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Introduction 

 

 

The discovery of microRNAs 

In the past years the scientific community was focused mainly on the study 

of protein coding genes as important players in the pathogenesis of cancer. 

Little interest has been offered to non-coding RNA genes (ncRNA), 

heterogeneous class of genes that are transcribed to RNA but not translated 

to protein. Thirteen years ago a genetic screen in C. Elegans, studied to 

identify genes involved in development timing, resulted in the discovery of 

the first microRNA (miRNA), lin-4, which subsequently was found to 

interact with the 3’ untraslated region of Lin-14 messenger RNA and to 

repress its translation. This fashinating form of gene regulation was ignored 

even during the era of complete genome sequencing, since almost all means 

of gene identification assume that gene encodes protein. 

Seven years later, the second RNA of the miRNAs class, let-7, emerged 

from another C. Elegans genetic screen. The discovery of let-7 was 

particularly exciting, because its phylogenetic conservation in metazoans 

implied that miRNAs represented a novel fundamental regulatory class of 

genes. The discovery of miRNAs coincided in an era in which genetic and 

mechanistic studies started to unveil the mechanism of small interfering 

RNA (siRNA), and the connection between the two pathways was soon 

made. 
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The understanding of the miRNAs structure fuelled the development of 

efficient cloning strategies that isolated dozens of miRNAs from diverse 

eukaryotic species. Meanwhile, many genome projects were completed and 

the annotated genomes were used to predict miRNAs based on their known 

features using bioinformatics approaches. 

 

Genomics of microRNAs 

Today the miRNA database miRBase (www.sanger.com) contains 4039 

miRNA entries from 38 species. 

The large number of verified and predicted miRNAs immediately created a 

new challenge. 

Almost 50% of mammalian microRNAs are located in introns of protein 

coding genes or long ncRNAs transcripts, whereas the remaining part is 

considerable as indipendent transcription units with specific promoter core 

elements and polyadenilation signals [for review see(1-3)]. Among the 

intragenic miRNAs, 40% are found in introns of protein coding genes, 

whereas ~10% are located in introns of long ncRNA transcripts. The vast 

majority of miRNA clusters are single transcription units or overlapped in 

the same host transcripts, within exons or introns, and in some cases 

depending on alternative splicing of the host gene, implying that they are 

transcribed as polycistronic transcripts. Additionally, many miRNAs overlap 

with two or more transcription units transcribed on opposite DNA strands.  

The analysis of miRNAs genomic loci evidences that host genes encoding 

proteins are involved in a broad spectrum of biological function ranging 

from embryonic development to the cell cycle and physiology. In addition to 
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the miRNAs located in protein coding genes, a large group of microRNAs 

resides in transcripts that lack a significant protein-coding potential, 

classified as long ncRNAs. These types of ncRNA transcripts are sometimes 

referred to as mRNA-like ncRNAs (mlncRNA) because they are spliced, 

polyadenilated and also spatio-temporally expressed. Deleted in Leukemia 2 

(DLEU2) and BIC are host-genes mlncRNAs respectively for miR-15/miR-

16 cluster and miR-155 (4, 5). 

microRNAs Transcription and Maturation 

Initially, the researchers believed that microRNAs were transcribed by RNA 

polymerase III like other small RNAs, as some as tRNAs. However, 

numerous evidences supported the possibility of a transcription mediated by 

RNA polymerase II. In 2004, three direct evidences have been reported to 

evaluate the strict correlation between microRNAs and pol II: (i) the 

miRNAs transcripts are capped and polyadenilated; (ii) the transcription of 

miRNAs transcripts is sensitive to alpha-amanitine at the specific 

concentration for pol II inhibition; (iii) the promoter region, responsible for 

miRNA transcription, is associated to pol II complex (1). Animal 

microRNAs are identified as part of 80 nt RNA with stem-loop structure 

(pre-miRNA) that are included in several hundreds/thousands nucleotide 

long miRNAs precursors, named primary miRNAs precursor (pri-miRNA) 

(Figure 1). The production of microRNAs from pri-miRNA to mature miR is 

a complex and coordinated process where different groups of enzymes and 

associated proteins, located in the nucleus or cytoplasm, operate the 

multistep maturation of these tiny RNAs. Principally, the maturation process 

of microRNAs can be resumed in three important steps: cropping, export 

and dicing. 
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In the cropping, the pri-miRNA is converted in pre-miRNA through the 

cleavage activity of Drosha enzyme, a nuclear Ribonuclease III 

endonuclease capable to crop the flank regions of pri-miRNA in turn to 

liberate the 60-70 nt pre-miRNA (6). Different pri-miRNA requisitions are 

necessary to obtain an efficient precursor maturation by Drosha: first, a large 

terminal loop (> 10 nucleotides) in the hairpin and a stem region one turn 

bigger than the pre-miRNA; second, a 5’ and 3’ single stranded RNA 

extension at the base of the future microRNAs [for review see (7, 8)]. 

 

Figure 1  

The pri-miRNA is converted in pre-miRNA through the cleavage activity of Drosha 
enzyme. The resulting product of cropping, the pre-miRNA, presents a 5’ phosphate and 
3’ hydroxy termini. The produced pre-miRNA is exported to the cytoplasm by Exportin-
5/RnaGTP. Exp-5 forms a nuclear heterotrimer with RanGTP and pre-miRNA, resulted 
from Drosha processing. This interaction, which is dependent on RNA structure but 
independent of sequence, stabilizes the nuclear pre-miRNA and promotes the export to 
the cytoplasm. 
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It has been proposed that Drosha may recognize the primary precursor 

through the stem-loop structure and then cleave the stem at a fixed distance 

from the loop to liberate the pre-miRNA. 

 

How the enzyme is capable to discriminate the pri-miRNA stem-loop 

structure in respect to the others stem-loop cellular RNAs is not clear, but 

probably proteins associated with Drosha confer specificity to this process. 

In fact, Drosha has been found as a part of large protein complex of 

~650kDa, which is known as the “Microprocessor”, where Drosha interacts 

with its cofactor, the Di George syndrome critical region gene 8 (DGCR8) 

protein in human and Pasha in Drosophila melanogaster (9). 

The Microprocessor appears to represent a heterotetramer consisting of two 

Drosha and two DGCR8 molecules; because DGCR8 contains two 

consensus dsRNA binding domain, this protein may play an important role 

in the substrate discrimination and binding.  

 

The resulting product of cropping, the pre-miRNA, presents a 5’ phosphate 

and 3’ hydroxy termini, and two or three nucleotides single-stranded 

overhanging ends, classic characteristics of Rnase III cleavage of dsRNAs. 

After the Microprocessor nuclear activity, the produced pre-miRNA is 

exported to the cytoplasm by Exportin-5/RnaGTP  (10). 

Exp-5 forms a nuclear heterotrimer with RanGTP and pre-miRNA, resulted 

from Drosha processing. This interaction, which is dependent on RNA 

structure but independent of sequence, stabilizes the nuclear pre-miRNA and 

promotes the export to the cytoplasm. In any export, once the Exp5-
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RanGTP-pre-miRNA complex has reached the cytoplasm through the 

nuclear pore, the RnaGTP is hydrolyzed to RanGDP and the pre-miRNA is 

released.  

