The first row of this table reports the value

of the student’s t statistic; the probability reported in the second row indicates at

which confidence level the null hypothesis can be rejected; the third row reported

the estimated slope, whereas the fourth row reports 95% confidence intervals for the

estimation. Increasing the workload by 100 mails per minute causes an increment
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Table 4.9: Throughput loss as a linear function of the number of email sent per minute
and of the Normal Operation throughput�������� ��	��� 
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of about 175 bytes in the throughput loss for the SMTP server and of about 185

bytes for the POP3 server. Moreover, if the Normal Operation throughput increases

by 1MB per minute, it is possible to expect an increment of about 70 bytes in the

throughput loss trend for both the SMTP and the POP3 server. This means that,

for instance, if the Normal Operation throughput is about 30MB per minute, it is

possible to expect the throughput to be halved in about 8 days and 13 hours. In

order to obtain useful insights about the relationships between throughput loss and

JVM workload parameters, we performed the multiple regression step of the Software

Aging Analysis presented in section 4.4.

Results of such analysis are reported in Table 4.10. The next step of the software

aging analysis is concerned with the selection of the principal components which have

a real influence on aging trends. We then selected only principal components which

showed a probability of being in the tail of t distribution lower than 5%, namely

EXEC PC 1 and NORM COLL PC2. Recalling the composition of these principal compo-

nents, we noticed that while the main contribution to the NORM COLL PC2 principal
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Table 4.10: Results for multiple regression analysis of throughput loss against prin-
cipal components ��������� � �	 
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component is mainly due to the duration of each young generation collection (de-

scribed by the workload parameter COLLECTOR0 TIMEPERINV), all execution related

workload parameters contributed to the EXEC PC1 principal component. Among these

parameters, we chose the 2 most representative ones, the average method invocation

rate (MET INV AVG) and the average object allocation rate (OBJ ALL AVG).

We then evaluate the impact of the 3 above mentioned workload parameters on

throughput loss, obtaining results shown in Table 4.11. This impact has been es-

timated through linear regression methods, identifying the ideal slope between the

throughput loss and each of the selected workload parameters. Values of the Stu-

dent’s t confirm that it is possible to reject the no trend null hypothesis. However,

the COLLECTOR0 TIMEPERINV parameter exhibits a larger confidence interval (95%),

thus suggesting that this is less confident than MET INV AVG and OBJ ALL AVG param-

eters. Results of linear regression analysis tells that it is possible to expect an increase
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Table 4.11: Throughput loss as a linear function of most relevant JVM workload
parameters ����� ������ � 	
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of 0.0047 KB (about 5 bytes) in throughput loss for an increment of 1M in method

invocation rate, or an increase of 0.055 KB (about 55 bytes) for an increment of 100K

in object allocation rate. These result are not surprising, since the average method

invocation rate of the performed experiments is of about 3× 108 methods per minute

and the average object allocation rate is of about 3 × 106 objects per minute.

Execution-related workload parameters are therefore the most relevant for through-

put loss, which increases linearly with their values; although regression analysis high-

lighted a relationship between the throughput loss and the time required for a single

collection, it is not possible to claim that the garbage collectors have a real impact

on throughput loss: collection times are higher since there are more objects in heap

area. Since the workload applied to the JVM is mainly I/O bound, the source of the
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Memory depletion trend in Low Collection State
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App Layer
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Figure 4.12: Memory depletion trends during low collection periods

throughput loss has to be searched in the OS abstraction layer component; indeed

the JVM forwards any I/O operation to the underlying operating system through this

component. This also suggests that throughput loss values are affected by the host

operating system. In order to confirm this hypothesis it is necessary to shift focus

from the JVM to the OS layer. In the next chapter an analysis of the relationships

between OS workload parameters and aging trends measured at the OS layer will be

presented.

4.5.6 Memory Depletion Analysis

Memory depletion trends for the application and the JVM, in the Low Collection

state, are reported in Figure 4.12. In the Normal Collection state (not shown in fig-

ure) the aging trend seem to be independent of the load imposed on the mail server,
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whereas, in the Low Collection state, the memory depletion trend generally increases

as the workload increases.

As regards memory depletion trends in Normal Collection state at the application

layer, we was not able of finding any aging trend for the greatest part of experiments,

thus proving that the benchmark application does not suffer from memory depletion.

Moreover, trends measured at the JVM layer are always higher than trends measured

at the application layer, thus suggesting a contribution of the JVM to memory de-

pletion.

The estimated Time-To-Exhaustion in the Low Collection state ranges from 22 days

and 4 hours for the best case (-13.96 KB/min) to 6 days and 11 hours for the worst

case (-48.89 KB/min), whereas JVM-level memory depletion trends exhibited in the

Normal Collection state are less concerning, given that the corresponding TTE is

equal to about 105 days in the worst case (-3.06 KB/min). It is therefore possible to

claim that, although memory depletion has to be considered in bot workload states,it

becomes a serious threat during low collection periods. During our experiments the

average duration of visits in the Low Collection state was of 590 minutes,with a peak

of 2234 minutes.

