
 
         UNIVERSITÀ DEGLI STUDI DI NAPOLI 

 
“FEDERICO II” 

 
 

Scuola di Dottorato in Medicina Molecolare 
 
 

Dottorato di Ricerca in Genetica e Medicina Molecolare 
 
 
 

 
 
 
 
 

SORTING AND MEMBRANE ORGANIZATION OF GPI-
ANCHORED PROTEINS IN POLARIZED EPITHELIAL CELLS 

 
 
 
 
 
 
Coordinatore:                   Candidata: 
Prof. Carmelo Bruno Bruni                          Dott.ssa Simona Sanda Tivodar 
 
 
 
 
 

Anno  
 

2007 



 2 

 
 

UNIVERSITÀ DEGLI STUDI DI NAPOLI 
 

“FEDERICO II” 
 

 
 

Dipartimento di Biologia e Patologia Cellulare e Molecolare 
“Luigi Califano” 

 
 
 
 
 
 

Dottorato di Ricerca in Genetica e Medicina Molecolare 
 
 
 
 
 
 
 

Coordinatore Prof. Carmelo Bruno Bruni 
 
 
 
 
 
 
 
 

 
 
 

Sede amministrativa: 
Dipartimento di Biologia e Patologia Cellulare e Molecolare “Luigi Califano” 



 3 

 
 
 

UNIVERSITÀ DEGLI STUDI DI NAPOLI 
 

“FEDERICO II” 
 

 
 

Dipartimento di Biologia e Patologia Cellulare e Molecolare 
“Luigi Califano” 

 
 
 
 
 

Tesi di Dottorato di Ricerca in Genetica e Medicina 
Molecolare 

XIX  
 
 
 
 

SORTING AND MEMBRANE ORGANIZATION OF GPI-
ANCHORED PROTEINS IN POLARIZED EPITHELIAL CELLS 

 
 
 
 
 
 
 
Candidata: Dott.ssa Simona Sanda Tivodar 
 
Docente guida: Prof.ssa Chiara Zurzolo 
 



 4 

 
TABLE OF CONTENTS 

 
 
 

1 Synopsis                                                                                                                    5 
 
2 Introduction 

2.1 Epithelial polarized cells                                                                                     7 
2.2 Membrane structure                                                                                           20 
2.3 Different view of lipid membrane microdomains                                             23 
2.4 GPI-anchored proteins                                                                                       25 
 

3 The aim of the study                                                                                               27 
 
4 Materials and methods                                                                                           29 
 
5 Results 

5.1 Oligomerization is a specific requirement for apical sorting of GPI-anchored 
proteins but not for non-raft associated apical proteins                                               35 

5.2 Detergent-Resistant Membranes associated with apical and basolateral GPI-
anchored proteins in polarized epithelial cells contain the same lipid species in 
different quantity                                                                                                         40 

5.3 GPI-anchored protein homo-oligomerization leads to cholesterol-dependent 
hetero-clustering at the surface of MDCK cells                                                          48 

 
6 Discussion                                                                                                                 

6.1 Oligomerization is a specific requirement for apical sorting of GPI-anchored 
proteins but not for non-raft associated apical proteins                                               61 

6.2 Detergent-Resistant Membranes associated with apical and basolateral GPI-
anchored proteins in polarized epithelial cells contain the same lipid species in 
different quantity                                                                                                         63 

6.3 GPI-anchored protein homo-oligomerization leads to cholesterol-dependent 
hetero-clustering at the surface of MDCK cells                                                          64 
 
 
7 Conclusion & perspectives                                                                                     68 
 
8 References                                                                                                                70 
 
ANNEX 1                                                                                                                    80 
ANNEX 2                                                                                                                    81 
ANNEX 3                                                                                                                    82 



 5 

1. SYNOPSIS 

The plasma membrane of epithelial cells is divided into distinct domains, apical and 

basolateral, which have different protein and lipid compositions (Rodriguez-Boulan and Powell, 

1992; Mostov, 2003), achieved by the continuous specific sorting of newly synthesized molecules 

and recycling of membrane components (Matter, 2000; Nelson and Yeaman, 2001; Rodriguez-

Boulan et al., 2005). 

Glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) are apically sorted in a 

range of epithelial cell lines (Lisanti et al., 1989; Brown and Rose, 1992). It has been proposed that 

GPI-APs are sorted to the apical surface via their incorporation in sphingolipid- and cholesterol-rich 

microdomanins called rafts (Simons and Ikonen, 1997). However this hypothesis has been 

challenged by the finding that: 

• in FRT (Fischer Rat Thyroid) cells GPI-APs are mainly delivered to the basolateral 

membrane (Zurzolo et al., 1993; Lipardi et al., 2000)  

• both apical and basolateral GPI-APs are associated with rafts in MDCK (Madin-Darby 

canine kidney) cells, indicating that rafts are not sufficient to determine their apical sorting 

(Sarnataro et al., 2002; Paladino et al., 2004; Paladino et al., 2007).  

Furthermore, we demonstrated that protein oligomerization, which could promote the 

stabilization of GPI-APs into rafts, is the key event for their apical sorting (Paladino et al., 2004; 

Paladino et al., 2007). 

Another fundamental characteristic of the sorting process is that proteins are not exclusively 

apical or basolateral. The plasticity of epithelia is evidenced by the fact that in different epithelial 

cell types the same proteins can be differently sorted and/or can follow variable routes to be 

delivered to their final domain of residence (reviewed in (Rodriguez-Boulan et al., 2005). In 

addition it has been shown that apical sorting can be mediated by at least two mechanisms, raft-

dependent and raft-independent (Benting et al., 1999b; Lipardi et al., 2000). Hence we have asked 

whether oligomerization is a requirement for apical sorting of GPI-APs in polarized cell lines  other 

than MDCK cells and whether this mechanism is also used for apical sorting of transmembrane non 

raft- associated proteins. In order to answer these questions we have used FRT cells as epithelial 

cell model and we analyzed the behaviour of several GPI-APs differently sorted. 

The factors that could promote protein oligomerization and consequently apical sorting are 

still under investigation and two different hypotheses could be the most possible:  

1) the protein ectodomain may have a key role in determining first oligomerization and then 

stabilization into rafts or,  
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2) it is possible that apical and basolateral proteins associate with different lipid rafts that would 

determine the rate of their clustering and therefore be responsible for the differential sorting. The 

latter hypothesis is supported by the fact that caveolae, which are specialized lipid microdomains, 

have been found enriched on the basolateral domain of several epithelial cell lines (Lipardi et al., 

1998; Vogel et al., 1998; Lahtinen et al., 2003). In addition, Thy-1 and PrPc, two GPI-APs that 

traffic differently in neuronal cells (Madore et al., 1999), were found within lipid microdomains 

with different composition (Brugger et al., 2004).  

Furthermore it is unknown if different apical GPI-APs are in the same or distinct oligomeric 

complex and/or lipid microdomains.  

Several lines of evidence indicate that in living cells GPI-APs are confined in restricted 

domains of the membrane. GPI-APs do not exhibit Brownian motion, but undergo random walks in 

a transient confinement zone (Fujiwara et al., 2002). By single particle diffusion or single particle 

tracking GPI-APs were found to be confined within 200-400 nm zones (Sheets et al., 1997; Schutz 

et al., 2000; Fujiwara et al., 2002). Other studies using FRET, single particle tracking, or 

biochemical cross-linking (Friedrichson and Kurzchalia, 1998; Varma and Mayor, 1998; Pralle et 

al., 2000) have shown that GPI-APs are restricted to submicron-sized domains on the cell surface. 

Findings based on FRET analysis proposed that GPI-APs are organized in three-to-four molecule 

hetero-clusters which depend on cholesterol (Sharma et al., 2004). On the other hand, a common 

biochemical criterion to define raft association has been the resistance to extraction in cold non-

ionic detergent which results in the purification on sucrose density gradients of fractions enriched in 

glycosphingolipid, cholesterol and GPI-APs denoted DRMs (detergent-resistant membranes or 

detergent-resistant microdomains) (Brown and London, 1998). Using this assay it has been shown 

that different non-ionic detergents can extract different sets of proteins and lipids (Roper et al., 

2000; Schuck et al., 2003; Slimane et al., 2003), which may indicate that different sets of proteins 

can associate with various types of membrane domains that could have different functional roles.  

To answer all these open questions we studied how different GPI-APs are organized on the 

plasma membrane and we analysed the DRMs in which these protein are enriched. 

In particular my thesis is organized in three major chapters: 

1) Study of the GPI-AP oligomerization as specific requirement for apical sorting. This work 

has been published see Annex 1. 

2) Analysis of lipid composition of DRMs associated to apical and basolateral GPI-APs. This 

work has been published see Annex 2. 

3) Study of organization of GPI-APs at the apical plasma membrane in polarized epithelial 

cells. This work is in revision see ANNEX 3. 
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2. INTRODUCTION 

 

2.1 EPITHELIAL POLARIZED CELLS 

 

2.1.1 Plasma membrane asymmetry 

Epithelial layers form the boundary between different compartments, separating the internal 

system of the organism from the outside world. Dependent on the organ or the state of 

differentiation, epithelial cells are specialized in particular functions as absorption, secretion and 

vectorial trans epithelial transport of fluids, electrolytes and proteins. To allow an appropriate 

development of these functions and to control material flow into one precise direction, epithelial 

cells have to maintain a polarized organization (Delacour and Jacob, 2006). The process of cell 

polarisation is guided by different polarisation events: the initial step is an influx of information 

from the extracellular milieu (Delacour and Jacob, 2006), and the following step is the 

establishment of cell-cell and cell-extracellular matrix contacts, which finally results in the 

formation of tight junctions (Figure 1) and in the reorganization of the cytoskeleton (Yeaman et al., 

1999; Rodriguez-Boulan et al., 2005). The reorganization of the microtubule network to an apico-

basolateral array also contributes to the acquisition of cell polarity (Yeaman et al., 1999). This 

process leads to the division of the plasma membrane in two structurally, functional and 

biochemical domains, known as apical and basolateral domains (Mostov et al., 2003).  

 

 
Figure 1. Epithelial cells and organization of the junctional complex. 
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The apical domain of epithelial cells is usually in contact with the external surface of an 

organism or with the body cavities, while the basolateral surface can be divided into two regions: 

the basal surface lies on a basement membrane and it is in close proximity to blood vessels and 

capillaries, whereas the lateral surface is adjacent to other cells in the same epithelium, and contains 

specialized junctional domains that allow interactions among adjacent cells (either simple 

mechanical adhesion as in the case of tight junctions, adherent junctions and desmosomes (Figure 

1), or metabolic cooperation via gap junction) (Brown and Breton, 2000). Tight junctions prevent 

the mixing of proteins and lipids between the two domains of plasma membrane, beyond to regulate 

the paracellular transport (Mostov et al., 2003).  
The cell polarity is maintained during the lifetime of an epithelium by constant plasma 

membrane turnover of lipids and proteins and remodelling. Hence a continuous sorting of newly 

synthesized molecules and recycling of membrane components are required to maintain this 

molecular asymmetry at the cell surface. The defective targeting of membrane ion channels, 

transporters, enzymes and receptors leads to a variety of patho-physiological conditions that cause 

different human diseases. To understand the so-called "diseases of protein sorting" (Brown and 

Breton, 2000) it is essential to understand the basic mechanisms that are used by the cell to sort, 

deliver, insert and maintain proteins in their correct cellular location. 
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2.1.2 MDCK cells, the model cells 

One of the fundamental questions is how epithelial cells establish and maintain their polarized 

phenotype. The understanding of these processes became experimentally approachable when it was 

discovered that Madin-Darby canine kidney (MDCK) cells develop a tight epithelial monolayer 

when they are plated on a permeable substratum (Cereijido et al., 1978). Therefore MDCK cells 

became the model system to study polarized protein targeting (Figure 2). Subsequently other cell 

lines, like FRT (Fisher Rat Thyroid) or CaCo-2 (Colon Carcinoma) cells, were discovered to retain 

the ability to form polarized membrane domains in tissue culture and provided good experimental 

system to study mechanisms of protein sorting (Nelson and Rodriguez-Boulan, 2004). At this point 

a “new epoch” opened to elucidate biosynthetic and recycling pathways for apical and basolateral 

membrane proteins and to identify the components that guide apical and basolateral proteins along 

these pathways (Rodriguez-Boulan et al., 2005). 

 

 

 

 

Figure 2. The Madin-Darby canine kidney 
(MDCK) cell model. (From Nature Reviews, 
Molecular Cell Biology, March 2005, Vol. 6, 
No 3; Rodriguez-Boulan et al., 2005).  
The exit from the Golgi complex and delivery to 
the cell plasma membrane of the apical or 
basolateral proteins is monitored by using GFP 
(green fluorescent protein)-tagged proteins. This 
movement can be followed by different 
microscopic techniques.   

The important impact of the MDCK cellular model is revealed by increasing the number of 

publications on epithelial polarity, epithelial morphogenesis and the epithelial junctional complex.  

Polarized cells establish and maintain functionally distinct surface domains by an elaborate 

sorting process, which ensures accurate delivery of biosynthetic cargo to different parts of the 

plasma membrane (Matter, 2000; Mostov et al., 2003; Nelson and Rodriguez-Boulan, 2004; Schuck 

and Simons, 2004). Moreover, different epithelia cells show “flexibility” in their polarized 

trafficking, which was defined as the ability to localize a given protein to different regions of the 
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cell or to use a different targeting route to reach the same region of plasma membrane (Rodriguez-

Boulan and Powell, 1992). 

Epithelial cells use not only biosynthetic sorting from the TGN but also a selective 

recycling/transcytosis to deliver proteins to the correct surface, although the relative importance of 

these two pathways varies among the different cell types (Mostov et al., 2003). For example, 

hepatocytes use mainly an indirect pathway (transcytosis), which passes trough the basolateral 

membrane, to deliver proteins from the TGN to the apical surface, although some proteins are 

delivered directly from the TGN to the apical surface (Kipp and Arias, 2000; Bastaki et al., 2002). 

In MDCK cells, 50% of the cell surface is endocytosed per hour, and a typical membrane protein 

has a half-life of approximately 20 h. In MDCK cells, which are heavily reliant on TGN sorting, the 

flux through the endocytic pathway is approximately ten times greater than through the biosynthetic 

pathway, indicating that selective recycling/transcytosis is essential for steady-state polarity 

(Bomsel et al., 1989). 
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      2.1.3 Plasma membrane sorting determinants 

As aforementioned the functional polarity of epithelial cells depends upon the selective 

insertion of proteins and lipids into distinct plasma membrane domains. This polarized distribution 

is an important event for different categories of proteins including membrane transporters, channels, 

enzymes, cell adhesion molecules and junctional components allowing cells to carry out the 

vectorial transport of fluid, ions and other molecules across the epithelial barrier (Brown and 

Breton, 2000). The polarized distribution of the proteins on the plasma membrane is considered to 

be the result of three processes: 

1. newly synthesized proteins, destined to the apical or the basolateral cell surface, are 

synthesized at the level of the rough endoplasmic reticulum and transported through the 

Golgi to the trans-Golgi network (TGN) (Figure 3), where they are sorted into distinct 

vesicular carriers (Griffiths and Simons, 1986) directed to different domains of the plasma 

membrane. Other proteins are transported from the TGN to endosomes, and only then to the 

cell surface (Orzech et al., 2001; Ang et al., 2004).  

 

 

 
 
Figure 3. The scheme of the different 
sorting pathways that exist in polarized 
epithelial cells. (From Trends in Cell Biology 
Volume 15, Issue 4, Heike Fölsch, 2005).  
Newly synthesized transmembrane proteins move 
together from the endoplasmic reticulum to the 
Golgi and through the Golgi apparatus. From the 
TGN they are sorted away from each other and 
delivered to endosomes or lysosomes (blue 
pathway), the apical plasma membrane (purple) or 
the basolateral plasma membrane (green). 

 
 

2. some proteins are selectively retained at the cell surface, often through an interaction of their 

carboxyl termini with PDZ-domain-containing proteins (Harris and Lim, 2001). 

3.  components that are not retained at the surface are rapidly endocytosed and delivered to 

early endosomes, from where they can be recycled back to the cell surface, transferred to 

late endosomes or transported across the cell and delivered to the opposite surface, a process 

known as transcytosis (Mostov et al., 2000).  
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These three processes contribute to define the site of protein sorting which can be the TGN, the 

endosomes and the plasma membrane, all with potentially similar mechanisms for sorting different 

classes of membrane proteins (Nelson and Rodriguez-Boulan, 2004).  

The mechanisms and carriers responsible for exocytic protein trafficking between the TGN 

and the plasma membrane could depend on microtubules, actin filaments and actin-associated 

proteins. The role of the microtubules cytoskeleton in these processes was analysed for vesicular 

stomatitis virus G protein tagged with GFP. These studies demonstrated that exocytic cargo moves 

along microtubule tracks toward the basolateral surface (Toomre et al., 1999). Moreover studies 

using a two-colour labelling technique of live imaging in mammalian cells highlight a role for the 

actin cytoskeleton in the post-Golgi transport of apical sucrase-isomaltase, whereas lactase-

phlorizin hydrolase-carrying apical vesicles are transferred in an actin-independent fashion to the 

apical membrane (Jacob et al., 2003). However recent studies showed that the actin dynamics 

participates in the TGN egress of both apical- and basolateral-targeted proteins but is not needed for 

apical raft-associated cargo (Lazaro-Dieguez et al., 2007). 

Pathological conditions can arise as result of the inappropriate removal or insertion of 

itinerant proteins, stressing the importance of proper sorting or endocytic and transcytotic transport 

in maintenance of polarized protein expression (Stein et al., 2002). 

Protein sorting is based on different motifs, which can reside in their cytoplasmic domains, 

membrane anchors or extracellular domains. The sorting information is often referred as a sorting 

signal, sorting determinant, or trafficking signal (Muth and Caplan, 2003). These sorting motifs can 

interact with components of the sorting machinery and direct the proteins, through the distinct 

transport routes to the correct membrane domain.  

       

Basolateral sorting determinants 

Basolateral protein sorting signals are generally confined to their cytoplasmic regions. Indeed 

they have been identified in the cytosolic tails of a variety of transmembrane proteins by deleting or 

transferring them to other differently sorted proteins (Mostov et al., 1986; Casanova et al., 1991; 

Hunziker et al., 1991). For example the addition of a 14 amino acids-long fragment from the 

cytoplasmic domain of polymeric immunoglobulin receptor (pIgA-R) to PLAP (Placental Alkaline 

Phosphates) reverted its sorting from the apical to the basolateral cell surface (Casanova et al., 

1991).  

Motifs containing Tyr, Leu-Leu or Leu-Val are localized in the cytoplasmic region near the 

transmembrane domain and direct these proteins to the basolateral plasma membrane domains 
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(Rodriguez-Boulan and Powell, 1992). In particular the aminoacid sequence YXXΦ has been found 

mediating basolateral sorting (Nelson and Yeaman, 2001). 

Furthermore tyrosine-based motif (Matter et al., 1992; Matter and Mellman, 1994) are also 

involved in localization to coated pits and clathrin-mediated endocytosis (Chen et al., 1990; 

Collawn et al., 1990), and for some proteins it coincides with basolateral determinants (Hunziker et 

al., 1991; Hunziker and Mellman, 1991). These signals were identified in several proteins as in the 

low density lipoprotein (LDL)-receptor (NPXY) (Matter et al., 1992), the transferrin receptor 

(YXRF) and the pIgA-R (YXXΦ) (Matter and Mellman, 1994). For example 10 residues (including 

the tyrosine) in the cytoplasmic domain of the human asialoglycoprotein receptor are sufficient for 

its basolateral polarity and efficient endocytosis (Geffen et al., 1993). Differently, the LDL-receptor 

contains two basolateral sorting signals, the inactivation of one signal can cause mistargeting of 

LDL-receptor and result in hypercholesterolemia (Matter et al., 1992; Koivisto et al., 2001). 

Furthermore, for the influenza virus hemagglutinin the conversion of cysteine 543 to tyrosine is 

enough to be basolaterally sorted and internalized (Lin et al., 1997).  

The basolateral sorting activity of the signal is essential to establish the polarity of the protein, 

whereas the endocytosis signal permits proper surface regulation of the protein (Muth and Caplan, 

2003). The importance of a correct regulation of these processes has been demonstrated in the case 

of familial hypercholesterolemia, where mutations to the LDL-receptor internalization domain 

prevent the uptake of low-density lipoproteins from the plasma membrane and into liver cells (Chen 

et al., 1990; Goldstein and Brown, 2001).  

Another amino acid motif, acting as basolateral determinant, is the dileucine (LL) motif found 

within the cytoplasmic tail of some proteins, as the glucose transporter GLUT4 (Corvera et al., 

1994; Verhey and Birnbaum, 1994; Verhey et al., 1995) and the vasopressin V2 receptor 

(Birnbaumer et al., 1992). A novel signal based on a single leucine motif was described in the stem 

cell factor (Wehrle-Haller and Imhof, 2001).  

The basolateral signals are recognized by adaptor coat proteins, like AP-1B, an isoform of the 

AP-1 clathrin adaptor protein, but which contains an alternative epithelial-specific subunit (Mostov 

et al., 2003). The expression of AP-1B is sufficient to confer correct basolateral sorting in LLC-

PK1 kidney epithelial cells that lack this protein (Folsch et al., 1999). 
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Apical sorting determinants 

Delivery of proteins to the apical surfaces of epithelial cells depends on the coordination of multiple 

distinct mechanisms. In contrast to basolateral sorting signals apical sorting signals are localized in 

exoplasmic, membrane or cytoplasmic domains of the proteins (Mostov et al., 2003; Muth and 

Caplan, 2003; Rodriguez-Boulan et al., 2004; Rodriguez-Boulan et al., 2005; Delacour and Jacob, 

2006).  

A putative apical sorting signal has been found independently in the cytoplasmic tail of two 

seven-transmembrane-spanning proteins, rhodopsin (Chuang and Sung, 1998) and the apical Na+-

dependent bile acid transporter (Sun et al., 1998). In fact, 39 and 40 amino acids, respectively, of 

the cytoplasmic tail of these two proteins were able to redirect two different basolateral proteins to 

the apical surface in MDCK cells. Interestingly, these sequences are peculiar to these specific 

classes of proteins, and there are no conserved residues between the two signals of the two 

cytoplasmic tails.  

Another specific case is that of megalin, the main endocytic receptor of the proximal tubule 

responsible for reabsorption of many filtered proteins. The cytoplasmic tail of megalin contains 

three NPXY motifs, YXXØ, SH3, and dileucine motifs beyond to PDZ-binding motif at its COOH 

terminus. By deletion analysis Takeda et al. found that amino acids 107-136 of the cytoplasmic tail 

of megalin containing the second NPXY-like motif are critical for apical sorting and targeting, 

whereas the regions containing the first and third NPXY motifs are required for efficient 

endocytosis (Takeda et al., 2003).  

These studies indicated that cytoplasmic sorting machinery analogous to the one described for 

basolateral proteins also might exist for apically targeted proteins.  

Other apical signals were found in the ectodomain of proteins by using glycosylation-

deficient cell lines, showing that glycans are requested for apical protein sorting (Le Bivic et al., 

1993). In the same way treatment of MDCK cells with tunicamycin, that is a GlcNAc-analogue 

which inhibits the first step of N-glycosylation, determined the missorting of apical gp80 to both 

membrane domains of MDCK cells (Urban et al., 1987).  

N-glycosylation, is not a universal apical sorting signal; indeed there are some proteins that 

are apically sorted independently of presence or absence of N-glycosyl chains, like in the case of 

p75NTR in MDCK cells (Yeaman et al., 1997). Instead, deletion of O-linked glycosyl chains 

induced a mistargeting of p75NTR from the apical to basolateral domain of plasma membrane 

(Yeaman et al., 1997; Jacob et al., 2000).  

In addition in some cases the position of O-glycans is crucial for apical sorting of the protein 

(Jacob et al., 2000; Breuza et al., 2002). At the moment several studies tend to define which part of 
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the glycan chain is involved in apical targeting. It was proposed that terminal oligosaccharides 

constitute apical determinants of endolyn (Potter et al., 2004), while the apical sorting signals are 

located in the core region of glycans of the H,K-ATPase beta subunit and in this case the terminal 

region functions to stabilize only the protein at the apical plasma membrane (Vagin et al., 2004). 

Furthermore it seems that N- and O-glycans function as recessive signals respect to 

basolateral signals and their wide distribution in plasma membrane and secretory proteins explains 

the frequent finding that removal of basolateral signals from a protein results in its apical 

localization (Matter and Mellman, 1994; Fiedler and Simons, 1995; Yeaman et al., 1997).  

Although those findings highlight an involvement of N- or O-glycosylation in accurate apical 

delivery, the underlying mechanism by which glycosylation could determine apical trafficking is 

unknown. The point that remains to be determined is whether glycans motifs are directly involved 

in apical targeting or whether they contribute indirectly to apical protein sorting. It was postulated 

that glycans can act either by stabilizing proteins, allowing access to a hidden apical sorting signal 

or by fixation of a competent conformation for apical sorting. Alternatively, glycosylation could 

have an impact on the lateral mobility of the protein in the membrane, which could affect the 

incorporation into membrane microdomains (see after) and delivery into apical carrier vesicles 

(Scheiffele et al., 1995; Simons and Ikonen, 1997; Rodriguez-Boulan and Gonzalez, 1999). 

A particular case of apical sorting is represented by glycosylphosphatidylinositol (GPI) 

anchored proteins (GPI-APs) that are attached to the external leaflet by a glycolipid anchor (see 

after chapter 2.4). The GPI-APs were found to be preferential localized at the apical plasma 

membrane of epithelial cells, and are enriched in the sphingolipid/cholesterol membrane 

microdomains called lipid rafts (Fiedler et al., 1993; Arreaza and Brown, 1995; Nosjean et al., 

1997). Rafts were proposed to form spontaneously by lateral-lateral interactions between the long 

and saturated chains of sphingolipids and cholesterol which is intercalated among them favouring 

their tight packing (Simons and Ikonen, 1997; Simons and Vaz, 2004). Because of their capacity to 

segregate specific classes of lipids and proteins, rafts can act as platforms of sorting. An important 

biochemical property of rafts is their insolubility to the cold non-ionic detergent like Triton X-100, 

for this motif rafts are also called detergent resistant microdomains or membranes (DRMs). Proteins 

associated with rafts are insoluble in this non-ionic detergent. Brown & Rose by using this method 

in a pulse & chase experiments have found that the GPI-APs are soluble in the ER and became 

progressively insoluble to Triton X-100 extraction when reach the Golgi complex indicating that in 

this compartment GPI-APs start to associate with rafts (Brown and Rose, 1992).  Therefore, it was 

postulated that GPI anchor could be an apical sorting signal by mediating the association of GPI-

APs with lipids rafts, because of natural affinity of their GPI-anchor for these membrane 
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microdomains (Simons and Ikonen, 1997). However this hypothesis has been recently questioned 

by the fact that in FRT cells the major part of endogenous GPI-APs are basolaterally sorted and 

GPI-APs, although DRM-associated, are apically and basolaterally sorted in MDCK cells (Zurzolo 

et al., 1993; Lipardi et al., 1998; Paladino et al., 2002; Paladino et al., 2004; Paladino et al., 2006; 

Paladino et al., 2007). Hence this indicates that rafts are not sufficient for apical sorting of GPI-APs 

(Paladino et al., 2004; Paladino et al., 2007). Furthermore, we found that only apical and not 

basolateral GPI-APs are able to oligomerize into high molecular weight complexes (Paladino et al., 

2004; Paladino et al., 2007) and protein oligomerization begins in the medial Golgi, concomitantly 

with DRM association (Paladino et al., 2004). We demonstrated that impairment of oligomerization 

leads to protein missorting indicating that protein oligomerization is an essential step for apical 

sorting of GPI-APs (Paladino et al., 2004; Paladino et al., 2007). Oligomerization stabilizing 

proteins into rafts could lead the coalescence of small rafts to constitute a larger functional sorting 

platform (Helms and Zurzolo, 2004; Paladino et al., 2004; Paladino et al., 2007). It is likely that 

there exist some factors that promote oligomerization. Some proteins, like as VIP17/MAL 

(Puertollano et al., 1999), caveolins (Scheiffele et al., 1998), flotilins (Neumann-Giesen et al., 2004) 

and somatins (Snyers et al., 1999), which are raft-associated and form oligomers, have been 

hypothesized to act in promoting GPI-APs clustering. In addition it was postulated that galectin-4 

could function an organizer/stabilizer within microvillar lipid superrafts (Braccia et al., 2003). 

Braccia et al. hypothesized that this lectin, tightly associated with rafts on the outside of the brush 

border membrane of intestinal cells, defines the core of a raft, while the GPI-anchored alkaline 

phosphatase and the transmembrane aminopeptidase N may could represent more peripheral raft 

proteins with decreasing affinity for these microdomains (Braccia et al., 2003). 

 

 

Table 1. Schematic representation of 
basal-lateral (left) and apical (right) 
transport vesicles budding from the TGN. 
(From Trends in Cell Biology, 483-488 
Nelson & Yeaman 2001). Membrane proteins 
are sorted based on specific sorting signals 
(center) and sorting mechanisms (bottom) 
specific for either the basal-lateral (left) or apical 
pathways (right). Abbreviations: AP1, adaptor 
protein 1; Fc-R, crystalizable fragment receptor; 
LDL-R, low-density lipoprotein receptor. 
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Apical sorting signals, which mediate the incorporation into membrane microdomains, have 

also been identified in the transmembrane (TM) domains of proteins, like in the case of the 

influenza virus hemagglutinin (HA) (Scheiffele et al., 1997; Lin et al., 1998). Furthermore it was 

proposed that the length of the TM domain determines the affinity of the protein for membrane 

microdomains thus determining its sorting (Schuck and Simons, 2004). Indeed it has been found 

that long TM domains could have a preference for lipid microdomains, whereas proteins that have 

short TM domains might be excluded because probably raft membranes are thicker than non-raft 

membranes (Schuck and Simons, 2004). 