 

Arrived into the cytoplasm, the pre-miRNA is processed in 18~22 

nucleotides miR duplexes by the cytoplasmic Rnase III Dicer and, in 

humans, its partner TRBP. The PAZ domain of Dicer is thought to interact 

with the nucleotides 3’ overhang present in the pre-miRNA hairpin while the 

dsRNA binding domain binds the stem and defines the distance of cleavage 

from the base of pre-miRNA.  The cleavage 22nt-long miRNA duplexes 

have a reduced half-life. Normally, one strand of this duplex is degraded 

whereas the other strand accumulates as a mature miRNA.  

 

microRNA in action: RISC and gene target inhibition 

In the RNA duplex produced from the Dicer activity, the mature miRNA is 

only partially paired to the miRNA, the small RNA that resides on the 

opposite pre-miRNA stem. From the miRNA-miRNA duplex, only the 

miRNA enters preferentially in the protein effector complex, the RNA 

Induced Silencing Complex (RISC) or miRNAsC or miRgonaute, which 

mediates the degradation or translation inhibition of mRNAs target gene 

(Figure 2) (11).  

Several proteins have identified as essential components of RISC, but only a 

few have been functionally characterized in the post-translational regulation. 

The core component of every RISC is a member of the Argonaute (Ago) 

protein family, whose members present a central PAZ domain like Dicer and 

a carboxy terminal PIWI domain. This domain binds the miR/miR duplex to 
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the 5’ end whereas the PAZ domain binds to the 3’ end of singled-strand 

RNAs; moreover, structural and biochemical studies have suggested that the  

 

 

Figure 2 

1-Plasmid-expressed short hairpin (shRNA) requires the activity of endogenus Exportin-5 
for nuclear export (1). 

2-Ago2 (Argonaute 2) is recruited by TRBP (2) that forms a dimer with Dicer (3) and 
than receives the shRNA  (4-6). 

3-The shRNA is cleaved in one step by Dicer generating a 19-23 nt duplex siRNA with 2 
nt 3’ overhangs. 

4-After identification of the “guide strand” in the siRNA duplex, the “passenger strand” 
is cleaved by Ago2 (4). 

5-The “guide strand” is released. 

6- The “guide strand” is integrated in the active RNA Interference  Specificity Complex 
(RISC) that contains different argonautes  and argonaute-associated proteins (7). 
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Ago proteins are the target-cleaving endonuclease of RISC and in this 

activity the complex is helped and coordinated by other proteins whose 

function is not really understood like RNA-binding protein VIG, the Fragile-

X related protein in Drosophila, the exonuclease Tudor-SN and many other 

putative helicases (12). 

In the human cells, after the microRNAs transfection by vectors or miRNA 

precursors, and the following activation of RISC activity, the core 

component of RISC, together with the triggering miRNA target mRNA, is 

concentrated in cytoplasmic foci known as Processing bodies (P-bodies) or 

GW-bodies. According with this triggered RISC localization, the researchers 

thought that the microRNAs, in association with AGO proteins, might be 

capable to repress the translation at ribosomal level and to re-localize  

mRNA targets to the P-bodies (Figure 3) (13).  
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Figure 3  

Post-transcriptional processes have a central role in the regulation of eukaryotic gene 

expression. Although it has been known for a long time that these processes are 

functionally linked, often by the use of common protein factors, it has only recently 

become apparent that many of these processes are also physically connected. Indeed, 

proteins that are involved in mRNA degradation, translational repression, mRNA 

surveillance and RNA-mediated gene silencing, together with their mRNA targets, 

colocalize within discrete cytoplasmic domains known as P bodies. The available 

evidence indicates that P bodies are sites where mRNAs that are not being translated 

accumulate, the information carried by associated proteins and regulatory RNAs is 

integrated, and their fate — either translation, silencing or decay — is decided. 
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microRNAS: function in normal and disease states 
 

How do miRNAs work and what genes do they regulate? Expression 

profiling and functional studies suggest that miRNAs play a key role in 

biology, having been associated not only with physiological, but also with 

pathological processes such as cancer. 

In lower species, miRs are involved in a variety of basic processes, e.g., cell 

proliferation and apoptosis (14, 15), neuronal development (16), fat 

metabolism (17) and stress response (18). In some studies, key target 

mRNAs have been identified but relatively little is known of the functional 

role of miRNAs in mammalian species. We do know, however, that miR-

181 is involved in the control of lymphopoiesis (19) miR-375 regulates 

insulin secretion by targeting myotrophin mRNA (20), and the miR-let7 

family may plays a role in oncogenesis via RAS oncogene mRNAs (21). 

Furthermore, enforced expression of the miR-17-92 cluster from 

chromosome 13q32-33 in conjunction with c-myc accelerates tumor 

development in a mouse B-cell lymphoma model (22). 

Two microRNAs from the same cluster, miR-17-5p and miR-20a negatively 

regulates the E2F1 transcription factor, a gene proved to function as a tumor 

suppressor in some experimental systems (23). 

miR-15a and miR-16-1 are deleted or down-regulated in the majority of 

chronic lymphocytic leukemia (24). Functional studies indicated that miR-

221&222 inhibit normal erythropoiesis and erythroleukemic cell growth at 

least in part via Kit receptor down-modulation, (25) and their ectopic 

overexpression directly results in p27Kip1 down-regulation in aggressive 

prostate  (26). 
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Apotosis: extrinsic and intrinsic pathway 

Lung tumors are among the most deadly types of cancer. Advances in 

standard treatments for this tumor, such as surgery, radiotherapy, and 

chemotherapy, have not significantly increased patient survival. One of the 

most important issues that affects survival rate is resistance to therapeutic 

drugs. Only 20-30% of treated NSCLC patients have clinical evidence of a 

response. Therefore, the development of new therapeutic strategies is 

necessary for the treatment of this type of cancer. 

The Apo2L/TNF-α-related apoptosis-inducing ligand (TRAIL) is a relatively 

new member of the TNF family known to induce apoptosis in a variety of 

cancers (27). Apoptosis represents a tightly regulated and evolutionarily 

conserved program of cell suicide which is involved in normal cellular 

homeostasis (28).  

Most chemotherapeutic drugs kill cancer cells by inducing apoptosis, and 

many similarities exist in cellular response to drug-induced apoptosis, 

regardless of their primary target (14, 29-37). Apoptosis, from the Greek 

word for “falling off ” or “dropping off” (as leaves from a tree), is defined 

by distinct morphological and biochemical changes mediated by a family of 

cysteine aspartic acid-specific proteases (caspases), which are expressed as 

inactive precursors or zymogens (pro-caspases) and are proteolytically 

processed to an active state following an apoptotic stimulus. To date, 

approximately 14 mammalian caspases have been identified and can be 

roughly divided into three functional groups: apoptosis initiator (including 

caspase-2, -9, -8, -10), apoptosis effector (including caspase-3, -6, -7), and 

cytokine maturation (including caspase-1,-4,-5,-11,-12,-13,-14)(38-40). .  

Two separable pathways lead to caspases activation: the extrinsic pathway 
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and the intrinsic pathway (Figure 2). The extrinsic pathway is initiated by 

ligation of transmembrane death receptors (Fas, TNF receptor, and TRAIL 

receptor) with their respective ligands (FasL, TNF, and TRAIL) to activate 

membrane-proximal caspases (caspase-8 and –10), which in turn cleave and 

activate effector caspases such as caspase-3 and –7. 

The intrinsic pathway requires disruption of the mitochondrial membrane 

and the release of mitochondrial proteins, such as cytochrome c. 