Table 4.12 reports the results of the regression analysis; for both Normal and Low

collection state, the first column reports partial regression results for trends at the

JVM layer, the second one refers to the application layer, and the third one reports

158



4.5. Characterization of Aging Phenomena in the JVM (Aging Phenomena
Characterization)

Table 4.12: Results for partial regression analysis of memory depletion at application
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the difference between the two previous trends. These results reveal the following

insights:

1. No workload parameter give information for investigating memory depletion at

the application layer in the Normal Collection state, since the value of the t

statistic is always under its critical value; indeed in this state we did not notice

any memory depletion at the application layer.

2. Memory depletion trends at the JVM layer in the normal workload state are

attributable to the CI PC1 and CI PC3 principal components; therefore JIT

compiler can be addressed as the main source of software aging in this workload

state. Indeed each time a Java method is JIT-compiled, generated native code

is stored in a reserved area in Java Heap, the Native Method Cache. Size of this

area progressively increases during experiment duration.

3. In the Low Collection state, memory depletion trends, both at the application
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and JVM layers, are due to the activity of the garbage collector. The most

relevant principal components are LOW COLL PC1 and LOW COLL PC2, which re-

ported significant scores for the t statistic. This confirms that, in the Low

Collection state, memory depletion is mainly due to the downfall of garbage

collector activity.

4. The difference between memory depletion trends at the application and JVM

layer can be explained taking into account JIT Compiler activity in both col-

lection states. The CI PC3 principal component has a relevant impact on the

trend difference between application and JVM layers. Recalling Table 4.5 time

spent per minute in standard JIT compilation (CI STD TIME AVG) gives the most

significant contribution to this principal component.

Given the results of partial regression analysis, we chose 4 JIT related parameters

to estimate the relationships with aging trends in the Normal Collection state and

3 GC related parameters to estimate them in the Low Collection state. The re-

sults of a linear regression analysis applied to these parameters are reported in Table

4.13. Among the 4 selected JIT-compiler parameters only the time per minute spent

in standard compilation (CI STD TIME AVG) shows a strong linear relationship with

memory depletion in the Normal Collection state. The null hypothesis (no linear rela-

tionship) cannot be rejected for the remaining parameters, which altogether account

for 33.86% of the information contained in the CI PC1 principal component. Among
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Table 4.13: Memory depletion in Java Heap as a linear function of most relevant JVM
workload parameters�������������	
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the 3 selected Garbage Collection parameters, the average number of young collector

invocations (COLLECTOR0 INV AVG) and the average time spent during tenured genera-

tion collection (COLLECTOR1 TIME AVG) are linearly correlated with memory depletion

both at the JVM and the Application layer, whereas the null hypothesis cannot be

rejected for the trend exhibited by the tenured generation collector.

It is therefore possible to claim that: i) there is no appreciable memory depletion

trend at the application layer in Normal Collection state, and the trend observed

at the JVM layer is attributable to the growth of the native method cache size; ii)

memory depletion is much higher in the Low Collection state, and it is attributable

to the downfall of garbage collector invocations, and iii) the differences between the

trends observed at the application and JVM layer are due to the activity of the JIT
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compiler.

4.5.7 Key Findings

The conducted campaign revealed that the JVM suffers from Software Aging phenom-

ena, which manifested both as throughput loss and memory depletion. In particular

the analysis of collected data proved that:

i) As regards memory depletion, in both normal and low collection states, there is a

slow drift whose source is located in the JIT compiler. This drift is mainly due to

data stored in the Native Code Cache. However these depletion dynamics cannot be

regarded as a serious threat for the JVM, since the estimated TTE is considerably

high.

ii) Sudden downfalls in Garbage Collector activity shift the JVM from the normal to

the low collection state, causing free memory to decrease with a very high slope.

iii) The interface between the JVM and the operating system seem to be really criti-

cal from a throughput loss perspective. Results presented in this paper showed that,

under stressing workload, achieved throughput is halved after about 1 week of exe-

cution. In different scenarios, with higher and more stressful workloads, TTE could

be consistently lower, thus becoming a serious problem. However, further investiga-

tions, which constitute the focus of the next chapter, are required to assess whether

these aging phenomena are really located in the interface between the JVM and the

OS. Summarizing, the experimental campaign highlighted the presence of three dis-
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Table 4.14: Time to exhaustion estimation for detected aging phenomena��������� ���	� 
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tinct software aging dynamics. Table 4.14 reports, for each of these dynamics, the

related workload parameters, the estimation of the relationships between the work-

load parameter and the aging trend, and the estimated Time To Exhaustion. As

regards throughput loss, TTE has been calculated assuming the system failed when

the throughput is halved. In particular, table 4.14 reports TTEs estimated both in

the worst and in the best case.

The most relevant aging dynamic is the one related to throughput loss. This dy-

namic worses when the activity of the execution unit increases. For instance, if the

method invocation rate increases by 10 millions per minute (keep in mind that in our

experiment we observed an average method invocation rate ranging from 170 to 650

millions of method per minute), it is possible to expect an increase in throughput loss

of 0.5 KBytes per minute.

