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Preface

In recent years, the theory of variational inequalities has had more developments.
This theory has originally been introduced in the seventies of the 20th century as an
innovative and effective method to solve a group of nonlinear boundary value prob-
lems for partial differential equations of elliptic or parabolic type, as, for example,
the Signorini problem, the obstacle problem and the elastic-plastic torsion problem.
The pioneer works in this field are due to G. Fichera (see [44]) and G. Stampacchia
(see [94], [56], [57] and [95]).

The critical point for which the other theories, available in the literature, have
revealed themselves unable to solve the above-mentioned problems is that these
problems request a condition of complementarity type on the boundary or on a part
of the set where the problems are defined and, in general, it is not possible to express
them as an optimization problem.

After a period in which many fundamental results were been obtained about the
theory of variational inequalities, maybe in consequence of the untimely death of G.
Stampacchia on 1978, the interest for variational inequalities declined and it seemed
that the theory had no more to say.

Some years later, after results proved by M.J. Smith (see [90]) and S. Dafermos
(see [26]) on the formulation of the traffic network equilibrium problem in terms of a
finite-dimensional variational inequality and, as a consequence, on the possibility to
study in this way existence, uniqueness, stability of traffic equilibria and to compute
the solutions, the theory of variational inequalities had more impulse.

In fact, the last decades have witnessed an exceptional interest for variational
inequalities and an enormous amount of papers and books have been devoted to this
topic. More and more problems arising from the economic world, as the spatial price
equilibrium problem, the oligopolistic market equilibrium problem, the migration
problem and many others (see [72]), are formulated in terms of a finite dimensional
Variational Inequality and, by means of this theory, solved.

Moreover, in the end of the nineties of the 20th century the last it is studied the
traffic network equilibrium problem with feasible path flows which have to satisfy
time-dependent capacity constraints and demands which has been formulated in [36]
and [37] (see also [45]) as an evolutionary variational inequality. Then, existence the-
orems and computational procedures are given. After first dynamic problem, many
other problems with time-dependent data have been formulated in the same terms.
In [34] and [29] the authors consider the spatial price equilibrium problem when
the prices and the commodity shipment bounds vary over the time. The dynamic
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spatial price equilibrium problem in which the variables are commodity shipments
is studied in [31]. In [30] and [33] the authors consider a evolutionary financial
network model consisting of multiple sectors, each of which seeks to determine its
optimal portfolio given time-dependent supplies of the financial holdings. Moreover,
we recall that analogous relationships have been obtained in physical oceanography
(see [79]), in biology (see [47]), in electric power supply chain networks with known
demands (see [73] and [74]) and in human migration (see [71] and [75]). All these
problems have a common element: their equilibrium conditions can be handled as
generalized complementarity problems and moreover the evolutionary variational
inequality formulation can be expressed in a unified way (see [25]).

In this treatise we investigate the problem of regularity of solutions to evolution-
ary variational and quasi-variational inequalities. Such problem is very important
for applications. In fact, as we have said, the dynamic traffic equilibrium problem,
the spatial equilibrium problems with either quantity or price formulations, a variety
of financial equilibrium problems (see [25]), are modeled by a common formulation
by means of a evolutionary variational inequality. Then, we can apply regularity
results to these problems to obtain that equilibrium solutions are continuous with
respect to the time. This fact plays an important rule to solve numerically the dy-
namic equilibrium problems. In particular it is possible to introduce a method to
compute dynamic equilibria by means of a discretization procedure.

Few authors studied properties of regularity for variational inequalities. Impor-
tant results about this arguments was obtained by U. Mosco in 1969 (see [70]). In
particular, it was proved the convergence of solutions to variational inequalities in
Hilbert spaces. Moreover, in literature there are few works on the regularity of quasi-
variational inequalities. This induce us to study regularity results for variational and
quasi-variational inequalities which depend explicitly on the time. In order to archive
our analytic results, the convergence for convex closed sets in Mosco’s sense plays
an important role. It generalize the classical Hausdorff definition of a metric for the
space of closed subsets of a (compact) metric space. And in which both the strong
and weak topologies of X are involved. Moreover, in literature very few methods for
the calculation of the solution to dynamic equilibrium problems are available (see
for instance the sub-gradient method presented in [37]). Then, our result seems to
have a particular relevance. Applying our regularity results to dynamic equilibrium
problems and to associated variational inequalities, we can discretize the time in-
terval [0, T ] and hence to reduce the computational procedure to finite-dimensional
problems. This allows us to use a method to solve static equilibrium problems and
finally, by means of a interpolation procedure, we find the equilibrium solutions.
After a brief introduction in which we introduce the preliminary concepts and the
most important related results, in Chapter 7 and Chapter 6 we present a general
model of evolutionary variational and quasi-variational inequalities and we study
the regularity.

We conclude this preface with a short compendium of the structure of this thesis.
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It consists of three parts.

Part one mainly concerns itself with the theory of variational and quasi-variational
inequalities. In particular in Chapter 1 we review existence results for variational
and quasi-variational inequalities both in the finite case and the infinite case. Then,
Chapter 2 focuses on the traffic network models, starting from the static case and
analyzing also the elastic model. For each one of them a variational formulation is
studied, and existence theorems are presented in Chapter 3. And we remark that
dynamic equilibrium problems can be grouped into a unified definition of constraint
set.

In the second part, we show theoretical results on the regularity of solutions
to evolutionary variational and quasi-variational inequalities. We make use on the
property of the set convergence in Mosco’s sense (see [70]), which is explained exten-
sively in Chapter 4. We show that the set of feasible flows associated to the traffic
equilibrium problem both in the time-dependent case and time-dependent elastic
case verifies the property of the set convergence in Mosco’s sense. Moreover, we
prove that the analogous result holds for the constraint set of the dynamic equilib-
rium problems written in the unified formulation. In Chapter 5, after surveying the
state-of-the-art, we present some regularity results for a general class of evolutionary
variational inequalities. In particular, we prove the continuity with respect to the
time of solutions to linear and nonlinear evolutionary variational inequalities under
assumptions of strong monotonicity, degenerate condition and strict monotonicity.
Minty’s Lemma for variational inequalities and the notion of the sets convergence in
Mosco’s sense play an important role in the attainment of the continuity results for
strongly monotone evolutionary variational inequalities. By means a regularization
procedure, we obtain that the solutions to evolutionary variational inequalities asso-
ciated to degenerate and strictly monotone operators are continuous mappings from
the time interval [0, T ] to the Euclidian space Rm. With analogous technique, in
Chapter 6, we extend the results to a general class of evolutionary quasi-variational
inequalities under similar monotonicity assumptions on the associated operator. Fi-
nally, Chapter 7 presents in detail the regularity for dynamic equilibrium problems
making use of theoretical results shown above.

The third part of the present dissertation concerns the dynamical equilibrium
problem from a computational point of view. In particular, in Chapter 8 we propose
a method to solve the evolutionary variational inequalities which express dynamic
equilibrium problems. More specifically, we propose a discretization procedure which
reduces the infinite problem to the calculus of solutions to finite-dimensional vari-
ational inequality. In particular, taking into account of the continuity, we can dis-
cretize the time interval [0, T ] and then we can compute, by means of both the
projection methods and descent methods, the solution of the finite-dimensional vari-
ational inequalities obtained using the discretization. At last, we construct an ap-
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proximation solution with linear interpolation. To obtain numerical results, we use
a MatLab computation.

This work is the synthesis of the support and the encouragement of my advisor
Professor Antonino Maugeri, who I wish to thank warmly.

All the results have been present during conferences and workshops and some
questions are still topic of research and further improvements.



1
Theoretical foundations on

variational inequalities

1.1 Historical development

Variational inequalities proved to be a very useful and powerful tool for investiga-
tion and solution of many equilibrium type problems in Economics, Engineering,
Operations Research and Mathematical Physics. In fact, variational inequalities for
example provide a unifying framework for the study of such diverse problems as
boundary value problems, price equilibrium problems and traffic network equilib-
rium problems. Besides, they are closely related with many general problems of
Nonlinear Analysis, such as fixed point, optimization and complementarity prob-
lems. As a result, the theory and solution methods for variational inequalities have
been studied extensively, and considerable advances have been made in these areas.

The theory of variational inequalities, born in Italy in the sixties, was introduced
to study elliptic problems with unilateral conditions at the boundary (the celebrated
Signorini problem [88]), the obstacle problem, the elastic plastic problem, and other
similar problems of mathematical physics. The pioneer works in this field are due
to G. Fichera (see [44]) and G. Stampacchia (see [94]) were motivated by concrete
problems, the first in mechanics (a problem in elasticity with a unilateral boundary
condition) and the second in potential theory (in connection with capacity, a basic
concept from electrostatics). A further study of a special case of variational inequal-
ities was done by J.L. Lions and G. Stampacchia in the joint papers, [56] and [57],
with applications to elliptic and parabolic unilateral boundary value problems. In
the same period, H. Brezis (see [17]) introduced evolutionary variational inequalities.

The existence theorem in the general form stated above (and its extension to
semi-monotone operators) was obtained by F.E. Browder (see [22]) and P.H. Hart-
man and G. Stampacchia (see [49]) by using the “monotonicity” approach to nonlin-
ear problems previously developed for operator equations in Hilbert space by E.H.
Zarantonello (see [103]), G. Minty (see [67]) and F.E. Browder (see [18] and [19])
and for equations involving operators from a Banach space X to its dual X∗ by F.E.
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Browder (see [20] and [21]), G. Minty (see [68]) and J. Leray and J.L. Lions (see
[55]).

In the following, many other authors worked on the theory of variational inequal-
ities, as D. Kinderleher and G. Satmpacchia (see [51]).

In the same years, A. Bensoussan and J.L. Lions in a series of papers (see, e.g.,
[14]) introduced a more general mathematical tool, quasi-variational inequalities,
in connection with impulse optimal control problems. Then they have been exten-
sively studied in numerous publications, mainly from the viewpoints of existence of
solutions and numerical methods; see [2], [23], [97] among others.

In the next sections we present various basic concepts in optimization and vari-
ational analysis and recall their properties.

1.2 Preliminary concepts

Let X be a real topological vector space and let S be a subset of X. Moreover let
X ′ be the topological dual space of X.

Definition 1.2.1. A functional f : S → R ∪ {±∞} is said to be upper semi-
continuous (briefly u.s.c.) if for each x′, we have

lim sup
x→x′

f(x) ≤ f(x′).

Definition 1.2.2. A functional f : S → R ∪ {±∞} is said to be lower semi-
continuous (briefly l.s.c.) if −f(x) is upper semi-continuous.

Definition 1.2.3. An operator f : S → X ′ is monotone on S if

〈f(x1)− f(x2), x1 − x2〉 ≥ 0, ∀x1, x2 ∈ S.

Definition 1.2.4. An operator f : S → X ′ is strictly monotone on S if

〈f(x1)− f(x2), x1 − x2〉 > 0, ∀x1 6= x2.

Definition 1.2.5. An operator f : S → X ′ is strongly monotone on S if for some
ν > 0

〈f(x1)− f(x2), x1 − x2〉 ≥ ν‖x1 − x2‖2, ∀x1, x2 ∈ S.

Definition 1.2.6. An operator f : S → X ′ is pseudomonotone on S if for all
x1, x2 ∈ S

〈f(x1), x1 − x2〉 ≥ 0 =⇒ 〈f(x2), x1 − x2〉 ≤ 0.

Let X be a real topological vector space and let K be a convex subset of X.

Definition 1.2.7. An operator f : K → X ′ is hemicontinuous if for any x ∈ K,
the function

K 3 ξ → 〈f(ξ), x− ξ〉
is upper semi-continuous on K.
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Definition 1.2.8. An operator f : K → X ′ is hemicontinuous along line segments
if and only if for any x, y ∈ K, the function

K 3 ξ → 〈f(ξ), y − x〉

is upper semi-continuous on the line segment [x, y].

Let X, Y be two Hausdorff topological vector spaces and let S be a subset of X.
Moreover, let X ′ denote the dual space of X.

Definition 1.2.9. A set-valued map F : S → 2Y is upper semi-continuous (briefly
u.s.c.) in x′ ∈ S if for any open subset Ω of Y such that F (x′) ⊆ Ω, there exists a
neighborhood V of x′ such that for all x ∈ V

F (x) ⊆ Ω.

Definition 1.2.10. A set-valued map F : S → 2Y is lower semi-continuous (briefly
l.s.c.) in x′ ∈ S if for any open subset Ω of Y such that F (x′) ∩ Ω 6= ∅, there exists
a neighborhood V of x′ such that for all x ∈ V

F (x) ∩ Ω 6= ∅.

Definition 1.2.11. A set-valued map F : S → 2Y is continuous if it is both u.s.c.
and l.s.c.

Definition 1.2.12. A set-valued map F : S → 2Y is called closed if its graph

G = {(x, y) : x ∈ S, y ∈ F (x)}

is a closed subset of X × Y .

Remark 1.2.1. It is easy to show that if X and Y are real topological linear locally
convex Hausdorff spaces the following statements hold:

1. F is closed if and only if for any sequence {xn}n∈N, xn → x, and any {yn}n∈N,
yn ∈ F (xn), yn → y, then it results that y ∈ F (x);

2. F is l.c.s. in x ∈ K if and only if for any y ∈ F (x) and any {xn}n∈N, xn → x,
there exists a sequence {yn}n∈N such that yn ∈ F (xn) and yn → y.

1.3 Finite dimensional variational inequalities

Now, we introduce finite dimensional variational inequalities and we recall some
existence results.
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Definition 1.3.1. Let K be a nonempty, convex and closed set of the m-dimensional
Euclidean space Rm and let C : K → Rm be a vector-function. The finite dimen-
sional variational inequality is the problem to find a vector x ∈ K, such that

〈C(x), y − x〉 ≥ 0, ∀y ∈ K. (1.3.1)

Geometrical meaning (1.3.1) states that C(x)T is orthogonal to the set K at the
point x.

Now, we recall some classic conditions showed by Stampacchia for existence of
solutions to variational inequality (1.3.1).

Theorem 1.3.1. ([49]) If K is a nonempty, convex and compact subset of Rm and
C : K → Rm is a continuous operator, then variational inequality (1.3.1) admits at
least one solution.

Theorem 1.3.2. ([57]) If K is a nonempty, convex and compact subset of Rm and
C is continuous on K, then the set of solutions to the variational inequality (1.3.1)
is convex and compact.

Theorem 1.3.3. ([58]) If C is strictly monotone on K, then the solution to varia-
tional inequality (1.3.1), if it exists, is unique.

Whenever the set K is unbounded, the existence of solutions may also be estab-
lished under the coercivity condition, as shows the following result.

Theorem 1.3.4. ([51]) If C satisfies the coercivity condition

lim
‖x‖m→+∞

〈C(x)− C(x′), x− x′〉
‖x− x′‖m

= +∞ (1.3.2)

for x ∈ K and some x′ ∈ K1. Then variational inequality (1.3.1) admits a solution.

1.4 Infinite dimensional variational inequalities

In this section we give some results for the existence of solutions to variational
inequalities in infinite dimensional spaces.

Let X be a reflexive Banach space and let K ⊆ X be a convex and closed set.
Let us denote by ‖ · ‖ the norm in X. Let BR be the closed ball with center in O
and radius R and let us consider the closed and convex set KR = K ∩ BR. If R is
large enough, then KR is nonempty. We have the following result.

Theorem 1.4.1. ([95]) Let C : K → X ′ be a monotone and hemicontinuous along
line segments function, the the variational inequality

x ∈ K : 〈C(x), y − x〉 ≥ 0, ∀y ∈ K, (1.4.1)

1From here onward we always denote by ‖ · ‖m the norm in Rm, for all m ≥ 1.
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admits a solution if and only if there exists a constant R such that at least one
solution of the variational inequality

xR ∈ KR : 〈C(xR), y − xR〉 ≥ 0, ∀y ∈ KR, (1.4.2)

satisfies the condition
‖xR‖ < R. (1.4.3)

Remark 1.4.1. If the set K is unbounded, then the following conditions for the
existence of solutions are provided:

1. let us suppose that ∃x0 ∈ K and R > ‖x0‖ such that

〈C(y), x0 − y〉 < 0,

∀y ∈ K, ‖y‖ = R, then (1.4.3) is verified.

2. let us suppose that ∃x0 such that C satisfies the coercivity condition (1.3.2),
then (1.4.2) holds.

3. let us suppose that C satisfies the weak coercivity requirement:

lim
‖y‖→+∞

〈C(y), y〉
‖y‖ = +∞

∀y ∈ K, then (1.4.3) is fulfilled.

We recall Theorems 2 and 3 in [80].

Theorem 1.4.2. Let X be a real topological vector space and let K ⊆ X be a
nonempty and convex set. Let C : K → X ′ be a given function such that:

(i) there exist A ⊆ K nonempty, compact and B ⊆ K compact, convex such that,
for every y ∈ K \ A, there exists x̂ ∈ B with 〈C(y), x̂− y〉 < 0〉;

(ii) C is pseudomonotone and hemicontinuous along line segments.

Then, there exists x ∈ A such that 〈C(x), y − x ≥ 0〉, for all y ∈ K.

Theorem 1.4.3. Let X be a real topological vector space and let K ⊆ X be a
nonempty and convex set. Let C : K → X ′ be a given function such that:

(i) there exist A ⊆ K nonempty, compact and B ⊆ K compact, convex such that,
for every y ∈ K \ A, there exists x̂ ∈ B with 〈C(y), x̂− y〉 < 0〉;

(ii) C is hemicontinuous.

Then, there exists x ∈ A such that 〈C(x), y − x ≥ 0〉, for all y ∈ K.
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With a weakened coercivity assumption, we get the following theorem.

Theorem 1.4.4. ([85]) Let X be a Hausdorff real topological vector space and K ⊆
X be a closed and convex subset with nonempty relative interior (that is the interior
of K in its affine hull) and C : K → X ′ a weakly∗ continuous function. Moreover,
let K1 and K2 be two nonempty and compact subset of X with K2 ⊆ K1 and K2

having finite dimension, such that ∀x ∈ X \K1, we have

sup
y∈K2

〈C(x), x− y〉 > 0.

Then the variational inequality

〈C(x), y − x〉 ≥ 0, ∀y ∈ K

admits solutions in K.

In particular, if X is a real Hilbert space and the operator C is affine, the next
result, due to Lions and Stampacchia (see [57]), holds.

Theorem 1.4.5. Let X be a real Hilbert space, let K be a nonempty, convex and
closed, subset of X and let A : K → X ′ a Lipschitz and coercive operator (not
necessarily linear), that is,

‖Ax− Ay‖∗ ≤ M‖x− y‖, ∀x, y ∈ K,

〈Ax− Ay, x− y〉 ≥ ν‖x− y‖2, ∀x, y ∈ K,

for some constant M, ν > 0. Then for each B ∈ X ′, there exists a unique solution
to the variational inequality

x ∈ K : 〈Au + B, y − x〉 ≥ 0, ∀y ∈ K.

Moreover, the (nonlinear) solution mapping is Lipsichitz continuous, that is, if
x1, x2 ∈ K are the solutions to the variational inequalities related to two different
free terms B1, B2 ∈ X ′, it results

‖x1 − x2‖ ≤ 1

ν
‖B1 −B2‖∗. (1.4.4)

1.5 Finite dimensional quasi-variational inequali-

ties

Let us introduce finite dimensional quasi-variational inequalities.

Definition 1.5.1. Let D be a nonempty subset of Rm, let C : D → Rm and
K : D → 2D be a function and a multifunction, respectively. The quasi-variational
inequality is the problem to find a vector x ∈ K(x) such that

〈C(x), y − x〉 ≥ 0, ∀y ∈ K(x). (1.5.1)
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Let us give some theorems concerning the existence of solutions to finite dimen-
sional quasi-variational inequalities.

Theorem 1.5.1. ([48]) Let D be a compact and convex set. Let C and K be a func-
tion and a multifunction, respectively, and, for all x ∈ D, let K(x) be a nonempty,
closed and convex subset of Rm

+ . Then quasi-variational inequality (1.5.1) admits a
solution.

Theorem 1.5.2. ([42]) Let D be a compact and convex set. Let K be a continuous
multifunction such that, for all x ∈ D, K(x) is a nonempty, closed and convex subset
of Rm

+ and let C satisfy the condition

{x ∈ X : C(x)y ≤ 0} is closed ∀y ∈ D −D.

Then quasi-variational inequality (1.5.1) admits a solution.

Theorem 1.5.3. ([38]) Let D be a compact and convex set. Let K be a continuous
multifunction such that, for all x ∈ D, K(x) is a nonempty, closed and convex subset
of Rm

+ . Let C : D → 2R
m
+ be a set-valued map (possibly discontinuous) such that:

∀y ∈ D −D the set Gy =
{

x ∈ D : inf
z∈C(x)

zy ≤ 0
}

is closed.

Then, there exist x ∈ K(x) ∩ D and z ∈ C(y) such that z(y − x) ≥ 0, for all
y ∈ K(x) ∩D.

1.6 Infinite dimensional quasi-variational inequal-

ities

We may present problem (1.5.1) in an infinite dimensional setting by replacing Rm

with a real topological vector space X and assuming that C is a operator from D
to X ′, where X ′ is the topological dual of X.

In the following, we recall some results for the existence of solutions to the quasi-
variational inequality in infinite dimensional spaces.

Theorem 1.6.1. ([97]) Let X be a topological linear locally convex Hausdorff space
and let D ⊂ X be a convex, compact and nonempty subset. Let C : D → 2X′

be an u.s.c. multifunction with C(y), y ∈ C, convex, compact and nonempty and
let K : D → 2D be a closed l.s.c. set-valued mapping with K(y), y ∈ D, convex,
compact and nonempty and let ϕ : D → R a convex l.s.c. function. Then, there
exists x ∈ C(x) such that:

1. x ∈ K(x),
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2. there exists y∗ ∈ C(x) for which

〈y − x, y∗〉+ ϕ(y)− ϕ(x) ≥ 0, ∀y ∈ K(x).

The following theorem relaxes the hypothesis of compactness of the set D re-
quiring the coercivity of the operator.

Theorem 1.6.2. ([98]) Let D be a convex subset in a locally convex Hausdorff
topological vector space X. Let us suppose that

(i) K : D → 2D is a closed l.s.c. correspondence with closed, convex and nonempty
values,

(ii) C : D → 2X′
is a monotone, finite continuous and bounded single-valued map,

(iii) there exist a compact, convex and nonempty set Z ⊂ D and a nonempty subset
B ⊂ Z such that

(iii.a) K(B) ⊂ Z;

(iii.b) K(z) ∩ Z 6= ∅, for all z ∈ Z;

(iii.c) for every z ∈ Z \B there exists ẑ ∈ K(z) ∩ Z with 〈C(z), ẑ − z〉 < 0.

Then there exists x such that

x ∈ K(x) : 〈C(x), y − x〉 ≥ 0, ∀y ∈ K(x).



2
The equilibrium problems

2.1 Historical development

The study of the efficient operation on transportation networks dates to ancient
Rome with a classical example being the publicly provided Roman road network
and the time of day chariot policy, whereby chariots were banned from the ancient
city of Rome at particular times of day.

But, the first authors who studied mathematically the traffic problem was Pigou
in 1920 (see [82]). He had the idea of imposing some tolls on a network with only
two paths in order to regulate the congestion. But it was only during most recent
decades that traffic equilibrium problem have attracted the attention of several re-
searches. In 1952, Wardrop (see [102]) laid the formulations for the study of traffic
theory, starting two principles until now named after him:

First principle: the journey times of paths are equal and less than those which
would be experienced by a single vehicle on any unused path.

Second principle: the average journey time is minimal.

In terms of travel costs, the first principle establishes that users seek to determine
their minimal travel costs and, as consequence, costs on used paths for each origin-
destination pair are equalized and minimal. Whereas the second principle states that
the travel cost in the whole network is minimal. Only some years later, in 1956,
the rigorous mathematical programming formulation of Wardrop’s principles was
elaborated. It was work of Beckmann, McGuire and Winsten (see [13]), who showed
the equivalence between the traffic equilibrium conditions, as stated by Wardrop
and the Kuhn-Tucker conditions of an appropriate optimization problem under some
symmetry assumptions.

In 1969 Dafermos and Sparrow (see [27]), recognizing two different approaches
suggested by Wardrop, coined the terms user-optimized and system-optimized trans-
portation networks in order to distinguish between two distinct situations: the first
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one in which users act unilaterally, in their own self-interest, in selecting their routes;
the second one in which users select routes according to what is optimal from a so-
cietal point of view, in that the total cost in the system are minimized.

Only later in 1979, it was proved by M.J. Smith (see [90]) that the traffic network
equilibrium problem can be formulated in terms of a finite-dimensional variational
inequality. This fact have render possible to study the problem with the powerful
tool of variational inequalities, and to obtain existence, uniqueness, stability of traffic
equilibria and to compute solutions.

To the end of the nineties of the 20th century the last, in order of time, event:
the traffic network equilibrium problem with feasible path flows which have to sat-
isfy time-dependent capacity constraints and demands has been formulated by P.
Daniele, A. Maugeri and W. Oettli (see [36] and [37]) and also by T.L. Friesz, D.
Bernstein, T.E. Smith, R.L. Tobin and B.W. Wie (see [45]), as an evolutionary vari-
ational inequality, for which existence theorems and computational procedures are
studied. In particular, they considered traffic networks in which the demand varied
over the time horizon as well as the capacities on the flows on the paths connecting
the origins to the destinations. The results therein demonstrated how traffic network
equilibria evolve in the presence of such variations.

Subsequently, F. Raciti (see [83]) applied the results of [37] to construct a con-
crete numerical traffic network example in which the demand was a function of
time and the equilibrium at each time instant could be computed exactly and in
closed form. L. Scrimali (see [87]) developed an elastic-demand time-dependent
traffic network model with delays and formulated the equilibrium conditions as a
quasi-variational inequality problem. Then, she established existence results and
also provided a numerical example.

P. Daniele and A. Maugeri (see [34]) developed a time-dependent spatial equi-
librium model (price formulation) in which there were imposed bounds over time on
the supply market prices, the demand market prices, and the commodity shipments
between the supply and demand market pairs. Moreover, they presented existence
results.

Static spatial price equilibrium problems of this form had been studied by nu-
merous researchers (see [72] and the references therein) as well as through (as noted
above) using projected dynamical systems; see also A. Nagurney and D. Zhang (see
[77]). The contribution of P. Daniele and A. Maugeri (see [34]) allowed for the price
and commodity shipment bounds to vary over time. Furthermore, the solution of
the formulated evolutionary variational inequality traces the curve(s) of the resulting
equilibrium price and commodity shipment patterns.

Then, P. Daniele (see [31]) addressed the time-dependent spatial price equilib-
rium problem in which the variables were commodity shipments. Not only did she
provide existence results, but also she performed stability analysis of the model
based on S. Dafermos and A. Nagurney (see [28]); see also A. Nagurney (see [72]).

In terms of evolutionary variational inequalities and financial equilibria, P. Daniele
(see [30]) introduced a time-dependent financial network model consisting of multiple
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sectors, each of which seeks to determine its optimal portfolio given time-dependent
supplies of the financial holdings. The work was motivated, in part, by the contribu-
tions of A. Nagurney and S. Siokos (see [76]) in the modeling of static and dynamic
general financial equilibrium problems using, respectively, finite-dimensional varia-
tional inequality theory and projected dynamical system theory.

2.2 The traffic equilibrium problem

This section describes a variety of traffic network equilibrium models, and provides
the variational inequality formulations of the governing equilibrium conditions.

In particular, it will be considered the static case and the dynamic case with
travel demands fixed, and then it will be introduced the elastic case which arose
whenever travel demands are not fixed but dependent on the equilibrium distribu-
tion.

2.2.1 Static model

For what we need in the sequel, we premise with a presentation of a general version of
the traffic equilibrium problem in the static case, considering a model with capacity
constraints on the flows. To this aim, let us consider a general traffic network is
represented by a graph G = [N, L], where N is the set of nodes (i.e. crossroads,
airports, railway stations) and L is the set of directed links between the nodes
(stretches of streets). Let a denote a link of the network connecting a pair of nodes
and let r be a path consisting of a sequence of links which connect an Origin-
Destination (O/D) pair of nodes. In the network there are n links and m paths.
Let W denote the set of O/D pairs with typical O/D pair wj, |W | = l and m > l.
The set of paths connecting the O/D pair wj is represented by Rj and the entire set
of paths in the network by R. Let fa be the flow on link a and let Fr be the non-
negative flow on path r. Let f = (f1, . . . , fa, . . . , fn)T denote the link flow vector
and F = (F1, . . . , Fr, . . . , Fm)T the path flow vector. The relationship between link
and path flows is given by:

fa =
m∑

r=1

δarFr or f = ∆F,

where ∆ is the link-path incidence matrix, whose typical entry δar is 1 if the link a
is contained in the path r and 0 otherwise.

Let λ, µ ∈ Rm
+ denote the capacity constraints, and let us assume that the feasible

flows have to satisfy some capacity restrictions

λr ≤ Fr ≤ µr, for r = 1, 2, . . . , m.

Let ρj represent the travel demand associated with the users travelling between
O/D pair wj and let ρ = (ρ1, . . . , ρj, . . . , ρl)

T be the total demand vector. The travel
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demand is the total number of movements from the origin to the destination. The
relationship between path flows and travel demands is given by:

m∑
r=1

ϕjrFr = ρj or ΦF = ρ,

where Φ is the O/D pairs-paths incidence matrix, whose typical entry ϕjr is 1 if
path r connects the pair wj and 0 otherwise. It is worth noting that each column of
the matrix Φ has only one entry equal to 1, because otherwise the same path would
connect different O/D pairs. The meaning of the conservation of the flows condition
is that flows and hence travelers are not lost or generated in the network.

Let ca(f) denote the user travel cost associated with link a and group the link
costs into the vector c(f) = (c1(f), . . . , ca(f), . . . , cn(f))T . In this paper, we are
concerned with the general case, namely with the case of asymmetric costs, i.e. the
cost on a link does not depend only on the flow on that link, but it is affected by
the flows on all the links in the network.

Let Cr(F ) denote the user travel cost path r. It results:

Cr(F ) =
n∑

a=1

δarca(f) or C(F ) = ∆T c(f) = ∆T c(∆F ),

where C(F ) = (C1(F ), . . . , Cr(F ), . . . , Cm(F ))T is the path cost vector. The above
relationship shows that the cost on a path is given by the sum of the costs on links
which form the path.

Definition 2.2.1. The set of feasible flows is the set K of all the path flows in the
network which satisfy the capacity constraints and the conservation law:

K = {F ∈ Rm : λ ≤ F ≤ µ, ΦF = ρ}.

Analytically, the user-optimized equilibrium is expressed by the following defini-
tion due to A. Maugeri, W. Oettli and D. Schläger (see [64]) which is a generalization
of Wardrop’s principle (see [102]).

Definition 2.2.2. A flow H ∈ K is a user traffic equilibrium flow if and only if
∀wj ∈ W and ∀q, s ∈ Rj it results:

Cq(H) > Cs(H) =⇒ Hq = λq or Hs = µs.

Clearly the meaning of Definition 2.2.2 is that the users choose the less expen-
sive routes and it perfectly agrees with the notion of user-optimization equilibrium.
Moreover, Definition 2.2.2 is characterized by a variational inequality, by means of
the following theorem (see [64], Theorem 1).
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Theorem 2.2.1. A flow H ∈ K is an equilibrium pattern if and only if it satisfies
the following variational inequality:

〈C(H), F −H〉 ≥ 0, ∀F ∈ K.

Remark 2.2.1. If the symmetry condition
∂ca(f)

∂fb

=
∂cb(f)

∂fa

holds, then the solution

to the equilibrium problem (1.3.1) any be formulated as the solution of the following
optimization problem:

min
∑
a∈L

∫ fa

0

ca(x)dx,

subjected to

ΦF = ρ,

f = ∆F,

Fp ≥ 0, ∀p ∈ P .

In our approach, we assume that no symmetry holds. In fact, supposing that
the above condition is verified would mean that the flow on link a affects the cost
on the link b in the same way as the flow on link b affects the cost on link a. This
is obviously an unrealistic requirement.

2.2.2 Dynamic model

We consider now the dynamic case. The traffic network, whose geometry remains
fixed, is considered at all times t ∈ [0, T ].

For each time t ∈ [0, T ] let us assume that a route-flow vector F (t) ∈ Rm. Let us
suppose that the feasible flows have to satisfy time-dependent capacity constraints
and demand requirements. Each component Fr(t) of F (t) gives the flow trajectory
F : [0, T ] → Rm

+ which has to satisfy almost everywhere on [0, T ] the capacity
constraints

λ(t) ≤ F (t) ≤ µ(t)

and the traffic conservation law

ΦF (t) = ρ(t),

where the bounds λ, µ : [0, T ] → Rm
+ satisfying the next condition λ < µ, and the

demand ρ : [0, T ] → Rm
+ are given and Φ is again the pair-route incident matrix.

We define the set of feasible flows

K =
{

F ∈ L2([0, T ],Rm) : λ(t) ≤ F (t) ≤ µ(t), a.e. in [0, T ],

ΦF (t) = ρ(t), a.e. in [0, T ]
}

. (2.2.1)
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We assume that λ and µ belong to L2([0, T ],Rm
+ ) and that ρ lies in L2([0, T ],Rm

+ ).
Assuming in addition that

Φλ(t) ≤ ρ(t) ≤ Φµ(t) a.e. in [0, T ],

we obtain that the set of feasible flows (2.2.1) is nonempty, as in [46]. It is easily
seen that K is a convex, closed, bounded subset of L2([0, T ],Rm

+ ).

Furthermore, we give the cost trajectory C, which becomes function of the time
C : [0, T ]× Rm

+ → Rm
+ .

The equilibrium condition is given by a generalized dynamic version of Wardrop’s
condition (see [36] and [37]), namely:

Definition 2.2.3. A flow H ∈ K is a user traffic equilibrium flow if ∀wj ∈ W ,
∀q, s ∈ Rj and a.e. in [0, T ] it results:

Cq(t,H(t)) > Cs(t,H(t)) =⇒ Hq(t) = λq(t) or Hs(t) = µs(t). (2.2.2)

The overall flow pattern obtained according with condition (2.2.2) fits very well
in the framework of the theory of variational inequalities. In fact in [36] and [37]
the following result is shown:

Theorem 2.2.2. A flow H ∈ K is an equilibrium pattern if and only if it satisfies
the following evolutionary variational inequality:

∫ T

0

〈C(t, H(t)), F (t)−H(t)〉dt ≥ 0, ∀F ∈ K. (2.2.3)

It is worth observing that problem (2.2.3) (see [65]) is also equivalent to the
following one:

Find H ∈ K such that

〈C(t,H(t)), F (t)−H(t)〉 ≥ 0, ∀F (t) ∈ K(t), a.e. in [0, T ], (2.2.4)

where

K(t) =
{

F (t) ∈ Rm : λ(t) ≤ F (t) ≤ µ(t), ΦF (t) = ρ(t)
}

.

This remark is interesting because we can apply to (2.2.4), among the others,
the direct method (see [29], [35] and [61]) in order to find solutions to the variational
inequality (2.2.3).
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Figure 2.1: Network model for Example 2.2.1.

Example 2.2.1. Let us consider a network as Figure 2.1. The network consists of
four nodes, P1, P2, P3, P4, and five links, (P1, P2), (P1, P3), (P2, P3), (P2, P4), (P3, P4).

The origin-destination pair is w = (P1, P4), which is connected by the paths

R1 = (P1, P3) ∪ (P3, P4),

R2 = (P1, P2) ∪ (P2, P4),

R3 = (P1, P2) ∪ (P2, P3) ∪ (P3, P4).

We consider the cost operator on the path C defined by

C : L2([0, 2],R3
+) → L2([0, 2],R3

+);

C1(H(t)) = αH1(t) + βH2(t) + γ,

C2(H(t)) = αH1(t) + H2(t),

C3(H(t)) = αH2(t) + H3(t) + σ,

where α > 2, 0 ≤ β < 1, γ, δ, σ ≥ 0.
The set of feasible flows is given by

K =

{
F ∈ L2([0, T ],R3) : F1(t), F2(t), F3(t) ≥ 0, a.e. in [0, T ]

F1(t) + F2(t) + F3(t) = εt + ζ, a.e. in [0, T ]

}
,

where ε, ζ ≥ 0.
The evolutionary variational inequality expressing the equilibrium problem has

the following formulation

H ∈ K :
3∑

p=1

Cp(H(t))(Fp(t)−Hp(t)) ≥ 0, ∀F (t) ∈ K(t), a.e. in [0, T ]. (2.2.5)

To compute the solution, we apply the direct method (see [29], [35] and [61]).
Deducing F3(t) from F1(t)+F2(t)+F3(t) = εt+ ζ, the set of feasible flows becomes

K̃ =

{
F̃ ∈ L2([0, T ],R2 : F1(t), F2(t) ≥ 0, F1(t) + F2(t) ≤ εt + ζ, a.e. in [0, T ]

}
.



16 2. The equilibrium problems

Let us consider:

Γ1(F̃ (t)) = C1(F̃ (t))− C3(F̃ (t))

= (α + 1)F1(t) + (1− α + β)F2(t)− εt + γ − σ − ζ,

Γ2(F̃ (t)) = C2(F̃ (t))− C3(F̃ (t))

= (α + 1)F1(t) + (2− α)F2(t)− εt− σ − ζ,

then, evolutionary variational inequality (2.2.5) becomes

H̃ ∈ K̃ :
2∑

p=1

Γp(H̃(t))(F̃p(t)− H̃p(t)) ≥ 0, ∀F̃ (t) ∈ K̃(t), a.e. in [0, T ].

We recall that if H̃ satisfies the following system:




Γ1(H̃(t), H̃(t)) = 0

Γ2(H̃(t), H̃(t)) = 0

H̃ ∈ K̃(H̃)

then it solves variational inequality 2.2.5. We find that:

H1(t) =
εt + ζ + σ

α + 1
+

γ(α− 2)

(α + 1)(1− β)
,

H2(t) =
γ

1− β
,

H3(t) =
α(εt + ζ)− σ

α + 1
+

γ(1− 2α)

(α + 1)(1− β)
.

2.2.3 Elastic model

In the previous section, we have dealt with traffic equilibrium models with the fixed
travel demands, but this kind of approach corresponds to study only a first approx-
imation of the problem. In fact, it is clear that the travel demands is influenced by
the evaluation of the amount of traffic flows on the paths, namely by the forecasted
equilibrium solutions. For this reason some authors (see, for instance [39], [42] and
[78]), by means of different approaches, have interested in the so-called elastic model,
in which travel demands associated with the users traveling between the O/D pairs
depend on the equilibrium distribution.

Under this prospective, the set of feasible flows becomes as follows. Let D be
a nonempty, compact and convex subset of Rm

+ . Let us consider the multifunction
K : D → 2R

m
+ defined by

K(H) = {F ∈ D : λ ≤ F ≤ µ, ΦF = ρ(H)},
with λ, µ ∈ Rm

+ and ρ : D → Rl
+, then the set of feasible flows is the set-value K(H)

of the multifunction K.
In this case the elastic equilibrium condition is given by the next way (see [42]).
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Definition 2.2.4. A flow H ∈ K(H) is a user traffic equilibrium flow if ∀wj ∈ W
and ∀q, s ∈ Rj it results:

Cq(H) > Cs(H) =⇒ Hq = λq or Hs = µs.