 

Basolateral and apical retention signals 

Selective retention on specific domain of the plasma membrane of many proteins requires 

interaction with scaffold proteins, which contain the cytoplasmic PDZ-domains (Rongo et al., 1998; 

Muth and Caplan, 2003) (Schuck and Simons, 2004). PDZ (Postsynaptic density protein 

95/Drosophila Disks large/Zona occludens-1, name of three proteins where this domain was first 

described) domain-containing proteins have been identified as playing a critical role in membrane 

trafficking and sorting of ion transporters, receptors and other signalling proteins (Glynne and 

Evans, 2002). These scaffolding proteins coordinate the assembly of functional plasma membrane 

multiprotein complexes, through binding of PDZ domain to a consensus amino acid motif within 

the carboxyl-terminus of target proteins. Carboxy-terminal PDZ-binding motifs might direct the 

apical targeting of the GABA transporter GAT-3 and the cystic fibrosis transmembrane 

conductance regulator (CFTR) (Milewski et al., 2001; Muth and Caplan, 2003). 

PDZ proteins that preferentially accumulate at the apical epithelial surface include 

EBP50/NHERF1, E3KARP/NHERF2, PDZK1/CAP70/NaPi-Cap1 and IKEPP/NaPi-Cap2 (Wang 

et al., 2000; Gisler et al., 2001; Scott et al., 2002). NHERF1/EBP50 (Na+/H+ exchanger regulatory 

factor 1, or ezrin-radixin-moesin binding phosphoprotein of 50 kDa) and NHERF2/E3KARP 

(Na+/H+ exchanger regulatory factor 2 or NHE3 kinase A regulatory protein) contain two PDZ 

domains and a carboxy-terminal domain that mediates association with MERM proteins (merlin, 

ezrin, radixin, moesin), while CAP70 and IKEPP contain four tandem PDZ domains (Bretscher et 

al., 2000; Wang et al., 2000; Gisler et al., 2001; Scott et al., 2002). Two studies have shown that 

EBP50, as well as PDZK1 can directly increase conductance via the CFTR channel through binding 

of the PDZ domains to the C-terminal tail of the channel (Wang et al., 2000; Bezprozvanny and 

Maximov, 2001; Raghuram et al., 2001). These authors suggest a model in which binding and/or 

tethering of two separate channel subunits through the tandem PDZ domains causes an activating 

conformational change which stabilize the localization of the channels at the surface. This model is 
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supported by the following observations: first, the tandem PDZ domains of EBP50 or CAP70 are 

required for activation; second, no other regulatory co-factor appears to be required; and third, 

overexpression of the PDZ proteins above a certain level eventually leads to a decrease in channel 

activity. In this situation, the PDZ-domain containing proteins are not acting as simple scaffold 

molecules (Bezprozvanny and Maximov, 2001). 

Polarization of the CFTR, a cAMP-activated chloride channel, to the apical plasma membrane 

of epithelial cells is critical for vectorial transport of chloride in a variety of epithelia, including the 

airway, pancreas, intestine, and kidney (Stanton, 1997). In CFTR the sequences QDTRL at the C-

terminus of the protein is responsible of the interaction with PDZ domains and in particular the 

leucine (position 0) and threonine (position -2) residues, are required for the efficient polarized 

expression of CFTR in the apical plasma membrane by interaction with EBP50. Mutations that 

delete the C-terminus of CFTR cause cystic fibrosis because CFTR is not polarized and not 

connected with EBP50 (Moyer et al., 1999; Moyer et al., 2000), thus indicating that PDZ-

interacting domains and PDZ domain-containing proteins play a key role in the apical polarization 

of ion channels in epithelial cells. 
The epithelial gamma-aminobutyric acid (GABA) transporter (BGT-1) contains a PDZ target 

motif that mediates the interaction with the PDZ protein LIN-7 in MDCK cells, and it responsible 

of the basolateral localization of the transporter by promoting its retention at the basolateral surface. 

It was found that although the transporters from which the PDZ target motif was deleted were still 

targeted to the basolateral surface, they were not retained but internalized in an endosomal recycling 

compartment (Perego et al., 1999).  

In conclusion both for apical and basolateral proteins, interactions with PDZ proteins could 

determine the polarized distribution by a retention mechanism and not by an active sorting 

mechanisms. PDZ proteins may, therefore, constitute an important part of membrane protein sorting 

machinery, by recognizing retention signals (the PDZ target sequences) and therefore preventing 

protein internalization.  

 

 

Finally it has been suggested that a protein destined for expression at the cell surface, but 

lacking its sorting determinant, is not sorted at all, and its appearance at both surfaces results from a 

stochastic partitioning process at the level of the TGN. The absence of sorting information in other 

cases causes the protein or multisubunit protein complex to fail quality control check points, 

resulting in its retention and degradation in the ER (Ellgaard & Helenius 2001, Reddy & Corley 

1998). However, the removal of the primary sorting determinant results in the exposure or 
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activation of a previously cryptic sorting determinant. For example, when the basolateral sorting 

signals of LDL-R and pIg-R are absent, these proteins are delivered to the apical surface, instead to 

being trapped within the ER or targeted to both membrane surfaces as would be expected if these 

proteins possess only a single sorting determinant (Casanova et al. 1991, Hunziker et al. 1991). 

Carboxypeptidase M and lactase phlorizin hydrolase provide additional examples of proteins that 

appear to embody both apical and basolateral sorting information (Jacob et al. 1999, McGwire et al. 

1999). This hierarchy of sorting signals suggests that apical and basolateral sorting information 

competes in common compartment along the exocytic route. The mechanisms that determine the 

hierarchy of multiple signals in a single protein are still poor elucidated. 

In view of the complexity of these trafficking processes, it is not surprising that a growing 

number of disease pathologies have been identified, involving defective targeting or trafficking of 

membrane proteins. These diseases can be grouped under the name "sorting disorders," and they 

result from abnormal delivery of functionally important proteins to the cell surface. In some cases, 

the mutated protein is retained and degraded intracellularly, while in others cases the mutated 

protein may not be delivered to the cell surface after the appropriate physiological stimulation. 
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2.2  MEMBRANE STRUCTURE 

Cell membranes are very intensely studied because of their vital role in separating the cell 

from the outside world and in defining different compartments inside the cell in order to allow and 

protect important intracellular processes and events. Cellular membranes have diverse functions in 

the different regions and organelles of a cell, thus it is important to study the membrane structure 

and dynamics of its components. During the last 70 years different models were proposed for the 

membrane structure. In 1935 Davison & Danielli proposed sandwich model (Figure 4A), where a 

phospholipid bilayer is covered in a globular protein coat. Next, it was proposed the fluid mosaic 

model by Singer and Nicolson (Singer and Nicolson, 1972). In this model, membranes are 

organized in a liquid fluid bilayer in which integral proteins with their amphipathic structure (with 

the ionic and highly polar groups protruding from the membrane into the aqueous phase, and the 

non-polar groups largely buried in the hydrophobic interior of the membrane) are dispersed 

mediating the various functions of membranes. The fluid mosaic structure is therefore formally 

analogous to a two-dimensional oriented solution of integral proteins (or lipoproteins) in the viscous 

phospholipid bilayer solvent (Figure 4B). The bilayer provides the basic structure of the membrane 

and serves as a relatively impermeable barrier to the flow of water soluble molecules. Then several 

studies highlighted an important feature of biological membranes: they are characterized by the 

presence of regions with compositions and physical properties that differ from the average 

properties of membrane (Thompson and Tillack, 1985). In contrast to the simplified vision of 

Singer and Nicolson, by using enveloped viruses to sample apical or basolateral host cell 

membranes it was demonstrated that lipids from the apical membranes are enriched in 

glycoshingolipids respect to basolateral membranes (van Meer and Simons, 1982). This difference 

in composition appeared to be due to the sorting of lipids and proteins in the Golgi complex and 

trans-Golgi membranes and directed trafficking of these molecules to the cell surface (van Meer, 

1989). The correlation of these biological observations with model membrane and other physical 

chemical studies has lead to the conclusion that there exist small clusters of glycosphingolipids 

(about 15 molecules maximum) in model and native bilayer membranes (Thompson and Tillack, 

1985; Rock et al., 1990). Subsequent studies established that GPI-APs are insoluble in Triton X-

100 at 4°C and were purified in the light buoyant density on sucrose gradients similarly to 

cholesterol and sphingolipids (Brown and Rose, 1992). On the basis of all these data Simons and 

Ikonen proposed the rafts hypothesis (Figures 4C & 5A) (Simons and Ikonen, 1997). Cholesterol 

and sphingolipids, spontaneously associate together segregating from the rest of phospholipids 

(Simons and Ikonen, 1997). The sphingolipids have the capacity to pack tightly together because of 

their long and saturated acyl chains (Simons and van Meer, 1988; van Meer and Simons, 1988; 
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Brown and Rose, 1992) constituting a liquid-ordered phase surrounded by disordered, fluid phase 

composed of glycerophospolipids (Simons and Vaz, 2004). Because of their capacity to segregate 

proteins and lipids, lipid rafts have been implicated in several cell functions such as signalling and 

sorting (Simons and Ikonen, 1997; Simons and Toomre, 2000). In addition it has supposed that 

these lipid domains might also could affect membrane protein conformation, and thus the function 

of the protein (London, 2005).  

 
Figure 4. Different membrane structure models.  
Davison & Danielli's sandwich model (A). The fluid mosaic model proposed by Singer & Nicolson (B). The 
Simons & Ikonen model based on the existence of distinct membrane domains called rafts (C). 
 

In the last years many studies by using different and more sophisticated techniques have been 

used to proof directly the existence of lipid rafts and to determine their characteristics (size, 

composition, dynamics, etc.). Studies of domain formation in model membrane concluded that lipids 

could be present in three different phases: the gel phase (lb), the liquid ordered phase (l0), and the 

liquid crystalline phase or fluid phase (ld). The mixtures of cholesterol with high melting temperature 

(Tm) lipids having saturated acyl chains (like dipalmitoylphosphatidylcholine (DPPC) and 

sphingomyelin (SM)) form a tightly packed and ordered phase similar to the gel phase, but in which 

lateral motion was almost as rapid as in the ld state (Almeida et al., 1992). Fluorescence quenching 

studies in model membrane vesicles showed that high cholesterol concentrations could promote ld/lo 

co-existence in mixtures of high and low Tm lipids (Silvius et al., 1996), including sphingolipid-

containing mixtures (Ahmed et al., 1997). Furthermore depletion of rafts components (either 

sphingolipids or cholesterol) perturbed sorting and signalling of different membrane proteins (Keller 

et al., 1992; Harder and Simons, 1997). In addition, several studies made in living cells using 

different approaches (from diffusion methods to probe partioning, FRET and FRAP studies) suggest 

that lipid segregation in distinct domains also occurs in biological membranes (Maxfield, 2002; 
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Ritchie et al., 2003; Rao and Mayor, 2005; Meder et al., 2006). Indeed GPI-APs have been found 

confined in restricted domains of the membrane: i) GPI-APs do not exhibit Brownian motion, but 

undergo random walks in a transient confinement zone (Fujiwara et al., 2002); ii) single particle 

tracking experiments revealed that GPI-APs were found to be confined within 200-400 nm zones 

(Sheets et al., 1997; Schutz et al., 2000; Fujiwara et al., 2002) ; iii) other studies using FRET, single 

particle tracking, or biochemical cross-linking  have shown that GPI-APs are restricted to submicron-

sized domains on the cell surface (Friedrichson and Kurzchalia, 1998; Varma and Mayor, 1998; 

Pralle et al., 2000). 

To date, it is clear that different types of lipid/protein microdomains exist in biological 

membranes: rafts (Simons and Ikonen, 1997; Edidin, 2003; Simons and Vaz, 2004); caveolae which 

represent specific lipid microdomains coated by caveolin and involved in endocytosis of some 

receptors and entry of viruses and pathogens (Pelkmans and Helenius, 2002; Pelkmans, 2005; Stan, 

2005); transient confinement zone (Dietrich et al., 2002) and small regions enriched in fluid lipids 

or tetraspanin-enriched microdomain, distinct from lipid rafts and composed of a core of several 

tetraspanin proteins (highly hydrophobic membrane proteins) that organize other membrane 

proteins such as integrins, human leukocyte antigens and some growth factor receptors in 

cholesterol and gangliosides enriched environment. These latter complexes can have effects on 

cellular adhesion and motility, interactions with stroma or affecting signalling by growth factors 

(Lazo, 2007). 

The exact mechanism by which this heterogeneity is achieved is still unknown, but is likely 

that complex mechanisms involving lipid synthesis, turnover and active transport (Mayor and Rao, 

2004) are involved. 
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2.3 DIFFERENT VIEW OF LIPID MEMBRANE MICRODOMAINS 

Lipid rafts have been considered as a new compartmentalization of biological membrane 

(Simons and Ikonen, 1997), where specific lipids can form dynamically platforms in which proteins 

can be enriched in order to be sorted or recruited to activate signalling cascade (Zurzolo et al., 

2003).  

However on the basis of recent results different views have been proposed. Some researchers 

envisaged rafts as “lipid shells” that are small, dynamic molecular-scale assemblies in which ‘raft’ 

proteins preferentially associate with certain types of lipids which transform into functional 

structures by dynamic and regulated processes. Indeed they believed that raft proteins have a light 

buoyant density not because they are in a lipid domain, but because they are encased in a shell of 

cholesterol and sphingolipids (Figure 5B) (Anderson and Jacobson, 2002). They speculated that a 

lipid shell is formed by long-term interactions between specific lipids and selected proteins in the 

membrane The estimated diameter of a cholesterol-sphingolipid-rich shell containing 80 lipid 

molecules is ~7 nm. 

 
Figure 5. Models for the lateral organization of the plasma membrane. (From Traffic 5, 231-
240, Satyajit Mayor & Madan Rao, 2004).  
Rafts are represented as relatively large structures (~50 nm) (83), enriched in cholesterol and sphingolipids 
(SL), with which proteins are likely to associate (Simons and Ikonen, 1997) (A). Rafts are visualized as lipid 
shells that are small, dynamic molecular-scale assemblies in which raft proteins preferentially associate with 
certain types of lipids (Anderson and Jacobson, 2002) (B). “Mosaic of domains” model proposed that cells 
regulate the amount of the different types of domains via a cholesterol-based mechanism (Maxfield, 2002) 
(C). A different picture, which is consistent with data from GPI-anchored protein studies in living cells 
suggests that pre-existing lipid assemblies are small and dynamic, and coexist with monomers (D). They are 
actively induced to form large-scale stable rafts (Varma and Mayor, 1998; Sharma et al., 2004). Black 
circles, GPI-anchored proteins; red and pink circles, non-raft associated lipids; yellow circles, raft-associated 
lipids; green, cholesterol. 
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Because the chemical composition of membranes is very dynamic, Maxfield considered that 

the view of the plasma membrane organized exclusively in rafts and non-rafts domains was an 

oversimplification. Therefore, in his view the plasma membrane was depicted as a mosaic of 

different lipid domains regulated via a cholesterol-based mechanism including caveolae, nano-

domains enriched in GPI-APs, glycoshpingolipids and cholesterol and small regions enriched in 

fluid lipids (Figure 5C) (Maxfield, 2002). In addition, transient confinement zone (TCZ) of varying 

size with a diameter about 200-300 nm represents areas where different components were trapped 

for a few seconds, as in the case of GM1 and Thy-1 (Dietrich et al., 2002). 

A different picture suggested that at steady-state there are no “functional rafts”, instead small 

and dynamic lipid assemblies could co-exist with monomers (Figure 5D) (Mayor and Rao, 2004). 

These structures, then, could actively induce to form large stable “ functional rafts” (Mayor and 

Rao, 2004). By FRET analysis they proposed that GPI-APs are organized in three-to-four molecule 

hetero-clusters which depend upon cholesterol (Sharma et al., 2004).  

Thus, the size of the membrane rafts can vary from a few nanometers to a few hundred and are very 

dynamic structures (Simons and Vaz, 2004; Rao and Mayor, 2005). 

Recently Helms & Zurzolo have proposed in the raft model, the new concept where various 

proteins could have different affinities for the lipids raft, whereby the affinity can be increased by 

oligomerization inducing the formation of functional rafts (Helms and Zurzolo, 2004). Indeed both 

apical and basolateral GPI-APs are extracted as DRMs because of affinity of GPI anchor for these 

lipids microdomains, but exclusively apical GPI-APs oligomerised and are apically sorted (Paladino 

et al. 2004).  
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2.4  GPI-ANCHORED PROTEINS 

Many membrane proteins are covalently linked to various lipids as fatty acids (Schmidt et al., 

1979), isoprenoids (Glomset et al., 1990), diacylglycerols (Hantke and Braun, 1973) and 

glycosylphosphatidylinositols (GPI) (Ferguson et al., 1985) through post-translational 

modifications.  

GPI-anchored proteins are synthesized as precursors with a cleavable, hydrophobic amino-

terminal signal sequence that targets the protein to the lumen of the ER and a cleavable, carboxy-

terminal signal sequence that directs GPI anchoring (Figure 6A). The GPI-anchoring signal consists 

of a hydrophobic region separated from the GPI-attachment site (ω-site) by a hydrophilic spacer 

region (Figure 6A). Amino-acid residues with small side chains are highly preferred for the two 

amino acids that follow the ω-site. At the end of the process of modification, GPI-APs are proteins 

bound to the membrane by the GPI-anchor (Figure 6B). The glyco-lipid anchor is attached to the ω-

site by the action of a GPI transamidase in the lumen of the endoplasmic reticulum (ER). The core 

structure of GPI-anchor is conserved among all species that have so far been investigated 

(Ferguson, 1999; Ikezawa, 2002) and contained a phosphodiester linkage of phosphoethanolamine 

(PE) to a trimannosyl-glucosamine (Man3-GlcN) core (Figure 6C). The reducing end of GlcN is 

linked to phosphatidylinositol (PI). PI is then anchored through another phosphodiester linkage with 

diacylglycerol to the cell membrane through its hydrophobic region (Figure 6C). The core can be 

modified and, indeed it is subjected to various remodelling reactions, during the secretion from the 

cell. Variations can occur by addition of extra sugars or ethanolamine phosphates to the mannose 

residues, acylation of the inositol ring, changes in the fatty acids (length, saturation, hydroxylation), 

or their types of linkage to the glycerol backbone (acyl to alkyl), or remodelling of the entire 

diacylglycerol to ceramide (Mayor and Riezman, 2004).  

The release from the plasma membrane of GPI anchored proteins can be obtained by 

treatment with phosphatidylinositol specific phospholipase C (PI-PLC) (Figure 6C). The enzyme 

specifically hydrolyzes the phosphodiester bond of phosphatidylinositol to form a free 1,2-

diacylglycerol and glycopeptide-bound inositol cyclic-1, 2-phosphate.  

The functionality of GPI-APs ranges from enzymatic to antigenic and adhesion properties. 

GPI-anchored proteins also play a critical role in a variety of receptor-mediated signal transduction 

pathways. The larger number of functions supported by GPI-APs does not help to have a precise 

idea on general role of GPI anchor. The stability and the modulation of their functions in cellular 

membrane could dependent on many different parameters such as the nature of the surrounding 

lipids or cytoskeleton proteins and some other factors as the accessibility to phospholipase. 
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Figure 6. Structure of GPI-APs on plasma membrane. (From Satyajit Mayor & Howard Riezman 
Nature Reviews Molecular Cell Biology 5, 110-120, 2004).  
GPI-anchored proteins are positioned in the extracellular or luminal leaflet of membranes through their 
glycolipid moieties (A). A typical nascent GPI-AP contains signal peptide fragment, ω-site for addition of 
preformed GPI anchor, spacer and hydrophobic regions (B). The conserved GPI consists of ethanolamine 
phosphate in an amide linkage to the carboxyl terminus of the protein, three mannose residues (orange), 
glucosamine (blue) and phosphatidylinositol (purple). GPI-anchor can be modified and is subjected to 
various remodelling reactions of the lipid moiety. Variations can occur by addition of extra sugars or 
ethanolamine phosphates to the mannose residues; acylation of the inositol ring; changes in the fatty acids 
(length, saturation, hydroxylation), or their types of linkage to the glycerol backbone (acyl to alkyl); or 
remodelling of the entire diacylglycerol to ceramide (C). 
 

The GPI-APs have been found enriched in lipid rafts as assayed in detergent insolubility 

experiments. Indeed GPI-APs were found resistant to solubilization by non-ionic detergents as 

Triton X-100. This detergent insolubility appears to be an intrinsic property of GPI anchor due to its 

natural affinity for the long and saturated acyl chains of glycosphingolipid/cholesterol-rich domains 

(Benting et al., 1999a; Lipardi et al., 2000; Mayor and Riezman, 2004; Paladino et al., 2004; Legler 

et al., 2005). 
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3. THE AIM OF THE STUDY 
 

Rafts represent specialized membrane domains enriched in glycosphingolipids and cholesterol 

resistant to detergent extraction (DRMs), which may serve to segregate proteins in a specific 

environment in order to improve their function. Association of GPI-APs with lipid rafts has been 

proposed to be involved in their sorting to the apical membrane in polarized epithelial cells (Simons 

and Ikonen, 1997). However, the finding that in FRT cells endogenous GPI-APs are mainly 

delivered to the basolateral membrane (Lipardi et al., 2000; Sarnataro et al., 2002) and that in 

MDCK cells both apical and basolateral GPI-APs associate with DRMs (detergent-resistant 

membranes) indicate that rafts are not sufficient to determine their apical sorting (Paladino et al., 

2004). Furthermore, we have found that in MDCK cells protein oligomerization, which could 

promote the stabilization of GPI-APs into rafts, is needed for their apical sorting (Paladino et al., 

2004). Indeed the impairment of oligomerization impairs apical sorting of GPI-APs.  

Another fundamental characteristic of the sorting process is that proteins are not exclusively 

apical or basolateral. The plasticity of epithelia is evidenced by the fact that in different epithelial 

cell types the same proteins can be differently sorted and/or can follow variable routes to be 

delivered to their final domain of residence (reviewed in (Rodriguez-Boulan et al., 2005).  

In addition it has been shown that apical sorting can be mediated by at least two mechanisms, 

raft-dependent and raft-independent (Benting et al., 1999b; Lipardi et al., 2000).  

This work has three major objectives: 

1) To understand whether oligomerization is a specific and universal requisite for 

apical sorting of GPI-APs 

2) To analyse the role of the DRM specific lipid composition in apical sorting and 

oligomerization 

3) To analyse the organization (and its requirements) of GPI-APs in the apical 

membrane of polarized cells  

 

To understand whether oligomerization is a mechanism working in different epithelia and 

whether it specific for GPI-APs or is used also by transmembrane non-raft associated proteins I 

have used FRT cells as model of a different epithelium and have analysed the behaviour of four 

stably transfected GPI-APs: PLAP, a native GPI-AP, NTR-PLAP, in which the ectodomain of 

neurotrophin receptor p75 NTR is fused to the GPI-attachment signal of PLAP (Lipardi et al., 

2000), GFP-GPI and GH-DAF, two fusion proteins in which the green fluorescent protein (GFP) 

and the rat growth hormone (GH) are respectively fused to the GPI attachment signal of the folate 

receptor and the decay accelerating factor (DAF). We then analyzed the behaviour of these four 
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proteins regarding their capacity to be apically or basolateraly sorted and to be incorporated into 

oligomeric complexes. 

 

In the second part of my thesis I have studied the lipid composition of the apical and 

basolateral DRMs and asked whether they maintained their specific composition after Triton 

extraction. To this aim we analyzed the lipid fraction co-immunoprecipitated with apical and 

basolateral GPI-AP from purified DRMs. Specifically, as model proteins I have used two DRMs 

associated GPI-APs, PLAP and GH-DAF, which are differently sorted in FRT cells. Cells 

expressing PLAP or GH-DAF were radiolabelled with [1- 3H]-sphingosine, then extracted in 

TX100, purified on sucrose density gradients, immunoprecipitated with specific antibodies against 

the two proteins. The labelled sphingolipids in the immunoprecipitates were analysed by TLC and 

digital autoradiography.  

 

The factors that promote protein oligomerization are still unclear. Furthermore it is unknown 

if different apical GPI-APs are in the same or distinct oligomeric complex and/or lipid 

microdomains. To this aim in the last part of my thesis I studied how GPI-APs are organized at the 

plasma membrane and the specific requirements. In our previous work we found that GPI-AP 

oligomers appear to be protein specific and once formed are not sensitive to cholesterol depletion, 

suggesting that they are maintained by protein-protein interactions (Paladino et al., 2004). To 

understand what is the driving force for GPI-AP oligomerization and how this affects the reciprocal 

organization of different GPI-APs at the plasma membrane we have co-transfected in MDCK cells 

two different pairs of apical GPI-APs with the same (GFP-GPI/FR, folate receptor) or different 

(GFP-GPI/PLAP, placental alkaline phosphatase) GPI-attachment signal. We then analyzed the 

behaviour of the two different pairs of proteins regarding their capacity to be apically sorted and to 

be incorporated into oligomeric complexes as well as their dependence on cholesterol and their 

relative spatial organization. 
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4. MATERIALS AND METHODS 

 

4.1 Reagents and Antibodies 

Cell culture reagents were purchased from Gibco Laboratories (Grand Island, NY). Antibodies were 

purchased from the following companies: polyclonal anti-PLAP from Rockland (Gilgertslville, 

PA), monoclonal anti-PLAP from Sigma Chemical Co. (St Louis, MO), polyclonal anti-GFP from 

Clontech Laboratories (East Meadow Circle, CA), polyclonal anti-GFP from Santa Cruz 

Biotechnology (Santa Cruz, CA), monoclonal anti-GFP from Q-BIOgene (Morgan Irvine, CA), 

Cy3- and Cy5- conjugated secondary antibodies from Molecular Probes (PoortGebouw, 

Netherlands). Monoclonal anti-FR (Mov 19) was a gift of Dr. S. Miotti (Istituto Nazionale per lo 

Studio e la Cura dei Tumori, Milan, Italy) and polyclonal anti-GP114 and monoclonal p75NTR 

were a gift of Dr. A. Le Bivic (Faculté des Sciences de Luminy, Marseille, France) and the anti-GH 

antibody was from Biotrend GMBH (Germany). Biotin, BS3 and HRP-conjugated streptavidin were 

from Pierce (Rockford, IL). Protein G- and A-coupled magnetic beads (Dynabeads) were from 

Dynal ASA (Oslo, Norway). All other reagents were purchased from Sigma Chemical Co. 

Sphingosine was prepared from cerebroside (Carter et al., 1961). [1-3H]-sphingosine was prepared 

by specific chemical oxidation of the primary hydroxyl group of sphingosine followed by reduction 

with sodium boro [3H] hydride (radiochemical purity over 98%; specific radioactivity 2 Ci/mmol) 

(Tettamanti et al., 1973). 

 

4.2 Cell culture and transfections 

FRT cells were grown in F12 Coon’s medium containing 5% FBS. FRT cells were transfected with 

GH-DAF cDNA (gift of Dr. Teymuras Kurzchalia) using the calcium phosphate procedure as 

previously described (Zurzolo et al., 1993) and stable clones were selected by resistance to 

neomycin. PLAP expressing cells were previously obtained in the laboratory (Lipardi et al., 2000). 

MDCK cells were grown in DMEM (Dulbecco’s modified eagle medium) containing 5% FBS. 

MDCK cells were co-transfected with sequences encoding for GFP-GPI and PLAP, while cDNA 

for FR is transfected in MDCK cells already stably expressing GFP-GPI as previously described 

(Paladino et al., 2004). 

 

4.3 Fluorescence Microscopy  

Cells, grown on transwell filters for 4 days or coverslips, were washed with PBS containing 1 mM 

CaCl2 and 1 mM MgCl2, fixed with 2% or 4% paraformaldehyde and quenched with 50 mM 

NH4Cl. Primary antibodies were detected with TRITC conjugated secondary antibodies. In double 
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imunofluorescence assay primary antibodies were detected with Cy3- and Cy5- (as anti-mouse and 

anti-rabbit, respectively) conjugate secondary antibodies.  

Images were collected using a laser scanning microscope (LSM 510 META, Carl Zeiss 

Microimaging, Inc.) equipped with a planapo 63x oil-immersion (NA 1.4) objective lens. Laser 

lines at 543 nm and 633 were used to excite respectively the fluorophores Cy3 and Cy5 and the 

emission signal was collected by the META head. All image processing was done using LSM 510 

software. 

4.4  Biotinylation assay  

Cells grown on transwell filters for 4-5 days were selectively biotinylated and processed as 

previously described (Zurzolo et al., 1994). Biotinylated proteins were immunoprecipitated with 

specific antibodies and revealed with HRP-conjugated streptavidin. 