Cytochrome c, released from the mitochondrial intermembrane space to 

cytoplasm, works together with the other two cytosolic protein factors, 

Apaf-1 (apoptoic protease activating factor-1) and procaspase-9, to promote 

the assembly of a caspase-activating complex termed the apoptosome, which 

in return induces activation of caspase-9 and thereby initiates the apoptotic 

caspase cascade (39-43).  
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Figure 4 

Known as the "death receptor pathway" the extrinsic or caspase 8/10 dependent pathway 

is activated by ligand binding. The "death receptors" are specialized cell-surface 

receptors including Fas/CD95, tumor necrosis factor-alpha (TNF-alpha) receptor 1, and 

two receptors, DR4 and DR5, that bind to the TNF-alpha related apoptosis-inducing 

ligand (TRAIL). The extrinsic and intrinsic pathways unite in the activation of Caspase-3, 

though the two pathways communicate through the pro-apoptotic Bcl-2 family member 

Bid before uniting at the shared activation of Caspase-3. 
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The primary regulatory step for mitochondrial-mediated caspase activation 

(the intrinsic pathway) might be at the level of cytochrome c release (42, 

43). T he known regulators of cytochrome c release are Bcl-2 family 

proteins (41-45). 

A ccording to their function in apoptosis, the mammalian Bcl-2 family can 

be divided into pro-apoptotic and anti-apoptotic members. The pro-apoptotic 

members include Bax, Bcl-Xs, Bak, Bok/Mtd, which contain 2 or 3 Bcl-2 

homology (BH) regions, and molecules such as Bad, Bik/Nbk, Bid, 

Hrk/DP5, Bim/Bod, and Blk, which contains only the BH3 region. The anti-

apoptotic Bcl-2 family members include Bcl-2, Bcl-XL, Bcl-w, A1/Bfl-1, 

Mcl-1, and Boo/Diva, which contain three or four regions with extensive 

aminoacid sequence similarity to Bcl-2 (BH1-BH4) (45). Overexpression 

of the anti-apoptotic molecules such as Bcl-2 or Bcl-XL blocks cytochrome 

c release in response to a variety of apoptotic stimuli. On the contrary, the 

pro-apoptotic members of the Bcl-2 family proteins (such as Bax and Bid) 

promote cytochrome c release from the mitochondria. Pro-apoptotic and 

anti-apoptotic members of the Bcl-2 protein family can physically interact. 

For example, binding of BH-3 only proteins (e.g., Noxa, Puma, Bad, and 

Bim) to anti-apoptotic Bcl-2 proteins (e.g., Bcl-2 and Bcl-XL) results in 

activation of Bax and Bak (44, 45). In addition, there is considerable cross-

talk between the extrinsic and intrinsic pathways. For example, caspase-8 

can proteolytically activate Bid, which can then facilitate the release of 

cytochrome c and amplifies the apoptotic signal following death receptor 

activation. (36, 39-43). 
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TRAIL and miRs 

Most of the anticancer agents either directly induce DNA damage or 

indirectly induce secondary stress-responsive signaling pathways to trigger 

apoptosis by activation of the intrinsic apoptotic pathway, and some can 

simultaneously activate the extrinsic receptor pathway. Therefore, molecules 

or signaling events that regulate the processes of apoptosis can also affect 

cellular response to drugs. 

TRAIL (TNF-related apoptosis-inducing ligand, also called APO-2) is a 

protein consisting of 281 amino acids that  can bind to five receptors (Fig. 5) 

of which four are located at the cell surface: TRAIL-R1 (DR4), TRAIL- R2 

(DR5), TRAIL-R3 (DcR1) and TRAIL-R4 (DcR2). Only two of these 

receptors, R1 and R2, contain a functional cytoplasmic death domain motif 

and are capable of delivering the apoptotic signal of TRAIL by association 

of the death domain with the Fas-associated death domain protein (FADD), 

containing the death effector domain, which is involved in the activation of 

caspase-8 (46). 

The other two receptors, DcR1 and DcR2, are “decoy receptors” and lack 

the ability to initiate the apoptotic cascade. 

Treatment with TRAIL induces programmed cell death in a wide range of 

transformed cells, both in vitro and in vivo, without producing significant 

effects in normal cells (27, 46). This unique property makes TRAIL an 

attractive candidate for cancer therapy. Preclinical experiments in mice and 

nonhuman primates have shown that administration of TRAIL suppresses 

tumor growth without apparent systemic cytotoxicity (47, 48). Therefore, 

TRAIL represents a promising anti-cancer agent. 
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Figure 5  

Schematic drawing of TRAIL receptors, which can be divided into two categories: 

Death receptors:  TRAIL-R1 and TRAIL-R2 contain the death domain, capable of  

delivering the apoptotic signal of TRAIL by association of the death domain with FADD, 

containing the death effector domain, which is involved in the activation of caspase-8 

Decoy receptors:  TRAIL-R3 and TRAIL-R5  lack the death domain while TRAIL-R4 

contains a truncated non-functional death domain.  These three receptors can bind to 

TRAIL, but cannot induce apoptosis.  TRAIL-R5 is secreted to the extracellular fluid.  

All other receptors are transmembrane proteins. 

 

 

However, a significant proportion of human cancer cells are resistant to 

TRAIL-induced apoptosis, and the mechanism of sensitization seems to 

differ among cell types. 

Different studies relate resistance to TRAIL-induced cell death to 

downstream factors. It has been shown that down-regulation of PED or 

cellular FLICE-like inhibitory protein (c-Flip) can sensitize cells to TRAIL-

induced apoptosis (47, 48). However the mechanism of TRAIL resistance is 

still largely unknown. 
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In this study, in order to identify novel mechanisms implicated in TRAIL 

resistance, we performed a genome-wide expression profiling of miRs in 

four different cell lines in human non small cell lung cancer (NSCLC).  

We found that miR-221&222 are markedly up-regulated in TRAIL-resistant, 

and down-regulated in TRAIL-sensitive, NSCLC cells. Our experiments 

indicate that miR-221&222 modulate TRAIL sensitivity in lung cancer cells 

mainly by modulating p27kip1 expression and TRAIL-induced caspase 

machinery. 
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 Figure 6 
 
Members of the tumor necrosis factor (TNF) super family of receptors induce apoptosis 
by recruiting adaptor molecules through death domain interactions. 

The central adaptor molecule for these receptors is the death domain-containing protein 
FADD. FADD binds a death domain on a receptor or additional adaptor and recruits 
caspases to the activated receptor. FADD,caspases-8 and caspase-10 are recruited to the  
DISC, “death-inducing signalling complex”. DISC formation leads to activation of a 
protease cascade, finally resulting in cell death. The TRAIL death receptor-mediated 
“extrinsic” pathway and the “intrinsic” pathway, which is controlled by the interaction of 
members of the Bcl-2 family, interact with each other in the decision about life or death 
of a cell. Apoptotic and non-apoptotic signalling is influenced by the NF-κB, PKB/Akt 
and the MAPK signalling pathways. 

The control of cell survival and death is through NF- B–JNK cross-talk. Positive 
feedback loops exist between  caspases and JNK. Negative feedback loops exist between 
NF- B and caspases. NF-B functions as a pro-survival transcription factor by inducing 
the expression of antiapoptotic genes, such as the Bcl-2 family members and caspase 
inhibitors. Activation of NF- B also results in inhibition of prolonged JNK activation, 
mostly through inhibition of ROS accumulation.  
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Experimental Procedures 

 

Materials- Media, sera and antibiotics for cell culture were from Life 

Technologies, Inc. (Grand Island, NY, USA). Protein electrophoresis 

reagents were from Bio-Rad (Richmond, VA, USA) and Western blotting 

and ECL reagents from GE Health care. All other chemicals were from 

Sigma (St. Louis, MO, USA).  