The following theorem (see [42]) establishes a complete characterization of the
elastic equilibrium flow by means of the variational formulation.

Theorem 2.2.3. A flow H ∈ K(H) is an equilibrium pattern in the sense of Defi-
nition 2.2.5 if and only if it satisfies the following quasi-variational inequality:

〈C(H), F −H〉 ≥ 0, ∀F ∈ K(H). (2.2.6)

2.2.4 Dynamic elastic model

Now, let us introduce the dynamic elastic traffic equilibrium problem and let us
assume that the travel demand ρ depends on the equilibrium solutions H(t) in the
average sense with respect to the time, namely

ρ(H) =
1

T

∫ T

0

ρ(t,H(τ))dτ.

(see [34] and [87]). In fact, travel demands are supposed to depend on the user’s
evaluation of the flows. So one can expect that travelers evaluate the network
practicability not instant, but by an average with respect to the whole time interval.

Also in this case, let λ, µ ∈ L2([0, T ],Rm
+ ) be the capacity constraints such that

λ(·) < µ(·) and let ρ ∈ L2([0, T ] × Rm
+ ,Rl

+) be the elastic travel demand function.
Let D ⊆ L2([0, T ],Rm

+ ) be a nonempty, compact and convex subset and let K : D →
2L2([0,T ],Rm

+ ) be a multifunction defined by

K(H) =

{
F ∈ L2([0, T ],Rm) : λ(t) ≤ F (t) ≤ µ(t) a.e. in [0, T ],

ΦF (t) =
1

T

∫ T

0

ρ(t,H(τ))dτ a.e. in [0, T ]

}
,

the set of feasible flows is the set-value K(H) of the multifunction K.
In this case the elastic equilibrium condition is given by the next way (see [34]).

Definition 2.2.5. A flow H ∈ K(H) is a user traffic equilibrium flow if ∀wj ∈ W
and ∀q, s ∈ Rj it results:

Cq(t,H(t)) > Cs(t,H(t)) =⇒ Hq(t) = λq(t) or Hs(t) = µs(t).

The following theorem (see [34]) establishes a complete characterization of the
elastic equilibrium flow by means of the variational formulation.
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Figure 2.2: Network model for Example 2.2.2.

Theorem 2.2.4. A flow H ∈ K(H) is an equilibrium pattern in the sense of Defi-
nition 2.2.5 if and only if it satisfies the following quasi-variational inequality:

∫ T

0

〈C(t,H(t)), F (t)−H(t)〉dx ≥ 0, ∀F ∈ K(H). (2.2.7)

It is worth observing that problem (2.2.7) (see [65]) is also equivalent to the
following one:

Find H ∈ K such that

〈C(t,H(t)), F (t)−H(t)〉 ≥ 0, ∀F (t) ∈ K(t,H), a.e. in [0, T ]. (2.2.8)

where

K(t,H) =

{
F (t) ∈ Rm : λ(t) ≤ F (t) ≤ µ(t), ΦF (t) =

1

T

∫ T

0

ρ(t,H(τ))dτ

}
.

This remark is very important because we can apply to (2.2.4), among the others,
the direct method (see [61], [38] [40] and [41]) in order to find solutions to the
variational inequality (2.2.3).

Example 2.2.2. Let us consider the network as in Figure 2.2, where N = {P1, P2, P3, P4}
is the set of nodes and L = {(P1, P2), (P1, P3), (P2, P3), (P2, P4), (P4, P3)} is the set
of links.

The origin-destination pair is represented by w = (P1, P3), so that the paths are
the following:

R1 = (P1, P3),

R2 = (P1, P2) ∪ (P2, P3),

R3 = (P1, P2) ∪ (P2, P4) ∪ (P4, P3).
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Let us assume that the path costs are the following:

C1(H(t)) = αH1(t) + β,

C2(H(t)) = αH2(t) + γ,

C3(H(t)) = αH2(t) + αH3(t) + δ,

where α, β, γ, δ ≥ 0.
The set of feasible flows is given by:

K(H) =

{
F ∈ L2([0, T ],R3) : F1(t), F2(t), F3(t) ≥ 0 a.e. in [0, T ],

F1(t) + F2(t) + F3(t) =
1

T

∫ T

0

(εt + ζH1(τ))dτ a.e. in [0, T ]

}
,

where ε ≥ 0, ζ ∈ [0, 2[.
The equilibrium flow is the solution of the evolutionary quasi-variational inequal-

ity:

H ∈ K(H) :
3∑

p=1

Cp(H(t))(Fp(t)−Hp(t)) ≥ 0, ∀F ∈ K(H), a.e. in [0, T ]. (2.2.9)

Following the procedure shown in [61], [38] [40] and [41], we have:

F3(t) =
1

T

∫ T

0

(εt + ζH1(τ))dτ − F1(t)− F2(t);

K̃(H) =

{
F̃ ∈ L2([0, T ],R2) : F1(t), F2(t) ≥ 0, a.e. in [0, T ],

F1(t) + F2(t) ≤ 1

T

∫ T

0

(εt + ζH1(τ))dτ a.e. in [0, T ]

}
.

Let us consider:

Γ1(F̃ (t), H̃(t)) = C1(F̃ (t), H̃(t))− C3(F̃ (t), H̃(t))

= 2αF1(t)− α

T

∫ T

0

(εt + ζH1(τ))dτ + β − δ,

Γ2(F̃ (t), H̃(t)) = C2(F̃ (t), H̃(t))− C3(F̃ (t), H̃(t))

= αF1(t) + αF2(t)− α

T

∫ T

0

(εt + ζH1(τ))dτ + γ − δ.
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Thus, the quasi-variational inequality problem 2.2.9 may be written as:

H̃ ∈ K̃(H̃) :
2∑

p=1

Γp(H̃(t))(F̃p(t)− H̃p(t)) ≥ 0, ∀F̃ ∈ K̃(H̃), a.e. in [0, T ].

(2.2.10)

It is immediate to show that if H̃ satisfies the following system:





Γ1(H̃(t), H̃(t)) = 0

Γ2(H̃(t), H̃(t)) = 0

H̃ ∈ K̃(H̃)

then it solves the quasi-variational inequality 2.2.9. We find that:

∫ T

0

H1(τ)dτ =
T

2α

αεT − 2β + 2γ

2− ζ
,

and

H1(t) =
ε

2
t +

ζ

4α

αεT − 2β + 2γ

2− ζ
− β − γ

2α
,

H2(t) =
ε

2
t +

ζ

4α

αεT − 2β + 2γ

2− ζ
+

β + δ − γ

2α
,

under condition that:

H1(t) + H2(t) ≤ 1

T

∫ T

0

(εt + ζH1(τ))dτ.

From which, we obtain

H3(t) =
γ − δ

α
,

2.3 Common formulation of dynamic equilibrium

problems

We provide here a novel unified definition of the constraint set K, proposed in
[36] and [30], for the evolutionary variational inequality arising in time-dependent
traffic network problems, spatial equilibrium problems with either quantity or price
formulations, and a variety of financial equilibrium problems.
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We consider a nonempty, convex, closed, bounded subset of the reflexive Banach
space L2([0, T ],Rq) given by

K =

{
u ∈ L2([0, T ],Rq) : λ(t) ≤ u(t) ≤ µ(t), a.e. in [0, T ];

q∑
i=1

ξjiui(t) = ρj(t), a.e. in [0, T ], (2.3.1)

ξji ∈ {−1, 0, 1}, i ∈ {1, . . . , q}, j ∈ {1, . . . , l}
}

.

Let λ, µ ∈ L2([0, T ],Rq) and ρ ∈ L2([0, T ],Rl) be convex functions in the above
definition. For chosen values of the scalars ξji , of the dimension q and l, and of the
constraints λ and µ, we obtain each of the formulations of the constraint sets in the
models cited above (see [25] and also [32]) as follows:

• for the traffic network problem (see [36], [37] and [32]), let q = m ξji ∈ {0, 1},
i ∈ {1, 2, . . . , q}, j ∈ {1, 2, . . . , l}, and λ(t) ≥ 0 for a.e. t ∈ [0, T ];

• for the quantity formulation of spatial price equilibrium (see [31] and [32]), let
q = n+m+nm, l = n+m, ξji ∈ {−1, 0, 1}, i ∈ {1, 2, . . . , q}, j ∈ {1, 2, . . . , l},
µ(t) large and λ(t) = 0 for a.e. t ∈ [0, T ];

• for the price formulation of spatial price equilibrium (see [34], [29] and [32]),
let q = n + m + nm, l = 1, ξji = 0, i ∈ {1, 2, . . . , q}, j ∈ {1, 2, . . . , l}, and
λ(t) ≥ 0 for a.e. t ∈ [0, T ];

• for the financial equilibrium problem (see [30] and [32]), let q = 2nm + np,
l = 2m, ξji ∈ {0, 1} for i ∈ {1, 2, . . . , q}, j ∈ {1, 2, . . . , l}, µ(t) large and
λ(t) = 0 for a.e. t ∈ [0, T ].

Then, setting

¿ φ, u À:=

∫ T

0

〈φ(t), u(t)〉dt,

where φ ∈ (L2([0, T ],Rq))∗ = L2([0, T ],Rq) and u ∈ L2([0, T ],Rq). If F is given such
that F : K → L2([0, T ],Rq), we have the following standard form of the evolutionary
variational inequality:

Find u ∈ K such that

¿ F (u), v − u〉 À 0, ∀v ∈ K. (2.3.2)

It was shown in [37] (see Theorem 5.1 and Corollary 5.1) that, if F satisfies either
of the following conditions:
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• F is hemicontinuous with respect to the strong topology on K and there exist
A ⊆ K nonempty, compact, and B ⊆ K compact such that, for every u ∈
K \ A, there exists v ∈ B with 〈F (u), v − u〉 < 0,

• F is hemicontinuous with respect to the weak topology on K,

• F is pseudomonotone and hemicontinuous along line segments,

then the evolutionary variational inequality problem (2.3.2) admits a solution over
the constraint set K. In Stampacchia (see [95]), it is shown that, if in addition F
is strictly monotone, then the solution to the evolutionary variational inequality is
unique.



3
Theory of the existence

3.1 Introduction

An important aspect of theory of variational inequalities is the research of oppor-
tune conditions that imply the existence of solutions. More authors have obtained
existence results for variational and quasi-variational inequalities (see for instance
[56], [57], [2], [62], [39] and [37]).

The aim of this chapter is to present some existence results for evolutionary vari-
ational and quasi-variational inequalities which express dynamic traffic equilibrium
problems. Then, we present analogous results that hold for general evolutionary
variational and quasi-variational inequalities.

Moreover, we introduce a new class of evolutionary variational inequalities, that
we call degenerate. For this class of evolutionary variational inequalities, we show
existence and uniqueness results. An analogous definition is given for evolutionary
quasi-variational inequalities. Also in this case, we prove existence results.

3.2 Existence results for evolutionary variational

inequalities

Let us recall an existence result for the dynamic traffic equilibrium problem that
can be obtained applying Theorems 1.4.2 and 1.4.3. Let C : [0, T ] × Rm

+ → Rm
+ be

the cost vector-function, let λ, µ : [0, T ] → Rm
+ be the capacity constraints and let

ρ : [0, T ] → Rm
+ be the travel demand. The evolutionary variational inequality that

models the dynamic traffic equilibrium problem is

〈C(t,H(t)), F (t)−H(t)〉 ≥ 0, ∀F (t) ∈ K(t), a.e. in [0, T ], (3.2.1)

where
K(t) =

{
F (t) ∈ Rm : λ(t) ≤ F (t) ≤ µ(t), ΦF (t) = ρ(t)

}
.

The following result holds (see [37]).



24 3. Theory of the existence

Theorem 3.2.1. For K ⊆ L2([0, T ],Rm) given by

K =
{

F ∈ L2([0, T ],Rm) : λ(t) ≤ F (t) ≤ µ(t), ΦF (t) = ρ(t), a.e. in [0, T ]
}

.

and C : [0, T ]×K → L2([0, T ],Rm) each of the following conditions is sufficient for
the existence of a solution to evolutionary variational inequality (3.2.1):

(i) C is hemicontinuous with respect to the strong topology on K, and there exist
A ⊆ K nonempty, compact, and B ⊆ K compact, convex such that, for every
H ∈ K \ A, there exists F ∈ B with

〈C(t,H(t)), F (t)−H(t)〉 < 0, a.e. in [0, T ];

(ii) C is hemicontinuous with respect to the weak topology on K;

(iii) C is pseudomonotone and hemicontinuous along line segments.

From Theorem 3.2.1 it is possible to derive the following existence theorem,
which gives a sufficient condition in terms of the operator C(t, F ) (see [63]).

Theorem 3.2.2. Let C(t, F ) : [0, T ] × Rm
+ → Rm

+ be a vector-function measurable
in t, continuous in F and such that

‖C(t, F )‖m ≤ A(t)‖F‖m + B(t), ∀F ∈ Rm
+ , a.e. in [0, T ],

with B ∈ L2([0, T ]) and A ∈ L∞([0, T ]), and it results

〈C(t,H)− C(t, F ), H − F 〉 ≥ 0, ∀H, F ∈ Rm
+ , a.e. in [0, T ].

Let λ, µ ∈ L2([0, T ],Rm
+ ) and let ρ ∈ L2([0, T ],Rl

+) be vector-functions. Then, evo-
lutionary variational inequality (3.2.1) admits some solutions.

It is well known that if C is in addition strictly monotone, then the solution to
the evolutionary variational inequality is unique.

More general existence result is given by the following theorem:

Theorem 3.2.3. Let C(t, F ) : [0, T ] × Rm → Rm be a vector-function measurable
in t, continuous in F and such that

‖C(t, F )‖m ≤ A(t)‖F‖m + B(t), ∀F ∈ Rm, a.e. in [0, T ],

with B ∈ L2([0, T ]) and A ∈ L∞([0, T ]), and it results

〈C(t,H)− C(t, F ), H − F 〉 ≥ 0, ∀H, F ∈ Rm, a.e. in [0, T ].

Let K ⊆ L2([0, T ],Rm) be a nonempty, convex and closed set. Then, evolutionary
variational inequality

〈C(t,H(t)), F (t)−H(t)〉 ≥ 0, ∀F (t) ∈ K(t), a.e. in [0, T ], (3.2.2)

admits some solutions.
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For reader’s convenience we report the proof of a type Minty’s Lemma.

Lemma 3.2.1. Let C(t, F ) : [0, T ]× Rm → Rm be a vector-function measurable in
t, continuous in F and such that

‖C(t, F )‖m ≤ A(t)‖F‖m + B(t), ∀F ∈ Rm, a.e. in [0, T ],

with B ∈ L2([0, T ],R+) and A ∈ L∞([0, T ],R+), and it results

〈C(t,H)− C(t, F ), H − F 〉 ≥ 0, ∀H,F ∈ Rm, a.e. in [0, T ].

Let K ⊆ L2([0, T ],Rm) be a nonempty, convex and closed set. Then, the time-
dependent variational inequality (3.2.2) is equivalent to

〈C(t, F (t)), F (t)−H(t)〉 ≥ 0, ∀F (t) ∈ K(t), a.e. in [0, T ]. (3.2.3)

Proof. The existence of solutions to (3.2.2) is ensured by Theorem 3.2.3.
Moreover, the monotonicity of C and (3.2.2) imply for any F (t) ∈ K(t)

〈C(t, F (t)), F (t)−H(t)〉 = 〈C(t, F (t))− C(t,H(t)), F (t)−H(t)〉
+〈C(t,H(t)), F (t)−H(t)〉 ≥ 0, a.e. in [0, T ].

Conversely, taking in (3.2.3)

F (t) = H(t) + θ(G(t)−H(t)) ∈ K(t),

for arbitrary θ ∈]0, 1] and G(t) ∈ K(t) a.e. in [0, T ], it results

〈C(t, H(t) + θ(G(t)−H(t))), G(t)−H(t)〉 ≥ 0, a.e. in [0, T ],

and letting θ → 0 we obtain (3.2.3) by the continuity of C with respect to the second
variable.

Now, we assume that the cost C(t, F ) is a linear operator with respect to flows,
namely it results

C(t, F (t)) = A(t)F (t) + B(t),

for each t ∈ [0, T ], where A : [0, T ] → Rm×m and B : [0, T ] → Rm are two functions.
In this case, the following result holds.

Theorem 3.2.4. Let A : [0, T ] → Rm×m be a bounded nonnegative definite matrix-
function, that is,

∃M > 0 : ‖A(t)‖m×m ≤ M, a.e. in [0, T ], (3.2.4)

〈A(t)F, F 〉 ≥ 0, ∀F ∈ Rm, a.e. in [0, T ], (3.2.5)

and let B ∈ L2([0, T ],Rm). Let K ⊆ L2([0, T ],Rm) be a nonempty, convex and closed
set. Then, there exists some solutions to the evolutionary variational inequality

〈A(t)H(t) + B(t), F (t)−H(t)〉 ≥ 0, ∀F (t) ∈ K(t), a.e. in [0, T ]. (3.2.6)
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Moreover, we remark that the set X of solutions is a closed convex subset of K,
for Theorem 3.1 in [57].

It is easy to see that if A is a bounded positive definite matrix-function, that is,

∃M > 0 : ‖A(t)‖m×m =
( m∑

r,s=1

A2
rs(t)

) 1
2 ≤ M, a.e. in [0, T ], (3.2.7)

∃ν > 0 : 〈A(t)F, F 〉 ≥ ν‖F‖2
m, ∀F ∈ Rm, a.e. in [0, T ], (3.2.8)

and B ∈ L2([0, T ],Rm), then there exists a unique solution to evolutionary varia-
tional inequality (3.2.6).

Moreover, if H1, H2 ∈ L2([0, T ],Rm) are the solutions to the evolutionary vari-
ational inequalities related to two different free terms B1, B2 ∈ L2([0, T ],Rm), it
results

‖H1 −H2‖L2([0,T ],Rm) ≤ 1

ν
‖B1 −B2‖L2([0,T ],Rm). (3.2.9)

The proof of these facts can be found in [86].

3.3 Existence results for degenerate evolutionary

variational inequalities

In this section we introduce a new type of evolutionary variational inequalities. More
precisely, we suppose that the operator C satisfies a more general condition than
the strongly monotonicity condition, more precisely, we assume that ν is a function
belonging to Lebesgue’s space L∞([0, T ],Rm

+ ).

3.3.1 Affine case

At first, we suppose that the operator C is affine

C(t, F (t)) = A(t)F (t) + B(t),

for each t ∈ [0, T ], where A : [0, T ] → Rm×m such that

〈A(t)F, F 〉 ≥ ν(t)‖F‖2
m, ∀F ∈ Rm, a.e. in [0, T ], (3.3.1)

where ν ∈ L∞([0, T ],R+
0 ) is such that

@I ⊆ [0, T ], µ(I) > 0 : ν(t) = 0, a.e. in I,

being µ Lebesgue’s measure, namely A is a degenerate operator, and B : [0, T ] →
Rm. Now, we are able to prove the existence and uniqueness theorem for degenerate
evolutionary variational inequalities associated to an affine operator (see [4]).
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Theorem 3.3.1. Let A ∈ L∞([0, T ],Rm×m) be a bounded matrix-function satis-
fying condition (3.3.1) and let B ∈ L2([0, T ],Rm) be a vector-function. Let K ⊆
L2([0, T ],Rm) be a nonempty, convex and closed set. Then, the degenerate evolu-
tionary variational inequality

〈A(t)H(t) + B(t), F (t)−H(t)〉 ≥ 0, ∀F (t) ∈ K(t), a.e. in [0, T ], (3.3.2)

admits a unique solution.

Proof. The existence of the solution to evolutionary variational inequality (3.3.2) is
obvious. Now, let us show that the assumption (3.3.1) guarantees the uniqueness of
the solution to the variational inequality. In fact, ab absurdum, let us suppose that
there exist two solutions H1, H2 ∈ K such that

〈A(t)H1(t) + B(t), F (t)−H1(t)〉 ≥ 0, ∀F (t) ∈ K(t), a.e. in [0, T ], (3.3.3)

〈A(t)H2(t) + B(t), F (t)−H2(t)〉 ≥ 0, ∀F (t) ∈ K(t), a.e. in [0, T ]. (3.3.4)

From (3.3.3) and (3.3.4), we obtain

〈A(t)H1(t) + B(t), H2(t)−H1(t)〉 ≥ 0, a.e. in [0, T ],

〈A(t)H2(t) + B(t), H1(t)−H2(t)〉 ≥ 0, a.e. in [0, T ],

having chosen F = H2 in (3.3.3) and F = H1 in (3.3.4). Summing the last inequal-
ities, it results

〈A(t)[H1(t)−H2(t)], H2(t)−H1(t)〉 ≥ 0, a.e. in [0, T ],

then
〈A(t)[H1(t)−H2(t)], H1(t)−H2(t)〉 ≤ 0, a.e. in [0, T ].

Since A satisfies condition (3.3.1), we get

ν(t)‖H1(t)−H2(t)‖2
mdt ≤ 0, a.e. in [0, T ].

By virtue of the assumptions on ν, it follows

H1(t) = H2(t), a.e. in [0, T ].

3.3.2 Nonlinear case

Let C : [0, T ]×Rm → Rm be a nonlinear operator and let us consider the following
evolutionary variational inequality
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Find H ∈ K such that

〈C(t,H(t)), F (t)−H(t)〉 ≥ 0, ∀F (t) ∈ K(t), a.e. in [0, T ], (3.3.5)

where K ⊆ L2([0, T ],Rm) is a nonempty, convex and closed set.
Let us suppose that the operator C is degenerate, namely

〈C(t,H)− C(t, F ), H − F 〉 ≥ ν(t)‖H − F‖2
m, (3.3.6)

∀H, F ∈ Rm, a.e. in [0, T ], where ν ∈ L∞([0, T ],R+
0 ) is such that

@I ⊆ [0, T ], µ(I) > 0 : ν(t) = 0, ∀t ∈ I,

being µ Lebesgue’s measure.
Now, we can prove the existence and uniqueness result (see [9], Theorem 3).

Theorem 3.3.2. Let C(t, F ) : [0, T ] × Rm → Rm be a vector-function measurable
in t, continuous in F and such that

‖C(t, F )‖m ≤ A(t)‖F‖m + B(t), ∀F ∈ Rm, a.e. in [0, T ], (3.3.7)

with B ∈ L2([0, T ]) and A ∈ L∞([0, T ]), and satisfying condition (3.3.6). Let K ⊆
L2([0, T ],Rm) be a nonempty, convex and closed set. Then, evolutionary variational
inequality (3.3.5) admits a unique solution.

Proof. The existence of the solution to the evolutionary variational inequality (3.3.5)
is guaranteed by Theorem 3.2.3. Now, we may prove that the assumption (3.3.6)
implies the uniqueness of the solution to the variational inequality. We proceed ab
absurdum. We suppose that there exist two solutions H1, H2 ∈ K such that

〈C(t, H1(t)), F (t)−H1(t)〉 ≥ 0, ∀F (t) ∈ K(t), a.e. in [0, T ], (3.3.8)

〈C(t, H2(t)), F (t)−H2(t)〉 ≥ 0, ∀F (t) ∈ K(t), a.e. in [0, T ], (3.3.9)

we obtain
〈C(t,H1(t)), H2(t)−H1(t)〉 ≥ 0, a.e. in [0, T ],

〈C(t,H2(t)), H1(t)−H2(t)〉 ≥ 0, a.e. in [0, T ],

having set F = H2 in (3.3.8) and F = H1 in (3.3.9). Adding the last inequalities,
we obtain

〈C(t,H1(t))− C(t,H2(t)), H2(t)−H1(t)〉 ≥ 0, a.e. in [0, T ],

then
〈C(t,H1(t))− C(t,H2(t)), H1(t)−H2(t)〉 ≤ 0, a.e. in [0, T ].

Since C satisfies condition (3.3.6), we get

ν(t)‖H1(t)−H2(t)‖2
mdt ≤ 0, a.e. in [0, T ].

Taking into account of the assumptions on ν, it results

H1(t) = H2(t), a.e. in [0, T ].
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3.4 Existence results for evolutionary quasi-variational

inequalities

In literature there are numerous results for the existence of solutions to quasi-
variational inequalities, in both finite and infinite dimension, which mostly require
the compactness of the set K(H) or, alternatively, some coercivity condition on the
operator C.

In this section we give some sufficient conditions for the existence of solutions
which follow by Theorem 1.6.1 (see [84]).

Theorem 3.4.1. Let C : [0, T ] × Rm
+ → Rm

+ be an operator measurable in t, ∀F ∈
Rm

+ , and continuous in F , a.e. in [0, T ], such that

∃γ ∈ L2([0, T ]) : ‖C(t, F )‖m ≤ γ(t) + ‖F‖m, ∀F ∈ Rm
+ , a.e. in [0, T ],

Let λ, µ ∈ L2([0, T ],Rm
+ ) be vector-functions and let ρ ∈ L2([0, T ] × Rm

+ ,Rl
+) be an

operator verifying the following conditions

∃ψ ∈ L1([0, T ]) : ‖ρ(t, F )‖l ≤ ψ(t) + ‖F‖2
m, ∀F ∈ Rm

+ , a.e. in [0, T ],

∃ν ∈ L2([0, T ]) : ‖ρ(t,H)−ρ(t, F )‖l ≤ ω(t)‖H−F‖m, , ∀H, F ∈ Rm
+ , a.e. in [0, T ],

and let us suppose that
K(H) ⊂ D, ∀H ∈ D.

Then, the quasi-evolutionary variational inequality

H ∈ K(H) : 〈C(t,H(t)), F (t)−H(t)〉 ≥ 0, ∀F (t) ∈ K(t,H), a.e. in [0, T ],

admits a solution.

Now, we present an existence theorem, which does not require the compactness
of the set D, but it is based on the coercivity of the cost operator (see [84]).

Theorem 3.4.2. Let C : [0, T ] × Rm
+ → Rm

+ be an operator measurable in t, ∀F ∈
Rm

+ , continuous in F , a.e. in [0, T ], such that

∃γ ∈ L2([0, T ]) : ‖C(t, F )‖m ≤ γ(t) + ‖F‖m, ∀F ∈ Rm
+ , a.e. in [0, T ],

∃c ≥ 0 : ‖C(t, F )‖m ≤ c‖F‖m, ∀F ∈ Rm
+ , a.e. in [0, T ],

〈C(t,H)− C(t, F ), H − F 〉 ≥ 0, ∀H,F ∈ Rm
+ , a.e. in [0, T ].

Let λ, µ ∈ L2([0, T ],Rm
+ ) be vector-functions and let ρ ∈ L2([0, T ] × Rm

+ ,Rl
+) be an

operator verifying the following conditions

∃ψ ∈ L1([0, T ]) : ‖ρ(t, F )‖l ≤ ψ(t) + ‖F‖2
m, , ∀F ∈ Rm

+ , a.e. in [0, T ],



30 3. Theory of the existence

∃ω ∈ L2([0, T ]) : ‖ρ(t,H)−ρ(t, F )‖l ≤ ω(t)‖H−F‖m, , ∀H,F ∈ Rm
+ , a.e. in [0, T ].

Then, the evolutionary quasi-variational inequality

H ∈ K(H) : 〈C(t,H(t)), F (t)−H(t)〉 ≥ 0, ∀F (t) ∈ K(t,H), a.e. in [0, T ],

admits a solution.

This result has been extended by L. Scrimali (see [87]) to retarded quasi-variational
inequalities.

More general existence result is given by the following.

Theorem 3.4.3. Let C : [0, T ] × Rm → Rm be an operator measurable in t, ∀F ∈
Rm, continuous in F , a.e. in [0, T ], such that

∃γ ∈ L2([0, T ]) : ‖C(t, F )‖m ≤ γ(t) + ‖F‖m, ∀F ∈ Rm, a.e. in [0, T ],

∃c ≥ 0 : ‖C(t, F )‖m ≤ c‖F‖m, ∀F ∈ Rm, a.e. in [0, T ],

〈C(t,H)− C(t, F ), H − F 〉 ≥ 0, ∀F ∈ Rm, a.e. in [0, T ].

Let D be a nonempty, compact, convex subset of L2([0, T ],Rm). Let K : D →
2L2([0,T ],Rm) be a closed l.s.c. multifunction, with K(H), for each H ∈ L2([0, T ],Rm),
nonempty, convex, closed of L2([0, T ],Rm). Then, the evolutionary quasi-variational
inequality

H ∈ K(H) : 〈C(t,H(t)), F (t)−H(t)〉 ≥ 0, ∀F (t) ∈ K(t,H), a.e. in [0, T ],

admits a solution.

It is well known that if C is in addition strictly monotone, then the solution H
to the evolutionary quasi-variational inequality is unique in the set K(H).

Obviously, Theorem 3.4.3 holds if the operator is affine (namely C(t,H(t)) =
A(t)H(t) + B(t)) supposing that A is a bounded nonnegative matrix-function.

For reader’s convenience we report the proof of a type Minty’s Lemma on evo-
lutionary quasi-variational inequalities.

Lemma 3.4.1. Let C(t, F ) : [0, T ] × Rm → Rm be an operator measurable in t,
∀F ∈ Rm, and continuous in F , a.e. in [0, T ], such that

∃γ ∈ L2([0, T ]) : ‖C(t, F )‖m ≤ γ(t) + ‖F‖m, ∀F ∈ Rm, a.e. in [0, T ],

and

∃ν > 0 : 〈C(t,H)− C(t, F ), H − F 〉 ≥ ν‖H − F‖2
m, ∀H,F ∈ Rm, a.e. in [0, T ].

Let D be a nonempty, compact, convex subset of L2([0, T ],Rm). Let K : D →
2L2([0,T ],Rm) be a closed l.s.c. multifunction, with K(H), for each H ∈ L2([0, T ],Rm),
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nonempty, convex, closed of L2([0, T ],Rm). Then, the evolutionary quasi-variational
inequality

H ∈ K(H) : 〈C(t,H(t)), F (t)−H(t)〉 ≥ 0, ∀F (t) ∈ K(t,H), a.e. in [0, T ],
(3.4.1)

is equivalent to

H ∈ K(H) : 〈C(t, F (t)), F (t)−H(t)〉 ≥ 0, ∀F (t) ∈ K(t,H), a.e. in [0, T ].
(3.4.2)

Proof. The existence of solutions to (3.4.1) is ensured by assumptions. Let H ∈
K(H) be a solution.

Then, the monotonicity of C and (3.4.1) imply for any F ∈ K(H)

〈C(t, F (t)), F (t)−H(t)〉 = 〈C(t, F (t))− C(t,H(t)), F (t)−H(t)〉
+〈C(t,H(t)), F (t)−H(t)〉 ≥ 0, a.e. in [0, T ].

Conversely, setting in (3.4.2)

F (t) = H(t) + θ(G(t)−H(t)) ∈ K(t,H),

for arbitrary θ ∈]0, 1] and G(t) ∈ K(t,H) a.e. in [0, T ], it follows

〈C(t, H(t) + θ(G(t)−H(t))), G(t)−H(t)〉 ≥ 0, a.e. in [0, T ],

and letting θ → 0 it results (3.4.2) by the continuity of C with respect to the second
variable.

3.5 Existence results for degenerate evolutionary

quasi-variational inequalities

In this section, we extend existence and uniqueness results to degenerate evolution-
ary quasi-variational inequalities.

3.5.1 Affine case

Let us consider a degenerate matrix-function, namely a function A : [0, T ] → Rm×m

such that
〈A(t)F, F 〉 ≥ ν(t)‖F‖2

m, ∀F ∈ Rm, a.e. in [0, T ], (3.5.1)

where ν ∈ L∞([0, T ],R+
0 ) is such that

@I ⊆ [0, T ], µ(I) > 0 : ν(t) = 0, a.e. in I,

being µ Lebesgue’s measure, and a vector-function B : [0, T ] → Rm. Let K :
[0, T ] → 2L2([0,T ],Rm) be a multifunction.
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Now, we study under which assumptions the evolutionary quasi-variational in-
equality

Find H ∈ K(H) such that

〈A(t)H(t) + B(t), F (t)−H(t)〉 ≥ 0, ∀F (t) ∈ K(t,H), a.e. in [0, T ], (3.5.2)

admits some solutions.

Theorem 3.5.1. Let A ∈ L∞([0, T ],Rm×m) be a bounded matrix-function satisfy-
ing condition (3.5.1) and let B ∈ L2([0, T ],Rm) be a vector-function. Let D be a
nonempty, compact, convex subset of L2([0, T ],Rm). Let K : D → 2L2([0,T ],Rm) be a
closed l.s.c. multifunction, with K(H), for each H ∈ L2([0, T ],Rm), nonempty, con-
vex, closed of L2([0, T ],Rm). Then, evolutionary quasi-variational inequality (3.5.2)
admits a solution, and it is unique in the set K(H).

Proof. The existence of a solution H to evolutionary quasi-variational inequality
(3.5.2) in the set K(H) is guaranteed by Theorem 3.4.3. Now, let us prove that the
assumption (3.5.1) implies the uniqueness of the solution in the set K(H). In fact,
let us suppose, ab absurdum, that there exist two solutions H1, H2 ∈ K(H) such
that

〈A(t)H1(t) + B(t), F (t)−H1(t)〉 ≥ 0, ∀F (t) ∈ K(t,H), a.e. in [0, T ], (3.5.3)

〈A(t)H2(t) + B(t), F (t)−H2(t)〉 ≥ 0, ∀F (t) ∈ K(t,H), a.e. in [0, T ]. (3.5.4)

Setting F = H2 in (3.5.3) and F = H1 in (3.5.4), we obtain

〈A(t)H1(t) + B(t), H2(t)−H1(t)〉 ≥ 0, a.e. in [0, T ],

〈A(t)H2(t) + B(t), H1(t)−H2(t)〉 ≥ 0, a.e. in [0, T ],

and, summing the last inequalities, we get

〈A(t)[H1(t)−H2(t)], H2(t)−H1(t)〉 ≥ 0, a.e. in [0, T ],

then
〈A(t)[H1(t)−H2(t)], H1(t)−H2(t)〉 ≤ 0, a.e. in [0, T ].

Under the assumption (3.5.1), it follows

ν(t)‖H1(t)−H2(t)‖2
mdt ≤ 0, a.e. in [0, T ].

By virtue of the assumptions on the function ν, it results

H1(t) = H2(t), a.e. in [0, T ].
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3.5.2 Nonlinear case

Finally, we present the existence result for nonlinear degenerate evolutionary quasi-
variational inequalities. To this aim, we consider a nonlinear operator C : [0, T ] ×
Rm → Rm such that

〈C(t,H)− C(t, F ), H − F 〉 ≥ ν(t)‖H − F‖2
m, ∀H,F ∈ Rm, a.e. in Rm, (3.5.5)

where ν ∈ L∞([0, T ],R+
0 ) is such that

@I ⊆ [0, T ], µ(I) > 0 : ν(t) = 0, ∀t ∈ I,

being µ Lebesgue’s measure. Under this assumptions we call that the operator is
degenerate.

Let D be a nonempty, compact, convex subset of L2([0, T ],Rm). Let K : D →
2L2([0,T ],Rm) be a closed l.s.c. multifunction, with K(H), for each H ∈ L2([0, T ],Rm),
nonempty, convex, closed of L2([0, T ],Rm). Now, we study the following evolution-
ary quasi-variational inequality

Find H ∈ K(H) such that

〈C(t,H(t)), F (t)−H(t)〉 ≥ 0, ∀F (t) ∈ K(t,H), a.e. in [0, T ], (3.5.6)

showing the next existence result.

Theorem 3.5.2. Let C(t, F ) : [0, T ] × Rm → Rm be a vector-function measurable
in t, ∀F ∈ Rm, continuous in F , a.e. in [0, T ], such that

∃γ ∈ L2([0, T ]) : ‖C(t, F )‖m ≤ γ(t) + ‖F‖m, ∀F ∈ Rm, a.e. in [0, T ],

and satisfying condition (3.5.5). Let D be a nonempty, compact, convex subset of
L2([0, T ],Rm). Let K : D → 2L2([0,T ],Rm) be a closed l.s.c. multifunction, with
K(H), for each H ∈ L2([0, T ],Rm), nonempty, convex, closed of L2([0, T ],Rm).
Then, evolutionary quasi-variational inequality (3.5.6) admits a solution, which is
unique in the set K(H).

Proof. The existence of a solution H to evolutionary quasi-variational inequality
(3.5.6) in the set K(H) is guaranteed by Theorem 3.4.3. Now, we show that the
assumption (3.5.5) implies the uniqueness of the solution to the evolutionary quasi-
variational inequality in the set K(H). We suppose that there exist two solutions
H1, H2 ∈ K(H) such that

〈C(t,H1(t)), F (t)−H1(t)〉 ≥ 0, ∀F (t) ∈ K(t, H), a.e. in [0, T ], (3.5.7)

〈C(t,H2(t)), F (t)−H2(t)〉 ≥ 0, ∀F (t) ∈ K(t, H), a.e. in [0, T ], (3.5.8)
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and, choosing F = H2 in (3.5.7) and F = H1 in (3.5.8), we get

〈C(t,H1(t)), H2(t)−H1(t)〉 ≥ 0, a.e. in [0, T ],

〈C(t,H2(t)), H1(t)−H2(t)〉 ≥ 0, a.e. in [0, T ],

We add the last inequalities, obtaining

〈C(t,H1(t))− C(t,H2(t)), H2(t)−H1(t)〉 ≥ 0, a.e. in [0, T ],

then
〈C(t,H1(t))− C(t,H2(t)), H1(t)−H2(t)〉 ≤ 0, a.e. in [0, T ].

The assumption (3.5.5) implies

ν(t)‖H1(t)−H2(t)‖2
mdt ≤ 0, a.e. in [0, T ].

and, for the assumptions on the function ν, it follows

H1(t) = H2(t), a.e. in [0, T ].
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The convergence of convex sets

4.1 Historical development

The classical Hausdorff definition of a metric for the space of closed subsets of a
(compact) metric space has been generalized by many authors, who have introduced
a topology, or a pseudo-topology, or simply a convergence, in the space of closed
subsets of a topological space, see for instance L. Vietoris [101], C. Kuratowski [54],
C. Choquet [24] and E. Michael [66].

In the pioneering work [70], U. Mosco introduced a special convergence for convex
closed subsets of a normed space X, in which both the strong and weak topologies
of X are involved. Let us notice, incidentally, that this convergence can be defined
in any locally convex topological vector space. Moreover, U. Mosco, in his work,
dealt with the convergence of solutions of perturbed variational inequalities where
both monotone operators and convex sets are perturbed using different topologies
for upper and lower limits.

The set convergence in Mosco’s sense can be refined to give an excellent tool
for the analysis of the convergence of solutions to variational inequalities and of
discretization methods, in particular finite element methods applied to variational
inequalities.

4.2 Set convergence in Mosco’s sense

In this section, we present the concept of Mosco [70] (see also [93] and [43]) of set
convergence (or the set convergence in Mosco’s sense) and we recall some stability
results.

Definition 4.2.1. Let (X, ‖·‖) be an Hilbert space and K ⊂ X a closed, nonempty,
convex set. A sequence of nonempty, closed, convex sets Kn converges in Mosco’s
sense to K as n → +∞, i.e. Kn → K, if and only if

(M1) for any H ∈ K, there exists a sequence {Hn}n∈N strongly converging to H in
X such that Hn lies in Kn for all n ∈ N,
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(M2) for any {Hkn}n∈N weakly converging to H in X, such that Hkn lies in Kkn for
all n ∈ N, then the weak limit H belongs to K.