 

4.5 Assays for DRM-association  

TX-100 Extraction 

Cells grown to confluence on dishes were washed twice with PBS containing 1 mM CaCl2 and 1 

mM MgCl2 and then lysed for 20 min on ice in 1 ml TNE/TX-100 buffer (25 mM Tris-HCl  pH 7.5, 

150 mM NaCl, 5 mM EDTA, 1% TX-100) and separated by centrifugation in soluble and insoluble 

pellets as previously described (Brown and Rose, 1992) 

Sucrose density gradients multi steps  

Cells were grown to confluency in 150-mm dishes, washed in PBS containing CaCl2 and MgCl2 

and lysed for 20 min in TNE/TX-100 buffer on ice. Lysates were scraped from dishes, brought to 

40% sucrose, and then placed at the bottom of a centrifuge tube. A discontinuous sucrose gradient 

(5-35% in TNE) was layered on the top of the lysates and the samples were centrifuged at 39,000 

rpm for 17 hours in ultracentrifuge (model SW41 Beckman Inst., Fullerton, CA). One ml fractions 

were harvested from the top of the gradient. 

Sucrose density gradients two steps  

Cells that had just reached confluence in 150-mm dishes were subject to ultracentrifugation on 

discontinuous sucrose gradients as previously described (Prinetti et al., 2000). Briefly, cells 

harvested in PBS containing 0.4 mM Na3VO4 were suspended in 1 ml lysis buffer (1% TX-100, 10 

mM Tris buffer, pH 7.5, 150 mM NaCl, 5 mM EDTA, 1 mM Na3VO4, 1 mM PMSF and 75 mU/ml 

aprotinin), allowed to stand on ice for 20 min and Dounce homogenized (10 strokes, tight). Post-

nuclear supernatants were mixed with an equal volume of 85% sucrose (wt/vol) in 10 mM Tris 

buffer pH 7.5, 150 mM NaCl, 5 mM EDTA, 1 mM Na3VO4, placed at the bottom of a 

discontinuous sucrose gradient (30–5%) in the same buffer and centrifuged at 200,000 g for 17 hrs 
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at 4°C. After ultracentrifugation, eleven 1 ml fractions were collected starting from the top of the 

tube. Fraction 5 located at the interface between 5 and 30% sucrose was regarded as the 

sphingolipid-enriched membrane fraction. The bottom fraction (fraction 11) contained a pellet, 

which was carefully homogenized before analysis. The entire procedure was performed on ice.  

 

4.6 Labelling with [3H]-sphingosine 

Cells were incubated in the presence of 4 x 10-8 M [1-3H]-sphingosine (7 ml/dish) in culture 

medium for 2 hrs and then chased for 48 hrs in fresh culture medium. Under these conditions all 

sphingolipids (including ceramide, sphingomyelin, neutral glycolipids and gangliosides) and 

phosphatidylethanolamine were metabolically radiolabelled (Chigorno et al., 1997). 

 

4.7 Analysis of lipids 

The cell lysate, postnuclear supernatant and sucrose gradient fractions obtained after cell metabolic 

radiolabelling were analyzed to determine the content of radiolabelled lipids. Samples were 

dialyzed and lyophilized, and lipids were extracted twice with 0.4 ml chloroform/methanol 2:1 (v/v) 

(Riboni et al., 1992). [3H] lipids were separated by monodimensional HPTLC carried out with the 

solvent systems chloroform/methanol/0.2% aqueous CaCl2,  55:45:10 (v/v/v). The radioactivity 

associated with cells and with cell fractions was determined by liquid scintillation counting. Digital 

autoradiography of the HPTLC plates (250 dpm applied on a 3 mm line) was performed with a 

Beta-Imager 2000 instrument (Biospace, Paris) using an acquisition time of about 65 hrs. The 

radioactivity associated with individual lipids was determined by autoradiography with the specific 

β-Vision software provided by Biospace. Cholesterol was separated by monodimensional HPTLC 

using the solvent system hexane/diethylether/acetic acid, 80:20:1 (v/v/v) and quantified after 

separation on HPTLC followed by visualization with 15% concentrated sulphuric acid in 1-butanol 

Phosphatidylcholine was separated by a two-run monodimensional HPTLC using the solvent 

system chloroform/methanol 9:1 (v/v), followed by the solvent system chloroform/methanol/acid 

acetic/water 30:20:2:1 (v/v/v/v) and quantified after separation on HPTLC followed by specific 

detection with a molybdate reagent. The quantity of cholesterol and phosphatidylcholine were 

determined by densitometry and comparison with known amounts of standard lipids using the 

Molecular Analyst program (Bio-Rad Laboratories).  

 

4.8  Velocity gradients 

Velocity gradients were performed using previously protocols (Doms et al., 1987; Paladino et al., 

2004). Cells, grown to confluence in 100 mm dishes, were lysed either on ice or at room 
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temperature for 30 min in 20 mM Tris, pH 7.4, 100 mM NaCl, 1% TX-100 (with or without 0.4% 

SDS). Lysates were scraped from dishes, sheared through a 26-g needle and layered on top of a 

discontinuous sucrose gradient (30-5%) in the same buffer of the lysis containing 0.1% TX-100. 

After centrifugation at 45,000 rpm for 16 h in a Beckman SW 50 ultracentrifuge, fractions of 500 µl 

were harvested from the top of the gradient. Proteins from each fraction were TCA-precipitated or 

immunoprecipitated using specific antibodies depending on the experiment, run on SDS-PAGE and 

revealed by western blotting using specific antibodies. The lysis buffer does not contain SDS in the 

case of FR because SDS disrupts the antigenicity of the specific MOV-19 antibody. In the other two 

cases the results was unchanged (Paladino et al., 2004).  

 

4.9 Pulse-chase  

Cells grown in 100 mm dishes were starved of methionine and cysteine for 1 hour, and pulse 

labelled for 10 min with medium containing 100 µCi/ml of Pro-mix-[35S] cell labelling (GE 

Healthcare) and incubated in chase medium (DMEM containing 5% FBS and met/cys 10x) for 

different times.  

 

       4.10 Endo H digestion 

Digestion with Endo H was carried out on immunoprecipitated materials. The antigen-antibody 

complexes were removed from sepharose beads using 50 µl of 0.1 M Na citrate/0.1% SDS and 

boiling for 3 min. Samples were then incubated with 5 mU of Endo H for 16 hours at 37°C.  

Samples were run on SDS-PAGE and revealed by fluorography. 

 

 4.11 Cross-linking 

Bis(sulfosuccinimidyl)suberate (BS3) (0.5 mM) was added to the cells grown on dishes for different 

incubation times depending on the experiment and quenched for 15 min with 20 mM Tris pH 7.5, as 

described elsewhere (Friedrichson and Kurzchalia, 1998).  Proteins were TCA-precipitated or 

immunoprecipitated with specific antibodies, separated on SDS-PAGE and revealed by western blot 

using specific antibodies. 

 

4.12 Cholesterol depletion assays 

To deplete the cells of cholesterol we used two different treatments: βCD (10 mM) or saponin   

(0.2%). In both cases, cells were grown to confluence on dishes or on coverslips for 3 d. βCD was 

added to the cells in medium containing 20 mM Hepes pH 7.5 and 0.2% bovine albumin for 1 h at 

37°C (Keller and Simons, 1998; Lipardi et al., 2000). Alternatively, cells were incubated 30 min on 



 

 33 

ice with saponin in medium containing 150 mM NaCl, 5 mM KCl, 1 mM CaCl2, 1 mM MgCl2, 20 

mM Hepes pH 7.4 as previously described (Mayor and Maxfield, 1995).  

To determine the rate of cholesterol depletion we measured cholesterol cellular levels by a 

colorimetric assay. Cells were washed twice with PBS containing CaCl2 and MgCl2, lysed with 

appropriate lysis buffer and Infinity Cholesterol Reagent (Sigma Chemical Co.) was added to the 

lysates in the ratio 1:10.  Absorbance of samples was read at 550 nm.  
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5. RESULTS 

 

Protein apical sorting in polarized epithelial cells is mediated by two different mechanisms, 

raft-dependent and raft independent. It has been shown that GPI-APs are organized in micro-

clusters at the cell surface. In MDCK cells an essential step for apical sorting of GPI-APs is their 

coalescence into high molecular weight oligomers (Paladino et al. 2004). We showed that this 

mechanism is also functional in FRT cells, which possess a different sorting phenotype compared 

with MDCK cells. We demonstrated that, as in MDCK cells, both apical and basolateral GPI-APs 

associate with DRMs, but only the apical proteins are able to oligomerize into high molecular 

weight complexes during their passage through the medial Golgi.  

The lipid species co-immunoprecipitating with an apical and a basolateral GPI-APs, from 

their associated DRMs contain the same lipid species although in different ratios and this specific 

ratio is maintained after mixing the cells before the lysis indicating that they maintain their identity 

after Triton extraction. 

We also showed that oligomerization is a specific requirement for apical sorting of GPI-APs 

and is not used by transmembrane, non-raft associated apical proteins.  

Furthermore in polarized epithelial cells GPI-APs travel to the apical surface in high molecular 

weight complexes in cholesterol-independent homo-clusters, which can fuse with each other into 

cholesterol-dependent hetero-clusters. We also showed that GPI-AP monomers cannot be cross-

linked in hetero-clusters and that homo-oligomerization of GPI-APs leads to subsequent hetero-

clustering.  

 

I have divided the results of my thesis in three parts, which correspond to the three main 

questions that I have studied during my PhD. These are: 

1) The study of oligomerization as specific requirement for apical sorting of GPI-APs in polarized 

epithelial cells. 

2) The analysis of lipid composition of DRMs, which are associated with apical and basolateral 

GPI-APs. 

3) The study of the organization of GPI-APs at the apical plasma membrane in polarized epithelial 

cells. 

The papers corresponding to these result sections are added at the end of the thesis as Annex 1, 

Annex 2 and ANNEX 3. 
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5.1 OLIGOMERIZATION IS A SPECIFIC REQUIREMENT FOR APICAL SORTING 

OF GPI-APs BUT NOT FOR NON-RAFT ASSOCIATED APICAL PROTEINS 

 

Both apical and basolateral GPI-APs associate with DRMs in FRT cells 

In contrast to MDCK cells, FRT cells sort the majority of endogenous and transfected GPI-

APs to the basolateral domain of the plasma membrane (Zurzolo et al., 1993; Lipardi et al., 2000). 

To understand if oligomerization is a general mechanism to promote apical sorting of GPI-APs in 

different epithelia, we studied the sorting of four different GPI-APs transfected in FRT cells: PLAP, 

a native GPI-AP, NTR-PLAP, in which the ectodomain of neurotrophin receptor p75 NTR is fused 

to the GPI-attachment signal of PLAP (Lipardi et al., 2000), GFP-GPI and GH-DAF, two fusion 

proteins in which the green fluorescent protein (GFP) and the rat growth hormone (GH) are 

respectively fused to the GPI attachment signal of the folate receptor and the decay accelerating 

factor (DAF) (Paladino et al., 2004).  

 
Figure 7.  GPI-APs are apically and basolaterally sorted. 
FRT cells stably expressing PLAP, NTR-PLAP, GFP-GPI and GH-DAF were grown on filters for 4 days. 
Cells were fixed and in the case of PLAP, NTR-PLAP and GH-DAF stained with specific antibodies 
followed by a TRITC-conjugated secondary antibody in non-permeabilized conditions. Serial confocal 
sections were collected from the top to the bottom of cell monolayers. Bar, 10 µm (upper panels).  
Alternatively, cells were labelled with LC-biotin respectively added to the apical (Ap) or the 
basolateral (Bl) surface. After immunoprecipitation with specific antibodies samples were run on 
SDS-PAGE and biotinylated proteins revealed using HRP-streptavidin. In the case of NTR-PLAP, 
samples, labelled with [35S]-cys overnight as described in materials and methods, after 
immunoprecipitation were precipitated with streptavidin beads, run on SDS-PAGE and analysed by 
fluorography. The band of GFP-GPI at 43 kDa represents a partially denaturated GFP dimer as 
previously described in MDCK cells (Paladino et al., 2004) (lower panels).



We confirmed by confocal microscopy (Figure 7 upper panels) that PLAP and NTR-PLAP 

were predominantly enriched on the apical surface, as previously shown in both FRT and MDCK 

cells (Lipardi et al., 2000; Paladino et al., 2006). On the contrary, we found that GFP-GPI and GH-

DAF were predominantly localized on the basolateral membrane. Quantization by domain-selective 

biotinylation showed that 85% and 90%, respectively, of PLAP and NTR-PLAP was enriched on 

the apical membrane, while ~ 80% and 90%, respectively, of GFP-GPI and GH-DAF was 

basolaterally distributed (Figure 7 lower panels), thus indicating that all proteins are fully polarized 

respectively on the apical or basolateral cell surface. 

Because in MDCK cells both apical and basolateral GPI-APs are associated with DRMs 

(Paladino et al., 2004) we analysed DRM-association of apical and basolateral GPI-APs in FRT 

cells by cold Triton X-100 (TX-100) extraction and centrifugation to equilibrium on sucrose density 

gradients, as previously described (Brown and Rose, 1992; Zurzolo et al., 1994; Paladino et al., 

2004). We found that both apical and basolateral proteins floated to the lighter fractions (4-7) of 

sucrose gradients, fractions which are also enriched in the ganglioside GM1 (Figure 8). It is 

interesting to note that higher amounts of apical GPI-APs were found in DRMs compared with the 

basolateral proteins. Indeed, averages from three independent experiments (see graph in Figure 8) 

showed that ~ 55-60% of apical GPI-APs are in DRMs, in contrast to only ~ 30-40% for the 

basolateral proteins, indicating that, like in MDCK cells, apical and basolateral GPI-APs have 

different behaviours with respect to detergent extraction (Paladino et al., 2004). In addition, as in 

MDCK cells, (Paladino et al., 2004) in the majority of the experiments there was a shift of one 

fraction between the floatation of apical and basolateral GPI-APs indicating that the composition of 

the associated DRMs could be different. 

 
 

Figure 8. Both apical and basolateral GPI-APs associate with DRMs. 
FRT cells stably expressing PLAP, NTR-PLAP, GFP-GPI and GH-DAF were lysed in TNE/TX-100 buffer 
at 4°C and run through 5-40% sucrose gradients. Fractions of 1 ml were collected from top (fraction 1) to 
bottom (fraction 12) after centrifugation to equilibrium. After TCA-precipitation samples were run on SDS-
PAGE and detected by specific antibodies. An aliquot of each fraction was spotted on the nitrocellulose 
membrane and GM1 was revealed using cholera toxin conjugated to HRP. The graph shows the mean value 
of protein distribution on sucrose density gradients from three different experiments. 
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Only apical GPI-APs form HMW complexes and are found in cross-linkable complexes at the 

cell surface 

Because in MDCK cells oligomerization appears to be a key step for apical sorting of GPI-

APs (Paladino et al., 2004), to test whether this could be a general mechanism for different 

epithelia, we purified apical and basolateral GPI-proteins from FRT cells on sucrose velocity 

gradients in which a protein sediments according to its molecular weight (Paladino et al., 2004). As 

in MDCK cells (Paladino et al., 2004) only apical GPI-APs oligomerize in FRT cells. Indeed while 

a portion of PLAP and NTR-PLAP migrated as HMW complexes containing more than a trimer, 

basolaterally sorted GFP-GPI and GH-DAF were purified almost exclusively from the gradient 

fractions corresponding to their expected monomeric molecular weights (Figure 9A).  

 

 
Figure 9. Only apical GPI-APs form oligomers and are in cross-linkable complexes at the cell 
surface. 
FRT cells stably expressing PLAP, NTR-PLAP, GFP-GPI and GH-DAF were lysed in buffer containing 
0.4% SDS and 0.2% TX-100 and run through a non-linear 5-30% sucrose gradient. Fractions of 500 µl were 
collected from the top (fraction 1) to the bottom (fraction 9) of the gradients. Proteins were TCA-precipitated 
and detected by western blotting using specific antibodies. In the case of PLAP, samples, labelled with Pro-
mix-[35S] overnight, were immunoprecipitated from each fraction, run on SDS-PAGE and revealed by 
fluorography. The molecular weight of the monomeric forms of each protein is indicated. The position on the 
gradients of molecular weight markers is indicated on top of the panel (A).  
FRT cells stably expressing PLAP, NTR-PLAP, GFP-GPI and GH-DAF grown on filters were incubated 
with BS3 (0,5 mM). After lysis, proteins were TCA-precipitated, run on SDS-PAGE (in a 6-12% gradient gel 
for GFP-GPI and GH-DAF or 8% gel for PLAP and NTR-PLAP). The molecular weight of the monomeric 
forms (*) of each protein is indicated, together with the position of a 180 kDa marker. (**) and (***) indicate 
respectively the expected molecular weight of the dimeric and trimeric forms of each protein (B).  
 

To rule out the possibility that HMW complexes were formed as a consequence of detergent 

addition, we applied an impermeable cross-linking agent, bis(sulphosuccinimidyl)suberate (BS3) 

(Figure 10), that is able to link molecules that are in very close proximity (arm length 11.4 Å) 

(Friedrichson and Kurzchalia, 1998; Paladino et al., 2004), to the apical and basolateral surface of 

unperturbed FRT cells grown on filters.  



 
 

Figure 10. The structure of BS3. 

BS3 is a homobifunctional, water-soluble, non-
cleavable and membrane impermeable crosslinker. 
It contains an amine-reactive N-
hydroxysulfosuccinimide (NHS) ester at each end 
of an 8-carbon spacer arm. NHS esters react with 
primary amines at pH 7-9 to form stable amide 
bonds. BS3 is used to determine near-neighbour 
relationships analyze protein structure and provide 
information on the distance between interacting 
molecules. 

 

In the presence of BS3, bands corresponding to dimers, trimers and higher molecular weights 

were detected only for PLAP and NTR-PLAP (Figure 9B). In contrast, neither GFP-GPI nor GH-

DAF were found in cross-linkable complexes at the basolateral surface (Figure 9B), thus suggesting 

that only apical GPI-APs are in HMW complexes at the cell surface.  

 

Oligomer formation occurs during passage of the protein through the Golgi 

If oligomerization plays a role in apical sorting in FRT cells, as is the case in MDCK cells 

(Paladino et al., 2004), we would expect this event to occur during sorting of the proteins. To 

address this question, we analysed the kinetics of PLAP oligomerization by pulse-chase 

experiments combined with endoglycosidase H (Endo H) digestion (Figure 11).  

 

 

 
 
Figure 11. HMW complex formation occurs 
during passage through the Golgi apparatus. 
FRT cells expressing PLAP were pulsed for 10 min 
with Pro-mix-[35S] and then chased for the indicated 
times. At the end of each chase time the cells were 
lysed and purified on velocity gradients. Samples 
were immunoprecipitated from each fraction, run on 
SDS-PAGE and revealed by fluorography. An aliquot 
of the lysate for each chase time was 
immunoprecipitated (before ultracentrifugation) and 
treated with Endo H to monitor passage through the 
medial Golgi. 

 

The acquisition of resistance to Endo H allowed us to monitor the passage of the protein 

through the Golgi apparatus (Dunphy and Rothman, 1985; Kornfeld and Kornfeld, 1985). After a 

brief pulse of 10 min with [35S]-met/cys, cells were chased for the indicated times, lysed in 

SDS/TX-100 containing buffer and run on velocity gradients (Figure 11). PLAP began to form 

HMW complexes after 20 min of chase when a portion of the protein had acquired Endo H 
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resistance (therefore after the medial Golgi). After 40 min of chase, when almost all PLAP was 

Endo H resistant, ~ 30% of the protein was found in HMW complexes (Figure 11). Consistent with 

the cross-linking experiments (Figure 10B), PLAP was then recovered in HMW complexes also 

after 80 min of chase, i.e., when the majority of the protein had already reached the plasma 

membrane [as previously shown by targeting experiments (Lipardi et al., 2000)]. These results 

demonstrate that also in FRT cells apical GPI-APs oligomerize during their passage through the 

Golgi apparatus, where sorting is likely to occur (Wandinger-Ness et al., 1990; Rodriguez-Boulan 

and Powell, 1992; Mostov et al., 2000; Keller et al., 2001; Hua et al., 2006; Paladino et al., 2006).

Only the GPI-anchored but not the transmembrane or secretory forms of NTR are able to 

oligomerize  

A question that we then addressed is whether protein oligomerization is a specific mechanism 

for apical sorting of raft-associated GPI-APs or is a general mechanism utilized also for non raft-

associated apical proteins. To this aim we compared the behaviour of the GPI-anchored form of 

NTR (NTR-PLAP) with the transmembrane (TM) (p75 NTR) and secretory (NTR-sec) forms, 

which are both apically sorted but are not associated with DRMs (Lipardi et al., 2000). Differently 

to NTR-PLAP we found that neither the native TM form nor its secretory form were able to 

oligomerize (Figure 12). These results indicate that oligomerization is a specific requirement for 

apical sorting of GPI-APs associated to DRMs, and that this mechanism is not used by TM or 

secretory non-raft associated proteins.  

 

Figure 12. NTR-PLAP, but not its transmembrane 
or secretory forms oligomerizes in HMW complexes. 

FRT cells stably expressing NTR-PLAP, p75 NTR and 
NTR-sec were pulsed overnight with [35S]-cys (250 
µCi/ml). Then cells were lysed in buffer containing 0.4% 
SDS and 0.2% TX-100 and run through a non-linear 5-30% 
sucrose gradient. Fractions of 500 µl were collected from 
the top (fraction 1) to the bottom (fraction 9) of the 
gradients. Proteins were immunoprecipitated with an 
antibody against the ectodomain of p75 NTR, run on SDS-
PAGE and revealed by fluorography. The molecular weight 
of the monomeric forms of each protein is indicated. The 
position on the gradients of molecular weight markers is 
indicated on top of the panel. The graph shows the mean 
value of protein distribution on sucrose density gradients 
from three different experiments.

.
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5.2 LIPID COMPOSITION ANALYSIS OF DRMs ASSOCIATED WITH DIFFERENT 

GPI-APs 

 

Analysis of DRM association of PLAP and GH-DAF in FRT cells. 

In order to study the lipid composition of the apical and basolateral DRMs (Brown and Rose, 

1992; Paladino et al., 2004) we used as model proteins PLAP and GH-DAF which are sorted on 

apical and basolateral surface respectively in FRT cells (Figure 7 upper panels). As aforementioned 

PLAP and GH-DAF associated with detergent-resistant membranes (DRMs) and indeed at steady 

state both proteins (respectively  ~ 80% of total PLAP and ~ 61% of total GH-DAF) were insoluble 

in TX-100 (Figure 13A).  

In this case we decided to use a two step sucrose gradient instead of multistep gradient in 

order to concentrate DRMs in one fraction. Indeed after centrifugation to equilibrium on sucrose 

density gradients both proteins peaked in fraction 5 at the interface between 5% and 30% sucrose 

which is the most representative fraction of DRMs as previously described (Prinetti et al., 2000) 

(Figure 13B). In contrast to the majority of the proteins in the cell lysates that accumulated in the 

soluble fractions (8-11) (data not shown) about 63% of PLAP and 68% of GH-DAF were enriched 

in fractions 4 to 6 (Figure 13B), thus indicating that DRMs are likely to be present at both the apical 

and basolateral membranes. 

 

 
 

Figure 13. Both PLAP and GH-DAF associate with DRMs.  
PLAP or GH-DAF clones were lysed in TNE/TX-100 buffer at 4°C and separated by centrifugation into 
insoluble and soluble fractions. Percentages of insoluble and soluble proteins in TX-100 from three 
experiments are shown. Errors bars are indicated (A). 
Eleven 1 ml fractions were collected from top (1) to bottom (11) from sucrose density gradients. Proteins 
were analyzed by SDS-PAGE and detected by western blotting using specific anti-PLAP and anti-GH 
antibodies (B).  
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Analysis of the lipid composition of DRMs in PLAP or GH-DAF expressing FRT cells. 

In order to understand whether the DRM composition was affected by the exogenous 

expression of apical or basolateral GPI-APs, we analyzed the lipid composition of the DRM 

fraction in FRT cells expressing either PLAP or GH-DAF. Cells were labelled with [1-3H] 

sphingosine, which is converted into more complex sphingolipids, while the catabolic tritiated 

ethanolamine fragment is recycled for the biosynthesis of phosphatidylethanolamine (PE), a 

glycerophospholipid that is a marker of non-DRM fractions (Prinetti et al., 2000; Prinetti et al., 

2001). The radioactive lipid pattern was determined by HPTLC and radioimaging of the 11 

fractions collected from sucrose density gradient centrifugation (Figure 14A). Sphingolipids (SL) 

were highly enriched in fraction 5 (Figure 14B), while the majority of PE was found, as expected, in 

the soluble fractions of the sucrose density gradients in both the cell lines (Figure 14B) as well as in 

wild type cells. 

Phosphatidylcholine (PC) analysed by HPTLC and a colorimetric assay was also quite 

enriched in fraction 5 from both clones (Figure 14C), as previously described (Prinetti et al., 2000; 

Prinetti et al., 2001). Finally ~ 42 nmol/mg protein of cholesterol was found in the post-nuclear 

supernatants and about 50% of it was associated with fraction 5 in both FRT clones (Figure 14D). 

Thus these data show that the lipid distribution along sucrose density gradients is similar in both 

clones (Figure 14) as in wild type cells and is not affected by protein expression. 
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Figure 14. Lipid distribution on sucrose density gradients. 
PLAP or GH-DAF clones were labelled with [3H]-sphingosine, lysed in TNE/TX-100 at 4°C and run on 
sucrose density gradients. Lipids from each of the 11 fractions were extracted in chloroform/methanol and 
separated by HPTLC. Radioactive lipids were detected by autoradiography (A). Quantitation of sphingolipid 
and PE radioactivity distribution within the gradient fractions. Data are expressed as % of total radioactivity 
associated with each lipid present in homogenate (B). 
The distribution of PC and cholesterol, measured by colorimetric assays, are respectively shown in C and D. 
Data are expressed as % of each lipid present in homogenate. Data are the means of three different 
experiments ± standard deviation. 
 

 

Lipid analysis of DRM fractions associated with PLAP or GH-DAF. 

To analyze whether apical and basolateral GPI-APs associated to similar DRMs we 

specifically immunoprecipitated each protein from fraction 5 of the gradients after [3H] 

sphingosine-labelling (Figure 15A). About 19% and 11%, respectively, of the total radioactivity 

present in fraction 5 was recovered respectively in the PLAP or GH-DAF immunoprecipitates, 

representing co-immunoprecipitated labelled sphingolipids (Table 1). After chloroform/methanol 

2:1 (v/v) extraction, HPTLC and digital autoradiography ~ 22% of SM, ~ 15% of Cer and ~ 21% of 

PE were associated with PLAP immunoprecipitates while  ~ 13% of SM,  ~ 12% of Cer and  ~ 11% 

of PE were found in the GH-DAF immunoprecipitates (Figure 15B).  
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Figure 15. Lipid analysis of DRMs associated with PLAP or GH-DAF. 
PLAP or GH-DAF clones were labelled with [3H]-sphingosine, lysed in TNE/TX-100 at 4°C and purified by 
centrifugation to equilibrium on sucrose density gradients. Fraction 5 was immunoprecipitated using either 
PLAP or GH-DAF antibodies. Proteins (1/5 of immunoprecipitate) were run on SDS-PAGE and revealed by 
western blotting (A). Lipids associated with immunoprecipitates (IP) were extracted in chloroform/methanol 
and separated by HPTLC. The quantitation of radioactive lipids (SM, Cer, X, PE) is shown in B. We have 
indicated with X the unknown species of sphingolipids labelled with [3H]-sphingosine. For each lipid species 
values are expressed as percent of radioactivity present in immunoprecipitates and in the supernatant (B). 
Data are the means of three different experiments ± standard deviation. 
 

The relative percentage of each type of labelled lipid in PLAP and GH immunoprecipitates of 

fraction 5 was very similar (Table 2). The total lipid extracts of the immunoprecipitates were then 

analysed for cholesterol (~ 24.5 nmols for PLAP and ~ 16.6 nmols for GH-DAF) (Table 3) and for 

PC (~ 19% for PLAP and ~ 6% for GH-DAF) (Table 4). The ratio between [3H]-SM:cholesterol:PC 

was 2663:2.24:1 (dpm:nmols:nmols) for PLAP and 4346:4.48:1 (dpm:nmols:nmols) for GH-DAF 

indicating that there were no significant qualitative differences in the lipid composition of DRMs 

associated with the apical or basolateral GPI-AP. However the calculation of the relative lipid 

enrichment (SL or cholesterol over PC) clearly shows that DRMs associated with basolateral GH-

DAF contain double the amounts of SL and cholesterol with respect to apical PLAP (Table 5). 

 

 

Effect of TX-100 on DRM formation. 

To rule out the possibility that TX-100 had an effect in mixing apical and basolateral DRMs 

we performed TX-100 extraction and separation on sucrose density gradients after mixing the two 

cell lines previously labelled with [3H]-sphingosine. As shown in Figure 16 the distribution of 

proteins (Figure 16A), radioactive lipids (Figure 16B), PC (Figure 16C) and cholesterol (Figure 

16D) after separation of the mixed lysates on sucrose density gradients was similar to that from 

gradients derived from the single cell line extracts (compare Figure 16 with Figure 14). 
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Figure 16.  Protein and lipid distribution on sucrose density gradients from mixed lysates of 
cells expressing PLAP and GH-DAF. 
PLAP and GH-DAF clones (plated in the same number) were labelled with [3H]-sphingosine, harvested, 
mixed together and lysed in TNE/TX-100 buffer at 4°C. TX-100 extracts were purified by centrifugation to 
equilibrium on sucrose density gradients. Proteins were run on SDS-PAGE and PLAP and GH-DAF were 
detected by western blotting (A). 
Lipids were extracted and detected as described in Figure 15. The distribution of sphingosine-labelled 
species on sucrose density gradients and their quantitation are shown in B (upper and lower panel, 
respectively). PC and cholesterol distributions are shown in C and D, respectively. Data are expressed as % 
of each lipid present in the homogenate. Data are the means of two different experiments ± standard 
deviation. 
 

