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We discuss the combined effect of Rashba and Dresselhaus spin-orbit in-

teractions in polygonal loops formed by quantum wires, when the electron

are injected in a node and collected at the opposite one. The conditions that

allow perfect localization are found. Furthermore, we investigate the suppres-

sion of the Al’tshuler—Aronov—Spivak oscillations that appear, in presence of

a magnetic flux, when the electrons are injected and collected at the same

node. Finally, we point out that a recent realization of a ballistic spin inter-

ferometer can be used to obtain a reliable estimate of the magnitude ratio of

the two spin-orbit interactions.

PACS numbers: 71.70.Ej,73.23.Ad

I. INTRODUCTION

The main goal of the spintronics is the manipulation of spins in semiconductor nanos-

tructures. To this aim a large number of devices exploiting spin-orbit (SO) interactions [1—6]

has been proposed. One of these interactions, known as “Rashba Effect” [7], appears at the

interface of semiconductors lacking of structural inversion symmetry and its magnitude can

be controlled by an applied gate voltage. The devices based on this effect use the quan-

tum interference, due to the spin precession, beween different paths. Among the others we
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remind the ballistic spin interferometer [8], in which a square loop is followed along a self-

intersecting trajectory in clockwise and anticlockwise way, that, recently, has been used to

demonstrate experimentally the occurence of the spin precession interference phenomenon

[9]. In particular, the suppression of the Al’tshuler—Aronov—Spivak (AAS) oscillations [10]

allows the measurement of the magnitude of the Rashba interaction, and Koga et al. [9]

have obtained values in agree with theoretical estimates and with the Weak Antilocalization

Analysis. Besides it has been shown that the Rashba effect is also able to induce localization

effects in quantum networks [11—13].

The inversion asymmetry in the bulk semiconductor gives rise to spin-dependent bulk

band structure. At the surface this SO interaction, known as “Dresselhaus term” [14], adds

to the Rashba term. Recent measurements based on the spin-galvanic effect provided the

ratio between magnitude of Rashba and Dresselhaus terms. This ratio can reach values as

large as 2.14±0.25 in InAs quantum well [15]. The Rashba term is in general dominant but

the Dresselhaus interaction can have observable effects.

In a quantum wire the two SO couplings yield together a spin precession depending

on the angular position of the wire [16]. In the experiments by Ganichev et al. [15], a

circularly polarized light produces a spin galvanic current whose intensity exhibits an angular

dependence that allows the measure of the ratio between the SO couplings. Schliemann et

al. [17] have proposed a spin-field-effect transistor in which the presence of the two SO

couplings with equal magnitudes can give polarized currents whose spin does not depend on

the momentum. In such a way the spin-independent scattering processes become ineffective

in the particular direction in which the spin precession is suppressed.

In this paper we study the interference effects in one—dimensional loops due to spin

precession when both the two SO interactions are present. The paper is organized in the

following way. In order to be self-contained in the section II we recall a number of already

known results [15,17] that will be used to describe the spin precession in a quantum wire

under the two SO couplings [22]. In the section III we show how the localization in a

polygonal loop can be achieved. We emphasize that for a diamond square loop with the
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diagonal oriented in [010] crystallografic direction there is a periodic set of values of the SO

strengths that gives perfect localization, i.e. the transmission coefficient vanishes. Rotating

the diamond square loop the localization is lost. We also show that for particular rhombic

and exagonal loops the transmission vanishes only at specific values of the SO strengths. In

the section IV we consider what happens when a magnetic flux threads the loop, i.e. we

analyse a ballistic spin interferometer with both the SO couplings. Particular attention will

be paid to the suppression of the AAS oscillations that appear when the input and the ouput

node coincide. We will see how the SO magnitudes ratio shifts the values of the Rashba SO

strength at which the transmission becomes independent on the magnetic flux. Finally we

prove that the Aharonov-Bohm (AB) oscillatons appearing when we inject and collect the

current in opposite nodes, can be also modulated varying the two SO couplings. The section

V is dedicated to some concluding remarks.

