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Abstract

In the present work | infer the 1D shear-wave velocity model in the volcanic area
of Pozzuoli-Solfatara using the dispersion properties of both Rayleigh waves generated
by artificial explosions and microtremor. The group-velocity dispersion curves are
retrieved from application of the Multiple Filter Technique (MFT) to single-station
recordings of air-gun sea shots. Seismic signals are filtered in different frequency bands
and the dispersion curves are obtained by evaluating the arrival times of the envelope
maxima of the filtered signals. Fundamental and higher modes are carefully recognized
and separated by using a Phase Matched Filter (PMF). The obtained dispersion curves
indicate Rayleigh-wave fundamental-mode group velocities ranging from about 0.8 to
0.6 km/sec over the 1-12 Hz frequency band.

| also propose a new approach based on the autoregressive analysis, to recover
group velocity dispersion. | first present a numerical example on a synthetic test signal
and then | apply the technique to the data recorded in Solfatara, in order to compare the
obtained results with those inferred from the MF analysis

Moreover, | anayse ambient noise data recorded at a dense array, by using Aki’'s
correlation technique (SAC) and an extended version of this method (ESAC) The
obtained phase velocities range from 1.5 km/s to 0.3 km/s over the 1-10 Hz frequency
band.

The group velocity dispersion curves are then inverted to infer a shalow shear-
wave velocity model down to a depth of about 250 m, for the area of Pozzuoli-Solfatara.
The shear-wave velocities thus obtained are compatible with those derived both from
crosss and down-hole measurements in neighbour wells and from laboratory
experiments. These data are eventualy interpreted in the light of the geological setting
of the area.

| perform an attenuation study on array recordings of the signals generated by the
shots. The g attenuation curve was retrieved by analysing the amplitude spectral decay
of Rayleigh waves with the distance, in different frequency bands. The g attenuation
curve was then inverted to infer the shallow Qy inverse model.

Using the obtained velocity and attenuation model, |1 calculate the theoretical

ground response to a verticaly-incident SH-wave obtaining two main amplification



peaks centered at frequencies of 2.1 and 5.4 Hz. The transfer function was compared
with that obtained experimentally from the application of Nakamura's technique to
microtremor data, artificial explosions and local earthquakes. Agreement between the
two transfer functions is observed only for the amplification peak of frequency 5.4 Hz.

Finally, as a complementary contribution that might be used to the assessment of
seismic risk in the investigated area, | evaluate the peak ground acceleration (PGA) for
the whole Campi Flegrel caldera and locally for the Pozzuoli-Solfatara area, by
performing stochastic simulation of ground motion partially constrained by the
previously described results. Two different methods (Random Vibration Theory (RVT)
and ground motion generated from a Gaussian distribution (GMG)) are used, providing
the PGA values of 0.04 g and 0.097 g for Campi Flegrei and Pozzuoli-Solfatara,
respectively.



I ntroduction

It is well known that shallow layers with high impedance contrasts affects the
ground motion, causing strong amplifications (Bard and Bouchon, 1980; Hough et al.,
1990). Therefore the detailed knowledge of the velocity and attenuation structure at
shalow depths is of great relevance for the quantitative estimate of the theoretical
ground response to a seismic input. Such determinations are crucia especidly in
densely urbanized areas, where a quantitative assessment of the amplification factors is
necessary for a correct evaluation of seismic hazard.

The determination of the subsoil structure often requires expensive drilling. An
alternative and more economic approaches to investigate the shallow velocity structure
are based on the analysis of surface waves. In the last years, the determination of the
seismic velocities at shallow depths from the dispersion of surface waves has got an
increasing popularity and recent results in seismic engineering (Liu et a., 2000; Louie,
2001; Bettig et al. 2001) have demonstrated that inversions of dispersion data can
provide very fine resolution of the velocity structure and constrain shallow shear wave
velocity structures with a minimum level of uncertainty. Single-station methods (MFT;
Herrmann, 1973, 1987) were widely used the aim of obtaining the group velocity
dispersion curves of short period Rayleigh waves and inferring the shalow velocity
structure in sedimentary and tectonic areas (Malagnini et al., 1995, 1997; De Lorenzo
et a., 2003). These techniques were also adapted and successfully applied to retrieve the
dispersive properties of the seismic signals generated by the volcanic activity, in order
to to infer shallow velocity structure in volcanic areas (Petrosino et al., 1999, 2002). The
multichannel (MASW, SAC; Louie, 2001; Aki, 1957; Bettig et al., 2001) techniques
also represent a very attractive tool for the phase velocity determination because they
can be applied to ambient noise and do not require any particular energizing source.
These methods have been aso used on microtremor data recordeded on active
volcanoes such as the Puu Oo crater, Hawaii (Saccorotti et al., 2003), Stromboli
(Chouet et al., 1998) and Vesuvius (Saccorotti et al., 2001)

The ground motion amplitude is strongly affected not only by the impedance
contrasts, but also by the damping of soils and (hence by the quality factor Q). Studies
of seismic attenuation are helpful in delineating the dissipative properties of rocks. In



particular, the attenuation of surface waves attenuation can be analyzed to obtain local
Qv models (Maagnini et a., 1995; Malagnini, 1996; Petrosino et a. 2002).

The informations coming from velocity and attenuation structures are useful for
the estimate of the theoretical transfer function (Malagnini et a., 1996, Margheriti et al.,
2000). In this way, the resonance fregquencies that could cause the amplification of the
ground shaking can be determined. This parameters should be taken into account in the
assessment of seismic hazard.

In the recent years, experimentally measurements of the site transfer function have
been obtained by Nakamura's spectral ratio technique (Nakamura, 1989). In particular,
the maxima of the horizontal to vertica (H/V) function, under certain assumption,
correctly indicates the resonance frequencies of soft shallow sediments overlying the
bedrock. Many authors have proved the vaidity of the techniques by empirical,
theoretical, and numerical results (Field and Jacob, 1993; Lermo and Chavez-Garcia,
1993; Lachet and Bard, 1994; Lermo and Chavez-Garcia, 1994; Field and Jacob, 1995;
Castro et a., 1997). However other authors (Luzon et a., 2001; Malischewsky and
Scherbaum, 2004) found that in the case of low impedance contrast, the method does
not predict accurately the resonance frequencies and the amplification level. Moreover
is still not clear the techniques can be applied only to the ambient noise or aso to
earthquakes and artificial explosions. Actually some authors found a discrepancy in the
H/V functions for noise and earthquakes (Malagnini et a, 1996), while others observed
a good agreement (at least in certain frequency range) between H/V ratio of
microtremor and S-waves (Seekins at a., 1996, Satoh, 2001). In this framework, further
investigation and more tests on data are still needed to establish the range of
applicability of Nakamura's technique.

Whether using experimental or theoretical approaches, the site transfer function is
extremely useful to put constraints for the evaluation of the peak ground acceleration
(PGA), that is an important parameter to be considered in seismic hazard studies, as it

allows to predict the maximum expected ground shaking (Kramer, 1996).

In the present work | will focus on the volcanic area of Pozzuoli-Solfatara and
carry on a complete study according to the following tasks:



1) Analysisof Rayleigh wave dispersion and inversion for the velocity structure
2) Anaysisof Rayleigh wave attenuation and inversion for the Q, model

3) Estimate of the theoretical transfer function

4) Determination of the experimental transfer function

5) Peak ground acceleration (PGA) estimate

For task 1) | use the Multiple Filter (MFT), the Spatial AutoCorrelation (SAC) and
the Extended Spatial AutoCorrelation (ESAC) techniques. Moreover, | propose a new
alternative approach based on the autoregressive signal analysis to recover group
velocity dispersion. | first present some numerical examples on synthetics and then |
apply the technique to the data recorded in Solfatara, to compare the obtained results
with those inferred from the MFT analysis.

With task 1) and 2) | want to contribute to the knowledge of the very shallow
structure of the area of Pozzuoli-Solfatara and provide some complementary
information to those given by the available velocity and attenuation tomography, that
has greater depths of investigation but cannot resolve the finer structure (first 250 m) of
the subsoil.

Task 3) is carried on by using the results obtained from task 1) and 2). Velocity and
attenuation structures are used to calculate the ground response to a verticaly
propagating SH wave in a multiple layered medium. The obtained transfer function
might be considered for assessing seismic hazard in the densely-populated Pozzuoli-
Solfatara volcanic area.

For task 4) | will use Nakamura's spectral ratio technique applied to both
microtremor data, explosions and local earthquakes and compare it with the theoretical
ground response obtained in task 3). At the present there is a great scientific debate
about the validity, the range of applicability of Nakamura method and if it suitable only
for ambient noise or can be applied to earthquakes too. | want to give my contribution
by proposing some example of application to different kind of data recorded in an area
with low-impedance contrast.



Finaly, as complementary result in task 5) | provide an estimate of the expected
peak ground acceleration for the Campi Flegrel area, by ssimulating the ground motion
produced by local earthquakes. Moreover for the area of Pozzuoli-Solfatara, | estimate
the PGA taking into account the local site effects evidenced by the resonance
frequencies in the transfer function derived in 3). These evaluations refine the present
PGA values for the Phlegraen area reported in the hazard maps (www.mi.ingv.it; Slgfko

et a., 1998), which have been calculated considering the ground motion produced by
strong tectonic earthquakes occurring in the Apennines.

In the next chapters | first illustrate the geological setting of the Campi Fegrel area
(Chapter 1), | describe the techniques used for this study (Chapter 11) and then | present
the obtained results (Chapter 111) with the relative discussion.



Chapter |

The Campi Flegre volcanic complex

1.1 Geological setting

The Campi Flegrel is a nested caldera originated by two large collapses occurred
during the Campanian Ignimbrite (39 ka) and the Neapolitan Yellow Tuff (NYT, 15 ka)
eruptions (Orsi et al., 1996, Di Vito et al., 1999, Orsi et. a., 2003).

The Campanian Ignimbrite is one of the magjor explosive eruption occurred in the
Mediterranean area in the last 200,000 years and its deposits buried a large part of the
Campania region. The Campanian Ignimbrite caldera, which formed after the collapse
includes the present area of the Campi Flegrel, the city of Naples, the western part of the
bay of Naples and the bay of Pozzuoli.

During the Neapolitan Yellow Tuff eruption several tens of km® of magma were
emitted and an area of approximately 1,000 km? was covered by pyroclastic deposits.
These deposits have been found in Neapolitan-Phlegraean area and the Campanian Plain
as far asin the Appennines. The NYT caldera is nested inside the Campanian Ignimbrite
caldera, it includes part of the present Campi Flegrei area and the bay of Pozzuoli. The
caldera floor is affected by brittle deformation, being its continental north-eastern sector
crossed by faults oriented NW-SE and NE-SW, which are the same directions as those
of the faults affecting the Campanian Plain and the inner sectors of the Apennine belt.

Since 15 ka the volcanic activity concentrated inside the NYT caldera and many
eruptions took place during three distinct epochs of activity, alternated to two periods of
quiescence. In particular, volcanism of the | epoch (15-9.5 ka) includes 34 variable
magnitude explosive eruptions. During this epoch several tuff-cones were formed near
the present coast of Pozzuoli (Rione Terra, La Pietra).

During the 11 epoch (8.6-8.2 ka), the volcanic activity occurred along the north-
eastern structural boundary of the NYT caldera, whereas vents (Solfatara, Accademia,
Monte Olibano) of the 111 epoch (4.8-3.8 ka) were mainly located in the north-eastern
sector of the caldera floor, near the present town Pozzuoli.

The last eruption (Monte Nuovo) occurred in 1538, after a period of quiescence
which lasted approximately 3,000 years.



Since the NYT collapse, the whole Campi Flegrei caldera is affected by
subsidence, while the younger central part of the caldera floor is characterized by
resurgence. In particular, during the three epochs of volcanic activity, the La Starza
marine terrace (the most uplifted part of the resurgent block) alternated periods of
emersion and submersion and after the onset of the 111 epoch it definitely emerged.

The stratigraphic, structural and geochronological observations have widely
contributed to define this complex volcanological evolution. For example, evidences of
the eruptive activity of the | and 111 epoch and the sequence of La Starza comes from the
stratigraphic data and borehole drillings in the area of Pozzuoli which show the
presence of tuff rocks overlaid by pyroclastic and marine deposit layers of variable
thickness. This data were also used to trace a possible geological section across the
town of Pozzuoli, moving from the shore (Rione Terra) towards the Solfatara, along a
NNE-SSW profile (Lirer et al., 1987).

Pozzuoli 3
Accademia

Pozzuoli Bay Hapoli Bay

Fig. 1.1- Sketch map of the Campi Flegrei caldera.
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1.2 Seismicity and ground defor mation

Seismicity in the Campi Flegrei area generally occurs during the phases of ground
uplift, while it is absent during the periods of subsidence.

The major uplift episodes occurred in 1969-1972 and in 1982-1984 (Orsi et d.,
1999). During the bradyseismic crisis of 1969-1972, the ground lifted by approximately
1.5 m. The seismic activity began with some low-energy events which preceded a 1.8
magnitude earthquake occurred on 1970, March 26™. Other seismic swarms followed on
1970, April 29, July 21% and November 26™. The strongest earthquake was recorded on
1972, March 2™, In the summer of 1972 the ground stopped to rise and, at the same
time, the seismic activity ended. Between 1973 and 1981 the Campi Flegrel area was
subjected to a slow process of subsidence, interrupted by a small uplift episode (less
than 10 cm) in the month of September 1976 which was accompanied by about 12
earthquakes located in the Solfatara area.

During the 1982-1984 crisis a ground uplift of 1.79 m took place. This was
accompanied by intense seismic activity: swarms of earthquakes were recorded with a
magnitude between 0.6 and 4.2, generally at a depth of 1.5 to 5 Km. The most
significant swarm (513 earthquakes in about 6 hours) was detected on 1984, April 1.
The strongest earthquake (magnitude 4.2) occurred on 1983, December 8". During this
seismic crisis, over 10,000 earthquakes were recorded. Most of the seismicity
concentrated in the area of Pozzuoli-Solfatara. In Pozzuoli, the seismic activity was
characterized by low-energy swarms, while the Solfatara area was the epicentral zone
for the most energetic earthquakes (Vilardo et al., 1991).