Fraction 5 was then immunoprecipitated using either anti-PLAP or anti-GH antibodies and 

proteins were analyzed by SDS-PAGE and western blotting (Figure 17A). In these mixed lysates 

GH-DAF was not co-immunoprecipitated with the anti-PLAP antibody and vice-versa (Figure 

17A), therefore suggesting that the two proteins resided in different environments.  
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Figure 17. Lipid analysis of DRMs associated with PLAP- or GH-DAF-associated DRMs 
derived from mixed cell lysates. 
FRT cells expressing PLAP and GH-DAF were labelled with [3H]-sphingosine, harvested, mixed together 
and lysed in TNE/TX-100 buffer at 4°C. TX-100 extracts were purified by centrifugation to equilibrium on 
the sucrose gradients. Fraction 5 was immunoprecipitated using antibodies against PLAP or GH-DAF. 
Proteins (1/5 of immunoprecipitate) were run on SDS-PAGE and revealed by western blotting using specific 
anti-PLAP or anti-GH antibodies (A).  
Lipids were extracted and detected as described in Figure 14. The distribution of radioactive lipids (SM, Cer, 
X, PE) is shown. For each lipid species values are expressed as percents of radioactivity present in 
immunoprecipitates and in the supernatants (B). 
 

As expected about half of the total lipid radioactivity was recovered in the mixed compared to 

the single lysate immunoprecipates (~ 13% for PLAP and ~ 7% or GH-DAF) (Table 2). As shown 

in Figure 17B ~ 17% of SM, ~ 15% of Cer and ~ 10% of PE was associated with PLAP 

immunoprecipitates while ~ 8% (SM), ~ 7% (Cer) and ~ 5% (PE) were recovered in the GH 

immunoprecipitates. Thus the relative percentage of each type of radiolabelled lipid 

immunoprecipitated either with anti-PLAP or anti-GH remained constant between single and mixed 

lysates (Table 3). Interestingly we observed a higher cholesterol recovery, both in PLAP (~ 20 

nmols) and GH (~ 11 nmols) immunoprecipitates, from the mixed lysates (Table 4). Like for SL the 
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amount of PC recovered in the immunoprecipitates of fraction 5 from the mixed lysates was about 

half of the amount in the single lysates (Table 5). The ratio [3H]-SM:cholesterol:PC, in the 

immunoprecipitates was respectively 3700:4.05:1 (dpm:nmols:nmols) for PLAP, and 5335:6.5:1 

(dpm:nmols:nmols) for GF-DAF, similar to the ratio found in the immunoprecipitates from single 

cell lysates (Table 6). These results confirmed that the composition of DRMs associated with an 

apical and a basolateral GPI-AP are qualitatively very similar and showed that the relative 

enrichment of the different lipid species was maintained in the mixed lysates compared to single 

lysate (Table 6). 

 

 

Table 2. Distribution of radioactivity after immunoprecipitation with anti-PLAP or anti-GH 

antibodies in sphingolipid-enriched membrane fractions from FRT cells in culture.  
Cell lipids were previously metabolically labelled with [3H]-sphingosine. Data are expressed in dpm. 

Percentages represent values of three independent experiments ± standard deviations.  

 
 

 Total IP % in IP Preclear Supernatant 
 

FRT cells expressing 
PLAP 

(IP αPLAP) 

 
243100 

 
46100 

 
19 ± 0.6 

 
19500 

 
177500 

 
FRT cells expressing 

GH-DAF 
(IP αGH) 

 
257500 

 
28200 

 
11 ± 1.5 

 
22000 

 
207300 

 
Mixed cells 
(IP αPLAP) 

 
257000 

 
34900 

 
13 ± 1 

 
16100 

 
205700 

 
Mixed cells 
(IP αGH) 

 
257000 

 
17100 

 
7 ± 0.7 

 
22400 

 
217500 
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Table 3. Percent of spingosine-labelled lipid species in the anti-PLAP or anti-GH 

immunoprecipitates of fraction 5. Percentages represent values of three independent experiments 

± standard deviations. 

 
 PE SM X Cer 
 

FRT cells expressing PLAP 
(IP αPLAP) 

 
22 ± 1 

 
63 ± 3.6 

 
12 ± 3.2 

 
3 ± 0.6 

 
FRT cells expressing GH-DAF 

(IP αGH) 

 
20 ± 2 

 
64 ± 1.5 

 
13 ± 3.2 

 
3 ± 1 

 
Mixed cells 
(IP αPLAP) 

 
14 ± 2.3 

 
62 ± 1 

 
21 ± 3.2 

 
3 ± 1 

 
Mixed cells 
(IP αGH) 

 
14 ± 2 

 
63 ± 2.6 

 
20 ± 2 

 
3 ± 1 

 

Table 4. Distribution of cholesterol after immunoprecipitation with anti-PLAP or anti-GH 

antibodies in sphingolipid-enriched membrane fractions from labelled FRT cells in culture. 
Data are expressed in nmoles. n.a., not analysed. Percentages represent values of three independent 

experiments ± standard deviations. 

 
 
 Total IP % in IP Preclear Supernatant 
 

FRT cells expressing 
PLAP 

(IP αPLAP) 

 
164.0 

 
24.5 

 
15 ± 1 

 
n.a 

 
123.3 

 
FRT cells expressing GH-

DAF 
(IP αGH) 

 
184,0 

 
16.6 

 
9 ± 2.5 

 
n.a 

 
151.1 

 
Mixed cells 
(IP αPLAP) 

 
168.0 

 
20.7 

 
12 ± 2 

 
n.a 

 
133.0 

 
Mixed cells 
(IP αGH) 

 
168.0 

 
11.1 

 
7 ± 1 

 
n.a 

 
142.5 
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Table 5. Distribution of phosphatidylcholine after immunoprecipitation with anti-PLAP or 

anti-GH antibodies in sphingolipid-enriched membrane fractions from labelled FRT cells in 

culture.  
Data are expressed in nmoles. n.a., not analysed. Percentages represent values of two independent 

experiments ± standard deviations. 

 
 
 Total IP % in IP Preclear Supernatant 
 

FRT cells expressing 
PLAP 

(IP αPLAP) 

 
57,6 

 
10,9 

 
19 ± 2 

 
n.a. 

 
41,7 

 
FRT cells expressing GH-

DAF 
(IP αGH) 

 
62,0 

 
3,7 

 
6 ± 0.7 

 
n.a. 

 
53,3 

 
Mixed cells 
(IP αPLAP) 

 
57,8 

 
5,1 

 
9 ± 1.4 

 
n.a. 

 
47,8 

 
Mixed cells 
(IP αGH) 

 
57,8 

 
1,7 

 
3 ± 0.7 

 
n.a. 

 
48,9 

 
 

Table 6. Relative enrichment of sphingolipids and cholesterol over phosphatidylcholine (PC) 

in the anti-PLAP or anti-GH immunoprecipitates.  

 
 
 IP single cells IP mixed cells 

(Sphingolipids/PC)DAF 
(Sphingolipids/PC)PLAP 

 
1.8 

 
1.6 

 
(cholesterol/PC)DAF 
(cholesterol/PC)PLAP 

 
1.9 

 
1.8 
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5.3 ORGANIZATION OF GPI-APs AT THE APICAL PLASMA MEMBRANE OF 
EPITHELIAL CELLS 

 
 
Surface localization and DRM association of FR, PLAP and GFP-GPI 

GPI-APs are localized principally on the apical domain of the plasma membrane of epithelial 

cells (Lisanti et al., 1989) where they can be crosslinked in HMW complexes (Friedrichson and 

Kurzchalia, 1998; Paladino et al., 2004). In order to understand whether two different apical GPI-

APs are in the same clusters we co-transfected MDCK cells with two pairs of cDNAs encoding 

different GPI-APs. Specifically, GFP-GPI, in which GFP is fused to the GPI attachment signal from 

the folate receptor (FR) (Paladino et al., 2004; Sharma et al., 2004) was co-transfected with two 

different native GPI-APs (FR or PLAP), which contain distinct attachment signals. Several stable 

clones of MDCK cells expressing the two couples of GPI-APs, MDCK: FR/GFP-GPI and MDCK: 

PLAP/GFP-GPI, were selected and characterized for their protein expression and plasma membrane 

localization. 

 
Figure 18. FR, PLAP and GFP-GPI are apically sorted and associate with DRMs in MDCK 
cells.  
MDCK cells stably expressing FR/GFP-GPI or PLAP/GFP-GPI were grown for 4 d on filters. LC-biotin was 
added to the apical or the basolateral surface of the cells. After immunoprecipitation with specific antibodies, 
biotinylated proteins were revealed using HRP-streptavidin. Quantisation represents the mean value of three 
independent experiments (A). MDCK cells stably expressing FR/GFP-GPI or PLAP/GFP-GPI were lysed in 
buffer containing 1% TX-100 at 4°C and purified by centrifugation to equilibrium on sucrose gradients (5-
40%) as described in materials and methods. Fractions of 1 ml were collected from the top (fraction 1) to the 
bottom (fraction 12). After TCA-precipitation, proteins were run on SDS-PAGE and detected using specific 
antibodies (B). An aliquot of each fraction was spotted on nitrocellulose membranes and GM1 was revealed 
using HRP-cholera toxin. As previously shown, the band at 43 kDa represents a partially denatured dimer of 
GFP (Inouye and Tsuji, 1994; Paladino et al., 2004).  
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As expected from results derived from single transfected clones (Paladino et al., 2004), we 

confirmed that GFP-GPI, PLAP and FR were all predominantly enriched on the apical surface 

(Figure 18A). In particular, ~ 85% and 90%, respectively, of FR and PLAP was found on the apical 

membrane, while ~ 80% of GFP-GPI was apically localized in both MDCK clones (Figure 18A). 

Interestingly each of the proteins maintained the same ratio of apical distribution in single or double 

transfected cells, independently of co-transfection with another GPI-AP (Figure 18A) (Paladino et 

al., 2004).  

We then analysed association to detergent-resistant membranes (DRMs) by floatation on 

sucrose density gradients after Triton X-100 (TX-100) extraction (Brown and Rose, 1992; Simons 

and Ikonen, 1997; Brown and London, 1998, 2000). Consistent with previous results (Miotti et al., 

2000; Paladino et al., 2004), we found that all three proteins migrated to lighter density fractions (4-

7) of the gradients (95%, 80% and 90%, respectively, for FR, PLAP and GFP-GPI), which were also 

enriched in the ganglioside GM1 (Figure 18B). These results confirmed that all three proteins 

associated with DRM fractions to a similar extent. Furthermore, the percentage of DRM-association 

on sucrose gradients was maintained constant independently of whether they were expressed alone or 

in pairs (Paladino et al., 2004). 

 

FR, PLAP and GFP-GPI are found in HMW homo-oligomers at the apical surface of MDCK 

cells 

Apical GPI-APs are found in high molecular weight complexes and oligomerization appears 

to be a key step for their apical sorting (Paladino et al., 2004). We therefore investigated whether 

FR, PLAP and GFP-GPI also oligomerize in the co-transfected MDCK clones. As in single 

transfected cells (Paladino et al., 2004), in the co-transfected clones (MDCK: FR/GFP-GPI and 

MDCK: PLAP/GFP-GPI) FR, PLAP and GFP-GPI (about 20 - 40%) were found in oligomeric 

complexes after purification on velocity gradients at steady-state (Figure 19A).  

To demonstrate that each protein was in HMW complexes also at the cell surface and to rule 

out the possibility that these complexes were formed as a consequence of detergent addition during 

cell lysis, we added the impermeable chemical cross linking agent, BS3 to the apical surface of 

living cells for different times both at 4°C and 37°C.  

In the presence of BS3, bands corresponding to relative molecular masses of dimers (**) and 

trimers (***) as well as HMW oligomers were detected for each of the three proteins (Figure 19B), 

indicating that a relatively small portion of each protein was present in an oligomeric complex at 

the plasma membrane. Because the cross-linked pattern was similar at both temperatures, these data 

indicate that the proteins are in oligomeric complexes at physiological temperatures. In addition, the 
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amount of cross-linked complexes was higher at 37°C compared to 4°C, thus suggesting that at the 

lower temperature the formation of these complexes was drastically impaired, most likely because 

of the reduced mobility of the molecules involved.  

 

 

 
Figure 19. FR, PLAP and GFP-GPI form high molecular weight complexes in MDCK cells. 
MDCK cells stably expressing FR/GFP-GPI or PLAP/GFP-GPI, grown to confluence, were purified by 
velocity gradient as described in materials and methods. Fractions of 0.5 ml were collected from the top 
(fraction 1) to the bottom (fraction 9). After TCA precipitation, samples were run on SDS-PAGE and 
revealed by western blotting with specific antibodies. The position on the gradients of molecular weight 
markers is indicated on top of the panels (A). Alternatively, cells were cross-linked by using BS3 (0.5 mM) 
either at 4°C or 37°C for different indicated times. After lysis, proteins were TCA-precipitated, separated on 
SDS-PAGE and revealed using specific antibodies (B). The molecular weight of the monomeric forms of 
each protein is indicated, together with the position of a 180 kDa marker. *, **, and  *** indicate, 
respectively, monomers, dimers and trimers of the different proteins. 
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GFP-GPI, FR, and PLAP oligomers can be cross-linked in hetero-clusters at the cell surface 

of MDCK cells 

The above biochemical results indicated that each protein forms HMW homo-complexes 

independently of the other GPI-APs co-transfected with it. In order to understand how different 

GPI-APs are organized on the apical membrane within respect to each other we tested whether they 

could form hetero-HMW-complexes. To this aim cell lysates were immunoprecipitated using either 

an anti-FR or an anti-PLAP antibody and revealed with an anti-GFP antibody in the presence or 

absence of BS3 addition to the apical surface (Figure 20). Although the amount of 

immunoprecipitated proteins detected by western blot was similar both in the presence or absence 

of the cross-linking agent (Figure 20), a smear between ∼ 60 and ∼ 300 kDa revealed with the anti-

GFP antibody was detected in the immunoprecipitates from both cells only after crosslinking 

(Figure 20), indicating that both pairs of proteins co-immunoprecipitated after BS3 addition.  

 
Figure 20. HMW complexes of FR, PLAP and GFP-GPI can be cross-linked in specific 
hetero-clusters. 
MDCK cells stably expressing FR/GFP-GPI or PLAP/GFP-GPI were crosslinked at 4°C with BS3 (0.5 mM). 
After lysis, proteins were immunoprecipitated either with anti-FR or anti-PLAP antibody and revealed by 
western blotting using specific antibodies.  
 

This co-immunoprecipitation between GFP-GPI and FR or PLAP is specific because both 

anti-FR and anti-PLAP antibodies do not cross-react with GFP-GPI, as shown by control 

immunoprecipitations from cells expressing only GFP-GPI (Figure 21). These data clearly show 

that two different GPI-APs can be cross-linked in HMW complexes at the cell surface indicating 

that they are in close proximity.  



 

 
 
 
Figure 21. FR and PLAP antibodies do not 
show cross-reactivity for GFP-GPI. 
Cell lysates from MDCK cells stably expressing 
GFP-GPI were immunoprecipitated either with 
FR or PLAP antibodies. After separation on SDS-
PAGE, proteins were revealed by western blotting 
by using anti-GFP antibody. A control western 
blotting for GFP (gel on the right) shows that 
GFP-GPI is expressed by these cells. Note that 
there is no cross-reaction of the anti-GFP antibody 
with either FR or PLAP. 

 

In order to understand whether these hetero-HMW complexes derived from the cross-linking 

of monomers or oligomers of the single proteins we purified them on velocity gradients (Figure 22). 

After addition of BS3 to the cell surface, cell lysates were run on velocity gradients and each 

fraction was immunoprecipitated with anti-FR (Figure 22A) or anti-PLAP (Figure 22B) antibodies 

and revealed with the anti-GFP antibody on western blots (Figure 22 top panels). For both pairs of 

proteins we only observed co-immunoprecipitation with GFP-GPI in fraction 9, which contains 

only HMW complexes of the single proteins (Figure 22 top panels).  

 

 
Figure 22. Purification of HMW complexes of FR, PLAP and GFP-GPI can be cross-linked in 
specific hetero-clusters. 
MDCK cells stably expressing FR/GFP-GPI or PLAP/GFP-GPI were treated with BS3, lysed and purified by 
velocity gradients. Samples were immunoprecipitated using an anti-FR (A) or anti-PLAP (B) antibody and 
revealed by western blotting using an anti-GFP antibody (top panels). Immunoprecipitated proteins were 
revealed by western blotting with the same antibody (either FR or PLAP) (bottom panels). The molecular 
weight of the monomeric forms of each protein is indicated, together with the position of a 180 kDa marker. 
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In an alternative approach we disrupted GFP-GPI oligomers, which depend on disulphide 

bonds (Paladino et al., 2004), by treating the cells with DTT (10 mM, 5 min) (Mezghrani et al., 

2001), and then analyzed whether GFP-GPI monomers were cross-linked with PLAP or FR (whose 

oligomers were not affected by DTT treatment; Figure 23). As expected, in the presence of DTT 

GFP-GPI was present only in the monomeric, or partially denaturated (band at 43 kDa) dimeric 

forms (Figure 23, top). In these conditions GFP-GPI did not co-immunoprecipitate with PLAP nor 

FR (Figure 23, bottom). These data together therefore indicated that homo-HMW-complexes of the 

single GPI-APs were in such close proximity as to be crosslinked and suggested that 

monomers/dimers cannot be cross-linked to pre-existing homo-oligomers.  

 
Figure 23. GFP-GPI does not co-immunoprecipitate with FR or PLAP after DTT treatment. 
MDCK cells stably expressing FR/GFP-GPI or PLAP/GFP-GPI, grown to confluence, were treated with 
DTT for 5 min, cross-linked at 37°C for 10 min and then lysed. Lysates were immunoprecipitated either with 
an anti-FR or anti-PLAP antibody and revealed by western blotting by using an anti-GFP antibody (bottom). 
An aliquot of the lysate before immunoprecipitation was run on SDS-PAGE and revealed by western 
blotting using an anti-GFP antibody (top). Note that after DTT treatment GFP-GPI was present only in the 
monomeric or partially denaturated dimeric (band at 43 kDa) form and does not co-immunoprecipitate with 
FR or PLAP. 
 

 

 



 

 55 

 

Finally, in order to understand whether this clustered organization was specific for GPI-APs 

we analysed the behaviour of GP114, an apical endogenous non-raft transmembrane protein of 

MDCK cells. After BS3 addition GP114 does not co-immunoprecipitate either with FR or PLAP 

(Figure 24) thus indicating that non-raft proteins do not cluster with GPI-APs at the apical surface. 
 

 
Figure 24. HMW complexes of FR and PLAP do not contain GP114. 
MDCK cells stably expressing FR/GFP-GPI or PLAP/GFP-GPI were treated with BS3, lysed and purified by 
velocity gradient. Samples were immunoprecipitated by using an anti-FR or anti-PLAP antibody and 
revealed by western blotting using an anti-GP114 antibody (top panels). An equal aliquot of each fraction 
was collected and TCA-precipitated before immunoprecipiation and revealed by western blotting with an 
anti-GP114 antibody (bottom panels). The molecular weight of the monomeric forms of each protein is 
indicated together with the position of a 180 kDa marker. Note that GP114 is not cross-linked with FR or 
PLAP. 
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Role of cholesterol in the spatial organization of GPI-AP clusters 

Cholesterol has been reported to play a role in the organization of GPI-AP clusters at the 

surface of non-polarized cells (Sharma et al., 2004). In order to understand whether the relative 

organization of GPI-APs at the apical membrane of MDCK cells was dependent on cholesterol, 

cells were treated with saponin (SAP, 0.2%, at 4°C for 30 min) and analyze the effect on homo- and 

hetero- GPI-AP complexes after surface cross-linking at 37°C (Figure 25).  

 
Figure 25. Saponin treatment does not affect GPI-AP homo-clusters, but affects GPI-AP 
hetero-clusters. 
MDCK cells stably expressing FR/GFP-GPI or PLAP/GFP-GPI, either in control conditions or after saponin 
(SAP) addition as described in materials and methods, were cross-linked with BS3 at 37°C for different 
times. After lysis, proteins were TCA-precipitated and revealed by western blotting with specific antibodies 
(A), or were immunoprecipitated by using anti-FR or anti-PLAP specific antibodies and revealed by western 
blotting using an anti-GFP antibody (B). 
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By using higher saponin concentration (Figure 26A) and/or longer incubation times (Figure 

26B), it was rule out the hypothesis that homo- and hetero-clusters had different threshold 

sensitivity to cholesterol depletion. Also in these conditions homo-clusters were not affected clearly 

indicating that they did not depend on cholesterol or it is very strongly bound. On the contrary, the 

hetero-GPI-AP complexes were no longer cross-linkable after saponin addition (Figure 25B), 

indicating that co-cluster organization between two different GPI-APs requires cholesterol.  

 

 
Figure 26. Longer incubation times and higher concentrations of saponin do not affect GPI-
APs homo-clusters. 
MDCK cells stably expressing GFP-GPI, FR or PLAP, treated with saponin (SAP) for different times (A) 
and different concentrations (B), were cross-linked with BS3. After lysis, proteins were TCA-precipitated, 
separated on SDS-PAGE and revealed using specific antibodies. 
 

These biochemical data on the cholesterol sensitivity of homo- and hetero- GPI-clusters were 

confirmed by indirect immunofluorescence and by quantitative confocal analysis. Control cells or 

cells treated with saponin were chemically cross-linked with BS3, fixed and stained using specific 

couples of antibodies (αGFP together with αFR or αPLAP) (Figure 27). After cross-linking all 

three GPI-APs were organized in discrete punctate structures (Figure 27, +BS3 -SAP). The clusters 
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of each GPI-AP were distinct but close to each other, as indicated by the presence of some areas of 

co-localization either in one Z-plane (yellow areas in the overlay) (Figure 27, +BS3 -SAP). 

 

 
 

Figure 27. Cholesterol depletion affects co-clustering of both GPI-APs.  
MDCK cells stably expressing FR/GFP-GPI or PLAP/GFP-GPI, either in control conditions (-) or after 
saponin treatment (+), were cross-linked (+) with BS3, fixed and stained with specific antibodies and 
revealed by Cy3- and Cy5-conjugated secondary antibodies. Serial confocal sections were collected. Bars, 4 
µm. 
 

 In order to confirm this hypothesis we have undertaken a different approach and analysed the 

effect of cholesterol addition on homo- and hetero- GPI-AP complexes after surface cross-linking at 

37°C (Figure 28). After cholesterol addition (10mM) both FR and GFP-GPI were still cross-linked 

in HMW homo-complexes (Figure 28A), thus confirming that homo-clusters are cholesterol 

independent. In contrast, after cross-linking GFP-GPI did not co-immunoprecipitate with FR 

indicating that hetero-clusters between two different GPI-APs was drastically reduced with time 

after cholesterol addition (Figure 28B).  
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Figure 28. Effect of cholesterol addition on homo- and hetero-complexes.  
MDCK cells stably expressing FR/GFP-GPI or FR/GFP-GPI or PLAP/GFP-GPI were loaded with 
cholesterol (chol, 10 mM) for different indicated times and then cross-linked by using BS3 (0.5 mM) at 37°C 
for 10 min. After lysis, proteins were TCA-precipitated, separated on SDS-PAGE and revealed using 
specific antibodies (A) or were immunoprecipitated by using anti-FR or anti-PLAP antibodies and revealed 
by western blotting using an anti-GFP antibody (B). The molecular weight of the monomeric forms of each 
protein is indicated, together with the position of a 180 kDa marker.  
 

In an alternative approach we investigated the effect of cholesterol depletion by metabolic 

inhibition, using mevinolin (MEV), or by surface extraction, using methyl-β-cyclodextrin (βCD). 

These treatments reduce the amount of cholesterol in the membrane in contrast to saponin which 

sequesters cholesterol in an hexagonal patterned lattice (Bangham et al., 1962) within the bilayer. 

Under both these conditions we found an increase of co-immunoprecipitation between PLAP and 

GFP-GPI, thus suggesting that reduction of cholesterol in the plasma membrane brings the hetero-

clusters closer to each other (Figure 29).  



 

 

 
 
 
 
Figure 29. Cholesterol depletion (by 
metabolic synthesis inhibition or by βCD 
extraction) enhances hetero-clustering. 
MDCK cells stably expressing GFP-GPI and 
PLAP, treated or not (control) with mevinolin 
(MEV) or βCD were cross-linked with BS3. After 
lysis, samples were immunoprecipitated using an 
anti-PLAP antibody and revealed by western 
blotting using an anti-GFP antibody. The position 
of immunoglobulin (Ig) and a 180 kDa marker are 
shown. 

 

Thus these data clearly indicate that cholesterol influences the organization of hetero-clusters 

between different GPI-APs, but is not required for the organization of homo-complexes.  
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6. DISCUSSION 

 

According to the raft hypothesis sphingolipids and cholesterol spontaneously associate with 

each other to form distinct, more ordered phases within which proteins with chemical affinity for 

them (such as GPI-APs) partition (Simons and Ikonen, 1997). Because of their capacity to segregate 

specific lipids and proteins, in cell membranes rafts can act as signalling and sorting platforms 

(Simons and Ikonen, 1997; Simons and Toomre, 2000). However, it has been shown that rafts are 

not sufficient to determine apical sorting of GPI-APs in polarized epithelial cells and that their 

clustering in HMW complexes is a necessary step (Paladino et al., 2004). This is also supported by 

many reports which indicate that GPI-APs are able to cluster and segregate into specific domains 

(Mayor et al., 1994; Anderson and Jacobson, 2002; Edidin, 2003; Meder et al., 2006). Nonetheless, 

how apical GPI-APs are physically organized with respect to each other and to the surrounding 

lipids is a much-debated issue. While the original raft hypothesis postulated that lipid segregation is 

responsible for the organization of proteins, recent evidence indicates that functional rafts, 

containing GPI-APs, are generated by clustering of GPI-APs that, following oligomerization, 

recruit and concentrate raft lipids into a spatially segregated domain (Paladino et al., 2004).    

 

6.1 Oligomerization is a specific requirement for apical sorting of GPI-anchored proteins but not 

for non-raft associated apical proteins 

Using MDCK cells, we have proposed that protein oligomerization constitutes a cellular 

sorting mechanism that recruits apical GPI-APs and excludes basolateral ones (Paladino et al., 

2004). Oligomerization appears to stabilize proteins into rafts, possibly because oligomers have a 

higher affinity for rafts than their monomers, as previously suggested (Fivaz et al., 2002; 

Cunningham et al., 2003). It could therefore lead to the coalescence of small rafts into a larger raft 

from which the apical vesicle could bud (Paladino et al., 2004). Similarly, it has been shown that 

raft clustering through polymerisation of M-proteins, which interacts in rafts with neuraminidase 

and hemagglutinin, represents a key event in the budding of influenza viruses (Zhang et al., 2000).  

Because protein sorting and delivery to the surface is both cell and protein specific (Rodriguez-

Boulan et al., 2005), we have analysed whether oligomerization represents a general requirement 

for apical sorting of GPI-APs in different epithelia by studying the behaviour of four different, 

apically and basolaterally sorted, GPI-APs in FRT cells. We have used these cell lines because they 

are well polarized but have a different phenotype from MDCK, in that they sort the majority of 

GPI-APs to the basolateral domain of the plasma membrane (Zurzolo et al., 1993). We found that 

both apical (PLAP and NTR-PLAP) and basolateral (GFP-GPI and GH-DAF) GPI-APs are DRM-
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associated (Figures 7 & 8). These data confirm previous findings showing that, independently of 

their sorting, GPI-APs partition into DRMs and that the GPI anchor, having specific affinity for the 

long and saturated acyl chains of sphingolipids, is responsible for their association with raft (Brown 

and London, 1998; Benting et al., 1999a; Lipardi et al., 2000; Mayor and Riezman, 2004; Paladino 

et al., 2004). We also demonstrate that, as in MDCK cells, in FRT cells raft association is not 

sufficient to determine apical sorting of GPI-APs. Indeed, as in MDCK cells (Paladino et al., 2004), 

only apical GPI-APs were found in HMW complexes both during sorting, specifically during the 

passage through the Golgi apparatus, and at the cell surface (Figure 9 and 11). These results 

therefore indicate that oligomerization might be the prime mechanism determining GPI-AP apical 

sorting in different epithelia.  

Because apical proteins can be sorted both via raft-dependent and raft-independent 

mechanisms both in MDCK and FRT cells (Benting et al., 1999b; Lipardi et al., 2000), which 

exhibit a different sorting phenotype (Zurzolo et al., 1993), another question is whether 

oligomerization is also required for apical sorting of non-raft proteins. To this aim we analysed the 

ability of oligomerization of the transmembrane and secretory forms of NTR, which are both 

apically sorted but are not associated with DRMs. We found that, in contrast to the GPI-anchored 

form (NTR-PLAP), neither the native TM (p75 NTR) nor the secretory forms (NTR-sec) are able to 

oligomerize (Figure 12). These results clearly indicate that oligomerization is a specific requirement 

for apical sorting of GPI-APs. The fact that although both the transmembrane and secretory forms 

of p75 NTR contained the same ectodomain of the GPI-anchored version were not able to 

oligomerize suggested that association with DRMs was required for oligomerization to occur. Rafts 

might provide a favourable environment for oligomerization to occur as shown by the fact that 

impairment of DRM association at the TGN also reduces oligomerization and affects apical sorting 

(Paladino et al., 2004). Furthermore the fact that oligomer formation occurs concomitantly with 

DRM association in the Golgi apparatus (Paladino et al., 2004) suggests that oligomerization and 

association to lipid rafts cooperate to promote apical sorting of GPI-APs.  