On the other hand, two distinct dynamics are responsible for memory depletion in

the JVM. The fast drift is associated with a very low TTE (about 14 days in the

worst case). However, since low collection periods usually do not last for so much
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time, this aging dynamic usually does not cause a failure of the JVM. Moreover, since

low collection periods may be detected by monitoring Garbage Collection workload

parameters, it is possible to bring the JVM out of this workload state by forcing

garbage collections. This task may be accomplished through monitoring and man-

agement tools such as JConsole 5. The slow drift instead, exhibits very high TTEs

(about 105 days in the worst case, and about 1 year int the best case). However,

unlike the fast drift, this dynamic is present both in the normal and in the low col-

lection state. Therefore, even if TTEs estimated during our experimental campaign

do not represent a significant threat to JVM dependability, this dynamic may be-

come a serious source of JVM failure whenever the JIT compilation activity increases

significantly. . . .

4.6 Conclusions

In this chapter we presented a novel methodology aimed at evaluating the depend-

ability of OTS items from a software aging perspective.

This methodology has been applied to the JVM, conducting of an experimental cam-

paign on a simple OTS-based system constituted by the Apache James mail server,

the Sun Hotspot JVM, and the Linux Operating System. Data have been collected

employing a self-developed monitoring infrastructure for the JVM, named JVMMon.

5JConsole is a GUI tool compliant with the Java Management Extensions which is capable of
connecting to a running JVM. The management agent must be started in the monitored JVM by
specifying a proper command-line option.
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The analysis of collected data allowed us to discover several aging phenomena in the

Sun Hotspot JVM, evaluate the relationships between workload and these phenom-

ena, and locate the components where aging-related bugs were located.

Although results presented in the previous section are valid only for the Sun Hotspot

JVM implementation (and different implementations of the JVM may exhibit dif-

ferent aging dynamics), the methodology adopted in this paper is general and may

be applied not only to different JVM implementations, but also to each OTS-based

system which may be structure in layers as reported in figure 4.1.
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“Ogni scarpa addeventa

scarpone”

Each new shoe eventually
becomes a tatty one.

Neapolitan Proverb

Chapter 5

Sensitivity Analysis of the OS layer
against Aging Faults

In the previous chapter software aging phenomena at the JVM layer were deeply an-
alyzed. We found that aging in the JVM manifests both as memory depletion and
throughput loss. We addressed the interface between the JVM and the Operating Sys-
tem as the source of throughput loss phenomena. In particular, since the application
running on top of the JVM imposed an I/O bound workload, we claimed I/O activities
performed by such interface to be the root cause of the observed throughout loss. In
order to confirm this hypothesis, it is necessary to analyze software aging behavior at
the OS level. In this chapter we analyze the relationships between OS-level workload
parameters and aging phenomena as measured at the OS layer. The analysis has been
performed on a different testbed, both for Windows and Linux.
Results of such analysis are significantly different from the ones presented in the previ-
ous chapter: no throughput loss was observed, whereas a consistent memory depletion
has been observed for the Windows OS. This suggests us that previously observed
throughput loss was due the particular combination of JVM version, OS system li-
braries, OS kernel and also hardware platform.

5.1 Motivations

The analysis presented in the previous chapter allowed us to thoroughly characterize

the development of Software Aging phenomena at the JVM layer. Results of the

analysis clearly showed the JVM suffers from Software Aging. Aging-related bugs
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manifested both as memory depletion and throughput loss.

As far as memory depletion is concerned, we found two distinct contributions to this

phenomenon: a slow drift due to the activity of the Just-In-Time compiler, and a fast

drift due to sudden downfalls in garbage collection frequency. This means that JVM

components are responsible for the observed depletion trends in JVM heap. On the

other hand, we observed a strict correlation between throughput loss and workload

parameters related to the execution unit, such as the Method Invocation Rate and

the Object Allocation Rate. We did not observe an higher throughput loss when the

JIT activity was higher. Moreover, since the employed benchmark is a pure-java ap-

plication, it does not execute any user-defined native method. Therefore we claimed

that the source of this aging phenomena has to searched in the interface between the

JVM and the underlying OS.

In order to validate this hypothesis, it is required to shift focus from the JVM layer to

the OS layer, and perform a new data analysis taking into account OS-level workload

parameters (such as system call invocation frequency, number of bytes read per sec-

ond, or number of bytes written per second), and evaluating their relationship with

throughput loss and memory depletion trends observed at the OS layer.

Beyond confirming or rejecting our hypothesis about throughput loss source, an OS-

level analysis will be useful to investigate whether there are memory depletion phe-

nomena introduced in the OS layer which are not observable in the JVM layer. Indeed

167



5.1. Motivations (Sensitivity Analysis of the OS layer against Aging Faults)

the JVM provides a complete abstraction of system memory: Java applications do

not see other memory than the one available in the heap area. It may therefore hap-

pen that memory depletion phenomena introduced by the JVM are not observable

monitoring only memory usage in the JVM heap.

Moreover, in order to augment the effectiveness of an OS-level analysis, it will be

worth to collect data from different Operating Systems. In this way it will be possi-

ble to compare the development of aging phenomena in different Operating Systems,

thus allowing to choose the best operating system taking into account not only per-

formance aspects, but also dependability ones.

In order to perform such comparison, particular carefulness is required for workload

parameters and resource usage variables selection. It is indeed necessary to select

workload parameters which are comparable among different operating systems, since

there should be Operating System specific information which are not comparable with

other Operating Systems or require a conversion in order to be compared.