Conditions (M1)–(M2) can be shortly phased as

w − lim sup
n→+∞

Kn ⊆ K, s− lim inf
n→+∞

Kn ⊇ K,

where in the sense of Kuratowski (see [1] and [52]) w−lim sup, respectively s−lim inf
denotes the limit superior with respect to the weak convergence, respectively the
limit inferior with respect to the strong convergence.

Let us remark that Stummel [96] obviously independently developed this concept
of set convergence in his study of perturbations of linear elliptic boundary value
problems in Sobolev spaces. He notes in [96], p.11, that these two hypotheses are
equivalent to

w − lim sup
n→+∞

Kn ⊆ K ⊆ w − lim inf
n→+∞

Kn, s− lim sup
n→+∞

Kn ⊆ K ⊆ s− lim inf
n→+∞

Kn,

since strongly convergence implies weak convergence.

Definition 4.2.2. ([70]) A sequence of operators An : Kn → X ′ converges to an
operator A : K → X ′ if

‖AnHn − AnFn‖∗ ≤ M‖Hn − Fn‖, ∀Hn, Fn ∈ Kn, (4.2.1)

〈AnHn − AnFn, Hn − Fn〉 ≥ ν‖Hn − Fn‖2, ∀Hn, Fn ∈ Kn, (4.2.2)

hold with fixed constants M, ν > 0 and

(M3) the sequence {AnHn}n∈N strongly converges to AH in X ′, for any sequence
{Hn}n∈N, such that Hn lies in Kn for all n ∈ N, strongly converging to H ∈ K.

In (4.2.1) ‖ · ‖∗ is the norm in the dual space of X.

Now, we recall an abstract stability result due to Mosco (see [86], Theorem 4.1):

Theorem 4.2.1. Let Kn → K in Mosco’s sense (M1)–(M2) , An → A in the sense
of (M3) and Bn → B in V ′. Then the unique solutions Hn of

Hn ∈ Kn : 〈AnHn −Bn, Fn −Hn〉 ≥ 0, ∀Fn ∈ Kn (4.2.3)

converge strongly to the solution H of the limit problem (2.2.3), namely,

Hn → H in X.

The stability of equilibrium solutions is very important for the numerical ap-
proximation of evolutionary variational inequalities, where n → +∞ denotes a dis-
cretization parameter as, for example, the mesh size in the finite elements method.

Now, we remark that the set convergence may be expressed in terms of the
projection operator, as the next theorem shows (see [86], Theorem 4.3).
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Theorem 4.2.2. The convergence of the convex sets Kn → K in the sense of
(M1)–(M2) is equivalent to

PKnF → PKF in V, ∀F ∈ V.

In order to get a stability result, let us give the following definition about local
“distance” between two closed convex nonempty subsets K and Kn of an Hilbert
space (X, ‖ · ‖).
Definition 4.2.3. For each r > 0 such that K ∩ {‖F‖ ≤ r} and Kn ∩ {‖F‖ ≤ r}
are nonempty, let

πr(K,Kn) = sup
G∈V
‖G‖≤r

‖PKG− PKnG‖, (4.2.4)

where PK denotes the hilbertian projection on K.

Analogously, for the operators A,An : X → X ′ one can introduce a local “dis-
tance” by defining for each r > 0.

Definition 4.2.4. For each r > 0, let

δr(A,An) = sup
H∈V
‖H‖≤r

‖AH − AnH‖∗. (4.2.5)

It is clear, from (4.2.4) and (4.2.5), that πr(K,Kn) → 0 or δr(A,An) → 0 for
each r > 0, as n → +∞, imply the convergence (M1) and (M2) for the convex sets
or (M3) for the operators, respectively. Those conditions are stronger assumptions
and they allow to refine Mosco’s Theorem by estimating the rate of convergence in
terms of those quantities, as the following result shows (see [86], Theorem 4.4):

Theorem 4.2.3. Let H and Hn be the solutions of (2.2.3) and (4.2.3), respectively,
with operators A, An : X → X ′ verifying (4.2.1) and (4.2.2) with constants M, ν > 0
such that ‖A0‖∗, ‖An0‖∗ ≤ a0, with ‖B‖∗, ‖Bn‖∗ ≤ b and with convex sets K,Kn

such that ‖PK0‖∗, ‖PKn0‖∗ ≤ d0. Then the following estimate holds

‖H −Hn‖ ≤ C
{
‖B −Bn‖∗ + δr0(A,An) + πr1(K,Kn)

}

where, for any ρ ∈]0, 2ν/M2[,

C = max(1, ρ)/(1−
√

1− 2ρν + ρ2M2) > 0,

r0 = (b + a0)/ν + d0(1 + M/ν)

and

r1 = r0 + ρ(a0 + Mr0 + b).
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4.3 Applications to traffic equilibrium problem

In this section, we are proving that sets of feasible flows of the traffic equilibrium
problem in the dynamic case and in the dynamic elastic case satisfy the property of
the set convergence in Mosco’s sense.

4.3.1 Dynamic case

At first, we fix the attention on the set of feasible flows of the dynamic traffic
equilibrium problem (see [3], proof of Theorem 3.2).

Proposition 4.3.1. Let λ, µ ∈ C([0, T ],Rm
+ ), let ρ ∈ C([0, T ],Rl

+) and let {tn}n∈N ⊆
[0, T ] be a sequence such that tn → t ∈ [0, T ], as n → +∞. Then, the sequence of
sets

K(tn) =
{

F (tn) ∈ Rm) : λ(tn) ≤ F (tn) ≤ µ(tn), ΦF (tn) = ρ(tn)
}

,

∀n ∈ N, converges to

K(t) =
{

F (t) ∈ Rm) : λ(t) ≤ F (t) ≤ µ(t), ΦF (t) = ρ(t)
}

,

as n → +∞, in Mosco’s sense.

Proof. In order to prove that the sequence {K(tn)}n∈N converges to K(t) in Mosco’s
sense, for any sequence {tn}n∈N ⊆ [0, T ] such that tn → t ∈ [0, T ], as n → +∞, it is
enough to show that conditions (M1) and (M2) hold.

For the first condition, let F (t) ∈ K(t) be fixed and, for each j, 1 ≤ j ≤ l, let us
set

Aj =

{
r ∈ {1, 2, . . . , m} : ϕjr = 1, Fr(t) = λr(t)

}

Bj =

{
r ∈ {1, 2, . . . , m} : ϕjr = 1, Fr(t) = µr(t)

}

Cj =

{
r ∈ {1, 2, . . . , m} : ϕjr = 1, λr(t) < Fr(t) < µr(t)

}
.

Let us assume that Cj 6= ∅ and let us observe that for each r ∈ Cj it results

lim
n→+∞

µr(tn)−
[
Fr(t) +

ρj(tn)− ρj(t)∑
r∈Cj

ϕjr

−
∑

r∈Aj
[λr(tn)− λr(t)]∑

r∈Cj
ϕjr

−
∑

r∈Bj
[µr(tn)− µr(t)]∑

r∈Cj
ϕjr

]
= µr(t)− Fr(t) > 0,
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lim
n→+∞

Fr(t) +
ρj(tn)− ρj(t)∑

r∈Cj
ϕjr

−
∑

r∈Aj
[λr(tn)− λr(t)]∑

r∈Cj
ϕjr

−
∑

r∈Bj
[µr(tn)− µr(t)]∑

r∈Cj
ϕjr

− λr(tn) = Fr(t)− λr(t) > 0.

Then there exists an index νj such that for n > νj and r ∈ Cj we have

λr(t) ≤ Fr(t)+
ρj(tn)− ρj(t)∑

r∈Cj
ϕjr

−
∑

r∈Aj
[λr(tn)− λr(t)]∑

r∈Cj
ϕjr

−
∑

r∈Bj
[µr(tn)− µr(t)]∑

r∈Cj
ϕjr

≤ µr(t).

Hence we can consider a sequence F (tn) such that:

• for n > νj and ϕjr = 1, j = 1, 2, . . . , l

Fr(tn) =





λr(tn) for r ∈ Aj

µr(tn) for r ∈ Bj

Fr(t) +
ρj(tn)− ρj(t)∑

r∈Cj
ϕjr

−
∑

r∈Aj
[λr(tn)− λr(t)]∑

r∈Cj
ϕjr

−
∑

r∈Bj
[µr(tn)− µr(t)]∑

r∈Cj
ϕjr

for r ∈ Cj

• and for n ≤ νj, ϕjr = 1, j = 1, 2, . . . , l

Fr(tn) = PK(tn)Fr(t),

where PK(tn) denotes the hilbertian projection on K(tn).

Obviously if n ≤ νj it results Fr(tn) ∈ K(tn), whereas for n > νj we have

λr(tn) ≤ Fr(tn) ≤ µr(tn)

and

m∑
r=1

ϕjrFr(tn) =
m∑

r=1

Fr(t) +
∑
r∈Aj

[λr(tn)− λr(t)] +
∑
r∈Bj

[µr(tn)− µ(t)]

+
∑
r∈Cj

ρj(tn)− ρj(t)∑
r∈Cj

ϕjr

−
∑
r∈Cj

∑
r∈Aj

[λr(tn)− λr(t)]∑
r∈Cj

ϕjr

−
∑
r∈Cj

∑
r∈Bj

[µr(tn)− µr(t)]∑
r∈Cj

ϕjr

= ρj(tn).

So F (tn) ∈ K(tn), ∀n ∈ N and it results limn→+∞ F (tn) = F (t).
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Now, let us assume that Cj = ∅ and let us observe that it results

lim
n→+∞

[
λr(tn) +

1∑
r∈Aj

ϕjr

max

(
0, ρj(tn)−

∑
r∈Aj

λr(tn)−
∑
r∈Bj

µr(tn)

)]

− µr(tn) = λr(t)− µr(t) < 0, r ∈ Aj,

and

lim
n→+∞

[
µr(tn) +

1∑
r∈Bj

ϕjr

min

(
0, ρj(tn)−

∑
r∈Aj

λr(tn)−
∑
r∈Bj

µr(tn)

)]

− λr(tn) = µr(t)− λr(t) > 0, r ∈ Bj.

Then there exists an index νj such that for n > νj it results

λr(tn) ≤ λr(tn) +
1∑

r∈Aj
ϕjr

max

(
0, ρj(tn)−

∑
r∈Aj

λr(tn)−
∑
r∈Bj

µr(tn)

)
≤ µr(tn)

λr(tn) ≤ µr(tn) +
1∑

r∈Bj
ϕjr

min

(
0, ρj(tn)−

∑
r∈Aj

λr(tn)−
∑
r∈Bj

µr(tn)

)
≤ µr(tn).

So, we can choose the sequence F (tn) in the following way:

• for n > νj, ϕjr = 1, j = 1, 2, . . . , l

Fr(tn) =





λr(tn) +
1∑

r∈Aj
ϕjr

max

(
0, ρj(tn)−∑

r∈Aj
λr(tn)−∑

r∈Bj
µr(tn)

)

for r ∈ Aj

µr(tn) +
1∑

r∈Bj
ϕjr

min

(
0, ρj(tn)−∑

r∈Aj
λr(tn)−∑

r∈Bj
µr(tn)

)

for r ∈ Bj

• whereas for n ≤ νj, ϕjr = 1, j = 1, 2, . . . , l

Fr(tn) = PK(tn)Fr(t).

It results limn→+∞ F (tn) = F (t) and for n > νj

m∑
r=1

ϕjrFr(tn) =
∑
r∈Aj

λr(tn) + max

(
0, ρj(tn)−

∑
r∈Aj

λr(tn)−
∑
r∈Bj

µr(tn)

)

+
∑
r∈Bj

µr(tn) + min

(
0, ρj(tn)−

∑
r∈Aj

λr(tn)−
∑
r∈Bj

µr(tn)

)

= ρj(tn).
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The proof of the first condition (M1) has been obtained.
For the second one, let {F (tn)}n∈N be a fixed sequence, with F (tn) ∈ K(tn),

∀n ∈ N, such that F (tn) ⇀ F (t) (weakly) in Rm. Since Rm is a finite-dimensional
space, the weak convergence is equivalent to F (tn) → F (t) (strongly) in Rm. It
remains to prove that F (t) ∈ K(t). From F (tn) ∈ K(tn), ∀n ∈ N, we derive

λ(tn) ≤ F (tn) ≤ µ(tn), ∀n ∈ N, (4.3.1)

m∑
r=1

ϕjrFr(tn) = ρj(tn), ∀n ∈ N, j = 1, 2, . . . , l. (4.3.2)

Passing to the limit for n → +∞ in (4.3.1), and using the continuity of λ and µ
on [0, T ], we obtain

λ(t) ≤ F (t) ≤ µ(t),

and, from (4.3.2), we have for the continuity of ρ on [0, T ]

m∑
r=1

ϕjrFr(t) = ρj(t), j = 1, 2, . . . , l.

Then
F (t) ∈ K(t),

so the second condition (M2) has also been proved.
Hence, we conclude that

K(tn) → K(t) in Mosco’s sense,

when tn → t ∈ [0, T ].

Now, we prove that the set K(t) is uniformly bounded in [0, T ].

Proposition 4.3.2. Let λ, µ ∈ C([0, T ],Rm
+ ), let ρ ∈ C([0, T ],Rl

+) be vector-
functions. Then, the set

K(t) =
{

F (t) ∈ Rm) : λ(t) ≤ F (t) ≤ µ(t), ΦF (t) = ρ(t)
}

,

is uniformly bounded in [0, T ].

Proof. Let us fix an arbitrary vector-flow H(t) in K(t), then

λ(t) ≤ H(t) ≤ µ(t).

Since λ, µ ∈ C([0, T ],Rm
+ ), it follows

‖H(t)‖m ≤ max
t∈[0,T ]

µ(t) = C, in [0, T ],

where C is a constant independent on t ∈ [0, T ].
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4.3.2 Dynamic elastic case

Now, we extend the previous result to the dynamic elastic case (see [3], proof of
Theorem 4.1).

Proposition 4.3.3. Let λ, µ ∈ C([0, T ],Rm
+ ) be and let ρ ∈ C([0, T ] × Rm

+ ,Rl
+) be

such that

∃ψ ∈ C([0, T ],R+) : ‖ρ(t, F )‖l ≤ ψ(t) + ‖F‖2
m, (4.3.3)

and let {tn}n∈N ⊆ [0, T ] be a sequence such that tn → t ∈ [0, T ], as n → +∞. Then,
the sequence of sets

K(tn, H) =

{
F (tn) ∈ Rm : λ(tn) ≤ F (tn) ≤ µ(tn), ΦF (tn) =

1

T

∫ T

0

ρ(tn, H(τ))dτ

}
,

∀n ∈ N, converges to

K(t,H) =

{
F (t) ∈ Rm : λ(t) ≤ F (t) ≤ µ(t), ΦF (t) =

1

T

∫ T

0

ρ(t,H(τ))dτ

}
,

as n → +∞, in Mosco’s sense.

Proof. Let t ∈ [0, T ] be fixed and let {tn}n∈N ⊂ [0, T ] be a sequence, with tn → t.
Owing to the continuity of λ, µ and ρ, λ(tn) → λ(t), µ(tn) → µ(t) and ρ(tn, F ) →
ρ(t, F ), ∀F ∈ K(t,H), respectively, follows. Let us prove that K(tn, H) → K(t,H)
in Mosco’s sense, i.e. let us show that (M1) and (M2) hold.

Regard the first condition, let F (t) ∈ K(t,H) be fixed and, for each j, 1 ≤ j ≤ l,
let us set

Aj =

{
r ∈ {1, 2, . . . , m} : ϕjr = 1, Fr(t) = λr(t)

}

Bj =

{
r ∈ {1, 2, . . . , m} : ϕjr = 1, Fr(t) = µr(t)

}

Cj =

{
r ∈ {1, 2, . . . , m} : ϕjr = 1, λr(t) < Fr(t) < µr(t)

}
.

At first, we observe that, by the assumptions, we have

∃ψ ∈ C([0, T ],R+) : ‖ρ(t,H(τ))‖l ≤ ψ(t) + ‖H(τ)‖2
m,

for t ∈ [0, T ] and τ ∈ [0, T ]. Since ψ ∈ C([0, T ],Rm
+ ) and H ∈ L2([0, T ],Rm

+ ), we
obtain, for t ∈ [0, T ] and τ ∈ [0, T ]

‖ρ(t,H(τ))‖l ≤ ψ(t) + ‖H(τ)‖2
m ∈ L1([0, T ],R+)
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and, by virtue of the continuity of ρ with respect to the first variable we also have

lim
n→+∞

ρ(tn, H(τ)) = ρ(t,H(τ)),

for τ ∈ [0, T ] and H ∈ L2([0, T ],Rm
+ ). From a well known generalization of Lebesgue’s

Theorem we get

lim
n→+∞

∫ T

0

ρ(tn, H(τ))dτ =

∫ T

0

ρ(t,H(τ))dτ, (4.3.4)

for every H ∈ L2([0, T ],Rm
+ ).

Now, we assume that Cj 6= ∅ and we remark that for each r ∈ Cj we obtain

lim
n→+∞

µr(tn) −
[
Fr(t) +

1

T

∫ T

0
ρj(tn, H(τ))dτ − ∫ T

0
ρj(t,H(τ))dτ∑

r∈Cj
ϕjr

−
∑

r∈Aj
[λr(tn)− λr(t)]∑

r∈Cj
ϕjr

−
∑

r∈Bj
[µr(tn)− µr(t)]∑

r∈Cj
ϕjr

]
= µr(t)− Fr(t) > 0,

lim
n→+∞

Fr(t) +
1

T

∫ T

0
ρj(tn, H(τ))dτ − ∫ T

0
ρj(t,H(τ))dτ∑

r∈Cj
ϕjr

−
∑

r∈Aj
[λr(tn)− λr(t)]∑

r∈Cj
ϕjr

−
∑

r∈Bj
[µr(tn)− µr(t)]∑

r∈Cj
ϕjr

− λr(tn) = Fr(t)− λr(t) > 0.

Then, there exists an index νj such that for n > νj and r ∈ Cj it results

λr(t) ≤ Fr(t) +
1

T

∫ T

0
ρj(tn, H(τ))dτ − ∫ T

0
ρj(t,H(τ))dτ∑

r∈Cj
ϕjr

−
∑

r∈Aj
[λr(tn)− λr(t)]∑

r∈Cj
ϕjr

−
∑

r∈Bj
[µr(tn)− µr(t)]∑

r∈Cj
ϕjr

≤ µr(t).

So, we can consider a sequence F (tn) such that:

• for n > νj and ϕjr = 1, j = 1, 2, . . . , l

Fr(tn) =





λr(tn) for r ∈ Aj

µr(tn) for r ∈ Bj

Fr(t) +
1

T

∫ T

0
ρj(tn, H(τ))dτ − ∫ T

0
ρj(t,H(τ))dτ∑

r∈Cj
ϕjr

−
∑

r∈Aj
[λr(tn)− λr(t)]∑

r∈Cj
ϕjr

−
∑

r∈Bj
[µr(tn)− µr(t)]∑

r∈Cj
ϕjr

for r ∈ Cj
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• and for n ≤ νj, ϕjr = 1, j = 1, 2, . . . , l

Fr(tn) = PK(tn)Fr(t).

Obviously, if n ≤ νj we have Fr(tn) ∈ K(tn), whereas for n > νj it results

λr(tn) ≤ Fr(tn) ≤ µr(tn)

and
m∑

r=1

Fr(tn)ϕjr =
m∑

r=1

Fr(t) +
∑
r∈Aj

[λr(tn)− λr(t)] +
∑
r∈Bj

[µr(tn)− µ(t)]

+
1

T

∑
r∈Cj

∫ T

0
ρj(tn, H(τ))dτ − ∫ T

0
ρj(t,H(τ))dτ∑

r∈Cj
ϕjr

−
∑
r∈Cj

∑
r∈Aj

[λr(tn)− λr(t)]∑
r∈Cj

ϕjr

−
∑
r∈Cj

∑
r∈Bj

[µr(tn)− µr(t)]∑
r∈Cj

ϕjr

=
1

T

∫ T

0

ρj(tn, H(τ))dτ.

Hence, F (tn) ∈ K(tn), ∀n ∈ N and we have limn→+∞ F (tn) = F (t).
We assume that Cj = ∅ and we remark that we obtain

lim
n→+∞

[
λr(tn) +

1∑
r∈Aj

ϕjr

max

(
0,

1

T

∫ T

0

ρj(tn, H(τ))dτ −
∑
r∈Aj

λr(tn)

−
∑
r∈Bj

µr(tn)

)]
− µr(tn) = λr(t)− µr(t) < 0, r ∈ Aj,

and

lim
n→+∞

[
µr(tn) +

1∑
r∈Bj

ϕjr

min

(
0,

1

T

∫ T

0

ρj(tn, H(τ))dτ −
∑
r∈Aj

λr(tn)−
∑
r∈Bj

µr(tn)

)]

− λr(tn) = µr(t)− λr(t) > 0, r ∈ Bj.

Then, there exists an index νj such that for n > νj it follows

λr(tn) ≤ λr(tn)+
1∑

r∈Aj
ϕjr

max

(
0,

1

T

∫ T

0

ρj(tn, H(τ))dτ−
∑
r∈Aj

λr(tn)−
∑
r∈Bj

µr(tn)

)

≤ µr(tn)

λr(tn) ≤ µr(tn)+
1∑

r∈Bj
ϕjr

min

(
0,

1

T

∫ T

0

ρj(tn, H(τ))dτ−
∑
r∈Aj

λr(tn)−
∑
r∈Bj

µr(tn)

)

≤ µr(tn).

So, we can choose the sequence F (tn) in the following way:
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• for n > νj, ϕjr = 1, j = 1, 2, . . . , l

Fr(tn) =





λr(tn) +
1∑

r∈Aj
ϕjr

·max

(
0,

1

T

∫ T

0
ρj(tn, H(τ))dτ −∑

r∈Aj
λr(tn)−∑

r∈Bj
µr(tn)

)

for r ∈ Aj

µr(tn) +
1∑

r∈Bj
ϕjr

·min

(
0,

1

T

∫ T

0
ρj(tn, H(τ))dτ −∑

r∈Aj
λr(tn)−∑

r∈Bj
µr(tn)

)

for r ∈ Bj

• and for n ≤ νj, ϕjr = 1, j = 1, 2, . . . , l

Fr(tn) = PK(tn)Fr(t).

We have limn→+∞ F (tn) = F (t) and for n > νj

m∑
r=1

ϕjrFr(tn) =
∑
r∈Aj

λr(tn) + max

(
0,

1

T

∫ T

0

ρj(tn, H(τ))dτ −
∑
r∈Aj

λr(tn)−
∑
r∈Bj

µr(tn)

)

+
∑
r∈Bj

µr(tn) + min

(
0,

1

T

∫ T

0

ρj(tn, H(τ))dτ −
∑
r∈Aj

λr(tn)−
∑
r∈Bj

µr(tn)

)

=
1

T

∫ T

0

ρj(tn, H(τ))dτ.

Then the first condition has been proved.
For the second one, let {F (tn)}n∈N be a sequence, with F (tn) ∈ K(tn, H), ∀n ∈ N

and H ∈ L2([0, T ],Rm
+ ), such that Fn ⇀ F (weakly) in Rm. Since Rm is a finite-

dimensional space, it is equivalent to F (tn) → F (t) (strongly) in Rm. Let us prove
that F (t) ∈ K(t, H). Since F (tn) ∈ K(tn, H), ∀n ∈ N, with H ∈ L2([0, T ],Rm

+ ), it
results

λ(tn) ≤ F (tn) ≤ µ(tn), ∀n ∈ N, (4.3.5)
m∑

r=1

ϕjrFr(tn) =
1

T

∫ T

0

ρj(tn, H(τ))dτ, j = 1, 2, . . . , l. (4.3.6)

Passing to the limit for n → +∞ in (4.3.5), and using the continuity of λ and µ,
we obtain

λ(t) ≤ F (t) ≤ µ(t).

Now, passing to the limit for n → +∞ in the left-hand side of (4.3.6), we have

lim
n→+∞

m∑
r=1

ϕjrFr(tn) =
m∑

r=1

ϕjrFr(t), j = 1, 2, . . . , l. (4.3.7)
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Then, from (4.3.7) and (4.3.4), we deduce

m∑
r=1

ϕjrFr(t) =
1

T

∫ T

0

ρj(t,H(τ))dτ,

for every j = 1, 2, . . . , l and H ∈ L2([0, T ],Rm
+ ), namely

F (t) ∈ K(t,H),

and the second condition has been just proved.
We conclude that

K(tn, H) → K(t,H) in Mosco’s sense,

being tn → t ∈ [0, T ].

Also in the elastic case, we show that the set K(t,H) is uniformly bounded in
[0, T ].

Proposition 4.3.4. Let λ, µ ∈ C([0, T ],Rm
+ ) be vector-functions and let ρ ∈ C([0, T ]×

Rm
+ ,Rl

+) be an operator satisfying condition (4.3.3). Then, the set

K(t,H) =

{
F (t) ∈ Rm : λ(t) ≤ F (t) ≤ µ(t) ΦF (t) =

1

T

∫ T

0

ρ(t,H(τ))dτ

}
,

is uniformly bounded in [0, T ].

Proof. Let us fix an arbitrary vector-flow H(t) in K(t,H), then

λ(t) ≤ H(t) ≤ µ(t).

Under assumptions λ, µ ∈ C([0, T ],Rm
+ ), it follows

‖H(t)‖m ≤ max
t∈[0,T ]

µ(t) = C, in [0, T ],

where C is a constant independent on t ∈ [0, T ].

4.4 Application to dynamic equilibrium problems

in the common formulation

Now, we are showing that the set of feasible flows of dynamic equilibrium prob-
lems in the common formulation (see Section 2.3) satisfies the property of the set
convergence in Mosco’s sense.
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Proposition 4.4.1. Let λ, µ ∈ C([0, T ],Rq
+), let ρ ∈ C([0, T ],Rl

+) such that

∃ψ ∈ C([0, T ]) : ‖ρ(t, F (t))‖l ≤ ψ(t) + ‖F (t)‖2
m,

and let {tn}n∈N ⊆ [0, T ] be a sequence such that tn → t ∈ [0, T ], as n → +∞. Then,
the sequence of sets

K(tn) =

{
u(tn) ∈ Rq : λ(tn) ≤ u(tn) ≤ µ(tn),

q∑
i=1

ξjiui(tn) = ρj(tn),

ξji ∈ {−1, 0, 1}, i ∈ {1, . . . , q}, j ∈ {1, . . . , l}
}

.

∀n ∈ N, converges to

K(t) =

{
u(t) ∈ Rq : λ(t) ≤ u(t) ≤ µ(t),

q∑
i=1

ξjiui(t) = ρj(t),

ξji ∈ {−1, 0, 1}, i ∈ {1, . . . , q}, j ∈ {1, . . . , l}
}

.

as n → +∞, in Mosco’s sense.

Proof. In order to prove that the sequence {K(tn)}n∈N converges to K(t) in Mosco’s
sense, for any sequence {tn}n∈N ⊆ [0, T ] such that tn → t ∈ [0, T ], as n → +∞, it is
enough to show that conditions (M1) and (M2) hold.

For the first condition, let u(t) ∈ K(t) be fixed and, for each j, 1 ≤ j ≤ l, let us
set

Aj =

{
i ∈ {1, 2, . . . , q} : ξji = 1, ui(t) = λi(t)

}

Bj =

{
i ∈ {1, 2, . . . , q} : ξji = 1, ui(t) = µi(t)

}

Cj =

{
i ∈ {1, 2, . . . , q} : ξji = 1, λi(t) < ui(t) < µi(t)

}
.

Let us assume that Cj 6= ∅ and let us observe that for each i ∈ Cj it results

lim
n→+∞

µi(tn)−
[
ui(t) +

ρj(tn)− ρj(t)∑
i∈Cj

ξji

−
∑

i∈Aj
[λi(tn)− λi(t)]∑

i∈Cj
ξji

−
∑

i∈Bj
[µi(tn)− µi(t)]∑

i∈Cj
ξji

]
= µi(t)− ui(t) > 0,
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lim
n→+∞

ui(t) +
ρj(tn)− ρj(t)∑

i∈Cj
ξji

−
∑

r∈Aj
[λi(tn)− λi(t)]∑

i∈Cj
ξji

−
∑

i∈Bj
[µi(tn)− µi(t)]∑

i∈Cj
ξji

− λi(tn) = ui(t)− λi(t) > 0.

Then there exists an index νj such that for n > νj and i ∈ Cj we have

λi(t) ≤ ui(t)+
ρj(tn)− ρj(t)∑

i∈Cj
ξji

−
∑

i∈Aj
[λi(tn)− λi(t)]∑

i∈Cj
ξji

−
∑

i∈Bj
[µi(tn)− µi(t)]∑

i∈Cj
ξji

≤ µi(t).

Hence we can consider a sequence F (tn) such that:

• for n > νj and ξji = 1, j = 1, 2, . . . , l

ui(tn) =





λi(tn) for i ∈ Aj

µi(tn) for i ∈ Bj

ui(t) +
ρj(tn)− ρj(t)∑

i∈Cj
ξji

−
∑

i∈Aj
[λi(tn)− λi(t)]∑

i∈Cj
ξji

−
∑

i∈Bj
[µi(tn)− µi(t)]∑

i∈Cj
ϕji

for i ∈ Cj

• and for n ≤ νj, ξji = 1, j = 1, 2, . . . , l

ui(tn) = PK(tn)ui(t),

where PK(tn) denotes the hilbertian projection on K(tn).

Obviously if n ≤ νj it results ui(tn) ∈ K(tn), whereas for n > νj we have

λr(tn) ≤ ui(tn) ≤ µi(tn)

and

q∑
i=1

ξjiui(tn) =

q∑
i=1

ui(t) +
∑
i∈Aj

[λi(tn)− λi(t)] +
∑
i∈Bj

[µi(tn)− µ(t)]

+
∑
i∈Cj

ρj(tn)− ρj(t)∑
i∈Cj

ξji

−
∑
i∈Cj

∑
i∈Aj

[λi(tn)− λi(t)]∑
i∈Cj

ξji

−
∑
i∈Cj

∑
i∈Bj

[µi(tn)− µi(t)]∑
i∈Cj

ξji

= ρj(tn).

So u(tn) ∈ K(tn), ∀n ∈ N and it results limn→+∞ u(tn) = u(t).
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Now, let us assume that Cj = ∅ and let us observe that it results

lim
n→+∞

[
λi(tn) +

1∑
i∈Aj

ξji

max

(
0, ρj(tn)−

∑
i∈Aj

λi(tn)−
∑
i∈Bj

µi(tn)

)]
− µi(tn)

= λi(t)− µi(t) < 0, i ∈ Aj,

and

lim
n→+∞

[
µi(tn) +

1∑
i∈Bj

ξji

min

(
0, ρj(tn)−

∑
i∈Aj

λi(tn)−
∑
i∈Bj

µi(tn)

)]
− λi(tn)

= µi(t)− λi(t) > 0, i ∈ Bj.

Then there exists an index νj such that for n > νj it results

λi(tn) ≤ λi(tn) +
1∑

i∈Aj
ϕji

max

(
0, ρj(tn)−

∑
i∈Aj

λi(tn)−
∑
i∈Bj

µi(tn)

)
≤ µi(tn)

λi(tn) ≤ µi(tn) +
1∑

i∈Bj
ϕji

min

(
0, ρj(tn)−

∑
i∈Aj

λi(tn)−
∑
i∈Bj

µi(tn)

)
≤ µi(tn).

So, we can choose the sequence u(tn) in the following way:

• for n > νj, ϕji = 1, j = 1, 2, . . . , l

ui(tn) =





λi(tn) +
1∑

i∈Aj
ξji

max

(
0, ρj(tn)−∑

i∈Aj
λi(tn)−∑

i∈Bj
µi(tn)

)

for i ∈ Aj

µi(tn) +
1∑

i∈Bj
ξji

min

(
0, ρj(tn)−∑

i∈Aj
λi(tn)−∑

i∈Bj
µi(tn)

)

for i ∈ Bj

• whereas for n ≤ νj, ϕji = 1, j = 1, 2, . . . , l

ui(tn) = PK(tn)ui(t).

It results limn→+∞ u(tn) = u(t) and for n > νj

q∑
i=1

ξjiui(tn) =
∑
i∈Aj

λi(tn) + max

(
0, ρj(tn)−

∑
i∈Aj

λi(tn)−
∑
i∈Bj

µi(tn)

)

+
∑
i∈Bj

µi(tn) + min

(
0, ρj(tn)−

∑
i∈Aj

λi(tn)−
∑
i∈Bj

µi(tn)

)

= ρj(tn).
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The proof of the first condition (M1) has been obtained.
For the second one, let {u(tn)}n∈N be a fixed sequence, with u(tn) ∈ K(tn),

∀n ∈ N, such that u(tn) ⇀ u(t) (weakly) in Rm. Since Rm is a finite-dimensional
space, the weak convergence is equivalent to u(tn) → u(t) (strongly) in Rm. It
remains to prove that u(t) ∈ K(t). From u(tn) ∈ K(tn), ∀n ∈ N, we derive

λ(tn) ≤ u(tn) ≤ µ(tn), ∀n ∈ N, (4.4.1)
q∑

i=1

ξjiui(tn) = ρj(tn), ∀n ∈ N, j = 1, 2, . . . , l. (4.4.2)

Passing to the limit for n → +∞ in (4.4.1), and using the continuity of λ and µ
on [0, T ], we obtain

λ(t) ≤ u(t) ≤ µ(t),

and, from (4.4.2), we have for the continuity of ρ on [0, T ]
q∑

i=1

ξjiui(t) = ρj(t), j = 1, 2, . . . , l.

Then
u(t) ∈ K(t),

so the second condition (M2) has also been proved.
Hence, we conclude that

K(tn) → K(t) in Mosco’s sense,

for all sequence {tn}n∈N ⊆ [0, T ], such that tn → t.

At last, we prove the following boundedness result.

Proposition 4.4.2. Let λ, µ ∈ C([0, T ],Rq) and let ρ ∈ C([0, T ],Rl
+) be vector-

functions. Then, the set

K(t) =

{
u(t) ∈ Rq : λ(t) ≤ u(t) ≤ µ(t),

q∑
i=1

ξjiui(t) = ρj(t),

ξji ∈ {−1, 0, 1}, i ∈ {1, . . . , q}, j ∈ {1, . . . , l}
}

.

is uniformly bounded in [0, T ].

Proof. Let us fix an arbitrary vector-function u(t) in K(t), then

λ(t) ≤ u(t) ≤ µ(t).

Since λ, µ ∈ C([0, T ],Rm
+ ), it results

‖u(t)‖q ≤ max
t∈[0,T ]

µ(t) = C, in [0, T ],

where C is a constant independent on t ∈ [0, T ].



5
Regularity results for evolutionary

variational inequalities

5.1 Introduction

An aspect very important of the theory of evolutionary variational inequalities is the
property of the regularity. Up till now, few authors take an interest in this. In 1969,
U. Mosco (see [70]) studied the convergence of solutions to variational inequalities
in Hilbert spaces. Now, we obtain similar results for variational inequalities which
depend explicitly on the time and the set K satisfies the next assumption

(M) K ⊆ L2([0, T ],Rm) is a nonempty convex, closed set, such that the set sequence
{K(tn)}n∈N converges to K(t) in Mosco’s sense, for each t ∈ [0, T ], and the
sequence {tn}n∈N ⊆ [0, T ], such that tn → t, as n → +∞.

In particular, we prove that solutions are continuous with respect to the time. At
first, we show results for strongly monotone evolutionary variational inequalities
and, then, we generalize them for degenerate and strictly monotone evolutionary
variational inequalities. The generalization will be possible making use of a regular-
ization procedure. The results will be obtained both in the affine case and nonlinear
case. For the prove of the second one, an important instrument will be a type
Minty’s Lemma.

5.2 Regularity results for strongly monotone evo-

lutionary variational inequalities

In this section, a theorem of continuity for solutions to evolutionary strongly mono-
tone variational inequalities will be proved. More precisely, at first we obtain the
result for an affine operator. This is a consequence of the abstract theorem 4.2.1.
Then, we generalize the result for nonlinear operators. The Minty’s Lemma for
variational inequalities and the notion of the sets convergence in Mosco’s sense play
an important role in the attainment of this result.
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5.2.1 Affine case

Let us assume that the operator is affine with respect to the vector F , namely it
results

C(t, F (t)) = A(t)F (t) + B(t),

for each t ∈ [0, T ], where A : [0, T ] → Rm×m and B : [0, T ] → Rm are two functions.
We study the continuity for solutions to the following evolutionary variational in-
equality

Find H ∈ K such that

〈A(t)H(t) + B(t), F (t)−H(t)〉 ≥ 0, ∀F (t) ∈ K(t), a.e. in [0, T ], (5.2.1)

where K ⊆ L2([0, T ],Rm) satisfies condition (M).

The following result holds (see also [8], Theorem 3.2).

Theorem 5.2.1. Let A ∈ C([0, T ],Rm×m) be a positive definite matrix-function
and let B ∈ C([0, T ],Rm) be a vector function. Let K ⊆ L2([0, T ],Rm) be a set
satisfying condition (M). Then, evolutionary variational inequality (5.2.1) admits a
unique solution H ∈ K such that H ∈ C([0, T ],Rm).

Proof. By virtue of Theorem 3.2.4 and being A a positive definite matrix-function,
we have that (5.2.1) admits a unique solution H(t) ∈ K(t), for t ∈ [0, T ].

Now, we prove the continuity of the solution applying Theorem 4.2.1. Let t ∈
[0, T ] be fixed and let {tn}n∈N ⊆ [0, T ] be a sequence, with tn → t ∈ [0, T ], as
n → +∞. From the assumption of continuity of the function A, one has

A(tn) → A(t) in Rm×m,

moreover, if {F (tn)}n∈N is a sequence, with F (tn) ∈ K(tn), such that F (tn) → F (t)
in Rm, it results

A(tn)F (tn) → A(t)F (t) in Rm.

Finally, for the continuity of the function B we have

B(tn) → B(t) in Rm.

Taking into account that the set K ⊆ L2([0, T ],Rm) satisfies condition (M) and
using the stability Theorem 4.2.1, we can conclude that the unique solution H(tn)
of

〈A(tn)H(tn) + B(tn), F (tn)−H(tn)〉 ≥ 0, ∀F (tn) ∈ K(tn),

converge strongly to the solution H(t) of the limit problem (5.2.1), namely,

H(tn) → H(t) in Rm,

that implies H ∈ C([0, T ],Rm).
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Now, we still assume that the cost C(t, F (t)) is a linear operator with respect
to the flows, but the matrix-function A depends on time and on integral average of
the flow vectors, namely,

C(t, F (t)) = A(t, FT )F (t) + B(t),

for a.e. t ∈ [0, T ] and for every F ∈ L2([0, T ],Rm), where A : [0, T ]× Rm → Rm×m

and B : [0, T ] → Rm are two functions, T = [0, T ] and FT is the integral average,
namely,

FT =

∫ T

0
F (τ)dτ

T
.

We suppose that A(t, u) is a bounded matrix, namely

∃M > 0 : ‖A(t, u)‖m×m ≤ M, for a.e. t ∈ [0, T ], ∀u ∈ Rm. (5.2.2)

Then, we study the continuity of the solution to the following evolutionary varia-
tional inequality:

Find H ∈ K such that

〈A(t, HT )H(t) + B(t), F (t)−H(t)〉 ≥ 0, ∀F (t) ∈ K(t), a.e. in [0, T ], (5.2.3)

where K ⊆ L2([0, T ],Rm) satisfies condition (M).