After the 1982-1984 episode, no further seismic activity was recorded in the
Phlegrean area until 1987, when on April 10" and November 4™ two seismic swarms
consisting of 50 and 26 earthquakes respectively, were recorded and located in the
Solfatara area. Between April and June 1989, at the time of an episode of renewed
ground uplift (about 7.5 cm), there were 316 earthquakes, located SE of the Solfatara
crater. In particular on April 3 a seismic swarm was recorded, consisting of 82 events,
while the severest earthquake of this period happened June on 6™. After the 1989
episode, no further significant events were recorded until July 2000.

In the period July-August 2000 a net uplift of 4 cm centered on Pozzuoli occurred.
This phase was accompanied by two low-energy seismic swarms on July 2™ and August
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22" (Bianco et al., 2004). Seismic activity started between July 2™ and 10", when
about ten low-energy low-frequency events were recorded. On August 22™ there was a
seismic swarm of about sixty volcano-tectonic earthquakes, some of them were felt by
the population living in the area of the Solfatara. The high frequency pattern of this
swarm is similar to that shown by the volcano-tectonic events recorded during the 1983-
84 uplifting episode. The strongest earthquake had magnitude 2.2. The seismic swarm
was located in the Solfatara area, at a depth of about 2 Km.

Since October 2004 a weak uplifting episode started and reached its maximum
value (11 mm) in May 2005. The last seismic swarm was recorded on 2005, October 5"
and consisted of about 70 low-energy earthquakes occurred in about 8 hours, with the
maximum magnitude of 1.1. Some of these earthquakes were felt by the population of
the area of Pozzuoli-Solfatara, The most energetic earthquakes were located in the area
of Solfatara - Monte Spina (Agnano), with hypocentral depthsin the first 2 km.

IFTE

AZE

Fig. 1.2 - Example of earthquakes recorded on 2005/10/05 by the seismic station of the Osservatorio
Vesuviano.
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Fig. 1.3 — Aerial view of the area of Pozzuoli-Solfatara. Photo courtesy of Laboratorio di Geomaticae
Cartografia - Osservatorio Vesuviano.
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Chapter |1

Techniques of analysis

2.1 Techniquesfor surface wave dispersion analysis

A brief review of the techniques that | used for the analysis of surface wave
dispersion is reported in the following section.

2.1.1 The Multiple Filter Technique

The Multiple Filter Technique (MFT; Dziewonski et al.,1969; Herrmann, 1987) is
a single station method based on the evidence that for dispersive signas, different wave
packets arrive at different times, depending on the frequency. The method consists in
the application of gaussian band-pass filters to multi-modal dispersive signals associated
to the propagation of surface waves. Then, the arrival times of the maxima of the
envelope of the filtered signal are estimated and used to calculate group velocity.
Repeating the procedure for different frequencies, the group velocity dispersion curve
can be inferred.

The technique is based on the following theory. The displacement caused by a
dispersive wave packet at time t and distance r from the source is represented as
superposition of the M+1 modes present in the signal (Aki and Richards, 1980):

1 : 1 %Y :
f(t,r) =— SF w.r)expliwt)dw=—— 8 A w,r)expli(wt - k r)]dw
2 2 i

where wis the angular frequency, k and A, are the wave number and the complex

amplitude of the j-th mode, respectively. First consider the application of a gaussian
band-pass filter to a single-mode signal. If H(w - w,) is a gaussian filter centered at
w =w, with cutoff frequency at w=w_*w, :

1 expl- aw?/w Ew,
H (W) - p( / 0) wi

i 0 w|>w,

the expression of the filtered signal will be:

1 WotW,

g(r,t) == Hw-w,)AWw,r)expliwt - kr)ldw

Wo-We
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After changing variable, the integral becomes:
o011 = % OH (w)AGw +w,, ) expfif(w+w, ) - kw +w, )ridw 2.1)

After an expansion in Taylor series of Aw,r) and of k(w) around w,, Herrmann

(1973) demonstrated that equation (2.1) can be written as (see appendix A):

W2 0-2[)
]ex Wo . T 24 (2.2)
oﬂH

2|0
where Up is the group velocity. From (2.2) one can easily see that the envelope (or
magnitude) of the function g(t,r) has the maximum at thetime t =r/U,, .

In case of multi-modal signals, the equation (2.2) assumes the form:

>('D

t

olt.r)= (2.3)

m

éhi A, (W, r)explilw,t- k,

Q 11O
[ C\C

W, L
2 Uy,

where the index | represents the value of U and A for the j-th mode. Taking the envelope
of (2.3), the individua maxima correspond to the arrivals t=r/U, relaive to the
different modes, each of them propagating with group velocity U, . If the individual

maxima are well separated and the source-to-receiver distance r is known, the group

velocities U,; can be calculated.

2.1.2 Phase-matched filters

The phase-matched filters (PMF; Herrin and Goforth, 1977) are defined as the
class of linear filters for which the Fourier phase is equd to that of a given signal.

Considering the convolution and the cross-correlation of a signal s(t) with the filter
f (t) and taking the Fourier transform, one obtains:

s(t)* f(t)P [Sw)|FW)expils (w)+f (w)] (2.4
s(t)A f(t)p [Sw)|FWw)expils (w)- f w)] (2.5)
where the symbol P denotes the Fourier transform operation. If f(t) is a phase-

matched filter, then s (w)=f (w). With this choice, the Fourier transform of equation

(2.5) will be |S(w)|F (w) . The same result can be obtained from (2.4) if we consider the
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Fourier transform of the convolution of s(t) with f(-t). The quantity [S(w)|F(Ww) is

defined pseudo-correlation function (PAF). Generally, |F (w) is chosen to be equal to 1,

in order to have a good compromise between maximum signal-to-noise improvement
and maximum time resolution.

The application of the phase-matched filters alow to remove multiple arrivals,
non-dispersive arrivals of body waves and higher oscillation modes from the signal and
therefore to isolate a selected wave-packet. The PM filters are generaly combined with
the Multiple Filter analysis in order to avoid the contamination of the different modesin
the analysed signa and to obtain well separated dispersion curves.

Assuming that the seismogram is formed by a certain number m of modes, the
action of the phase-matched filter can be expressed as:

y ,»(t)=%_¥c‘{ '“}a A" g (2.6)

where y ((t) is the PAF, €"is the phase of the phase-matched filter and k; is the

estimate of the wavenumber of the j-th mode. Equation (2.6) can be rewritten as:

1% ik -k, Jx ot (k) o
y (t)=— A" dw+— A e
: 2p _¥ : p %

If k; » K|, the first integral will have the phase approximately equal to zero, obtaining

a zero-lag signd. If one multiplies the PAF with a symmetric zero-phase time window
w(t), the effects of the other modes (* j ) will be removed:

y (Owlt) = W(t)% O €€ dw 27)

where dk = k; - K;. Taking the Fourier transform of equation (2.7), the amplitude

spectrum of the desired mode is obtained:

o = ¢y (e

The residual error dkXx affecting the phase can be used to obtain a new estimate of the

real wavenumber:;

K" =k - dk.
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The procedure can be iterated to obtain a precise estimate of the wavenumber (and

hence of the group velocity) for the mode of interest.

2.1.3 Spatial autocorrelation correlation technique (SAC and ESAC)
The gpatial autocorrelation correlation method (SAC) of Aki (1957) is a

multichannel technique and it allows the estimate of the phase velocity dispersion curve

of surface waves in the hypothesis that the noise wavefield is stationary in time and

space.

Given two receivers, the normalized spatia autocorrelation coefficient is defined as:

au(x, y,t)su(xrcosj ,y+rsnj )f
aux,y,t)xu(x,y,tn

rrj)=

The symbols & indicate the average over time, u is the ground motion, x and y are the

Cartesian coordinates of the receivers, r is the distance between the receiversand j is
the azimuth of the two recelvers measured counter clockwise from the direction of the
x-axis. The correlation coefficients range between -1 and 1, assuming the maximum
value when the waveforms are equal. If the signd is filtered in a narrow frequency band

around wp, Aki demonstrated that the correlation coefficient takes the form:
) éw u
r(r,j W) = cosg——2~rcos(d - j )g (2.8)
&c(w,) a

where q is the propagation azimuth and c(wp) is the wave phase velocity at the angular
frequency wy. Taking into account equation (2.8), for an array of receivers in a semi-
circular configuration around a reference receiver, the azimuthal average of the

correlation coefficients for the vertical component is expressed:

éw, u
F(r,w,) = J°§c(T00)r8 (2.9)
where Jy is the O-th order Bessel function. From equation (2.9), the phase velocity c(wo)
can be obtained by fitting the Bessal function to the azimuthal average of the
autocorrelation coefficients, estimated 1) at a fixed angular frequency wp or 2) at a fixed
distance r. In case 1) i will be a function of the distance r. Otherwise, in case 2)

will be a function of the frequency and in the fitting procedure will be necessary assume
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an a-priori dispersion law c(wp). In this case, the phase velocity is usually assumed to
have a frequency dependence described by a power-law function:

c(f)=Af"

The choice 1), which is the best because no a priori dispersion should be assumed, is
generaly possible when the array is formed by a large number of sensors and the
correlation coefficients can be evaluated for a relatively high number of inter-station
distances. This requires a particular geometry of the seismic array, with the sensors
deployed along many semicircles with different radius.

Extension of Aki’s SAC method (ESAC) to non-semicircular arrays was proposed
by Bettig (2001) and consists in averaging, for each individual target frequency, the
correlation coefficients evaluated at subsets of M station pairs whose distances range
between r-dr and r+dr. This procedure alows a robust assessment of the azimuthally-
averaged correlation coefficients, once the relative position vectors of the selected
station pairs depict an uniform and tight sampling of the 0-180° azimuthal range. In this
case the condition of having a large number of available inter-station distances can be
achieved without the constrain of adopting a particular geometry for the array
deployment. For this reason, the advantage of ESAC compared to the conventional SAC
is that the evaluation of (2.9) at a fixed frequency can be easily carried on, and the
estimates of phase velocities may be retrieved at any individua frequency without the
need of assuming any a-priori dispersion relationship.

2.1.4 Autoregressive analysis for complex travel time deter mination

In this section | discuss a new approach to recover the group velocity dispersion
curve of surface waves.

Consider a pulse occurring at a certain point at time t = 0. As an effect of the
propagation, the signal observed at the given point can be represented by the
superposition of a certain number j of pulses that may have been propagating along
different paths, with different phase velocities, ¢ (Aki and Richards, 1980) :

f(t)=& A exp(iw(t- %xj) =& A expliw(t- q;)] (2.10)
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where A is the amplitude of the j-th pulse and w is the angular frequency. In case of
dissipative medium, k is the complex wavenumber and the quantity q is defined as the

complex travel-time:

' __g 2Qra

q; =t +iv,

The rea part of q represents the arrival time t = x/c = kx/w and the imaginary part is

expressed as.
X
vV=- ——
2cQ

with ¢ phase velocity and Q quality factor.

In the frequency domain, the sequence of pulses is represented by the Fourier transform

of (2.10):

Fw) =3 A exp(-iqw) =g A exp(-ik;x,) (2.12)
i i

The real and imaginary part of (2.11) correspond to oscillating signals in the frequency
domain. Hasada et al. (2001) proposed an impulse model corresponding to equation
(2.11). Actualy it can be demonstrated that the inverse Fourier transform of the

function F(w) corresponds to the real part of the complex Lorentzian function L(t):
h(t) ——a Re‘ét a Re(L; (1))

As the amplitude A can be expressed as A= A, exp(iwf ), for f =0 the real part of the

function L(t) is a Lorentzian function centered at t, with a width of w=-2v; and the
imaginary part is asymmetric respect t = t. In genera, for different values of f, Re(L(t))
isalinear combination of a symmetric and asymmetric components.

For dispersive wave packets the complex wavenumber k is a function of frequency and

can be expanded in a Taylor series around the point Wo:

kj(W):ko(W)"'ﬂ_kj (W - wg) =k, (W) + (W - wy)
w

w=w, j 0
where u is the group velocity. Substituting this expression in the equation (2.11) we
obtain:
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Fw) = & A [exp(- ik, we)x, ) Jexp(- ia? wo)w - wy)| =
= & A lexo(- ia, wo wexp(- ia? (wy)w - w)

q; isthe complex group delay that is related to the complex group velocity:

X;
u; (wy)

Consider now the function F(w) in a narrow frequency band centered around wp; it will

q’(w,) =

assume the following form:
H o, w) = & Alexp(-i(a; W) - af Wo)w,) [exn(- ia? (wo)w)| =

=a B, (w,) exp(- ig? (wo)w) (212)

Comparing this expression with (2.11), we note that the two transfer functions have the
same form with the difference that in the case of dispersive media the amplitude A; and

the phase delay q; in equation (2.11) have been replaced by B; and the group delay
q; at the frequency wo. Therefore, the impulse sequence model corresponding to the

complex Lorentzian function can also be applied to the case of dispersive media if one
considers a narrow frequency band. In this case the real part of the complex travel time
corresponds to the travel time of the group velocity at the frequency fo. Taking this into
account, a dispersion curve can be obtained by estimating the real part of complex travel
time for a set of center frequencies.

The problem of providing a reliable estimate of the complex travel time (and
therefore of the group arrivals) can be carried on by using an autoregressive (AR)
approach. In the following | will describe some general concepts of the autoregressive
method applied to complex frequency series, then in appendix B | will show an
application to a synthetic signa to demonstrate the ability of the technique in
discriminating closaly spaced pulses and hence in reliably determining the travel times.

The complex frequency series corresponding to expression (2.11) can be
considered as the superposition of two independent components, the signal H and
Gaussian white noise E:

Y =H, +E i=0..N-1
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where N is the number of points of the complex frequency series. The signal H consists
of decaying oscillations and satisfies an m order AR equation:

A(zH,; =0=g a,z H, (2.13)

m
J

J
k=0

A(2) is a complex AR operator of order m, & are the AR coefficients and z is the unit-
frequency-shift operator:

ij=Hj+1

z = exp(-12pqDf)

with Df the unit of frequency discretization. To estimate the unknown parameters (the
complex travel time q which are related to the z operator) in the given complex
frequency series, several approaches exists. | will follow that proposed by Hori et al.
(1989) based on the minimization of the prediction error that leads to the determination
of the AR & coefficients by solving an eigenvalue problem. Taking into account (2.13),
the prediction error is:

= M j=meéx=0 2Bk=0 a

The prediction error can be minimized by using the method of the Lagrange multiplier

. o . . .
with the constraint |aj2 =1, in order to exclude trivia solutions;

Te &
—aF-l¢aaa -1y=0
fa, & €k=0 a

If one introduces the non-Toeplitz Hermitian autocovariance matrix of Y, whose
elements are given by:
1 %t

P :F_)I,k =—ayY

Y
N-miZ, "

j-1

O£k,IEm

the problem of the prediction error minimization reduces to the eigenvalue problem:

where | ™and d" are the eigenvalues and eigenvectors of IID . The eigenvalues problem is

solved through the diagonalization of the matrix P , obtaining a set of m+1 eigenvalues.
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From this set one chooses the minimum eigenvalue | ® which corresponds to minimum
noise power, and determines the m+1 eigenvectors a_ . In terms of the eigenvalue | °

one can quantify the Akaike Information Criterion (Matsuura et al. 1990) as:

AIC = Nlogl ° +2(m+1)

This quantity can be used to determine the minimum AR filer order required to resolve
the wave elements in the complex frequency series.