This chapter presents the results of an experimental campaign aimed at analyzing

the development of aging phenomena in the OS layer of the same simple OTS-based

system employed in the previous chapter. The analysis has been performed using the

methodology presented in the previous chapter. The next section discusses experi-

mental design, whereas section 5.3 describes the testbed used for this experimental
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campaign. The problem of monitoring OS-level workload parameters has been ad-

dressed in section 5.4. Section 5.5 discusses the results of such experimental campaign,

reporting results for both the Windows and the Linux Operating System. Finally,

section 5.6 concludes the chapter discussing the key findings of this analysis.

5.2 Design of Experiments

As for the JVM level analysis, the number of e-mails sent per minute has been cho-

sen as the controllable parameters for our experiments. The workload applied to the

James Mail Server ranges from 150 mail/min to 600 mail/min. We was not able to

perform experiments with higher workload since the mail server capacity test on the

Windows OS revealed that the James Mail Server, on this Operating System, was

capable of delivering no more than 650 mail/min without refusing any connection.

For this analysis we performed 4 experiments for both Linux and Windows, increasing

the number of mails for each experiment by 150 mail/min.

Each experiment runs from 15000 minutes, and a sample is collected each 2 min-

utes. The duration of each experiment has been consistently increased with regards

to the JVM-level analysis in order to highlight the presence of particularly slow aging

trends which may be not appreciable with 6000 minutes experiments, and to evaluate

whether there are aging phenomena which start to develop after a considerable exe-

cution time is elapsed. Moreover, since the JVM heap, which represents the greatest

part of the memory used at the OS layer, grows (shrinks) only when heap memory
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usage goes above (below) certain thresholds, we chose a larger interval for sample

collection, thus reducing the time required to perform the subsequent analysis.

We considered the same response variables employed in the JVM level analysis:

throughput and memory usage. In particular, rather than measuring system-wide

memory usage, i.e., total memory allocated by the OS, we measured memory ac-

tually used by the java process, thus allowing to discard transient phenomena due

to the concurrent activity of other process, which, especially in the Windows OS, is

unavoidable.

As far as workload parameters are concerned, unlike the JVM level analysis, we re-

stricted our focus only to I/O workload parameters. This choice has been made since

our original goal was to confirm or reject the hypothesis on the relationships between

throughput loss and I/O activity.

Among the broad spectrum of workload parameters concerning Operating System

activity, only 2 workload parameters were selected: Total number of bytes written per

minute (BW ), and total number of bytes read per minute (BR). Given the meagre

number of workload parameters, the PCA step of the workload characterization may

be skipped, since there is no need to perform reduce the number of independent vari-

ables in the regression model. The values collected for BR and BW must concern only

the I/O activity performed by the java process, in order to avoid perturbation due

to I/O activity performed by system processes (such as the syslogd process in Linux
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Table 5.1: Experimental design parameters summary������������ 	���
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or the svchost process in Windows).

Table 5.1 summarizes the levels chosen for the controllable workload parameter,the

selected response variables, and the selected observable workload parameters.

5.3 Monitoring OS workload parameters

Since JVMMon is capable of capturing data only about JVM state and workload, it

has been necessary to find a solution to monitor resource usage and I/O workload

parameters at the OS level. This section describes the solutions employed to monitor

these information in Windows and Linux.

5.3.1 Windows OS

As far as the Windows Operating System is concerned, both resource usage and

workload parameters have been monitored using performance counter exposed by the

Windows Management Instrumentation (WMI) [83]. WMI is a technology based on

the Web-Based Enterprise Management (WBEM) standard. Its architecture, shown

in figure 5.1, is composed of four components: Management Applications,WMI in-

frastructure, data providers, and managed objects. Developers typically must target

management applications, such as perfmon, to collect data from specific objects. An
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Figure 5.1: WMI architecture

object might represent a component, such as a network adapter device, a system ser-

vice such a web server, and an OS kernel element such a windows process or thread.

Providers need to define and export the representation of the objects that manage-

ment applications are interested in.

The WMI infrastructure, the heart of which is the Common Information Model

(CIM) Object Manager (CIMOM), is the glue that binds management applications

and providers. As part of its infrastructure, WMI supports several APIs through

which management applications access object data and providers supply data and

class definitions. To collect data about system resources, we access the managed

object related to the java process and sample performance counters related to the
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memory actually committed to the process and the virtual memory it has been as-

signed. Since we did not have any managed object for the James Mail Server, we had

to measure throughput by analyzing logs produced by the load generator.

The same managed object has been employed to collect workload data. Samples col-

lected from WMI performance counters are stored in a log using the Performance

Logs and Alerts service offered by the Windows OS.

5.3.2 Linux OS

Although the Linux OS lacks a sophisticated management infrastructure like WMI,

the proc virtual file system contains many information about the state of processes

and threads.

The proc filesystem contains a virtual filesystem. It does not exist on a disk. Instead,

the kernel creates it in memory. It is used to provide information about the system.

In the root directory of this filesystem it is possible to found several files describing

the state of the system, and a subdirectory for each active process.

In order to collect data about system resources we developed an awk script periodically

parsing status file of the java process, and extracting data about memory usage from

this file.