Taking into account Theorem 5.2.1, we can derive for the variational inequality
(5.2.3) the following result.

Theorem 5.2.2. Let A ∈ C([0, T ]× Rm,Rm×m) be a matrix-function verifying the
condition

∃ν > 0 : 〈A(t, FT )F, F 〉 ≥ ν‖F‖2
Rm , ∀F ∈ Rm, in [0, T ], (5.2.4)

and let B ∈ C([0, T ],Rm) be a vector function. Let K ⊆ L2([0, T ],Rm) be a set
satisfying condition (M). Then, evolutionary variational inequality (5.2.3) admits a
unique solution H ∈ K such that H ∈ C([0, T ],Rm).

Proof. The existence and the uniqueness of solution to evolutionary variational in-
equality (5.2.3) is guaranteed by Theorem 3.2.3 and by condition (5.2.4).

Following the proof of Theorem 5.2.1, we have the continuity of the solution to
(5.2.3), since A(t,Hτ ) is continuous in t and Hτ is a constant.
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5.2.2 Nonlinear case

Now, we extend Theorem 5.2.1 to the following nonlinear evolutionary variational
inequality

Find H ∈ K such that

〈C(t,H(t)), F (t)−H(t)〉 ≥ 0, ∀F (t) ∈ K(t), in [0, T ]. (5.2.5)

where K ⊆ L2([0, T ],Rm) satisfies condition (M).

Let us assume that the operator C : [0, T ] × Rm → Rm verifies the following
assumptions:

‖C(t, F )‖m ≤ A(t)‖F‖m + B(t), ∀F ∈ Rm, in [0, T ], (5.2.6)

with B ∈ L2([0, T ]) and A ∈ L∞([0, T ]), and it results

∃ν > 0 : 〈C(t,H)−C(t, F ), H−F 〉 ≥ ν‖H−F‖2
m, ∀H,F ∈ Rm, in [0, T ]. (5.2.7)

Then, the following result holds (see also [7], Theorem 6).

Theorem 5.2.3. Let C ∈ C([0, T ] × Rm,Rm) be an operator verifying conditions
(5.2.6) and (5.2.7). Let K ⊆ L2([0, T ],Rm) be a set satisfying condition (M). Then,
evolutionary variational inequality (5.2.5) admits a unique solution H ∈ K such that
H ∈ C([0, T ],Rm).

Proof. Taking into account Theorem 3.2.3 and condition (5.2.7), it results that
(5.2.5) admits a unique solution H(t) ∈ K(t), for t ∈ [0, T ].

Let t ∈ [0, T ] be fixed and let {tn}n∈N ⊆ [0, T ] be a sequence, with tn → t. Our
statement is equivalent to say that the unique solution H(tn), for n ∈ N, to the
following variational inequality

H(tn) ∈ K(tn) : 〈C(tn, H(tn)), F (tn)−H(tn)〉 ≥ 0, ∀F (tn) ∈ K(tn), (5.2.8)

converges strongly, as n → +∞, to the solution H(t) to the limit problem

H(t) ∈ K(t) : 〈C(t,H(t)), F (t)−H(t)〉 ≥ 0, ∀F (t) ∈ K(t), (5.2.9)

namely
lim

n→+∞
H(tn) = H(t) in Rm.

For the solution H(t) ∈ K(t) to (5.2.9), we use the properties of the set convergence
in Mosco’s sense of {K(tn)}n∈N to K(t), as n → +∞. Then, it is possible to choose
a sequence {G(tn)}n∈N, with G(tn) ∈ K(tn), ∀n ∈ N, such that,

lim
n→+∞

G(tn) = H(t) in Rm
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and, by virtue of the assumption on the operator C, we obtain

lim
n→+∞

C(tn, G(tn)) = C(t,H(t)) in Rm.

Setting F (tn) = G(tn) in (5.2.8), we have

〈C(tn, H(tn)), G(tn)−H(tn)〉 ≥ 0, (5.2.10)

and using the strong monotonicity of the operator C, it results

〈C(tn, H(tn))− C(tn, G(tn)), H(tn)−G(tn)〉 ≥ ν‖H(tn)−G(tn)‖2
m.

From (5.2.10) we derive that

〈C(tn, H(tn))− C(tn, G(tn)), H(tn)−G(tn)〉 = 〈C(tn, H(tn)), H(tn)−G(tn)〉
−〈C(tn, G(tn)), H(tn)−G(tn)〉 ≤ −〈C(tn, G(tn)), H(tn)−G(tn)〉,

then

ν‖H(tn)−G(tn)‖2
m ≤ −〈C(tn, G(tn)), H(tn)−G(tn)〉

≤ ‖C(tn, G(tn))‖m‖H(tn)−G(tn)‖m,

that is
ν‖H(tn)−G(tn)‖m ≤ ‖C(tn, G(tn))‖m.

Hence, one deduces

‖H(tn)‖m ≤ ‖H(tn)−G(tn)‖m + ‖G(tn)‖m

≤ ‖C(tn, G(tn))‖m

ν
+ ‖G(tn)‖m.

Since {C(tn, G(tn))}n∈N is a sequence convergent then it is bounded, namely,

∃h ∈ R+ : ‖C(tn, G(tn))‖m ≤ h, ∀n ∈ N,

for the same reason, the sequence {G(tn)}n∈N is bounded, namely,

∃k ∈ R+ : ‖G(tn)‖m ≤ k, ∀n ∈ N.

From those conditions, it follows

‖H(tn)‖m ≤ c, ∀n ∈ N,

where the constant c is independent on n. Hence there exists a subsequence {H(tkn)}n∈N
converging in Rm to an element H̃(t) ∈ Rm, and thus

lim
n→+∞

H(tkn) = H̃(t).
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Moreover, taking into account the second condition of the set convergence in Mosco’s
sense, we have

H̃(t) ∈ K(t).

By virtue of the set convergence in Mosco’s sense, it follows

∀F (t) ∈ K(t), ∃F (tn) ∈ K(tn) ∀n ∈ N : lim
n→+∞

F (tn) = F (t), in Rm,

and from the assumption on the operator C, we get

lim
n→+∞

C(tn, F (tn)) = C(t, F (t)), in Rm.

Now, we consider the following variational inequality

〈C(tkn , F (tkn)), F (tkn)−H(tkn)〉 ≥ 0,

and passing to the limit as n → +∞, we obtain

H̃(t) ∈ K(t) : 〈C(t, F (t)), F (t)− H̃(t)〉 ≥ 0, ∀F (t) ∈ K(t),

which, again by Lemma 3.2.1 and the uniqueness of the solution to (5.2.9), implies

H̃(t) = H(t).

Then it follows that every subsequence of {H(tn)}n∈N converges to the same limit

H̃(t) and hence
lim

n→+∞
H(tn) = H(t).

5.3 Regularity results for degenerate evolution-

ary variational inequalities

In this section, we generalize continuity theorems for solutions to evolutionary vari-
ational inequalities associated to strongly monotone operators to these associated
to degenerate operators. At first we obtain the result claimed for affine operators
and, then, for nonlinear operators.

5.3.1 Affine case

We begin studying under which assumptions the continuity of the solution to affine
degenerate evolutionary variational inequality is ensured. We consider the following
evolutionary variational inequality
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Find H ∈ K such that

〈A(t)H(t) + B(t), F (t)−H(t)〉 ≥ 0, ∀F (t) ∈ K(t), a.e. in [0, T ], (5.3.1)

where K ⊆ L2([0, T ],Rm) satisfies condition (M).

Let us suppose that the following assumptions are satisfied

∃M > 0 : ‖A(t)‖m×m =
( m∑

r,s=1

A2
rs(t)

) 1
2 ≤ M, a.e. in [0, T ], (5.3.2)

〈A(t)F, F 〉 ≥ ν(t)‖F‖2
m, ∀F ∈ Rm, a.e. in [0, T ], (5.3.3)

where ν ∈ L∞([0, T ],R+
0 ) is such that

@I ⊆ [0, T ], µ(I) > 0 : ν(t) = 0, ∀t ∈ I,

being µ Lebesque’s measure, in this case we call that A is a degenerate bounded
matrix-function.

At first, we prove a preliminary lemma related to nonnegative matrix-function
A, namely,

〈A(t)F, F 〉 ≥ 0, ∀F ∈ Rm, a.e. in [0, T ], (5.3.4)

satisfying condition (5.3.2). Hence, let us observe that, under this assumption, the
set X of solutions to time-dependent variational inequality (5.3.1) is closed, convex
and nonempty. Let I : L2([0, T ],Rm) → L2([0, T ],Rm) be the identity operator and
let us consider the following evolutionary variational inequality

〈I(t)H(t), F (t)−H(t)〉 ≥ 0, ∀F (t) ∈ X(t), a.e. in [0, T ], (5.3.5)

which admits a unique solution H(t) ∈ X(t). Further, for every ε > 0, let us consider
the following perturbed evolutionary variational inequality

〈[A(t) + εI(t)]H(t) + B(t), F (t)−H(t)〉 ≥ 0, ∀F (t) ∈ K(t), a.e. in [0, T ], (5.3.6)

which also admits a unique continuous solution Hε by virtue of Theorem 5.2.1. Then,
we can prove the following preliminary result for nonnegative matrix-functionS:

Lemma 5.3.1. Let A ∈ C([0, T ],Rm×m) be a nonnegative matrix-function, let
B ∈ C([0, T ],Rm) be a vector-function. Let K ⊆ L2([0, T ],Rm) be a set satisfy-
ing condition (M) and such that K(t) are uniformly bounded for t ∈ [0, T ]. If Hε(t),
∀ε > 0, is the unique solution to (5.3.6), it results

lim
ε→0

Hε(t) = H(t), in [0, T ],

and
lim
ε→0

‖Hε(t)−H(t)‖2
L2([0,T ],Rm) = 0,

where H is a solution to evolutionary variational inequality (5.3.1).
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Proof. Let H be the unique solution to (5.3.5), therefore H ∈ X and

〈I(t)H(t), F (t)−H(t)〉 ≥ 0, ∀F (t) ∈ X(t), in [0, T ]. (5.3.7)

Let Hε be the unique solution to (5.3.6), namely Hε ∈ K and

〈[A(t) + εI(t)]Hε(t) + B(t), F (t)−Hε(t)〉 ≥ 0, ∀F (t) ∈ K(t), in [0, T ]. (5.3.8)

Setting F (t) = Hε(t), for t ∈ [0, T ], in (5.3.1) and F (t) = H(t), for t ∈ [0, T ], in
(5.3.8) and adding we get

〈A(t)[H(t)−Hε(t)], Hε(t)−H(t)〉+ ε〈Hε(t), H(t)−Hε(t)〉 ≥ 0, (5.3.9)

in [0, T ]. By assumption (5.3.4), it follows

〈A(t)[H(t)−Hε(t)], Hε(t)−H(t)〉 ≤ 0, in [0, T ],

then, by (5.3.9), we obtain

ε〈Hε(t), H(t)−Hε(t)〉 ≥ 0, in [0, T ],

and dividing by ε > 0, it results

〈Hε(t), H(t)−Hε(t)〉 ≥ 0, in [0, T ]. (5.3.10)

Taking into account (5.3.10), we have

‖Hε(t)‖2
m ≤ 〈Hε(t), H(t)〉 ≤ ‖H(t)‖m‖Hε(t)‖m, in [0, T ],

then
‖Hε(t)‖m ≤ ‖H(t)‖m, in [0, T ].

Since H(t) ∈ X(t) ⊆ K(t), in [0, T ], and K(t), t ∈ [0, T ], is a family of uniformly
bounded sets of Rm, it results

‖H(t)‖m ≤ C, in [0, T ],

with C a constant independent on t ∈ [0, T ], then

‖Hε(t)‖m ≤ C, ∀ε > 0, in [0, T ].

Hence there exists a subsequence {Hη(t)}η converging in Rm to an element H(t) of
Rm, in [0,T], and thus

lim
η→0

Hη(t) = H(t), in [0, T ].

Taking into account that K(t) is a closed set of Rm and {Hη(t)}η ⊆ K(t), then

H(t) ∈ K(t), in [0, T ].
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It remains to prove that
H(t) = H(t), in [0, T ].

Hence, considering (5.3.8) with ε = η, we get

〈A(t)Hη(t) + B(t), F (t)−Hη(t)〉+ η〈Hη(t), F (t)−Hη(t)〉 ≥ 0, (5.3.11)

for all F (t) ∈ K(t), in [0, T ], and taking into account that

lim
η→0

〈Hη(t), Hη(t)〉 = 〈H(t), H(t)〉, in [0, T ],

and that

lim
η→0

〈A(t)Hη(t) + B(t), Hη(t)〉 = 〈A(t)H(t) + B(t), H(t)〉, in [0, T ],

from (5.3.11), we obtain

〈A(t)H(t) + B(t), F (t)−H(t)〉 ≥ 0, ∀F (t) ∈ K(t), in [0, T ]. (5.3.12)

Then (5.3.12) implies that H is a solution to (5.3.1), in [0, T ], namely

H ∈ X.

If the solution to (5.3.1) is unique, then the proof is concluded. Now, we suppose
that the solution to (5.3.1) is not unique. Setting ε = η in (5.3.10) we get

〈Hη(t), H(t)−Hη(t)〉 ≥ 0, in [0, T ],

and passing to the limit as η → 0, we obtain

〈H(t), H(t)−H(t)〉 ≥ 0, in [0, T ]. (5.3.13)

Rewriting (5.3.7) with F = H ∈ X, it results

〈H(t), H(t)−H(t)〉 ≥ 0, in [0, T ], (5.3.14)

and adding (5.3.13) and (5.3.14), we have

〈H(t)−H(t), H(t)−H(t)〉 ≥ 0, in [0, T ].

Then
〈H(t)−H(t), H(t)−H(t)〉 = 0, in [0, T ],

that implies
H(t) = H(t), in [0, T ].

In this way, we have shown that every convergent subsequence converges to the same
limit H(t) and hence

lim
ε→0

Hε(t) = H(t), in [0, T ],
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from this it follows

lim
ε→0

‖Hε(t)−H(t)‖2
m = 0, in [0, T ].

Moreover, we remark that

‖Hε(t)−H(t)‖2
m ≤ 2

(‖Hε(t)‖2
m + ‖H(t)‖2

m

) ≤ 4C2, in [0, T ],

then, by virtue of Lebesgue’s Theorem we have

lim
ε→0

‖Hε(t)−H(t)‖2
L2([0,T ],Rm) = 0.

Now, we present the main result for degenerate evolutionary variational inequal-
ity (5.3.1), namely, when the matrix-function A verifies the conditions (5.3.2) and
(5.3.3) (see also [4], Theorem 3.2).

Theorem 5.3.1. Let A ∈ C([0, T ],Rm×m) be a matrix-function satisfying condition
(5.3.3) and let B ∈ C([0, T ],Rm) be a vector-function. Let K ⊆ L2([0, T ],Rm) be a
set satisfying condition (M) and such that K(t) are uniformly bounded for t ∈ [0, T ].
Then, the evolutionary variational inequality

〈A(t)H(t) + B(t), F (t)−H(t)〉 ≥ 0, ∀F (t) ∈ K(t), in [0, T ], (5.3.15)

admits a unique solution H ∈ K such that H ∈ C([0, T ],Rm).

Proof. The existence and the uniqueness of solution to evolutionary variational in-
equality (5.3.15) is guaranteed by Theorem 3.3.1. Now, we prove that the solution
is continuous in [0, T ].

Let t ∈ [0, T ] be fixed and let {tn}n∈N ⊆ [0, T ] be a sequence, with tn → t, as
n → +∞.

Let us consider the solution H(t) to variational inequality (5.3.15) and the solu-
tion H(tn), ∀n ∈ N, to the following variational inequalities

〈A(tn)H(tn) + B(tn), F (tn)−H(tn)〉 ≥ 0, ∀F (tn) ∈ K(tn), ∀n ∈ N. (5.3.16)

Let Hε(t) be the unique solution to the strongly monotone perturbed variational
inequality (5.3.6), namely Hε(t) ∈ K(t) and

〈[A(t) + εI(t)]Hε(t) + B(t), F (t)−Hε(t)〉 ≥ 0, ∀F (t) ∈ K(t), in [0, T ]. (5.3.17)

Since Hε(t) is continuous in [0, T ], we have that solutions Hε(tn), ∀n ∈ N, to the
following evolutionary variational inequalities

〈[A(tn) + εI(tn)]Hε(tn) + B(tn), F (tn)−Hε(tn)〉 ≥ 0, ∀F (tn) ∈ K(tn), (5.3.18)
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∀n ∈ N, converge to Hε(t), as n → +∞. Setting F (tn) = H(tn), ∀n ∈ N, in (5.3.18)
and F (tn) = Hε(tn), ∀n ∈ N, in (5.3.16) and adding we get, ∀n ∈ N
〈A(tn)[Hε(tn)−H(tn)], H(tn)−Hε(tn)〉+ ε〈Hε(tn), H(tn)−Hε(tn)〉 ≥ 0. (5.3.19)

We remark that for condition (5.3.3) on the matrix-function A we have

〈A(tn)[Hε(tn)−H(tn)], H(tn)−Hε(tn)〉 ≤ 0, ∀n ∈ N.

Then, from (5.3.19) it follows

ε〈Hε(tn), H(tn)−Hε(tn)〉 ≥ 0, ∀n ∈ N,

and proceeding as in the proof of Lemma 5.3.1, we get

‖Hε(tn)‖m ≤ C, ∀ε > 0, ∀n ∈ N, (5.3.20)

where C is a constant independent on ε and on n ∈ N.
For Lemma 5.3.1, it follows

lim
ε→0

Hε(tn) = H̃(tn), ∀n ∈ N,

with H̃(tn) ∈ K(tn), ∀n ∈ N, and such that

〈A(tn)H̃(tn) + B(tn), F (tn)− H̃(tn)〉 ≥ 0, ∀F (tn) ∈ K(tn), ∀n ∈ N.

Since the solution to (5.3.16) is unique, one has

H̃(tn) = H(tn), ∀n ∈ N,

and, passing to the limit as ε → 0 in (5.3.20), it results

‖H(tn)‖m ≤ C, ∀n ∈ N.

Hence the sequence {H(tn)}n∈N is bounded, then there exists a subsequence {H(tkn)}n∈N,
with H(tkn) ∈ K(tkn), ∀n ∈ N, converging in Rm to an element H(t) of Rm, namely

lim
n→+∞

H(tkn) = H(t).

Moreover, by (5.3.16) it obtains

〈A(t)H(t) + B(t), F (t)−H(t)〉 ≥ 0, ∀F (t) ∈ K(t),

and, for the uniqueness of the solution to (5.3.15), it follows

H(t) = H(t).

The same result holds for each subsequence and therefore

lim
n→+∞

H(tn) = H(t),

namely our assert. The proof is now complete.
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5.3.2 Nonlinear case

The previous result can be extended to nonlinear degenerate evolutionary variational
inequalities, as we can see in [9]. More precisely, we prove the continuity result
supposing that the operator C : [0, T ]×Rm → Rm verifies the following assumptions:

‖C(t, F )‖m ≤ A(t)‖F‖m + B(t), ∀F ∈ Rm, in [0, T ], (5.3.21)

with B ∈ L2([0, T ]) and A ∈ L∞([0, T ]), and

〈C(t,H)−C(t, F ), H−F 〉 ≥ ν(t)‖H−F‖2
m, ∀H, F ∈ Rm, a.e. in [0, T ], (5.3.22)

where ν ∈ L∞([0, T ],R+
0 ) is such that

@I ⊆ [0, T ], µ(I) > 0 : ν(t) = 0, ∀t ∈ I,

being µ Lebesgue’s measure.

Analogously to the linear case, to prove that the unique solution to a nonlinear
degenerate evolutionary variational inequality is continuous, we need a preliminary
Lemma related to monotone operator, namely C satisfies the following condition

〈C(t,H)− C(t, F ), H − F 〉 ≥ 0, ∀H, F ∈ Rm, a.e. in [0, T ]. (5.3.23)

We observe that, under this assumption, the set X of solutions to the evolutionary
variational inequality

Find H ∈ K such that

〈C(t,H(t)), F (t)−H(t)〉 ≥ 0, ∀F (t) ∈ K(t), a.e. in [0, T ], (5.3.24)

where K ∈ L2([0, T ],Rm) satisfies condition (M),

is closed, convex and nonempty. Let I : L2([0, T ],Rm) → L2([0, T ],Rm) be the
identity operator and let us consider the following evolutionary variational inequality

〈IH(t), F (t)−H(t)〉 ≥ 0, ∀F (t) ∈ X(t), in [0, T ]. (5.3.25)

Then, variational inequality (5.3.25) admits a unique solution. Further, for every
ε > 0, let us consider the following perturbed evolutionary variational inequality

〈C(t, H(t)) + εIH(t), F (t)−H(t)〉 ≥ 0, ∀F (t) ∈ K(t), in [0, T ], (5.3.26)

which also admits a unique continuous solution Hε by virtue of Theorem 5.2.3.
Then, we can prove the following preliminary result for a monotone operator:
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Lemma 5.3.2. Let C ∈ C([0, T ] × Rm,Rm) be an operator satisfying conditions
(5.3.21) and (5.3.23). Let K ⊆ L2([0, T ],Rm) be a set satisfying condition (M) and
such that K(t) are uniformly bounded for t ∈ [0, T ]. If Hε(t), ∀ε > 0, is the unique
solution to (5.3.26), it results

lim
ε→0

Hε(t) = H(t), in [0, T ],

and
lim
ε→0

‖Hε(t)−H(t)‖2
L2([0,T ],Rm) = 0,

where H is a solution to evolutionary variational inequality (5.3.24) (and to (5.3.25)).

Proof. Let H be the unique solution to (5.3.25), therefore H ∈ X and

〈IH(t), F (t)−H(t)〉 ≥ 0, ∀F (t) ∈ X(t), in [0, T ]. (5.3.27)

Let Hε be the unique solution to (5.3.26), namely Hε ∈ K and

〈C(t,H(t)) + εIHε(t), F (t)−Hε(t)〉 ≥ 0, ∀F (t) ∈ K(t), in [0, T ]. (5.3.28)

Setting F (t) = Hε(t), for t ∈ [0, T ], in (5.3.26) and F (t) = H(t), for t ∈ [0, T ], in
(5.3.25) and adding we obtain

〈C(t,H(t))− C(t,Hε(t)), Hε(t)−H(t)〉+ ε〈Hε(t), H(t)−Hε(t)〉 ≥ 0, (5.3.29)

in [0, T ]. By assumption (5.3.23), it follows

〈C(t,H(t))− C(t,Hε(t)), Hε(t)−H(t)〉 ≤ 0, in [0, T ],

then, by (5.3.29), we have

ε〈Hε(t), H(t)−Hε(t)〉 ≥ 0, in [0, T ],

and dividing by ε > 0, it results

〈Hε(t), H(t)−Hε(t)〉 ≥ 0, in [0, T ]. (5.3.30)

Taking into account (5.3.30), we get

‖Hε(t)‖2
m ≤ 〈Hε(t), H(t)〉 ≤ ‖H(t)‖m‖Hε(t)‖m, in [0, T ],

then
‖Hε(t)‖m ≤ ‖H(t)‖m, in [0, T ].

Since H(t) ∈ X(t) ⊆ K(t), in [0, T ], and K(t), t ∈ [0, T ], is a family of uniformly
bounded sets of Rm, it results

‖H(t)‖m ≤ C, in [0, T ],
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with C a constant independent on ε and of t ∈ [0, T ], namely

‖Hε(t)‖m ≤ C, ∀ε > 0, in [0, T ].

Then, there exists a subsequence {Hη(t)}η converging in Rm to an element H(t) of
Rm, in [0,T], so

lim
η→0

Hη(t) = H(t), in [0, T ].

Since K(t) is a closed set of Rm and {Hη(t)}η ⊆ K(t), it results

H(t) ∈ K(t), in [0, T ].

It remains to prove that
H(t) = H(t), in [0, T ].

Then, considering (5.3.28) with ε = η, we obtain

〈C(t,Hη(t)), F (t)−Hη(t)〉+ η〈Hη(t), F (t)−Hη(t)〉 ≥ 0, ∀F (t) ∈ K(t), (5.3.31)

in [0, T ], and making use that

lim
η→0

〈Hη(t), Hη(t)〉 = 〈H(t), H(t)〉, in [0, T ],

and that
lim
η→0

〈C(t,Hη(t)), Hη(t)〉 = 〈C(t, H(t)), H(t)〉, in [0, T ],

from (5.3.31), we have

〈C(t, H(t)), F (t)−H(t)〉 ≥ 0, ∀F (t) ∈ K(t), in [0, T ]. (5.3.32)

Hence from (5.3.32) it follows that H is a solution to (5.3.24), in [0, T ], namely

H ∈ X.

If the solution to (5.3.24) is unique, then the proof is concluded, because each
subsequence {Hη(t)}η converges to the same H(t), as η → 0. And, hence, the whole
sequence {Hε(t)}ε converges to H(t), as ε → 0.

Now, we suppose that the solution to (5.3.24) is not unique. Setting ε = η in
(5.3.30) we obtain

〈Hη(t), H(t)−Hη(t)〉 ≥ 0, in [0, T ],

and passing to the limit for η → 0, we get

〈H(t), H(t)−H(t)〉 ≥ 0, in [0, T ]. (5.3.33)

Setting F = H ∈ X in (5.3.27), we have

〈H(t), H(t)−H(t)〉 ≥ 0, in [0, T ], (5.3.34)
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and adding (5.3.33) and (5.3.34), we obtain

〈H(t)−H(t), H(t)−H(t)〉 ≥ 0, in [0, T ].

Then

〈H(t)−H(t), H(t)−H(t)〉 = 0, in [0, T ],

that implies

H(t) = H(t), in [0, T ].

We have proved that every subsequence converges to the same limit H(t) and then

lim
ε→0

Hε(t) = H(t), in [0, T ].

Moreover, it results

‖Hε(t)−H(t)‖2
m ≤ 2

(‖Hε(t)‖2
m + ‖H(t)‖2

m

) ≤ 4C2, in [0, T ],

hence, by virtue of Lebesgue’s Theorem we get

lim
ε→0

‖Hε(t)−H(t)‖2
L2([0,T ],Rm) = 0.

Now, we can prove the continuity result for nonlinear degenerate evolutionary
variational inequalities.

Theorem 5.3.2. Let C ∈ C([0, T ] × Rm,Rm) be an operator satisfying conditions
(5.3.21) and (5.3.22). Let K ⊆ L2([0, T ],Rm) be a set satisfying condition (M) and
such that K(t) are uniformly bounded for t ∈ [0, T ]. Then, the nonlinear degenerate
evolutionary variational inequality

H ∈ K : 〈C(t,H(t)), F (t)−H(t)〉 ≥ 0, ∀F (t) ∈ K(t), in [0, T ], (5.3.35)

admits a unique solution H ∈ K such that H ∈ C([0, T ],Rm).

Proof. The existence and the uniqueness of solution to evolutionary variational in-
equality (5.3.35) is guaranteed by Theorem 3.3.2. Now, we prove that the solution
is continuous in [0, T ].

Let t ∈ [0, T ] be fixed and let {tn}n∈N ⊆ [0, T ] be a sequence, with tn → t, as
n → +∞.

Let us consider the solution H(t) to variational inequality (5.3.35) and the solu-
tion H(tn), ∀n ∈ N, to the following variational inequality

〈C(tn, H(tn)), F (tn)−H(tn)〉 ≥ 0, ∀F (tn) ∈ K(tn), ∀n ∈ N. (5.3.36)
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Let Hε(t) be the unique solution to perturbed strongly monotone variational in-
equality (5.3.26), namely Hε(t) ∈ K(t) and

〈C(t,Hε(t)) + εIHε(t), F (t)−Hε(t)〉 ≥ 0, ∀F (t) ∈ K(t), in [0, T ]. (5.3.37)

Taking into account Theorem 5.2.3, it results that Hε(t) is a continuous function in
[0, T ], then the solutions Hε(tn), ∀n ∈ N, to the following evolutionary variational
inequalities

〈C(tn, Hε(tn)) + εI(tn)Hε(tn), F (tn)−Hε(tn)〉 ≥ 0, ∀F (tn) ∈ K(tn), (5.3.38)

∀n ∈ N, converge to Hε(t), as n → +∞. Setting F (tn) = H(tn), ∀n ∈ N, in (5.3.38)
and F (tn) = Hε(tn), ∀n ∈ N, in (5.3.36) and adding we obtain, ∀n ∈ N
〈C(tn, Hε(tn))− C(tn, H(tn)), H(tn)−Hε(tn)〉+ ε〈Hε(tn), H(tn)−Hε(tn)〉 ≥ 0.

(5.3.39)
Moreover, from the strongly monotonicity of the operator C it results

〈C(tn, Hε(tn))− C(tn, H(tn)), H(tn)−Hε(tn)〉 ≤ 0, ∀n ∈ N.

Then, (5.3.39) implies

ε〈Hε(tn), H(tn)−Hε(tn)〉 ≥ 0, ∀n ∈ N,

and proceeding as in the proof of Lemma 5.3.2, we have

‖Hε(tn)‖m ≤ C, ∀ε > 0, ∀n ∈ N, (5.3.40)

where C is a constant independent on ε and of n ∈ N.
Lemma 5.3.2 implies

lim
ε→0

Hε(tn) = H̃(tn), ∀n ∈ N,

with H̃(tn) ∈ K(tn), ∀n ∈ N, and such that

〈C(tn, H̃(tn)), F (tn)− H̃(tn)〉 ≥ 0, ∀F (tn) ∈ K(tn), ∀n ∈ N.

Since the solution to (5.3.36) is unique, it results

H̃(tn) = H(tn), ∀n ∈ N,

and, passing to the limit as ε → 0 in (5.3.40), we have

‖H(tn)‖m ≤ C, ∀n ∈ N.

Then the sequence {H(tn)}n∈N is bounded, that implies the existence of a subse-
quence {H(tkn)}n∈N, with H(tkn) ∈ K(tkn), ∀n ∈ N, converging in Rm to an element
H(t) of Rm, namely

lim
n→+∞

H(tkn) = H(t).
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Taking into account (5.3.36) it follows

〈C(t, H(t)), F (t)−H(t)〉 ≥ 0, ∀F (t) ∈ K(t),

and, for the uniqueness of the solution to (5.3.35), it results

H(t) = H(t).

The same result holds for each subsequence and therefore

lim
n→+∞

H(tn) = H(t),

namely our assert. The proof is now complete.

5.4 Regularity results for strictly monotone evo-

lutionary variational inequalities

In this section, we present results about the continuity of solutions to strictly mono-
tone evolutionary variational inequalities.

5.4.1 Affine case

At first, we prove the continuity result for affine strictly monotone evolutionary vari-
ational inequalities, namely

Find H ∈ K(t) such that

〈A(t)H(t) + B(t), F (t)−H(t)〉 ≥ 0, ∀F (t) ∈ K(t), in [0, T ], (5.4.1)

where K ∈ L2([0, T ],Rm) satisfies condition (M),

under the assumption

〈A(t)[H − F ], H − F 〉 > 0, ∀H,F ∈ Rm, H 6= F, a.e. in [0, T ]. (5.4.2)

During the proof of the following result, we make use of Lemma 5.3.1.

Theorem 5.4.1. Let A ∈ C([0, T ],Rm×m) be a bounded matrix-function verify-
ing condition (5.4.2) and let B ∈ C([0, T ],Rm) be a vector-function. Let K ⊆
L2([0, T ],Rm) be a set satisfying condition (M) and such that K(t) are uniformly
bounded for t ∈ [0, T ]. Then, the evolutionary variational inequality (5.4.1) admits
a unique solution H ∈ K such that H ∈ C([0, T ],Rm).
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Proof. The existence and the uniqueness of solution to evolutionary variational in-
equality (5.4.1) is guaranteed by Theorem 3.2.4 and by condition (5.4.2). Now, we
prove that the solution is continuous in [0, T ].

Let t ∈ [0, T ] be fixed and let {tn}n∈N ⊆ [0, T ] be a sequence, with tn → t, as
n → +∞.

Let us consider the solution H(t) to variational inequality (5.4.1) and the solution
H(tn), ∀n ∈ N, to the following variational inequalities

〈A(tn)H(tn) + B(tn), F (tn)−H(tn)〉 ≥ 0, ∀F (tn) ∈ K(tn), ∀n ∈ N. (5.4.3)

Let Hε(t) ∈ K(t) be the unique solution to the strongly monotone perturbed varia-
tional inequality

〈[A(t) + εI(t)]Hε(t) + B(t), F (t)−Hε(t)〉 ≥ 0, ∀F (t) ∈ K(t), in [0, T ]. (5.4.4)

Being Hε(t) continuous in [0, T ], we have that solutions H(tn), ∀n ∈ N, to the
following evolutionary variational inequalities

〈[A(tn) + εI(tn)]Hε(tn) + B(tn), F (tn)−Hε(tn)〉 ≥ 0, ∀F (tn) ∈ K(tn), (5.4.5)

∀n ∈ N, converge to Hε(t), as n → +∞. Setting F (tn) = H(tn), ∀n ∈ N, in (5.4.5)
and F (tn) = Hε(tn), ∀n ∈ N, in (5.4.3) and adding we get, ∀n ∈ N

〈A(tn)[Hε(tn)−H(tn)], H(tn)−Hε(tn)〉+ ε〈Hε(tn), H(tn)−Hε(tn)〉 ≥ 0. (5.4.6)

From assumption (5.4.2) on the matrix-function A, it follows

〈A(tn)[Hε(tn)−H(tn)], H(tn)−Hε(tn)〉 ≤ 0, ∀n ∈ N.

Hence, for (5.4.6) we obtain

ε〈Hε(tn), H(tn)−Hε(tn)〉 ≥ 0, ∀n ∈ N,

and proceeding as in the proof of Lemma 5.3.1, we get

‖Hε(tn)‖m ≤ C, ∀ε > 0, ∀n ∈ N, (5.4.7)

where C is a constant independent on ε and on n ∈ N.
For Lemma 5.3.1, it follows

lim
ε→0

Hε(tn) = H̃(tn), ∀n ∈ N,

with H̃(tn) ∈ K(tn), ∀n ∈ N, and such that

〈A(tn)H̃(tn) + B(tn), F (tn)− H̃(tn)〉 ≥ 0, ∀F (tn) ∈ K(tn), ∀n ∈ N.
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Since the solution to (5.4.3) is unique, one has

H̃(tn) = H(tn), ∀n ∈ N,

and, passing to the limit as ε → 0 in (5.4.7), it results

‖H(tn)‖m ≤ C, ∀n ∈ N.

Hence the sequence {H(tn)}n∈N is bounded, then there exists a subsequence {H(tkn)}n∈N,
with H(tkn) ∈ K(tkn), ∀n ∈ N, converging in Rm to an element H(t) of Rm, namely

lim
n→+∞

H(tkn) = H(t).

Moreover, by (5.4.3) it obtains

〈A(t)H(t) + B(t), F (t)−H(t)〉 ≥ 0, ∀F (t) ∈ K(t),

and, for the uniqueness of the solution to (5.4.1), it follows

H(t) = H(t).

The same result holds for each subsequence and therefore

lim
n→+∞

H(tn) = H(t).

Then, the assertion is achieved.

5.4.2 Nonlinear case

Finally, we generalize Theorem 5.4.1 to the nonlinear case. We suppose that the
operator C : [0, T ]× Rm → Rm verifies the following assumptions:

‖C(t, F )‖m ≤ A(t)‖F‖m + B(t), ∀F ∈ Rm, a.e. in [0, T ], (5.4.8)

where B ∈ L2([0, T ]) and A ∈ L∞([0, T ]), and

〈C(t,H)− C(t, F ), H − F 〉 > 0, ∀H, F ∈ Rm, a.e. in [0, T ], (5.4.9)

We consider the following evolutionary variational inequality

Find H ∈ K such that

〈C(t,H(t)), F (t)−H(t)〉 ≥ 0, ∀F (t) ∈ K(t), a.e. in [0, T ]. (5.4.10)

where K ∈ L2([0, T ],Rm) satisfies condition (M),

Then, we can prove the next result (see also [10], Theorem 3.2).
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Theorem 5.4.2. Let C ∈ C([0, T ] × Rm,Rm) be an operator satisfying conditions
(5.4.8) and (5.4.9). Let K ⊆ L2([0, T ],Rm) be a set satisfying condition (M) and
such that K(t) are uniformly bounded for t ∈ [0, T ]. Then, evolutionary variational
inequality (5.4.10) admits a unique solution H ∈ K such that H ∈ C([0, T ],Rm).

Proof. The existence and the uniqueness of solution to evolutionary variational in-
equality (5.4.10) is guaranteed by Theorem 3.2.3 and by condition (5.4.9). Now, we
prove that the solution is continuous in [0, T ].

Let t ∈ [0, T ] be fixed and let {tn}n∈N ⊆ [0, T ] be a sequence, with tn → t, as
n → +∞.

Let us consider the solution H(t) to variational inequality (5.4.10) and solutions
H(tn), ∀n ∈ N, to the following variational inequalities

〈C(tn, H(tn)), F (tn)−H(tn)〉 ≥ 0, ∀F (tn) ∈ K(tn), ∀n ∈ N. (5.4.11)

We denote by Hε(t) ∈ K(t) the unique solution to perturbed strongly monotone
variational inequality

〈C(t,Hε(t)) + εIHε(t), F (t)−Hε(t)〉 ≥ 0, ∀F (t) ∈ K(t), in [0, T ].

We have just remarked that Hε(t) is continuous in [0, T ], then we have that solutions
Hε(tn), ∀n ∈ N, to the following evolutionary variational inequalities

〈C(tn, Hε(tn)) + εI(tn)Hε(tn), F (tn)−Hε(tn)〉 ≥ 0, ∀F (tn) ∈ K(tn), (5.4.12)

∀n ∈ N, converge to Hε(t), as n → +∞. Setting F (tn) = H(tn), ∀n ∈ N, in (5.4.12)
and F (tn) = Hε(tn), ∀n ∈ N, in (5.4.11) and adding it results, ∀n ∈ N

〈C(tn, Hε(tn))− C(tn, H(tn)), H(tn)−Hε(tn)〉+ ε〈Hε(tn), H(tn)−Hε(tn)〉 ≥ 0.
(5.4.13)

Moreover, from the strictly monotonicity of the function C it follows

〈C(tn, Hε(tn))− C(tn, H(tn)), H(tn)−Hε(tn)〉 ≤ 0, ∀n ∈ N. (5.4.14)

Then, using (5.4.13) and (5.4.14) we obtain

ε〈Hε(tn), H(tn)−Hε(tn)〉 ≥ 0, ∀n ∈ N,

and dividing by ε > 0, we have

〈Hε(tn), H(tn)−Hε(tn)〉 ≥ 0, ∀n ∈ N. (5.4.15)

Taking into account (5.4.15), it results

‖Hε(tn)‖2
m ≤ 〈Hε(tn), H(tn)〉 ≤ ‖H(tn)‖m‖Hε(tn)‖m, ∀n ∈ N,
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then
‖Hε(tn)‖m ≤ ‖H(tn)‖m, ∀n ∈ N.