Once the eigenvectors a have been determined, the next step is to calculate z and hence
the complex travel times g. The AR equation (2.13) can be satisfied (excluding the
trivial condition H;=0) if one requires:

aaz“=o0 (2.14)

m
=0

3
k
where a] are the eigenvectors corresponding to the minimum eigenvaue | o. This
characteristic equation is an m-th algebraic equation for z* whose solutions are:

z, = exp(-i2pq,Df)

Therefore, from the characteristic roots of (2.14) one can calculate the complex travel
times:

—t 4y _ilnz,
Qk k k 2pr

The quantity tk is the group-velocity travel time. In the analysis of complex frequency
series a Nyquist travel time ty exists: 0 and 2ty represent the lower and upper limits of
the time band in which the travel times can be resolved. The Nyquist travel time is
defined in terms of the unit of frequency discretization Df:
1

ty = ﬂ

The travel times t corresponding to the solutions of the characteristic equation will be
distributed in the 0-2 ty Nyquist time band. As suggested by Kumazawa et al. (1990), an
empirical way to select the solutions corresponding to the signal and discard those
representing noise, is to construct the so-called cumulative “t-v plot”. If one reportsin a
2D plane the t values versus the v values for al the AR filter orders, a clustering of the
data points will be observed for the true arrival times t, while scattered points

correspond to the noise.
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Once the travel times have been obtained, the group velocity can be calculated by

smply dividing the source-to-receiver distance D to the ti:

“kz/k

To obtain the group velocity dispersion curves, the whole procedure should be applied
to a windowed complex frequency series. In this way a particular frequency band
centered on a certain value fy is chosen and the application of the AR filter will provide
the group velocity values relative to that selected frequency. The dispersion curve will
be obtained by repeating the analysis for different segments of the complex frequency
series corresponding to athe selected center frequencies.

Although AR techniques are well known in spectral anaysis, until now this
approach has never been applied to real data for the estimate of dispersion curves. The
unique application of the AR method for complex travel time determination for in
surface waves dispersion studies is that proposed by Hasada et al. (2001). However in
their work, the authors test the method only on synthetic frequency series
(corresponding to pulses in the time domain) and do not use rea data. In this thesis |
first applied the technique to synthetic data simulating a dispersive wave packet,
confirming the ability of the method in resolving closely time-spaced pulses (appendix
B), and then in section 3.2.2 | present acompletely new application to areal data set.

2.2 Attenuation analysis: the spectral amplitude decay with distance

The study of the attenuation of seismic waves can be carried out analysing the
decay of the spectral amplitude with the distance. The amplitude spectrum of the j-th
signal recorded at the i-th station is expressed as (Aki and Richards, 1980):

A (Rw)= al (V:)exp(- R) (2.15)
(R)
where
W
97 2vQ

and Ay is the source spectral amplitude at the angular frequency w, R is the source-to-

station distance, n is the geometrical spreading coefficient (1 for body waves and 0.5 for
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surface waves), v is the wave velocity, and Q is the quality factor assumed as frequency-
independent. Taking the logarithm of equation (2.15) we obtain:

InA +nInR =InA, - R i=1..N, j=1..M (2.16)

where N is the number of stations and M is the number of signals to be analysed.
Extending relation (2.16) to N stations and M signals, we obtain an overdetermined
system of NxM equations with unknowns Ag; and g which can be rewritten in the matrix
form:

d=Gm (2.17)
where d is a vector of NxM rows that contains the observational data, G is the
(M+21)x(NxM) coefficient matrix and m is the vector of length (M+1) that contains the
unknown model parameters. The explicit form of equation (2.17) is:

éinA,+ninR 0 é1 0 .. .. .. Ru éAOl‘
é u é ué

éInA21+nInR g el 0 o Ry eA02
é u é. .. .. .o ...g@... U
é ua_é ué u
(E:,InANl+nIn Ry l;l_él Rlelxé e
€inA,+ninR U € 1 ué . u
g A, Riq 2 ngé 0
e u é .u éA)Ml;'
gnANM +ninR,H & 0 0 .. 1 RHE& gf

This problem can be solved by using a least square inversion technique to find the best
solution for m (and hence for g), according to the generalized inverse formulation:
(G'G)'G"d = m

When this analysis is applied to surface waves in different frequency bands, the g
attenuation curve (that is the trend of the attenuation coefficient as a function of
frequency) can be recovered.

2.3 TheHorizontal to Vertical Spectral Ratio Technique

The idea that the horizontal to vertical (H/V) spectra ratio of microtremor was
representative of the site transfer function was initially proposed Nogoshi and Igarashi
(1971). These authors justified their assumption suggesting that the observed peak of
the H/V ratio was related to the elipticity curve of fundamental mode Rayleigh waves
and it was indicative of the shallow soil structure.
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In 1989 Nakamura revisited method proposing a new semi-qualitative theoretical
explanation in terms of multiple refraction of SH waves. He claimed that peak in the
H/V spectra ratio cannot be explained in terms of Rayleigh waves, but it is due to
vertical incident SH wave, therefore it represents areliable estimates for the site transfer
function of the S waves.

Both the interpretations are based on some strong assumptions and for this reason
at the present there is still a great scientific debate about the correct definition of the
theoretical background of the technique and about the validity of the results (see for
example Bard, 1999). The present efforts of the scientific community, mainly addressed
to provide more robust theoretical basis, essentially follows two aprroaches. 1) the use
of numerical simulations aimed at understanding both if the H/V are related to Rayleigh
or S waves (Féh et a., 2001; Malischewsky and Scherbaum, 2004) and if it can be
representative of a site true transfer function (Luzon, et al., 2001) and 2) the application
to real data in order to compare the experimental results with the theory (Lermo and
Chavez-Garcia, 1994; Konno and Omachi, 1998).

In the next sections, | report a brief review about the two interpretations (Bard,
1999).

2.3.1 Interpretation of Nakamura
Nakamura (1989, 1996) provides only a semi-qualitative theoretical explanation
that is based on some strong assumptions. The noise can be separated into body and

surface waves.
S"(f)=8'(f)+SI'(f)=H ()R’ (f)+S!
S'(f)=8/ (f)+S/(f) =V, ()R (f)+S]

H and v stand for horizonta and vertical

where the subscripts and superscripts
component respectively, b and s stand for body and surface waves, S is the Fourier
spectrum of the noise, R is the spectrum of the body-wave part of the noise at the
reference site and Hr and Vr represent the true site amplification function for the
horizontal and vertical component respectively. The H/V spectral ratio between the
amplitude spectra of the noise can be expressed as.

A - HiAY +bA

V; +b
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where A™ is the H/V noise spectral ratio at arock site, b =S /S is the relative part

of surface waves in the noise wavefield and A, =S!"/S! is the horizontal to vertical
spectral ratio due only to surface waves. Nakamura claims that the ratio between the
horizontal and vertical noise spectra is equal to the true site amplification function for
the horizontal component:

A" =H._

Consider first the previous relation evaluated at the fundamental resonance frequency fo:
AW (f,) = H, (f,) (2.18)
This equality requires the following assumptions:

1) the vertical component is not amplified at fo

2) TheH/V spectral ratio on the rock siteis equal to 1 at fo

3) bismuch smaler than 1 at o

4) bA,(f,)ismuch smaller than H- (f,)

The point 1) and 2) can be justified on the basis of the experimental evidences. However
1) and 2) are not obviously extended to the case that equation (2.18) should hold for all
the frequencies. The other two points are very controversial and seems to be in
contradiction, as the assumption in 3) can be valid in the presence of a high-impedance

contrast, since S vanishes around fo. On the contrary point 4) cannot be accepted since
the second term of the product A, (f,)is very large. The whole quantity bA.(f,) is

equal to S (f,)/RY(f,) that is the ratio of the horizontal amplitude of surface waves

compared to the vertical amplitude of body waves at the rock; there is no obvious
reason that thisratio is small compared to the S wave amplification.

2.3.2 Interpretation based on Rayleigh waves

The basic assumption of this interpretation is that the noise wavefild mainly
consists of surface waves. In particular one assumes that the H/V ratio is related to the
Rayleigh wave dlipticity, due to the predominance of Rayleigh waves in the vertica
component. In this hypothesis, introducing the Rayleigh wave eigenfunctions evaluated
at the free surface U;(0) (i=1,2,3 where 1 is the direction of motion and 3 is the vertical
direction), it follows:
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H _U,(0)
VUL

The dlipticity depends on the frequency and shows a sharp peak around the
fundamenta frequency for site characterized by a high impedance contrasts. This peak
is related with the vanishing of the vertical component, due to the inversion of the
elliptical motion of Rayleigh wave fundamental mode from counter clockwise to

clockwise.

Recently, the H/V method has been extended to other kinds of signals such as
earthquakes and artificial explosions (see for example the analyses reported in
Malagnini et al.1996; Satoh et al., 2001; Seekins et a. 1996). Also in these applications,
the results are controversial and at present it is still not clear if the method yields
unambiguous results when it is applied to different types of signals.

2.4 Ground Motion Simulation for the estimate of the Peak Ground
Acceleration (PGA)

The determination of ground motion parameters like peak ground acceleration
(PGA) can be carried on by numerically ssmulating the time history related to the
maximum expected earthquake in a given area. Among the techniques used for such
estimate, the stochastic method (Boore, 2003) is widely applied to predict the ground
motion due to a seismic input, which can be modelled taking into account source, path
and site effects. The method is particularly useful to ssmulate the ground motion for the
frequency range usualy investigated by earthquake engineering. The basis of the
stochastic method is the knowledge of the spectrum of the ground motion A, that can be
considered as the contribution of source S path P ad site G:

AM,, R f)=S(M,, F)P(R, f)G(f) (2.19)
where My is the seismic moment, R is the distance from the source and f is the
frequency. Once the spectrum of ground motion has been defined in terms of the source,
site and path contribution, the PGA estimate can be obtained by using the random
vibration theory (RVT) and Parseval’s theorem. The RVT provides the estimate of the
ratio of the peak motion (amax) to rms motion (arms), While Parseval’ s theorem is applied
to calculate ams, therefore the combined use of the two results alows for the PGA
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estimate. The ratio of peak to rms motion can be calculated by using the Cartwrigth and
L onguet-Higgins equation (1956):

¥
Zﬂ - 2(‘11- (1- x exp(- 22))Ne]dz (2.20)
Tms 0
ih =N
with x = %\Ie

Nz and Ne are the number of zero crossings and extrema of the time series. If Nislarge:

a 0.5772
Zmex — /|2In Nz| T
A e ( 1/|2In(Nz)|

In the above equations the number of zero crossing Nz and extrema Ne are related to the
frequencies of zero crossings f, and extrema fe, respectively, and to the duration T

according to:

Nz =2TFZ FZ = —“(rnZ/mo)
2p

Ne =2Tf, R (m,/m;)
2p

The quantities my are the moments of the squared spectral amplitude, defined as:
¥

m, = 2¢Y2pf )| A(f)|" of
0

where A(f) is the spectrum of the motion, defined in (2.19).
From Parseval’ s theorem, a,ms can be estimated:

¥ 2
a,. = \/f RFA(T) o =™ (2.21)
0
Combining equation (2.20) and (2.21), the value of the PGA can be calculated:
é ¥ e U é u
a. = é2(11 (1- X exp(- zz))N ]dzl:mé /mo%((I
éo ae u
Besides this methodology, in the present thesis | also apply another method

(GMG) which can be considered a dight modification to the RVT. The details of the
modified technique will be given in the section 3.8 dedicated to the PGA estimate for

the Campi Flegrei area, together with the definition of the spectrum of ground motion
A(Mo,R/f) in terms of source, site and path for the investigated site.
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Chapter 111

Data analysis and results

3.1 Data set

The data set used for the dispersion analysis of Rayleigh waves in the Pozzuoli-
Solfatara area consisted of both air-gun explosions and seismic noise.
The explosions were shot in the Gulf of Pozzuoli in the framework of the “Serapis’
active seismic experiment performed in September 2001 (Zollo et al., 2003) . The
seismic signals generated by the shots were recorded by the stations SLF and SFT of the
Osservatorio Vesuviano seismic network, located in the Solfatara crater at an inter-
station distance of about 160 m (fig 3.1). An example of recording is shown in fig. 3.2.
The SLF Mars Lite digital seismic station was equipped with a three-component 1-Hz
LE3DLITE geophone. The SFT analogic station was equipped with a L4-3D Mark
Products seismometer with natural frequency of 1 Hz. The sampling rate was 125 and
100 sps for SLF and SFT stations, respectively. The seismic noise was recorded by an
array deployed in the Solfatara crater with a maximum aperture of about 250 m and
composed by 24 vertica-component and 4 three-component Mark Products L4C
seismometers, with a natura frequency of 1 Hz. The seismic signals were sampled at
200 sps (fig 3.8).
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Fig. 3.1 — On the left, map of the Campi Flegrei area. Dots represents the location of the air-gun shots
fired on 09/21/2001. On the right, deployment of the array and seismic stations

29



0 1 2 3 4 5 6
Time (min)

0 4 8 12 16 20
Time (s)

Fig. 3.2 — Seismograms of the shots recorded at SFT station.

3.2 Surface wave dispersion analysis
In the following sections | present the results obtained from the application of
different techniques (MFT, AR anaysis, SAC and ESAC) for the estimate of surface

wave dispersion curve.