Unfortunately, the Linux file system does not provide any mechanism to monitor I/O

activity performed by a single process. Indeed utilities such as iostat return data

related to I/O activity of the whole system.
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Figure 5.2: SysCallTrack architecture

Each Linux process performs I/O operation, either on a socket on a file, through

the sys write and the sys read system calls. Therefore, in order to monitor I/O

activity of the java process, these system calls were hooked via the syscalltrack

[84] system call hijacker. SysCallTrack, whose architecture is depicted in figure 5.2,

is composed by 2 kernel modules and a user-space control library. The sct hijack

module perform the actual hijacking of the system call by replacing entries in the

system call table with the address of the hijacking stub. The sct rules module

control the previous module realizing the injection of hijacking rules specified by to

the user by means of the sct ctrl lib library. An hijacking rule is composed by 1)

the name of the system call to hijack, 2) a mnemonic rule name, 3) a filter expression

(e.g. the PID of the process whose system call invocation must be hijacked), and 4)

an action, which could be LOG or FAIL. Once system calls have been hijacked, each
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system call invocation is redirected to a pre-invocation stub, which in turns calls the

actual system call; before returning to the user-space process, a post-invocation stub

is called, as depicted in figure 5.2.

In order to monitor I/O activity of the java process, rules for hijacking the sys read

and the sys write system calls were defined with a proper filter. Since the number

of bytes read or written is one of the parameters of these system calls it is logged

whenever the system call is invoked. A simple application counts bytes read and

written and writes these information in another log upon sample collection.

5.4 Experimental Setup

The methods described in the previous section were employed to monitor OS-level

resource usage data and workload parameters in the same simple OTS-based system

used in the previous chapter. This system is constituted by a pure-java mail server,

running on top of a Sun Hotspot JVM. As for the JVM level analysis, the JVM was

started with the typical server configuration.

Experiments were executed on an Intel Pentium4 workstation at 3.4GHz, equipped

with 2 GB RAM; the Sun Hotspot JVM version 1.5.0 09 has been employed for both

Windows and Linux experiments. Windows XP Service Pack 2 has been employed

for Windows Experiments, whereas the Linux experiments have been performed on a

Fedora Core 5 distribution with kernel v.2.6.11.12. We was not able to use the same

kernel version employed for JVM-level analysis due to technical problems with the
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system call injector.

5.5 Experimental Results

Quite surprisingly, we obtained significantly different results with respect to the ones

obtained in the JVM analysis. Throughput loss was never observed, neither in Win-

dows or Linux. Bytes sent and received kept a constant average during the whole

duration of the experiment, with a much lower variance.

Moreover, while we still observed transitions from the Normal Collection State to

the Low Collection State in the Linux OS, we did not observed any of these transi-

tions in the Windows OS, where the garbage collection frequency is almost constant.

This means that the behavior which generated the fast memory depletion drift in

JVM-level analysis depends on some Linux-specific issues of the garbage collector.

However, since in this chapter we are interested in aging phenomena which develop

at the OS layer and we already pointed out that this behavior is confined into the

JVM heap, we will not discuss it in detail.

As regards memory depletion at the OS layer, a totally different behavior has been

observed between the two Operating Systems. By analyzing memory usage of the

java process, no aging trend has been detected in Linux, since it was not possible

to reject the null hypothesis for the Linux OS, whereas a non-negligible aging trends

has been observed for the Windows OS, in spite of actions aimed at reducing physical

memory used by the java process automatically performed by the Operating System.

176



5.5. Experimental Results (Sensitivity Analysis of the OS layer against Aging
Faults)

Figure 5.3: Throughput achieved during experiment 3 (450 mail/min) in Windows

In the following experimental results are discussed in detail for each Operating Sys-

tem, analyzing exhibited aging trend, and then characterizing I/O workload param-

eters; finally, the relationships between measured aging trends and such workload

parameters are analyzed.

5.5.1 Windows

Throughput loss was never observed in the 4 performed experiments. The null hy-

pothesis of no trend in data cannot be rejected either at the α = 0.05 and α = 0.01

significance level. Figure 5.3 reports the development of bytes sent and received for

the third experiment, performed with a workload of 450 mail/min. It is therefore

possible to exclude the presence of this kind of aging phenomena.

As regards memory depletion,WMI provides 3 different counters to measure process

system memory usage: Virtual Bytes,Private Bytes, and Working Set. The Working
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Figure 5.4: Private Bytes measured during Windows Experiments

Set counter reports the amount of memory currently allocated to the process, where

the Private Bytes counter reports the amount of memory in memory pages exclusively

assigned to the process. The Virtual Bytes counter instead have not been taken into

account, since the fact that a process is assigned with a certain amount of virtual

memory does not imply that this memory is entirely committed to the process. .

Experimental results clearly show a constant increasing trend for the Private Bytes

counter. The graph reported in figure 5.4 shows the trend of this counter for each

experiment, and table 5.2 reports the entity of such trend. The corresponding Time-

To-Exhaustion depends upon the amount of available system memory and the min-

imal amount of memory the Operating System requires in order to work correctly.

For instance, for a machine equipped with 2GB RAM memory and requiring about

100MB for the OS, the estimated TTE ranges from about 67 days for the first exper-

iment (150 mail/min), to about 25 days for the fourth (600 mail/min).
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Table 5.2: Intra-experiment characterization for Private Bytes and Working Set in
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The Working Set counter shows behavior similar to the one exhibited by the Private

Bytes counter, except for experiment 2 in which we found a typical saw-tooth trend.