Since H(tn) ∈ X(tn) ⊆ K(tn), in [0, T ], and K(tn), t ∈ [0, T ], is a family of uniformly
bounded sets of Rm, it results

‖H(tn)‖m ≤ C, ∀n ∈ N,

where C is a constant independent on ε and of n ∈ N, then

‖Hε(tn)‖m ≤ C, ∀ε > 0, ∀n ∈ N. (5.4.16)

Taking into account of Lemma 5.3.2, we obtain

lim
ε→0

Hε(tn) = H̃(tn), ∀n ∈ N,

where H̃(tn) ∈ K(tn), ∀n ∈ N, and such that

〈C(tn, H̃(tn)), F (tn)− H̃(tn)〉 ≥ 0, ∀F (tn) ∈ K(tn), ∀n ∈ N.

For the uniqueness of the solution to (5.4.11), it results

H̃(tn) = H(tn), ∀n ∈ N,

and, passing to the limit as ε → 0 in (5.4.16), it follows

‖H(tn)‖m ≤ C, ∀n ∈ N,

namely the sequence {H(tn)}n∈N is bounded. Then, there exists a subsequence
{H(tkn)}n∈N, with H(tkn) ∈ K(tkn), ∀n ∈ N, converging in Rm to an element H(t)
of Rm, namely

lim
n→+∞

H(tkn) = H(t).

Moreover, by (5.4.11) it obtains

〈C(t, H(t)), F (t)−H(t)〉 ≥ 0, ∀F (t) ∈ K(t),

and, for the uniqueness of the solution to (5.4.10), it follows

H(t) = H(t).

The same result holds for each subsequence and so

lim
n→+∞

H(tn) = H(t),

namely our assert.
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6
Regularity results for evolutionary

quasi-variational inequalities

6.1 Introduction

In this chapter, we investigate on the regularity of solutions to evolutionary quasi-
variational inequalities. In the literature there are not results about this problem,
then our work seems to represent an important contribution.

Let D be a nonempty, compact, convex subset of L2([0, T ],Rm). We consider a
multifunction K : D → 2L2([0,T ],Rm) satisfying the following assumption

(MM) K is closed l.s.c. with K(H), for each H ∈ L2([0, T ],Rm), nonempty, convex,
closed of L2([0, T ],Rm) such that the sequence {K(tn, H)}n∈N converges to
K(t,H) in Mosco’s sense, for each sequence {tn}n∈N ⊆ [0, T ], with tn → t, as
n → +∞.

Now, we prove that solutions to associated evolutionary quasi-variational in-
equalities are continuous with respect to the time. More precisely, we show results
supposing that the operator is strongly monotone and, then, we extend them for
degenerate and strictly monotone operators.

6.2 Regularity results for strongly monotone evo-

lutionary quasi-variational inequalities

We consider strongly monotone evolutionary quasi-variational inequalities and we
study under which assumptions the continuity of solutions is ensured. In particular,
we obtain the regularity result for affine evolutionary quasi-variational inequalities
and, making use of a type of Minty’s Lemma, we obtain the analogous result in the
nonlinear case.
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6.2.1 Affine case

We suppose that the cost vector-function is affine with respect to flows, and we study
the continuity of solutions to the following evolutionary quasi-variational inequality

Find H ∈ K(H) such that

〈A(t)H(t) + B(t), F (t)−H(t)〉 ≥ 0, ∀F (t) ∈ K(t,H), a.e. in [0, T ], (6.2.1)

where the multifunction K : D → 2L2([0,T ],Rm) satisfies assumption (MM).

Now, we are able to show this continuity result (see also [8], Theorem 3.2).

Theorem 6.2.1. Let A ∈ C([0, T ],Rm×m) be a positive definite matrix-function and
let B ∈ C([0, T ],Rm) be a vector-function. Let D be a nonempty, compact, convex
subset of L2([0, T ],Rm). Let K : D → 2L2([0,T ],Rm) be a set-valued mapping satisfying
condition (MM). Then, evolutionary quasi-variational inequality (6.2.1) admits a
solution H ∈ K(H) such that H ∈ C([0, T ],Rm).

Proof. Taking into account of Theorem 3.4.3, we have that (6.2.1) admits a solution
H ∈ K(H) and the solution is unique in K(t,H) for each t ∈ [0, T ].

Now, we prove the continuity of the solution

H : [0, T ] 3 t → H(t) ∈ Rm

making use of Theorem 4.2.1 on convergence in Mosco’s sense.
Let t ∈ [0, T ] be fixed and let {tn}n∈N ⊆ [0, T ] be a sequence, with tn → t ∈ [0, T ].

From the assumption of continuity of the matrix-function A, we have

A(tn) → A(t) in Rm×m,

moreover, if {F (tn)}n∈N is a sequence, with F (tn) ∈ K(tn, H), for each H ∈
L2([0, T ],Rm), such that F (tn) → F (t) in Rm, we obtain

A(tn)F (tn) → A(t)F (t) in Rm,

Finally, for the continuity of the function B we get

B(tn) → B(t) in Rm.

Taking into account that the multifunction K satisfies condition (MM) and using
the stability Theorem 4.2.1, we can conclude that the solutions H(tn) of the quasi-
variational inequalities

〈A(tn)H(tn) + B(tn), F (tn)−H(tn)〉 ≥ 0, ∀F (tn) ∈ K(tn, H),

converge strongly to the solution H(t) of the limit problem (6.2.1), namely,

H(tn) → H(t) in Rm.

Consequently, it results that H ∈ C([0, T ],Rm).
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Now, we still assume that the operator is affine with respect to the flows, but
the matrix-function A depends on time and on integral average of the flow vectors,
namely

C(t, F (t)) = A(t, FT )F (t) + B(t),

for a.e. t ∈ [0, T ] and for every F ∈ Rm, where A : [0, T ] × Rm → Rm×m and
B : [0, T ] → Rm are two functions, T = [0, T ] and FT is the integral average, that is

FT =

∫ T

0
F (τ)dτ

T
.

We suppose that A(t, u) is a bounded matrix, namely

∃M > 0 : ‖A(t, u)‖m×m ≤ M, for a.e. t ∈ [0, T ], ∀u ∈ Rm. (6.2.2)

Then, we study the continuity of the solutions to the following evolutionary quasi-
variational inequality:

Find H ∈ K(H) such that

〈A(t, FT )H(t) + B(t), F (t)−H(t)〉 ≥ 0, ∀F (t) ∈ K(t,H), a.e. in [0, T ], (6.2.3)

where K : D → 2L2([0,T ],Rm) is a multifunction satisfying condition (MM).

We can obtain the regularity result for solutions to (6.2.3).

Theorem 6.2.2. Let A ∈ C([0, T ] × Rm,Rm×m) be a matrix-function verifying
the condition (6.2.2), and let B ∈ C([0, T ],Rm) be a vector-function. Let D be a
nonempty, compact, convex subset of L2([0, T ],Rm). Let K be a set-valued mapping
satisfying condition (MM). Then, evolutionary quasi-variational inequality (6.2.3)
admits a solution H ∈ K(H) such that H ∈ C([0, T ],Rm).

Proof. The existence of solutions to the evolutionary quasi-variational inequality
follows by Theorem 3.4.3. We remark that it needs to prove only that A(t, FT )
is continuous in F , for t ∈ [0, T ]. To this aim, let F ∈ K(H) be fixed and let
{Fn}n∈N ⊆ K(H) be a sequence, such that Fn → F , in L2([0, T ],Rm). It results

lim
n→∞

∫ T

0

Fn(τ)dτ =

∫ T

0

F (τ)dτ,

and, taking into account that A(t, v) is continuous in v and bounded for t ∈ [0, T ],
we get the continuity of A(t, FT ) in F , for t ∈ [0, T ]. Then we have the existence
of a solution and the continuity of the solution to the evolutionary quasi-variational
inequality simply follows from Theorem 6.2.1.
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6.2.2 Nonlinear case

In this section, we present the continuity result for solutions to nonlinear evolution-
ary quasi-variational inequalities.

Let

C : [0, T ]× Rm → Rm,

be a nonlinear operator and let us consider the following evolutionary quasi-variational
inequality

Find H ∈ K(H) such that

〈C(t,H(t)), F (t)−H(t)〉 ≥ 0, ∀F (t) ∈ K(t,H), a.e. in [0, T ], (6.2.4)

where K : D → 2L2([0,T ],Rm) is a multifunction satisfying condition (MM).

The next result holds (see also [7], Theorem 8).

Theorem 6.2.3. Let C ∈ C([0, T ]× Rm,Rm) be a operator, satisfying conditions

∃γ ∈ L2([0, T ],R) : ‖C(t, F )‖m ≤ γ(t) + ‖F‖m, ∀F ∈ Rm, in [0, T ],

∃ν > 0 : 〈C(t,H)− C(t, F ), H − F 〉 ≥ ν‖F‖2
m, ∀H, F ∈ Rm, in [0, T ].

Let D be a nonempty, compact, convex subset of L2([0, T ],Rm). Let K : D →
L2([0, T ],Rm) be a multifunction satisfying condition (MM). Then, the evolutionary
quasi-variational inequality (6.2.4) admits a unique solution H ∈ K(H) such that
H ∈ C([0, T ],Rm).

Proof. From the assumption that C is a continuous operator, it follows that C veri-
fies all conditions of Theorem 3.4.3. Then, the existence of H ∈ K(H) is guaranteed.
Moreover, the assumption of strongly monotonicity on the operator ensures that the
solution H(t) is unique in the set K(t,H), for t ∈ [0, T ].

Now, let t ∈ [0, T ] be fixed and let {tn}n∈N ⊆ [0, T ] be a sequence, such that
tn → t, as n → +∞. The thesis is equivalent to tell that the solutions H(tn), for
n ∈ N, to quasi-variational inequalities

H(tn) ∈ K(tn, H) : 〈C(tn, H(tn)), F (tn)−H(tn)〉 ≥ 0, ∀F (tn) ∈ K(tn, H),
(6.2.5)

converges strongly to the solution H(t) to the limit problem

H(t) ∈ K(t,H) : 〈C(t,H(t)), F (t)−H(t)〉 ≥ 0, ∀F (t) ∈ K(t,H), (6.2.6)

that is

lim
n→+∞

H(tn) = H(t) in Rm.
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Let H(t) ∈ K(t,H) be the solution to (6.2.6), for the properties of the convergence
in Mosco’s sense of {K(tn, H)}n∈N to K(t,H), as n → +∞, it is possible to choose
a sequence {G(tn)}n∈N, with G(tn) ∈ K(tn, H), ∀n ∈ N, such that,

lim
n→+∞

G(tn) = H(t) in Rm

that implies
lim

n→+∞
C(tn, G(tn)) = C(t,H(t)) in Rm.

Setting F (tn) = G(tn) in (6.2.5), we have

〈C(tn, H(tn)), G(tn)−H(tn)〉 ≥ 0, (6.2.7)

and for the strong monotonicity of the operator C, it results

〈C(tn, H(tn))− C(tn, G(tn)), H(tn)−G(tn)〉 ≥ ν‖H(tn)−G(tn)‖2
m.

From (6.2.7) it follows

〈C(tn, H(tn))− C(tn, G(tn)), H(tn)−G(tn)〉 = 〈C(tn, H(tn)), H(tn)−G(tn)〉

−〈C(tn, H(tn)), H(tn)−G(tn)〉 ≤ −〈C(tn, G(tn)), H(tn)−G(tn)〉,
so

ν‖H(tn)−G(tn)‖2
m ≤ −〈C(tn, G(tn)), H(tn)−G(tn)〉

≤ ‖C(tn, G(tn))‖m‖H(tn)−G(tn)‖m,

that is
ν‖H(tn)−G(tn)‖m ≤ ‖C(tn, G(tn))‖m.

Then, we obtain

‖H(tn)‖m ≤ ‖H(tn)−G(tn)‖m + ‖G(tn)‖m

≤ ‖C(tn, G(tn))‖m

ν
+ ‖G(tn)‖m.

Since {C(tn, G(tn))}n∈N is a sequence convergent then it is bounded, i.e.,

∃h ∈ R+ : ‖C(tn, G(tn))‖m ≤ h, ∀n ∈ N,

for the same reason, {G(tn)}n∈N is a sequence bounded, i.e.,

∃k ∈ R+ : ‖G(tn)‖m ≤ k, ∀n ∈ N.

From those conditions, we have

‖H(tn)‖m ≤ c, ∀n ∈ N,
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where the constant c is independent on n. Hence there exists a subsequence {H(tkn)}n∈N
converging in Rm to an element H̃(t) ∈ Rm, and then

lim
n→+∞

H(tkn) = H̃(t),

for the second condition of the convergence in Mosco’s sense we have

H̃(t) ∈ K(t,H).

Moreover, for the convergence in Mosco’s sense, it results

∀F (t) ∈ K(t, H) ∃F (tn) ∈ K(tn, H) ∀n ∈ N : lim
n→+∞

F (tn) = F (t), in Rm,

and from the continuity of the operator C, it follows

lim
n→+∞

C(tn, F (tn)) = C(t, F (t)), in Rm.

We consider the following quasi-variational inequality

〈C(tkn , F (tkn)), F (tkn)−H(tkn)〉 ≥ 0,

and passing to the limit as n → +∞, we deduce

H̃(t) ∈ K(t) : 〈C(t, F (t)), F (t)− H̃(t)〉 ≥ 0, ∀F (t) ∈ K(t). (6.2.8)

Taking into account of Lemma 3.4.1 and of the uniqueness of the solution to (6.2.6)
in K(H, t), for t ∈ [0, T ], for quasi-variational inequality (6.2.8) it follows

H̃(t) = H(t).

Every subsequence of {H(tn)}n∈N converges to the same limit H̃(t) and then

lim
n→+∞

H(tn) = H(t).

6.3 Regularity results for degenerate evolution-

ary quasi-variational inequalities

In this section, we prove that regularity results hold also for degenerate evolutionary
quasi-variational inequalities.



6.3. Regularity results for degenerate evolutionary quasi-variational inequalities 79

6.3.1 Affine case

Let A : [0, T ] → Rm×m be a matrix-function and let B : [0, T ] → Rm be a vector-
function. Let us consider the affine evolutionary quasi-variational inequality

Find H ∈ K(H) such that

〈A(t)H(t) + B(t), F (t)−H(t)〉 ≥ 0, ∀F (t) ∈ K(t, H), a.e. in [0, T ], (6.3.1)

where K : D → 2L2([0,T ],Rm) is a multifunction satisfying assumption (MM).

We prove the continuity of solutions to (6.3.1) under the following assumptions

∃M > 0 : ‖A(t)‖m×m =
( m∑

r,s=1

A2
rs(t)

) 1
2 ≤ M, a.e. in [0, T ], (6.3.2)

and
〈A(t)F, F 〉 ≥ ν(t)‖F‖2

m, ∀F ∈ Rm, a.e. in [0, T ], (6.3.3)

where ν ∈ L∞([0, T ],R+
0 ) is such that

@I ⊆ [0, T ], µ(I) > 0 : ν(t) = 0, ∀t ∈ I,

with µ Lebesgue’s measure, namely A is a degenerate matrix-function.
We recall (see Theorem 3.5.1) that the evolutionary quasi-variational inequalities

(6.3.1) admits a solution H and this solution is unique in the set K(H). Then, to
prove the continuity of the solution to (6.3.1) means proving that the unique solution
H in the set K(H) is continuous. Then, we fix the solution H ∈ K(H) and we work
in K(H).

Now, it is needed to prove a preliminary lemma related to evolutionary quasi-
variational inequalities associated to a nonnegative matrix-function A. Hence, let us
observe that, under this assumption, the set X(H) of solutions to the evolutionary
quasi-variational inequality (6.3.1) is closed, convex and nonempty. We consider
I : L2([0, T ],Rm) → L2([0, T ],Rm) the identity function and the evolutionary quasi-
variational inequality

〈I(t)H(t), F (t)−H(t)〉 ≥ 0, ∀F (t) ∈ X(t, H), a.e. in [0, T ], (6.3.4)

which admits a solution H(t) in the set X(t, H). Moreover, for every ε > 0, let us
consider the following perturbed evolutionary quasi-variational inequality

〈[A(t) + εI(t)]H(t) + B(t), F (t)−H(t)〉 ≥ 0, ∀F (t) ∈ K(t, H), a.e. in [0, T ],
(6.3.5)

which admits a continuous solution Hε, by virtue of Theorem 6.2.1, and is unique
in the set K(t, H). Then, the following preliminary result holds:
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Lemma 6.3.1. Let A ∈ C([0, T ],Rm×m) be a nonnegative matrix-function and let
B ∈ C([0, T ],Rm) be a vector-function. Let D be a nonempty, compact, convex
subset of L2([0, T ],Rm). Let K : D → L2([0, T ],Rm) be a multifunction satisfying
condition (MM) such that K(t,H) is uniformly bounded sets for t ∈ [0, T ]. If Hε(t),
∀ε > 0, is a solution to (6.3.5), it results

lim
ε→0

Hε(t) = H(t), in [0, T ],

and
lim
ε→0

‖Hε(t)−H(t)‖2
L2([0,T ],Rm) = 0,

where H is a solution to evolutionary quasi-variational inequality (6.3.1).

Proof. Let H be the solution to (6.3.4), then we have

〈I(t)H(t), F (t)−H(t)〉 ≥ 0, ∀F (t) ∈ X(t,H), in [0, T ]. (6.3.6)

Let Hε be the solution to (6.3.5), namely Hε ∈ K(H) and

〈[A(t) + εI(t)]Hε(t) + B(t), F (t)−Hε(t)〉 ≥ 0, ∀F (t) ∈ K(t, H). (6.3.7)

Setting F (t) = Hε(t), for t ∈ [0, T ], in (6.3.1) and F (t) = H(t), for t ∈ [0, T ], in
(6.3.7) and adding we get

〈A(t)[H(t)−Hε(t)], Hε(t)−H(t)〉+ ε〈Hε(t), H(t)−Hε(t)〉 ≥ 0, (6.3.8)

in [0, T ]. Since A is a nonnegative matrix-function, it follows

〈A(t)[H(t)−Hε(t)], Hε(t)−H(t)〉 ≤ 0, in [0, T ],

then, by (6.3.8), we obtain

ε〈Hε(t), H(t)−Hε(t)〉 ≥ 0, in [0, T ],

and dividing by ε > 0, it results

〈Hε(t), H(t)−Hε(t)〉 ≥ 0, in [0, T ]. (6.3.9)

Taking into account (6.3.9), one has

‖Hε(t)‖2
m ≤ 〈Hε(t), H(t)〉 ≤ ‖H(t)‖m‖Hε(t)‖m, in [0, T ],

then
‖Hε(t)‖m ≤ ‖H(t)‖m, in [0, T ].

Since H(t) ∈ X(t,H) ⊆ K(t, H), in [0, T ], and K(t, H) is a family of uniformly
bounded sets of Rm for t ∈ [0, T ], it results

‖H(t)‖m ≤ C, in [0, T ],
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with C a constant independent on t ∈ [0, T ], then

‖Hε(t)‖m ≤ C, ∀ε > 0, in [0, T ].

Hence there exists a subsequence {Hη(t)}η converging in Rm to an element Ĥ(t) of
Rm, in [0,T], and thus

lim
η→0

Hη(t) = Ĥ(t), in [0, T ].

Taking into account that K(t, H) is a closed set of Rm and {Hη(t)}η ⊆ K(t,H),
then

Ĥ(t) ∈ K(t, H), in [0, T ].

It remains to prove that
Ĥ(t) = H(t), in [0, T ].

Hence, considering (6.3.7) with ε = η, we get

〈A(t)Hη(t) + B(t), F (t)−Hη(t)〉+ η〈Hη(t), F (t)−Hη(t)〉 ≥ 0, ∀F (t) ∈ K(t, H),
(6.3.10)

for every F (t) ∈ K(t, H) and in [0, T ], and taking into account that

lim
η→0

〈Hη(t), Hη(t)〉 = 〈Ĥ(t), Ĥ(t)〉, in [0, T ],

and that

lim
η→0

〈A(t)Hη(t) + B(t), Hη(t)〉 = 〈A(t)Ĥ(t) + B(t), Ĥ(t)〉, in [0, T ],

from (6.3.10), we obtain

〈A(t)Ĥ(t) + B(t), F (t)− Ĥ(t)〉 ≥ 0, ∀F (t) ∈ K(t,H), in [0, T ]. (6.3.11)

Then (6.3.11) implies that Ĥ is a solution to (6.3.1), in [0, T ], namely

Ĥ ∈ X(H).

If the solution to (6.3.1) is unique in the set K(H), then the proof is concluded.
Now, we suppose that the solution to (6.3.1) is not unique in the set K(H). Setting
ε = η in (6.3.9) we get

〈Hη(t), H(t)−Hη(t)〉 ≥ 0, in [0, T ],

and passing to the limit as η → 0, we obtain

〈Ĥ(t), H(t)− Ĥ(t)〉 ≥ 0, in [0, T ]. (6.3.12)

Rewriting (6.3.6) with F = Ĥ ∈ X(H), it results

〈H(t), Ĥ(t)−H(t)〉 ≥ 0, in [0, T ], (6.3.13)
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and adding (6.3.12) and (6.3.13), we have

〈Ĥ(t)−H(t), H(t)− Ĥ(t)〉 ≥ 0, in [0, T ].

Then
〈Ĥ(t)−H(t), H(t)− Ĥ(t)〉 = 0, in [0, T ],

that implies
Ĥ(t) = H(t), in [0, T ].

In this way, we have shown that every convergent subsequence converges to the same
limit H(t) and hence

lim
ε→0

Hε(t) = H(t), in [0, T ],

from this it follows

lim
ε→0

‖Hε(t)−H(t)‖2
m = 0, in [0, T ].

Moreover, we remark that

‖Hε(t)−H(t)‖2
m ≤ 2

(|Hε(t)‖2
m + ‖H(t)‖2

m

) ≤ 4C ∈ C([0, T ],Rm), in [0, T ],

then, by virtue of Lebesgue’s Theorem we have

lim
ε→0

‖Hε(t)−H(t)‖2
L2([0,T ],Rm) = 0.

Now, we are able to prove the continuity result for degenerate evolutionary quasi-
variational inequalities.

Theorem 6.3.1. Let A ∈ C([0, T ],Rm×m) be a matrix-function satisfying condition
(6.3.3) and let B ∈ C([0, T ],Rm) be a vector-function. Let D be a nonempty, com-
pact, convex subset of L2([0, T ],Rm). Let K : D → 2L2([0,T ],Rm) be a multifunction
such that have uniformly bounded set-values and satisfies condition (MM). Then,
the evolutionary quasi-variational inequality

〈A(t)H(t) + B(t), F (t)−H(t)〉 ≥ 0, ∀F (t) ∈ K(t,H), in [0, T ], (6.3.14)

admits a solution H ∈ K(H) such that H ∈ C([0, T ],Rm).

Proof. Making use of Theorem 3.5.1, it results that (6.3.14) admits a solution H ∈
K(H) and the solution is unique in K(t, H) for each t ∈ [0, T ].

Let t ∈ [0, T ] be fixed and let {tn}n∈N ⊆ [0, T ] be a sequence, such that tn → t,
as n → +∞. Let H(t) be the solution to quasi-variational inequality (6.3.14) and
let H(tn), ∀n ∈ N, be the solutions to the following quasi-variational inequalities

〈A(tn)H(tn) + B(tn), F (tn)−H(tn)〉 ≥ 0, ∀F (tn) ∈ K(tn, H), ∀n ∈ N. (6.3.15)
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Let Hε(t) be the solution to the perturbed quasi-variational inequality (6.3.5),
namely Hε(t) ∈ K(t, H) and

〈[A(t) + εI(t)]Hε(t) + B(t), F (t)−Hε(t)〉 ≥ 0, ∀F (t) ∈ K(t, H). (6.3.16)

Since Hε(t) is continuous in [0, T ] (see Theorem 6.2.1), it follows that the solutions
H(tn), ∀n ∈ N, to the following evolutionary quasi-variational inequalities

〈[A(tn)+εI(tn)]Hε(tn)+B(tn), F (tn)−Hε(tn)〉 ≥ 0, ∀F (tn) ∈ K(tn, H), (6.3.17)

∀n ∈ N, converge to Hε(t), as n → +∞. Setting F (tn) = H(tn), ∀n ∈ N, in (6.3.17)
and F (tn) = Hε(tn), ∀n ∈ N, in (6.3.15) and adding we obtain, ∀n ∈ N,

〈A(tn)[Hε(tn)−H(tn)], H(tn)−Hε(tn)〉+ ε〈Hε(tn), H(tn)−Hε(tn)〉 ≥ 0. (6.3.18)

We remark that for condition (6.3.3) on the matrix-function A we have

〈A(tn)[Hε(tn)−H(tn)], H(tn)−Hε(tn)〉 ≤ 0, ∀n ∈ N.

Then, from (6.3.18) it follows

ε〈Hε(tn), H(tn)−Hε(tn)〉 ≥ 0, ∀n ∈ N,

and proceeding as in the proof of Lemma 6.3.1, we get

‖Hε(tn)‖m ≤ C, ∀ε > 0, ∀n ∈ N, (6.3.19)

where C is a constant independent on ε and on n ∈ N.
Taking into account of Lemma 6.3.1, it results

lim
ε→0

Hε(tn) = H̃(tn), ∀n ∈ N,

where H̃(tn) ∈ K(tn, H), ∀n ∈ N, and it is such that

〈A(tn)H̃(tn) + B(tn), F (tn)− H̃(tn)〉 ≥ 0, ∀F (tn) ∈ K(tn, H), ∀n ∈ N.

Since the solution to (6.3.15) is unique in K(tn, H), we have

H̃(tn) = H(tn), ∀n ∈ N,

and, passing to the limit as ε → 0 in (6.3.19), it results

‖H(tn)‖m ≤ C, ∀n ∈ N.

Hence the sequence {H(tn)}n∈N is bounded, then there exists a subsequence {H(tkn)}n∈N,
with H(tkn) ∈ K(tkn , H), ∀n ∈ N, converging in Rm to an element Ĥ(t) of Rm,
namely

lim
n→+∞

H(tkn) = Ĥ(t).
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Moreover, by (6.3.15) it obtains

〈A(t)Ĥ(t) + B(t), F (t)− Ĥ(t)〉 ≥ 0, ∀F (t) ∈ K(t, H),

and, for the uniqueness of the solution to (6.3.14) in K(t, H), it follows

Ĥ(t) = H(t).

The same result holds for each subsequence and therefore

lim
n→+∞

H(tn) = H(t),

namely our assert.

6.3.2 Nonlinear case

The aim of this section is to consider nonlinear degenerate evolutionary quasi-
variational inequalities and to prove that they have some continuous solutions. More
precisely, let C : [0, T ]× Rm → Rm be an operator satisfying the following assump-
tions:

∃γ ∈ L2([0, T ],R+) : ‖C(t, F )‖m ≤ γ(t) + ‖F‖m, ∀F ∈ Rm, a.e. in [0, T ].
(6.3.20)

and

〈C(t, F )−C(t,H), F −H〉 ≥ ν(t)‖F −H‖2
m, ∀F, H ∈ Rm, a.e. in [0, T ], (6.3.21)

where ν ∈ L∞([0, T ],R+
0 ) is such that

@I ⊆ [0, T ], µ(I) > 0 : ν(t) = 0, for a.e. t ∈ I.

Let us consider the following evolutionary variational inequality

Find H ∈ K such that

〈C(t,H(t)), F (t)−H(t)〉 ≥ 0, ∀F (t) ∈ K(t,H), a.e. in [0, T ], (6.3.22)

where the multifunction K : D → 2L2([0,T ],Rm) satisfies condition (MM).

We observe that there exists a solution H to (6.3.22), and it is unique in K(H),
for Theorem 3.5.2. Hence, to show the continuity of the solution to (6.3.22) means
proving that the unique solution H in the set K(H) is continuous. Then, we fix the
solution H ∈ K(H) and we work in K(H).

The first step of the proof of the continuity result is to prove a regularization
lemma. We recall that if the operator C is monotone it results that the set X(H) of
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solutions to evolutionary quasi-variational inequality (6.3.22) is closed, convex and
nonempty.

Let I : L2([0, T ],Rm) → L2([0, T ],Rm) be the identity operator and let us con-
sider the following evolutionary quasi-variational inequality

〈IH(t), F (t)−H(t)〉 ≥ 0, ∀F (t) ∈ X(t, H), in [0, T ]. (6.3.23)

Then, evolutionary quasi-variational inequality (6.3.23) admits a unique solution in
the set X(H). Further, for every ε > 0, let us consider the perturbed evolutionary
quasi-variational inequality

〈C(t,H(t)) + εIH(t), F (t)−H(t)〉 ≥ 0, ∀F (t) ∈ K(t, H), in [0, T ], (6.3.24)

which admits a unique continuous solution Hε by virtue of Theorem 6.2.3. Now, we
can prove the following preliminary result.

Lemma 6.3.2. Let C ∈ C([0, T ]×Rm,Rm) be a monotone matrix-function satisfying
condition (6.3.20). Let D be a nonempty, compact, convex subset of L2([0, T ],Rm).
Let K : D → 2L2([0,T ],Rm) be a multifunction such that have uniformly bounded set-
values and satisfies condition (MM). If Hε(t), ∀ε > 0, is a solution to (6.3.24), it
results

lim
ε→0

Hε(t) = H(t), in [0, T ],

and
lim
ε→0

‖Hε(t)−H(t)‖2
L2([0,T ],Rm) = 0,

where H is a solution to the evolutionary quasi-variational inequality (6.3.22).

Proof. Let H be the solution to (6.3.23), therefore H ∈ X(H) and

〈IH(t), F (t)−H(t)〉 ≥ 0, ∀F (t) ∈ X(t, H), in [0, T ]. (6.3.25)

Let Hε be the solution to (6.3.24), namely Hε ∈ K(H) and

〈C(t,H(t)) + εIHε(t), F (t)−Hε(t)〉 ≥ 0, ∀F (t) ∈ K(t, H). (6.3.26)

Setting F (t) = Hε(t), for t ∈ [0, T ], in (6.3.24) and F (t) = H(t), for t ∈ [0, T ], in
(6.3.23) and adding we get

〈C(t,H(t))− C(t,Hε(t)), Hε(t)−H(t)〉+ ε〈Hε(t), H(t)−Hε(t)〉 ≥ 0, (6.3.27)

in [0, T ]. Being C monotone, we have

〈C(t,H(t))− C(t,Hε(t)), Hε(t)−H(t)〉 ≤ 0, in [0, T ],

then, by (6.3.27), we obtain

ε〈Hε(t), H(t)−Hε(t)〉 ≥ 0, in [0, T ],
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and dividing by ε > 0, it results

〈Hε(t), H(t)−Hε(t)〉 ≥ 0, in [0, T ]. (6.3.28)

Taking into account (6.3.28), one has

‖Hε(t)‖2
m ≤ 〈Hε(t), H(t)〉 ≤ ‖H(t)‖m‖Hε(t)‖m, in [0, T ],

then

‖Hε(t)‖m ≤ ‖H(t)‖m, in [0, T ].

We remark that H(t) ∈ X(t, H) ⊆ K(t, H), in [0, T ], and K(t, H), t ∈ [0, T ], is a
family of uniformly bounded sets of Rm, then

‖H(t)‖m ≤ C, in [0, T ],

with C a constant independent on ε and on t ∈ [0, T ], namely

‖Hε(t)‖m ≤ C, ∀ε > 0, for t ∈ [0, T ].

Then, there exists a subsequence {Hη(t)}η converging in Rm to an element Ĥ(t) of
Rm, in [0,T], and thus

lim
η→0

Hη(t) = Ĥ(t), in [0, T ].

Under the assumption that K(t, H) is a closed set of Rm, it results

Ĥ(t) ∈ K(t, H), in [0, T ].

It remains to prove that

Ĥ(t) = H(t), in [0, T ].

Then, setting ε = η in (6.3.26), we obtain

〈C(t,Hη(t)), F (t)−Hη(t)〉+η〈Hη(t), F (t)−Hη(t)〉 ≥ 0, ∀F (t) ∈ K(t,H), (6.3.29)

in [0, T ], and taking account that

lim
η→0

〈Hη(t), Hη(t)〉 = 〈Ĥ(t), Ĥ(t)〉, in [0, T ],

and that

lim
η→0

〈C(t,Hη(t)), Hη(t)〉 = 〈C(t, Ĥ(t)), Ĥ(t)〉, in [0, T ],

from (6.3.29), we have

〈C(t, H(t)), F (t)− Ĥ(t)〉 ≥ 0, ∀F (t) ∈ K(t, H), in [0, T ]. (6.3.30)
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Hence (6.3.30) implies that Ĥ is a solution to (6.3.22), in [0, T ], namely

H ∈ X(H).

If the solution to (6.3.22) is unique, then the proof is concluded. Now, we suppose
that the solution to (6.3.22) is not unique. Setting ε = η in (6.3.28) we obtain

〈Hη(t), H(t)−Hη(t)〉 ≥ 0, in [0, T ],

and passing to the limit for η → 0, we get

〈Ĥ(t), H(t)− Ĥ(t)〉 ≥ 0, in [0, T ]. (6.3.31)

Setting F = Ĥ ∈ X(H) in (6.3.25), it results

〈H(t), Ĥ(t)−H(t)〉 ≥ 0, in [0, T ], (6.3.32)

and adding (6.3.31) and (6.3.32), we have

〈Ĥ(t)−H(t), H(t)− Ĥ(t)〉 ≥ 0, in [0, T ].

Then
〈Ĥ(t)−H(t), H(t)− Ĥ(t)〉 = 0, in [0, T ],

that implies
Ĥ(t) = H(t), in [0, T ].

We have proved that every convergent subsequence converges to the same limit H(t)
and then

lim
ε→0

Hε(t) = H(t), in [0, T ].

Moreover, it results

‖Hε(t)−H(t)‖2
m ≤ 2

(‖Hε(t)‖2
m + ‖H(t)‖2

m

) ≤ 4C2 ∈ C([0, T ],Rm), in [0, T ],

hence, by virtue of Lebesgue’s Theorem we have

lim
ε→0

‖Hε(t)−H(t)‖2
L2([0,T ],Rm) = 0.

Now, we can prove the continuity result for degenerate evolutionary quasi-variational
inequalities.

Theorem 6.3.2. Let C ∈ C([0, T ] × Rm,Rm) be a vector-function satisfying con-
ditions (6.3.20) and (6.3.21). Let D be a nonempty, compact, convex subset of
L2([0, T ],Rm). Let K : D → 2L2([0,T ],Rm) be a multifunction with uniformly bounded
set-values and satisfying condition (MM). Then, the evolutionary quasi-variational
inequality

H ∈ K : 〈C(t,H(t)), F (t)−H(t)〉 ≥ 0, ∀F (t) ∈ K(t,H), in [0, T ], (6.3.33)

admits a solution H ∈ K(H) such that H ∈ C([0, T ],Rm).
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Proof. Theorem 3.5.2 ensures that (6.3.33) admits a solution H ∈ K(H) and the
solution is unique in K(t, H) for each t ∈ [0, T ].

Let t ∈ [0, T ] be fixed and let {tn}n∈N ⊆ [0, T ] be a sequence, such that tn → t,
as n → +∞.

Let us consider the solution H(t) to evolutionary quasi-variational inequality
(6.3.33) and the solution H(tn), ∀n ∈ N, to the following quasi-variational inequali-
ties

〈C(tn, H(tn)), F (tn)−H(tn)〉 ≥ 0, ∀F (tn) ∈ K(tn, H), ∀n ∈ N. (6.3.34)

Let Hε(t) be the solution to perturbed strongly monotone quasi-variational inequal-
ity (6.3.24), namely Hε(t) ∈ K(t,H) and

〈C(t,Hε(t)) + εIHε(t), F (t)−Hε(t)〉 ≥ 0, ∀F (t) ∈ K(t, H). (6.3.35)

Taking into account Theorem 6.2.3, it results that Hε(t) is a continuous function
in [0, T ], then the solutions Hε(tn), ∀n ∈ N, to the following evolutionary quasi-
variational inequalities

〈C(tn, Hε(tn)) + εIHε(tn), F (tn)−Hε(tn)〉 ≥ 0, ∀F (tn) ∈ K(tn, H), (6.3.36)

∀n ∈ N, converge to Hε(t), as n → +∞. Setting F (tn) = H(tn), ∀n ∈ N, in (6.3.36)
and F (tn) = Hε(tn), ∀n ∈ N, in (6.3.34) and adding we obtain, ∀n ∈ N

〈C(tn, Hε(tn))− C(tn, H(tn)), H(tn)−Hε(tn)〉+ ε〈Hε(tn), H(tn)−Hε(tn)〉 ≥ 0.
(6.3.37)

Moreover, for condition (6.3.21) it results

〈C(tn, Hε(tn))− C(tn, H(tn)), H(tn)−Hε(tn)〉 ≤ 0, ∀n ∈ N.

Hence, from (6.3.37) it follows

ε〈Hε(tn), H(tn)−Hε(tn)〉 ≥ 0, ∀n ∈ N,

and proceeding as in the proof of Lemma 6.3.2, we have

‖Hε(tn)‖m ≤ C, ∀ε > 0, ∀n ∈ N, (6.3.38)

where C is a constant independent on ε and of n ∈ N.
From Lemma 6.3.2, it follows

lim
ε→0

Hε(tn) = H̃(tn), ∀n ∈ N,

with H̃(tn) ∈ K(tn, H), ∀n ∈ N, and such that

〈C(tn, H̃(tn)), F (tn)− H̃(tn)〉 ≥ 0, ∀F (tn) ∈ K(tn, H), ∀n ∈ N.
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Since the solution to (6.3.34) is unique, it results

H̃(tn) = H(tn), ∀n ∈ N,

and, passing to the limit as ε → 0 in (6.3.38), we have

‖H(tn)‖m ≤ C, ∀n ∈ N.

Then the sequence {H(tn)}n∈N is bounded, that implies the existence of a subse-
quence {H(tkn)}n∈N, with H(tkn) ∈ K(tkn , H), ∀n ∈ N, converging in Rm to an

element Ĥ(t) of Rm, namely

lim
n→+∞

H(tkn) = Ĥ(t).

Taking into account (6.3.34) it follows

〈C(t, Ĥ(t)), F (t)− Ĥ(t)〉 ≥ 0, ∀F (t) ∈ K(t, H),

and, for the uniqueness of the solution to (6.3.33), it results

Ĥ(t) = H(t).

The same result holds for each subsequence and therefore

lim
n→+∞

H(tn) = H(t).

The proof is now complete.

6.4 Regularity results for strictly monotone evo-

lutionary quasi-variational inequalities

In this section, a theorem of continuity for solutions to evolutionary strictly mono-
tone quasi-variational inequalities will be shown. More precisely, at first we obtain
the result for an affine operator and, then, we generalize the result for nonlinear op-
erators. The regularization Lemmas 6.3.1 and 6.3.2, proved in the previous section,
play an important role in the attainment of results.

6.4.1 Affine case

Let us assume that the operator is affine with respect to the vector F , namely it
results

C(t, F (t)) = A(t)F (t) + B(t),
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for each t ∈ [0, T ], where A : [0, T ] → Rm×m and B : [0, T ] → Rm are two functions.
We study the continuity for solutions to the following evolutionary variational in-
equality

Find H ∈ K such that

〈A(t)H(t) + B(t), F (t)−H(t)〉 ≥ 0, ∀F (t) ∈ K(t), a.e. in [0, T ], (6.4.1)

where K : D → 2L2([0,T ],Rm) is a multifunction satisfying condition (MM).