 

Cell culture- Human CALU-1 and A549 NSCLC cell lines were grown in 

DMEM containing 10% heat-inactivated FBS and with 2mM L-glutamine 

and 100U/ml penicillin-streptomycin. H460 and A459 cell lines were grown 

in RPMI containing 10% heat-inactivated FBS and with 2mM L-glutamine 

and 100U/ml penicillin-streptomycin.   

 

Western blotting-  Total proteins from CALU-1, A459, A549 and H460 

cells were extracted with RIPA buffer (0,15mM NaCl, 0,05mM Tris-HCl, 

pH 7,5, 1% Triton, 0,1% SDS, 0.1% sodium deoxycolate and 1% Nonidet 

P40). 

Fifty µg of sample extract were resolved on 7.5-12% SDS-polyacrylamide 

gels using a mini-gel apparatus (Bio-Rad Laboratories, Richmond, CA) and 

transferred to Hybond-C extra nitrocellulose. Membranes were blocked for 

1hr with 5% non-fat dry milk in TBS containing 0.05% Tween-20, incubated 

for 2h with primary antibody, washed and incubated with secondary 

antibody, and visualized by chemiluminescence. The following primary 

antibodies were used: Kit (R&D System), and a secondary anti-goat IgG 
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antibody peroxidase coniugate (Chemicon); anti-TRAIL-R1, -R2, -R3, and -

R4 (Santa Cruz,Inc.), anti-p27 kip1 (Santa Cruz, Inc), anti-caspase 8 (Cell 

Signaling), anti-caspase 3  and anti-PARP (Santa Cruz,Inc), anti-β-actin 

antibody (Sigma). Expression levels were analyzed with SCION IMAGE. 

 

FACS analysis- For flow cytometry analysis of cell surface Kit, cells were 

stained with primary anti-human h-SCFR affinity purified goat IgG or mouse 

MAb 002 (isotype control) (both from R&D Systems), followed by 

secondary antibody, Fluorescein conjugated goat F(ab’)2  (R&D Systems).  

 

Cell death and cell proliferation quantification- Cells were plated in 96-

well plates in triplicate and incubated at 37°C in a 5% CO2 incubator. Super-

Killer TRAIL (Alexis Biochemicals, Lausen, Switzerland) was used for 24-

48 hrs at 400 ng/ml. Cell viability was evaluated with the CellTiter 96® 

AQueous One Solution Cell Proliferation Assay (Promega, Madison, WI), 

according to the manufacturer’s protocol. Metabolically active cells were 

detected by adding 20 µl of MTS to each well. After 2 h of incubation, the 

plates were analyzed in a Multilabel Counter (Bio-Rad, Richmond, VA, 

USA). Apoptosis was assessed using annexin V–FITC Apoptosis Detection 

Kits followed by flow cytometric analysis. Cells were seeded at 1.8 106 cells 

per 100-mm dish, grown overnight in 10% FBS/RPMI, washed with PBS, 

then treated for 24 hours with 200 ng TRAIL. Following incubation, cells 

were washed with cold PBS and removed from the plates by trypsinization. 

The resuspended cells were washed with cold PBS and stained with FITC-

conjugated annexin V antibody and propidium iodide (PI) according to the 

instructions provided by the manufacturer (Roche Applied Science, 
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Indianapolis, IN). Cells (50,000 per sample) were then subjected to flow 

cytometric analysis..The fraction of H460 cells treated with TRAIL was 

taken as the apoptotic cell population. The percentage of apoptosis indicated 

was corrected for background levels found in the corresponding untreated 

controls.  

 

RNA extraction, Northern blotting- Total RNA was extracted with TRIzol 

solution (Invitrogen) and the integrity of RNA was assessed with an Agilent 

BioAnalizer 2100 (Agilent, Palo Alto, CA). Northern blotting was 

performed as described in ref (4). Ten micrograms of total RNA from cell 

lines were loaded onto a precast 15% denaturing polyacrylamide gel (Bio-

Rad). The RNA was then electrophoretically transferred to bright-Star 

blotting membranes (Ambion). The oligonucleotides used as probes were the 

complementary sequences of the mature miRNA (miRNA registry): 

miR221, 5’-GAAACCCAGCAGACAATGTAGCT-3’; miR222, 

5’GAGACCCAGTAGCCAGATGTAGCT-3’. miR probes were end-labeled 

with [γ-32 P]-ATP by T4 polynucleotide kinase (USB,Cleveland). 

Prehybridization and hybridization were carried out in Ultrahyb Oligo 

solution (Ambion) containing 106 cpm/ml probes overnight 37˚C. The most 

stringent wash was with 2X SSC and 1% SDS  at 37˚C. For reuse, blots 

were stripped by boiling and reprobed. As a loading control U6 rRNA was 

used. The image of Northern hybridization signals was produced by using 

STORMSCANNER and IMAGEQUANT TL software (Molecular 

Dinamics) 
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miRNA Microarray experiments- 5 µg of total RNA from each sample 

was reverse transcribed using biotin end labeled random-octamer 

oligonucleotide primer.  

Hybridization of biotinlabeled complementary DNA was performed on a 

new Ohio State University custom miRNA microarray chip (OSU_CCC 

version 3.0), which contains 1150 miRNA probes, including 326 human and 

249 mouse miRNA genes, spotted in duplicates. The hybridized chips were 

washed and processed to detect biotin-containing transcripts by streptavidin-

Alexa647 conjugate and scanned on an Axon 4000B microarray scanner 

(Axon Instruments, Sunnyvale, Calif ). 

Raw data were normalized and analyzed in GENESPRING 7,2 software 

(zcomSilicon Genetics, Redwood City, CA). Expression data were median-

centered by using both the GENESPRING normalization option and the 

global median normalization of the BIOCONDUCTOR package 

(www.bioconductor.org) with similar results. Statistical comparisons were 

done by using the GENESPRING ANOVA tool, predictive analysis of 

microarray (PAM) and the significance analysis of microarray (SAM) 

software (http://www-stat.stanford.edu/~tibs/SAM/index.html). 

 

Real Time PCR- Real-time PCR was performed using a standard TaqMan 

PCR Kit protocol on an Applied Biosystems 7900HT Sequence Detection 

System (P/N: 4329002, Applied Biosystems). The 10 µl PCR reaction 

included 0.67 µl RT product, 1 µl TaqMan Universal PCR Master Mix (P/N: 

4324018, Applied Biosystems), 0.2 mM TaqMan probe,1.5 mM forward 

primer and 0.7 mM reverse primer. The reactions were incubated in a 96-

well plate at 95 ˚C for 10 min, followed by 40 cycles of 95 ˚C for 15 s and 
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60 ˚C for 1 min. All reactions were run in triplicate. The threshold cycle 

(CT) is defined as the fractional cycle number at which the fluorescence 

passes the fixed threshold. The comparative CT method for relative 

quantization of gene expression (User Bulletin #2, Applied Biosystems) was 

used to determine miRNA expression levels. Experiments were carried out 

in triplicate for each data point, and data analysis was performed by using 

software (BioRad). To normalize the expression levels of target genes, U6 

has been used.  