II. SPIN PRECESSION DUE TO RASHBA AND DRESSELHAUS COUPLING

A. The spin-orbit couplings in a two dimensional electron gas

In order to set the notation let us remind the eigenstates and the energy eigenvalues

of an electron confined in the x − z plane and subjected to both Rashba and Dresselhaus

spin-orbit interaction [17]. The hamiltonian takes the form

H =
h̄2

2m

³
p2x + p

2
z

´
+HR +HD (1)

where

HR =
α

h̄
(σzpx − σxpz) (2)

and

HD =
β

h̄
(σzpz − σxpx) , (3)
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are the Rashba and the Dresselhaus interactions, respectively. We have choosen the x−axis

and z−axis in [010] and [100] crystallographic directions, respectively. It is easy to check

that

ψ~k , ± (x, z) = exp [i(kxx+ kzz)]

¯̄̄̄
¯̄̄̄ cos ν±
sin ν±

¯̄̄̄
¯̄̄̄ (4)

are eigenfunctions of (1) with eigenvalues given by

E± =
h̄2

2m
k 2 ±

q
(α2 + β2) k2 + 4αβkxkz (5)

where k =
q
k2x + k

2
z (kx = k cos θ , kz = k sin θ) is the modulus of the momentum in x− z

plane. In eq.(4) we have defined

ν± = arctan
k0 cos θ + k1 sin θ ∓ kso (θ)

k0 sin θ + k1 cos θ
(6)

where

kso (θ) =
q
k20 + k

2
1 + 2k0k1 sin 2θ with k0 =

mα

h̄2
and k1 =

mβ

h̄2
.

We note that there are two values of k corresponding to the same energy E = h̄2

2m
ξ2 and

they are given by

k = k± =
q
ξ2 + k2so ∓ kso (7)

with the corresponding energy that can be rewritten as

E± = E =
h̄2

2m

³
k2± ± 2k±kso (θ)

´
.

The spinors χ± of the two degenerate modes are orthogonal each other, being

ν− =
π

2
+ ν+ ,

therefore we have

χ+ =

¯̄̄̄
¯̄̄̄ cos ν+
sin ν+

¯̄̄̄
¯̄̄̄ and χ− =

¯̄̄̄
¯̄̄̄ − sin ν+
cos ν+

¯̄̄̄
¯̄̄̄ .
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It is worth to note that with the only Rashba interaction (k1 = 0) we have

ν+ = −
θ

2
.

We remind that the Rashba SO interaction can be viewed as a magnetic field parallel to

the plane and orthogonal to the wavevector ~k that orientates the spin along the direction

perpendicular to the wave vector [18]. In particular when the mode (−) propagates in

x−direction the spinor χ− =

¯̄̄̄
¯̄̄̄ 0
1

¯̄̄̄
¯̄̄̄ is in the spin down state along z−direction. On the other

hand with only Dresselhaus interaction (k0 = 0) we have

ν+ = −
π

4
+

θ

2

and the SO magnetic field is opposite to ~k. Now, when the mode (−) propagates in

x−direction, χ− = 1√
2

¯̄̄̄
¯̄̄̄ 1
1

¯̄̄̄
¯̄̄̄ and the spin is oriented along x−axis. When both the SO

interactions are present the effective SO magnetic field, parallel to the plane, fixes the spin

direction according to eq.(6).

B. Spin precession in a quantum wire due to the spin-orbit interactions

Let us assume that an electron moves in a one-dimensional (1D) ballistic quantum wire

along an arbitrary θ−direction and subjected to spin-orbit interactions. Moreover, we ne-

glect the subband hybridization, induced by the spin-orbit coupling, assuming that the

quantum wire is a truly 1D system because the spin—precession length π/kSO is much larger

than the wire width [19]. Within our approximation the spin-splitted bands have the orbital

parts given by eik±r ( r is the coordinate along θ−direction).

In order to calculate the spin-orbit precession along the wire direction we proceed in the

following way (see also van Veehuizen et al. [22]). First of all we project an arbitrary input

spin state in r = 0

|ψ (0)i =

¯̄̄̄
¯̄̄̄ a
b

¯̄̄̄
¯̄̄̄
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on χ± spinors, obtaining

hχ+|ψ (0)i = ac+ + bs+ ; hχ−|ψ (0)i = −as+ + bc+ ,

where

c+ = cos ν+ and s+ = sin ν+.

Then, after a displacement L along θ−direction, the electron will be in the state |ψ (L)i

given by

|ψ (L)i = eik+L (ac+ + bs+) |χ+i+ eik−L (−as+ + bc+) |χ−i.