Let us suppose that the vector-function A satisfies the following assumption:

〈A(t)[H − F ], H − F 〉 > 0, ∀H, F ∈ Rm, H 6= F, a.e. in [0, T ]. (6.4.2)

Theorem 6.4.1. Let A ∈ C([0, T ],Rm×m) be a matrix-function satisfying condi-
tion (6.4.2) and let B ∈ C([0, T ],Rm) be a vector-function. Let D be a nonempty,
compact, convex subset of L2([0, T ],Rm). Let K : D → 2L2([0,T ],Rm) be a multi-
function with uniformly bounded set-values and satisfying condition (MM). Then,
evolutionary quasi-variational inequality (6.4.1) admits a solution H ∈ K(H) such
that H ∈ C([0, T ],Rm).

Proof. Taking into account of Theorem 3.4.3, it results that (6.4.1) admits a solution
H ∈ K(H), furthermore the solution is unique in K(H). We fix the set K(H).

Now, let t ∈ [0, T ] be fixed and let {tn}n∈N ⊆ [0, T ] be a sequence, such that
tn → t, as n → +∞.

Let us consider the solution H(t) to quasi-variational inequality (6.4.1) and the
solution H(tn), ∀n ∈ N, to the following quasi-variational inequalities

〈A(tn)H(tn) + B(tn), F (tn)−H(tn)〉 ≥ 0, ∀F (tn) ∈ K(tn, H), ∀n ∈ N. (6.4.3)

Let us consider Hε(t) ∈ K(t, H) such that

〈[A(t)+ εI(t)]Hε(t)+B(t), F (t)−Hε(t)〉 ≥ 0, ∀F (t) ∈ K(t, H), in [0, T ]. (6.4.4)

We remark that Hε(t) is continuous in [0, T ], then the solutions H(tn), ∀n ∈ N, to
the following evolutionary quasi-variational inequalities

〈[A(tn) + εI(tn)]Hε(tn) + B(tn), F (tn)−Hε(tn)〉 ≥ 0, ∀F (tn) ∈ K(tn, H), (6.4.5)

∀n ∈ N, converge to Hε(t), as n → +∞. Setting F (tn) = H(tn), ∀n ∈ N, in (6.4.5)
and F (tn) = Hε(tn), ∀n ∈ N, in (6.4.3) and adding it follows, ∀n ∈ N,

〈A(tn)[Hε(tn)−H(tn)], H(tn)−Hε(tn)〉+ ε〈Hε(tn), H(tn)−Hε(tn)〉 ≥ 0. (6.4.6)

We remark that for condition (6.4.2) on the matrix-function A we have

〈A(tn)[Hε(tn)−H(tn)], H(tn)−Hε(tn)〉 ≤ 0, ∀n ∈ N.
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So, from (6.4.6) it results

ε〈Hε(tn), H(tn)−Hε(tn)〉 ≥ 0, ∀n ∈ N,

and proceeding as in the proof of Lemma 6.3.1, we get

‖Hε(tn)‖m ≤ C, ∀ε > 0, ∀n ∈ N, (6.4.7)

where C is a constant independent on ε and on n ∈ N.
For Lemma 6.3.1, it follows

lim
ε→0

Hε(tn) = H̃(tn), ∀n ∈ N,

with H̃(tn) ∈ K(tn, H), ∀n ∈ N, and such that

〈A(tn)H̃(tn) + B(tn), F (tn)− H̃(tn)〉 ≥ 0, ∀F (tn) ∈ K(tn, H), ∀n ∈ N.

Since the solution to (6.4.3) is unique in the set K(H), one has

H̃(tn) = H(tn), ∀n ∈ N,

and, passing to the limit as ε → 0 in (6.4.7), it results

‖H(tn)‖m ≤ C, ∀n ∈ N.

Hence the sequence {H(tn)}n∈N is bounded, then there exists a subsequence {H(tkn)}n∈N,
with H(tkn) ∈ K(tkn , H), ∀n ∈ N, converging in Rm to an element Ĥ(t) of Rm,
namely

lim
n→+∞

H(tkn) = Ĥ(t).

Moreover, by (6.4.3) we obtain

〈A(t)Ĥ(t) + B(t), F (t)− Ĥ(t)〉 ≥ 0, ∀F (t) ∈ K(t, H),

and, for the uniqueness of the solution to (6.4.1) in the set K(H), it follows

Ĥ(t) = H(t).

The same result holds for each subsequence and therefore

lim
n→+∞

H(tn) = H(t).

The proof is now complete.
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6.4.2 Nonlinear case

Let C : [0, T ]×Rm → Rm be a nonlinear operator satisfying the following conditions

∃γ ∈ L2([0, T ],R+) : ‖C(t, F )‖m ≤ γ(t) + ‖F‖m, ∀F ∈ Rm, in [0, T ], (6.4.8)

and

〈C((t, H)− C(t, F ), H − F 〉 > 0, ∀H,F ∈ Rm, H 6= F, a.e. in [0, T ]. (6.4.9)

Let us consider the evolutionary quasi-variational inequality

Find H ∈ K(H) such that

〈C(t,H(t)), F (t)−H(t)〉 ≥ 0, ∀F (t) ∈ K(t,H), a.e. in [0, T ], (6.4.10)

where K : D → 2L2([0,T ],Rm) is a multifunction satisfying condition (MM).

Now, we are able to prove the continuity of solutions to nonlinear strictly mono-
tone evolutionary quasi-variational inequalities.

Theorem 6.4.2. Let C ∈ C([0, T ]×Rm,Rm) be a vector-function satisfying condi-
tions (6.4.8) and (6.4.9). Let D be a nonempty, compact, convex subset of L2([0, T ],Rm).
Let K : D → 2L2([0,T ],Rm) be a multifunction with uniformly bounded set-values and
satisfying condition (MM). Then, evolutionary quasi-variational inequality (6.4.10)
admits a solution H ∈ K(H) such that H ∈ C([0, T ],Rm).

Proof. By Theorem 3.4.3, it follows that (6.4.10) admits a solution H ∈ K(H),
furthermore the solution is unique in the set K(H). Then, we fix the set K(H).

Let t ∈ [0, T ] be fixed and let {tn}n∈N ⊆ [0, T ] be a sequence, such that tn → t,
as n → +∞.

Let H(t) be the solution to quasi-variational inequality (6.4.10) in t ∈ [0, T ] and
let H(tn), ∀n ∈ N, be the solutions to quasi-variational inequalities

〈C(tn, H(tn)), F (tn)−H(tn)〉 ≥ 0, ∀F (tn) ∈ K(tn, H), ∀n ∈ N. (6.4.11)

Let Hε(t) ∈ K(t, H) be the solution to the following perturbed strongly monotone
quasi-variational inequality

〈C(t,Hε(t)) + εIHε(t), F (t)−Hε(t)〉 ≥ 0, ∀F (t) ∈ K(t, H).

From Theorem 6.2.3, it follows that Hε is continuous in [0, T ], then we have that
the solutions Hε(tn), ∀n ∈ N, to the evolutionary quasi-variational inequalities

〈C(tn, Hε(tn)) + εI(tn)Hε(tn), F (tn)−Hε(tn)〉 ≥ 0, ∀F (tn) ∈ K(tn, H), (6.4.12)
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∀n ∈ N, converge to Hε(t), as n → +∞. Setting F (tn) = H(tn), ∀n ∈ N, in (6.4.12)
and F (tn) = Hε(tn), ∀n ∈ N, in (6.4.11) and adding it results, ∀n ∈ N
〈C(tn, Hε(tn))− C(tn, H(tn)), H(tn)−Hε(tn)〉+ ε〈Hε(tn), H(tn)−Hε(tn)〉 ≥ 0.

(6.4.13)
Moreover, from the strict monotonicity of the function C it follows

〈C(tn, Hε(tn))− C(tn, H(tn)), H(tn)−Hε(tn)〉 ≤ 0, ∀n ∈ N. (6.4.14)

Then, using (6.4.13) and (6.4.14) we obtain

ε〈Hε(tn), H(tn)−Hε(tn)〉 ≥ 0, ∀n ∈ N,

and dividing by ε > 0, we get

〈Hε(tn), H(tn)−Hε(tn)〉 ≥ 0, ∀n ∈ N. (6.4.15)

From (6.4.15), it follows

‖Hε(tn)‖2
m ≤ 〈Hε(tn), H(tn)〉 ≤ ‖H(tn)‖m‖Hε(tn)‖m, ∀n ∈ N,

then
‖Hε(tn)‖m ≤ ‖H(tn)‖m, ∀n ∈ N.

Since H(tn) ∈ X(tn, H) ⊆ K(tn, H), for n ∈ N, and K(tn, H), for n ∈ N, are
uniformly bounded sets of Rm, it results

‖H(tn)‖m ≤ C, ∀n ∈ N,

where C is a constant independent on ε and on n ∈ N, then

‖Hε(tn)‖m ≤ C, ∀ε > 0, ∀n ∈ N. (6.4.16)

By Lemma 6.3.2, we get

lim
ε→0

Hε(tn) = H̃(tn), ∀n ∈ N,

where H̃(tn) ∈ K(tn, H), ∀n ∈ N, and such that

〈C(tn, H̃(tn)), F (tn)− H̃(tn)〉 ≥ 0, ∀F (tn) ∈ K(tn, H), ∀n ∈ N.

For the uniqueness of the solution to (6.4.11) in the set K(tn, H), it results

H̃(tn) = H(tn), ∀n ∈ N,

and, passing to the limit as ε → 0 in (6.4.16), it follows

‖H(tn)‖m ≤ C, ∀n ∈ N,
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namely the sequence {H(tn)}n∈N is bounded. Hence, there exists a subsequence
{H(tkn)}n∈N, with H(tkn) ∈ K(tkn , H), ∀n ∈ N, converging in Rm to an element

Ĥ(t) of Rm, namely

lim
n→+∞

H(tkn) = Ĥ(t).

Moreover, by (6.4.11) it obtains

〈C(t, Ĥ(t)), F (t)− Ĥ(t)〉 ≥ 0, ∀F (t) ∈ K(t,H),

and, for the uniqueness of the solution to (6.4.10) in K(t, H), it follows

Ĥ(t) = H(t).

The same result holds for each subsequence and so

lim
n→+∞

H(tn) = H(t),

namely our assert.



7
Application to dynamic equilibrium

problems

7.1 Introduction

The aim of this chapter is to show regularity results for dynamic equilibrium prob-
lems. The regularity results, shown for a general class of evolutionary variational
and quasi-variational inequalities (see Chapter 7 and Chapter 6), find applications to
dynamic equilibrium problems. In fact, these regularity results are been proved for
evolutionary variational inequalities associated to sets K ⊆ L2([0, T ],Rm) satisfying
the condition

(M) K is a nonempty convex, closed set, such that the set sequence {K(tn)}n∈N
converges to K(t) in Mosco’s sense, for each t ∈ [0, T ], and the sequence
{tn}n∈N ⊆ [0, T ], such that tn → t, as n → +∞,

and for evolutionary quasi-variational inequalities associated to multifunctions K :
[0, T ] → 2L2([0,T ],Rm

+ ) satisfying the assumption

(MM) K is closed l.s.c. with K(H), for each H ∈ L2([0, T ],Rm
+ ), nonempty, convex,

closed of L2([0, T ],Rm
+ ) such that K(tn, H) converges to K(t,H) in Mosco’s

sense, for each sequence {tn}n∈N ⊆ [0, T ], with tn → t, as n → +∞.

Having proved that the sets of feasible flows associated to dynamic traffic equilib-
rium problems verify the previous conditions, we able to apply continuity results to
dynamic traffic equilibrium problems. The same results hold for other equilibrium
problems, as the dynamic market equilibrium problem and the dynamic financial
equilibrium problem, because their sets of feasible vectors satisfy condition (M) for
Propositions 4.3.1 and 4.4.2.



96 7. Application to dynamic equilibrium problems

7.2 Regularity results for the dynamic traffic equi-

librium problem

In this section, theorems on the continuity of solutions to dynamic traffic equilibrium
problem with fixed demand will be provided.

7.2.1 Affine case

Let us assume that the cost vector-function C(t, F (t)) is an affine operator with
respect to the flow-vector, that is

C(t, F (t)) = A(t)F (t) + B(t),

for each t ∈ [0, T ], where A : [0, T ] → Rm×m
+ and B : [0, T ] → Rm

+ are two functions.
We study the continuity of solutions to dynamic traffic equilibrium problem ex-

press by the evolutionary variational inequality

Find H ∈ K such that

〈A(t)H(t) + B(t), F (t)−H(t)〉 ≥ 0, ∀F (t) ∈ K(t), a.e. in [0, T ], (7.2.1)

where

K(t) =
{

F (t) ∈ Rm : λ(t) ≤ F (t) ≤ µ(t), ΦF (t) = ρ(t)
}

.

If the cost vector-function is strongly monotone, the following result holds (see
[3], Theorem 3.2).

Theorem 7.2.1. Let A ∈ C([0, T ],Rm×m
+ ) be a positive definite matrix-function and

let B ∈ C([0, T ],Rm
+ ) be a vector function. Suppose that λ, µ ∈ C([0, T ],Rm

+ ) and
ρ ∈ C([0, T ],Rl

+). Then, the evolutionary variational inequality (7.2.1) admits a
unique solution H ∈ K such that H ∈ C([0, T ],Rm

+ ). Moreover, the estimate

‖H1 −H2‖C([0,T ],Rm
+ ) ≤ 1

ν
‖B1 −B2‖C([0,T ],Rm

+ ) (7.2.2)

holds, where ν is the constant of positive definition of the matrix A(t), for each
t ∈ [0, T ].

Proof. Taking into account of Proposition 4.3.1 and of Theorem 5.2.1, we can obtain
that there exists a unique solution to (7.2.1) and that it is continuous in [0, T ].

Moreover, the estimate (7.2.2) is a well-known consequence of the assumption
that A(t) is positive definite, for each t ∈ [0, T ], and of Theorem 1.4.5.
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The stability of equilibrium solutions is very important for the numerical ap-
proximation of evolutionary variational inequalities, where n → +∞ denotes a dis-
cretization parameter as, for example, the mesh size in the finite elements method.

Let us consider the following variational inequality

Find H(tn) ∈ K(tn) such that

〈A(tn)H(tn) + B(tn), F (tn)−H(tn)〉 ≥ 0, ∀F (tn) ∈ K(tn), (7.2.3)

where

K(tn) =
{

F (tn) ∈ Rm : λ(tn) ≤ F (tn) ≤ µ(tn), ΦF (tn) = ρ(tn)
}

.

Taking into account Theorem 4.2.3, we can derive in our case the following result:

Theorem 7.2.2. Under the assumptions of Theorem 7.2.1, let H(t) and H(tn) be
the solutions of (7.2.1) and (7.2.3), respectively, then the following estimate holds,
in [0, T ]

‖H(t)−H(tn)‖m ≤ C
{
‖B(t)−B(tn)‖m + δr0(A(t), A(tn)) + πr1(K(t),K(tn))

}
,

where, for any ρ ∈]0, 2ν/M2[, C = max(1, ρ)/(1 −
√

1− 2ρν + ρ2M2) > 0, r0 =
b/ν + d0(1 + M/ν), with d0 ≤ maxr max[0,T ] µr(t), and r1 = r0 + ρ(Mr0 + b), with
M = ‖A‖C([0,T ],Rm×m) and ν is the constant of positive definition of A(t), for each
t ∈ [0, T ].

Proof. Let t ∈ [0, T ] be fixed and let {tn}n∈N ⊆ [0, T ] be a sequence, such that
tn → t, as n → +∞. Obviously, it results

‖A(t)0‖m = ‖A(tn)0‖m = 0.

Owing to the continuity of B, we have that {B(tn)}n∈N is a bounded sequence,
namely

∃b > 0 : ‖B(tn)‖m ≤ b, ∀n ∈ N,

moreover, the limit B(t) is bounded with the same constant, i.e.

‖B(t)‖m ≤ b.

Taking account that we proved that K(tn) → K(t) in Mosco’s sense (see Proposition
4.3.1), all the conditions of Theorem 4.2.2 are satisfied, and it follows

PK(tn)F (t) → PK(t)F (t), ∀F (t) ∈ Rm,



98 7. Application to dynamic equilibrium problems

and in particular
PK(tn)0 → PK(t)0. (7.2.4)

A direct calculation enables us to say that

∃d0 > 0 : ‖PK(tn)0‖m, ‖PK(t)0‖m ≤ d0, ∀n ∈ N,

where d0 ≤ m maxr max[0,T ] µr(t). Then, all conditions of the Theorem 4.2.3 are
satisfied, and the conclusion follows directly from this theorem.

Remark 7.2.1. In our case, if λr(t) ≥ λr > 0 r = 1, 2, . . . ,m, H(t) admits a low
bound of the norm, for t ∈ [0, T ]. In fact one has

‖H(t)‖m ≥ mΛ, in [0, T ],

where Λ = minr min[0,T ] λr(t). Then, under the assumptions of Theorem 7.2.2, we
deduce, in [0, T ]:

‖H(t)−H(tn)‖m

‖H(t)‖m

≤ C

mΛ

{
‖B(t)−B(tn)‖m + δr0(A(t), A(tn)) + πr1(K(t),K(tn))

}
.

Now, we still assume that the cost C(t, F (t)) is an affine operator with respect
to the flows, but the matrix-function A depends only on the time but only on the
integral average of the vector-flow, namely

C(t, F (t)) = A(t, FT )F (t) + B(t),

for a.e. t ∈ [0, T ] and for every F ∈ L2([0, T ],Rm
+ ), where A : [0, T ]× Rm

+ → Rm×m
+

and B : [0, T ] → Rm
+ are two functions, T = [0, T ] and FT is the integral average,

that is

FT =

∫ T

0
F (τ)dτ

T
.

We suppose that A(t, u) is a bounded matrix, namely

∃M > 0 : ‖A(t, u)‖m×m ≤ M, for a.e. t ∈ [0, T ], ∀u ∈ Rm
+ . (7.2.5)

Then we study the continuity of the solutions to the following evolutionary varia-
tional inequality:

Find H ∈ K such that

〈A(t,HT )H(t) + B(t), F (t)−H(t)〉 ≥ 0, ∀F (t) ∈ K(t), a.e. in [0, T ], (7.2.6)

where

K(t) =
{

F ∈ Rm
+ : λ(t) ≤ F (t) ≤ µ(t), ΦF (t) = ρ(t)

}
,

Now, we can show the continuity result for the dynamic traffic equilibrium prob-
lem express by evolutionary variational inequality (7.2.6) (see also [3], Theorem
5.1).
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Theorem 7.2.3. Let A ∈ C([0, T ] × Rm
+ ,Rm×m

+ ) be a matrix-function satisfying
conditions (7.2.5) and

∃ν > 0 : 〈A(t, FT )F, F 〉 ≥ ν‖F‖2
m, ∀F ∈ Rm

+ , in [0, T ],

let B ∈ C([0, T ],Rm
+ ) be a vector function. Suppose that λ, µ ∈ C([0, T ],Rm

+ ) and
ρ ∈ C([0, T ],Rl

+). Then, evolutionary variational inequality (7.2.6) admits a unique
solution H ∈ K such that H ∈ C([0, T ],Rm

+ ).

Proof. The thesis follows from Proposition 4.3.1 and Theorem 5.2.2.

Let us consider the dynamic traffic equilibrium problem expressed by a degener-
ate evolutionary variational inequality (see [4]), that is when the matrix-function A
satisfies the condition

〈A(t)F, F 〉 ≥ ν(t)‖F‖2
m, ∀F ∈ Rm

+ , a.e. in [0, T ], (7.2.7)

where ν ∈ L∞([0, T ],R+
0 ) is such that

@I ⊆ [0, T ], µ(I) > 0 : ν(t) = 0, ∀t ∈ I,

with µ Lebesgue’s measure. We investigate on the continuity of equilibrium solutions
to this problem.

Theorem 7.2.4. Let A ∈ C([0, T ],Rm×m
+ ) be a matrix-function verifying condition

and (7.2.7) and let B ∈ C([0, T ],Rm
+ ) be a vector-function. Suppose that λ, µ, ρ ∈

C([0, T ],Rm
+ ). Then, the evolutionary variational inequality

〈A(t)H(t) + B(t), F (t)−H(t)〉 ≥ 0, ∀F (t) ∈ K(t), in [0, T ], (7.2.8)

admits a unique solution H ∈ K such that H ∈ C([0, T ],Rm
+ ).

Proof. Propositions 4.3.1 and 4.3.2 and Theorem 7.2.5 imply that there exists a
unique continuous solution to (7.2.8).

Finally, using Propositions 4.3.1 and 4.3.2 and Theorem 5.4.1, we show a more
general result for the dynamic traffic equilibrium problem expressed by strictly
monotone evolutionary variational inequalities.

Theorem 7.2.5. Let A ∈ C([0, T ],Rm×m
+ ) be a matrix-function verifying condition

〈A(t)[H − F ], H − F 〉 ≥ 0, ∀H, F ∈ Rm
+ , H 6= F, in [0, T ], (7.2.9)

and let B ∈ C([0, T ],Rm
+ ) be a vector-function. Suppose that λ, µ, ρ ∈ C([0, T ],Rm

+ ).
Then, the evolutionary variational inequality

〈A(t)H(t) + B(t), F (t)−H(t)〉 ≥ 0, ∀F (t) ∈ K(t), in [0, T ], (7.2.10)

admits a unique solution H ∈ K such that H ∈ C([0, T ],Rm
+ ).
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7.2.2 Nonlinear case

Let us consider nonlinear cost operator

C : [0, T ]× Rm → Rm,

and let us study the continuity of the dynamic traffic equilibrium problem expressed
by the evolutionary variational inequality

Find H ∈ K such that

〈C(t,H(t)), F (t)−H(t)〉 ≥ 0, ∀F (t) ∈ K(t), a.e. in [0, T ], (7.2.11)

where

K(t) =
{

F (t) ∈ Rm : λ(t) ≤ F (t) ≤ µ(t), ΦF (t) = ρ(t)
}

.

The following result holds (see also [11], Theorem 3.1).

Theorem 7.2.6. Let C ∈ C([0, T ] × Rm
+ ,Rm×m

+ ) be a vector-function satisfying
conditions

‖C(t, F )‖m ≤ A(t)‖F‖m + B(t), ∀F ∈ Rm
+ , in [0, T ],

with B ∈ C([0, T ],R+) and A ∈ C([0, T ],R+) and

∃ν > 0 : 〈C(t,H)− C(t, F ), H − F 〉 ≥ ν‖H − F‖2
m, ∀H, F ∈ Rm

+ , in [0, T ],

let λ, µ ∈ C([0, T ],Rm
+ ) and let ρ ∈ C([0, T ],Rl

+) be vector-functions. Then, the
evolutionary variational inequality

H ∈ K : 〈C(t,H(t)), F (t)−H(t)〉 ≥ 0, ∀F (t) ∈ K(t), in [0, T ]. (7.2.12)

admits a unique solution H ∈ K such that H ∈ C([0, T ],Rm
+ ).

Proof. Taking into account of Proposition 4.3.1 and of Theorem 5.2.3, we can obtain
the assertion.

An analogous result holds when the cost operator is degenerate (see also [11],
Theorem 3.2).

Theorem 7.2.7. Let C ∈ C([0, T ]×Rm
+ ,Rm×m

+ ) be an operator satisfying conditions

‖C(t, F )‖m ≤ A(t)‖F‖m + B(t), ∀F ∈ Rm
+ , in [0, T ],
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with B ∈ C([0, T ],R+) and A ∈ C([0, T ],R+) and

〈C(t,H)− C(t, F ), H − F 〉 ≥ ν(t)‖H − F‖2
m, ∀H, F ∈ Rm

+ , in [0, T ],

where ν ∈ L∞([0, T ],R+
0 ) is such that

@I ⊆ [0, T ], µ(I) > 0 : ν(t) = 0, a.e. in I.

Let λ, µ ∈ C([0, T ],Rm
+ ) and let ρ ∈ C([0, T ],Rl

+) be vector-functions. Then, the
evolutionary variational inequality

H ∈ K : 〈C(t,H(t)), F (t)−H(t)〉 ≥ 0, ∀F (t) ∈ K(t), in [0, T ], (7.2.13)

admits a unique solution H ∈ K such that H ∈ C([0, T ],Rm
+ ).

Proof. Making use of Propositions 4.3.1 and 4.3.2 and of Theorem 5.2.3, we derive
that the unique solution to (7.2.13) is continuous.

At last, we are able to prove this theorem in a more general case. In fact, as a
consequence of Theorem 5.4.2, using Proposition 4.3.1 and the uniformly bounded-
ness of K(t), in [0, T ], we obtain the following continuity result.

Theorem 7.2.8. Let C ∈ C([0, T ] × Rm
+ ,Rm×m

+ ) be a vector-function satisfying
conditions

‖C(t, F )‖m ≤ A(t)‖F‖m + B(t), ∀F ∈ Rm
+ , in [0, T ],

with B ∈ C([0, T ],R+) and A ∈ C([0, T ],R+) and

〈C(t,H)− C(t, F ), H − F 〉 > 0, ∀F ∈ Rm
+ , H 6= F, in [0, T ].

Let λ, µ ∈ C([0, T ],Rm
+ ) and let ρ ∈ C([0, T ],Rl

+) be vector-functions. Then, the
evolutionary variational inequality

H ∈ K : 〈C(t,H(t)), F (t)−H(t)〉 ≥ 0, ∀F (t) ∈ K(t), in [0, T ],

admits a unique solution H ∈ K such that H ∈ C([0, T ],Rm
+ ).

7.3 Regularity results for the dynamic elastic traf-

fic equilibrium problem

In this section, we investigate on the continuity of the solution to the dynamic elastic
equilibrium problem.
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7.3.1 Affine case

Let us suppose that the cost vector-function is affine with respect to the flows, and
we study the continuity of solutions to the evolutionary quasi-variational inequality
which expresses the dynamic elastic traffic problem, that is

Find H ∈ K(H) such that

〈A(t)H(t) + B(t), F (t)−H(t)〉 ≥ 0, ∀F (t) ∈ K(t,H), a.e. in [0, T ], (7.3.1)

where

K(t,H) =

{
F (t) ∈ Rm : λ(t) ≤ F (t) ≤ µ(t) ΦF (t) =

1

T

∫ T

0

ρ(t,H(τ))dτ

}
.

Now, we show the continuity result (see also [3], Theorem 4.1).

Theorem 7.3.1. Let A ∈ C([0, T ],Rm×m
+ ) be a positive definite matrix-function

and let B ∈ C([0, T ],Rm
+ ) be a vector-function. Let λ, µ ∈ C([0, T ],Rm

+ ) be and let
ρ ∈ C([0, T ]× Rm

+ ,Rl
+) be such that

∃ψ ∈ C([0, T ]) : ‖ρ(t, F )‖l ≤ ψ(t) + ‖F‖2
m, (7.3.2)

∃ω ∈ C([0, T ]) : ‖ρ(t, H)− ρ(t, F )‖l ≤ ω(t)‖H − F‖2
m, (7.3.3)

∀H, F ∈ Rm
+ , in [0, T ]. Then, evolutionary quasi-variational inequality (7.3.1) ad-

mits a solution H ∈ K(H) such that H ∈ C([0, T ],Rm
+ ).

Proof. From Proposition 4.3.1, it follows that the set of feasible flows satisfies the
property of convergence in Mosco’s sense. This fact allows us to apply Theorem
6.2.1, then there exists a continuous solution to (7.3.1).

Now, we still assume that the cost is an affine operator with respect to flows, but
the matrix-function A depends on time and on integral average of the flow-vector,
namely

C(t, F (t)) = A(t, FT )F (t) + B(t),

for a.e. t ∈ [0, T ] and for every F ∈ L2([0, T ],Rm
+ ), where A : [0, T ]× Rm

+ → Rm×m
+

and B : [0, T ] → Rm
+ are two functions, T = [0, T ] and FT is the integral average,

namely

FT =

∫ T

0
F (τ)dτ

T
.

Let us suppose that A(t, u) is a bounded matrix, namely

∃M > 0 : ‖A(t, u)‖m×m ≤ M, for a.e. t ∈ [0, T ], ∀u ∈ Rm
+ . (7.3.4)
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Then we study the continuity of solutions to the following evolutionary quasi-
variational inequality:

Find H ∈ K(H) such that

〈A(t, FT )H(t) + B(t), F (t)−H(t)〉 ≥ 0, ∀F (t) ∈ K(t,H), a.e. in [0, T ], (7.3.5)

where

K(t, H) =

{
F (t) ∈ Rm : λ(t) ≤ F (t) ≤ µ(t) ΦF (t) =

1

T

∫ T

0

ρ(t,H(τ))dτ

}
.

Also in this case, we can obtain a regularity result for solutions to (7.3.5).

Theorem 7.3.2. Let A ∈ C([0, T ] × Rm
+ ,Rm×m

+ ) be a matrix-function verifying
conditions (7.3.4) and

∃ν > 0 : 〈A(t, FT )F, F 〉 ≥ ν‖F‖2
m, ∀F ∈ Rm

+ , in [0, T ],

let B ∈ C([0, T ],Rm
+ ) be a vector function. Let λ, µ ∈ C([0, T ],Rm

+ ) and let ρ ∈
C([0, T ] × Rm

+ ,Rl
+) verify conditions (7.3.2) and (7.3.3). Then, evolutionary quasi-

variational inequality (7.3.5) admits a solution H ∈ K(H) such that H ∈ C([0, T ],Rm
+ ).

Proof. By Theorem 6.2.2 and by Proposition 4.3.3, it follows the assertion.

The previous results can be extended to the dynamic elastic equilibrium problem
which is expressed by a degenerate evolutionary quasi-variational inequality, namely
the assumption

〈A(t)F, F 〉 ≥ ν(t)‖F‖2
m, ∀F ∈ Rm

+ , a.e. in [0, T ], (7.3.6)

where ν ∈ L∞([0, T ],R+
0 ) is such that

@I ⊆ [0, T ], µ(I) > 0 : ν(t) = 0, ∀t ∈ I,

with µ Lebesgue’s measure, holds.

Theorem 7.3.3. Let A ∈ C([0, T ],Rm×m
+ ) be a matrix-function satisfying condition

(7.3.6) and let B ∈ C([0, T ],Rm
+ ) be a vector-function. Let λ, µ ∈ C([0, T ],Rm

+ )
and let ρ ∈ C([0, T ] × Rm

+ ,Rl
+) verify conditions (7.3.2) and (7.3.3). Then, the

evolutionary quasi-variational inequality

H ∈ K(H) : 〈A(t)H(t) + B(t), F (t)−H(t)〉 ≥ 0, ∀F (t) ∈ K(t,H), in [0, T ],
(7.3.7)

admits a solution H ∈ K(H) such that H ∈ C([0, T ],Rm
+ ).
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Proof. Propositions 4.3.3 and 4.3.4 and Theorem 6.3.1 imply that there exists a
continuous solution to (7.3.7).

We can obtain a more general result for strictly monotone evolutionary quasi-
variational inequalities.

Theorem 7.3.4. Let A ∈ C([0, T ],Rm×m
+ ) be a matrix-function such that

〈A(t)[H − F ], H − F 〉 > 0, ∀H,F ∈ Rm
+ , H 6= F, in [0, T ],

and let B ∈ C([0, T ],Rm
+ ) be a vector-function. Let λ, µ ∈ C([0, T ],Rm

+ ) and let
ρ ∈ C([0, T ]×Rm

+ ,Rl
+) verify conditions (7.3.2) and (7.3.3). Then, the evolutionary

quasi-variational inequality

〈A(t)H(t) + B(t), F (t)−H(t)〉 ≥ 0, ∀F (t) ∈ K(t,H), in [0, T ], (7.3.8)

admits a solution H ∈ K(H) such that H ∈ C([0, T ],Rm
+ ).

Proof. The assertion follows by Propositions 4.3.3 and 4.3.4 and Theorem 6.4.1.

7.3.2 Nonlinear case

In this section, we analyze under which assumptions the regularity of the dynamic
elastic traffic equilibrium problem associated to a nonlinear cost vector-function is
ensures.

We can able to obtain the following result.

Theorem 7.3.5. Let C ∈ C([0, T ]× Rm
+ ,Rm

+ ) be an operator, satisfying conditions

∃γ ∈ C([0, T ],R+) : ‖C(t, F )‖m ≤ γ(t) + ‖F‖m, ∀F ∈ Rm
+ , (7.3.9)

∃ν > 0 : 〈C(t,H)− C(t, F ), H − F 〉 ≥ ν‖H − F‖2
m, ∀H, F ∈ Rm

+ , (7.3.10)

in [0, T ]. Let λ, µ ∈ C([0, T ],Rm
+ ) be vector-functions and let ρ ∈ C([0, T ]×Rm

+ ,Rl
+)

be an operator satisfying conditions

∃ψ ∈ C([0, T ],R+) : ‖ρ(t, F )‖l ≤ ψ(t) + ‖F‖2
m, ∀F ∈ Rm

+ , (7.3.11)

∃ω ∈ C([0, T ]) : ‖ρ(t,H)− ρ(t, F )‖l ≤ ω(t)‖H − F‖2
m, ∀H,F ∈ Rm

+ , (7.3.12)

in [0, T ]. Then, the evolutionary quasi-variational inequality

H ∈ K(H) : 〈C(t,H(t)), F (t)−H(t)〉 ≥ 0, ∀F (t) ∈ K(t,H), in [0, T ]

admits a solution H ∈ K(H) such that H ∈ C([0, T ],Rm
+ ).

Proof. The assertion is immediate consequence of Proposition 4.3.3 and Theorem
6.2.3.
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This result can be generalized supposing that ν is a function belonging to
L∞([0, T ],Rm), that is

〈C(t, F )−C(t,H), F −H〉 ≥ ν(t)‖F −H‖2
m, ∀F,H ∈ Rm

+ , a.e. in [0, T ], (7.3.13)

where ν ∈ L∞([0, T ],R+
0 ) is such that

@I ⊆ [0, T ], µ(I) > 0 : ν(t) = 0, for a.e. t ∈ I.

Theorem 7.3.6. Let C ∈ C([0, T ] × Rm
+ ,Rm

+ ) be an operator, satisfying condi-
tions (7.3.9) and (7.3.13). Let λ, µ ∈ C([0, T ],Rm

+ ) be vector-functions and let
ρ ∈ C([0, T ] × Rm

+ ,Rl
+) be an operator satisfying conditions (7.3.11) and (7.3.12).

Then, the evolutionary quasi-variational inequality

H ∈ K(H) : 〈C(t,H(t)), F (t)−H(t)〉 ≥ 0, ∀F (t) ∈ K(t,H), in [0, T ]

admits a solution H ∈ K(H) such that H ∈ C([0, T ],Rm
+ ).

Proof. Making use of Propositions 4.3.3 and 4.3.4 and of Theorem 6.3.2, we can
derive the thesis.

But, a more general theorem holds for strictly monotone evolutionary quasi-
variational inequalities, namely it holds

〈C(t, F )− C(t,H), F −H〉 > 0, ∀F, H ∈ Rm
+ , a.e. in [0, T ]. (7.3.14)

Theorem 7.3.7. Let C ∈ C([0, T ] × Rm
+ ,Rm

+ ) be an operator, satisfying condi-
tions (7.3.9) and (7.3.14). Let λ, µ ∈ C([0, T ],Rm

+ ) be vector-functions and let
ρ ∈ C([0, T ] × Rm

+ ,Rl
+) be an operator satisfying conditions (7.3.11) and (7.3.12).

Then, the evolutionary quasi-variational inequality

H ∈ K(H) : 〈C(t,H(t)), F (t)−H(t)〉 ≥ 0, ∀F (t) ∈ K(t,H), in [0, T ]

admits a solution H ∈ K(H) such that H ∈ C([0, T ],Rm
+ ).

Proof. The assertion follows by Propositions 4.3.3 and 4.3.4 and by Theorem 6.4.2.

7.4 Regularity results for dynamic equilibrium prob-

lems in the common formulation

In this section we show that theoretical results, proved for general variational in-
equalities, can be apply to dynamic equilibrium problems written in the common
formulation. In particular, regularity results for the dynamic spatial price equilib-
rium problem can be found in [12].
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We consider the following evolutionary variational inequality

Find u ∈ K such that

¿ F (u), v − u À≥ 0, ∀v ∈ K, (7.4.1)

where

K =

{
u ∈ L2([0, T ],Rq) : λ(t) ≤ u(t) ≤ µ(t), a.e. in [0, T ],

q∑
i=1

ξjiui(t) = ρj(t), a.e. in [0, T ],

ξji ∈ {−1, 0, 1}, i ∈ {1, . . . , q}, j ∈ {1, . . . , l}
}

,

which expresses dynamic equilibrium problems (see Section 2.3). It is worth remark-
ing that problem (7.4.1) (see [65]) is also equivalent to the following one:

Find u ∈ K such that

〈F (t, u(t)), v(t)− u(t)〉 ≥ 0, ∀v(t) ∈ K(t), a.e. in [0, T ], (7.4.2)

where

K(t) =

{
u(t) ∈ Rm : λ(t) ≤ u(t) ≤ µ(t),

q∑
i=1

ξjiui(t) = ρj(t),

ξji ∈ {−1, 0, 1}, i ∈ {1, . . . , q}, j ∈ {1, . . . , l}
}

.

Now, we are able to present the following result.

Theorem 7.4.1. Let F ∈ C([0, T ]× Rq,Rq) be an operator such that

‖F (t, v)‖q ≤ A(t)‖v‖q + B(t), ∀v ∈ Rq, in [0, T ],

with B ∈ C([0, T ],R+) and A ∈ C([0, T ],R+) and

∃ν > 0 : 〈F (t, u)− F (t, v), u− v〉 ≥ ν‖u− v‖2
q, ∀u, v ∈ Rq, in [0, T ].

Let λ, µ ∈ C([0, T ],Rq) and let ρ ∈ C([0, T ],Rl) be vector-functions. Then, evo-
lutionary variational inequality (7.4.2) admits a unique solution u ∈ K such that
u ∈ C([0, T ],Rq).
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Proof. The assertion follows by Proposition 4.4.1 and Theorem 5.2.3.

If the operator F is degenerate, the next theorem holds.

Theorem 7.4.2. Let F ∈ C([0, T ]× Rq,Rq) be an operator such that

‖F (t, v)‖q ≤ A(t)‖v‖q + B(t), ∀v ∈ Rq, in [0, T ],

with B ∈ C([0, T ],R+) and A ∈ C([0, T ],R+) and

〈F (t, u)− F (t, v), u− v〉 ≥ ν(t)‖u− v‖2
q, ∀u, v ∈ Rq, in [0, T ].

where ν ∈ L∞([0, T ],R+
0 ) is such that

@I ⊆ [0, T ], µ(I) > 0 : ν(t) = 0, a.e. in I.

Let λ, µ ∈ C([0, T ],Rq) and let ρ ∈ C([0, T ],Rl) be vector-functions. Then, evo-
lutionary variational inequality (7.4.2) admits a unique solution u ∈ K such that
u ∈ C([0, T ],Rq).

Proof. Taking into account Propositions 4.3.1 and 4.4.2 and Theorem 5.3.2, we can
derive the continuity of the solution to (7.4.2).

Finally, we are able to present a more general continuity result for dynamic
equilibrium problems in the common formulation.

Theorem 7.4.3. Let F ∈ C([0, T ]× Rq,Rq) be an operator such that

‖F (t, v)‖q ≤ A(t)‖v‖q + B(t), ∀v ∈ Rq, in [0, T ],

with B ∈ C([0, T ],R+) and A ∈ C([0, T ],R+) and

〈F (t, u)− F (t, v), u− v〉 > 0, ∀u, v ∈ Rq, u 6= v, in [0, T ].