This behavior can be explained recalling the way in which the Windows OS manages

working sets: memory pages are left in the working set of the process even if they

are not actually used by the application as long as system free physical memory does

not go below a particular threshold; once this threshold is overshot, less frequently

used pages are swapped out thus freeing some physical memory; in this way the Win-

dows OS performs a sort of “spontaneous rejuvenation”. Table 5.2 reports also trends

(calculated as a weighted average of the trend exhibited for each segment of the saw-

tooth graph) for the Working Set counter. Trends estimated using this counter are

also very similar than the ones measured using the Private Bytes counter, as well as

the corresponding TTEs.

Once aging trends have been estimated, the next steps of our analysis deal with the

characterization of I/O workload parameters and the evaluation of their influence on

memory depletion trends.

The intra-experiment characterization of the two considered workload parameters,
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Table 5.3: I/O workload parameters characterization��� ������ ���	
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BW and BR, reported in table 5.3, reveals that I/O activity of the java process is

almost constant for the whole duration of the experiments. Moreover, standard de-

viation is below 15% of the average value for each experiment, and over 10% only for

the first one. For this reasons, it arises that these parameters may be considered as

controllable workload parameters. Unfortunately, since only 4 experiments have been

performed, factorial design and multiple regression are not employable, since there is

a serious risk of obtaining a type II error 1

Nevertheless, useful insights about the relationships between I/O activity and aging

trends may still be obtained by analyzing the Pearson’s correlation index. Pearson

correlation assumes that the two variables are measured on at least interval scales,

and it determines the extent to which values of the two variables are proportional

to each other. The value of the correlation (i.e., the correlation coefficient) does not

depend on the specific measurement units used.

The values found for the Pearson Correlation index are: 0.9728 for the BW pa-

rameter, and 0.9712 for the BR parameter. It is therefore possible to claim that

1Type II errors occur when researchers conclude in favor of the Null Hypothesis, when in fact
the other one is true.
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aging trends are strictly linked to I/O activity measured at the Operating System

layer. However, it is important to remark that:

• Although this correlation index proves that there is a strong dependence of aging

trends upon I/O activity, it does not imply that there exist a cause-and-effect

relationship between I/O activity and aging trends

• This correlation index may return values close to 1 even in presence of non-linear

relationships. More experiments are required to assess whether the detected

relationships are linear or not.

5.5.2 Linux

As for the Windows analysis, throughput loss has never been observed in the 4 ex-

periments. The null hypothesis of no trend in data cannot be rejected either at the

α = 0.05 and α = 0.01 significance level. These results contrast with the ones found

for the JVM level analysis performed in the previous chapter, in which a consistent

throughput loss was observed in a JVM running on top of the Linux Operating Sys-

tem. In the following section we will discuss in detail this behavior.

As for memory depletion, scripts described in section 5.3 extract two counters from

the status file in the proc filesystem: VmSize and RssSize. Since the VmSize re-

ports the amount of virtual memory assigned to the process, it will not be taken into

account. On the other hand the RssSize reports the amount of physical memory used

181



5.6. Conclusions (Sensitivity Analysis of the OS layer against Aging Faults)

by the process, and is therefore equivalent to the Working Set counter monitored in

Windows.

The analysis of the RssSize counter revealed the presence of a slight aging trend for

3 out of 4 experiments; it was not possible to reject the null hypothesis of no trend in

data for the third experiment (450 mail/min). Moreover, memory depletion trends

measured for the remaining experiments resulted in a Time-To-Exhaustion ranging

from more than 100 years for the first experiment to about 10 years for the fourth.

It is therefore possible to claim that memory depletion at the OS layer, in Linux, is

negligible. These result do not contrast with the ones found in the JVM-level anal-

ysis: memory depletion trends detected in the previous chapter are related to Java

Heap Usage, whereas the ones measured in this chapter are related to system mem-

ory usage of the java process. Since the JVM allocates memory required for its heap

area upon its startup, by measuring used memory at the OS layer it is not possible to

see how much of the heap area is actually used for Java objects. Memory depletion

phenomena, such the ones which due to low collection periods, may happen without

being detected at all at the OS layer.

5.6 Conclusions

The original goal of this OS-level analysis was to confirm whether I/O activities

performed by the interface between the JVM and the underlying Operating System

was the root cause of the observed throughout loss.
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Unfortunately, in this new experimental campaign, we did not observe any throughput

loss. This result is particularly surprising especially for the Linux OS, since the

previous experimental campaign, performed on this operating system, revealed the

presence of a consistent throughput loss. Such a different behavior can be explained

only considering that the two experimental campaign have been performed using

different versions of the OS kernel. In the JVM-level campaign experiments were

performed running Linux kernel v.2.6.16, whereas in the OS-level campaign the JVM

ran on Linux kernel v.2.6.11.12. A different version has been employed due to technical

problem on system call hijacking with the newer version of the kernel.

However, even if it is not possible to state anything about the relationships between

throughput loss and I/O activity, this apparently perplexing results indirectly confirm

our hypothesis. Indeed, since throughput loss has been removed by changing the

version of the operating system kernel, this aging phenomenon was necessarily caused

by the interface between the JVM and the operating system.