It easy to show that |ψ (L)i can be written in terms of the spin initial state |ψ (0)i :

|ψ (L)i =

¯̄̄̄
¯̄̄̄ c2+e

ik+L + s2+e
ik−L s+c+

³
eik+L − eik−L

´
s+c+

³
eik+L − eik−L

´
s2+e

ik+L + c2+e
ik−L

¯̄̄̄
¯̄̄̄ ·
¯̄̄̄
¯̄̄̄ a
b

¯̄̄̄
¯̄̄̄ . (8)

Introducing the spin operator RSO

RSO =

¯̄̄̄
¯̄̄̄ cos ksoL− i cos 2ν+ sin ksoL −i sin ksoL sin 2ν+

−i sin ksoL sin 2ν+ cos ksoL+ i cos 2ν+ sin ksoL

¯̄̄̄
¯̄̄̄ , (9)

the eq.(8) can be also written as

|ψ (L)i = RSO e
i
√

ξ2+k2soL|ψ (0)i. (10)

In the following we assume that ξ2 À k2so (θ) because, in the realistic systems, the strength

of SO, kSOT , ranges from 0.01ξ to 0.05ξ, where ξ is the Fermi wavevector [23]. Therefore

we take the orbital part with k± ∼= ξ ∓ kso, neglecting terms of the second order in ξ/kso

. Then, only the spin operator RSO depends on the angular position of the wire while the

dynamical phase factor become equal to exp (iξL) . The matrix RSO, actually, describes a

geometrical rotation in the 1
2
spin space around the unitary vector

~u = (sin 2ν+, 0, cos 2ν+)

of the angle 2ksoL. In fact RSO is the representation of the rotation operator [24]

RSO = exp (−i ksoL ~σ · ~u) = cos ksoL⊗ 1− i sin ksoL⊗ ~σ · ~u (11)

where 1 is the unit matrix and ~σ is the vector of Pauli matrices.
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III. PERFECT LOCALIZATION DUE TO INTERFERENCE EFFECTS IN LOOPS

We begin considering the square diamond loop of fig.1b). The dots A and B represent the

input and the output leads, respectively. In the following we neglect backscattering effects at

the contacts assuming that the electrons enter A with probability 1/2 in the clockwise path

AB and with probability 1/2 in the counterclockwise path. The transmission amplitudes

matrix Γ in B is

Γ = t ei 2ξL

where t is the spin transmission matrix

t =

¯̄̄̄
¯̄̄̄ t↑↑ t↑↓
t↓↑ t↓↓

¯̄̄̄
¯̄̄̄

given by the interference between the different spin precessions along the two paths:

t =
1

2

µ
RSO

µ
− π

4

¶
RSO

µ
π

4

¶
+RSO

µ
π

4

¶
RSO

µ
− π

4

¶¶
.

It is simple to show that

t↓↓ = t∗↑↑ =
1

2
(cos 2k0L+ cos 2k1L+ i

√
2 sin 2k0L)

t↑↓ = t↓↑ =
i√
2
sin 2k1L .

Without the Dresselhaus term (k1 = 0) the off diagonal elements of t matrix vanish and the

spin up and spin down states do not interfere. Assuming that the input is an unpolarized

statistical mixture

ρin =
1

2
(|↑ih↑|+ |↓ih↓|)

the output will be described by [3]

ρout =
1

2
(T↑ |1ih1|+ T↓ |2ih2|) ,

where T↑ = |t↑↑|2 +
¯̄̄
t↓↑
¯̄̄2
is the coefficient transmission for an incoming spin up state and

T↓ = |t↑↓|2 + |t↓↓|2 is that for an incoming spin down state. The spinors in ρout are
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|1i = 1q
T↑

 t↑↑
t↓↑

 and |2i = 1q
T↑

 t↑↓
t↓↓


corresponding to input spin up and down, respectively. Finally the transmission coefficient

of the unpolarized electrons is

T =
1

2
(T↑ + T↓) =

1

2

µ
|t↑↑|2 + |t↓↓|2 + |t↑↓|2 +

¯̄̄
t↓↑
¯̄̄2¶

= (12)

=
1

4
(cos 2k0L + cos 2k1L)

2 +
1

2
(sin2 2k0L+ sin

2 2k1L).