 

Bioinformatics- miR target prediction of the differentially expressed miRs 

was performed with TARGETSCAN, MIRANDA and PICTAR software. 

 

Pre-miRs and anti-miR miRNA inhibitors transfection in NSCLC cells- 

TRAIL sensitive cell lines (H460) were cultured to 80% confluence in p60 

plates with a serum-free medium without antibiotics and then transfected 

with 100 nmol of pre-miR-221 and 222 oligonucleotides or Negative 

Control for 48 hrs (Ambion). CALU-1 cells were cultured to 80% 

confluence in p60 plates with a serum-free medium without antibiotics. 100 

nmol of -221&222 anti miR miRNA inhibitors (Ambion) were transiently 

transfected in cells using LIPOFECTAMINE 2000 according to 

manufacturer’s instructions. Cells were incubated in the presence of the 

specific anti-miR miRNA inhibitors and Negative Control for 48 hrs. 

The Anti-miR miRNA Inhibitor Negative Control is a random sequence 

anti-miR molecule offered for use as a negative experimental control. The 

Anti-miR Negative Control has been extensively tested in many human cell 
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lines and tissues and validated to not produce any identifiable effect on 

known miRNAs function. 

Subsequently, TRAIL-induced cell death was analyzed as previously 

described.  

 

DNA demethylating agents and HDACis- TRAIL sensitive H460 cell line 

was treated with different concentrations of Trichostatin A (TSA) (100, 200, 

300, and 500 nM), sodium butyrate (10, 25, 50, and 75 mM) or 5’-Aza-2’-

deoxycytidine (1, 5, 10 mM). Moreover, we performed a time course with 

10mM 5’-Aza and 300nM TSA. Northern blotting were performed as 

previously described. 

 

Anti-p27Kip1 siRNA transfection in NSCLC- H460 cells were cultured to 

80% confluence and transiently transfected using LIPOFECTAMINE 2000 

with anti-p27kip1 siRNA (Santa Cruz) and anti- Kit siRNA (Dharmacon), a 

pool of 4 target specific 20-25 nt siRNAs designed to knock down gene 

expression. 20 nmol of p27kip1 RNA was transfected with 6µl transfection 

reagent, as described in the manufacturer’s protocol. 
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RESULTS 

 

 

The cytotoxic effects of TRAIL in human non small cell lung cancer 

(NSCLC)-  

We analyzed TRAIL sensitivity of different human NSCLC cell lines: A459, 

A549, CALU-1 and H460. Cells were exposed to TRAIL for 24 and 48 

hours (Figure 7A) after which cell death was assessed using an MTT assay 

or by FACS  with  annexin V and propidium iodide staining (data not 

shown).  As shown in Figure 7A, H460 cells underwent TRAIL-induced cell 

death whereas CALU-1 cells did not display sensitivity when exposed to 

soluble TRAIL; A459 and A549 cells showed an intermediate sensitivity. A 

possible mechanism of the differential sensitivity of the tested cells to 

TRAIL-induced apoptosis could be due to the variability of the cell surface 

levels of the death and decoy receptors resulting in increased apoptotic 

signaling in the sensitive cells. However, TRAIL receptor isoforms analyzed 

by western blot (Figure 7B) or FACS analysis (data not shown) revealed 

comparable levels of expression. Furthermore, although H460 cells do not 

express DcR1, the expression of DcR2 receptor is greater then CALU-1. 

Therefore, the expression of the decoy receptors within the two cell lines is 

balanced. 
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Figure 7 

(A) In order to assess TRAIL sensitivity, NSCLC cells were incubated  with Super-

Killer-TRAIL (400ng/ml) for 24 and 48 hours and viability evaluated as described in the 

methods section. Experiments were repeated four times in triplicate. H460 cells were 

more sensitive to TRAIL-induced apoptosis compared to CALU-1. A459 and A549 

exhibited an intermediate sensitivity. (B) TRAIL receptors expression in CALU-1 and 

H460 cells. Fifty micrograms of total extract was loaded onto 10% SDS-PAGE. The 

membrane was blotted with anti DR4, DR5 (1µg/ml) and DcR1 and DcR2 antibody (0.5 

µg/ml). Loading control was obtained with anti-β actin antibody (1:5000). 
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miRs expression screening in TRAIL resistant vs sensitive NSCLC cell 

lines-  

To investigate the involvement of miRs in TRAIL resistance, we analyzed 

the miRs expression profile in TRAIL-resistant (CALU-1) and semi-

resistant NSCLC cell lines (A459, A549) versus TRAIL sensitive cell line 

(H460). The analysis was performed with a microarray chip containing 1150 

miR probes, including 326 human and 249 mouse miRs, spotted in 

duplicates (49). Pairwise significance analysis (PAM) of the microarray 

indicated that five miR genes were significantly overexpressed in resistant 

NSCLC cells with a >1.5-fold change (Figure 8). These miRs were: miR-

222, miR-100, miR-221, miR-125b, miR-15b (Table 1). Three of these 

miRs, miR-222, miR-221, and miR-100, showed dramatic overexpression 

with 5- to 8-fold higher levels in resistant NSCLC cells compared with the 

sensitive NSCLC cells. Down-regulation occurred for only two miRs, miR-9 

and miR-96. 

To validate the microarray analysis, we performed quantitative Real-Time-

polymerase chain reaction (qRT-PCR) of the most overexpressed miRs 

(miR-222, miR-100, miR-221, miR-125b) and of down-regulated miR-9 in 

CALU-1 TRAIL-resistant cells, A459 and A549 semi-resistant cells and 

H460 TRAIL-sensitive cells. The analysis confirmed the results obtained by 

the microarray (Figure 9A).  

The expression of miR-222 in NSCLC cells was confirmed also with 

Northern blot (Figure 9B). 
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Figure 8  

Fold changes (resistant vs. sensitive) of the miRs present in NSCLC cells. The tree 
displays the log2 transformation of the average fold changes. Arrays were mean centered 
and normalized by using GENE CLUSTER 2.0. Average linkage clustering was 
performed by using uncensored correlation metric.  
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Figure 9 

(A) Real-time PCR of the most promising miRs targets obtained with microarray  

screening was performed by extracting RNA from the different NSCLC cells, as 

described in the methods section.  5 µg of RNA in 10 µl PCR reaction was used. TaqMan 

∆ct values were converted into absolute copy numbers using a standard curve from 

synthetic lin-4 miRNA. miRs 222, 100, 221,125b were markedly up-modulated in 

resistant but not in sensitive cell cultures, while miR-9  was markedly down-modulated. 

(B) Northern blot analysis of miR-222 expression. Ten micrograms of RNA were loaded 

onto a precast 15% denaturing polyacrylamide gel (Bio-Rad). RNA was then 

electrophoretically transferred to bright-Star blotting membranes and membrane 

incubated with labelled miR-222 probe. miR-222 was strongly up-regulated in TRAIL-

resistant CALU-1 cells.  
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Role of miR-221 and 222 in TRAIL resistance in NSCLC-  

In order to test the role of these overexpressed miRs in TRAIL sensitivity in 

lung cancer, we transfected H460 TRAIL-sensitive cells with pre-miR-221 

and -222. Increased expression of these miRs upon transfection was 

confirmed by Real-Time PCR (Figure 10A). Overexpression of miR-221 

and -222 in H460 cells made these cells more resistant to TRAIL-induced 

cell death by about 40% (Figure 10C). Interestingly, miR-100 also increased 

TRAIL resistance, while pre-miR-125b and control miR overexpression did 

not produce any effect (data not shown). A propidium iodide staining in 

H460 transfected with both pre-miR-221 and 222 confirmed these results 

(Figure 10E). 