3.2.1 Multiple Filter analysis

From the whole data-set consisting of about 5000 shots, | selected 36 recordings
associated with source-receiver distances ranging from 2.5 to 4.0 km and high signal-
to-noise ratios. | obtained preliminary group velocity dispersion curves applying the
MFT to the vertical-component seismograms recorded by station SLF. | windowed the
signals by taking 2048 samples starting from the P-wave onset, then each seismogram
was bandpass filtered for a set of center frequencies spanning the 1-12 Hz frequency
range with a step of 0.2 Hz; the bandwidth of the gaussian filter was set equal to a half

of the center frequency. The occurrence time of the envelope maximum of the filtered
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signal was used to calculate the group velocity at each frequency. For each shot, the
MFT produces a plot (hereinafter referred to as MF plot; see examples in fig. 3.3 and
3.4) of the contoured normalized envelope amplitude as a function of frequency and
group velocity, where the four largest envelope maxima are marked by a symbol. The
group velocity dispersion curves can be extracted by picking the adjacent symbols that
depicts a continuous pattern.

A great problem in surface wave analyss of multi-moda signals is the
contamination of the higher modes that could mask the real dispersive patterns and bias
the picking of the dispersion curves. To avoid this, the signals need to be filtered by
using a phase-matched filter. This filter, that allows the separation of different modes,
requires the estimate of a trial approximate dispersion curve that will be refined at the
end of the filtering iterative procedure.

ISAMP=102%

Fig 3.3 — Result of MF analysis applied to a shot recorded at SLF station. Blue lines contour equal values
of the envelope amplitude. Symbols represent the four largest maxima of the envelope at each frequency:
from the largest maximato the smallest ones, the symbols used are squares, circles, triangles, and crosses.
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Fig 3.4 - Result of MF analysis applied to a shot recorded at SFT station. Blue lines contour equal values
of the envelope amplitude. Symbols represent the four largest maxima of the envelope at each frequency:
from the largest maximato the smallest ones, the symbols used are squares, circles, triangles, and crosses.

To apply the PMF to the data set, | selected the trial dispersions by | carefully
visually inspecting the MF plots associated to the recordings of SLF station and
searching for clear and well separated dispersion curves. The dispersion curve of the
first higher mode was aways very clear for every analysed shot, with group velocities
ranging from ~820 m/s to ~740 m/s in the 6-12 Hz frequency band. For a great number
of MF plots | could also identify the second higher mode, while the fundamental mode
sometimes appeared contaminated by the higher modes and did not show a clear
dispersive pattern (see for example fig. 3.3 where the fundamental mode seems to have
a double branch). For this reason | decided to not pick the fundamental mode curve at
SLF station. Conversdly, | was able to successfully pick a clear fundamental mode
dispersion from the MF plots associated with recordings from station SFT.
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The fundamental mode and two higher-mode dispersions previoudy derived,
were used as tria curves for the PMF, which | first applied to the signals from station
SLF. This procedure is summarized in the following steps:

1) The 36 waveforms were filtered by using the trial curve of the first higher mode to
allow the separation of the first mode wave packet from the residua seismogrames.

2) Theresidua seismograms were filtered by using the trial curve of the second higher
mode, to separate the second mode wave packet from the new residual seismograms.

3) The new resdua waveforms were filtered by using the trial curve of the
fundamental mode, to extract the fundamental mode wave packet.

To validate the results obtained for the fundamental mode at station SLF, a further

phase-matched filtering was performed by using the trial fundamental dispersion on the

seismograms recorded by the station SFT, in order to extract the fundamental mode

wave packet.

The MFT was applied once again to al the filtered signals (both for stations SLF
and SFT). As the filtered signal contains single mode wave packet, the MFT produces a
plot in which the dispersion curve relative to that mode is greatly enhanced respect to
the non-filtered signal. Finally, a more robust and reliable estimate of the final
dispersion relations is achieved by performing the stacking of a certain number of
selected curves. As one can appreciate from the example in fig. 3.5 the combined use of
MFT-PMF and the stacking procedure yield a very clear dispersive pattern which is no
more affected by higher mode contamination.
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Fig. 3.5 — Stacked dispersion curve of the fundamental mode obtained after the application of PMF and
MFT to data recorded at station SLF.

The final stacked dispersion relations for the fundamental, first and second mode

are shown in fig. 3.6. They were obtained by the following stacks:
26 curves of the fundamental mode at station SLF
11 curves of the fundamental mode at station SFT
36 curves of thefirst higher mode at station SLF
28 curves of the second higher mode at station SLF

The comparison between the group velocity dispersion curves of the fundamental
mode for stations SLF and SFT shows an excellent agreement of the two results.
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Fig. 3.6 - Stacked dispersion curves with the 1s-width error bars, obtained from the application of MFT
and PMF to datarecorded at station SLF. In the plot the fundamental (red circles), first (cyan circles) and
second (green circles) mode dispersions are represented. Fundamental mode dispersion curve (black
triangles) for datarecorded at station SFT is aso shown.

Finaly, | also performed an MF analysis on the shots recorded at POZ station,
which is located near the coast line of Pozzuoli. No significant dispersive features were
observed in the MF plots obtained for this data set. This means that the wave
propagation in the sea-water does not affect the dispersive pattern observed at the inner
stations SFT and SLF, which is only due to the propagation of Rayleigh waves in a
layered medium encompassed between the coast of Pozzuoli and the Solfatara crater.
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This fact ensures that the obtained group velocity dispersions of fig. 3.6 are to be

considered representative of the average properties of the medium along this path.

3.2.2 Thetest of the new method based on autor egressive analysis

| apply the method described in section 2.1.4, to 4 seismic signals associated to the
shots fired during the Serapis experiment and recorded at the stations SLF, SFT and 8A
(that is the station of the sub-array A closest to SLF). As the application of the AR
technique for the determination of group arrivals of dispersive wave packets of real
seismic signals is completely new, | will describe in details the whole procedure. First,
by integration, | transformed 14 seconds (starting from the P-wave onset) of the vertical
component velocity-seismogram in the equivaent displacement time history, then |

obtained the pulse time series by using the Hilbert transform h(t) of the displacement
u(t):

X(t) =)’ +(h(1)*
| calculated the FFT of the pulse sequence x(t) to obtain the complex frequency series

X(f). The Nyquist travel time is determined from length T of the time series according to:

therefore group arrivals comprised in the Nyquist time band 0-14 s can be resolved.

Once obtained the complex frequency series x(f), | windowed it by using a boxcar in
order to select the frequency band in which perform the autoregressive analysis. |
performed the segmentation of the complex series using frequency windows of 1 Hz
width, with an overlapping of 25%. The center frequencies were selected in the 2-12 Hz
frequency range. The segmentation of the complex series in the frequency domain can
be seen as equivalent to the band-pass filtering performed in applying the Multiple
Filter Technique. However, the advantage in handling complex frequency series is that
the filtering procedure in this case reduces to a simple segmentation of the signal. At
this point, each segment of the complex frequency series can be analysed by using the
autoregressive technique. On the basis of the Akaike criterion, | chose the filter order m
from 2 to 14 and solved the eigenvalue problem (section 2.1.4) for each value of m. The
roots z of the characteristic equation, that corresponds to the group arrival t and v factor

(or equivalently w = - 2v) are therefore obtained for each filter order and represented in
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acumulative t-w plot. In this plot, the group arrival times relative to the different wave
packets are represented by clustered points, while the noise corresponds to the scattered
points. As the distance between the source of the shot and the receiver is known, the
clustered points corresponding to the group travel times are transformed in group
velocity. Finaly, plotting the group velocity clusters calculated for each segment of the
complex series as a function of frequency, | obtained the final group velocity dispersion
curve. | implemented the whole procedure in a Mathcad worksheet, similar to that | set
up for the analysis of the synthetic signal. In fact, for the dispersion anaysis | dightly
modified the worksheet reported in appendix B by simply adding a routine that
performs the complex series segmentation and alows to reiterate the analysis in
different frequency bands.

In fig. 3.7 | report the fundamental mode dispersion curves obtained from the
autoregressive analysis applied to 4 selected shots. The curves are in agreement with
that derived from MF and PMF anaysis (also reported in the same figure). It is
important to remark that although the curves obtained from the AR technique seem to
have a quite large scatter around the group velocity values, they are relative to the
analysis of single events. On the other hand, the curve obtained from the combined use
of MFT and PMF is the result of a stacking procedure over a certain number of events
and therefore it is affected by lower uncertainties. Surely, in the future, it will be very
useful to introduce a stacking procedure in the AR analysis too, in order to reduce the
spreading in the group velocity values.
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Fig. 3.7 - In the upper panel, stacked dispersion curve (red circles) obtained from MF and PMF analysis.
The other 4 panels represent the fundamental mode dispersion curves (blue circles) for 4 shots, obtained
from the AR technique.
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3.2.3 Spatial Autocorrelation and Extended Spatial AutoCorrelation

analysis
In this section | describe the application of ESAC and SAC techniques to ambient

noise recorded at Solfatara array.
In order to apply ESAC method, | selected twenty 90-s-long windows of noise
samples, excluding recordings from the sub-array C array because of the low quality of

these data.
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Fig. 3.8 - Recording of seismic noise at the array.
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For the data analysis, | adopted the procedure described through the following steps:

1) for all the N(N-1)/2 independent station pairs | evaluated the zero-lag correlation
coefficients by filtering the signals at frequency fo with a bandwidth of 0.5-Hz.

2) the correation coefficients were averaged over those station pairs which distances
are included into consecutive distance bins, dr, of 5 m spanning the 15-200 m

distance range.
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3) the above steps were repeated for individual central frequencies fp spanning the 1-8
Hz frequency range. This upper frequency bound was adopted due to the poor
correlation of seismic noise recordings at frequencies higher than 8-10 Hz. The
overlapping of two consecutive frequency bands was set equal to 50%. Step 3)
allows to retrieve the correlation coefficients as a function of frequency and
distance: c=c(f,r)

4) steps 1-3 were iterated through the i=1...20 noise windows selected for the analysis,
and the different ¢(f,r) thus obtained were eventually averaged over these different
time measurement windows.

After this procedure, | obtained at any given frequency fo, the correlation coefficients as

a function of the distance r. By performing a fit with a O-th order Bessel function the

value of the phase velocity, c, at that particular frequency was obtained. The phase

velocity dispersion was then inferred by fitting the correlation coefficients calculated for
the different frequencies in the 1-8 Hz band. Fig. 3.9 shows the correlation coefficients
as a function of distance and the Bessdl fit at 8 sample frequencies. The retrieved phase

velocity dispersion is shown in fig. 3.13.
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Fig. 3.9 - Correlation coefficients (green line) from ESAC technique, as a function of the distance, for 8
sample frequencies. The Bessel function fitting the data is represented by the black line.

In addition, | applied traditional SAC technique to the same data set recorded at
the semicircular array D (fig. 3.1). | evaluated the zero-lag correlation coefficients
between the station located at the hub of the array and the stations located along the
semicircle of radius 30 m, using 0.5-Hz-wide frequency bands overlapping by 50% of
their width, and spanning the 1-8 Hz frequency range. For each window of analysis,
azimuthally-averaged correlation curves are obtained from the average of the frequency-
dependent correlations calculated among the different station pairs. From SAC analysis,
| obtained a single correlation curve (fig. 3.10) which is function of frequency, for the
fixed distance of 30 m (the radius of the D semicircular array). As explained in section
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2.1.3, in this case the Bessel fit over the azimuthal-averaged correlation coefficients can
be performed assuming a priori adispersion law of the form:

c(f)=Af"

The best-fit coefficients A and b took the values 0.8 and 0.12, respectively.

The resulting phase velocity dispersion function is shown in fig. 3.13. For both SAC
and ESAC method the relative uncertainties on the phase velocity estimates are of the
order of 20%.

Corr. Coeft.

0 2 4 6 8 10
Frequency (Hz)

Fig. 3.10 - Correlation curve (orange line) obtained from application of SAC method to microtremors
data from semicircular array D. The black line is the Bessel function fitting the correlation data.

3.3 Inversion of the group velocity dispersion

The group velocity dispersion curves obtained from the Multiple Filter analysis
were inverted for a plane-layered earth structure to infer the shallow shear-wave
velocity model for the area of Pozzuoli-Solfatara. Basing on the available geological
and geophysical observations, | build up a set of possible starting models with a variable
number of layers (from the smple single-layer-models to 5-layer-models) and different
shear-wave velocities (chosen in the range 200-1500 m/s, which is compatible with the
S-velocities typically observed for shallow soils and rocks in volcanic areas).
Constraints for the minimum and maximum resolvable layer thickness and depths were
imposed on the basis of the empirical relationships (Midzi, 2001). For the frequency
range | investigated, the minimum resolvable layer thickness is on the order of 20 m,
and the maximum resolvable depth is on the order of 250 m. | performed a first
selection of the velocity structure by using atrial and error procedure to look for models
which produced theoretical dispersion curves compatible with those experimentally
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observed. On this basis, some of the initial starting models with large misfit between
observed and predicted data where rejected, while others were modified, adjusting layer
thicknesses and velocities to better reproduce the dispersive pattern. The new subset of
starting models was then inverted both for velocities and layer thicknesses by using an
iterative procedure (Herrmann, 1987). After the iterative inversion of the whole new
subset | selected the 3-layer-model because it yields the lowest rms value between
observed and theoretical data and it fitted the greatest number of observations.

The three dispersion curves for the fundamental, first and second higher mode
were inverted both separately and simultaneously to better constrain the results. The
resolution kernels relative to the different inversions are reported in appendix C. All the
inversions yield similar velocity models and stable results, whose robustness is
evidenced by the excellent fits between experimental and theoretical dispersions (fig.
3.11).
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Fig. 3.11 - Results of the single-mode and simultaneous inversion of the fundamental, first and second

higher mode dispersion curves. The solid lines superimposed to the experimental data represent the
theoretical dispersions obtained from the inferred shear-wave velocity model.
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The inferred velocity models (fig. 3.12) show a marked discontinuity at a depth
of about 50 m where the shear-wave velocity abruptly changes from about 650 m/s to
900 m/s. Another dight increase of the S-velocity (from 900 m/s to 1000 m/s) is
observed at a depth of about 100 m.

To verify how well this two discontinuities are constrained and to check the
stability of the obtained results | perturbed the starting 3-layer model by changing both
velocities and layer thicknesses and repeating the inversion procedure. In all the cases
the inversion converged to the final model previously described.