Neglecting the Dresselhaus term (k1L = 0), eq.(12) provides the known result

T = cos2 k0L
³
1 + sin2 k0L

´
(13)

that gives perfect localization (T = 0) when k0L = nπ/2 (n = 1, 2, ...) [26]. When we begin

to add gradually the Dresselhaus term, the perfect localization is lost and the zeroes of T

become transmission minima. Increasing more and more the Dresselhaus SO strength the

perfect localization is recovered when k1L = π/2 and a new set of T = 0 points is obtained

corresponding to k0L = nπ (n = 0, 1, 2, ...). As shown in fig.1a) a further increase of k1L

generates a regular lattice of T zeroes in the (k0L, k1L) plane given by:

k0L = nπ/2 (n = 1, 2, ..), k1L = (m− 1)π (m = 1, 2, ..)

k0L = (m− 1)π (m = 1, 2, ..), k1L = nπ/2 (n = 1, 2, ..).

This result shows that we can get perfect localization in the diamond loop of fig.1b

with both the spin-orbit couplings. On the other hand we stress that the foregoing result

depends strictly on the angular position of the loop with respect to the crystallographic axes

of the substrate. Indeed the geometry studied is somehow special. In order to consider a

more general case we analyse the same square loop rotated by an angle ϕ with respect to

x−direction (see the inset of fig.2a)). The contour plots of T as a function of ϕ and of k0L

are given in fig.2 for k1L = π/4 and π/2. For k1L = π/4 there is no evidence of T = 0
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points at any ϕ. As the fig.2a) shows, only transmission minima are present in this case.

When k1L = π/2 the zeroes of T appear at ϕ = π/4, 3π/4 which corresponds to align the

diagonal of the square loop along the x−direction (fig.1b)). This results confirm that we

get perfect localization only for the pair (k0L,k1L) shown in fig.1a): tilting the square the

zeroes transform in minima.

In order to make our analysis more complete, we considered also the polygonal loops

shown in the insets of fig.3: a rhombus and a six sided cell. For the rhombus

t =
1

2
(RSO (0)RSO (θ) +RSO (θ)RSO (0))

while for the exagonal loop we get

t =
1

2
(RSO (θ)RSO (0)RSO (−θ) +RSO (−θ)RSO (0)RSOθ) .

From these transmission matrices the transmission coefficient for unpolarized electrons can

be obtained as we have shown in eq.(12). A careful analysis shows that specific values

of θ exist such that, again, we get the perfect localization (T = 0). For such values the

vanishing of the transmission appears at some particular pairs of values (k1L, k0L) that are

not connected continously with the k1 = 0 zeroes. In table 1 we report the values of k1/k0,

θ and k0L corresponding to a perfect localization T = 0 for unpolarized electrons. The fig.3

reports contour plots of the transmission as a function of θ and k0L at the indicated vaues

of k1L. The zeroes of T appear as particular points at some specific values of the angle θ

and of the spin-orbit strengths. A regular pattern of zeroes is a special feature of the square

loop configuration of fig.1a) and it is lost for other polygonal loop’s shapes.
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k1/k0 θ k0L

0.3126 2.0885 10.4949

0.2655 2.0313 13.6636

0.2126 1.9572 19.9739

0.5015 2.2464 21.0616

0.3971 2.1721 21.8987

0.2986 2.0723 22.5772

0.3620 2.1402 25.1089

0.2754 2.0439 25.7455

0.4130 2.1853 27.5851

k1/k0 θ k0L

0.4996 0.7896 3.0048

0.2500 0.7879 6.2055

0.1667 0.7867 9.3715

0.2968 1.0192 10.2090

0.3749 0.8207 12.2376

0.1250 0.7862 12.5262

a) Rhombus b) Exagonal loop

Table 1

IV. REGULATING THE AL’TSCHULER—ARONOV—SPIVAK AND THE

AHARONOV—BOHM OSCILLATIONS BY MEANS OF DRESSELHAUS

COUPLING

In this section we discuss the effect of an external magnetic field B on the transmission

properties of a 1D loop under both Rashba and Dresselhaus interactions. We consider, first,

a rhombic loop where the injection and the collection nodes coincide with the A node in

the inset of fig.3a (AA configuration). In other words we are supposing that there are two

possible outputs at the collecting point, allowing the oscillation of the signal This geometry

has recently proposed by Koga et al. [8] to obtain a ballistic spin interferometer where

the collecting point is a splitter in both incoming and outgoing directions. They use the

cancelation of the AAS oscillations due to Rashba SO, in the square loop shown in the inset

of fig.4a, to achieve an interferometric measure of SO strength k0.Since, as we will show in

eq.(15), the transmission coefficient in presence of a magnetic field can be written in terms

of that at zero magnetic field, we start to discuss the latter case. In the AA configuration
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the transmission amplitude matrix at zero magnetic field stems out from the interference

between the clockwise (CW) and the counterclockwise (CCW) paths as

Γ =
1

2
(RSO (x,−π, r) ·RSO (x,−π + θ, r) ·RSO (x, 0, r) ·RSO (x, θ, r)