Anti-miR inhibitors are sequence-specific and chemically modified to 

specifically target and knock down individual miR molecules. We 

transfected CALU-1 TRAIL-resistant cells with anti-miR inhibitor -221 and 

-222 and then assessed TRAIL sensitivity. As shown in Figure 10B, the 

levels of miR-221 and -222, assessed by RT-PCR, were reduced. 

Interestingly, the inhibition of miR-221 and 222 expression with the specific 

anti-miR inhibitor, was able to change the insensitive TRAIL phenotype to a 

sensitive one (Figure 10D). A scrambled non-specific anti-miR did not 

produce any effect. We also tested the effects of miRs 221 and 222 on the 

activation of caspase 8, 3 and PARP. Interestingly, while in H460 cells, 

TRAIL induced the activation of caspase cascade, as assessed by the 

appearance of the cleaved fragment, the co-incubation of TRAIL with 

222&221 premiR, induced a reduction of TRAIL-mediated cell death 

machinery activation (Figure 10F). TRAIL receptors expression was not 

affected by miR-221 and -222 up or down modulation (Figure 10G). 
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Figure 10 

(A) Real time PCR analysis after transfection of pre-miR221&222 in H460 cells. RNA 
was extracted and analyzed as previously described. miR transfection resulted in an 
increase of miR-221 and -222 expression in H460  
cells. (B) Real time-PCR analysis of miR-221&222  transfection in CALU-1 cells. Cells 
were transfected with 100 nmol of -221 or -222 anti-miR oligonucleotides. RNA was 
extracted and analyzed as previously described. Anti-miR transfection resulted in a 
decrease of miR-221&222 expression. (C) Cells were transfected either with control 
scrambled miR or with 100 nmol of pre-miR-221,-222 and -100. 24 hrs after transfection, 
cells were spitted into 96 well-plates and treated with 400 ng/ml of Super-Killer TRAIL 
for 24 hours. Cell viability was evaluated with the CellTiter Assay. miR-221&222 and 
miR-100 overexpression induced TRAIL resistance in H460 cells. (D) Effects of anti-
miRs on cell death. Cells were transfected with 100nM of anti-miRs 222, 221 or a 
scrambled control. 24 hrs after transfection, cells were split into 96 well and treated with 
400 ng/ml of Super-Killer TRAIL for 24 hrs, and cell viability was assessed as previously 
described. Down-regulation of miRs 221&222 in CALU-1 cells increased TRAIL 
sensitivity. (E) Propidium iodide (PI) staining of apoptotic cells- TRAIL was added for 
24 hours and cell death was evaluated by PI staining and FACS analysis. miR221&222 
overexpression induced TRAIL resistance in H460 cells. (F) The same cells (H460) were 
also assessed for caspase activation by Western blot. Eighty micrograms of total extract 
was loaded onto 10% SDS-PAGE. The membrane was blotted with anti caspase 8 
(1:1000), PARP (1:200), or caspase 3 (1:200) antibodies. Loading control was obtained 
using anti-β actin antibody. (G) Western blot anti-DR4 and DR5 after miRs transfection. 
H460 cells were transfected with 100nM of -221 and -222 while CALU cells were 
transfected with anti miR-221 and -222. Fifty micrograms of total extract was loaded 
onto 10% SDS-PAGE. The membrane was blotted with anti DR4, DR5 (1µg/ml) and 
DcR1 and DcR2 antibody (0.5 µg/ml). Loading control was obtained with anti-β actin 
antibody (1:5000). 
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miR-221 and -222 expression is repressed in TRAIL sensitive cells by 

epigenetic modifications- 

In disease, recent studies have shown that miRNA expression profiles are 

distinct between normal tissues and derived tumors (50) and between 

different  tumor types (49). Interestingly, down-regulation of subsets of 

miRNAs is a common finding in many of these studies (50, 51),suggesting 

that some of these miRNAs may act as putative tumor suppressor genes. 

This last indication has been studied in more detail for particular cases, and 

for example, the down-regulated let-7, miR-15/miR-16, and miR-127 target 

the oncogenic factors RAS, BCL-2, and BCL-6, respectively (21, 52, 53). 

One explanation is a failure at the posttranscriptional regulation of these 

miRNAs in cancer cells (54). However, additional mechanisms could also be 

invoked. Because the down-regulation of many relevant tumor suppressor 

genes in human cancer, such as hMLH1, BRCA1, and p16INK4a, has been 

tightly linked to the presence of CpG island promoter hypermethylation (55-

57), we wondered if the same mechanism could be playing a role in the 

described loss of miRNA expression in tumors. In this regard, restoration of 

miRNA-127 expression in cancer cells by treatment with a DNA-

demethylating agent has been recently reported (53). These recent and 

exciting data support the idea of an aberrant DNA methylation pattern of 

miRNA genomic loci in human tumors. 

 Histone deacetylase inhibitors (HDACis) are a promising new class of 

antineoplastic agents with the capacity to induce growth arrest and/or 

apoptosis of cancer cells. Furthermore, the down regulation of many relevant 

tumor suppressor genes in human cancer has been tightly linked to the 

presence of CpG island promoter hypermethylation (55, 57). Therefore, we 

  



 37 

wondered whether the same mechanism could be playing a role in the loss of 

miR-221 and -222 expression in NSCLC cells.  

We treated TRAIL sensitive H460 cell line for 24 hrs with different 

concentrations of Trichostatin A (TSA), sodium butyrate or the DNA 

demethylating agent, 5' aza-cytidine (Aza), and evaluated miR-222 levels by 

northern blot (Figure 11 A-D). Interestingly, we observed a dose and time-

dependent effect of Aza, alone and combined with TSA treatment in the 

regulation of miR-222 expression levels. A comparable effect of HDACis or 

Aza was also observed in the regulation of miR-221 (Figure 11E). 

Based on the findings described above, we tested the effects of epigenetic 

modifications on TRAIL sensitivity in H460 cells. As shown in Figure 11F 

we found, that the sensitivity of H460 cells to TRAIL was reduced upon 

HDACi or Aza treatment, in accordance with the increase of miR-221 and -

222 expression. This effect was time-dependent and reached maximum level 

after coincubation with Aza (72hrs) and TSA (24 hrs). 

Our results suggest that epigenetic mechanisms contribute to the 

transcriptional down-regulation of miR-221&222 in human H460 TRAIL 

sensitive cells. and a treatment of 5-aza-dC and a histone deacetylase 

inhibitor, trichostatinA, increased TRAIL resistance by up-regulation of miR 

221&222. 
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Figure 11 

H460 cells were treated:  (A) for 24 hrs at different concentrations of 

trichostatin A (TSA) (100, 200, 300, and 500 nM); (B)  for 24 hrs with 

sodium butyrate (10, 25, 50, 75, and100 mM); (C) daily for 72 hrs with 5’-

Aza-2’-deoxycytidine (AZA) (1-5-10 mM; (D) for 24 hrs with 300nM of 

TSA or with 10mM 5’-AZA for 72hrs followed by 300nM TSA treatment 

for 24hrs. Cells were collected for RNA extraction.  Northern blot analysis 

were performed as described in the methods, using miR-222 as probe. RNA 

loading control is also shown (EtBr = etidium bromide). (E) Cells were 

incubated for 24 or 48 hrs with 10mM of AZA. Northern blot analysis was 

performed as described in the methods. miR-221 was used as probe. An 

oligonucleotide complementary to the U6 RNA was used for normalization 

of the expression levels in the different samples. (F) H460 cells were treated 

for 24-48-72 hrs with 10 µM  AZA or with 300 nM TSA  24 hrs or  with 

AZA for 72 hrs followed by TSA  for 24 hr in the presence of TRAIL. 