The simultaneous inversion provides the best constrained velocity structure
because it yields the maximum resolution at the different depths, and therefore | used
this model (hereinafter referred to as model A) for the error analysis. The uncertainties
that affect this model are estimated by determining the range of shear-wave velocities
obtained by the inversion procedure, when one considers the errors associated to the
group velocity measurements. In fact, the stacked group velocity values calculated by
the Multiple Filter analysis are affected by uncertainties which are quantified in terms of
the standard deviation s. By subtracting and adding 2s to the group velocity values, |
generated the two extreme dispersion curves corresponding to the 95% error limits.
These curves were then inverted to infer two extreme velocity models which actually
represent the upper and lower bound for the model A. As one can note from fig. 3.12,
al the velocity models relative to both single-mode and simultaneous inversion are
bounded by the 2s error bars.
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Fig. 3.12 - On the left, shear-wave velocity models obtained from singlemode and simultaneous

inversions. The dotted lines area represents the 2s-width uncertainty region associated to the velocity
estimates. On the right, the possible geological interpretation of the velocity structure.

The dispersion curves obtained from MF and SAC (or ESAC) techniques are not
directly comparable because they are relative to group and phase velocity measurements
respectively. However, a way to compare the results given by these different techniques
conssts in calculating the predicted phase velocity dispersion curve by using the

velocity model (model A) inferred from the inversion of the group velocity dispersion
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that was obtained from the MF analysis. This theoretical phase velocity dispersion can
be directly compared with the experimental ones obtained from SAC-ESAC
measurements. As shown in fig. 3.13, thereisa good agreement between the theoretical
and the experimental dispersions, for the 2-7 frequency band, which represent the range
investigated by both SAC and ESAC methods. This confirm the robustness of the
results which have been obtained by using different techniques applied to two
completely different data sets (explosions and noise).
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Fig.3.13 - Comparison between experimental phase velocity dispersion obtained from SAC and ESAC,
and the theoretical one corresponding to the velocity structure of fig. 3.12.

3.4 Velocity model interpretation

To get more insight into the obtained results, | compared the values | retrieved for
the shear-wave velocities with those derived in a previous study from cross- and down-
hole measurements (Comune di Napoli, 1994). Although these data come from wells
located in the western part of the city of Naples, they are associated with rocks formed
after the Neapolitan Yellow Tuff caldera eruption, so they can be considered indicative
of the S-wave velocities for the volcanic products which characterize the area of
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Pozzuoli-Solfatara. The authors observed, for loose and unconsolidated ash deposits,
shear-wave velocities strongly depending on the depth and ranging from 180 m/s at
depths of about 5 m to 800 m/s at depth of 85 m, with a value of 550 m/s at a depth of
about 50 m. For the compact tuff rocks (lithoid facies of NYT) typical Vs values are
about 800-1000 m/s, with a weak dependence on depth.

From field and laboratory measurements Nunziata et al. (1999) evaluated the
shear-wave velocities of the Phlegraean soils and tuffs obtaining results in agreement
with those reported above. Nunziata et al. found that for pyroclastic products and
coastal deposits Vs is influenced by the increasing lithostatic pressure and ranges from
100 to 600 m/s over the 0-20 m depth range, while the compact NY T is characterized by
Vs values ranging from 800 to 1100 m/s and weakly depending on the lithostatic |oad.
Slightly lower shear-wave velocities are observed for fractured NY T but those values,
unlike for the compact NYT, rapidly increase with pressure due to the closing of the
fractures.

Taking into account the volcanological history of the Campi Flegrel area (see
section 1.1), the geological constraints and comparison with literature data, | finaly
give a possible interpretation (fig. 3.12) of the velocity model inferred from surface
wave disperson anaysis. The first 50-m-thick layer could be composed of loose
pyroclastic rocks emitted during the I11 epoch of activity and marine deposits of the La
Starza terrace. The Vs vaue found for this layer is in fact compatible with those
reported in Comune di Napoli (1994) and Nunziata et al. (1999) for the same types of
rocks. The seismic velocity discontinuity at 50 m can likely mark the transition to the
yellow tuffs (which have analogous mechanical characteristics of NYT and hence
smilar shear-wave velocities) produced during the tuff-cone activity of the | epoch. The
second discontinuity at 100-m-depth, which is less marked with respect to the shallower
one, has two possible interpretations. It could be due to an effect of the lithostatic
pressure which closes cracks and fractures in the tuff rock, with a consequent increase
of seismic velocity. An other possible explanation is that this discontinuity marks the
contact between the products emitted by two distinct tuff cones which erupted during
the | epoch. These units probably overlay the NYT bedrock. The interface with NYT is

not resolved by the presented velocity model, whose maximum resolvable depth is of
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about 250 m. However geological observations suggest a depth of about 300 m for the
top of this unit (M. Di Vito, personal communication).

The velocity structure presented in this thesis is in agreement with that recently
obtained at larger scale from a 3D seismic tomography by Vanorio et al. (2005), who
observe low Vs values (1000-1200 m/s for the first 2 km) in the central part of the
caldera. The present results are also compatible with the shallow velocity structure
proposed for the Solfatara crater by Bruno et al. (2004). Although the model of Bruno et
al. is limited to a depth of about 30 m, a rapid increase of Vs up to 540 m/sis reported
for the lower bound of the structure.

3.5 Attenuation analysisand Q, structure

For the attenuation analysis | selected 9 artificial explosions (vertica component)
recorded by the 6 stations composing linear sub-array A (fig. 3.1) and | applied the
methodology reported in section 2.2 to study the spectral decay with distance of
Rayleigh wave amplitude, in different frequency bands. | used a 9-s-long time window
starting 1 second after the P-wave onset, in order to exclude the body-wave
contribution. The data were band-pass filtered around a series of center frequencies
gpanning the 2.5-8.5 Hz frequency range, with a bandwidth of 1 Hz. | chose this upper
limit because for frequencies greater than 8 Hz the noise contribution begins to be
strong and hence could mask the attenuation pattern of the Rayleigh waves composing
the wavefield associated to the shots. For each frequency band, the matrix equation
(2.17) of section 2.2 was solved in order to determine the g factor. The geometrical
spreading coefficient in (2.17) was set equal to 0.5 because the analysis concerns
Rayleigh waves. By solving the (2.17) analysis in the different frequency bands, |
recovered the g attenuation curve shown in fig. 3.14.

To quantify the uncertainties that affect the estimate of the attenuation factor, |
calculated the covariance matrix. In terms of the quantities defined in equation (2.17) of

chapter 11, the expression of the covariance matrix is (Menke, 1984):
. . T .
covim)]= [6"c] e ]s 21fe 6] e[ =s ffeTa]
| isthe identity matrix and sS4 isthe uncertainty affecting the data d. As the error on the

distances R is negligible respect the uncertainty sa that affects the spectral amplitudes

A, the quantity sq can be expressed in terms of Sa:
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The error on the spectral amplitude can be calculated following Boatwright (1978):
1
s aWw) =2 n{w)

where n(w) is the noise spectrum at the angular frequency w.
In appendix D | include the Mathcad worksheet | prepared for the determination of the g

attenuation curve and for the estimate of the associated uncertainties.
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Fig. 3.14 — Gamma attenuation curve derived from the analysis of the spectral decay with distance.

| used the obtained g attenuation curve to infer the inverse S-wave quality factor

Q,' as a function of the depth, that is the 1D attenuation model. To obtain a better

constrained model, | performed a simultaneous inversion (Herrmann, 1987) of the g
attenuation curve and the phase velocity dispersion previoudly obtained from SAC
technique. As the g attenuation curve was retrieved in the 2.5-8.5 Hz frequency range,
the maximum resolvable depth and the minimum layers thickness are on the order of
150 m and 30 m, respectively. For the inversion | had to choose a starting model
compatible both with the (these) limits imposed by the depth resolution and, at the same
time, with the model previoudy retrieved from the inverson of the group velocity
dispersion (that has deeper and dlightly finer resolution due to the larger frequency
range in which dispersion was retrieved). For this reason, | used as starting model a 2-
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layered structure whose thicknesses (50 m for both the layers) and S-wave velocities are
constrained by the (corresponding) values of the velocity model derived in section 3.3
and | assigned to the different layers some tria values of Qp, compatible with those
usually observed in shallow subsoils of volcanic areas. Several inversons were
performed by perturbing the trial values of Qp, but in any case the inversion procedure
aways yields stable results, converging to the same fina solution despite the
differences in the starting Qp values. The obtained attenuation model presents low Qp
vaue, being Qp = 4 in the first 50-m-thick layer and Q, = 12 in the second 50-m-thick
layer. The value of the quality factor in the halfspace is not resolved. In the next figures
| show the result of the inversion (fig. 3.15), the attenuation model and the resolution
kernels (fig. 3.16).
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Fig. 3.15 - Results of the inversion of the g attenuation curve. The solid lines superimposed to the
experimental data represent the theoretical dispersions obtained from the inferred attenuation model.

50



O BETA IMYW RESOLWIMG HERMELS
0. 07 0.12 0. 1& 0. 20 0. 2%

0. 00 150 fsl 0.00
0. 0F A -1 FO.0F
0. 0é - HO. 0
0. 0% - o 0f
o 0.12 Fo.12 o
= =
- 0:15 F0.15 o
i o
MR Lo.18 W
.21 4 b 21
0. 24 .24
0. 27 4 b0, 27
0. 30 0. 30

Fig. 3.16 - Attenuation model obtained from g curve inversion (on the left) and resolution kernels for the
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3.6 Estimate of the theoretical transfer function

In order to estimate the theoretica ground response in the area of Pozzuoli-
Solfatara, | considered a vertically-propagating shear-wave in the velocity and
attenuation structure derived in section 3.3 and 3.5. For a layered damped soil on an
elastic bedrock the transfer function that relates the displacement amplitude at layer i to
that of layer j can be calculated using the relation (Kramer, 1996):

AW)+BW)|

u
A W) +B;Ww)|

U;

Fyw)=

with:

Avs =5 AuL+a,)ep(ikch,) + 2 B, 1- a;)e- ik, f,)

B =5 Al 2, )e(ilch,) + 2 B, (L+a el ikh,)
whereh _is the layer thickness, k' is the complex wave number and a . is the complex
impedance of the m-th layer. This last two parameters are defined through the complex

shear wave velocity, V' :
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with r  and X, density and damping of the m-th layer, respectively. The damping is
related to the quality factor Q by the relation:

1

X = —
2Q

The parameters that | used to calculate the theoretical transfer are listed in the following

table:

Layer number Shear wave Thickness Density Quality
velocity (m/s) (m) (glem®) factor
1 634 50 1.8 4
L oose pyroclastics
2 923 50 1.9 12
Fractured Y ellow Tuff
Halfspace 993 _ 2.0 15
Compact Yelow Tuff

The value of the quality factor of the halfspace does not affect the resonance frequencies
and the amplification level of the theoretical transfer function, as | showed in the
numerical smulation reported in appendix E. For this reason, | assigned to the halfspace
the Q value inferred from the inversion of the attenuation curve, although this is not
well constrained due to the lack of resolution at that depth.

The obtained transfer function (fig. 3.17) caculated by using the Mathcad
worksheet reported in appendix E, has two peaks at the resonance frequencies of 2.1 and
5.4 Hz. A further discussion will follow in the next section, after the comparison with

the results obtained by applying the method of Nakamura.

3.7 Application of the H/V spectral ratio technique and experimental

transfer function.

To obtain the experimental site transfer function, | applied Nakamura's technique
to microtremor data collected by station SLF. For the estimate of the H/V spectral ratio,
| selected 32 20-s-long time windows of seismic noise recorded between two
consecutive air-gun shots. A Konno-Omachi (1998) smoothing window was applied to
the Fourier spectra and, after the quadratic merging of the horizontal components, H/V
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gpectral ratios were evaluated for each time window. Finally, these values were
averaged to estimate the stacked H/V ratio for the site.

| also calculated the Nakamura spectral ratio using 21 artificial shots of the Serapis
data set at station SLF. In this case | used atime window length of 10 s, while the other
parameters set for the evaluation of the H/V spectral ratio for the artificial explosions
were the same adopted for the noise analysis.

Finally | applied the method to 29 loca earthquakes belonging to the seismic
swarm that occurred in the area of the Solfatara on 2005 October 5™ (section 1.2). In
this case | used the seismic traces recorded at SFT station because the SLF station was
removed at the end of the Serapis experiment. In handling earthquake data, |1 selected a
5-slong time window starting from the S-wave arrival, in order to anayse the
contribution of the shear wave packet. For the H/V estimate, | adopted the procedure
previously described for the seismic noise.

The theoretical transfer function (TTF) obtained in section 3.6 was compared with
the results from Nakamura's technique. The TTF and the H/V ratios for noise,

explosions and earthquakes are shown in fig. 3.17.
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Fig. 3.17 - Theoretical transfer function calculated by using the inferred shear-wave velocity model and
H/V spectral ratios obtained from the application of Nakamura s technique to microtremor, explosion and
earthquake data.
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The first result to note is the good agreement among the three experimental H/V
ratios, that evidenced the resonance frequency at:
f=49+ 0.3for microtremor
f=49+ 0.4for explosions
f=45+ 0.6 for earthquakes

This resonance frequency, as one can note in fig. 3.17, partialy agrees with the
second resonance frequency of the theoretical transfer function, although this last is
dightly higher (5.4 Hz). On the contrary, there is a quite large discrepancy in the
amplification level at this frequency, being the amplification provided by the TTF lower
respect to that estimated by from the H/V ratio. Above all, the most evident discrepancy
is the complete disagreement between the curves for the fundamental resonance
frequency of 2.1 Hz which is observed only in the theoretical transfer function. Three
possible reasons could explain this discrepancy:

1) The H/V rdtio is sensitive to the velocity structure just beneath the station,
while the 1D velocity model obtained from the inversion of Rayleigh wave dispersion
represents an average model for the medium between the source and the receiver. So |
expect that the H/V is compatible with the TTF only if the local structure beneath the
station located in the Solfatara crater is exactly the same represented by the average
velocity model. However it is possible that in the Solfatara arater a very local thickening
or thinning of the shalow layers could produce a shift in the amplification frequencies.
In this case the H/V is to be considered indicative of the very local transfer function just
for the Solfatara crater, while the transfer function derived from Rayleigh wave
dispersion is valid for the area that goes from the shore of Pozzuoli to the external rim
of the Solfatara crater.

2) A very loca destructive interference occurring in the Solfatara crater, whose
basin-like structure is expected to cause significant wave-trapping phenomena, could
prevent to observe the 2.1 resonance freguency.