+RSO (x, θ − π, r) ·RSO (x,−π, r) ·RSO (x, θ, r) ·RSO (x, 0, r)) e
iξ4L

= t0 (x, θ, r) e
iξ4L · 1

where

RSO (x, θ, r) = cosxy ⊗ 1−i sinxy (sin 2ν+ ⊗ σx + cos 2ν+ ⊗ σz)

and

x = k0L, y (θ, r) =
√
1 + r2 + 2r sin 2θ = kso (θ) /k0

with

r = k1/k0 and ν+ = arctan
cos θ + r sin θ − y
sin θ + r cos θ

.

It is worth to note that the input spin state is conserved and the transmission coefficient

T0 (x, θ, r) = t
2
0 (x, θ, r)

is plotted in fig.4a for θ = π/2 and in fig.5a for θ = π/4.

In presence of a magnetic flux the matrix of the transmitted amplitudes is no longer

diagonal and becomes:

Γ =
1

2

h
RSO (x,−π, r) ·RSO (x,−π + θ, r) ·RSO (x, 0, r) ·RSO (x, θ, r) e

iφ/2 +

RSO (x, θ − π, r) ·RSO (x,−π, r) ·RSO (x, θ, r) ·RSO (x, 0, r) e
−iφ/2i eiξ4L (14)

=

¯̄̄̄
¯̄̄̄ t↑↑ (x, θ, r,φ) t↑↓ (x, θ, r,φ)
t↓↑ (x, θ, r,φ) t↓↓ (x, θ, r,φ)

¯̄̄̄
¯̄̄̄ eiξ4L

11



with

t↑↑ 6= t↓↓

t↓↑ = t
∗
↑↓ 6= 0.

In eq.(14) the rhombus (with area S) is threaded by a magnetic flux Φ = BS = φΦ0 where

Φ0 = h/2e is the magnetic flux half quanta. The input spin state is no more conserved:

the interference between CW and CCW paths is able to rotate the spin. The transmission

coefficient for unpolarized electrons can be, then, written as

T (x, θ, r,φ) =
1

2

µ
|t↑↑|2 +

¯̄̄
t↓↑
¯̄̄2
+
¯̄̄
t↑↓
¯̄̄2
+
¯̄̄
t↓↓
¯̄̄2¶

=
1

2
+
µ
T0 (x, θ, r)−

1

2

¶
cosφ. (15)

As already mentioned, the AAS oscillations are given by the term cosφ whose prefactor

contains the zero field transmission T0, that is all we need to perform the analysis of the

magnetic field effects. For a square loop (θ = π/2) and without the Dresselhaus term

(k1L = 0) we recover the known result by Koga et al. [8]

T0

µ
x,

π

2
, 0
¶
=
³
cos2 x+ cos 2x sin2 x

´2
that is plotted in fig.4a (dashed curve). The perfect localization (T = 0 ) is obtained

when x = π/2,π at φ = π. Eq.(15) shows that when T0 = 1/2 the AAS oscillations are

suppressed. On the other hand the transmission T assumes the same costant value 1/2

when φ = π/2, 3π/2 and, at these magnetic fluxes, the modulation of the transmission due

to SO couplings is cancelled. Koga, Sekine and Nitta [9] have realized experimentally a

Rashba ballistic spin interferometer using a network of square loops. They measured the

conductivity s varying the magnetic field and controlling the strength of the Rashba term

by means of a gate voltage. Assuming that the conductivity, in the ballistic regime, is

proportional to the transmission coefficient (15). They searched the values of x for which

s becomes independent on the magnetic field B in a range around B = 0, and from these

values they obtained a measure of Rashba SO strength k0.
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The zero field transmission when also the Dresselhaus term is added (for the square loop)

is shown in fig.4. Also in this case the AAS oscillation are suppressed at the x∗ (r) values

for which

T0 (x∗, θ, r) =
1

2
.