500.000 cells were then stained with FITC-conjugated annexin V antibody 

and propidium iodide (PI) and then subjected to flow cytometric analysis. 

miR221&222 overexpression, after AZA-TSA treatments, decreased  

TRAIL sensitivity in H460 cells. 

. 
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p27
Kip1

  and Kit expression in NSCLC 

We analyzed the predicted targets of the three most significantly 

overexpressed miRNAs (miR-222, miR-100, and miR-221) in TRAIL-

resistant cells. The analysis was performed with three public available 

algorithms to predict human miR gene targets, i.e., MIRANDA, 

TARGETSCAN and PICTAR.  In this study, we focused on miR-221 and -

222, which are located close to each other on the short arm of the X 

chromosome. The concordant expression pattern in NSCLC suggested 

shared regulatory mechanisms for the expression of these two clustered 

miRs. They are up-regulated in TRAIL-resistant NSCLC cells and may 

promote TRAIL resistance by blocking expression of key functional 

proteins.  

Different studies have demonstrated that both the pro-oncogene KIT and the 

tumor suppressor p27Kip1  are miR-221&222 targets (25, 58-60).  We thus 

investigated Kit and p27 Kip1 expression in NSCLC cells.  

Western blotting of NSCLC cells with a monoclonal anti-Kit antibody 

revealed two bands of ~140kDa and 120kDa, corresponding to the mature 

fully glycosylated and the partially glycosylated Kit isoform, respectively 

(61) (Figure 12A). Interestingly, Kit protein was markedly up-regulated in 

sensitive, and down regulated in resistant, NSCLC cells.  

FACS analysis, used for quantitative determination of cell surface Kit-

receptor expression with specific antibodies against human Kit receptors 

(Figure 12B), confirmed the western blot results. Kit was a target of miR-

221 and -222 in human NSCLC cells since its expression was up-regulated 

in CALU-1 cells upon anti-miR-222 transfection (Figure 12C). The p27kip1    



 41 

gene is a member of the Cip/Kip family of cyclin-dependent kinase (CDK) 

inhibitors that function to negatively control cell cycle progression. 

It binds to CDK2 and cyclin E complexes to prevent cell cycle progression 

from G1 to S phase. p27kip1 also acts as a tumor suppressor and its expression 

is often distrupted in human cancers. 

Decreased p27kip1  levels have been correlated with tumor aggressiveness and 

poor patient survival (62, 63). 

The low levels of p27kip1 protein observed in many aggressive types of 

cancer are likely to be mediated by different mechanisms (62). 

The abundance of p27kip1 protein is largely controlled through a variety of 

post-transcriptional regulatory mechanisms (64, 65) among which are 

sequestration by ciclin D/CDK4 complexes, accelerated protein destruction 

and cytoplasmic retention (66) . 

However, several studies have indicated that genes controlling the stability 

of p27kip1 protein might not always account for its lower expression in 

cancer, and that  p27kip1 can also be regulated at the level of translation 

(67,68). 

We next analyzed p27 kip1 expression in NSCLC cells. Interestingly, western 

blot analysis showed that p27 kip1 is clearly detectable in H460 cells, is 

reduced in A459 and A549 cells, and  is very low or absent  in CALU-1 cells 

(Figure 12E).  Furthermore, as observed for Kit, the miR- 222 transfection 

resulted in an increase of p27
 kip1

 expression in CALU-1 cells (Figure 12D). 

A gene expression profiling in TRAIL-resistant and sensitive NSCLC cells, 

using oligonucleotide microarrays confirmed the down-regulation of Kit and 

p27
kip1

 in CALU-1 resistant NSCLC cells (data not shown).  
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Figure 12 

 (A) Proteins from CALU-1, A459, A549 and H460 cells were extracted with RIPA 

buffer. Fifty µg of sample extract were resolved on 7.5% SDS-PAGE and transferred to 

Hybond-C extra nitrocellulose. Membranes were incubated with anti-Kit primary 

antibody (0.2 µg/ml). Both surface and total Kit expression was higher in the H460 cells. 

(B) FACS  analysis of cell surface Kit expression. Cells were stained with primary anti-

human h-SCFR affinity purified goat IgG (1µg/ml) or mouse MAb 002 (Isotype control) 

followed by 10 µl of secondary antibody, Fluorescein conjugated goat F(ab’)2, as 

described in the methods section. % Gated: A459 (46%); A549(39%); H460(82%); Calu-

1(21%). (C-D) CALU-1 cells were transfected with 100 nmol of anti miR-221&222 for 

48 hours. Fifty micrograms of total extract was loaded onto 7.5-12% SDS-PAGE. The 

membrane was blotted with anti Kit (0.2 µg/ml) and anti p27 Kip1 (1µg/ml) antibodies 

Loading control was obtained with anti-β actin antibody (1:5000). Anti miR-221&222 

were able to increase Kit and p27 Kip1 expression. (E) p27Kip1 expression in NSCLC- Fifty 

micrograms of total extract was loaded onto 12% SDS-PAGE. The membrane was 
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blotted with anti-p27Kip1 (1µg/ml) antibody. Loading was controlled with an anti-β actin 

antibody (1:5000). 

 

 

Role of the miR221&222 targets, p27 kip1 and Kit, on TRAIL-mediated 

apoptosis  in NSCLC- To investigate whether p27 kip1 or Kit were involved 

in TRAIL resistance, we down-regulated these genes with specific siRNAs 

and then evaluated TRAIL sensitivity. Specific anti-Kit or anti-p27 Kip1 

siRNAs induced a reduction of endogenous expression of Kit or p27 kip1 

proteins by about 70% (Figure 13A and C). In order to evaluate the role of 

p27 kip1 in these cells, we measured survival after treatment with TRAIL. As 

shown in Figure 13B, anti-p27 kip1 siRNA transfection increased H460 cell 

resistance to TRAIL. Surprisingly, the treatment of H460 with the specific 

Kit siRNA did not induce resistance to TRAIL treatments in H460 cells but 

an increase in apoptotic cell death mediated by TRAIL treatment (Figure 

13D). Kit expression is under miR 221&222 control but it’s down regulation 

is not responsable to TRAIL resistance in H460 cells.  

 

Kit function was also investigated by interfering with its kinase activity by 

incubation of the cells with the drug Imatinib (Gleevec). H460 cells were 

incubated with 4µM Imatinib for 48h, and then treated with TRAIL 

(400ng/ml) for 3, 6, 12, 24 hrs. As a negative control, cells were  treated 

with TRAIL or Imatinib alone (Figure 13E). 