3) Finally, as confirmed by many studies (Luzon et a., 2001; Malischewsky and
Scherbaum, 2004) Nakamura's technique gives a good estimate of the fundamental
frequency only in the case of large impedance contrast (generaly > 2.5), while it often
faills once dealing with low impedance contrast. For the Solfatara | estimate an
impedance contrast of about 0.6, which is probably too low for considering reliable the



results obtained from the application of Nakamura's technique. In this case, the H/V

spectral ratio cannot be considered indicative of the site transfer function.

3.8 PGA estimate from ground motion simulation

| calculated the peak ground acceleration (PGA) due to the expected largest
magnitude local earthquake, both for the whole caldera of the Campi Flegrei and locally
for the area of Pozzuoli-Solfatara. The first method | used is based on the random
vibration theory (RVT). The procedure that | followed is summarized in the following
steps:

1) the shape of acceleration spectrum A(f) is defined as function of source
parameters (fe, Mo(Mmay)), path (Q), radiation pattern (Yy), geometrical
spreading (R), free surface operator (F) and medium parameters (Vs ro);
hereinafter all these parameters are defined as the ensemble { Ki} ;

2) the moments my of the squared spectral amplitude of acceleration are evaluated
in order to calculate the numbers N, of zero crossing and extrema of time
series,

3) the ratio (PGA/aims) of PGA to the root mean sgquare acceleration (ams) IS
calculated by using Cartwrigth and Longuet-Higgins equation;

4) Parseva’s theorem is used to obtain the estimate of the rms acceleration a;ms in
terms of the squared amplitude spectrum of ground motion |A(f,{ Ki})[%

5) PGA value is calculated by considering the product between the values of
(PGA/a;ms) evaluated at point 3) and arms.

The second method that | used for the estimate of PGA estimate can be considered
as a dight modification of the first. | describe this method (hereinafter referred to as
GMG) in thefollowing steps:

1) the shape of acceleration spectrum A(f, { Ki} ) is defined;

2) Parseval’stheorem is used to calculate ans;

3) Ground motion acceleration A(t) is generated using a gaussian distribution with
s equal to ayp;

4) PGA isevauated by considering the maximum amplitude of A(t);
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5) the averaged value of PGA is caculated by performing a great number of
simulations (N > 50) (the iterative procedure is repeated from point 1) to point
4)).

The definition of spectral ground acceleration A(f,{ Ki}) and the setting of the
parameters { K} are the most important aspects of the three above described methods.
The shape of the acceleration spectrum A(f,{Ki}) is defined following Boatwright
(1980):

W, xf 2 @&p fTo
AT (K ) = e B2 3.
1+ —=
c@a

For the area of Pozzuoli-Solfatara | took into account the local site effects considering
in equation (3.1) the site contribution too:
A (f.{K.}) = ACE{K D G(f)
where G(f) represents the theoretical amplification function derived in section 3.6.

In the following, | describe how | chose all the parameters of equation (3.1), both
for the Campi Flegrei caldera and for the area of Pozzuoli-Solfatara.

| estimated the spectral ground acceleration A(f, { Ki}) for the maximum expected
magnitude Myax in the investigated areas, for a given recurrence time period. As well
known, the number of earthquakes that occurred in a time period t can be represented
by Gutenberg-Richter relation (Lay and Wallace, 1985):
logN(M) =a- bM (3.2
where N is the number of earthquakes with magnitudes in a fixed range around
magnitude M, a and b are parameters respectively related to seismicity level and earth
heterogeneity (Scholz, 1968). Equation (3.2) can be used to calculate the expected
maximum magnitude Mmax. If @ and b are estimated for data in atime period t, the ratio
a/b gives the vaue of Mmax expected in that period. For the Campi Flegrei area a and b
parameters of Gutenberg-Richter distribution were calculated by De Natale and Zollo
(1986). The seismic catalogue used in that work starts form 1975 and ends in 2000, it
contains more than 10,000 seismic events (0 < Mp < 4.2) mainly related to the
bradyseism episode of 1983-84. The completeness threshold of this catalogue is Mp =
0.6. The parameters a and b were obtained using a least square evaluation on the
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selected data. Using these values | estimated the value of Myux equal to 4.35 £ 0.30 for
the Campi Flegrei area, for arecurrence period of 25 years.

After the determination of the expected maximum magnitude, | used the empirical
formula derived in Galluzzo et a. (2004) that relates seismic moment to magnitude, in
order to calculate the expected maximum moment:
logM, =9.9+0.9M

By using this relation, it resulted that Mo(Mme) is equal to 6.540" Nm.

| evaluated the corner frequency f. associated to the maximum expected
magnitude Mma by using the Brune formula (Brune, 1970) where the value of the
source radius r. corresponding to Mo(Mmax) IS estimated extrapolating the scaling
relationships (Galluzzo et a., 2004).

As concerns the attenuation parameters, for the Campi Flegrei caldera | fixed the
shear-wave velocity and quality factor Q equal to 3 km/s and 110, respectively, as these
values represents an average estimate for the whole area (Del Pezzo et a., 1987). For
the local estimate in the area of Pozzuoli-Solfatara, | took into account the velocity and
quality factor values derived in this thesis, by considering in equation (3.1) three
contributions related to the propagation in the layered structure of section 3.6. Only for
the halfspace, | still used the average quality factor Q = 110, as the attenuation structure
derived in section 3.5 could not resolve the Q value in the halfspace.

The medium density r o was considered equal to 2.2 gm/cm® in the caldera and 2.1
gm/cm® for Pozzuoli-Solfatara. Geometrical spreading factor 1/R was obtained by
evaluating the average hypocentral distance between the mean of source locations and
the nearest station site. | fixed R equal to 2 km being this value the minimum possible
hypocentral distance.

Finaly, | fixed the radiation pattern term Y; equal to 1 in order to take into
account the effects due to the maximum radiated energy, while a value of 2 was chosen
for the free surface operator F.

Using the above defined parameters, | applied the two techniques (RVT and GMG; se
the Mathcad worksheet reported in appendix F) obtaining the following PGA values:

004 g RVT method  Campi Flegrei area
0.04+£001g GMG method  Campi Flegrei area
0.097 g RVT method  Pozzuoli-Solfatara area
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0.096+0.004g GMG method Pozzuoli-Solfatara area
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Discussion

In this thesis | contribute to the characterization of the shalow velocity and
attenuation structure for the area of Pozzuoli-Solfatara. For this aim, | apply different
techniques (combined MFT and PMF, SAC, ESAC) to different kind of data
(explosions, seismic noise), providing robust and stable results, which | successfully
validated against the available constraints given by the direct and indirect geophysical
and geologica measurements. In addition, the techniques adopted for this study
represent a cheap manner to obtain fast and reliable measurements of local elastic
properties of the earth. These measurements constitute a good observational set to be
used in al the studies on the seismic source in the area.

| also introduce a new approach based on the autoregressive analysis, for
recovering the dispersion curve of surface waves. This method offers some advantages
respect to the combined use of MFT and PMF; one is that there is no need to filter the
data because this operation is equivalent to the segmentation of the complex frequency
series. In addition the computer time required for the elaboration is very small. As |
have shown in this thesis, the AR technique applied to rea signals generated by the
artificial  explosions has provided reliable results. The ability of the method in
discriminating closely spaced arrival times implies an accurate determination of the
dispersion curves. The results presented in this thesis are very promising, athough a
little effort is now required for the quantification of the uncertainties related to the travel
time estimates and their propagation on the group velocity dispersion values. However,
in my opinion, this technique could be extensively applied for future studies of surface

wave dispersion.

| used the velocity and attenuation structure presented in this thesis to estimate
the theoretical transfer function and assess the local site response, that | took into
account to better constrain the PGA value for the area of Pozzuoli-Solfatara. Such
estimates are very important in an area that is periodically subjected to seismic crises
and where the most part of the seismicity related to the bradysesmic crisis is located.
Although this local seismicity is characterised by relatively low energy earthquakes,

local amplification occurring at the resonance frequencies can produce great damages to
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building and infrastructures. All these aspects should be taken into account for the

assessment of the seismic hazard in this densely-populated volcanic area.

The comparison between the amplification peak frequencies obtained from the
theoretical transfer function and the ones retrieved from the application of Nakamura's
technique opens several points for discussion. In section 3.7 | gave some 3 possible
interpretations that could explain the observed discrepancy. Here | just would like to
add that, as remarked in point 1) of section 3.7, that local deviations from the average
velocity model can produce differences in the transfer function; athough the very
shallow crustal structure going from Pozzuoli coast to the Solfatara crater rim is not so
heterogeneous (as it isinside the flat part of a collapsed caldera), some local variations
in the layer thicknesses just beneath the Solfatara crater are possible. | further
investigated this aspect by looking at the experimental phase velocity dispersion curve
deduced from SAC technique, which is representative of the velocity structure just
beneath the array. As shown in fig. 3.13, this curve is quite compatible with the
theoretical phase velocity dispersion associated to the velocity model | have found.
However, after some numerical simulation, | found that the experimental phase velocity
dispersion could also be compatible with a crustal structure formed by a 30-m thick
layer of pyroclastic materials on an elastic hafspace composed by fractured yellow tuff.
This crustal structure (that would be valid just beneath the array site and that only
dightly differs from that of section 3.4) would produce a theoretical transfer function
with the fundamental resonance frequency at about 5 Hz. This would agree with
Nakamura's spectra ratio.

On these premises, it would be very useful to plan an experiment aimed at the
sampling of microtremor in the nodes of a grid densely covering the area which goes
from the coast of Pozzuoli to the rim Solfatara crater, as well as the bottom of the
whole crater itself. In this way a more punctual evauation of the H/V Nakamura's
gpectral ratio would be possible, thus allowing the comparison both with the
experimental transfer functions for different sites and with the theoretical transfer
function estimated for the average velocity and attenuation structure presented in this

thesis.
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Conclusions

A remarkable result is the robustness of the retrieved dispersion curves, which
have been obtained applying different techniques to both natural and artificial
sources. The present techniques represent a cheap manner to obtain fast and
reliable measurements of local elastic properties of the earth.

The new approach based on AR analysis and proposed for the determination of
surface wave dispersion curves has provided encouraging results. In the future this
technique could be successfully applied for such kind of studies.

The obtained seismic velocity and attenuation models contribute to the definition
of the surface geology at small-scale in the area of Pozzuoli-Solfatara. These
models have been used to determine the local site response, in order to contribute
to the seismic hazard assessment for that area.

The present study adds new observations that contribute to the present scientific
debate about the applicability of the method of Nakamura.

The PGA value for the Campi Flegrei and for the area of Pozzuoli-Solfatara was
calculated by simulating the ground motion produced by local earthquakes and
taking into account the estimated local Site response.
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Appendix A

Demonstration of relation (2.2)

In the following | report the demonstration that the expression (2.1) in section 2.1.1 is
equivaent to (2.2). The (2.1) is.

o1 1) =% OH (w)AGw +w, ) expfif(w+w, ) - kw +w, )ridw (A1)
Consider the expansion in Taylor series of the spectral amplitude A(w,r) around w, :

¥ -

Aw,r)=4 M (A2)
n=0

with:

_af"Alw,r)d

w" g,

If one defines the function g, (t,r):

ar)= o 3 () explift - K +w, ) w A3
then the expression (A.1) for g(t,r) becomes:
QLG A eH G5
olur)=1a = ey gexp(lwot) (A4

Neglecting higher order in the expansion of the complex amplitude A(w,r), is

equivalent to neglect higher derivatives in (A.4). Now consider the expansion of k(w)

around w=w, . As gk _1 , with U group velocity, then:
dw U
1 1d°k )
kw)=k +—=Ww-w_ |J+= W - W A5
)=+ G w5 2o w) ”5)

Substituting in equation (A.3):

1 Loy ®e @ r o rdk U0
9,(t,r) = =exp(- ik,r) ¢H (W)expGiavgt - —3- ———w? ;7w (A.6)
2 -, geg Uoﬂ 2dW0 gﬂ

Moreover, considering the explicit form of the gaussian filter H (w):
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loglaw/w,)  plEw,

Hiw)=i
= >,
the equation (A.6) becomes:
W, sm[w r/U
g,(t.r)=exp(- ik,r)== \f pae—-P%; (A7)
P w(t-r/U,) 8849 4y
where the symbol * denotes the convolution operation and gis equal to:
r d’k ia
2dw; w;
Equation (A.7) can be written as.
1 (p G bz pou €1 bo./4\wc
g,(t.r)= expag- k,r+- - aerf 6w - e (A.8)
V4 & 49 4y @\@8 20§

c

with:

®e2 o
t(2)=8Z %pp(- ttht and b =(t- r/U,
erf (2) gﬁ%@Xp( Mt an (t- r/u,)

Now assume that A(w,r)is constant in the filter band. As one can note from (A.4), in
this case the filtered signal is represented by the relation (A.6) multiplied by exp(iwt);
then the study of (A.4) is equivalent to that of (A.7) or (A.8).

The complex quantity g can be represented as.

_r d’k ia e (A.9)
2dw Wj
with:
d’k & &
= & +1 +6ea T p<q<2p (A.10)
Coaw; 5 " Ewig

With this position, the expression of the filtered signal becomes:



2
L (p. a4 pa

pgﬁvot r-=-c expeb—(smq+|cosq)
ee 2 4

glt,r
(t.r)= & i

A
2

1€ . b . v
ierfa/rw expi(/2+p/4)- ——=exp(- i(a/2- p/4))a
e 2r 6

vert &t w, ei(a/2+p/a)+—2—expl- ia/2- p/4) AL
e 2\/f— b

Under some condition this expression can be smplified. The error function is an odd

function and:

erf (x+iy)»1 for x>y e x>2

erf (x+iy)»-1for x<-]yf e x<-2
In the following hypothesis:

w_r¥? >1/2pr ¥ wrt?>2

the error functionsin (A.11) are approximately -1, therefore (A.11) reduces to:
glt,r)= 2'2 \/Hexpél Wt- k- — i%expe—(smq +|cosq) (A.12)

If Ldk

> dw =0, equation (A.12) can be written as:

é
\/7exp[|wt-kr expé
&

that is the equation (2.2) of section 2.1.1.