The fig.4b shows the values of x∗ = k0L at which the suppression of AAS is obtained

as a function of the ratio between the Dresselhaus and Rashba strength, r. Increasing r

the period of T0 decreases from the value π at r = 0 to lower values. The two zeroes

of T approach each other and disappear at x = 1.451 for r = 0.414213. For k1 = k0,

T0(x,π/2, 1) = 1 and the transmission coefficient becomes independent of the spin-orbit

coupling. The fig.4b shows that for r < 0.199 we have four AAS suppression points that

become two when 0.199 < r < 0.668. The cancellation of AAS oscillations is not possible

for greater values of Dresselhaus strength (r > 0.668). This analysis shows how relevant the

inclusion of Dresselhaus term is in order to describe in a proper way the AAS suppression.

Furthermore our study allows an extension of the ballistic spin interferometric technique

developed by Koga et al. [8] that could be used also to measure the ratio between the

Rashba and Dresselhaus terms.

To investigate if the AAS suppression depends on the shape of the interferometer we

have taken into account a different rhombus geometry with θ = π/4. The fig.5a shows the

transmission at zero field, and the fig.5b shows how the suppression points change with r.

The cancellation of AAS oscillation is still present though the pairs of values at which AAS

suppression occurs (k0,k1) change modifying the shape. The supression remains also when

the loop is rotated with respect to the substrate.

To conclude the analysis of the magnetic field effects let us consider what happens if the

electrons are injected in the node A and collected in the opposite node B, traversing the

square loop (AB configuration). In this case the transmission amplitudes matrix is given by

Γ =
1

2
(RSO (x,π/2, r) ·RSO (x, 0, r) e

iφ/4 +RSO (x, 0, r) ·RSO (x,π/2, r) e
−iφ/4)ei2ξL
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=

¯̄̄̄
¯̄̄̄ tB↑↑ tB↑↓
tB↓↑ tB↓↓

¯̄̄̄
¯̄̄̄ ei2ξL.

For unpolarized electrons the transmission coefficient becomes

TB (x, r,φ) =
1

2

µ
|tB↑↑|2 + |tB↓↓|2 + |tB↑↓|2 +

¯̄̄
tB↓↑

¯̄̄2¶
=
1

2
+
µ
TB (x, r, 0)−

1

2

¶
cos

φ

2

The factor cos (φ/2) describes the Aharonov-Bohm oscillations [25], which present a double

period with respect to the AAS oscillations, and, again, his prefactor is fixed by the zero

field transmission TB (x, r, 0) that regulates the amplitude of AB oscillation. This quantity

is plotted in fig.6a. As for the foregoing AA configuration TB (x, r, 0) = 1/2 implies that

TB (x, r,φ) = 1/2 for any φ and the ratio r = k1/k0 can be fixed in such a way that the AB

oscillations are cancelled. Therefore, the suppression takes place at x values satisfying the

equation

TB (xAB(r), r, 0) =
1

2
.

The behaviour of the AB square configuration is shown in fig.6.

V. CONCLUDING REMARKS

In conclusion we have studied the interference effects due to the Rashba and the Dressel-

haus SO interactions in quantum wires forming polygonal loops. The spin precession along

the sides of the loop gives rise to perfect localization at particular values of the pair (k1L ,

k0L). For the square diamond loop we achieve the perfect localization for pairs (k0L, k1L)

belonging to a square lattice that is symmetrical with respect to the two SO strengths k0

and k1. The periodic pattern of the transmission zeroes [26] obtained with only the Rashba

SO interaction [26], is preserved adding Dresselhaus SO coupling. The configuration with

the square diagonal parallel to x−axis (in [010] crystallographic direction) is a special case

and when the square is rotated in x − z plane the zeroes of T transform in minima and

the perfect localization is lost. We have studied other two geometries: a rhombus and an
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exagonal cell. For both cases pairs (k0L, k1L) exist that give the perfect localization only

for a specific shape (we characterize the shape with an angular opening θ). We have found

triplets (θ, k0L, k1L) that give transmission zeroes. This behaviour suggests that the perfect

localization in a circular loop is not easy to predict. In particular, the procedure discussed

in ref. [26] in the case of Rashba coupling, where perfect localization in a circle is obtained as

a limit of a succession of regular polygons, cannot be applied in the same way. The perfect

localization on a circle with both the SO couplings will be matter of future research.