Imatinib-TRAIL co-treatment induced an increase of TRAIL sensitivity in 

H460 cells. The effect was evident after only 3hrs of co-incubation. Imatinib 

alone did not induce significant apoptosis in NSCLC. 
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Figure 13   

(A) H460 cells were cultured to 80% confluence and transiently transfected 

with anti-p27 Kip1 siRNA, a pool of 4 target specific 20-25 nt siRNA 

designed to knock down gene expression. Fifty micrograms of total extract 

was loaded onto 12% SDS-PAGE. Western blot was assessed as previously 

described. (B) Annexin V and propidium iodide (PI) staining of H460 cells 

after transfection with anti-p27 siRNA. Interfering with p27 expression 

increased TRAIL resistance in H460 cells. Mean ± SD of four independent 

experiments in duplicate (C) H460 cells were transiently transfected in p60 

plates using LIPOFECTAMINE 2000 with siKit RNA for 48 hours.  

Western blot of cells transfected using anti Kit antibody.  Anti-Kit siRNA 

induced a marked down-regulation of Kit expression in H460 cells. (D) 

Propidium iodide (PI) staining of apoptotic cells- TRAIL was added for 24 

hours and cell death was evaluated by PI staining and FACS analysis.  

Experiments were done twice in triplicate. Interfering with Kit expression 

increased TRAIL sensitivity in H460 cells (E) H460 cells were treated with 

4µM imatinib for 48hrs, and then TRAIL (400ng/ml) was added for 

3,6,12,24 hrs. As negative control cells were treated with TRAIL (400ng/ml) 

and Imatinib (4 µM) alone.  Cell viability assay was determined like 

previously described. A representative experiment of four independent 

experiments is presented. 
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DISCUSSION 

 

Apoptosis-based anti-cancer therapies are designed to achieve tumor 

eradication through the use of death-inducing molecules capable of 

activating the apoptotic program selectively in neoplastic cells. Due to its 

specific toxicity for malignant cells, recombinant forms of TRAIL are 

among the most promising apoptosis-based anti-tumor agents (69, 70). 

Therapy based on the use of agonistic TRAIL receptor antibodies are now in 

phase 2 clinical trial in different kinds of cancer, included NSCLC (71). 

However, in a number of patients, tumor cells evade death signals generated 

by drugs through the activation of effective anti-apoptotic mechanisms (72, 

73). The aim of the present study was to identify specific signatures as 

potential therapeutic targets for the TRAIL-resistant phenotype in non small 

cell lung carcinoma (NSCLC).  

 

For this purpose, we analyzed miRs expression profile in TRAIL-resistant 

(CALU-1) and semiresistant NSCLC cell lines (A459, A549), versus a 

TRAIL sensitive cell line (H460). We identified five miRs up-regulated in 

the resistant cell lines (miR-222,-100,-221,-125b and -15b) and between 

these we further analyzed four of them with the highest fold change (miR-

222,-100,-221 and -125b). This pattern was specific for NSCLC cells since 

we did not find the same pattern in breast cancer cells analyzed with the 

same array (data not shown). 
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Forced overexpression of the miR -222, -100 and -221, but not of miR-125b, 

in the sensitive H460 cells increased resistance to TRAIL in these cells, thus 

indicating that repression of their target proteins is implicated in causing 

TRAIL resistance. Kept together our results show that the sensitivity of a 

cancer cell to a defined external signal is dictated by the expression of a 

small number of microRNAs.  

It has recently described that miRNAs are under epigenetic control (74). The 

epigenetic silencing of these miRs modulate the activity of oncogenes (the 

cycline dependent kinase, CDK6) and tumor suppressor genes 

(retinoblastoma protein, Rb). In the present study we demonstrate that 

expression levels of at least two of these miRs, miR221&222, are 

maintained low in the TRAIL sensitive H460 cells by epigenetic 

modifications. Indeed, both demethyllating agents and HDACis upregulated 

the levels of miR221&222 in a dose- and time-dependent manner. On the 

other hand, several studies demonstrate that HDACis treatment enhances 

TRAIL sensitivity in a number of different cancers gaining importance as 

potential anticancer drugs (47, 75). A plausible explanation for this apparent 

discrepancy likely relies on the pleiotropic effects of these agents on gene 

expression.  

Further, in order to support the involvement of miR-mediated regulation of 

protein levels in TRAIL resistance, we investigated the potential protein 

targets of miRs identified in our screening. We focused on the two highly 

related miRs, miR-221 and -222, that recognize several predicted target 

genes involved in intracellular signaling (and cell death) and thus good 

candidate regulators of cell response to TRAIL. 
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Recent reports revealed that the receptor tyrosine kinase Kit and the cycline-

dependent kinase inhibitor, p27 kip1, are both miR-221 and -222 functional 

targets (25, 58-60). Here we demonstrate that silencing of p27 kip1, but not of 

Kit, increases TRAIL resistance. This result well support the implication of 

miR-221 and -222 in determining the resistant/sensitive phenotype in 

NSCLC cells, and indicate p27 kip1 among target proteins that contribute to 

maintain cell sensitivity to TRAIL-induced cell death. Imatinib (Gleevec) is 

a tyrosine kinase inhibitor that targets Kit, plated-derived growth factor 

receptors (PDGFRs), and c-Abl (76). Hamai et al. (77), described that 

Imatinib treatment of melanoma cells was able to enhance TRAIL-induced 

cell death. In good agreement, we show that Gleevec further increases 

TRAIL-induced apoptosis in the H460 cells as well as in the CALU-1 cell 

line that do not express Kit, likely acting on other tyrosine kinase targets. 

Taken together these results indicate that even though miR-221 and -222 

regulate the levels of both p27 kip1 and Kit proteins their effects on TRAIL 

sensitivity are mainly mediated by p27kip1. However, it seems plausible that 

silencing of other additional targets of miR-221 and -222 contribute to 

TRAIL resistance in NSCLC cells. 

miR-221 and 222-mediated down regulation of p27
kip1

has been implicated in 

maintaining a more aggressive cancer phenotype, thus indicating p27
kip1

 as 

bona fide tumor suppressor (26). p27
kip1

 is a member of cyclin-dependent 

kinases (cdk) inhibitory proteins with putative tumor suppressor functions 

(78).  More recently, p27
kip1

 has been described to play different roles 

depending on the cell type context and on its citosolyc or nuclear cellular 

localization (79, 80). The fuctions of p27
kip1

 in the apoptotic process remain 
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unclear. Adenovirus-mediated transient overexpression of p27
kip1

 was 

demonstrated to induce apoptosis in transfetected cells (81, 82). Other 

reports describe p27 as anti-apoptotic gene (83, 84).  Therefore, this suggests 

that the survival effects of p27
kip1

, are cell-type specific  and may be 

mediated by p27- effects on anti-apoptotic proteins expression (83, 85). 

Whether similar molecular mechanisms underlie the increase in TRAIL 

resistance upon silencing of p27
kip1

 remain to be further investigated. 

 

In conclusion, our results demonstrate for the first time that the intracellular 

levels of few miRs may modulate sensitivity of a cancer cell to a death 

receptor ligand with important implications in the design of new therapeutic 

agents.   
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Table 1 

 

 

has-miR-221 Xp11.3            5.9  

has-miR-125b 11q23-24            5.4  

has-miR-15b 3q26.1            3.6  

hasmiR96  7q32.2           0.5  

has-miR-9  1q23.1           0.072  

 
 

Table-1- All differentially expressed miRs have q <0.01 (false positive rate). 

T test p<0.05. These miRs were identified by PAM as predictor of NSCLC 

with the lowest misclassification error. All the miRs, except miR-9 and -96, 

are up-regulated in the TRAIL resistant cells compared to the TRAIL-

sensitive one. 
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