In addition we found that oligomerization of GPI-APs begins in the medial Golgi (Figure 11) 

like in MDCK cells (Paladino et al., 2006), indicating that GPI-AP in different epithelia the first 

sorting station for GPI-APs is the TGN. 
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 6.2 Detergent-Resistant Membranes associated with apical and basolateral GPI-anchored 

proteins in polarized epithelial cells contain the same lipid species in different quantity 

The analysis of the lipid composition of DRMs associated with PLAP and GH-DAF, 

respectively sorted to the apical and basolateral domains of FRT cells (Figure 7) gives information 

in order to understand whether apical and basolateral GPI-APs are surrounded by a different lipid 

environment and whether this could be linked to their different sorting. PLAP and GH-DAF were 

similarly distributed in a 2-step sucrose density gradient (Figure 13) and were enriched in fraction 5 

to similar extents (~ 30%). This fraction contains ~ 40% of cellular sphingolipids, ~ 50% of cellular 

cholesterol and ~ 30% of cellular PC, but only 5% of cellular PE (Figure 14), clearly indicating a 

lipid segregation in the different gradient fractions. These results support the increasing evidence 

for the existence of specialized lipid domains in the membrane (Brown and Rose, 1992; Prinetti et 

al., 2000) and indicate that the lipid distribution found in FRT cells is similar to that recovered from 

other cell lines (Brown and Rose, 1992; Prinetti et al., 2000; Pike et al., 2002). Our data also show 

that DRM-fractions derived from different FRT clones are similar, therefore indicating that the 

expression of different GPI-APs does not alter lipid extraction nor their distribution on sucrose 

gradients.  

After labelling the cells with 1-3H-sphingosine we analyzed the lipids co-immunoprecipitated 

with PLAP and GH-DAF from the DRM fraction of sucrose gradients. The same lipid species are 

co-purified with apical or basolateral GPI-APs (Figure 15). However, a different ratio between the 

lipid species was consistently observed in different experiments and was maintained after mixing 

the two FRT clones before lysis (Figure 17), thus demonstrating that there is no artificial lipid 

mixing or domain formation caused by TX-100 extraction and suggesting that the co-

immunoprecipitated lipids represent the boundary lipids around each protein (Brown and Rose, 

1992; Brown and London, 2000; Simons and Vaz, 2004). Specifically we found an enrichment of 

SL and cholesterol over PC in the DRM fraction co-immunoprecipitated with basolateral GH-DAF 

compared to the ones co-immunoprecipitated with apical PLAP (Table 6). These data are in 

agreement with recent data demonstrating a twofold increase in the cholesterol:phospholipids ratio 

in the basolateral membrane of guinea pig colonic epithelia compared to the apical one (Brusche et 

al 2002). Cholesterol plays an important role as a linker molecule (Simons and Vaz, 2004), but it 

can also cause or enhance lateral separation of lipids, depending on its concentration. Higher 

cholesterol in the epithelial basolateral membrane leads to higher permeability compared to the 

apical one that needs to be better protected from the external aggression (Brusche et al 2002). 

Furthermore a high amount of cholesterol could lead to greater spacing between basolateral GPI-



 

 64 

APs, therefore impairing the possibility for them to come into closer contact with each other and 

ultimately impairing their oligomerization, a process that we have shown to be necessary for apical 

GPI-APs sorting (Paladino et al., 2004). The glycolipid anchor of GPI-APs could also have an 

active role in this process by promoting a different affinity for different kinds of lipid 

microdomains. Consequently if a GPI-AP is in a favourable lipid environment for oligomerization, 

then it could be apically sorted. Affinity for lipid rafts and oligomerization could work 

synergistically to promote apical sorting of GPI-APs.  

 

6.3 GPI-anchored protein homo-oligomerization leads to cholesterol-dependent hetero-clustering 

at the surface of MDCK cells 

In order to analyse the driving force behind the clustering of GPI-APs an important feature is 

the plasma membrane organization of GPI-APs. To this aim two pairs of apical GPI-APs were co-

transfected in MDCK cells: GFP-GPI and FR, and GFP-GPI and PLAP. Consistent with previous 

data, all of them are apically sorted (Figure 18A) and associate with DRMs to a similar extent 

(Figure 18B) and could be purified as HMW homo-complexes on velocity gradients (Figure 19A) 

or by SDS PAGE after addition of a cell- impermeable cross-linker to the apical plasma membrane 

(Figure 19B). In agreement with previous observations (Mayor et al., 1994; Friedrichson and 

Kurzchalia, 1998; Paladino et al., 2004; Meder et al., 2006) these data indicate that GPI-APs are 

organized in homo-clusters at the apical surface of polarized cells. Interestingly, GPI-APs co-

immunoprecipitated only after cross-linking (Figure 20). This co-immunoprecipitation is specific 

for GPI-APs because it does not include other apical, non-raft proteins (Figure 24), indicating that 

raft and non-raft proteins are segregated into distinct environment, as recently shown (Meder et al., 

2006). Furthermore, co-immunoprecipitation occurs exclusively between HMW homo-complexes 

and not between GPI-AP monomers or dimers (Figure 22), thus suggesting that homo-GPI-AP 

clusters are in close proximity to each other whereas monomers, excluded by the cross-linking, are 

much more dispersed or actively excluded by the spatial organization of the clusters. The fact that 

the arm of the cross-linker is very small (1.14 nm) (Figure 10), that cross-linking occurs at 37°C in 

a very short time (< 2 min) and is independent of internalization and temperature, demonstrates that 

GPI-AP homo-clusters are in close proximity to each other at the cell surface of unperturbed cells.  

The next question was then to understand how this spatial organization of GPI-APs was related to 

the organization of membrane lipids and to determine the principal driving forces. The raft 

hypothesis, based principally on lipid behaviour in simple model membranes, postulates that lipids 

would drive protein segregation (Simons and Vaz, 2004). On the same line, Sharma and colleagues 

proposed that cholesterol is an active player in the organization of GPI-AP nanoclusters, which are 
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sensitive to saponin. Based on sophisticated FRET analysis, it was also shown that they should be 

composed at most of four different GPI-APs. This is in contrast with previous observations that 

GPI-APs are organized in homo-clusters formed by the same protein species (Mayor et al., 1994; 

Harder et al., 1998; Paladino et al., 2004) and with our observation that cholesterol depletion does 

not affect organization of GPI-APs in HMW homo-complexes (Figure 25A). In contrast, we found 

that hetero-clusters are completely disrupted by saponin treatment (Figures 25 & 27), suggesting 

that while hetero-cluster organization depends on cholesterol, homo-GPI-AP clusters are 

cholesterol-independent. We also excluded that there is a different threshold required to disrupt 

homo- and hetero-clusters by treating the cells for longer duration and by using different saponin 

concentrations (Figure 26). In addition, all alternative methods used to perturb cholesterol balance 

in the membranes affected exclusively the organization of hetero-clusters. Specifically, while 

addition of cholesterol inhibited hetero-clustering between different GPI-APs (Figure 28), 

cholesterol depletion (by metabolic synthesis inhibition or by βCD extraction) enhanced it (Figure 

29). Strikingly, both these treatments, similar to saponin, left homo-clusters unperturbed. The 

different effect induced by βCD and saponin on hetero-clusters could be explained by the different 

action of these two compounds. Saponin inserts into the plasma membrane and sequesters 

cholesterol by forming multimeric globular deposits of approximately 80-100 Å (Bangham et al., 

1962) which could result in a spatial segregation of the homo-complexes (see model in Figure 30). 

On the other hand, the lack of effect of saponin on homo-clusters could be explained in two ways: 

either saponin doesn’t have access to the cholesterol tightly bound/hidden in these clusters or there 

is not sufficient cholesterol to bind. Differently from saponin, βCD selectively extracts cholesterol 

from membrane, preferentially from outside the GPI-APs complex (Ilangumaran and Hoessli, 

1998), thus favouring the coalescence of hetero-clusters (see model in Figure 30). This 

interpretation is consistent with previous findings showing that lowering cholesterol levels by βCD 

induces formation of large-scale (micrometers) domains in the plasma membrane but does not alter 

the distribution of cross-linked or uncross-linked GPI-APs (Hao et al., 2001). Conversely, if 

cholesterol had been essential for homo-clusters organization we would have expected an effect of 

its depletion by either the biochemical inhibition of the synthesis or by βCD extraction.  

Based on all of the above results we propose that at the plasma membrane GPI-APs are 

organized in homo-clusters independently of cholesterol and that they are maintained by protein-

protein interactions. Because GPI-APs have a high affinity for cholesterol and saturated 

sphingolipids, during clustering they may generate a local enrichment of raft lipids including 

cholesterol within a confined zone (Figure 30), thus creating specialized membrane domains that 
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actively exclude GPI-AP monomers and other apical components. These GPI-AP clusters have high 

affinity for each other and so can fuse into cholesterol-dependent hetero-clusters (Figure 30).  

 
Figure 30. Model of GPI-AP membrane organization. 
At the apical surface of MDCK cells GPI-APs are proposed to be organized in homo-clusters independent of 
cholesterol but dependent on protein-protein interactions. The proteinaceous complexes determine a local 
enrichment of raft lipids in a confined zone with cholesterol likely to be enriched at their boundaries (orange 
ring) thus creating specialized membrane domains that actively exclude GPI-AP monomers or other apical 
components. Because they are surrounded by a similar saturated-lipid environment these GPI-AP clusters 
have high affinity for each other and can fuse into cholesterol-dependent hetero-clusters. Cholesterol 
unbalance in the membrane by different means affects only hetero-clusters and not homo-clusters 
organization. The different effect of saponin (grey hexagones) metabolic inhibition, (MEV) or cyclodextrin 
treatments (depletion/addition) are illustrated. 
 

Data based on velocity gradients (Figure 22) show that they are in HMW complexes 

containing more than four molecules, in contrast to what has been recently proposed (Sharma et al., 

2004). Consequently, more than four molecules are likely to be required to drive a change in the 

lipid microenvironment surrounding GPI-APs, which would then permit coalescence of hetero-

clusters (that might represent a raft). In support of this hypothesis we do not find co-

immunoprecipitation between different GPI-APs in the low molecular weight fractions of velocity 

gradients (Figure 22) demonstrating that hetero-oligomerization occurs only between HMW homo-

complexes. Similarly we show that homo-cluster forms independently of each other because the 

antibody cross-linking of one specific GPI-AP does not recruit the others.  

Our model is supported by studies of GPI-APs in model and cell membranes which have 

shown that i) monomeric GPI-APs do not show a particular affinity for liquid ordered phases 
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(Brown and London, 2000), ii) partitioning of GPI-APs into lipid ordered phases is dramatically 

increased by antibody cross-linking compared to non-raft molecules (Dietrich et al., 2001; Edidin, 

2003), and iii) GPI-APs do not show a particular confinement using single molecule tracking at 25 

µsec resolution (Kusumi et al., 2005). 

Similarly, in the case of T cell signalling it has been clearly demonstrated that the clustering 

of CD2, the adaptor protein LAT and the tyrosine kinase Lck into discrete microdomains in the 

plasma membranes is maintained by protein-protein interactions and does not depend on cholesterol 

or preformed lipid rafts (Douglass and Vale, 2005). 

Although we cannot yet exclude that rafts pre-exist in cellular membranes, our data are also 

supported by a significant body of literature from which it appears that all the biological functions 

where lipid rafts are involved require segregation and coalescence into large structures which can 

be explained by the action of proteins in recruiting and concentrating lipids, rather than vice versa 

(Brown and London, 2000; Edidin, 2003; Munro, 2003). 
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7. CONCLUSION & PERSPECTIVES 
 

GPI-APs are proteins attached to the external leaflet of the plasma membrane and are 

involved in different cellular processes. The subcellular localization and the distribution in specific 

regions of the plasma membrane of GPI-APs are essential to accomplish their function and hence it 

is fundamental to study the mechanisms underlying their sorting.  

Because GPI-APs are enriched to the apical domain of the majority of epithelial cells and 

partition in cholesterol/sphingolipid assemblies (lipid rafts, also called DRMs because of their 

resistance to detergent extraction), it has been postulated that the GPI anchor functions as an apical 

sorting determinant by segregating them into these membrane microdomains. 

However, we have previously shown that both apical and basolateral GPI-APs associate with 

lipid rafts in MDCK cells (a polarized epithelial cell line), thus suggesting that rafts are not 

sufficient to determine their apical sorting (Paladino et al. 2004). We found that GPI-APs travel to 

the apical surface in HMW complexes and impairment of their oligomerization blocks their apical 

sorting (Paladino et al. 2004).  

In my thesis I have analysed three fundamental aspects of GPI-APs protein sorting: the role of 

oligomerization, the composition of DRMs and the requirements for their spatial organization at the 

apical plasma membrane of polarized epithelial cells. 

 

The main findings of my work are summarized below: 

1) Oligomerization represents a specific and essential step for apical sorting of GPI-APs in 

different cell lines. Hence we have demonstrated that oligomerization is a general mechanism for 

apical sorting of GPI-APs working in different epithelia. In addition we showed that 

oligomerization is a specific requirement for GPI-APs and it is not used by transmembrane, non-raft 

associated apical proteins.  

 

2) Apical and basolateral DRMs contain the same lipid species although in different ratios. 

Therefore we propose that apical and basolateral GPI-APs partition in a different lipid environment, 

which could play a role in their sorting. In addition we showed that the specific lipid ratio is 

maintained after lysis indicating that DRMs maintain their identity after Triton extraction and they 

are not an experimental artefact. 

 

3) GPI-APs are organized in cholesterol-independent homo-clusters, which can fuse with each 

other into cholesterol-dependent hetero-clusters at the apical plasma membrane of MDCK cells.  
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We also showed that GPI-AP monomers cannot be cross-linked in hetero-clusters and the homo-

oligomerization of GPI-APs leads to subsequent hetero-clustering, thus indicating that protein-

protein interaction is needed to promote the organization of GPI-APs in cholesterol-dependent 

domains. 

 

The fact that apical and basolateral GPI-APs segregate in a different lipid environment could 

be due a different affinity of GPI-anchor for different lipid microdomains. Therefore the glycolipid 

anchor of GPI-APs could also have an active role in their sorting. Further studies to better 

characterize the structural composition of the GPI anchors of differently sorted proteins and the 

chemical-physical properties of lipid microdomains at the level of Golgi apparatus are required.   

Furthermore our data suggest that oligomerization is promoted by protein-protein interactions, 

therefore it will be useful to study the role of ectodomain in promoting oligomerization and 

consequently apical sorting of GPI-APs. Our results will allow further analysis that will aim to 

address the role of the proteinaceus ectodomain and the role of the GPI-anchor.  

Only when all these additional possibilities have been explored will we be able to have a 

complete picture of the mechanism and of the different factors involved in apical sorting of GPI-

APs. Specifically, important information could be obtained analyzing the trafficking and the site of 

sorting of apical and basolateral GPI-APs fused to different colour mutants of the GFP in living 

cells.  
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8. ABBREVIATIONS 
 

AP, apical;  

βCD, beta methyl cyclodextrin 

BL, basolateral; 

BS3, Bis(sulphosuccinimidyl)Suberate; 

CFTR, Cystic Fibrosis Transmembrane conductance Regulator; 

DRMs, Detergent Resistant Membranes;  

FR, Folate Receptor;  

FRET, Fluorescence Resonance Energy Transfer; 

FRAP, Fluorescence Recovery After Photobleaching; 

FRT cells, Fischer Rat Thyroid cells;  

GFP, Green Fluorescence Protein;  

GH-DAF, Growth Hormone-Decay Accelerating Factor;  

GPI-APs, glycosylphosphatidylinositol-anchored proteins;  

HMW, High molecular weigh 

HPTLC, High Performance Thin Chromatography; 

LDL, Low Density Lipoprotein;  

MEV, mevilonin 

MDCK cells, Madin-Darby canine kidney cells;  

PC, phosphatidylcholine;  

PDZ, Postsynaptic density protein 95/Drosophila Disks large/Zona occludens-1 

PE, phosphatidyletanolamine;  

pIgA-R, polymeric Immunoglogulin A Receptor;  

PLAP, placental alkaline phosphatase;  

PM, plasma membrane;  

SL, sphingolipids;  

SM, sphingomyelin;  

TCZ, Transient Confiment Zone 

TGN, trans-Golgi network;  

TJ, tight junction  

TX-100, Triton X-100;  
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Protein apical sorting in polarized epithelial cells is medi-

ated by two different mechanisms, raft dependent and raft

independent. In Madin–Darby canine kidney (MDCK) cells,

an essential step for apical sorting of glycosyl-phosphati-

dylinositol (GPI)-anchored proteins (GPI-APs) is their coa-

lescence into high-molecular-weight (HMW) oligomers.

Here we show that this mechanism is also functional in

Fischer rat thyroid cells, which possess a different sorting

phenotype compared with MDCK cells. We demonstrate

that, as in MDCK cells, both apical and basolateral GPI-APs

associate with detergent-resistant microdomains, but that

only the apical proteins are able to oligomerize into HMW

complexes during their passage through the medial Golgi.

We also show that oligomerization is a specific require-

ment for apical sorting of GPI-APs and is not used by

transmembrane, non-raft-associated apical proteins.

Key words: DRMs, epithelial cells, GPI-anchored pro-

teins, oligomerization, rafts, sorting
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The plasma membrane of epithelial cells is divided by tight

junctions into two domains, apical and basolateral, which

have different protein and lipid compositions that are neces-

sary for their proper specialized functions (1,2). The genera-

tion and maintenance of distinct apical and basolateral

identities is achieved largely by the continuous sorting of

newly synthesized and recycling components to one or other

domain of the cell surface (3–5). Hence, sorting determinants

in the cargo molecules and molecular machinery responsible

for interpreting targeting signals are required.

Basolateral sorting signals have been identified as short

amino acid sequences, often containing tyrosine or dileucine-

based motifs and confined to the cytosolic tails of mem-

brane proteins, which are recognized by the clathrin

adaptor complex (6,7). In contrast, apical signals are more

variable. Lumen-localized domains, transmembrane (TM)

domains and membrane-binding features have all been

shown to be important for apical sorting (8–12). Further-

more, different from basolateral sorting, apical recognition

is not only based on protein–protein interactions but on

lipid–lipid and lipid–protein interactions also. In particular, it

has been postulated that sphingolipid- and cholesterol-rich

microdomains (rafts) can act as sorting platforms for

inclusion of proteins into apical post-trans Golgi network

(TGN) sorting vesicles (13) because of their capacity to

segregate specific classes of lipids and proteins (14,15).

The best example of raft-mediated apical sorting is repre-

sented by glycosyl-phosphatidylinositol (GPI)-anchored

proteins (GPI-APs), which associate into detergent-resis-

tant microdomains (DRMs) during their passage through

the Golgi apparatus (13,16), where sorting is believed to

occur (17,18). It was, therefore, proposed that the GPI

anchor itself acts as an apical sorting determinant by

mediating raft association (13,14). However, the roles of

the GPI anchor and of lipid rafts as apical determinants

have been recently questioned by the finding that both

apically and basolaterally sorted GPI-APs associate with

DRMs in Madin–Darby canine kidney (MDCK) cells (19,20).

Furthermore, it has been demonstrated that association

with DRMs is not sufficient to determine apical sorting of

GPI-APs and that oligomerization in high-molecular-weight

(HMW) complexes is required (19).

Another fundamental characteristic of the sorting process

is that proteins are not exclusively apical or basolateral. The

plasticity of epithelia is evidenced by the fact that in

different epithelial cell types the same proteins can be

differently sorted and/or can follow variable routes to be

delivered to their final domain of residence [reviewed by

Rodriguez-Boulan et al. (21)]. In addition, it has been

shown that apical sorting can be mediated by at least two

mechanisms, raft dependent and raft independent (12,20).

Here, we ask two specific questions: 1) Is oligomerization

a requirement for apical sorting of GPI-APs in polarized cell

lines other than MDCK cells? 2) Is this a mechanism also

used for apical sorting of TM non-raft-associated proteins?

In order to answer these questions, we have used

Fischer rat thyroid (FRT) cells. Although they possess

DRMs enriched in sphingomyelin, glycosphingolipids and
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cholesterol (22), these cells deliver most of their endoge-

nous GPI-APs to the basolateral surface (23), therefore

representing a good model to understand whether

protein oligomerization could be a general requirement

for apical sorting of GPI-APs. Furthermore, because it has

been shown that, as in MDCK cells, FRT cells can use at

least two mechanisms, raft dependent and raft indepen-

dent, to deliver apical proteins (12,20), they also represent

a good model to understand whether oligomerization is

required for apical sorting of non-raft-associated proteins.

Thus, we analysed here the DRM association of four GPI-

APs with opposite polarities in FRT cells: placental alkaline

phosphatase (PLAP) and NTR-PLAP (in which the ectodo-

main of p75 NTR (neurotrophin receptor) is fused to the

GPI attachment signal of PLAP), which are apically sorted,

and GFP-GPI [in which green fluorescent protein (GFP) is

fused to the GPI anchor attachment signal from the folate

receptor] and growth hormone–decay accelerating factor

(GH-DAF) (in which the rat GH is fused to the GPI

attachment signal of DAF), which are basolateral. We

show that both apical and basolateral GPI-APs are associ-

ated with DRMs, indicating that also in FRT cells lipid rafts

do not provide an exclusive mechanism for driving apical

sorting. We also found that only the apically sorted GPI-

APs are able to form HMW complexes and that oligomer-

ization of apical GPI-APs occurs during transport to the

plasma membrane. In addition, we demonstrate that only

GPI-APs and not TM proteins oligomerize in HMW com-

plexes prior to apical sorting. These data indicate that

oligomerization is a specific requirement for apical sorting

of GPI-APs in different epithelia and that this mechanism is

not used by nonraft TM apical proteins.

Results

Both apical and basolateral GPI-APs associate with

DRMs in FRT cells

In contrast to MDCK cells, FRT cells sort the majority of

endogenous and transfected GPI-APs to the basolateral

domain of the plasma membrane (12,23). To understand if

oligomerization is a general mechanism to promote apical

sorting of GPI-APs in different epithelia, we studied the

sorting of four different GPI-APs transfected in FRT cells:

PLAP, a native GPI-AP, NTR-PLAP, in which the ectodo-

main of neurotrophin receptor p75 NTR is fused to the GPI

attachment signal of PLAP (12), GFP-GPI and GH-DAF, two

fusion proteins in which the GFP and the rat GH are,

respectively, fused to the GPI attachment signal of the

folate receptor and the DAF (19).

We confirmed by confocal microscopy (Figure 1A) that

PLAP and NTR-PLAP were predominantly enriched on the

apical surface, as previously shown in both FRT and MDCK

cells (12,18). On the contrary, we found that GFP-GPI and

GH-DAF were predominantly localized on the basolateral

membrane. Quantitation by domain-selective biotinylation

(Figure 1B) showed that 85 and 90%, respectively, of

PLAP and NTR-PLAP was enriched on the apical mem-

brane, while �80 and 90%, respectively, of GFP-GPI and

GH-DAF was basolaterally distributed (Figure 1B), thus

indicating that all proteins are fully polarized, respectively,

on the apical or basolateral cell surface.

Because in MDCK cells both apical and basolateral GPI-

APs are associated with DRMs (19), we analysed DRM

association of apical and basolateral GPI-APs in FRT cells

Figure 1: GPI-APs are apically and ba-

solaterally sorted. A) FRT cells stably

expressing PLAP, NTR-PLAP, GFP-GPI

and GH-DAF were grown on filters for 4

days. Cells were fixed, and in the case of

PLAP, NTR-PLAP and GH-DAF stained

with specific antibodies followed by

a TRITC-conjugated secondary antibody in

nonpermeabilized conditions. Serial confo-

cal sections were collected from the top to

the bottom of cell monolayers. Bar, 10 mm.

B) Alternatively, cells were labelled with

long chain (LC)-biotin added to the apical

(Ap) or the basolateral (Bl) surface. After

immunoprecipitation with specific antibod-

ies, samples were run on SDS-PAGE and

biotinylated proteins revealed using HRP-

streptavidin. In the case of NTR-PLAP,

samples, labelled with [35S]cys overnight

as described in Materials and Methods,

after immunoprecipitation were precipitated

with streptavidin beads, run on SDS-PAGE

and analysed by fluorography. The band of

GFP-GPI at 43 kDa represents a partially

denaturated GFP dimer as previously

described in MDCK cells (19).
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by cold Triton-X-100 (TX-100) extraction and centrifugation

to equilibrium on sucrose density gradients, as previously

described (16,19,22). We found that both apical and baso-

lateral proteins floated to the lighter fractions (4–7) of

sucrose gradients, fractions which are also enriched in the

ganglioside GM1 (Figure 2). It is interesting to note that

higher amounts of apical GPI-APs were found in DRMs

compared with the basolateral proteins. Indeed, averages

from three independent experiments (see graph in Fig-

ure 2) showed that �55–60% of apical GPI-APs are in

DRMs, in contrast to only �30–40% of the basolateral

proteins, indicating that like in MDCK cells, apical and

basolateral GPI-APs have different behaviours with

respect to detergent extraction (19). In addition, as in

MDCK cells (19), in the majority of the experiments, there

was a shift of one fraction between the floatation of apical

and basolateral GPI-APs, indicating that the composition of

the associated DRMs could be different, as recently

suggested (24).

Only apical GPI-APs form HMW complexes and are

found in cross-linkable complexes at the cell surface

Because in MDCK cells oligomerization appears to be a key

step for apical sorting of GPI-APs (19), to test whether this

could be a general mechanism for different epithelia, we

purified apical and basolateral GPI proteins from FRT cells

on sucrose velocity gradients in which a protein sediments

according to its molecular weight (19). As in MDCK cells

(19), only apical GPI-APs oligomerize in FRT cells. Indeed,

while a portion of PLAP and NTR-PLAP migrated as HMW

complexes containing more than a trimer, basolaterally

sorted GFP-GPI and GH-DAF were purified almost exclu-

sively from the gradient fractions corresponding to their

expected monomeric molecular weights (Figure 3A).

To rule out the possibility that HMW complexes were

formed as a consequence of detergent addition, we

applied an impermeable cross-linking agent, bis(sulpho-

succinimidyl)suberate (BS3), that is able to link molecules

that are in very close proximity (arm length 11.4 Å) (19,25)

to the apical and basolateral surface of unperturbed FRT

cells grown on filters. In the presence of BS3, bands cor-

responding to dimers, trimers and HMWs were detected

only for PLAP and NTR-PLAP (Figure 3B). In contrast,

neither GFP-GPI nor GH-DAF was found in cross-

linkable complexes at the basolateral surface (Figure 3B),

thus suggesting that only apical GPI-APs are in HMW

complexes at the cell surface. To rule out the possibility

that these differences were because the apical proteins

were more highly expressed/more concentrated per unit

area of membrane due to exogenous expression and/or

that they are better chemical substrates for the cross-

linker, we used as control two apical and basolateral TM

proteins endogenously expressed in FRT cells. Specifi-

cally, DPPIV, a TM nonraft apical protein, was used as

a negative control for apical cross-linking, while Na,K-

adenosine triphosphatase (ATPase), a nonraft basolateral

marker for which multiple isoforms of three subunits, a, b

and g, form the Na,K-ATPase oligomer (26), was used as

a positive control for basolateral cross-linking. We found

that DPPIV is not in cross-linkable complexes although it is

expressed at high levels, indicating that not all proteins on

the apical surface form oligomers (Figure S1). In contrast,

Na,K-ATPase migrates as HMW complexes after BS3

addition (Figure S1). These results clearly indicate that

the efficiency of the cross-linker is independent of the

surface of residency, or of a different accessibility of the

cross-linker to the two surfaces.

Oligomer formation occurs during passage of the

protein through the Golgi

If oligomerization plays a role in apical sorting in FRT cells,

as is the case in MDCK cells (19), we would expect this

Figure 2: Both apical and basolateral GPI-APs associate with

DRMs. FRT cells stably expressing PLAP, NTR-PLAP, GFP-GPI

and GH-DAF were lysed in TNE/TX-100 buffer at 48C and run

through 5–40% sucrose gradients. Fractions of 1 ml were

collected from top (fraction 1) to bottom (fraction 12) after

centrifugation to equilibrium. After TCA precipitation, samples

were run on SDS-PAGE and detected by specific antibodies. An

aliquot of each fraction was spotted on the nitrocellulose mem-

brane, and GM1 was revealed using cholera toxin conjugated to

HRP. The graph shows the mean value of protein distribution on

sucrose density gradients from three different experiments.
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event to occur during sorting of the proteins. To address

this question, we analysed the kinetics of PLAP oligo-

merization by pulse-chase experiments combined with

endoglycosidase H (Endo H) digestion (Figure 4). The

acquisition of resistance to Endo H allowed us to monitor

the passage of the protein through the Golgi apparatus

(26,27). After a brief pulse of 10 min with [35S]met/cys,

cells were chased for the indicated times, lysed in SDS/

TX-100 containing buffer and run on velocity gradients

(Figure 4). PLAP began to form HMW complexes after 20 min

of chase when a portion of the protein had acquired Endo H

resistance (therefore after the medial Golgi). After 40 min

of chase, when almost all PLAP was Endo H resistant,

�30% of the protein was found in HMW complexes

(Figure 4). Consistent with the cross-linking experiments

(Figure 3B), PLAP was then recovered in HMW complexes

also after 80 min of chase, i.e. when the majority of the

protein had already reached the plasma membrane [as

previously shown by targeting experiments (12)]. These

results demonstrate that also in FRT cells, apical GPI-APs

oligomerize during their passage through the Golgi appa-

ratus, where sorting is likely to occur (1,17,18,28–30).