As far as memory depletion is concerned, we was not able to found any significant OS-

level trends in the Linux Operating System, whereas we noticed a consistent memory

depletion trend in the Windows OS. In particular we observed a strong correlation

between the measured trends and I/O workload parameters, measured as number of

bytes read (written) per minute. I/O activity may be therefore addressed as the root

cause of memory depletion at the Operating System layer in Windows.
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Summarizing, it is possible to conclude that:

• The interface between the JVM and the Operating System is a potential source

of aging phenomena which evolve independently from the aging phenomena

detected at the JVM layer.

• The integration of several OTS items may have a significant impact on the

development of aging phenomena. Indeed using the same JVM implementation

of two different versions of the Linux Kernel, we obtained deeply different results

regarding throughput loss.

• Linux seem to be more reliable than Windows from a software aging perspective.

While the former does not introduces any aging phenomenon at the OS layer,

the latter introduces a consistent memory depletion trend. This trend may

become a serious concern when relevant I/O bound workloads are applied.
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Conclusions

This dissertation addressed Software Aging issues in OTS based systems. Software

aging progressively lead to service failure due to excessive performance degradation

or transient failures. These phenomena are due to the activation of a particular class

of software faults, called Aging-Related bugs (see section 1.2). Typical examples of

such faults are unreleased memory regions and file handles.

It has been shown that Software Aging is one of the prominent causes of failures for

a consistent number of software systems, including also systems employed in critical

scenarios. Due to their nature, software systems based on Off-The-Shelf items are

more exposed to Software Aging Phenomena. Since OTS items often lack proper

testing, several aging bugs may reach the operational stage; moreover interactions

between different OTS items may have unpredictable effects which may lead to the

failure of the whole software system.

Since existing techniques and methodologies aimed at detecting and estimating ag-

ing phenomena are not capable of thoroughly characterize the development of these

phenomena in OTS-based system, this thesis proposed a novel approach to evaluate
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aging trends and estimate their relationships with workload.

In brief, the proposed methodology, described in chapter 4, assumes that an OTS-

based system may be divided into several layers, in which application-specific business

logic is at the top layer and the operating system is at the bottom one; each of these

layers may include one or more OTS items. The analysis process may then be split

into two steps: the first one deals with workload characterization, whereas the sec-

ond one is concerned with the estimation of aging trends and their relationships with

workload parameters.

Given an OTS-based system and a particular OTS item chosen as the target of the

analysis, this approach allows to:

1. Identify in which component(s) aging phenomena are introduced;

2. Select only workload parameters which are more relevant to the development

of aging phenomena, and estimate the linear dependence, if any, between them

and aging trends.

This approach has been employed to characterize software aging phenomena inside

the Java Virtual Machine, which has been adopted as a case study throughout the

dissertation.

Prior to performing any experimental campaign, a preliminary characterization of

the failure behavior of the JVM has been performed by analyzing failure reports

contained in bug databases. Results of this analysis showed that a non-negligible
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percentage of JVM failures was attributable to software aging phenomena. However,

these preliminary results did not allowed us to state anything about the development

of software aging inside the virtual machine. For this reason, a massive experimental

campaign on real world testbeds, consisting of a series of 29 experiments with syn-

thetic workload, accounting for about 3000 hours of execution, has been performed;

during this campaign data about resource usage and workload were collected. The

analysis of collected data revealed the presence of three distinct aging dynamics. The

first one manifests as throughput loss and is mainly dependent on execution activ-

ities performed by the JVM; the second one manifests as memory depletion, and is

mainly attributable to activities performed by the Just-In-Time compiler; finally, also

the third dynamic manifests as memory depletion, but it is mainly attributable to

sudden downfalls in garbage collection frequency.

After that, the same approach has been adopted to study aging phenomena intro-

duced in the interface between the JVM and the underlying operating system as a

function of the operating system. In this case, the analysis of collected data revealed

the presence a consistent memory depletion trend in the Windows OS; this trend is

mainly attributable to I/O activity performed by the application running on top of

the JVM.

In both cases, the approach presented in this dissertation allowed us not only to de-

tect the presence of aging phenomena, but also to locate its source, and identify its
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relationships with applied workload.

In the rest of this final chapter, we discuss lessons learned from the work presented in

this dissertation, and also directions to improve the dependability of the JVM against

aging-related bugs.

Lessons learned

The value of failure reports

As discussed in the first chapter, several methodologies and techniques have been

developed in order to assess the dependability of a software system. Each of these

techniques is concerned with a particular dependability aspect; for instance Robust-

ness Testing is aimed at evaluating the robustness of a system or a component with

respect to invalid or unexpected inputs, whereas Software Aging Analysis is aimed at

detecting and estimating software aging phenomena.

Given a system whose dependability has to be assessed, failure report analysis repre-

sents the easiest and fastest solution to achieve a preliminary dependability charac-

terization, since it allows to obtain insights about the behavior of the system which

may be used either to infer conclusions about its failure behavior, and to choose the

proper technique to adopt in order to perform a detailed assessment of the depend-

ability of the system.

In chapter 3, a preliminary characterization of the dependability behavior of the Java
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Virtual Machine has been performed by analyzing failure reports extracted from pub-

licly available bug databases. Despite of the their qualitative nature, failure reports

allowed us to extract very useful insights about the dependability of the Java Virtual

Machine.