When the loop is plunged in an external magnetic field the transmission coefficient os-

cillates with the magnetic flux passing through the loop. The amplitude of this oscillation

depends on the strengths of the two SO couplings. Injecting and collecting the electrons at

the same loop node (the interfering paths are self-itersecting ones), the 1D loop behaves as

a ballistic spin interferometer. With this configuration the AAS oscillations appear and, in

presence of Rashba SO, they are suppressed for some particular values of k0L [8]. We have

considered an interferometer with the shape of a rhombus with both the SO interactions.

The suppression appears at k0L values which depend on the ratio k1/k0. So that the inter-

ferometric experimental technique of Koga et al. [9] could be used to measure not only the

k0 value but also the ratio k1/k0. An other kind of magnetic modulation of the transmis-

sion coefficient are the AB oscillations whose period is the double of the AAS oscillations.

They appear when the electrons are injected and collected at opposite nodes of the loop

and the interfering paths of equal length surrond the loop area. Again the presence of the

Dresselhaus coupling can regulate the amplitude of these oscillations.

Our results concern a single loop. When the loops are arranged in a quantum network

the transport properties through the system may change as discussed, for the Rashba SO

case in Refs. [12,13]. We also expect that the use of more realistic boundary conditions could

be important, for example the finite coupling with leads can give resonances representing

quasibound states within the loop.

To conclude we briefly discuss the consequences of higher order winding contributions

and backscattering. The simplest way to deal with this question is to combine the multiple
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scattering against the injection node and the collector node incoherently [28]. Then the

single scattering event can be characterized with a classical probability. We identify the

probability that the electron leaves a node with the transmission coefficients T that we have

calculated before, the classical reflection probability being R = 1− T . The round trips can

be arranged into a geometrical series [28] whose sum gives the composite exit probability T

T = T 2

1−R2 =
T

2− T .

We note that T = 0, 1 implies that also T = 0, 1. The total transmission T keeps the

periodicity in φ although the dependence on φ is no more simply cosφ or cos 2φ as before.

Therefore, this assumption of incoherence predicts that the perfect localization and the

suppression of AAS and AB oscillations are not spoiled by incoherent multiple scattering.

The transmission T becomes independent on φ at some particular values k0L in the same

way as T, with the same dependence on the ratio r = k1/k0, but the value of T at the

suppression lowers from 1/2 to 1/3.
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FIGURE CAPTIONS

Fig.1 Perfect localization in the diamond square loop. In a) there is the countour plot of

the transmission as a function of k0L and of the ratio k1/k0. The part b) shows the

zeroes of T in k0L, k1L plane. In c) is shown the square with the diagonal parallel to

x−axis for which the perfect localization occurs.

Fig.2 Contour plots of the transmission coefficient of the rotated square diamond loop as a

function of k0L and of the rotation angle ϕ at the two indicated values of k1L. The

zeroes of T appear only for ϕ = π/4, 3π/4 for k1L = π/2.
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Fig.3 Contour plots of the transmission coefficient of the rhombus and of the exagonal cell

as a function of k0L and of the angular opening θ, at the indicated values of k1L at

which an isolated zero of T appear.

Fig.4 a) Transmission coefficient of the square loop T0 at zero magnetic field for the square

(θ = π/2) interferometer (electrons enter an exit in A) versus k0L at the indicated

values of r = k1/k0.

b) Plot of the value x∗ of k0L as a function of r for which T0 = 1/2 an the the the

AAS oscillations are suppressed.

Fig.5 The same plots of fig.4 for a rhombus with angular opening θ of π/4

Fig.6 The suppression of the Aharonov—Bohm oscillations in the square loop (the electrons

enter in A and are collected in B). The solutions x (r) of the equation TAB (x (r) , r, 0) =

1/2 are shown in the part b).
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[21] M. Governale, U. Zülicke, Phys. Rev. B 66, 073311 (2002).

[22] M.van Veehuisen, T.Koga and J.Nitta, cond—mat/0412609.

18



[23] J.Nitta, T.Akazaki , H.Takayanagi,T.Enoki Phys.Rev.Lett. 78, 1335 (1997).
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