Only the GPI-anchored but not the TM or secretory

forms of NTR are able to oligomerize

A question that we then addressed is whether protein

oligomerization is a specific mechanism for apical sorting

of raft-associated GPI-APs or is a general mechanism

utilized also for non-raft-associated apical proteins. To this

aim, we compared the behaviour of the GPI-anchored form

of NTR (NTR-PLAP) with those of TM (p75 NTR) and

secretory (NTR-sec) forms, which are both apically sorted

but are not associated with DRMs (12). Different from

NTR-PLAP, we found that neither the native TM form nor

its secretory form was able to oligomerize (Figure 5).

These results indicate that oligomerization is a specific

requirement for apical sorting of GPI-APs associated to

DRMs, and that this mechanism is not used by TM or

secretory non-raft-associated proteins.

Discussion

Cell membranes are organized into compositionally and

functionally distinct membrane domains, a subset of which

Figure 3: Only apical GPI-APs form oligomers and are in

cross-linkable complexes at the cell surface. A) FRT cells stably

expressing PLAP, NTR-PLAP, GFP-GPI and GH-DAF were lysed in

buffer containing 0.4% SDS and 0.2% TX-100 and run through

a nonlinear 5–30% sucrose gradient. Fractions of 500 ml were

collected from the top (fraction 1) to the bottom (fraction 9) of the

gradients. Proteins were TCA precipitated and detected by

Western blotting using specific antibodies. In the case of PLAP,

samples, labelled with Pro-mix-[35S] overnight, were immunopre-

cipitated from each fraction, run on SDS-PAGE and revealed by

fluorography. The molecular weight of the monomeric forms of

each protein is indicated. The position on the gradients of

molecular weight markers is indicated on top of the panel.

B) FRT cells stably expressing PLAP, NTR-PLAP, GFP-GPI and

GH-DAF grown on filters were incubated with BS3 (0.5 mM). After

lysis, proteins were TCA precipitated, run on SDS-PAGE (in a 6–

12% gradient gel for GFP-GPI and GH-DAF or 8% gel for PLAP and

NTR-PLAP). The molecular weight of the monomeric forms (*)

of each protein is indicated, together with the position of a 180-kDa

marker. ** and *** indicate the expected molecular weight of

the dimeric and trimeric forms of each protein, respectively.

Figure 4: HMW complex formation occurs during passage

through the Golgi apparatus. FRT cells expressing PLAP were

pulsed for 10 min with Pro-mix-[35S] and then chased for the

indicated times. At the end of each chase time, the cells were

lysed and purified on velocity gradients. Samples were immuno-

precipitated from each fraction, run on SDS-PAGE and revealed by

fluorography. An aliquot of the lysate for each chase time was

immunoprecipitated (before ultracentrifugation) and treated with

Endo H to monitor passage through the medial Golgi.
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are lipid rafts that represent areas enriched in sphingolipids

and cholesterol. Because of their capacity to segregate

specific lipids and proteins, rafts assembled within the fluid

bilayer of the TGN may act as sorting platforms for

inclusion of cargo proteins destined for delivery to the

apical membrane (13). However, it has been recently

demonstrated that raft association is not sufficient to

determine apical sorting of GPI-APs (12,19,20).

Several evidences indicate that lipid rafts have to cluster

together in order to engage in different membrane func-

tions. Clustering of individual small rafts should reinforce

the segregation of different lipid phases and consequently

of membrane components associated with them [re-

viewed by Schuck and Simons (31)]. Antibodies, antigens

and raft-binding proteins, such as cholera toxin, can all

cluster rafts, thus promoting protein internalization, path-

ogen entry and/or virus budding (32–34). Similarly, by using

MDCK cells, we have proposed that protein oligomeriza-

tion constitutes a cellular sorting mechanism that recruits

apical GPI-APs and excludes basolateral ones (19). Oligo-

merization appears to stabilize proteins into rafts, possibly

because oligomers have a higher affinity for rafts than their

monomers, as previously suggested (35,36). It could,

therefore, lead to the coalescence of small rafts into

a larger raft from which the apical vesicle could bud (19).

Similarly, it has been shown that raft clustering through

polymerization of M-proteins, which interacts in rafts with

neuraminidase and haemagglutinin, represents a key

event in the budding of influenza viruses (37).

Because protein sorting and delivery to the surface is both

cell and protein specific (21), in this article, we have

analysed whether oligomerization represents a general

requirement for apical sorting of GPI-APs in different

epithelia by studying the behaviour of four different,

apically and basolaterally sorted, GPI-APs in FRT cells.

We have used these cells because they are well polarized

but have a phenotype different from that of MDCK, in

that they sort the majority of GPI-APs to the basolateral

domain of the plasma membrane (23). We found that both

apical (PLAP and NTR-PLAP) and basolateral (GFP-GPI and

GH-DAF) GPI-APs are DRM associated (Figure 2). These

data confirm previous findings showing that, indepen-

dently of their sorting, GPI-APs partition into DRMs and

that the GPI anchor, having specific affinity for the long and

saturated acyl chains of sphingolipids, is responsible for

their association with rafts (12,15,19,38,39). We also

demonstrate that, as in MDCK cells, in FRT cells, raft

association is not sufficient to determine apical sorting of

GPI-APs. Indeed, as in MDCK cells (19), only apical GPI-

APs were found in HMW complexes both during sorting,

specifically during the passage through the Golgi appara-

tus, and at the cell surface (Figures 3 and 4). These results,

therefore, indicate that oligomerization might be the prime

mechanism determining GPI-AP apical sorting in different

epithelia.

We cannot yet understand the mechanism that determines

selective oligomerization of apical GPI-APs. One possibility

is that differences in ectodomain glycosylation might be

important in promoting or impairing this process because

previous work indicated that glycosylation may play a major

role in apical sorting (20). Another possibility, which we are

also currently studying, is that differences in the GPI

anchor may promote association with different lipid do-

mains. Interestingly, like in MDCK cells, we found a shift in

the migration of apical and basolateral GPI-APs on sucrose

gradients. Although the DRM experiments are of limited

value because they are based on the use of detergents and

may not therefore represent the real in vivo situation (40),

this result may indicate that clustered rafts associated with

apical proteins have a composition different from that of

rafts associated with basolateral proteins. In line with this

hypothesis, we have recently shown that although there

are no qualitative differences in the lipid composition of

DRMs associated with apical and basolateral GPI-APs in

Figure 5: NTR-PLAP, but not its transmembrane or secretory

forms, oligomerizes in HMW complexes. FRT cells stably

expressing NTR-PLAP, p75 NTR and NTR-sec were pulsed over-

night with [35S]cys (250 mCi/mL). Then, cells were lysed in buffer

containing 0.4% SDS and 0.2% TX-100 and run through a nonlinear

5–30% sucrose gradient. Fractions of 500 ml were collected from

the top (fraction 1) to the bottom (fraction 9) of the gradients.

Proteins were immunoprecipitated with an antibody against the

ectodomain of p75 NTR, run on SDS-PAGE and revealed by

fluorography. The molecular weight of the monomeric forms of

each protein is indicated. The position on the gradients of

molecular weight markers is indicated on top of the panel. The

graph shows the mean value of protein distribution on sucrose

density gradients from three different experiments.
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FRT cells, the ratio between sphingolipids and cholesterol

is different (24).

Because apical proteins can be sorted both via raft-

dependent and raft-independent mechanisms both in

MDCK and FRT cells (12,20), which exhibit a different

sorting phenotype (23), another question is whether

oligomerization is also required for apical sorting of nonraft

proteins. To this aim, we analysed the ability of oligomer-

ization of the TM and secretory forms of NTR, which are

both apically sorted but are not associated with DRMs. We

found that, in contrast to the GPI-anchored form (NTR-

PLAP), neither the native TM (p75 NTR) nor the secretory

forms (NTR-sec) are able to oligomerize (Figure 5). These

results clearly indicate that oligomerization is a specific

requirement for apical sorting of GPI-APs. The fact that

although both the TM and secretory forms of p75 NTR

contained the same ectodomain of the GPI-anchored

version, they were not able to oligomerize suggested that

association with DRMs was required for oligomerization to

occur. Rafts might provide a favourable environment for

oligomerization to occur as shown by the fact that impair-

ment of DRM association at the TGN also reduces

oligomerization and affects apical sorting (19). Further-

more, the fact that oligomer formation occurs concomi-

tantly with DRM association in the Golgi apparatus (data

not shown and (19) suggests that oligomerization and

association to lipid rafts co-operate to promote apical

sorting of GPI-APs.

Finally, we found that oligomerization of GPI-APs begins in

the medial Golgi (Figure 4) like in MDCK cells (18), indicat-

ing that in different epithelia the first sorting station for

GPI-APs is the TGN. However, we cannot exclude the

possibility that GPI-APs travel through post-TGN compart-

ments before reaching the apical membrane, which might

constitute a second sorting station, as previously shown

for some basolateral proteins (41,42). Further studies using

live imaging approach (17,18) will shed light on this issue.

Materials and Methods

Reagents and antibodies
Cell culture reagents were purchased from Gibco Laboratories (Grand

Island, NY, USA). Antibodies were purchased from the following compa-

nies: polyclonal aGFP from Clontech Laboratories (East Meadow Circle,

CA, USA), monoclonal aGFP from Molecular Probes (PoortGebouw, the

Netherlands), aPLAP from Rockland (Gilbertsville, PA, USA), aGH from

Biotrend GMBH (Cologne, Germany). The antibody against p75 was a gift

from Dr A. Le Bivic (Faculté des Sciences de Luminy, Marseille, France).

Biotin, horseradish peroxidase (HRP)-linked streptavidin and BS3 were from

Pierce (Rockford, IL, USA). All other reagents were purchased from Sigma

Chemical Co. (St Louis, MO, USA).

Cell culture and transfections
The FRT cells were grown in F12 Coon’s modified medium containing 5%

FBS. The FRT cells were transfected with complementary DNA coding for

the different proteins, using the calcium phosphate procedure, as pre-

viously described (23). Stable clones were selected by resistance to

neomycin.

Fluorescence microscopy
The FRT cells were grown on transwell filters for 4 days, washed with PBS

containing CaCl2 and MgCl2, fixed with 4% paraformaldehyde and

quenched with 50 mM NH4Cl. Primary antibodies were detected with

TRITC-conjugated secondary antibodies. Images were collected using

a Zeiss Laser Scanning Confocal Microscope (LSM 510) equipped with

a planapo 63� oil-immersion (NA 1.4) objective lens.

Biotinylation assay
Cells were grown on polycarbonate filters for 4 days. Cells were selectively

biotinylated from the apical and basolateral sides, and lysates were

immunoprecipitated with specific antibodies and revealed on blots with

HRP-streptavidin. In the case of NTR-PLAP, cells were metabolically

labelled with 35S-cys (100 mCi/mL) overnight, and after biotinylation, lysates

were immunoprecipitated with a specific antibody and then precipitated

with streptavidin beads. Sample were run on SDS-PAGE and analysed by

fluorography.

Sucrose density gradients
Sucrose gradient analysis of TX-100-insoluble material was performed

using previously published protocols (16,22). Cells were grown to conflu-

ency in 150-mm dishes, washed in PBS containing CaCl2 and MgCl2 and

lysed for 20 min in TNE/1% TX-100 buffer on ice. Lysates were scraped

from dishes, brought to 40% sucrose and then placed at the bottom of

a centrifuge tube. A discontinuous sucrose gradient (5–35% in TNE) was

layered on the top of the lysates, and the samples were centrifuged at

188000 � g for 17 h in ultracentrifuge (model SW41 Beckman Inst.,

Fullerton, CA, USA). One-millilitre fractions were harvested from the top

of the gradient and trichloroacetic acid (TCA) precipitated. Proteins were run

on SDS-PAGE and revealed by Western blotting using specific antibodies.

Velocity gradients
Velocity gradients were performed using previously published protocols

(19,43). Cells were grown to confluency in 100-mm dishes, washed in PBS

containing CaCl2 and MgCl2 and lysed for 30 min in 20 mM Tris, pH 7.4,

100 mM NaCl, 0.4% SDS and 0.2% TX-100 on ice. Lysates were scraped

from dishes and sheared through a 26-g needle, and nuclei were pelleted.

A sucrose gradient (5–30%) was layered, and the lysate, added on the 5%

fraction, was centrifuged at 190000 � g for 16 h in ultracentrifuge (model

SW 50 Beckman). Fractions of 500 mL were harvested from the top of the

gradient, and then they were TCA precipitated or immunoprecipitated

depending on the experiment.

Pulse chase
Cells grown in 100-mm dishes were starved of methionine and cysteine for

1 h and pulse labelled for 10 min with medium containing 100 mCi/mL of

Pro-mix-[35S] cell labelling (GE Healthcare, Little Chalfont, England) and

incubated in chase medium (DMEM containing 5% FBS and met/cys 10�)

for different times.

Endo H digestion
Digestion with Endo H was carried out on immunoprecipitated materials.

The antigen–antibody complexes were removed from sepharose beads

using 50 mL of 0.1 M Na citrate/0.1% SDS and boiling for 3 min. Samples

were then incubated with 5 mU of Endo H for 16 h at 378C. Samples were

run on SDS-PAGE and revealed by fluorography.

Cross-linking
Cells were grown on polycarbonate filters for 4 days. BS3 (0.5 mM) was

added to the apical or basolateral surface for 45 min and quenched for 15 min

with 20 mM Tris, pH 7.5, as described elsewhere (24). Proteins were TCA

precipitated, separated on SDS-PAGE and revealed by specific antibodies.
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together with the position of standard markers.
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Abstract Detergent-resistant membranes (DRMs) represent
specialized membrane domains resistant to detergent extraction,
which may serve to segregate proteins in a specific environment
in order to improve their function. Segregation of glycosylphos-
phatidylinositol-anchored proteins (GPI-APs) in DRMs has
been shown to be involved in their sorting to the apical membrane
in polarized epithelial cells. Nonetheless, we have shown that
both apical and basolateral GPI-APs associate with DRMs. In
this report we investigated the lipid composition of DRMs asso-
ciated with an apical and a basolateral GPI-AP.

We found that apical and basolateral DRMs contain the same
lipid species although in different ratios. This specific lipid ratio
is maintained after mixing the cells before lysis indicating that
DRMs maintain their identity after Triton extraction.
� 2006 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.

Keywords: Rafts; Detergent-resistant membranes;
Glycosylphosphatidylinositol-anchored proteins; Sorting;
Polarity; Epithelial cells
1. Introduction

Lipid rafts constitute distinct liquid ordered phases enriched

in sphingolipids and cholesterol that are resistant to extraction

in cold detergents [1–3]. Because they segregate proteins and

lipids in specific regions of the membranes, they have been

implicated in several cell functions such as signalling and sort-

ing [4]. One case in point is the one of glycosylphosphatidyli-

nositol (GPI)-anchored proteins (GPI-APs) that are apically
Abbreviations: GPI-APs, glycosylphosphatidylinositol-anchored pro-
teins; DRMs, detergent-resistant membranes; GH-DAF, growth
hormone-decay accelerating factor; PLAP, placental alkaline phos-
phatase; SM, sphingomyelin; PC, phosphatidylcholine; PE, phospha-
tidyletanolamine; SL, sphingolipids; TX-100, Triton X-100
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sorted in a range of polarized epithelial cell lines [2,5,6]. It

has been proposed that GPI-APs are sorted to the apical sur-

face via their incorporation in rafts [7]. However, the finding

that in FRT cells GPI-APs are mainly delivered to the basolat-

eral membrane [8,9] and that in MDCK cells both apical and

basolateral GPI-APs associate with DRMs (detergent-resistant

membranes) indicate that rafts are not sufficient to determine

their apical sorting [10]. Furthermore, we have found that pro-

tein oligomerization, which could promote the stabilization of

GPI-APs into rafts, is needed for their apical sorting [10]. The

factors that promote protein oligomerization and apical sort-

ing are still unclear. We consider two different hypotheses to

be most likely: (1) the protein ectodomain may have a key role

in determining first oligomerization and then stabilization into

rafts, or (2) apical and basolateral proteins associate with dif-

ferent microdomains that would determine the rate of their

clustering and therefore be responsible for the differential sort-

ing. The latter hypothesis is supported by the fact that caveo-

lae, which are specialized lipid microdomains, have been found

enriched on the basolateral domain of several epithelial cell

lines [11,12]. In addition, Thy-1 and PrPc, two GPI-APs

respectively enriched in the axon and in the cell body of neu-

rons, resembling the apical and basolateral domain of epithe-

lial cells, associate with lipid microdomains of different

composition [13].

In order to study the lipid composition of the apical

and basolateral DRMs and to understand whether they

maintain their specific composition after Triton extraction

we analyzed the lipid fraction that co-immunoprecipitated

with an apical (PLAP) and basolateral (GH-DAF) GPI-AP

in DRMs from single or mixed FRT/PLAP and FRT/GH-

DAF clones.
2. Material and methods

2.1. Reagents and antibodies
Cell culture reagents were purchased from Gibco Laboratories

(Grand Island, NY). The anti-PLAP antibody was from Rockland
(Gilgertsville, PA), the anti-GH antibody was from Biotrend GMBH
(Germany) and the anti-flotillin antibody was from BD Biosciences
Pharmingen (San Jose, CA). Biotin and HRP-conjugated streptavidin
were from Pierce (Rockford, IL). Protein G- and A-coupled magnetic
beads (dynabeads) were from Dynal ASA (Oslo, Norway). All other
reagents were purchased from Sigma Chemical Co. (St Louis, MO).
blished by Elsevier B.V. All rights reserved.
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[1-3H]-sphingosine (radiochemical purity over 98%; specific radioactiv-
ity 2 Ci/mmol) was prepared as previously described [14].

2.2. Cell culture and transfections
FRT cells were grown in F12 Coon’s medium containing 5% FBS

and stably transfected with GH-DAF cDNA as previously described
[15]. FRT clones expressing PLAP were previously obtained [9]. Sur-
face expression of transfected GPI-APs was analyzed by confocal
microscopy (Zeiss 510 LSM) and by biotinylation of cells grown on fil-
ters for 4 days as previously described [10].

2.3. Assays for DRM association
2.3.1. Triton X-100 (TX-100) extraction. Cells grown to confluency

from one 60-mm dish (�2 · 106) were washed twice with PBS contain-
ing 1 mM CaCl2 and 1 mM MgCl2 and then lysed for 20 min on ice in
1 ml TNE/TX-100 buffer (25 mM Tris–HCl, pH 7.5, 150 mM NaCl,
5 mM EDTA, 1% TX-100) and separated by centrifugation into solu-
ble and insoluble fraction as previously described [2].

2.3.2. Sucrose density gradients. Cells that had just reached conflu-
ency in 150-mm dishes (20-25 · 106) were subject to ultracentrifugation
on discontinuous sucrose gradients as previously described [16].
Briefly, cells harvested in PBS containing 0.4 mM Na3VO4 were sus-
pended in 1 ml lysis buffer on ice (1% TX-100, 10 mM Tris buffer,
pH 7.5, 150 mM NaCl, 5 mM EDTA, 1 mM Na3VO4, 1 mM PMSF
and 75 mU/ml aprotinin), Dounce homogenized. Post-nuclear super-
natants (�8 mg proteins) were mixed with an equal volume of 85%
sucrose (wt/vol) in 10 mM Tris buffer, pH 7.5, 150 mM NaCl, 5 mM
EDTA, 1 mM Na3VO4, and run on discontinuous sucrose gradients
(30–5%) at 200000 · g for 17 h at 4 �C. Eleven 1 ml fractions were
collected starting from the top of the tube. Fraction 5, located at the
interface between 5% and 30% sucrose, was regarded as the sphingo-
lipid-enriched membrane fraction.
Fig. 1. PLAP and GH-DAF are differently sorted in FRT cells. PLAP
or GH-DAF FRT clones were grown to confluency on filters, fixed and
stained with specific antibodies against PLAP and GH followed by
TRITC-conjugated secondary antibody in non-permeabilized condi-
tions. Serial confocal sections were collected from the top to the
bottom of cell monolayers (A). LC-biotin was added to the apical or
the basolateral surface of FRT clones. Biotinylated proteins were
immunoprecipitated using specific antibodies to PLAP or GH and
revealed with HRP-conjugated streptavidin (B). Bar = 10 lm.
2.4. [3H]-sphingosine labelling and lipid analysis
Cells from two 150-mm dishes (40–50 · 106) were incubated in the

presence of 4 · 10�8 M [1-3H]-sphingosine (7 ml/dish) in culture med-
ium for 2 h and then chased for 48 h in fresh culture medium [16]. The
radioactivity associated with cells and with cell fractions was deter-
mined by liquid scintillation counting. Labelled samples were dialyzed
and lyophilized. [3H] lipids were extracted twice with 0.4 ml chloro-
form/methanol 2:1 (v/v), separated by mono-dimensional HPTLC
using the solvent system chloroform/methanol/0.2% acqueous CaCl2
55:45:10 (v/v/v), revealed by digital autoradiography (250 dpm applied
on a 3 mm line) with a Beta-Imager 2000 instrument, and analyzed by
b-Vision software (Biospace, Paris) [16]. Cholesterol was quantified
after separation on HPTLC by visualization with 15% concentrated
sulphuric acid in 1-butanol [16]. Phosphatidylcholine was separated
by a two-run mono-dimensional HPTLC using the solvent system
chloroform/methanol 9:1 (v/v), followed by the solvent system chloro-
form/methanol/acid acetic/water 30:20:2:1 (v/v/v/v) and quantified
after separation on HPTLC followed by specific detection with a
molybdate reagent. Cholesterol and phosphatidylcholine were quanti-
fied by densitometry and comparison with known amounts of standard
lipids (Molecular Analyst program, Bio-Rad Laboratories).

2.5. Immunoprecipitation
Cells grown to confluency from two 150-mm dishes (40–50 · 106)

were labelled with [1-3H]-sphingosine and subject to ultracentrifuga-
tion on discontinuous sucrose gradients as aforementioned. Aliquots
of fraction 5 (800 ll) diluted with 200 ll lysis buffer (5% TX-100,
10 mM Tris buffer, pH 7.5, 150 mM NaCl, 5 mM EDTA, 1 mM
Na3VO4, 1 mM PMSF and 75 mU/ml aprotinin) were precleared twice
with dynabeads for 2 h and incubated overnight at 4 �C with anti-
PLAP or anti-GH antibodies. Immunoprecipitates were recovered
using protein A- or protein G-coupled magnetic beads [16]. Lipids
Fig. 2. Both PLAP and GH-DAF associate with DRMs. PLAP or
GH-DAF clones were lysed in TNE/TX-100 buffer at 4 �C and
separated by centrifugation into insoluble and soluble fractions.
Percentages of insoluble and soluble proteins in TX-100 from three
experiments are shown. Errors bars are indicated (A). Eleven 1 ml
fractions were collected from top (1) to bottom (11) from sucrose
density gradients. Proteins were analyzed by SDS–PAGE and detected
by Western blotting using specific anti-PLAP, anti-GH and anti-
flotillin-2 antibodies. An aliquot of each fraction was spotted on the
nitrocellulose membrane and GM1 was revealed using cholera-toxin
conjugated to HRP (B).
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were extracted from the immunoprecipitates and analyzed as described
above. 1/5 of the samples were analyzed by SDS–PAGE.
3. Results

3.1. Analysis of surface distribution and DRM association of

PLAP and GH-DAF in FRT cells

The surface distribution of PLAP (placental alkaline phos-

phatase, a native GPI-AP) and GH-DAF (in which growth
Fig. 3. Lipid distribution on sucrose density gradients. PLAP or GH-DAF cl
and run on sucrose density gradients. Lipids from each of the 11 fractions wer
HPTLC and detected by autoradiography (A). We have indicated with X
Quantitation of sphingolipid and PE radioactivity distribution within the grad
with each lipid present in homogenate (B). The distribution of PC and cholest
(D). Data are expressed as % of each lipid present in homogenate. Data are
hormone is fused with the GPI-attachment signal from

DAF) was analyzed by immunofluorescence and confocal

microscopy in stably transfected FRT cells grown in polarized

conditions on transwell filters (Fig. 1A). These experiments

confirmed that PLAP was preferentially localized on the apical

domain [9], while GH-DAF was preferentially localized on the

basolateral domain, in agreement with what has been shown in

MDCK cells [10]. By surface biotinylation we quantified the

surface distribution of the two proteins that was respectively
ones were labelled with [3H]-sphingosine, lysed in TNE/TX-100 at 4 �C
e extracted in chloroform/methanol. 250 dpm/fraction was separated by
the unknown species of sphingolipids labelled with [3H]-sphingosine.
ient fractions. Data are expressed as % of total radioactivity associated

erol, measured by colorimetric assays, are respectively shown in (C) and
the means of three independent experiments ± S.D.



Fig. 4. Lipid analysis of DRMs associated with PLAP or GH-DAF. PLAP or GH-DAF clones were labelled with [3H]-sphingosine, lysed in TNE/
TX-100 at 4 �C and purified by centrifugation to equilibrium on sucrose density gradients. Fraction 5 was immunoprecipitated using either PLAP or
GH-DAF antibodies. Proteins (1/5 of immunoprecipitate) were run on SDS–PAGE and revealed by Western blotting (A). Lipids associated with
immunoprecipitates (IP) were extracted in chloroform/methanol and separated by HPTLC. The quantitation of radioactive lipids (SM, Cer, X, PE) is
shown in (B). For each lipid species values are expressed as percent of radioactivity present in immunoprecipitates and in the supernatant (SN) (B).
Data are the means of three independent experiments ± S.D.

Table 1
Distribution of radioactivity after immunoprecipitation with anti-PLAP or anti-GH antibodies in sphingolipid-enriched membrane fractions from
FRT cells in culture

Total IP % in IP Preclear Supernatant

FRT cells expressing PLAP (IP aPLAP) 243100 46100 19 ± 0.6 19500 177500
FRT cells expressing GH-DAF (IP aGH) 257500 28200 11 ± 1.5 22000 207300
Mixed cells (IP aPLAP) 257000 34900 13 ± 1 16100 205700
Mixed cells (IP aGH) 257000 17100 7 ± 0.7 22400 217500

Cell lipids were previously metabolically labelled with [3H]-sphingosine. Data are expressed in dpm. Percentages represent values of three inde-
pendent experiments ± S.D.

Table 2
Percent of spingosine-labelled lipid species in the anti-PLAP or anti-
GH immunoprecipitates of fraction 5

PE SM X Cer

FRT cells expressing
PLAP (IP aPLAP)

22 ± 1 63 ± 3.6 12 ± 3.2 3 ± 0.6

FRT cells expressing
GH-DAF (IP aGH)

20 ± 2 64 ± 1.5 13 ± 3.2 3 ± 1

Mixed cells (IP aPLAP) 14 ± 2.3 62 ± 1 21 ± 3.2 3 ± 1
Mixed cells (IP aGH) 14 ± 2 63 ± 2.6 20 ± 2 3 ± 1

Percentages represent values of three independent experiments ± S.D.

Table 3
Distribution of cholesterol after immunoprecipitation with anti-PLAP or a
labelled FRT cells in culture

Total IP

FRT cells expressing PLAP (IP aPLAP) 164.0 24.
FRT cells expressing GH-DAF (IP aGH) 184.0 16.
Mixed cells (IP aPLAP) 168.0 20.
Mixed cells (IP aGH) 168.0 11.

Data are expressed in nmol. n.a., not analyzed. Percentages represent values
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�90% apical for PLAP and �99% basolateral for GH-DAF

(Fig. 1B).

In order to analyze the amount of PLAP and GH-DAF

associated with DRMs we performed TX-100 extraction and

flotation on sucrose density gradients, as previously described

[2,10,16]. At steady state both proteins (respectively �80% of

total PLAP and �61% of total GH-DAF) were insoluble in

TX-100 (Fig. 2A). After centrifugation to equilibrium on su-

crose density gradients both proteins peaked in fraction 5 at

the interface between 5% and 30% sucrose which is the most

representative fraction of DRMs [16], as shown by the flota-
nti-GH antibodies in sphingolipid-enriched membrane fractions from

% in IP Preclear Supernatant

5 15 ± 1 n.a 123.3
6 9 ± 2.5 n.a 151.1
7 12 ± 2 n.a 133.0
1 7 ± 1 n.a 142.5

of three independent experiments ± S.D.



Table 5
Relative enrichment of sphingolipids and cholesterol over phosphati-
dylcholine (PC) in the anti-PLAP or anti-GH immunoprecipitates

IP single cells IP mixed cells

ðSphingolipids=PCÞDAF

ðSphingolipids=PCÞPLAP

1.8 1.6

ðcholesterol=PCÞDAF

ðcholesterol=PCÞPLAP
1.9 1.8
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tion profiles of flotillin-2 and GM1 used as control bona-fide

DRM markers (Fig. 2B). In contrast to the majority of the

proteins in the cell lysates that accumulated in the soluble frac-

tions (8–11) (data not shown) about 63% of PLAP and 68% of

GH-DAF were enriched in fractions 4–6 (Fig. 2B), thus indi-

cating that both apical and basolateral GPI-APs are associated

with DRMs.