N
Ee 24 (A.13)
UoﬂH
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Appendix B

A Mathcad worksheet for AR analysis

| report the Mathcad worksheet | prepared for the AR analysis of a synthetic dispersive
signal. Comments are in bold text

| generate a dispersive synthetic signal composed of 3 wave-packet with different
frequencies (2, 3and 5 Hz).

f1:

1:=2

f2:=¢ These are the selected frequencies

f3:=E

par :=1.1

par2:=0.¢ These parameter s change the shape of the test signal, acting on the
decay rate

par3:=0.£

signal (1) := exp[ - (par¥1t)] sin(2px¥1x) The wave packet with frequency f1
signal2(t) := exp[- (par2¥2t)]ssin(2p2t)  The wave packet with frequency f2
signal3(t) := exp[- (par3¥3t)] sin(2pf3t)  The wave packet with frequency 3

quake(t) =g 0 if t£O fo)
r =
e|signal(t) if t>0 ¢

quake2(t) =g 0 if t£O
r
e |signal2(t) if t>0

R 1O

quake3(t) =g 0 if t£O fo)
r =
e |signal3(t) if t>0 ¢

05
:f:/\
quake(t) ‘\":Vk
quake(t) O_H \/\fﬂﬁu B
quake(t) ‘ ]':.;' v
{]
1/
P I | | | l
03, 2 4 6 8 10
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Thefollowing routine assigns different time delays to the 3 wave packets.

sampling := 10 Sampling rate of the time series

Npti := 99¢ Number of pointsto be generated. Thetime serieswill have a
length of 10 s

i :=0.. Npti

t. = |

I sampling

noise_amplitude := 1 | add to the signals some noise

| assign the arrival time of the 3 different packets: the3 arrivalsareat 1, 2and 3
seconds, respectively:

=t -1
i

t-2
[

. ~
t. -G
=L-c

| |

noise := rnorm(Npti + 1,0,0.0005 Generation of the synthetic noise

_x
oo

-
1

S = quake(xl) + quakez(ki) + quake3(hi)

The synthetic final signal isthe sum of the 3 wave packets arriving at different
times, plusthe noise:

X:=S + noise

1

Thisisthefinal synthetic dispersive signal. Thefirst packet isat 2 Hz and arrives
at 1s,thesecond at 3Hz and arrivesat 2 s, thethird at 5Hz and arrives at 3s.
Now | transform the oscillating signal in pulses by taking the Hilbert transform.

hil := hilbert(x)

x:=\ (92 + (hil)?
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| ] ]
0 2 4 6 8 10
t
The complex frequecy series (amplitude and phase) is obtained by taking the FFT
of the pulses.

i=1.last(X) +1
=1, last(x) + 1
2

[
t. = -
I sampling

_ sampling .
17 last(®) + 1

(Re(cft(x))
(Im(cfft(¥))

0 10 20 30 40 50
fs
x:= cfft(x) x isthe complex frequency series

last(cfft(X)) = 999.000 The number of points of the complex series

sampling
last(X) + 1

=0.100

srate :=fs, - fs srateistheunit of frequency discretization

C

srate = 0.100

tNyquist :=
vd 2srate

tNyquist =5.000 Nyquist travel timefor the complex frequency series. It means
that | can

evaluatethearrival timein the Nyquist timeband (-5, 5)
seconds, or

equivalently in the (0, 10) secondstimerange
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| select to analyse the complex frequency seriesup to 10 Hz:

X := submatrix(x, 0,100, 0, 0)
last(X) = 100.000 The selected number of points of the complex series

Re(x)
(Im(x))

fs
Now | perform the autoregressive analysis. | calculate the eigenvalues and the

eigenvector s of the autocovariance matrix of the complex frequency series, for
different orders of thefilter (from 2to 14).

mmax;= 1¢ Sdlection of the maximum filter order

For each order of thefilter, the following routine sear ches for the minimum
eigenvalue.

m:=0.. mma
[Op:=[for nl 0. m
for kT 0..n
for IT 0..n
1 glas NN
Pt ™ W’ﬁ a E(M)*E(X)HL'LIL
ét=n a
| = egenvas(P)
[ = sort(l)
I = Ig

The Akaike Information Criterion (AlC) isevaluated to estabilish the minimum
order of thefilter required to resolve the number of wave elementsin the complex
frequency series. In the next plot one can note that AlC decreases until the AR
order reaches a value of six. Thisvalue istherequired minimum filter order.

AIC = (last(¥) + 1)>4n(| om) +2{m+ 1) Evaluation of the Akaike Infor mation
Criterion
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(AIC) =1000 -

—2000

For each order of thefilter, the following routine searchesfor the eigenvectors
corresponding to the minimum eigenvalue.

eigen := | for ni 0.m

for kT 0..n
for IT 0..n
1 glatd () U
P ™ W’ﬁ a E(th)"é(x)tltu
ét=n a
| = egenvas(P)
[ = sort(l)
0= Ig

a- eigenvec(P,I 0)

Once the eigenvector s have been found, the characteristic equation (see the section
about the description of the method) must be solved in order to obtain the
complex travel times.

N:=0,2.. (rows(eigen) - 1) These instructionswrite the eigenvector to an
ASCII file

beta(N) := concat ("C:\Sisnologidphd\eigen\eigen" ,num2str(N))
WRITEPRN beta(N)) := eigen N

Cy = READPRN concat (beta(N),".PRN"))

N
Y. N) = (CN)k>y The char acteristic equation to be solved

Thefollowing instructions solve the algebric equation
N:=2,4..(rows(eigen) - 1)

N polyroots (VN)
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vN:=p(Y,N) coeffs, y

z, =1 Theroots of the characteristic equation
'N
iXn(z
q :=ﬂ The complex travel times
N" 28 1ssate
tN = Re(qN) Thetravel times
UNES Irr(qN)
Wy = 2>VN

Theresults (real and imaginary part of the complex travel times) arewritten to an
ASCII file:

twy = augment(t N WN)
beta(N) := ("C:\Sismologiaphd\eigenitau_w.dat” )
APPENDPRNbeta(N)) := twy
=
C\.\Tau_w.dat

In the following cumulative t -w plot one can note how the procedureis able to well
discriminate the arrival timesof the 3 pulses. The arrival times areindicated by
the 3 clusters of pointsat 1, 2 and 3 seconds, while scattered pointsrepresent the
noise.
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Appendix C

Resolution kernels

In this appendix | report the resolution kernels relative to the inversion of the group

velocity dispersion curves (3.3).

SHEAR WELOCITY CMMSSEC]
0. &2 0. 73 0.88 1.01 1. 1%

0. 00 ' ' : =

0.03% 4
0. 0&
0. 0% 4
0.12
0.15

0.12 4

DEPTH CKH]

0.21 4

0. 2% 4

0.27 1

0.30

On the left, velocity model inferred from the fundamental mode inversion. On the right,
the resolution kernels.

SHEAR WELOCITY CKMASEC]
0. &b 0. 20 0. 74 1.02 1.22

0. 00 1 1 1 !

0.03%

0. 0&

0. 07

0.12 4

0.15 4

DEFPTH CKH]

0. 12 4
0.21 1
0. 2% 1

0. 27

0. 30
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On the left, velocity moddl inferred from the first mode inversion. On the right, the

resolution kernels.

0. &3

SHEAR WELOCITY CKMASECD

0. 75 0. 24 0. 7?7 1.02

0.1 0.2 0.3

0.00 +
0.03 4
0. 0 1
0. 0% -
0. 12 -
0. 15 1

0.1 4

DEFTH (KM

0.21 +

0. 2% H

0. 27 4

0. 30

On the left, velocity model inferred from the second mode inversion. On the right, the

resolution kernels.

0. &3
.00

SHEAR VELOCITY C(WMASECD
0. 73

0. 83 0. 73 1.03

0. 0% 4

0. 06

0. 0% 1

0. 12

0. 13 4

DEFTH (KH2

0. 12 4
0.21 1
0. 24

0. 27

0. 30

On the left, velocity model inferred from the second mode inversion. On the right, the

resolution kernels.
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Appendix D

A Mathcad worksheet for the attenuation analysis

This appendix contains the Mathcad worksheet | prepared for the attenuation analysis.
Comments are in bold text

The seismograms of 9 shotsrecorded at the 6 stations of the seismic sub-array A
are used for the attenuation analysis.

] =1. cols(Ev)
éif éf
EV’ S mean(EV] ) The matrix Ev contains 6 seismic traces for 9 events

i=1. Iast(Ev )

The sampling rateis srate =200 Hz
i
t.=——

I gate

Thisisan example of a shot recorded at the 6 stations of the array

4 traces
5.10 T T T

& 7

&7 47000 W‘ ’, Wl
"E ¥ 000 520" rl

&7 g7000

59107000 -1 .10° ’r

-15.10°

t
time (s)

Ev := submatrix(Ev,200,2000 1, cals(Ev))  Selection of 9-s-long time window, 1 s after the
P-wave arrival

Thesignalsarefiltered in selected frequency bands. In the following example, |
apply a band-passfilter between 6 and 7 Hz.

fl:=¢€

f2:=7

k:=1..cols(Ev)

74



&f ( &d )
Ev " :=FBP Bessd\Ev " ,srate,f1,f2,7,0.7

In the next figure | show examples of spectrafor some shots. In each plot is
reported the spectrum at the 6 stations of the array.
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L &n
f
Spectrum( Eval , srate)

Frequency (Hz)
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(6 sl
Spectrum\Ev ", srate ’, i’
A :
mel “3,.
0 = =
0.01 2.79 5.56 8.34 1111 1389  16.67
L &t
Spectrum( Evaln, srate)
Frequency (Hz)



The following routine calculates the value of the spectral amplitude as a function of
the distance for each events. The parameter g (see definition in the section 2.2 is
evaluated by a least-squar e fitting procedure, by using the whole data-set.

fi= Spectrum(Evélﬁ,srate)e1r L.
spa(ﬁ = Spectrum(Eva(ﬁ, srate)czr

j:=1..cols(Ev)
Areaj = | for il 1.last(f) - 1

(8N sy < E(0) - (e
Ain E(Spajn)m* (Spajn)ik’(wfw

A
last(f)- 1
[¢]
AA - ] (Ah)
h=1
AA
ggolso(Ev) 0
Area.”
cC a J=
areams := £ =1 2
cols(Ev)
sg :=0.t

d:=sgin(r) + In(Area) Definition of the data vector, d, for the inverse problem

-1
T T . .
m:= (G G) G d Solution of the inver se problem

m,, = -5.836 Thisisthevalue of the g parameter obtained from the

inversion
of all data

| report an example of the amplitude spectral decay as a function of distance for

two events

ji=1.€

ji=1.€

re5 := submatrix(r, 25, 30,1, 1) Selection of the 2 events

re8 := submatrix(r,43,48,1, 1)

Areaeb := submatrix(Area, 25,30, 1, 1)

Areae8 := submatrix(Area, 43,48,1, 1)

5, 1= sgoin(re5,) + In{ Areae5, | For each event, it of the spectral amplitude
decay with distance

eSj ::ngn(re8j) + In(AreaeSj)

fite5 := ling(re5, e5)

fite8 := ling(re8, e8)
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fitAe5(re5) := fite5, + fite5, rek
fitAeB(reg) := fite8, + fite8, et

fite5, = - 8.162 .
2 The angular coefficient correspondsto the gvalue
fites, = - 7.524
o T T
[ J
€5 8 ° ]
000
fitAes(res) | o
[
| | |
6
31 3.15 3.2
reb
distance (km)
9 T T
e8
000
fitAes(res)
| | ®
;
4.05 4.1
re8
distance (km)

In thefollowing, | evaluate the error on the estimate of the g parameter, by
calculating the variance of the seismic noise.

Ev := submatrix (Ev, 2200, 4000, 1, cols (Ev)) Selection of some samples of seismic noise

&f ( &d )
Ev " :=FBP Bessel\Ev " ,srate,f1,f2,7,0.7,
S e
fi.= Spectrum(Eval ,srate)
y y éf
spek = Spectrum(Evek ,srate)

j:=1..cols(Ev)

The following routine calculates the noise spectral amplitude:
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Areanj:: for il 1.last(f) - 1
| A &) .- (F)r
€A gh)r g i+l it
Ai_‘ E(Sp )i+1+(5p )lc >
A
last(f)- 1
[o]
AA - ] (Ah)
h=1
AA
ggolso(Ev) 0
A ._.
: .a reanj_:
arcamn = £ 171 g
cols(Ev)
ggolso(Ev) 0
A ._.
: a reanj_:
arcamn = £ 171 g
cols(Ev)
1 2
sigmadq := %=X areamn)
24
(areams)
sigmadq = 0.023
areamn = 407.298
Ge:=G ¢
. __( -1 )
sigmamq :=\Ge “sigmadq 10,1C
sigmamq = 0.25
sigma:=+/sigmamg
m,, = -5.836 The gvalue previoudy calculated
sgma=05 The estimated uncertainty on the g parameter
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Appendix E
A Mathcad worksheet for the computation of the theoretical transfer

Uniform undamped soil on rigid rock function

| first calculate the transfer function for a single undamped soil on arigid rock.

vs:=63  Swavevedocity inthe layer H:=5c Layer thickness
F(f) = % f:=0,0.2.. 2¢
cosPEPPHO
€ Vs ¢
50 Fundamental period
Tf = 4x— Tf = 0.308
65C
1 Fundamental frequency
Ffi=— Ff =3.25
Tf
20
(IrH]) 20 .
0 | |
0 3 6 9 12
f

As expected, the fundamental frequency of the transfer function is at about 3 Hz

Uniform damped soil on rigid rock
What happen if the single layer soil is damped?

VS = 63¢ H :=5(C
f:=0,0.2.2¢F

To see the effect of the damping on the transfer function, | assign two different quality factor
(and hence damping ratio) to the soil.

1 .
Ql:=1¢ x1L:= 201 x1 = 0.033 Layer quality factor |
1 .
Q2:= 1( X2 = 202 X2 = 0.05 Layer quality factor 11
1
Fdi(f) := 1
. cosé 2p0H U F2(h = e 2pbH )
fE—F—1
gvs{1 + ina) Cose————~1
evs>(1 + |>9Q) C



20

[Fy| 5[
|Fdi(f)| 10
|Fd2(f)|

The continuos line is the transfer function for the undamped soil. The dashed lineis
for adamping corresponding to Q = 15 and the dotted lineisfor Q = 10. The
resonance frequencies remain unchanged (the fundamental is still at 3 Hz), but the
amplification levels are lower especialy at higher frequencies. However the effect of
the damping lowering is observed on the fundamental peak too.