Let λ, µ ∈ C([0, T ],Rq) and let ρ ∈ C([0, T ],Rl) be vector-functions. Then, evo-
lutionary variational inequality (7.4.2) admits a unique solution u ∈ K such that
u ∈ C([0, T ],Rq).

Proof. Making use to Propositions 4.3.1 and 4.4.2 and Theorem 5.4.2, we obtain the
assertion.
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8
Algorithms to solve dynamic

equilibrium problems

8.1 Introduction

The development of efficient algorithms for the numerical computation of dynamic
equilibria is a topic as important as the qualitative analysis of dynamic equilibria. In
fact, the complexity of dynamic equilibrium problems, united with their increasing
scale, is precluding their resolution via closed form analytics.

In this chapter we propose some algorithms for the computation of equilibria,
by means of discretization methods. The continuity of the solution to dynamic
equilibrium problems, proved in previous chapter, allows us to consider a partition
of the time interval and hence to reduce the infinite-dimensional problem to some
finite-dimensional problems that can be solved by means of a known method. Since
in literature very few results for the calculation of solutions to dynamic equilibrium
problems are available (see for instance the sub-gradient method presented in [37]),
our results seem to have a particular relevance.

In particular, we make use to the projection method, the extragradient method,
Solodov-Svaiter’s method, Solodov-Tseng’s method and descent methods to solve
finite-dimensional variational problems associated to points of the discretization
of the time interval. Then, interpolating numerical solutions with linear splines,
we determine the equilibrium curve of models. Moreover, we give some numerical
examples that have been implemented under MatLab version 6.1a R12.1. The codes
run on a Netebook PC (AMD 64 Athlon).

8.2 The generalized projection method

Let A : [0, T ] → Rq×q be a matrix-function and let B : [0, T ] → Rq be a vector-
function. Let us consider the following evolutionary variational inequality
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Find u ∈ K such that

〈F (u(t)), v(t)− u(t)〉 ≥ 0, ∀v(t) ∈ K(t), a.e. in [0, T ], (8.2.1)

where F (u(t)) = A(t)u(t) + B(t) and

K(t) =

{
u(t) ∈ Rq : λ(t) ≤ u(t) ≤ µ(t),

q∑
i=1

ξjiui(t) = ρj(t),

ξji ∈ {−1, 0, 1}, i ∈ {1, 2, . . . , q}, j ∈ {1, 2, . . . , l}
}

,

which expresses dynamic equilibrium problems in the common formulation.
Now, we present a computational method to compute the dynamic equilibrium

solution to (8.6.1).
We suppose that the assumptions of Theorem 7.4.1 are satisfied and hence (8.6.1)

admits a unique solution u belonging to C([0, T ],Rq). As a consequence, (8.6.1)
holds for each t ∈ [0, T ], namely

〈F (u(t)), v(t)− u(t)〉 ≥ 0, ∀v(t) ∈ K(t), ∀t ∈ [0, T ].

In the following, applying a discretization procedure, we use the projection
method in order to compute the solution to (8.6.1).

We consider now a partition of [0, T ], such that:

0 = t0 < t1 < . . . < tr < . . . < tN = T,

and, for each value tr, for r = 0, 1, . . . , N , we apply the projection method to solve
the finite-dimensional variational inequality

〈F (u(tr)), v(tr)− u(tr)〉 ≥ 0, ∀v(tr) ∈ K(tr), (8.2.2)

where F (u(tr)) = A(tr)u(tr) + B(tr) and

K(tr) =

{
u(tr) ∈ Rq : λ(tr) ≤ u(tr) ≤ µ(tr),

q∑
i=1

ξjiui(tr) = ρj(tr),

ξji ∈ {−1, 0, 1}, i ∈ {1, 2, . . . , q}, j ∈ {1, 2, . . . , l}
}

.

We can compute now the solution to the finite-dimensional variational inequality
(8.2.2) using the following procedure. The algorithm, as it is well known, starting
from any u0(tr) ∈ K(tr) fixed, iteratively updates u(tr) according to the formula

uk+1(tr) = PK(tr)(u
k(tr)− αF (uk(tr))),
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for k ∈ N, where PK(tr)(·) denotes the orthogonal projection map onto K(tr) and
α is a judiciously chosen positive steplength. Here, PK(tr)(u

k(tr)− αF (uk(tr))), for
k ∈ N, is the solution of the following quadratic programming problem

min
u(tr)∈K(tr)

1

2
(u(tr))

T u(tr)− (uk(tr)− αF (uk(tr)))
T u(tr),

for k ∈ N. The projection method is based on the observation that u∗(tr) ∈ K(tr)
is a solution of (8.2.2) if and only if

u∗(tr) = PK(tr)(u
∗(tr)− αF (u∗(tr))).

This method requires restrictive assumptions on C for the convergence. The con-
vergence analysis for the projection methods is based on the contractive properties
of the operator u(tr) → u(tr) − αF (u(tr)): if F (tr) is strongly monotone (with
constant ν) and Lipschitz continuous on K(tr) (with Lipschitz constant L), and if
α ∈ (0, 2ν/L2), the projection method determines a sequence {uk(tr)}k∈N convergent
to a solution of (8.2.2), for every r = 0, 1, . . . , N (see [81] and [89]).

Marcotte and Wu in [60] have shown that the projection algorithm converges for
cocoercive variational inequalities. We recall that the mapping F is cocoercive on
K(tr) if there exists a positive constant ν̃ such that, ∀u(tr), v(tr) ∈ K(tr) one has

〈F (u(tr))− F (v(tr)), u(tr)− v(tr)〉 ≥ ν̃‖F (u(tr))− F (v(tr))‖2
q.

Any strongly monotone (with constant ν) and Lipschitz continuous mapping (with
Lipschitz constant L) is cocoecive with the constant ν̃ = ν

L2 . If K(tr) 6= ∅ and
α ∈ (0, 2ν̃), the cocoercivity of the operator F is sufficient to assure the convergence
of the projection algorithm.

A drawback is the choice of α when L is unknown. Indeed, if α is too small, the
convergence is slow; when α is too large, there might be no convergence at all, this
remark is confirmed by the numerical results shown in Table 8.2.

After iterative procedure, we can construct a function by performing a linear
interpolation.

The complexity of this algorithm is O(Nq2). In fact, the algorithm repeats N
cycles of complexity O(q2), being the operator F affine.

8.2.1 A numerical example

We now consider a transportational network pattern for the simple network shown
in Figure 8.1, consisting of a single O/D pair of nodes A, B and five paths a1, a2,
a3, b1, b2, where a1, a2, a3 are directed from A to B and b1, b2 are the return of a1,
a2 respectively.
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Figure 8.1: Network pattern of the numerical example

The set of feasible flows is given by:

K =
{

F ∈ L2([0, 2],R5) : (5t, 0, 0, 5t, 0) ≤ (F1(t), F2(t), F3(t), F4(t), F5(t))

≤ (15t, 20t, 20t, 20t + 7, 20t + 7),

F1(t) + F2(t) + F3(t) = 52t,

F4(t) + F5(t) = 32t + 7 in [0, 2]
}

.

We consider the cost vector-function on the path C defined by

C : L2([0, 2],R5
+) → L2([0, 2],R5

+);

C1(H(t)) = 2H1(t) + H4(t) + 20,

C2(H(t)) = 5H2(t) + 3H5(t) + 15,

C3(H(t)) = 4H3(t) + 30,

C4(H(t)) = 3H1(t) + 2H4(t) + 10,

C5(H(t)) = 2H2(t) + 5H5(t) + 5.

The theory of evolutionary variational inequalities states that the problem has a
unique equilibrium, since C is strongly monotone, for any arbitrarily fixed point
t ∈ [0, 2]. Indeed, one can easily see that

〈C(H(t))− C(F (t)), (H(t)− F (t))〉 = 2(H1(t)− F1(t))
2 + 3(H2(t)− F2(t))

2

+4(H3(t)− F3(t))
2 + 2(H4(t)− F4(t))

2

+5(H5(t)− F5(t))
2 + 4(H1(t)− F1(t))

(H4(t)− F4(t)) + 5(H2(t)− F2(t))

(H5(t)− F5(t)) ≥ 2‖H(t)− F (t)‖2
m,
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for any H(t), F (t) ∈ R5
+, H(t) 6= F (t) and for every t ∈ [0, 2]. Moreover, it results

that

‖C(H(t))− C(F (t))‖2
m = [2(H1(t)− F1(t)) + 3(H4(t)− F4(t))]

2 + [5(H2(t)− F2(t))

+3(H5(t)− F5(t))]
2 + [4(H3(t)− F3(t))]

2 + [3(H1(t)− F1(t))

+2(H4(t)− F4(t))]
2 + [2(H2(t)− F2(t)) + 5(H5(t)− F5(t))]

2

≤ 26(H1(t)− F1(t))
2 + 58(H2(t)− F2(t))

2 + 16(H3(t)− F3(t))
2

+10(H4(t)− F4(t))
2 + 68(H5(t)− F5(t))

2

≤ 68‖H(t)− F (t)‖2
m,

for any H(t), F (t) ∈ R5
+ and for every t ∈ [0, 2]. As a consequence, the projection

method is convergent for α ∈ (0, 0.058), for the property of C. We can compute an
approximate curve of equilibria, by selecting tr ∈

{
k
15

: k ∈ {0, 1, . . . , 30}}. Using a
MatLab computation and choosing the initial point H0(tr) = (15tr, 20tr, 17tr, 16tr +
3, 16tr + 4) to start the iterative method, we obtain the equilibria consisting of the
points, as shown in Table 8.1.

By implementing our algorithm, we find the approximate equilibrium solutions
(see Table 8.2).

We report the number of iteration (iter), the number of function evaluations (nf),
the number of projections (np) and the time of computation (CPUtime), expressed
by seconds, for different choice of α when the projection method is applied on our
problem. The stopping criterion is ‖R(Hk(tr))‖5 = ‖Hk(tr) − Hk−1(tr)‖5 ≤ 10−6,
for r = 0, 1, . . . , 30.

The interpolation of equilibria points yields the curves of equilibria shown in
Figure 8.2.

8.3 The generalized extragradient method

Let us introduce a method to solve dynamic equilibrium problems formulated in
terms of degenerate evolutionary variational inequalities.

We consider the following evolutionary variational inequality

Find u ∈ K such that

〈F (u(t)), v(t)− u(t)〉 ≥ 0, ∀v(t) ∈ K(t), a.e. in [0, T ], (8.3.1)

where F (u(t)) = A(t)u(t)+B(t), a.e. in [0, T ], with A : [0, T ] → Rq×q satisfying the
following condition

〈A(t)v, v〉 ≥ ν(t)‖v‖2
q, ∀v ∈ Rq, a.e. in [0, T ], (8.3.2)
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Table 8.1: Numerical results
tr H1(tr) H2(tr) H3(tr) H4(tr) H5(tr)
0 0 0 0 4.2837012 2.7162988

1/15 1 1.3333333 1.1333333 5.7599347 3.3733986
2/15 2 2.4989472 2.4343861 7.1886468 4.0780199
1/5 3 3.4 4 8.5408460 4.8591540

4/15 4 4.5333333 5.3333333 9.9598888 5.5734445
1/3 5 5.6666667 6.6666667 11.378967 6.2877000
2/5 6 6.8 8 12.798003 7.0019972

7/15 7 7.9333333 9.3333333 14.217060 7.7162730
8/15 8 9.0666667 1.0666667 15.636135 8.4305316
3/5 9 10, 2 1.2 17.055156 9.1448435
2/3 10 11.333333 13.333333 18.474190 9.8591432

11/15 11 12.466667 14.666667 19.893234 10.573432
4/5 12 13.6 16 21.312288 11.287712

13/15 13 14.733333 17.333333 22.731349 12.001984
14/15 14 15.866667 18.666667 24.150418 12.716249

1 15 17 20 25.569425 13.430575
16/15 16 18.133333 21.333333 26.988505 14.144828
17/15 17 19.266667 22.666667 28.407523 14.859144

6/5 18 20.4 24 29.826613 15.573387
19/15 19 21.533333 25.333333 31.245640 16.287693

4/3 20 22.666667 26.666667 32.664670 17.001996
7/5 21 23.8 28 34.083704 17.716296

22/15 22 24.933333 29.333333 35.502741 18.430593
23/15 23 26.066667 30.666667 36.921849 19.144817

8/5 24 27.2 32 38.340892 19.859108
5/3 25 28.333333 33.333333 39.759938 20.573396

26/15 26 29.466667 34.666667 41.178985 21.287681
9/5 27 30.6 36 42.598036 22.001964

28/15 28 31.733333 37.333333 44.017088 22.716246
29/15 29 32.866667 38.666667 45.436074 23.430593

2 30 34 40 46.855130 24.144870

where ν ∈ L∞([0, T ],R+
0 ) is such that @I ⊆ [0, T ], µ(I) > 0: ν(t) = 0, ∀t ∈ I,

B : [0, T ] → Rq, and

K(t) =

{
u(t) ∈ Rq : λ(t) ≤ u(t) ≤ µ(t),

q∑
i=1

ξjiui(t) = ρj(t),

ξji ∈ {−1, 0, 1}, i ∈ {1, 2, . . . , q}, j ∈ {1, 2, . . . , l}
}

.

We suppose that the assumptions of Theorem 7.4.2 are satisfied and hence the
evolutionary variational inequality (8.3.1) admits a unique solution u belonging to
C([0, T ],Rq). As a consequence, (8.3.1) holds for each t ∈ [0, T ], namely

〈F (u(t)), v(t)− u(t)〉 ≥ 0, ∀v(t) ∈ K(t), ∀t ∈ [0, T ].
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Figure 8.2: Curves of equilibria.

A more refined method for solving variational inequalities is the extragradient method,
but it can be applied to evolutionary variational inequalities after that a discretiza-
tion procedure has been made.

In the following, applying a discretization procedure, we will use the extragradi-
ent method and we will compute the solution of a variational inequality associated
to a transportation network.

Let us consider a partition of [0, T ], such that:

0 = t0 < t1 < . . . < tr < . . . < tN = T,

hence, for each value tr, for r = 0, 1, . . . , N , we obtain the finite-dimensional varia-
tional inequality

〈F (u(tr)), v(tr)− u(tr)〉 ≥ 0, ∀v(tr) ∈ K(tr), (8.3.3)

where F (u(tr)) = A(tr)H(tr) + B(tr) and

K(tr) =

{
u(tr) ∈ Rq : λ(tr) ≤ u(tr) ≤ µ(tr),

q∑
i=1

ξjiui(tr) = ρj(tr),

ξji ∈ {−1, 0, 1}, i ∈ {1, 2, . . . , q}, j ∈ {1, 2, . . . , l}
}

.

We compute now the solution to the finite-dimensional variational inequality (8.3.3)
using the extragradient method. The algorithm, as it is well known, starting from
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any u0(tr) ∈ K(tr) fixed, iteratively updates uk+1(tr) from uk(tr) according to the
double projection formula

uk(tr) = PK(tr)(u
k(tr)− αF (uk(tr))), uk+1(tr) = PK(tr)(u

k(tr)− αF (uk(tr))),

for k ∈ N, where PK(tr)(·) denotes the orthogonal projection map onto K(tr).
In [15] and [100] the convergence of the extragradient method is proved under

the following hypothesis: F is a monotone and Lipschitz continuous mapping and
α ∈ (0, 1/L) where L is the Lipschitz constant.

A drawback is the choice of α when L is unknown. Indeed, if α is too small, the
convergence is slow; when α is too large, there might be no convergence at all.

After an iterative procedure, we can construct a function by performing a linear
interpolation.

We remark that a drawback is the choice of α when L is unknown. Indeed, if α is
too small, the convergence is slow; when α is too large, there might be no convergence
at all. Then, Khobotov in [50] introduced the idea to perform an adaptive choice of
α, changing its value at each iteration. Now, we present a modification of Khoboton’s
algorithm obtained by Marcotte in [59].

The algorithm starting from any u0(tr) ∈ K(tr) and a number α0 > 0 fixed, iter-
atively updates uk+1(tr) from uk(tr) according to the following projection formulas

uk+1(tr) = PK(tr)(u
k(tr)− αkF (uk(tr))), uk(tr) = PK(tr)(u

k(tr)− αkF (uk(tr)))

for k ∈ N, where αk is chosen as following

αk = min

{
αk−1

2
,

‖uk(tr)− uk(tr)‖q√
2‖F (uk(tr))− F (uk(tr))‖q

}
.

If F is a monotone and Lipschitz continuous mapping, then, the convergence of the
scheme is proved. This method was improved by Tinti in [99].

After the iterative procedure, we can construct the dynamic equilibrium solution
by means of a linear interpolation of the obtained static equilibrium solutions.

The complexity of algorithms is O(Nq2). In fact, algorithms repeats N cycles of
complexity O(q2), being the operator F affine.

8.3.1 A numerical example

Now, we apply the generalized extragradient method to solve a numerical example.
Let us consider a transportation network pattern for the network shown in Figure
8.3. The network consists of six nodes and eight links. We assume that the O/D
pairs are represented by w1 = (P1, P5) and w2 = (P2, P6), which are respectively
connected by the following paths:

w1 :

{
R1 = (P1, P2) ∪ (P2, P5)

R2 = (P1, P4) ∪ (P4, P5),
w2 :





R3 = (P2, P3) ∪ (P3, P6)

R4 = (P2, P5) ∪ (P5, P6)

R5 = (P2, P5) ∪ (P5, P3) ∪ (P3, P6).
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Figure 8.3: A network model.
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Figure 8.4: Curves of equilibria.

We consider the cost vector-function on path C defined by

C : L2([0, 2],R5
+) → L2([0, 2],R5

+);

C1(H(t)) = (2t + 1)H1(t) + t2H4(t) + (t + 3)H5(t) + 3t + 1,

C2(H(t)) = (t + 1)2H2(t) + t2 + 3,

C3(H(t)) = (2t + 3)H3(t) + (t2 + 2)H5(t) + 2t,

C4(H(t)) = t2H1(t) + (t + 4)H4(t) + t2H5(t),

C5(H(t)) = (t + 3)H1(t) + (t2 + 2)H3(t) + t2H4(t) + (3t2 + 2)H5(t) + t + 2.
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The set of feasible flows is given by:

K =
{

F ∈ L2([0, 2],R5
+) : (0, 0, 0, 0, 0) ≤ (F1(t), F2(t), F3(t), F4(t), F5(t))

≤ (20t + 15, 30t + 10, 20t + 15, 40t + 19, 30t + 21),

F1(t) + F2(t) = 2t + 3,

F3(t) + F4(t) + F5(t) = 6t + 5, in [0, 2]
}

.

It is easy to verify that the cost vector-function is degenerate. Moreover, it results
that

‖C(H(t))− C(F (t))‖2
m = [(2t + 1)(H1(t)− F1(t)) + t2(H4(t)− F4(t)) + (t + 3)

(H5(t)− F5(t))]
2 + [(t + 1)2(H2(t)− F2(t))]

2

+[(2t + 3)(H3(t)− F3(t)) + (t2 + 2)(H5(t)− F5(t)]
2

+[t2(H1(t)− F1(t)) + (t + 4)(H4(t)− F4(t)) + t2

(H5(t)− F5(t)]
2 + [(t + 3)(H1(t)− F1(t)) + (t2 + 2)

(H3(t)− F3(t)) + t2(H4(t)− F4(t)) + (3t2 + 2)

(H5(t)− F5(t))]
2

≤ [3(2t + 1)2 + 3t4 + 4(t + 3)2](H1(t)− F1(t))
2 + (t + 1)4

(H2(t)− F2(t))
2 + [2(2t + 3)2 + 4(t2 + 2)](H3(t)− F3(t))

2

+[3t4 + 3(t + 4)2 + 4t4](H4(t)− F4(t))
2 + [3(t + 3)2

+2(t2 + 2)2 + 3t4 + 4(3t2 + 2)2](H5(t)− F5(t))
2

≤ 979‖H(t)− F (t)‖2
m,

for any H(t), F (t) ∈ R5
+ and for t ∈ [0, 2]. As a consequence, the extragradient

method is convergent for α ∈ (0, 0.031), for the property of C. We can compute an
approximate curve of equilibria, by selecting tr ∈

{
k
15

: k ∈ {0, 1, . . . , 30}}. Using
a simple MatLab computation and choosing the initial point H0(tr) = (tr + 1, tr +
2, 2tr + 2, 2tr + 2, 2tr + 1) to start the iterative method, we obtain the equilibria
consisting of the points, as shown in Table 8.3 with the speed of the convergence of
the method.

In detail, we report the number of iteration (iter), the number of function
evaluations (nf), the number of projections (np) and the time of computation
(CPUtime), expressed by seconds, for different methods. The stopping criterion
is ‖R(Hk(tr))‖5 = ‖Hk(tr)−Hk−1(tr)‖5 ≤ 10−6, for r = 0, 1, . . . , 30.

The interpolation of equilibria points yields the curves of equilibria, how we can
see in Figure 8.5.

8.3.2 A numerical example

In this subsection, we compute the equilibrium solution to a traffic network by means
of the generalized version of Marcotte’s method. Let us consider a network as Figure
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8.6. The network consists of four nodes and five links. The origin-destination pair is
w = (P1, P3), which is connected by the paths R1 = (P1, P3), R2 = (P1, P2)∪(P2, P3)
and R3 = (P1, P2) ∪ (P2, P4) ∪ (P4, P3). We consider the cost operator on the path
C defined by

C : L2([0, 2],R3
+) → L2([0, 2],R3

+);

C1(H(t)) = (t + 3)H1(t) + 2t,

C2(H(t)) = (2t + 4)H2(t) + 1,

C3(H(t)) = 3tH2(t) + (t + 2)H3(t) + t + 5.

The set of feasible flows is given by

K =
{

F ∈ L2([0, 2],R3
+) : (2t, 2t, 0) ≤ (F1(t), F2(t), F3(t)) ≤ (10t + 5, 5t + 3, 2t + 1),

F1(t) + F2(t) + F3(t) = 5t + 3, in [0, 2]
}

.

Now, we prove that the cost-vector function is strongly monotone:

〈C(H(t))− C(F (t)), H(t)− F (t)〉 = (t + 3)[H1(t)− F1(t)]
2 + (2t + 4)

[H2(t)− F2(t)]
2 +

{
3t[H2(t)− F2(t)]

+(t + 2)[H3(t)− F3(t)]
}
[H3(t)− F3(t)]

≥
(
2− 1

2
t
)
‖H(t)− F (t)‖2

3

≥ ‖H(t)− F (t)‖2
3,

for any H(t), F (t) ∈ R3
+.

Moreover, the cost vector-function is Lipschitz continuous, in fact it results that

‖C(H(t))− C(F (t))‖2
m = [(t + 3)(H1(t)− F1(t))]

2 + [(2t + 4)(H2(t)− F2(t))]
2

+[3t(H2(t)− F2(t)) + (t + 2)(H3(t)− F3(t))]
2

≤ 2(11t2 + 8t + 8)‖H(t)− F (t)‖2
m

≤ 136‖H(t)− F (t)‖2
3,

for any H(t), F (t) ∈ R3
+.

Now, we solve the numerical problem using the generalized Marcotte’s version of
the extragradient method. This methos is convergent for the property of C. Then,
we can compute an approximate curve of equilibria, by selecting tr ∈

{
k
15

: k ∈
{0, 1, . . . , 30}}. Using a simple MatLab computation and choosing the initial point
H0(tr) = (2tr + 1, 2tr + 1, tr + 1) to start the iterative method, we obtain the static
equilibrium solutions, as shows Table 8.4. The stopping criterion is ‖R(Hk(tr))‖3 =
‖Hk(tr)−Hk−1(tr)‖3 ≤ 10−6, for r = 0, 1, . . . , 30.

The interpolation of equilibria points yields the curves of equilibria, as shows
Figure 8.7.
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Figure 8.7: Curves of equilibria.

8.4 The generalized projection-contraction method

Let F : [0, T ]× Rq → Rq be a nonlinear operator, such that

〈F (t, u)− F (t, v), u− v〉 ≥ ν‖u− v‖2
q, ∀u, v ∈ Rq, a.e. in [0, T ]. (8.4.1)

Let us consider the following evolutionary variational inequality:

Find u ∈ K such that

〈F (t, u(t)), v(t)− u(t)〉 ≥ 0, ∀v(t) ∈ K(t), a.e. in [0, T ], (8.4.2)

where

K(t) =

{
u(t) ∈ Rq : λ(t) ≤ u(t) ≤ µ(t),

q∑
i=1

ξjiui(t) = ρj(t),

ξji ∈ {−1, 0, 1}, i ∈ {1, 2, . . . , q}, j ∈ {1, 2, . . . , l}
}

.

We suppose that the assumptions of Theorem 7.4.1 are satisfied, then the unique
solution u to evolutionary variational inequality (8.4.2) belongs to C([0, T ],Rq). As
a consequence, (8.4.2) holds for each t ∈ [0, T ], namely

〈F (t, u(t)), v(t)− u(t)〉 ≥ 0, ∀v(t) ∈ K(t), ∀t ∈ [0, T ].
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Now, we generalize a method for solving the static variational inequalities in the
dynamic case.

In the beginning, we apply a discretization procedure in this way: we consider a
partition of time interval [0, T ], such that:

0 = t0 < t1 < . . . < tr < . . . < tN = T.

Then, for each value tr, for r = 0, 1, . . . , N , we consider the static variational in-
equality

〈F (tr, u(tr)), v(tr)− u(tr)〉 ≥ 0, ∀v(tr) ∈ K(tr), (8.4.3)

where

K(tr) =

{
u(tr) ∈ Rq : λi(tr) ≤ Fi(tr) ≤ µi(tr),

q∑
i=1

ξjiui(tr) = ρj(tr),

ξji ∈ {−1, 0, 1}, i ∈ {1, 2, . . . , q}, j ∈ {1, 2, . . . , l}
}

.

Now, we can compute the solution to the finite-dimensional variational inequality
(8.4.3) using a class of projection-contraction methods proposed by Solodov and
Tseng in [92] and improved by Tinti in [99].

The idea of these algorithms is to choose a symmetric positive definite matrix
M ∈ Rq×q and a starting point u0(tr) ∈ K(tr), and to iteratively update uk(tr), as
follows:

uK(tr) = PK(tr)(u
k(tr)− αF (tr, u

k(tr))),

uk+1(tr) = uk(tr)− γM−1(Tα(uk(tr))− Tα(uK(tr)),

where γ ∈ R+ and Tα = (I − αF ) in which I is the identity matrix, α ∈ (0, +∞)
is chosen dynamically (according to an Armijo type rule), so that Tα is strongly
monotone. These methods converge under condition that a solution exists and the
operator is monotone. Unlike the extragradient method, the procedure require only
one projection per iteration, and they have an additional parameter, the scaling
matrix M , that must be chosen as a symmetric positive matrix to accelerate the
convergence.

After the iterative procedure, we can construct the equilibrium solution by per-
forming a linear interpolation.

The complexity of this algorithm is O(Nq3). In fact, the algorithm repeats N
cycles of complexity O(q3), being the operator F nonlinear.

8.4.1 A numerical example

Now, we consider a transportation network pattern for the network shown in Figure
8.8. The network consists of six nodes and eight links. We assume that the origin-
destination pairs are represented by w1 = (P1, P2) and w2 = (P3, P4), which are
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Figure 8.8: A network model.

respectively connected by the following paths:

w1 :

{
R1 = (P1, P4) ∪ (P4, P2)

R2 = (P1, P4) ∪ (P4, P3),
w2 :

{
R3 = (P3, P1) ∪ (P1, P4)

R4 = (P3, P2) ∪ (P2, P1) ∪ (P1, P4).

We consider the cost vector-function on the path C defined by

C : L2([0, 2],R4
+) → L2([0, 2],R4

+);

C1(H(t)) = 4H2
1 (t) + 2H2(t) + 5,

C2(H(t)) = 4
√

H1(t) + 5H3
2 (t) + 1,

C3(H(t)) = 8
√

H2(t) + 3H2
3 (t) + 2,

C4(H(t)) = 2 cos H1(t) + 4
√

H3(t) + 5H4(t) + 4.

The set of feasible flows is given by:

K =
{

F ∈ L2([0, 2],R4
+) : (t + 1, t + 1, t + 1, 2t) ≤ (F1(t), F2(t), F3(t), F4(t))

≤ (2t + 1, 2t + 4, 2t + 3, 4t + 5), F1(t) + F2(t) = 3t + 4,

F3(t) + F4(t) = 2t + 3, a.e. in [0, 2]
}

.

It is easy to verify that the cost vector-function is strongly monotone then the
associated evolutionary variational inequality admits a unique solution. Indeed, it
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results

〈C(H(t))− C(F (t)), H(t)− F (t)〉 = 4(H1(t)− F1(t))
2(H1(t) + F1(t))

+5(H2(t)− F2(t))
2(H2

2 (t) + H2(t)F2(t) + F 2
2 (t))

+3(H3(t)− F3(t))
2(H2

3 (t) + H3(t)F3(t) + F 2
3 (t))

+5(H4(t)− F4(t))
2 +

(
2 +

4√
H1(t) +

√
F1(t)

)

(H1(t)− F1(t))(H2(t)− F2(t)) + 2

(cos H1(t)− cos F1(t))(H4(t)− F4(t)) + 8

(H2(t)− F2(t))(H3(t)− F3(t))√
H2(t) +

√
F2(t)

+ 4

(H3(t)− F3(t))(H4(t)− F4(t))√
H3(t) +

√
F3(t)

≥
(

7− 2√
H1(t) +

√
F1(t)

)
(H1(t)− F1(t))

2

−(cos H1(t)− cos F1(t))
2

+

[
5(H2

2 (t) + H2(t)F2(t) + F 2
2 (t))− 1

− 2√
H1(t) +

√
F1(t)

− 4√
H2(t) +

√
F2(t)

]

(H2(t)− F2(t))
2 +

[
3(H2

3 (t) + H3(t)F3(t) + F 2
3 (t))

− 4√
H2(t) +

√
F2(t)

− 2√
H3(t) +

√
F3(t)

]

(H3(t)− F3(t))
2

(
4− 2√

H3(t) +
√

F3(t)

)

(H1(t)− F1(t))
2

≥ 5(H1(t)− F1(t))
2 + 11(H2(t)− F2(t))

2

+6(H3(t)− F3(t))
2 + 3(H4(t)− F4(t))

2

≥ 3‖H(t)− F (t)‖2
4,

for any H(t), F (t) ∈ R4
+.

Now, we can compute an approximate curve of equilibria, by selecting tr ∈
{

k
15

:
k ∈ {0, 1, . . . , 30}}. Using a simple MatLab computation and choosing the initial
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Figure 8.9: Curves of equilibria.

point H0(tr) = (2tr +2, tr +2, tr +2, tr +1) to start the iterative method, we obtain
the equilibria consisting of the points, as shown in Table 8.5. The stopping criterion
is ‖R(Hk(tr))‖4 = ‖Hk(tr)−Hk−1(tr)‖4 ≤ 10−6, for r = 0, 1, . . . , 30.

The interpolation of equilibria points yields the curves of equilibria in Figure 8.9.

8.5 The generalized Solodov-Svaiter’s method

In this section, we present a method to compute solutions to nonlinear degenerate
evolutionary variational inequalities which model dynamic equilibrium problems.

Let F : [0, T ]× Rq → Rq be a nonlinear operator satisfying conditions

‖F (t, v)‖q ≤ A(t)‖v‖q + B(t), ∀v ∈ Rq, a.e. in [0, T ], (8.5.1)

with B ∈ L2([0, T ]) and A ∈ L∞([0, T ]), and

〈F (t, u)− F (t, v), u− v〉 ≥ ν(t)‖u− v‖2
q, ∀u, v ∈ Rq, a.e. in [0, T ], (8.5.2)

where ν ∈ L∞([0, T ],R+
0 ) is such that @I ⊆ [0, T ], µ(I) > 0: ν(t) = 0, ∀t ∈ I.

Let us consider the nonlinear degenerate evolutionary variational inequality

Find H ∈ K such that

〈F (t, u(t)), v(t)− u(t)〉 ≥ 0, ∀v(t) ∈ K(t), a.e. in [0, T ], (8.5.3)
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where

K(t) =

{
u(t) ∈ Rq : λ(t) ≤ u(t) ≤ µ(t),

q∑
i=1

ξjiui(t) = ρj(t),

ξji ∈ {−1, 0, 1}, i ∈ {1, 2, . . . , q}, j ∈ {1, 2, . . . , l}
}

.

If all assumptions of Theorem 7.4.2 are satisfied, the evolutionary variational
inequality admits a unique solution u belonging to C([0, T ],Rq). As a consequence,
(8.7.3) holds for each t ∈ [0, T ], namely

〈F (t, u(t)), v(t)− u(t)〉 ≥ 0, ∀v(t) ∈ K(t), ∀t ∈ [0, T ].

Then, we can use a partition of [0, T ], as follows

0 = t0 < t1 < . . . < tr < . . . < tN = T,

and solve, for each value tr, for r = 0, 1, . . . , N , the following static variational
inequality

〈F (tr, u(tr)), v(tr)− u(tr)〉 ≥ 0, ∀v(tr) ∈ K(tr), (8.5.4)

where

K(tr) =

{
u(tr) ∈ Rq : λ(tr) ≤ u(tr) ≤ µ(tr),

q∑
i=1

ξjiui(tr) = ρj(tr),

ξji ∈ {−1, 0, 1}, i ∈ {1, 2, . . . , q}, j ∈ {1, 2, . . . , l}
}

,

by means of a projection method and construct the approximate curve of equilibria
with a linear interpolation.

Now, we present the projection algorithm that was proposed by Solodov and
Svaiter, in [91].

Let uk(tr) be the current approximation of the solution to (8.5.4); first, we com-
pute the point PK(tr)(u

k(tr) − µkF (tr, u
k(tr))); next, we search the line segment

between uk(tr) and PK(tr)(u
k(tr − µkF (tr, u

k(tr)))) for a point Gj(tr) such that the
hyperplane

∂uk(tr) =
{

u(tr) ∈ Rq : 〈F (ti, z
k(tr)), u(tr)− zk(tr)〉 = 0

}

strictly separates uk(tr) from the solution to (8.5.4). To compute zk(tr), an Armijo-
type procedure is used; after the hyperplane ∂uk(tr) is constructed, the next iterate
uk+1(tr) is computing by projecting uk(tr) onto the intersection between the feasible
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Figure 8.10: A network model.

set K(tr) with the half-space uk(tr) = {u(tr) ∈ Rq : 〈F (tr, z
k(tr)), u(tr)− zk(tr)〉 ≤

0} which contains the solution to (8.5.4).

In [91], it is shown that this method is convergent to a solution to the vari-
ational inequality problem under the only assumption that F is continuous and
pseudomonotone.

After the iterative procedure, we can construct the dynamic equilibrium solution
by means of a linear interpolation of the obtained static equilibrium solutions.

The complexity of this algorithm is O(Nq3). In fact, the algorithm repeats N
cycles of complexity O(q3), being the operator F nonlinear.

8.5.1 A numerical example

Let us consider a network as Figure 8.10. The network consists of four nodes and
five links. The origin-destination pair is w = (P1, P2), which is connected by the
paths R1 = (P1, P2), R2 = (P1, P3)∪ (P3, P2) and R3 = (P1, P4)∪ (P4, P3)∪ (P3, P2).
We consider the cost operator on the path C defined by

C : L2([0, 2],R3
+) → L2([0, 2],R3

+);

C1(H(t)) =
1

4
tH1(t) + 3t + 1,

C2(H(t)) = 3t2H2(t) +
√

t5H2
3 (t) + t2 + 2,

C3(H(t)) = t2
√

H1(t) +
7

2
t3H3(t) +

√
t +

4

3
.

The set of feasible flows is given by

K =
{

F ∈ L2([0, 2],R3
+) : (t + 1, 2t + 1, t + 2) ≤ (F1(t), F2(t), F3(t))

≤ (3(t + 1), 4t + 3, 3t + 4),

F1(t) + F2(t) + F3(t) = 7t + 2, in [0, 2]
}

.
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In the following, we verify that the cost vector-function is degenerate

〈C(H(t))− C(F (t)), H(t)− F (t)〉 =
1

4
t(H1(t)− F1(t))

2 + 3t2(H2(t)− F2(t))
2

+
√

t5(H3(t) + F3(t))(H3(t)− F3(t))

(H2(t)− F2(t)) +
t2√

H1(t) +
√

F1(t)
(H1(t)− F1(t))

(H3(t)− F3(t)) +
7

2
t3(H3(t)− F3(t))

2

≥
(

1

4
t− t

2(
√

H1(t) +
√

F1(t))

)
(H1(t)− F1(t))

2

+

[
3t2 − t2

2
(H3(t) + F3(t))

]
(H2(t)− F2(t))

2

+

[
7

2
t3 − t3

2
(H3(t) + F3(t))− t3

12

]
(H3(t)− F3(t))

2

≥ 1

6
t(H1(t)− F1(t))

2 + t2(H2(t)− F2(t))
2

+
17

12
t3(H3(t)− F3(t))

2

≥ ν(t)‖H(t)− F (t)‖2
3,

for any H(t), F (t) ∈ R3
+ and for t ∈ [0, 2], where

ν(t) =





17

12
t3, in

[
0,

√
2

17

]
,

1

6
t, in

]√
2

17
, 2

]
.

Then, by Theorem 5.3.2 it follows that the problem admits a unique continuous
equilibrium solution.
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Moreover, the cost vector-function is continuous, in fact it results

‖C(H(t))− C(F (t))‖2
3 =

[
1

4
t(H1(t)− F1(t))

]2

+

[
3t2(H2(t)− F2(t)) +

√
t5

(H2
3 (t)− F 2

3 (t))

]2

+

[
t2(

√
H1(t)−

√
F1(t))

+
7

2
t3(H3(t)− F3(t))

]2

≤
[

1

16
t2 +

2t4

(
√

H1(t) +
√

F1(t))2

]
(H1(t)− F1(t))

2

+18t4(H2(t)− F2(t))
2 + 2

[
t5(H3(t) + F3(t))

2 +
49

4
t6

]

(H3(t)− F3(t))
2

≤ 27168‖H(t) + F (t)‖2
3,

for any H(t), F (t) ∈ R3
+ and for t ∈ [0, 2]. Hence, Solodov-Svaiter’s method is con-

vergent, so we can use the generalized version of the method to solve the problem
with the partition ti ∈

{
k
15

: k ∈ {0, 1, . . . , 30}}. We use a simple MatLab com-
putation and we choose the initial point H0(ti) = (2ti, 3ti + 1, 2ti + 1) to start the
iterative method, then we obtain the static equilibrium solutions shown in Table
8.6. The stopping criterion is ‖R(Hk(tr))‖3 = ‖Hk(tr) − Hk−1(tr)‖3 ≤ 10−6, for
i = 0, 1, . . . , 30.

The interpolation of equilibria points yields the curves of equilibria, as shows
Figure 8.11.

8.6 The generalized descent method: first version

Let F : [0, T ] × Rq → Rq be an operator, and let us consider dynamic equilibrium
problems which are modeled by the following evolutionary variational inequality

Find u ∈ K such that

〈F (t, u(t)), v(t)− u(t)〉 ≥ 0, ∀v(t) ∈ K(t), a.e. in [0, T ], (8.6.1)

where

K(t) =

{
u(t) ∈ Rq : λ(t) ≤ u(t) ≤ µ(t),

q∑
i=1

ξjiui(t) = ρj(t),

ξji ∈ {−1, 0, 1}, i ∈ {1, 2, . . . , q}, j ∈ {1, 2, . . . , l}
}

.
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Figure 8.11: Curves of equilibria.