3.2. Analysis of the lipid composition of DRMs in PLAP or

GH-DAF expressing FRT cells

In order to understand whether the DRM composition was

affected by the exogenous expression of apical or basolateral

GPI-APs, we analyzed the lipid composition of the DRM frac-

tion in FRT cells expressing either PLAP or GH-DAF. Cells

were labelled with [1-3H]-sphingosine, which is converted into

more complex sphingolipids, while the catabolic tritiated etha-

nolamine fragment is recycled for the biosynthesis of phospha-

tidylethanolamine (PE), a glycerophospholipid that is a

marker of non-DRM fractions [16,17]. The radioactive lipid

pattern was determined by HPTLC and radioimaging of the

11 fractions collected from sucrose density gradient centrifuga-

tion (Fig. 3A). Sphingolipids (SL) (sphingomyelin (SM) and

the unknown X species of sphingolipids labelled with [1-3H]-

sphingosine) were highly enriched in fraction 5 (Fig. 3B), while

the majority of PE was found, as expected, in the soluble frac-

tions of the sucrose density gradients in both the cell lines

(Fig. 3B).

Phosphatidylcholine (PC) analyzed by HPTLC and a color-

imetric assay was also quite enriched in fraction 5 from both

clones (Fig. 3C), as previously described [16,17]. Finally,

�42 nmol/mg protein of cholesterol was found in the post-nu-

clear supernatants and about 50% of it was associated with

fraction 5 in both FRT clones (Fig. 3D). Thus these data show

that the lipid distribution along sucrose density gradients is

similar in both clones (Fig. 3) and is not affected by protein

expression.

3.3. Lipid analysis of DRM fractions associated with PLAP

or GH-DAF

To analyze whether apical and basolateral GPI-APs associ-

ated to similar DRMs we specifically immunoprecipitated each

protein from fraction 5 of the gradients after [3H]-sphingosine-

labelling (Fig. 4A). About 19% and 11%, respectively, of the

total radioactivity present in fraction 5 was recovered respec-

tively in the PLAP or GH-DAF immunoprecipitates, repre-

senting co-immunoprecipitated labelled sphingolipids (Table

1). After chloroform/methanol 2:1 (v/v) extraction, HPTLC

and digital autoradiography �22% of SM, �15% of Cer and

�21% of PE were associated with PLAP immunoprecipitates

while �13% of SM, �12% of Cer and �11% of PE were found

in the GH-DAF immunoprecipitates (Fig. 4B). The relative
Table 4
Distribution of phosphatidylcholine after immunoprecipitation with anti-PLA
from labelled FRT cells in culture

Total IP

FRT cells expressing PLAP (IP aPLAP) 57.6 10.9
FRT cells expressing GH-DAF (IP aGH) 62.0 3.7
Mixed cells (IP aPLAP) 57.8 5.1
Mixed cells (IP aGH) 57.8 1.7

Data are expressed in nmoles. n.a., not analyzed. Percentages represent valu
percentage of each type of labelled lipid in PLAP and GH

immunoprecipitates of fraction 5 was very similar (Table 2).

The total lipid extracts of the immunoprecipitates were then

analyzed for cholesterol (�24.5 nmol for PLAP and

�16.6 nmol for GH-DAF) (Table 3) and for PC (�19% for

PLAP and �6% for GH-DAF) (Table 4). The ratio between

[3H]-SM:cholesterol:PC was 2663:2.24:1 (dpm:nmol:nmol) for

PLAP and 4346:4.48:1 (dpm:nmol:nmol) for GH-DAF indi-

cating that there were no significant qualitative differences in

the lipid composition of DRMs associated with the apical or

basolateral GPI-AP. However, the calculation of the relative

lipid enrichment (SL or cholesterol over PC) clearly shows that

DRMs associated with basolateral GH-DAF contain higher

amounts of SL and cholesterol with respect to apical PLAP

(Table 5).

3.4. Effect of TX-100 on DRM formation

To rule out the possibility that TX-100 had an effect in mix-

ing apical and basolateral DRMs we performed TX-100

extraction and separation on sucrose density gradients after

mixing the two cell lines previously labelled with [3H]-sphingo-

sine. As shown in Fig. 5 the distribution of proteins (Fig. 5A),

radioactive lipids (Fig. 5B), PC (Fig. 5C) and cholesterol

(Fig. 5D) after separation of the mixed lysates on sucrose den-

sity gradients was similar to that from gradients derived from

the single cell line extracts (compare Fig. 5 with Fig. 3).

Fraction 5 was then immunoprecipitated using either anti-

PLAP or anti-GH antibodies and proteins were analyzed by

SDS–PAGE and Western blotting (Fig. 6A). In these mixed ly-

sates GH-DAF was not co-immunoprecipitated with the anti-

PLAP antibody and vice-versa (Fig. 6A), therefore indicating

that the addition of the detergent does not lead to a mixing

of the two proteins or their surrounding environments. As ex-

pected about half of the total lipid radioactivity was recovered

in the mixed compared to the single lysate immunoprecipates

(�13% for PLAP and �7% for GH-DAF) (Table 1). As shown

in Fig. 6B �17% of SM, �15% of Cer and �10% of PE was

associated with PLAP immunoprecipitates while �8% (SM),

�7% (Cer) and �5% (PE) were recovered in the GH immuno-

precipitates. Thus the relative percentage of each type of radio-

labelled lipid immunoprecipitated either with anti-PLAP or
P or anti-GH antibodies in sphingolipid-enriched membrane fractions

% in IP Preclear Supernatant

19 ± 2 n.a. 41.7
6 ± 0.7 n.a. 53.3
9 ± 1.4 n.a. 47.8
3 ± 0.7 n.a. 48.9

es of two independent experiments ± S.D.



Fig. 5. Protein and lipid distribution on sucrose density gradients from
mixed lysates of cells expressing PLAP and GH-DAF. PLAP and GH-
DAF clones (plated in the same number) were labelled with [3H]-
sphingosine, harvested, mixed together and lysed in TNE/TX-100
buffer at 4 �C. TX-100 extracts were purified by centrifugation to
equilibrium on sucrose density gradients. Proteins were run on SDS–
PAGE and PLAP and GH-DAF were detected by Western blotting
(A). Lipids were extracted and detected as described in Fig. 3. The
distribution of sphingosine-labelled species on sucrose density gradi-
ents and their quantitation are shown in (B) (upper and lower panel,
respectively). PC and cholesterol distributions are shown in (C) and
(D), respectively. Data are expressed as % of each lipid present in the
homogenate. Data are the means of two independent experi-
ments ± S.D.
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anti-GH remained constant between single and mixed lysates

(Table 2). Interestingly, we observed a higher cholesterol

recovery, both in PLAP (�20 nmol) and GH (�11 nmol)

immunoprecipitates, from the mixed lysates (Table 3). Like

for SL the amount of PC recovered in the immunoprecipitates

of fraction 5 from the mixed lysates was about half of the
amount in the single lysates (Table 4). The ratio [3H]-SM:

cholesterol:PC, in the immunoprecipitates was respectively

3700:4.05:1 (dpm:nmol:nmol) for PLAP, and 5335:6.5:1

(dpm:nmol:nmol) for GF-DAF, similar to the ratio found in

the immunoprecipitates from single cell lysates (Table 5).

These results confirmed that the composition of DRMs associ-

ated with an apical and a basolateral GPI-AP are qualitatively

very similar and showed that the relative enrichment of the dif-

ferent lipid species was maintained in the mixed lysates com-

pared to single lysate (Table 5).
4. Discussion

We have investigated here the lipid composition of DRMs

associated with PLAP and GH-DAF, respectively sorted to

the apical and basolateral domains of FRT cells, in order to

understand whether apical and basolateral GPI-APs are sur-

rounded by a different lipid environment and whether this

could be linked to their different sorting. We found that PLAP

and GH-DAF were similarly distributed in a 2-step sucrose

density gradient (Fig. 2) and were enriched in fraction 5 to sim-

ilar extents (�30%). This fraction contains �40% of cellular

sphingolipids, �50% of cellular cholesterol and �30% of cellu-

lar PC, but only 5% of cellular PE (Fig. 3), clearly indicating a

lipid segregation in the different gradient fractions. These re-

sults support the increasing evidence for the existence of spe-

cialized lipid domains in the membrane [2,16] and indicate

that the lipid distribution found in FRT cells is similar to that

recovered from other cell lines [2,16,18]. Our data also show

that DRM-fractions derived from different FRT clones are

similar, therefore indicating that the expression of different

GPI-APs does not alter lipid extraction nor their distribution

on sucrose gradients.

After labelling the cells with [1-3H]-sphingosine we analyzed

the lipids co-immunoprecipitated with PLAP and GH-DAF

from the DRM fraction of sucrose gradients. We found no

qualitative differences in the lipid species co-purified with api-

cal or basolateral GPI-APs (Fig. 4). However, a different ratio

between the lipid species was consistently observed in different

experiments and was maintained after mixing the two FRT

clones before lysis (Fig. 6), thus demonstrating that there is

no artificial lipid mixing or domain formation caused by TX-

100 extraction and suggesting that the co-immunoprecipitated

lipids represent the boundary lipids around each protein [3].

Specifically we found an enrichment of SL and cholesterol over

PC in the DRM fraction co-immunoprecipitated with basolat-

eral GH-DAF compared to the ones co-immunoprecipitated

with apical PLAP (Table 5). These data are in agreement with

recent data demonstrating a twofold increase in the choles-

terol:phospholipids ratio in the basolateral membrane of gui-

nea pig colonic epithelia compared to the apical one [19].

Cholesterol plays an important role as a linker molecule [3],

but it can also cause or enhance lateral separation of lipids,

depending on its concentration. Higher cholesterol in the epi-

thelial basolateral membrane leads to higher permeability

compared to the apical one that needs to be better protected

from the external aggression [19]. Furthermore, a high amount

of cholesterol could lead to greater spacing between basolat-

eral GPI-APs, therefore impairing the possibility for them to

come into closer contact with each other and ultimately



Fig. 6. Lipid analysis of DRMs associated with PLAP- or GH-DAF-associated DRMs derived from mixed cell lysates. FRT cells expressing PLAP
and GH-DAF were labelled with [3H]-sphingosine, harvested, mixed together and lysed in TNE/TX-100 buffer at 4 �C. TX-100 extracts were purified
by centrifugation to equilibrium on the sucrose gradients. Fraction 5 was immunoprecipitated using antibodies against PLAP or GH-DAF. Proteins
(1/5 of immunoprecipitate) were run on SDS–PAGE and revealed by Western blotting using specific anti-PLAP or anti-GH antibodies (A). The
molecular weights of PLAP (66 kDa) and GH-DAF (23 kDa) and immunoglobulins (Ig) are indicated. Lipids were extracted and detected as
described in Fig. 3. The distribution of radioactive lipids (SM, Cer, X, PE) is shown. For each lipid species values are expressed as percents of
radioactivity present in immunoprecipitates (IP) and in the supernatants (SN) (B).
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impairing their oligomerization, a process that we have shown

to be necessary for apical GPI-APs sorting [10]. The glycolipid

anchor of GPI-APs could also have an active role in this pro-

cess by promoting a different affinity for different kinds of lipid

microdomains. Consequently, if a GPI-AP is in a favorable

lipid environment for oligomerization, then it could be apically

sorted. Affinity for lipid rafts and oligomerization could work

synergistically to promote apical sorting of GPI-APs. At this

stage we cannot conclude whether the quantitative differences

that we have found in the lipid composition of DRMs associ-

ated with apical and basolateral GPI-APs have a direct role in

apical sorting, but our results will allow further analysis that

will aim to address the role of the proteinaceus ectodomain

and the role of the GPI-anchor. Only when all these additional

possibilities have been explored will we be able to have a com-

plete picture of the mechanism and of the different factors in-

volved in apical sorting of GPI-APs.
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Abstract 

It has been shown that glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) are 

organized in micro-clusters at the cell surface. Furthermore in polarized epithelial cells GPI-APs 

travel to the apical surface in high molecular weight complexes and impairment of their 

oligomerization blocks their apical sorting. However what is the driving force for this clustered 

organization and whether different GPI-APs are associated in the same oligomeric complex is 

unknown. Here we have investigated membrane organization of three different apical GPI-APs co-

expressed in pairs at the apical surface of MDCK cells. We show that GPI-APs are organized in 

cholesterol-independent homo-clusters, which can fuse with each other into cholesterol-dependent 

hetero-clusters. We also show that GPI-AP monomers cannot be cross-linked in hetero-clusters and 

that homo-oligomerization of GPI-APs leads to subsequent hetero-clustering. These results indicate 

that protein-protein interaction is needed first to promote the organization of GPI-APs in cholesterol-

dependent domains.  
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Introduction  

Increasing evidence indicates that biological membranes are organized into compositionally and 

functionally distinct membrane domains among which rafts represent a class of such domain 

enriched in sphingolipids and cholesterol (Edidin, 2003; Simons and Vaz, 2004). Lipid domains form 

spontaneously in binary and ternary lipid mixtures (London, 2002). In particular it has been shown 

that sphingolipid and cholesterol segregate from glycerophospholipids to form tightly packed liquid-

ordered domains in model membranes (Brown and London, 1998, 2000; London, 2002). Several 

studies made in living cells using different approaches suggest that lipid segregation in distinct 

domains also occurs in biological membranes (Maxfield, 2002; Ritchie et al., 2003; Rao and Mayor, 

2005; Meder et al., 2006). 

GPI-APs, together with other lipid-anchored proteins, are enriched in rafts because of the natural 

affinity of the GPI anchor for the long and saturated acyl chains of sphingolipids (Benting et al., 

1999a; Lipardi et al., 2000; Mayor and Riezman, 2004; Paladino et al., 2004; Legler et al., 2005). 

Several lines of evidence indicate that in living cells GPI-APs are confined in restricted domains of 

the membrane: i) GPI-APs do not exhibit Brownian motion, but undergo random walks in a transient 

confinement zone (Fujiwara et al., 2002); ii) single particle tracking experiments revealed that GPI-

APs were found to be confined within 200-400 nm zones (Sheets et al., 1997; Schutz et al., 2000; 

Fujiwara et al., 2002) ; iii) other studies using FRET, single particle tracking, or biochemical cross-

linking  have shown that GPI-APs are restricted to submicron-sized domains on the cell surface 

(Friedrichson and Kurzchalia, 1998; Varma and Mayor, 1998; Pralle et al., 2000). Recent findings 

based on FRET analysis proposed that GPI-APs are organized in three-to-four molecule hetero-

clusters which depend upon cholesterol (Sharma et al., 2004). Thus, the size of the membrane rafts 

can vary from a few nanometers to a few hundred and are very dynamic structures (Simons and Vaz, 

2004; Rao and Mayor, 2005).  

 In the original proposal, lipid rafts originate by the spontaneous segregation of specific lipids due to 

lipid-lipid interactions that would exclude or include other lipids and proteins, thus leading to 

specialized functional domains (Simons and van Meer, 1988; Simons and Ikonen, 1997). In contrast 

it has been proposed that rafts might originate due to the behaviour of core proteins that have 

particular affinities for specific classes of lipids (Anderson and Jacobson, 2002; Helms and Zurzolo, 

2004; Paladino et al., 2004; Jacobson et al., 2007). Consequently, protein-protein and protein-lipid 

interactions rather than lipid-lipid interactions would play the major role in organizing membrane 

domains. 

One of the proposed functions of rafts has been in determining the sorting of associated proteins in 

both the exocytic and endocytic pathways (Ikonen and Simons, 1998; Ikonen, 2001; Salaun et al., 
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2004; Rajendran and Simons, 2005). However, for GPI-APs their association to rafts is not sufficient 

by itself to determine apical sorting in polarized epithelial cells (Paladino et al., 2004; Schuck and 

Simons, 2004), but oligomerization into high molecular weight (HMW) complexes is also required, 

as shown from the fact that impairment of oligomerization by point mutations in the protein 

ectodomain affects apical sorting (Paladino et al., 2004; Paladino et al., 2007). GPI-AP oligomers 

appear to be protein specific and once formed are not sensitive to cholesterol depletion, suggesting 

that they are maintained by protein-protein interactions (Paladino et al., 2004). Nonetheless, rafts 

may constitute a favourable environment for HMW complex formation because cholesterol depletion 

impairs their oligomerization in the Golgi apparatus (Paladino et al., 2004). It is therefore possible 

that besides the protein ectodomain the lipid anchor also has a role in favouring clustering of apical 

GPI-APs. GPI anchors differ in their fatty acid composition (Ferguson and Williams, 1988) and 

probably can interact differently with raft lipids, which might affect their ability to oligomerize.  

Similarly at the plasma membrane GPI-APs have been reported to be organized in microdomains 

(Varma and Mayor, 1998; Hao et al., 2001; Kenworthy et al., 2004; Sharma et al., 2004; Meder et 

al., 2006); however their abundance, size and composition is not known. Due to the lack of 

consensus to the driving force behind GPI-AP organization we sought to determine whether lipids or 

proteins are the principal force driving GPI-APs interaction/clustering. To this aim we have co-

transfected in MDCK cells two different pairs of apical GPI-APs with the same (GFP-GPI/FR, folate 

receptor) or different (GFP-GPI/PLAP, placental alkaline phosphatase) GPI-attachment signals. We 

then analyzed the behaviour of the two different pairs of proteins regarding their capacity to be 

apically sorted and to be incorporated into oligomeric complexes as well as their dependence on 

cholesterol and their relative spatial organization at the apical plasma membrane. Overall our results 

demonstrate that GPI-APs at the plasma membrane are organized in clusters of single GPI-APs 

species, which we refer to as homo-complexes independently of cholesterol. These complexes can 

fuse into clusters of multiple GPI-APs species named hetero-clusters that are sensitive to cholesterol 

depletion and therefore could represent cholesterol dependent raft domains. Importantly, we 

demonstrate that in order to form cholesterol sensitive hetero-complexes, GPI-APs have to be 

organized first as homo-complexes. These data indicate that the primary driving force for GPI-APs 

membrane organization is based on protein-protein interactions as cholesterol-independent homo-

clusters prefigure hetero-clusters. However spatially both protein-protein interactions as well as 

cholesterol are significant players in GPI-AP organization.  
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Results 

Surface localization and DRM association of FR, PLAP and GFP-GPI 

GPI-APs are localized principally on the apical domain of the plasma membrane of epithelial cells 

(Lisanti et al., 1989) where they can be crosslinked in HMW complexes (Friedrichson and 

Kurzchalia, 1998; Paladino et al., 2004). In order to understand whether two different species of 

apical GPI-APs are in the same clusters we co-transfected MDCK cells with two pairs of cDNAs 

encoding different GPI-APs. Specifically, GFP-GPI, in which GFP is fused to the GPI attachment 

signal from the folate receptor (FR) (Paladino et al., 2004; Sharma et al., 2004) was co-transfected 

with two different native GPI-APs (FR or PLAP), which contain distinct attachment signals. Several 

stable clones of MDCK cells expressing the two pairs of GPI-APs, MDCK: FR/GFP-GPI and 

MDCK: PLAP/GFP-GPI, were selected and characterized for their protein expression and plasma 

membrane localization. 

As expected from results derived from single transfected clones (Paladino et al., 2004), we confirmed 

that GFP-GPI, PLAP and FR were all enriched on the apical surface (Figure 1A). In particular, ~ 

85% and 90% of FR and PLAP was found on the apical membrane respectively, while ~ 80% of 

GFP-GPI was apically localized in both MDCK clones (Figure 1A). Each of the proteins maintained 

the same ratio of apical distribution in both single and double transfected cells (Figure 1A) (Paladino 

et al., 2004). 

 We then analysed association of these GPI-APs with detergent-resistant membranes (DRMs) by 

floatation on sucrose density gradients after Triton X-100 (TX-100) extraction (Brown and Rose, 

1992; Simons and Ikonen, 1997; Brown and London, 1998, 2000). Consistent with previous results 

(Miotti et al., 2000; Paladino et al., 2004), we found that all three proteins migrated to the lighter 

density fractions (4-7) of the gradients (95%, 80% and 90%, respectively, for FR, PLAP and GFP-

GPI), which were also enriched in the ganglioside GM1 (Figure 1B). These results confirmed that 

all three proteins associated with DRM fractions to a similar extent. Furthermore, the proportion of 

each of the GPI-APs found in DRMs was maintained constant independently of whether they were 

expressed alone or in pairs (Paladino et al., 2004). 

 

FR, PLAP and GFP-GPI are found in HMW homo-oligomers at the apical surface of MDCK 

cells 

Apical GPI-APs are found in HMW complexes and oligomerization appears to be a key step for 

their apical sorting (Paladino et al., 2004). We therefore investigated whether FR, PLAP and GFP-

GPI also oligomerize in the co-transfected MDCK clones. As in single transfected cells (Paladino et 

al., 2004), in the co-transfected clones (MDCK: FR/GFP-GPI and MDCK: PLAP/GFP-GPI) FR, 



 

 88 

PLAP and GFP-GPI (about 20 - 40%) were found in oligomeric complexes after fractionation of 

velocity gradients at steady-state (Figure 2A) in agreement with previously published data by FRET 

analysis (Sharma et al., 2004).  

To ensure that each protein was in HMW complexes also at the cell surface and to rule out the 

possibility that these complexes were formed as a consequence of detergent addition during cell 

lysis, we added the impermeable chemical crosslinking agent, BS3 [Bis(sulfosuccinimidyl)suberate] 

(arm lenght 1,14 nm) to the apical surface of living cells for different times both at 37°C and at 4°C 

to inhibit internalization. In the presence of BS3, bands corresponding to relative molecular masses 

of dimers (**) and trimers (***) as well as HMW complexes were detected for each of the three 

proteins (Figure 2B). This indicates that a relatively small fraction of each protein is present in an 

oligomeric complex at the plasma membrane similar to what has previously shown in single 

transfected cells (Friedrichson and Kurzchalia, 1998; Paladino et al., 2004). The cross-linked 

pattern was similar at both temperatures, indicating that the proteins are in oligomeric complexes at 

physiological temperatures. In addition, the amount of cross-linked complexes was higher at 37°C 

compared to 4°C, thus suggesting that at the lower temperature the formation of these complexes 

was drastically impaired, most likely because of the reduced mobility of the molecules in the plane 

of the membrane. Furthermore, we could rule out the possibility that the enhanced cross-linking at 

37°C was dependent on internalization in specific domains and could confirm that these complexes 

existed at the cell surface because none of the proteins were endocytosed during the short 

incubation times at 37°C (Supplementary Figure 1A and B, and data not shown).  

 

GFP-GPI, FR, and PLAP oligomers can be cross-linked in hetero-clusters at the cell surface 

of MDCK cells 

The above biochemical results indicated that each protein forms HMW homo-complexes 

independently of the other GPI-APs with which they were co-transfected. In order to understand 

how different GPI-APs are organized on the apical membrane with respect to each other we tested 

whether they could be cross-linked in hetero-HMW-complexes. To this aim lysates from cells 

exposed or not to the addition of BS3 were immunoprecipitated using either an anti-FR or an anti-

PLAP antibody and revealed with an anti-GFP antibody (Figure 3). Although the amount of 

immunoprecipitated proteins detected by western blot was similar both in the presence or absence 

of the cross-linking agent (Figure 3, right panels), a smear between ∼ 60 and ∼ 300 kDa revealed 

with the anti-GFP antibody was detected in the immunoprecipitates from both cells only after 

crosslinking (Figure 3, left panels), indicating that both pairs of proteins co-immunoprecipitated 

after BS3 addition. This co-immunoprecipitation between GFP-GPI and FR or PLAP is specific 
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because neither the anti-FR nor the anti-PLAP antibodies cross-react with GFP-GPI, as shown by 

control immunoprecipitations from cells expressing only GFP-GPI (Supplementary Figure 2). 

These data show that two different GPI-APs can be cross-linked in HMW hetero-complexes at the 

cell surface indicating that they are in close proximity.  

In order to understand whether this clustered organization was specific for GPI-APs we analysed 

the behaviour of GP114, an apical endogenous non-raft transmembrane protein of MDCK cells. 

After addition of BS3 GP114 does not co-immunoprecipitate either with FR or PLAP 

(Supplementary Figure 3) thus supporting the concept that non-raft proteins are in a distinct 

environment from GPI-APs at the apical surface. 

 

Role of cholesterol in the spatial organization of GPI-AP clusters 

By using pharmacological depletion of cholesterol and a FRET approach Sharma and colleagues 

(Sharma et al., 2004) reported that cholesterol plays a role in the organization of GPI-AP nano-

clusters at the surface of non-polarized cells. In order to understand whether the relative 

organization of GPI-APs at the apical membrane of MDCK cells was dependent on cholesterol, we 

depleted cells of cholesterol using similar pharmacological conditions (eg; saponin, SAP, 0.2%, at 

4°C for 30 min) and analyzed the effect on homo- and hetero- GPI-AP complexes after surface 

cross-linking at 37°C (Figures 4 and 5).  

After cholesterol depletion all three proteins were still cross-linked in HMW homo-complexes 

(Figure 4). On the contrary, the hetero-GPI-AP complexes were no longer cross-linkable after 

saponin addition (Figure 5), indicating that co-cluster organization between two different GPI-APs 

requires cholesterol. To rule out the hypothesis that homo- and hetero-clusters had different 

threshold sensitivity to cholesterol depletion we used higher saponin concentration and/or longer 

incubation times (Supplementary Figure 4). Under these conditions homo-clusters remained 

unaffected indicating that they did not depend on cholesterol.  

These biochemical data on the cholesterol sensitivity of homo- and hetero- GPI-clusters were 

supported by indirect immunofluorescence and by quantitative confocal analysis. Control cells or 

cells treated with saponin were chemically cross-linked with BS3, fixed and stained using specific 

couples of antibodies (αGFP together with αFR or αPLAP) (Figure 6). Similarly to single 

expressing cells (Supplementary Figure 5) after cross-linking all three GPI-APs were organized in 

discrete punctate structures (Figure 6, +BS3 -SAP). The clusters of each GPI-AP were distinct but 

close to each other, as indicated by the presence of some areas of co-localization either in one Z-

plane (yellow areas in the overlay) or in the 3D-reconstruction (white areas) (Figure 6, +BS3 -

SAP). Although confocal microscopy does not allow the spatial resolution to discriminate GPI-APs 
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micro-clusters we could quantify the effect of saponin on this macro-cluster organization. Therefore 

we measured the degree of co-localization of 10 randomly chosen fluorescence images from two 

different experiments (Table I). Between 5 and 6% of co-localization was found between the two 

proteins in both clones. Interestingly, in agreement with the biochemical experiments, saponin 

treatment completely abolished the co-localization of GFP-GPI with either FR or PLAP and all 

three proteins were found in homo-clusters completely separated from each other (Figure 6, +BS3 

+SAP), as evidenced further by the degree of co-localization that was strongly reduced to ~ 0.2-

0.6% (Table I). Taken together, these data indicate that while saponin treatment does not affect 

GPI-AP homo-complex formation, it does disrupt their organization into hetero-complexes, 

indicating that these structures are likely to be dependent on cholesterol.  

In order to confirm this hypothesis we have undertaken two different approaches.  In the first 

approach we analysed the effect of cholesterol addition on homo- and hetero- GPI-AP complexes 

after surface cross-linking at 37°C (Figure 7).  As previously shown (Patel et al., 2002) pretreating 

MDCK cells with cholesterol (10 mM) complexed to βCD resulted in an increase in cellular 

cholesterol levels without detectable cytotoxicity or morphological changes in the cell monolayer. 

Under these conditions all three proteins were still cross-linked in HMW homo-complexes (Figure 

7A), thus supporting the hypothesis that homo-clusters are cholesterol independent. In contrast, 

after cross-linking GFP-GPI did not co-immunoprecipitate with FR or PLAP indicating that hetero-

clusters between two different GPI-APs was drastically reduced with time after cholesterol addition 

(Figure 7B). In an alternative approach we investigated the effect of cholesterol depletion by 

metabolic inhibition, using mevinolin (MEV), or by surface extraction, using methyl-β-cyclodextrin 

(βCD). These treatments reduce the amount of cholesterol in the membrane in contrast to saponin 

which sequesters cholesterol in an hexagonal patterned lattice (Bangham et al., 1962) within the 

bilayer. Under both these conditions we found an increase of co-immunoprecipitation between 

PLAP and GFP-GPI, thus suggesting that reduction of cholesterol in the plasma membrane brings 

the hetero-clusters closer to each other (Supplementary Figure 6). On the contrary both these 

treatments do not affect the formation of homo-complexes (data not shown), similar to the saponin 

conditions (Figure 4). These different approaches all point to a role for cholesterol in the 

organization of hetero-clusters between different GPI-APs, and confirm that cholesterol is not 

required for the formation of homo-complexes.  

To rule out the hypothesis that removal of cholesterol could have a general effect on membrane 

organization and therefore not be specific for raft-associated proteins we analyzed the effect of 

cholesterol depletion on the membrane organization of apical transmembrane non-raft associated 

proteins, namely the neurotrophin receptor (p75 NTR) exogenously expressed in MDCK cells (Le 
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Bivic et al., 1991) and the endogenous GP114 (Le Bivic et al., 1990). Interestingly saponin had the 

opposite effect on these proteins compared to GPI-APs.  Indeed, after cross-linking we could 

observe a smear at high molecular weight concomitant with a decrease of the monomeric form for 

both proteins in saponin treated compared to non treated cells suggesting that cholesterol depletion 

facilitated interactions between non-raft proteins (Supplementary Figure 7). On the other hand, as 

expected, we did not find any co-immunoprecipitation between the two proteins (data not shown). 