Uniform undamped soil on elastic rock

In this example the bedrock is not rigid but it has elastic properties, so it is possible to
define its S wave velocity and the density. If the bedrock is elastic, downward travelling
waves at the interface will be partially reflected in the layer and partially transmitted to
the bedrock. With this mechanism part of the energy will be removed from the soil layer
and lower amplification level in the transfer function will be observed.

VS 1= 63¢ H:=5( f:=0,0.2.. 2¢ rs:=1¢ Layer density
vr = 92¢ Swave velocity inthebedrock  rr:=1.¢ bedrock density
I sSWs .
a:= a =0.651 impedance contrast
I ramw
1
Fue(f) :=
2 2
BH ¢ 2 . HH ¢
cos%ém— © +a >sm§é>p—9
€ Vs ¢ € VS ¢

The solid line is the transfer function for the undamped soil on rigid bedrock. The dotted
lineisthe T.F for the undamped soil on elastic bedrock.
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Uniform damped soil on elastic rock

| consider the effect of the damping for a soil on elastic rock

- c
VS 1= 63¢ Hi=5( rs:=1¢ f:=002.2t
vr = 92¢ rr:=1¢
1:=1C X=— x = 0.05
Q 201
= i ) r SWss
Vs VS>(1 * W) vIT = vr>(1 + |>9<) as:=
I r/rr
1 as = 0.651
Fde(f) := e .
cosfﬁm— 9 + jass n%ébp_ 9
€ VsS ¢ € VS ¢

To see the effect of the changes in the impedance contrast | calculate the transfer
functionfor as=0.1

as:=0.1
Fdel(f) := vy ! vy
cos%@p—g+ ias>sin%ébp—9
€ Vss ¢ € Vss ¢
6
0] 4
| Fde(f)|
|Fde1(f)| 2
0 | | |
0 3 6 9 12
f

The continuos line is the transfer function for the undamped soil. The dotted lineis T.F for
an impedance contrast of 0.6 and for a damping corresponding to Q = 10. The dashed line
isfor an impedance contrast of 0.1 and Q = 10.The resonance frequencies remain

unchanged but the amplification levels are lower in the presence of higher impedance
contrasts.

82



Multiple layer models
The case of Pozzuoli-Solfatara: layered damped soil on elastic bedrock

First layer (50 m): poorly unconsolidated pyroclastics and marine deposits

— C
V1= 63 h1:=5(  ril=1¢ f:=002.2t
1
Ql:=4 xli=— x1 = 0.05
2Q1
Second layer (50 m): fractured yellow tuff
V2= 92 h2 := 5( r2:=1¢
- @i =005 vDr 1
Q2:= 12 T 202 I impedance contrast e 0.651
VZX

The compact yellow tuff unit is considered as bedrock with the following parameters:

v3:=99¢ r3:=2(

Q3:=15 X3:=— x3=0.02

vls = v1>(1+ i»(l) v3s = v3>(1+ i»G)

v2s = v2>(1 + i>9<2)

r 1x/1s r 2%/2s
az2:=

r 2%/2s r 3x3s

al:=

If there were only a single layer on a halfspace, the transfer function would be:
Al:=1

o 2p X

A2(7) = ALELA1 + a1)exp® >h1° >(1 al) >exp§e|x—>m°“
€2 e vi vls

eC

B2(f) := 1>9—>(1 al) pﬁ"? >h1° {1+ a1>exp§3|><—>hla;l
2 vls 48

A = A2(f) + B(f)

|FI(f)]

0 3 6 9 12
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For the area of Solfataral did not calculate this T.F related to a simple single layer on an
elastic bedrock model, but | used the multiple layer model. | calculated the transfer
function by considering a vertically SH wave coming from a bedrock composed of
compact yellow tuff, and propagating in the first TWO layers (50 m of fractured yellow
tuff and 50 meters of unconsolidated pyroclastic deposits). In this case, the expected
fundamental frequency is about:

1 h2g
T:=4>§:'h—+—9 T =0.532

evl Vv2g
Ff :=% Ff = 1.879 Expected resonance frequency for the multiple layer model
2P >h2° + = >52(f)>(1 a2) >exp§’e|><—>hzcJu

A3(f) := Simz(f){l + a2)expft
€2 € Vv2s v2s ¢C

B(f) := :‘?— >A2(f)>(1 a2) >expa‘?x— >h20+ >52(f)>(1 + a2 >expae i e )
vas gl

As one can note, the Q value of the bedrock (halfspace) does not affect the
estimate of the T.F. because it does not enter in the computation.

2

AL = A3(f) + BX)

Thisisthe transfer function obtained with the velocity model for the area of Pozzuoli-Solfatara.

20

|[FL®)| 10

| prepared the above described Mathcad worksheet to calcolate the TTF in the area of Pozzuoli-
Solfatara. | started with some examples of TTF for simple single layer model, considering the effect
of the rigid/elastic bedrock and the undamped/damped soil. Then | considered the velocity and
attenuation structure derived for Pozzuoli-Solfatara and calculated the TTF in the hypothesis of

damped multiple lavers on an €astic hafspace.
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Appendix F
A Mathcad worksheet for the PGA estimate

For the estimate of the PGA in the area of Pozzuoli-Solfatara, | prepared the following

Mathcad worksheet that uses the mathematical formulation derived for both GMG and
RVT methods.

Definition of the source and propagation parameters

a:=4.0C aand b valuesfrom the Gutenberg-Richter (De Natale et al., 1986)
b:=0.9z

da:=010 Uncertaintieson aand b values

d =004

Md = 4.3t Expected maximum magnitude maxima at Campi Flegrei

c:=9¢ Parameters of the empirical formula that relates seismic moment and
magnitude
d:=0¢
d:=0.1 Uncertaintieson c and d values
ad := 0.01
£ o0t
Cc
A oo
d
M= 510(9'9+O'9Md)E>er Relation between seismic moment and magnitude
(Galluzzo et al., 2004)

Now | estimate the seismic moment and the uncertainty:
M =653 1073  Mdyne = 107% Mdyne =6531° 1670  Thevalue of the seismic

moment

b C o
ebg Co2;
aVid = 0.218
Md

é - |‘2 2¢ |‘2 2¢ |‘thl
M = J (c6) 5610 MD 109100 + (ct) 510 T MM Dogaopmey + (avid)>E1d S PMDwog(agpdf ¢

dV = 1.466° 103
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i) =0.225

kk:=4

N
Ds ki = kk><105x—2
m

1
, .3
.= 6044M) )
=€

¢ LDk
Borok, 1959)

Relative error on the seismic moment estimate

Stressdrop valuein bar (Galluzzo et al., 2004)

Uncertainty on the stress drop

Relation between sour ce radius and seismic moment (Keilis -

r = 415.717m Thevalue of the sourceradius

7

€044 19
EC o 3T
geDskk 3ge

d=31112m
a_ 0.075

r

F:=2

R:=2

hl =005
values

hid =005
adimensional values

_ 2100kg
P 3
I
vl = 634 2
5
w2 =0z 2
2
¥ = 1000- 2

]

_202

3¢
x%s? U {av)? Uncertainty on the sour ce radius
Dskkg (

Relative error on the sourceradius estimate

Free surface operator (Del Pezzo et al., 1987)
Hypocentral distancein km (insert adimensional values)

Thickness of the first layer in km (this thesis). Insert adimensional

Thickness of the second layer in km (this thesis). Insert

Average density (this thesis)

Shear wave velocity of the first layer (this thesis)

Shear wave velocity of the second layer (this thesis)

Average shear wave velocity of the halfspace (this thesis)
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g =1 Radiation pattern coefficient (Del Pezzo et al., 1987)

Q=4 Shear wave quality factor of the first layer (this thesis)
=14 Shear wave quality factor of the second layer (this thesis)
Q3 =110 Average quality factor for the halfspace (Del Pezzo et al., 1987)

f 0.5 It is also possible to define a frequency dependent quality factor
Qf = ?5.(_] (not used in this simulation)
Hz

r Corner frequency (Brune,1970)

Uncertainty on the corner frequency

of L ow frequency spectral level

A %3 X(R1000M + 0.1X1000m)

W =2357 10 °ms

N = 50H:z Nyquist frequency

Now | define the shape of the acceleration spectrum, taking into account that the
propagation occurs in the velocity structure derived in this thesis. For this reason, |
consider the contribution of 3 terms : 1) propagation in the first layer 2) propagation in
the second layer 3) propagation in the halfspace.

f=0Hz,01-Hz. 100-Hz
BE3=F-(hl + k)

hl-1000m
tl= ——
wl
£ o hi-1000m
Wi
. E3-1000m
w3
wi=25
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acc(f) = L2
01
0.01
11077
- -m_:

100

| include the local site effectsin the ground motion simulation, by considering the
theoretical transfer function (TTF) obtained from the velocity and attenuation
structurefor the area of Pozzuoli-Solfatara, in the hypothesis of multiple layer

model:

hi:=50m Ql:=4
h2:=50nm Q2:=1z
h3:= 1601 Q3:=1F

v4 = 1019<m
S
vls = v1>(1 + i>9<1)

r 1x/1s
al:=

r 2%/2s

Al:=1

X=— X2 =0.042

v3s = v3>(1 + i»G)

r 2%/2s
az2:=

r 3x3s

x=0125  vl:= 634
S

V2= 923(m
S

x3=0033 v3:= 993"
S

v2s = v2>(1 + i>9<2)

(1= 1.8><i3

cm

r2:= 1.9><—g3

cm

r3:=2.0><i3

cm



2’*1”“ 3204 19, >(1 al) >exp§e|x—>m°“
¢

A2(f) = ALEL A1 + a1)rexp 3
€2 e vls ¢l

BZ(f)—A1>§—>(1 al)sexpf x@mo >(1+a1>exp§e|><—>hlou
& vis vis g

A3(f) := §—>A2(f)>(1+ a2) >expa?x—>hz°+ >52(f)>(1 a2 >exp§e|x7>hz°“
v2s gl

B(f) := §—>A2(f)>(1 a2) >expa‘?x—>hz°+ >Bz(f)>(1 +a2) >exp§e|x—>hz°“

v2s ¢(
TF(f):=;
A3(f) + BI(f)
20
TR
OM
0 2 4 6 8 10
f
The acceleration spectrum ismultiplied by the TTF :
acc(f) := acc(f)q TF(f)|
100

Thefollowing routine provides the acceler ation spectrum taking into account the
Nyquist frequency
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hacc(f, fN) :=

acc(f) if 0<f £fN

Re(acc(2IN - 1)) - idm(acc(2N - f)) if N <f < 2N

ReBce®BiN -+ —— 00 iqnPBecBin - 1+ ¢
e e 24N gg e e 24N g

1
accF+ —LQif f=0
e 2fNg

0.1
0.01
1
it
{107
110 °

1.
haJ:c{f',ﬂ*I}l

1107

Method 1: GMG

| apply the GM G method to estimate the PGA

finf := OHz
fsup := 100H:z
A @fsup
accrms = z24cx30
¢ &%inf
mm := 1.. 200C
{ = Ixnm
mm° 100

acotms = I:LEME2

5

| generate a Gaussian distribution with sigma = accrms

acc(f)* df -y Parseval Theorem

Q0 i f3 24N




e 20
d := rnormC 2000, 0, accrms>»— =~
€ m e

0 5 10
t
et ) = 0945
max )
a thetl =
PEe 923
pga_metl = 0,09 PGA value

15 20

| calculate the uncertainty that affects the PGA estimate propagating the errorson
the seismic moment and on the corner frequency:

daccrmsdM =

é fsup
¢ 8 1 g 1o L 00, ppop) 20
a o & Paf FexpE bt 1 — Qexp pobtar— QexpE prpta— O 2px)
A o Py Qlg & Qg & Q3@ L
—&fex Mg a
2é 0 a & 2>gl]0.5 a
¢ 4 : & ¢ 200 v
€ o € 4pr v3>RL00MM + 0.14000M) €1+ &9 ( L
€ 3 é é efcg 0@ u
g finf

[ I e e ey e Y a)
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fsup

é ofup ) .
= (20 1) N
G g b & Gomle™ it
1558 @m)’datraon & i s BB pittoek oot Se piaat 00opi) U g 1,8 &(9" a0}y
2g &finf 0 0 834pr w3 {RA000m+ 0.14000m) © € Qlg e Qg e Q3a0 gé 6 »f O
é o € é a+&80 ¢
é 5. . € 8 & eéfcg 0 i
daccrmsdfc := € fint
accrms
20 )2 YIRY
dzaccrms:=\/ (daccrmsdfc) >(d‘c) + (daccrmsdM ) >(d\/|)
decerms = 0023 Absoluteerror on the PGA
2
daccrms .
= 0.06 Relativeerror on the PGA
accrms
Method 2: RVT
| apply the method RVT to estimate the PGA
fi ;= Oz
fs := 100Hz
fc = 0.89Hz
T:= 1
fc
T =1.124s
c,)fs
m2:=20  (2pf) %(acc(f) X df Estimate of the moments of the squared spectral
O,.
fi
amplitude
c,)fs
0 4¢ :
ma=20  (2pf) Eace(f) X of
O
6fs , .
mL:=20  (2pf)&acc(f)% df
O
. fs
0 ¢ 2
m0:=20 ¢g(acc(f)) ( df
O
505
10
7= €MD Estimate of the frequencies of zer o crossings and
2p
extrema
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Tgm:=T for small earthquakes (Boor e, 2003)
Nz:= 2fzxTgm

Ne:=2exTgm
- Nz
" Ne
zmin:=C

zZmax .= ¥

zZmax

rapp := 2 gl - (1 - x>exp(- 22))Net: dz

QO OO0

zmin

Zmax

ool(1- ool 2 (1- el )" E

zmin

QO OO0

drappdne :=2

+ ZMax
Q

drappd x := 28 Nex 1 - x>exp(- z )) e 1(- 1exp(- 22)) dz
0zmin
tapp = 2951

0 0.5
rms:= o
g

eT

1 = n.3:e4%

]

0.5
2
o= [21‘[|:1 - &:H
(m-m2)

o = 0.996

Anay = rms-rapp

Amax = 0956 %

5
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Atnay

pga_boote vt =
052
2

5
pga_boore vt = 0.097 PGA value
Final results for the two methods:

pga_metl = 0.096 GMG

pza boore twt = 0097 RVT
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