We suppose that the assumptions of Theorem 7.4.2 are satisfied and hence the
solution u to (8.6.1) belongs to C([0, T ],Rq). As a consequence, (8.6.1) holds for
each t ∈ [0, T ], namely

〈F (t, u(t)), v(t)− u(t)〉 ≥ 0, ∀v(t) ∈ K(t), ∀t ∈ [0, T ].

In the following, applying a discretization procedure, we will use a combined
relaxation method to compute the solution to the evolutionary variational inequality.
This method (see [53]) runs as follows. After a partition of real interval [0, T ], such
that:

0 = t0 < t1 < . . . < tr < . . . < tN = T.

the algorithm, to solve the finite-dimensional variational inequality

〈F (tr, u(tr)), v(tr)− u(tr)〉 ≥ 0, ∀v(tr) ∈ K(tr),

where

K(tr) =

{
u(tr) ∈ Rq : λi(tr) ≤ Fi(tr) ≤ µi(tr),

q∑
i=1

ξjiui(tr) = ρj(tr),

ξji ∈ {−1, 0, 1}, i ∈ {1, 2, . . . , q}, j ∈ {1, 2, . . . , l}
}

,
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Figure 8.12: A network model.

starts from any u0(tr) ∈ K(tr) fixed, from a sequence {γk} satisfying the following
conditions

γk ∈ [0, 2], k = 0, 1, . . . ;
+∞∑

k=0

γk(2− γk) = ∞,

and from numbers α ∈ (0, 1), β ∈ (0, 1), θ̃ > 0 chosen. Set k := 0. It finds m as the
smallest number in Z+ such that

〈F (tr, u
k(tr))− F (tr, z

k,m(tr)), u
k(tr)− zk,m(tr)〉 ≤ (1− α)(θ̃βm)−1 (8.6.2)

‖zk,m(tr)− uk(tr)‖2
q,

where zk,m(tr) is a solution to the auxiliary problem of finding z(tr) ∈ K(tr) such
that

〈F (tr, u
k(tr)) + (θ̃βq)−1(z(tr)− uk(tr)), u(tr)− z(tr)〉 ≥ 0, ∀u(tr) ∈ K(tr).

Set θk := βmθ̃, vk(tr) := zk,m(tr). If uk(tr) = vk(tr) or F (tr, v
k(tr)) = 0, the

algorithm stops, else, setting

tk(tri) := F (tr, F
k(tr))− F (tr, u

k(tr))− θ−1
k (vk(tr)− uk(tr)),

fk(tr) := F (tr, v
k(tr)), σk(tr) := αθ−1

k ‖vk(tr)− uk(tr)‖2
q/‖tk(tr)‖2

q,

uk+1(tr) := PK(tr)(u
k(tr)− γkσ

k(tr)f
k(tr)),

the iteration repeats itself. After a linear interpolation, the approximate equilibrium
solution is constructed.

In [53] it is shown that this method is convergent to a solution of the finite-
dimensional variational inequality problem under the only assumption that F is
locally Lipschitz continuous and monotone.

The complexity of this algorithm depends on the choose of the procedure to
compute the small number in Z+ such that (8.6.2) holds.

8.6.1 A numerical example

Let us consider a network (see Figure 8.12) where N = {P1, P2, P3, P4} is the set of
the nodes and L = {(P1, P4), (P2, P1), (P2, P3), (P3, P1), (P3, P4)} is the set of links.
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We assume that the origin-destination pair is w = (P2, P4), so that the routes are
the following:

R1 = (P2, P4) ∪ (P1, P4),

R2 = (P2, P3) ∪ (P3, P4),

R3 = (P2, P3) ∪ (P3, P1) ∪ (P1, P4).

Let us consider that the route costs are the following:

C : L2([0, 2],R3
+) → L2([0, 2],R3

+);

C1(t,H(t)) = 3tH2
1 (t) + t4 + 1,

C2(t,H(t)) = 2t2H3
2 (t) + 2,

C3(t,H(t)) = sin t ·H3(t) + 3t + 1.

The set of feasible flows is given by

K =
{

F ∈ L2([0, 2],R3
+) : (

√
t + 1, 2t + 1, t2 + 2) ≤ (F1(t), F2(t), F3(t))

≤ (5t + 4, 4t3 + 10t, 3t2 + 4),

F1(t) + F2(t) + F3(t) = 5t2 + 2t + 1, in [0, 2]
}

.

Now, we prove that the cost vector-function is degenerate

〈C(t,H(t))− C(t, F (t)), H(t)− F (t)〉 = 3t(H2
1 (t)− F 2

1 (t))(H1(t)− F1(t)) + 2t2

(H3
2 (t)− F 3

2 (t))(H2(t)− F2(t)) + sin t

(H3(t)− F3(t))
2 ≥ 3t(H1(t) + F1(t))

(H1(t)− F1(t))
2 + 2t2

(H2
2 (t) + H2(t)F2(t) + F 2

2 (t))(H2(t)− F2(t))
2

+ sin t(H3(t)− F3(t))
2 ≥ 6t(H1(t)− F1(t))

2

+6t2(H2(t)− F2(t))
2 + sin t(H3(t)− F3(t))

2

≥ ν(t)‖H(t)− F (t)‖2
3,

for any H(t), F (t) ∈ R3
+ and for every t ∈ [0, 2], where

ν(t) =

{
6t, in [0, 1],

6t2, in ]1, 2].

So, all the assumptions of Theorem 7.2.7 are verified. Then, the problem admits
a unique continuous equilibrium solution.

Moreover, the cost vector-function is obviously Lipschitz continuous. Hence, the
descent method is convergent, so we can use the generalized version of the method to
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Figure 8.13: Curves of equilibria.

solve the problem with the partition tr ∈
{

k
15

: k ∈ {0, 1, . . . , 30}}. We use a simple
MatLab computation and we choose the initial point H0(tr) = (2t2r, 2t

2
r+tr, t

2
r+tr+1)

to start the iterative method. Then, we obtain the equilibrium solutions for every
time instant which are shown in Table 8.7. The stopping criterion is ‖R(Hk(tr))‖3 =
‖Hk(tr)−Hk−1(tr)‖3 ≤ 10−6, for r = 0, 1, . . . , 30.

The interpolation of equilibria points yields the curves of equilibria, as Figure
8.13 shows.

8.7 The generalized descent method: second ver-

sion

Now, we present a method to compute solutions to dynamic equilibrium problems
which are expressed to nonlinear strictly monotone evolutionary variational inequal-
ities.

Let F : [0, T ]× Rq → Rq be an operator satisfying conditions

‖F (t, v)‖q ≤ A(t)‖v‖q + B(t), ∀v ∈ Rq
+, a.e. in [0, T ], (8.7.1)

with B ∈ L2([0, T ]) and A ∈ L∞([0, T ]), and

〈F (t, u)− F (t, v), u− v〉 > 0, ∀u, v ∈ Rq, u 6= v, a.e. in [0, T ]. (8.7.2)

Let us consider the evolutionary variational inequality
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Find H ∈ K such that

〈F (t, u(t)), v(t)− u(t)〉 ≥ 0, ∀v(t) ∈ K(t), a.e. in [0, T ], (8.7.3)

where

K(t) =

{
u(t) ∈ Rq : λ(t) ≤ u(t) ≤ µ(t),

q∑
i=1

ξjiui(t) = ρj(t),

ξji ∈ {−1, 0, 1}, i ∈ {1, 2, . . . , q}, j ∈ {1, 2, . . . , l}
}

,

Let us suppose that assumptions of Theorem 7.4.3 are satisfied, then the unique
solution u to (8.7.3) belongs to C([0, T ],Rq). Then, (8.7.3) holds for each t ∈ [0, T ],
namely

〈F (t, u(t)), v(t)− u(t)〉 ≥ 0, ∀v(t) ∈ K(t), ∀t ∈ [0, T ].

Now, we extend a combined relaxation method to the calculus of solution to the
last evolutionary variational inequality. The method (see [53]) runs as follows. After
a partition of real interval [0, T ], such that:

0 = t0 < t1 < . . . < tr < . . . < tN = T.

the algorithm, to solve the finite-dimensional variational inequality

〈F (tr, u(tr)), v(tr)− u(tr)〉 ≥ 0, ∀v(tr) ∈ K(tr),

where

K(tr) =

{
u(tr) ∈ Rq

+ : λi(tr) ≤ Fi(tr) ≤ µi(tr),

q∑
i=1

ξjiui(tr) = ρj(tr),

ξji ∈ {−1, 0, 1}, i ∈ {1, 2, . . . , q}, j ∈ {1, 2, . . . , l}
}

,

starts from any u0(tr) ∈ K(tr) fixed, from a sequence {γk}k∈N satisfying the following
conditions

γk ∈ [0, 2], k = 0, 1, . . . ;
+∞∑

k=0

γk(2− γk) = ∞,

and from numbers α ∈ (0, 1), β ∈ (0, 1), θ̃ > 0 chosen. Set k := 0. It finds m as the
smallest number in Z+ such that

〈F (tr, u
k(tr))− F (tr, z

k,m(tr)), u
k(tr)− zk,m(tr)〉 ≤ (1− α)(θ̃βm)−1 (8.7.4)
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Figure 8.14: A network model.

〈Ak[z
k,m(tr)− uk(tr)], z

k,m(tr)− uk(tr)〉,
where Ak is a n×n definite positive matrix and zk,m(tr) is a solution to the auxiliary
problem of finding z(tr) ∈ K(tr) such that

〈F (uk(tr)) + (θ̃βm)−1(z(tr)− uk(tr)), u(tr)− z(tr)〉 ≥ 0, ∀u(tr) ∈ K(tr).

Set θk := βmθ̃, vk(tr) := zk,m(tr). If uk(tr) = vk(tr) or F (tr, v
k(tr)) = 0, the

algorithm stops, else, setting

tk(tr) := F (tr, v
k(tr))− F (tr, u

k(tr))− θ−1
k Ak(v

k(tr)− uk(tr)),

fk(tr) := F (tr, v
k(tr)),

σk(tr) := αθ−1
k 〈Ak[z

k,m(tr)− uk(tr)], z
k,m(tr)− uk(tr)〉/‖tk(tr)‖2

q,

uk+1(tq) := PK(tr)(u
k(tr)− γkσ

k(tr)f
k(tr)),

the iteration repeats itself. After a linear interpolation, the approximate equilibrium
solution is constructed.

In [53] it is shown that this method is convergent to a solution of the finite-
dimensional variational inequality problem under the only assumption that F is
locally Lipschitz continuous and monotone.

As for the previous algorithm, the complexity of this depends on the choose of
the procedure to compute the small number in Z+ such that (8.7.4) holds.

8.7.1 A numerical example

Let us consider a transportation network pattern for the network shown in Figure
8.14. The network consists of six nodes and nine links. We assume that the O/D
pairs are represented by w1 = (P1, P2) and w2 = (P4, P6), which are respectively
connected by the following paths:

w1 :

{
R1 = (P1, P2)

R2 = (P1, P4) ∪ (P4, P2),
w2 :





R3 = (P4, P2) ∪ (P2, P6)

R4 = (P4, P5) ∪ (P5, P6)

R5 = (P4, P2) ∪ (P2, P3) ∪ (P3, P6)

R6 = (P4, P2) ∪ (P2, P5) ∪ (P5, P6).
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Let us suppose that the cost vector-function on the paths is the next one

C : L2([0, 2],R6
+) → L2([0, 2],R6

+);

C1(t,H(t)) = (3t + 4)H1(t) + t,

C2(t,H(t)) = H3
1 (t) + (t + 3)H2(t) + 3t3 + 1,

C3(t,H(t)) = (t + 1)H1(t) + 3H3
3 (t) + 5t + 2,

C4(t,H(t)) = (t + 4)H2
4 (t) + 2H5(t) + t + 1,

C5(t,H(t)) = 2H3(t) + (5t + 2)H2
5 (t) + 7t,

C6(t,H(t)) = (t + 3)H2
4 (t) + (2t + 5)H6(t),

and the set of feasible flows is given by

K =

{
F ∈ L2([0, 2],R6

+) : (t + 1, 0, 2t + 1, t + 1, 2t + 1, 0) ≤ (F1(t), F2(t), F3(t),

F4(t), F5(t), F6(t)) ≤ (5t, 10t + 5, 5t + 12, 5t + 9, 10t + 2),

F1(t) + F2(t) = 2t + 5,

F3(t) + F4(t) + F5(t) + F6(t) = 5t + 3 in [0, 2]

}
.

Now, we verify that the cost vector-function is strictly monotone:

〈C(t,H(t))− C(t, F (t)), H(t)− F (t)〉 = (3t + 4)(H1(t)− F1(t))
2

+(H2
1 (t) + F1(t)H1(t) + F 2

1 (t))(H1(t)− F1(t))

(H2(t)− F2(t)) + (t + 3)(H2(t)− F2(t))
2

+(t + 1)(H1(t)− F1(t))(H3(t)− F3(t))

+3(H2
3 (t) + H3(t)F3(t) + F 2

3 (t))(H3(t)− F3(t))
2

+(t + 4)(H4(t) + F4(t))(H4(t)− F4(t))
2

+2(H5(t)− F5(t))(H4(t)− F4(t))

+2(H3(t)− F3(t))(H5(t)− F5(t))

+(5t + 2)(H5(t) + F5(t))(H5(t)− F5(t))
2

+(t + 3)(H4(t) + F4(t))(H4(t)− F4(t))

(H6(t)− F6(t)) + (2t + 5)(H6(t)− F6(t))
2

≥
(5

2
t + 2

)
(H1(t)− F1(t))

2 +
(
t +

3

2

)

(H2(t)− F2(t))
2 +

(15

2
− t

2

)
(H3(t)− F3(t))

2

+(t + 4)(H4(t)− F4(t))
2 + (10t + 2)

(H5(t)− F5(t))
2 + (t + 2)(H6(t)− F6(t))

2 > 0
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Figure 8.15: Curves of equilibria.

∀H(t), F (t) ∈ R6
+, with H(t) 6= F (t), in [0, T ]. Moreover, the operator is continu-

ous, then the descent method determines a sequence {Hk(tr)}k∈N convergent to the
solution to the static variational inequality for each i.

Hence, we can compute the curve of equilibria, by selecting tr ∈
{

k
15

: k ∈
{0, 1, . . . , 30}}. Using a MatLab computation and choosing the initial point H0(tr) =
(tr + 3, tr + 2, 2tr + 1, tr + 1, tr + 1, tr) to start the iterative method, we find the
equilibrium points in the Table 8.8. The stopping criterion is ‖R(Hk(tr))‖6 =
‖Hk(tr)−Hk−1(tr)‖6 ≤ 10−6, for i = 0, 1, . . . , 30.

The interpolation of equilibria points yields the curves of equilibria, as Figure
8.15 shows.

8.8 The convergence study

In this section, we investigate on the convergence of algorithms presented in the pre-
vious sections. We want to prove that under appropriate assumptions the sequence,
generated by algorithms, converges in L1-sense to the equilibrium solution to the
evolutionary variational inequality

Find u ∈ K such that

〈F (t, u(t)), v(t)− u(t)〉 ≥ 0, ∀v(t) ∈ K(t), a.e. in [0, T ], (8.8.1)
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where F : [0, T ]× Rq → Rq and

K(t) =

{
u(t) ∈ Rq : λ(t) ≤ u(t) ≤ µ(t),

q∑
i=1

ξjiui(t) = ρj(t),

ξji ∈ {−1, 0, 1}, i ∈ {1, 2, . . . , q}, j ∈ {1, 2, . . . , l}
}

.

At first, we remark that algorithms have the following common structure:

Step 1: Discretization of the time interval [0, T ]:

0 = t0 < t1 < . . . < tr < . . . < tN = T.

Step 2: Solve static variational inequalities:

〈F (tr, u(tr)), v(tr)− u(tr)〉 ≥ 0, ∀v(tr) ∈ K(tr), (8.8.2)

where

K(tr) =

{
u(tr) ∈ Rq

+ : λ(tr) ≤ u(tr) ≤ µ(tr),

q∑
i=1

ξjiui(tr) = ρj(tr),

ξji ∈ {−1, 0, 1}, i ∈ {1, 2, . . . , q}, j ∈ {1, 2, . . . , l}
}

,

by means of a convergent method.

Step 3: Interpolate equilibrium solutions to (8.8.2).

Let us assume that all hypotheses to have the continuity of solution to (8.8.1) and
the convergence of the method to compute solutions to finite-dimensional variational
inequalities hold. Let us introduce a sequence {πn}n∈N of (not necessarily equidis-
tant) partitions of the time interval [0, T ] such that πn = (t0n, t1n, . . . , t

Nn
n ), where

0 = t0n < t1n < . . . < tNn
n = T . We consider a sequence of equidistant partitions, in

the sense that
kn := max{trn − tr−1

n | r = 1, 2, . . . , Nn},
approaches zero for n → +∞.
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By the interpolation theory, we know that if we construct the approximate solu-
tion to (8.8.1) by means of Hermite’s polynomial, using known values of the solution
u(t), the sequence converges uniformly to the exact solution. We not use Hermite’s
polynomial, but we consider an approximation by means of a piecewise constant
functions, we can prove that the convergence is in L1-sense.

Let us consider the approximate solutions to (8.8.1) given by the following for-
mula:

un(t) =
n2∑

r=1

u(trn)χ[tr−1
n ,trn[(t), (8.8.3)

where u(trn) is the solution to the finite-dimensional variational inequality which
is obtained to (8.8.1) for t = trn, which can be compute by means of a projection
method or a descent method.

Let us estimate the following integral

∫ T

0

∥∥∥∥u(t)−
Nn∑
r=1

u(trn)χ[tr−1
n ,trn[(t)

∥∥∥∥
q

dt

=

∫ T

0

∥∥∥∥
Nn∑
r=1

u(t)χ[tr−1
n ,trn[(t)−

Nn∑
r=1

u(trn)χ[tr−1
n ,trn[(t)

∥∥∥∥
q

dt

≤
Nn∑
r=1

∫ tnr

tnr−1

‖u(t)− u(trn)‖qdt .

Since u is uniformly continuous, we have that for every ε > 0 there exists δ > 0 such
that if t ∈ [tnr−1, t

n
r ] satisfies the condition |t− trn| < δ it results

‖u(t)− u(trn)‖2
q <

ε

T
, for r = 1, 2, . . . , n2, ∀n ∈ N.

Choosing n large enough in such way that kn < δ, we reach

∫ T

0

∥∥∥∥u(t)−
Nn∑
r=1

u(trn)χ[tr−1
n ,trn[(t)

∥∥∥∥
q

dt <

Nn∑
r=1

ε

T
(tnr − tnr−1) = ε. (8.8.4)

The last estimate implies that sequence (8.8.3) converges to the solution to evo-
lutionary variational inequality (8.8.1)
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Table 8.2: Analysis of the convergence of the generalized projection method for
different values of α.

α = 0.05 α = 0.005 α = 0.0005
tr iter np/nf CPUtime iter np/nf CPUtime iter np/nf CPUtime
0 52 104/105 0.406 333 666/667 1.328 1979 3958/3959 6.829

1/15 54 108/109 0.172 349 698/699 1.157 2145 4290/4291 6.953
2/15 66 132/133 0.203 437 874/875 1.328 2610 5220/5221 7.937
1/5 56 112/113 0.187 366 732/733 1.204 2312 4624/4625 7.609

4/15 57 114/115 0.188 374 748/749 1.235 2392 4784/4785 7.859
1/3 58 116/117 0.188 381 762/763 1.265 2462 4924/4925 8.125
2/5 58 116/117 0.203 388 776/777 1.297 2524 5048/5049 8.375

7/15 59 118/119 0.203 393 786/787 1.297 2580 5160/5161 8.515
8/15 59 118/119 0.203 399 798/799 1.328 2631 5262/5263 8.656
3/5 60 120/121 0.203 403 806/807 1.328 2678 5356/5357 8.891
2/3 60 120/121 0.219 408 816/817 1.344 2721 5442/5443 9.015

11/15 61 122/123 0.219 412 824/825 1.359 2761 5522/5523 9.094
4/5 61 122/123 0.203 415 830/831 1.375 2799 5598/5599 9.235

13/15 62 124/125 0.203 419 838/839 1.375 2834 5668/5669 9.437
14/15 62 124/125 0.203 422 844/845 1.406 2867 5734/5735 9.5

1 62 124/125 0.219 426 852/853 1.406 2899 5798/5799 9.563
16/15 63 126/127 0.234 429 858/859 1.406 2929 5858/5859 9.688
17/15 63 126/127 0.203 431 862/863 1.422 2957 5914/5915 9.75

6/5 63 126/127 0.203 434 868/869 1.437 2984 5968/5969 9.86
19/15 64 128/129 0.219 437 874/875 1.453 3010 6020/6021 9.953

4/3 64 128/129 0.219 439 878/879 1.453 3034 6068/6069 10.11
7/5 64 128/129 0.203 442 884/885 1.468 3058 6116/6117 10.094

22/15 64 128/129 0.219 444 888/889 1.484 3080 6160/6161 10.172
23/15 65 130/131 0.219 446 892/893 1.469 3102 6204/6205 10.25

8/5 65 130/131 0.219 446 892/893 1.485 3123 6246/6247 10.328
5/3 65 130/131 0.219 448 896/897 1.485 3144 6288/6289 10.375

26/15 65 130/131 0.218 450 900/901 1.5 3163 6326/6327 10.547
9/5 66 132/133 0.219 452 904/905 1.516 3182 6364/6365 10.547

28/15 66 132/133 0.219 454 908/909 1.516 3200 6400/6401 10.562
29/15 66 132/133 0.218 456 912/913 1.515 3218 6436/6437 10.641

2 66 132/133 0.219 459 918/919 1.515 3235 6470/6471 10.688
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Table 8.3: Numerical results and analysis of the convergence of the generalized
extragradient method

tr H1(tr) H2(tr) H3(tr) H4(tr) H5(tr) iter np/nf CPUtime
0 2.4997175 0.5002824 2.8571429 2.1428571 0 3551 7104/7105 10.922

1/15 2.3593725 0.7739608 3.0329378 2.3670622 0 3185 6370/6371 9.594
2/15 2.2605846 1.0060820 3.2090342 2.5909658 0 2913 5826/5827 8.750
1/5 2.1909429 1.2090571 3.3852142 2.8147858 0 5043 10087/10088 15.906

4/15 2.1425800 1.3907534 3.5614116 3.0385884 0 4819 9638/9639 15.172
1/3 2.1094881 1.5571786 3.7376283 3.2623717 0 4691 9382/9383 13.781
2/5 2.0875250 1.7124750 3.9138980 3.4861020 0 4616 9232/9233 13.5

7/15 2.0736694 1.8596639 4.0902629 3.7097371 0 4532 9064/9065 13.235
8/15 2.0656801 2.0009866 4.2667629 3.9332371 0 4378 8756/8757 12.687
3/5 2.0618720 2.1381280 4.4434288 4.1565712 0 4134 8268/8269 12.203
2/3 2.0609642 2.2723691 4.6202803 4.3797197 0 3826 7652/7653 11.219

11/15 2.0619749 2.4046918 4.7973251 4.6026749 0 3498 6996/6997 10.328
4/5 2.0641447 2.5358553 4.9745592 4.8254408 0 3186 6372/6373 9.266

13/15 2.0668817 2.6664516 5.1519674 5.0480326 0 2909 5818/5819 8.484
14/15 2.0697226 2.7969441 5.3295248 5.2704752 0 2673 5346/5347 7.875

1 2.0723025 2.9276975 5.5071972 5.4928028 0 2475 4950/4951 7.531
16/15 2.0743332 3.0590001 5.6849427 5.7150573 0 2309 4618/4619 6.844
17/15 2.0755860 3.1910807 5.8627124 5.9372876 0 2169 4338/4339 6.578

6/5 2.0758771 3.3241229 6.0404507 6.1595493 0 2048 4096/4097 6.578
19/15 2.0750606 3.4582727 6.2180975 6.3819025 0 1943 3886/3887 5.875

4/3 2.0730165 3.5936502 6.3955863 6.6044137 0 1848 3696/3697 5.516
7/5 2.0696484 3.7303516 6.5728470 6.8271530 0 1760 3520/3521 5.234

22/15 2.0648773 3.8684560 6.7498056 7.0501944 0 1677 3354/3355 5
23/15 2.0586367 4.0080300 6.9263838 7.2736162 0 1595 3190/3191 4.766

8/5 2.0508703 4.1491297 7.1025000 7.4975000 0 1509 3018/3019 4.625
5/3 2.0415295 4.2918039 7.2780691 7.7219309 0 1410 2820/2821 4.328

26/15 2.0305705 4.4360962 7.4530019 7.9469981 0 1271 2542/2543 3.766
9/5 2.0178891 4.5821109 7.6271046 8.1728954 0 1540 3081/3082 4.828

28/15 2.0038977 4.7294357 7.8008529 8.3991471 0 2132 4264/4265 6.375
29/15 1.9878496 4.8788171 7.9733178 8.6266822 0 2367 4734/4735 7.078

2 1.9700377 5.0299623 8.1447570 8.8552430 0 2486 4972/4973 7.438
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Table 8.4: Numerical results and analysis of the convergence of the generalized
Marcotte’s method

tr H1(tr) H2(tr) H3(tr) CPUtime
0 1.7692257 1.0769299 0.1538443 0.4210

1/15 1.8737438 1.1805298 0.2790597 0.2350
2/15 1.9858712 1.2865091 0.3942864 0.2190
1/5 2.1052578 1.3947422 0.5 0.2190

4/15 2.2315727 1.5051124 0.5966482 0.2030
1/3 2.3645034 1.6175103 0.6846530 0.1880
2/5 2.5037551 1.7318330 0.7644119 0.1880

7/15 2.6490475 1.8479856 0.8363002 0.1710
8/15 2.8001179 1.9658772 0.9006715 0.1720
3/5 2.9567160 2.0854239 0.95786 0.1720
2/3 3.1186055 2.2065464 1.0081814 0.1560

11/15 3.2855635 2.3291697 1.0519335 0.1560
4/5 3.4573773 2.4532243 1.0893985 0.1560

13/15 3.6338455 2.5786444 1.1208434 0.1560
14/15 3.8147791 2.7053674 1.1465202 0.1410

1 3.9999967 2.8333350 1.1666683 0.1570
16/15 4.1893269 2.9624921 1.1815144 0.1560
17/15 4.3826068 3.0927866 1.1912732 0.1560

6/5 4.5796812 3.2241697 1.1961491 0.1560
19/15 4.7804043 3.3565943 1.1963347 0.1570

4/3 4.9846357 3.4900168 1.1920143 0.1410
7/5 5.1922423 3.6243955 1.1833622 0.1410

22/15 5.4030976 3.7596912 1.1705446 0.1400
23/15 5.6170810 3.8958665 1.1537192 0.1560

8/5 5.8340776 4.0328860 1.1330364 0.1560
5/3 6.0539780 4.1707163 1.1086390 0.1570

26/15 6.2766778 4.3093255 1.0806633 0.1560
9/5 6.5020774 4.4486834 1.0492392 0.1400

28/15 6.7300817 4.5887612 1.0144904 0.1400
29/15 6.9606 4.7295316 0.9765350 0.1410

2 7.1935454 4.8709687 0.9354859 0.1410
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Table 8.5: Numerical results and analysis of the convergence of the generalized
Solodov-Tseng’s method

tr H1(tr) H2(tr) H3(tr) H4(tr) CPUtime
0 1 3 1.0247146 1.9752854 23.1880

1/15 1.1333333 3.0666667 1.0666674 2.0666660 10.0000
2/15 1.2666667 3.1333333 1.1333341 2.1333327 6.1560
1/5 1.4 3.2 1.2 2.1999994 4.8130

4/15 1.5333333 3.2666667 1.2666674 2.2666660 4.2960
1/3 1.6666667 3.3333333 1.3333341 2.3333327 3.8910
2/5 1.8 3.4 1.4 2.3999994 3.3280

7/15 1.9333333 3.4666667 1.4666674 2.4666661 2.6560
8/15 2.0666667 3.5333333 1.5333341 2.5333327 2.3910
3/5 2.2 3.5999993 1.6 2.5999996 2.1090
2/3 2.3333333 3.6666658 1.6666667 2.6666667 1.8130

11/15 2.4666667 3.7333324 1.7333333 2.7333333 1.5000
4/5 2.6 3.7999993 1.7999999 2.8 1.1410

13/15 2.7333333 3.8666657 1.8666667 2.8666667 0.9530
14/15 2.8666667 3.9333324 1.9333333 2.9333333 0.6250

1 3 3.9999990 2 3 0.4680
16/15 3.1333333 4.0666667 2.0666674 3.0666660 3.8600
17/15 3.2666667 4.1333333 2.1333341 3.1333327 4.1880

6/5 3.4 4.2 2.2 3.1999994 3.7810
19/15 3.5333333 4.2666667 2.2666674 3.2666660 3.7190

4/3 3.6666667 4.3333333 2.3333341 3.3333327 3.5160
7/5 3.8 4.4 2.4 3.3999993 3.1250

22/15 3.9333333 4.4666667 2.4666674 3.4666660 2.7970
23/15 4.0666667 4.5333333 2.5333341 3.5333327 2.4840

8/5 4.2 4.6 2.6 3.5999994 2.1720
5/3 4.3333333 4.6666667 2.6666674 3.6666660 1.9060

26/15 4.4666667 4.7333333 2.7333341 3.7333327 1.6100
9/5 4.6 4.8 2.8 3.7999994 1.2810

28/15 4.7333333 4.8666665 2.8666674 3.8666661 0.9840
29/15 4.8666667 4.9333324 2.9333333 3.9333333 0.5630

2 5 4.9999990 3 4 0.3430
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Table 8.6: Numerical results and analysis of the convergence of the generalized
Solodov-Svaiter’s method

tr H1(tr) H2(tr) H3(tr) CPUtime
0 0.3333333 0.3333333 1.3333333 2.8184

1/15 0.4666666 0.5333333 1.4666667 2.8185
2/15 0.6 0.7333333 1.6 2.8185
1/5 0.7333333 0.9333333 1.7333333 2.8185

4/15 0.8666666 1.1333333 1.8666667 2.8185
1/3 1 1.3333333 2 2.8186
2/5 1.1333333 1.5333333 2.1333333 2.8186

7/15 1.2666667 1.7333333 2.2666667 2.8186
8/15 1.4 1.9333333 2.4 2.8186
3/5 1.5333333 2.1333333 2.5333333 2.8186
2/3 1.6666667 2.3333333 2.6666667 2.8186

11/15 1.9333333 2.4666667 2.7333333 2.8186
4/5 2.2 2.6 2.8 2.8186

13/15 2.4666667 2.7333333 2.8666667 2.8187
14/15 2.7333333 2.8666667 2.9333333 2.8187

1 3 3 3 2.8187
16/15 3.2666667 3.1333333 3.0666667 2.8187
17/15 3.5333333 3.2666667 3.1333333 2.8187

6/5 3.8 3.4 3.2 2.8187
19/15 4.0666667 3.5333333 3.2666667 2.8187

4/3 4.3333333 3.6666667 3.3333333 2.8187
7/5 4.6 3.8 3.4 2.8188

22/15 4.8666667 3.9333333 3.4666667 2.8188
23/15 5.1333333 4.0666667 3.5333333 2.8188

8/5 5.4 4.2 3.6 2.8188
5/3 5.6666667 4.3333333 3.6666667 2.8188

26/15 5.9333333 4.4666667 3.7333333 2.8188
9/5 6.2 4.6 3.8 2.8188

28/15 6.4666667 4.7333333 3.8666667 2.8188
29/15 6.7333333 4.8666667 3.9333333 2.8188

2 7 5 4 2.8188
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Table 8.7: Numerical results and analysis of the convergence of the generalized
descent method: first version

t3 H1(t3) H2(t3) H3(t3) CPUtime
0 0 0 1 0.3290

1/15 0.0088888 0.0755555 1.0711111 0.0010
2/15 0.9338026 0.8353209 0.4135679 0.6090
1/5 1.0181424 0.9709288 0.3890712 0.2340

4/15 1.1057467 1.1226822 0.3395400 0.1250
1/3 1.1997150 1.2890314 0.2665241 0.3440
2/5 1.3016370 1.4691815 0.1708185 0.2970

7/15 1.4124571 1.6626604 0.0528952 0.2500
8/15 1.5327904 1.8691603 0.0869381 0.1250
3/5 1.6630644 2.0884678 0.2484677 0.3280
2/3 1.8035903 2.3204271 0.4315381 0.2190

11/15 1.8563488 2.4666667 0.8325400 0.2350
4/5 1.8944272 2.6 1.3055728 0.3910

13/15 1.9309493 2.7333333 1.8246062 0.3440
14/15 1.9660918 2.8666667 2.3894638 0.2650

1 2 3 3 0.0010
16/15 2.0327956 3.1333333 3.6560933 0.4060
17/15 2.0645813 3.2666667 4.3576409 1.3280

6/5 2.0954451 3.4 5.1045549 1.5310
19/15 2.1254629 3.5333333 5.8967594 1.6090

4/3 2.1547005 3.6666667 6.7341884 1.5780
7/5 2.1832160 3.8 7.6167840 5.1100

22/15 2.2110601 3.9333333 8.5444954 5.5790
23/15 2.2382784 4.0666667 9.5172772 5.6250

8/5 2.2909944 4.2 10.535089 5.4530
5/3 5.6666667 4.3333333 11.597894 5.2180

26/15 2.3165612 4.4666667 12.705661 4.9840
9/5 2.48 4.6 13.72 14.6250

28/15 2.9688889 4.7333333 14.453333 9.8900
29/15 3.4755556 4.8666667 15.213333 7.2190

2 4 5 1.6 5.7500



146 8. Algorithms to solve dynamic equilibrium problems

Table 8.8: Numerical results and analysis of the convergence of the generalized
descent method: second version

tr H1(tr) H2(tr) H3(tr) H4(tr) H5(tr) H6(tr) CPUtime
0 1 1 1 1 0 0 0.1100

1/15 1.2 1.2 1.0666674 1.0666667 0.0666666 0.1333333 0.0160
2/15 1.4 1.4 1.1333333 1.1333333 0.1333333 0.2666666 0.0150
1/5 1.6 1.6 1.2 1.2 2 4 0.0160

4/15 1.45 2.15 1.4166667 1.15 1.4166667 0.1166666 0.1400
1/3 1.75 2.25 1.5833333 1.25 1.5833333 0.0833333 0.0310
2/5 2.05 2.35 1.75 1.35 1.75 0.05 0.0160

7/15 2.35 2.45 1.9166667 1.45 1.9166667 0.0166666 0.6250
8/15 2.6666667 2.5333333 2.0666667 1.5333333 2.0666667 0.0666666 1.9530
3/5 3 2.6 2.2 1.6 2.2 0.2 3.4060
2/3 3.3333333 2.6666667 2.3333333 1.6666667 2.3333333 0.3333333 3.6560

11/15 3.6666667 2.7333333 2.4666667 1.7333333 2.4666667 4.6666667 3.7030
4/5 4 2.8 2.6 1.8 2.6 0.6 5.1720

13/15 4.3333333 2.8666667 2.7333333 1.8666667 2.7333333 0.7333333 7.6250
14/15 4.6666667 2.9333333 2.8666667 1.9333333 2.8666667 0.8666666 6.5940

1 5 3 3 2 3 1 6.2810
16/15 5.3333333 3.0666667 3.1333333 2.0666667 3.1333333 1.1333333 6.0470
17/15 5.6666667 3.1333333 3.2666667 2.1333333 3.2666667 1.2666667 10.9840

6/5 6 3.2 3.4 2.2 3.4 1.4 10.3290
19/15 6.3333333 3.2666667 3.5333333 2.2666667 3.5333333 1.5333333 10.2030

4/3 6.6666667 3.3333333 3.6666667 2.3333333 3.6666667 1.6666667 10.1230
7/5 7 3.4 3.8 2.4 3.8 1.8 9.1870

22/15 7.3333333 3.4666667 3.9333333 2.4666667 3.9333333 1.9333333 8.6720
23/15 7.6666667 3.5333333 4.0666667 2.5333333 4.0666667 2.0666667 8.4530

8/5 8 3.6 4.2 2.6020369 4.2 2.1979631 7.6560
5/3 8.3333333 3.6666667 4.3333333 2.7131884 4.3333333 2.2868116 161.5320

26/15 8.6666667 3.7333333 4.4666667 2.8320098 4.4666667 2.3679902 248.5150
9/5 9 3.8 4.6 2.9503770 4.6 2.4496230 292.1880

28/15 9.3333333 3.8666667 4.7333333 3.0683231 4.7333333 2.5316769 311.1400
29/15 9.6666667 3.9333333 4.8666667 3.1858802 4.8666667 2.6141198 329.7040

2 1 4 5 3.3030739 5 2.6969261 344.1400



Conclusions

The results presented give a theoretical justification for introducing methods to
solve evolutionary variational inequalities which express dynamic equilibrium prob-
lems. We have fixed our attention to consider evolutionary variational and quasi-
variational inequalities and to study under which assumptions the continuity of
solutions can be ensured. In order to archive our analytic results, the set conver-
gence in Mosco’s sense plays a central role. Then, we apply continuity results to
dynamic equilibrium problems, having proved that they satisfy all assumptions of
general results. An important step is to show that the set of constraints of dynamic
equilibrium problems satisfy the conditions of the set convergence in Mosco’s sense.
The continuity of solutions to dynamic equilibrium problems allows us to introduce
methods for the calculation of equilibrium solutions. Until up now, very few meth-
ods are been given (see for instance the sub-gradient method presented in [37]), so
our result seems to have a particular relevance.

After introducing the theory of evolutionary variational inequalities and dynamic
equilibrium problems, we have focused on the connection between evolutionary vari-
ational inequalities and dynamic equilibrium problems. In the last years, this fact
has given more impulse to the study of existence, uniqueness, stability for evolu-
tionary variational inequalities which express dynamic equilibrium problems and to
introduce methods for the computational of equilibrium solutions. All this behaves
us to provide methods for the calculation of equilibrium solutions. To this aim, it is
important to get notices about the continuity of solutions to dynamic equilibrium
problems. In the detail, we have proved that the property of set convergence in
Mosco’s sense with assumptions of continuity of data provide the continuity of the
unique solution to a general strongly monotone evolutionary variational inequality
is continuous. This result is been generalized to degenerate and strictly mono-
tone evolutionary inequalities. We have obtained analogous results for evolutionary
quasi-variational inequalities. Having proved that sets of constraints of dynamic
equilibrium problems, in the common formulation, satisfy the property of set con-
vergence in Mosco’s sense, we have applied the continuity results to equilibrium
problems. In particular, the continuity allows us to reduce the computational pro-
cedure to finite-dimensional problems by means of a partition of the time interval
and to use a method to solve static equilibrium problems then, by means of a in-
terpolation procedure, we are able to find the dynamic equilibrium solutions. We
have studied the complexity of algorithms and the convergence of the scheme in
L1([0, T ],Rm). It still remains to investigate the possibility to apply the continuity
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of solutions to evolutionary quasi-variational inequalities in order to compute so-
lutions to the dynamic elastic traffic equilibrium problem, which is expressed by a
quasi-variational inequality.
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