The opposite effect of saponin in the case of non raft- and raft-associated proteins indicates that 

these proteins are in different phases as previously shown (Ritchie et al., 2003; Kusumi et al., 2005; 

Meder et al., 2006) and support the hypothesis that the effect of cholesterol depletion on GPI-APs 

hetero-clusters is specific. 

 

GPI-AP homo-clusters are required to form hetero-clusters  

The question arises as to whether cholesterol-independent homo-oligomerization of GPI-APs is 

required for the formation of cholesterol dependent hetero-clusters. Thus we analysed whether the 

hetero-HMW GPI-AP complexes derived from the cross-linking of monomers or oligomers of the 

single proteins by purifying them on velocity gradients (Figure 8). After addition of BS3 to the cell 

surface, cell lysates were run on velocity gradients and each fraction was immunoprecipitated with 

anti-FR or anti-PLAP antibodies and revealed with the anti-GFP antibody on western blots (Figure 

8). For both pairs of proteins we only observed co-immunoprecipitation with GFP-GPI in fraction 

9, which contains only HMW complexes of the single proteins (Figure 8). In an alternative 

approach we disrupted GFP-GPI oligomers, which depend on disulphide bonds (Paladino et al., 

2004), by treating the cells with DTT (10 mM, 5 min), and then analyzed whether GFP-GPI 

monomers were cross-linked with PLAP or FR (whose oligomers were not affected by DTT 

treatment; data not shown). As expected, in the presence of DTT GFP-GPI was present only in the 

monomeric, or partially denaturated dimeric forms (band at 43 kDa, Supplementary Figure 8, top). 

In these conditions GFP-GPI did not co-immunoprecipitate with PLAP nor FR (Supplementary 

Figure 8, bottom). Taken together these data show that only homo-HMW-complexes of the single 

GPI-APs were in close enough proximity to be cross-linked and suggested that monomers/dimers 

cannot be cross-linked to pre-existing homo-oligomers likely because they are more dispersed. 

Having established that only homo-oligomers can be crosslinked in hetero-clusters the next 

question was to understand whether homo-oligomerization of GPI-APs leads to subsequent hetero-

clustering. To this aim we artificially increased GPI-AP homo-clustering by adding simultaneously 

anti-GFP and anti-PLAP antibodies at 12°C to MDCK cells expressing both proteins (Figure 9A). 

In agreement with previous observations (Mayor et al., 1994; Harder et al., 1998; Meder et al., 
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2006) following primary and secondary antibody addition, we observed the redistribution of the two 

proteins into punctate patterns (Figure 9A). Quantification of 10 randomly chosen images from two 

different experiments showed that approximately 4% of PLAP/GFP-GPI clusters were co-localizing 

whereas only 0.5% co-clustering was observed in untreated cells (Table II). These data show that 

cross-linking of GPI-APs induces hetero-clustering. However we also show that the clustering of 

the two proteins in specific areas of the plasma membrane is largely independent of each other. To 

directly test this hypothesis we stimulated clustering of one of the two proteins by antibody cross-

linking and analysed the behaviour of the other one after fixation. We found that cross-linking of 

GFP-GPI with a specific antibody was not able to co-cluster either PLAP (Figure 9B, left panels) or 

FR (Figure 9B, right panels and Table III). Similar results were obtained by clustering FR or PLAP 

(data not shown), thus confirming that GPI-AP homo-clusters are independent of each other. These 

data also correlate with biochemical experiments (Figures 8 and Supplementary 8) in which only 

GPI-AP homo-oligomers can be cross-linked while monomers and dimers cannot. 

In order to avoid possible problems caused by fixation (Mayor et al., 1994; Kusumi and Suzuki, 

2005), we performed the same type of experiment in living cells by following the fluorescence of 

GFP-GPI molecules after cross-linking of PLAP or FR with specific antibodies (Figure 9C). Cross-

linking of either PLAP or FR did not induce increased co-localization with GFP-GPI (Figure 9C, 

panels B-D, F-H), the distribution of which was unaltered compared to the non cross-linked 

conditions (Figure 9C, panels A and E). The regions occupied by GFP-GPI appear to be completely 

segregated from those of FR or PLAP, as indicated by quantification of different experiments 

(about 0.2-0.4%) shown in Table III. These data indicate that no significant association between 

multiple GPI-APs exists and that each GPI-AP is independently recruited into homo-clusters. 
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Discussion 

According to the raft hypothesis sphingolipids and cholesterol spontaneously associate with each 

other to form distinct, more ordered phases within which proteins with chemical affinity for them 

(such as GPI-APs) partition (Simons and Ikonen, 1997). Because of their capacity to segregate 

specific lipids and proteins, in cell membranes rafts can act as signalling and sorting platforms 

(Simons and Ikonen, 1997; Simons and Toomre, 2000). However, it has been shown that rafts are 

not sufficient to determine apical sorting of GPI-APs in polarized epithelial cells and that their 

clustering in HMW complexes is a necessary step (Paladino et al., 2004). This is also supported by 

many reports which indicate that GPI-APs are able to cluster and segregate into specific domains 

(Mayor et al., 1994; Anderson and Jacobson, 2002; Edidin, 2003; Meder et al., 2006). Nonetheless, 

how apical GPI-APs are physically organized with respect to each other and to the surrounding 

lipids is a much-debated issue. While the original raft hypothesis postulated that lipid segregation is 

responsible for the organization of proteins, recent evidence indicates that functional rafts, 

containing GPI-APs, are generated by clustering of GPI-APs that, following oligomerization, 

recruit and concentrate raft lipids into a spatially segregated domain (Paladino et al., 2004).    

In order to analyse the driving force behind the clustering of GPI-APs we have studied the plasma 

membrane organization of two pairs of apical GPI-APs co-transfected in MDCK cells: GFP-GPI 

and FR, and GFP-GPI and PLAP. Consistent with previous data, all of them associate with DRMs 

to a similar extent (Figure 1B) and could be purified as HMW homo-complexes on velocity 

gradients (Figure 2A) or by SDS PAGE after addition of a cell- impermeable cross-linker to the 

apical plasma membrane (Figure 2B). In agreement with previous observations (Mayor et al., 1994; 

Friedrichson and Kurzchalia, 1998; Paladino et al., 2004; Meder et al., 2006) these data indicate 

that GPI-APs are organized in homo-clusters at the apical surface of polarized cells. Interestingly, 

we found that both pairs of GPI-APs co-immunoprecipitate after cross-linking (Figure 3). This co-

immunoprecipitation is specific for GPI-APs because it does not include other apical, non-raft 

proteins (Supplementary Figure 3), indicating that raft and non-raft proteins are segregated into 

distinct environment, as recently shown (Meder et al., 2006). Furthermore, co-immunoprecipitation 

occurs exclusively between HMW homo-complexes and not between GPI-AP monomers or dimers 

(Figures 8 and Supplementary 8), thus suggesting that homo-GPI-AP clusters are in close proximity 

to each other whereas monomers, excluded by the cross-linking, are much more dispersed or 

actively excluded by the spatial organization of the clusters. The fact that the arm of the cross-linker 

is very small (1.14 nm), that cross-linking occurs at 37°C in a very short time (< 2 min) and is 

independent of internalization and temperature, demonstrates that GPI-AP homo-clusters are in 

close proximity to each other at the cell surface of unperturbed cells.  
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These data are also supported by quantitative analysis of confocal immunofluorescence images, 

showing that after chemical cross-linking the co-localization of two GPI-APs increases (Figure 6 

and Table I). It therefore appears that homo-oligomerization is necessary to create the subsequent 

spatial organization of GPI-APs into hetero-clusters. Indeed, by artificially clustering each GPI-AP 

by antibody cross-linking we were able to induce GPI-AP co-clustering (Figure 9A and Table II), 

thus showing that homo-clustering induces a partial co-localization between two different GPI-APs. 

However, because clustering of GFP-GPI is not sufficient to recruit either FR or PLAP (Figure 9B 

and Table III), or vice-versa (Figure 9C and Table III), our data also indicate that each GPI-AP is 

independently recruited to form its own cluster. These data are in agreement with previously 

published results in both polarized (Meder et al., 2006) and non-polarized cells (Mayor et al., 1994; 

Harder et al., 1998) so far as they show that different GPI-APs are organized in distinct independent 

clusters that can be close enough to be co-patched by antibody addition.  

The next question was then to understand how this spatial organization of GPI-APs was related to 

the organization of membrane lipids and to determine the principal driving forces. The raft 

hypothesis, based principally on lipid behaviour in simple model membranes, postulates that lipids 

would drive protein segregation (Simons and Vaz, 2004). On the same line, Sharma and colleagues 

proposed that cholesterol is an active player in the organization of GPI-AP nanoclusters, which are 

sensitive to saponin. Based on sophisticated FRET analysis, it was also shown that they should be 

composed at most of four different GPI-APs. This is in contrast with previous observations that 

GPI-APs are organized in homo-clusters formed by the same protein species (Mayor et al., 1994; 

Harder et al., 1998; Paladino et al., 2004) and with our observation that cholesterol depletion does 

not affect organization of GPI-APs in HMW complexes (Figures 4 and Supplementary 4A and B). 

This feature does not appear to be specific for polarized cells because GFP-GPI clusters are also 

insensitive to cholesterol depletion in CHO cells (Supplementary Figure 4C). In contrast, we found 

that hetero-clusters are completely disrupted by saponin treatment (Figures 5 and 6 and table I), 

suggesting that while hetero-cluster organization depends on cholesterol, homo-GPI-AP clusters are 

cholesterol-independent. We also excluded that there is a different threshold required to disrupt 

homo- and hetero-clusters by treating the cells for longer duration and by using different saponin 

concentrations (Supplementary Figure 4A and B). Furthermore, the opposite effect of saponin in the 

case of non-raft-associated proteins (Supplementary Figure 7) support the hypothesis that the effect 

of cholesterol depletion on GPI-AP hetero-clusters is specific. In addition, all alternative methods 

used to perturb cholesterol balance in the membranes affected exclusively the organization of 

hetero-clusters. Specifically, while addition of cholesterol inhibited hetero-clustering between 

different GPI-APs, cholesterol depletion (by metabolic synthesis inhibition or by βCD extraction) 
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enhanced it (Figures 7 and Supplementary 6). Strikingly, both these treatments, similar to saponin, 

left homo-clusters unperturbed. The different effect induced by βCD and saponin on hetero-clusters 

could be explained by the different action of these two compounds. Saponin inserts into the plasma 

membrane and sequesters cholesterol by forming multimeric globular deposits of approximately 80-

100 Å (Bangham et al., 1962) which could result in a spatial segregation of the homo-complexes 

(see model in Figure 10). On the other hand, the lack of effect of saponin on homo-clusters could be 

explained in two ways: either saponin doesn’t have access to the cholesterol tightly bound/hidden in 

these clusters or there is not sufficient cholesterol to bind. Differently from saponin, βCD 

selectively extracts cholesterol from membrane, preferentially from outside the GPI-APs complex 

(Ilangumaran and Hoessli, 1998), thus favouring the coalescence of hetero-clusters (see model in 

Figure 10). This interpretation is consistent with previous findings showing that lowering 

cholesterol levels by βCD induces formation of large-scale (micrometers) domains in the plasma 

membrane but does not alter the distribution of cross-linked or uncross-linked GPI-APs (Hao et al., 

2001). Conversely, if cholesterol had been essential for homo-clusters organization we would have 

expected an effect of its depletion by either the biochemical inhibition of the synthesis or by βCD 

extraction.  

Based on all of the above results we propose that at the plasma membrane GPI-APs are organized in 

homo-clusters independently of cholesterol and that they are maintained by protein-protein 

interactions. Because GPI-APs have a high affinity for cholesterol and saturated sphingolipids, 

during clustering they may generate a local enrichment of raft lipids including cholesterol within a 

confined zone (Figure 10), thus creating specialized membrane domains that actively exclude GPI-

AP monomers and other apical components. These GPI-AP clusters have high affinity for each 

other and so can fuse into cholesterol-dependent hetero-clusters (Figure 10). Although our approach 

does not permit measurement of the precise size of the cholesterol-independent GPI-AP homo-

clusters our data based on velocity gradients (Figure 8) show that they are in HMW complexes 

containing more than four molecules, in contrast to what has been recently proposed (Sharma et al., 

2004). Consequently, more than four molecules are likely to be required to drive a change in the 

lipid microenvironment surrounding GPI-APs, which would then permit coalescence of hetero-

clusters (that might represent a raft). In support of this hypothesis we do not find co-

immunoprecipitation between different GPI-APs in the low molecular weight fractions of velocity 

gradients (Figure 8) demonstrating that hetero-oligomerization occurs only between HMW homo-

complexes. Similarly we show that homo-cluster forms independently of each other because the 

antibody cross-linking of one specific GPI-AP does not recruit the others. However our data also 
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support the hypothesis that homo-oligomerization is necessary to create the subsequent spatial 

organization of GPI-APs into hetero-clusters (Figure 9A and Table II). 

Our model is supported by studies of GPI-APs in model and cell membranes which have shown that 

i) monomeric GPI-APs do not show a particular affinity for liquid ordered phases (Brown and 

London, 2000), ii) partitioning of GPI-APs into lipid ordered phases is dramatically increased by 

antibody cross-linking compared to non-raft molecules (Dietrich et al., 2001; Edidin, 2003), and iii) 

GPI-APs do not show a particular confinement using single molecule tracking at 25 µsec resolution 

(Kusumi et al., 2005). 

Similarly, in the case of T cell signalling it has been clearly demonstrated that the clustering of 

CD2, the adaptor protein LAT and the tyrosine kinase Lck into discrete microdomains in the plasma 

membranes is maintained by protein-protein interactions and does not depend on cholesterol or 

preformed lipid rafts (Douglass and Vale, 2005). 

Although we cannot yet exclude that rafts pre-exist in cellular membranes, our data are also 

supported by a significant body of literature from which it appears that all the biological functions 

where lipid rafts are involved require segregation and coalescence into large structures which can 

be explained by the action of proteins in recruiting and concentrating lipids, rather than vice versa 

(Brown and London, 2000; Edidin, 2003; Munro, 2003). 
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Materials and Methods  

Reagents and Antibodies 

Antibodies were purchased from the following companies: polyclonal anti-PLAP from Rockland 

(Gilgertslville, PA), monoclonal anti-PLAP from Sigma Chemical Co. (St Louis, MO), polyclonal 

anti-GFP from Clontech Laboratories (East Meadow Circle, CA), polyclonal anti-GFP from Santa 

Cruz Biotechnology (Santa Cruz, CA), monoclonal anti-GFP from Q-BIOgene (Morgan Irvine, CA), 

Cy3- and Cy5- conjugated secondary antibodies from Molecular Probes (PoortGebouw, 

Netherlands). Monoclonal anti-FR (Mov 19) was a gift of Dr. S. Miotti (Istituto Nazionale per lo 

Studio e la Cura dei Tumori, Milan, Italy) and polyclonal anti-GP114 was a gift of Dr. A. Le Bivic 

(Faculté des Sciences de Luminy, Marseille, France). Biotin, BS3 and HRP-conjugated streptavidin 

were from Pierce (Rockford, IL). Cell culture reagents and all other reagents were purchased from 

Sigma Chemical Co. 

 

Cell culture and transfections 

MDCK cells were grown in DMEM containing 5% FBS. MDCK cells were co-transfected with 

sequences encoding for GFP-GPI and PLAP, while cDNA for FR is transfected in MDCK cells 

already stably expressing GFP-GPI as previously described (Paladino et al., 2004). 

 

Biotinylation assay  

Cells grown on the transwell filters for 4 d were selectively biotinylated and processed as 

previously described (Zurzolo et al., 1994). Single proteins were immunoprecipitated from cell 

lysates using specific antibodies and run on SDS-PAGE. Biotinylated proteins were revealed by 

HRP-conjugated streptavidin. 

 

Sucrose Density Gradients 

Sucrose gradient analysis was performed using cells grown on 150 mm (20-25 x 106) dishes to 

confluence. Cells were scraped from dishes in PBS containing CaCl2 and MgCl2, resuspended in 1 ml 

of lysis buffer containing 1% TX-100, 10 mM Tris buffer, pH 7.5, 150 mM NaCl, 5 mM EDTA and 

sheared through a 23-g needle. The lysate was mixed with an equal volume of 85% sucrose and run 

on discontinuous sucrose gradients (40–5%) at 200,000 g for 17 hrs at 4°C (Tivodar et al., 2006). 

Fractions were collected starting from the top of the tube and TCA-precipitated. Samples were 

revealed by western blotting using specific antibodies. 
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Velocity gradients 

Velocity gradients were performed using previously protocols (Doms et al., 1987; Paladino et al., 

2004). Cells, grown to confluence in 100 mm dishes, were lysed either on ice or at room 

temperature for 30 min in 20 mM Tris, pH 7.4, 100 mM NaCl, 1% TX-100 (with or without 0.4% 

SDS). Lysates were scraped from dishes, sheared through a 26-g needle and layered on top of a 

discontinuous sucrose gradient (30-5%) in the same buffer of the lysis containing 0.1% TX-100. 

After centrifugation at 45,000 rpm for 16 h in a Beckman SW 50 ultracentrifuge, fractions of 500 µl 

were harvested from the top of the gradient. Proteins from each fraction were TCA-precipitated or 

immunoprecipitated using specific antibodies depending on the experiment, run on SDS-PAGE and 

revealed by western blotting using specific antibodies. The lysis buffer does not contain SDS in the 

case of FR because SDS disrupts the antigenicity of the specific MOV-19 antibody. In the other two 

cases the results was unchanged (Paladino et al., 2004).  

 

Cross-linking 

Bis(sulfosuccinimidyl)suberate (BS3) (0.5 mM) was added to the cells grown on dishes for different 

incubation times depending on the experiment and quenched for 15 min with 20 mM Tris pH 7.5, as 

described elsewhere (Friedrichson and Kurzchalia, 1998).  Proteins were TCA-precipitated or 

immunoprecipitated with specific antibodies, separated on SDS-PAGE and revealed by western blot 

using specific antibodies. 

 

Fluorescence Microscopy 

After cross-linking, MDCK cells were washed with PBS containing CaCl2 and MgCl2, fixed with 4% 

PFA and quenched with 50 mM NH4Cl. Primary antibodies were detected with Cy3- and Cy5- (as 

anti-mouse and anti-rabbit, respectively) conjugate secondary antibodies. Images were collected 

using a laser scanning microscope (LSM 510 META, Carl Zeiss Microimaging, Inc.) equipped with a 

planapo 63x oil-immersion (NA 1.4) objective lens. Laser lines at 543 nm and 633 were used to 

excite respectively the fluorophores Cy3 and Cy5 and the emission signal was collected by the 

META head. All image processing was done using LSM 510 software. 

 

Antibody co-patching  

Cells were incubated with specific primary antibodies in areal medium (F12 Coon’s modified 

medium with 20 mM Hepes pH 7.5 and 0.2% bovine albumin) for 45 min at 12°C. After washings, 

Cy3- and Cy5- (as anti-mouse and anti-rabbit, respectively) conjugate secondary antibodies were 

added to the cells for 45 min at 12°C. Then cells were washed, fixed and quenched as above. 
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Alternatively after antibody clustering cells were imaged in vivo without fixation by confocal 

microscopy in CO2 independent medium (150 mM NaCl, 5 mM KCl, 1 mM, CaCl2, 1 mM MgCl2, 

and 20 mM Hepes, pH 7.4). 

 

Co-localization measurements 

The degree of co-localization of the two fluorescence signals in the different experiments was 

quantified by using the LSM 510 software (Carl Zeiss Microimaging, Inc). In all images we have 

established for all fluorophores as threshold, above which pixels are retained co-localized, the value 

150 (one example is shown in Supplementary Methods). The number of co-localized pixels was 

normalized for the total of pixels of a specific fluorophore in the image. The degree of co-localization 

of 10 cells randomly chosen of two different experiments was measured and the average values with 

standard deviation are shown in the tables. 

 

Saponin treatment 

Cells, grown to confluence on dishes or on coverslips for 3 d were incubated 30 min on ice with 

saponin (0.2%) in CO2 independent medium as previously described (Sharma et al., 2004). 

 

Cholesterol addition assays 

Addition of cholesterol (10mM) to cells was carried out using cholesterol-saturated βCD, which 

was prepared as previously described (Christian et al., 1997; Ying et al., 2003). Briefly, 1 g of βCD 

was dissolved in 20 ml H2O, and then 30 mg of cholesterol was added. The mixed solution was 

incubated at 37°C overnight, filtrated and freeze-dried. 

The cholesterol-saturated βCD was added to the cells in medium containing 20 mM Hepes pH 7.5 

and 0.2% bovine albumin at 37°C for different indicated times. By colorimetric assay we measured 

that the levels of total cholesterol increased about 7-14% in cholesterol-loaded cells in comparison 

to the control cells. 
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Figure legends 

Figure 1 FR, PLAP and GFP-GPI are apically sorted and associate with DRMs in MDCK cells.  

MDCK cells stably expressing FR/GFP-GPI or PLAP/GFP-GPI were grown for 4 d on filters. LC-

biotin was added to the apical or the basolateral surface of the cells. After immunoprecipitation with 

specific antibodies, biotinylated proteins were revealed using HRP-streptavidin. Quantitations 

represent the mean value of three independent experiments (A). MDCK cells stably expressing 

FR/GFP-GPI or PLAP/GFP-GPI were lysed in buffer containing 1% TX-100 at 4°C and purified by 

centrifugation to equilibrium on sucrose gradients (5-40%) as described in materials and methods. 

Fractions of 1 ml were collected from the top (fraction 1) to the bottom (fraction 12). After TCA-

precipitation, proteins were run on SDS-PAGE and detected using specific antibodies (B). An 

aliquot of each fraction was spotted on nitrocellulose membranes and GM1 was revealed using 

HRP-cholera toxin. As previously shown, the band at 43 kDa represents a partially denatured dimer 

of GFP (Inouye and Tsuji, 1994; Paladino et al., 2004).  

 

Figure 2 FR, PLAP and GFP-GPI form high molecular weight complexes in MDCK cells. 

MDCK cells stably expressing FR/GFP-GPI or PLAP/GFP-GPI, grown to confluence, were 

purified by velocity gradient as described in materials and methods. Fractions of 0.5 ml were 

collected from the top (fraction 1) to the bottom (fraction 9). After TCA precipitation, samples were 

run on SDS-PAGE and revealed by western blotting with specific antibodies. The position on the 

gradients of molecular weight markers is indicated on top of the panels (A). Alternatively, cells 

were cross-linked by using BS3 (0.5 mM) either at 4°C or 37°C for different indicated times. After 

lysis, proteins were TCA-precipiated, separated on SDS-PAGE and revealed using specific 

antibodies (B). The molecular weight of the monomeric forms of each protein is indicated, together 

with the position of a 180 kDa marker. *, **, and  *** indicate, respectively, monomers, dimers and 

trimers of the different proteins. 

 

Figure 3 HMW complexes of FR, PLAP and GFP-GPI can be cross-linked in specific hetero-

clusters. 

MDCK cells stably expressing FR/GFP-GPI or PLAP/GFP-GPI were crosslinked at 4°C with BS3 

(0.5 mM). After lysis, proteins were immunoprecipitated either with anti-FR or anti-PLAP antibody 

and revealed by western blotting using specific antibodies.  

 

Figure 4 Cholesterol depletion does not affect GPI-AP homo-clusters. 
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MDCK cells stably expressing FR/GFP-GPI or PLAP/GFP-GPI, either in control conditions or after 

saponin (SAP) addition as described in materials and methods, were cross-linked with BS3 at 37°C 

for different times. After lysis, proteins were TCA-precipitated and revealed by western blotting 

with specific antibodies.  

 

Figure 5 Cholesterol depletion affects GPI-AP hetero-clusters. 

MDCK cells stably expressing FR/GFP-GPI or PLAP/GFP-GPI, in control conditions or after 

saponin treatment, were cross-linked with BS3. After lysis, samples were immunoprecipitated by 

using anti-FR or anti-PLAP specific antibodies and revealed by western blotting using an anti-GFP 

antibody. 

 

Figure 6 Cholesterol depletion affects co-clustering of both GPI-APs.  

MDCK cells stably expressing FR/GFP-GPI or PLAP/GFP-GPI, either in control conditions (-) or 

after saponin treatment (+), were cross-linked (+) with BS3, fixed and stained with specific 

antibodies and revealed by Cy3- and Cy5-conjugated secondary antibodies. Serial confocal sections 

were collected. The 3D reconstruction is shown and areas of co-localization are labelled in white. 

Bars, 4 µm. 

 

Figure 7 Effect of cholesterol addition on homo- and hetero-complexes.  

MDCK cells stably expressing FR/GFP-GPI or PLAP/GFP-GPI were loaded with cholesterol (chol, 

10 mM) for different indicated times and then cross-linked by using BS3 (0.5 mM) at 37°C for 10 

min. After lysis, proteins were TCA-precipitated, separated on SDS-PAGE and revealed using 

specific antibodies (A) or were immunoprecipitated by using anti-FR or anti-PLAP antibodies and 

revealed by western blotting using an anti-GFP antibody (B). The molecular weight of the 

monomeric forms of each protein is indicated, together with the position of a 180 kDa marker.  

 

Figure 8 Hetero-clusters are exclusively formed by HMW complexes of each GPI-AP. 

MDCK cells stably expressing FR/GFP-GPI or PLAP/GFP-GPI were treated with BS3, lysed and 

purified by velocity gradients. Samples were immunoprecipitated using an anti-FR or anti-PLAP 

antibody and revealed by western blotting using an anti-GFP antibody (top panels). 

Immunoprecipitated proteins were revealed by western blotting with the same antibody (either FR 

or PLAP; bottom panels). The molecular weight of the monomeric forms of each protein is 

indicated, together with the position of a 180 kDa marker. 
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Figure 9 Analysis of co-clustering of GFP-GPI with FR or PLAP by antibody cross-linking at the 

cell surface.  

MDCK cells stably expressing PLAP/GFP-GPI were simultaneously incubated at 12°C for 45 min 

with specific antibodies against GFP and PLAP (α−GFP/α−PLAP cross-linking) or left untreated 

(control). After washing, cells were incubated with secondary antibodies and fixed, or fixed for 1 h 

and incubated with primary and secondary antibodies (A). MDCK cells stably expressing 

PLAP/GFP-GPI (left panels) or FR/GFP-GPI (right panels) were incubated only with αGFP 

primary and secondary antibodies for 45 min at 12°C. After fixation, the other GPI-AP in the pair 

was stained in non-permeabilized conditions using a specific antibody and revealed with a 

secondary antibody (B). MDCK cells stably expressing FR/GFP-GPI or PLAP/GFP-GPI were 

incubated at 12°C with a specific antibody against either FR (pictures B-D) or PLAP (pictures F-H) 

and then with a secondary antibody for 45 min. Cells were imaged in vivo by confocal microscopy. 

In picture A and E the fluorescence of GFP-GPI in the absence of antibody clustering is shown (C). 

Serial confocal sections were collected. Bars, 4 µm. 

 

Figure 10 Model of GPI-AP membrane organization. 

At the apical surface of MDCK cells GPI-APs are proposed to be organized in homo-clusters 

independent of cholesterol but dependent on protein-protein interactions. The proteinaceous 

complexes determine a local enrichment of raft lipids in a confined zone with cholesterol likely to 

be enriched at their boundaries (orange ring) thus creating specialized membrane domains that 

actively exclude GPI-AP monomers or other apical components. Because they are surrounded by a 

similar saturated-lipid environment these GPI-AP clusters have high affinity for each other and can 

fuse into cholesterol-dependent hetero-clusters. Cholesterol unbalance in the membrane by different 

means affects only hetero-clusters and not homo-clusters organization. The different effect of 

saponin (grey hexagones) metabolic inhibition, (MEV) or cyclodextrin treatments 

(depletion/addition) are illustrated. 
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Table I. Quantitation of degree of co-localization between GFP-GPI and FR or PLAP in co-
expressing MDCK cells in absence or presence of saponin.  

                                             MDCK: FR/GFP-GPI            MDCK: PLAP/GFP-GPI 
 FR GFP-GPI PLAP GFP-GPI 
            
        +BS3, -SAP 

 
5.5 ± 0.7 

 
5.9 ± 0.49 

 
5.5 ± 2 

 
5 ± 1.6 

          
        +BS3, +SAP 

 
0.6 ± 0.2 

 
0.6 ± 0.3 

 
0.32 ± 0.1 

 
0,21 ± 0.1 

 

Table II. Quantitation of degree of co-localization between GFP-GPI and PLAP in co-expressing 
MDCK cells in control conditions or after antibodies (abs) clustering.  

                                                                     MDCK: PLAP/GFP-GPI                 
 PLAP GFP-GPI 
 

control 
 

0,7 ± 0,2 
 

0,5 ± 0.1 
 
αGFP/PLAP abs clustering 

 
3,6 ± 0.8 

 
3,9 ± 0.6 
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Table III. Quantitation of degree of co-localization of GFP-GPI with FR or with PLAP in co-
expressing MDCK cells after clustering with an anti-GFP, anti-FR or anti-PLAP antibody (ab).  

                                                                         MDCK: FR/GFP-GPI                 
 FR GFP-GPI 
 

αFR ab clustering 
 

0.45 ± 0.15 
 

0.3 ± 0.14 
 

αGFP ab clustering 
 

0.3 ±0.09 
 

0.5 ± 0.07 
                                                                       MDCK: PLAP/GFP-GPI 
 PLAP GFP-GPI 
 
αPLAP ab clustering 

 
0.2 ± 0.004 

 
0.25 ± 0.003 

 
αGFP ab clustering 

 
0.7 ± 0.5 

 
0.8 ± 0.5 
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