As an example, we found that almost half of JVM failures (45%) are due errors not

detected by JVM built-in error detection mechanisms, and that the JVM attains dif-

ferent reliability levels on different Operating Systems. Finally, we found that a con-

sistent percentage of failures with non-deterministic behavior (about 15%) occurred

with a daily or weekly frequency when relevant workloads are applied. Therefore the

preliminary analysis of failure reports addressed software aging as a relevant source of

failures for the JVM, thus suggesting a detailed analysis of software aging phenomena

inside the JVM.

On system monitoring

In order to perform an effective measurement-based software aging analysis, a par-

ticular care should be placed toward field data collection, which should be aimed at

assessing the current health of the system rather than focusing exclusively on failure

reporting. Current health system should be described in terms of its internal state

and applied workload.

Unfortunately, existing JVM monitoring tools usually are not capable of collecting

enough data to characterize system state and workload. To this aim, an ad-hoc
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monitoring tool for the JVM, named JVMMon (presented in chapter 4), has been

developed. JVMMon allows to collect data about the current state of internal JVM

components by intercepting relevant virtual machine events, and to collect workload

information by periodically sampling JVM performance counters.

The results of the JVM level analysis showed that such a monitoring tool can pro-

vide a more thorough picture of aging phenomena and their relationships with JVM

workload parameters.

On experimental campaigns

A key point of the methodology presented in chapter 4 is that experiments are per-

formed varying the level associate with a controllable workload parameters. In the

experimental campaigns discussed in section 4.5, and chapter 5, the workload im-

posed to the JVM has been controlled by manipulating the number of e-mails sent

per minute. In this way a constant workload is imposed on the JVM throughout the

entire experiment.

By performing experiments in this way we managed to perform a statistical charac-

terization of JVM workload parameters for each experiment. An overall figure of the

evolution of workload parameters was then drawn by relating synthetic data extracted

for each experiment. As regards aging trends, performing each experiment with a dif-

ferent level of a controllable factor allowed us to describe aging trends as a function of

the workload applied on the Java Virtual Machine. Finally, by relating aging trends
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and workload parameter figures, we were able to provide a detailed characterization

of the development of software aging dynamics in the JVM.

These remarks suggest that a proper planning of the experimental campaign may

significantly improve the effectiveness of the analysis. When dealing with systems in

the operational stage, data must be collected only using the real workload imposed

on the target system: there is no chance to manipulate any workload parameter. Al-

though workload characterization is feasible also with operational systems (as done

in [61]), our experimental campaign proved that performing experiments by varying

a controllable workload parameters allows to obtain a more thorough and general

characterization of aging phenomena.

On Software Aging in the JVM

The results presented in section 4.5 and in chapter 5 clearly indicate that the JVM

is affected by software aging phenomena. These results were quite unexpected, since

the JVM has been designed to reduce effects of aging phenomena. It is be sufficient

to recall the garbage collector, which frees developers from manually handling mem-

ory management, which in turn is the most important source of “aging bugs” due to

memory leaking or bloating.

Experimental results showed that software aging in the JVM manifests both as

throughput loss and memory depletion.

As regards throughput loss, in the JVM-level analysis we found a consistent aging
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trend, ranging from 0.08 KBytes per minute to 2.48 KBytes per minute. This trend

is mainly dependent on execution unit activity: indeed we found that it is strongly

correlated with workload parameters such as method invocation frequency and ob-

ject allocation frequency. Moreover, this aging phenomenon disappeared when we

performed the OS-level analysis, thus suggesting us that it was dependent on the

particular combination of JVM implementation and Operating System employed in

the JVM-level analysis. In other words, we observed that the aging related bug caus-

ing this phenomenon was removed by simply changing the version of the Linux kernel

employed in the testbed, whereas we did not notice any throughput loss in the win-

dows OS. These remarks prove that aging phenomena may arise as a consequence of

the integration of several OTS items.

On the other hand, memory depletion phenomena were detected both in the JVM-

level and in the OS-level analysis. In the JVM-level analysis we detected two distinct

contributions to memory depletion. The first contribution manifests as a slow, but

constant, drift (ranging from 0.94 KBytes/min to 3.06 KB/min) and is mainly due

to the activity of the JIT-compiler. The second contribution is due to sudden down-

falls in garbage collector activity and manifest as a fast drift (ranging from 13.96

KBytes/min to 48.96 KBytes/min).

These aging phenomena may be detected and treated as follows:

• As regards the slow drift, the JVM may be properly configured in order to avoid
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excessive JIT compilation. In particular, we found that On-Stack-Replacement

compilations are the most expensive ones in terms of required memory;

• As regards the fast drift, radical changes in Garbage Collector activity may be

easily detected by monitoring invocations of the Young Generator Collector.

Whenever a downfall in garbage collector frequency is detected, it is possible to

force Garbage Collector invocations in order to limit memory depletion.

Moreover, in the OS-level analysis we noticed a further memory depletion trend. This

phenomenon affects memory required by the java process and it is not visible at the

JVM level, since it does not affect java heap. It is strictly OS-dependent, since it

was observed only in the Windows OS, and measured aging trends range from 20.56

KB/min to 55.61 KB/min. By analyzing its relationships with workload parameters,

we found that this aging phenomenon is mainly dependent on I/O activity performed

by the JVM. This remarks suggest us that, at least for I/O bound applications, the

Linux OS offers a more reliable environment with regards to the Windows OS from

a software aging perspective.
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